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Editorial on the Research Topic
Towards Sustainable Urban Development: Use of Geographic Big Data for
Spatial Planning

Since the introduction of geo-big data, we have been able to observe how its role in social
development and human–environment interactions has grown through the years. Multiple
examples of geo-big data applications can be found in leisure space optimization, traffic
prediction, agricultural planning, air quality monitoring, livelihood improvement, social
justice, forest management, interregional development, green space accessibility, and
environmental diagnosis. This extensive use of geo-big data facilitates sharing of spatial
information and spatial data mining, and it can be applied to geographic assessment,
prediction, analysis, and planning. The geo-big data era provides a new opportunity for the
transformation of spatial planning and sustainable decision-making by revealing spatial
regularity based on geo-big data [see (Jing and Liu, 2018; Jing et al., 2021)].

The goal of this Research Topic is to introduce academic output that adopts geospatial
big data to facilitate intelligent urban governance. In the rapid process of urbanization, geo-
big data serves as a crucial factor of technological innovation that covers all the aspects of
urban systems (i.e., fundamental infrastructures, traffic networks, architectures, energy
systems, etc.). Based on smart spatial analytical platforms and geospatial artificial
intelligence technologies, geospatial big data can be used to empower urban governance
in an intelligent and smart way, serving as an engine to monitor, assess, diagnose, and
ultimately tackle urban problems, and optimize urban systems towards sustainable
development.

This Research Topic has collected 24 publications on sustainable development and smart
spatial planning decision-making involving multi-source geo-big data. Wang et al. proposed
strategies for leisure agriculture optimization by exploring its spatiality and competitiveness
utilizing user-generated content (including leisure agriculture sites) with a case study of Wuhan,
China. Cai et al. analyzed the spatial and temporal features of urban expansion during the latest
decade based on remote sensing images and socioeconomic statical data and revealed the
imbalance and spatial disorder of urban expansion in Zhengzhou, China. Luo et al. proposed a
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safety evaluation framework for assessing active travel traffic safety near
a park green space (PGS) through POI data and similar and found that
the walking mode is safer than the cycling mode in terms of road
facilities near a PGS. Wang et al. used spatial analytical techniques to
study the tempo–spatial interaction between cropland expansion and
urbanization and revealed the socioeconomic determinants via land use
data and statical data in the middle section of the Yangtze River. Bai
et al. constructed an urban model for extracting urban built-up areas
based on nighttime light data, analyzed the spatiotemporal factors of
China’s urban built-up area expansion, and revealed the agglomeration-
to-dispersion trend of urban built-up area expansion. Zheng et al.
proposed a packagedmethod for traffic flow prediction in consideration
of weather conditions based on real traffic video data and suggested that
the algorithm outperformed the previous solutions (with 10% higher
accuracy). He and Tang put forward a new notion andmethod of large-
scale industrial land identification by using POI data and a random
forest model and researched the spatial pattern of industrial land in
China. Wu et al. explored the distributive characteristics of rural
residential land concerning natural reserves and non-natural reserves
based on land use data and statistical yearbooks in Hubei. Liu et al.
carried out a scientometric analysis of research output on the tempo-
spatial distribution and dynamic evolution of remote sensing based on
the Web of Sciences database and revealed the global spatial pattern of
those academic publications in a significant dispersion. Xia et al.
adopted mobile phone data to assess urban spatial vitality and
found an evident center–periphery pattern in Changsha, China. Yin
et al. explored environmental drivers of vitalizing urban coastal zones
based onmulti-source geo-big data. Huang et al. usedmulti-source data
(i.e., mobile phone signaling data, GPS data, land use data, and smart
card data) for targeted bus exterior advertising. Zhang et al. adopted
street network data and Flickr photo location data to measure the
heterogeneity of street networks for a better understanding of urban
activities and urban space. Hou et al. revealed the spatial patterns and
driving mechanisms of heritage trees in an ancient city in China
through geospatial analysis methods and a geographically weighted
regression model. Zhang et al. measured the competitiveness of civil
aviation airports and revealed their spatiotemporal dynamics in the
Yangtze River Economic Belt through a series of spatial analytical
methods (e.g., spatial auto-correlation, etc.) combining POI data and
fundamental geographical data and similar. Zhang et al. analyzed the
economy-information-coupling connection complex network structure
based on Baidu search index data of the Beijing Tianjin Hebei Urban
Agglomeration. Xu and Wang researched urban PGS accessibility on
different scales (subdistrict, community, and residential quarter) by the
Gaussian-based two-step floating catchment area method combining
park green data, road networks, residential quarter data, etc.Zhang et al.
evaluated the barriers of labor flow, technology flow, and capital flow
with multi-source big data (e.g., Baidu Migration data) and analyzed
how factors influence the barrier of the three typical production flows in
the Chengdu–Chongqing urban agglomeration, China. Yang et al.
spatialized the impact of environmental and socioeconomic factors
on the changes in inventory, self-consumption, and livestock sales in

Kyrgyzstan through mainly spatial regression analysis. Huang et al.
employed nighttime light images to measure the changes in the refugee
population before and after the war in Ukraine. Yang et al. proposed a
multi-strategy sparrow search algorithm to deal with the UAV
trajectory planning issue for maximizing the UAV efficiency and
minimizing the flight distance in a three-dimensional environment.
Li et al. took residential land price data and characterized the
spatiotemporal network structure and the regional correlation in
Hebei Province, China. Liu et al. combined location-based service
big data to simulate commuting under floods according to the
minimum time–cost principle and found that inconsistent spatial
distribution exists among commuting loss, flood exposure hot spots,
and road vulnerability. Zhang et al. unraveled the cooperation and
competition between the conventional railway and high-speed railway
based on railway timetable data and railway location data in China.

We are convinced that this academic output can benefit both the
academic community and political decision-makers, targeting smart
and sustainable spatial planning development by means of multi-
source geographical data and analytical techniques. Moreover,
current studies may also inspire information engineers to
advance the development of pertinent information system
platforms and toolboxes.

The Guest Editors are thankful for the Editorial Team’s
assistance. We are grateful to the invited reviewers for their
professional comments which have helped to improve the
articles. Last but not least, we also appreciate the authors; they
have believed in and selected this Research Topic to contribute their
wisdom for advancing academic progress in this domain.
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Interaction Between Construction
Land Expansion and Cropland
Expansion and Its Socioeconomic
Determinants: Evidence From Urban
Agglomeration in the Middle Reaches
of the Yangtze River, China
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Nowadays, both urbanization and cropland expansion are hot issues. However, research
related to the spatiotemporal interaction between urbanization and cropland expansion
and their socioeconomic determinants remains scarce. Accordingly, this research takes
the urban agglomeration in the middle reaches of the Yangtze River (MRUA) as the
research area by combining spatial analysis, sensitivity analysis, and the spatial gravity
model. To achieve this goal, we identified the area of the construction land expansion and
cropland expansion, the sensitivity of cropland expansion to construction land expansion,
and the shifting trajectory of gravity centers of construction land expansion and cropland
expansion and their interaction during 2000–2020, respectively. Additionally, the
geographically weighted regression model was utilized to explore the spatiotemporal
heterogeneity of four socioeconomic determinants of the interaction between construction
land expansion and cropland expansion. The results are as follows: 1) the area of the
expanded construction land and the expanded cropland and the sensitivity of cropland
expansion to construction land expansion show an overall increasing pattern; 2) the gravity
center of the expanded construction land shifted toward the northeast, whereas that of the
expanded cropland moved to the southeast but with similar moving distances (17.83 and
15.37 km, respectively); 3) the GDP has an increasing positive effect on the interaction of
the construction land expansion and cropland expansion, whereas the investment in fixed
assets shows an increasing negative effect during 2000–2020. The GDP in the agricultural
sector and population displays a stable influence. This article offers a solution for decision
makers to promote the interaction between construction land and cropland.

Keywords: gravity center, cropland protection, GWR, sensitivity analysis, urban agglomeration
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INTRODUCTION

Globally, frequent human interactions with the natural
environment have significantly changed Earth’s surface (Song
et al., 2018; Tesfaw et al., 2018). Only in the second half of the
20th century, human’s efforts to develop the social economy have
resulted in 24% of Earth’s surface conversion into cropland and
lost more than 55% of mangroves and coral reefs (Millennium
Ecosystem Assessment, 2005). Therefore, land use/land cover

change (LUCC) has been a hot issue in recent decades (Ariti et al.,
2018; Folberth et al., 2020). Under human demands to attain
economic progress, urbanization has unavoidably become one of
the most active LUCCs, which then promoted the expansion of
the impervious surface and loss of ecological land (Deng et al.,
2009; Salerno et al., 2018; Qiu et al., 2019).

The urbanization level worldwide is estimated to reach over
80%, and in developing countries, the quantity of urban areas in
2050 will be far larger than that in 2000 with an increasing

FIGURE 1 | Location (A), names of prefectural cities (B), DEM (C), and land use in 2020 (D) of MRUA.
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expansion rate (Angel et al., 2011; United Nations, 2018). The
increased urban area inevitably takes up a large number of
cropland and occupies the space of ecological land (van Vliet
et al., 2017; Wang et al., 2020; Wu et al., 2020). The high-quality
lives brought by urbanization to the people also lead to the
booming population (Shu et al., 2018; Boudet et al., 2019).
Facing the pressure from two sides, that is, the reduction of
cropland and population growth, the world is under severe food
security problems (Foley et al., 2011; Asche et al., 2015).

Cropland, as a scarce resource, holds the key to maintaining
food security for a country and the world (Egli et al., 2018; Yang
et al., 2020a). To avoid cropland loss and ensure food security,
many countries worldwide have promulgated several cropland
protection policies in line with their national conditions (Monk
et al., 2013). For example, in 1938, the United Kingdom
promulgated the “Green Belt Policy” to restrict the growth of
urban area and prevent cropland loss (Cullingworth et al., 2014);
in 1996, China implemented a series of policies to ensure no net
loss of cropland and increase the quality of cropland, such as the
“Cropland Balance Policy” and the “Basic Cropland Policy” (Ke
et al., 2018; Su et al., 2020; Wang et al., 2021). These policies are
not only aimed at preventing cropland loss but can also promote
cropland expansion (Ke et al., 2019; Tang et al., 2021). Song and
Pijanowski (2014) pointed out that in 1999–2008, due to the
“Cropland Balance Policy”, 27,677 km2 of cropland was

reclaimed through land consolidation, exploitation, and
rehabilitation in China. Additionally, the spontaneous
agricultural activities of farmers can increase the area of
cropland (He et al., 2021; Zhang et al., 2022). In the future,
cropland expansion will play an increasingly important role in
maintaining food security.

Both urbanization and cropland expansion are hot research
topics at the regional and global scale. Researchers initially
focused on the causes and effects of urbanization (Haase et al.,
2012; He et al., 2014). At the regional scale, Souza et al. (2016)
discussed the effects of urbanization on the microclimate of
Manaus. Su et al. (2012) evaluated the urbanization impacts
on ecosystem services at the eco-regional scale. Moreover, Liu
et al. (2021) examined the characteristics of the urban expansion
structure in a city scale. At a global scale, Lambin and Meyfroidt
(2011) evaluated the relationships among urbanization, economic
globalization, and land scarcity. Seto et al. (2012) projected the
global urban area in 2030 and discussed its direct impact on
carbon biomass. Li et al. (2022) analyzed the characteristics of
global urbanization trend and its related population dynamics. As
time goes on, the area of cropland expansion is continuously
increasing (Zabel et al., 2019; Eigenbrod et al., 2020; Cheng et al.,
2021), consequently gaining considerable attention on its effects.
The effects of cropland expansion on ecosystem services (Ke et al.,
2019; Tang et al., 2021) and cropland productivity (Song and

FIGURE 2 | Research framework.
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Pijanowski, 2014; Song and Liu, 2017), the causes of cropland
expansion (Zelaya et al., 2016; He et al., 2021), and the
relationships among cropland expansion, cropland
intensification, and food security (Mauser et al., 2015; Zabel
et al., 2019; Folberth et al., 2020) are all hot issues of the
researchers. The interactions between urbanization and
cropland change are also explored (Liu L. et al., 2014; van
Vliet et al., 2017). For example, Tu et al. (2021) discussed the
interactions of urbanization and cropland loss under different
rates and patterns of urban expansion. Zhou et al. (2021) applied
macro–micro comparative analysis to detect the urbanization-
associated cropland loss at different scales. However, all of the
aforementioned urban and cropland interaction research works
are all based on the analysis of urbanization resulting cropland
loss. Research scarcely focused on the interaction between urban
expansion and cropland expansion.

Thus, this study attempts to explore the interaction between
urban expansion and cropland expansion and its socioeconomic
determinants. To this end, taking the urban agglomeration in the
middle reaches of the Yangtze River (MRUA), China as the
research area, we first identified the expanded construction
land and the expanded cropland through spatial analysis
during the periods of 2000–2010 and 2010–2020. Then,
sensitivity analysis was utilized to detect the sensitivity of
cropland expansion to construction land expansion. We also
identified the gravity centers of the expanded construction land
and expanded cropland, their shifting trajectories, and
interaction. Last, the geographically weighted regression
(GWR) model was applied to detect the socioeconomic
determinants of the interaction between construction land
expansion and cropland expansion.

STUDY AREA AND DATA SOURCES

MRUA is located within 110°15’ − 118°30’E and
25°58’ − 32°39’N, covering an area of 3,26,100 km2, and lying
in the middle of the Yangtze River Economic Belt (YREB)
(Figure 1). YREB is the most complete urban system with the
largest population and the largest industrial scale in the world
(Pan et al., 2020). As one of the most important urban
agglomerations in YREB, MRUA has a population of 125
million and a regional GDP of 7.90 trillion Yuan, creating
9.6% of the total economic output in China using 3.4% of the
land area and 9.0% of the population according to the statistical
yearbook in 2018. Moreover, MRUA has a large amount of
cropland because of the large plains located in the middle and
northeast (Figures 1C,D) and the abundant precipitation,
making it an important rice production base in China. The
agricultural activities are active. Therefore, given the pressure
from both urbanization and agriculture, MRUA is a perfect area
to study the interaction between construction land expansion and
cropland expansion.

This research uses two types of data: spatial data and statistical
data. The spatial data include the land use maps in 2000, 2010,
and 2020 from the Data Center of Resources and Environment,
Chinese Academy of Science (http://www.resdc.cn), and were

reclassified into seven land use types based on the original land
use reclassification system (Liu et al., 2010; Liu et al., 2014a). The
statistical data come from the Statistical Yearbook of Hubei,
Hunan, and Jiangxi Provinces in 2000–2020.

METHODS AND MATERIALS

Research Framework
In order to detect the interaction between construction land
expansion and cropland expansion and explore its
socioeconomic determinants, four steps were conducted
(Figure 2). First, the area of the expanded construction land
and cropland in the periods of 2000–2010 and 2010–2020 was
evaluated using spatial analysis. Then, by integrating sensitivity
analysis, we calculated the sensitivity of cropland expansion to
construction land expansion to reflect the relationships between
them. Third, the gravity model was chosen to estimate the spatial
balance of construction land expansion and cropland expansion,
changes of the gravity centers, and the interaction between
construction land expansion and cropland expansion in
2000–2020. Finally, four socioeconomic determinants and the
GWRmodel were applied to explore the spatial local effects of the
variables on the interaction between construction land expansion
and cropland expansion. The spatiotemporal heterogeneity of
socioeconomic determinants can be identified by using
these steps.

Identification of the Expanded Construction
Land and the Expanded Cropland
This research defines the expanded construction land or the
expanded cropland as follows: that a parcel is no construction
land or no cropland at the beginning of the research period and it
is transformed to construction land or cropland at the end of the
research period. Therefore, the amount of the expanded
construction land and the expanded cropland is calculated as
follows:

Coni � ∑ m
n1�1Ln1i, (1)

Cropi � ∑ m
n2�1Ln2i, (2)

where Coni and Cropi denote the amount of the expanded
construction land and the expanded cropland in city i,
respectively, m represents the number of land use types
excluding construction land or cropland, which is six in these
two equations, n1 and n2 represent the land use types, and Ln1i is
the area of n1 land use type in city i. In detail, n1 indicates
cropland, grassland, forest, river, wetland, and unused land and
n2 denotes grassland, forest, river, wetland, unused land, and
construction land.

Sensitivity Analysis
To evaluate the impact of the expanded construction land on the
expanded cropland, the sensitivity analysis model was chosen to
assess the sensitivity of cropland expansion to construction land
expansion. The sensitivity analysis can reflect the effects of one
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changing element on another or a group of elements through
quantitative analysis (Han et al., 2016; Chai et al., 2019). The
sensitivity of cropland expansion to construction land expansion
is calculated as follows:

θi �
(Cropt2i − Cropt1i)/Cropt1i(Cont2i − Cont1i)/Cont1i , (3)

where θi is the sensitivity of cropland expansion to construction
land expansion in city i,Cropt1i andCropt2i refer to the area of the
expanded cropland at the beginning and end of the research
period, respectively, and Cont1i and Cont2i denote the area of the
expanded construction land at the beginning and end of the
research period, respectively.

The sensitivity analysis denotes the reflection of cropland
change to construction land expansion, where a positive score
indicates that cropland expansion is affected by construction land
expansion; whereas a negative score represents that cropland
expansion has an inverse relationship with construction land
expansion. Notably, this study focuses on the sensitivity of the
expanded cropland area to the area of expanded construction
land. Thus, the score of sensitivity is positive. A higher value of
sensitivity indicates a higher sensitivity of cropland expansion to
construction land expansion.

Spatial Gravity Model
In the development process of an element, its quantity, quality,
and location continue to change in space, leading to the change in
spatial force magnitude (Li et al., 2018; Chai et al., 2019). The
concept of gravity center is from physics, which refers to a space
point whose forces are relatively balanced in all directions (Zhang
et al., 2012; Wang et al., 2018). Therefore, the spatial gravity
model can be utilized to analyze the spatial balance of some
elements by analyzing the direction and distance changes, such as
energy (Zhang et al., 2012), grain production (Chai et al., 2019),
and ecological capacity (Cheng et al., 2019). The gravity model
can also calculate the interaction or flow between at least two

locations (Zeng et al., 2019; Yang et al., 2020b). In this article, the
gravity model is first used to calculate the coordinate of the center
of the expanded construction land and the expanded cropland.
Then, it estimates the interaction between the expanded
construction land and the expanded cropland. The coordinates
of the gravity center can be calculated according to Eqs 4, 5:

�X � ∑n
i�1(Xi × Vi)∑n

i�1Vi
, (4)

�Y � ∑n
i�1(Yi × Vi)∑n

i�1Vi
, (5)

where ( �X, �Y) is the coordinate of the element’s gravity center,
(Xi, Yi) represents the coordinate of the element and Vi denotes
the attribute value in location (Xi, Yi). This research calculates
two types of gravity center, one is the gravity center in the
subresearch area and the other is the gravity center in the
entire research area. In the former calculation process,
(Xi, Yi) denotes the coordinate of the location of the focused
attribute in city i. For the latter, (Xi, Yi) is the coordinate of the
gravity center of the focused attribute in city i.

The changing direction and distance of the gravity center is
evaluated according to the following equations, respectively:

α � (k × π

2
+ (arctan( �Yt2 − �Yt1

�Xt2 − �Xt1

))) ×
180°
π

, (6)

D �
���������������������( �Xt2 − �Xt1)2 + (�Yt2 − �Yt1)2√

, (7)
where α and D represent the changing direction and distance of
the gravity center, respectively, ( �Xt1, �Yt1) and ( �Xt2, �Yt2) refer to
the gravity center’s coordinate at the beginning and end of the
research period t, respectively, and k is the coefficient that makes
sure α belongs to [−180°, 180°], which equals 0, 1, and 2. We
defined east as 0°, and the anticlockwise direction was defined as
the positive direction. Owing to the changing distance
calculation, all the coordinates in this article are defined as
projected coordinates.

The interaction calculated by the gravity model exhibits a
positive relationship with the focused elements’ attributes and a
negative relationship with their spatial distances. The equation is
as follows:

Ii � V1i × V2i

D2
12i

, (8)

where Ii denotes the interaction between the two elements in city
i, V1i and V2i represent the attribute values of two elements, and
D12i is the spatial distance between the two elements.

Geographically Weighted Regression
Model
The GWRmodel was conducted to investigate the socioeconomic
determinants of the interaction between construction land
expansion and cropland expansion in MRUA. Regression
models are widely used in the driving mechanism analysis
(Zhong et al., 2011; Ariti et al., 2015; Mohmmed et al., 2019).

TABLE 1 | List of explanatory variables.

Variable Description Unit

GDP Average gross domestic product in the research
period

100 million
Yuan

GDPF Average gross domestic product in the agricultural
sector in the research period

100 million
Yuan

POP Average population in the research period 10 thousand
people

INVEST Average investment in fixed assets in the research
period

10 thousand
Yuan

TABLE 2 | Area of the expanded construction land and the expanded cropland in
2000–2020 (km2).

2000–2010 2010–2020

Construction land 3,410.92 5103.82
Cropland 1,785.92 7809.46
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The GWR model is an extension of the traditional regression
model, which considers the spatial effect by integrating the
coordinates of the variables into the calculation (Fotheringham
et al., 1996; Punzo et al., 2022). Therefore, the GWR model can
estimate the coefficients as many as the local research units,

thereby better reflecting the local spatial effects of the explanatory
variables on dependent variables (Su et al., 2014; Guo et al., 2021).
To obtain a better view of the spatially varying relationships
between the interaction of construction land expansion and
cropland expansion and socioeconomic determinants, the
GWR model was used to visualize the spatial heterogeneity.
The GWR model is described as follows:

yit � γt(Xi, Yi) +∑ q
kγkt(Xi, Yi)xikt + εit i ∈ {1, 2, . . . , n},

(9)
where yit is the dependent variable at research unit i in period t,
γt is the intercept, (Xi, Yi) is the spatial coordinate of the
explanatory variable of xikt, γkt is the coefficient of the
variables, εit is the error, n and q represent the number of
research units and explanatory variables. The dependent
variable in this article is the value of the interaction between
construction land expansion and cropland expansion at two time
periods 2000–2010 and 2010–2020, and the explanatory variables
are the socioeconomic determinants selected in section 3.6. To
avoid the multicollinearity between the selected variables, we
transferred all variables into their LN format.

Variable Selection
The interaction between the construction land expansion and
cropland expansion is a result of the development of social
economy, and its calculations are based on two sides the
expanded construction land and the expanded cropland. Thus,
it is influenced by the joint effects of socioeconomic factors
affecting the construction land and cropland. Table 1 displays
the explanatory variables selected in this study. The GDP and
INVEST have been regarded as the factors influencing
construction land expansion (Zhang et al., 2020; Wu et al.,
2021), while GDPF is the factor affecting the change of
cropland (Cheng et al., 2020; Eigenbrod et al., 2020; Tian
et al., 2021). In addition, POP can be considered as the
socioeconomic factor that influences both construction land
and cropland (Sarparast et al., 2020; Uisso and Tanrıvermiş,
2021).

RESULTS

Characteristics of Construction Land
Expansion and Cropland Expansion
In the last 20 years, MRUA has experienced massive changes of
construction land and cropland expansions. As time goes by, both
construction land expansion and cropland expansion display an
increasing trend (Table 2). In 2000–2010,MRUA experienced the
expansion of 3,410.92 km2 of construction land and 1785.92 km2

of cropland. Meanwhile, these figures increased to 5,103.82 and
7,809.46 km2, respectively, in the period of 2010–2020. Figure 3
provides a detailed view on the amount of the expanded
construction land and cropland in each subresearch area.
From this figure, we can see that in 2000–2010, as capital
cities in their provinces, Wuhan, Changsha, and Nanchang
experienced the largest amount of construction land expansion

FIGURE 3 | Area of the expanded construction land and the expanded
cropland in the subresearch area in the periods of (A) 2000–2010 and (B)
2010–2020 (km2).
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with a number of 407.02, 357.68, and 257.21 km2, respectively. In
2010–2020, Wuhan was still the city that experienced the largest
number of construction land expansion with a number of
351.38 km2. Meanwhile, the other top two cities with the
largest areas of construction land expansion have been
changed to Jiujiang and Jingzhou with the area of 305.29 and
302.75 km2, respectively. As for the area of the expanded
cropland, Shangrao, Yueyang, and Nanchang are the top three
cities experiencing cropland expansion (194.41, 176.32, and
139.42 km2, respectively) in 2000–2010; while in 2010–2020,
the top three cities with the largest cropland expansion have
been changed to Jingzhou, Yichang, and Xiangyang and the areas
of the expanded cropland have been increased to 621.41, 537.73,
and 531.73 km2, respectively.

Figure 3 also shows that the difference between the expanded
construction land and the expanded cropland indicates a
shrinking trend. In 2000–2010, only five cities, namely,
Yichang, Jingzhou, Shangrao, Yueyang, and Yiyang showed
that the area of the expanded cropland was larger than that of
the expanded construction land. The other cities experience more
construction land expansion than cropland expansion, especially
in fast developing cities, such as Wuhan and Changsha. In
2010–2020, the area of the expanded cropland showed an
increasing pattern, and that of the expanded construction land
displays a decreasing trend compared with that in 2000–2010.
The phenomenon of the area of the expanded cropland which is
larger than that of the expanded construction land happens in
nearly all the subresearch area and meets the requirement of
cropland protection policies.

Sensitivity of Cropland Expansion to
Construction Land Expansion
By integrating the area of the expanded construction land and the
expanded cropland, the sensitivity of cropland expansion to
construction land expansion of each city in MRUA was
estimated (Figure 4). To gain a clear view of the results, the

sensitivity was divided into three levels as follows: low sensitivity
(0< θ ≤ 0.1), mid sensitivity (0.1< θ ≤ 0.2), and high sensitivity
(θ > 0.2).

Overall, the number of cities denoting the sensitivity of mid
and high continuously increased and those with low sensitivity
kept decreasing over time. During 2000–2010, only three cities
were with mid sensitivity and the other cities in MRUAwere all at
the level of low sensitivity (Figure 4A). In comparison, the
number of cities with low sensitivity decreased to eight,
whereas the quantity of cities with mid and high sensitivity
increased to 14 and nine during 2010–2020, respectively
(Figure 4B). Additionally, cities with high sensitivity were
mainly located in the north of MRUA. The results of
sensitivity analysis in MRUA demonstrate that the area of
cropland expansion is becoming increasingly related to the
area of construction land expansion over time.

Changes of the Gravity Center of the
Expanded Construction Land and the
Expanded Cropland and Their Interaction
Figure 5 displays the changes of the gravity centers of the
expanded construction land and the expanded cropland in
2000–2020, and the change directions and distances of the
gravity centers are listed in Table 3. Although the gravity
centers were all in Xianning during 2000–2020, the gravity
center of the expanded construction land has moved toward
the northeast, whereas that of the expanded cropland has
continuously changed toward the southeast of the research
area. Both the gravity centers of the expanded construction
land and expanded cropland show a moving trend toward the
east. The moving distances of the gravity centers of the expanded
construction land and the expanded cropland experienced little
difference with distances of 17.83 and 15.37 km, respectively.
With respect to the moving directions, the difference between the
expanded construction land and the expanded cropland showed
substantial changes. During 2000–2020, the change direction of

FIGURE 4 | Sensitivity of cropland expansion to construction land expansion in the periods of (A) 2000–2010 and (B) 2010–2020.
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the gravity center of the expanded construction land was 3.24°,
while that of the expanded cropland changed to −39.74°. In other
words, the gravity center of the expanded construction land
moved 3.24° and 17.83 km toward the northeast, whereas the
gravity center of the expanded cropland shifted −39.74° and
15.37 km toward the southeast.

Figure 6 presents the spatiotemporal characteristics of the
spatial interaction between the construction land expansion and
cropland expansion in each subresearch area from 2000 to 2020.
For a clear view, Figure 6 presents the LN format of the values of
the interactions. From an overall perspective, the values of the
interaction show an increasing trend as follows: the minimum
and maximum values of the interaction have increased from 5.65
and 8.72 in 2000–2010 to 7.15 and 9.89 in 2010–2020. For a
spatial perspective, in 2000–2010, cities with high values mainly
locate in the central and north of the research area; meanwhile,
the highest values distribute in the central of the research area.
Wuhan, Changsha, Xianning, and Jingzhou were the cities with
the highest values of interactions. The lowest values distribute in
the south of the research areas, such as Zhuzhou, Xiangtan, and
Jingdezhen. For the period of 2010–2020, only three cities showed
the lowest values, namely, Yichang, Xiangtan, and Zhuzhou. The
highest values occured in Tianmen andWuhan. Most of the cities
with the lowest values in 2000–2010 have increased their
interaction values, indicating a good phenomenon for

balancing the tradeoffs between construction land expansion
and cropland expansion.

Spatiotemporal Heterogeneity of
Socioeconomic Determinants
The GWR model was utilized to analyze the spatiotemporal
heterogeneity of socioeconomic determinants on the
interaction between construction land expansion and
cropland expansion both in 2000–2010 and 2010–2020.
Table 4 shows the performance of the GWR model in
2000–2010 and 2010–2020. The values of AICc in
2000–2010 and 2010–2020 are 580.84 and 219.26,
respectively, and the adjusted R2 values are 0.92 and 0.6,
respectively, indicating that the GWR model can be used to
reveal the spatial and temporal differentiations of
socioeconomic determinants. From the summary table of
the estimated coefficients (Table 5), we can see considerable
variations in the coefficient of each explanatory variable with
different positive and negative effects. The standard deviation
of GDP and INVEST shows a decreasing trend over time,
changing from 5.15 and 4.66 in 2000–2010 to 3.87 and 3.89 in
2010–2020, respectively, whereas that of GDPF and POP
displays an increasing pattern (2.7 and 4.76 in 2000–2010
and 4.28 and 5.25 in 2010–2020, respectively).

FIGURE 5 | Changes of the gravity center of the expanded construction land and the expanded cropland in 2000–2020.

TABLE 3 | Moving directions and distances of the gravity centers of the expanded construction land and cropland.

Period Center of the expanded construction land Center of the expanded cropland

Direction (°) Distance (km) Direction (°) Distance (km)

2000–2020 3.24 17.83 −39.74 15.37
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Based on the local coefficients estimated by the GWR model
and the Natural Breaks Jenks method in ArcGIS 10.2, the
coefficients with similar values have been divided in to the
same classification level (Figure 7). In addition, to distinguish
the positive and negative effects, the authors separated the
positive and negative coefficients as follows: blue represents
the positive values, and yellow denotes the negative values.

The spatiotemporal effects of GDP on the interaction between
the construction land expansion and cropland expansion in
2000–2010 and 2010–2020 are shown in Figure 7A. Overall,
the positive effects of GDP displayed an increasing trend, whereas
the absolute values of coefficients showed a shrinking pattern. In
2000–2010, the positive coefficients distributed in the south of the
research area, and the negative coefficients were located in the
northwest and northeast. In 2010–2020, nearly all the subresearch
areas displayed with the positive coefficients whereas negative
coefficients could only be seen in northwest and were scattered in

the middle. The proportions of positive coefficients increased
overtime with a proportion of 45.16% in 2000–2010 to 77.42% in
2010–2020 (Table 6).

According to Figure 7B, the influence of GDPF on the
interaction between construction land expansion and cropland
expansion slowly follows the trend of negative effects distributed
in the west and positive effects located in the east both in
2000–2010 and 2010–2020. Moreover, the proportions of the
positive and negative coefficients are stable in these two time
periods (Table 6).

The spatiotemporal effects of POP in 2000–2020 are displayed
in Figure 7C, showing an overall pattern of the positive
coefficients located in the west and the negative coefficients
distributed in the east. The distribution pattern of the POP’s
different types of coefficients is nearly reversed with that of the
GDPF. Meanwhile, the proportions of the positive and negative
coefficients of POP are similar to that of GDPF, with proportions
of 58.06 and 41.94% both in 2000–2010 and 2010–2020 (Table 6).

Figure 7D presents the spatiotemporal influences of INVEST
on the interaction between construction land expansion and
cropland expansion, which shows that the overall pattern of
the cities with negative coefficients are continuously increasing
over time. In 2000–2010, the positive coefficients could be
detected in the northwest and southeast of the research area;
whereas in 2010–2020, only two cities had positive coefficients.
Therefore, the proportion of the negative coefficients showed a
sharp increase, with a proportion of 41.94% in 2000–2010 to
93.55% in 2010–2020 (Table 6).

DISCUSSION

Taking 31 prefectural cities in MRUA as the case area, this study
analyzed the spatiotemporal patterns of the interaction between
construction land expansion and cropland expansion and
detected their socioeconomic determinants’ effects from 2000
to 2020 by integrating the spatial gravity model and the GWR

FIGURE 6 | LN format of the interaction between the expanded construction land and the expanded cropland in the periods of (A) 2000–2010 and (B) 2010–2020.

TABLE 4 | Performance of the GWR model in the periods of 2000–2010 and
2010–2020.

Indicator 2000–2010 2010–2020

AICc 580.84 219.26
Adjusted R2 0.92 0.6

TABLE 5 | Summary of the estimated coefficients detected by the GWR model.

2000–2010 2010–2020

Min Mean Max SD Min Mean Max SD

GDP −11.19 −0.23 11.12 5.15 −2.14 2.21 17.14 3.87
GDPF −5.93 0.02 6.31 2.7 −12.37 −1.94 3.68 4.28
POP −6.93 1.48 12.06 4.76 −3.95 2.89 16.82 5.25
INVEST −11.54 0.09 9.72 4.66 −18.56 −2.49 0.123 3.89

Min, Mean, Max, and SD represent the minimum, mean, maximum, and standard
deviation of the estimated coefficients.
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model. The urbanization and cropland expansion are both hot
issues for researchers (Badreldin et al., 2019; Zhou et al., 2021;
Wang et al., 2022). Since the implication of cropland protection
policies, it is important to assess the implication effect and its
consequences (Liu et al., 2017; Ke et al., 2018; Ke et al., 2019;

Wang et al., 2020). The interaction analysis of construction land
expansion and cropland expansion can directly reflect the
requirements of cropland protection policies on the cropland
area. Owing to one of the cropland protection policies, Cropland
Balance Policy, requests that if the development of construction

FIGURE 7 | Spatiotemporal distributions of the GWR coefficients of socioeconomic determinants in MRUA from 2000 to 2020: (A) GDP, (B) GDPF, (C) POP, and
(D) INVEST.
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land takes in cropland, the construction land developer must
reclaim the same area of cropland as the loss of cropland due to
construction land development through land consolidation,
exploitation, or rehabilitation (Lichtenberg and Ding, 2008;
Song and Pijanowski, 2014; Liu et al., 2017). The results of the
characteristics of the expanded construction land and the
expanded cropland showed that during 2000–2020 both
construction land and cropland expansions displayed an
increasing trend. Additionally, the area of the expanded
cropland exceeded those of the expanded construction land in
2010–2020. In the subresearch areas, during 2000–2010, only five
cities showed that the area of cropland expansion exceeded that of
construction land expansion. This phenomenon nearly happened
in all subresearch areas. The value of the interaction of
construction land expansion and cropland expansion also
showed an overall increasing pattern with the minimum and
maximum values increased from 5.65 and 8.72 to 7.15 and 9.89,
respectively. All of the aforementioned results have proven that
the implementation results of the cropland protection policies are
progressively improving over time, which is in line with the
conclusions of Yu et al. (2018) and Yang et al. (2020a).

We also identified the spatial and temporal sensitivity of
cropland expansion to construction land expansion through
sensitivity analysis and drew the shifting map of the gravity
centers of the expanded construction land and the expanded
cropland. The decrease in the sensitivity of cropland expansion to
construction land expansion may cause many problems, such as
imbalance of regional land use structures and insufficiency of
grain production (Xu et al., 2013; Chai et al., 2019). The
sensitivity analysis also demonstrated an increasing pattern of
sensitivity of cropland expansion to construction land expansion.
Moreover, the proportion of high sensitivity cities is progressively
expanding over time, showing that cropland expansion is
becoming increasingly sensitive to construction land
expansion. The results of the gravity center showed that
during 2000–2020, the gravity centers of the expanded
construction land and the expanded cropland were all located
in one prefectural city, but their shifting patterns were different.
Both the gravity centers of the expanded construction land and
the expanded cropland shifted to the east in the X-axis direction
in 2000–2020, which supported the research of Chai et al. (2019)
conducted in Hubei Province. In the Y-axis direction, distinct
from the research carried out by Wang et al. (2018), the gravity
center of the expanded construction land shifted toward the north
and that of the expanded cropland moved toward the south. This
phenomenon decided by the DEM of the research area
(Figure 1B). The research area presents a pattern of high in

the southeast and low in the northwest. People prefer to use the
land with low DEM for developing construction land because of
the low cost and high repay (Liu et al., 2005; Su et al., 2020),
pushing the expanded cropland to the locations with relatively
high DEM. Therefore, the gravity center of the expanded
cropland moved to the southeast of the research area.

Existing studies have separately discussed the influence
factors of construction land and cropland transitions (Ariti
et al., 2015; Zelaya et al., 2016; Zhou et al., 2020). However,
these studies did not explore the spatiotemporal impacts of
socioeconomic determinants on the interaction between
construction land expansion and cropland expansion. Thus,
this study explored the spatiotemporal heterogeneity of the
socioeconomic determinants of the interaction between
construction land expansion and cropland expansion for
2000–2010 and 2010–2020 using the GWR model. Four
socioeconomic determinants were chosen, namely, GDP,
GDPF, POP, and INVEST. The positive impact of GDP
showed an increasing pattern over time. The GDP reflects
the overall economic level of a region (Xie and Wang, 2015;
Gollin et al., 2016). With the improvement of socio economy,
the government began to pay extra attention to the
implementation of cropland protection (Liu et al., 2017;
Piquer-Rodríguez et al., 2018). Therefore, the more
construction land expansion, the larger the area of cropland
expansion. Then, it promotes the interaction between them. The
impacts of GDPF and POP nearly show an inversed distribution
pattern. This finding is due to the fact that the economic
development of the west of the research area is better than
the east. The high GDPF is more attractive for the people in the
east for agricultural activities. Thus, the positive impact of
GDPF located in the east. By contrast, people in the
economically underdeveloped areas prefers to live in the
urban areas and the construction land expansion rate
brought by population increase in economic developed areas
is higher than that in underdeveloped areas (Li et al., 2019; Li
et al., 2022). Therefore, the negative effect of POP distributed in
the east. The negative influence of INVEST is continuously
increasing during 2000–2020 because the investment in fixed
assets concentrates on the urban areas and ignores the
development in the agricultural areas. This situation leads the
unilateral expansion of construction land instead of the joint
expansion of construction land and cropland, thus negatively
affecting their interaction.

This research contains some limitations. First, only two time
periods of construction land expansion and cropland expansion
were identified with a time interval of 10 y. Several LUCC-related
studies have chosen the time interval of 5 y to better reveal the
detailed change in land use changes (Lang et al., 2018; Wu et al.,
2021). The time interval in this article can be improved. Second,
construction land expansion can also bring the loss of cropland.
Future research could explore the relationships among
construction land expansion, cropland expansion, and
cropland loss. Last, this article identified the spatiotemporal
heterogeneity of four socioeconomic determinants on the
interaction between construction land expansion and cropland
expansion. Several other socioeconomic determinants may also

TABLE 6 | Proportions of the cities with different types of coefficients (%).

2000–2010 2010–2020

Positive Negative Positive Negative

GDP 45.16 54.84 77.42 22.58
GDPF 45.16 54.84 41.94 58.06
POP 58.06 41.94 58.06 41.94
INVEST 58.06 41.94 6.45 93.55

Frontiers in Environmental Science | www.frontiersin.org April 2022 | Volume 10 | Article 88258211

Wang et al. Construction Land and Cropland Expansion

18

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


affect the interaction between construction land expansion and
cropland expansion. Other determinants should be explored in
the future.

CONCLUSION

This study first detected the spatial and temporal
characteristics of construction land expansion and cropland
expansion. Then, the sensitivity analysis was applied to
identify the sensitivity of cropland expansion to
construction land expansion. Next, the gravity center of the
expanded construction land and the expanded cropland and
their shifting trajectories were detected by the spatial gravity
model. Finally, four socioeconomic determinants were chosen,
namely, GDP, GDPF, POP, and INVEST, and their impacts on
the interaction between construction land expansion and
cropland expansion were explored by the GWR model. The
results show that the areas of the expanded construction land
and expanded cropland and the sensitivity of cropland
expansion to construction land expansion demonstrated an
overall increasing trend over time in MRUA. The shift
trajectories of the expanded construction land and cropland
displayed different patterns, where the gravity center of the
expanded construction land moved toward the northeast,
whereas that of the expanded cropland shifted toward the
southeast. The spatiotemporal heterogeneity of socioeconomic
determinants of the interaction between construction land
expansion and cropland expansion obviously exists in
MRUA. The GDP has an increasing positive effect, whereas
the investment in fixed assets displays an increasing negative
influence during 2000–2020. The GDP in the agricultural

sector and the population show a stable effect with half the
proportion of the cities having a negative or positive influence.
However, the distribution of the negative or positive influence
of these two determinants are almost reversed. This study is
not only helpful to understand the regional spatiotemporal
interaction of construction land and cropland expansions and
their socioeconomic determinants but can also offer solutions
for the decision makers to promote this interaction and
continue the pursuit of sustainable development.
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The Spatiotemporal Characteristics
and Rationality of Emerging Megacity
Urban Expansion: A Case Study of
Zhengzhou in Central China
Enxiang Cai1, Qingsheng Bi1, Jie Lu1 and Heping Hou2*

1School of Resources and Environment, Henan Agricultural University, Zhengzhou, China, 2College of Forestry, Henan
Agricultural University, Zhengzhou, China

Studies on urban expansion in megacities are essential for managing urban sprawl to
promote high-quality development. In this study, we have selected the emerging megacity
of Zhengzhou as the research area, used the spatial analysis method to quantify the
spatiotemporal characteristics of urban expansion from 1990 to 2020, and evaluated the
rationality of urban expansion on the basis of the elasticity index and a comparison with
other megacities. Results demonstrated that 1) Zhengzhou experienced great urban
expansion from 1990 to 2020 and showed a trend of “steady–fast–slow,” with steady
expansion from 1990 to 2000, fast expansion from 2000 to 2010, and slow expansion
after 2010; 2) Zhengzhou’s urban expansion has obvious imbalance and spatial disorder,
mainly concentrated in the urban central area, and is characterized by sprawl or a leap in
space; 3) the occupation of cultivated land by urban expansion in Zhengzhou has gradually
decreased, but the occupation of ecological land such as water areas has increased
significantly, which may lead to a series of negative ecological effects; 4) Zhengzhou’s
urban expansion was inefficient, while the utilization intensity and economic benefits of
Zhengzhou’s urban construction land have improved, but relatively lower than those of
other megacities in China. The findings have important reference that is significant for
promoting the sustainable urban expansion of megacities and achieving sustainable
regional development.

Keywords: sustainable development, spatiotemporal characteristics, urban expansion, emerging megacity,
Zhengzhou

1 INTRODUCTION

Rapid economic and population growth have led to an unprecedented increase in urban construction
land, and urban expansion has become a global geographic phenomenon in the process of
urbanization (Schneider and Woodcock, 2014; Tayyebi et al., 2014). As the carrier of social and
economic activities, the expansion of urban construction land not only meets the growing social
needs of urban residents but also provides important support for sustainable regional development
(Bagan and Yamagata, 2014). However, in recent decades, the rapid urbanization in the world,
especially in developing countries, has triggered the disorderly sprawl of urban construction land,
which has a profound negative impact on resources (Hu et al., 2017; Lafortezza and Sanesi, 2019), the
environment (Hamidi and Ewing, 2014), geographic processes (Liu et al., 2008; Xu et al., 2009),
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biodiversity (Kovács et al., 2019), etc. and has become one of the
most important factors that hinder sustainable regional and even
global development (He et al., 2018). Exploring the mechanism of
urban expansion, proposing strategies to prevent urban sprawl,
and realizing sustainable development have become core topics of
urban research.

In the middle of the twentieth century, many scholars began to
conduct systematic research on urban expansion (Dai et al.,
2010). A large number of scholars have used spatial analysis
tools to conduct quantitative research on urban expansion from a
geographic perspective (Buyantuyev et al., 2015; Hecht et al.,
2020), mainly focusing on measuring urban expansion from the
characteristics of land scale and spatial form, and building a series
of index models such as expansion intensity index (Yue et al.,
2016), expansion steady state index (Zhao et al., 2017), expansion
elasticity index (Rusk, 1993), and sprawl index (Tian et al., 2017).
With the technological innovation of geographic information
systems and spatial statistics, the driving forces, prediction, and
simulation of urban expansion have become research hot spots
(Kantakumar et al., 2016; Zhang et al., 2018; Zhong et al., 2020;
Liu et al., 2022). With the increasing pressure on resources and
the environment, the sustainability of urban expansion needs to
be discussed, and the rationality of urban expansion has attracted
growing interest from urban planners and managers (Tong,
2020). Urban expansion can cause complex changes in
regional natural systems. Whether it will lead to ecological
degradation (Chien and Saito, 2021), food security issues
(Gren and Andersson, 2018), and climate change
(Khamchiangta and Dhakal, 2021) has become an important
criterion for judging the rationality of urban expansion.
Analyzing the coordination between urban expansion,
population growth, and economic development by using the
decoupling model (Cai et al., 2020) and the elastic coefficient
(Jiao et al., 2016) is an important way of evaluating urban
expansion. Although previous research generated an
impressive body of work, urban expansion research mainly
focuses on mature megacities and less on not well-known
emerging megacities that have important regional influence
and are undergoing rapid socioeconomic transformation. In
addition, the urban expansion evaluation is mainly based on
the expansion scale and effects of the city itself, and comparative
analysis with similar cities is lacking. These comparisons have an
important reference for judging the rationality of urban
expansion.

Since the implementation of the reform and opening-up
policy, China has made world-renowned urban development
achievements, and a number of world-influential megacities
such as Beijing, Shanghai, and Shenzhen have emerged. The
seventh national census in 2020 shows that 21 megacities in
China have a population of more than 5 million in central urban
areas (CNBS, 2020). These megacities are not only clusters of job
creation and population living but also core areas that support
economic development and participate in international
competition (Sassen, 1994). However, under the traditional
urban development model oriented by economic growth in the
past, Chinese megacities have seen a wave of blind expansion,
which has caused problems such as loss of arable land, traffic

congestion, skyrocketing land prices, and environmental
pollution (Chen et al., 2013; Li et al., 2014). Megacities occupy
a pivotal position in socioeconomic development, and the
resource and environmental problems faced by their urban
expansion are more serious than those faced by small- and
medium-sized cities. Unlike the urbanization of mature
megacities, which has stagnated, the urbanization of emerging
megacities is still developing rapidly, and the demand for urban
expansion continues to be strong. The expansion of emerging
megacities has obvious diversity and differences, and the
problems encountered in urban management are more
complex (Yao et al., 2009). Therefore, a systematic study needs
to be conducted on the characteristics and rationality of urban
expansion in China’s emerging megacities, and high-quality and
sustainable urban expansion needs to be achieved.

This study takes Zhengzhou, a city in central China, as the
research area to study the urban expansion of emerging
megacities. The main purposes of this work are 1) to measure
the spatiotemporal characteristics of urban expansion from 1990
to 2020; 2) to judge the rationality of urban expansion through
the coordination of urban expansion, economy, and population,
and a comparison with other megacities; and 3) to propose
targeted suggestions for urban expansion management and
provide a reference for the development of emerging megacities.

2 MATERIALS AND METHODS

2.1 Study Area
Zhengzhou is the capital of Henan Province in central China
(34°16′–34°58′N and 112°42′–114°14′), adjacent to the lower
Yellow River in the north. Zhengzhou covers an area of
7446.2 km2, of which the central urban area covers 1181.51 km2.
As the core city of China’s central plains urban agglomeration, one of
the eight national central cities and an important national
comprehensive transportation hub (NDRC, 2017), Zhengzhou is
experiencing rapid economic growth and urbanization. In 2020, the
permanent population was 12.6 million, of which the non-
agricultural population accounted for 78.4%. Furthermore, its
GDP was 1200.3 billion RMB (Zhengzhou Bureau of Statistics,
2021). Zhengzhou had a population of 5.34 million in the central
urban area in 2020, becoming one of the 21 cities in China with a
population in the central urban area exceeding 5 million, and it is an
emerging megacity in China. Zhengzhou has 12 administrative
districts, including 6 districts [Jinshui (JS), Zhongyuan (ZY), Erqi
(EQ), Guancheng (GC), Huiji (HJ), and Shangjie (SJ)], 5 county-
level cities [Xinzheng (XZ), Xinmi (XM), Xingyang (XY), Gongyi
(GY), and Dengfeng (DF)], and 1 county [Zhongmo (ZM)]
(Figure 1).

From 1990 to 2020, Zhengzhou’s socioeconomic status
experienced rapid development. The urban population and
GDP increased significantly. The urban population increased
from 2.38 million to 9.89 million, an increase of 3.15 times.
Meanwhile, the urbanization rate increased from 42.7 to 78.4%,
an increase of 35.7 percentage points. GDP increased from 11.64
billion yuan to 1,200 billion yuan, an increase of 102.12 times
(Figure 2). Furthermore, the urban population and GDP growth
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FIGURE 1 | Location and administrative districts of Zhengzhou.

FIGURE 2 | Socioeconomic development of Zhengzhou from 1990 to 2020.
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continue to accelerate, and Zhengzhou’s urbanization is still in
the stage of rapid development.

2.2 Data
This study collected multi-temporal remote sensing images
(Landsat TM/ETM+) and obtained land use and land cover
(LUCC) data at the time nodes of 1990, 1995, 2000, 2005, 2010,
2015, and 2020, with a spatial resolution of 30 m. According to
the LUCC classification system proposed by the Institute of
Geographic Sciences and Natural Resources Research of the
Chinese Academy of Sciences, with the use of supervised
classification and human–computer interaction
interpretation to extract information, the interpreted land
use types were divided into 6 categories and 25
subcategories (Liu et al., 2003). After quality inspection and
data integration, the comprehensive evaluation accuracy of
land use types reached more than 94.3%. The urban
construction land defined by this research refers to the
urban land used for construction such as industrial and
mining land, residential land, and roads. The urban
expansion monitoring process of Zhengzhou was based on
LUCC maps from 1990 to 2020 (Figure 3). The socioeconomic
data used were mainly derived from the annual socioeconomic
statistics published by the official websites of the national-,
provincial-, and prefecture-level municipal statistical
departments.

2.3 Methods
2.3.1 Average Annual Expansion Index
The urban expansion index refers to the percentage of the growth area
of urban construction land in its original urban construction land area
within a certain period. A large index value corresponds to fast urban
expansion. This study uses the average annual urban expansion index
(AAEI) to analyze the characteristics of urban expansion in
Zhengzhou. The specific calculation formula is as follows:

I � 1
n
×
Uj − Ui

Ui
× 100, (1)

where I refers to the AAEI; Ui and Uj represent the area of urban
construction land in the base period and the end period of the
study period, respectively; and n is the number of years in the
period.

The AAEI was used to analyze the three phases of urban
expansion in the various districts of Zhengzhou from 1990 to
2000, 2000 to 2010, and 2010 to 2020. According to the urban
expansion characteristics of each district, urban expansion was
divided into three types: low-, medium-, and high-speed
expansion based on the AAEI value ranges of 0–5, 5–10, and
>10, respectively.

2.3.2 Urban Expansion Elasticity Index
The urban expansion elasticity index is mainly divided into the
man-land elasticity index and the economic-land elasticity

FIGURE 3 | Spatial allocation of urban construction land in 1990, 2000, 2010, and 2020.
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index. Urban construction land is the carrier of urban residents’
life and economic activities. The carrying population and
economic scale are important indicators to measure the
rationality of urban expansion. The urban expansion man-
land elasticity index refers to the ratio of the growth rate of
the urban construction land area to the growth rate of the urban
population during the study period; the urban expansion
economic-land elasticity index refers to the ratio of the
regional GDP growth rate to the growth rate of the urban
construction land area within the study period. The specific
calculation formulas are as follows:

PEI �
(Uj − Ui)/Ui(Pj − Pi)/Pi

, (2)

GEI �
(Gj − Gi)/Gi(Uj − Ui)/Ui

, (3)

where PEI and GEI refer to the man-land elasticity index and the
economic-land elasticity index, respectively; Pi and Pj are the
number of urban permanent residents in the base and end of the
study period, respectively; and Gi and Gj are the GDP in the base
and end of the study period, respectively.

2.3.3 Indexes of Urban Expansion Efficiency
The efficiency of urban expansion was mainly analyzed from two
aspects: urban construction land intensive use and economic
benefits. Per capita urban construction land area and per capita
GDP are the most important indicators to measure urban
construction land intensive use and economic benefits,
respectively, and can also provide an important reference for
evaluating whether urban expansion is reasonable. The index’s
calculation formulas are as follows:

PA � UCLA/UP, (4)
PE � GDP/UCLA, (5)

where PA and PE refer to the per capita urban construction land
area and per capita GDP, respectively; UCLA is the urban
construction land area; UP is the urban population; and GDP
is the gross domestic product.

3 RESULTS

3.1 Spatiotemporal Characteristics of Urban
Expansion
3.1.1 Temporal Characteristics of Urban Expansion
According to the statistical results of land use data from Landsat
TM/ETM + image interpretation, from 1990 to 2020, the area of
urban construction land in Zhengzhou increased from 168.23 to
751.26 km2, with an increase rate of 346.57% and an average
annual increase of 19.43 km2. During the study period,
Zhengzhou’s urban construction land showed a “steady-fast-
slow” expansion trend (Figure 4). The growth rate from 1990
to 2000 was relatively stable, with an average annual growth rate
of 5.36%; from 2000 to 2010 was a period of rapid growth, with an
average annual growth rate of 14.4%; and from 2010 to 2020, the

growth rate gradually slowed down, with an average annual
growth rate of 1.91%. Especially during 2015–2020, the
average annual growth rate is only 0.38%, which was the
lowest in 1990–2020.

3.1.2 Spatial Characteristics of Urban Expansion
The data on urban construction land in Zhengzhou in 1990,
2000, 2010, and 2020 were extracted, and the expansion of
urban construction land in Zhengzhou from 1990 to 2020 was
obtained by the spatial overlay analysis (Figure 5). The urban
expansion in Zhengzhou has obvious spatial differences. The
urban expansion of the central city was mainly in three
directions: east, south, and west, with the east and south
having a larger expansion and being the main areas of urban
development in Zhengzhou. The urban development space
was limited, and the expansion was small during the study
period because of the obstruction of the Yellow River in the
north. In Xinzheng, Xinmi, Xingyang, and Zhongmu, which
are adjacent to the central urban area, the urban expansion
direction was mainly toward the central urban area,
indicating that the urban development in these areas was
obviously driven by the central urban area, and their urban
development space was gradually integrated with the central
urban area. The urban expansion direction of Gongyi in the
outer suburbs was mainly to the west. The urban expansion
directions were diverse, and new urban spaces appeared in the
later stage of the study because of the influence of the
mountains in Dengfeng. The north and southwest of the
central urban area were difficult to develop because of the
restrictions by geological factors such as the Yellow River
basin and the mountainous terrain. Most of the available
areas in the central urban area have been developed, and the
urban expansion space is faced with a shortage.

FIGURE 4 | The process of urban construction land expansion from
1990 to 2020.
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From 1990 to 2020, Guancheng and Jinshui had the largest
urban expansion areas of 116.57 and 101.29 km2, respectively.
Except for Shangjie, the largest average annual expansion
indexes were those for Xinzheng and Guancheng, reaching
27.96 and 20.44, respectively. Seven high-speed expansion
regions, three medium-speed expansion regions, and two
low-speed expansion regions were developed during this
period (Table 1). The urban expansion rate in the central
urban area was generally low, and the areas with a larger
expansion rate were mainly in the outer suburbs. Most of the
districts experienced rapid urban expansion, among which the
central urban area had the largest expansion, and its urban
expansion area accounted for 63% of Zhengzhou.

3.1.3 Land Use Effects of Urban Expansion
From 1990 to 2020, the urban expansion area of Zhengzhou was
587.84 km2. The land occupied by urban expansion was mainly
arable land, with an area of 471.88 km2, accounting for 80.27%;
followed by construction land with an occupied area of
77.02 km2, accounting for 13.1%; and then followed waters,

with an occupied area of 20.19 km2, accounting for 3.44%.
Spatially, in addition to arable land, a large amount of waters
(mainly rivers and lakes) in the northeast and west of the central
urban area is occupied (Figure 6). The conversion of rural
residential land to urban construction land was mainly
concentrated in Shangjie and Gongyi.

Although arable land was the main type of land occupied by
urban expansion, its proportion dropped from 88.89% in
1990–2000 to 69.44% in 2010–2020; the proportion of
construction land occupied by urban expansion increased
from 10.34% in 1990–2000 to 17.62% in 2010–2020. The
proportion of occupied waters grew the fastest, from 0.69%
in 1990–2000 to 15.8% in 2010–2020. This finding shows that
with the strengthening of cultivated land protection, urban
expansion reduces the occupation of cultivated land, and more
land is converted from village land to urban land (Table 2).
However, the occupation of water bodies has increased rapidly,
indicating that the erosion of ecological land by urban
expansion has intensified, and caution needs to be taken to
avoid damage to the natural ecology, especially water ecology.

FIGURE 5 | Distribution of urban construction land (UCL) expansion from 1990 to 2020.

TABLE 1 | Characteristics of urban construction land expansion from 1990 to 2020.

Region 1990/km2 2020/km2 Growth area/km2 AAEI Type

Erqi 19.61 68.89 49.28 8.38 Medium speed
Zhongyuan 28.94 122.97 94.04 10.83 High speed
Guancheng 19.01 135.58 116.57 20.44 High speed
Huiji 5.03 11.15 6.12 4.05 Low speed
Jinshui 40.49 141.78 101.29 8.34 Medium speed
Shangjie 0.00 27.84 27.84 ∞ High speed
Xinzheng 6.18 57.97 51.80 27.96 High speed
Xingyang 7.18 36.81 29.63 13.75 High speed
Xinmi 15.13 27.05 11.92 2.63 Low speed
Gongyi 15.85 59.10 43.25 9.10 Medium speed
Dengfeng 4.91 28.52 23.61 16.02 High speed
Zhongmo 5.90 33.60 27.70 15.66 High speed
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FIGURE 6 | Distribution of the land occupied by urban expansion.

TABLE 2 | Changes in the structure of the urban expansion sources (Units: km2, %).

Type 1990–2000 2000–2010 2010–2020

Area Proportion Area Proportion Area Proportion

Arable land 80.27 88.89 286.09 73.61 85.02 69.44
Woodland 0.00 0.00 11.37 2.93 0.00 0.00
Grassland 0.00 0.00 2.61 0.67 0.04 0.04
Waters 0.69 0.76 6.97 1.79 15.80 12.91
Construction land 9.34 10.34 81.62 21.00 21.58 17.62

FIGURE 7 | Variation of elastic coefficient of urban expansion from 1990 to 2020.
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3.2 Rationality of Urban Expansion in
Zhengzhou
3.2.1 Elasticity Indexes of Urban Expansion
As shown in Figure 7, the man-land elasticity index of urban
expansion increased from 1.32 to the peak of 3.52 in 2000–2005
and then continued to decrease, indicating that Zhengzhou’s
urban expansion was generally too rapid relative to the
population growth from 1990 to 2010, and urban land use was
relatively extensive. After 2010, the elasticity index was lower than
1 and reached a very low value of 0.04 in 2015–2020. The urban
expansion rate began to be lower than the urban population
growth rate, the population density of urban land gradually
increased, and land use tended to be intensive. The economic
land elasticity index of urban expansion showed a “U” shape.
During the study period, Zhengzhou’s GDP growth rate was
always greater than the urban expansion rate. The elasticity index
dropped from 7.55 to 2.34 during 1990–2005 and then began to
grow slowly, increasing to 33.54 during 2015–2020. This finding
shows that the economic benefits of urban land use continued to
improve. Although the rate of improvement declined during
1990–2005, it began to accelerate significantly thereafter, and
the economic benefits of urban land use increased significantly in
the later period.

3.2.2 Comparative Analysis Among Similar Megacities
According to China’s urban classification standards, cities
with a population of more than 5 million in the central urban
area are considered megacities (SCC, 2014). In 2020, China
had 21 megacities, which are mainly located in central and
eastern China (Figure 8). These megacities account for 7.5%
of China’s area, but they carry 20.7% of the population and
generate 33.1% of the GDP. These megacities are the core
force that supports China’s economic development and
participates in international competition.

3.2.2.1 Area of Urban Construction Land Expansion
From 1990 to 2020, Zhengzhou’s urban construction land
area has always been in the middle of 21 megacities, but the
ranking continues to increase, from 14th in 1990 to 10th in
2020 (Figure 9). This finding shows that the growth rate of
urban construction land in Zhengzhou is higher than the
average growth rate of China’s megacities. During the study
period, Zhengzhou’s urban construction land area increased
by 583.03 km2, which was 13% higher than the average
growth area of 515.97 km2 in megacities. The expansion of
urban construction land in Zhengzhou was growing rapidly
in megacities.

FIGURE 8 | Location of China’s megacities.
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FIGURE 9 | Urban construction land area of China’s megacities from 1990 to 2020. BJ, Beijing; SH, Shanghai; GZ, Guangzhou; SZ, Shenzhen; TJ, Tianjin; DG,
Dongguan; NJ, Nanjing; CQ, Chongqing; SY, Shenyang; FS, Foshan; JN, Jinan; CD, Chengdu; ZZ, Zhengzhou; XA, Xian; HZ, Hangzhou; WH, Wuhan; QD, Qingdao;
KM, Kunming; HEB, Haerbing; DL, Dalian; CS, Changsha.

FIGURE 10 | Efficiency of urban construction land of China’s megacities in 2020. BJ, Beijing; SH, Shanghai; GZ, Guangzhou; SZ, Shenzhen; TJ, Tianjin; DG,
Dongguan; NJ, Nanjing; CQ, Chongqing; SY, Shenyang; FS, Foshan; JN, Jinan; CD, Chengdu; ZZ, Zhengzhou; XA, Xian; HZ, Hangzhou; WH, Wuhan; QD, Qingdao;
KM, Kunming; HEB, Haerbing; DL, Dalian; CS, Changsha.
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3.2.2.2 Efficiency of Urban Construction Land
In 2020, Zhengzhou’s per capita urban construction land area
was 77.21 m2, and the per capita GDP was 1.574 billion yuan/
hm2, ranking 13th and 15th among China’s megacities,
respectively (Figure 10), which are significantly lower than
the ranking of construction land area. Although Zhengzhou
has experienced relatively rapid expansion among China’s
megacities, its land use efficiency has lagged behind the
average level. The intensive use and economic benefits of
urban construction land in Zhengzhou reached only 50.97
and 41.22% of the top megacities in China, respectively,
indicating that the urban land use efficiency remains
unsatisfactory. Under the increasing pressure of land
supply and environmental protection faced by urban
development, the urban expansion model of Zhengzhou
needs to transform from the past spatial sprawl to one
with improved land use efficiency.

4 DISCUSSION

4.1 Climate Effects of Urban Expansion
Previous studies on the negative effects of urban expansion
mainly focused on the loss of arable land, landscape
destruction, and deterioration of human settlements, often
ignoring the climatic lag effects of urban expansion
(Camacho-valdez et al., 2014). The occupation of arable land
by urban expansion has been curbed because of China’s
increasingly stringent arable land protection policy. However,
wetlands and grasslands were usually regarded as unused land by
urban managers without protection and were freely occupied by
urban expansion. The spatial analysis of Zhengzhou urban
expansion shows that a large number of rivers and lakes in
Zhengzhou, especially in the central urban area, have been
occupied. The area of waters in the central urban area of
Zhengzhou decreased from 95.58 km2 in 1990 to 66.89 km2 in
2020, with a reduction rate of 42.89%. The substantial reduction
of the water body area has destroyed the urban permeable surface,
which not only further aggravates the water shortage in
Zhengzhou as a city in arid regions of the northern
hemisphere but also weakens the city’s ability to withstand floods.

Zhengzhou experienced a historically rare catastrophic
rainstorm and urban waterlogging in the summer of 2021,
which brought major property losses and casualties (Zhang
et al., 2021). In addition to the natural extreme rainstorm
factors, the occupation of rivers and lakes by urban expansion
made the rainwater unable to be discharged in time, which may
also play an important role in the worsening of this disaster.
Emerging megacities are still in the stage of rapid urban
development, and the negative climate effects of urban
expansion may not yet appear. Research on the prediction of
climate disasters that may be caused by improper urban
expansion should be carried out to take appropriate
countermeasures in advance. The climate effects of urban
expansion should also attract the attention of managers and
planners of other emerging megacities in the world.

4.2 Urban Expansion Evaluation System
Rapid population and economic growth in emerging
megacities have driven urban expansion, while also making
urban land use more intensive and efficient. Therefore, if the
urban expansion is evaluated based on the city’s conditions
only, then the results of urban expansion evaluation are mostly
satisfied, and finding the problem of urban expansion is
difficult (Tan et al., 2010). As megacities face greater
difficulty with land supply and more severe environmental
constraints, there should be higher standards for urban land-
use. Comparative analysis with similar or higher-level
megacities may have different conclusions from the
evaluation based on the city’s conditions.

This study adopts an urban expansion evaluation method that
combines socioeconomic coupling analysis with a comparison of
similar cities. The socioeconomic coupling analysis shows that the
economic benefits and intensive utilization of Zhengzhou’s urban
land use have improved, and urban land use has developed in a
positive direction in the process of urban expansion. However, in
comparison with other similar megacities in China, Zhengzhou’s
urban expansion was too fast, and its economic benefits and
intensive utilization were relatively low. This comprehensive
urban expansion evaluation method facilitates the detection of
urban expansion problems and avoids the one-sidedness of the
evaluation conclusion, which provides important insights into the
urban management of emerging megacities.

4.3 Recommendations for Future Study
By analyzing the spatiotemporal characteristics and rationality
of urban expansion in Zhengzhou, this study strengthens the
cognition of urban expansion in emerging megacities and
provides significant reference for cities undergoing rapid
development and growth. However, some problems need to
be explored in future research. First, systematic research
should be conducted on megacity groups, rather than just a
single or a few cities. The expansion of megacities at different
development stages shows obvious differences, and the study
of the urban expansion of megacity groups is helpful for
exploring the urban expansion mechanism of megacities.
Second, research on the relationship between urban
expansion and meteorological disasters should be
strengthened. Unreasonable human activities in the process
of urban expansion may be the cause of meteorological
disasters. Understanding the relationship between the two
can help in the implementation of countermeasures.

5 CONCLUSION

Taking Zhengzhou as an example, this study analyzes the
spatiotemporal characteristics of urban expansion in
China’s emerging megacities and the rationality for urban
expansion on the basis of the man-land elasticity index, the
economic-land elasticity index, and a comparison with other
megacities. It then summarizes urban expansion problems and
presents relevant suggestions. These findings have important
reference significance for curbing the disorderly sprawl of
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megacities, realizing smart management of megacities and
promoting regional sustainable development. The main
conclusions were as follows:

1) During the study period, the urban expansion of
Zhengzhou showed a trend of “steady–fast–slow.” From
1990 to 2000, the urban expansion of Zhengzhou was
relatively stable, and from 2000 to 2010, it entered a
stage of rapid expansion. After 2010, the urban
expansion of Zhengzhou entered a slow stage due to the
constraints on the expansion of the central urban area.

2) Zhengzhou urban expansion has obvious imbalance and
spatial disorder. The growth area of urban construction
land in the central urban area, which accounts for only
13.44% of Zhengzhou, accounts for 63% of the city’s total.
The suburban urban expansion was more disorderly, and the
central urban area expansion was limited by the Yellow River
in the north and the mountainous areas in the southwest.
The space for urban development is insufficient. In the
future, urban development should transform from single-
core development of the central urban area to coordinated
development of the central urban area and the suburbs.

3) Urban expansion has gradually increased the occupation of
water bodies, and the ecological problems of urban expansion
have become prominent. Although the area occupied by
waters was relatively small during the urban expansion of
Zhengzhou, its proportion has since increased significantly.
With Zhengzhou being a rapidly developing emerging
megacity with relative water shortage, the occupation of
ecological land such as waters may damage the carrying
capacity of urban water resources and cause a series of
natural ecological problems.

4) Zhengzhou’s urban expansion was inefficient. Although the
utilization intensity and economic benefits of Zhengzhou’s
urban construction land have continued to improve,
compared with other megacities in China, Zhengzhou’s
urban expansion was too fast, and the urban
construction land utilization intensity and economic
benefits were relatively low.
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Identification andAnalysis of Industrial
Land in China Based on the Point of
Interest Data and Random Forest
Model
Qingsong He and Xinyu Tang*

College of Public Administration, Huazhong University of Science and Technology, Wuhan, China

The purpose of this study was to provide a new concept and technical method for the
large-scale identification of industrial land and analyze the distribution characteristics of
industrial land in China. The following research methods are employed using the point of
interest data and random forest model based on data accessibility, this study selected
2015 data on Wuhan and Luoyang as training samples to identify the industrial land of
China. Then, the proportion of industrial land in all 334 prefecture-level cities on the
Chinese mainland was calculated, and the spatial pattern was analyzed. The results show
that: 1) by comparingmultiple experiments and robustness analysis, the optimal parameter
setting of the random forest model is obtained. According to the test of actual industrial
land distribution in Wuhan city and Luoyang city, the identification of industrial land in
different scale cities by random forest model is accurate and effective. 2) From the
perspective of spatial patterns, industrial land shows a “large aggregation and small
scattering” distribution. 3) From the perspective of spatial distribution, the proportion of
industrial land in these cities shows spatial aggregation. High–high aggregation areas were
mainly distributed in North and Northeast China, and low–low aggregation areas were
mainly located inWest China. 4) From the perspective of related factors, industrial land was
close to rivers, highways, and railway stations and had a relatively low correlation with the
distribution of airports. Industrial land was located within approximately 10–60 km distance
from the municipal government office. In terms of the proportion of industrial land, the
proportion of industrial land is higher in the cities where the industrial land was closer to
railway stations. However, when the industrial land in cities was closer to four other types of
related factors (waters and lakes, major highways, airports, and municipal government
stations), the share of industrial land is lower. In conclusion, the method based on the point
of interest data and random forest model can accurately and effectively identify large-scale
industrial land.
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1 INTRODUCTION

Industry plays an important role in maintaining a steady growth
of the national economy, and industrial land is the most basic
natural resource to support industrial development. Industrial
land refers to land that carries the production, operation, and
service activities of economic entities in urbanized areas
(Moomaw, 1978; Louw et al., 2012). With its unique social
system, China’s economy has developed rapidly and
consequently. China has become the world’s factory (Liu et al.,
2014; Liu et al., 2018a, b). At the same time, China is also the only
country that contains the whole industrial chain, which conveys a
great advantage in international competition (Jcw et al., 2021). At
present, there are two main forms of urban industrial land in
China: industrial parks and scattered industrial land. In the
context of the new normal economy, China has actively
promoted the transformation and upgrading of the secondary
industry, but the layout and planning of urban industrial land
have not kept pace, resulting in problems such as waste of
resources (Lai et al., 2020), destruction of the ecological
environment (Yang et al., 2018), and a mismatch between
industrial land and space (Zhang et al., 2020). Therefore, the
scientific and effective identification and analysis of urban
industrial land is of great significance to optimize the layout of
urban industrial land, improve the scientificity of urban industrial
land planning in the whole region, and promote China’s
industrial transformation and upgrading.

In the past, the identification of urban industrial land mainly
used traditional land data and remote sensing image maps (Myint
et al., 2011; Dankoub et al., 2012; Zhang and Du, 2015). The
artificial statistical survey, expert qualitative, remote sensing
interpretation, and other methods were used for this
identification (Murphy and Vance, 1954; Davies, 1959; Eklund
et al., 1998); however, all these methods are problematic as they
are time-consuming, laborious, and lack timeliness. Single remote
sensing image data can only identify urban construction land in
the process of large-scale recognition, and cannot further refine
the spatial details of urban industrial land. Therefore, its
application method must be further improved. The
aforementioned identification methods are mostly based on a
single city (or region), which cannot reflect the layout of urban
industrial land on a larger scale, and different data (including
years) and methods cannot enable case comparison. From the
perspective of national conditions, although the quality and
quantity of socio-economic data of developing countries
(represented by China) have improved in recent years (Jean
et al., 2016), there is still a lack of unified standard and
complete data to conduct efficient research on the
identification of industrial land within a country. Therefore,
for large-scale industrial land recognition, a more effective
method combined with remote sensing image data should be
developed.

The development of geographic information technology,
especially the application of big data (Toole et al., 2012; Long
and Shen, 2015; He et al., 2018; Jo et al., 2020) and machine
classification model (Wachtel et al., 2018; Li et al., 2019), provides
new ideas for urban industrial land identification. Among big

data commonly used in urban land research, point of interest
(POI) data offers the advantages of wide coverage, large amount
of data, and easy access (Ivan et al., 2016). POI data record the
location information of physical point elements of various socio-
economic departments, which is a more in-depth representation
of the spatial distribution of socio-economic activity intensity and
functional composite utilization (Mckenzie et al., 2015).
Therefore, these data are widely used for the identification and
analysis of urban land use types (Yuan et al., 2012; Zheng et al.,
2014; Jiang et al., 2015). At present, research on urban land class
recognition using POI data is mainly based on medium and small
scales (Zhai et al., 2019), and a few large-scale studies have been
conducted in China. Common classifiers include maximum
likelihood estimation, support vector machines, decision tree,
and random forest (RF) (Lu and Weng, 2006). The RF model has
been proposed by Breiman (2001). Because of its high accuracy,
good robustness, and practicality (Belgiu and Dragut, 2016), RF
has attracted the attention of scholars in the field of land use (Li
et al., 2019; Luciano et al., 2019), and has been applied to land use
classification (Jamali, 2021; Sun et al., 2021). However, research
on the identification of urban industrial land on a national scale
has not been conducted, which limits the research on the spatial
pattern analysis of urban industrial land in China from the macro
level. In recent years, the spatial distribution characteristics of
urban industrial land have attracted the attention of many
scholars. The methods of spatial autocorrelation (Xie and
Wang, 2015; Li et al., 2018), landscape pattern analysis (Lin
et al., 2016), and co-location pattern mining (Marcon and Puech,
2009) have been employed. However, there are certain problems,
such as small sample data, incompatibility, and spatial
heterogeneity (the research conclusions of a single city cannot
reflect the overall pattern).

In summary, to compensate for the shortcomings of the earlier
research to a certain extent, this study uses large scale data
(334 prefecture-level cities in China) and a 1 km × 1 km scale
unit. Moreover, the National Land-Use/Cover Database of China
with the spatial resolution of 30 m [NLUD-C, made from the
Landsat TM image and China–Brazil Earth resource satellite
image with a classification accuracy greater than 90% (Lai
et al., 2016)] is used to explore the feasibility and scientificity
of land class recognition based on POI data and the RF model.
The spatial distribution characteristics of urban industrial land
and the factors related to the layout planning of urban industrial
land in China are clarified. The remainder of this study is
structured as follows: Section 2 describes data source and data
processing and introduces the method. Section 3 describes the
results of industrial land identification, spatial pattern analysis,
and correlation factor analysis in China. Section 4 presents the
conclusion and discussion.

2 METHODS AND DATA

2.1 Methods and Ideas
The research methods mainly involve RF, landscape pattern
analysis, exploratory space data analysis (ESDA), and
correlation factor analysis (which is a co-location pattern
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mining method). The four algorithm models of RF, artificial
neural networks, logistic regression, and support vector machine
were selected for experiments. The reason why these four kinds of
analysis models were selected in this study is that they are widely
used in the research of various urban land uses. Combined with
the previous relevant literature on the classification of urban land
use types (Wachtel et al., 2018; Li et al., 2019); as shown by the
precision comparison presented in Table 1, RF was finally
selected for China’s industrial land recognition training to
obtain an urban industrial land map of China. First, the
pattern characteristics of China’s urban industrial land were
macroscopically grasped through spatial pattern analysis.
Then, ESDA was used to explore the regional agglomeration
of China’s urban industrial land. Finally, the distance relationship
between China’s urban industrial land and related factors was
explored through correlation factor analysis.

The research idea was based on POI data and RF, and by
using the city construction map spot, Wuhan and Luoyang were
selected as training samples. Employing the principle of data
accessibility, the spatial distribution of industrial land under
China’s 1 km grid unit was identified, and then, the industrial
land ratio of 334 prefecture-level cities in Chinese mainland was

calculated. Spatial pattern analyses (NP, SPLIT, and
CONHESION), ESDA (Moran’s I, Local Moran’s I), and
correlation factor analysis (nearest neighbor distance
method) were used. The specific method flow chart is shown
in Figure 1.

2.1.1 Random Forest Model
RF is a natural nonlinear data algorithm proposed by Breiman
(2001), which can be used for regression analysis and data
classification (Pal, 2005). RF is based on the single decision
tree algorithm and combines the bagging method and the
random subspace method. By bootstrap sampling of training
samples, a training set is formed, and unselected samples are
used to predict and evaluate the error. The decision tree
sequence is obtained by a combination of multiple training
sets, and the final prediction result is selected by voting (Ham
et al., 2005).

From data accessibility perspective, the spatial distribution
data of industrial land in Wuhan and Luoyang in 2015 were
obtained based on the project cooperation in Wuhan Natural
Resources and Planning Bureau and Luoyang Natural Resources
and Planning Bureau, respectively. Other cities cannot be
obtained publicly because the data of the third land survey
have not been made public. Therefore, Wuhan and Luoyang
were used as RF training samples. According to the research of
Chang and Ke (2020) and the principle of practicality, POI
indicators were selected from the perspective of the
distribution characteristics of facilities on industrial land. For
example, because of the dominant characteristics of functions,
there are relatively few entertainment and leisure facilities,
education, and medical facilities. Therefore, the following five

TABLE 1 | Model accuracy comparison.

Training models AUC CA F1 Precision

RF 0.965 0.889 0.889 0.889
Artificial neural networks 0.681 0.628 0.628 0.629
Logistic regression 0.552 0.558 0.546 0.558
Support vector machine 0.454 0.475 0.460 0.472

FIGURE 1 | Method flow chart.
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variables were selected: the number of POIs (POISUM), the
mixing degree of POIs (MIX), the proportion of POIs in
industrial enterprises (FRATIO), the number of POI types
(POITYPENUM), and the average distance among POIs
(MEANDIS); moreover, the number of workers is relatively
concentrated on industrial land, and the population density
may be different from other urban land types. Therefore,
population density (POPD) was selected as an index (POI data
itself represent the population). Finally, considering that the
roads inside the industrial land mainly serve the
transportation vehicles in the plant area, the road network
structure is much simpler than that outside of the industrial
land; therefore, a seventh variable, that is, the highway node
density per unit area (JUNCTIOND) was designed. The

calculation of the aforementioned seven indicators was
completed within the 1 km grid, the reason why this study
chose it is that the spatial basic unit scales of various types of
urban construction land are different. For example, many
industrial lands are concentrated and connected in the form of
industrial parks, whose degree of functional mixing is low, and
the form of basic spatial units is large and complete. Among them,
MIX refers to the mixing degree of different functions in a newly
developed plot, and its formula is as follows:

MIX � −∑n
i�1
(piplnpi). (1)

In Formula 1, pi represents the proportion of the i-th POI
type in the total POI records, and n is the total number of
POI types.

After the selection of indicators, based on the selected training
samples (including a certain amount of industrial land and non-
industrial land), the ability of the RF model to identify industrial
land is determined through the 10-folds crossover method. In this
method, the data are randomly divided into 10 sets, nine of which
are used to train the model and one data set is used for the
prediction of the RF model. Finally, the distribution of industrial
land in China was obtained. The aforementioned steps were
completed using orange data mining software (https://
orangedatamining.com/), which is often used for classification
training and can obtain better classification training results (Naik
and Samant, 2016; Ishak et al., 2020).

2.1.2 Spatial Analysis Method
This study used spatial pattern analysis to analyze the overall
agglomeration of industrial land in China, and then used

TABLE 2 | Descriptions of landscape ecological index.

Index name Index description

Number of patches (NP) It reflects the heterogeneity of landscape, and its value is generally positively correlated with the fragmentation of landscape,
which can reflect the fragmentation of urban industrial land in China

Splitting index (SPLIT) It reflects the degree of fragmentation of the landscape, and its value is positively correlated with the degree of fragmentation
Patch cohesion index (COHESION) It reflects the agglomeration degree of the landscape, ranging from (0.100], and its value is positively correlated with the

agglomeration degree. It reflects whether there is a macro agglomeration phenomenon

FIGURE 2 | Comparison of predicted and actual industrial land use in
Wuhan city and Luoyang city.

TABLE 3 | Results of the training model.

Training model AUC CA F1 Precision

RF 0.965 0.889 0.889 0.889

TABLE 4 | Predicted actual values of industrial land in Wuhan city and
Luoyang city.

Region Downtown
of Wuhan (km2)

Downtown
of Luoyang (km2)

Actual value 71.04 59.09
Predicted value 73.00 57.00
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exploratory space data analysis to further analyze the spatial
agglomeration degree of various internal regions. The two are the
logical relationship from the whole to the inside.

2.1.2.1 Spatial Pattern Analysis
Analyzing the pattern of urban industrial land in China can more
intuitively and effectively clarify its overall spatial characteristics.
NP, SPLIT, and COHESION were selected in the patch type level
index of FRAGSTATS for spatial pattern analysis. The three
indexes could verify the overall macro and micro characteristics
of China’s industrial land pattern and provided a reference for
subsequent analysis and research. The description of each index is
shown in Table 2 (Gao et al., 2012).

2.1.2.2 Exploratory Space Data Analysis
Global spatial autocorrelation analysis in ESDA is a method of
spatial analysis that places spatial variables in the whole research
space. Moran’s I and local Moran’s I are selected for analysis
(Anselin, 1995). The formula is as follows:

Moran′s I � n∑i∑jWij(xi − �x)(xj − �x)∑i∑jWij∑i(xi − �x)2 . (2)

In Formula 2, the range of calculation result is [−1,1]. A result
within [−1,0] indicates that it is spatially negatively correlated, a
result of 0 indicates that there is no spatial correlation, and a
result in the range of (0,1] indicates that it is spatially positively
correlated.

LocalMoran’s Ii �
(xi − �x)∑n

j�1Wij(xi − �x)
S2

. (3)

FIGURE 3 | Proportions of industrial land in China’s prefecture-level cities.

FIGURE 4 |Moran’s I of industrial land proportion in 334 prefecture-level
cities in China.
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In Formula 3, n represents the number of prefecture level
administrative units, xi and xj refer to the attribute value of
industrial land proportion of each prefecture-level administrative
unit, Wij refers to the spatial weight matrix established between
research units i and j, and S2 refers to variance.

2.1.3 Statistical Method of Related Factors
ArcMap was used to calculate the average distance between urban
industrial land and main waters and lakes, major highways (both
national and provincial highways), airports, railway stations, and
municipal government stations in 334 prefecture-level cities.
Then, the relationship between these elements was statistically
analyzed using SPSS software. According to this analysis, we not
only analyze the distance analysis between industrial land and
related factors in each city, but also classify cities with different
proportions of industrial land, so as to intuitively see the status of
urban-related factors with different proportions of industrial
land, and finally achieve the purpose of comprehensive and
scientific analysis to avoid miscellaneous analysis as far as
possible.

2.2 Data Source and Processing
For the data source, the research area explored includes the whole
Chinesemainland (Hong Kong,Macao, and Taiwanwere excluded
because of a lack of specific data). The data used include the urban
construction maps and administrative boundaries of
334 prefecture-level cities in China for 2015, which is the base
map of the 1 km grid established later. This means the
identification of urban industrial land must be established
within the scope that the base map is the construction land in
the land use classification. The data involved in this study also
include the data of industrial land inWuhan and Luoyang, and the
geographical data of China’s main waters and lakes, major
highways (both national and provincial highways), airports,
railway stations, and municipal government stations in 2017.
The map spots for urban construction and the map spots of
main waters and lakes originate from NLUD-C with a spatial
resolution of 30m of the Chinese Academy of Sciences. These data
are interpreted by remote sensing images. Urban construction land
is defined by impervious surface and urban vegetation (He et al.,
2017). Because of the difficulty to obtain the latest data, the map
used shows data of 2015. The original data of construction spots
were diagrammatically translated from satellite remote sensing
images, rather than using official urban boundaries. The utilized
data scale is large, which can compensate for the problem of

relatively old data to a certain extent. At the same time, it usually
takes 2–3 years for China’s urban construction map spots (only
extracted map spots) to develop into specific functions; based on
data availability, this study selected the industrial land use data of
Wuhan and Luoyang (both land use data in 2015). Among them,
the land use data ofWuhan in 2015 were only used for training RF
data, and the use of historical data in the training is a basic
operation. The industrial land data of Wuhan and Luoyang in
2015 are land use survey data accessed from the Wuhan Natural
Resources and Planning Bureau and Luoyang Natural Resources
and Planning Bureau, respectively. These data were only used for
the mapping of a single land type (industrial land), and these data
do not involve other land types, and do not include specific
coordinate information. These data can be used after being
confirmed with the Luoyang natural resources and Planning
Bureau. The administrative boundary data originate from
China’s second land use survey. Also, 54 million POI data of 12
categories in China in 2017 were obtained through web crawler
technology based on the Baidu map open interface. These data
include shopping centers, transportation facilities, educational
facilities, financial institutions, hotels, tourist attractions,
community services, entertainment facilities, medical facilities,
restaurants, and corporate facilities. These locations reflect the
basic activities of local residents in the four aspects of life, work,
commuting, entertainment, and leisure. More detailed POI data
introduction and processing flow can be found in He et al. (2018).
Because the morphological dimension of China’s land use map
used is 2015, the POI data of 2017 were obtained, and the
geographic data of major highways (both national and
provincial highways), airports, and railway stations were
obtained from the free map service open street map, which
offers a large amount of data and strong timeliness.

In terms of data processing, this study used ArcGIS to extract
the construction land of 334 prefecture-level cities in China from
the land use map. A 1 km × 1 km grid was used as statistical unit
to divide the construction land in China, China’s construction
land was divided and seven types of POI indicators are calculated.
Wuhan and Luoyang were used as training samples to identify
China’s industrial land. After the identification of industrial land
of 334 prefecture-level cities in China was completed with the RF
model, the area and proportion of industrial land in each city
were further counted, and the identified industrial land was
extracted again using ArcGIS software. The whole research
area was divided into industrial land and non-industrial land,
and finally rasterized into the TIFF format.

TABLE 5 | Proportion of verified regional prediction.

Verified area Whole (%) Area interval (km2)

Predicted proportion

Downtown of Wuhan 60.09 ≤0.050271 (0.050271,0.199545] (0.199545,0.523040] (0.523040,1.420785] (1.420785,3.733991]
31.29% 44.40% 56.13% 65.92% 67.78%

Downtown of Luoyang 71.34 ≤0.027057 (0.027057,0.092730] (0.09273,0.231727] (0.231727,0.559674] (0.559674,1.381397]
29.11% 63.10% 66.28% 73.18% 78.78%
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3 RESULTS AND ANALYSIS

3.1 Verification and Analysis of Random
Forest Identification Results
Based on the availability of data, industrial land and non-
industrial land contained in the land use survey data of
Wuhan Central Urban Area in 2015 and the land use data
of Luoyang in 2015 were extracted, and the two types of land
were set as y = 1 and y = 0, respectively. After this setting was

completed, data were intersected with the kilometer grid to
obtain the data set of two types of land for each grid. Through
multiple groups of experiments and combined with
robustness analysis, 30% of the grid was extracted from
industrial land and non-industrial land for training. After
optimizing the experimental adjustment parameters, the
training results were obtained using orange data mining
software (Table 3).

After training with Wuhan and Luoyang, the predicted
industrial land was compared with the actual industrial land
in the main urban areas ofWuhan and Luoyang in 2015 as shown
in Table 4 and Figure 2. The results show that the predicted area
of industrial land in the central urban area of Wuhan is 73 km2,
which is close to its actual industrial land area of 71.04 km2, and
the predicted area of industrial land in the central urban area of
Luoyang is 57 km2, which is close to the actual value of 59.09 km2.
The comparison results between the predicted industrial land and
the actual industrial land inWuhan and Luoyang proved that POI
data and RF can be used to identify urban industrial land.

To further test the accuracy of urban industrial land
prediction, the “intersect” tool of the software ArcGIS10.2 was
used to intersect the predicted results of urban industrial land in
Wuhan and Luoyang with the actual urban industrial land, which
obtained the overlapping area S (i.e., the area with accurate

TABLE 6 | Industrial land landscape fragmentation index.

Type NP SPLIT COHESION

Industrial land 6685 679118 94.32

TABLE 7 | Statistics on the number of cities with different proportions of
industrial land.

Proportion of industrial
land %

Number of cities Proportion
of cities %

<15 37 11.08
15–30 92 27.54
>30% 205 61.38

TABLE 8 | Statistical analysis of distance relationship between industrial land in 334 prefecture-level cities and related factors.

Related factors Distance/km Number of
cities

Average proportion
of industrial

land %

Minimum proportion
of industrial

land %

Maximum proportion
of industrial

land %

Waters and lake <2 40 15.33 0 58.75
2–4 66 33.77 2.44 58.37
4–6 79 33.72 7.14 60.01
6–8 60 37.96 12.65 54.83
8–10 30 34.60 11.28 51.73
>10 60 30.83 8.65 66.28

Major highways (national and provincial highways) <1 167 28.11 0 66.28
1–2 107 35.45 9.87 60.01
2–3 33 34.65 8.70 56.12
3–4 6 39.97 11 50.12
4–5 6 33.15 19.66 45.20
>5 15 33.73 8.80 58.75

Airport <25 65 22.05 0 58.37
25–50 96 32.43 8.66 55.25
50–75 71 34.08 2.44 60.01
75–100 56 34.66 7.14 56.29
100–125 39 37.23 11.28 58.75
>125 7 33.32 15.18 66.28

Railway station <10 163 31.00 0 58.37
10–20 129 34.60 2.44 60.01
20–30 16 27.79 8.80 44.42
30–40 7 29.09 10.80 56.29
40–50 7 28.91 7.14 46.22
>50 12 26.57 7.47 66.28

Municipal government resident <20 111 27.72 0 66.28
20–40 147 34.99 9.87 60.01
40–60 43 31.48 2.44 50.70
60–80 17 33.62 9.27 56.29
80–100 3 30.40 7.14 52.58
>100 13 29.93 12.28 48.75
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predicted spatial location). The percentage of S and the actual
area were used as a measurement standard to judge the
recognition accuracy. The specific results are shown in
Table 5. The overall recognition accuracy of the two places
exceeds 60%, and that of Luoyang is 71.34%. Several of the
plots failed to achieve accurate prediction. On the one hand,
the prediction unit is a regular grid, but the actual patch is
irregular, and intersecting the two will lose part of the area.
On the other hand, the data in Table 4 show that the
identification method is more suitable for predicting urban
patches over 0.5 km2, which can capture a large range of
urban industrial land, and its accuracy basically exceeds 60%.

3.2 Spatial Characteristics Analysis of
Urban Industrial Land in China
3.2.1 Spatial Pattern Characteristics of Industrial Land
in China
The numbers of NP, SPLIT, and COHESION in the patch type level
index in FRAGSTATS were selected for spatial pattern analysis, to
explore the agglomeration degree of industrial land in the national
macro scope. The results are presented in Table 6 showing that the
number of industrial land patches in China is 6,685, which is large.
The separation index is high and the aggregation index is also high.
This shows that the national industrial land presents a distribution
trend of “large agglomeration and small dispersion” from the
perspective of spatial pattern, that is, it shows strong
agglomeration in a large regional scope, while it is relatively
scattered in a small regional scope, for example, within a
prefecture level administrative division.

3.2.2 Spatial Distribution Characteristics of Urban
Industrial Land in China
The industrial land area of each city was assessed, but because the
construction land area of each city is different, the area proportion
of industrial land in construction land of each city was further
assessed as shown in Figure 3 to analyze spatial characteristics.
According to the standard of urban land classification and
planning and construction land (GB 50137-2011), the
proportion of urban industrial land is in the range of 15%–30%.

According to statistical data shown in Table 7, among China’s
334 prefecture level administrative units, only 92 cities have this
range, and the proportion of cities not in this range is 72.46%, of
which 37 have less than 15% and 205 have more than 30%. This
indicates that China’s 334 prefecture-level administrative units
overall invest more in the secondary industry. The analysis results
are in line with the national conditions indicating that the
proportion of the secondary industry in the three major
industries is much higher than that of developed countries. At
the same time, the results show that many cities have not adhered
to the recommended value of industrial land proportion
according to the standards, which implies that the
development objectives of various cities in China are diverse
and that the development stages are different. This requires
further studies at a later timepoint. From the perspective of
spatial distribution characteristics, as shown in Figure 3, cities
with a large proportion of industrial land are mostly concentrated
in the north, especially in Shandong, Henan, and Hebei, three
eastern provinces, which are located in the North China Plain, as

FIGURE 5 | LISA map of industrial land proportion in 334 prefecture-level cities in China.
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FIGURE 6 | Industrial land proportion in 334 prefecture-level cities in China at different distances from related elements. (A) Distance relationship between the
proportion of urban industrial land and waters. (B)Distance relationship between the proportion of urban industrial land and highways. (C)Distance relationship between
the proportion of urban industrial land and airports. (D) Distance relationship between the proportion of urban industrial land and railway stations. (E) Distance
relationship between the proportion of urban industrial land and municipal governments.
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well as a small part of Xinjiang. Here, the proportion of industrial
land is relatively high in certain cities. As the cities with a high
proportion of industrial land are concentrated in specific areas, it
is necessary to further explore the degree of spatial agglomeration.

Using GeoDa software and using data on the proportion of
industrial land area of each prefecture level city, global and local
spatial autocorrelation analyses were conducted on the predicted
industrial land in China. As shown in Figure 4, theMoran’s I of the
proportion of industrial land in 334 cities in China is 0.408,
showing the characteristics of spatial positive correlation. This
further shows that cities with a high proportion of industrial land
in China have the characteristics of spatial agglomeration. To
explore the spatial agglomeration characteristics and dispersion
of industrial land in China more intuitively and carefully, further
analysis was conducted via a LISA diagram in Figure 5. In general,
there are clear differences in the agglomeration degree of industrial
land in China. High–High agglomeration areas are mainly
distributed in North China and Northeast China. Low–Low
concentration areas are mainly concentrated in Tibet, Qinghai,
Western Inner Mongolia, Western Sichuan, Yunnan, and Shaanxi.

3.3 Analysis on Related Factors of Urban
Industrial Land in China
In the past, scholars studied the factors affecting the spatial pattern of
industrial land in a single city, and often discussed the relationship
between the spatial distribution of urban industrial land and the
distance to the urban center (McGrath, 2000; Langer and
Korzhenevych, 2018), administrative center (Wang et al., 2007),
river surface (Wang et al., 2007), highways, and railways (Fan
et al., 2017). This research has verified that these factors have a
certain correlation with the spatial pattern distribution of urban
industrial land in China. Further analysis of the correlation factors
of urban industrial land in China at the macro level has important
reference significance for the overall understanding of the spatial
pattern of urban industrial land in China.

Therefore, China’s main waters and lakes, main traffic highways
(both national and provincial highways), airports, railway stations,
and municipal government stations were used as centers, and the
buffer distance was generated using ArcMap. Then, SPSS was used to
generate a scatter map to analyze the relationship between the
proportion of industrial land in China and the distance of five
related factors. As shown in Figure 6, the industrial land in most
cities in China is locatedwithin 10 km from themain waters and lakes
(Figure 6A), not more than 3 km from the nearest main traffic
highway (Figure 6B), and not more than 25 km from the nearest
railway station (Figure 6D). Compared with the aforementioned
three related factors, the phenomenonof “urban agglomeration” is not
prominent in the distance relationship between industrial land and
airport (Figure 6C) and municipal government garrison (Figure 6E).
The distance between most urban industrial land and the nearest
airport is about 130 km, but it is relatively scattered in this distance
range. The industrial land in many cities is about 10–60 km away
from the center of the municipal government.

In Figure 6, the relationship between the proportion of urban
industrial land and related factors cannot be effectively identified.

Therefore, SPSS was used for tabular hierarchical statistics. The
results in Table 8 show that the average proportion of urban
industrial land within 2 km from main water bodies and lakes is
15.33%, which is significantly lower than that of other distance
sections, and the average value within 1 km from the major
highways is 28.11%, which is lower than that of other sections.
The average value within 25 km from airports is 22.05%, which is
also lower than the proportion of urban industrial land in other
distance sections. The number of cities 20 km away from the
railway station is not only small, but also the proportion of
industrial land is low, which shows that the railway
transportation is highly related to the location of industrial
land. The industrial land of most cities is located within
100 km from the municipal government, and the proportion
of urban industrial land less than 20 km in this distance is
significantly lower than that of other distance segments.

In summary, the industrial land of each city is close to the
main waters and lakes, major highways, and railway stations,
while there is no evident phenomenon of “urban agglomeration”
from the airport. It is about 10–60 km from the garrison of the
municipal government. The proportion of industrial land is not
high in cities where the industrial land is close to the main waters
and lakes, major highways, airports, and municipal government
stations. However, the proportion of industrial land in cities close
to the railway station is high, and the correlation between the two
is high. The aforementioned results illustrate the distance
relationship between China’s urban industrial land and related
factors from the macro level, but the mechanism or the driving
factors behind the relationship must be further discussed due to
the focus and the limited length of the study.

4 CONCLUSION

In this study, POI data and RF are used to identify and analyze
China’s industrial land. The main conclusions are summarized as
follows:

1) By analyzing and comparing several groups of experiments, the
result of RF for urban industrial land identification is proved to
be scientific and referential. Based on the experimental results,
the recognition accuracy of industrial land in industrial parks is
greater than that of scattered industrial land.

2) From the perspective of spatial pattern, China’s urban
industrial land presents the distribution trend of “large
agglomeration and small dispersion.”

3) From the perspective of spatial distribution characteristics, cities
with a high proportion of industrial land aremostly concentrated
in the north. TheMoran’s I of the proportion of industrial land in
334 cities in China is 0.408, which represents the characteristics
of spatial agglomeration. High–high concentration areas are
mainly distributed in North China and Northeast China,
while low–low concentration areas are mainly concentrated in
western regions such as Tibet, Qinghai,Western InnerMongolia,
Western Sichuan, Yunnan, and Shaanxi.

4) The industrial land of each city is close to the waters and lakes,
highways, and railway stations, while there is no obvious
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connection with airports. Also, it is about 10–60 km away
from the municipal government. In terms of the proportion of
industrial land, the proportion of industrial land is not high in
cities where the industrial land is close to waters and lakes,
transportation highways, airports, and municipal government
stations. The proportion of industrial land is high in cities
where the industrial land is close to railway stations.

This study provides a newmethod and idea for single land type
identification in large-scale research range. However, the
following points may become the research direction in the future:

1) The POI data are only single period data, which fails to further
analyze the temporal and spatial evolution of China’s urban
industrial land. Also, there is a certain subjectivity in the selection
of POI indicators. In the future, more complete time series POI
data should be collected and standardized POI index selection
standards should be formulated. Finally, this study selected urban
industrial land as the research object, but China, as a developing
country, has a large number of rural industrial land. An approach
to scientifically and effectively identify a wide range of rural
industrial land based on big data is a potential research direction.

2) It is necessary to continue to verify the applicability of RF to
other types of industrial land.

3) The model used here is more suitable for the prediction of
areas larger than 0.5 km2. Follow-up research will further
improve the model method to better identify urban
industrial land.

4) This study explores the relationship between urban industrial
land and related factors but does not provide an in-depth
analysis of the driving factors behind it. For example,
industrial land is far away from municipal governments,
which may be driven by multiple factors such as the
government, enterprises, and the public, which should be
explored in future research.
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A Deep Learning–Based Approach for
Moving Vehicle Counting and
Short-Term Traffic Prediction From
Video Images
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The intelligent transportation system (ITS) is one of the effective solutions to the problem of
urban traffic congestion, and it is also one of the important topics of smart city
construction. One particular application is the traffic monitoring and flow prediction.
However, there are still challenges regarding both aspects. On the one hand, the
current traffic monitoring relies heavily on the single object detection method that
cannot achieve accurate statistics of moving target counting and, meanwhile, has
limited speed advantage; on the other hand, the existing traffic flow prediction models
rarely consider different weather conditions. Therefore, the present article attempts to
propose a packaged solution, which combines a new target tracking and moving vehicle
counting method and an improved long short-term memory (LSTM) network for traffic flow
forecast with weather conditions. More specifically, the DCN V2 convolution kernel and
MultiNetV3 framework are used to replace YOLOv4’s conventional convolution kernel and
backbone network to realize multi-target tracking and counting, respectively.
Subsequently, combined with the temporal characteristics of historical traffic flow, this
article introduces weather conditions into the LSTM network and realizes the short-term
prediction of traffic flow at the road junction level. This study carries out a series of
experiments using the real traffic video data with a 2-month time span at a popular road
junction in the downtown of Shenzhen, China. The results suggest that the proposed
algorithms outperform the previous methods in terms of the 10% higher accuracy of target
detection tracking and about a half reduction of traffic prediction error, when considering
weather conditions.

Keywords: multi-target tracking, short-term traffic flow prediction, DCN-MultiNet-YOLO, CLSTM, smart city

1 INTRODUCTION

Recent rapid urban development in China has led to increasing car ownership, which has led to more
severe traffic congestion and longer commuting times. According to a 2020 investigation on
commuting times for the 36 major Chinese cities, by the China Academy of Urban Planning
and Design, more than 10 million people (accounting for 13% of total population) have a daily
commute of more than 1 h each way. Among those cities, Shenzhen, one of the four “top-tier” cities
in Guangdong province, has a population of 17.56 million people (according to bureau statistics
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2020) and a GDP of 2.76 trillion yuan (ranking it third in
mainland China). As evidenced by the Shenzhen traffic police
office, the numbers of registered vehicles and drivers are around
3.36 and 4.39 million, respectively. The resulting traffic density is
estimated at more than 500 per km, which is the highest in the
country. In the era of information and communication
technology, urban transportation at such a large scale cannot
function well without the support of intelligent transportation
systems (ITSs) (Telang et al., 2021, Zear et al., 2016, Khatoun and
Zeadally, 2016, Mckenney and Frey-Spurlock, 2018). For
instance, one plausible measure for coordinating urban road
traffic could be monitoring the traffic volume using closed
circuit television (CCTV) images at each road junction and
implementing the prediction based on the historic traffic
volume data. In doing so, we could predict the future traffic
situation for better traffic management and optimization, thereby
partly alleviating traffic congestion. Numerous studies have
investigated traffic monitoring and prediction at the junction
level spanning a wide range of disciplines. For example, Khekare
and Sakhare (2013) introduced a new scheme consisting of a
smart city framework that transmits information about traffic
conditions to help drivers make appropriate decisions. Marais
et al. (2014) devised an approach to deal with the inaccuracy of
signal propagation conditions for urban users who demand
accurate localization by associating GNSS data and imaging
information. Raja et al. (2018) proposed a cognitive intelligent
transportation system (CITS) model that provides efficient
channel utilization, which is the key to make any application
successful in vehicular ad hoc networks. Zheng et al. (2020) used
an adaptation evolutionary strategy to control arterial traffic
coordination for a better passage rate along one single road
with several junctions. However, the existing literature may
still face challenges regarding the inaccuracy of both car object
detection and traffic volume prediction. To be more specific,
current detection methods from CCTV images mainly focus on
single car object detection and may suffer from the inaccuracy of
multiple moving object recognition and tracking (such as
omission or false detection) and have a limited speed
advantage. Also, the traffic volume prediction models that are
based merely on the detection results may be distant from reality
as they seldom consider environmental factors such as weather
conditions (for example, sunny or rainy days).

The present study is motivated to put forward a two-level
traffic flowmanagement system to cope with the abovementioned
challenges, which is supported by the deep learning technique
and is validated by a 2-month video image series at a popular road
junction located at downtown Shenzhen. Specifically, the system
is layered with YOLOv4 for car object detection and tracking and
is then layered with a modified long short-term memory (LSTM)
network embedded with the spatio-temporal characteristics of
historic traffic records, as well as corresponding weather
information, to build up a short-term traffic flow prediction
model. Therefore, the main contributions of this article are
twofold. First, regarding moving object detection, we proposed
a lightweight DCN-MultiNet-YOLO network for video-based
multi-target tracking for the collection of traffic volume
statistics at the urban road junction level. Second, for traffic

flow forecasts, we proposed an improved LSTM network that is
closer to realistic scenarios by considering various weather
conditions associated with real traffic flow changes.

The remainder of this article is organized as follows. After
introducing the overall structure of our approach, the
implementation details of object detection and traffic
prediction are described in detail in Section 2. Section 3
provides a case study of the junction level moving car
monitoring and traffic flow prediction. Finally, Section 4
concludes the study and points to potential applications of this
research.

2 METHODS

2.1 Overall Structure of the Algorithm
Figure 1 shows the overview of our approach, including two
parts. The first part is the vehicle detection and flow extraction
from multi-temporal traffic video data, where the core neural
network includes the Multi-Net of backbone, neck module for
enhancing feature extraction, and head module for detecting the

FIGURE.1 | Structure of the proposed algorithm.
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output. In the second part, after normalizing the traffic data, we
extracted the feature vector of environmental factors and
imported it into an improved LSTM network to predict the
traffic flow data under different weather conditions.

2.2 DCN-MultiNet-YOLO
According to the overall structure, target counting methods can
be divided into those based on traditional feature extraction
(Zhou et al., 2014; Denimal et al., 2017; Li et al., 2020) and
those based on the convolutional neural network (CNN) (Yoo
et al., 2016; He et al., 2017; Redmon and Farhadi, 2018).
Traditional feature extraction methods include the Haar-like
feature, the local binary pattern, and histogram of the oriented
gradient. The aforementioned algorithm usually focuses on edge
feature extraction to detect and count the individual targets, so it
requires a high accuracy of edge detection and is not suitable for
the counting of overlapping or dense targets. With the
development of deep learning, the mainstream object detection
and counting algorithms are realized by extracting target object
features based on the CNN. On the basis of the original YOLOv3
target detection architecture, YOLOv4 (Bochkovskiy et al., 2020)
is optimized in data processing and enhancement (Mosaic),
backbone network (Backbone), network training (self-
adversarial training), activation function (Mish), and loss
function (Focal Loss), which greatly improve the accuracy of
target detection and the training efficiency. In the data processing,
YOLOv4 obtains the anchor box by clustering the ground-truth
box and then uses the Mosaic data enhancement method to label
and train targets with different scales. The backbone of YOLOv4
draws on the advantages of extracting deep feature information

from deep residual learning [ResNet (He et al., 2016)]. It also
adopts the design idea of a spatial pyramid pooling network
[Spatial Pyramid Pooling Net (He et al., 2015) Atrous Spatial
Pyramid Pooling Net (Liu and Huang, 2019)] to splice arbitrary
size feature maps and convert them into fixed output size feature
vectors, which can be output at one time to realize multi-scale
object detection. The activation function YOLOv4 adopted is
mixed with smooth, non-monotonic, and lack of upper bound
characteristics. Although its computational complexity is higher
than that of ReLu in YOLOv3, its detection effect is improved. In
the final loss function training, YOLOv4 uses the idea of focal loss
for reference, that is, redistributing the training weights of easy
classification samples and difficult classification samples to
achieve the accuracy of the two-level detector without losing
the network training and prediction speed. Based on the original
YOLOv4 network, our approach modifies the framework of
backbone and applies the DCN V2 convolution to expand the
receptive field of the feature layer and enhance the accuracy of
object detection. As shown in Figure 2, the framework of the
DCN-MultiNet-YOLO model can be divided into three parts: the
backbone of DCN-MultiNet, bottleneck for enhanced feature,
and head for detecting output, of which the neck mainly includes
the SSP-Net and pyramid attention network. The network
parameters of each component are described in detail as
follows; the first two units of network parameters in the figure
are pixel, and the last is depth. For example, as shown in the
figure, the network 608 × 608 × 3 represents an image with a pixel
value of 608 × 608 and three channels.

DCN-MultiNet: DCN-MultiNet follows the darknet network
in YOLOv4. In order to reduce the parameters of the network

FIGURE 2 | Network architecture of DCN-MultiNet-YOLO.
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structure, multi-convolution layers are used as the core hidden
layer of the backbone network. All conventional convolutions in
the network framework are replaced by deformable convolutions,
which avert possible network accuracy degradation caused by
separable convolution. Moreover, we introduced the cross-stage
partial network to integrate the gradient changes into the feature
map. A smoother Mish is applied instead of the original ReLu as
the activation function, which obtains the three types of anchor
boxes closest to the real frame by clustering the data in the
ground-truth box. Finally, according to the input image with a
pixel of 608 × 608×3, the neural network outputs three scale
feature maps with shapes of 76 × 76, 38 × 38, and 19 × 19.

Neck: The bottleneck module is designed to enhance the
ability of network feature extraction. SSP-Net uses three
convolution layers with different shapes to expand the
perception threshold of the feature map to the front hidden
layer, which can enhance the target recognition ability of the
network. SSP-Net also introduces a differentiation pooling
strategy, which not only avoids the risk of network
overfitting but also outputs fixed size image features. Based
on the feature pyramid network (FPN), PANet uses
downsampling and upsampling methods to fuse different
scale feature maps at the same time so that the output layer
after mapping and fusion has richer features and improves the
expression ability of the network for shallow feature
information and deep semantic information.

Head: The output of the feature map corresponds to the last
three feature layers of the backbone network, with shapes of
76 × 76 × 75, 38 × 38 × 75, and 19 × 19 × 75, which has the
ability to perform multi-feature layer object detection. The
first two dimensions represent the size of the feature map grid,
which can extract targets of different shapes. The third
dimension is related to the dataset used in network
training. If the dataset has 20 categories and the
dimensions of location information and category
information are five, we should set the layer with a shape
of 3 × (20 + 5) to adapt to the anchor box.

To test the detection accuracy of the proposed architecture, we
compared the mean average precision between other neural
network structures. The formula of precision is as follows:

P � TP/(TP + FP), (1)
where P represents the algorithmic precision, TP indicates

that a positive sample is correctly retrieved as a positive sample,
and a false positive indicates that a negative sample is incorrectly
retrieved as a positive sample. The formula for recall is as
follows:

R � TP/(TP + FN), (2)
where R represents the recall rate of the algorithm, and FN

indicates the number of positive samples that were incorrectly
retrieved as negative samples. An excellent objection detection
model means that the accuracy increases as the recall rate
increases. The average precision is obtained by integrating the
P–R curves of a class. The formula for the average precision is as
follows:

AP � ∫1

0
p(r)dr. (3)

The mean average precision (mAP) is the average of the area
under the P–R curve for all categories. The formula for mAP is as
follows:

mAP � 1
n
∑ n

k�1APk. (4)

2.3 Conditional Long Short-Term Memory
The detected traffic flow from video images, as one of the basic
parameters of short-term traffic prediction parameters, can be
used as the key basis of traffic decision in the intelligent
transportation system (Chen and Chen, 2020). Short-term
prediction is to provide short-term (usually 5–10 min) or even
real-time traffic prediction based on the traffic data close or exact
to the current observation (Petkovics et al., 2015; Fu et al., 2016).
Short-term traffic flow prediction is very challenging due to the
stochastic and dynamic traffic condition. In recent years, scholars
from around the world have conducted widespread and thorough
research of LSTM or its variants in short-term traffic flow
forecasting with excellent achievements. Ma et al. (2015)
developed a long short-term memory (LSTM) neural network
to predict the travel speed prediction based on RTMS detection
data in Beijing city. The proposed model can capture the long-
term temporal dependency for time series and also automatically
determine the optimal time window. Zheng et al. (2017) put
forward a traffic forecast model based on the LSTM network that
considers temporal–spatial correlation in the traffic system via a
two-dimensional network composed of many memory units. Du
et al. (2020) proposed a deep irregular convolutional residual
LSTM network model called DST-ICRL for the urban traffic
passenger flow prediction. Little et al. (1981) proposed an end-to-
end deep learning architecture that consists of convolution and
LSTM to form a Conv-LSTM module to extract the
spatial–temporal information from the traffic flow
information. Moreover, Ma et al. (2021 and Zheng et al. (Dai
et al., 2019; Zheng et al., 2021) proposed an improved LSTM
model to improve the accuracy of short-term traffic flow
prediction. However, in addition to the traffic flow statistics
itself, weather conditions, emergencies, and other external
environmental conditions also have great changes on the flow
value, which have received less attention in the aforementioned
literature studies. The conditional long short-term memory
(CLSTM) proposed in this article inputs the aforementioned
environmental conditions and traffic flow to the LSTM
network and fully connected layer (FC layer), respectively.
Then, the output of them is fed into the feature fusion layer
(FF layer) and FC layer, which finally export the predicted
traffic flow.

Before introducing the structure of the CLSTM, we first
described the problem setting of our traffic scenario. The
problem of traffic flow prediction can be formulated as
follows. First, we divided the total traffic flow into multiple
time periods at every Δ time interval and summarized the
traffic flow at each period. Let Xc

i denote the traffic flow of the i
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th time period under environmental condition c, at current
time t (i =t); the task is to predict the traffic flow of this
moment by the historical traffic flow sequence with some
prediction domain σ and time interval Δ. The formal
expression is as follows:

Historical traffic flow : {Xc
i

∣∣∣∣∣∣ i � t − nΔ , t − (n − 1)Δ, . . . , t

− Δand c ∈ �C},
(5)

where C means a set containing different environmental
conditions.

Predicted traffic flow : {Xc
i

∣∣∣∣ i � t + Δ , t + 2Δ, . . . , t
+mΔ and mΔ< σ}. (6)

For example, when we consider Δ � 5 minutes, n � 12, and
σ � 3, it can be divided into 288 traffic flow values in 24 h of a
single day, and the objective is to predict three traffic flow
values in the future 15 min by using 12 traffic flow values in the
past 60 min. After the environmental condition expressed as a
feature vector �C, we can combine the historical traffic flow and
the environmental condition. Let c ∈ �C mean different
environmental conditions (for example, if c1 represents the
weather condition, then c1 = 0,1,2,3 . . . means rainy, sunny,
foggy, and so on); the traffic flow from time t–n to t can be
represented as Xc1

i � [ fc1
t−nΔ , f

c1
t−(n−1)Δ , . . . , f

c1
t−Δ ] , where fc

t
denotes the traffic flow value under environmental condition
c1. If we have k sets of environmental condition vectors, the
combined historical traffic flow and the environmental
condition can be represented by the matrix as follows:

Xc
i


→ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Xc

t− nΔ

..

.

Xc
t− Δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
fc1
t−nΔ / fck

t− nΔ

..

.
1 ..

.

fc1
t−Δ / fck

t− Δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

As shown in Figure 3, the proposed CLSTM consists of an
input feature transformation layer, a feature fusion layer, and a
fully connected layer (FC layer). The traffic flow input is the

time series vector �Xi , which contains the traffic flow value per
Δ time. The traffic flow input is a 1 × n vector, and it feeds into
a multilayer of a CNN layer and an LSTM network, which has
been proposed for a variety of applications such as network
fault prediction (Tan and Pan, 2019), gesture recognition
(Zhang et al., 2018), and speech emotion recognition
(Zhang et al., 2019) to obtain the short-term temporal
feature of the traffic flow. The second input is a 1 × m
vector �C of the environmental condition, and it feeds into
an m × 64 FC layer. The output shape of both components of
the input feature transformation layer is a 1 × 64 vector.
Finally, the feature fusion layer is followed by an FC layer,
both of which are regression layers, to perform forecasting.
The output shape of the predicted flow is 1 × m.

The loss function we selected as the RMSE is the square
root of the ratio of the square of the deviation between the
value and the actual value, divided by the number of
observations. The RMSE used to measure the deviation
between the observed value and the actual value is
calculated as follows:

Loss � RMSE �
��������������
1
n
∑ n

i�1(yi − y′
i)2

√
. (8)

Besides the RMSE, we used another two functions—the
mean of absolute error (MAE) and mean absolute percentage
error (MAPE)—as the accuracy evaluation indicators for
comparing these prediction algorithms (Ma et al., 2018;
Weng et al., 2018; Xu et al., 2018; Chen C. et al., 2019;
Chen F. et al., 2019; Wu et al., 2019) in order to ensure the
robustness of the forecast algorithm. MAE , which means the
average absolute error, is calculated as follows (in all the
following formulas, n represents the sample size, yi is the
actual value, and y’

i is the predicted value):

MAE � 1
n
∑ n

i�1
∣∣∣∣yi − y′

i

∣∣∣∣. (9)

The MAPE represents the average of the absolute values of
relative percentage errors, which is calculated as follows:

FIGURE 3 | Network architecture of CLS.
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MAPE � 100%
n

∑ n
i�1

∣∣∣∣∣∣∣∣yi − y′
i

yi

∣∣∣∣∣∣∣∣. (10)

3 RESULTS AND DISCUSSION

3.1 Data and Environment
In this section, we evaluated the performance of the proposed model
by using a real-world dataset for object detection and short-term
traffic flow prediction. The detailed hardware configuration of this
experiment is as follows: the CPU of the computer is Intel (R) core
(TM) i9-9900k, the CPU frequency is 3.60 GHz, the memory is 64G,
the graphics card model is NVIDIA GeForce RTX 2080ti, and the
graphicsmemory is 11G×2. Our application is deployed on the 64-bit
operating systemUbuntu 16.04 with the deep learning frameworks of
TensorFlow 1.13.1 and Keras 2.3.1 and the parallel computing
framework of CUDA 10. The traffic data were collected at the
intersection of Qiaoxiang and Nonglin Roads in Futian District,
Shenzhen (Figure 4) between 1 June and 31 July 2021. The weather
data come from the China National Meteorological Science Data
Center.

3.2 Results for Multi-Target Tracking
The core idea of DCN-MultiNet-YOLO is separable convolution.
The standard convolution is decomposed into a depth-wise
convolution and a point-wise convolution, which play the role of
filtering and linear combination, respectively, in order to reduce the
number of parameters and calculation. As mentioned earlier, we
used the DCN V2 convolution to expand the receptive domain that
can improve the accuracy of the target detection model at the cost of
slightly sacrificing the amount of parameters. As can be seen from
Table 1, the parameter quantity of DCN-MultiNet-YOLO is only
0.48% more than that of MobileNet and 17% more than that of
CSPDarknet. Meanwhile, in order to compare the training time of
the algorithm, we set the size of the training batch to 32 and the total
training cycle to 200. It is found that when MultiNet is used as the
backbone, a single training cycle can cut the training time in half.

In order to verify the detection effect of different algorithms, the
second experiment compares the AP results of all categories in the
voc2007 + 2012 dataset, which implement the MobileNet and the
CSPDarknet53 as backbones in the control group. Figure 5 shows
that compared with the YOLOv4 network, whose backbone network
is MobileNet and CSPDarknet53, the mAP of DCN-MultiNet-
YOLO increased by 13.19% and 6.63%, respectively.

FIGURE 4 | Illustration of the study area.
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In Figure 6, we compared the results of object detection and lane
vehicle count of differentmodels. It should be noted that the detection
frame rate is related to the currently detected number and training
model. The higher the number of detected objects under the same
model, the lower is the frame rate. It can be seen from Figure 5 that
DCN-MultiNet-YOLO has more current and total detection counts
and faster real-time frame rates than that applied to MobileNet and
CSPDarknet53 as the backbone in the network.

Finally, we obtained the traffic flow every 5min in all directions of
the Qiaoxiang–Nonglin road using DCN-MultiNet-YOLO. Table 2

shows the example of the obtained traffic flow of six lanes from west
to east 7:00 to 9:00 a.m. on 1 June 2021, inwhich the columnnumbers
represent each 5-min time period during the morning peak hours,
and row numbers represent different lanes.

3.3 Results for Short-Term Traffic Flow
Prediction
Using the aforementioned object detection algorithm to make traffic
statistics on the images of the Qiaoxiang–Nonglin intersection, we

TABLE 1 | Model parameters of different backbone networks.

Non-trainable param (K) Trainable param Total param Train time (min)

MobileNet 63 11,405K 11,468K 7
CSPDarknet 66 64,363K 64,429K 16
DCN-MultiNet 62 11,461K 11,523K 7

FIGURE 5 | AP values of different backbone networks: (A) MobileNet, (B) CSPDarknet, and (C) DCN-MultiNet-YOLO.

FIGURE 6 | Model test results of different backbone networks: (A) MobileNet, (B) CSPDarknet, and (C) DCN-MultiNet-YOLO.

TABLE 2 | Example of vehicle count statistics in each lane from 7 to 9 a.m., 1 June 2021.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 35 35 37 34 46 35 33 35 40 42 34 29 24 43 26 31 34 36 35 35 37 37 23
2 37 35 34 38 40 36 30 42 44 29 32 38 34 46 35 40 44 38 40 44 48 49 47
3 27 27 29 29 28 28 29 28 32 20 27 26 28 30 31 28 35 34 23 30 40 26 39
4 31 30 40 33 37 51 35 32 45 25 35 37 34 34 39 34 52 42 37 45 52 42 39
5 14 16 17 14 16 16 10 12 11 12 10 14 11 13 11 10 12 14 11 13 11 14 10
6 13 12 20 17 17 19 15 15 18 12 13 15 11 14 14 17 17 18 16 24 13 18 18
FPS 16 15 17 15 16 16 17 16 16 14 16 14 15 16 15 15 15 17 15 17 17 16 17
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can obtain the traffic statistics of the intersection for 2 months. We
accumulated the traffic flow of three turns (left, right, and straight) in
four directions (east, south, west, and north) every 5min as a sample.
After removing the abnormal data, a total of 5616 sample records
were generated by using the traffic flow in 2months.We used 85%of

the aforementioned records as the training set and 15% as the test set.
As shown in Figure 7, we first selected 4 days (two sunny days and
two rainy days) to analyze the traffic data of the whole day. From the
traffic flow data, we can draw the following conclusions: 1) the total
traffic flow on rainy days is lower than that on sunny days. This is
because the intersection is located in a busy section of Shenzhen, and
the rainy days reduce the commuting ability of this road because
many vehicles that would have taken this road chose other roads. 2)

FIGURE 7 | Traffic flow under different weather conditions.

FIGURE 8 | Loss function curve of the algorithm.

TABLE 3 | Comparison of the prediction results of four models.

Network structure Evaluation function Weather conditions

Sunny Cloudy Rainy

KNN RMSE 30.22 38.31 52.54
MAE 23.57 31.11 38.39
MAPE (%) 24.05 32.28 40.37

LSTM RMSE 18.58 26.27 35.73
MAE 12.97 18.65 25.82
MAPE (%) 13.14 19.26 26.01

Cov-LSTM RMSE 15.32 19.24 27.38
MAE 12.06 16.72 19.35
MAPE (%) 12.71 17.13 20.42

CLSTM RMSE 15.74 16.78 18.31
MAE 13.65 14.34 16.06
MAPE (%) 12.91 15.19 16.85

Note: All the results are obtained by averaging on each day for the test dataset (about
10 days).

FIGURE 9 | Comparison of real and predicted traffic flows under
different weather conditions.
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We compared the correlation coefficient of the two sets of data and
found that the correlation coefficient of the two groups of traffic flow
data on sunny days is 0.935 and on rainy days it is 0.872, indicating
that traffic changes are more random on rainy days, which makes it
more difficult to predict.

It can be seen from Figure 8 that the loss function of the
algorithm decreases with the number of iterations. The loss
function begins to converge after about 70 iterations and
finally converges to about 0.16. The convergence of the
algorithm proves that the traffic prediction method proposed
in this article is feasible.

Two kinds of neural network structures—LSTM and Cov-
LSTM (Liu et al., 2017)—are compared as benchmarks of the
proposed network for prediction performance in this article. We
also selected the KNN representative clustering algorithm to
compare the accuracy of traffic prediction.

According to Table 3, on the sunny day, the CLSTM has RMSE,
MAE, and MAPE values of 15.74, 13.65, and 12.91%, respectively,
which are slightly higher than the values of Cov-LSTM of 15.32,
12.06, and 12.71% but lower than those of LSTMandKNN.Onnon-
sunny days (cloudy and rainy days), the proposed module can
achieve a smaller prediction error than the other module with all
three metrics for all prediction horizons. On the cloudy day, it has
RMSE, MAE, and MAPE values of 16.78, 14.34, and 15.19%,
respectively, and 18.31, 16.06, and 16.85% on the rainy day. This
is because the environmental conditions of the traffic flow are usually
interwoven with each other, which can be captured more efficiently
by the CLSTM module. The results prove the effectiveness of the
proposed model.

Furthermore, we compared the prediction performance of both
the benchmark neural network and CLSTM. Although the three
network structures can eventually converge and overcome the long-
term dependency of RNN, their performances are different. Figure 9
illustrates performance comparison in terms of the predicted traffic
volume from 0:00 a.m. to 12:00 p.m. for a 5-min prediction horizon.
It can be seen that all three networks have relatively good prediction
performance on sunny days. However, the prediction performance
of the benchmark network on rainy days is not sufficient. In
particular, in the evening and morning rush hours when there is
a large fluctuation in traffic volume, the performance advantages of
CLSTM are particularly prominent.

4 CONCLUSION

The grip of traffic flow patterns from multi-temporal images is
essential to mitigating urban congestion and can assist in the

construction of smart cities. In this article, we made use of 2-
month traffic video data for traffic flow monitoring and
prediction. We proposed 1) DCN-YOLO, a novel multi-target
tracking and counting method for moving targets, which
introduced the DCN V2 convolution into the YOLOv4
backbone network and replaced the original CSPDarknet
network in order to solve the problem of limited detection
accuracy of the MobileNet model. 2) CLSTM, a variant of the
LSTM network, which takes the environmental conditions as the
feature fusion layers for the short-term traffic flow prediction.
Through the case study of one popular road junction in the
metropolitan area, the results indicated the better performance of
the proposed architecture, of which the mAP of the moving car
detection with DCN-YOLO increased by 13.19%, and the
prediction RMSE of the CLSTM decreased by 49.01% on
rainy days.

Despite the strength of the proposed algorithms in this work,
there is still room for improvement. With respect to object
detection, it could be necessary to embed depth-wise separable
convolution to reduce the number of CSPDarknet53 of the
YOLOv4 network to fit for real-time operations at the mobile
end. In terms of short-term traffic flow prediction, the current
weather conditions can only be described as qualitative
variables, such as sunny and rainy days, which limit the
prediction accuracy to a certain extent. Future work can
include more quantitative factors such as precipitation and
air pressure. In addition to factors from the physical
environment, human factors, such as driver behaviors under
emergency events, can be considered to make the model closer
to reality.
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Road Safety Evaluation Framework for
Accessing Park Green Space Using
Active Travel
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The COVID-19 pandemic has led to a burgeoning demand for active travel (walking or
cycling), which is a healthy, pollution-free, and affordable daily transportation mode. Park
green space (PGS), as an open natural landscape, have become a popular destination for
active travel trips in metropolitan areas. Pedestrians and cyclists are often at high crash risk
when exposed to complicated traffic environments in urban areas. Therefore, this study
aims to propose a safety assessment framework for evaluating active travel traffic safety
(ATTS) near PGS from the perspective of urban planning and exploring the effect of the
point-of-interest (POI) aggregation phenomenon on ATTS. First, links between ATTS and
the environment variables were investigated and integrated into the framework using the
catastrophe model. Second, the relationship between the POI density and ATTS was
investigated using three spatial regressionmodels. Results in theWuhanMetropolitan Area
as a case study have shown that (1) the population density, road density, nighttime
brightness, and vegetation situation near PGS have pronounced effects on ATTS; (2)
pedestrians near PGS enjoy safer road facilities than cyclists. Active travel traffic near PGS
requires more attention than non-park neighborhoods; (3) among four park categories,
using active travel to access theme parks is the safest; and (4) SEM has the best fit for POI
cluster research. Increases in leisure facility density and residence density may lead to
deterioration and improvement in ATTS safety levels near PGSs, respectively. The safety
framework can be applied in other regions because the selected environment indicators
are common and accessible. The findings offer appropriate traffic planning strategies to
improve the safety of active travel users when accessing PGS.

Keywords: active travel, urban green space, traffic safety, framework integration, spatial regression

1 INTRODUCTION

The importance of safety in urban transport and mobility has been recognized in achieving the
globally discussed and accepted goals for human development (Poku-Boansi et al., 2019). Road traffic
injuries are one of the top 10 causes of death in the world. The World Health Organization (WHO)
reported that approximately 1.35 million people die in road traffic accidents every year, while 93% of
global road deaths occur in middle- and low-income countries (World Health Organization, 2018).
In China, vulnerable road users (i.e., pedestrians, motorcyclists, and pedal cyclists) accounted for
more than 70% of the road traffic deaths between 2006 and 2016 (Wang et al., 2019). The crash risk of
pedestrians, motorcyclists, and pedal cyclists in urban areas is often higher than that of vehicle users
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due to their vulnerable characteristics when exposed to
complicated traffic environments. However, in most Chinese
cities, pedestrian and cyclist infrastructure and travel safety are
yet to receive any major attention in terms of research, policies,
and interventions. As the number of pedestrians and cyclists
actively traveling increases, the risk of injury prompts the in-
depth evaluation of route safety (Brown et al., 2017).

Park green space (PGS) plays a significant role in modern
society, especially under giant working and psycho pressure
(Ekkel and de Vries, 2017; Yang et al., 2019). Due to the
purpose of health, most people choose a method of active
travel (walk or cycle) to access park green spaces, which have
been the main places for leisure and sports. Especially when
residences are in the service range of PGS, they are willing to
improve their physical activity, psychological restoration, and
social contacts by access to PGS with active travel three to four
times a week. Recent literature has studied various integrated
indexes of walkability to PGS including safety, convenience,
comfortability, and accessibility since the walk score was
released (Lee and Hong, 2013; Lwin and Murayama, 2011; Xu
et al., 2017). As residents access parks searching for recreation
and relaxation, safety guarantees have an important influence on
their decision (Wang et al., 2015). However, it is common to see
many studies examine the methodology of the parks’ internal
safety evaluation by multi-criteria but fail to evaluate roadside
safety facilities (Baran et al., 2018; Zavadskas et al., 2019). In
addition, previous studies mainly conducted in developed
Western countries; specialization in the safety index system is
urgently needed for developing nations due to incomplete road
facilities.

This study uses the Wuhan Metropolitan Area as an example
and proposes the ATTS assessment framework based on road
units, which includes safety assessment and sociodemographic
factor analysis. The safety assessment uses the catastrophe model
based on several environmental parameters. Sociodemographic
factors were analyzed by converting POI density using kernel
density estimation (KDE), followed by OLS, spatial error model
(SEM), and spatial lag model (SLM) to explain the macroscopic
distribution of AT accidents. We cannot be optimistic about
ATTS because the safety situation is not fairly distributed within
urban settings. The findings offer appropriate traffic planning
strategies to improve the safety of active travel users.

This study contributes to the existing literature in various
aspects: 1) an objective and systematic assessment framework for
ATTS is first presented; 2) the correlation between various built
environment parameters near PGS and active travel crash
frequency is investigated; 3) the active travel safety status of
roads near four types of parks is evaluated and; 4) the potential
effects of the POI aggregation phenomenon near PGS reflected by
the ATTS spatial distribution is explored.

The rest of this article is organized as follows: Section 2
reviews the existing literature on the influencing factors of
ATTS and presents an overview of the socioeconomic
parameters that may affect safety inequity. The methodology
and the materials adopted are discussed in Section 3. Section 4
shows the results of the ATTS framework, which comprise the
safety assessment and spatial regression. Section 5 presents the

research arguments and discusses the determinants of ATTS.
Finally, in Section 6, our main conclusions are drawn, while
future avenues for research are suggested.

2 LITERATURE REVIEW

2.1 Active Travel Accident Near PGSs
A large proportion of traffic fatalities occur inside urban and
metropolitan areas, where the risk factors associated with
congestion and high densities of vehicles and pedestrians
coexist (Vorko-Jović et al., 2006; Dumbaugh and Rae, 2009).
Traffic characteristics (such as traffic flow and speed) and road
characteristics (such as road geometry and the quality of
infrastructure) may affect road accidents (Ayati and Abbasi,
2011; Lord et al., 2005; Martin, 2002; Wang et al., 2009). The
behaviors of vehicle drivers and pedestrians (e.g., driving speed
and the use of seat belts) and the change in environmental
variables (e.g., road conditions and traffic lights) have been
investigated in a previous study related to urban accidents
(Ramírez and Valencia, 2021). Walking and cycling have been
examined separately in multiple studies at varying depths. Active
travel consisting of both has become a trend. However, no studies
have been conducted to examine road safety in the built
environment for walking and cycling in a unified framework.

Neighborhoods near parks may represent a higher risk of
collision injury or death because they attract more susceptible
road users. Young energetic tourists and elderly residents may
congregate in areas around parks. When it comes to
transportation to parks, children prefer to use active
transportation (Pont et al., 2009). The elderly are more likely
to walk, rather than ride a bike to a local park (Duan et al., 2018).
Therefore, active travelers in general are more susceptible in the
absence of adequate infrastructure.

In the literature, the risk factors for pedestrian and
cyclist–motor vehicle accidents have been mainly examined
from the aspects of active travel users’ characteristics, road
conditions, and the environment surrounding the accident site.
Children and old pedestrians are prone tomotor vehicle accidents
(O׳Hern and Oxley, 2015; Poku-Boansi et al., 2019; Smith et al.,
2020; Värnild et al., 2020; Yee et al., 2006). Road conditions,
which comprise road network design and center turning lane
settings, the number of traffic lanes, and road demarcation, are
important risk factors for the occurrence of pedestrian and cyclist
accidents (Shankar et al., 2003; Hess et al., 2004; Donroe et al.,
2008). Environmental factors such as location, traffic volume,
road lighting, and the time of the day may significantly affect the
likelihood of pedestrian and cyclist accidents (Simončič, 2001;
Shankar et al., 2003; Wier et al., 2009; Miranda-Moreno et al.,
2011). The risk of pedestrian and cyclist injury is relatively high in
areas with heavy traffic (Zhang et al., 2014). Findings indicate that
pedestrian and cyclist injury or death may easily occur at
intersections without traffic lights (Moudon et al., 2011; Hu
et al., 2018).

The existing literature focuses on the effects of active travel
users’ personal characteristics, such as age, gender, and income,
on ATTS. However, no studies have been conducted to compare
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the variability and injury risk of active traffic accidents due to
differences in the environment near various types of parks and
explain the macroscopic distribution of active traffic accidents
using a three-class spatial regression model. In addition, some
specific ATTS risk factors such as road infrastructure (motorized
and nonmotorized road facilities) and various urban traffic
regulations (i.e., trunk roads, secondary trunk roads, and
branch ways) should be taken into consideration.

2.2 Active Travel-Related Variables
This study on active travel-involved crashes covers a wide range
of factors, which comprise the characteristics of road user
behavior. Strong correlations between objective indicators of
the built environment and traffic safety are well documented
(Saha et al., 2020). Previous studies on the microlevel (road,
segments, and intersections) examined the relationship between
road safety and various parameters, such as built environment
features (Clifton et al., 2009; Galanis et al., 2017). From the
perspective of traffic safety, it is proposed that studying traffic
characteristics, roadway characteristics, physical characteristics,
and POI characteristics can help promote an understanding of
the relationship between the built environment and active travel
crashes.

Accidents usually occur when traffic moves. Therefore,
investigating traffic characteristics to understand their
influence on ATTS is significant (Golob and Recker, 2004;
Lord et al., 2005). Increases in traffic volume are associated
with an increase in the total crash frequency; hence, the effects
of traffic exposure and land use characteristics are based on this
(Wier et al., 2009; Lee et al., 2015). Various studies have
associated greater traffic exposure with a higher frequency of
accidents and accident severity (Abdel-Aty et al., 2013). For the
improvement of ATTS, environmental indicators are also
considered. Traffic calming is a significant transport
intervention for population health, which decreases the
negative influences of motor vehicles (Morrison et al., 2003;
Pucher et al., 2010). Increasing the amount of walking and
cycling is an effective way of reducing the chances of
incurring injuries (Jacobsen, 2003).

Based on the engineering theory, roads play a significant role
in road safety. Improved geometry design and infrastructure
could help improve road safety, including ATTS (Noland,
2003; Noland and Oh, 2004). Among the road facilities,
sidewalks are a major component of the transportation
network and should provide pedestrians with safe, healthy,
and attractive walking conditions (Aghaabbasi et al., 2018).
The influence of environmental factors on walking, such as
sidewalks, has contributed to the development of various
measurements of the effects of environmental factors on
walking but lacks the macro-level evaluation (Cunningham
et al., 2005). Bicycle lanes may lessen the risks for bicycle
riders by preventing crashes against motor vehicles, reducing
the burden of traffic injuries, improving the sense of safety, and
promoting greater participation in cycling. Bicycle lanes have
several types: exclusive, shared, and parking lanes; marked wide
curbside lanes; and curbside bicycle lanes. Among these types,
only exclusive bicycle lanes are associated with decreased

accidents, while greater separation provides better protection
for cyclists and traffic (Morrison et al., 2019). Guardrails are
installed as guides to safe crossing areas and prevent pedestrians
from bursting into the road (Retting et al., 2003). In London,
accidents at sites with guardrails are reportedly 2.5 times lower
than those in areas without such facilities (Zheng et al., 2007). The
study shows the importance of sidewalks, bicycle lanes, and
guardrails in ATTS. The construction of pedestrian crossing
facilities has become the main choice for reducing the negative
effect of roads on pedestrians at the cost of crossing convenience.
However, building these road facilities using observational and
GIS measures requires investments in staff, training, data
management, and high-quality data in numerous locations.
Using street view can solve these problems (Brownson et al.,
2009).

Physical environments exert influences that can facilitate or
mitigate traffic safety. The correlation of nighttime brightness and
vegetation with urban safety is generally assessed as a significant
social humanities environment aspect. Street lighting is a
necessary urban feature for improving the clarity when driving
(Xu et al., 2018), while vegetation, as an along-street physical
environment, may influence safety (Wolfe and Mennis, 2012;
Fitzpatrick et al., 2014). Street lighting, walking and cycling paths,
and street monitoring by buildings relate to personal safety when
people actively travel (Administration, 1992). These two factors
show various correlations with urban safety in various regions;
thus, the effect of nighttime brightness and vegetation on active
traffic safety and its intensity in Wuhan is explored in our study.

While POI data are not a typical factor used in traditional
traffic accident analysis, it is specific to land use factors with
precise location information (Jia et al., 2018). Previous studies
have confirmed that the number, density, and distribution of
POIs are significantly correlated with human–vehicle crashes
(Kuo and Lord, 2021; Brühwiler et al., 2022; Zhu et al., 2022).
Diverse POI types such as hospitals, markets, banks, hospitals,
residential areas, and restaurants are often used as the main study
subjects (Ng et al., 2002; Jia et al., 2018; Lee et al., 2018).

According to systematic reviews, the physical activities of
adults, which include active travel, are affected by the safety
environmental attributes from the physical and sociocultural
perspectives (Wendel-Vos et al., 2007). However, their
research mainly focuses on traffic control, natural monitoring,
and concrete driving scene but lacks a general framework with
strong application for evaluating the relationship between the
built environment and road space.

2.3 Integration Method
The integration of transportation modes, which coordinates the
harmony of transport modes, such as pedestrian, bicycle, and
motor vehicle, is an important issue for urban transportation
system safety (Saplıoğlu and Aydın, 2018). Obtaining the ATTS
level involves a multi-attribute assessment, and combining
indicators to form an effective safety assessment system is
challenging. Various studies have focused on the integration
method, including the traditional AHP (Żak and Kruszyński,
2015), the AHPwith GIS (Saplıoğlu and Aydın, 2018; Zheng et al.,
2019), and its hybrid approach based on SERVQUAL and fuzzy
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TOPSIS (Awasthi et al., 2011; dos Santos et al., 2019; Vavrek and
Chovancová, 2019). Quantitative studies on road safety facilities
have focused on questionnaire preference surveys (Räsänen et al.,
2007; Demiroz et al., 2015; Anciaes and Jones, 2018). For the
aforementioned methodologies, an integrated level or index is
formulated by assigning weights to the selected indicators via
expert evaluation or interview questionnaires. This method is
time-consuming and labor-intensive and has a certain degree of
subjectivity. Traditional methods are criticized for incorporating
inherent uncertainty and their inability to avoid subjectivity
(Zhou et al., 2019).

Unlike the aforementioned methods with subjectivity and
uncertainty, the catastrophe theory (CT) can explain the
internal mechanism of all indicators’ influences on ATTS.
The CT has been used to simulate the sudden and
inconsecutive phenomena in the natural world (Thom,
1976). According to the inactive importance of indicators,
CT-integrated multiple assessments affect the safety of using
active travel to green spaces without calculating the weight.
The behavior that integrates indices from the bottom- to top-
layer systems can be recognized as a steady construction within
the catastrophe system. Small variations in the bottom-layer
systems would lead to the destruction of the entire steady state
(Su et al., 2011). Particularly, prior studies mainly focused on
developed Western countries (e.g., the United States, Britain,
and Japan); specialization in the safety index framework is
urgently needed for developing nations owing to their
insufficient road facilities.

The spatial clustering method for macroscopic traffic
accident analysis based on POI data is used to identify
traffic accident frequency distribution in areas with
unreliable conventional traffic accidents and traffic data
(Barua et al., 2015). Many researchers have performed
crash hotspot identification on point data using various
methods, such as crash frequency, crash rate, improvement
potential, empirical Bayes (EB), and KDE (Montella, 2010; Yu
et al., 2014). In several studies, the KDE correlated method is
considered as the most promising method to describe the
spatial patterns present in various parameters and adopted
(Chainey and Ratcliffe, 2013). There is a lack of example
studies using KDE to cluster line-like elements.

3 MATERIALS AND METHODS

3.1 Study Area
Wuhan, the most populated and fastest growing metropolitan, is
the capital of Hubei Province in central China. Located in latitude
29°58′–31°22′N and longitude 113°41′–115°05′E, Wuhan
comprises 16 administrative districts, including seven central
urban districts, four functional districts, and five new urban
districts. The latest government data, the statistical
communique of the People’s Republic of Wuhan on the 2018
National Economic and Social Development, shows its 81
integrated parks with a per capita area of 9.61 m2/person. The
present study uses the case of the Wuhan Metropolitan Area to
introduce the ATTS assessment framework evaluating the road to

green spaces and examine the effect of the POI aggregation
phenomenon on ATTS (shown in Figure 1).

In this study, according to the Planning Report on the Green
Space System inWuhan from 2011 to 2020, parks are divided into
four categories, with each park having its own serving scope and
function: (a) urban parks are the main PGSs with various
functions, such as recreation, sightseeing, ecological balance,
and disaster shelter. Urban parks serve 2 km along the road
network; (b) regional parks serve a smaller range of
approximately 1 km along the road network than urban parks;
(c) topic parks distribute areas into various specific themes, such
as zoos and aquatic and cultural parks. Topic parks also serve
1 km along the road network; and (d) community parks cover an
area of 2–5 ha and are combined with residential areas, ensuring
that people can reach green spaces within 500 m. Residents in the
urban center enjoy the functions of large-scale parks (urban,
regional, and topic parks) more than those in the metropolitan
fringes. Given the large-scale parks that cover a large area (urban,
regional, and topic parks accounted for 43.2, 14.4, and 22.6% of
the land, respectively), the services provided are very diverse.

3.2 ATTS Assessment Framework and Data
Description
The factors of safety assessment are usually related to traffic, road,
and physical characteristics (Golob and Recker, 2003;Wang et al.,
2013). Figure 2 shows the detailed aspects and data source of the
ATTS assessment framework. The framework comprises two
major parts: the first step is safety assessment and the second
step is spatial regression. First, the safety assessment is performed
using a catastrophe model to evaluate a total of 10 variables for
traffic characteristics, road characteristics, and physical
environment to obtain road-scale ATTS levels. The developed
ATTS level brings a standardized measure of road active traffic
safety to the field of transportation planning. The second is
statistical modeling of POI and ATTS levels with one simple
linear regression and two spatial models. This aims to estimate
the properties and correlations of POI distributions with ATTS
levels.

Wuhan Planning and Design Institute provides 2018 road
network data, PGS data, traffic characteristic data, and crossing
facilities spatial data for Wuhan. The PGS data comprise the
spatial location, size, name, and function category, while the
facilities data comprise footbridges and underpasses. Traffic
characteristics data, which include population, road, and
vehicle number data, are collected on 18 June 2018, in the
middle of the year. The original data include all road
categories. Thus, we included trunk roads, secondary trunk
roads, and branch ways that allow for active travel routes
within the green space service range. All fundamental data are
transformed into the road level based on the visual interpretation
of the street view and the grid processing. Given the unreliable
small-scale spatial population data and the unavailability of
economic data from the government, this study focuses on the
POI density based on spatial analysis. The POI data are integrated
with the traffic crash data to identify the varying land use and its
effect on traffic safety. When assessing the POI density, the buffer
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range is set to 500 mwith each road as a unit. Table 1 presents the
calculated road attributes.

3.3 Data Preprocessing
3.3.1 Crash Frequency Data
Given the limited police crash report records available in
China, the study on ATTS remains largely insufficient.
Previous studies used media data for crash information and
relevant safety research (Yankson et al., 2010; Goddard et al.,
2019). Similar to other types of crashes, walking- and cycling-
related crashes with valuable injury information, such as
gender, age, and severity, have been reported in the news

many times (Yang et al., 2020). Such representative news
reports provide useful information and have the potential to
facilitate ATTS research.

This study took advantage of a Wuhan official news search
engine (www.cjn.cn) to gather media-reported crash information
and build a surrogate crash database for analytics. The keywords
“road name + walking crash” (e.g., walking crash on the
Hongshan Road) and “road name + cycling crash” (e.g.,
cycling crash on the Hongshan Road) were used to search
news websites to determine the crash frequency of every road.
The search period was from January 1 to 31 December 2018. This
study only targeted crash reports containing essential

FIGURE 1 | Location of the study area and spatial distribution of PGSs.
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components, including the date, location, victim description, and
crash facts (e.g., type). The collected text information may be
duplicated and must be cross-checked. A total of 147 walking
crashes and 179 cycling crashes were identified through the
mining of news reports during the study period.

3.3.2 Street View Images
We acquired road auxiliary facility data, including sidewalks,
guardrails, and bicycle lanes, through the Baidu Maps street
view (BMSV) image data using the BaiduMaps API. Given that
Google Maps is inaccessible, Baidu Maps is a good substitute.
The BMSV documents imagery from 372 cities that covers
more than 738,000 km and provides a 360° panorama of cities,
streets, and other environments. The BMSV is a free and
accessible online scenery map service for everyone. On the
basis of the road location next to green spaces supplied by the
road network data, we sent an HTTP request with coordinates

and the uniform resource locator (URL) parameters of the
target road position to obtain a static street view near the PGSs.

Given the complicated road conditions and varying types of
facilities, we used visual interpretation to classify the level of road
infrastructure. On the basis of the previous research and the local
road facility construction criterion, the interpretation rule and a
few examples are shown in Table 2 and Figure 3.

This study obtained the crossing facility shapefiles in Wuhan
from a local planning department. Thus, we considered crossing
facilities as an indicator integrated into the evaluation framework.
Footbridges and underpasses, as grade-separated facilities, tend to be
safe when people face the risk of vehicle collisions on the road. The
design specification of urban road traffic facilities (http://www.
mohurd.gov.cn/wjfb/201908/t20190829_241614.html) states that
crossing facilities should be set when the motor width exceeds
25 m. Therefore, not all road-crossing facilities are evaluated
using the same criterion. Roads with insufficient widths are
assessed as having average standards.

FIGURE 2 | ATTS assessment framework.
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3.3.3 Remote Sense Images
3.3.3.1 Nighttime Light Imagery Data
Users can obtain the LJ-01 cloud-free nighttime light imagery
data for free by logging in at http://www.hbeos.org.cn/, which is
available for scientific research and teaching organizations.
Removing noise from the LJ1-01 data is unnecessary because
the negative pixels have already been removed (Zhang et al.,
2019). According to a released report on LJ1-01, the images are
geometrically corrected by the system. However, to investigate the
street lighting condition accurately, the experimental images
must be geometrically corrected corresponding to the actual
road network, which can be recognized clearly with 130-m-
resolution imagery. Thus, we collected approximately 30
ground control points in the road intersections. The images
also require absolute radiation correction, while the conversion
formula adopted is

L � DN3/2 × 10−10, (1)
where L is the radiance value after absolute radiation correction in
W/(m2 × sr × μm) andDN is the gray value of each pixel (Zhang
et al., 2019). The extracted roads are used as the mask to obtain
the nighttime light images from the region required by our
experiment, which include the entire Wuhan city data set of
LJ1-01 nighttime light images. The ultimate nighttime light
imagery is shown in Figure 4.

3.3.3.2 NDVI Data
The NDVI derived from satellite imagery is a widely used index,
which indicates the growth status and parameter of vegetation. In
this study, the NDVI values from the 250-mmonthly Terra MODIS
NDVI (MOD13Q1) in June 2018 are unitless and ranged from
−2000 to 10000. After the standardized process, with a scale factor of
0.0001, the range becomes 0–1.0. The high values indicate the
increased concentration of green vegetation and bush density.

3.4 Catastrophe Model
The CT is a powerful mathematical tool for studying the
evolution of the system order. This theory explains and
predicts a sudden phenomenon in nature and society.
Additionally, the CT has broad application prospects in
mathematics, physics, biology, engineering technology, and
social science. The system tends to achieve an ideal stable state
or enter a defined state range when at rest, without external
forces. Upon receiving external forces of change, the system
initially attempts to absorb external pressure through reaction.
If such forces of change are too strong to be fully absorbed, a
catastrophic change occurs, and the system then enters a new
stable state; otherwise, it would return to its original state. The
return of the system to its original stable state through continuity
is impossible. Table 3 introduces the four primary catastrophe
models required in the dimensions of the control parameters.

3.5 Kernel Density Estimation
Because the object units of our study are roads, the benefit of
calculating the distance from each road to the hospital is tiny.
Therefore, we calculated the density of POI around the roads.
KDE is used to transform discrete check-in points with POIs into
continuous surfaces that reflect their spatial density. By using the
density method, an arbitrary spatial unit of analysis can be

TABLE 1 | Data description.

Variable Max Min Mean Std

Built environment
Population density (persons/km2) 8265.3117 0 1677.8342 1553.7297
Road density (km/km2) 10.2498 0 5.3728 4.9720
Vehicle density (vehicle/km2) 241.53 0 47.2983 12.1059
Sidewalks 1 0 0.8217 0.3346
Bicycle lanes 1 0 0.1299 0.3228
Guardrails 1 0 0.2786 0.4108
Footbridges 1 0 0.9324 0.2510
Underpasses 1 0 0.9158 0.2777
Nighttime brightness 328288 0 54710.1426 35827.0661
Vegetation coverage 676067 17650 343484.436 91283.1690

POI density
Restaurant density 59453.8144 0 4957.5599 8798.6139
Leisure facility density 1286.6212 1.4239 240.2072 212.1846
Hospital density 177.3928 0 12.5326 36.9121
Residence density 197.5652 0 43.4395 39.4975
School density 118.3315 0 9.4824 8.2576
Bank density 153.6234 0 22.2876 32.2345

Accidents
Number of accidents correlated with walking 20.6 0 0.5998 1.5865
Number of accidents correlated with cycling 25.1 0 0.6334 1.9204

TABLE 2 | Visual interpretation judging criteria.

Road infrastructure Good (1) Medium (0.5) Bad (0)

(a) Sidewalks Wide Narrow Without
(b) Bicycle lanes Individual Mixed Without
(c) Guardrails Complete Rough Without
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defined that is homogenous for the entire area, which makes the
comparison and ultimately classification possible (Jia et al., 2018).
The KDE can be described by

f(s) � ∑n

i�1
1
h2

k(dis

h
), (2)

FIGURE 3 | Interpretation of the street view (from left to right is good, medium, and bad). (A) Sidewalks, (B) bicycle lanes, and (C) guardrails.
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where f(s) is the KDE function at location s, h denotes the
bandwidth, dis represents the distance from point i to s, and k
is a space weight function. Previous studies indicated that the
choice of k barely affects the results and that the threshold of the
distance decay is important. In this study, the bandwidth ranging
from 100 to 1000 m was tested. The optimum bandwidth was
tested to be 500 m as it resulted in a density pattern that was
neither excessively sharp nor excessively smooth.

3.6 Spatial Regression Models
General spatial models have the following relative forms (Griffith,
1988):

Y � ρW1Y +Xβ + μ, (3)
μ � λW2μ + εwhereε ~ MVN(0, σ2In), (4)

where Y is the dependent variable, X is an (n × n) matrix of k
explanatory variables, ρ and λ are spatial autoregressive coefficients,
ρ is the intensity of the spatial dependence of sample observations, λ
is the effect of the error of the dependent variable in the
neighborhood on the observations in the region, W1 and W2 are
(n × n) spatial weight matrices, μ is the unobserved error term that
can incorporate spatial correlation through its first term, ε is an
(n × 1) vector of unobserved error terms that are identically and
independently distributed, MVN is the multivariate normal
distribution, and In is the (n × n) identity matrix. In Eq. 3, the
model becomes an SLM when W2 is 0 and a SEM when W1 is 0.
This study uses the queen’s method of the spatial contiguity matrix,

which defines neighbors as sharing a common side or vertex with the
region of interest.

4 RESULTS

4.1 Exploration of Factors Affecting ATTS
Pearson’s correlation was used to test the correlation
between the crash frequency and the built environment
factors to indicate ATTS. The effects were negative when
the coefficient was positive, and vice versa. Results show that
population density has a positive impact on ATTS, and the
coefficient is −0.182. This result indicates that individual risk
may decline as the volume increases. Road density has a
negative effect on ATTS, while the coefficient is 0.095. This
result is consistent with the conclusions of previous studies
(Kononov et al., 2008). The large number of roads indicates
the existence of numerous intersections, which may easily
lead to accidents. Road and crossing facilities, except
footbridges, were found to have positive influences on
ATTS. Among the road facilities, bicycle lanes are the
most helpful in improving road safety, while the
coefficient is −0.071 (p < 0.01), indicating the importance
of maintenance in nonmotorized vehicle lanes due to their
proximity to driveways and exposure to accidents. Street
nighttime lighting was found to be an important factor that
affects ATTS in parks, while the coefficient is −0.121.
Improved street nighttime lighting significantly decreases
(p < 0.01) the crash frequency because nighttime poses
additional risks to pedestrians. However, these risks can
be mitigated by lighting (Bernhardt and Kockelman,
2021). The abundance of vegetation can significantly
decrease (p < 0.01) the crash frequency. Dense woods
where trees isolate lanes and sidewalks can prevent
accidents that cause injury. Kaplan (1987) also reported
that vegetation may have mentally healing functions that
could reduce the psychological harbinger of criminals. The
Pearson coefficient results were used in the subsequent
catastrophic model calculation.

4.2 Multi-Scale ATTS Analysis
Based on geospatial big data, we deciphered the ATTS security
spatiality near parks by referring to other scholars using spatial
statistics, segmented street analysis, sub-loop analysis, and sub-
park types compared to not near parks (Xing et al., 2018; Jing
et al., 2021).

FIGURE 4 | Clipped imagery of LJ-01 cloud-free nighttime light
imagery data.

TABLE 3 | Summary of possible catastrophe models

Category Dimension of control
parameter

Potential function Bifurcation set Normalization formula

Fold model f(x) = x3 + ax a = −3x2 Xa =
��
a

√
1

Cusp model f(x) = x4 + ax2 + bx a = −6x2, b = 8x3 xa =
��
a

√
, xb =

��
b3

√
2

Swallowtail model f(x) = x5 + ax3 + bx2 +cx a = −6x2, b = 8x3, c = −3x4 xa =
��
a

√
, xb =

��
b3

√
, xc =

��
c4

√
3

Butterfly model f(x) = x6 + ax4 + bx3 + cx2 +dx a = −10x2, b = 20x3, c = −15x4, d = 4x5 xa =
��
a

√
, xb =

��
b3

√
, xc =

��
c4

√
, xd =

��
d5

√
4
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4.2.1 Comparison Between ATTS Near PGS and Not
Near PGS
Table 4 and Figure 5 show the significant differences in walking
and bicycling modes for roads near parks and non-park
neighborhoods.

Roads near parks are concentrated in downtown areas,
with higher road density along both sides of the river. The
safety level of pedestrians is significantly better than that of
cycling, while the difference probably stems mainly from
the poorer construction of bike lanes. Roads that are
relatively far from parks are mostly distributed along the
metropolitan area. Safety levels of pedestrians are also
significantly better than those of cycling. There is a
general trend of higher to lower levels of pedestrian
safety from the center of the metropolitan area outward,
and vice versa, for cycling.

By contrast, ATTS levels on roads near non-parks are slightly
better than those on roads near parks. Validating the conclusion we
found that crash injuries may be higher near parks. The red-lined
roads in Figure 5 require urgent government consideration of safety
matters related to their active traffic.

TABLE 4 | ATTS-level percentage comparison

ATTS level Near PGS Not near PGS

Walking Cycling Walking Cycling

Secure 14.52% 12.09% 18.47% 15.06%
Slight secure 21.82% 14.47% 26.52% 21.82%
Ordinary 25.71% 17.63% 24.92% 18.92%
Slight unsecure 19.21% 23.99% 16.62% 19.57%
Unsecure 18.74% 31.82% 13.47% 24.63%

FIGURE 5 | Spatial disparity of ATTS (A) near PGS and (B) not near PGS.
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4.2.2 Ring Road-Level Analysis
Among 16 administrative districts, Hannan district and the Donghu
New andHigh-Technology Development Zone have a good walking
safety level for active travel (>0.8). The walking safety level (<0.2) in
Hannan and Dongxihu districts is high. The safety result of active
travel to parks is not determined by the district.

The evaluated safety levels are grouped according to road location
and the four kinds of ring roads stated by the government (shown in
Figure 6). Figure 7 indicates the physical differences in the safety level
of the ring roads inWuhan using a box plot. Walking to parks on the
first three ring roads has a safety level of 0.9. Away from the third ring
road, the safety level shows a dispersed distribution, nearly without an
outlier. The low quartile accounts for a relatively high proportion,
indicatingmany citizens outside the third ring road walk to PGSs with

a low safety. The mean safety level of cycling to parks is less than 0.8.
Unlike that of walking, the cycling safety level does not decrease from
the inside to the outside of the ring road. Therefore, nonmotorized
vehicle lanes are ignored near downtown because the evolving traffic
pressure of automobiles requires urgent consideration. Few road units
could be evaluated due to the limited number of parks.

4.2.3 PGS-Level Analysis
The comparison among the four categories of parks indicates that
the first three green spaces (urban, regional, and topic parks)
generally aggregate in central districts in the form of parks and
forests. Therefore, districts that have a socioeconomic advantage
have more restricted access to green spaces and facilities for ATTS
to PGSs (colored roads in Figure 8).

FIGURE 6 | Spatial disparity ATTS in the ring road level.

FIGURE 7 | Box plots for ATTS in the ring road level.
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Figure 9 shows that both patterns of safety situations near urban
parks, such as the highest-level park, are not ideal. However,
compared with the other three park categories, access to topic
parks is the safest because of its highest proportion of safety levels
(including extremely secure, secure, and middle).

4.3 Spatial Regression of POI Cluster
4.3.1 Kernel Density Estimation Cluster Result
Clustered distributions have been shown to improve model validity
more than non-clustered counts in spatial regression analysis (Jia
et al., 2018). In this study, the natural break cluster-based KDE
method (Barua et al., 2016; Jia et al., 2018) was applied to quantify

the POI influencing factors of land use to evaluate the ATTS near
PGSs in Wuhan. According to the natural break cluster flowchart in
the previous study, the k-value was set to 6 to ensure that the dense
and sparse areas are clearly divided into various classes. The POI
KDE and ATTS level KDE with natural break cluster reclassification
results are presented in Figures 10, 11. The hotpots coded in deep
purple and deep red represent high concentrations and are observed
in densely populated areas. Different POI data show different
features, which reflect the spatial diversity of POI and the land
use characteristics for non-hot areas.

4.3.2 Model Validation
The spatial correlation and Lagrange multiplier (LM) were
conducted for ATTS clusters before the spatial econometric
models were applied (shown in Table 5). Moran’s I index of
ATTS clusters passed the significance test at the 0.01 level for
walking and cycling. This indicates that the ATTS clusters are
spatially correlated and require a spatial econometric model.
Results show that the LM for both the lag and error test statistics
of two patterns is highly significant, and the SEM values are larger
than the SLM values, indicating a strong spatial dependence in the
two cases. Robust LM for the SEM is significantly significant, while
the SLM is not, indicating that the SEM is more applicable than the
SLM for two patterns. Therefore, the SEM was chosen to further
explore the POI metrics.

4.3.3 Spatial Regression Results
The comparison of the spatial analysis results of the three models
shown in Table 6 verifies that spatial regression outperforms
traditional regression methods. The higher the log-likelihood of
the model, the better the model fit; the lower AIC indicates a
better model fit. Clearly, SEM parameters outperformed those of
the other models. The SEM lambda coefficients with statistical
significance, higher log-likelihood, and lower AIC indicate a
better model fit. Therefore, SEM is the best choice for POI.

The SEM results were used to determine the regression results for
ATTS safety levels and POI near the park. Regression coefficients for
leisure facility and residence were significant. The leisure facility
shows a significant negative correlation with the ATTS level near
PGSs, indicating that an increase in the density of the leisure facility
may lead to a decrease in the ATTS safety level near the park. Leisure
facilities include entertainment venues such as Internet cafés,
amusement parks, and bars, which gather more mobile people.
The traffic flow of cars and people gathered nearby may have a
negative effect on the ATTS through the roadway. Residence shows a
significant positive correlation with the ATTS safety level near PGSs,
indicating that a high density of residence enhances the ATTS safety
level near the park. A residential area has a low transient population,
and people often come from families. The presence of resident
security guards at the entrances and exits of the neighborhoods
promotes regular traffic order, wherein people are not at great risk.

The fit of the walking mode is better than the fit of the cycling
mode. The variables that differed significantly between the two
patterns were restaurant and school. Restaurants showed a more
significant negative correlation with the level of cycling safety in
PGS neighborhoods and a lower correlation with walking. This
indicates that an increase in restaurant density leads to a decrease

FIGURE 8 | Spatial disparity ATTS in the PGS level.
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in the level of cycling safety near parks. This is related to the fact
that restaurants often occupy common ground to expand their
business area privately. Schools show a significant positive
correlation with pedestrian safety near PGSs, and a low
correlation with cycling. This indicates that the increased
density of schools improves the level of pedestrian safety in
the vicinity of PGSs. Traffic control and traffic speed
reduction signs, which are common near schools, have a
significant effect on pedestrian safety.

5 DISCUSSION

The requirements of transport networks accommodated the
increasing number of advantages found in active travel. The
evidence supporting the net positive health benefits of active
travel has been well established (Mueller et al., 2015).
Therefore, understanding the factors influencing ATTS is
essential for offering a safe travel environment. Our study
emphasizes the influences of built environment factors on
ATTS and proposes an evaluation framework for ATTS
near PGSs. We used the data on traffic, road, and physical
characteristics to depict a comprehensive street space. Results
show that various built environments have varying influences
on ATTS. First, road and crossing facilities have positive
influences on ATTS. This finding indicates that the
provision of thorough auxiliary facilities at the road level
helps increase ATTS. Among these road subsidiary factors,
bicycle lanes are the most helpful for improving road safety.
Results show the importance of maintaining nonmotorized
vehicle lanes due to their proximity to driveways and exposure
to crash-related factors. Furthermore, the effects of the other
two built environment factors have pronounced effects on
ATTS. These effects also presented distinct results from
Western countries: nighttime brightness pronounces

negative impacts on ATTS, whereas the vegetation situation
has a positive influence. Consistent with previous studies, the
driver’s reaction capability is reduced, and the reaction time
for operation is longer due to the complex and strong light
environment at night (He et al., 2021). Roadside vegetation
provides numerous environmental and psychological benefits
to drivers (Fitzpatrick et al., 2014).

Given the rapid development of bike-sharing in China (Cao and
Shen, 2019), a significant increase in cycling behavior is observed.
However, the results of this study comparing walking and cycling
modes of active travel demonstrate that pedestrians enjoy safer
roadway facilities than cyclists. In addition, active travel traffic
near PGS requires more attention than non-park neighborhoods.
One reason for this is that bike lanes are also not as well constructed.
A certain number of roads have no established bicycle lanes. The
frequent occurrence of mixed use and occupied use is another
important reason. The safety situation near topic parks outweighs
that of other parks. This result shows that the safety service provided
by urban parks, as the highest-level park in urban cities, does not
correspond to their establishment level. Moreover, the comparison
among common traffic boundaries in China shows that the safety
situation of active travel to parks is not optimistic away from the
third ring road (near suburbs).

The OLS, SLM, and SEM are used to investigate the
correlation of ATTS with the POI aggregation phenomenon.
With regard to the effects of POI aggregation on ATTS, specific
land use has a great effect on ATTS. Our study revealed that the
SEM has the best fit for the POI cluster, compared to OLS and
SLM. Moreover, the fit of the walking pattern is better than the
fit of the cycling pattern. Some specific POIs have profound
effects on the spatial distribution of ATTS. Specifically,
increases in the leisure facility density and residence density
lead to deterioration and improvement in ATTS safety levels
near PGSs, respectively. Increases in the restaurant density and
school density worsen the level of cycling safety and enhance

FIGURE 9 | Stacked diagram of ATTS situation proportion near different PGSs.
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the level of walking safety near PGSs, respectively. Therefore,
policy measures should focus on enhancing the active travel
environment in areas with many recreational areas and
restaurants. The results of the experiment combining all
variables indicate the need to improve effective goal-
oriented measures in mixed land uses when seeking
equitable ATTS in a variety of settings.

This study proposes a new framework for the ATTS
assessment framework. The extent to which people are
threatened on their way to parks to experience healthy living
is estimated. Our proposed assessment framework focuses on the
safety of built environment parameters. In addition to the
research area of accident (Gilstad-Hayden et al., 2015; Suk and
Walter, 2019), we selected several hot factors in recent years,

FIGURE 10 | POI clusters in Wuhan.
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including nighttime brightness and vegetation situation. The
proposed framework provides a rational estimation of the
performance of ATTS before the occurrence of accidents.
Given the site-specific data on roads, the proposed framework
can provide concrete and insightful observations that may help in
managing the safety of the built environment against hazardous
conditions. Compared with other methods of active travel
evaluation, our framework presented the following advantages:

1) Previous studies performed cross-sectional surveys by using
the multivariate analysis of personal traits (Hansen et al.,
2015; Fairnie et al., 2016; Brainard et al., 2019). In this study, a
systematic citywide evaluation framework for ATTS was
introduced, focusing on the safety effect of the
environment parameters.

2) Evaluating the safety of accessibility to PGSs is important
because people use active travel, instead of motorized
transport when traveling (Jerrett et al., 2016). This

study divided PGSs into various levels and estimated
safety according to their serving ranges. This process
verifies whether the safety levels of various parks
correspond to their establishment levels.

3) The perspective of roads in this study differs from that of the
segments and intersections presented in previous research
(Flahaut, 2004; Barua et al., 2014). Planning administration
can use the evaluation based on road units to recognize roads
that require urgent repair accurately. The refinement of units
can improve the practicality of this study.

4) The natural break cluster method is used to reclassify the
kernel density, and the spatial analysis model is used to
estimate the correlation of the POI aggregation
phenomenon with active travel traffic safety. The
exploration helps to obtain the prone areas of active travel
traffic accidents according to the characteristics of POI
aggregation for preventing accidents early.

This study has several limitations with regard to the
framework of ATTS based on PGS classifications. First, this
study focuses on the influence of the built environment but
lacks in terms of the depiction of street moral character.
Second, the definition of active travel used in this study only
includes walking and cycling. Other transport modes, such as
driving and riding public transport, also play significant roles
in accessing PGSs (Xing et al., 2018) and cannot be ignored.
Third, this study uses a subjective method to interpret the
situation extracted from the street view images. Considerable
manpower is required in dealing with original data.
Processing greater volumes of data, such as entire city

FIGURE 11 | ATTS clusters used in Wuhan.

TABLE 5 | Results of the Lagrange multiplier (LM) test for walking and cycling.

Test Walking Cycling

Value p-value Value p-value

Moran’s I 0.12 0.00 0.09 0.00
LM (SLM) 14.28 0.00 12.84 0.00
LM (SEM) 26.27 0.00 21.98 0.00
Robust LM (SLM) 1.03 0.72 0.67 0.69
Robust LM (SEM) 8.29 0.00 5.28 0.00
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roads, requires an automated method (Zhou et al., 2019),
which is included in the agenda of subsequent study. Finally,
the present POI variables are limited to six categories. The
sociodemographic indicators (e.g., education, income, and
age) (Su et al., 2019) should be considered in future research
for exploring the inequity of ATTS distribution.

6 CONCLUSION

This study estimates the ATTS access to parks by using the
proposed spatial assessment framework. The proposed
framework highlights the importance of accounting for built

environment factors in analyzing ATTS. Additionally, the
correlation between POI aggregation and ATTS is explored,
identifying the potential land use factors of the ATTS. The
results in Wuhan confirmed that traffic, road and physical
characteristics greatly affect ATTS, especially population
density, road density, nighttime brightness, and vegetation
situation. The spatial distribution of ATTS indicated that
pedestrians enjoy safer road facilities than cyclists, and
roads along the river have a high ATTS level in Wuhan.
The spatial regression results urge the authorities to
monitor the ATTS in areas with many leisure facilities and
residences. Findings indicated that the provision of thorough
auxiliary facilities at the road level helps increase the safety of
access to PGSs. Furthermore, our proposed framework could
be applied to other public facilities that attract active travel
users (e.g., schools). The proposed framework offered
appropriate traffic planning strategies to improve the safety
and equity of ATTS users during their access to PGSs.
Transport planners should pay more attention to roads near
specific land uses. Improving the safety conditions of walking
and cycling near PGSs is recommended to avoid safety
inequality.
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Optimizing Leisure Agriculture by
Analyzing Spatial Patterns and
Tourists’ Perceptions: Evidence From
Wuhan, China
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Leisure agriculture can meet the leisure needs of residents and promote farmers’ income,
which is an important way to achieve rural revitalization. However, the unreasonable spatial
patterns and weak competitiveness of leisure agriculture seriously restrict its sustainable
development. This paper proposes a framework for optimizing leisure agriculture
development, including spatial patterns analysis of leisure agriculture based on big
data, quality analysis of leisure agriculture based on tourists’ perceptions, and
strategies for optimizing leisure agriculture based on spatial patterns and tourists’
perceptions. Taking Wuhan city as an example, the results show that: 1) the main
types of leisure agriculture are leisure farms, fishing, and picking gardens, showing an
agglomerative distribution pattern; 2) considering tourists’ emotional perceptions, most
comments are positive, and leisure farms should enhance the tourist experience; 3)
tourists’ dissatisfaction mainly involves the environment, price, and travel, while
product and service factors are relatively satisfactory; and 4) moderate agglomeration
is beneficial to the quality of leisure agriculture, while excessive agglomeration has adverse
effects. This study explores the development law of regional leisure agriculture, improves
the relevant theoretical research system and methods, and provides decision-making
references for promoting the development of leisure agriculture.

Keywords: leisure agriculture, spatial patterns, tourists' perceptions, quality evaluation, optimization strategy

1 INTRODUCTION

In recent years, with the rapid development of industrialization and urbanization, urban residents’
demands to live close to and access nature have been gradually increasing (Jing et al., 2018; Qiu et al.,
2019). In the suburbs of some large cities, leisure agriculture has become a regular pastime for urban
residents (Barbieri, 2020; Chase et al., 2018). Additionally, traditional agriculture is no longer the
only economic force in most rural areas (Wu, 2018). The quality of rural areas attracts visitors and
leads people to prefer a natural and harmonious lifestyle (Jacobsen and Tommervik, 2016). In places
with rich natural resources and beautiful scenery, the development of tourism and the service
industry is also very important.

The growing popularity of leisure agriculture has many positive effects. On one hand, it promotes
the development of the agricultural and rural economy, including increasing the household incomes
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of farmers, expanding employment capacity, and increasing tax
revenue (Giaccio et al., 2018). On the other hand, leisure
agriculture also provides an environment where urban
residents can have a pleasant leisure experience and promotes
people’s physical and emotional health (Sgroi et al., 2018). More
importantly, it promotes the development of agriculture from
traditional to diversified models and creates new possibilities for
the local economy (Su et al., 2019), which is an important path to
realizing rural revitalization (Tao, 2019).

Driven by market demand, leisure agriculture in China is
developing rapidly, showing strong vitality and growth prospects.
However, such rapid development can create many problems
related to the spatial patterns and quality of leisure agriculture in
mainland China (Ren and Dong, 2016). In terms of spatial
patterns, most businesses are small-scale operations and have
poor planning practices. Industrial agglomeration of leisure
agriculture can guide production factors to flow to rural areas,
form agglomeration effects, and improve overall competitiveness,
but excessive agglomeration can lead to vicious competition (Kim
et al., 2021; Pejanović et al., 2017). Therefore, we need to
scientifically measure the spatial patterns of leisure agriculture,
explore the relationship between spatial patterns and quality and
engage in detailed planning. Similarly, many leisure agriculture
businesses are low quality and have single brands, weak core
competitiveness, and other factors that prevent them from
meeting the gradually diversifying and personalized tourism
consumption needs, resulting in a decline in the number of
tourists who visit the area (Guo and Lv, 2008). To date, the
overall integration of leisure agriculture has not been
accomplished, and there are no large-scale companies with
high-quality multifunctional services. Therefore, it is important
to optimize the development of leisure agriculture by combining
the spatial patterns and quality improvement of leisure
agriculture.

Scholars mostly use GIS spatial analysis to study patterns of
leisure agriculture (Bajgier-Kowalska et al., 2017; Baležentis et al.,
2012; Walford, 2001), and measurement indicators include the
nearest-neighbor index, the geographic concentration index, the
coefficient of variation, kernel density estimation, the spatial
dispersion index, and the spatial distribution curve, among
others (Chang et al., 2018; Liu et al., 2017; Xu et al., 2021).
The measurement of leisure agriculture quality is based on the
tourist satisfaction model and focuses on the evaluation of service
quality (Liu and Yen, 2010; Reichel et al., 2000). The
measurement index covers the product, environment, service,
price, travel, and other aspects (Goossen and Langers, 2000; Zhao
and Chang, 2014). A questionnaire is the most common method
to obtain tourists’ perceptions data (Dubois et al., 2017; Tew and
Barbieri, 2012). The analyses in this field mainly adopt fuzzy
comprehensive evaluation and factor analysis (Rozman et al.,
2009). Development strategies of leisure agriculture have been
offered from the perspectives of spatial distribution, tourists’
motivation, and tourism development (Yang et al., 2016). The
development of leisure agriculture should rely on the regional
resource endowment, reasonably optimize the layout (Wu and
Cai, 2006), enhance the tourism image (Ohe and Kurihara, 2013),
improve tourist satisfaction (Choo and Petrick, 2014; Lee, 2012),

focus on rural characteristics and rural value (Shen et al., 2019)
and increase the participation of local residents (Xue and
Kerstetter, 2019).

The existing research has the following shortcomings. First,
evaluations of the tourist experience of leisure agriculture mostly
draw on the evaluation tourists’ experiences in scenic spots rather
than their experiences with the specific characteristics of leisure
agriculture. A scientific and reasonable quality evaluation model
for leisure agriculture has not been formed. Second, most studies
rely on statistical data from government departments or surveys
with small samples, resulting in unrepresentative suggestions
(Wu and Cheng, 2017). In contrast, multisource, large-sample,
and multidimensional big data with geographical locations
obtained from social media platforms provide new research
means and observation perspectives to understand urban
socioeconomic perceptions (Liu et al., 2015; Zhang et al.,
2019). Using big data ensures that researchers possess a
sufficient amount of data, reduces the cost of data collection,
and can help scholars analyze people’s perceptions (Li et al.,
2018). Tourist evaluation data come from active volunteers, and
this format more effectively captures participants’ emotions.
Analyzing these data facilitates large-scale regional, multi-
perspective qualitative and quantitative research and aids in
decision-making in resource allocation, planning, and quality
improvement of leisure agriculture.

This paper aims to propose a quality assessment model for
leisure agriculture and further explores optimization strategies for
the development of leisure agriculture. The main contribution of
the paper is to explore the optimization strategies of leisure
agriculture by combining spatial patterns and tourists’
perceptions. Through this approach, we can obtain a
comprehensive understanding of the role of spatial patterns in
the development of leisure agriculture and explore the sustainable
development model of leisure agriculture. Furthermore, this
study sheds light on the analysis of big data. China’s
experiences with leisure agriculture could provide valuable
references for other developing countries. This study is
structured as follows: (1) a spatial patterns analysis of leisure
agriculture based on big data; (2) evaluations of leisure agriculture
based on tourists’ perceptions; (3) quality evaluation of leisure
agriculture based on tourists’ perceptions; and (4) optimization
strategies for the development of leisure agriculture that combine
spatial patterns and tourists’ perceptions.

2 MATERIALS AND METHODS

2.1 Research Framework
The rapid development of the tourism industry has created an
obvious industrial agglomeration phenomenon and trend in
some regions (Chhetri et al., 2017). The concept of tourism
agglomeration originated from economic geography and was
introduced by Alfred Marshall. Tourism industry
agglomeration is the concentration of tourism enterprises
based on rich tourism resources in a certain geographical
space (Estevão and Ferreira, 2012). Spatial agglomeration has
two sides in tourism development (Lee et al., 2020; Novelli et al.,
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2006). On one hand, spatial agglomeration can enhance the
competitiveness of enterprises (Chen et al., 2021), produce
multiplier and external effects, promote the interaction and
synergy between enterprises (Hawkins, 2004), and promote the
sustainable development of tourism destinations (Benur and
Bramwell, 2015). On the other hand, spatial agglomeration
easily produces a substitution effect and vicious competition
(Weidenfeld et al., 2011). The evaluation index of the quality
of leisure agriculture usually comes from tourists’ perceptions.
Tourists’ perceptions are tourists’ understanding of tourism
products and services. Leisure agriculture is an industry in
which tourists are the main consumers, thus, their experiences
are very important (Kastenholz et al., 2018; Volo, 2021). Regions
with high tourists’ evaluation can attract more visitors (Da Liang
et al., 2020; Nazariadli et al., 2018).

At present, there is no consensus about the role of spatial
agglomeration in the development of leisure agriculture. In other
words, it is not clear whether the agglomeration pattern or the
dispersion pattern is conducive to industrial development.
Figure 1 presents a theoretical framework for understanding
spatial patterns and the quality of leisure agriculture. The
framework helps identify strategies for leisure agriculture
development. It is based on the two features of leisure
agriculture products: the spatial patterns of leisure agriculture
(from dispersion to agglomeration) and the quality of leisure
agriculture (from low quality to high quality). As the spatial
patterns of leisure agriculture change from dispersion to
agglomeration, its quality also changes. There are four typical
states, among which there are different transition states: low
quality and high dispersion, high quality and high dispersion,
high quality and high agglomeration, and low quality and high
agglomeration. The category of low quality and high dispersion is
usually the primary stage of leisure agriculture development,
characterized by low quality and small scale. The category of
high quality and high dispersion indicates that regional leisure
agriculture presents a single point development mode, and the

spatial distribution is dispersed. In this state, the leisure
agriculture spots have no influence on each other, and the
existence of high-quality leisure agriculture spots has not
driven the development of other leisure agriculture in the
region. The high-quality and high-agglomeration group is the
“ideal type”, which gives full play to the advantages of industrial
agglomeration and spatial synergy, and forms a high-quality
leisure agriculture agglomeration area with a scale effect
within the region. Low quality and high agglomeration
indicate that the agglomeration distribution of regional leisure
agriculture does not promote high-quality development of the
practice. This type of leisure agriculture may produce vicious
competition and is considered to be large scale and of low quality.

2.2 Study Area
Wuhan is the central city in central China. In 2019, the city
governed 13 districts with a permanent resident population of
11.212 million and an urbanization rate of 80.49%. Wuhan has
the advantage of possessing agricultural resources, with
2,938.6 km2 of cultivated land; it is known as a “land of fish
and rice”. Bodies of water occupy approximately one-quarter of
the city’s area, ranking Wuhan first in the country. Rich
agricultural and water resources provide good opportunities
for the development of leisure agriculture, including picking,
fishing, recreation, and other practices. Furthermore, Wuhan is a
national historical and cultural city. In 2019, there were 44 A-level
scenic spots in Wuhan, and the tourism industry developed
rapidly. The total number of tourists who visited the area
during the year reached 318.98 million, and the total tourism
income was 357.08 billion yuan. The rapid rise of the tourism
industry has driven the development of the leisure agriculture
market.

2.3 Data
The data for this study include the leisure agriculture database of
user-generated content (UGC) and the administrative division

FIGURE 1 | Theoretical framework.
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data of Wuhan in 2018. The leisure agriculture data were
obtained from Dianping.com using a web crawler tool. These
data include the latitude and longitude of leisure agriculture sites,
comment information (comment text, comment time), basic
information about the reviewers (gender, community level),
and other factors. Dianping.com is a leading third-party
consumer comment platform in China that began operating in
April 2003 (Wu et al., 2015). Members can freely express their
opinions about businesses and consumption experiences through
the website, providing information for potential consumers.
Public comment data identify the spatial location and attribute
information of leisure agriculture businesses, with large coverage,
high accuracy, and representativeness. ArcGIS was used for the
spatial processing of information and to build a leisure agriculture
database based on big data.

2.4 Methods
This paper constructs an optimization framework for the
development of leisure agriculture using big data (Figure 2).
First, we analyzed the spatial patterns characteristics of different
types of leisure agriculture, which is an objective analysis. The
types of leisure agriculture are divided according to differences in
their function and scale (Busby and Rendle, 2000). The spatial
characteristics need to identify the spatial patterns and density.
GIS spatial analysis was used to analyze the agglomeration or
dispersion characteristics of leisure agriculture. Second, this
paper evaluates leisure agriculture tourists’ perceptions from
two perspectives: emotional perception and theme perception.
The emotional tendency analysis module of the Baidu Ai
platform was used to analyze the positive and negative
emotions of tourists, and word segmentation analysis helped
us explore the core issues of tourists’ concerns (Wu, 2019).

Then, we constructed a quality evaluation method for leisure
agriculture based on tourists’ perceptions, focusing on the
product, environment, service, price, travel, and other factors.
Finally, we explore the optimization strategies for leisure
agriculture by combining spatial patterns and tourists’
perceptions.

2.4.1 Analysis of the Spatial Characteristics of Leisure
Agriculture
The spatial characteristics of leisure agriculture were measured in
terms of the spatial pattern and density. Each measure is
described here.

Average nearest neighbor
The average nearest neighbor index was used to analyze the

spatial distribution of leisure agriculture after measuring the
distance between each leisure agriculture as follows:

ANN � D0

De

� ∑n
i�1di/n����
n/A√ /2 (1)

where D0 is the observed mean distance between each leisure
agricultural point and its nearest neighbor, De is the expected
mean distance for the features given in a random pattern; n
corresponds to the total number of leisure agricultural points, and
A is the area of the study area. If ANN is less than 1, the
distribution of leisure agriculture points is considered
clustered; if the index is greater than 1, the leisure agriculture
points are considered dispersed.

Kernel density
A kernel density was used to measure the spatial density of

leisure agriculture. The kernel density estimation calculation
formula is:

FIGURE 2 | Research process.
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f(x) � 1
nh

∑n

i�1k(x − xi

h
) (2)

where f(x) is the density estimation at the location (x), n is the
number of leisure agriculture points, h is the bandwidth, k is the
kernel function, and (x − xi) is the distance between location (x)
and the location of the ith observation.

2.4.2 Evaluation of Tourists’ Perceptions of Leisure
Agriculture
This paper uses emotional tendency analysis to analyze the
positive and negative emotions of tourists. We applied the
emotional tendency analysis module of the Baidu Ai platform.
The method automatically judges the emotional polarity
category of the tourists’ comments, and the corresponding
confidence level is given. Emotional polarity is divided into
positive, negative, and neutral. Emotional tendency analysis
estimates the emotional tendency of text that contains
subjective information, which helps users make decisions.
Based on deep learning training, the system automatically
learns deep semantic and syntactic features and has high
generalization ability, which is highly effective, even for
relatively long sentences (Yan et al., 2018).

Using word segmentation analysis, this paper explores the
core issues of tourists’ concerns and the advantages and
disadvantages of current leisure agricultural products. It
then analyzes the concerns of leisure agriculture tourists
with different emotional tendencies. We use the Python
Jieba cut to segment the tourists’ comments. After
excluding common pause words, we calculate statistics for
the common words in the comment text and uncover the most
important concerns of tourists about leisure agriculture. Then,
based on emotional analysis, this paper uses word
segmentation analysis to mine the advantages and
dissatisfaction factors expressed by tourists.

2.4.3 Quality Evaluation of Leisure Agriculture Based
on Tourists’ Perceptions
We searched the comments offered by leisure agriculture tourists
from the public comment websites. According to existing
research and data availability (Rozman et al., 2009), the
quality characteristics of leisure agriculture are divided into

five dimensions: product (quality and facilities), environment
(scenery, health, and space), service (attitude and feelings), price,
and travel (traffic and location), as shown in Table 1. The
emotional semantic dimensions of leisure agriculture were
classified and scored to evaluate tourists’ experiences of these
different dimensions of leisure agriculture; on this basis, the
weights of the dimensions were determined to
comprehensively evaluate the quality of leisure agriculture.
The specific steps were as follows:

Text preprocessing: This step involved sentence segmentation,
tokenization, and removing stop words.

Extracting feature–opinion pairs: The assumption was that
each sentence evaluated a dimension of the feature object, with
direct links between opinion words (sentiment) and noun words
(feature) in a clause.

Weight determination: The analytic hierarchy process was
used to determine the weight.

Emotional score calculation: The emotional score was
calculated using the polarity and degree of the emotion (Yang
and Ai, 2018) as follows:

fi � pi × di (3)
where fi is the emotional score of the segmented sentence i,
pi is the emotional polarity of the segmented sentence
i, and di is the emotional degree of the segmented sentence
i. Emotional polarity is classified as positive, neutral, or
negative, expressed by 1, 0, and −1, respectively. The
emotional degree is divided into three levels—strong,
medium, and weak, expressed by 3, 2, and 1, respectively.

Score calculation by dimension: Considering that
different sentences may evaluate the same features of
leisure agriculture, feature sentences were combined
according to the previously defined dimension feature
dictionary. Through the calculation of each dimension
score, all dimensions of leisure agriculture businesses were
evaluated:

Sk � ∑b

j�1
1
cj

∑cj

i�1 fi · wj (4)

where Sk is the score of the kth dimension of the system layer,
j is the dimension of the index layer, b is the number of index
layers, c is the number of sentences after the jth dimension

TABLE 1 | Evaluation index of leisure agriculture quality.

Target layer System layer (wk) Index layer (wj)

Evaluation index of leisure agriculture quality Product (0.3) Quality (0.6667)
Facilities (0.3333)

Environment (0.2) Scenery (0.2274)
Health (0.4231)
Space (0.1222)
Environment (0.2274)

Service (0.2) Attitude (0.3333)
Feeling (0.6667)

Price (0.2) Price (1.0000)
Travel (0.1) Traffic (0.5000)

Position (0.5000)
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segmentation of the index layer, and wj is the weight of the
index layer.

Total quality score calculation:

Score � ∑a

k�1Sk · wk (5)
where Score is the total score for quality, k is the dimension of the
system layer, a is the number of system layers, and wk is the
weight of the system layer.

Based on the multidimensional experience evaluations of
tourists, this paper offers suggestions for the development of
leisure agriculture in terms of products, environment, service,
price, and travel, among others.

3 RESULTS

3.1 Analysis of Spatial Characteristics of
Leisure Agriculture Based on Big Data
Based on the leisure agriculture data, using the method of text
recognition, and combining the characteristics of the scale and
function (Guo and Lv, 2008; Ren and Dong, 2016) of leisure
agriculture businesses, the leisure agriculture activities were
divided into six types (Table 2): picking garden, fishing,
leisure farm, agritainment, planting and breeding, and
agricultural technology.

TABLE 2 | Types and characteristics of leisure agriculture.

Type Characteristics

Picking garden Relying on orchards, vegetable gardens, melon gardens, flower beds, and so on, tourists can enjoy the scenery and work in
the garden to experience rural life

Fishing Relying on reservoirs, fish ponds, and other water bodies for fishing, boating, and other forms of entertainment on the water
Leisure farm Can provide large-scale agricultural and recreational activities, fishing, and sightseeing. Provides comprehensive services,

such as food, accommodation, travel, entertainment, shopping, and experiences
Agritainment Can provide small-scale agricultural and recreational activities. Mainly takes farmers as the unit; includes farm food and

agricultural products and farmers’ life experiences and leisure activities
Planting and breeding Nursery cultivation and animal husbandry
Agriculture technology Relies on modern scientific and agricultural technology, high-tech agricultural demonstration parks, and agricultural

companies

FIGURE 3 | Spatial distribution of leisure agriculture in Wuhan.

FIGURE 4 | The proportion of leisure agriculture in Wuhan: (A) different
regions; (B) different types.
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The distribution of leisure agriculture (Figure 3) is found
more in the outer suburbs than in the central city. Huangpi
District accounts for the highest proportion (20.94%), followed by
Jiangxia District (19.76%), Dongxihu District (16.94%), and
Hongshan District, Caidian District, and Xinzhou District
(each accounting for approximately 10%). Other districts have
lower proportions. As shown in Figure 4, among the leisure
agriculture businesses in Wuhan, the proportion of leisure farms
is the highest (30.52%). Furthermore, the types of leisure
agriculture are ranked in the following order: leisure farm,
fishing, picking garden, agritainment, planting and breeding,

and agricultural technology. This finding indicates that leisure
farms and fishing are the most popular types of leisure agriculture
among tourists in Wuhan.

The results of the nearest-neighbor index analysis of the types
of leisure agriculture in Wuhan are shown in Table 3. The leisure
agriculture in Wuhan is generally in the form of agglomeration.
Specifically, picking gardens, fishing, and leisure farms have
clustered distributions. Agritainment, planting and breeding,
and agricultural technology show random distribution patterns.

There are obvious regional differences in the spatial distribution
density of leisure agriculture in Wuhan (Figure 5). The areas with

TABLE 3 | Nearest-neighbor index of different types of leisure agriculture in Wuhan.

Types Nearest neighbor
index

Z value P value Average observation
distance(m)

Expected average
distance(m)

Layout pattern

All 0.6586 −13.4655 0.0000 1661.5626 2522.9710 cluster
Picking garden 0.6076 −7.1620 0.0000 2816.3698 4635.6083 cluster
Fishing 0.7973 −3.7199 0.0002 3207.5386 4023.1151 cluster
Leisure farm 0.8227 −3.8828 0.0001 3549.2054 4314.2367 cluster
Agritainment 0.8876 −1.5357 0.1246 6109.2066 6882.9010 random
Planting and breeding 0.9521 −0.5347 0.5928 7402.6166 7775.3470 random
Agricultural technology 0.9554 −0.4347 0.6638 8105.4862 8483.5288 random

FIGURE 5 | The kernel density of leisure agriculture in Wuhan: (A) All types; (B) Picking Garden; (C) Fishing; (D) Leisure Farm; (E) Agritainment; (F) Planting and
breeding; (G) Agricultural Technology.
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higher leisure agriculture density are mainly concentrated in central
and southern Wuhan. The picking garden distribution is similar to
that of leisure agriculture. Fishing is mainly distributed around the
main urban area of Wuhan city, among which Liangzi Lake is the
center of fishing activities. Leisure farms are distributed in almost all
districts. Agritainment is mainly distributed in central and northern
Wuhan, while the type of planting and breeding is concentrated in
the outer suburbs. The distribution of agricultural technology is
highly dependent on cities.

3.2 Evaluation of Tourists’ Perceptions of
Leisure Agriculture
The results (Figure 6) show that the overall comments on leisure
agriculture in Wuhan are positive, with a positive comment rate of
79.60%, a neutral comment rate of 1.51%, and a negative comment
rate of 18.89%. However, since the numbers of comments on
agricultural technology and planting and breeding are small, the
analyses of these categories are unreliable, so they are not considered.
Evaluations of all types of leisure agriculture in Wuhan are positive.
Specifically, fishing received the most positive feedback, and picking
gardens received the fewest positive reactions. Likewise, in terms of
negative evaluations, picking gardens had the highest number, while
fishing had the lowest number. In the future, we should focus on the
development of picking gardens as a form of leisure agriculture.

Through the word segmentation analysis, it can be seen that
leisure agriculture tourists in Wuhan mainly focus on products,
environment, service, price, and travel. In terms of “products”,
leisure agriculture activities mainly involve picking gardens and
fishing, with “barbecue” and “vegetables” as the main

characteristics. “Strawberry”, “grape” and “orange” are the most
frequently picked foods, and “taste”, “sweet” and “fresh” are the
important evaluation criteria. In terms of the “environment”, tourists
pay attention to the quality of “weather” and “air”. “Farm” and
“farmhouse” are themain locations for leisure agriculture inWuhan.
In terms of “service”, the main factors that tourists pay attention to
are “boss”, “feeling” and “enthusiasm”. Furthermore, “price”, “ticket”
and “expensive” are high-frequency words. Finally, in terms of
“travel”, location is the main concern for tourists.

Wuhan, as the capital of Hubei Province, has the leading
economy in the province, and it features many scenic spots. Its
leisure agriculture has garnered praise from users based on
services, products, and the environment. However, it still has
some problems. Tourists have mixed evaluations of products,
prices, services, the environment, or travel experiences. Among
them, “expensive”, “ticket”, “money”, “buy”, “price” and other
words frequently appear in negative comments, which shows that
the cost of visiting has affected the development of regional
leisure agriculture and needs to be improved. In addition, the
quality of services is also an important factor.

3.3 Quality Evaluation of Leisure Agriculture
Based on Tourists’ Perceptions
The spatial distribution of the leisure agriculture quality
evaluation scores in Wuhan is shown in Figure 7. The score
range is −3.00 to +3.00, and the scores are divided into four levels:
level I [1.50 to 3.00], level II [0.00 to 1.50), level III [−1.50 to 0.00),
and level IV (−3.00 to −1.50]. Among the 425 businesses, 126 have

FIGURE 6 | Keyword cloud of tourist comments on leisure agriculture in Wuhan: (A) Negative comments; (B) Positive comments.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8513218

Wang et al. Optimization of Leisure Agriculture

82

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


received comments. The total score is concentrated between−1.50 and
+1.74, and most of the businesses are located in level II or level I.
Among them, 18 businesses have ratings below 0, which is poor. In
addition, high-quality leisure agriculture businesses are distributed in
almost all districts, while low-quality leisure agriculture businesses are
mainly located in central Wuhan. As shown in Figure 7, tourists’
dissatisfaction is mainly due to environment, price, and travel factors,
while product and service are relatively good.

The numbers of leisure agriculture businesses in product levels
I–IV is 60, 38, 6, and 3, respectively. Product scores are concentrated
in levels I and II. Businesses with higher scores are distributed in
almost all districts, and the businesses with lower scores are mainly
distributed in Dongxihu and Jiangxia District, which are located in
central and southernWuhan, respectively. The environmental scores
are concentrated in level II, and the scores ofmost businesses are low.
The numbers of leisure agriculture businesses with service scores in

levels I–IV are 51, 45, 9, and 2, respectively, showing a concentration
of scores in levels I and II. The spatial distribution characteristics of
service scores are similar to those of product scores. The numbers of
leisure agriculture businesses with price scores in levels I–IV are 32,
8, 7, and 17, respectively. The price scores are concentrated in levels I
and IV, with serious differentiation. Businesses with lower scores are
mainly distributed in central and southernWuhan. Finally, the travel
scores are distributed in levels II-IV. Businesses with lower scores are
mainly distributed in HongshanDistrict and Jiangxia District, which
are located in central and southern Wuhan, respectively.

3.4 Optimization Strategies for the
Development of Leisure Agriculture
Considering the spatial patterns and quality of leisure agriculture,
this paper proposes an optimization strategy for the sustainable

FIGURE 7 | Spatial distribution of the quality evaluation of leisure agriculture in Wuhan: (A)Overall quality; (B) Product level; (C) Environment level; (D) Service level;
(E) Price level; (F) Travel level.
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development of leisure agriculture. TakingWuhan as an example,
the kernel density of 126 leisure agriculture businesses with
review data were overlaid with the quality of these businesses
for analysis, and the results are shown in Figure 8. The findings
indicate that overall leisure agriculture inWuhan is in the form of
agglomeration. The average leisure agriculture quality score is
0.6591, and most of the businesses are located in levels I and II.
On the whole, leisure agriculture in Wuhan is characterized by
high agglomeration and high quality. Moreover, using the natural
breaks method, the core density of leisure agriculture can be
divided into two types. The type with high core density is high
agglomeration, and the other type is low agglomeration. The
results show that the average quality score for the high-
agglomeration group is 0.6285, which is lower than the
average value for businesses in the whole city. This finding
indicates that excessive agglomeration has a negative impact
on the quality of leisure agriculture. One possible reason is the
competition among the homogeneous leisure agriculture
businesses. The average quality score of low-concentration
businesses is 0.7072, which is higher than the average quality
of businesses in the whole city. This finding suggests that the low-
agglomeration pattern promotes the development of local leisure
agriculture. Scientific planning is beneficial to the development of
the leisure agriculture industry. It is necessary to improve the
quality of leisure agriculture in highly clustered areas, avoid
excessive competition among businesses in the same industry,
promote the coordinated development of industries, and promote
the industrial agglomeration effect.

From the perspective of development type, leisure farms are the
most popular in Wuhan, followed by fishing, picking gardens, and
agritainment. However, the activity that received the best tourist
evaluations was fishing, followed by agritainment, leisure farms, and
picking gardens. As the most widely distributed type of leisure
agriculture in Wuhan, leisure farms should further improve the
quality of businesses and enhance the experiences of tourists.

From the perspective of quality improvement suggestions,
tourists’ dissatisfaction mainly involves environment, price, and
travel factors. Based on the analysis of the text of tourists’
comments, the main environmental problems are poor scenery,
small sites, and excessive dust, among others. We should pay
attention to improving the environment of leisure agriculture
businesses, selecting scenic areas when adding new businesses, and
expanding business sites. The main price problems are high ticket
prices and false advertising. Improvements include providing free
tickets, allowing group purchases on websites, and offering discounts,
among others. Travel problems mainly include inconvenient
transportation, remote locations, and difficulty in finding the
location. Attention should be given to increasing shop signage and
offering timely telephone communication. The results suggest that
the government should build roads to tourist destinations and
establish public transportation or finance construction through
other means. In addition, when planning new businesses, it is
important to pay attention to factors such as traffic convenience
and improve the comprehensive transportation system.

4 DISCUSSION

4.1 Research Findings Compared to Other
Studies
Leisure agriculture has become one way to promote agricultural
diversification and enhance urban-rural integration. Therefore,
leisure agriculture is promoted by the Chinese government (Cui
et al., 2021). This study explores the optimization strategies of leisure
agriculture that combine spatial patterns and tourists’ perceptions.
Leisure agriculture is mostly distributed in peri-urban areas (Chang
et al., 2018), which are exposed to urban pressures and land-use
changes (Gao and Cheng, 2020; Zasada, 2011). Scientific spatial
planning of leisure agriculture is conducive to considering the
relationship between urban and rural areas. Leisure agriculture
planning is mainly reflected in spatial patterns. The findings of
this study regarding the agglomeration spatial patterns of leisure
agriculture are consistent with multiple studies (Cui et al., 2021;
Fanelli and Romagnoli, 2021; Van Sandt et al., 2018; Xiang et al.,
2019), in which the authors suggest promoting the agglomeration of
leisure agriculture. Our analysis has confirmed the generalizability of
this view across Chinese cities. In addition, thematching relationship
between the spatial patterns and the quality of leisure agriculture was
analyzed. The results show thatmoderate agglomeration is beneficial
to the quality of leisure agriculture, while excessive agglomeration
has adverse effects. Leisure agriculture originated in developed
countries, and gradually expanded from Europe to Japan, South
Korea, Singapore, and other countries and regions in Asia. We
suggest that this method be applied to the study of other cities to
explore the relationship between the spatial patterns and quality of

FIGURE 8 |Quality score and spatial kernel density distribution of leisure
agriculture.
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leisure agriculture and to optimize the development of regional
leisure agriculture. Through extensive empirical analysis, it will be
possible to determine the best spatial pattern of leisure agriculture
according to local conditions.

The improvement of leisure agriculture depends on the
understanding of the roles of consumers, which takes consumers’
preferences into consideration (Zasada, 2011). This study analyzes
tourists’ perceptions using big data, which helps to explore the core
issues of tourists’ concerns. A previous study found that leisure
agriculture users pay attention to the requirements of diet,
accommodation, and travel (Wu, 2019). We find that in addition
to products and travel, the environment, service, and price are also
important factors for leisure agriculture tourists in Wuhan. In
addition, we evaluate the quality of leisure agriculture based on
tourists’ perceptions; this approach clearly identifies the
characteristics of leisure agriculture quality and its spatial
patterns. The research shows that tourists’ dissatisfaction about
leisure agriculture in Wuhan mainly results from the
environment, price, and travel. This finding helps clarify the
development focus of leisure agriculture in different regions and
how scientific planning and management can be carried out.
Moreover, these beneficial findings and discussions offer feasible
suggestions for leisure agriculture development. In future
development, on one hand, operators should ensure the richness
of products, improve product quality, regularly maintain
infrastructure, improve health and environmental conditions and
service levels, and set reasonable consumer prices (Tsaur et al., 2016).
On the other hand, the government and market should conduct
reasonable layout planning for leisure agriculture while also
scientifically managing customer complaints and improving
comprehensive transportation (Liu et al., 2020).

4.2 Practical Implications
The study helps to provide recommendations for sustainable leisure
agriculture: (1) The spatial disparity of leisure agriculture needs to be
emphasized, and development guidance should consider local
situations. Spatial analysis is recommended for integration into
leisure agriculture policy-making. (2) Spatial planning needs to
combine the spatial distributions and quality of leisure agriculture
to promote agglomeration and avoid excessive competition. (3) The
quality improvement of leisure agriculture should be guided by
market demand, especially consumer demand. It is important to
conduct quality evaluations of leisure agriculture, build high-quality
brands and avoid homogeneous competitiveness. (4) Effective
measures should be taken to strengthen the supporting facilities
of public services and provide professional training for leisure
agriculture practitioners.

4.3 Limitations and Prospects
First, due to limitations of the data collection, this study does not
analyze the evolution of leisure agriculture from the perspective of
spatiotemporal dynamic patterns. In the future, we will explore the
spatiotemporal evolution of leisure agriculture to understand
development trends and to offer development suggestions. Second,
because of the low accuracy of the existing classificationmethods, this
paper usesmanual interpretation to judge the characteristics of leisure
agriculture reviews. In later work, we plan to use natural language

processing and machine learning to characterize tourists’ experience
evaluations and to improve the efficiency of these characterizations
and the scientific rigor and accuracy of the method in later batch
processing and comparative analyses between different cities.

5 CONCLUSIONS

This paper has constructed a framework for optimizing leisure
agriculture using big data, taking Wuhan city as the case study
for the analysis. The results show that the main types of leisure
agriculture inWuhan are leisure farms, fishing, and picking gardens,
and the spatial pattern shows an agglomeration distribution. In
planning the spatial distribution of leisure agriculture, attention
should be given to appropriate agglomeration. As the most
widely distributed type in Wuhan, leisure farms receive low
tourist evaluation, so it is necessary to improve the quality of
businesses and enhance tourists’ experiences.

High-quality leisure agriculture businesses are distributed in
almost all districts in Wuhan, while low-quality sources are
mainly located in the central part of the city. Tourists’
dissatisfaction with leisure agriculture mainly includes the
environment, price, and travel factors, while products and
services are relatively satisfactory. The sustainable development
of leisure agriculture needs to take quality-building as the core,
deeply tap into the regional industrial characteristics, and
cultivate the competitiveness of leisure agriculture
development. The purpose of this study was not only to guide
the development of leisure agriculture in Wuhan, but also to
explore tourist experiences and identify a suitable way forward for
the development of leisure agriculture on a wider scale.
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What Is the Impact of the
Establishment of Natural Reserves on
Rural Residential Land? An Empirical
Study From Hunan Province, China
Yuanlai Wu1, Houtian Tang1, Ping Jiang2* and Jinxiu Chen3

1School of Public Administration, Central South University, Changsha, China, 2School of Resource and Environmental Sciences,
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The rural residential land (RRL) in natural reserves has been deeply transformed due to the
disturbance constrained by ecological protection policies. Exploring the distribution
characteristics and driving factors of RRL in natural reserves and non-natural reserves
will help to promote the governance of land space and alleviate the contradiction of land
use. Therefore, taking 122 county-level administrative regions in Hunan Province as an
example, this article analyzes and compares the spatiotemporal distribution characteristics
of RRL in natural reserves and non-natural reserves by using land use change dynamics,
nuclear density analysis, the transfer matrix model, and the ordinary least-squares model
and explores how the establishment of natural reserves affects the RRL area change. The
results show that (1) the overall RRL area in Hunan changed from 171,162.27 hm2 in 2000
to 169,914.6 hm2 in 2020, with a total reduction of 1,247.67 hm2 and a decrease of
0.73%, and the distribution of the RRL area change presented a hot trend in the northeast
and a cold trend in the southwest. (2) The occupation of urban construction land is the
main reason for the reduction in RRL area, and the transformation of cultivated land and
forestland into RRL is the main source of the increase in RRL area. (3) During 2000–2020,
the overall RRL in natural reserves increased by 1,538.37 hm2, with an increase of 0.11%,
while the overall RRL in non-natural reserves decreased by 2,786.04 hm2, with a decrease
of 0.14%. (4) The establishment of natural reserves has a significant negative correlation
with the area of RRL in 2000, 2010, and 2020, indicating that the establishment of natural
reserves can limit the growth speed of the RRL area to a certain extent, but is affected by
factors such as economic development and rural population growth; it cannot directly
promote the overall reduction of RRL area. The results of this study can provide a reference
for decision-making related to the spatial structure optimization of natural reserves and
non-natural protected RRL and the coordinated development of urban and rural areas.
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1 INTRODUCTION

The contrast between urban expansion and rural recession is
becoming increasingly serious (Long et al., 2012; Bai et al., 2014;
Liu and Li, 2017; Li K. et al., 2021). As a very important land use
type in rural areas, rural residential land (RRL) is an important
carrier of farmers’ production and life (Chen et al., 2019; Yang R.
et al., 2019). Since its emergence in the specific natural and
cultural environment, it has been affected by the natural increase
and decrease in the rural population and the slow growth of the
rural economy (Qu et al., 2017). However, with the rapid
development of rural economies around the world, the
functions and layout of rural settlements have changed
significantly and are evolving toward heterogeneity and non-
simplification (Zhu et al., 2014; Li G. et al., 2020; Rosner and
Wesołowska, 2020). Meanwhile, due to the interaction of
historical origin, customs, resource endowment, transportation
convenience, and other factors, the spatial layout of RRL is mostly
formed by the independent selection and lack of unified planning
(Shcherbina and Gorbenkova, 2019; Wang and Zhang, 2021).
This continuous disorderly expansion also exacerbates the
fragmentation of RRL (Li G. et al., 2020). During the early
stages, developed countries such as South Korea and Germany
were the first to realize the importance of spatial planning of rural
settlements and conducted the consolidation movement of RRL,
including the “New Village Movement” in South Korea (Suh,
2015) and the “Village Renewal” in Germany (Zasada and Piorr,
2015). Moreover, with the gradual prominence of the
contradiction between man and land, developing countries
such as China, Uzbekistan, and Myanmar have paid more
attention to the spatial planning of RRL and have issued
corresponding policies (Conrad et al., 2015; Hoffman-Hall
et al., 2019; Zhou et al., 2021). However, unlike developed
countries, developing countries have some disadvantages in
experience, technology, and capital, which makes it difficult to
realize the consolidation of RRL (Njoh, 2011; Trukhachev, 2015;
Rosner and Wesołowska, 2020). Therefore, promoting RRL
consolidation has always been a thorny problem faced by
China and other countries lacking land resources, and it is of
great significance to make the rational use of RRL and alleviate
the contradiction between land supply and demand (Li et al.,
2014; Kong et al., 2021).

In consideration of social and economic development, China’s
urban construction and development are relatively rapid, and
relevant guidance planning and supporting infrastructure
construction are also relatively abundant (Fernández, 2007;
Guan et al., 2018; Li Y. et al., 2020). However, the
construction and development of RRL lack planning guidance,
which leads to the increasingly prominent phenomena of
scattered layout, high degree of fragmentation, low utilization
efficiency and serious illegal land occupation of RRL (You and
Chen, 2019; Wen et al., 2020; Li J. et al., 2021). Moreover, it has
further derived problems such as the extensive use of RRL, the
lack of living infrastructure, and the fragile ecological
environment, which have led to the continuous decline of
rural development potential (Wu et al., 2017; Li Y. et al., 2018;
Ristić et al., 2019). Nevertheless, with the improvement of rural

residents’ income level, lifestyle transformation, and rural cultural
progress, rural residents have also put forward new requirements
for production, living conditions, and environment quality (Zhou
et al., 2020; Deng et al., 2021). Using the Hunan Province of
China as an example, statistical yearbooks of the Hunan
Provincial Bureau of Statistics, the urbanization rate increased
from 29.75% in 2000 to 58.76% in 2020, with extremely rapid
growth. In the context of rapid urbanization, the nonagricultural
rural population has led to a significant reduction in the rural
resident population; a large amount of rural construction land has
been gradually abandoned and left idle, and the abandonment of
houses in villages has become very serious, which further
intensifies the sharp contradiction between the current tight
supply of urban construction land and the idle waste of land
resources in rural settlements (Li L. et al., 2020; Huang et al., 2020;
Zhu et al., 2020).

Previous studies have conducted rich theoretical research and
practical explorations of RRL (Linard et al., 2012; Phokaides,
2018; Li S. et al., 2021; Nandi andMistri, 2022). Scholars generally
believe that the spatial distribution and evolution of rural
settlements are the result of the comprehensive action of
physical and geographical conditions and socioeconomic
development (Yu et al., 2018; Li G. et al., 2020). The scale,
shape, distribution, and other characteristics of rural
settlements are closely related to natural conditions such as
landform, soil, hydrology, climate, and vegetation and are
affected by factors such as government regulation, economic
development, urbanization level, traffic conditions, and
scientific and technological strength (Linard et al., 2012; Liu
et al., 2016; Tu et al., 2018; Cyriac and Firoz, 2022).
Meanwhile, in a short period of time, RRL changes are more
affected by human factors (Wang and Zhang, 2021). Specifically,
in the existing studies, the research contents of rural settlements
are relatively diversified, mainly focusing on the characteristics of
spatiotemporal evolution and its driving factors, spatial layout
optimization, functions, etc., gradually enriching the content
system of rural settlement research (Heng et al., 2021; Tan
et al., 2021). Moreover, the research on RRL also presents
different research scales, including mainly analyses of the
overall evolution and driving mechanism of RRL at the
macroscale, explorations of the structure, function, and spatial
layout optimization of RRL, and the gradual transformation from
the national and provincial macroscale to the shrinking of the
county, town, and even village at the microscale (Li G. et al., 2018;
Chirisa, 2021). In addition, the research methods on rural
settlements are diverse, mainly involving multifactor
comprehensive evaluation methods, spatial econometric
analysis, spatial autocorrelation, geographic information
systems, geographic detectors, and other methods and models,
revealing the general or local characteristics of the research
content of rural settlements (Yang et al., 2019a; Gosch et al.,
2021; Kong et al., 2021).

However, only a few scholars have conducted research on RRL
in the natural reserve. Among them, Yao and Xie (2016) believed
that the scale of RRL in the natural reserve should be the smallest,
while the scale of ecological land should be the largest. Abelairas-
Etxebarria and Astorkiza (2012) compared the difference in land
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prices within and outside the natural reserve and found that the
policy of establishing a natural reserve has a highly restrictive
effect on land transaction volume and land use change. Martín
and Chehébar (2001) researched indigenous communities and
RRL inhabited by migrant populations in the federal protected
area system of Argentinian Patagonia and found that the growth
of RRL directly threatened the ecological environment. Previous
studies have neglected to explore and compare the spatiotemporal
variation characteristics of RRL in natural reserves and non-
natural reserves. As an area designated by relevant government
departments to protect special ecosystems for scientific research,
natural reserves have played an important role in soil and water
conservation, environmental improvement, biodiversity
protection, and ecological balance (Zhou and Chen, 2006;
Yang et al., 2019b). In the natural reserve, to protect the
ecological environment, the government has issued a variety of
policies and measures to encourage the relocation of residents in
the ecological reserve or limit the new expansion of existing rural
settlements, which makes the rural settlements in the natural
reserve form a completely different spatiotemporal evolution
characteristic (Yu et al., 2018). Therefore, comparing the
spatiotemporal evolution characteristics of RRL in the natural
reserves and non-natural reserves can not only enrich the
research topics related to RRL in the natural reserve but also
provide policy suggestions for the management organization of
the natural reserve to optimize and reduce the land use of RRL.

Therefore, we explore the differences in the spatiotemporal
evolution characteristics, change intensity, and driving factors of
RRL between natural reserves and non-natural reserves. Based on
the relevant spatial and panel data of rural settlements in natural
reserves and non-natural reserves of Hunan Province, China, and

combined with the methods of land use dynamics, kernel density
analysis, transfer matrix model, and ordinary least-squares model,
this article intends to solve the following issues. (1) What are the
overall spatiotemporal change characteristics of RRL in Hunan
Province? (2) What are the spatiotemporal evolution
characteristics of RRL in natural reserves and non-natural
reserves? What is the difference? (3) What is the impact of the
establishment of natural reserves on the spatiotemporal changes in
RRL? Moreover, we believe that the results of this study can provide
a decision-making reference for the spatial structure optimization of
natural reserves and non-natural protected RRL and the coordinated
development of urban and rural areas.

2 MATERIALS AND METHODS

2.1 Study Area
China’s Hunan Province governs 14 prefecture-level cities (including
autonomous prefectures), with a total of 122 county-level
administrative regions (including county-level cities, districts, and
autonomous counties, uniformly called counties), and is located in
the middle reaches of the Yangtze River (Figure 1). Superior natural
conditions have created the characteristics of rich animals and plant
biodiversity and a beautiful natural landscape in Hunan Province
(Ding et al., 2022; Fan et al., 2022). Provincial or national natural
reserves in Hunan Province were distributed in 27, 42, and 44
counties in 2000, 2010, and 2020, respectively. By 2021, the
permanent resident population of Hunan Province was 66.44
million, and the regional gross domestic product was 4,606.3
billion RMB. With the rapid development of the social economy,
the disposable income of farmers has been significantly improved,

FIGURE 1 | Study area. [Panel (A): geographical location of the Hunan Province in China. Panel (B): geographical location of counties with natural reserves and
non-natural reserves in Hunan Province in 2020].
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and its urbanization rate has increased from 29.75% in 2000 to
58.76% in 2020. However, due to the geographical conditions, the
industrial structure and economic development of various regions in
Hunan Province are quite different, resulting in the structure and
functional space of RRL being significantly differentiated, which is
mainly reflected in the scattered layout of RRL, a high degree of
fragmentation, and obvious differences in hollowing (Tang et al.,
2018; Han et al., 2021), especially in natural reserves and non-natural
reserves. Therefore, this article selects Hunan Province with the
characteristics of typical natural reserves and non-natural reserves as
the research area, which has strong practical significance for the
multifunctional promotion and coordinated optimization of RRL.

2.2 Data Sources
The land use data and the provincial, municipal, and county-level
administrative division boundary data of Hunan in this article are
from the Resource and Environmental Science and Data Center of
the Institute of Geographical Sciences and Resources, Chinese
Academy of Sciences (https://www.resdc.cn/). Among them, the
land use data cover the three periods of 2000, 2010, and 2020, with a
30 m resolution. Using the reclassify function of ArcGIS10.5
software, the land types were reclassified into eight categories:
cultivated land, forestland, grassland, water area, urban
construction land, RRL, other construction land, and unused
land; the area data of each land type were obtained. In addition,
the rural population, economic, and social data involved in the study
are mainly from the statistical yearbooks of the Hunan Provincial
Bureau of Statistics (http://tjj.hunan.gov.cn/). On this basis,
ArcGIS10.5 software is used to form the basic database for the
study of RRL area change in Hunan Province through the spatial
matching and link between attribute data and county-level
administrative units, which lays the data foundation for this study.

2.3 Research Methods
2.3.1 Dynamic Degree of Land Use Change
The dynamic degree model of land use change is the quantitative
change of a certain land use type in the study area during the
study period (Stumpf et al., 2018). Through the dynamic degree
of land use change, the area and change speed of various land
types in the region at different time points can be obtained, the
general change trend and structural evolution trend in different
research periods can be grasped, and the core of the model is
reflected by land use transfer flow (Gallant et al., 2004; Öztürk
et al., 2013). This article uses this model to analyze the
spatiotemporal changes in RRL in Hunan Province. The
calculation formula is as follows:

K � Ub − Ua

Ua
×
1
T
× 100% (1)

where K represents the dynamic degree of RRL change in the study
period;Ua represents the initial value of the RRL area;Ub represents
the final value of the RRL area; and T is the period time of the study.

2.3.2 Transfer Matrix Model
The transfer matrix model can effectively describe the structural
characteristics and transformation direction of land use change in

the study area and can also analyze the change characteristics of
the spatial conflict level of various land types during different
periods (Romero-Calcerrada and Perry, 2004; Xue et al., 2018).
This article uses this model to analyze the direction and quantity
of mutual transformation between RRL and other land use types
in Hunan Province. The calculation formula is as follows:

Tij � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 . . . a1n
..
.

1 ..
.

an1 . . . ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where n represents the number of land use types; i and j represent
the land use types at the beginning and end of the study periods,
respectively; and Tij represents the area converted from land use
type i to land use type j during the study period.

2.3.3 Kernel Density Estimation Method
Kernel density estimation is a nonparametric calculationmethod that
usually uses the built-in spatial analysis tool of ArcGIS10.5 software to
define the nearest-neighbor object and realize the measurement of
density distribution (Elgammal et al., 2002). At present, the kernel
density estimation method has been applied to the study of spatial
distribution patterns and change characteristics of various land use
types (Gong et al., 2019). The higher the value of kernel density is, the
greater the distribution density of RRL (Lin et al., 2022). This method
mainly analyzes the spatiotemporal distribution pattern and change
characteristics of RRL in natural reserves and non-natural reserves in
Hunan Province. The calculation formula is as follows:

fx � 1
nh

∑n

i�1k(x − xi

h
) (3)

where fx represents the estimated value of the kernel density of
the RRL distribution; n represents the number of rural residential
plots; h represents the bandwidth or smoothing parameter; k
represents the kernel density function; and x − xi represents the
distance between the measured x-th rural residential plot and the
sample rural residential plot xi.

2.3.4 Getis-Ord Gi* Hot-Spot Analysis
Getis-Ord Gi* hot-spot analysis is used to measure the spatial
clustering intensity between each unit in the study area and its
surrounding units. It mainly detects whether each geographical
element belongs to a high-value or low-value aggregationmode in
space by calculating the relationship between the geographical
attributes of a location and the geographical attributes of its
adjacent locations (Gao et al., 2019; Tan and Guan, 2021). This
article uses this method to explore the degree of change and
difference in RRL between natural reserves and non-natural
reserves in Hunan Province. The calculation formula is as follows:

Gi* �
∑n

j�1wijXj∑n
j�1Xj

(4)

where Gi* represents the statistical value of Getis-Ord;Xj represents
the element attribute value of the j-th spatial unit; n represents the
total number of rural settlements; and wij represents the spatial
weight matrix. If the statistical value of Gi* is positive and significant,
it indicates that the value around the detected point is relatively high
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and belongs to a high-value spatial agglomeration (hot-spot area). If
the statistical value of Gi* is negative and significant, it indicates that
the value around the detected point is relatively low and belongs to
low-value spatial agglomeration (cold-spot area).

2.3.5 Ordinary Least-Squares Method
The ordinary least-squares method is used to evaluate the
relationship between two or more element attributes. The
principle of this method is to minimize the sum of squares of
errors between the predicted value and the actual observed value of
the regression empirical model (Sanchez, 2020; Liang and
Qamruzzaman, 2022). This method is mainly used to explore the
factors affecting the change in RRL. This article uses the change in
the RRL area as the dependent variable and determines the model
with better fitting through the forward stepwise regression method.
TheMNL-1model only adds the influencing factors of the RRL area
change, while the MNL-2 model adds the interactive term based on
the MNL-1 model. The calculation formula is as follows:

Yi � β1 + β2X2i + β3X3i + . . . + βkXki + εi (5)
The global parameter estimation vector can be obtained by

using the ordinary least-squares model

β � (XTX)−1XTY (6)
where β represents the parameter-estimated value vector
influence coefficient; X represents the matrix composed of the
observed values of the respective variables; Y represents the
dependent variable; and εi is the random disturbance term.

2.4 Research Index System
The area change in RRL is closely related to natural, socioeconomic,
land management, and other factors (Liu et al., 2013; Li G. et al.,
2018, Li et al., 2020 G.). Based on the actual situation of Hunan
Province and the availability of data, referring to previous research
results (Zhou et al., 2013; Ristić et al., 2019;Wang and Zhang, 2021),
and following the principles of scientificity and comprehensiveness,
this article takes the area of RRL as a dependent variable.Meanwhile,

four dimensions, including natural reserves, urban expansion,
economic growth, and rural development situation, were selected,
including 11 dependent variable indicators as the influencing factors
of the change in the RRL area (Table 1).

First, due to the high intensity of environmental regulation
policies within the scope of natural reserves (Zhou et al., 2014),
the delimitation of natural reserves may have a significant impact on
the change in RRL areas. The indicator of whether there are natural
reserves set in this article only explores whether the county-level
administrative units have provincial or national nature reserves.

Second, there is a certain contradiction between urban
expansion and RRL because the rapid expansion of urban
areas will accelerate the urbanization process of rural
populations and may reduce the demand area of RRL (Liu
et al., 2017; Yang et al., 2018). Therefore, the urban expansion
dimension in this article includes three indicators: per capita
investment in fixed assets, per capita investment in real estate
development, and the urban construction land area. Among
them, the per capita investment in fixed assets represents the
local construction investment level, the per capita investment in
real estate development represents the local investment level in
urban housing construction, and the urban construction land
area represents the actual situation of local urban expansion.

Third, rapid economic growth can increase the per capita gross
domestic product, increase government fiscal expenditure, adjust
the structure of local industries, promote the improvement of the
speed of rural economic development, and affect the number of
people engaged in agricultural production, resulting in affecting
the change rate in the RRL area (Ma et al., 2018; Qu et al., 2021).
Therefore, the economic growth dimension of this article also
includes three indicators: per capita gross domestic product, the
proportion of primary industry, and per capita fiscal expenditure.
Among them, the per capita gross domestic product represents
the economic development of the research county, the proportion
of the primary industry represents the importance of the primary
industry in the local industrial structure, and the per capita fiscal
expenditure represents the fiscal expenditure capacity of the local
government.

TABLE 1 | Factors influencing RRL.

Target layer Index layer Calculation method (data
source)

Variable
type

Unit

Natural reserves Whether there are natural reserves List of natural reserves in Hunan Province (http://lyj.hunan.gov.cn/lyj/ztzl/gdzt/zrbhq/
201512/t20151227_2587443.html)

D —

Urban expansion Per capita investment in fixed assets Total investment in fixed assets/number of permanent residents C RMB
Per capita investment in real estate
development

Total investment in real estate development/number of permanent residents C RMB

Urban construction land area https://www.resdc.cn/ C m2

Economic
growth

Per capita gross domestic product Total regional gross domestic product/number of permanent residents C RMB
The proportion of primary industry Primary industry value/total regional gross domestic product C %
Per capita fiscal expenditure Total regional financial expenditure/number of permanent residents C RMB

Rural
development

Per capita crop sowing area The total sown area of crops/number of permanent residents C m2

Per capita cultivated land area Total cultivated land area/number of permanent residents C m2

Per capita disposable income of
farmers

Hunan statistical yearbook (http://tjj.hunan.gov.cn/) C RMB

Rural resident population Hunan statistical yearbook (http://tjj.hunan.gov.cn/) C People

Notes: D represents dichotomous, C represents continuous.
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Finally, there is a strong correlation between rural development
and the change in the RRL area. Generally, areas with better rural
development have greater population mobility, and farmers are
more likely to change their place of residence due to work,
transportation, and other factors (Sun et al., 2021). The
dimensions of rural development in this article mainly include
four indicators: per capita crop sowing area, per capita cultivated
land area, per capita disposable income of farmers, and rural resident
population. Among them, the per capita sown area of crops
represents the agricultural planting status of the local rural
surplus labor force, the per capita cultivated land area represents
the cultivated land resources owned by local farmers to carry out
basic agricultural production, the per capita disposable income of
farmers represents the development degree of the local rural
economy, and the rural resident population represents the
number of people living in rural areas for a long time.

3 RESULTS

3.1 Change Characteristics of Rural
Residential Land in Hunan Province
3.1.1 Spatiotemporal Characteristics of Rural
Residential Land Change at the Macroscale
Based on the area change transfer matrix between RRL and other
land types from 2000 to 2020 (Supplementary Appendix) and
the spatiotemporal change distribution characteristic of RRL

(Figure 2), the RRL area decreased from 171,162.27 hm2 in
2000 to 169,914.60 hm2 in 2020, with a total reduction of
1,247.67 hm2 and a decrease of 0.73%. The reason can be
found that in 2000–2020, although RRL occupied the largest
area of cultivated land, the net occupied area of cultivated land
was as high as 5,773.32 hm2. However, due to a large number of
RRLs occupied by urban and other construction lands, the RRL
showed a downward trend from 2000 to 2020. This phenomenon
can also be confirmed in Figure 2. The red spots (representing the
gain of RRL) are significantly greater than the green spots
(representing the loss of RRL). Specifically, the RRL area
decreased by 5,165.10 hm2 in 2000–2010; that is, the RRL area
transferred out at this stage was greater than the area transferred
in, while the RRL area increased by 3,917.43 hm2 in 2010–2020.
The main reason is that the urban expansion was relatively rapid,
requiring higher amounts of urban construction land, resulting in
a large amount of RRL occupied by urban construction land in
2000–2010. Moreover, due to the vigorous implementation of
policies such as converting farmland to forestland during that
time, some areas that reclaimed RRL were transferred to
forestland. In 2010–2020, due to the stricter control over the
expansion of urban construction land, the occupation of urban
construction land to RRL was effectively alleviated. However, due
to the reduction in the RRL area in 2000–2010 and the strong
demand of farmers for RRL, a large amount of cultivated land and
forestland around RRLwas occupied. In addition, the distribution
of RRL is too scattered, which is not obvious in Figure 2, but the

FIGURE 2 | Distribution of RRL change in 2000–2020.
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overall density is high in the northeast and low in the southwest.
The reason for this scattered layout may be that northeastern
Hunan is a traditional agricultural area with high residential
density.

3.1.2 Spatiotemporal Characteristics of Rural
Residential Land Change at the Microscale
By analyzing the changes in the RRL area in 14 prefecture-level
cities in Hunan Province from 2000 to 2020 (Table 2), it can be
found that the RRL area in different prefecture-level cities
shows different changes, and the changes in RRL in the same
prefecture-level city at different stages also show significant
differences. It is worth noting that in 2000–2010 and
2010–2020, excluding the dynamic change degree of the
RRL area in Xiangxi, which has been in a negative growth
state, other prefecture-level cities showed an initial decreasing
and then increasing or continuously increasing trend.
Specifically, the reduction rate of the residential land area in
Xiangxi in 2000–2020 is much higher than that in other
prefecture-level cities, and the dynamic degree of the
change of the RRL area in this prefecture in 2000–2010
indicates that the comprehensive improvement intensity of
RRL in Xiangxi during 2000–2010 is high, which causes the
area of RRL in this stage to show a significant trend of
reduction. In addition, among the other 13 prefecture-level
cities, the overall change dynamics of RRL in Xiangtan,
Zhangjiajie, Yiyang, and Yongzhou showed negative growth
in 2000–2020, indicating that the area of RRL in these cities
decreased. In contrast, the dynamic change degree of the RRL
area in Changsha, Zhuzhou, Hengyang, Shaoyang, Yueyang,
Changde, Chenzhou, Huaihua, and Loudi positively increased
and showed a small growth trend in 2000–2020.

The cold-spot and hot-spot analyses of RRL identify the
spatial cluster distribution of high- and low-function values
based on the spatial distribution of each function value domain.
The hot-spot analysis tool in ArcGis10.5 software is used to

identify the statistically significant distribution characteristics
of cold and hot spots in the current situation and changes in the
RRL area in 122 counties of Hunan Province. Among them, the
value of Gp

i is divided into five categories using the natural
break method in ArcGis10.5 software, which are named hot-
spot, sub-hot-spot, insignificant, sub-cold-spot, and cold-spot
from high to low (Figure 3). There was little difference in the
distribution of cold and hot spots in the RRL area of 122
counties in Hunan Province in 2000, 2010, and 2020. The
overall performance is that it is hot in the northeast and cold in
the southwest. However, the three phases of data are mainly in
areas with insignificant clustering characteristics. Specifically,
the hot-spots are mainly distributed in the urban counties of
Changsha, Changde, Yiyang, Yueyang, and Zhuzhou and the
sub-hot-spots are mainly distributed in northern Changde,
western Yueyang, and southern Zhuzhou, which shows that
the RRL area in these areas increased faster and that farmers
have a strong demand for RRL. The sub-cold-spot areas are
mainly concentrated in eastern–western Hunan, eastern
Huaihua, and northern Xiangtan. Cold-spot areas are
mainly concentrated in western Huaihua and eastern
Xiangtan, indicating that the RRL area in these areas
decreased faster. In terms of the dynamic degree of change
in the RRL area at each stage, the hot-spot and sub-hot-spot
areas in 2000–2010 were mainly concentrated in the east of
Shaoyang, the east and south of Hengyang, while they were
mainly distributed in the middle of Changde, the southeast of
Hengyang, and the middle of Zhuzhou in 2010–2020,
indicating that the growth rate of the RRL area in Hunan
Province showed significant differences in different periods.
The cold-spot and sub-cold-spot areas were mainly
concentrated in the east of Xiangtan, the middle of
Changsha, the north of Zhuzhou, and the southwest of
western Hunan in 2000–2010, while it was mainly
concentrated in the southwest of western Hunan in
2010–2020, indicating that the decreasing trend of the RRL

TABLE 2 | RRL change in prefecture-level cities from 2000 to 2020.

Cities 2000–2010 2010–2020 2000–2020

Area change
(hm2)

Change dynamics Area change
(hm2)

Change dynamics Area change
(hm2)

Change dynamics

Changsha −28.62 −0.02% 87.39 0.07% 58.77 0.05%
Zhuzhou −555.48 −0.45% 701.91 0.60% 146.43 0.12%
Xiangtan −133.11 −0.24% 46.71 0.09% −86.4 −0.16%
Hengyang 123.84 0.09% 381.51 0.29% 505.35 0.38%
Shaoyang 450.81 0.39% 137.97 0.12% 588.78 0.51%
Yueyang 552.51 0.34% 579.15 0.34% 1131.66 0.69%
Changde −690.84 −0.26% 1186.92 0.46% 496.08 0.19%
Zhangjiajie −115.29 −0.43% 37.26 0.15% −78.03 −0.29%
Yiyang −423.63 −0.35% 261 0.22% −162.63 −0.13%
Chenzhou −61.56 −0.04% 243.99 0.17% 182.43 0.13%
Yongzhou −65.43 −0.04% 12.06 0.01% −53.37 −0.03%
Huaihua 49.5 0.06% 110.61 0.12% 160.11 0.18%
Loudi 115.47 0.14% 165.33 0.20% 280.8 0.35%
Xiangxi −4383.27 −4.12% −34.38 −0.06% −4417.65 −4.15%
Total −5165.1 −0.30% 3917.43 0.24% −1247.67 −0.07%
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area in Hunan Province gradually shifted from developed areas
in the middle of the east to underdeveloped areas in the west.

3.2 Spatiotemporal Variation
Characteristics of Rural Residential Land in
Natural Reserves and Non-Natural
Reserves
Table 3 shows that from 2000 to 2020, the RRL area in natural
reserves and non-natural reserves decreased in 2000–2010 but
increased in 2010–2020. It is worth noting that the overall area of

RRL in natural reserves increased by 1,538.37 hm2 in 2000–2020,
with an increase of 0.11%, while the overall area of RRL in non-
natural reserves decreased by 2,786.04 hm2 in 2000–2020, with a
decrease of 0.14%. According to the dynamic degree of change in
the RRL area of counties in natural reserves and non-natural
reserves in 2000–2010, 2010–2020, and 2000–2020, it was divided
into five intervals by using the natural break method in ArcGIS
10.5 software (Figures 4A–C). Meanwhile, to intuitively express
the change characteristics of the RRL area in counties of natural
reserves and non-natural reserves, the kernel density of the RRL
area change in counties of natural reserves and non-natural

FIGURE 3 | Cold-spot and hot-spot distributions of the RRL area and change dynamics at the county level in Hunan Province from 2000 to 2020. [Panels (A–C)
show the distribution of cold spots and hot spots in the current area of RRL in various counties of Hunan Province in 2000, 2010, and 2020, respectively. Panels (D–F)
show the distribution of the change dynamics of RRL in various counties of Hunan Province in 2000–2010, 2010–2020, and 2000–2020, respectively.]

TABLE 3 | The overall change in the RRL area in natural reserves and non-natural reserves.

2000–2010 2010–2020 2000–2020

Area change
(hm2)

Change dynamics Area change
(hm2)

Change dynamics Area change
(hm2)

Change dynamics

Natural reserves −234.27 −0.03% 1709.46 0.25% 1538.37 0.11%
Non-natural reserves −4930.83 −0.47% 2207.97 0.23% −2786.04 −0.14%
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reserves in 2000–2010, 2010–2020, and 2000–2020 can be
obtained by using the kernel density estimation method
(Figures 4D–F). It can be found that the area and kernel
density change of RRL in Hunan in 2000–2010 are very
similar to that in 2000–2020, mainly concentrated in the non-
natural reserves in the middle and the natural reserves in the
northeast and northwest. We found that the growth of the RRL
area in non-natural reserves is mainly affected by economic
factors, while the growth of the RRL area in natural reserves is
mainly affected by economic and policy factors. Furthermore, the
area of RRL reduction is mainly concentrated in non-natural
reserves, and the economic growth factor is the main factor of
RRL change.

Moreover, it is also worth noting that from the change
dynamics and kernel density of the RRL area in 2010–2020,
the RRL area of non-natural reserves in Zhuzhou and Changde
show a significant growth trend, while the counties with a small
growth of the RRL area are mainly concentrated in the non-
natural reserves in Chenzhou and Yiyang and the natural reserves
in Changde and Yueyang. It can also be found that the counties

with the increase in the RRL area in 2010–2020 are mainly
concentrated in the plain areas with high economic
development and dense populations in eastern and northern
Hunan. In addition, the RRL area in most regions of Hunan
has decreased slightly, while the RRL area in some non-natural
reserves in Huaihua and Xiangxi has decreased significantly.
Additionally, this study found that urbanization and the
poverty alleviation and relocation policy are the main factors
for the reduction of RRL in these regions.

3.3 Analysis of Driving Factors of Area
Change in Rural Residential Land
Due to the different units and magnitudes of each index, the data
are standardized to narrow the fluctuation range of the data to
[0,1] to better show the changes to each index and the area of RRL
in Hunan Province (Huyan and Li, 2021). Meanwhile, by
analyzing the research data, we find that the dependent
variable RRL in this article satisfies the normal distribution;
the influencing factors are independent of each other as

FIGURE 4 | The change dynamics and kernel density of the RRL area in natural reserves and non-natural reserves. [Panels (A–C) show the change dynamics of the
RRL area in counties of natural reserves and non-natural reserves in 2000–2010, 2010–2020, and 2000–2020, respectively. Panels (D–F) show the kernel density of the
RRL area change in counties of natural reserves and non-natural reserves in 2000–2010, 2010–2020, and 2000–2020, respectively.]
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independent variables, and there is no multicollinearity problem,
and there is a linear relationship between the dependent variable
and the independent variable. Therefore, the research data in this
article meet the requirements of using an ordinary least-squares
model for analysis (Gómez et al., 2020).

The calculation results of the ordinary least-squares model
(Table 4) show that the overall significance level of all models is
within 1%. Compared with the R-squared values of various models
in 2000, 2010, and 2020, it is found that the MNL-2 model has a
better fitting and is more suitable for further research. Overall, the
presence of natural reserves has a negative correlation with the area
of RRL within the significance level of 5%, indicating that the
delimitation of the natural reserve will limit the growth of the
area of local RRL to a certain extent. The per capita cultivated
land area and the rural resident population are significantly positive
at the 1% level, indicating that with the growth of per capita
cultivated land area and the rural resident population, the RRL
area will also increase. It is worth noting that the urban construction
land area did not show a significant correlation in 2010, while the
proportion of the primary industry showed a significant negative
correlation at the 10% level, indicating the growth of the urban
construction land area after 2000. The area of RRL also showed a
trend of initial growth and then decline. Meanwhile, the reduction of
the proportion of the primary industry will promote the reduction of
RRL areas. In addition, there is a significant positive correlation
between the per capita crop sowing area in 2000 and the per capita

investment in fixed assets in 2020 at the 5% level, indicating that the
growth of the crop sowing area and fixed asset investment will also
promote the growth of the RRL area.

From the overall results of the interaction analysis of
influencing factors, the interaction items of whether there are
natural reserves and per capita financial expenditure and
whether there are natural reserves and rural resident
population are significantly positive at the 5% level,
indicating that with the government delimiting the natural
reserve, the impact of financial expenditure and rural
resident population on the change in the RRL area in the
natural reserve will increase. In 2000, the interaction terms of
whether there are natural reserves and the proportion of the
primary industry and whether there are natural reserves and the
per capita cultivated land area were significantly positive at the
levels of 10% and 1%, respectively, indicating that the growth of
the proportion of the primary industry and the per capita
cultivated land area will lead to the growth of the RRL area
of the natural reserve. This growth may be because the
proportion of the primary industry and the growth of per
capita cultivated land area will lead to an increase in rural
population, while the growth of farmers’ per capita disposable
income will lead to the improvement of rural residents’
consumption ability and accelerate the process of farmers’
urbanization, which restricts the growth of the RRL area.
Different from 2000 to 2020, the interaction between whether

TABLE 4 | Ordinary least-squares regression results of influencing factors of RRL.

Variable 2000 2010 2020

MNL-1 MNL-2 MNL-1 MNL-2 MNL-1 MNL-2

Constant −0.188*** −0.161*** −0.142*** −0.122*** −0.107*** −0.131***
WNR 0.021 −0.348** 0.029** −0.186*** 0.021 −0.234***
PIFA 0.008 −0.008 0.081 0.091 0.081 0.104**
PIRED −0.276*** 0.136 −0.065 −0.024 −0.063 −0.074
UCLA 0.289*** 0.172** −0.086* −0.063 −0.271*** −0.183**
PGDP −0.104* −0.066 0.011 0.034 −0.063 −0.031
PPI 0.057 0.022 −0.114*** −0.095* −0.135** −0.009
PFE 0.116 0.011 −0.005 −0.081 −0.011 −0.051
PCSA 0.045 0.165** 0.016 0.034 0.004 −0.091
PCLA 1.125*** 1.026*** 0.638*** 0.641*** 0.724*** 0.791***
PDIF 0.081 0.084 0.009 −0.036 0.053* 0.071
RRP 0.404*** 0.364*** 0.552*** 0.503*** 0.661*** 0.551***
PIFA * WNR −0.484 0.254 0.202
PIRED * WNR −0.159 −0.161 0.711***
UCLA * WNR 0.066 0.065 0.012
PGDP * WNR 0.568 −0.401 −0.713***
PPI * WNR 0.309* −0.018 −0.167
PFE * WNR 1.218*** 0.426*** 1.219***
PCSA * WNR −0.623*** 0.007 0.271**
PCLA * WNR 0.917*** 0.038 −0.071
PDIF * WNR −0.396** 0.111 −0.128
RRP * WNR 0.551*** 0.253*** 0.493***
R-squared 0.861 0.914 0.917 0.933 0.891 0.926
Sig. 0.000 0.000 0.000 0.000 0.000 0.000
Number of samples 122 122 122 122 122 122

Note: (1) ***, **, and * show statistical significance at the levels of 1%, 5%, and 10%, respectively. (2) WNR represents whether there are natural reserves, PIFA represents the per capita
investment in fixed assets, PIRED represents the per capita investment in real estate development, UCLA represents the urban construction land area, PGDP represents the per capita
gross domestic product, PPI represents the proportion of the primary industry, PFE represents the per capita fiscal expenditure, PCSA represents the per capita crop sowing area, PCLA
represents the per capita cultivated land area, PDIF represents the per capita disposable income of farmers, and RRP represents the rural resident population.
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there were natural reserves and the per capita crop sowing area
in 2010 was not significant, while the per capita cultivated land
area in 2010 greatly affected the change in the RRL area in the
natural reserve. Moreover, it is worth noting that in 2020, the
interaction term between whether there are natural reserves and
per capita real estate development investment and whether there
are natural reserves and per capita GDP is significant, indicating
that the delimitation of natural reserves will enhance the impact
of GDP on the growth of the RRL area and improve the impact
of per capita real estate development investment.

4 DISCUSSION

4.1 The Distribution and Change in Rural
Residential Land Show Differentiated
Characteristics
The current RRL area showed a trend of hot in the northeast and cold
in the southwest from 2000 to 2020. The hot spots were mainly
concentrated in Changsha, Changde, Yueyang, and other cities, while
the cold spots were concentrated in some counties of Xiangtan and
Huaihua. Among them, economic development was the main factor
affecting the increase in RRL (Fan et al., 2019). The difference is that
the RRL area in Xiangxi decreased the most (4,417.65 hm2). In
addition to economic factors, the government’s policy of poverty
alleviation and relocation in other places also has an important
impact. In addition, the change dynamics of RRL also show
significant spatial differences. The RRL area is growing due to the
constraints of economic development and the farmers’ thought of
“going home” in eastern Shaoyang andHengyang. For the counties in
the middle of Changsha, east of Xiangtan, and north of Zhuzhou, the
demand for urban construction land increases due to the development
of the Chang Zhu Tan metropolitan area, which leads to the
occupation of RRL, resulting in a significant reduction in the area
of RRL (He et al., 2019). Furthermore, we explore the change forms of
transfer in and transfer out of RRL and find that the main reason for
the reduction of RRL is the occupation of urban construction land,
which is mainly caused by the strong demand for urban construction
land with rapid urbanization. However, the increase in RRL mainly
comes from the cultivated land and forestland around the original
RRL. The main reason is that the occupied cultivated land and
forestland close to the original RRL are more convenient to
develop into new homesteads, and the protection intensity of
cultivated land and forestland by the local government is not
enough. Moreover, different from other countries and regions, the
distribution and change in RRL in Hunan Province of China are not
only related to the terrain and socioeconomic development but also
closely related to the immigration and relocation policies
implemented by the government (Liu et al., 2020).

4.2 The Growth of Rural Residential Land
Area in Natural Reserves Is Higher Than
That in Non-Natural Reserves
By analyzing the changes in the RRL area in natural reserves
and non-natural reserves from 2000 to 2020, we found that

the area of RRL in natural reserves increased by 1,538.37 hm2,
while the area of RRL in non-natural reserves decreased by
2,786.04 hm2. Combined with the local social, economic, and
policy constraints, it is found that to protect the healthy and
sustainable development of the natural environment, the
local government has formulated relatively strict land
control policies for the natural reserve, limiting the speed
of its socioeconomic development and urbanization,
resulting in the urbanization development speed of the
natural reserve being lower than that of the non-natural
reserve. Therefore, the area of RRL in the non-natural
reserve shows a significant reduction trend. It is worth
noting that although the establishment of natural reserves
is negatively correlated with the change of RRL, the RRL area
in natural reserves is increasing. The main reason for this
increase is that the growth of RRL is affected by many other
factors, such as rural economic development and population
growth, and the factor of whether there is a natural reserve
cannot directly promote the overall reduction of the
RRL area.

Meanwhile, some residents who moved to the urban areas
did not change their registered residence. To enjoy the
dividend policy brought by the establishment of natural
reserves, the new rural settlements in the natural reserves
were brought to the advantage by their registered residents in
rural areas, which to a certain extent led to the increase of the
RRL area in the natural reserves (Ristić et al., 2019). It is worth
noting that the RRL area in wetland nature reserves, such as
the East Dongting Lake National Nature Reserve in Yueyang,
increased rapidly in 2000–2020. When analyzing the
management policy of the natural reserve, it is found that
the management department divides the wetland natural
reserve into three levels: core area, test area, and buffer
area. The core area is prohibited from development, the
test area is moderately developed, and the buffer area is
allowed to be fully developed. However, the test area and
buffer area do not strictly restrict the expansion of RRL, which
leads to the rapid growth of RRL in these areas to a certain
extent (Xiao et al., 2021). Although the area of RRL in the
natural reserve shows a trend of growth, through the analysis
of the ordinary least-squares model, it is found that the
presence of natural reserves has a significant negative
correlation with the area of RRL, which also shows that the
establishment of natural reserves still limits the growth rate of
RRL to a certain extent.

4.3 Diversification of Factors Affecting the
Change in Rural Residential Land
Although the spatial distribution change of RRL is the result
of the joint action of natural, social, and economic factors
(Liu et al., 2019), the establishment of natural reserves limits
the change of RRL from the aspects of social economy and
land management policies to a certain extent. Through the
analysis of the ordinary least-squares model, it is found that
the growth of per capita cultivated land area and rural
resident population from 2000 to 2020 leads to a large
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number of farmers living in rural areas, and more RRL is
needed to build new houses. The growth of urban
construction land area during the early stage has no direct
impact on the growth of the RRL area, while the promotion of
urbanization needs to absorb a large rural population, and
this factor reduces the demand for the RRL area to a certain
extent. In addition, the establishment of natural reserves will
enhance the impact of government financial expenditure and
rural resident population on RRL; that is, in natural reserves,
more government financial expenditure and an increase in
rural resident population will promote the growth of the RRL
area. The per capita crop sowing area from 2000 to 2020
shows the influence of first limiting and then promoting the
growth of the RRL area. The summary and analysis can
divide the driving factors of RRL change in Hunan
Province into three categories: endogenous demand for
urbanization development, exogenous catalysis of
unbalanced regional development, and policy resettlement
measures (Yang et al., 2016). The establishment of natural
reserves does not play a decisive role but regulates some
factors affecting the change in RRL and then affects the
change in the RRL area through the comprehensive action
of multiple factors.

4.4 Research Contribution and Deficiency
The research contributions of this article are as follows: (1)
based on the perspective of whether there are natural reserves,
this article compares and analyzes the spatiotemporal change
characteristics of RRL between natural reserves and non-
natural reserves in Hunan Province; and (2) this article
analyzes the influencing factors of the RRL area change and
explores how the establishment of natural reserves
affects RRL.

There are some deficiencies in this study. (1) Although this
article selects 11 influencing factors based on the relevant
literature and the actual conditions of RRL in Hunan
Province, it does not involve the level of subjective factors
such as farmers’ will, which requires data to be obtained
through field research. (2) Due to the weak protection and
policy constraints of county-level natural reserves, this article
only considers provincial and national nature reserves. (3)
Since the research scale of this article is 122 county-level
administrative regions in Hunan Province, the research
results of this article may not apply to all regions of China
but can provide some reference for regions with similar
natural, social, and economic conditions.

5 CONCLUSION AND POLICY
IMPLICATIONS

Based on the spatial and panel data of 122 county-level
administrative regions in Hunan Province, this article
analyzes the spatiotemporal distribution characteristics of
RRL in natural reserves and non-natural reserves by using
land use change dynamics, nuclear density analysis, transfer
matrix modeling, and ordinary least-squares modeling and

explores how the establishment of natural reserves affects
RRL. The results show that (1) affected by rapid urbanization,
the overall RRL area in Hunan shifted from 171,162.27 hm2

in 2000 to 169,914.6 hm2 in 2020, with a total reduction of
1,247.67 hm2 and a decrease of 0.73%, and the distribution of
the RRL area change presented a hot trend in the northeast
and a cold trend in the southwest. (2) The spatial distribution
of RRL has significant heterogeneity due to natural
conditions. The traditional agricultural areas in the east
and northeast of Hunan have high residential density and
large land scale, while the RRL in the hills and mountainous
areas in the west and southwest of Hunan has low aggregation
degree and obvious sporadic distribution characteristics, and
the RRL area in western Hunan shows a sharp reduction
trend due to immigration policy. (3) The occupation of urban
construction land is the main reason for the reduction in RRL
area, and the transformation of cultivated land and forestland
into RRL is the main source of the increase in the RRL area.
(4) There are significant differences in the spatiotemporal
variation characteristics of the RRL area between natural
reserves and non-natural reserves. The RRL area mainly
shows an increasing trend in natural reserves, while it
mainly shows a decreasing trend in non-natural reserves.
Furthermore, the growth of the RRL area is mainly
concentrated in the non-natural reserves in central Hunan
and the natural reserves in northeast and northwest China,
while the non-natural reserves are the main areas where the
RRL area decreases. (5) The establishment of natural reserves
cannot directly promote the overall reduction of the RRL
area. Although there is a significant negative correlation
between the establishment of natural reserves and the area
of RRL, the total area of RRL in the natural reserve still shows
an increasing trend, indicating that the area of RRL is more
affected by economic development, government financial
expenditure, rural permanent population, etc. Meanwhile,
the per capita cultivated land area and rural resident
population promote the growth of the RRL area, while
urban construction land initially limits and then promotes
the growth of the RRL area from 2000 to 2020.

In addition, this article puts forward the following policy
implications for the optimization of RRL in natural reserves.
(1) The government should strengthen the planning and
management of RRL in natural reserves and relocate RRL
that are not suitable for living or have a fragile ecological
environment. (2) The government can strictly restrict the
construction of new RRL in the natural reserve and protect
and merge the original RRL suitable for living in the natural
reserve to strictly control the growth of RRL in the natural
reserve. (3) If farmers have a high demand for RRL, the local
government needs to protect and develop the natural reserve
according to local conditions. For example, the construction of
new RRL is prohibited in the core zone, and the area of RRL is
strictly limited in the experimental zone and buffer zone. (4)
The local government should also introduce relevant welfare
policies to encourage residents in natural reserves to migrate to
non-natural reserves and to reduce the area of RRL in natural
reserves.
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Deep Semantic Segmentation for
Rapid Extraction and
Spatial-Temporal Expansion Variation
Analysis of China’s Urban Built-Up
Areas
Maoyang Bai 1, Shiqi Zhang1, Xiao Wang1, Yu Feng1, Juan Wang2 and Peihao Peng1,2*

1College of Earth Sciences, Chengdu University of Technology, Chengdu, China, 2College of Tourism and Urban-Rural Planning,
Chengdu University of Technology, Chengdu, China

Changes in the spatial expansion of urban built-up areas are of great significance for the
analysis of China’s urbanization process and economic development. Nighttime light data
can be used to extract urban built-up areas in a large-scale and long-time series. In this
article, we introduced the UNet model, a semantic segmentation network, as a base
architecture, added spatial attention and channel attention modules to the encoder part to
improve the boundary integrity and semantic consistency of the change feature map, and
constructed an urban built-up area extraction model—CBAM_UNet. Also, we used this
model to extract urban built-up areas from 2012 to 2021 and analyzed the spatial and
temporal expansion of China’s urban built-up areas in terms of expansion speed,
expansion intensity, expansion direction, and gravity center migration. In the last
decade, the distribution pattern of urban built-up areas in China has gradually changed
from “center” to “periphery-networked” distribution pattern. It reveals a trend from
agglomeration to the dispersion of urban built-up areas in China. It provides a
reference for China’s urban process and its economic development.

Keywords: urban built-up areas, deep semantic segmentation network, CBAM_UNet, spatial and temporal
expansion of China, center–periphery network

1 INTRODUCTION

In 2012, China’s economy ushered the “New Normal” period. After experiencing rapid growth,
China’s economic growth rate began to slow down (Yang and Zhao, 2020; Yu et al., 2020). In 1966,
J.R. Fridemna proposed the “center-periphery” theory, which emphasizes that regional economic
growth must be accompanied by changes in the spatial structure of the economy and is mainly used
as a theoretical model to explain the unbalanced development process between inter-regional or rural
and urban areas (Liu et al., 2018). Urban built-up area expansion provides resources and capital for
rapid industrialization and urbanization, thus promoting economic growth, which will drive the
agglomeration of resources and labor, promoting the further expansion of urban built-up areas, but
the expansion also brings various problems, such as endangering national food security and reducing
biodiversity (Yue et al., 2014; Yang et al., 2020). Urban built-up areas are the most rapidly changing
areas in China during the transition period, and the extent of urban built-up areas expansion affects
the quality of urbanization and the process of sustainable development in China significantly (Liu
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et al., 2016; Zhang et al., 2016; Li J. et al., 2017; Hu et al., 2018).
Therefore, accurate spatial change in urban built-up areas is
essential to detect the urbanization process and to analyze the
driving factors of urban development and its impact on the
environment in China.

The gradual development of the remote sensing technology
and big data technology offers the possibility of rapidly extracting
urban built-up areas (Zhang et al., 2018; Bramhe et al., 2020). In
recent years, a large number of high-resolution (12–30 m) built-
up area products have been released globally and regionally, such
as Fine Resolution Observation and Monitoring of Global Land
Cover (FROM-GLC) (Gong et al., 2013) and GlobeLand30 (Chen
et al., 2015), which contains built-up areas as of 2010. Although
these product data have high accuracy, due to the limitations of
remote sensing image quality and launch time, most of them have
only 1 year of built-up area data, and there is also the problem of
confusion with the classification of bare land (Liu et al., 2019).
The nighttime light data (NTL) can provide timely urbanization
information, and it reflects the regional light intensity of the
earth’s surface at night and the weak light emitted from cities or
even rural areas, traffic flow, etc. Therefore, it can also clearly
distinguish urban and non-urban areas, and nighttime light data
can frequently and quickly obtain information about the earth’s
surface at night. Simultaneously, it can largely avoid the spectral
confusion of traditional multispectral remote sensing, so it is
widely used in long time series urban monitoring research. In
recent years, with the continuous enrichment of nighttime light
remote sensing data products, especially the emergence of the
new generation of nighttime light data NPP/VIIRS (National
Polar-Orbiting Partnership’s Visible Infrared Imaging
Radiometer Suite), which has effectively improved the spatial
resolution, temporal resolution, radiative resolution (Shi et al.,
2014), and other deficiencies of DMSP/OLS (Defense
Meteorological Satellite Program Operational Linescan System)
nighttime light data, it expands the research direction and
application fields of nighttime light data (Li and Zhou, 2017).

The data selection methods to extract urban built-up areas
mainly include the following three ways: first, the nighttime light
data were used alone. However, the lower spatial resolution and
insufficient detailed information on urban built-up areas will lead
to lower accuracy of the extraction (Zhang and Seto, 2013).
Second, it extracted urban built-up areas by combining
nighttime light data with statistical data, but statistical data are
difficult to obtain and have low timeliness. Third, the method
combined nighttime light data and remote sensing images to
extract urban built-up areas, which is commonly used in small-
scale extraction (Ma, 2018; He et al., 2020; Li et al., 2020), for
example, combining the traditional remote sensing image
Landsat with nighttime light data. However, the Landsat image
has many bands, and extracting urban built-up areas on a large
scale requires a large amount of data, resulting in a more complex
and time-consuming experimental setup for extraction (Liu et al.,
2021; Mithun et al., 2021). Lu et al. (2008) found that combining
MODIS (moderate-resolution imaging spectroradiometer) and
NDVI (Normalized Difference Vegetation Index) data with
DMSP/OLS nighttime light data can improve the accuracy of
urban built-up area extraction. In our experiment, a new

generation of nighttime light data NPP/VIIRS combined with
MODIS NDVI data was selected to explore a fast and accurate
method to extract urban built-up areas on large-scale and long-
time series. Also, there are three main methods to extract urban
built-up areas from the aforementioned images. One is the
threshold segmentation method, which relies on the
determination of the best threshold for the data, and no
systematic and effective threshold determination rules have
been formed: the artificial threshold method has strong
subjectivity, and the accuracy of extracting urban built-up
areas is low through the cluster threshold method, and the
mutation detection method is inefficient, and the accuracy
stability is poor (Liu et al., 2019; Wang et al., 2021). The
second is the pixel classification method. At present, machine
learning methods such as K-means unsupervised classification
(Ju et al., 2017) and support vector machines (SVMs) (Ma et al.,
2017; Jiang C. et al., 2021) are mainly used. The traditional
machine learning methods are relatively simple, but the
feature learning ability is limited, resulting in lower accuracy.
Deep learning can use deep-architecture neural networks (e.g.,
CNN) to automatically learn features from the input raw data and
directly generate powerful deep features, making it rapidly
developed in the field of target detection and scene
classification (Tan et al., 2018, 2020; Sun et al., 2020). Fully
convolutional neural networks are the cornerstone of deep
learning in the image semantic segmentation field, and it
replaces the last fully connected layer of the convolutional
neural network with a convolutional layer, effectively
implementing end-to-end training of the convolutional neural
network for image semantic segmentation, but the disadvantage
is that the translation invariance of the convolutional network
does not consider useful global context information (Wang et al.,
2018; Karim et al., 2019; Tan et al., 2019). The UNet model based
on the encoder-decoder was proposed, which was widely used in
medical images in the early days (Navab et al., 2015; Kaur et al.,
2021; Zhou et al., 2021), and in recent years, it has also been
performed prominently in the classification of remote sensing
images. Themodel has a neural network with an encoder-decoder
structure that first encodes features from the raw data using an
encoder and then decodes the target result from the feature
encoding using a decoder, while high-level and low-level
image features are merged through skip connections to
maximize the extraction of context information (Peng et al.,
2019; Wu et al., 2021; Yang et al., 2021). The attention
module was originally proposed to solve machine translation
problems by automatically learning weights to capture the
correlation between the hidden states of the encoder and the
decoder, weighting the output of the encoder, and can achieve
alignment between input and output while utilizing more context
information about the original data, making it an integral part in
the encoder-decoder structure (Zhu and Yang, 2018; Kearney
et al., 2019; Yang et al., 2021).

Remote sensing data combined with deep learning can quickly
extract urban built-up areas, which brings the possibility to
measure the changes of urban built-up areas in both temporal
and spatial dimensions. Previously, the existing urban expansion
metrics mostly characterize the process and characteristics of
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urban land expansion from a single “temporal” or “spatial”
dimension. Among them, the “temporal” urban expansion
metrics refer to the use of urban built-up area land scale,
spatial form, and other characteristics of the temporal change,
the intensity of change, which mainly includes the expansion
intensity index, and the average annual expansion index. “Spatial”
urban built-up area expansion metrics are measured from the
geometry of urban built-up areas (graphical patterns, such as
shape and area), which mainly include the expansion direction
index, center of gravity offset index, and aggregation index (Liu
et al., 2018); domestic scholars mainly study the expansion
characteristics of urban built-up areas in central, eastern, and
central-western China on a large scale; representative regions
such as Yangtze River Delta, Pearl River Delta, Beijing, Tianjin,
and Tang (Liu et al., 2000) on a medium scale; studies of large
cities such as Beijing, Shanghai, and Guangzho (Liu et al., 2018; Li
et al., 2021) on a small scale; less research on the expansion of
construction land in small- and medium-sized cities (Jiang W.
et al., 2021), and less quantitative analysis of spatial and temporal
changes in the expansion of urban built-up areas in China. In this
article, based on Google Earth Engine (GEE), using NPP/VIIRS
nighttime light data and MOD13Q1 NDVI with the same spatial
resolution, the UNet deep semantic segmentation neural network
was selected, which added both spatial attention and channel
attention modules in the encoder to improve the boundary
integrity and semantic consistency of the change feature map.
Then, a deep semantic segmentation model—CBAM_UNet was
built and was trained and tuned by the Adam optimization
algorithm and Dice Loss function to get the best parameters.
With the proposed model, we could rapidly extract urban built-
up areas on a large scale. So, we effectively and rapidly extracted
China’s urban built-up areas based on the CBAM_UNet model.
Meanwhile, to deeply analyze the expansion of China’s urban
built-up areas during slow economic growth, NPP/VIIRS
nighttime light data and MOD13Q1 NDVI data in 2012, 2015,
2018, and 2021 were selected to calculate China’s urban built-up
areas. We also analyzed the expansion characteristics of China’s
urban built-up areas through expansion speed, expansion
intensity, expansion direction, and gravity center migration.
Therefore, the proposed model—CBAM_UNet can provide a
methodological guide for quickly obtaining the area of built-up
areas, and the analysis results of the long-term spatial expansion
of built-up areas can also provide a certain reference value for
urban construction in China.

2 STUDY AREA AND DATASETS

2.1 Study Area
The study area is located in China (longitude 73°33’~135°05′ East,
latitude 3°51’~53°33′ North). From 1980 to 2011 was a period of
high economic growth in China: the average annual growth rate
of GDP was 10.03%, and urban population had increased from
89.405 million to 354.256 million. Urban built-up areas of
provinces were shown a typical center-periphery distribution,
mostly concentrated around a pole, and the distribution of urban
built-up areas in the coastal was concentrated around Beijing-

Tianjin-Hebei urban agglomeration, Yangtze River Delta urban
agglomerations, and Pearl River Delta urban agglomerations.

After 2012, China’s economy had ushered in a period of
slow growth with a focus on high-quality development. From
2012 to 2018, the average annual growth rate of GDP was
7.24%, and urban population had increased from 369.897
million to 427.300 million. Based on the period from the
launch of VIIRS (2012) to the present, this experiment
researched the changes in China’s urban built-up area
expansion after the slowdown of economic growth. These
data come from the China Statistical Yearbook.

2.2 Datasets
2.2.1 Data Sources and Access
1) NTL data

We used VIIRS as the NTL data, derived from the National
Geophysical Data Center (NGDC) of the National Oceanic and
Atmospheric Administration (NOAA) and provided by the
Suomi National Polar-orbiting Partnership (Suomi-NPP)
Visible Infrared Imagining Radiometer Suite (VIIRS), with a
spatial resolution of 742 m. In this experiment, monthly
averaged radiometric composites images with the influence of
stray light were removed and used. The aim was to avoid a large
number of missing values in the summer at high latitudes in this
image version (Li X. et al., 2017); the research period was chosen
to be from January to March and from September to December
for each year, with seven images per year.

2) Reference data

This experiment’s remote sensing data are NDVI data, which
are from MOD13A1, a 16-day synthetic product with a spatial
resolution of 500 m. Meanwhile, to reduce the influence of cloud
cover, we used maximum value composite (MVC) (Holben,
1986) to get the NDVI images for each year.

Also, the sample data are the 2020 WorldCover product from
the European Space Agency (ESA), which provides a 10-m spatial
resolution global land cover map based on Sentinel-1 and
Sentinel-2 data, including 11 land cover categories, and we
selected the “built-up” label as the sample data for the
model input.

All data were acquired through Google Earth Engine (https://
code.earthengine.google.com/, GEE).

2.2.2 Data Reprocessing
We used the threshold method for NTL data to remove the
images’ extraordinarily high and low values and the mean value
method (Shi et al., 2014) to composite the annual images. In
addition, we logarithmically transform the composite annual
nighttime light images to reduce the influence of high values
and enhance the homogeneity of the overall radiation value
distribution in urban built-up areas.

All images were converted to Asia Lambert Conformal Conic
projection, where both VIIRS and WorldCover images were
resampled to 500 m spatial resolution by the nearest neighbor
method to avoid decreasing in DN values of the images with
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increasing latitude (Elvidge et al., 2009) and ensure the spatial
consistency across the datasets. In addition, based on
WorldCover data, all data layers were geometrically rectified.
An overview of the datasets is shown in Table 1.

3 METHODS

This experiment consists of extracting China’s urban built-up
areas and its spatial expansion analysis (Figure 1). The first part is
the time-series urban built-up areas extraction. First, the NTL
data andNDVI data in 2020 were chosen to build and train a deep
semantic segmentation model for rapidly extracting China’s
urban built-up areas, and then input the NTL data and NDVI
data in 2012, 2015, 2018, and 2021 into the calibrated model to
extract China’s urban built-up areas for the 4 years. The second
part is to analyze the expansion speed, intensity, and direction of
China’s urban built-up areas and gravity center migration of
urban construction based on the extracted time-series urban
built-up areas.

3.1 Construction and Training for Urban
Built-Up Area Extraction’s Model
3.1.1 Developing CBAM_UNet
1) Standard UNet

The UNet is based on the fully convolutional neural
network, which was first proposed for biomedical image
segmentation, overcoming the difficulty of predicting
boundaries with small training set images (Navab et al.,
2015). It mainly consists of an encoder part and a decoder
part. The encoder has four sub-modules: a convolutional layer
and a pooling layer, making the image features progressively
smaller and more abstract. The decoder corresponds to the
encoder layer by layer. With the decoder deconvolution layer,
the feature sizes were sequentially getting more extensive and
using skip connections to connect and merge the decoder part
deconvolution results in the output of the encoder part.
Finally, the probability map is output through a 1 × 1
convolution layer.

TABLE 1 | Dataset overview.

Dataset Data type Spatial resolution (m) Resampled spatial resolution
(m)

Year

VIIRS NTL 742 500 2012, 2015, 2018
MOD13A1 NDVI 500 500 2020, 2021
WorldCover LandCover 10 500 2020

FIGURE 1 | Overview of the workflow.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 8837794

Bai et al. Extract Built-Up Areas by CBAM_UNet

106

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


The UNet model currently performs well in image
segmentation due to its excellent model architecture. The
combination of NTL data and NDVI used in this experiment
has fewer bands, which was consistent with the medical image
with fewer bands. In other words, this experiment can also be
regarded as a problem of the image extraction with small training
sets (urban built-up areas), so the model built in this experiment
chose the UNet model as the base architecture.

2) Convolutional Block Attention Module

The attention module is a simulation of the human brain
operation, which is designed to guide the deep neural network to
focus on the features that aremore relevant to the task. For the image
classification task, the attention module combines the important
features of the input image and the extracted feature spectrum, by
combining the true value and the loss function, together with the
backward propagation algorithm, to guide the network to
automatically find the features that improve the task performance
the most and assign a higher weight to that feature, thus improving
the performance of the model.

Generally, the attention module mainly used by the neural
network is divided into two categories: (1) soft attention, which
assigns a weight between 0 and 1 to each input item, indicating the
level of attention for each part. Soft attention is differentiable so that
the attention weights can be obtained by forward and backward
propagation (Xiao et al., 2015). However, since soft attention
considers most of the information to different degrees, the
amount of calculation is relatively large. (2) Hard attention, which
assigns a weight of either 0 or 1 to each input item, is different from
soft attention in that hard attention only considers which parts need
attention and which parts do not. Hard attention is not differentiable,
so the training process is usually carried out through reinforcement
learning (Mnih et al., 2014). The advantage is that the time and
computational cost can be reduced, but some information that should
be attended to may be lost.

Convolutional block attention module (CBAM), as a
lightweight attention module, belongs to soft attention and
contains two sequential sub-modules: channel attention
module (CAM) and spatial attention module (SAM), which
build attention modules on channel and space, respectively
(Figure 2) (Zhu and Yang, 2018).

CAM mainly focuses on “what” is meaningful in the input
image (Figure 3). To compute channel attention efficiently,

average-pooling and max-pooling are used to compress the
spatial dimension of the input feature map, realizing the
aggregation of spatial information. Then, the average pooled
features and max pooled features are forward propagated into
a shared multi-layer perceptron (MLP). Finally, the two output
feature vectors are merged by element summation to obtain the
channel attention map. The calculation formula of channel
attention is shown in Eq. 1.

SAM is different from CAM in that it is more concerned
with “where” being the more informative part, which
complements channel attention (Figure 3). Average-pooling
and max-pooling are first applied in the channel dimension,
and the two-channel features are concatenated to compute
spatial attention. A standard 7 × 7 convolutional layer then
convolves the concatenated features to obtain the spatial
attention map. The calculation formula of spatial attention
is shown in Eq. 2.

Mc(F) � σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))
� σ(W1(W0(Fc

avg)) +W1(W0(Fc
max))), (1)

Ms(F) � σ(f7×7([AvgPool(F);MaxPool(F)]))
� σ(f7×7([Fs

avg;F
s
max])), (2)

where Mc(F) denotes channel attention map, and Ms(F) denotes
spatial attention map; σ denotes the sigmoid function, MLP
denotes multi-layer perceptron and F denotes input features,
Fcavg and Fcmax denote average-pooled features and max-pooled
features, respectively, W0 and W1 denote the MLP weights, f 7×7

represents a convolution operation with the filter size of 7 × 7, F s
avg

and Fsmax denote average-pooled features and max-pooled
features across the channel.

3) CBAM_UNet

In this experiment, we constructed a CBAM_UNet neural
network for urban built-up areas extraction, which combined
channel and spatial attention modules (Figure 4). The main
structure of CBAM_UNet consists of two parts: the encoder and
decoder. The encoder part, which extracted the features of the image
layer by layer through convolution and pooling to obtain feature
information, consists of four blocks, and each block was convolved
twice with standard 3 × 3 convolution layer and batch normalization
and activated by the ReLU function. The CBAM attention module
was added before under-sampling the image. Each under-sampling
doubled the number of feature channels while compressing the
length and width of the image by half. Finally, the length and width
of the input raw imagewere compressed from128 × 128 to 8 × 8, and
the number of feature channels was increased from 2 to 1024
through the entire encoder part.

The decoder part also consists of four blocks (this part follows
the standard UNet), which were up-sampled by deconvolution to
recover the original size of the image and output the segmentation
result. It consists of eight 3 × 3 convolution layers, one 1 × 1
convolution layer, and four 2 × 2 up-sampling layers, with the
feature channels, were reduced from 1024 to 2, all using ReLU as
the activation finally got the classification results through the

FIGURE 2 | Overview of CBAM. The module has two sequential
submodules: channel and spatial (Woo et al., 2018).
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Sigmoid function. Since high-resolution feature information is
often lost in up-sampling, the UNet did not directly up-sample
high-level semantic features. It added skip connections to each
block. There has the advantage of merging more low-level
features into the up-sampling process, achieving feature fusion
at different scales, improving the information during up-
sampling, and complementing the contextual information of
the input image. Ultimately, this multi-scale prediction is
achieved, improving the segmentation’s accuracy.

Therefore, the main difference is in the encoder part between
the proposed model CBAM_UNet and the standard UNet
structure, and we added the CBAM attention module before
under-sampling the image.

3.1.2 Algorithm Implementation
The training part is mainly to train and calibrate the model, and
its purpose is to obtain the optimal tuning model. Essentially,

calibration uses an optimization algorithm to minimize the loss
function by iteratively estimating the weights of the parameters.
The process consists of determining the loss function, setting the
optimization algorithm, and iterating parameters.

In semantic segmentation, choosing the appropriate loss
function is crucial to the results of model training. Linear
cross-entropy loss was mostly used as the loss function in
binary image segmentation (Vi-de and Qing, 2004) and is
shown in Eq. 3:

L � − 1
N

∑N
i�1
[yi · log(pi) + (1 − yi) · log(1 − pi)], (3)

where yi represents the label of sample, i and pi indicate the
probability that the sample i is predicted to be a positive class.

However, the linear cross-entropy loss function has an obvious
disadvantage. When the quantity of positive samples is
significantly less than that of negative samples, the results of

FIGURE 3 | Diagram of each attention sub-module (Woo et al., 2018).

FIGURE 4 | CBAM_UNet architecture.
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the model classification will be greatly biased toward the
background. So we used Dice Loss, which was proposed to
solve the problem of extremely unbalanced classification
samples (Milletari et al., 2016). Dice Loss is a function based
on the Dice coefficient and derived from binary classification. It is
a measure of the overlapping part of two samples, with the
measure ranging from 0 to 1. A dice coefficient equal to 1
means complete overlap. Dice Loss is defined as Eq. 4:

L � 1 −
2 ∑
pixels

ytrueypred

∑
pixels

(y2
true + y2

prd), (4)

where ytrue represents the label’s value, and ypred denotes the value
obtained from the model.

In summary, the steps of model training are as follows:

1) We combined the preprocessed NPP-VIIRS NTL data and
MOD13A1 NDVI data in 2020 into a two-band image data
through band composited and selected the “built-up” label
from WorldCover product in 2020 provided by ESA as the
label data for the model input.

2) Clipping the sample datasets: The “fishnet” function in
ArcGIS was used to clip both the composited two-band
image data and the label data into 128 × 128 size images.

3) Splitting the sample datasets: 1294 images were randomly
chosen as the training set, and the remaining 142 images were
used as the validation set. Both sets were the input data of
the model.

4) Model training process: The training set was input into the
CBAM_UNet model, the loss values of the training data and
label data were calculated through the Dice Loss function, and
the model parameters were optimized by the Adam optimizer
until the loss function was fitted (Kingma and Ba, 2015). The
initial learning rate of the model was 1e-3, and the total
number of iterations was 40 epochs.

3.1.3 Accuracy Evaluation
We introduced five accuracy evaluation indicators to verify the
model’s accuracy. These are precision (P), recall (R), F1-score
(F1), mean of class-wise intersection over union (mIoU), and
overall accuracy (OA). Among them, P evaluates the precision of
the model: the larger value means there are fewer misclassified
pixels. R evaluates the recall rate of the model: the larger the value
is, the fewer omitted pixels are. F1 represents the harmonic mean
of P and R, and it is a global indicator for evaluating the
classification accuracy: the higher the value indicates, the more
accurate the model is. Meanwhile, OA and mIoU show the
model’s overall performance: and their larger values reveal the
better performance. OA is the ratio of the number that correctly
classified category elements to the total number of categories.
mIoU is obtained by calculating the ratio of the intersection and
union of the two sets of the true values and the predicted values of
each category, then averaging the results. Intersection over union
(IOU) of urban built-up areas was not used in the evaluation
indicators. Because the number of samples in urban built-up
areas (foreground) and non-urban built-up areas (background)

was extremely unbalanced, it leads to low IOU values in urban
built-up areas. Therefore, it is reasonable to evaluate the accuracy
of the extraction results of urban built-up areas by p value, R
value, and F1, and to evaluate the model’s overall accuracy by OA
and mIOU. The calculation formula for each indicator is as
follows:

P � TP

TP + FP
, (5)

R � TP

TP + FN
, (6)

F1 � 2PR
P + R

, (7)

OA � TP + TN

TP + TN + FP + FN
, (8)

mIOU � 1
2
( TP

TP + FP + FN
+ TN

TN + FN + FP
), (9)

where TP, FP, TN, and FN denote the number of true positives,
the number of false positives, the number of true negatives, and
the number of false negatives.

Meanwhile, to verify the model’s accuracy in extracting built-
up areas from 2012 to 2021 without sample data, we introduced
the “China Statistical Yearbook” (stats.gov.cn) issued by the
National Bureau of Statistics to obtain the built-up area data
in 2012, 2015, and 2018 (excluding Hong Kong, Macau, and
Taiwan, but the data for 2021 have not yet been released), and the
experimental model extraction results are compared.

3.1.4 Comparison With Other Methods
To verify the model accuracy of the proposed CBAM_UNet, we
input the same sample data into the other three models, the
standard U-Net, support vector machine (SVM), random forest
(RF), and extracted urban built-up areas in China in 2020. Also,
to ensure the objectivity of the result comparison, the loss
function, optimizer, and training parameters of the basic UNet
were the same as the method proposed in this article. SVM is a
fast and reliable classification method for supervised learning. A
given training data achieve classification by finding the maximum
margin hyper-plane and using the cross-validation method to
determine the penalty factor C and the parameter γ of the kernel
function. RF is an ensemble learning algorithm based on a non-
parametric regression algorithm, which is an ensemble classifier
based on the decision tree. Parameters such as the number of
decision trees, the maximum number of leaf nodes, and the
minimum number of samples that can be divided by a node
are optimized through the accuracy curve.

3.1.5 Experimental Setup
This experiment was carried out in a Windows10 environment,
and the model was built by a deep learning framework—Pytorch.
The software and hardware environments are shown in Table 2.

3.2 Extraction of Urban Built-Up Areas
We downloaded the NPP-VIIRS NTL and the MOD13A1 NDVI
data from 2012 to 2021 through GEE (every 3 years). They were
preprocessed as described earlier to composite the datasets for
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semantic segmentation. Then, we extracted China’s urban built-
up areas in 2012, 2015, 2018, and 2021 through the calibrated
CBAM_UNet and analyzed the change in urban built-up areas
during the study period.

3.3 Spatial Expansion Analysis Method
1) Expansion speed and intensity

Using the urban expansion speed and intensity as indicators to
study the spatial and temporal characteristics of China’s urban
built-up areas expansion (Yin et al., 2021).

Urban expansion speed (Eq. 10): this indicates the growth of
China’s urban built-up areas.

Urban expansion intensity (Eq. 11): this indicates the rate of
China’s urban built-up areas in a period.

S � Mb −Ma

T
, (10)

P � Mb −Ma

Ma
×
1
T
, (11)

where S indicates the expansion speed of urban built-up areas, P is
the expansion intensity of urban built-up areas, T is the time
interval and Ma and Mb indicate the area of early and late urban
built-up areas.

2) Expansion directions

The direction of the country’s urban expansion determines the
development direction of the entire country to a certain extent
and provides a reference value for the country’s macro-
management work. In this section, we used the geometric
quadrant orientation method (Liu et al., 2021) to compare and
analyze the expansion differences of urban built-up areas in
different spatial orientations in each period, and different
spatial orientations reflected the spatial characteristics of urban
expansion, so the spatial form of China’s urban built-up areas
expansion can be described.

The area change of urban built-up areas in several regions of
China during the study period was calculated by the geometric
quadrant orientation method. The center was set at
34°32′27.00″N and 108°55′25.00″E. So China was divided into
north (N), northeast (NE), east (E), southeast (SE), south (S),
southwest (SW), west (W), and northwest (NW).

3) Gravity Center Migration

The change in the country’s urban built-up areas’ gravity
center is a significant indicator (Liu et al., 2013; Zeng et al.,
2015), which reflects the intensity and spatial characteristics of
China’s urban expansion and is also important for understanding
the compactness of modern urban development. With the
expansion of China’s urban built-up areas, we calculated the
coordinates of the gravity center and the migration distances of
China’s urban built-up areas in 2012, 2015, 2018, and 2021. As
shown in Eqs 12, 13:

Xt �
∑n
i�1
CtiXi

∑n
i�1
Cti

, (12)

Yt �
∑n
i�1
CtiYi

∑n
i�1
Cti

, (13)

where Xt denotes the longitude coordinate of the gravity center in
year t, and Yt denotes the latitude coordinate of the gravity center
in year t. Cti denotes the area of urban built-up areas patch i; Xi

and Yi denote the gravity center coordinates of patch i,
respectively; n denotes the number of patches.

4 RESULTS AND ANALYSIS

4.1 Experimental Results and Analysis
4.1.1 Model Training and Built-Up Area Extraction
Results in 2020

• Model training results

The learning rate is the hyperparameter of how the gradient of
the loss function is used to adjust the network weights in the gradient
descent method. A learning rate that is too large may cause the loss
function to cross the global optimum directly; a learning rate that is
too small will result in a slow change in the loss function, increase the
convergence complexity of the network, and make it easy to get
trapped in a local minimum. A suitable learning rate can reach the
loss minimum faster, while ensuring that the converged loss value is
the global optimal solution of the neural network. Therefore, the

TABLE 2 | Hardware and software parameters.

Parameter configuration

Hardware CPU Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz 2.59 GHz
Memory 16 GB
Hard disk 1 TB
GPU NVIDIA GeForce RTX 2060 Video Memory: 6 GB CUDA Cores: 1920

Software Operating system Windows10
Computing platform CUDA11.2 + cudnn8.1.0
Programming language Python3.8
Processing platform and framework Image processing: ArcGIS10.8、Google Earth Engine Deep Learning: Pytorch 1.8.1
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learning rate in model training is an unavoidable and particularly
important hyperparameter. This experiment uses the Adam
optimizer to adjust the gradient adaptively, which effectively
balances the influence generated by the learning rate. Four initial
learning rates of 0.1, 0.01, 0.001, and 0.0001 were set for comparison,
all with 40 training cycles and a batch size of 16. The batch size refers
to the number of data samples crawled in one training, which will
have an impact on the stability of the network model. In this
experiment, two batch sizes of 8 and 16 are selected for training,
considering the effect of computer memory. Their accuracy
variations are shown in Figure 5.

As can be seen from Figure 5, the convergence speed of the
CBAM_UNet model for extracting the built-up area is mainly
influenced by the learning rate. During training, the convergence
speed obtained for small learning rate (0.0001, 0.001) than large
learning rate (0.1, 0.01) is smaller, but the converged loss value is
lower than that of large learning rate, but the loss value of small
learning rate 0.0001 is not as good as that of learning rate 0.001,
indicating that learning rate 0.0001 is trapped in the local
minimum, so the optimal initial learning rate for the proposed
CBAM_UNet model training is 0.001. When the batch size is
selected as 8, the network model still has large local fluctuations
after leveling off, while the network model with batch size 16 has
less fluctuation in classification accuracy after leveling off.

Based on the sensitivity test of the model, we can derive the
sensitivity analysis of this experiment for model training: the

optimal parameters for its hyperparameter learning rate and
batch size are learning rate 0.001 and batch size 16. According
to the hyperparameters, it can be concluded the extraction
accuracy urban built-up area in 2020.

Among the 34 provinces, Shanghai has the highest F1 value of
0.8095, followed by Guangdong, Taiwan, and Beijing, all of which
have F1 values greater than 0.70. Eighteen provinces have F1 values in
the range of 0.60–0.70, including Jiangsu, Sichuan, and Fujian. The
remaining 12 provinces have F1 values below 0.60. Overall, the image
segmentation accuracy is higher in economically developed regions.

To compare the differences between the areas extracted by the
four models and Ground Truth, we selected three cities with GDP
greater than 1 in 2012: Beijing, Shanghai, Guangzhou, three cities
with GDP between 0.1 and 1 in 2012: Chengdu, Zhengzhou,
Changchun, and two cities with GDP less than 0.1 in 2012:
Haikou, Xining, tracking their urban built-up area variation over
the past decade. As shown in Figure 6.

We can see that for the eight cities, the area extracted by traditional
machine learning algorithms is larger than that extracted by ground
truth, especially SVM, which shows that traditional machine learning
algorithms have more misclassifications and fewer wrong
classification areas, which is consistent with our conclusion that
the recall value of the classification accuracy is larger and the
precision is smaller; for the deep learning model, the area extracted
by the two models is smaller than the area extracted by the ground
truth, which is also consistent with the precision value we obtained for

FIGURE 5 | Sensitivity analysis. (A,B) Loss value with different learning rates. (C,D) Loss value with different batch sizes.
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its classification accuracy greater than its recall value. Meanwhile, the
area of our proposed CBAM_UNet model is the closest to the ground
truth, which also shows that our model has higher accuracy.

Also, we validated the accuracy of the model in 34 provinces in
China. Except CBAM_UNet proposed in this article, we also used
standard UNet, RF, and SVM, three models to extract China’s
urban built-up areas in 2020. To ensure the objectivity of the
result comparison, the loss function, optimizer, and training
parameters of standard UNet were the same as the method
proposed in this article. The various accuracy indicators
proposed in the previous section were calculated by comparing
the label data in 2020 with the image segmentation results
obtained by the four models. The results are shown in Table 3.

As shown in Table 3, the average OA value of CBAM_UNet
is 0.9969, p value is 0.7454, R value is 0.6016, F1 value is 0.6658,
and mIoU value is 0.7480; the average OA value of UNet is
0.9969, p value is 0.7655, R value is 0.5512, F1 value is 0.6409,
and mIoU value is 0.7342; the average OA value of RF is
0.9944, p value is 0.3573, R value is 0.8452, F1 value is 0.5023,
and mIoU value is 0.6648; the average OA value of SVM is
0.9943, p value is 0.3542, R value is 0.8567, F1 value is 0.5012,
and mIoU value is 0.6643. In the method proposed in this
article, except the p value is slightly lower than the standard
UNet (0.7655), the other four indicators are better than or
equal to the standard UNet, RF, and SVM. Compared with
traditional machine learning (RF and SVM), this model has a

FIGURE 6 | Accuracy assessment using ground truth.
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TABLE 3 | Accuracy assessment of urban built-up area results.

Province CBAM_UNet UNet RF SVM

OA Precision Recall F1 mIoU OA Precision Recall F1 mIoU OA Precision Recall F1 mIoU OA Precision Recall F1 mIoU

Heilongjiang 0.9966 0.8754 0.4468 0.5917 0.7084 0.9963 0.9199 0.3634 0.5210 0.6743 0.9933 0.4332 0.7217 0.5414 0.6822 0.9920 0.3911 0.8058 0.5266 0.6747
Xinjiang 0.9990 0.6016 0.4824 0.5354 0.6823 0.9989 0.5884 0.4762 0.5264 0.6781 0.9978 0.3127 0.6385 0.4198 0.6317 0.9971 0.2634 0.7230 0.3862 0.6182
Shanxi 0.9900 0.7312 0.5575 0.6326 0.7263 0.9901 0.8031 0.4786 0.5997 0.7092 0.9676 0.3040 0.8436 0.4469 0.6275 0.9702 0.3211 0.8277 0.4627 0.6354
Ningxia 0.9886 0.7073 0.4899 0.5788 0.6979 0.9888 0.7335 0.4725 0.5748 0.6960 0.9829 0.4720 0.6154 0.5343 0.6736 0.9783 0.3966 0.6835 0.5019 0.6566
Tibet 0.9999 0.4080 0.4090 0.4085 0.6283 0.9999 0.4111 0.3691 0.3890 0.6207 0.9997 0.1810 0.7880 0.2944 0.5861 0.9996 0.1465 0.8628 0.2505 0.5714
Shandong 0.9559 0.7953 0.5080 0.6200 0.7017 0.9525 0.8572 0.3960 0.5417 0.6613 0.9198 0.4612 0.7860 0.5813 0.6624 0.9241 0.4778 0.7689 0.5894 0.6688
Henan 0.9769 0.7372 0.5660 0.6403 0.7237 0.9773 0.7998 0.5020 0.6168 0.7114 0.9503 0.4071 0.8065 0.5411 0.6598 0.9496 0.4034 0.8097 0.5385 0.6582
Jiangsu 0.9445 0.7533 0.6236 0.6823 0.7294 0.9459 0.7969 0.5817 0.6725 0.7247 0.8529 0.3855 0.9095 0.5415 0.6051 0.8508 0.3832 0.9218 0.5413 0.6038
Anhui 0.9843 0.6629 0.6616 0.6623 0.7395 0.9854 0.7245 0.6039 0.6587 0.7382 0.9483 0.2955 0.8792 0.4423 0.6156 0.9521 0.3115 0.8725 0.4591 0.6245
Hubei 0.9891 0.6463 0.6077 0.6264 0.7225 0.9897 0.6973 0.5584 0.6202 0.7195 0.9709 0.3196 0.8311 0.4617 0.6353 0.9718 0.3277 0.8327 0.4703 0.6394
Zhejiang 0.9634 0.7111 0.6658 0.6877 0.7430 0.9647 0.7325 0.6556 0.6919 0.7461 0.8898 0.3466 0.9289 0.5048 0.6104 0.8857 0.3420 0.9627 0.5047 0.6081
Jiangxi 0.9904 0.6254 0.6069 0.6160 0.7177 0.9908 0.6569 0.5699 0.6103 0.7150 0.9794 0.3613 0.8250 0.5025 0.6573 0.9802 0.3717 0.8269 0.5129 0.6624
Hunan 0.9926 0.6595 0.6594 0.6594 0.7422 0.9926 0.6763 0.6189 0.6464 0.7350 0.9818 0.3627 0.8756 0.5129 0.6633 0.9821 0.3668 0.8737 0.5167 0.6652
Yunnan 0.9970 0.6828 0.6009 0.6392 0.7334 0.9970 0.7021 0.5749 0.6321 0.7296 0.9897 0.2845 0.8720 0.4290 0.6314 0.9895 0.2807 0.8805 0.4257 0.6299
Guizhou 0.9947 0.5070 0.4982 0.5026 0.6651 0.9947 0.5131 0.4512 0.4802 0.6553 0.9825 0.2210 0.8894 0.3540 0.5987 0.9813 0.2130 0.9137 0.3454 0.5950
Fujian 0.9823 0.6515 0.6073 0.6286 0.7202 0.9820 0.6449 0.6003 0.6218 0.7164 0.9441 0.3007 0.9534 0.4572 0.6196 0.9476 0.3142 0.9488 0.4721 0.6277
Guangxi 0.9940 0.6352 0.6418 0.6385 0.7315 0.9942 0.6563 0.6140 0.6344 0.7294 0.9839 0.3216 0.8649 0.4688 0.6450 0.9831 0.3119 0.8800 0.4606 0.6411
Guangdong 0.9752 0.7653 0.7521 0.7586 0.7926 0.9745 0.7481 0.7670 0.7574 0.7915 0.9156 0.3777 0.9667 0.5432 0.6420 0.9151 0.3774 0.9764 0.5444 0.6423
Hainan 0.9914 0.7284 0.5082 0.5987 0.7093 0.9910 0.7052 0.5020 0.5865 0.7030 0.9438 0.1740 0.9152 0.2924 0.5572 0.9455 0.1790 0.9208 0.2998 0.5606
Jilin 0.9946 0.8317 0.5465 0.6595 0.7433 0.9942 0.8930 0.4480 0.5966 0.7097 0.9879 0.4322 0.8247 0.5671 0.6918 0.9850 0.3779 0.8658 0.5262 0.6709
Liaoning 0.9858 0.8266 0.5110 0.6316 0.7236 0.9847 0.8933 0.4025 0.5549 0.6843 0.9707 0.4391 0.8443 0.5777 0.6881 0.9687 0.4224 0.8612 0.5668 0.6818
Tianjin 0.9091 0.7964 0.6171 0.6954 0.7158 0.9026 0.8549 0.5068 0.6364 0.6801 0.7742 0.4210 0.9137 0.5764 0.5690 0.7918 0.4418 0.9033 0.5933 0.5882
Qinghai 0.9995 0.6187 0.3703 0.4633 0.6505 0.9995 0.6381 0.3393 0.4430 0.6421 0.9991 0.2769 0.4924 0.3544 0.6072 0.9988 0.2422 0.5697 0.3398 0.6018
Gansu 0.9976 0.7017 0.4026 0.5116 0.6707 0.9977 0.7132 0.4156 0.5252 0.6769 0.9953 0.3583 0.6549 0.4632 0.6484 0.9948 0.3372 0.7108 0.4574 0.6457
Shaanxi 0.9931 0.6883 0.5997 0.6410 0.7324 0.9933 0.7196 0.5663 0.6338 0.7286 0.9805 0.3264 0.8538 0.4723 0.6447 0.9770 0.2925 0.8828 0.4394 0.6292
Neimenggu 0.9985 0.8084 0.4733 0.5970 0.7120 0.9984 0.8643 0.4042 0.5508 0.6893 0.9970 0.4154 0.6212 0.4979 0.6642 0.9968 0.3983 0.7284 0.5150 0.6718
Chongqing 0.9895 0.5221 0.6750 0.5888 0.7033 0.9895 0.5212 0.6711 0.5867 0.7023 0.9627 0.2240 0.9562 0.3630 0.5920 0.9636 0.2288 0.9595 0.3695 0.5949
Hebei 0.9707 0.8512 0.3965 0.5410 0.6705 0.9690 0.9094 0.3200 0.4734 0.6393 0.9500 0.4492 0.6452 0.5296 0.6544 0.9526 0.4678 0.6260 0.5355 0.6585
Shanghai 0.8635 0.8461 0.7759 0.8095 0.7438 0.8596 0.8680 0.7364 0.7968 0.7342 0.7624 0.6187 0.9500 0.7493 0.6154 0.6444 0.5127 0.9847 0.6743 0.4729
Beijing 0.9305 0.8530 0.6087 0.7104 0.7374 0.9292 0.8870 0.5669 0.6917 0.7259 0.8131 0.4262 0.9664 0.5915 0.6019 0.8204 0.4360 0.9629 0.6003 0.6106
Taiwan 0.9694 0.7209 0.7396 0.7302 0.7715 0.9693 0.7057 0.7760 0.7391 0.7771 0.7593 0.1886 0.9993 0.3173 0.4668 0.7612 0.1898 0.9994 0.3190 0.4684
Hong Kong 0.9404 0.8796 0.5250 0.6575 0.7133 0.9463 0.9071 0.5649 0.6962 0.7384 0.6804 0.2537 0.9960 0.4044 0.4475 0.4622 0.1682 0.9980 0.2879 0.2824
Macao 0.8824 0.6500 0.6300 0.6398 0.6752 0.8137 0.6231 0.5482 0.5833 0.4309 0.6311 0.0556 0.3000 0.0938 0.2317 0.3627 0.1333 1.0000 0.2353 0.2134
Sichuan 0.9963 0.6362 0.6763 0.6556 0.7420 0.9964 0.6520 0.6625 0.6572 0.7429 0.9856 0.2561 0.9322 0.4018 0.6185 0.9858 0.2579 0.9315 0.4040 0.6194
total 0.9969 0.7454 0.6016 0.6658 0.7480 0.9969 0.7655 0.5512 0.6409 0.7342 0.9944 0.3573 0.8452 0.5023 0.6648 0.9943 0.3542 0.8567 0.5012 0.6643

The bold values in table highlight the optimal values for each precision indicator when extracted from each province and for the total urban built-up areas.
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reduction in R value, which means the omitted urban built-up
areas have increased, but the significant improvement in p
value is useful for analyzing the changes of urban built-up
areas over a period. Excessive misclassification of RF and SVM
models will lead to overestimating urban built-up areas each
year, thus weakening inter-annual growth.

4.1.2 The Extraction Results of Urban Built-Up Areas in
China From 2012 to 2020
We used the calibrated model for extracting urban built-up areas,
and the proposed built-up areas for 2012 to 2020 are shown in
Table 4 as follows.

On a province scale: Guangdong has the largest urban built-
up areas, with 10,221.25 km2 in 2021, making it the only
province with over 10000 km2, followed by Jiangsu,
Shandong, and Zhejiang, which have urban built-up areas
over 5000 km2. Hong Kong and Macau have the smallest
urban built-up areas, especially due to their small

administrative districts. In addition, urban built-up areas of
Tibet, Qinghai, Hainan, and Ningxia are less than 500 km2,
relatively smaller than other provinces.

From the above Table 4, it is worth noting that we can
conclude that Guangdong, Shandong, Zhejiang, Jiangsu, and
Henan have the largest growth area. Since 2011, these five
provinces have introduced a series of policies that encourage
farmers to buy houses in cities, providing preferential loans to
promote the “citizenization” of migrant workers. The demand for

TABLE 4 | Expansion of urban built-up areas in all provinces from 2012 to 2021.

Province Urban built-up areas in 2012 Urban built-up areas in 2021 Urban built-up areas expansion from
2012 to 2021

Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Growth percentage
(%)

Heilongjiang 1006.5 1.97 1225.25 1.57 218.75 0.81
Xinjiang 738.5 1.45 1497 1.92 758.5 2.80
Shanxi 1201.5 2.36 1761.25 2.26 559.75 2.07
Ningxia 326 0.64 496.5 0.64 170.5 0.63
Tibet 64.25 0.13 111.5 0.14 47.25 0.17
Shandong 3,868.75 7.59 6,208.25 7.95 2,339.5 8.64
Henan 2,659.25 5.22 4,295.25 5.50 1636 6.04
Jiangsu 5,399.5 10.59 7,072.25 9.06 1672.75 6.18
Anhui 1897.25 3.72 3,214.75 4.12 1317.5 4.87
Hubei 1391.25 2.73 2,492.25 3.19 1101 4.07
Zhejiang 3,346.25 6.56 5,288.25 6.78 1942 7.17
Jiangxi 970 1.90 2047 2.62 1077 3.98
Hunan 1258.75 2.47 2,249.75 2.88 991 3.66
Yunnan 946 1.86 1625.5 2.08 679.5 2.51
Guizhou 384.5 0.75 958.5 1.23 574 2.12
Fujian 1655.5 3.25 3,040 3.89 1384.5 5.11
Guangxi 998 1.96 2,212 2.83 1214 4.48
Guangdong 7,174.5 14.07 10,221.25 13.10 3,046.75 11.25
Hainan 241.25 0.47 387.25 0.50 146 0.54
Jilin 817.25 1.60 1061 1.36 243.75 0.90
Liaoning 1514.25 2.97 1881.5 2.41 367.25 1.36
Tianjin 1079 2.12 1266.25 1.62 187.25 0.69
Qinghai 141.25 0.28 208.25 0.27 67 0.25
Gansu 383 0.75 676.75 0.87 293.75 1.09
Shaanxi 1161 2.28 1724.75 2.21 563.75 2.08
Neimenggu 904 1.77 1457.25 1.87 553.25 2.04
Chongqing 664.5 1.30 1375.5 1.76 711 2.63
Hebei 1867.25 3.66 3,287 4.21 1419.75 5.24
Shanghai 1843.25 3.62 1953.5 2.50 110.25 0.41
Beijing 1194.75 2.34 1447.25 1.85 252.5 0.93
Taiwan 2,128.5 4.18 2,269.5 2.91 141 0.52
Hong Kong 83.25 0.16 83.75 0.11 0.5 0.00
Macao 12.5 0.02 14.5 0.02 2 0.01
Sichuan 1660.25 3.26 2,944 3.77 1283.75 4.74
Total 50,981.5 100.00 78,054.5 100.00 27,073 100.00

The bold values in table highlight the values with the largest area and percentage of urban built-up areas in 2012 and 2020 for each province and the values with the largest increase in
urban built-up areas and percentage of built-up areas from 2012 to 2020.

TABLE 5 | Comparison of extracted areas to statistical data.

Year CBAM_UNet (km2) Statistical_data (km2) Relative error (%)

2012 48,757.25 45,565.90 7.00
2015 54,964.75 52,102.60 5.49
2018 66,446.50 58,455.70 13.67
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commercial housing in cities has increased, which has also led to
the expansion of urban built-up areas. Therefore, the relationship
between urban built-up area expansion and population
geography is also particularly close.

On the other hand, we compared the built-up area extracted by
the corrected CBAM_UNet with the built-up area data obtained
from the National Bureau of Statistics’ China Statistical Yearbook
(stats.gov.cn) in 2012, 2015, and 2018 (excluding Hong Kong,

FIGURE 7 | Expansion of urban built-up areas in China from 2012 to 2021. (A) Expansion of urban built-up areas in some cities (including developed, moderately
developed, and underdeveloped). (B) Urban built-up area expansion by provinces.
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TABLE 6 | Expansion of China’s urban built-up areas from 2012 to 2021.

Period Expansion area (km2) Expansion speed (km2/year) Expansion intensity (%)

2012–2015 6,364.75 2,121.58 4.16
2015–2018 11,562 3,854.00 6.72
2018–2021 9,146.25 3,048.75 4.42
2012–2021 27,073 3,008.11 5.90

The bold values in table highlight the values with the largest increase in the Expansion area, Expansion speed, and Expansion intensity in the three periods.

FIGURE 8 | (A–C) Expansion of urban built-up areas in all orientations from 2012 to 2021. (D)Gravity center migration of China’s urban built-up areas, 2012–2021.
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Macau, and Taiwan, and 2021 data not yet available); results are
shown in Table 5.

By comparison, we can see that the area we extracted can achieve
more than 85% accuracy without labels, proving that our model has
strong generalization ability and can also ensure a certain accuracy.
Then, we can also be seen that the area we extracted is generally
larger than the area of the statistical yearbook, indicating that there is
a certain misclassification in our model.

Tomore intuitively see the expansion in the built-up area from2012
to 2020, we compared the urban built-up areas in 2012 with the urban
built-up areas in 2021 and obtained the figure as shown in Figure 7.

During the study period, there were 12 provinces with a
growth of urban built-up areas over 1000 km2, and
Guangdong has the most significant growth area, with an
increase of 3,046.75 km2, accounting for 11.25% of China’s
urban built-up areas growth. From a geographical point of
view, these provinces are primarily found in the east and
southeast of the country. There are nine provinces with the
growth of urban built-up areas of less than 200 km2, except
for Tibet, Hainan, and Ningxia. The others are provinces with
relatively developed economies and high-level of urbanization.
Their limited constructible space leads to less growth (Table 4).

4.2 Spatial-Temporal Variation Analysis of
China’s Urban Built-Up Areas
4.2.1 Spatial Variation Analysis

• Expansion speed and intensity

China has experienced fast urbanization and economic growth in
the past decade. Urban built-up areas had increased from
50,981.5 km2 in 2012 to 78,054.5 km2 in 2021, an increase of
27,073 km2, increased by 53.10% (Table 4) and calculated the
expansion speed and intensity of urban built-up areas by period
(Eqs 10,11) . The expansion speed in 2015–2018 was higher than
that of 2012–2015 and 2018–2021, indicating that the speed of urban
construction in China had increased and then had slowed down in
the past decade, and the expansion intensity also had changed, from
4.16% in 2012–2015 to 6.72% in 2015–2018, and then slowed down
to 4.42%, but overall, China’s urban built-up areas had consistently
expanded at a high rate over the past 10 years (Table 6).

4.2.2 Temporal Variation Analysis
• Expansion Directions

The spatial quadrant orientation method was used to calculate
the expansion in urban built-up areas of each region in China
during the study period, with the center set at 34°32′27.00″N and
108°55′25.00″E. We divide China into north (N), northeast (NE),
east (E), southeast (SE), south (S), southwest (SW), west (W), and
northwest (NW) through eight quadrants (Figure 8A). The
urban built-up area images in 2012, 2015, 2018, and 2021
were, respectively, divided into eight orientations through the
spatial quadrant orientation method and counted the
information of urban built-up areas of each quadrant in each
(Figures 8B,C; Table 7).

The results show that in 2021, the E orientation has the largest
urban built-up areas of all orientations, with areas of 23719 km2.
The W orientation has the smallest urban built-up areas of all
orientations, only 1028 km2.

During the study period, the E orientation urban built-up areas
increased the most, from 16,259.00 km2 in 2012 to 23,719.00 km2 in
2021, an increase of 7460 km2, increased by 45.88%. N orientation
increased the least, by only 374.75 km2, but with a growth rate of
45.07%. The fastest growth rate was in the S orientation, where urban
built-up areas in 2021 have increased by 98.53% compared to 2012
and high during the study period (Table 7).

We can conclude that the distribution of urban built-up areas
gradually showed a scattered trend. Jiangsu, Zhejiang, and Shanghai
have formed a trend of group development with Anhui. Meanwhile,
the urban built-up areas between Chengdu and Chongqing have
gradually spread and connected. After 2018, the spread and
integration in Chengdu and Chongqing have been further
strengthened. At the same time, Henan, Anhui, and northern
Jiangxi have gradually connected to Jiangsu, Zhejiang, and Shanghai.

To represent the expansion direction more intuitively, we used
the standard ellipse difference to visualize the expansion direction
according to the expansion area from 2012 to 2020. From Figure 8A,
we can see that, generally, the distribution pattern of China’s urban
built-up areas has gradually migrated from the “center-periphery”
distribution around the growth pole to a networked distribution
pattern, showing a trend from agglomeration to dispersion, which is
satisfied by the “center-periphery” theory proposed by J.R.

TABLE 7 | Urban built-up areas in all orientations from 2012 to 2021.

2012 2015 2018 2021 Total changes

Orientation Area
(km2)

Area
(km2)

Growth
area
(km2)

Growth
rate
(%)

Area
(km2)

Growth
area
(km2)

Growth
rate
(%)

Area
(km2)

Growth
area
(km2)

Growth
rate
(%)

Growth
area
(km2)

Growth
rate
(%)

N 831.50 879.25 47.75 5.74 987.00 107.75 12.25 1206.25 219.25 22.21 374.75 45.07
NE 11,300.75 12,572.75 1272 11.26 14,171.50 1598.75 12.72 16,016.25 1844.75 13.02 4,715.5 41.73
E 16,259.00 18,032.50 1773.5 10.91 22,092.00 4,059.5 22.51 23,719.00 1627 7.36 7,460 45.88
SE 14,130.00 15,344.50 1214.5 8.60 18,324.00 2,979.5 19.42 21,327.00 3,003 16.39 7,197 50.93
S 3,491.50 4,496.00 1004.5 28.77 5,718.25 1222.25 27.19 6,931.75 1213.5 21.22 3,440.25 98.53
SW 3,166.75 3,834.25 667.5 21.08 4,706.25 872 22.74 5,618.75 912.5 19.39 2,452 77.43
W 618.25 684.50 66.25 10.72 926.50 242 35.35 1028.00 101.5 10.96 409.75 66.28
NW 1183.75 1502.50 318.75 26.93 1982.75 480.25 31.96 2,207.50 224.75 11.34 1023.75 86.48

The bold values in table highlight the maximum values of urban built-up areas, percentage and growth rate for each orientation in 2012, 2015, 2018, and 2021.
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Fridemna: from the center of the North-South-Guangzhou triangle
in 2012, we gradually migrated to the North-South-Guangzhou-
Chengdu-Chongqing economic zone. At the same time, we selected
regions from the North-South-Guangdong and Chengdu-
Chongqing economic zones, respectively, and their local trends
are also “center-periphery,” which also satisfies the “center-
periphery” theory proposed by J.R. Fridemna.

• Gravity Center Migration

We calculated the center of gravity for 2012–2020 based on the
center of gravity migration index proposed earlier, as shown in
Figure 8D.

As we can see, the gravity center of China’s urban built-up areas
has migrated to the southwest in the past decade, with a linear
migration distance of 60.82 km, including 57.37 km to the west and
20.21 km to the south. The results show that China’s support policies
for the west impact the gravity center of urban built-up areas.

Generally, the analysis results show that China’s urban built-
up areas have been overgrowing in recent years, but the
development in various orientations is quite different. The
main growth orientations of urban built-up areas are E and
SE; the sum of increased areas in these two orientations
exceeds 50% of China’s urban built-up areas, which are the
two regions with the fastest urbanization in China. The
increase in the urban built-up areas in W and N is less than
500 km2, accounting for 1.51% and 1.38% of the increase in
China’s urban built-up areas, respectively. With a large disparity
with other orientations, especially because there are fewer cities in
these two orientations, but in terms of growth speed, these two
orientations have grown fast. Overall, the degree of urbanization
in the economically developed regions is higher, and the
economically underdeveloped regions are currently chasing.

5 CONCLUSION

In this article, CBAM_UNet deep semantic segmentation
network was built, which combined NTL data and NDVI data
to realize the automatic extraction of long-time series in China’s
urban built-up areas and analyze the spatial and temporal
expansion changes of China’s urban built-up areas over the
past 10 years. The results show the following:

1) We selected the UNet model in the field of biomedical
segmentation and added the CBAM attention module into
the encoder part of UNet to build CBAM_UNet; the model
can merge multiple features. Then the NTL data were merged
with NDVI data, and taking the 2020 WorldCover as the
sample data, we assigned a semantic label to each pixel in the
image, realizing end-to-end, pixel-level classification of
remote sensing images. [not available in Crossref]

2) Compared with other models, CBAM_UNet shows higher
accuracy, the F1 value is 0.6658, and the mIoU value is 0.7480.
In addition, through the calibrated CBAM_UNet, the
experiment automatically extracted China’s urban built-up
areas in 2012, 2015, 2018, and 2021, saving a lot of workforce

and time. Thus, the model can realize the annual urban built-
up areas extraction in China by combining annual NTL data
and NDVI data, which provides a feasible method for long-
time series change analysis. [not available in Crossref]

3) Based on urban built-up areas extracted from the calibrated
CBAM_UNet model in 2012, 2015, 2018, and 2021, the spatial
and temporal expansion ofChina’s urban built-up areaswas analyzed
from four indicators: expansion speed, expansion intensity, expansion
direction, and gravity center migration. China’s urban built-up area
expansion speed in 2015–2018 was higher than that of 2012–2015
and 2018–2021, indicating that China’s urban construction speed
increased first and then slowed down in the past decade; the
expansion intensity increased from 4.16% in 2012–2015 to 6.72%
in 2015–2018 and then slowed down to 4.42%. However, overall,
China’s urbanbuilt-up areas have consistently expanded at a high rate
over the past 10 years. From the view of expansion direction: the E
orientation urban built-up areas have increased the most, from
16,259.00 km2 in 2012 to 23,719.00 km2 in 2021, an increase of
7460 km2, increased by 45.88%. Urban built-up areas in the N
orientation increased the least, by only 374.75 km2, but with a
growth rate of 45.07%. The gravity center of China’s urban built-
up areasmigrated to the southwest,with a linearmigrationdistance of
60.82 km, including 57.37 km to the west and 20.21 km to the south.
The results show that China’s support policies for thewest impact the
gravity center of urban built-up areas.

The CBAM_UNet model proposed in this experiment can
quantitatively and accurately extract urban built-up areas in a
long-time series. The findings of this article would help
understand the spatial and temporal expansion of urban built-
up areas. Such an understanding would help analyze China’s
urban development changes in the past 10 years in a relatively
macroscopic manner and provide specific scientific decision-
making for China’s economic development.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

MB contributed to the methodology, design of the study, and
writing—original draft; SZ contributed to the methodology,
writing, checking and editing, and project administration; XW
contributed to the methodology and software usage; YF
contributed to the data analysis; JW contributed to project
administration; PP contributed to conception and funding acquisition.

FUNDING

The research was supported by The Second Tibetan Plateau Scientific
Expedition and Research Program (STEP), China (No.
2019QZKK0301); the program of Census of Forest Germplasm

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 88377916

Bai et al. Extract Built-Up Areas by CBAM_UNet

118

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Resources in Chenghua District, Chengdu (No. 80303-AHL038); and
the Second National Survey of Key Protected Wild Plant Resources–

Special Survey of Orchidaceae in Sichuan Province (No. 80303-
AZZ003).

REFERENCES

Bramhe, V. S., Ghosh, S. K., and Garg, P. K. (2020). Extraction of Built-Up Areas
from Landsat-8 OLI Data Based on Spectral-Textural Information and Feature
Selection Using Support Vector Machine Method. Geocarto Int. 35, 1067–1087.
doi:10.1080/10106049.2019.1566406

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., et al. (2015). Global Land
Cover Mapping at 30m Resolution: A POK-Based Operational Approach.
ISPRS J. Photogrammetry Remote Sens. 103, 7–27. doi:10.1016/j.isprsjprs.
2014.09.002

Elvidge, C., Ziskin, D., Baugh, K., Tuttle, B., Ghosh, T., Pack, D., et al. (2009). A
Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data.
Energies 2, 595–622. doi:10.3390/en20300595

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., et al. (2013). Finer
Resolution Observation and Monitoring of Global Land Cover: First Mapping
Results with Landsat TM and ETM+ Data. Int. J. Remote Sens. 34, 2607–2654.
doi:10.1080/01431161.2012.748992

He, X., Zhou, C., Zhang, J., and Yuan, X. (2020). UsingWavelet Transforms to Fuse
Nighttime Light Data and POI Big Data to Extract Urban Built-Up Areas.
Remote Sens. 12, 3887–3920. doi:10.3390/rs12233887

Holben, B. N. (1986). Characteristics of Maximum-Value Composite Images from
Temporal AVHRR Data. Int. J. Remote Sens. 7, 1417–1434. doi:10.1080/
01431168608948945

Hu, Y., Kong, X., Zheng, J., Sun, J., Wang, L., andMin, M. (2018). Urban Expansion
and Farmland Loss in Beijing during 1980-2015. Sustainability 10, 3927–4020.
doi:10.3390/su10113927

Jiang, C., Miao, Y., and Xi, Z. (2021a). A New Method of Extracting Built-Up Area
Based on Multi-Source Remote Sensing Data: a Case Study of Baoding Central
City, China. Geocarto Int. 0, 1–13. doi:10.1080/10106049.2021.1933214

Jiang, W., Li, T., Li, Q., Wu, S., Zhou, Y., and Lu, L. (2021b). Spatial and Temporal
Characteristics of Urban Sprawl in Northern Anhui Based on Multi- Temporal
Remote Sensing Images—A Case Study of Fuyang City , Anhui Province.
Resour. Dev. Markct 37, 780. doi:10.3969/j.issn.1005-8141.2021.07.003

Ju, Y., Dronova, I., Ma, Q., and Zhang, X. (2017). Analysis of Urbanization
Dynamics in Mainland China Using Pixel-Based Night-Time Light
Trajectories from 1992 to 2013. Int. J. Remote Sens. 38, 6047–6072. doi:10.
1080/01431161.2017.1302114

Karim, F., Majumdar, S., Darabi, H., and Harford, S. (2019). Multivariate LSTM-
FCNs for Time Series Classification. Neural Netw. 116, 237–245. doi:10.1016/j.
neunet.2019.04.014

Kaur, A., Kaur, L., and Singh, A. (2021). GA-UNet: UNet-Based Framework for
Segmentation of 2D and 3D Medical Images Applicable on Heterogeneous
Datasets, Neural Comput. Applic 33, 14991–15025. doi:10.1007/s00521-021-
06134-z

Kearney, V., Chan, J. W., Wang, T., Perry, A., Yom, S. S., and Solberg, T. D. (2019).
Attention-enabled 3D Boosted Convolutional Neural Networks for Semantic
CT Segmentation Using Deep Supervision. Phys. Med. Biol. 64, 135001. doi:10.
1088/1361-6560/ab2818

Kingma, D. P., and Ba, J. L. (2015). Adam: A Method for Stochastic Optimization.
3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc. 1–15.

Li, F., Yan, Q., Bian, Z., Liu, B., and Wu, Z. (2020). A Poi and Lst Adjusted Ntl
Urban Index for Urban Built-Up Area Extraction. Sensors 20, 2918. doi:10.
3390/s20102918

Li, J., Fang, W., Wang, T., Qureshi, S., Alatalo, J., and Bai, Y. (2017a). Correlations
between Socioeconomic Drivers and Indicators of Urban Expansion: Evidence
from the Heavily Urbanised Shanghai Metropolitan Area, China. Sustainability
9, 1199. doi:10.3390/su9071199

Li, M., Hu, B., and Ling, Z. (2021). Analysis of Spatial and Temporal Expansion
Characteristics of Built-Up Area in Nanning City in Recent 30 Years. Pop. Sci.
Technol. 24, 22

Li, X., Li, D., Xu, H., andWu, C. (2017b). Intercalibration between DMSP/OLS and
VIIRS Night-Time Light Images to Evaluate City Light Dynamics of Syria’s

Major Human Settlement during Syrian Civil War. Int. J. Remote Sens. 38,
5934–5951. doi:10.1080/01431161.2017.1331476

Li, X., and Zhou, Y. (2017). Urban Mapping Using DMSP/OLS Stable Night-Time
Light: a Review. Int. J. Remote Sens. 38, 6030–6046. doi:10.1080/01431161.2016.
1274451

Liu, C., Yang, K., Bennett, M. M., Guo, Z., Cheng, L., and Li, M. (2019). Automated
Extraction of Built-Up Areas by Fusing VIIRS Nighttime Lights and Landsat-8
Data. Remote Sens. 11, 1571–1620. doi:10.3390/rs11131571

Liu, F., Zhang, Z., Shi, L., Zhao, X., Xu, J., Yi, L., et al. (2016). Urban Expansion in
China and its Spatial-Temporal Differences over the Past Four Decades.
J. Geogr. Sci. 26, 1477–1496. doi:10.1007/s11442-016-1339-3

Liu, J., Jiao, L., Dong, T., Xu, G., Zhang, B., and Yang, L. (2018). A Novel Measure
Approach of Expansion Process of Urban Landscape:Multi-Order Adjacency
Index. Sci. Geogr. Sin. 38, 1741–1749. doi:10.13249/j.cnki.sgs.2018.11.001

Liu, S., Wu, C., and Shen, H. (2000). A GIS Based Model of Urban Land Use
Growth in Beijing. Acta Geogr. Sin. 55, 407

Liu, X., Dong, G., Wang, X., Xue, Z., Jiang, M., Lu, X., et al. (2013). Characterizing
the Spatial Pattern of Marshlands in the Sanjiang Plain, Northeast China. Ecol.
Eng. 53, 335–342. doi:10.1016/j.ecoleng.2012.12.071

Liu, Y., Zuo, R., and Dong, Y. (2021). Analysis of Temporal and Spatial
Characteristics of Urban Expansion in Xiaonan District from 1990 to 2020
Using Time Series Landsat Imagery. Remote Sens. 13, 4299. doi:10.3390/
rs13214299

Lu, D., Tian, H., Zhou, G., and Ge, H. (2008). Regional Mapping of Human
Settlements in Southeastern China with Multisensor Remotely Sensed Data.
Remote Sens. Environ. 112, 3668–3679. doi:10.1016/j.rse.2008.05.009

Ma, T. (2018). An Estimate of the Pixel-Level Connection between Visible
Infrared Imaging Radiometer Suite Day/night Band (VIIRS DNB)
Nighttime Lights and Land Features across China. Remote Sens. 10,
723–811. doi:10.3390/rs10050723

Ma, X., Tong, X., Liu, S., Luo, X., Xie, H., and Li, C. (2017). Optimized Sample
Selection in SVMClassification by Combining with DMSP-OLS, Landsat NDVI
and GlobeLand30 Products for Extracting Urban Built-Up Areas. Remote Sens.
9, 236. doi:10.3390/rs9030236

Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). V-net: Fully Convolutional
Neural Networks for Volumetric Medical Image Segmentation. Proc. - 2016 4th
Int. Conf. 3D Vis. 3DV, 565–571. doi:10.1109/3DV.2016.79

Mithun, S., Sahana, M., Chattopadhyay, S., Johnson, B. A., Khedher, K. M., and
Avtar, R. (2021). Monitoring Metropolitan Growth Dynamics for Achieving
Sustainable Urbanization (Sdg 11.3) in kolkata Metropolitan Area, india.
Remote Sens. 13, 4423. doi:10.3390/rs13214423

Mnih, V., Heess, N., Graves, A., and Kavukcuoglu, K. (2014). Recurrent Models of
Visual Attention. Adv. Neural Inf. Process. Syst. 3, 2204

Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F. (2015). Medical Image
Computing and Computer-Assisted Intervention - MICCAI 2015. Lect. Notes
Comput. Sci. Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma. 9351,
12–20. doi:10.1007/978-3-319-24574-4

Peng, D., Zhang, Y., and Guan, H. (2019). End-to-end Change Detection for High
Resolution Satellite Images Using Improved UNet++. Remote Sens. 11, 1382.
doi:10.3390/rs11111382

Shi, K., Yu, B., Huang, Y., Hu, Y., Yin, B., Chen, Z., et al. (2014). Evaluating the
Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic
Product and the Electric Power Consumption of China at Multiple Scales: A
Comparison with DMSP-OLS Data. Remote Sens. 6, 1705–1724. doi:10.3390/
rs6021705

Sun, J., Di, L., Sun, Z., Wang, J., andWu, Y. (2020). Estimation of GDP Using Deep
Learning with NPP-VIIRS Imagery and Land Cover Data at the County Level in
CONUS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 1400–1415. doi:10.
1109/JSTARS.2020.2983331

Tan, Y., Xiong, S., and Li, Y. (2018). Automatic Extraction of Built-Up Areas from
Panchromatic and Multispectral Remote Sensing Images Using Double-Stream
Deep Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 11, 3988–4004. doi:10.1109/JSTARS.2018.2871046

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 88377917

Bai et al. Extract Built-Up Areas by CBAM_UNet

119

https://doi.org/10.1080/10106049.2019.1566406
https://doi.org/10.1016/j.isprsjprs.2014.09.002
https://doi.org/10.1016/j.isprsjprs.2014.09.002
https://doi.org/10.3390/en20300595
https://doi.org/10.1080/01431161.2012.748992
https://doi.org/10.3390/rs12233887
https://doi.org/10.1080/01431168608948945
https://doi.org/10.1080/01431168608948945
https://doi.org/10.3390/su10113927
https://doi.org/10.1080/10106049.2021.1933214
https://doi.org/10.3969/j.issn.1005-8141.2021.07.003
https://doi.org/10.1080/01431161.2017.1302114
https://doi.org/10.1080/01431161.2017.1302114
https://doi.org/10.1016/j.neunet.2019.04.014
https://doi.org/10.1016/j.neunet.2019.04.014
https://doi.org/10.1007/s00521-021-06134-z
https://doi.org/10.1007/s00521-021-06134-z
https://doi.org/10.1088/1361-6560/ab2818
https://doi.org/10.1088/1361-6560/ab2818
https://doi.org/10.3390/s20102918
https://doi.org/10.3390/s20102918
https://doi.org/10.3390/su9071199
https://doi.org/10.1080/01431161.2017.1331476
https://doi.org/10.1080/01431161.2016.1274451
https://doi.org/10.1080/01431161.2016.1274451
https://doi.org/10.3390/rs11131571
https://doi.org/10.1007/s11442-016-1339-3
https://doi.org/10.13249/j.cnki.sgs.2018.11.001
https://doi.org/10.1016/j.ecoleng.2012.12.071
https://doi.org/10.3390/rs13214299
https://doi.org/10.3390/rs13214299
https://doi.org/10.1016/j.rse.2008.05.009
https://doi.org/10.3390/rs10050723
https://doi.org/10.3390/rs9030236
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.3390/rs13214423
https://doi.org/10.1007/978-3-319-24574-4
https://doi.org/10.3390/rs11111382
https://doi.org/10.3390/rs6021705
https://doi.org/10.3390/rs6021705
https://doi.org/10.1109/JSTARS.2020.2983331
https://doi.org/10.1109/JSTARS.2020.2983331
https://doi.org/10.1109/JSTARS.2018.2871046
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Tan, Y., Xiong, S., Li, Z., Tian, J., and Li, Y. (2019). Accurate Detection of Built-Up
Areas from High-Resolution Remote Sensing Imagery Using a Fully
Convolutional Network. Photogramm. Eng. Remote Sens. 85, 737–752.
doi:10.14358/PERS.85.10.737

Tan, Y., Xiong, S., and Yan, P. (2020). Multi-branch Convolutional Neural
Network for Built-Up Area Extraction from Remote Sensing Image.
Neurocomputing 396, 358–374. doi:10.1016/j.neucom.2018.09.106

Tianjun Xiao, T., Yichong Xu, Y., Kuiyuan Yang, K., Jiaxing Zhang, J., Yuxin Peng,
Y., and Zhang, Z. (2015). The Application of Two-Level Attention Models in
Deep Convolutional Neural Network for Fine-Grained Image Classification.” in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit, 842–850.
doi:10.1109/CVPR.2015.7298685

Wang, M., Song, Y., Wang, F., and Meng, Z. (2021). Boundary Extraction of Urban
Built-Up Area Based on Luminance Value Correction of NTL Image. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 7466–7477. doi:10.1109/JSTARS.
2021.3098787

Wang, Q., Gao, J., and Yuan, Y. (2018). Embedding Structured Contour and
Location Prior in Siamesed Fully Convolutional Networks for Road Detection.
IEEE Trans. Intell. Transp. Syst. 19, 230–241. doi:10.1109/TITS.2017.2749964

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). CBAM: Convolutional Block
Attention Module. Cham: Springer, Vol. 1, 782–797. doi:10.1007/978-3-030-
01234-2

Wu, F., Wang, C., Zhang, H., Li, J., Li, L., Chen, W., et al. (2021). Built-up Area
Mapping in China from GF-3 SAR Imagery Based on the Framework of
Deep Learning. Remote Sens. Environ. 262, 112515. doi:10.1016/j.rse.2021.
112515

Yang, W., and Zhao, J. (2020). Study on China’s Economic Development from the
Perspective of Strong Sustainability. Singap. Econ. Rev. 65, 161–192. doi:10.
1142/S021759081746002X

Yang, Y., Wang, D., Yan, Z., and Zhang, S. (2021). Delineating Urban Functional
Zones Using U-Net Deep Learning: Case Study of Kuancheng District,
Changchun, China. Land 10, 1266–1321. doi:10.3390/land10111266

Yang, Z., Xie, L., Sun, W., and Cheng, Z. (2020). Transitional Spatial Structure with
Development of Economic Clusters: The Case of Beijing. J. Urban Plann. Dev.
146, 04020008. doi:10.1061/(asce)up.1943-5444.0000561

Yi-de Ma, M. A., Qing Liu, L. I. U., and Zhi-bai Quan, . 2004). Automated
Image Segmentation Using Improved PCNN Model Based on Cross-
Entropy,” in Proceedings of 2004 International Symposium on
Intelligent Multimedia, Video and Speech Processing, 2004. 743–746.
doi:10.1109/ISIMP.2004.1434171

Yin, C. L., Meng, F., Guo, L., Zhang, Y. X., Zhao, Z., Xing, H. Q., et al. (2021).
Extraction and Evolution Analysis of Urban Built-Up Areas in Beijing, 1984-
2018. Appl. Spat. Anal. 14, 731–753. doi:10.1007/s12061-021-09374-7

Yu, G., He, D., Lin, W., Wu, Q., Xiao, J., Lei, X., et al. (2020). China’s Spatial
Economic Network and its Influencing Factors. Complexity 2020, 1–13. doi:10.
1155/2020/6352021

Yue, W., Fan, P., Wei, Y. D., and Qi, J. (2014). Economic Development, Urban
Expansion, and Sustainable Development in Shanghai. Stoch. Environ. Res. Risk
Assess. 28, 783–799. doi:10.1007/s00477-012-0623-8

Zeng, C., Liu, Y., Stein, A., and Jiao, L. (2015). Characterization and Spatial
Modeling of Urban Sprawl in theWuhanMetropolitan Area, China. Int. J. Appl.
Earth Observation Geoinformation 34, 10–24. doi:10.1016/j.jag.2014.06.012

Zhang, Q., and Seto, K. (2013). Can Night-Time Light Data Identify Typologies of
Urbanization? A Global Assessment of Successes and Failures. Remote Sens. 5,
3476–3494. doi:10.3390/rs5073476

Zhang, X., Bai, Z., Fan, X., Lu, Y., Cao, Y., Zhao, Z., et al. (2016). Urban Expansion
Process, Pattern, and Land Use Response in an Urban Mining Composited
Zone from 1986 to 2013. J. Urban Plann. Dev. 142, 04016014. doi:10.1061/
(asce)up.1943-5444.0000327

Zhang, Z., Liu, F., Zhao, X., Wang, X., Shi, L., Xu, J., et al. (2018). Urban Expansion
in China Based on Remote Sensing Technology: A Review. Chin. Geogr. Sci. 28,
727–743. doi:10.1007/s11769-018-0988-9

Zhou, Y., Huang, W., Dong, P., Xia, Y., and Wang, S. (2021). D-UNet: A
Dimension-Fusion U Shape Network for Chronic Stroke Lesion
Segmentation. IEEE/ACM Trans. Comput. Biol. Bioinf. 18, 940–950. doi:10.
1109/TCBB.2019.2939522

Zhu, L., and Yang, Y. (2018). Cbam. Springer International Publishing. doi:10.
1007/978-3-030-01234-2

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bai, Zhang, Wang, Feng, Wang and Peng. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 88377918

Bai et al. Extract Built-Up Areas by CBAM_UNet

120

https://doi.org/10.14358/PERS.85.10.737
https://doi.org/10.1016/j.neucom.2018.09.106
https://doi.org/10.1109/CVPR.2015.7298685
https://doi.org/10.1109/JSTARS.2021.3098787
https://doi.org/10.1109/JSTARS.2021.3098787
https://doi.org/10.1109/TITS.2017.2749964
https://doi.org/10.1007/978-3-030-01234-2
https://doi.org/10.1007/978-3-030-01234-2
https://doi.org/10.1016/j.rse.2021.112515
https://doi.org/10.1016/j.rse.2021.112515
https://doi.org/10.1142/S021759081746002X
https://doi.org/10.1142/S021759081746002X
https://doi.org/10.3390/land10111266
https://doi.org/10.1061/(asce)up.1943-5444.0000561
https://doi.org/10.1109/ISIMP.2004.1434171
https://doi.org/10.1007/s12061-021-09374-7
https://doi.org/10.1155/2020/6352021
https://doi.org/10.1155/2020/6352021
https://doi.org/10.1007/s00477-012-0623-8
https://doi.org/10.1016/j.jag.2014.06.012
https://doi.org/10.3390/rs5073476
https://doi.org/10.1061/(asce)up.1943-5444.0000327
https://doi.org/10.1061/(asce)up.1943-5444.0000327
https://doi.org/10.1007/s11769-018-0988-9
https://doi.org/10.1109/TCBB.2019.2939522
https://doi.org/10.1109/TCBB.2019.2939522
https://doi.org/10.1007/978-3-030-01234-2
https://doi.org/10.1007/978-3-030-01234-2
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Research on the spatiotemporal
distribution and evolution of
remote sensing: A data-driven
analysis

Yu Liu1, Xi Kuai2,3, Fei Su4, ShaochenWang5, Kaifeng Wang1 and
Lijun Xing6*
1Institute of Environment and Development, Guangdong Academy of Social Sciences, Guangzhou,
China, 2Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, Research Institute
for Smart Cities, Shenzhen University, Shenzhen, China, 3Peng Cheng Laboratory, Shenzhen, China,
4School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan, China, 5School of
Resource and Environmental Sciences, Wuhan University, Wuhan, China, 6Key Laboratory of Regional
Development and Environmental Response, Hubei University, Wuhan, China

The development of remote sensing technology largely reflects the scientific

research level of a country or region. Given that the quantity and quality of

research works are important indicators for scientific prowess evaluation,

exploratory spatial data analysis and scientometric analysis of remote

sensing work published from 2012 to 2021 were performed in this study,

utilizing the Web of Sciences database. This study probed the spatial

distribution and spatiotemporal evolution at the country/regional level to

reveal the spatiotemporal characteristics of knowledge spillover in remote

sensing. According to the results, the global spatial distribution of research

output in remote sensing presented a significant dispersion; the United States

and China were themost active countries. During the study period, Transferring

Deep Convolutional Neural Networks for the Scene Classification of High-

Resolution Remote Sensing Imagery was one of the most influential studies,

both in the field of remote sensing and in the whole scientific community. With

respect to the spatial evolution of research output in remote sensing, the gap

between continents and the regional imbalance showed a downward trend,

while Asia ranked first in the intracontinental disparity and Europe ranked last.

For relevant countries/regions and institutions trying to optimize the spatial

allocation of scientific and technological resources to narrow regional

disparities, this study provides fundamental data and decision-making

references.
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1 Introduction

Remote sensing is a technology used to observe and explore

target objectives and natural phenomena over long distances

(Weng, 2012; Han et al., 2014; Cheng et al., 2017). Remote

sensing technology can be used to objectively and accurately

obtain timely information about various targets. Over the past

few decades, remote sensing has been utilized to observe natural

resources and Earth’s environment frommultiple layers to collect

data from areas of Earth to space for application in diverse fields,

such as the atmosphere, ocean, resources, environment,

economy, agriculture, forestry, urban areas, disaster rescue,

and the military (Chen et al., 2006; Chang et al., 2011; Jewiss

et al., 2020). Moreover, remote sensing is a new interdisciplinary

subject that is integrated with surveying and mapping, space

science, electronic science, geosciences, and computer science

(Fuentes, 2006; Lary et al., 2016; Tapete, 2018). The development

level of remote sensing represents the level of scientific research

in a country/region (Soille and Pesaresi, 2002; Andrefouet and

Riegl, 2004). Therefore, an increasing number of countries are

investing increasing amounts of money and effort in remote

sensing research.

Over the past decades, some countries/regions have been in

leading positions in remote sensing-related research, and their

research results have influenced the development trend of the

industry (Kussul et al., 2017; Mikhaylov et al., 2021). Some

countries/regions have come to the forefront and have become

a new force in remote sensing-related research and are expanding

their field. Other countries have turned from field leaders to

followers for various reasons (Zhu et al., 2017; Goga et al., 2019).

These phenomena reflect the change in scientific research power

in remote sensing among countries and the changes in national

scientific and technological strength (Nogueira et al., 2016;

Zhang et al., 2016). An in-depth study of the phenomena is

required not only for researchers to get a quick overview of the

history and current situation of remote sensing research but also

for related countries/regions to better predict the trend of remote

sensing research development and then make remote sensing

development plans that really meet their national conditions

(Zou et al., 2015; Nogueira et al., 2016). However, the broadness

of remote sensing research fields, the diversity of subfields, the

differences in disciplinary backgrounds, and the limited personal

energy of scholars make it quite difficult to systematically and

comprehensively summarize the national/regional strength

changes in remote sensing research without high-quality data

sources and reliable quantitative analysis methods.

Fortunately, tens of thousands of remote sensing-related

research works have been published by researchers in the past

few decades. These research works are important carriers and the

main transmitters for research achievement, providing

information about the research history, current situation, and

development trends of the realm and sub-realms (Guarino, 1995;

Qiu and Shen, 2021). Previous studies show that the output and

quality of research are important indicators to measure the level

of national science and technology (Price, 1963; Bourdieu, 2004).

Research work data are characterized by easy accessibility and

massive volume. In addition, the existing academic databases

have collated the research data so that researchers can easily

access high-quality studies. On the other hand, quantitative

analysis is a mathematical method in scientometrics to

measure research results, describe the scientific system

structure and analyze the inner operating mechanism of the

scientific system. This method can be employed to reveal the

spatial and temporal characteristics of scientific development and

explore the quantitative regular characteristics of scientific

activities in human society. And in the field of spatial data

analysis, exploratory spatial data analysis methods have been

introduced into fields such as library intelligence and

scientometrics in recent years, demonstrating their

applicability in the exploration of the spatial differences and

evolution of research in related disciplines/fields. More

importantly, according to recent studies, research on the

spatial distribution of research output can not only help

discover the spatial distribution of professional knowledge but

also unearth the external causes of regional gaps in research

output (Ma et al., 2019a).

In summary, based on the Web of Science (WoS) database,

this study presents a study focusing on the output of research

works in remote sensing at different levels, such as the

distribution of, spatial differences in the aggregation of the

global level, differential evolution, and polarization and spatial

aggregation between different local areas. The results of this

study can not only provide an important basis for related

resource allocation and decisive references for scientific macro

arrangement in relevant countries/regions, which is conducive to

regional science development and thus reduce the regional gap in

remote sensing fields. The rest of this study is organized as follows.

Section 2 describes the data collection and preparation. Then, the

research methodology and analysis of the experimental results are

introduced. The conclusion is summarized in the final section.

2 Data collection

On the basis of a web development platform, the WoS is a

large, comprehensive citation indexing database developed by

Thomson Reuters. Through this database, users can retrieve

information about literature in the natural sciences, social

sciences, arts, and humanities (Mongeon and Paul-Hus, 2016).

The WoS provides relatively complete bibliographic and citation

information, including the title, author, abstract, keywords, date,

author address, subject category, and reference list (Harzing and

Alakangas, 2016). Importantly, bibliographic and citation data in

the WoS can be downloaded to track the history and reveal the

characteristics of a research field. Given the above, the WoS has

been adopted as a data source for many scientometric studies.
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The data used in this study were collected from the WoS to

investigate the spatial distribution and evolution pattern of the

research work output in remote sensing. The data acquisition

process was as follows: First, the search function of the WoS

database was utilized, and “remote sensing” was selected as the

search term. Second, the publication time was set as 2012–2021

(download date: 2 November 2021), the literature type was set as

“article,” and the language category was set as English. Finally,

13,057 pieces of data were obtained after removing

duplicate data.

3 Method

In this study, the standard deviation and coefficient of

variation were used to measure the absolute and relative

differences between countries/regions and the Gini coefficient

was used to explore intra- and intercontinental differences.

Exploratory spatial data analysis (ESDA) was performed to

reveal the spatial and temporal characteristics of knowledge

spillover in remote sensing fields.

3.1 Coefficient of variation

The standard deviation is the arithmetic square root of the

variance, which is an absolute indicator of the degree of

dispersion of each observation (Lee et al., 2015). The

calculation formula is as follows:

S �
������������
∑n

i�1
(xi − �x)2
n − 1

√
. (1)

The coefficient of variation (CV) is the ratio of the standard

deviation to the mean value, which is a relative index reflecting

the dispersion of observed values (Shechtman, 2013). The

mathematical expression is as follows:

CV � 1
�x

������������
∑n

i�1
(xi − �x)2
n − 1

√
, (2)

where xi is the output of remote sensing research in country/

region i, �x is the average output of remote sensing research, and n

is the number of countries/regions.

3.2 Gini coefficient

The Gini coefficient is an index originally used in economics

that is mainly used for income gap measurement. The value of

the Gini coefficient is in the range of 0–1. The closer the value is

to 1, the larger the income gap is, while the closer it is to 0, the

smaller the gap is. The Gini coefficient has been widely used in

fields such as medicine, geography, and computing (Chen et al.,

1982). The Gini coefficient decomposition model was put

forward by Dagum C in 1997; this model can describe the

spatial differences of the remote sensing research output as a

whole and quantify differences within and between regions

compared with the ordinary Gini coefficient model (Dagum,

1997). The total Gini coefficient calculation formula is as follows:

G � ΣN
i�1∑N

j�1Σni
k�1Σ

nj
h�1

∣∣∣∣∣yik − yjh

∣∣∣∣∣
2n2 �y

, (3)

where N is the number of continents and n is the number of

countries/regions. ni, nj are the number of countries/regions in

continents i and j, respectively; yik and yjh are the output of

remote sensing research in country/region k and country/region

h in continents i and j, respectively; and �y is the average output of

remote sensing research.

According to the Gini coefficient decomposition model of

Dagum C, the total Gini (G) can be decomposed as follows:

G � Gw + Gnb + Gt, (4)

whereGw measures the contribution of differences in the number

of remote sensing research within continents to the total Gini;

Gnb measures the contribution of differences in the number of

remote sensing research between continents to the total Gini; and

Gt measures the contribution of the various intensity of the

number of remote sensing research between continents to the

total Gini. Among them, Gw, Gnb, and Gt are as follows:

Gw � ∑N

j�1Gjjpjsj , (5)

Gnb � ∑N

j�2∑j−1
h�1Gjh(pjsh + phsj)Djh, (6)

Gnb � ∑N

j�2∑j−1
h�1Gjh(pjsh + phsj)(1 −Djh), (7)

where Gjj is the Gini coefficient within the continent j; Gjh is the

Gini coefficient between continent j and continent h; Djh is the

relative influence of remote sensing research output between

continents j and h; pj � nj/n is the ratio of the number of

countries/regions in the continent j to the number of

countries/regions in all continents; Sj � nj �Yj/n�y,

j � 1, 2, . . . , N; �Yj is the average output of remote sensing

research in the continent j; and Djh is the relative influence

of the output of research in remote sensing between continent j

and continent h.

Gjj �
∑nj

i�1∑nj
r�1

∣∣∣∣∣yji − yjr

∣∣∣∣∣
2n2j �Yj

, (8)

Gjj �
∑nj

i�1∑nj
r�1

∣∣∣∣∣yji − yjr

∣∣∣∣∣
njnh(�Yj + �Yh) , (9)

Djh � djh − pjh

djh + pjh
, (10)

where yji is the output of remote sensing research from a country

i on the continent j; �Yj is the average output of remote sensing
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research for all countries on the continent j; and nj is the number

of countries on the continent j; pj � nj/n is the ratio of the

number of countries/regions in the continent j to the number of

countries/regions in all continents; djh is the mathematical

expectation of the sum of samples satisfying yjt − yhr > 0 in

continent j and continent h; pjh is the mathematical

expectation of the sum of samples satisfying yhr − yjt > 0 in

continent h and continent j.

3.3 ESDA

ESDA is the application of exploratory data analysis

(EDA) to spatial data analysis (SDA). It includes global

spatial autocorrelation analysis and local spatial

autocorrelation analysis. Different from global spatial

autocorrelation describing the spatial aggregation degree of

the research object in the whole research region (Griffith et al.,

2003), local spatial autocorrelation describes the similarity

between research objects, which can be used to measure the

degree of local units obeying the whole (Flahaut et al., 2003;

Jing et al., 2021). Generally, local spatial autocorrelation

analysis can reveal the location of the research object that

has local spatial autocorrelation when the global spatial

autocorrelation is not significant. When the global spatial

autocorrelation is significant, local spatial autocorrelation

analysis can reveal the spatial heterogeneity of the study

object.

3.3.1 Global spatial autocorrelation
In this study, the globalMoran′s Iwas used to measure the

global spatial autocorrelation of the remote sensing research

output. A global Moran′s I value above 0 indicates a positive

spatial correlation (i.e., spatial aggregation) in the research

output, while a value below 0 indicates a negative spatial

correlation (i.e., spatial dispersion). The research output in

remote sensing is considered to have no spatial relevance

when the global Moran′s I value is equal to 0. The global

spatial autocorrelation formula is as follows:

I � n∑n
i�1∑n

j�1wij(yi − �y)(yj − �y)
∑n

i�1∑n
j�1wij∑n

i�1(yj − �y)2
� ∑n

i�1∑n
j�1wij(yi − �y)(yj − �y)
S2∑n

i�1∑n
j�1wij

, (11)

S2 � 1
n
∑n

i�1(yi − �y), (12)

where n indicates the number of countries/regions; yi, yj

represent the research output in remote sensing in a country/

region i and j, respectively; �y is the average number of research

in remote sensing and wij is the spatial weight between the ith

country/region and the jth country/region. The value range is as

follows:

wij � { 1, i ∩ j ≠∅
0, i ∩ j � ∅ . (13)

3.3.2 Local spatial autocorrelation
Taking i as the country/region in the study area, the formula

of the local Moran′s I index Ii of country/region i is as follows:

Ii � (xi − �x)
S2

∑n

j�1wij(xj − �x). (14)

The formula for the significance level of the local Moran′s I
index Ii of country/region i is

Z(Ii) � Ii − E(Ii)��������
VAR(Ii)

√ . (15)

Under a certain significance level, the local spatial correlation

can be classified into four types: High–High, Low–Low,

High–Low, and Low–High by calculating the values with I

and Z (I) (Table 1). Among them, both High–High and

Low–Low indicate positive spatial correlation, implying large

spatial similarity between neighboring countries/regions,

i.e., spatial aggregation, while High–Low and Low–High

indicate negative spatial correlation, implying large spatial

differences between neighboring countries/regions, i.e., spatial

dispersion.

4 Results

4.1 Overview

In this study, the national research production statistics are

based on the country/region where the institutions are located, in

which authors complete related research. In addition, many

articles are finished under the international collaboration. In

order to be consistent with existing related studies, we counted

the collaborative articles for each involved country once. For

example, if an article is completed by researchers from the

United States, China, and the United Kingdom, this article

will be counted for all three countries (Lin et al., 2016; Leung

et al., 2017).

A total of 153 countries/regions published remote sensing

studies during 2012–2021, 19 of which contributed only one

TABLE 1 Classification of local spatial correlation.

Category I Z(I)

High–High 0< I ≤ 1 1.96<Z(I)< +∞
Low–Low 0< I ≤ 1 −∞<Z(I)< − 1.96

High–Low −1≤ I< 0 −∞<Z(I)< − 1.96

Low–High −1≤ I< 0 1.96<Z(I)< +∞
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(Figure 1). Figure 1 shows that the top 30 cities with high

research output were those with large populations. The

10 most productive countries/regions contributed 68.78% of

the total studies, with the United States and China being the

two most active countries/regions in remote sensing research

(Figure 1). China and the United States had the largest

numbers of research publications, 5,389 and 2,649 research,

respectively. Developed countries such as the

United Kingdom, Italy, France, Canada, and Spain also had

high output. Large emerging countries, including India (947),

Brazil (331), Iran (310), and Egypt (260), have large

populations or are large energy consumers. Articles from

these countries mostly focused on society, the environment,

and energy. To some extent, this indicates that the economic

level plays a vital role in scientific input in remote sensing (Li

et al., 2016; Lukac et al., 2016; Mikhaylov et al., 2021).

Furthermore, for countries/regions with large populations,

especially emerging developing countries/regions, new

methods based on remote sensing technologies have been

sought to solve social problems (such as traffic congestion,

environmental pollution, etc.) caused by population growth or

develop new technologies for energy surveys (for mineral

exploration, etc.) to reduce costs and improve the efficiency

of energy exploration (Duane et al., 2021; Chen et al., 2022;

Wu et al., 2022).

4.2 Annual publication

Figure 2 describes the annual output of remote sensing

research. In Figure 2, the total global citation score (TGCS)

indicates the total citations of a remote sensing research by

study in the whole database, representing the influence of

that research on the academic community, while the total

local citation score (TLCS) indicates the citations in the field

of this study, which showcases its influence within the field. It

can also be seen that 12,549 studies were produced in the field

during 2012–2021. 2012 was the year with the lowest yield,

with 709 published research, while 2021 had the highest

yield, with the publication of 2,576 research. An average

of 1,331.8 research was published per year, with an average of

2,105 citations per year (21,050 citations in total in research

in the field). The total number of citations in the whole

database reached 181,944, an average of 18,194.4 citations

per year.

During 2012–2021, the first peaks of the TLCS and TGCS

emerged in 2013. In 2013, the study The detection of “hot

regions” in the geography of science—A visualization

approach by using density maps and Automatic landslide

detection from remote-sensing imagery using a scene

classification method based on BoVW and pLSA had the

highest TGCS and TLCS, respectively (Bornmann and

FIGURE 1
Geographic distribution of the global remote sensing research paper output.
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Waltman, 2011; Cheng et al., 2013). After a temporary rebound

in 2014, the TGCS and TLCS reached the peak of their research

duration in 2015 simultaneously, demonstrating that the

academic achievements of this year attracted high attention

from both the respective fields and the whole academic

community (Figure 2). Transferring deep convolutional

neural networks for the scene classification of high-resolution

remote sensing imagery was the research with the highest TGCS

and TLCS during 2012–2021 (Hu et al., 2015). After 2016, the

TLCS and TGCS continuously declined; however, remote

sensing research output displayed an upward trend. This

result does not suggest that the research conducted after

2016 is not important or that the academic community has

lost interest in remote sensing. It is more like a reflection of the

delayed citation window effect (O’Leary et al., 2015; Chi, 2016;

Gonzalez and Gonzalez, 2016; Hu et al., 2019), which means

that it takes time from publication to citation (Campanario,

2011; Chi, 2016). In general, the citation of research is directly

related to its publication time. The earlier the article is

published, the more times it will be cited (Leung et al., 2017;

Hu et al., 2019). Conversely, the research output in remote

sensing has been increasing since 2016, which indicates that

research in remote sensing has attracted ongoing attention from

both its own field and the global community (Figure 2) (Weng,

2009; Zhuang et al., 2013).

FIGURE 2
Temporal distribution of the output of remote sensing research from 2012 to 2021.

FIGURE 3
Line graph of the annual index change of remote sensing
research output.

TABLE 2 Annual index of remote sensing research output.

Year STDEV CV Moran

2012 24.1585 3.5976 0.071

2013 29.0000 3.7332 0.066

2014 31.1722 3.7716 0.090

2015 34.5797 3.4741 0.074

2016 37.1906 3.5033 0.061

2017 43.7571 3.7930 0.048

2018 57.4446 4.1129 0.051

2019 79.0978 4.3638 0.017

2020 91.7205 4.2680 0.022

2021 82.1665 4.6503 0.016
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TABLE 3 Gini coefficient and decomposition results of the output of remote sensing research.

Year

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Gini 0.8741 0.8733 0.8741 0.8503 0.8417 0.8495 0.8634 0.8588 0.8469 0.8519

Gini coefficient of intra-continental(Gw) SA 0.8444 0.8000 0.8222 0.7667 0.7863 0.7846 0.8024 0.7152 0.7839 0.7969

Oc 0.7467 0.7500 0.7070 0.7758 0.7524 0.7314 0.7536 0.7481 0.7297 0.7463

NA 0.8587 0.8490 0.8366 0.8433 0.8440 0.8347 0.8402 0.8321 0.8263 0.8328

Eur 0.6962 0.7150 0.7433 0.6815 0.6603 0.6805 0.6684 0.6875 0.6571 0.6588

As 0.8796 0.8926 0.8812 0.8647 0.8623 0.8669 0.8972 0.8933 0.8809 0.8762

Af 0.8865 0.8010 0.7615 0.7967 0.7273 0.7805 0.7093 0.7378 0.6946 0.7234

Gini coefficient of inter-continental (Gnb) SA–Oc 0.8737 0.8581 0.8260 0.8504 0.8521 0.8038 0.8672 0.8144 0.8308 0.8196

SA–NA 0.9677 0.9632 0.9396 0.9538 0.9551 0.9444 0.9534 0.9239 0.9298 0.9265

SA–Eur 0.8597 0.8468 0.8378 0.8199 0.8215 0.8237 0.8264 0.7884 0.7956 0.7858

SA–As 0.9112 0.9090 0.8924 0.8796 0.8884 0.8903 0.9122 0.8860 0.9023 0.9010

SA–Af 0.8956 0.8250 0.8708 0.8129 0.7884 0.8143 0.8062 0.7635 0.7799 0.8049

Oc–NA 0.9118 0.9041 0.8755 0.9122 0.8937 0.9070 0.8768 0.8696 0.8553 0.8659

Oc–Eur 0.7480 0.7660 0.7432 0.7749 0.7448 0.7499 0.7367 0.7518 0.7205 0.7330

Oc–As 0.8554 0.8724 0.8480 0.8695 0.8519 0.8532 0.8743 0.8758 0.8568 0.8693

Oc–Af 0.9438 0.9110 0.9320 0.9049 0.8797 0.8608 0.9091 0.8818 0.8688 0.8762

NA–Eur 0.8915 0.8825 0.8741 0.8600 0.8598 0.8574 0.8632 0.8554 0.8383 0.8478

NA–As 0.9198 0.9132 0.9052 0.9042 0.8993 0.8991 0.9125 0.9029 0.8892 0.8989

NA–Af 0.9871 0.9802 0.9798 0.9760 0.9725 0.9688 0.9743 0.9567 0.9522 0.9615

Eur–As 0.8194 0.8390 0.8442 0.8085 0.7985 0.8098 0.8344 0.8412 0.8192 0.8243

Eur–Af 0.9341 0.8994 0.9297 0.8927 0.8641 0.8724 0.8776 0.8616 0.8365 0.8369

As–Af 0.9541 0.9376 0.9414 0.9214 0.9095 0.9183 0.9339 0.9250 0.9223 0.9249

Notes: SA: South America; Oc: Oceania; NA: North America; Eur: Europe; As: Asian; Af: Africa.
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4.3 Spatial characteristics

The standard deviation of the research output in remote

sensing has been on the rise from 2012 to 2021, and that in

2021 was 82.1665, which was 240.11% higher than that in 2012.

In addition, its coefficient variation has been increasing

significantly since 2012 (Figure 3), and it was 4.6503, 29.26%

higher than that of 2012 (Table 2). This indicates a significant

dispersion of research output in remote sensing during the time

period, especially after 2017. One major reason is that the

number of countries/regions involved in remote sensing

increased yearly, and the annual research output of the

original high-producing countries/regions increased quickly.

In the initial stage, the publication of newly involved

countries/regions is usually less than that of developed

countries/regions, thus leading to an increase in the values of

the standard deviation and coefficient of variation year by year.

To a certain extent, this result reflects that remote sensing has

attracted the attention of scholars in an increasing number of

countries/regions (Zhuang et al., 2013; Schmitt et al., 2017;

Morales-Barquero et al., 2019). However, it is worth noting

that this phenomenon may lead to a decrease in the spatial

aggregation of remote sensing studies (Zhuang et al., 2013; Ma

et al., 2019b; Jin and Li, 2019; Xu and Yang, 2020).

During 2012–2021, the Moran index was above 0. There was

a positive spatial correlation in the remote sensing research

output, indicating spatial clustering in the sensing field, which

is consistent with the conclusion of Figure 1. In addition, from

2012 to 2014, the Moran index increased and then decreased,

which suggests the same trend of remote sensing research output

agglomeration (Figure 3). After 2015, theMoran index continued

to decline and fell to 0.016 in 2021, meaning that the research

output was still spatially aggregated to a significantly lower

degree than in the last 3 years. One important reason is that

collaborative research before 2018 was mostly among countries/

regions that are geographically close to each other or among

institutions within countries/regions (Fuentes, 2006; Weng,

2012; Zhuang et al., 2013). After 2019, it became more

international, involving more countries/regions and regions

(Ma et al., 2019b; Morales-Barquero et al., 2019; Wu et al., 2022).

4.4 Spatial evolution

4.4.1 Regional differences
Based on the continental division of geography (Asia,

Europe, Oceania, Africa, North America, and South America)

and the Dagum C algorithm, this study calculated the Gini

coefficients of six continents to analyze the intra and

intercontinental differences in research output in remote sensing.

The Gini coefficient of the remote sensing research output

decreased, and the smaller indicator shows the research

convergence. In addition, the regional imbalance decreased

(Table 3). As shown in Figure 4, the largest

intracontinental disparity in remote sensing research

output during 2012–2021 was observed in Asia (Gw was

the largest), while Europe showed the smallest

intracontinental disparity (Gw was the smallest), and North

FIGURE 4
Evolution of the intracontinental variation in the output of remote sensing research. (Notes.: SA: South America; Oc: Oceania; NA: North
America; Eur: Europe; As: Asian; Af: Africa).
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America was relatively stable, fluctuating at approximately

0.83. In Africa, the Gini coefficient of intracontinental

differences decreased dramatically, indicating that the

intracontinental differences in the research output on the

continent have significantly declined.

Asia, the continent with the largest intracontinental

disparity of research output in remote sensing fields, had the

largest intercontinental Gini coefficient with Africa and the

smallest with Europe (Figure 5A); Europe, the continent with

the smallest intracontinental disparity, also had the largest with

Africa and the smallest with Oceania (Figure 5B). In the

Americas, South America had the largest intercontinental

Gini coefficient with North America and the smallest with

Africa (Figure 5C); North America had the largest with

Africa and the smallest with Europe (Figure 5D). Overall,

the intercontinental disparity is dropping. Taking 2012 as

the base period, most of the six intercontinental Gini

coefficients declined, with Europe-Africa decreasing the most

(by 10.4%) and South America-Asia the least (by 1.11%). The

regional differences in research output decreased.

4.4.2 Spatial patterns
Figure 6 shows the 30 countries/regions with the most

active research output in remote sensing during 2012–2021.

As shown in Figure 6, the number of involved Asian

countries/regions increased from 6 to 10 in 2012, while

the number of involved European countries/regions

decreased from 16 to 12. In 2012, the United States was

the largest country/region in terms of research output, with

China, India, Germany, and the United Kingdom ranking

2–5. China became the country/region with the largest

scientific research work output during 2013–2021, and

India moved up to the top three after 2018.

The changes in quadrants in Figure 7 reflect the local spatial

evolutionary characteristics of the output of research work related to

remote sensing. Table 4 presents the countries/regions included in

FIGURE 5
(A–D) respectively show the evolution of intercontinental differences in remote sensing research output between Asia, Europe, South America,
and North America and other continents. (Notes.: SA: South America; Oc: Oceania; NA: North America; Eur: Europe; As: Asian; Af: Africa).
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FIGURE 6
Top 30 countries with the most active output of remote sensing research.
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FIGURE 7
Scatterplot of the Moran index of the output of remote sensing research.
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TABLE 4 Corresponding countries/regions of the Moran scatterplot for the output of remote sensing research.

Year

2012 2013 2014 2015 2016

High–High Canada Canada Canada Canada, India, Netherlands,
and Russian

Canada, India, Russian, and
SpainNetherlands India India

Russian Russian Netherlands

Spain Russian

Spain

Low–High Afghanistan, Bangladesh,
Denmark, Ireland, Kazakhstan,
Kyrgyzstan, Luxembourg,
Mexico, Mongolia, Myanmar,
Nepal, Pakistan, and Viet Nam

Afghanistan, Bangladesh,
Ireland, Kazakhstan,
Kyrgyzstan, Laos,
Luxembourg, Mexico,
Mongolia, Myanmar, Nepal,
Pakistan, and Viet Nam

Afghanistan, Denmark,
French Guiana Ireland,
Kazakhstan, Kyrgyzstan,
Laos, Luxembourg, Mexico,
Mongolia, Myanmar,
Nepal, Pakistan, and
Viet Nam

Afghanistan, Denmark,
Ireland, Kazakhstan,
Kyrgyzstan, Laos,
Luxembourg, Mexico,
Mongolia, Myanmar,
Nepal, Pakistan, and
Viet Nam

Afghanistan, Bangladesh,
Denmark, Ireland,
Kazakhstan, Kyrgyzstan,
Laos, Luxembourg, Mexico,
Mongolia, Myanmar,
Nepal, Pakistan, and
Viet Nam

Low–Low Guinea, Mali, Democratic
Republic of the Congo, and
Zambia

Burkina Faso Cote D’ivoire,
Guinea, and Tanzania

Burkina Faso Cote D’ivoire,
Guinea, Mali, Tanzania,
and Democratic Republic of
the Congo

Angola Congo Cote
D’ivoire, Guinea, Nigeria,
Tanzania, Democratic
Republic of the Congo, and
Zambia

Angola Burkina Faso Cote
D’ivoire, Ghana, Guinea,
Liberia Mali, Tanzania,
Democratic Republic of the
Congo, and Zambia

High–Low United Kingdom and South
Africa

United Kingdom

Year

2017 2018 2019 2020 2021

High–High Canada, India, Netherlands,
and Russian

Canada, India, Netherlands,
and Russian

Canada, India, Netherlands,
and Russian

Canada, India, Pakistan,
and Russian

Canada, India, Pakistan,
and Russian

Low–High Afghanistan Afghanistan, Bangladesh,
Denmark, Ireland,
Kazakhstan, Kyrgyzstan, Laos,
Luxembourg, Mexico,
Mongolia, Myanmar, Nepal,
Pakistan, and Viet Nam

Afghanistan, Denmark,
Ireland, Kazakhstan,
Kyrgyzstan, Laos,
Luxembourg, Mexico,
Mongolia, Myanmar,
Nepal, Pakistan, and
Viet Nam

Afghanistan, Bangladesh,
Denmark, Ireland,
Kazakhstan, Kyrgyzstan,
Laos, Mexico, Mongolia,
Myanmar, Nepal,
Luxembourg, and Viet Nam

Afghanistan, Denmark,
Ireland, Kazakhstan,
Bangladesh, Kyrgyzstan,
Laos, Mexico, Mongolia,
Myanmar, Nepal, and
Viet Nam

Denmark

Ireland

Kazakhstan

Kyrgyzstan

Laos

Luxembourg

Mexico

Mongolia

Myanmar

Nepal

Pakistan

Viet Nam

Low–Low Angola, Burkina Faso, Guinea,
Liberia Mali, Tanzania,
Democratic Republic of the
Congo, and Zambia

Angola, Congo, Guinea,
Nigeria Tanzania, Democratic
Republic of the Congo, and
Zambia

Angola, Tanzania,
Democratic Republic of the
Congo, and Zambia

Angola, Burkina Faso,
Congo, Cote D’ivoire,
Guinea, Senegal Nigeria
Tanzania, Democratic
Republic of the Congo, and
Zambia

Angola, Burkina Faso, Cote
D’ivoire, Ghana, Guinea,
Liberia Mali, Senegal,
Tanzania, and Democratic
Republic of the Congo

High–Low
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each quadrant in Figure 5. As seen from Table 4, a total of

6 countries/regions entered the high–high cluster from 2012 to

2021, with low–high, low–low, and high–low comprising 16, 12, and

2 countries, respectively. Moreover, two countries/regions (Canada

and Russia) are in theHigh–High cluster, indicating that the outputs

of research work related to remote sensing in these countries/

regions and their neighboring countries/regions were at a

relatively high level and stable. In addition, 9 countries/

regions are in the low–high category. In general, the

countries/regions located in each quadrant were relatively

stable in the research period, and only a few countries/

regions underwent quadrant location changes. For example,

Pakistan moved from the second quadrant (low–high) to the

first quadrant (high–high), which demonstrates the output of

scientific research work in Pakistan and its neighboring

countries/regions or regions improved.

5 Discussion

According to the previous analysis, the gap in the research

work output regarding global remote sensing between the different

continents decreased, and the spatial aggregation was obviously

reduced. The top 10 countries/regions with the largest amount of

published research were not the top 10 countries/regions with the

largest gross domestic product (GDP). Similarly, the ranking of

GDP was not consistent with the research output of the

country/region. Meanwhile, almost all the top 30 cities with

the largest research work output were among the top 30 in

terms of urban populations; however, some cities with large

populations like Tokyo and So Paulo fail to make top -30 listed

countries with their research output. To some extent, although

not decisively, regional economic development and the

population have significant impacts on the output of

research work in relevant fields of remote sensing (Li et al.,

2016; Lukac et al., 2016; Ma et al., 2019a; Ma et al., 2019b).

During the past decade, the output of research work on remote

sensing has increased sharply. With more countries/regions

concerned about remote sensing and the wider geographic

distribution of the nations, the most active countries/regions in

the remote sensing research involved the main developed

countries/regions as well as emerging developing countries/

regions. Tables 5 and 6 show remote sensing research

published from 2012 to 2021 with the top 10 TLCS and TGCS

values. Most of the study with high TLCS and TGCSwas published

after 2016, representing the most cutting-edge studies on remote

sensing. During this period, studies with a higher TGCS were

published in 2013. Interestingly, the ranking of TLCS in Table 6

was not identical to that of TGCS. Generally, published research

will be cited by work in this field first, and then cited by studies in

other fields after a period of time. During this period, two

situations may occur: first, the method or idea proposed in this

study may be refuted or optimized by other research in this fieldT
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but is being borrowed and used by other fields; therefore, this study

gets a low TLCS ranking and a high TGCS ranking; second, the

method or idea proposed in this study is only applicable to this

field, so it is ranked high in TLCS but low in TGCS (Hu et al., 2019;

Jin and Li, 2019).

As shown in Tables 5 and 6, there were five study associated

with deep learning and focused on target detection, scene

understanding, and autonomous exploration. Meanwhile, the

number of remote sensing research related to in-depth

learning increased from 3 in 2015 (accounting for 0.3% of the

total number of research) to 98 in 2021 (5.43%), showing a

significant upward trend (Figure 8). In recent years, with the

soaring development of computer vision, such as image

classification, target identification, and semantic segmentation,

deep learning has been widely applied to remote sensing and has

become an important innovation driver for remote sensing

research (Zhang et al., 2016; Leung et al., 2017; Kozlowski

et al., 2020).

The continental imbalance in the output of remote sensing

research work decreased. The continental gap in output in Asia

was the largest, while the gap in Europe was the smallest (Table 3;

Figure 4). In Asia, there were nations with advanced academic

institutions, talented scientific researchers, and large research

work output as well as nations with unfavorable research

conditions, few scientific researchers, and small study output

(Klein et al., 2014; de Beurs et al., 2015; Vadrevu et al., 2019).

Thus, the gap in research work output in Asia was larger than

that in Europe (Goga et al., 2019; Chen et al., 2020; Mikhaylov

et al., 2021). Moreover, the continental gap in Africa has

obviously narrowed due to the increasing investment in

scientific research in the current decade (Khechba et al., 2021;

Mngadi et al., 2022; Sebola, 2022). Regarding the continental gap

between Asia and other continents, the gap between Asia and

Africa was the largest, and the gap between Asia and Europe was

the smallest (Figure 5A), showing that the gap between the two

continents with high research output was not large. The gaps

between Europe and other continents were all smaller than those

between Asia and other continents. In contrast, the gap between

Europe and Africa was the largest (Figure 5B), suggesting a large

imbalance between Africa and other continents with high

research output, such as Asia and Europe.

With the development of communication technology, the

cost of cross-regional cooperation decreased, thus promoting

international cooperation (Figure 5). Recently, with the help of

artificial intelligence, deep learning, and blockchain technologies,

remote sensing has been widely and deeply applied to national

defense, the economy, and people’s daily lives (Zhu et al., 2017;

Kocaman and Ozdemir, 2020; Jung et al., 2021). With an

increasing number of countries/regions paying attention to

remote sensing, some with lower output will become high-

output countries/regions, and some less developed countries/

regions will no longer have low output, so the spatial aggregation

TABLE 6 Top 10 articles of remote sensing with the highest TGCS.

No. Article TLCS TGCS References

1. Hyperspectral Remote Sensing Data Analysis and Future Challenges 40 908 Bioucas-Dias et al.
(2013)

2. Deep Learning for Remote Sensing Data A technical tutorial on the state of the art 143 863 Zhang et al. (2016)

3. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources 139 816 Zhu et al. (2017)

4. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing
Images

226 775 Cheng et al. (2016)

5. Twenty 5 years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps 50 705 Mulla, (2013)

6. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing
Imagery

198 632 Hu et al. (2015)

7. Remote Sensing Image Scene Classification: Benchmark and State of the Art 258 616 Cheng et al. (2017)

8. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends 62 601 Weng, (2012)

9. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data 58 493 Kussul et al. (2017)

10. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification 90 465 Maggiori et al. (2017)

FIGURE 8
Annual yield of remote sensing research to deep learning.
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of the professional research work on remote sensing will

decrease.

Despite the above discoveries, due to the limitations of the

data, there is an inevitable deficiency in the methodological

universality of this exploratory research. Initially, because of

data availability and the heterogeneity of the different

databases, data from the WoS core database were used in this

study. Although the data have high authority, its lack of

comprehensiveness cannot be ignored. During the over 10-

year research, the name of some institutions may have

changed or even become defunct. Secondly, the same

university, organization, and institution might be in different

cities, so we decided to analyze the research output at the national

level. Lastly, the weight impacts and author priority in the

cooperation were not taken into account in the research output

analyses. In future studies, we will improve the availability and

scientific rigor of the results by considering the above limitations.

6 Conclusion

Based on 13,057 research articles included in the WoS from

2012–2021, this study probed the spatiotemporal distribution and

evolutionary characteristics of research work output in remote

sensing by utilizing scientometric and exploratory spatial analysis.

The conclusions are as follows:

Over the last decade, the output of remote sensing research has

increased significantly, and its spatial distribution presents a

significant dispersion trend. Countries/regions actively

participating in remote sensing research included both developed

and emerging developing countries/regions, among which the

United States and China were the most active. Although the

regional economic level and population size play important roles

in the remote sensing research work output, neither factor is a

determinant. Nearly half of the top ten studies with the highest TGCS

and TLCS values were related to deep learning, suggesting that deep

learning technology will be one of the most important drivers of

innovation in future remote sensing applicationmodels. The regional

imbalance of the research work output in remote sensing generally

dwindled. Although both Asia and Europe had the largest remote

sensing research work output, the intracontinental disparity in Asia

was the largest, and that in Europewas the smallest, which is related to

uneven regional development. The continuous development of

telecommunication and other technologies reduces the cost of

cross-regional cooperation, and international cooperation in

remote sensing has become more frequent. As a result, massive

incorporation can bring new technologies and methods. Moreover,

remote sensing technology has been widely applied to various fields,

such as national defense and economics. More national attention has

been given to remote sensing, resulting in mitigation of the clustering

of research work output in remote sensing fields.

The results of this study can help countries/regions and

institutions understand the overall situation of research output

and the continental research gaps in remote sensing as well as

improve understanding of the evolution trend of research output.

By exploring the essential features of national/regional gaps, the

results also serve as important sources of fundamental data and

decision-making references for the spatial allocation optimization

of scientific and technological resources and regional gap

reduction. However, a few limitations and shortcomings should

be noted, and future efforts are needed. 1) Although the adopted

data source is sufficiently authoritative, it is relatively simplistic and

not comprehensive. 2) Due to various reasons, the research work

output in remote sensing fields was only analyzed at the national/

regional scale, leading to a lack of universality of the conclusions. 3)

The absence of weight calculation and priority analysis of

institutional importance also affects the rigor of the results.
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The spatial pattern and influence
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In the new era, the vitality of urban space is an important engine of urban

development, and the improvement of urban space vitality is the core

component of urban spatial structure optimization and space renewal.

However, the availability of data is an important issue in the evaluation of

urban space vitality, and continuous vitality monitoring of the entire city is

difficult to achieve through traditional methods of field research and

questionnaire interviews. Due to this challenge, the traditional vitality

assessment methods have serious limitations in the analysis of vitality causes

and the guidance of urban space development. Using mobile phone signaling

data, this study takes Changsha City as an example to measure the urban spatial

vitality and uses the SEM model to analyze how market intervention, traffic

accessibility, and spatial characteristics affect the density and stability of urban

spatial populations. The results show that the overall urban space vitality density

and vitality stability demonstrates an obvious “center–periphery” pattern, and

the vitality of the urban center area is in a “high density–low stability” state. The

overall urban vitality density on rest days is slightly lower than that on weekdays,

and the stability of vitality on rest days is significantly higher than that on

weekdays. Market intervention and transportation accessibility support vitality

density, but not vitality stability, and spatial characteristics are the opposite. The

findings can provide insights relevant to urban spatial planning and design.

KEYWORDS

space vitality, spatial pattern, environmental influence, (MPSD)mobile phone signaling
data, Changsha

1 Introduction

Since the implementation of the reform and opening-up policy, China has

experienced unprecedented urbanization (Jin et al., 2017). Land-dominated

urbanization (Zeng et al., 2018) has led to explosive growth of urban built-up

areas (Huang et al., 2017). Many large cities have also entered a concentrated

outbreak period of “urban diseases” (Hui et al., 2014) such as “ghost towns,”

“traffic congestion,” and “environmental deterioration.” Such rapid urban space

expansion has concerned scholars about the creation of urban space vitality
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(Batty, 2016). The government has also noticed the potential

problems in the process of urbanization and has made urban

physical examination and promotion of urban vitality an

important strategic task for urban space development in

the new era (Wang et al., 2022). At present, the

development of urban space in China has fully entered the

era of stock development, and the supply of new construction

land in a large number of cities has been severely restricted

(Xia et al., 2020; Dong et al., 2021). The development model of

China’s large cities has gradually shifted from incremental

planning to stock planning (Xia et al., 2019). In this context,

the academic community and the general public have

generally recognized that using the huge stock space

formed by rapid urbanization (Wang et al., 2017; He et al.,

2018) to enhance the vitality of space is an important means to

improve the quality of urban space and alleviate urban

diseases. Therefore, an understanding of urban vitality is

essential for cities to be vibrant and sustainable (Lang

et al., 2016). The study of urban spatiotemporal vitality

pattern provides a new way to alleviate the problems of

blind urban expansion and resource allocation imbalance

(Liu and Long, 2019). Moreover, analyzing the temporal

and spatial laws of urban space vitality and its impact

mechanism can effectively provide an important basis for

enhancing urban space vitality and promoting high-quality

development of urban space.

Since Jacobs proposed the concept of urban vitality, it has

received extensive attention from multiple disciplines

(Delclòs-Alió et al., 2019). The connotation and dimension

of the concept of urban vitality are one of the important issues

to be studied in urban planning disciplines (Pakoz and Isik,

2022). Urban vitality is the source and driving force of urban

development, which directly affects urban development and

the satisfaction of the urban population (Lan et al., 2020; Guo

et al., 2022). Researchers generally believe that urban vitality

reflects the interaction between various human activities and

existing urban facilities, and plays a crucial role in promoting

comprehensive, coordinated, and sustainable urban

development (Wu. et al., 2018; Mouratidis and Poortinga,

2020). Urban vitality represents the level of human activities

in different times and spaces of the city (Li et al., 2016; Li and

Liu, 2016), and good urban vitality reflects the relationship

between urban space and urban population. Human

relationships also reflect the quality of urban space (Jin

et al., 2017).

At present, academia has carried out numerous research

works on the vitality of urban space. In terms of study area

type, current research on urban vitality mainly focuses on

urban parks (Zhu et al., 2020; Mu et al., 2021; Mushkani and

Ono, 2021), commercial centers (Guo et al., 2022) and

communities (Li et al., 2022), waterfront space (Liu et al.,

2021; Niu et al., 2021), urban streets (Gehl et al., 2006), and

other aspects of spatial vitality measurement and analysis of

influencing factors. In addition, many scholars often use

urban vitality to evaluate the quality of urban development

(Lan et al., 2020; Jiang et al., 2022). In terms of data usage,

availability of data used to be the primary issue for

quantitative analysis of urban vitality (Sung and Lee, 2015;

Ye et al., 2017). In recent years, the development of

information and communication technology and perception

technology has provided new data, methods, and research

objects for urban vitality research (García-Palomares et al.,

2018; Kim, 2018). A wealth of microscale geographic open

data, including social media data, mobile phone trajectories,

points of interest (POIs), night-lighting data (Zheng et al.,

2017), location-based service data (Jin et al., 2017), and smart

card records, can be used for quantitative and systematic

studies of urban density and urban vitality (Liu et al., 2015;

Xia et al., 2017; Wu and Niu, 2019; Tu et al., 2020). Compared

with traditional census and survey data, these geotagged big

data have a large sample size, high penetration rate, and strong

timeliness, which have significant advantages for us to study

urban vitality further (Ye et al., 2017; Wu, et al., 2018), thereby

promoting the research paradigm shift of dynamic

observation of static data analysis items (Liu and Long,

2019). In recent years, many studies have attempted to

analyze spatial big data from different sources to explore

urban vitality (Tang et al., 2018; Lu et al., 2019). For

example, mobile phone signaling data (MPSD) can provide

more objective and high-resolution data for urban spatial

vitality research (Birenboim and Shoval, 2016; Chen and

Akar, 2016; Delclòs-Alió et al., 2019). In terms of selection

of influencing factors, in the evaluation of urban vitality at a

regional or national level with cities as the basic units, socio-

economic data are mainly selected as influencing factors.

Examples of these socio-economic data are per capita gross

domestic product and per capita fiscal revenue (Lan et al.,

2020; Shi et al., 2021). In the research on the vitality of urban

interior space, the selection of influencing factors is mainly

based on public service facilities (education, entertainment

facilities, etc.), landscape elements (human landscape

elements, natural landscape elements), and traffic

accessibility (subway, taxi) as the main body (Delclòs-Alió

et al., 2019; Mouratidis and Poortinga, 2020; Li et al., 2021;

Niu et al., 2021; Yue et al., 2021). In terms of research

methods, global and local regression models (Fan et al.,

2021), space syntax (Xu and Chen, 2021), and other

methods are widely used. In recent years, structural

equation model methods have been increasingly applied to

urban space research for causal analysis, especially for latent

variables that cannot be directly observed (Mouratidis and

Poortinga, 2020; Liu et al., 2021).

In summary, in-depth research on urban vitality and its

influencing factors can help shed light on the complex

relationship between urban vitality and socio-economic

order (Lang et al., 2016; Li et al., 2022). Moreover, it can
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help urban planners and policymakers develop effective urban

sustainability plans (Laman et al., 2019; Meng and Xing,

2019). Urban planners often expect to plan and build a

space with high vitality, yet spaces with high vitality cannot

be attributed to planning alone. The formation of spatial

vitality is significantly affected by market economic

activities. Therefore, planners trying to plan or update

urban space to enhance urban vitality must master the

status and influencing factors of urban space vitality.

However, for urban planners, little research and discussion

have been conducted on the spatial and temporal

characteristics of the overall spatial vitality of a city, for

example, what affects urban spatial vitality, and what

factors are the most important. This involves many issues:

how the vitality of urban space is affected by factors of the

built environment and how to optimize the spatial structure

on the overall scale of the city to enhance the vitality of space.

In addition, current research mainly uses regression models to

explain the impact of various environmental characteristics

on the vitality of urban local areas or specific functional areas.

Although this method can obtain the correlation and

statistical significance between built environment elements

and spatial vitality, it is difficult to use for establishing the

causal relationship between variables and for analyzing the

complex relationship between urban spatial vitality and

influencing factors. In particular, factors such as spatial

accessibility and market economic activities have an

important impact on the vitality of urban space, but these

variables cannot be directly observed. Traditionally, some

distance factors such as the location and agglomeration of

commercial facilities are often used to replace accessibility and

market economic activities, but whether these indicators can

be accurately measured has not been verified. In addition,

compared with other emerging data, MPSD has obvious

advantages in analyzing the vitality of urban space. On the

one hand, MPSD is a direct response of individuals in urban

populations with very high spatial resolution and smaller

granularity. On the other hand, MPSD can have better

timeliness, which is an important reason why many current

research works use MPSD (De Nadai et al., 2016; Yue et al.,

2016).

Therefore, this research will use MPSD data to measure the

vitality of urban space, analyze the situation of urban space

vitality, and use a structural equation model to analyze the causes

of urban space vitality. We focus on the distribution pattern of

urban spatial vitality in different times, the vitality persistence

(vitality stability), and its relationship with the urban built

environment. This study is organized as follows: the

introduction section gives the background of this study and a

descriptive literature review. The latter consists of a summary of

the reviewed articles and examines the concept of urban vibrancy

and related studies in MPSD. Section 2 explains the research

methods, including the data and analytical methods used. Section

3 elaborates the analysis results. Section 4 discusses the findings

from the viewpoint of urban planning practices. Section 5

concludes the study. Our study follows the trend of academic

research and attempts to use advanced spatiotemporal analysis

techniques to conduct an in-depth analysis of urban vitality to

advance the scientific understanding of sustainable urban

development.

2 Data and methodology

2.1 Study area

Changsha is the capital city of Hunan Province, an

important central city in the middle reaches of the Yangtze

River. The city was identified by the Chinese Central

Government as an important political, economic,

educational, cultural, and transportation center in the

central region. With the continuous economic development

of Changsha Zhuzhou and Xiangtan urban agglomerations

and the continuous advancement of national strategies such as

the rise of Central China, the middle reaches of the Yangtze

River, the Yangtze River Economic Belt, and the “One Belt and

One Road” initiative, the development of Changsha has

ushered in a significant period of opportunity.

Furthermore, its international status has been elevated. As

China continues to shift its development focus to the central

region, Changsha’s future becomes promising. Changsha is

one of the most famous cities in China. The spatial behavior of

urban people is typical, making it a good research area for

urban vitality research (Figure 1).

Changsha City has six districts and three counties. The

spatial activities of urban people mainly occur in the areas

that have been built in the city. By comparing satellite maps

and administrative boundary data, we selected Tianxing District,

Yuelu District, Yuhua District, Kaifu District, most of

Wangcheng District, Furong District, and part of Xingsha

County as the study area (Table 1).

2.2 Data sources

This study used four types of data, namely, MPSD, POI

data, road network data, and the administrative boundaries of

the study area. First, the MPSD are obtained from Hunan

Mobile Company. The data covered weekdays and weekends

in July 2021 when weather conditions were good. In order to

protect privacy, Hunan Mobile uses a 200 m × 200 m grid to

count the number of people distributed in time and space.

Mobile phone data depict the spatiotemporal characteristics

of the activities of individuals (Qian et al., 2021). Several

previous studies have proven that MPSD are effective in

determining the temporal and spatial distribution of the
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urban population (Fan et al., 2018; Xiao et al., 2019; Yin et al.,

2021). We selected hourly cell phone signal data from 9 a.m. to

9 p.m. for the following reasons. First, during the night period

(21:00–06:00), urban residents are mainly concentrated in

urban living spaces, and the usage of urban public space is

small. Second, from 6:00 a.m. to 9:00 a.m., urban traffic

commutes make the spatial activity highly dynamic and the

response to the spatial vitality inaccurate.

The POI data in July 2021 were obtained from the online map

service platform GAODEmap (http://lbs.amap.com/) by calling the

open API Python programming. Each POI data include name,

address, longitude, and latitude. After data cleaning, coordinate

transformation, and sorting, the effective data volume exceeded

300,000. On this basis, we established a database of different types of

POI in the study area. The road network data which were used to

extract the study area were obtained from the OpenStreetMap

FIGURE 1
Research area.

TABLE 1 Detailed scope of the study area.

Study area Include area only Not included area

Yuelu District All regions except exclude regions Yuchangping Street, Lianhua Town, Hanpu Street, Xueshi Street,
Zhongtang Village, Yujiang Village, Shuanghu Village, Baiquan Village,
Xinghe Village, Lianhuashan Village, Taiping Village

Kaifu District All regions except exclude regions Hanhui Village, Shuangtang Village, Zhuan Village, Shulin Village, Shaping
Village, Zhongshan Village, Xinyuan Village, Jinxia New Village, Tiansheng
Community

Wangcheng
District

Moon Island Street, Baishazhou Street, Daze Lake Street, Jinshanqiao
Community, Jinping Community, Guifang Village, Gaochong Village,
Renhe Community, Lianhu Community, Baifutang Community, Gaotang
Community, Yujiapo Community

Changsha
County

Quantang Street, Langli Street, Xianglong Street, Xingsha Street, Longxiang
Community, Huaxiang Village, Changlong Village, Longjing Community

Yuhua District All regions except exclude regions Tiaoma Town

Tianxin District All regions except exclude regions Xuxing Village

Furong District All areas
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(http://www.openstreetmap.org/). Changsha administrative division

boundary data come from the Institute of Geography and Resources,

Chinese Academy of Sciences.

2.3 Analysis framework and model
construction

2.3.1 Characterization of urban space vitality
density and its stability
2.3.1.1 Vitality density

Urban space vitality density refers to the intensity of

crowd activities in the urban space at a certain moment,

usually expressed by the ratio of the total population to the

research unit area. The larger the index value, the stronger the

vitality. This study is based on the general scale of urban block

units in Changsha City, and the study unit is divided into

800 m × 800 m grids for analysis. Table 2 shows the formulas

for calculating the space vitality density during the research

period.

2.3.1.2 Vitality stability

Vitality stability refers to the degree of dynamic changes in

the intensity of urban crowd activity during the overall study

period, that is, the degree of dispersion of the intensity of

urban crowd activity in a specific time period in the time

dimension, which is usually measured by the standard

deviation. The smaller the value, the more stable the

vitality. For the convenience of follow-up statistics, we have

carried out reverse normalization of this value, so that the

larger the index after normalization, the stronger the stability

of the indicated vitality. Table 3 shows the calculation formula

of vitality stability.

2.3.2 Structural equation model approach
Since the development of the SEM model in the 1990s, it has

promoted the research process in the fields of psychology,

economics, sociology, and spatial planning (Halkos et al.,

2021; Liu et al., 2021; Tong et al., 2021). The main advantage

of using SEM over multivariate regression models and univariate

regression is the opportunity to model complicated

interrelationships among dependent and/or independent

variables (Najaf et al., 2018). SEM can estimate direct effects,

indirect effects, and total effects, which gives a deeper and more

comprehensive insight into the links between variables than

ordinary linear models (Tong et al., 2021). In addition, SEM

can be applied to cope with the problem of endogeneity when it is

caused by simultaneous causality (Jo and Jeon, 2021; Tong et al.,

2021; Shami et al., 2022). In order to ensure the reliability of the

SEM model, a large number of fitting parameters have been

developed, including goodness-of-fit index (GFI), normed fit

index (NFI), comparative fit index (CFI), and Tucker–Lewis

TABLE 2 Vitality density formulas for weekdays and weekends.

Variables Formula Description

Weekday density
Di,work � ∑3

j�1(∑13

i�1Pi,jwork )
S × 13 × 3 .

Di,work is the weekday density. Pi, jwork is the number of users in the ith hour on the jth working day.

Weekend density
Di,rest � ∑2

j�1(∑13

i�1Pi,jrest )
S × 13 × 2 .

Di,work is the weekend density. Pi, jrest is the number of users in the ith hour on the jth weekends.

Notes: The research selects hourly MDSP, from 9 a.m. to 9 p.m.

TABLE 3 Vitality stability formulas for weekday and weekends.

Variables Formula Description

Weekday stability
Sj �

�������������������
1
13

× ∑13

i�1(Di,j − �Dj)2
√

,

Swork � 1
2
× ∑3

j�1Sj .

Sj is the standard deviation of user density on the jth day. Di,j is the user density on the jth day, ith hour of the ith block.
�Dj is the average user density on the jth day. Swork is the standard deviation of user density on Weekday.

Weekend stability
Sj �

�������������������
1
13

× ∑13

i�1(Di,j − �Dj)2
√

,

Srest � 1
2
× ∑2

j�1Sj .

Si, j is the standard deviation of user density on the jth day of the ith block.Di,j is the user density on the kth day, ith hour
of the ith block. �Dj is the average user density on the kth day. Srest is the standard deviation of user density on weekends
of the ith block.

Dimensionless S′k � Sk−Smin
Smax−Smin

. S′k is the stability index of the kth block, which is the value of the standard deviation index, which is standardized
(dimensionless). Sk is the standard deviation of the kth block, Smax is the standard deviation maximum value among
1,475 blocks, and Smin is the standard deviation minimum value.

Notes: The research selects hourly MDSP, from 9 a.m. to 9 p.m.
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coefficient (TLI). On this basis, we choose the most commonly

used indicators, namely, TLI, NFI, GFI, SRMR, and CFI to test

SEM (Xie et al., 2020).

AMOS is an added SPSS module and is specifically used for

SEM. Through AMOS, we can draw models graphically using

simple drawing tools. AMOS performs the computations for

SEM and displays the results quickly (Shami et al., 2022). These

features provide great convenience for this research.

2.3.3 Construction of the theoretical model
Taking Changsha urban built-up area as a case study area,

the structural equation model was elaborated and consists of a

measurement model and a structural model (Figure 2). In

previous urban population density studies, shopping

facilities, catering facilities, entertainment facilities, hotel

accommodation facilities, and daily life service facilities are

widely used factors (Li et al., 2019; Yang et al., 2021; Chen et al.,

2022; Li et al., 2022). Subway, taxis, and other modes of

transportation, which are components of transportation

accessibility, are almost mandatory factors in all studies on

population density distribution and spatial vitality (Yue et al.,

2021; Guo et al., 2022). Scholars have also adopted elements

such as spatial landscape and cultural attractions (Lin et al.,

2021; Niu et al., 2021; Xu and Chen, 2021). The spatial behavior

and spatial flow of urban people mainly consider the influence

of three aspects: the push end, the pull end, and the link channel

between the two. The research on the vitality of urban space

mainly considers the tension end and the link channel. The link

channel refers to the accessibility of traffic, whereas the pull

section refers to the spatial attribute that meets the public needs

of the urban population. The functional attributes of public

space come from two ways: one is the land-use attribute given

by spatial planning, and the other is the dynamic and stable

attribute formed by the continuous operation of the market

economy. For the renewal of urban built-up areas, it is more

reasonable to consider the dynamic and stable attributes

generated by market operation, which is also the dynamic

demand for urban space vitality. However, the spatial

dynamism of government-led facilities such as educational

facilities and medical facilities is moot. This type of facility is

planned in accordance with the configuration standard of

public service facilities, and it is not necessary to enhance

the vitality of the space. Therefore, we choose the average

vitality density and vitality stability of weekdays and

weekends as endogenous variables. According to the

attributes of urban space facilities, urban functional facilities

are divided into three types of endogenous variables: market-led

facilities, spatial quality, and traffic accessibility. A geographic

information system will be an effective tool for visualizing the

results. The following three hypotheses are proposed to verify

the relationship between urban space vitality and built

environment characteristics.

FIGURE 2
Conceptual structural model.
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FIGURE 3
Spatial distribution of independent variables. (A) Natural scenery. (B) Cultural and historical characteristics. (C) Dining facilities. (D) Hotel
accommodation. (E) Leisure and entertainment. (F) Shopping facility. (G) Daily life. (H) Taxi densities. (I) Subway distance.
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H 1. The greater the density of market-led implementation,

the more vibrant the urban space.

H 2. The greater the traffic accessibility, the more vibrant the

urban space.

H 3. The better the quality of the space, the more vibrant the

urban space.

2.3.4 Variable settings
2.3.4.1 Exogenous variable

The exogenous variables of this study are the functional

characteristics of the urban built environment. Except for the

parameter of traffic accessibility, which is the same as the index

used by a large number of scholars, we have made innovations in

other exogenous variables. According to the construction and use

attributes of functional space, an environmental factor index

system that is composed of market intervention facility, spatial

quality, and traffic accessibility of the urban space has been

constructed.

2.3.4.1.1 The impact of the market intervention facility.

The implementation of a large number of commercial

administrations in the city has fully considered the vitality of

the urban space when selecting the site and has an impact on the

vitality of the city. Among them, the layout and scale of

commercial facilities, catering facilities and living service

facilities are mainly determined by the market environment.

Therefore, this study integrated the number of commercial

facilities, catering facilities, living service facilities, leisure and

entertainment facilities, and hotel accommodation facilities per

unit area into the market intervention facility index system.

2.3.4.1.2 The impact of spatial quality. Whether the urban

space has good natural scenery and cultural and historical

characteristics are important parameters to measure the

attractiveness of the space. The spatial quality of this research

refers to scenic spots with natural landscape attributes and

historical sites with cultural and historical attributes. It is

quantified by spatial density.

2.3.4.1.3 The impact of traffic accessibility. Traffic

accessibility refers to the convenience of transportation to a

specific space in a city, and is used as a common indicator in

the study of urban space vitality (Niu et al., 2021; Guo et al.,

2022). Numerous scholars usually take the development of urban

public transportation as an important parameter to measure

traffic accessibility (Yang et al., 2021; Yue et al., 2021). Inspired

by this convention, this study mainly used the number of taxis

per unit area and the distance to nearby subway stations as

indicators to measure traffic accessibility. The significance of

urban bus stops is poor in the analysis process, so the factor of

bus stops is not included in the model analysis. To ensure the

convenience of data processing, the accessibility indicators are

normalized (dimensionless). In addition, the distance from the

subway station is reversely processed to ensure that the larger the

value, the closer the distance to the subway station.

Figure 3 shows the spatial distribution of all these observed

variables.

2.3.4.2 Endogenous variable

This research uses urban spatial vitality as an endogenous

variable. Urban spatial vitality refers to the distribution of

people in space and the balance of time dimensions.

According to previous studies on urban space vitality (Li

et al., 2020; Liu et al., 2021), this research takes vitality

stability and vitality density as observed variables. Given

the overall reverse difference between the vitality density

and vitality stability of Changsha City, to ensure the

stability of the model, the vitality density and vitality

stability will be modeled separately. At the same time, the

spatial vitality between weekdays and weekends has

differences, so they are evaluated separately.

2.3.5 Reliability and validity testing
In order to ensure the validity of model fitting evaluation and

hypothesis testing, this study conducted reliability and validity

tests on variables. In this study, Cronbach’s coefficient alpha

(CCA) and composite reliability (CR) were used to test the

reliability of the data, and the validity was assessed by

calculating the mean variance (AVE). Both CCA and CR

should be greater than 0.7, and AVE should be kept above 0.5

(Halkos et al., 2021; Liu et al., 2021). In this study, confirmatory

factor analysis was used to measure the reliability and validity of

the variables (Table 4). The analysis results show that the

variables used in the study have good reliability and

discriminant validity except for the assumption of spatial

characteristics. Among them, the CCA value of spatial

characteristic elements is slightly lower than the suggested

value, because the spatial distribution of natural landscape

and human landscape is often mutually exclusive. Moreover,

the analysis unit of the study fails to include a wider range of

spatial elements. Overall, the hypotheses and variables

constructed by the study set the requirements for compound

analysis.

3 Results and analysis

3.1 Spatial–temporal distribution of vitality

3.1.1 Spatial–temporal distribution of human
vitality density

We divided the values of vitality density into 10 levels at

natural breaks in classification (Jenks). Levels 1–10 represent

density from low to high (Figure 4). The spatial vitality of

urban crowds in Changsha shows a similar spatial pattern on

both weekdays and rest days, that is, the central urban area is
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a high-vitality density area, and the urban peripheral area is a

low-vitality density area. In particular, the spatial vitality of

urban crowds in Changsha can be divided into three-level

areas. The first-level area is the city center area; the second-

level area is the Xianjia Lake–Meixi Lake area, Xingsha area,

and Jingwanzi area; and the third-level area is the Jinxia area,

Moon Island area, high-speed railway, and exhibition area.

In terms of the difference in vitality density between weekday

and rest days, the changes in the urban center are the most

significant. For rest days, the vitality density in the central

TABLE 4 Reliability and validity of all variables (N = 1,475).

Latent variable Observed variable Mean SD CCA CR AVE

Vitality density Weekday vitality density 0.081 0.096 0.984 0.99 0.981

Weekend vitality density 0.069 0.082

Vitality stability Weekday vitality stability 0.891 0.125 0.726 0.918 0.871

Weekend vitality stability 0.964 0.051

A_market intervention Shopping facility 0.045 0.086 0.929 0.958 0.835

Dining facilities 0.061 0.103

Hotel accommodation 0.015 0.05

Daily life 0.081 0.123

Leisure and entertainment 0.047 0.078

B_traffic accessibility Subway distance 0.775 0.195 0.713 0.718 0.654

Taxi densities 0.057 0.106

C_spatial quality Natural scenery 0.023 0.062 0.695 0.702 0.654

Cultural and historical characteristics 0.008 0.043

Notes: Total explained variance: 81.846%. Kaiser–Meyer–Olkin measure of sampling adequacy = 0.879.

FIGURE 4
Weekday (left) and weekend (right) density of human activities.
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area of the city generally shows a downward trend, the range

of high density is shrinking and the agglomeration intensity

is increasing. It shows that the urban crowd gathers in the

core area of the city center at a high density on rest days, and

urban crowds do not tend to gather in urban areas on

rest days.

3.1.2 Spatial–temporal distribution of human
vitality stability

We divided values of vitality stability into 10 grades at

natural breaks (Figure 5). The closer the color of the block is to

red, the higher the stability; the closer to blue, the lower the

stability. The overall stability of urban vitality and the density

of urban vitality show a reverse pattern, that is, high-density

areas show a state of low stability, and low-density areas are in

a state of high stability. This result fully shows that the

mobility of the urban population is significant. In

particular, the stability of the city center is low. A

significant difference exists in the stability of urban vitality

on weekday and rest days. The stability of urban space vitality

on rest days has been significantly improved, especially in the

outer areas of the city center. Combined with the analysis of

vitality density and vitality stability, the vitality density and

vitality stability of the peripheral areas of the city center are

both higher.

3.2 Analysis of environmental impacts on
the vitality of urban spaces

The previous research results have shown that the urban

spatial vitality density and stability of Changsha City generally

present opposite spatial states. Therefore, to ensure the model

analysis’s accuracy, we separately carried out the model analysis

of vitality density and stability. Model 1–model 4 depict the

activity density of weekdays, vitality density of rest days, vitality

stability of weekdays, and vitality stability of rest days,

respectively. Table 5 shows the goodness-of-fit measures of

the model, including GFI, CFI, NFI, TLI, and SRMR. All

indices surpassed the recommended threshold for SEM,

indicating a satisfactory level of goodness-of-fit.

3.2.1 The impact of traffic accessibility
The results of the model (Table 6) show that the direct impact

of traffic accessibility on the vitality of urban space is 0.74 and

0.669 on weekdays and weekends, respectively. That is, the higher

the transit accessibility of the waterfront open space, the higher

the level of vitality. The effect of traffic accessibility on the

stability of space vitality is the opposite,

with −0.803 and −0.474 on weekdays and weekends,

respectively. Moreover, the impact of traffic accessibility on

weekdays is higher than that on rest days, the negative impact

FIGURE 5
Weekday (left) and weekend (right) stability of human activities.
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of traffic accessibility on stability is weaker on weekends, and the

positive impact on vitality density is also weaker.

This study is consistent with the view of traditional urban

space vitality analysis that good transportation accessibility can

increase the frequency of interaction between urban population

and urban space, thereby enhancing the vitality of urban space

(Delclòs-Alió and Miralles-Guasch, 2018; Niu et al., 2021; Yang

et al., 2021). Some research results reveal the negative impact of

transportation accessibility on urban vitality (Liu et al., 2021).

This study also found that good transportation accessibility leads

to a decrease in the stability of urban vitality.

3.2.2 The impact of market intervention facility
Market intervention factors have a positive impact on the

vitality of urban space, and their impact factors are 0.295 and

0.364 on weekdays and weekends, respectively. Thus, market

intervention factors have a greater impact on the vitality of urban

space on weekends. People tend to patronize market intervention

facilities on weekends, and their consumption behavior is also

more intensive. The factors of market intervention have a

negative impact on the stability of urban spatial vitality on

weekdays and weekends, and the impact is greater on

weekends. This result fully shows that the more concentrated

urban market facilities, the more unstable the urban vitality,

especially on weekends.

Five observed variables representing attributes of the market

intervention were found to positively affect the vitality: shopping

facility, dining facilities, hotel accommodation, daily life, and

leisure and entertainment. The results of shopping facilities and

dining facilities are in line with previous findings (Xia et al., 2020;

Li et al., 2021).

3.2.3 The impact of spatial quality
The influence of spatial quality on the vitality density and

vitality stability of urban space is small whether it is a weekday or

a rest day. The direct impact of spatial quality on the vitality

density of urban space is −0.023 and −0.025 on weekdays and

weekends, respectively. The direct impact of spatial quality on the

stability of urban space vitality is 0.027 and 0.026 on weekdays

and weekends, respectively. Thus, the richer the urban spatial

quality, the lower the urban vitality density, and the better the

sustainability of crowd space agglomeration.

TABLE 5 Model fit indicators.

Model fit
index

GFI CFI NFI TLI SRMR

Recommended value >0.9 >0.9 >0.9 >0.9 <0.1

Model 1 Weekday vitality density 0.937 0.971 0.969 0.955 0.023

Model 2 Weekend vitality density 0.939 0.983 0.982 0.974 0.024

Model 3 Weekday vitality stability 0.928 0.982 0.981 0.972 0.026

Model 4 Weekend vitality stability 0.914 0.973 0.972 0.958 0.028

TABLE 6 Hypotheses tests.

Model Relationship Influence
coefficient

Standard error Standard deviation Result

Model 1 Market intervention→Weekday vitality density 0.295 0.114 3.401 Supported

Traffic accessibility→Weekday vitality density 0.74 0.102 7.257 Supported

Spatial quality→Weekday vitality density −0.023 0.098 −1.017 Not supported

Model 2 Market intervention→Weekend vitality density 0.364 0.098 4.155 Supported

Traffic accessibility→Weekend vitality density 0.669 0.084 6.636 Supported

Spatial quality→Weekend vitality density −0.025 0.083 −1.167 Not supported

Model 3 Market intervention→Weekday vitality stability −0.211 0.17 −2.051 Not supported

Traffic accessibility→Weekday vitality stability −0.803 0.148 −6.754 Not supported

Spatial quality→Weekday vitality stability 0.027 0.139 0.94 Supported

Model 4 Market intervention→Weekend vitality stability −0.505 0.044 −7.718 Not supported

Traffic accessibility→Weekend vitality stability −0.474 0.037 −6.644 Not supported

Spatial quality→Weekend vitality stability 0.026 0.058 1.184 Supported
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In general, the intensity of the influence of spatial elements

on the urban spatial vitality density is in descending order: traffic

accessibility, market intervention, and spatial characteristics.

Among them, the influence of spatial characteristics is small.

Spatial characteristics have similar effects on the stability of

urban vitality during weekdays and weekends. The influence

of traffic accessibility on the stability of urban spatial vitality on

weekdays is greater than that on rest days, and the impact of

market intervention factors on the stability of urban spatial

vitality on weekdays is smaller than that on rest days.

4 Discussion

4.1 Comparison with existing research

The research results show that the vitality density and vitality

stability of the urban population are in opposite states whether it is a

work day or a rest day. The spatial distribution pattern of its vitality

density is basically consistent with previous studies (Delclòs-Alió

and Miralles-Guasch, 2018; Liu and Long, 2019; Guo et al., 2021),

that is, the urban center area has a high-vitality density, and the

vitality density of urban fringe areas continues to decrease. However,

the opposite pattern characteristics of vitality density and vitality

stability are different from the research results of Shanghai

waterfront space (Liu et al., 2021). We comparatively analyzed

the results of this study and found a significant difference

between the vitality distribution status of city-wide regions and

smaller regions. In a smaller area, high dynamism and high stability

coexist, but this situation is almost non-existent on the overall scale

of the city. This finding illustrates the value of studying the spatial

dynamism of a city as a whole. The impact of urban transportation

accessibility on urban vitality density is significant; and the better the

accessibility, the greater the vitality density. This finding is consistent

with other research results (Lu et al., 2019; Niu et al., 2021).

However, the effect of traffic accessibility on the stability of

urban vitality is the opposite. In particular, efficient urban traffic

often leads to high-frequency flow of urban people, but it is not

conducive to the continuous gathering of urban people in the same

space. The impact of market-led facilities on the vitality of urban

spaces is similar to that of urban transport accessibility.

4.2 Suggestions for urban space
optimization

The study of urban spatial vitality patterns and influencing

factors has important implications for urban spatial optimization

and spatial structure adjustment. The urban spatial structure is

the distribution state of different spatial attributes or spatial

functions in the city, including the agglomeration and connection

of spatial elements. From the perspective of attribute types, the

spatial structure can be divided into the spatial structure of

population distribution, green space structure, commercial

spatial structure, and employment spatial structure (Wu and

Plantinga, 2003; Gong et al., 2017; Mathey et al., 2021; Zhou,

2022). The agglomeration of public space and the connection

between different agglomeration points have obvious interactive

characteristics with the spatial agglomeration of urban people.

This study clarifies the impact of different functional spaces on

urban vitality, which has a good reference for urban space

optimization and structural adjustment.

Research shows that the vitality and stability of urban space are

affected by the elements of the urban built environment. In turn, the

improvement of the vitality of urban public space will promote the

optimization of urban space quality and its spatial structure. Urban

transportation accessibility is the most critical factor affecting urban

vitality, followed bymarket intervention attributes. The improvement in

the stability of urban spatial vitality on weekends is mainly due to the

decrease in the influence of traffic accessibility and the increase in the

influence intensity of the elements of the market intervention attribute.

Therefore, the adjustment of urban spatial structure should pay

attention to the elements of urban traffic and market intervention

attributes, and consider them together. The layout of facilities related to

market intervention attributes should be increased in the periphery of

the city center, especially the Jinxia area, Muyun area, University Town

area andMoon Island area; in theXianjiahu–Meixihu area andXingsha

area, short-distance traffic should be improved. The accessibility of the

high-speed rail station, the exhibition area, and the Jingwanzi District to

the city’s central business district should be improved.

The elements of spatial characteristic attributes have a weak

negative impact on the urban spatial vitality density, but at the

same time, they have a weak positive impact on the vitality

stability. This may have a strong relationship with the

environmental quality, scale, and supporting facilities of urban

natural and human landscapes. Therefore, urban spaces with

spatial characteristics should be optimized through landscape

planning, environmental improvement, and regional support.

4.3 Implications for urban renewal actions

The improvement of urban space vitality is one of the core

purposes of urban renewal and stock planning. At present,

China’s urbanization process has entered the era of stock

development. How to enhance the vitality of urban space

through space optimization and create a city full of vitality

is particularly urgent. Analyzing the spatial distribution of

urban spatial vitality density and stability can provide

important methods for urban physical examination and

urban planning evaluation by ensuring that planners and

policymakers can quickly and effectively identify urban-

wide spatial vitality issues. The research analyzes the degree

of influence of different influencing factors on the vitality of

urban space, which provides a direct basis for the formulation

of urban space development policy and space renewal. For
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example, in the optimization of market-led facilities, market-

led facilities must be given proper guidance through urban

policies, taxation, space environment improvement, and other

methods to promote their rational layout. Spatial quality is the

only element that has a positive effect on the vitality and

stability of urban space. Thus, the optimization of urban space

should focus on the combined planning or adjustment of

featured spaces and other types of urban spaces.

4.4 Limitations and uncertainty

The study analyzes the distribution pattern of urban spatial

vitality density in different time periods and analyzes the urban

vitality stability status on the basis of hourly changes in the urban

population. Through SEM, the influencing factors of urban space

vitality are discussed. The research provides a useful reference for

urban spatial structure adjustment, stock planning and urban

renewal, urban vitality enhancement, and spatial quality

optimization.

However, similar to any empirical research, this study

suffers from limitations. On the one hand, the research is

insufficient in the analysis of urban function mixed feature

intervention, micro-spatial features and design features, and

spatial–temporal heterogeneity of influencing mechanisms.

On the other hand, although an epidemic did not occur in

the study area during the period selected in this study, the

subsequent interference of the novel coronavirus disease

(COVID-19) was insufficiently explained in this study.

These shortcomings will be addressed through model

optimization and feature mining, which we may explore in

future research.

5 Conclusion

The purpose of this study was to analyze the distribution

pattern of urban population in urban space at different time

periods and to analyze the influencing factors of spatial vitality.

The research uses MPSD to reveal the spatial vitality density and

vitality stability of urban population on weekdays and rest days.

On this basis, the influence mechanism of urban vitality density

and vitality stability in different time periods was analyzed using

the SEM model. The research provides a useful reference for

urban space optimization and structural adjustment. The result

shows

1) On the urban scale, the overall spatial vitality density and

vitality stability show a reverse pattern, that is, the high-

vitality density area presents a low-vitality stability state, and

the low-vitality density area presents a low-vitality state. The

city center area has the highest density of vitality due to the

attraction of commercial centers. The city’s vitality density

continues to decline from the urban center to the urban

periphery.

2) The overall urban vitality density on rest days is slightly lower

than that on weekdays, and the stability of vitality on rest days

is significantly higher than that on weekdays. Xianjia

Lake–Meixi Lake area, Xingsha area, Jingwanzi area, and

University Town area performed better in rest day vitality

density and vitality stability.

3) According to the structural equation model hypothesis, each

model supports two hypotheses and rejects one hypothesis.

Urban transportation accessibility has the greatest impact on

the city’s vitality density at various time periods and the

stability of the vitality on weekday, followed by market

intervention facilities, and the least impact is on spatial

characteristics. The impact of rest day traffic accessibility is

slightly smaller than that of market intervention facilities.

Urban transportation accessibility and market intervention

facilities have a positive impact on urban vitality density and a

negative impact on urban vitality stability. Spatial features are

the opposite.

This study fully demonstrates a significant interaction

between urban spatial vitality and vitality stability and the

urban built environment. The adjustment of urban spatial

structure should strengthen the coordination between the

construction of urban transportation networks and the

improvement of urban market intervention facilities to

jointly promote the improvement of urban vitality and

spatial quality. Taking Changsha City as an example, the

study analyzes the spatial distribution pattern of spatial

vitality density and vitality stability at the urban scale. The

study uses MPSD and spatial facility location data.

Considering that these types of data are easy to obtain, this

method can inform other urban or regional studies. In

addition, our research results provide a direct reference for

the optimization of urban spatial environment. Particularly in

the preliminary work of urban renewal and stock planning, it

can play a key role, such as in the identification of urban

problem spaces, the selection of renewal modes, and the

cognition of spatial characteristics.
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Bus exterior advertising plays a significant role in outdoor advertising, since it

provides frequent exposure to a large number of residents. Traditional route

selection methods are generally based on a rough estimation, for example, the

number of total passengers of a bus route or the geographical features along

the bus route. Targeted bus exterior advertising remains a challenge as little is

known about the characteristics of the people along the bus route. In this study,

we are aiming at determining a set of bus routes for a given ad category to

maximize advertising effectiveness, by mining multiple data sources, including

mobile phone data, bus GPS data, smart card data (SCD), and land use data.

Specifically, we first estimated the distribution of potential target audiences

using mobile phone data and land use data. Two optimization models are

proposed considering different advertising requirements. For well-established

brands that audiences are familiar with, a wide coverage-oriented bus route

selection model is proposed to maximize the coverage of potential target

audiences. For new brands that require a high level of exposure before they

become recognizable, a deep coverage-oriented bus route selection model is

proposed to maximize the total exposure times of the ads. Both models were

demonstrated with a case study in Shenzhen, China to explicitly present the

outcomes of the models and the differences between them. The calculation

results show that the wide coverage-oriented model achieves an average of

84.8% improvement compared with baseline 1 which selects the bus routes

with the most passengers, while an average of 9.2% improvement compared

with baseline 2 which selects the bus route with the maximum coverage of the

target area in reaching more potential target audiences. The exposure intensity

of the deep coverage-oriented model is almost 3.7 times of the wide coverage-

oriented model. The proposed models provide new options for advertisers to

select a suitable advertising strategy according to their needs.

KEYWORDS

bus exterior advertising, mobile phone data, maximal coverage location problem,
multiple coverage problem, targeted advertising
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1 Introduction

According to a recent market report, Out-of-home (OOH)

advertising is the only traditional media category that has shown

consistent revenue growth, and the revenue is expected to grow

by 4% each year (JCDecaux 2020). Outdoor advertising is still a

highly competitive and effective way to reach potential

consumers despite the emergence of many new media, e.g.,

online advertising. The most common form of outdoor

advertising is billboards, but transit advertising is becoming

more and more popular, especially in countries with high

traffic and pedestrian densities. As an important subset of

outdoor advertising, transit advertising contains static transit

advertising (e.g., bus stop advertising) and moving transit

advertising (e.g., bus interior advertising, bus exterior

advertising) (Roux 2014). In this study, we focus on bus

exterior advertising. Exterior advertisements can be displayed

on the side, front, and rear of the bus, offering advertisers high

exposure. In addition to the common outdoor advertising

advantages, the mobility of the bus makes it possible to reach

mass audiences with broad coverage and targeted capabilities.

While an advantage of transit advertising is the ability to

provide exposure to a large number of people, some audiences

may not be interested in the content of the ad, and therefore it

will not very effective in reaching these people. Exist studies have

demonstrated that targeted advertising is effective to attract

audience’ attention and increase the effectiveness of the

advertising campaigns (Tam and Ho 2006; Tucker 2014).

Hence, to launch a successful advertising campaign, the key is

to maximize the ads’ exposure to the audiences who may be

interested in the ads. Bus exterior ads will target different

audiences depending on the route it follows. The audience of

bus exterior advertising includes pedestrians in the streets, bus

riders, and people in nearby cars, which is almost the most

complex audience component to measure (Małecki et al., 2019).

Traditional methods usually simplified the number of audiences

to the number of passengers taken by a bus (Zhang et al., 2017a;

Zhang D. et al., 2017b). However, the traditional methods ignore

the pedestrians, and people in nearby cars, who are also an

important part of the audience. In addition, they did not consider

the interests of the audiences and were unable to achieve targeted

advertising. There are also some studies selecting bus routes

based on functional regions or categories of POIs that a bus route

covers (Zhang X. et al., 2017c). For example, clothing ads prefer

to be placed on the bus routes passing through many department

stores and clothing stores. This method only considers the

geographical features along the bus route, ignoring the

audience flow difference in different areas. In short, there is

still a lack of effective methods for estimating the number of

audiences who are interested in the content of the bus ads.

Different advertising campaigns often have various

marketing strategies and priorities. Reach and frequency are

two fundamental metrics when planning an advertising

campaign. Reach is the number of target audiences that are

potentially exposed to the ad campaign. Frequency is the number

of times an audience is likely to be exposed to an ad during a

marketing campaign (STRATEGUS 2022). For well-established

brands, audiences are very familiar with these brands, fewer

exposure times can still bring a successful outcome (Tellis 1988),

so reach is the priority in this case. As a result, the goal of

advertisers is to cover as many target audiences as possible. In

this case, it’s more suitable to choose longer bus routes as they

can cover a larger area and more audiences. From the perspective

of location theory, this problem can be solved based on the

maximal covering location problem (MCLP). Church and

ReVelle (1974) first proposed the MCLP, intending to

maximize service coverage by a limited number of facilities,

and it has achieved many successful applications, such as

suggesting locations for health facilities (Bennett et al., 1982),

ambulances (Saydam and McKnew 1985), urban fire stations

(Murray 2013), and bike sharing stations (Xu et al., 2016).

Different from the advertising strategies for well-established

brands, new brands usually require a high level of exposure

before they become recognizable and acceptable, because of

consumer inertia and selective information processing (Tellis

1988). As a result, frequency is the priority in this case. The goal

of advertisers is to achieve high exposure times for target

audiences. In this case, it inclines to select shorter bus routes.

The bus runs serval times a day along the fixed route, so bus

exterior ads are exposed to the same area serval times a day.

Different buses run different numbers of times a day due to

different route lengths. Namely, different bus routes will have

different exposure intensities to an area. Intuitively, shorter bus

routes run more times a day and have higher exposure intensity

to areas along the routes. When selecting a set of bus routes for

advertising, the selected routes may overlap. If the travel demand

between two bus stops on one bus route can be served by another

bus route, it is defined as route overlapping (Deng and Yan 2019).

The higher the degree of overlap, the more times an area is

covered. From the perspective of location theory, this is a

multiple coverage problem. Daskin and Stern (1981)

developed the first model considering multiple coverages,

which is regarded as an extension of the location set covering

problem (LSCP) (Toregas et al., 1971). One of the objectives of

this model is to maximize the number of times that demand is

covered beyond a single facility. Then in 1986, an extension of the

MCLP considering multiple coverages was proposed (Hogan and

ReVelle 1986). This model is known as the backup coverage

location problem (BCLP) to maximize both primary and

secondary service coverage. Several other multiple coverage

models have been proposed for ambulance service planning

(Gendreau et al., 1997), cybersecurity planning (Zheng et al.,

2019), and the recovery of infrastructure systems after disasters

(Iloglu and Albert 2020).

Traditional outdoor advertising has mainly depended on

demographic data (Cronin 2008), video data (Zhang et al.,
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2012; Zhang et al., 2013) to estimate the number of audiences.

Nowadays, an amount of geolocated data becomes available, such

as GPS data, smart card data, and mobile phone data. They allow

advertisers to understand their audiences better and provide

possibilities to achieve targeted outdoor advertising. And there

are a growing number of studies leveraging trajectory data for

outdoor advertising in recent years. For example, Lai et al. (2017)

have mined local interests from social media data and used them

for targeted advertising in the subway stations.Wang et al. (2019)

have inferred users’ trip purposes, and traffic conditions based on

vehicle trajectory data and used them to quantify advertisement

influence spread. Lou et al. (2020) extracted potential customers’

information from their vehicular trajectories and proposed an

advertising strategy for roadside billboard advertising. Huang

et al. (2021) have inferred audiences’ interests from their mobile

internet usage and then combined their trajectories from the

mobile phone data to select the most promising place for

advertising. But most existing studies focus on the general

form of outdoor advertising, i.e., digital screens, and

billboards. Limited efforts and attention are paid to the

targeted bus exterior advertising by using trajectory data.

Different advertising campaigns often have different

marketing strategies and different priorities. Established

brands need only reminder advertising, while new brands

need more exposure (Tellis 1988). However, to the best of our

knowledge, no such studies have considered these two different

advertising needs when selecting bus routes for advertising. In

this study, we are aiming at determining a set of bus routes for a

given ad category, which can maximize advertising effectiveness,

by mining multiple data sources, including mobile phone data,

SCD, bus GPS data, and land use data. Specifically, we first

estimate the distribution of potential target audiences from

mobile phone data and land use data. Then two optimization

models are proposed considering different advertising needs.

2 Study area and dataset

2.1 Study area

The investigated area of this study is the city of Shenzhen,

China. Shenzhen is located in the Pearl River Delta, South China.

It covers an area of approximately 2000 km2 with 18 million

people. After 40 years of rapid urbanization, Shenzhen has

become one of the most developed and innovative cities in

China. Currently, it encompasses 10 administrative districts

(Figure 1). Among these districts, the south areas of

Shenzhen, i.e., Luohu, Futian, and Nanshan districts, are

concentrated with commercial, financial, and high-tech

companies and are considered the central city, while the other

districts include four suburban districts (Baoan, Longhua,

Yantian, and Longgang), and three outer suburban districts

(Pingshan, Guangming, and Dapeng). According to a recent

survey, about 55.6% of passengers in Shenzhen have chosen to

travel by bus due to its convenience and low fare of it (Yang et al.,

2019b). Public transportation makes a significant contribution to

people’s daily commute in Shenzhen. The popularity of public

transportation in Shenzhen makes it an ideal place for this study.

2.2 Dataset

Five types of data are utilized in this study, i.e. mobile

phone location data, land use data, bus network data, bus GPS

data, and smart card data. According to the role of the data,

they can be classified into two categories. The first category is

used to estimate the potential target audience distribution,

including mobile phone location data and land use data. The

other category is multi-source bus data, including bus network

data, bus GPS data, and smart card data. These data are used to

acquire some attributes of the bus routes, i.e. average number

of running times per day, and average passenger number. If

the timetable of the bus route is available, the advertisers don’t

have to use the bus GPS data to acquire the average number of

running times per route. In practical application scenarios, the

data to use depends on the precision requirements and the

available dataset. A brief introduction of the dataset is given

below.

FIGURE 1
Study area of Shenzhen.

TABLE 1 Sample records of mobile phone location data.

User ID Date Time BaseID Longitude Latitude

58** 2012/**/** 07:32 11* 114.**** 22.****

58** 2012/**/** 08:32 11* 114.**** 22.****

76** 2012/**/** 09:27 12* 114.**** 22.****
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2.2.1 Mobile phone location data
The mobile phone location data used in this study was

acquired from a main mobile phone operator in China. About

16 million mobile phone users were collected in this dataset

during a typical workday in 2012. The data was passively

recorded, when a mobile phone user had a mobile phone

activity, or active update, i.e., regular location updates and

periodic location updates. In this dataset, the interval of the

records is approximately 1 h. Table 1 shows examples of the data.

Each record comprises an anonymous user ID, recording time,

the ID of the mobile phone tower, and the latitude and longitude

of the corresponding mobile phone tower. In total, there were

5,940 unique mobile phone towers in this dataset.

2.2.2 Land use data
The land use data of Shenzhen was obtained for the same

year as the mobile phone location data. The dataset includes six

land-use types (Figure 2), which are commercial (e.g., retail,

wholesale), industrial (e.g., factories, industrial parks),

residential, public (e.g., schools, hospitals), transport, and

special lands (e.g., water bodies, green space) (Yang et al., 2019a).

2.2.3 Bus network data
The bus network data including bus stations and bus routes

were acquired from the Gaode API. The Gaode map is the

leading map service provider in China. As of September 2014,

there were 874 bus routes and 51,606 bus stations in Shenzhen.

Bus stops with the same name but belonging to different routes

are merged into one-stop. Accordingly, a total of 4,602 bus stops

were generated. The bus routes include the main-line routes,

branch routes, express routes, and some special routes. Since we

only consider bus routes that people usually take in their daily

commute, these special routes such as peak-time routes, travel

routes, and intercity bus routes are excluded. The remaining

794 routes are used as candidate routes for advertising, which is

shown in Figure 3. The maximum length of the remaining routes

is 101.5 km and the average length is 20.1 km.

2.2.4 Bus GPS data
The GPS trajectory data was collected from bus vehicles with

GPS equipment reporting real-time location at certain intervals. The

used dataset was provided by the transport operation command

center (TOCC) of Shenzhen, from September 24 to September 30 in

2014. Each record includes the fields of vehicle id, time, longitude,

latitude, speed, equipment status, etc. Due to data availability, there

is a mismatch between the period of bus GPS data and the mobile

phone data. However, as the effects of the two datasets are

independent and we focus on the methodology in this study, we

expect this mismatch will have a limited impact.

2.2.5 Smart card data
The SCD was also provided by TOCC and was in the same

period as GPS data. The SCD is mixed with both metro and bus

transactions. Transactions from the metro were ignored, since we

only focus on bus exterior advertising. Passengers only need to

tap smart cards for boarding in Shenzhen, so each SCD record

only contains the user id, the boarding time, and the id of the bus

boarded. Both the boarding and alighting stops cannot be derived

directly.

3 Materials and methods

3.1 Overall framework

The framework of this study is shown in Figure 4. The study

area was divided into grids. The mobile phone location data and

FIGURE 2
Land use in Shenzhen.

FIGURE 3
Spatial distribution of bus routes in Shenzhen.
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land use data were first used to estimate the potential target

audience distribution (Section 3.2). Then the weight of each grid

was defined by the number of potential target audiences inside.

The targeted bus exterior advertising problem is formulated as a

grid coverage problem. Considering different advertising needs,

two models are proposed. Specifically, for well-established

brands, a wide coverage-oriented bus route selection model is

proposed to maximize the coverage of the potential target

audience (Section 3.3). While for new brands or products, a

deep coverage-oriented bus route selection model is proposed to

maximize the total exposure times (Section 3.4).

3.2 Potential target audience distribution

Different from other facilities, such as hospitals and schools,

the influence range of bus exterior advertising is not fixed. It

depends on many factors, such as the size of the ad, traffic

volume, and bus speed. For simplification, we divided the study

area into grids of the same size and used the grids that the bus

passes through as the influence range of bus exterior advertising.

The importance of each grid is based on the number of

potential target audiences inside. Irrelevant audiences are

ignored, since we aim to deliver ads to the audience with a

strong preference for ads’ contents. To achieve this goal, this

study first identified the total audience inside each grid by using

mobile phone location data. Then the interests of audiences were

inferred by land-use data. Existing studies have already verified

that a given land use type has a close relationship with the type of

activity performed at that location (Widhalm et al., 2015; Tu

et al., 2017). In this study, we used the type of land use where the

audiences were located to infer their activities, thereby inferring

the types of ads they might be interested in. For example, the

people located in the educational land may be teachers and

students conducting educational activities, so it is assumed

that they are more likely to be interested in education-related

ads. We assume that the land use category and the bus exterior ad

category conform to the same set C. For instance, we may have

C = {education, industry, transportation, . . .}. For a given

advertising category, the corresponding target audiences are

those located in the same category of land use. Each grid can

be represented in the form below:

{(c1, βi1), (c2, βi2), ...(cn, βin)} (1)

Where cn stands for the advertising category n, corresponding

land use type n, βin represents the number of target audiences of

advertising category n in grid i.

Within each grid, we assume that people are uniformly

distributed. Hence, the number of target audiences of each

advertising category can be estimated based on the

composition of the land use and total audiences in each grid,

which can be formulated as:

βin �
Ain∑
n
Ain

× popi (2)

Where Ain is the area of land use category n in grid i, ∑
n
Ain

is the total area of grid i, and popi is the total audiences in

grid i.

3.3 Wide coverage-oriented bus route
selection model

In this study, we divided the advertising campaigns into

two categories. For the first category, the advertisers aim at

covering as many target audiences as possible. The more eyes

see their ads, the more potential to reach their goals. The cost

of each bus route for advertising is assumed the same for

simplification. Hence, for the first category campaign, the

problem is to select a set of bus routes to place the ad of

category n that can maximize the exposure to the target

audiences. This problem can be solved based on the MCLP,

which we term wide coverage-oriented bus route selection

model in this study. The bus routes can be seen as facilities

providing ad content as a service to people around them. The

potential target audiences can be seen as the demands in the

model that need to be covered. Each bus route’s influence

range is represented by the grids that the bus passes through.

Once the audiences are located within the influence range, they

are declared as covered. Each grid is weighted by the average

number of target audiences inside to reflect its importance.

Before introducing the mathematical formulation of this

problem, consider the following notations:

FIGURE 4
Framework of this study.

Frontiers in Environmental Science frontiersin.org05

Huang et al. 10.3389/fenvs.2022.962410

157

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.962410


i � index of demand grid where i � 1, 2, ...I.
j � index of the potential facility (i.e. bus route)where j � 1, 2, ...J
p � number of facilities (i.e.bus routes) to select
βi � the weight of demand grid i determined by target audience flow
Ni � the set of the potential facilities capable of covering demand at i

xj � { 1, if bus route j is selected for advertising
0, otherwise

yi � { 1, if demand at grid i is covered by at least one route
0, otherwise

For a given advertising category, the model is stated as

follows:

Maximize: ∑
i∈I

βiyi (3)

Subject to: ∑
j∈Nj

xj ≥yi,∀i ∈ I (4)

∑
j∈J

xj � p (5)

xj ∈ {0, 1}, , ∀j ∈ J (6)
yi ∈ {0, 1},∀i ∈ I (7)

The objective of the model is to maximize the coverage of

demands (i.e. target audiences). Eq. 4 tracks whether demand is

covered by at least one selected route or not. Eq. 5 defines the

number of routes to be selected is p. Eq. 6 indicates that a route is

either selected or not. Eq. 7 indicates that a demand grid is either

covered or not.

3.4 Deep coverage-oriented bus route
selection model

For the second category of the campaign, the advertisers want

to have high exposure or repetition times to target audiences to

improve branding and increase consumer acceptance. This

strategy is often used for new brands or products. For this

category of campaign, every exposure is counted. The problem

is to select a set of bus routes to place the ad of category n that

would maximize the total exposure times to users who are

interested in n. However, the relationship between ad repetition

and an audience’s reception of the ad is not monotonic. Ad

effectiveness is believed to increase at low levels of repetition

and then decrease as ad repetition increases (Berlyne 1970;

Campbell and Keller 2003). Therefore, it is necessary to limit

the maximum exposure times of ads to avoid adverse

consequences caused by excessive exposure. For bus exterior

ads, the multiple exposures for an area come from two parts,

i.e. the overlapping of different routes and the multiple round trips

of the bus in a day. To select a set of bus routes that can maximize

the ad exposure times for a satisfactory ad influence, we propose a

maximal multiple coverage model, which we term deep coverage-

oriented bus route selection model.

Before continuing, it is necessary to consider the following

notations:

zi = the number of times grid i is covered;

αj = the average running times of a bus of route j in a day;

MaxEx = the maximum allowed coverage times to a grid

The maximum allowed exposure times of an ad to each grid is

defined by MaxEx. MaxEx is pre-specified to avoid adverse

consequences caused by excessive exposure. For example, setting

MaxEx = 2 means that only primary and secondary coverage are

considered and additional coverage is not taken into account.

Using the above notations, the model is defined as follows:

Maximize ∑
i∈I

βizi (8)

Subject to: ∑
j∈Ni

αjxj ≥ zi, ∀i ∈ I (9)

∑
j∈Ni

αjxj ≤MaxEx,∀j ∈ J (10)

∑
j∈J

xj � p (11)

xj ∈ {0, 1}, , ∀j ∈ J (12)
zi ≥ 0 and integer,∀i ∈ I (13)

The objective of the deep coverage-oriented bus route selection

model is tomaximize the total exposure times of the ads. Constraints

Eq. 9 track whether demand is covered by at least one selected route

or not. Constraints Eq. 10 specify an upper bound on the number of

times each grid can be covered. Constraint Eq. 11 defines that the p

bus routes are to be selected. Constraint Eq. 12 indicates that a route

is either selected or not. Constraints Eq. 13 impose integer and non-

negativity requirements on zi.

In general, two strategies have been used to solve the above

location optimization problem, exact methods, and heuristics.

Exact methods, for example, enumeration, branch-and-bound,

and linear programming, guarantee the optimal solutions. Some

exact approaches have been incorporated into commercial

packages such as CPLEX, and Gurobi (Mu and Tong 2020).

However, for large-scale data, the computational effort increases

dramatically, and solving these problems exactly can be difficult or

impossible, so advanced heuristic methods such as genetic

algorithms, and Tabu searches, become essential (Tu et al.,

2014). Heuristic methods seek to obtain near-optimal solutions

at relatively low computational cost and are suitable for large-sized

problems (Tong and Murray 2017). The selection of the algorithm

depends on the size of the problem, the efficiency and precision

requirements of the problem.

4 Results

4.1 Distribution of potential target
audience

As mentioned in Section 3.2, we first divided the study

area into equal-size grids and used the grids that a bus passed
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through as the influence range of bus exterior advertising for

simplification. As to the grid size, we used 500 m ×

500 m mesh grids based on related research (Yang et al.,

2016). In total, there were 8,293 grids in the study area, and

each grid was tagged with a unique Grid ID.

The mobile phone records were first mapped onto the grids

based on the spatial relation of the grid and mobile phone tower.

The operation time of Shenzhen’s public transport was from 6:

00 a.m. to 11:00 p.m., so only the records during this period were

considered. As the interval of this dataset was approximately 1 h,

the number of distinct audiences in each grid per hour was

acquired. Then the average audience volume of each grid during

this period was calculated, which is shown in Figure 5. It is shown

that the spatial distribution of the population in the study area

was heterogeneous. People were concentrated in the central

urban districts of Futian, Nanshan, and Luohu, while few

people were located in Longgang, Pingshan, and Dapeng.

After obtaining the total audiences in each grid, the number

of potential target audiences of each advertising category was

calculated. We first overlapped the land use data with the grids to

obtain the proportions of various land-use types in each grid.

Then the number of target audiences of each advertising category

was calculated based on Eq. 2. The results are shown in Figure 6.

It indicates that the spatial distribution differs over different

FIGURE 5
The distribution of total audience.

FIGURE 6
Potential target audience distribution for (A) Industral ads, (B) Commercial ads, (C) Residential ads, (D) Transportation ads.
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audience categories. The industrial audiences were concentrated

in Baoan, Longhua district, while target audiences of commercial

ads were mainly located in Luohu, Futian district. The residential

audiences and the transportation audiences were both densely

located in Nanshan, Luohu, and Futian districts, but the

distribution of transportation audiences was more uniform

overall.

4.2 Model implementation and evaluation

To evaluate the effectiveness of the proposed bus route

selection models (Section 3.3 and Section 3.4) respectively, we

compared them with two commonly utilized methods:

(1) The first method selects the bus routes with the most

passengers (Zhang et al., 2017a). This method is referred

to as “baseline 1” hereafter.

(2) The second method selects the bus route with the maximum

coverage of the target area, namely, the land use type of the

area that matches the category of the ads (Zhang X. et al.,

2017c). We denote this method as “baseline 2” hereafter.

The performance indicators to describe the effectiveness of a

model include the coverages of the potential target audience and

the average daily coverage times of each grid. The target audience

within each covered grid was accumulated to acquire the total

covered target audiences.

In summary, four models were involved in this study,

namely, the two proposed models and two baselines. All the

models were implemented in Python 2.7.2, using ArcPy for

ArcGIS 10.1 and solved by Gurobi.

4.3 Evaluation of the wide coverage-
oriented model

The first experiment was to compare the wide coverage-

oriented bus route selection model with the two baselines. For

each advertising category, namely, industrial, residential,

commercial, and transportation, a fixed number of routes (p =

5) was selected. The target audience coverage results achieved by

these three models were compared.

As mentioned in Section 2.2, bus passengers only need to tap

smart cards for boarding in Shenzhen. Both the boarding and

alighting stops cannot be derived directly. Before applying

baseline 1, the bus ridership has to be extracted. In this study,

each SCD record was first linked to the bus GPS trajectory based

on the id of the bus. Then the boarding time was used to estimate

the boarding location from the GPS trajectory. Following the

direction of the bus route, the boarding location was assigned to

the closest bus stop on the bus route. Accordingly, a total of

15,119,857 bus ridership were generated from bus SCD. Then

baseline 1 selected bus routes with the most passengers, and the

selected bus routes are shown in Figure 7. For different categories

of ads, baseline 1 selected the same bus routes. Most of the

selected bus routes were located in the Futian, Luohu, and

Nanshan districts, which were the central part of

Shenzhen. The average length of the selected bus route was

39.5 km.

For the wide coverage-oriented model and baseline 2, the

selected routes of each category are shown in Figure 8. Table 2

summarizes the coverage values of the various methods for all the

categories. Specifically, for industrial ads, the wide coverage-

oriented model covered 24.1% of the target audience, which was

the highest. Baseline 2 covered 23.4% of the target audience,

while baseline 1 covered only 8.4% of the target audience. As to

the spatial distribution of the routes, both the wide coverage-

oriented model and baseline 2 selected routes concentrated in

Baoan, Longgang, and Longhua districts, which have many

factories and industrial parks. The average length of the

selected routes of baseline 2 was 80.4 km and was the longest,

while the average length of the wide coverage-oriented model was

59.7 km. These two methods have three shared routes. For

commercial ads, the wide coverage-oriented model covered

41.1% of the target audience and the average length of the

selected routes was 48.9 km. Most of the routes passed

through Luohu, Futian districts, where there were many

shopping centers and financial institutions. For residential ads,

the wide coverage-oriented model still covered the highest

proportion of target audiences, at 29.2%; followed by baseline

2, at 26.7%; baseline 1 at 18.0%. The average length of the selected

bus routes of the wide coverage-oriented model was 56.0 km,

passing through many large communities, such as Taoyuan

Village, Taoyuan Ju, and Yitian Village. For transportation

ads, the wide coverage-oriented model covered 29.4% of the

target audience and was the highest. The selected routes passed

through many transportation hubs such as Shenzhen East

FIGURE 7
The selected routes of baseline 1.

Frontiers in Environmental Science frontiersin.org08

Huang et al. 10.3389/fenvs.2022.962410

160

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.962410


FIGURE 8
The selected bus routes of the wide coverage-oriented model and baseline 2 for (A) Industrial ads, (B) Commercial ads, (C) Residential
ads, (D) Transportation ads.
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TABLE 2 Evaluation of the wide coverage-oriented model.

The category of ads Indicators Wide coverage-oriented model Baseline 1 Baseline 2

Industrial The coverage of target audience 24.1% 8.4% 23.3%

Covered grids 621 343 765

Average length of the selected routes 59.7 km 39.5 km 80.4 km

Commercial The coverage of target audience 41.1% 28.4% 37.2%

Covered grids 517 343 587

Average length of the selected routes 48.9 km 39.5 km 52.5 km

Residential The coverage of target audience 29.2% 18.0% 26.7%

Covered grids 613 343 661

Average length of the selected routes 56.0 km 39.5 km 60.0 km

Transportation The coverage of target audience 29.4% 19.9% 25.9%

Covered grids 641 343 714

Average length of the selected routes 65.5 km 39.5 km 63.9 km

FIGURE 9
The selected bus routes of the deep coverage-oriented model for (A) Industrial ads, (B) Commercial ads, (C) Residential ads,
(D) Transportation ads.
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FIGURE 10
The average coverage times of each grid for (A) Industrial ads, (B) Commercial ads, (C) Residential ads, (D) Transportation ads.
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Railway Station, Pingshan Railway Station, and Baoan Passenger

Transport Center.

In summary, for all the categories, the wide coverage-

oriented bus route selection model achieved the highest

coverage results, followed by baseline 2 and then baseline 1.

The wide coverage-oriented model achieved an average of 84.8%

improvement compared with baseline 1, while an average of

around 9.2% improvement compared with baseline 2 in reaching

more target audience. Though the average length of the selected

routes of the wide coverage-oriented model was not the longest, it

has the ability to cover more target audiences.

4.4 Evaluation of the deep coverage-
oriented model

The second experiment was to compare the deep coverage-

oriented bus route selection model with the wide coverage-

oriented model. For each advertising category, a fixed number

of routes (p = 5) were selected. The MaxEx was set to 30. The

number of the daily running times of each bus was inferred by

matching the GPS coordinates of the bus to the stops along the

bus route. Then the average number of running times of each

bus route was calculated. The coverages of the target audience

and the average daily coverage times of each grid were utilized

as the performance indicators.

For all categories, the selected bus routes calculated by

the deep coverage-oriented model are shown in Figure 9. The

average coverage times of each grid and the corresponding

histogram for all the categories of ads are shown in Figure 10.

Table 3 summarizes the coverage values of the wide and deep

coverage-oriented models for all the categories of ads.

Specifically, for industrial ads, 80% of the selected routes

were located in the Baoan district, which was the industrial

center in Shenzhen with a high concentration of electronics

factories. These routes passed through many industrial

parks, such as Fuqiao industrial park, Haosi industrial

park, and so on. As shown in Table 3, the selected routes

of the deep coverage-oriented model were much shorter than

those of the wide coverage-oriented model, but the average

number of daily coverage times of a grid was 15.2, which was

much higher than that of the wide coverage-oriented model.

Most grids were covered between 13 and 15 times, and few

grids have maximum coverage of 27 times due to route

overlap. For commercial ads, the routes were mainly

located in the Nanshan, Futian, and Luohu districts,

passing through Shenzhen Stock Exchange, PICC Property

Insurance, and other financial institutions. The average

length of the selected routes was 24.5 km, which was

much shorter than that of the wide coverage-oriented

model. The deep coverage-oriented model covered 27%

target audience, and each grid has an average of

12.1 times coverage. The grid coverage times were mainly

concentrated in the two intervals of 5–7 and 19–20. For

residential ads, the selected routes were distributed in the

Futian, Luohu, Longhua, and Baoan districts, passing

through many large residential areas. The average length

of the selected routes was 18.7 km. Though this model only

covered 14.4% of the target audience, the average coverage

times of each grid was 15.2. The maximum grid coverage

times was 26, located in Longhua district. For transportation

ads, the average length of the selected routes was 33.3 km,

TABLE 3 Evaluation of the deep coverage-oriented model.

The category of ads Indicators Deep coverage-oriented model Wide coverage-oriented model

Industrial The coverage of target audience 11.0% 24.1%

Covered grids 191 621

Average daily coverage times of a grid 15.2 3.5

Average length of the selected routes 17.2 km 59.7 km

Commercial The coverage of target audience 27.0% 41.1%

Covered grids 219 517

Average daily coverage times of a grid 12.1 3.3

Average length of the selected routes 24.5 km 48.9 km

Residential The coverage of target audience 14.4% 29.2%

Covered grids 185 613

Average daily coverage times of a grid 15.2 3.5

Average length of the selected routes 18.7 km 56.0 km

Transportation The coverage of target audience 17.6% 29.4%

Covered grids 286 641

Average daily coverage times of a grid 9.6 3.5

Average length of the selected routes 33.3 km 65.5 km
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and 17.6% of the target audiences were covered. The average

grid coverage times was 9.6, which was much higher than that

of the wide coverage-oriented model. Most of the grids were

covered in the range of 5–7 times and the maximum grid

coverage times was 26.

In summary, for all the categories of ads, the deep coverage-

oriented model achieved higher grid coverage times but lower

target audience coverage compared with the wide coverage-

oriented model. The average grid coverage times of the deep

coverage-oriented model have been increased by an average of

3.7 times. This model can achieve high exposure intensity to areas

along the bus routes.

5 Discussion and conclusion

Although bus exterior advertising plays a significant role in

outdoor advertising, the analytical methods to optimize bus

exterior advertising strategies are limited. Traditional methods

are generally based on a rough estimation, for example, the

number of total passengers of a bus route or the geographical

features along the bus route. It remains a challenge to accurately

select a bus route for targeted advertising.

In this study, we demonstrated how the geolocated data,

i.e., mobile phone location data, and bus GPS data can be

combined with location models to provide suggestions for the

bus route selection for exterior advertising. The audience number

along the bus route was first estimated by using mobile phone

data. Then the category of ads that the audience may be

interested in was inferred by using land-use data. Considering

various advertising needs, two optimization models have been

proposed. Specifically, for well-established brands, a wide

coverage-oriented bus route selection model was proposed to

maximize the coverage of the potential target audience. While for

new brands or products, a deep coverage-oriented bus route

selection model was proposed to maximize the total exposure

times of the ads. Since untried new brands often require a high

level of exposure before they become recognizable and

acceptable.

A case study using mobile phone data, SCD, and bus GPS

data in Shenzhen, China was adopted to evaluate the two

proposed models and the differences between the two models

were explicitly investigated. If the data of other cities are

available, the proposed workflow and methods can also be

applied. For the wide coverage-oriented model, it tended to

choose longer routes. This model can achieve a higher

proportion of audience coverage, but lower exposure intensity

to the areas along the road. For the deep coverage-oriented

model, it tended to select shorter routes with a high daily

running times. Though this model covered fewer target

audiences compared with the wide coverage-oriented model,

the average grid coverage times of the deep coverage-oriented

model have been increased by an average of 3.7 times. These two

models have different priorities for selecting routes, and

advertisers can choose the appropriate model according to

their needs and marketing scenarios. We trust the proposed

models can help advertising planners make better use of transit

advertising.

There are also some limitations of this work. Firstly, the

interests of the audience are now inferred by using land-use

data due to the limited data. In the future, a more precise user

interest profile can be constructed by integrating more data

sources, such as social media data, mobile internet usage

data. Secondly, the impact of traffic flow and travel speed on

the exposure strength of ads is not considered in this study.

Obviously, larger traffic flow and lower travel speed would

increase the travel time of buses through the road. Therefore,

the opportunity of the ad being viewed by the audience is also

increased. The traffic condition mined from bus GPS data

can further be incorporated into the models for more precise

results. Thirdly, now the coverage requirements in the

models come from an overall perspective, which may lead

to unbalanced grid coverage, e.g., most ad exposures are

concentrated in few grids. More specific and fine-grained

coverage requirements in the time and space domain from

the advertisers can be considered in the future, such as the

coverage times per hour, to make ad exposure more

reasonable and effective. Lastly, due to ability constraints,

we evaluate our method by comparing it with two baselines

in this study. It would be of great interest if a real advertising

campaign can be launched in the future to evaluate our

methods.
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Heritage trees have important historical, landscape, and ecological value.

Exploring the spatial distribution pattern of heritage trees is of great

importance to the construction of ecological civilization and the

connotation of regional history and culture. This paper took 5,216 heritage

trees in Luoyang, an ancient capital of China, as the research object and used

geospatial analysis methods and a geographically weighted regressionmodel to

analyze the differences and driving forces of the spatial distribution of heritage

trees. Results show that 1) the heritage trees in Luoyang were primarilyGleditsia

sinensis, Sophora japonica, and Platycladus orientalis, and more than half of

these trees were under 300 years old; 2) the high-density area formed a

distribution pattern of “three cores, one ring, and two belts,” and the

distribution of heritage trees had a positive spatial autocorrelation; 3)

different driving factors in different regions had complex influences on the

spatial distribution of heritage trees, and the order of influence was as follows:

area of forest and orchard land > elevation > number of POIs (points of

interest) > distance to the nearest river > slope > number of immovable

relics. The results could provide a comprehensive understanding of the

spatial distribution of heritage trees to protect the ecological function of

heritage trees and mine the cultural value of heritage trees.

KEYWORDS

spatial distribution, driving forces, heritage trees, geographically weighted regression,
luoyang

1 Introduction

Heritage trees refer to trees with important ecological, historical, and cultural values

preserved in history, and they are non-renewable resources formed by the combined

effects of time and geography (Nolan et al., 2020). As an important part of the ecosystem,

heritage trees provide not only habitats for animals and plants, but also production and
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living materials for human beings (Wu et al., 2020; Gilhen-Baker

et al., 2022). Moreover, some heritage trees retain valuable genes

of endangered species; therefore, they are of great significance to

biodiversity conservation (Spooner and Shoard, 2016).

Meanwhile, heritage trees are the activation records of local

ancient geography and climate change, (Lindenmayer et al.,

2012; Huang et al., 2020; Nolan et al., 2020). Therefore,

characteristics such as species, age, and location of heritage

trees can provide important information for historical

geographic studies (Atindehou et al., 2022). Heritage trees are

also important urban landscapes. They not only beautify and

improve the urban ecology through their rhizomes, trunks,

flowers, and leaves (Lindenmayer, 2017), but also endow with

certain cultural meanings, for example, Cupressus funebris and

Ginkgo biloba trees were used as the materialization expression

and inheritance of customs and cultural beliefs (Blicharska and

Mikusinski, 2014; Liu et al., 2020). During industrialization and

urbanization, historical cities, where heritage trees can be

primarily found, had undergone major developmental

transformation and landscape reconstruction, which has had a

remarkable effect on the original living environment and

distribution of heritage trees (Lindenmayer et al., 2012; Chen

and Hua, 2017; Huang et al., 2022). Therefore, the protection of

heritage trees is an urgent issue faced by historical cities.

Exploring the spatial pattern of the distribution of heritage

trees in historical cities and their influencing factors based on

the “human–land relationship” in geography will provide

comprehensive understanding of heritage trees and important

reference significance for protecting heritage trees, thereby

enhancing the cultural connotation of historical cities and

developing tourism related to historical culture.

Scholars have conducted research on heritage trees from

various topics. First, the definition and evaluation criteria for

heritage trees vary worldwide (Spies, 2004). The United States

and Europe have considered the size of heritage trees such as

canopy and height, whereas China has emphasized the age and

historical and cultural connotations of heritage trees (Lai et al.,

2019). Second, despite different definitions of heritage trees,

investigation and monitoring method have certain similarities;

thus, sophisticated and intelligent techniques, including

unmanned aerial vehicles, have been widely used (Singh et al.,

2015; Qiu et al., 2018). Finally, biologists and foresters primarily

aimed to explore rejuvenation and pest control; thus, they

conducted research on specific tree species (Zhang et al., 2013;

Takács et al., 2020). Some studies have indicated that heritage

trees are closely associated with daily needs of local residents and

their cultures and beliefs, and the direct or indirect historical and

cultural value of heritage trees has been effectively excavated

(Jordan et al., 2021; Cannon et al., 2022). Economic valuation of

heritage trees provided an innovative perspective and dimension

to quantify their value (Lin et al., 2020; Wyla & Ycc, 2022). With

the improvement of economic development and the

enhancement of heritage tree protection, relevant regulations

and practical explorations of heritage tree protection have

gradually emerged based on local conditions (Lindenmayer

et al., 2014). In recent years, with the continuous investigation

of heritage trees, the heritage tree information system has been

gradually established and improved; therefore, a growing body of

work has been carried out on reporting the spatial distribution of

heritage trees. Based on different dimensions, the current studies

can be roughly divided into three major categories: 1) With

regard to the spatial distribution of heritage trees, existing

research methods have gradually changed from simple

mathematical statistics to spatial econometric analysis, but

most studies have remained in the quantity statistics of

heritage trees in different regions and administrative units

(Asanok et al., 2021; Liu et al., 2022). Few in-depth analyses

of the patterns, characteristics, and trends of the spatial

distribution of heritage trees have been conducted, but such

analyses are not conducive to the resource integration and

planning of heritage trees. 2) The influencing factors of the

distribution of heritage trees can be divided into two

categories: natural and human factors. The former primarily

includes latitude and longitude, topography (e.g., elevation, and

slope) (Lindenmayer and Laurance, 2016; Wan et al., 2020), and

climate (e.g., average annual temperature and average annual

precipitation) (Liu et al., 2020; Li and Zhang, 2021). The latter

can be measured by human activity intensity and urban

development, such as population density and GDP per capita.

Heritage trees are closely associated with historical figures,

events, and buildings, which are an important part of local

culture. In particular, some ancient capitals have glorious and

profound historical culture, which are indispensable influencing

factors of the spatial distribution of heritage trees (Badgujar et al.,

2014; Ray et al., 2014). However, less concern was given to these

important factors. 3) Regarding the relationship between

influencing factors and the spatial distribution of heritage

trees, most of the existing studies were carried out by

qualitative induction or simple quantitative regression analysis

(Zhang et al., 2017; Liu et al., 2019). Nevertheless, trees and their

communities have certain spatial autocorrelation and

heterogeneity (Wang et al., 2021). Therefore, various

influencing factors of the distribution of heritage trees are

spatially unbalanced. A geographically weighted regression

(GWR) model is a typical local regression model, and the

regression coefficient of its independent variable is not a

global uniform value; it changes with the spatial position,

indicating that different factors have different effects on the

dependent variable because of different locations (Osborne

and Suárez-Seoane, 2002; Foody, 2004). Therefore, GWR is

suitable for the research of the influencing factors and their

degree of influence on heritage trees distribution. GWR has been

widely applied in various disciplines, including social economy,

forestry, and ecological activities (Austin, 2007; Chen et al.,

2021), but it is rarely seen in the research on the influencing

factors of heritage tree distribution.
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From the perspective of “human–land relationship”, this

paper focused on the multiple characteristics of heritage trees

in nature, humanities, and geography. Taking 5,216 heritage trees

in the ancient capital of Luoyang in central China as the research

object, quantitative analysis was performed on their species

composition and spatial distribution, and a GWR model was

used to reveal the degree of influence and spatial variation of

natural and human factors influencing the distribution of

heritage trees. The exploration of the spatial patterns and

influencing factors of the distribution of heritage trees in

Luoyang will provide theoretical reference for scientifically

protecting the ecological and cultural functions and effectively

excavating the social and economic value of heritage trees.

2 Data and method

2.1 Study area

Luoyang covers 15,230 km2 area, and it is located in the West

of Henan Province in central China (34°32′–34°45′N,
112°16′–112°37′E). Luoyang has a complex and diverse

topography. The terrain is high in the West and low in the

East. It belongs to the warm temperate continental monsoon

climate with four distinctive seasons, and it is rich in vegetation

resources. The city covers a forest area of 6,929.65 km2, with

45.5% forest coverage rate. Luoyang is a famous historical city,

and it is one of the four ancient capitals of China (the other three

FIGURE 1
Location of luoyang in central China.
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are Xi’an, Beijing, and Nanjing), with more than 5,000 years of

civilization history, 4,000 years of urban history, and 1,500 years

of capital history. In history, 13 ancient Chinese dynasties

established their capitals in Luoyang. Luoyang has rich

historical cultural landscapes, and it has five capital ruins and

three world cultural heritage sites. It is a national famous

historical cultural city and an excellent tourism city. Heritage

trees were widely distributed in Luoyang, and they symbolize the

long history of the ancient capital Luoyang.

In recent decades, Luoyang has witnessed rapid economic

development as an important industrial base and tourism city in

central China. In 2020, Luoyang’s GDP was 544.71 billion yuan,

ranking first among non-provincial capital cities in central

China, with a population of 7.06 million. And an urbanization

rate of 65.01%. In the past few decades, the urban population of

Luoyang has increased from 19% in 1990 to 64% in 2020,

experiencing rapid urbanization process. At present, Luoyang

is a major city in the Yellow River Basin and a sub-center city of

the Central Plains Urban Agglomeration. It has 15 administrative

districts, which are divided into central urban areas (Laocheng,

Chanhe, Luolong, Jianxi, and Xigong), suburbs (Yiyang, Xin’an,

Mengjin, Yanshi, Jili, and Yichuan), and outer suburbs (Luoning,

Luanchuan, Songxian, and Ruyang; Figure 1). Rapid

urbanization has eroded the living environment of heritage

trees and caused damage to the historical culture and urban

landscape of Luoyang. Therefore, taking the heritage trees of

Luoyang as the research object and excavating the degree and

difference of the influence of natural and cultural factors on

heritage trees is important for the protection of historical heritage

and urban landscape of Luoyang.

2.2 Data sources

The data of heritage trees in Luoyang were obtained from the

compilation of “Henan Ancient and Famous Trees” (Wang et al.,

2010). Then, species, coordinates, tree age, and other information

of heritage trees were collated and supplied in accordance with

Cloud Platform for Forest Genetic Resources Information of

Henan Province, in which the data were collected on the basis of

provincial forest field surveys from 2016 to 2020 in Henan

Province. The investigations of ancient trees were conducted

in accordance with the Chinese government’s national-level

document “Technical Guidelines for the Document

Establishment of a General Survey of National Ancient and

Famous Trees” in 2001, which has been widely used in China

(Li and Zhang, 2021). First, based on the coordinates and

location description, heritage trees in Luoyang were selected

as the study object. Furthermore, botanical names, taxonomic

classifications, and species name of all heritage trees in Luoyang

were identified following the Flora of China. For example, some

heritage trees were recorded as Huai in Chinese; then based on

their photos andmorphological descriptions, they were corrected

to Guohuai, which are Sophora japonica in terminology. Finally,

four ancient trees were excluded because their ages were less than

100 years old. The slope and elevation data were obtained from

the 30 m resolution data of the Digital Elevation Model (DEM)

provided by Resource and Environment Science and Data Center

in Chinese Academy of Science. River and land use data were

extracted from the results of the annual survey of land use

changes in Luoyang in 2020. The data of immovable relics

were downloaded from the “Immovable Cultural Relics Data

System” provided by Luoyang Municipal Bureau of Cultural

Relics. The POI data reflects the spatial pattern of

human–land relationship through the basic spatial

information. Meanwhile, the POI data obtained through a

unified platform, not only has the advantages of wide

coverage, easy collection and centralized processing in

quantities, but also can avoid data deviation caused by

inconsistent data update time and recording standards. The

POI data in December 2019 in Luoyang City were obtained

through the application program interface embedded in the

AutoNavi map navigation platform, and 291,539 POIs were

obtained through deduplication and spatial registration. Each

POI data included the name, longitude and latitude, address,

type, telephone, administrative region and other information.

2.3 Methods

A geographic database of heritage trees in Luoyang was

established using ArcGIS 10.2. The nearest neighbor index

(NNI), kernel density analysis method, and exploratory spatial

data analysis (ESDA) were used to study the distribution

characteristics of heritage trees in Luoyang at different

geographical scales. In addition, a GWR method was used to

analyze the influencing factors of the spatial distribution of

heritage trees.

2.3.1 Nearest neighbor index
The NNI method was used to investigate the spatial

distribution types of heritage trees in Luoyang. In general,

NNI was defined as the ratio of the actual nearest neighbor

distance to the theoretical nearest neighbor distance (Lin and

Chen, 2021), which was calculated as follows:

NNI � ∑n

i�1
min(dij)

n
/(1

2

����
n/A√ ) (1)

where dij refers to the actual distance between heritage trees; A

refers to the total area of Luoyang, and n refers to the number of

heritage trees. NNI>1 indicates that the heritage tree is uniformly

distributed; NNI = 1 indicates random distribution, and

NNI<1 indicates agglomerative distribution. The smaller the

NNI value, the more agglomerated heritage trees were

distributed.
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2.3.2 Kernel density estimation
Kernel density estimation indicated the specific area where

heritage trees gather and disperse (Sheather, 2004), which was

calculated as follows:

f(x) � 1
nh

∑n

ip1
K(x − xi

h
) (2)

where f(x) refers to the kernel density value of heritage trees; n

refers to the number of heritage trees; h refers to the bandwidth,

which is the radius of the circle; K refers to the spatial weight

function; x–xi refers to the estimated distance between two

heritage trees.

2.3.3 Exploratory spatial data analysis
ESDA was used to analyze the spatial dependence and

correlation of heritage trees. Global Moran’s I index can be

used to observe the spatial correlation of heritage trees in the

whole study area based on their spatial locations. Local

correlation index Getis-Ord Gi* distinguished the spatial

differentiation between cold and hot spots by detecting high-

value and low-value agglomeration areas (Getis & Ord, 1992).

The specific calculation formulas were as follows:

I � n

s0
×
∑n

i−1∑n
j−1Wij(Xi − �X)(Xj− �X)
∑n

i−1(Xi − �X)2 (3)

Gp
i (d) �

∑n
j
Wij(d)Xj

∑n
j
Xj

(4)

Z(Gp
i ) � Gp

i − E(Gp
i )��������

Var(Gp
i )√ (5)

where n refers to the number of heritage trees; Xi and Xj refer to

the heritage tree of the i-th and j-th units, respectively; X�is the

mean value of heritage trees;Wij is the spatial weight matrix, and

S0 is the sum of spatial weight matrices. E(Gi*) and Var(Gi*) are

the variance and expectation of Gi*, respectively. The value of

Moran’s I ranges from −1 to 1. Moran’s I > 0 indicates a positive

spatial correlation, whereas Moran’s I < 0 indicates a negative

spatial correlation. If the index is close to 0, then no spatial

correlation is observed. The statistical significance of Gi* (d) can

be tested by standardized Z value. When Z > 0, the higher the Z

value, the denser the aggregation of high values (hot spots);

When Z < 0, the lower the Z value, the denser the aggregation of

low value (cold spot).

2.3.4 Geographically weighted regression
The GWR model provided each spatial position with a

regression coefficient, which was unattainable using the

ordinary least squares (OLS) model. Regression analysis

performed using the GWR model was used to select the

center point and standard distance in each selected area to

determine whether different regression coefficients can be

acquired (Wang et al., 2021). Hence, the regression coefficient

was not calculated using a constant value. Instead, the position

function for each geographic location i was used to calculate the

regression coefficient. Therefore, the spatial variation of

influencing factors in different locations can be explored by

applying GWR, and the results were more reliable. The

Akaike information criterion (AIC) method was based on the

concept of entropy and can obtain. Thus, in this study, the AIC

was used to optimize the bandwidth (Chen et al., 2021). The

GWR model formula was presented as follows:

yi � β0(ui, vi) +∑n

k�1βk(ui, vi)xik + εi (6)

where yi refers to the (n × 1)-dimensional explained variable; xik
refers to the (n × k)-dimensional explanatory variable matrix; βk
(ui,vi) refers to the regression coefficient of factor k at regression

point i; n refers to the number of independent variables; (ui,vi)

refers to the longitude and latitude coordinates of the ith

observation point, and εi is the residual.

3 Results

3.1 Differential characteristics of heritage
trees

3.1.1 Species characteristics of heritage trees
A total of 5,216 heritage trees were identified in Luoyang,

belonging to 97 species, 70 genera, and 39 families. The number

of species varied greatly. As shown in Table 1, the number of

Gleditsia sinensis was the largest, with a total of 2,225 plants,

accounting for 42.6% of the total, which was primarily

distributed in Xin’an and Yichuan, followed by 940 S.

japonicas and 423 Platycladus orientalis, accounting for 18%

and 8.1%, respectively. These three dominant species of heritage

trees in Luoyang had unique biological characteristics and

economic and cultural values. On the one hand, these three

species were all endemic to China. They were physiologically

resistant to drought and frost without strict soil requirements.

They had good shape, long lifespan, and fruiting period of

hundreds of years. To date, as excellent greening trees, they

were still found for urban landscape in China. On the other hand,

their wood was hard and straight, and their leaves, flowers, fruits,

seeds, skins, and thorns were important materials for traditional

Chinese medicine and food. For example, the saponin horn

produced by G. sinensis was the primary raw material for

washing clothes and hair in the agricultural era, and the

leaves, flowers, and seeds were edible and medicinal.

According to the “Technical Guidelines for the Document

Establishment of a General Survey of National Ancient and

Famous Trees,” the heritage trees in Luoyang were divided

into three categories based on their age (Table 2), namely,
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type Ⅰ (age ≥500a), type Ⅱ (300a ≤ age <500a), and type Ⅲ
(age <300a). Among these categories, the number of heritage

trees for type Ⅰ, Ⅱ, andⅢwas 723, 1,318, and 2,953, accounting for

13.86%, 25.27%, and 56.62%, respectively. The age of heritage in

Luoyang presented a pyramid structure. With the increase of age,

the number of heritage trees gradually decreased, and young trees

had an absolute advantage. Among the dominant heritage trees,

G. sinensis accounted for a larger proportion in type Ⅱ and Ⅲ,

with an average age of only 215.67a, whereas G. biloba (with an

average age of 1,052.74a), P. orientalis (with an average age of

463.21a), and S. japonica (with an average age of 408.77a)

primarily belonged to type Ⅰ because of their religious

significance and folk beliefs.

3.1.2 Spatial characteristics of heritage trees
1) Regional differences in the distribution of heritage trees

Significant regional differences were found in the distribution

of heritage trees (Figure 2). As the political, economic, and

cultural center of Luoyang, the central urban area had a large

population and high urbanization, but only 176 heritage trees

were identified, accounting for 3.37%, with a low density of

0.22 trees/km2. Suburbs had the most heritage trees (2,929),

accounting for 56.15%, and the density was 0.55 trees/km2.

Suburbs were located along the Yellow River, Yi River, and

Luo River, and they had a flat terrain and numerous national

and provincial cultural relics, making it a gathering area of

heritage trees in Luoyang. A total of 2,111 heritage trees were

found in outer suburbs, accounting for 40.47%, and the density

was 0.23 trees/km2. The valley and hills in outer suburbs were

alternately distributed, and heritage trees were relatively

scattered, which were primarily distributed in bands along the

river valleys.

The number of heritage trees in each county varied greatly

(Table 3). Songxian, Yichuan, Luoning, Xin’an, Yiyang, and

Mengjin were the top six counties with the highest number of

heritage trees, ranging from 514 to 839, and the proportion

exceeds 9.85%. The number of heritage trees in the central urban

areas of Chanhe, Jianxi, Xigong, and Laocheng was less, ranging

from 0 to 21. Therefore, the order of the number and density of

TABLE 1 Statistics of the top 10 heritage tree species in Luoyang.

Name Family Genera Number Ratio/% Distribution

Gleditsia sinensis Leguminous Gleditsia 2,225 42.66 Xin’an, Yichuan

Sophora japonica Leguminous Sophora 940 18.02 Yichuan, Yanshi

Platycladus orientalis Cupressaceae Platycladus 423 8.11 Yichuan, Mengjin

Diospyros kaki Persimmonaceae Diospyros 279 5.35 Yichuan, Mengjin

Pistacia chinensis Anacardiaceae Pistacia 277 5.31 Luoning, Songxian

Juglans regia Jugaceae Juglans 179 3.43 Luanchuan, Songxian

Ginkgo biloba Ginkgoaceae Ginkgo 178 3.41 Luanchuan, Songxian

Quercus variabilis Fagaceae Quercus 61 1.17 Luanchuan, Songxian

Quercus fabri Fagaceae Quercus 52 1.00 Luanchuan, Songxian

Cyclobalanopsis glauca Fagaceae Cyclobalanopsis 44 0.84 Luanchuan, Songxian

TABLE 2 Categories of heritage trees according to their age.

Types Age Number Ratio(%) Locations Species

Ⅲ 0–199a 1,695 32.50 Yichuan, Xin’an, Yiyang ▲, Diospyros kaki

200–299a 1,258 24.12 Songxian, Yichuan, Yiyang ▲, Juglans regia

Ⅱ 300–399a 938 17.98 Luoning, Songxian, Yiyang ▲, Diospyros kaki, Pistacia chinensis, Quercus variabilis

400–499a 380 7.29 Luoning, Yichuan, Songxian ▲, Pistacia chinensis, Diospyros kaki, Quercus fabri

Ⅰ 500–599a 398 7.63 Luoning, Songxian, Yichuan ▲, Pistacia chinensis, Diospyros kaki, Quercus variabilis

600–999a 325 6.23 Songxian, Luoning, Ruyang ▲, Ginkgo biloba, Pistacia chinensis

≥1000a 222 4.26 Songxian, Luoning, Mengjin Ginkgo biloba, ▲

Notes: ▲ indicates the three dominant species: G. sinensis, S. japonica, and P. orientalis.
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heritage trees was inconsistent because of the large area

difference among counties. Chanhe only had 21 heritage trees,

but its density was the highest (0.83 trees/km2) because of its

small area. Songxian, Luoning, Luanchuan, and Ruyang had

more heritage trees but less density. Among these counties,

Songxian had the most existing heritage trees, but the density

was only 0.28 trees/km2. Mengjin and Yichuan had advantages in

the number and density of heritage trees.

2) Spatial agglomeration characteristics of heritage trees

ArcGIS 10.2 was used to calculate the NNI of 5,216 heritage

trees. After standardized statistics, the Z value was −103.74; the

p value of the significance test was 0.00, and the confidence level

was 99%, which indicated that the spatial distribution of

heritage trees in Luoyang tended to agglomerate. The spatial

aggregation characteristics of heritage trees were further

analyzed by kernel density, and the study area was divided

into the lowest density area, lower density area, medium-

density area, higher-density area, and highest-density area by

equal interval grading based on the kernel density value. The

distribution of heritage trees in Luoyang presentd the

aggregation characteristics of “three cores, one ring and two

belts” (Figure 2). “Three cores” refered to the three typical

highest density and higher density agglomeration areas along

the Yi River in the north of Yichuan, along the Luo River in the

southeast of Yiyang, and along the Yellow River in the middle-

west of Mengjin Medium-density areas were distributed around

the “three cores” in the Daimei Mountain area in the west of

Xin’an and the Funiu Mountains in the south of Songxian,

forming two relatively scattered agglomeration areas. “One

ring” refered to the ring-shaped lower density agglomeration

area formed around the central urban area of the Northern Luo

River. The “two belts” refered to the two lower density areas

formed along the Luo River in the Southwest and along the Yi

River in the Southeast. The lower density area along the Luo

TABLE 3 Statistics of heritage trees in each county.

Regions Counties Number Proportion (%) Density (trees/km2)

Central urban area Luolong 142 2.72 0.24

Chanhe 21 0.40 0.83

Jianxi 9 0.17 0.11

Xigong 4 0.08 0.08

Laocheng 0 0.00 0.00

Suburbs areas Xin’an 665 12.75 0.57

Yiyang 639 12.25 0.40

Mengjin 514 9.85 0.70

Yanshi 293 5.62 0.44

Ruyang 174 3.34 0.13

Jili 1 0.02 0.01

Outer suburbs areas Songxian 839 16.09 0.28

Yichuan 817 15.66 0.77

Luoning 720 13.80 0.31

Luanchuan 378 7.25 0.15

FIGURE 2
Kernel density estimation of heritage trees.
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River was larger, and the lower density area of the Yi River was

composed of scattered dots. Moreover, the nuclear density

value was in the range of 0.30–0.59 trees/km2. The lowest

density area was widely distributed in Ruyang, Luanchuan,

and Songxian in the south and central urban area in the

North, with the lowest value of 0.0046 trees/km2.

3) Spatial correlation characteristics of heritage trees

The estimated value of Global Moran’s I of heritage trees

in Luoyang was 0.0892 > 0, and the Z value of normal

statistics was 16.17, which passed the 99% confidence test.

This result showed that the distribution of heritage trees in

Luoyang had positive spatial autocorrelation. 1,374 village-

level units where the heritage trees were located were

identified by cold and hot spots, and the local correlation

index Getis-Ord Gi* was calculated (Figure 3). Based on the Z

value, four types of areas were divided into four categories,

namely, cold spot (−2.244 to −1.960), sub-cold spot

(−1.959 to 0), sub-hot spot (0.001–1.960), and hot spot

(1.961–10.567). With regard to the number of villages, the

hot spots and sub-hot spots, where the villages and their

neighborhoods had more heritage trees, only contained

91 and 390 villages, respectively, whereas the number of

sub-cold spots and cold spots, including villages and their

surrounding villages with little heritage trees, were 876 and

17, respectively. With regard to regional distribution,

hotspots and sub-hotspots were relatively concentrated in

suburbs and primarily located in Yichuan, Yiyang, Mengjin,

and the West of Xin’an; while the hotspot and sub-hotspots

scattered in the outer suburbs. The distribution range of sub-

cold spot villages were relatively wide, meanwhile, some were

concentrated in the urban area and the surrounding suburbs.

Cold spots included 11 villages gathering around the county

seat of Xin’an and six villages near Luoyang Beijiao Airport.

The distribution of cold and hot spots of heritage trees in

Luoyang was uneven, the hot spot area and cold spot area

were small but concentrated, whereas the sub-hot spot area

and sub-cold spot area were large but scattered.

3.2 Driving force of the spatial distribution
of heritage trees

3.2.1 Geographically weighted regression model
The spatial distribution difference of heritage trees in

Luoyang results from the long-term comprehensive effect of

local environment and culture. Based on previous studies and

the actual situation of Luoyang, six quantifiable and accessible

factors were selected from the two aspects of natural

environment (elevation, slope, and water source) and human

activities (historical and cultural aspects, land use, and economic

intensity), and then taking 1,374 villages with heritage as

statistical units, a GWR model was built to explore the

driving force of the distribution of heritage trees. The

interpretation and visualization of driving factors were shown

in Table 4 and Figure 4.

A GWR model was constructed to analyze the driving force

of the distribution of Luoyang heritage trees, and the regression

coefficients of the selected driving factors were calculated

(Table 5). The positive (negative) of the regression coefficient

of each factor indicated the positive (negative) correlation

between the distribution of Luoyang heritage trees and the

driving factor. Greater absolute value of the regression

coefficient indicated more significant influence of the factor

on the distribution of Luoyang heritage trees. The maximum

and minimum values of the regression coefficients of all driving

factors were different, indicating that the driving factors of the

spatial distribution of heritage trees in different regions were

different (Figure 5). Based on the mean values of the regression

coefficient, the results were obtained as follows: elevation, slope,

and the area of forest and orchard land were positively correlated,

whereas distance to the nearest river and number of POIs were

negatively correlated; the relationship between the number of

immovable relics and the spatial distribution of heritage trees was

relatively weak. The degree of influence of the six factors on the

distribution of heritage trees was in the following order according

to the absolute value of their regression coefficients in the GWR

model: area of forest and orchard > elevation > number of POIs >
distance to the nearest river > slope > number of immovable

relics.

FIGURE 3
Classification of cold and hot spots for villages with heritage
trees.
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TABLE 4 Driving factors and their interpretation.

Category Factors Symbol Interpretation

Natural factors Elevation Dele The average altitude of the village

Slope Dslo The average slope of the village

Water sources Driv Distance to the nearest river

Human factors Historical culture Drel Number of immovable relics

Land use Dlan Area of forest and orchard land

Economic intensity Deco Number of POIs

FIGURE 4
Visualization of driving factors: (A) DEM; (B) Slope; (C) Water source; (D) Immovable relic; (E) Land use; (F) POIs.

TABLE 5 Statistics of regression parameters of the GWR model.

Factors Minimum 25% Quantile Median 75% Quantile Maximum Mean

Dele −0.671 0.002 0.068 0.124 0.493 0.062

Dslo −0.148 −0.014 0.005 0.037 0.651 0.021

Driv −2.794 −0.038 −0.011 0.019 0.274 −0.023

Drel −0.315 −0.063 −0.008 0.017 3.643 −0.012

Dlan −0.377 0.069 0.187 0.621 2.635 0.412

Deco −12.648 −0.057 0.020 0.056 2.697 −0.051
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3.2.2 Natural factors
1) Elevation

Heritage trees in Luoyang were distributed in the areas with

elevation between 91 and 1,603 m, of which the areas with

elevations of 200–500 m had the largest number of heritage

trees (2,913), accounting for more than 40% of the total,

followed by the areas with elevation ranging from 500 to

1,000 m (1,445 heritage trees), accounting for 27.70%. In flat

areas with elevation of 93–200 m and mountainous areas with

elevation of 1,000–1,603 m, the number of heritage trees

decreased sharply, accounting for only 9.82% and 6.63%,

respectively. The regression coefficient of Dele in the GWR

model ranged from −0.671 to 0.493, with a mean value of

0.062, which indicated that the influence of elevation on the

spatial distribution of heritage trees was heterogeneous. The areas

with high regression coefficient were primarily located in the

plain area in the North and the valleys of the Yi River and Luo

River in the South, which were concentrated in the central urban

area, Mengjin, and Xin’an. In mountainous and hilly areas of

Yiyang, Luoning, and Songxian, the regression coefficients ofDele

were negative, and the elevation was negatively correlated with

the distribution of heritage trees. The minimum value of the

regression coefficients were primarily concentrated in the

mountainous area in the South of Songxian. More than 80%

of the heritage trees in Luoyang were concentrated in hilly land

because of the crisscross of river valleys, appropriate temperature,

and convenient water source. The complex terrain was conducive

to reducing the intensity of human activities and providing

necessary conditions for the growth and protection of heritage

trees.

2) Slop

The number of heritage trees in Luoyang increased initially

and then decreased with the increase of slope (Figure 6). The

regression coefficients of Dslo ranged from −0.148 to 0.651. The

mean value of 0.021 and standard deviation of 0.069 indicated that

the explanatory power of the slope to the distribution of heritage

trees was weak, and the elasticity of the regression coefficients was

small. The number of heritage trees in the areas with a slope

ranging from 5° to 15° was the largest, accounting for more than

39.90%, followed by the areas with a slope ranging from 2° to 5°,

accounting for 20.21%. The number of heritage trees in the area

with a slope of >15° decreased sharply, whereas that in areas with

steep slopes (35°–55°) only accounted for 3.60%.

FIGURE 5
Spatial distribution of regression coefficients of driving factors in the GWR model: (A) DEM; (B) Slope; (C) Rivers; (D) Immovable relic; (E) Land
use; (F) POIs.
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3) Water sources

Heritage trees in Luoyang had a near-water distribution, and

they were primarily distributed along the banks of the Yellow

River, Luo River, and Yi River. The regression coefficient of Driv

ranged from −2.794 to 0.274, with a mean value of −0.023 and

standard deviation of 0.149. The number of heritage trees in

Luoyang gradually decreased with the increase of the distance to

FIGURE 6
Number of heritage trees under different slopes.

FIGURE 7
Number of heritage trees in different distances to the nearest river.
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the river and showed a certain spatial heterogeneity. Heritage

trees in areas less than 1.5 km away from the nearest river were

the most concentrated, accounting for 63.48%. If the distance to

the nearest river was greater than 1.5 km, then the number of

heritage trees decreased significantly (Figure 7). In the

northeastern of Luoyang, the river network was dense, and

the terrain was flat. Historically, the rivers in this area were

prone to floods during the flood season. Therefore, the

distribution of heritage trees had a negative correlation with

the distance to the river. The Southern region was the upper

reaches of the Luo River and Yi River. The water volume of the

rivers was small and unstable, and it was highly dependent on

seasonal precipitation. Consequently, heritage trees in the

Southern region were mostly distributed along the river to

ensure sufficient water source.

3.2.3 Human factors
1) Historical culture

As a special ecological resource, heritage trees have a certain

spatial relationship with relics, and the relationship between the two

has an important effect on the protecting heritage trees and

excavating the value of them. Using the spatial analysis function

of ArcGIS 10.2,Drelwas calculated in the range of 0–8.42 km. A total

of 4,121 heritage trees were primarily distributed within 2 km from

the nearest river, accounting for 79.01%. The proportions of heritage

trees in other three distances of 2–4 km, 4–6 km, and >6 km were

14.32%, 5.02%, and 1.65%, respectively. The GWR coefficient ofDrel

(–0.315–3.643) and its mean value (−0.012) indicated that more

negative relationship units were found than positive ones, indicating

spatial heterogeneity. The river valleys and plains in Luoyang were

concentrated areas of immovable relics. The number of immovable

relics and the number of heritage trees had a negative spatial

relationship because of frequent human activities, low vegetation

coverage, and less stable environments suitable for the growth of

heritage trees in these areas. The units with a positive relationship

between immovable relics and heritage trees were primarily

concentrated in the northeast of Luoyang, and these areas

belonged to the mountainous area of Mangshan with many

ancient ruins and tombs. Heritage trees, such as P. orientalis,

were the important component of the ancient ruins and tombs

to indicates longevity and permanence. In areas with complex

terrain such as mountains and hills, immovable relics were

scattered, and the distribution of heritage trees is “close to relics”.

2) Land use

Based on the suitability of the growth of heritage trees, the land

in Luoyang was divided into five types: forest and orchard land

(FO), cultivated land and grassland (CG), rural and square land

(RS), urban construction and road land (UR), and waters. The

spatial data of heritage trees and land use were superimposed to

obtain the land use type where the heritage tree was located. The

result showed that the heritage trees in Luoyang were primarily

distributed in the land of FG and CG, accounting for 48.43% and

39.36%, respectively. Furthermore, GWR analysis was carried out

on forest land and garden areas. Regression coefficients ranged

from −0.377 to 2.635, with a mean value of 0.412 and standard

deviation of 0.541. Compared with other driving factors, the factor

of Dlan had the strongest explanatory power for the distribution of

heritage trees. In addition, spatial differences were more

significant, and most units had a positive relationship. In

general, FO were the original growth sites of heritage trees,

providing them with complete and stable growth environment,

and they were the main land type of heritage tree distribution.

3) Economic intensity

POIs, as the information of human economic activities with

spatial attributes, played an important innovative role in

revealing the spatial pattern of heritage trees and the

human–land relationship. The spatial distance and interaction

between POIs and heritage tree were analyed to reveal the spatial

heterogeneity of the effect of economic intensity on the

distribution of heritage trees. First, by calculating the shortest

distance between the heritage trees and POIs, the number of

heritage trees gradually decreased with the increase of the

distance from POIs. The shortest distance to POIs ranged

from 0 to 2,538 m. The value of 56 heritage trees was

0 because most of them were located on POIs such as schools,

temples, and addresses. The shortest distances form 75.82% of

heritage trees to POIs were less than 600 m, and heritage trees

farther from the POIs were primarily distributed in mountainous

and hilly areas in the South. Second, the GWR coefficient of Deco

ranges from −12.648 to 2.697, with a mean value of −0.051 and

standard deviation of 0.680, indicating that the number of POIs

had a negative relationship with the distribution of heritage trees,

and the spatial fluctuation of the regression coefficient was

evident. In the northern of Luoyang where POIs were dense,

the high-values of the regression coefficient were primarily

concentrated in the central urban areas and its surroundings;

in the Southern of Luoyang where POIs were relatively sparse, the

high-values tended to be concentrated near main traffic roads

and scenic spots. The heritage trees in the southern edge of

Luoyang were negatively affected by the number of POIs, which

indicated that many heritage trees were found but less POIs, and

the economic development of this area was relatively slow.

4 Discussion

4.1 Spatial patterns and driving factors of
heritage trees

A total of 5,216 heritage trees were found in Luoyang, which

belonged to 39 families, 70 genera, and 97 species. The heritage
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trees were numerous and widely distributed, showing a spatial

distribution pattern of “three cores, one ring, and two belts.” The

spatial pattern of heritage trees resulted from the comprehensive

effects of physical geography, historical culture, and

socioeconomic. First, physical geography played a

fundamental role in determining the variety and distribution

pattern of heritage trees in Luoyang. Luoyang had a typical

temperate monsoon climate, which was easy for the growth of

broad−leaved tree species. Luoyang, located in the West of

Henan, has interlaced landforms with mountains, rivers and

hills, and the forest coverage was high. These natural conditions

provided a relatively stable growth environment for heritage

trees. Second, Luoyang was the ancient capital of 13 dynasties

in China, and its profound history and culture had nurtured rich

heritage tree resources. For example, a large number of long-aged

P. orientalis and G. biloba were common in temples, ancient

tombs, and relics. Furthermore, the intensity of economic activity

sometimes dominated the survival of heritage trees. For example,

the spatial distribution of heritage trees in the central urban area

of Luoyang had an evident “hollow” phenomenon because of

high-intensity economic activities. In recent years, the awareness

of the public to protect heritage trees has gradually increased.

Parks, green spaces, and scenic spots have been built around

heritage trees, which not only provided suitable environment for

heritage trees, but also enhanced the urban cultural heritage

while beautifying the urban landscape.

In terms of the influencing factors of the spatial distribution

of heritage trees in Luoyang, this study carries out quantitative

measurement from six factors, such as elevation, slope, water

source, historical cultural, land use, and economic intensity. Due

to the limitations of the GWR model and the data acquisition of

individual heritage trees, there was few indepth discussion on the

impact of certain relatively stable factors (e.g., soil quality and

specific growth environment) and accidental factors (e.g.,

geological disasters and historical events). With the

improvement of acquisition technology of relevant data,

further study will be carried out to improve the explanatory

power of the spatial distribution of heritage trees and its

influenced factors from the comprehensive perspective of

geographical, cultural, ecological and other factors.

4.2 Effective protection and value mining
of heritage trees

As non-renewable and irreplaceable natural and cultural

resource, heritage trees are not only an important component

of local biodiversity and excellent genetic resources, but also an

active carrier of local history and culture. Heritage trees have laid

a vital material foundation for Luoyang’s ecological civilization

construction and cultural prosperity. Therefore, taking measures

is necessary to effectively protect heritage trees and reasonably

excavate the value of heritage trees. The first measure is natural

disaster prevention. A large number of heritage trees in Luoyang

were distributed in low mountains and hilly areas, and it is

necessary to prevent geological disasters such as landslides and

debris flows that were prone to occur in the rainy season. In river

alluvial plain areas, preventing the destruction of heritage trees by

flood disasters is the primary focus. The second measure is to

improve the growth environment of heritage trees. The

conservation of heritage tree habitats in remote areas such as

woodlands, gardens, and grasslands must be strengthened. It is

also necessary to guide the public to actively protect heritage trees

and prevent the growth space of heritage trees from being

occupied by human activities in rural houses, urban blocks,

and roads. Finally, reasonable development should be carried

out on the premise of well-protected heritage trees. Diversified

forms were encouraged to promote the history and culture

loaded on heritage trees to transform “preserved” to “alive”,

which was conducive to cultivate regional cultural confidence.

There were planty of historical and cultural relics in the urban

area, but few heritage trees were preserved. Attention should be

paid to supplement heritage tree reserve resources in scenic spots,

parks, squares, universities and other places. The distribution of

heritage trees was “close to relics” in areas with complex terrain

such as mountains and hills where tourist attractions were mainly

located. The tourism activities with the theme of ancient trees, as

an important part of agricultural and eco-tourism, can meet

people’s increasing cultural and psychological needs (Cui et al.,

2021). Therefor, Joint development of heritage trees and

surrounding cultural relics and scenic spots should be carried

out by sorting out the historical and cultural context and forming

characteristic tourist routes to enhance the social and economic

value of heritage trees.

5 Conclusion

Taking 5,216 heritage trees in Luoyang, the ancient capital in

central China, as the research object, this study quantitatively explored

the distribution pattern of heritage trees based on geospatial statistical

methods, and a GWR model was used to analyze the driving degree

and spatial heterogeneity of natural and human factors on the

distribution of heritage trees. The results were intended to provide

a comprehensive understanding of heritage trees to protect the

ecological functions of heritage trees and mine the cultural value

of heritage trees. The main conclusions were drawn as follows:

1) G. sinensis, S. japonica, and P. orientalis accounted for 68.7%

of the heritage trees in Luoyang, which were related to their

unique biological characteristics and economic and cultural

values. With the increase of tree age, the number of heritage

trees gradually decreased. G. sinensis accounted for a large

proportion of the younger heritage trees, whereas the older

heritage trees were mostly G. biloba, P. orientalis, and S.

japonica.
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2) The distribution of heritage trees in Luoyang varied greatly in

space. Suburbs had the largest number and density of heritage

trees, and they were the main gathering area for heritage trees.

In the outer suburbs of Songxian, Luoning, Luanchuan, and

Ruyang, their heritage trees were numerous but less dense. The

distribution of heritage trees in Luoyang presentd the

aggregation characteristics of “three cores, one ring and two

belts”, and it had positive spatial autocorrelation characteristics.

3) The GWR model was suitable for analyzing the influencing

factors of spatial heterogeneity of heritage trees. The results

showed that the influence of different factors on the

distribution of heritage trees was spatially complex. The

influence of driving factors on the distribution of heritage

trees was in the following order: Dlan > Dele > Deco > Driv >
Dslo > Drel. Elevation, slope, and area of forest and orchard

were positively correlated with the spatial distribution of

heritage trees, whereas the distance to the nearest river and

POIs was negatively correlated with such factors. The

influence of the number of immovable relics on the spatial

distribution of heritage trees was relatively weak.
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The topological structure of the underlying streets can help us better

understand urban space and human activities therein. As human urban

movements are inherently heterogenous in space and statistics, whether or

not the network of streets holds a similar degree of heterogeneity worth being

investigated. Relying on the graph theory and complex-network thinking, we

adopted the street segment analysis-based methods and computed segment-

based topological metrics in the downtown of twomajor cities in China: Beijing

and Shanghai. More specifically, we used Flickr photo location data as a proxy of

human urban activities and counted themovement flow at levels of both street-

based communities and street segments. We measured the heterogeneity of

each segment-based metric via the extent of being long-tailed in the rank-size

distribution (long-tailedness). We found that segment-based betweenness was

most long-tailed and was the best metric for capturing human activities within

each community and that neither segment-based degree nor can closeness

show a similar extent of long-tailedness and can have a good correlation with

the segment-based flow. These findings point to the insight that the positive

relationship between street structure and human activities is significantly

shaped by their shared heterogeneous nature.

KEYWORDS

topological analysis, segment analysis, long-tailed distribution, heterogeneity, urban
roads

1 Introduction

The past decade in China witnesses a significant rural-urban transition. With more

than sixty percent of the total population living in cities, people are confronting a series of

urban issues. In the meantime, the advancement of information and communication

technology leads more and more people to conduct activities in a hybrid physical-virtual

urban space (Shaw and Yu 2009), from which we can easily acquire a massive amount of

fined-grained, widely-covered, spatio-temporal data–so-called urban big data (Mayer-

Schonberger and Cukier 2013). Big data makes it possible for us to foster a quantitative
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understanding of how people live, work, and move in the urban

area and, more importantly, to offer us a greater chance to

explore the factors behind (Zheng et al., 2014). Among those

factors, urban space or built environment is probably the first and

foremost because it underlies and works as a primary constraint

of our physical activities or movements (such as vehicles must

run along the street). In this regard, the understanding of the

urban structure and its relation to human activities becoming

more urgent and important, as authorities and policymakers are

actively seeking solutions for better urban and transport planning

to related issues including energy, environment, and

sustainability (Batty 2007; Batty 2013).

The urban spatial network has long been used for effectively

characterizing the urban structure and its underlying dynamics

(Zhong et al., 2014). Street network is one of the most prominent

network types. On the one hand, the human movements on the

streets in a two-dimensional geographical information system (GIS)

can be abstracted as moving points along road center lines, in which

we can count the number of points on each line as street-based

movement flow. On another, the network of streets naturally allows

us to store and model the street topology for investigating the

underlying structure of urban space, represented by a dual graph

consisting of nodes as streets themselves and links as intersections.

Moreover, the correlation between the flow and those structural

properties can further lead us to apprehend the relationship between

urban form and function (Hillier and Lida 2005). It is commonly

accepted that the very topology attained from the street segments

has the potential to well correlate with human street movements. In

the literature, street topological properties exhibit complex-network

characteristics such as scale-free (Barabasi and Albert, 1999; García-

Pérez et al., 2018). This indicates that a great heterogeneity of street-

street connections that leads to the street network consists of

compartments or communities wherein the streets are denser

than the ones outside (Newman 2003). However, there were rare

studies investigating human activities at the street community level.

Supported by Flickr data that are with finer spatial and temporal

granularities, it is plausible to adopt street communities as the unit

to conduct correlation analysis between human activities and a

more refined urban space.

In this article, we study the relationship between the street

topological properties and human activities represented by

location-based social media (LBSM). As one major kind of urban

big data, LBSM data record massive geo-related information from

millions of users and works as a good proxy of conventional data for

exploring the geographic space and human activities therein. Rooted

in complex-network thinking and graph theory, we adopt the street

FIGURE 1
The methodological framework of this study.

FIGURE 2
(Color online) The spatial distribution of processed geo-
tagged photos in the study areas and the underlying street
networks in the centermost region of Beijing (A,B) and
Shanghai (C,D).
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community as a unit for analysis and seek the correlation between

different types of topological metrics of street segments within each

community and related movement flow counted by Flickr points

along the segments. The contribution of this study is three-fold: 1)We

apply RA-index to measure the heterogeneity or long-tainedness of

the spatial distribution of Flickr photos, not only at the community

level but also at the street segment level; 2) At the segment level, only

betweenness has a moderate correlation with a number of Flickr

locations, others do not have at all. 3) A further investigation of

statistical distribution of all these metrics suggests that only

betweenness metrics exhibit a similar profile to that of Flickr

locations. This explains why betweenness can better capture

human activities and this knowledge could help us in some urban

applications such as traffic prediction and route planning.

The remainder of this paper proceeds as follows. Section 2

introduces the datasets and methods. Section 3 presents the

visualization and statistical results regarding the topological

analysis of the street network, the imbalance distribution of

photo locations at the community and street levels, and the

correlation between the two. Section 4 discusses and concludes

the results and points to the future research direction.

2 Methodology

2.1 Data and data processing

The framework of this study is presented in Figure 1. We

focused on the centermost area of Beijing and Shanghai bounded

by the inner ring road for this study. Respectively (Figure 2). The

area includes two highly developed districts such as Dongcheng

in Beijing and Pudong in Shanghai, both of which attract massive

amounts of human activities. We wrote a simple script to clip out

the Flickr data downloaded from the Yahoo database. As Figure 2

shows, there were 73,276 and 92,479 records in downtown

Beijing and downtown Shanghai, respectively, including Photo

ID, user ID, timestamp, and XY coordinates. We also followed a

previous study (Wu et al., 2014) and cleaned the data by

removing photo duplicates (same user sent at same time and

location) and those photos sent by robots. The cleaned data

contained 19,970 photo locations for Beijing and 24,589 for

Shanghai. The street network was downloaded directly from

OpenStreetMap. We further used the Near function to assign

each location to the nearest street segment and eventually

counted how many photo locations were assigned to a single

segment as the segment-based flow.

2.2 Topological properties for
characterizing a street network structure

We built the dual graph G(V, E) of the obtained street

networks in two cities, in which V stands for the set of nodes

{v1, v2 . . .} , and E is a set of edges or links among the nodes.

Before that, we processed the original street data in ArcMap to

ensure the right polyline topology, where the intersection can

only occur in case of three or more segments. The resulting

number of street segments in Beijing and Shanghai were

respectively 13,709 and 23,583. The dual graph of segment-

segment topology was based on their intersection relationship

and had 30,260 and 65,377 edges. The constructed graph was

undirected and unweighted. To characterize a street network, this

study used the following topological metrics for each segment:

Degree centrality, as denoted in Eq. 1, the degree of a node is

based on how many links connect to that node.

D(vi) � d(vi)∑vi∈Vd(vi)
(1)

Closeness centrality, refers to the topological distance of a

node to every other node in a network, which is denoted by Eq. 2,

which d(vi, vj) is the shortest distance between a node vi and vj.

C(vi) � 1∑g
j−1d(vi, vj) (2)

Eigenvector centrality, makes use of the centrality of a node’s

neighbor to determine the centrality for that node. The

eigenvector centrality for a node vi can be described as Eq. 3.

E(vi) � 1
λ
∑
j∈G

av,jvi (3)

Betweenness centrality measures how big a role a node vk
plays as a bridge in a network. Described as Eq. 4, the

betweenness score of vk is calculated by the ratio of the

number of shortest paths between any two nodes vi, vj
passing through vk.

B(vk) � ∑
vi ,vj∈V

σ(vi, vj∣∣∣∣vk)
σ(vi, vj) (4)

FIGURE 3
The illustration of the RA-index using a rank-size plot.
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Like many other real-world networks, a street network consists

of many independent compartments, forming a community

structure. This way we can naturally divide a large street

network group by group for a better understanding of the

structure of the streets. To assess the goodness of a community

structure, modularity is often used, denoted by Eq. 5:

Q � 1
2m

∑
i,j

(Aij − kikj
2m

)δ(ci, cj) (5)

in which Ai,j refers to weights between nodes (vi, vj), ci, cj are

community indexes, δ(ci, cj) = 1 denotes they belong to one

community if not, it equals to 0. The detection of communities for

a large network requires some efficient algorithms. This study uses the

Louvainmethod (Blondel et al., 2008) for the community detection of

the street network. With the street segments being represented as

nodes, and the intersection relationship being represented as binary

edges, the community detection algorithms can divide the segment-

segment network into communities, within which these segments

interact with each other more strongly than ones outside the

subgroup. To determine the best community detection result, this

algorithm joins individual nodes into communities progressively until

the modularity score no longer increases.

2.3 RA-index for measuring the long-
tailedness of topological metrics

Commonly, human urban activities are substantially

heterogeneous (e.g., Brockmann et al., 2006; Gonzalez et al.,

2008), manifested mathematically as a right skew in the

probability distribution or a long tail in rank-size distribution.

The skewness or long-tailedness in the distribution can also be

understood as data imbalance or unevenness since data with this

such kind of distribution contain only a few large values but

numerous small values, that is, large-to-small ratios are

disproportional (e.g., 80/20 rather than 50/50). In recent years, the

ratio (RA-index; Gao et al., 2016) is widely used to quantify the extent

of a data being long-tailed distribution (Ma et al., 2020). To calculate

RA-index, wefirst rank all values in the data set from the largest to the

smallest (a rank-size plot). The RA-index value, as Eq. 6 denotes,

equals the ratio between the areas of two polygonsA andBdivided by

the line connected with the largest and smallest values (Figure 3). The

value range of the RA-index is between 0 and 1. The smaller the RA-

index value, the more long-tailed or right-skewed the data is. This

study would compute the RA-index on every type of segment-based

measure, as well as the segment-based movement flow.

RA � SA
SA + SB

(6)

Where SA and SB represent respectively the area of two parts

of the triangle divided by the rank-size distribution line.

3 Results

3.1 Detected communities and related
statistics

We firstly partitioned the network graph into several

communities. As Table 1 presents, the statistical results of

the two downtown areas were similar. As the case with

Shanghai, the derived 58 communities with the highest

modularity score of 0.937. The size (number of street

TABLE 1 The statistics of derived street communities in downtowns Beijing and Shanghai. (Note: #, number; Comm, Communities; Mod, Modularity
score; MaxSeg, the maximum number of segments within a community; MaxPhotos, maximum unique photo locations within a community).

#Comm Mod #MaxSeg #MinSeg #MaxPhotos #MinPhotos

Beijing 52 0.944 481 52 2116 8

Shanghai 58 0.937 797 34 2274 1

FIGURE 4
(Color online): The layout of detected street communities in
the downtown area of Beijing and Shanghai (A,C), each of which is
with a number of Flickr points that aremapped using dot size (B,C).
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segments) of each community ranges from 34 to 797 (Table 1).

As can be seen from Figure 4A,C, at the center of the study area,

numerous small-sized communities were concentrated,

whereas bigger ones were surrounded layer by layer. On the

other hand, the number of geotagged Flickr photos within each

street community gave another story. Figure 4B,D showed that

smaller communities at the center tended to possess a

considerably large amount of photo locations (2274 at most

in one community; Table 1), indicative of the area of interest in

the downtown area, while much fewer photo locations resided

in larger communities at the periphery. From a statistical point

of view, the number of segments contained in each community

follows a normal-like distribution, that is, the big-to-small ratio

regarding the number of street segments for each community

was proportional, that is, around the average value. The

statistical distribution for photo locations within each street

community was, therefore, quite disproportional (right-

skewed) and was with an RA-index of 0.04, suggesting a

FIGURE 5
(Color online): The probability statistical distribution of #street segments and #Flickr locations within each community [Note: # = number,
#road segments for each community obey a normal distribution (A,C), while # Flickr photos exhibit in a right-skewed or long-tailed manner (B,D)].

TABLE 2 The average community-based RA-index values for several photo locations and each of the centrality measures.

#Photo Betweenness Closeness Degree Eigenvector

Shanghai 0.04 0.12 0.75 0.79 0.72

Beijing 0.06 0.14 0.76 0.75 0.66
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highly imbalanced distribution, both in space and statistics, of

human activities in social media (Figures 4, 5).

3.2 Correlation within each community

We computed four types of centrality measures for each street

segment, that is, betweenness, closeness, degree, and eigenvector.

Within each derived street community, we further extracted the

contained street segments and then examined the extent of

imbalance distribution across four topological parameters as

well as the number of photo locations (Table 2). It is very

interesting to note that the distribution of photo locations at

the street segment level was very uneven too, for most of the

RA-index values were less than 0.1, similar to what has been

distributed over different street communities. On the other hand,

the centralitymeasures behaved quite differently. Figure 6 provides

an overview of the RA-index for each metric at the community

level, from which we can see a remarkable consistency between

several photo locations and betweenness, while the other three

centrality measures appeared several times bigger (above 0.7).

We correlated each segment-based topological metric with

the corresponding amount of photo location. The range of

correlation for all metrics was in general (−0.21, 0.39) in

Shanghai (Figure 6a) and (−0.18, 0.48) in Beijing (Figure 6b).

Taking examples of the top 10 popular communities for both

cities shown in Figure 7, the correlation results vary from

community to community and demonstrate, by and large, a

consistent pattern with the RA-index values, that is, metrics with

a smaller RA-index was inclined to have a larger correlation

result (e.g., betweenness). In contrast, a lack of correlation or

negative correlation can be found in some communities where

metrics with a large RA-index value (e.g., degree and closeness).

In this regard, betweenness outperforms other structural

properties regarding the capture of human activities at the

community level (e.g., the strongest correlations in

5 communities out of the top 10 communities in Shanghai;

Figure 7A), as it conforms to the imbalanced spatial

distribution of photo locations. Furthermore, to confirm the

above result about the presence or absence of correlations, we

mapped street segments within one of the most popular

communities (Figures 7A, B). For example, we selected one

community in Shanghai with 1,545 geo-tagged photos over

580 street segments, the visualization uses a color scheme

from blue (lowest) to red (highest) showing high/low

correspondence between different measures and human

activities.

4 Discussion

The street network is a de facto complex network, in which

the connections among streets are distributed rather unevenly

(Newman 2003). In other words, the connections in some parts

FIGURE 6
(Color online): The bar chart view of RA-index values on fivemetrics at the community level (Note: Data with an RA-index closer to 0 is prone to
be highly right-skewed. Thus, across four types of centrality measures, the extent of imbalance distribution of betweenness is the closest to that of
#photo locations, followed, in order, by degree, closeness, and eigenvector).
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FIGURE 7
(Color online) The segment-based metric-flow correlation results between four types of topological parameters, respectively, and several
photo locations in the top 10 popular communities and the street network in one of the selected 10 communities, rendered using different types of
segment-based measures, respectively in Shanghai (A) and Beijing (B). (Note: The betweenness value shows the strongest uniformity with the
number of photos, either spatially or statistically, and thus has a better correlation than other metrics).
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of the network are dense while in other parts are quite sparse.

This leads us to decompose such a network into communities

within which the streets interact more intensively than the ones

outside. It should be noted that the detected communities work

effectively as alternative space partitioning units that are emerged

from the bottom-up rather than traditional ones from the top-

down such as equal-sized grids that neglect the essentials of the

underlying spatial environment. This is very much in line with

the Flickr data used in this study which is also collected in a

bottom-up manner and with an unbalanced spatial distribution.

Although Flickr is not as popular asWeibo andWechat in China,

we chose the centermost part of the two largest Chinese

metropolises where the places are relative with very dense

photo locations to ensure the Flickr data can reflect greatly

the activity level. In doing so, we managed to conduct an in-

depth investigation of the interplay between urban spatial

structure and human activities.

From a statistical viewpoint, the unevenness can be

characterized as a right-skewed or long-tailed distribution. In

the study, it is interesting to stress that such an uneven spatial

distribution of Flickr photo locations at two levels: across

communities and within a single community, represented by

the RA-index value being smaller than or equal to 0.1. From one

community to another, the different amount of photo locations

can reflect the varying popularity degrees of a place. Such a

variation also appears from the street to street within a

community. The result showed that the minimum RA-index

value for the number of photo locations distributed across streets

is 0.02, indicating an extremely imbalanced pattern of far more

rarely-visited streets than frequently-visited ones. What is more,

some of the calculated segment-based structural parameters

exhibited a similar statistical pattern such as betweenness

whose RA-index largely resonates one of photo locations in

most cases (also shown in Figure 6B).

The correlation test further revealed that betweenness was

the best segment-based topological metric for capturing human

activities at the community level. Other metrics like degree or

closeness were with larger RA-index values and thus were hard to

have a moderate metric-flow correlation. The primary reason

could be that the betweenness is a more global measure (Freeman

1979) and its calculation takes account of not only the immediate

intersected streets (neighbors) of a street, but also neighbors’

neighbors, and so on. On the contrary, the degree of closeness

centrality considers only the local neighbors of a street. As a street

segment usually intersects immediately with only 3 or

4 segments, the segment-based degrees within a community

would not differ too much from one another, thereby leading

to a larger RA-index value or a more proportional distribution

(e.g., 50/50 rather than 20/80).

The similar community-based statistics in the two cities

above help us better understand the interplay between the

complex or heterogenous street structure and human check-in

activities. As confirmed in many urban literatures, although one

has his/her own choice or behavior while moving, the collective

movements are greatly influenced by the underlying spatial

environment such as the network of streets (e.g., Hillier 2012)

and can, to a certain extent, captured by the structural properties

(network metrics). Moreover, based on the detected long-tailed

distribution on both the betweenness metric and the number of

photo locations along streets within each community, we further

identify that the heterogeneity of urban space may work as an

effective means of characterizing group-level human activities.

5 Conclusion

The relationship between the urban environment and human

activities therein is one of the cores in urban science. The present

study makes use of the street network in the downtown two

metropolitan areas Beijing and Shanghai and decodes the urban

morphology from the perspective of the street communities,

from which we can further understand a city’s configurational

and functional complexity regarding the imbalanced distribution

of street topological parameters and human check-in activities.

Despite previous studies had pointed out a positive correlation

between street topological properties and people movement flow,

our experiment further contributes to the literature that one of

the reasons behind the positive correlation is the shared

heterogeneous or imbalanced nature held by both street

structure and human activities. Future work will involve more

metropolises worldwide for an international outlook and develop

agent-based simulation using street networks as the computation

environment for deeper insights into urban structure and its

complex dynamics.
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Evaluating civil aviation airport
competitiveness in the Yangtze
River Economic Belt of China: A
lens of spatial-temporal
evolution

Yang Zhang1,2, Xue Jin3, Meng Li2, Rongtian Liu1,2 and Ying Jing4*
1School of Economics and Management, Xi’an Aeronautical University, Xi’an, Shaanxi, China, 2General
Aviation Industry Research Center, Xi’an Aeronautical University, Xi’an, Shaanxi, China, 3School of
Economics and Management, Chang’an University, Xi’an, Shaanxi, China, 4Business School,
NingboTech University, Ningbo, Zhejiang, China

The civil aviation industry plays an important role in advancing interregional

socio-economic development. Investigating the competitiveness of civil aviation

airports (CAAs) from the tempo-spatial change perspective aids in the

optimization of airport layout towards balanced and coordinated regional

development. This research assesses the overall competitiveness of 86 CAAs

in 11 provinces or provincial-level municipalities of the Yangtze River Economic

Belt (YREB) from 2009 to 2019 by the entropy weight approach, then

characterizes their spatial-temporal evolution via Moran index of spatial auto-

correlation analysis, and finally explores their dynamic changing tendency of the

spatial variability based on Theil index measurement and decomposition. The

findings are concluded: 1) From 2009 to 2019, the overall competitiveness of civil

aviation airports is dramatically improved and an evidently hierarchical system is

formed at the provincial level, with the spatial pattern of “strong in the east and

west, weak in the middle”. 2) The global Moran indexes of civil aviation airport

competitiveness in 2009, 2014, and 2019 are negative, indicating that superior

and inferior airports are likely to be spatially clustered. 3) The local Moran Indexes

show that the spatial agglomerations of civil aviation airports tend to be more

evident in the recent decade. The high-high competitiveness clusters lie in the

Yangtze River Delta Economic Zone for the long run, transforming from

“Shanghai-Hangzhou” high-competitiveness pole to “Shanghai-Hangzhou-

Nanjing” and further extending to central Jiangsu. Civil aviation airports in

provincial capitals and secondary cities have formed clusters of high-low

competitiveness. Moreover, clusters of low-low competitiveness stretch from

the Yunnan-Guizhou Plateau to cities in the middle reaches of the Yangtze River.

4) The interprovincial Theil indexes of civil aviation airport competitiveness

fluctuate, with the discrepancy increasing and then decreasing.

KEYWORDS

civil aviation airport, competitiveness evaluation, spatial analysis, dynamic evolution,
the Yangtze River Economic Belt
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Introduction

Background

Since the founding of the People’s Republic of China in 1949,

China’s civil aviation industry (CCAI) has been developing

rapidly and playing a key role in the national economic

system. In particular, market-oriented construction since the

reform and opening-up in 1978 has brought new

opportunities to CCAI. This has made CCAI achieve rapid

development in many aspects, such as air transportation, fleet

size, regulation construction, route layout, etc. As an essential

node of civil aviation, the airport is the key carrier of the structure

and function of the civil aviation network, the window of a

country for international exchange and cooperation, and an

essential bridge for a regional economy to participate in

international labor division. After more than 40 years of

growth since the reform and opening up, CCAI has become

the world’s second largest air transportation system after the

United States (Liang et al., 2016). To better meet the needs of

China’s socio-economic development, how to further accelerate

airport construction and optimize airport layout has become a

vital issue in the development of CCAI. Airport competitiveness

is a quantitative standard of the overall capability of airports,

which reflects the ability of airports to reasonably integrate and

optimize the use of internal and external resources facing market

competition. It is also an important indicator to measure the

prospects of airports and formulate scientific tactics for the

development of airports (Wen et al., 2022). On this basis,

exploring the competitiveness and spatial-temporal evolution

of airports enables aviation authorities to understand airports’

strengths and weaknesses, formulate scientific development

strategies, improve their advantages continuously, optimize

airport layout, strengthen airport operation and management,

and promote the development of regional economy and civil

aviation industry.

The Yangtze River Economic Belt (YREB) is a vital national

strategic development region in China (Liu and Xia, 2020; Yu

et al., 2020; Peng and Xu, 2021). As an international economic

region connecting home and abroad, YREB plays an essential role

in coordinating both regions along the Yangtze River and part of

coastal border regions in China (Zhang et al., 2021). At the

2020 Symposium on Promoting the Development of the YREB,

China’s General Secretary Jinping Xi pointed out that the

transport system, especially the air transport network, is a

significant driving force in creating a new height for the

opening-up of YREB (Lu et al., 2022). Moreover, the air

transportation network contributes to inland opening, regional

coordination, and high-quality integration development of the

Yangtze River Economic Belt (YREB) and the Belt and Road

Initiative (BRI). On this basis, building a well-developed aviation

network has become one of the critical tasks of constructing a

comprehensive three-dimensional transport system in YREB (Pei

et al., 2021). As the fundamental component of an air carrier, the

airport provides site support. The airport acts as a center for

passengers’ transit, departure, and arrival in the air

transportation network. Due to the geographically strategic

position, YREB promotes the synergistic development among

the cities in its upper, middle, and lower reaches by exploring the

spatial-temporal patterns of civil aviation airports (CAAs).

Literature review

The airport competitiveness evaluation facilitates optimizing

the spatial layout of airport clusters in YREB (Zhang et al., 2022).

Previous studies on evaluating airport competitiveness have

mostly been conducted from a global, national, or single

airport perspective (Zeng et al., 2012; Cui et al., 2013; Jiang

et al., 2013; Spaina et al., 2014; Ishizuka, 2014; Cui et al., 2017;

Tang and Li, 2019; Wei et al., 2019; Choi, 2020; Liang et al., 2020;

Moura et al., 2020; Qin, 2020; He et al., 2021). Some scholars

explored the competitiveness of airports by various econometric

methods such as factor analysis, principal component analysis,

hierarchical analysis, DEA, fuzzy comprehensive evaluation, and

entropy weight method, emphasizing the symbiosis between

transportation and economic development and the importance

of hub airports for local and regional economic development

(MacKinnon et al., 2008; Liang et al., 2016). Previous studies

related to airport competitiveness focus on three major aspects:

1) designing the evaluation index system (Zeng et al., 2012; Tang

and Li, 2019; Qin, 2020); 2) empirical evaluation of single airport

competitiveness (Jiang et al., 2013; Luo et al., 2020; He et al.,

2021) and 3) influence factors or formation mechanism

(Ishizuka, 2014; Choi, 2020; Moura et al., 2020).

In designing the evaluation index system of airport

competitiveness, Sarkis (2000) used data envelopment analysis

to assess the operations of 44 major U.S. airports based on four

resource input indicators (i.e., airport operating costs, the

population of airport employees, gates, and runways) and five

output indicators (i.e., operating revenues, passenger traffic,

commercial and general aviation movements, and total cargo

traffic efficiency). Based on big system cybernetics, Zhang et al.

(2012) construct an evaluation index system (e.g., passenger

throughput, number of navigable cities, geographical location,

and airspace conditions) for regional multi-airport coordinated

development in the Yangtze River Delta region. Chao and Yu,

2013 developed a quantitative evaluation model to analyze the air

cargo competitiveness of 10 major airports in Asia-Pacific from

different dimensions (air carrier capacity, airport facilities and

operations, and economic development). Liang et al. (2016)

designed a systematic evaluation method to evaluate the

competitiveness of 42 airports in China by the entropy

weight, grey correlation, principal component, and cluster

analysis by constructing 30 airport competitiveness evaluation

indexes from two dimensions: airport development and location
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conditions with 30 indexes concerning seven significant factors

(i.e., facility construction, operation scale, management

efficiency, urban passenger and cargo distribution, urban

traffic development, geographic condition, and government

support). The above evaluation index systems provide a

reference for constructing the evaluation index of CAAs

competitiveness in YREB.

In empirically evaluating the competitiveness of each airport,

Park (1997) assessed the geographical characteristics, access

systems, environmental impacts, airline operating conditions,

regional development, availability of planning implementation,

socio-economic impacts, and airport charges of eight major

airports in East Asia by a fuzzy language approach. Wu and

Wu (2005) established an AHP evaluation system to compare the

strengths and weaknesses of the five major airports in Asia-

Pacific and proposed some improvement measures for Shanghai

Pudong Airport. Cui et al. 2013a proposed the IDCQGA-BP

algorithm to evaluate the competitiveness of eight airports in the

Yangtze River Delta from 2011 to 2015. Huynh et al. (2020)

measure the efficiency of major airports in Southeast Asia to

compare and analyze the competitiveness of these airports in

regional development through a two-stage method. Sydorenko

et al. (2021) assess the competitiveness of the production

infrastructure of international airports in the global aviation

market by the comprehensive situational model. The main

purpose of creating and implementing an evaluation system is

to facilitate the successful implementation of the competitiveness

management functions of the production infrastructure of

international airports in the global aviation market.

In analyzing the influencing factors of airport

competitiveness, Pels et al. (2003) constructed nested logit

models to study competition among airports in the San

Francisco Bay Area and revealed that access time is vital in

competition among airports in this region. McLay and Reynolds,

2006 studied the economic impact caused by the new initiative of

introducing terminal competition at Dublin Airport. In addition

to being closely related to the regional economy, geographic and

demographic factors, market structure, social factors, and air

transport market maturity are also important factors closely

related to airport development (Demirsoy, 2012). Zietsman

and Vanderschuren (2014) surveyed the airport development

stakeholders and found that socio-economic development, urban

planning, transportation improvement and efficiency,

environmental protection, and financial capacity all influenced

airport development and operations, with socio-economic

development as the most influential factor. Cui et al. 2013b,

2016) constructed an index system of airport competitiveness

from four aspects (i.e., regional development, production factors,

demand conditions, and supporting industries) and studied the

dynamic formation mechanism of airport competitiveness based

on 25 airports in China from 2006 to 2010 by structural equation

modelling and system dynamics methods and found that the two

most important factors affecting airport competitiveness,

namely, airport investment and urban research development

investment.

Based on the above analysis, for the airport competitiveness

evaluation, scholars have chosen various methods and a sound

index system. These studies basically cover the operational scale,

connectivity, service quality level, operation management,

economic efficiency, and development environment of airports

and provide some theoretical references. However, the current

relevant research also has certain shortcomings. Firstly, in the

comprehensive empirical evaluation of airport competitiveness,

more attention is paid to all airports within countries or large hub

airports in geographically adjacent areas. Rare research is

conducted on the airport competitiveness in important

economic regions within one country, e.g., the YREB in

China. Secondly, studies on the evaluation of airport

competitiveness or its influencing factors are mainly carried

out from the time scale, which can only clarify the level of

competition and positive and negative influencing factors of

airports within a specific time range. Still, they cannot meet

the needs of coordinated development, mutual promotion of

airports in a certain area, and balanced airport layout. The spatial

autocorrelation approach helps to solve the above problems and

has been widely used in various research fields to explore the

dynamic characteristics of regional differences and spatial

structures (Liu et al., 2017; Jin et al., 2018; Jing et al., 2018;

Cui et al., 2021; Zhang et al., 2021). Compared with traditional

data ranking of different airports’ competitiveness on the time

scale, spatial auto-correlation analysis reveals the regional

structure of spatial variables. It is an important indicator to

test whether the attribute values of a certain element are

correlated with the attribute values of its adjacent spatial units

(Zhao et al., 2012; Darand et al., 2017; Hu et al., 2020; Chen.,

2021). Adopting spatial auto-correlation analysis in evaluating

airport competitiveness helps observe the interdependence of all

airports in YREB in a specific spatial range; meanwhile, it can

explore the interaction of a single airport with other airports

within a certain spatial unit. Although it has advantages in

regional airport coordination and layout optimization, few

studies on the competitiveness analysis of CAAs have adopted

this method. Therefore, this paper aims to comprehensively

evaluate the competitiveness of civil aviation airports (CAAs)

in the Yangtze River Economic Belt (YREB) from the lens of

tempo-spatial dynamics towards the orderly and coordinated

development in YREB.

Methodology

Study site

The Yangtze River has a total length of 6,300 km and a

watershed area of 180 km2, accounting for about 1/5 of the

country’s total area. With various terrain types (i.e., plateaus,

Frontiers in Environmental Science frontiersin.org03

Zhang et al. 10.3389/fenvs.2022.994860

193

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.994860


mountains, rivers, lakes, and basins), it runs through most of

China’s eastern, central and western regions, spanning the

subregions of Three Gradient Terrains of China (TGTC). The

Yangtze River flows from upstream to downstream through the

Qinghai-Tibet Plateau, the Yunnan-Guizhou Plateau, the

Sichuan Basin, and the middle and lower reaches of the

Yangtze River Plain, creating various natural sceneries with

mountains, seashores, rivers, canyons, and lakes, etc. As a

significant national strategic development region, the YREB

promotes the coordinated development of East, Central, and

West China. This area stretches from Shanghai in East China to

Yunnan in West China, connecting 43 cities in 11 provinces or

provincial-level municipalities along the Yangtze River (except

Qinghai and Tibet), with 1,482,300 km2, accounting for 15.44%

FIGURE 1
Study site.: (A) China; (B) the Yangtze River Economic Belt.
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of the national territorial area. According to the Statistical

Communiqué of the People’s Republic of China on the

2021 National Economic and Social Development released by

China’s National Bureau of Statistics and the statistical

communiqué of the 11 provinces or provincial-level

municipalities in YREB, China’s GDP was 114.37 trillion

yuan, while the regional GDP of YREB reached 53.02 trillion

yuan in 2021, nearly half of China’s total economy. YREB is the

region with the fastest economic development and the area with

the highest potential for future economic growth in China. With

the implementation of the national strategy of developing YREB,

the region has been given the new strategic mission of being the

main battlefield of ecological priority and green development, the

main artery of smoothing domestic and international circulation,

and the main force of leading high-quality economic

development.

YREB contains three major economic zones, namely the

Yangtze River Delta Economic Zone (Shanghai, Zhejiang,

Anhui, Jiangsu), the Middle Yangtze River Economic Zone

(Hubei, Hunan, Jiangxi), and the Chengdu-Chongqing

Economic Zone (Sichuan, Chongqing, Yunnan, Guizhou),

shown in Figure 1. The above three economic zones are

developed areas in China with a large population, rich

tourism resources, and frequent internal and international

exchanges contributing to the rapid development of

transportation in YREB. At the same time, transportation is

also a vital factor in promoting the regional economy. As China’s

opening-up highland, YREB’s civil aviation transportation is

playing a power source, which is mutually promotive with

regional development (Sun et al., 2018). By the end of 2019, a

total of 86 CAAs were opened in this study area, accounting for

36.1% of the national CAAs, which completed 567 million

passenger trips, 7,956,400 tons of cargo and mail throughput,

and 4,780,400 landings and takeoffs. Concerning the spatial

distribution density at the city level, the average number of

airports in the upstream, midstream, and downstream cities

are respectively 0.83, 0.56, and 0.39, with the upstream region

taking the lead. However, concerning airport hierarchy, 14 of

28 high-level airports in the YREB are located in the Yangtze

River Delta Zone, accounting for 60.9% of the total number,

while airports in the middle and upper reaches of YREB are 6 and

8, accounting for 37.5 and 20.5% respectively. The Yangtze River

Delta Zone has an outstanding advantage in airport quality (Bian

et al., 2020).

Data resources

This study targets 86 CAAs in 11 provinces or provincial-

level municipalities of YREB. ArcGIS 10.6 is used to draw the

spatial structure map required for the study, whose base map

data are selected from the National Basic Geographic

Database of the National Basic Geographic Information

Center of the Ministry of Natural Resources. In this study,

nine specific indexes were selected, namely, the passenger

throughput, cargo and mail throughput, takeoffs and landing

movements, the number of international routes, the number

of domestic routes, the number of navigable cities, the grade of

airports, the area of terminal buildings and the number of

airplane slots. The data of passenger throughput, cargo, and

mail throughput, and landing and takeoff sorties are obtained

from the Production Bulletin of Civil Aviation Airports in

2011, 2016, and 2020; the data of international and domestic

routes indicators are obtained from the official websites of

CAAs; and the data of takeoffs and landing movements, the

number of navigable cities, the grade of airports, the area of

terminal buildings and the number of airplane slots are from

Baidu encyclopedia website.

TABLE 1 Provincial ranking of the CAAs comprehensive index in YREB.

Province 2009 2014 2019 Ranking

Comprehensive index Mean Comprehensive index Mean Comprehensive index Mean

Shanghai 0.72823 0.36412 1.06303 0.53152 3.36367 1.12122 1

Chongqing 0.36095 0.18047 0.43678 0.14559 1.60404 0.53468 2

Zhejiang 0.78825 0.11261 0.79342 0.13224 2.47602 0.35372 3

Hubei 0.32664 0.08166 0.42688 0.08538 1.51204 0.30241 4

Jiangsu 0.42565 0.06081 0.66467 0.07385 2.84322 0.31591 5

Sichuan 0.61812 0.05619 0.79503 0.06625 2.30525 0.1921 6

Yunnan 0.82412 0.06868 0.66413 0.05534 2.27733 0.15182 7

Hunan 0.09959 0.01992 0.37624 0.06271 1.32705 0.16588 8

Anhui 0.12312 0.03078 0.20119 0.04024 0.67859 0.13572 9

Jiangxi 0.11475 0.02295 0.15496 0.03099 0.73765 0.12294 10

Guizhou 0.19697 0.03283 0.31683 0.0288 1.12012 0.11201 11
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Methodology

The spatial-temporal patterns of 86 airports’ competitiveness

in YREB are studied by the following methods.

The entropy weighting method
The entropy weighting method is an objective assignment

method to determine the weight of indicators (Stoyanets et al.,

2020). To reflect the competitiveness level of CAAs in YREB,

the raw data are processed by deviation standardization. Then

the index weights are determined with the entropy weighting

method to obtain a comprehensive index of CAAs’

competitiveness (Xiong and Wang, 2018; Liang et al., 2019;

Wang et al., 2020; Liu et al., 2021; Pan et al., 2021). The first step

is the dimensionless processing of data. Because the nine

indicators selected in the study are consistent with the

meaning of the competitiveness representation of CAAs. All

of them are positive indicators, and Equations 1, 2 are used to

standardize the data.

Xij
′ � Xij −minXij

maxXij −minXj
(1)

Xij
′ � maxXij −Xij

maxXij −minXj
(2)

In the above EquationsXij denotes the statistical value of the

index of the j criterion level; maxXij and minXij respectively

represent the maximum and minimum values of the j index Xij
′

represents the standardized value.

The second step is to calculate the indicators after

standardization to derive the comprehensive index of each

indicator in the comprehensive benefit evaluation. The specific

equations are as follows.

Hi � − 1
ln (n)∑

n

j�1
pij ln (pij) (3)

W1 � 1 −Hi∑(1 −Hi) (4)

In Equation 3, n represents the number of CAAs; pij means

the proportion of each indicator to the total number of

indicators; In Equation 3 and Equation 4, Hi and W1 refer to

the entropy value and entropy weight, respectively. The size of

the entropy is between 0–1.

Spatial autocorrelation analysis
Spatial autocorrelation analysis is a quantitative description

of the state of spatial association of geographical data between

things. The result is either correlated, random, or insignificant by

calculating spatial autocorrelation indices (Liu et al., 2017; Chen,

2021).

This study chooses the global Moran index and local LISA to

measure the spatial agglomeration characteristics of CAAs. The

global spatial auto-correlation mainly tests the overall spatial

correlation of all CAAs in YREB. In contrast, the local LISA

mainly tests a single CAA’s local spatial distribution correlation

and agglomeration. The equations are as follows (Jin et al., 2018;

Carracedo, 2021; Kim and Song, 2021).

I � ∑n
i�1∑n

i�1Wij(xi − �x)(xj − �x)
S2S0

(5)

I � (xi − �x)
S2

∑
j

Wij(xi − �x) (6)

In Equation 5, xi is the value of the variable at the location or

region i. x
−
is the mean value of the variable. S2 is the variance of

the variable. S0 is the sum of the spatial weights of all variables. n

is the total number of observed variables and the total number of

regions or locations to which the observations correspond.Wij is

an element in the space weight matrix W, which refers to the

space weight between the region or the location i or j and the

space between them. SetWij � 1 if the space unit i is adjacent to

the space unit j, otherwise, Wij � 0. In Equation 6, xi is the

attribute value of space unit i; x is the mean value of xi ; S is the

variance; w is the matrix of space weight; wij is the degree of

influence between space unit i and j.

Theil index
The Theil index, also known as the Theil coefficient or short

for Theil, was first proposed by Theil and Henri in 1967. It is

often used to quantitatively describe the equilibrium of economic

development and income distribution (Klophaus and Lauth,

2022). Though both Theil index and local spatial

autocorrelation can reflect inter-regional disparity, their

differences exist. First, the local spatial autocorrelation analysis

characterizes the disparity at the spatial scale, while Thiel index

presents the disparity from a statistical view. Second, the former

focuses on the competitiveness differences of 86 specific airports

in YREB from a micro perspective, while the latter focus on the

competitiveness differences at a macro level, that is, among the

three major economic zones (i.e., the Yangtze River Delta

Economic Zone, the Middle Yangtze River Economic Zone,

and the Chengdu-Chongqing Economic Zone). Therefore, this

research selects the Theil index to measure the difference in the

CAAs’ competitiveness in YREB. The equations are as follows.

Tb � ∑i

Ii
I
× ln(Ii

I
Ni
N

) (7)

Tw � ∑i(IiI) × Twi (8)

Tp � ∑i ∑j

Iij
I
× ln⎛⎝Iij

I
Nij

N

⎞⎠ (9)

In Equations 7–9, Ii/I represents the ratio of the composite

index sum within a region to the composite index sum within all

areas. Ni/N represents the ratio of the number of airports in a

Frontiers in Environmental Science frontiersin.org06

Zhang et al. 10.3389/fenvs.2022.994860

196

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.994860


region to the number of airports in all regions. Iij represents the

composite index of province j in region i. Nij represents the

number of airports in province j in region i. Tb, Tw, and TP

represent the Thayer index of inter-regional differences, intra-

regional differences, and overall inter-provincial differences.

Results

Comprehensive evaluation of CAAs’
competitiveness in YREB

Provincial-level CAAs’ competitiveness
hierarchy

After specifying the weights, the comprehensive index of

CAAs’ competitiveness in YREB is calculated by the entropy

weighting method. As shown in Table 1 and Figure 2, the sum of

the comprehensive evaluation indexes in 2009, 2014, and

2019 are 4.88, 5.89, and 20.245, respectively. The

comprehensive competitiveness of CAAs in YREB has

increased significantly in the past 10 years. It is also found

that in the comprehensive index of airport competitiveness of

both the overall region of the Yangtze River Economic Belt and

each single airport, the growth rate of competitiveness from

2009 to 2014 is much smaller than that from 2014 to 2019. The

growth rate in the first 5 years is less than 50%, and the growth

rate in the next 5 years is more than two times. The reason is that,

on the one hand, due to the difficulty and periodicity of airport

construction, there are fewer major changes in the short term, but

more significant changes in the long term; on the other hand, the

development plan for YREB has evolved from “promotion” to

“in-depth promotion” and then to “comprehensive promotion”

at the three symposiums on the development of the YREB held by

China’s General Secretary Xi Jinping in 2016, 2018 and

2020 respectively. Such high-level progressive planning has

brought more political benefits and better development

prospects. As shown in Figure 2, the competitiveness layout of

CAAs in YREB is featured as “strong in the east and west, weak in

the middle” (Jin et al., 2018). The coastal cities in YREB have the

most competitive CAAs, consolidating the leading position of the

Yangtze River Delta airport cluster. In 2019, the Yangtze River

Delta region possesses seven 10-million-passenger-throughput

airports (i.e., Shanghai Pudong, Shanghai Hongqiao, Nanjing

Lukou, Hangzhou Xiaoshan, Hefei Xinqiao, Wenzhou Longwan,

and Ningbo Lishe International Airports), completing a total of

248 million passenger throughput which is much higher than the

second-placed Beijing-Tianjin-Hebei airport cluster of

145 million passengers. In terms of future development,

metropolitan areas will become the main form of city cluster

competition and cooperation. In addition, airport cluster

competition and cooperation will expand from central cities

and single airports to metropolitan area airport systems,

which features a highly mature stage of development of city

clusters and airport clusters. Sichuan and Yunnan CAAs in the

upstream are the second most competitive. Benefiting from the

well-developed domestic route network and the rich tourism

resources in the southwest, Sichuan and Yunnan airports in the

upstream region are the second most competitive. By 2019, the

Chengdu-Chongqing airport cluster had become the following

“potential stock” after the three world-class airport clusters in

Beijing-Tianjin-Hebei, Yangtze River Delta, and Guangdong-

Hong Kong-Macao. Although the overall competitiveness of

the airport in the central region is the weakest, it plays the

role of linking the east with the west as well as communicating

between the north and the south. The airport development of the

central region is expected to boost by building a “dual hub”

system for passengers and cargo, relying on the original

characteristics of air cargo.

The CAAs in YREB has formed a relatively distinct

hierarchical structure at both provincial and municipal level.

First, the comprehensive competitiveness of CAAs in Shanghai

and Zhejiang has long been in the lead. The huge demand for civil

aviation carriers is indispensable from solid economic strength,

superior foreign trade location, and the high consumption level

of residents. Second, the overall competitiveness of Sichuan,

Jiangsu, and Yunnan is also high, but the trends in the decade

vary. CAAs in Yunnan occupied a prominent position because

other transport modes were initially restricted due to the complex

and rugged geographical conditions. However, with economic

development and technological breakthroughs, the

competitiveness of CAAs is gradually weakening as other

transportation modes are improving. Jiangsu is located on the

eastern coast, with a superior location adjacent to Shanghai, with

a substantial economic radiating effect.

Moreover, the expansion of airports such as Nanjing

Lukou Airport has laid the foundation for domestic and

foreign trade and an open economy. Therefore, its

comprehensive competition has increased significantly,

which is second subsequent to Shanghai in 2019.

Furthermore, Sichuan has been in a steady development

stage for a long time since 2009. Third, the competitiveness

of CAAs in Chongqing, Hubei, Guizhou, and Hunan is at a

medium-to-low level. Except for Hunan, the improvement of

capacity supply due to the conversion, expansion, and

construction of Changsha Huanghua and other provincial

airports has prompted its development and competitiveness

within 1 decade. Although the overall competitiveness of

other three provinces has improved, the regional rankings

are stable. Fourth, Jiangxi and Anhui have always been most

disadvantaged concerning the comprehensive

competitiveness of CAAs in the YREB.

Single CAA competitiveness spatialization in
YREB

Figure 3 shows the comprehensive index of CAAs in 2009,

2014, and 2019, respectively. Each dot represents one single CAA.
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Different colors indicate the competitiveness level of airports.

From high to low, competitiveness is reflected as red-orange-

light green-dark green. It can be seen that, with the total index of

each CAA increasing in the past 10 years, the competitiveness has

been significantly enhanced. The airport cluster in the downstream

Yangtze River Delta region is characterized by high-high

FIGURE 2
Provincial-level comprehensive index of CAAs in YREB: (A)
2009; (B) 2014; (C) 2019.

FIGURE 3
The composite index of the CAAs in YREB. (A) 2009; (B) 2014;
(C) 2019.
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competitiveness. The competitiveness of airports in the midstream

cities develops to middle-to-high competitiveness. Among the

upstream cities, the competitiveness of airports in Chengdu,

Chongqing, and Kunming is high. In contrast, the

competitiveness of other airports is still weak.

In 2009, Shanghai Pudong International Airport andKunming

Changshui International Airport were the most competitive in

2009, followed by Chongqing Jiangbei, Chengdu Shuangliu,

Wuhan Tianhe, and Changsha Huanghua International

Airports in the middle and lower reaches. Most of the other

airports were at a weak level of competitiveness. In 2014, the

competitiveness of CAAs in the Chengdu-Chongqing city cluster

in the upper reaches of the Yangtze River has been significantly

improved, which can be seen in the transformation of Chengdu

Shuangliu and Chongqing Jiangbei International Airport into red

circles. Benefiting from the developed service industry and strong

foreign trade demand boosted by the integration strategy of

Chengdu and Chongqing, the competitiveness of the midstream

city cluster has increased exponentially. But the overall color field

shows that the single airport competitiveness still has much room

for improvement. In 2019, the comprehensive index value of each

airport expands, and the competitiveness of regional airports

continues to enhance. Compared with 2014, three more red

dots are added in 2019, including Nanjing Lukou International

Airport, Hangzhou Xiaoshan International Airport, and Wuhan

Tianhe International Airport. The former two make it more

remarkable in terms of clusters of highly competitive airports in

the downstream Yangtze River Delta region. The latter is located in

the middle of the area, east of the Hu Huanyong Line, with a large

regional flow of passengers. The regional airport, Wuhan Tianhe

International Airport, has undergone rapid development, boosted

by the strategy for the rise of the central region.

Temporal-spatial characteristics of CAAs
in YREB

Analysis of global spatial autocorrelation
Based on the overall index data of CAAs in the YREB in 2009,

2014, and 2019, the univariate Moran’s I module of GeoDa

spatial analysis is used to calculate the global Moran index for

quantifying the spatial correlation of each CAA development in

YREB. Table 2 shows that the absolute value of Z is greater than

1.96 at the significance level of 0.05 (by 95% confidence test),

indicating a significant autocorrelation of spatial elements.

The global Moran indexes of civil CAAs in YREB for 2009,

2014, and 2019 are -0.018, -0.012, and -0.01. The result indicates

a negative spatial autocorrelation in CAAs’ development

strength. That is, airports with superior strength and weaker

strength are more likely to gather in space. The reason is that

China’s airports can be divided into three main categories: hub,

trunk, and feeder. There will be one or two hub airports with solid

strength in a particular region, where several weak trunk airports

and feeder airports are distributed. And they are spatially

clustered.

Analysis of local spatial autocorrelation
Figure 4 spatializes the local spatial autocorrelation analysis

of civil aviation airports in YREB. The Local Moran’s I module of

the ArcGIS 10.6 is used to calculate the local LISA index in 2009,

2014, and 2019. The improvement of the overall competitiveness

index of CAAs in YREB from 2009 to 2019 has facilitated the

trend of local spatial clustering in the region. The cluster of high-

high competitiveness has been in the Yangtze River Delta

Economic Zone for a long time. It has changed from the

“Shanghai-Hangzhou”, a highly competitive development pole,

to “Shanghai-Hangzhou-Nanjing” and extends to central Jiangsu

Province. The airports of provincial capitals and secondary cities

form clustered areas of high-low competitiveness, indicating that

the provincial capital city airports are the provincial core area of

competitiveness development. The clustered area of low-low

competitiveness covers the Yunnan-Guizhou Plateau to cities

of the middle reaches, which shows that the CAAs’

competitiveness in YREB still needs to be improved through

certain spatial planning strategies.

In 2009, 82.8% of the CAAs showed an insignificant spatial

cluster. Four of the airports form a cluster area with high-high

competitiveness, namely Shanghai Pudong International

Airport, Shanghai Hongqiao International Airport, Hangzhou

Xiaoshan International Airport, and Yiwu Airport. Six CAAs, all

located in provincial capitals, form a cluster of high-low

competitiveness. Compared with other provincial airports,

these are featured with high level, good accessibility, strong

distribution capacity, well-connected cities, and wide radiation

range, forming the competitiveness center of the lagging area.

Though Nantong Xingdong Airport has surpassed more than

70% of the airports in the region, it is a weak unit in an area with

solid regional competitiveness due to its geographical constraints

and its adjacent location to clusters of high-high competitiveness,

namely, Shanghai, Zhejiang, and Jiangsu. In 2014 the high-high,

high-low, and low-high clusters remain the same with more

airports covered. A cluster of high-high competitiveness has

formed a “Shanghai-Hangzhou” highly competitive developing

pole. The low-high cluster includes Zhoushan Putuoshan airport.

Average CAAs in Yunnan and Guizhou have formed a cluster of

low-low competitiveness, a contiguous lagging place in the

competitiveness ranking within the region. In 2019, 80.5% of

TABLE 2 Global moran index of CAA competitiveness in the YREB.

Year Moran index SD P Z

2009 −0.018 0.0842 0.0572 1.9019

2014 −0.012 0.0691 0.0002 3.7496

2019 −0.011 0.0789 0.0001 3.9933
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the airports are locally clustered in terms of the competitiveness.

The cluster of high-high competitiveness takes Shanghai as the

center to link Hangzhou and gradually spreads to the middle of

Jiangsu Province, forming a “Shanghai-Hangzhou-Nanjing”

high-competitive developing pole, covering Nantong Xingdong

International Airport. Fourteen CAAs form a cluster of high-low

competitiveness, indicating a backward unit in the

competitiveness ranking of CAAs in YREB. In addition to the

provincial capital airports with clustering capacity, airports

adjacent to the provincial capital airport, airports with a

particular trading strength and source market stand out from

the local spatial competitiveness ranking. There are two clusters

of low-low competitiveness: Ningbo Lishe International Airport,

Zhoushan Putuoshan Airport, and Ninglang Luguhu Airport.

Therefore, clustered areas of low-low competitiveness spread

from the airport in the upper reaches to the airports in the

middle and lower reaches, forming a contiguous lagging area.

Analysis of competitiveness difference of CAAs
based on theil index

To further explore the interregional difference and temporal

evolution of CAA competitiveness in YREB by the Theil index,

this study takes provinces and economic zones as research units.

Table 3 shows the inter-regional, intra-regional, and overall

inter-provincial differences among CAAs in the three major

zones of YREB in 2009, 2014, and 2019.

Taking the YREB as a whole, the total inter-provincial

differences show a fluctuating trend, with the overall

difference first expanding and then shrinking. The increase

in inter-provincial differences from 2009 to 2014 is due to the

rapid development of the international and regional leading

airports in YREB, while other feeder airports are still lagging. In

addition, the inconsistency of airport development in the region

caused by the incompatible number of airports with the

regional economic growth sharpens the disparity in

competitiveness. The narrowing of inter-provincial

differences from 2014 to 2019 is due to the gradual

development of feeder airports in YREB and the strong

follow-up momentum, narrowing the gap between the

leading regional and feeder airports. The variation trend of

inter-regional and intra-regional differences in the Theil index

is consistent with the overall competitiveness gap

(i.e., expanding before shrinking). The change of inter-

regional differences is because the three major regions show

a chronological sequence of development in the past decade, the

Yangtze River Delta progressed first, the Midstream Economic

Zone, and the Middle and Upper Reach of Economic Zone

followed. The inter-regional change is because each region has

provinces with precedence in development over other provinces

within 10 years.

Specific to the three major zones, the Theil index of the

competitiveness of CAAs in the Yangtze River Delta Economic

Zone is the largest, which is the dominating factor affecting

regional differences, followed by the Middle and Upper Reaches

of the Yangtze Economic Belt. A stepped competitiveness

difference has formed with Shanghai in the lead, followed by

FIGURE 4
Local clustering characteristics of CAAs in YREB: (A) 2009; (B)
2014; (C) 2019.
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Jiangsu and Zhejiang with a large gap compared with Shanghai.

Anhui is the weakest in competitiveness. The competitiveness

difference between airports in the middle and upper reaches of

YREB is the slightest because Hubei, Hunan, and Jiangxi airports

are weak in terms of overall competitiveness.

In general, there are differences in the CAA competitiveness of

YREBin2009,2014, and2019.Andthecompetitivedifferences exist

both in the three major zones, namely, the Yangtze River Delta

Economic Zone, the Midstream YREB, and the Upper and Middle

YREB. From the perspective of overall trends, the inter-provincial

and inter-zonaldifferences in theCAAcompetitivenessof theYREB

showafluctuating trend,with the level of differencesfirst expanding

and then narrowing. From the inter-provincial and zonal

perspectives, the difference in the CAA competitiveness has

developed from inter-provincial hierarchical differences to inter-

regional differences. For the contribution of the three major zones,

regional differences are mainly manifested in the Yangtze River

Delta Economic Zone, followed by the Middle and Upper Yangtze

EconomicZone,andfinallytheMidstreamYangtzeEconomicZone.

Discussion

Research findings

This study comprehensively evaluates the competitiveness of

CAAs at the provincial level of YREB and spatializes their spatio-

temporal evolution in 2009, 2014, and 2019. The research

findings are as follows.

1) From 2009 to 2019, the comprehensive competitiveness of CAAs

in YREB has increased remarkably, showing a distribution

characteristic of “strong in east and west, weak in central”.

The provincial-level distribution of the civil CAAs

competitiveness in YREB has formed a relatively distinct

hierarchical system. Shanghai and Zhejiang are in the first

tier, with Sichuan, Jiangsu, and Yunnan in the second tier,

Chongqing, Hubei, Guizhou, and Hunan in the third, and

Jiangxi and Anhui in the fourth tier. In terms of single

airports, the competitiveness in central cities per province has

increased the most. The airports in the downstream Yangtze

River Delta region are highly clustered, and the competitiveness

of airports in midstream city clusters develops to medium-to-

high intensity. The upstream city clusters have Chengdu and

Chongqing as the core of high competitiveness of CAAs, while

the competitiveness of other airports in this region is still weak.

2) The global Moran Index shows spatial auto-correlation of

CAAs in YREB is negative in 2009, 2014, and 2019. That is,

highly competitive airports and uncompetitive airports are

more likely to be spatially clustered. At the same time, the

local Moran index shows that the local spatial cluster in the

region from 2009 to 2019 has becomemore andmore distinct.

The clustered area of high-high competitiveness has been

located in the Yangtze River Delta Economic Zone for a long

time, converging from the “Shanghai-Hangzhou” high-

competitive development pole to “Shanghai-Hangzhou-

Nanjing” and further extends to central Jiangsu Province.

The provincial capitals CACs and sub-city airports form a

clustered area of high-low competitiveness; clustered areas of

low-low competitiveness spread from the Yunnan-Guizhou

Plateau to urban cities in the middle reaches of the Yangtze

River.

3) From 2009 to 2019, spatial heterogeneity exists in terms of the

competitiveness of CAAs at the provincial level in YREB among

the three major zones (i.e., the Yangtze River Delta Economic

Zone, the Midstream Yangtze River Economic Zone, and the

Upper Middle Yangtze River Economic Zone). In terms of the

overall evolution trend, the Thiel index shows fluctuations,

namely, increasing first and then decreasing. The Yangtze

River Delta Economic Zone is the dominating region

affecting the level of spatial heterogeneity. From the inter-

provincial and inter-zonal perspectives, the differences in the

CAAs competitiveness develop from an inter-provincial

hierarchical difference to an inter-regional integration.

Research strengths and limitations

Theoretically, this study comprehensively evaluates the

competitiveness of CAAs in YREB. Methodologically, this

TABLE 3 Theil index measurement and contribution rate decomposition.

Year Inter-regional
difference

Intra-regional
difference

Three regions Total inter-provincial
difference

The
delta

The
midstream

The middle and upper
streams

2009 −0.1190 0.1644 0.2961 0.1925 0.1021 0.2497

2014 0.1649 0.2284 0.3795 0.0696 0.1112 0.2947

2019 0.0064 0.1727 0.3161 0.0656 0.1190 0.2752
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research applies the classic tempo-spatial analytical method to

spatialize the spatial-temporal pattern of CAAs. Practically, the

study site is enriched in YREB. The limitations of this study are:

1) all data adopted are second-hand, which tends to be with low

timeliness; 2) The research objects are airports in YREB and a

larger spatial scale could better reflect the spatial distributional

regularities, e.g., in the whole China. More case studies (e.g.,

other regions in China or other countries) should be considered

to verify or discover more regularities. 3) This study involves the

decade 2009–2019 and did not consider the impact of COVID-19

which erupted in 2020.4) The time span is 5 years, namely 2009,

2014, and 2019. A yearly analysis needs further exploring. Taking

the impact of COVID-19 into consideration, the following

research will explore airports’ competitiveness evolution at

multiple spatial scales, e.g., in other regions of China or even

around the world over a longer period. Based on analyzing the

mechanisms behind the evolution and the interactions of various

influencing factors, the following research aims to improve

airport competitiveness evaluation by involving more factors

from a systematic perspective in further studies.

Policy implications

Based on investigating the competitiveness and spatial

interdependence of CAAs in YREB, it is found that there is

an unbalanced layout of competitiveness at multiple spatial

scales, namely, the zonal spatial scale, the provincial scale, and

the single airport scale. Therefore, it is necessary to make the

competitive strategies of CAAs from different spatial dimensions

for building a hierarchical CAAs system with a reasonable layout

and excellent functions towards maximizing the competitive

advantages of airport clusters in the YREB.

First of all, for the three zones in the upper, middle, and lower

reaches of the YREB, the Yangtze River Delta Economic Zone is

the leading region affecting the spatial heterogeneity of airport

competitiveness, and it should play its leading role in the

development of CAAs in the entire YREB, and continue to

promote the effect of domestic and international dual

circulation on trade, economic development, international

exchange, and cooperation. Specifically, airports in the upper

reach region should seize the development opportunity of the

“Chengdu-Chongqing” city cluster, and progress the construction

of regional and feeder airports to achieve better integration into the

synergistic regional development. Relying on the original air cargo,

airports in themiddle reach should build a “dual hub” system of air

passengers and cargo based on its natural geographical location of

linking the east and the west, communicating with the north and

the south to boost its development. Secondly, at the provincial

spatial scale in the YREB, airports in the central cities and featured

cities with rich tourism resources play a crucial role in improving

the competitiveness of airports in the whole province. Eleven

provinces or provincial-level municipalities in the YREB should

grasp the trend of expanding airport cluster competition and

cooperation from central cities and single airports to

metropolitan area airports system and take airports with strong

competitiveness in the province as the core to drive the airports in

the adjacent geographic areas. Alternatively, the airports in the

vicinity of the central cities should develop joint provincial

cooperation to build a metropolitan area airport cluster. Under

solid competition in the domestic aviation market, expanding

international airline markets will promote the metropolitan

airport cluster to be a “stabilizer” and “builder” of the aviation

market order. In terms of each single airport in the YREB,

evaluating the competitiveness of CAAs facilities the application

of specific policies, and hierarchical development of airports.

The last but not the least, as the international hub airports

and domestic backbone airports are at the core of the three zones

of the YREB, they should actively adapt to the new development

pattern that mainly relies on the domestic cycle and mutually

promotes the domestic and international dual cycle, emphasizing

regional synergy and epidemic prevention and control. For

regional medium-sized and feeder airports that are less

competitive, clearer development goals are needed, for

example, taking advantage of their spatial dependence on

strong airports to take over the overcapacity. Moreover,

breakthroughs in regional medium-sized and feeder airports

can be made by improving their capacity and differentiating

competition with distinctive services, brand building, and active

market development.

Conclusion

The development of civil aviation airports (CAAs) affects the

advancement of the regional economy to a certain extent.

Exploring the competitiveness and spatial-temporal imbalance

of CAAs in the Yangtze River Economic Belt (YREB) is

conducive to optimizing the airport layout and promoting the

coordinated development of urban agglomerations along the

YREB. To fill the research gap of lacking the tempo-spatial

insights into the CAAs’ competitiveness, this research maps

the dynamic changes of 86 CAAs’ competitiveness in YREB

based on the competitiveness evaluation by the entropy weight

approach, spatial auto-correlation analytical technique and Theil

index measurement respectively. This research is concluded that:

1) The comprehensive competitiveness of CAAs in the Yangtze

River Economic Belt increased significantly from 2009 to 2019,

showing that provinces in East and West China are more

competitive in terms of airports competitiveness compared

with provinces in Central China. 2) Superior and inferior

airports are likely to be spatially clustered. Moreover, CAAs in

provincial capitals and secondary cities form high-low cluster

areas. 3) From 2009 to 2019, spatial differences in CAA

competitiveness exist, among provinces of the Yangtze River

Economic Belt, or within the three major zones (i.e., the Yangtze
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River Delta Economic Zone, the middle reaches of the Yangtze

River Economic Zone, and the middle and upper reaches of the

Yangtze River economic zone). 4) The interprovincial civil

aviation airport competitiveness fluctuates, with the

discrepancy increasing and then decreasing. This research

benefits the spatial planning of civil aviation airports in the

Yangtze River Economic Belt.
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With the long-term impact of economic globalization, the accelerated cross-

border flow of resource elements between cities is increasingly important for

the development of urban regions. In this context, the central place theory,

which emphasizes the vertical hierarchical relationship between cities, has

obvious limitations in interpreting urban interaction. This paper takes the

Beijing Tianjin Hebei Urban Agglomeration (including Beijing, Tianjin. and

11 prefecture-level cities in Hebei Province) as the research object,

constructs three complex networks of economy, information, and economic

information coupling connection, and analyzes the resilience of the network

structure. The research results show that: 1) The spatial distribution of the three

network structures of Jing-Jin-Ji Urban Agglomeration presents a spatial

pattern with Beijing as the core and radiating outward. 2) In terms of

weighted degree distribution, Beijing, as an arrow city, has strong

competitiveness in the economy and information network, but the hierarchy

of cities with balanced information economy development is low. 3) In terms of

weighted degree correlation, among the three networks, the cities with a high

weighted degree prefer to connect with cities with a low weighted degree, and

the mismatch is ranked as information network > information economy

coupling network > economic connection network. 4) In terms of network

transmission, information network > economy connection network >
information economy coupling network, and Beijing and Tianjin have a

greater impact. The above results have strong guidance and practical

significance for the formulation and adjustment of territorial spatial planning

and regional optimization.
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1 Introduction

1.1 Background

Modern cities are regarded as resources and springboards to

connect and participate in the global economy. They are

laboratories of globalization in space, economy, society,

culture, and environment. Urban revitalization and growth

coexist with urban stagnation and recession. Driven by

globalization and the revolution of information technology,

many cities have separated from the track of national

economic development and connected into horizontal

economic networks, thus reshaping and process of

globalization (Cohen, 2001; Hanssens et al., 2013; Pereira and

Derudder, 2010). Since the 1960’, the research on world urban

has experienced three stages: world urban research with

“attributes but no relationship,” world urban research in the

network society, and world urban network research. In the first

two stages, node cities are studied based on urban attribute data,

and little attention is paid to the relationship between cities (Yang

et al., 2011).

1.2 Literature review

(1) In terms of urban network construction, the current research

mainly includes the following progress: Gordon, (2010)

studied networks of cities in the world rather than “world

cityness.” The study offered a “Southern” perspective on

world city research, and it included places not ordinarily

considered. Also, fourteen years of sample data on cross-

border, intercity airline traffic were used as time-series

relational information. The data reflect the links between

the two principal cities of South Africa and other cities in

Africa and beyond. Pereira and Derudder, (2010) believed

that using air passenger flow data to measure and evaluate

the world urban system is an effective method. Vinciguerra

et al. (2010) modeled the evolution of infrastructure

networks as a preferential attachment process. The

average path length and average clustering coefficient of

the observed network were successfully simulated. Arthur,

(2010) employed techniques developed for the analysis of

networks to evaluate more than 6,300 cities that are linked

together by such firms in terms of their point centrality.

Meanwhile, they adopted the block modeling technique to

evaluate the positions occupied by these cities and the roles

they play in the system. Hanssens et al. (2013) of the

POLYMET project group built the Belgian city network in

central Belgium. They used the office location of high-end

producer services as the node of the network to measure the

degree of network development with the multi-center index.

Liu et al. (2014) explored the temporal evolution of cities and

firms in a two-mode intercity corporate network formed by

50 leading advanced producer service firms across 154 cities

for the years 2000 and 2010. In addition, from the

perspective of spatial differences, the urban network

structure was built with efficiency indicators such as

urbanization efficiency, technological innovation

efficiency, and green efficiency (Xing et al., 2018; Jing and

Zhao, 2018), as well as city scale indicators such as night light

data and urban construction land (Li et al., 2018; Yang et al.,

2020). Moreover, based on the Baidu Index and other

aspects, the urban service industry, transportation,

logistics enterprises, economy, information, and other

networks were established (Jabareen., 2013; Polèse., 2015).

Frost and Podkorytova, (2018) adopted the interlocking

network model proposed by the Globalization and World

Cities research (GaWC) to the regional level to uncover the

interurban relations, which focuses on the analysis of

intraregional spatial patterns of globalization.

(2) In the research of urban network structure and network

resilience

“Inclusive, safe, and resilient sustainable cities” is an

important topic of sustainable development in 2030 of the

United Nations (Pizzo, 2015). “Resilient cities” has become a

goal of urban construction in China, and the research on the

influencing factors of resilient cities has been carried out from

the following aspects. Suzanne et al. studied urban resilience

from economic, social, institutional, and other factors, and

they believed that collaborative management and

decentralization are two institutional management factors

that can strengthen urban resilience (Hallie et al., 2017).

Chad et al. (2018) studied the impact of disaster

disturbance on urban resilience. They pointed out that

urban resilience is affected by natural disasters such as

climate change, natural disasters, resource crises, human

disturbances, and human pressure. David et al. (2019)

studied the impact of infrastructure on urban resilience,

and the study suggested that the impact of an urban

environment on urban resilience was mainly reflected in

infrastructure, ecological environment, and other factors.

Currently, there are two main directions in the study of

urban network structure and network resilience.

I. In the evaluation of network structure resilience

At present, there is no unified method for evaluating network

structure resilience. In English, both toughness and elasticity are

translated as resilience, which refers to the stability and resilience

of the system tomaintain its original state under external impact.

According to the concept of “structure determines function

principle,” by taking the network as a physical phenomenon,

the network topology parameters based on complex network

theory are considered to have a key impact on resilience

(Bombelli et al., 2020; Dixit et al., 2020). Vijaya et al. (2020)

found that the enterprise supply chain network with the lowest
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density and centrality and the largest connectivity and network

size has the highest resilience.

II. In terms of the resilience evaluation system

Hudec et al. (2018) investigated the differences in urban

resilience in Slovakia in response to the financial crisis from

three dimensions and 12 indicators of economic, social, and

community management capabilities. Moser et al. (2019)

constructed an index system from the perspective of nature,

society, politics, human resources, economy, and capital. Noura

et al. (2020) pointed out that urban resilience is determined by

physical, ecological, and socio-economic factors. Cutter et al.

(2014) selected 27 regional resilience evaluation indicators from

the five dimensions of society, economy, infrastructure,

institutions, and environment.

1.3 Research questions

With the rapid development of economy, science, and

technology, the links between cities are increasingly closer.

Among them, economic ties and information attention are

more powerful, which indicates the degree of communication

between cities. The resilience of the urban network indicates the

ability of the urban network to maintain normal operations of the

city under the impact. This is a scientific question worth

investigation. Therefore, it is significant to study the resilience

of complex urban networks for normal operations of the regional

space. Meanwhile, based on the construction of the urban

network, the resilience of the urban network needs to be

reasonably evaluated, and optimization suggestions should be

given according to the results.

By summarizing the existing research and taking the Jing-Jin-

Ji Urban Agglomeration as an example, this paper constructs the

information connection network, economic connection network,

and information economy coupling network based on the Baidu

search index and socioeconomic data. Then, the information and

economic coupling degree of Jing-Jin-Ji are evaluated, and the

resilience of the network is optimized from the perspective of

matching and transmission. The study results provide a

theoretical basis for enhancing the connectivity of cities in the

economic network and information network of the Jing-Jin-Ji

Urban Agglomeration and the stability of urban operation and

development.

2 Study area, data, and method

2.1 Study area

The Jing-Jin-Ji region is located in the north of North China

Plain, north of Zhanghe River, with Yanshan mountain on its

back, the Bohai Sea in the East, Taihang Mountain in the west,

Shandong and Henan provinces in the southeast and south,

Taihang Mountain in the west, Shanxi Province and Inner

Mongolia Autonomous Region in the Northwest and North,

and Liaoning Province in the northeast. The region includes two

municipalities under the central government of Beijing and

Tianjin and 13 cities in Hebei Province, including Baoding,

Tangshan, Langfang, Shi Jiazhuang, Qin Huangdao, Zhang

Jiakou, Chengde, Cangzhou, Hengshui, Xingtai, and Handan

(Figure 1).

2.2 Research data

In the study of urban network characteristics, cities are

regarded as nodes in the network. The Baidu search index

between cities is used to characterize the information flow in

the network nodes. With the help of the Baidu index platform, a

Baidu search index with one city as the scope and another city as

the keyword is established to obtain the information connection

between cities. For example, to obtain the contact information

between Beijing and Tianjin, the Baidu search index of Beijing to

Tianjin for a certain period of time can be obtained by taking

Tianjin as the keyword and Beijing as the range. This study uses

the Baidu search index between two cities in the Jing-Jin-Ji region

in 2018 to build a 13 * 13 intercity contact matrix for studying the

characteristics of the urban network in the Jing-Jin-Ji region.

Meanwhile, the shortest road distance between two cities is

used in the process of calculating economic ties, and the data are

borrowed from the Gaode map. The statistical data used in this

study include the number of permanent residents and the GDP

data of 13 cities in Beijing, Tianjin, and Hebei at the end of 2018,

which are derived from the 18-years statistical yearbook of

each city.

2.3 Research methods and models

2.3.1 Construction of the urban network
structure and the network characteristics

By reading the current literature and the sorted information

flow intensity, economic connection intensity, and information

economy coupling connection intensity, the information,

economy, and information economy coupling connection

networks are constructed by using the gephi network analysis

tool and ArcGIS spatial analysis software. Then, the attribute

characteristics of various networks in spatial pattern and

centrality are analyzed.

(1) Information contact network (Xiong et al., 2013; Jiang et al.,

2015.)

In the calculation of information flow intensity, the intensity

of information flow between two cities is expressed by the
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product of mutual attention between city A and city B, and the

formula is as follows

Rk � Ab*Ba (1)

where, Rk is the information flow intensity between cities A

and B ; Ab is the attention of city B to city A; Ba is the attention

of city A to city B. Based on the intensity of information flow,

this study constructs and analyzes the information connection

network between 13 cities in Beijing, Tianjin, and Hebei, and

evaluates the resilience of the information network structure.

(2) Economic connection network (Niu et al., 1998; Wang et al.,

2006)

The gravity model is a common method for the calculation of

absolute economic connection quantity, and it is used in this study to

measure the economic connection strength between Beijing, Tianjin,

and Hebei. The calculation formula is shown as follows:

Rij � ( ����
PiGi

√
*

����
PjGj

√ )/D2
ij (2)

where Rij is the economic connection strength between regions i

and j; Pi is the population of area i and j; Gi and Gj are the GDP

of regions i and j;Dij is the shortest path between i and j based on

the road network.

(3) Information economy coupling network

The construction of an information economy coupling

network is based on the coupling coordination model, which

is an important index for representing the interconnection

and interaction degree between two or more systems. The

information connection strength and economic

connection strength are coupled, and the coupling value is

used as the connection strength between the

information economy coupling network. The calculation

formula is:

C � 2*

����������
U1*U2

(U1 + U2)2
√

(3)

where C represents coupling degree; U1 and U 2 represent the

comprehensive scores of the information network system and

economic network system respectively. If U1 < U 2, the

information network system is lagging; if U 1 > U 2, the

economic network system is lagging; if U1 = U 2, the

information network system and economic network system

are synchronous. To further distinguish the coordination and

interaction degree between the two types of systems, the

coupling coordination degree needs to be introduced for

evaluation. The calculation formula is:

FIGURE 1
Study area.
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D � �����
C × T

√
(4)

T � ɑ*U1 + β*U2 (5)

where D stands for the coupling of co-scheduling; T is the

coordination index; α and β represent the weight. This study

believes that the weight of information network connection

strength is equal to that of economic network connection

strength. Also, the degree of coupling and coordination reflects

the synergy of the overall development of the two urban

networks. Thus, the types of coupling and coordination are

divided. The evaluation criteria are presented in Table 1. The

range of D value of coupling coordination degree is (0–1). The

larger the D value, the higher the coordination level, and the more

coordinated the coupling coordination degree.

(4) Degree centrality

Degree centrality reflects the interaction between a node and

other nodes. It is an important expression of the interconnection

relationship between cities. The greater the degree of a node, the

higher the degree of centrality of the node, and the more

important it is in the network (Lin et al., 2019). The

calculation formula of degree centrality is shown as follows:

CD(i) � Ki

N − 1
(6)

where CD is the degree centrality of node i, I is the degree of node

i, and N is the number of nodes in the network.

2.3.2 Measurement and optimization of network
structure resilience

By summarizing the existing literature, this paper selects the

attribute characteristics of hierarchy matching and transmission

in the interruption scenario, measures, analyzes, and evaluates

the structural resilience of the three networks, and proposes

optimization countermeasures and suggestions on this basis.

(1) Hierarchical——weighting degree and weighting degree

distribution

Weighting degree: The weight of the network edge is

included in the hierarchical calculation, which is expressed

by weighting degree and weighting degree distribution. In an

undirected graph, the degree represents the number of edges

directly connected to a node, while the weighting degree

describes the sum of the weights of the edges directly

connected to a node, that is, the sum of the connection

strength. The greater the value of the weighting degree,

the stronger the connection between the node and other

nodes.

Weighting degree distribution: the probability distribution or

frequency distribution of the weighting degree of all nodes in the

network can reflect themacrostructure characteristics of the network.

The greater the slope, the more significant the hierarchy (Crespo

et al., 2013).

Wm � Cp(W*
m)a (7)

where Wm is the weighting degree of city m, i.e., the sum of

the weights of the edges directly connected to node m; W*
m is

the ranking of the weighted degree of city m in the network; C

is a constant, and a represents the slope of the weighted

degree distribution curve.

(2) Matching——neighbor average weighting and degree

correlation.

Neighbor weighted average: In the network, each node has a

certain number of adjacent nodes (Vi) directly connected with

the node. The average degree of all adjacent nodes directly

connected to node i is calculated as:

�k � 1
k
∑
j∈Vi

kj (8)

TABLE 1 Classification standard of coupling coordination degree.

D-value interval of
coupling coordination degree

Coordination level Coupling coordination degree

(0.0–0.1) 1 Extreme disorder

[0.1–0.2) 2 Severe imbalance

[0.2–0.3) 3 Moderate disorder

[0.3–0.4) 4 Mild disorder

[0.4–0.5) 5 Verge of disorder

[0.5–0.6) 6 Reluctantly coordinate

[0.6–0.7) 7 Primary coordination

[0.7–0.8) 8 Intermediate coordination

[0.8–0.9) 9 Good coordination

[0.9–1.0) 10 High quality coordination
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where kj represents the degree of adjacent node j of node i; Vi

represents the set of all adjacent nodes j of node i.

Weighted degree correlation: In the network, each node has a

certain number of adjacent nodes directly connected with the

node. If the weighted degree is positive and the correlation

coefficient is positive, the network has the same matching

result. If the positive correlation coefficient of the weighted

degree is negative, the network is considered mismatched.

�W � 1
Km

∑
i∈Gm

wi (9)

where Wm is the average of the weighted degrees of all adjacent

nodes directly connected to node m, i.e., the weighted average

degree of neighbors; Wi is the weighting degree of adjacent node i

directly connected to the city; Km is the degree of city m, and Gm

is the collection of all adjacent nodes in the city.

Wm � Dp(W*
m)b (10)

where D is a constant, and b is the weighted correlation

coefficient.

(3) Transmissibility—network efficiency

Network efficiency: it refers to the efficiency of element flow

between nodes in the network. The greater the value, the better

the transmission of the network (Huang and Hu, 2014)

E � 1
N(N − 1) ∑

i≠j∈G

1
Dij

(11)

where E is the network efficiency, Dij is the length of all shortest

paths from node i to node j, and G is the set of nodes in the

network after removing a node.

3 The construction of intercity
connection network and the
characteristics of cyberspace

3.1 Spatial pattern of the intercity
connection network

Based on the intensity of information flow, economic

connection, and information economy coupling among 13 cities

in Beijing, Tianjin, and Hebei, the information connection network,

economic connection network, and information economy coupling

network are visualized respectively. The natural fracture method is

used to classify the constructed network. Each network is divided

into five levels, and the network connection is visualized. The

construction results of the three types of contact networks are

shown in Figure 2.

The information contact network in Figure 2A reflects the

mutual search attention of cities. There are 13 nodes and

156 connecting lines in the network. Among the cities at the

first level (254,340–1105094), only Beijing and Tianjin show

strong information connection strength. This indicates that

the information connection between Beijing and Tianjin is

strong in the Jing-Jin-Ji Urban Agglomeration network, but

there is no attention intensity at the first level to Hebei. The

information connection network at the second level

(184,437–254,340) presents a network structure centered on

Beijing and radiating outward in a spatial structure. Beijing

has strong economic concerns with Tianjin, Shi Jiazhuang,

Tangshan, Qin Huangdao, Baoding, Zhang Jiakou, Langfang,

and Handan. However, except Beijing, the links between cities do

not appear at the second level, indicating that the links in the

information network group are relatively single. In terms of the

structural point, the attention links between cities other than

Beijing should be strengthened. At the third level, the urban links

with the intensity of information contact between

(86,445–152250) mainly include Beijing and Chengde,

Cangzhou, and Xingtai, Tianjin-Shi Jiazhuang and Tianjin-

Tangshan, and Baoding and Shi Jiazhuang. The information

attention among cities at the fourth level of contact intensity

(43,512–82,416) mainly appears among cities other than Beijing:

in addition to the connection between Beijing and Hengshui,

Tianjin, Shi Jiazhuang, Tangshan, Qin Huangdao, Baoding,

Zhang Jiakou, Cangzhou, Langfang, Xingtai, Hengshui, and

Handan are compared with the first, second. In terms of the

intensity of information connection at the three levels, the

connection between prefecture-level cities is the closet at the

fourth level. The information contact intensity of cities located at

the fifth level (6,798–35,478) is the highest among the five

categories, which accounts for about two-thirds of the

information contact network, indicating that the attention

intensity of information between most cities is still relatively

weak. The fifth-level network has a hollow network structure in

the periphery of the whole Jing-Jin-Ji Urban Agglomeration.

The economic connection network in Figure 2B reflects the

overall pattern of economic connection strength between cities,

including 13 nodes and 156 connecting lines. Compared with the

information network, the location of each node and the distance

between nodes in the economic network have a greater impact on

the strength of economic ties between cities. Similarly, this study

divides the economic ties into the following five levels by using

the natural fracture method. The cities at the first level

(3,548.826223–4,311.141520) are Beijing-Tianjin and Beijing

-Langfang. In the whole Jing-Jin-Ji Urban Agglomeration,

there is no strong connection between Tianjin and Langfang,

and the economic connectivity between the two cities is still a

certain distance from that of Beijing, At the first level, the spatial

structure of the economic network is only two rays with Beijing as

the endpoint. The cities at the second level of the economic

network (873.828960–1463.976270) except Beijing and

Tangshan, Handan and Xingtai, Tangshan, Cangzhou, and

Langfang all take Tianjin as the center, showing a radial
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shape. At the third level of the economic connection network

(318.491759–706.537146), the city connections include Beijing -

Baoding, Beijing - Cangzhou, Tianjin—Baoding, Xingtai - Shi

Jiazhuang, and Shi Jiazhuang - Handan. The links between the

prefecture-level cities in Hebei are gradually increasing. At the

fourth level of the economic network (88.026835–268.251716),

FIGURE 2
Spatial pattern of urban networks.
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each city is involved. Whether it is Beijing, Tianjin, or the

prefecture-level cities in Hebei, the economic connection is

more widely distributed in space than that at the first, second,

and third levels. The number of cities at the fifth level

(2.536336–81.538017) is similar to that in the information

connection network. This is the level with the largest number

of inter-city connections, which accounts for two-thirds of the

network connections. However, unlike the information

connection network space, the economic network is not

hollow at the fifth level, and Beijing still has economic

connections with other cities. This shows that from the

perspective of the economic network built by the gravity

model, Beijing, as the center of the urban agglomeration, is

generally weak in the strength of economic links with other

cities relative to the strength of information links, but the links

between the cities on the fifth level of the two networks are the

strongest, so there is a certain space for network optimization.

Figure 2C shows the information economy coupling network

obtained by coupling the information connection network and

the economic connection network. It reflects the coordination

andmatching of information and economic connections between

cities, including 13 nodes and 156 connections. Combined with

the coupling degree classification standard, this paper analyzes

whether the coupling links in different information economic

networks are coordinated, and adopts the natural fracture

method to divide the calculation results into the following five

levels. The coupling value of the information economy coupling

network at the first level is 7. The network spatial structure at this

level is similar to that of the economic connection network. The

connection between Beijing Tianjin and Beijing Langfang has

reached primary coordination, which reflects that the overall

information connection strength and economic connection

strength of the Jing-Jin-Ji Urban Agglomeration has not

reached good coordination. The three cities of Beijing,

Tianjin, and Langfang are most closely connected in the

middle of the urban agglomeration, and they only achieve

primary coordination. This indicates that the overall

information and economic connection of the Jing-Jin-Ji Urban

Agglomeration are unbalanced, and there is still a lot of room for

improvement in the coordinated development of the two

networks. The cities with a coupling coordination degree of

5 at the second level are Beijing and Tangshan, Beijing and

Baoding, and the coupling coordination degree of information

economic ties is nearly imbalanced. The value of the information

economy connection coupling network at the third level is 4,

which shows a slight imbalance. In terms of spatial structure, in

the whole information economy coordination network, the cities

outside Beijing, Tianjin, and Hebei such as Chengde, Handan,

Qin Huangdao, Hengshui, and Xingtai do not appear at this level.

Generally, there are more connections between cities near the

center of urban agglomeration at this level. The coordination

intensity of information economy coupling between cities at the

fourth level is 3, which shows a moderate imbalance. Compared

with the links at the third level, the links between cities at this

level are significantly increased. The coupling strength of the fifth

level is 2, and the links between cities are the most at this level,

which shows a serious imbalance. From the perspective of

coordinated development, the development of economic ties

lags that of information links, resulting in the level of

coordination in the whole information economic ties coupling

network. Though Beijing Tianjin and Beijing Langfang reach the

level of primary coordination, none of them reach the

coordination level.

3.2 Central characteristics

Presents the calculated center value of point degree for the

cities at four levels of the three networks.

Point degree centrality reflects the ability of network

nodes to directly mobilize network resources and

information (Wang et al., 2006), and its ability is positively

correlated with the value. The results of point degree centrality

are shown in Figure 3 and Table 2. It can be seen that the

degree of centrality of the economic connection network is

higher than that of the information connection network and

information economy coupling connection network. There

are four cities with a degree center value of economic

connection network above 0.58, which accounts for 30.8%

of the total cities, indicating that about one-third of the cities

can directly mobilize the economic resources between cities.

Compared with the other two networks, the lowest value has

only one point, and the centrality is less than 0.1 (Figure 3B).

There are three points with a degree centrality of above 0.67 in

the information contact network, which accounts for 25% of

the total number of cities, but the value is higher than that of

the economic contact network, and the point degree center

value of the two cities is lower than 0.1 (Figure 3A). The degree

center centrality of the information economic connection

coupling network is generally low. Only one city

(i.e., Beijing) has a degree centrality value of 1, and

Baoding and Tianjin have a degree centrality value of 0.5

(Figure 3C), indicating that only the above three cities can

directly adjust the resources of surrounding cities under the

condition of coordinated economic and information

development. The coupling degree centrality values of other

cities are less than 0.34, There are even four cities with a point

degree centrality of 0, and these cities cannot mobilize

resources among other cities at all.

4 Resilience of urban network
structure

For the three networks of information, economy, and

information economy coupling constructed above, the
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resilience of the network structure is measured and analyzed

in terms of hierarchy and matching at the individual and

regional levels respectively. Then, the overall

transmission and diversity of the network structure

under a node interruption scenario are simulated and

evaluated.

4.1 Network hierarchy

4.1.1 Weighting degree
The network weighting degree reflects the degree of

correlation between urban nodes and the strength of complex

correlation, as well as the strength of network connection. Based

FIGURE 3
The spatial distribution of degree centrality.
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on network weighting degree, this paper measures the correlation

strength of urban nodes and the hierarchical resilience of the

network and uses the natural fracture method to divide the

weighting degrees of the three types of networks into five

levels respectively. The results are illustrated in Figure 4.

In terms of degree centrality, Shi Jiazhuang, at the first level of

degree centrality (high-value area), is located at the second level

of the weighting degree, and only Beijing is located at the first

level in the Jing-Jin-Ji Urban Agglomeration. This indicates that

Beijing, as the capital, not only has a strong connection with

other cities in the Jing-Jin-Ji Urban Agglomeration in terms of

information connection. By considering the ability to directly

mobilize the surrounding resources, the cities at the second and

third levels of weighting show a strip distribution from east to

west in space. Specifically, Tianjin at the second level is the

central node of the strip, and it connects the cities at both ends

and plays an important role in an undertaking; The cities at the

fourth and fifth levels are mainly distributed on the north and

south edges of the Jing-Jin-Ji Urban Agglomeration, with a weak

correlation with other cities. Overall, the urban development of

the information contact network is relatively homogeneous. If

there is a failure in any city except Beijing and Tianjin, the failure

or even loss of any node will have a limited impact on the normal

operation of the network function (Figure 4A).

Compared with degree centrality, Langfang city and Tianjin

city are less located at the first level of degree centrality, indicating

that in the Jing-Jin-Ji Urban Agglomeration, Beijing not only has

a strong correlation with the surrounding cities but also can

directly mobilize the economic resources of the surrounding

cities. The cities at the second level of degree distribution are

mainly located in the east of the Jing-Jin-Ji Urban

Agglomeration. The cities at the third level are mainly located

in the south of the Jing-Jin-Ji Urban Agglomeration. The city at

the fourth level is only Cangzhou, and the city at the fifth level is

located in the north of the Jing-Jin-Ji Urban Agglomeration.

Cities at all levels in the economic connection network are

roughly distributed in blocks. High-level cities are generally

located in the middle east of the Jing-Jin-Ji Urban

Agglomeration, and low-level cities are distributed in the

north, while high-level cities in the west and south show a

semi-surrounded structure. Compared with the information

connection network, the hierarchy of the economic

connection network is more obvious, its “robustness” has a

certain decline compared with the information network, and

its “vulnerability” is stronger. Once there is a problem in a high-

level city, it will have a great impact on the whole

economic connection network, and the network is more prone

to failure (Figure 4B).

Compared with the degree of centrality and centrality of the

information economy coupling network, high-level cities are the

same, and the number of cities at the third level increases. The

cities at the fourth and fifth levels are mainly distributed in the

south of the urban network. The high-level cities are a city belt

running through Beijing, Tianjin, and Hebei, and these cities are

at the east-west of the urban agglomeration. Most of the cities at

the fourth and fifth levels are in the north, and the cities with

balanced information and economy and high external contact

intensity in the Jing-Jin-Ji Urban Agglomeration are still

concentrated in Beijing (Figure 4C).

4.1.2 Weighted degree distribution
The weighting degrees of all urban nodes in the three types

of networks are ranked, and the power curve is drawn to

analyze the overall hierarchical structure resilience of the

network. The results are shown in Figure 5. The slope a of

the weighted degree distribution curve of the three types of

TABLE 2 Centrality value.

City Economic rational degree
centralization

Information rational degree
centralization

Information-economic coupling rational
degree centralization

1 Beijing 0.917 1 1

2 Tianjin 0.667 0.667 0.500

3 Shi Jiazhuang 0.583 0.833 0.333

4 Tangshan 0.417 0.333 0.083

5 Qin Huangdao 0.167 0.250 0.250

6 Handan 0.250 0.333 0.167

7 Xingtai 0.167 0.250 0.000

8 Baoding 0.417 0.250 0.500

9 Zhang Jiakou 0.083 0.167 0.083

10 Chengde 0.167 0.083 0.000

11 Langfang 0.417 0.250 0.083

12 Hengshui 0.333 0.083 0.000

13 Cangzhou 0.583 0.250 0.000
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networks is large, and | a | is between 0.7 and 1.6, indicating

that the hierarchy of the networks is significant. The | a | of

information, economy, and coupling network is 1.289, 1.59,

and 0.711 respectively, indicating that the hierarchical

difference between the three networks is obvious

(Figures 5A–C). The economic connection network has the

FIGURE 4
Spatial distribution of network weighting degree.
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highest hierarchy, and the hierarchical structure between the

cities is the most obvious. Besides, there is a strong core city,

which is consistent with the spatial distribution of weighting

degree. The information connection network ranks second.

Although there are high-level cities in Beijing and Tianjin,

their spatial distribution is relatively scattered, i.e., in addition

to Beijing and Tianjin, the homogenization phenomenon of

other cities is obvious. Compared with the economic network,

the number of high-level cities in the information economy

coupling network is smaller; the hierarchy is the lowest, and its

spatial distribution is more scattered, mainly in low-level

cities. Therefore, the information economy coupling

network has the lowest hierarchy. It shows that there are

still great differences in the hierarchy between the information

economy coupling network and the single factor network.

4.2 Network matching

Matching is used to describe the correlation between nodes in

the network. If a node with a medium value tends to contact the

node with a high value, the network is said to be matched;

otherwise, it is mismatched (Batty, 2009; Crespo et al., 2013). If

a city tends to develop together with cities of the same level and

status, the network has the same matching. The same matching

network is easy to be affected by factors such as solidified contact

path and closed structure so that it has low innovation and

information permeability. When it is affected by the outside

world, its recession risk is difficult to be avoided. Therefore, the

resilience of network structure is relatively low. If the relationship

between cities exists across different levels, cultural backgrounds,

and economic differences, the network is considered to have

FIGURE 5
Weighted degree distribution of networks.
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allogeneic. Due to its heterogeneity and openness, the allogeneic

network can show a certain resistance and adaptability in the face

of regional risks. Therefore, the network structure has a higher

resilience.

4.2.1 Neighbor weighted average
The weighted average of neighbors reflects the connection

between a node and its neighbor nodes. In this study, the

weighted average degree of neighbors is used to measure the

FIGURE 6
Spatial distribution of neighborhood weighted average degree.
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preference attachment and network matching resilience of urban

nodes. The weighted average degree of the neighbors of three

types of network city nodes is graded, and the spatial pattern is

shown in Figure 6 by using the natural fracture method.

Compared with other networks, the information network has

the largest number of cities with a weighted average degree of

neighbors at the fifth level. Spatially, the neighbors in the cities

with a high weighting degree have a low weighted average degree,

and there are node cities with low weighting degree around them,

indicating that the cities with a high weighting degree in the

information network are generally connected with nodes with a

low weighting degree. In this way, high-weighted cities can better

exchange information with their surrounding cities (Figure 6A).

In the economic connection network, although the cities with

the weighted average degree of neighbors at the fifth level only

include Beijing and Xingtai, with Beijing and Xingtai as the

center, they are surrounded by cities with a low weighting degree

and form a surrounding structure around high weighting degree.

In terms of spatial distribution, the two cities with a high

weighting degree do not gather. It can better connect and

drive the surrounding cities with a low weighting degree,

which is conducive to the rapid development of the global

network structure (Figure 6B).

In the information economy coupling connection network, the

city nodes with a high weighting value are located at the fourth and

fifth levels, indicating that the node cities with a high central value

and balanced development of information connection and

economic connection strength play an important role in driving

the balanced development of economic and information connection

of the surrounding cities. Such node cities have a great impact on the

circulation and dissemination of elements of the network, and we

should strengthen the interaction ability with high-weighted nodes

(Figure 6C).

4.2.2 Weighted degree correlation
In this study, weighted degree association is employed to

further describe the matching of the three networks. If the

weighted average degree of neighbors increases with the

weighting degree, the network has the same matching, i.e., the

weighted degree is positively correlated; If the weighted average

degree of neighbors decreases with the increase of weighting

degree, the network is considered to have mismatching, i.e., the

weighted degree correlation index is negative.

The weighted degree correlation results are shown in

Figure 7. The weighted degree correlation coefficients of the

three networks are 0.502, −0.266, and −0.328, respectively. The

weighted degree correlation coefficients B are less than 0, and the

coefficients of the three networks are quite different, which

indicates that the cities with a high weighting degree in the

three networks prefer to connect with the cities with a low

weighting degree, i.e., the networks have different matching.

Meanwhile, it also shows that the three types of networks

have different matching connections.

It can be seen that the weighted degree correlation coefficient of

the information connection network is the largest, and the slope of

the weighted degree correlation curve is the steepest. That is, the

mismatch phenomenon in the network is obvious, and the network

connection paths are diversified. This indicates that the core cities

with highweighting in the Jing-Jin-Ji UrbanAgglomeration not only

connect with cities with the same development and comprehensive

level but also tend to connect with cities with certain differences in

development level. This network mismatch can make the core cities

in the Jing-Jin-Ji Urban Agglomeration promote the development of

relatively backward cities and strengthen the intensity of

information exchange between cities at different levels. From the

perspective of structural resilience, combined with the above

network hierarchy analysis, it is known that although the

information connection network has a high hierarchy, except for

Beijing and Tianjin, the distribution of cities at other levels is

relatively scattered and homogeneous. In addition, the mismatch

phenomenon can weaken the potential crises such as path

dependence and regional locking caused by high-level and

strengthen the efficient connection and close connection between

core city nodes and edge nodes. The occurrence of external

interference is conducive to the adaptive adjustment of the

network structure. Meanwhile, the network has an obvious

mismatch so that the urban agglomeration structure can change

from vertical tree growth to horizontal network spread, thus

realizing diversified development and regional risk reduction and

improving the resilience of the urban network structure. (Figure 7A).

The degree correlation coefficient of the economic

connection network is only −0.266. Compared with the degree

correlation coefficient of the information connection network

and the information economy coupling connection network,

there is no strong mismatch. Combined with the analysis

results of the network level, the hierarchy of the economic

connection network is the highest, but there is a gap between

the mismatch and the information connection network,

indicating that there is certain path dependence in the

economic connection network. Meanwhile, compared with the

core cities with a high development level of information

networks, they prefer connection. The connection between

core cities and general cities and marginal cities is relatively

low in the network, which intensifies the closeness of the

economic network to a certain extent. Besides, compared with

the information connection network, the higher level and lower

mismatch of the economic network make the resilience of the

economic connection network lower than that of the information

connection network. This is not conducive to the resistance and

resilience of regional economic flow to disasters (Figure 7B).

The degree correlation coefficient of the information

economic connection coupling network is −0.328, which is

greater than that of the economic network but less than that

of the information network. Combined with the above weighted

degree distribution analysis results, the hierarchy of the coupling

network is the lowest among the three networks. The low-level
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resilience of the network structure shows that the distribution of

the information economy network cities is relatively

homogeneous. In addition, the core cities between networks

prefer to connect with general cities and marginal cities, and

the connection paths between cities are diversified. Although the

arrow ability of highly balanced cities is not very prominent, the

“robustness” of the network structure of the information

economy coupling network is high. In this case, the node

failure of the high equilibrium city has no great impact on the

balance of the overall Jing-Jin-Ji Urban Network, and the

“vulnerability” of the city is low (Figure 7C).

4.3 Transmissibility of network structure in
interrupt scenario

In this study, network efficiency is used to measure the

transportability of information, economy, and coupled

information-economy coupling networks, which reflects the

diffusion ability of elements in the network. When the

transportability of the network is high, it indicates that the

transmission and exchange of elements between the nodes of

the network can be faster, which helps to promote inter-city

learning, innovation, communication, etc. Also, it can enhance

the resistance of the network in the face of external shocks and

make the network highly resilient. The results of the spatial

distribution of network transmission after the failure of different

nodes are shown in Figure 8, and the network transmission after

the failure of different nodes in the 13 cities of the Jing-Jin-Ji

Urban Agglomeration of the three networks are ranked, and the

result is shown in Table 3.

The transferability of the information linkage network is

between (0.1538–0.2334), which is slightly lower than that of the

economic linkage network (0.1784–0.0.2521) and the coupled

information-economic linkage network (0.1934–0.2607),

indicating the lowest transfer efficiency among cities of the

information network. Combined with the centrality

characteristics, Beijing and Shi Jiazhuang have a higher degree

FIGURE 7
Weighted degree correlation of networks.
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of centrality, and they have the greatest impact on the

transmission effect of the information network. Meanwhile,

the network efficiency decreases to 0.1538 and 0.1826 after the

failure of two nodes in Beijing and Shi Jiazhuang, which has a

greater impact on the transmission type of the city network

(Figure 8A).

Beijing has the highest moderate central value of the

economic connection network, and it has the greatest impact

FIGURE 8
Spatial pattern of network transmission after the failure of different nodes.
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on network transmission. After the node fails, the network

transmission efficiency decreases to 0.1784. Secondly, the city

with a greater impact is Shi Jiazhuang. When the network node is

interrupted, the network transmission efficiency is reduced to

0.1827. Besides, Zhang Jiakou, Chengde, and Qin Huangdao are

the cities that have the least impact on the economic connection

network and have smaller central values of the same degree. The

failure of the three cities has little impact on the whole network,

and the network efficiency decreases to 0.2425, 0.2457, and

0.2521 respectively (Figure 8B).

Compared with the information and economic connection

network, the information economy coupling connection network

has higher transmission efficiency. When the node is interrupted,

this network has higher network efficiency and resilience than the

other two networks. Beijing, which has the largest degree center

value, also has the greatest impact on the network. When the

nodes in Beijing are disconnected, the network efficiency drops to

0.1934. The top cities include Hengshui, Zhang Jiakou, and

Chengde, and these cities have the least impact on the

network efficiency of the information coupling network after

failure (Figure 8C).

From the perspective of the spatial distribution of the three

networks around Beijing, the transmission failure of the three

networks is decreasing.

5 Conclusion

With the long-term impact of economic globalization, the

ability of regional space to handle the impact and restore,

maintain, or improve the characteristics and functions of the

original system is crucial. As a new form of regional expression,

building a complex urban network and evaluating the resilience

of urban network structure is significant to promoting regional

sustainable development. A safe urban development

environment can promote the prosperity and vitality of the

city. Based on the Baidu search index and social statistics, this

paper constructs the information, economy, and information

economy coupling network respectively. Then, the strength and

centrality of network connection are analyzed, and the

transmission of urban individuals and regional whole in

hierarchy matching are measured and analyzed. The results

show that:

1 The spatial distribution of economy, information, and

economic information coupling network of the Jing-Jin-Ji

Urban Agglomeration shows a spatial pattern with Beijing

as the core and radiating outward. In the three networks, the

connection strength is concentrated between Beijing, Tianjin,

and Langfang, and mainly between Beijing-Tianjin and

Beijing-Langfang. The connection strength between Tianjin

and Langfang is relatively weak; Besides, due to the selection

of the model, the information intensity between cities is not

affected by distance, so the information connection intensity

between cities is closer than the economic connection

intensity, but the information connection intensity between

developed cities is higher. Moreover, due to the influence of

distance, the economic connection strength between cities is

generally weaker than the information connection strength.

Therefore, in the information economy coupling connection

network, only Beijing-Tianjin and Beijing-Langfang are at the

level of preliminary coordination. The overall coordination of

the information economy network is poor. There is an

imbalance in the strength of economic and information links.

TABLE 3 Network transmission ranking.

Rank City Information rational
network efficiency

City Economic network
efficiency

City Information-economic coupling
rational network
efficiency

1.0000 Beijing 0.1538 Beijing 0.1784 Beijing 0.1934

2.0000 Shi Jiazhuang 0.1603 Shi Jiazhuang 0.1827 Tianjin 0.2062

3.0000 Tianjin 0.1827 Cangzhou 0.1998 Baoding 0.2062

4.0000 Baoding 0.1955 Tianjin 0.2009 Shi Jiazhuang 0.2105

5.0000 Tangshan 0.2019 Baoding 0.2073 Langfang 0.2222

6.0000 Handan 0.2019 Tangshan 0.2126 Cangzhou 0.2276

7.0000 Xingtai 0.2051 Langfang 0.2190 Handan 0.2340

8.0000 Cangzhou 0.2115 Hengshui 0.2265 Tangshan 0.2382

9.0000 Langfang 0.2115 Handan 0.2286 Qin Huangdao 0.2382

10.0000 Qin Huangdao 0.2212 Xingtai 0.2318 Xingtai 0.2404

11.0000 Zhang Jiakou 0.2212 Chengde 0.2425 Zhang Jiakou 0.2521

12.0000 Chengde 0.2340 Qin Huangdao 0.2457 Hengshui 0.2575

13.0000 Hengshui 0.2340 Zhang Jiakou 0.2521 Chengde 0.2607
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2 From the perspective of the weighted degree distribution,

the three networks are ranked as economic network >
information network > information economy coupling

network. The higher hierarchy of the economic and

information networks will bring arrow cities with strong

competitiveness to these two types of networks. The

absolute core is Beijing, followed by Tianjin, Langfang,

Cangzhou, and Tangshan. However, with a higher

hierarchy, we should always be concerned with the impact

and digestion ability of high-level networks in case of core

node failure. The cities with balanced development of

information economy are at a low level, and the core cities

with balanced development have a low driving ability, but the

resilience of the network is relatively good.

3 From the perspective of weighted correlation, the high-

weighted cities in the three networks prefer to connect with

the cities with a low weighting, that is, the network has

different matching. The information network has the

highest mismatch, followed by the information economy

coupling network, and finally the economic connection

network. Such nodes have a great impact on the circulation

and dissemination of elements of the network. We should pay

attention to strengthening the interaction ability with high-

weighted nodes.

4 The transmission of the three connection network structures

is in the order of information > economy > coupling network.

Based on the results of centrality, hierarchy, matching, and

transmission, Beijing and Tianjin have a great impact on the

transmission of information and economic networks, and

Beijing has the greatest impact on the coupling network.

6 Optimization suggestions

In the face of the overall economic downturn and the

increasingly fierce competition and fluctuations in various fields

of society, the stability, coordination, and sustainability of urban

network operation and the ability to recover in time in the face of

shocks are significant. Based on the three networks constructed,

aiming at the three perspectives of network hierarchy, matching, and

transmission, and starting from the resilience of the urban network

structure, the urban network institutions are adjusted to strengthen

the resilience of the network.

Hierarchical aspects. We should further strengthen the link

between high-level cities and low-level cities. Combined with the

work of non-capital function relief, we should radiate the

functions of Beijing as a core city and strengthen the role of

xiong’an new area. Meanwhile, we need to take xiong’an new area

as an important starting point, revitalize the entire Beijing

Tianjin Hebei Urban Network, flatten the network structure,

pay attention to the radiation effect on low-value nodes, and

strengthen the supporting role of each node of the urban

network.

Matching. We should further improve and build the traffic

road network to give full play to the role of core cities, drive the

development of marginal cities, and strive to break the barriers of

administrative boundaries. Meanwhile, the construction and

improvement of the traffic network can further alleviate the

excessive accumulation of resources in core cities so that cities on

the edge of Beijing Tianjin Hebei can also access good technology

and information resources. The outline of the 14th five-year plan

mentions three circles, namely, the living circle 50 km away from

Beijing. We need to focus on strengthening regional cooperation

around Beijing, developing regional express lines, strengthening

public service supporting facilities, and achieving the effect of

urbanization within 100 km of the functional circle of xiong’an

and Tianjin. Xiong’an new area is a concentrated carrier of

Beijing’s non-capital functions, and it is 150 km from

Chengde, Tangshan, Cangzhou, Baoding, and Zhangjiakou,

belonging to the industrial circle. We should make full use of

the planning outline to strengthen the vulnerable nodes of the

urban network and improve the resilience of the network.

In terms of network transmission, we should take Beijing

as the center to radiate the driving ability of Beijing’s core

cities to the outside through scientific and technological

innovation, cultural transmission, and other approaches,

thus strengthening the driving ability and stability of

Beijing’s core nodes. Secondly, we can drive the cities on

the edge of the Beijing Tianjin Hebei Urban Network with the

help of the collaborative mechanism formed by

transportation, industry, and ecological environment

construction, thus improving the network transmission

efficiency of the overall network and the network resilience

of the Beijing Tianjin Hebei Urban Network.
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Success in delivering dynamic urban coastal zones is considered essential,

as it brings enormous opportunities to the social, economic, ecological, and

cultural development of the cities in addition to benefitting the coastal zones.

However, the environmental drivers contributing to urban coastal zone vitality

remain uncertain due to unclarified spatial boundaries and the influences of

diverse characteristics from surrounding contexts. This study aims at exploring

environmental drivers that can vitalize urban coastal zones and can inform

an e�ective way to instruct design procedures. It sets out from clarifying

the spatial boundaries of urban coastal zones and emphasizing the mutual

connections among its spatial components. A data-driven multi-method

approach is used to analyze spatial forms, tra�c organizations, land uses,

landscape characteristics, and coastal functions of the eight typical coastal

cases selected in di�erent countries. Results suggested that six typical

coastal zone types can be classified based on landscape characteristics and

coastal functions, while the other vitality-related aspects, spatial forms, tra�c

organizations, and land uses are analyzed to imply design requirements for

each type. It is found that requirements on vitality-related aspects of the six

types evidently vary with the coastal functions, but there are similarities among

the types with similar landscape characteristics.

KEYWORDS

urban coastal zone vitality, environmental drivers, typology, design implications, data-

driven analysis

Introduction

The coastal zone is where the terrestrial environment mutually influences marine

environments (Carter, 2013). In response to global issues related to coastlines,

relevant studies mostly contribute to projecting sea-level rise, mitigating storm hazards

(Godschalk et al., 1989), monitoring shoreline erosion (Maged et al., 2010; Marghany,

2014), controlling waste disposal into coastal environments (Council, 1993), exploitation

of coastal energy (Gill, 2005), and adapting climate change. Besides sustainable and

ecological considerations, the coastal zones are also in possess of huge construction and
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development potentials—especially those located within urban

areas to deliver dynamics to the coastal zones, as well as to bring

enormous opportunities for the social, economic, ecological,

and cultural development of the cities (Martínez et al., 2007;

Barragán and De Andrés, 2015).

Nevertheless, the current environmental drivers

contributing to the vitality of urban coastal zones remain

uncertain, not only because the spatial boundary of urban

coastal zones under urban design context has not been clarified

and united but also the importance of urban coastal zones

as social-spatial edges influencing both hinterlands and sea

areas has not been fully understood. This study proposes that

the delivery of urban coastal zone vitality should consider the

waterfronts, the connected hinterlands, and the inshore sea

areas as a whole; more importantly, emphasis should be placed

on their mutual connections. A data-driven multi-method

approach is used to explore environmental drivers in relation to

the vitality of coastal cases selected in countries with evidently

different geographical, landscape, morphological, and spatial

attributes. Vitality contributors are then concluded on a

typological basis of classifying urban coastal zones according to

their contextual characteristics, and design instructions were

then proposed accordingly.

The vitality of urban coastal zones

When coastal zones traverse cities, they usually trigger a

highly concentrated area of local population and economy—

areas with the most concentrated contradictions between

land and marine development (Papatheochari and Coccossis,

2019). However, as a result of the different paths in coastal

zone research, there is currently a lack of consistent spatial

definitions in planning and management implementations.

Marine-centered coastal zone planning tends to define rigid

protection areas from the perspective of ecological protection

(Duck, 2012) with scarce planning guidelines and instructions

for the waterfronts and hinterlands; land-focused coastal zone

planning mainly responds to local development requirements

and merely considers the sea as a landscape resource (Ioppolo

and Saija, 2013). No efficient way has been proposed to reflect

the proper positioning and importance of urban coastal zones to

facilitate local vitality and effectively connect hinterlands with

the sea. To design dynamic urban coastal zones, it is crucial

to begin with the planning and design perspective of exploring

the definition of urban coastal zones and the social-spatial

connections between its components must be investigated.

Coastal zone vitality is a design arena emerging only

recently with the increasing emphasis on coastal development,

but another similar concept, waterfront vitality, has long been

regarded as an important planning focus in urban areas

(Wakefield, 2007). The classic vitality theory formed by Jacobs

(1961), Lynch (1984), and Gehl (1987) claimed three important

factors determining urban vitality—people, activity, and space

(Li et al., 2022). And spatial affordance under this context

is revealed by the opportunities to attract different types of

people to participate in different activities at different times

of the day (Li et al., 2016). Thus, the vitality of waterfront

areas can also be reflected through the interactions between

human activities and physical environments (Li et al., 2022).

Existing evidence has confirmed the effects of spatial form, traffic

organization, landscape, cultural characteristics, and land uses

on waterfront vitality (Norcliffe et al., 1996; Da and Xu, 2016).

With respect to spatial form, block sizes (Sha et al., 2014),

building densities (Bunce, 2011), and other textural attributes

are found to be relevant; road networks with higher levels

of integration (Wang F. et al., 2020), accessibility (Othman

et al., 2021) and intersection density (Yang et al., 2018) are also

positively related to waterfront vitality. In terms of the land

use aspect, the mixed levels of land use (Lehrer and Laidley,

2008) and specific functions such as commercial activities

(Hagerman, 2007) are proved to be influential, while vitality-

related landscape characteristics include: openness (Sairinen and

Kumpulainen, 2006), aesthetic and cultural value (Hurley, 2006),

and the number and quality of landmarks (Gotham, 2002).

Many attempts have been made to explore how vitality can

be generated within waterfront areas through planning and

design interventions. These primarily fall into two categories.

The first is the use of qualitative methods such as questionnaires

(Woo et al., 2017), activity notations (Latip et al., 2012), and

behavior mapping (Mansournia et al., 2016) to observe and

compare the distribution of human activities and physical

environment attributes across different sites. For example, Unt

and Bell (Unt and Bell, 2014) used site observations and behavior

mapping to compare waterfront spatial usage before and after

small design interventions. Another approach is the use of

quantitative methods; this normally involves the collection and

analysis of data describing waterfront characteristics (Romero

et al., 2016). The advancement of information technology in

recent years—particularly the widely used big data and the

advancement of location-based services—has provided technical

support for extensive and in-depth investigations of the spatial-

temporal characteristics of people and activities within urban

waterfront areas. These newly emerged methods have been used

by many researchers to measure the vitality of waterfront public

spaces and disclose the relationships between environmental

characteristics and spatial vitality (Liu et al., 2021; Niu et al.,

2021). Yu et al. (2019) proved that there is a high spatial coupling

between spaces with high levels of vitality and actual aggregation

of activities using the open-sourced big data of streetscape

images. Besides, there are also studies utilizing geographical

information systems (GISs) to classify and identify coastal zones

based on high-precision satellite maps (Balasubramanian et al.,

2022; Thirumurthy et al., 2022).

Though efforts have been made to investigate the geospatial

(i.e., locations (Yang and Shao, 2018), traffic connections
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(Wang F. et al., 2020), spatial compositions (Delclòs-Alió and

Miralles-Guasch, 2018), and social dimensions such as symbolic

identities (Hurley, 2006), human activities (Hoyle, 1999), and

functions (Latip et al., 2012) that lead to the vitality of urban

waterfronts, they can provide limited implications to coastal

zones because no specific standard has been set to indicate

the form such coastal zones should take. Urban coastal zone

vitality cannot be achieved with the same methods used for

waterfront vitality design due to their apparent differences.

First, urban coastlines can be far longer than riversides and

lakesides, and their characteristics may vary with the different

contexts surrounding them. Thus, the successful experience

of delivering one dynamic coastal zone cannot be applied to

others without the support of the typological research basis and

design implications summarized accordingly. Moreover, studies

based on qualitative methods are limited in their exploration

of vitality dimensions and sample sizes, while the data-based

quantitative analysis approaches often ignore the role of local

contexts in influencing coastal zone vitality. Therefore, practical

instructions for designing vital urban coastal zones can hardly

be developed without an analytical framework that is founded

on typological thinking and integrates both qualitative and

quantitative aspects.

This study, therefore, intends to formalize the concept of

urban coastal zone vitality starting with clarifying its spatial

components and emphasizing their interactive influences. The

descriptive statistics analysis was used together with the case

study to identify relevant environmental cues from urban coastal

zone case studies selected in different countries since they are

efficient in handling both qualitative and quantitative data.

A qualitative analysis of landscape characteristics and coastal

function aspects was first conducted to classify urban coastal

zones, while a quantitative analysis of spatial form, traffic

organization, and land use aspects was implemented to disclose

the causes of coastal zone vitality. This study then explored

design implications to inform how vitality can be delivered,

while remaining responsive to local contexts for each coastal

zone type and also adaptable to other urban coastal zones with

similar characteristics.

Materials and methods

Selecting urban coastal zones cases

Two rounds of the case study selection process were

conducted. The first round involved locating potential coastal

zone cases through an extensive search of design and travel

websites, design review articles, and related books. A total of

15 constructed coastal zone design case studies were identified

and presented to a group of 10 expert researchers specializing

in landscape, urban design, and architecture. Selection was

based on the following review criteria: (1) the selected cases

should be known for their vitality, attractiveness, and high

visitor rates; (2) the selected case study areas should be fully

constructed and developed with similar levels of prosperity

in the hinterlands; and (3) the selected cases should have

diverse coastal characteristics containing as many landscape and

function types as possible. As a result, eight coastal zones with

different orientations toward the sea were selected for further

analysis, including Vancouver, Chicago, Toronto, Barcelona,

Zhuhai, Qingdao, Shenzhen, Haikou, and Dalian (Figure 1).

Determining coastal zone vitality
indicators

Eleven indicators were selected from existing theoretical and

empirical literature on waterfront vitality, coastal zone qualities,

and the overlaps between environmental vitality and urban

coastal zones; the definition (Table 1) and calculation formula

of each indicator were also referred from previous studies.

Among these, seven indicators measure quantitative vitality

aspects of the selected coastal zone cases, including spatial forms,

traffic organizations, and land use conditions, while the other

four describe the landscape and functional attributes from a

qualitative perspective.

Analyzing coastal zone vitality indicators

Quantitative indicators analysis methods

The quantitative attributes related to urban coastal zone

vitality include spatial form, traffic organization, and land uses.

Quantitative data were mostly retrieved from national statistics

and Google dataset updated around the year 2019 (Table 2).

The result for each quantitative indicator was calculated and

visualized using the ArcGIS platform to reveal the coastal

zone characteristics.

The aspect of spatial form is described with three

indicators—development density, building density, and building

heights—and can be calculated using the three-dimensional

spatial data. Building density and development intensity reveal

the spatial utilization in horizontal and vertical directions,

respectively (Hoppenbrouwer and Louw, 2005). An appropriate

level of building density and development intensity can bring

vitality to the coastal zone by shaping the interface of

public spaces to attract social activities (Liu et al., 2021).

Mathematically, the development density [refer to Eq. (1)],

building density [refer to Eq. (2)], and building height [refer to

Eq. (3)] can be defined as follows:

FAR = Sgf ÷ S (1)

Where,

FAR: the development density of the coastal zone
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FIGURE 1

Site conditions of the eight selected coastal zone cases.

Sgf : the total floor acreage of buildings in the coastal zone

S: the total acreage of the coastal zone

BCR = Sba÷ S (2)

Where,

BCR: the average building density of the coastal zone

Sba: the vertical projection acreage of buildings in the

coastal zone

S: the total acreage of the coastal zone

H = Havg (3)

Where,

H: the building height

Havg : the average height of buildings within the block

The aspect of traffic organization encompasses the density

of road networks and intersections and the sizes of street

blocks. Road network density, intersection density, and block

size can efficiently indicate whether the local traffic organization

supports the effective development of coastal zones. Road

network density illustrates the level of accessibility within the

area and to other districts (WangM. et al., 2020); the intersection

density and block size are normally used to show howwelcoming

this area are to pedestrians (Jin et al., 2017) and how the spatial

connectivity is handled in the coastal zone, respectively (Boulos,

2016). Based on the road network data obtained from Google

Open Street Map, typology networks were built for the eight

case studies to perform a large-scale calculation on urban road

network indicators. Among which, road network density [refer

to Eq. (4)], intersection density [refer to Eq. (5)], and block size

[refer to Eq. (6)] are defined as below:

D = L÷ A (4)

Where,

D: the road network density

L: the total length of the road network, including the trunk

roads, the collector roads, and the branch roads

A: the total land acreage of the coastal zone

I = Ri ÷ A (5)

Where,

I: the intersection density

Ri: the number of intersections

A: the total land acreage of the coastal zone

L = Lavg (6)
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TABLE 1 Environmental indicators related to urban coastal zone vitality.

Vitality-related Aspects Indicator Definition Unit Sources

Quantitative

Analysis Indicators

Spatial form Development density The proportion of

constructed or developed area

to the total area.

km2/km2 Desfor and Jørgensen,

2004; Long and Huang,

2019

Building density Ratio of total floor area to

street block area.

km2/km2

Traffic organization Road network density The length of road network to

the acreage of the area.

km/km2 Sairinen and

Kumpulainen, 2006; Li

et al., 2020; Othman

et al., 2021

Intersection density The number of road

intersections.

per km2

Block size The average size of street

blocks.

ha

Land use Functional diversity The number of subdivided

land units for mixed uses.

/ Im and Choi, 2019

Proportion of specific

functions

The proportion of certain

types (such as commercial

activities) of land use

function.

/

Qualitative Analysis

Indicators

Landscape characteristic Waterfront features The natural characteristics of

the waterfront area.

/ Hurley, 2006; Xie and

Gu, 2015; Da and Xu,

2016

Local identities Sense of place, local cultural,

historic spirit.

/

Costal function Waterfront functions Functional composition of the

coastal zone.

/

Hinterland functions Functional composition of the

connected hinterlands.

/

Where,

L: the block size

Lavg : the land acreage of block

The aspect of land use is described with functional

diversity and specific functions. Twelve points of interests (PoIs)

categories were obtained from the Google dataset, including:

transportation, healthcare, sports leisure, life convenience,

culture and education, shopping and dining, hotels, the scenic

spot, commercial housing, finance and insurance, government

agencies, and business companies. These were then sorted into

four major categories including employment, living, recreation,

and transportation, and then visually mapped accordingly. The

mix-used functions that reflect the type of diverse facilities

and the proportion of each type of facility concurrently were

calculated through the entropy value (Jiang et al., 2022). PoIs

with specific functions, such as catering services (Liu et al., 2018)

and sport leisure facilities (Mu et al., 2021) that can contribute to

spatial vitality, were also calculated. Hence, functional diversity

[refer to Eq. (6)] and proportion of specific functions [refer to

Eq. (7)] are defined as follows:

FM = −

∑
(Pi× InPi) /L (7)

Where,

i =1, ..., n

FM: the functional diversity

n: the number of PoIs categories within a block in the

coastal zone

Pi: the proportion of the i type of PoIs

L: the length of the block

BUM = −(
∑

pi× In(pi))÷ In(n) (8)

where,

BUM: the proportion of specific functions

n: the number of PoIs categories within a block in the

coastal zone
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TABLE 2 Quantitative indicators and their related data sources.

Vitality-related

quantitative aspects

Indicator Target data Data sources

Spatial form Development density Building data Building data in Chinese cities: Beijingcitylab.com

Building data in other cities:

Github.com/Microsoft/USBuildingFootprints

Building density

Traffic organization Road network density Road network data Openstreetmap.org

Intersection density

Block size Block data (clipped by

road network)

Land use Functional diversity Point of interest data

(PoIs)

PoIs in Chinese cities: Lbs.amap.com PoIs in

other cities: Foursqure.com/products/places-api

Proportion of specific

functions

Hinterland functions

Pi: the proportion of the i type of PoIs.

Qualitative indicator analysis methods

Four qualitative indicators, waterfront features, local

identities, waterfront functions, and hinterland functions,

responsible for coastal zone vitality were analyzed for two

purposes. The first was to classify urban coastal zones so that

the underlying reason for bringing vitality could be explored

and the design implications could be developed on a typological

basis. Among the four indicators, the functions of the waterfront

areas should be regarded as the results of the waterfront features

and hinterland functions. Also, local identities are represented

by diverse historical and cultural resources which can hardly be

set as a classification standard.

Therefore, waterfront features and hinterland functions

are used as criteria for categorizing coastal zone types, while

local identity and waterfront functions are analyzed together

with quantitative indicators to develop design instructions on

delivering vitality for each type. The same group of experts

previously noted conducted traditional design analysis on the

eight case study sites through photos, online materials, and

open-sourced records to discuss qualitative results on the four

vitality-related indicators.

Results

Coastal zone vitality presented by
qualitative and quantitative indicators

Descriptive analysis of qualitative indicators

The eight cases are coastal cities located between latitudes

20 and 50◦N. Among these, Vancouver is the political, cultural,

tourism, and transportation center of western Canada and has a

waterfront characterized by public spaces, such as beaches and

squares, and the hinterland functions are mainly residences and

business offices. Chicago has a coastline toward the east with

waterfront leisure space composed of beaches and green spaces,

with evident industrial cultural characteristics. Its hinterland

has commerce and office buildings, as well as residences

and industrial facilities. Toronto, a Northwest coast city of

Canada, waterfront partly retains the reefs as the dominant

natural features, while the rest of the waterfront largely handles

public life with squares; hinterland functions are composed of

commerce, business, and industries. Barcelona has a coastal zone

dominated by ports and beaches, and its hinterland functions are

mainly for living and commercial purposes.

Four Chinese cases are mainly coastal cities in its eastern

region. Among these, Qingdao is in the southeast of the

Shandong Peninsula, bordering the Yellow Sea on its east and

south sides. Its coastal zone is mostly composed of beaches,

ports, and reefs, and the hinterland functions include residences

and commerce. Shenzhen and Zhuhai are coastal cities located in

the south of Guangdong province, adjacent to the South China

Sea. The waterfront of Shenzhen is dominated by greenways,

reefs, and beaches, and its hinterland functions include business,

industries, and residences. In Zhuhai, reefs and beaches are

the major characteristics of the waterfront, with residence

and office buildings as hinterland compositions. Haikou is

in the northern part of Hainan Island, close to the South

China Sea, and its waterfront contains green spaces, ports,

beaches, and reefs. The major hinterland functions of Haikou

are living and services, with a limited proportion of commerce

and business.

Qualitative analysis results on the eight coastal cases are

shown in Figure 2.
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FIGURE 2

Qualitative analysis on the eight case study sites. (“ ” means reef, “ ” means port, “ ” means square/trail, “ ” means

green spaces, “ ” means beach, “ ” means living and services, “ ” means industries and production, and “ ” means

commercial, cultural, and tourism).

Descriptive analysis of quantitative indicators

Numerous evidence suggests that an appropriate level of

development density can facilitate urban vitality (Dovey and

Pafka, 2014). A low level of development density has difficulty

in supporting the aggregation of urban functions (Jiao, 2015)

and the organization of multi-mode public transportation

(Gharaibeh et al., 2022); this could impede commercial and

social activities. People are also unlikely to use coastal zones

when development density is too high, since the densified

population and the oppressive building heights would negatively

influence their perceived sense of comfort (Lan et al., 2021).

Figure 3 illustrates the development density analysis results

of the eight case study sites. It is reflected that the overall mean

density of the eight case study sites is relatively low, with a

range between 1.0 and 4.0 km2/km2. Shenzhen has the highest

development density (8.5 km2/km2), and the lowest is Toronto

(1.2 km2/km2). The plot ratios of certain individual plots in

Chicago are high, but the overall mean value still stays at a low

level (1.8 km2/km2).

The vitality indicator of building density describes the spatial

form aspect that can reveal the accessibility and availability of

open spaces within the coastal zone (Ye et al., 2018). Building

density should also be maintained at a moderate level to provide

sufficient opportunities for the survival and lushness of open

spaces, as well as to provide spaces for the elaborate design

of surrounding landscapes. However, a too low or too high

level of building density may either lead to unnecessary waste

of land uses or uncomfortable human perception (Chen et al.,

2022b). The analysis of the eight case study sites found that

the building density of Barcelona (0.9 km2/km2) is the highest

and Haikou (0.2 km2/km2) is the lowest, with the average

density of all eight sites staying between 0.25 and 0.4 km2/km2

(Figure 4).

Among the three traffic organization indicators, a high level

of road network and intersection density has been proven to be

positively related to spatial vitality (Long et al., 2019). Figure 5

indicates the road network density analysis results with an

average appeared to be 13.0–18.0 km/km². The road network

density of Barcelona and Chicago reaches over 22.0 km/km²,

but the highest density in Chinese sites is only 17.5 km/km²

(Qingdao). The site with the lowest road network density

among all case study sites is Shenzhen (8.5 km/km²). As for

the intersection density results presented in Figure 6, Toronto

(105.0 per km²) ranks as the highest, while Shenzhen (9.5 per

km²) and Chicago (10.0 per km²) have the fewest intersections

within the coastal zones. The mean intersection density of the

eight sites is 20.0–55.0 per km².

Small size (around 25.0 ha) of street blocks is widely

encouraged (Ewing et al., 2016), since existing evidence indicates

blocks at this scale can effectively improve local vitality by

enhancing spatial connections (Zhang et al., 2021), encouraging

social life at street edges (Yin and Wang, 2016), promoting

mixed land uses (Long et al., 2019), and providing comfortable

walking experiences (Hassan and Elkhateeb, 2021). Results show

that all eight case study sites have block sizes under 25.0

ha, with an average of less than 3.0 ha (Figure 7). Chinese

coastal zones have relatively larger block sizes compared to

the others, especially in Shenzhen (12.5 ha) and Haikou

(11.0 ha; Figure 7).

Functional diversities and the proportion of specific

functions were used to indicate the land use aspect of

coastal vitality. A moderate level of mixed functions in a

Frontiers in Ecology andEvolution 07 frontiersin.org

230

https://doi.org/10.3389/fevo.2022.962299
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Yin et al. 10.3389/fevo.2022.962299

FIGURE 3

Development density analysis of the eight case study sites.

FIGURE 4

Building density analysis of eight case study sites.

block can provide residents with convenient life services

and encourage walking activities to enhance the vitality

within the area (Im and Choi, 2019). Results in Figure 8

suggested that the overall functional mixing value of Barcelona

ranks highest (7.7%), followed by Chicago (7.3%), Qingdao

(7.2%), and Zhuhai (6.8%). Functional diversities of the

other four sites, however, are relatively low, with an average

value between 3.0 and 8.0% (Figure 8). Another indicator

in this aspect, the proportion of specific functions, is used

to reflect the main functional attributes of blocks (Chen

et al., 2022a). The analysis results reveal that most blocks

within coastal zones of Vancouver, Chicago, Toronto, and
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FIGURE 5

Road network density analysis of eight case study sites.

FIGURE 6

Intersection density analysis of the eight case study sites.

Barcelona are dominated by residences and corresponding

living and service functions, while in Qingdao, Shenzhen,

and Haikou, the proportion of employment functions is

distinctly higher than residential and recreational functions

(Figure 9).

Quantitative analysis results of the selected eight case study

coastal zones are summarized in Table 3.

Classifying urban coastal zones based on
qualitative analysis results

Urban coastal zones have different landscape characteristics

due to their different contexts, such as geographical locations,

climates, topography, and geomorphology. Waterfront features

of the case study sites can be divided into soft and hard types;
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FIGURE 7

Block size analysis of the eight case study sites.

FIGURE 8

Functional diversities in the eight case study sites.

the soft types are those dominated by natural elements like

beaches and green spaces, while the hard types are mainly

dominated by ports, roads, squares, or reefs. Within hinterland

functions, there are three basic types include living and services,

industries and production, and commercial, cultural, and

tourism. Through the combinative considerations of waterfront

features and hinterland functions, urban coastal zones are

classified into six major types (Figure 10); a hard waterfront with

living and services as the major hinterland functions (H1), a

hard waterfront with industries and production as the major

hinterland functions (H2), a hard waterfront with commercial,

cultural and tourism as the major hinterland functions (H3), a

soft waterfront with living and services as the major hinterland

functions (S1), a soft waterfront with industries and production
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FIGURE 9

The proportion of specific functions in the eight case study sites.

TABLE 3 The summary of quantitative analysis results of the selected eight case study coastal zones.

Vancouver Chicago Toronto Barcelona Qingdao Zhuhai Haikou Shenzhen

Development density (km2/km2) 2.6 1.8 1.2 4.0 1.4 1.9 2.0 8.5

Building density (km2/km2) 0.4 0.4 0.4 0.9 0.9 0.3 0.2 0.3

Block size (ha) 0.2 0.2 0.4 0.1 2.2 6.0 11.0 12.5

Road network density (km/km2) 19.2 22.5 18.5 22.0 17.5 13.5 13.0 8.5

Intersection density (per km2) 15.2 10.0 105.0 25.0 48.5 48.0 22.5 9.5

Functional diversity (%) 2.9 7.3 3.3 7.7 7.2 6.8 2.5 2.4

as the major hinterland functions (S2), and a soft waterfront

with commercial, cultural and tourism as the major hinterland

functions (S3). The classification results of the selected eight

coastal study sites are summarized in Table 4.

Design implications for vital urban
coastal zones

The results of the quantitative and qualitative analysis

disclosed the environmental drives of urban coastal zone vitality

(Table 5), which informed a way to develop design implications,

respectively, for the six coastal types.

The H1 type is coastal zones with hard waterfront

characteristics, such as reefs, ports, and squares, and hinterland

functions are mostly composed of living and services. Green

spaces and squares that canmanage public life are recommended

as the major waterfront functions. For this type of coastal

zones, a relatively wide range of development density of 1.0–6.0

km2/km2 is allowed for delivering vitality but building density

should be controlled within 0.2–0.4 km2/km2. Road network

density and intersection density can also be flexible in the

design requirements. Results indicate that 12.0–20.0 km/km2

of road network density and a range of 15.0–50.0 per km2

intersection density are beneficial to promote local vitality for

this type. The block size in this coastal zone is encouraged to be

around 1.0–3.5 ha, and functional diversity is encouraged to be

within 2.2%−8.2%.

The H2 type is coastal zones characterized by hard

waterfronts with industries and production as the major

hinterland functions. The waterfronts can contain public spaces,

and ports and other industrial heritages should be kept as

landmarks. Research findings suggest development density

should be controlled at under 1.8 km2/km2, and the building

density should be between 0.2 and 0.3 km2/km2 to enhance the

vitality of coastal zones. The control over intersection density

can be loose (15.0–65.0 per km2), but a higher level of road

network density (10.0–15.0 km/km2) is suggested. The acreage

of block sizes between 3.0 and 8.0 ha and a low level of functional
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FIGURE 10

The classification results of urban coastal zones. The illustration photos were taken by the author.

diversity (1.2%−2.6%) for each block are regarded as conducive

to coastal vitality as well.

The H3, the last type with hard waterfronts, has commercial,

cultural, and tourism as the dominant hinterland functions and

should develop local history and culture as its coastal zone

identity to provide tourist attractions. According to the results,

both indicators of the spatial form aspect should be controlled

at a high level, with development density between 3.0 and 8.0

km2/km2 and building density between 0.3 and 0.8 km2/km2.

These two have the highest ranges of design requirements among

the six coastal zone types. As for the traffic organization, road

network density is suggested within 18.0–27.0 km/km2 and

the block size between 0.5 and 2.5 ha. There is also a loose

range of requirements for the indicators of intersection density

(15.0–55.0 per km2) and functional diversity (1.5–7.9%).

The S1 type refers to coastal zones with soft waterfronts,

such as wetlands, green spaces, and beaches, with residential

and services as hinterland functions. The waterfronts should

be characterized by public spaces, such as green spaces

and squares, to provide a perception of leisure to local

residents. Building density (0.2–0.3 km2/km2) and development

density (0.5–3.0 km2/km2) should be low to encourage

the aggregation of high-quality residential neighborhoods.

The size of blocks, therefore, can be relatively large (2.0–

8.0 ha). A moderate level of intersection density (10.0–

30.0 per km2) and a low level of road network density

(8.0–14.0 km/km2) are needed to bring vitality to this

coastal zone type. Functional diversity is suggested to be

within 1.2–9.4%.

The S2 type is coastal zones with soft waterfront

characteristics; the hinterland functions are primarily

composed of industries and production. Its industrial

heritage can be regenerated into public spaces and can

also serve as landmarks. The maximum that development

density can reach is 2.0 km2/km2 but building density

should be controlled under 0.4 km2/km2. Intersection

density (15.0–45.0 per km2) and road network density

(9.0–16.0 km/km2) should be at a moderate level, while

the block can have a larger size with a range between 2.0

and 9.0 ha. Functional diversity between 6.0 and 9.2% is

concluded from the analysis as being beneficial to deliver

coastal vitality.

The S3 is the last type with the coastal zones characterized

by the soft waterfront. It has commercial, cultural, and

tourism as the major hinterland functions. Local historical

and cultural characteristics should be emphasized along the

corridors connecting the hinterland and the waterfront to lead

tourists to a full exploration of the coastal zone. This type

has the widest range for building density (0.2–0.8 km2/km2)

among all six types, and development density is suggested

to be between 0.5 and 5.5 km2/km2. Road network density

(12.0–24.0 km/km2) and intersection density (20.0–55.0 per
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TABLE 4 The classification results of the selected eight coastal zones.

Sites Landscape

characteristics

Waterfront

type

Hinterland functions Coastal

types

Analysis illustrations

Vancouver Square/trail Hard Commercial, cultural and tourism H3

Living and services H1

Beach Soft Commercial, cultural and tourism S3

Living and services S1

Chicago Beach Soft Living and services S1

Green space Commercial, cultural and tourism S3

Industries and production S2

Port Hard Commercial, cultural and tourism H3

Toronto Port Hard Industries and production H2

Square/trail Commercial, cultural and tourism H3

Barcelona Port Hard Commercial, cultural and tourism H3

Living and services H1

Beach Soft Commercial, cultural and tourism S3

Qingdao Beach Soft Living and services S1

Commercial, cultural and tourism S3

Reef Hard Industries and production H2

Commercial, cultural and tourism H3

Zhuhai Reef Hard Living and services H1

Living and services H3

Port Living and services H3

Beach Soft Commercial, cultural and tourism S3

Haikou Reef Hard Living and services H1

Commercial, cultural and tourism H3

Green space Soft Living and services S1

Beach Living and services S1

Shenzhen Reef Hard Commercial, cultural and tourism H3

Reef Industries and production H2

Beach Soft Commercial, cultural and tourism S3

Living and services S1

Green space Commercial, cultural and tourism S3

“ ” means reef, “ ” means port, “ ” means square/trail, “ ” means green spaces, and “ ” means beach.
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TABLE 5 Environmental drivers of coastal vitality based on typological analysis.

Types H1 H2 H3 S1 S2 S3

Waterfront features Hard waterfront Soft waterfront

Hinterland functions Living and services Industries and

production

Commercial,

cultural and

tourism

Living and services Industries and

production

Commercial,

cultural and

tourism

Waterfront functions Green spaces,

squares

Port, green spaces,

squares

Port Wetlands, beaches, parks

Local identities Public life Industrial heritage Historical and

cultural

Public life Industrial heritage Historical and

cultural

Building density

(km²/km²)

0.2–0.4 0.2–0.3 0.3–0.8 0.2–0.3 0–0.4 0.2–0.8

Development Density

(km²/km²)

1.0–6.0 0–1.8 3.0–8.0 0.5–3.0 0–2.0 0.5–5.5

Block size (ha) 1.0–3.5 3.0–8.0 0.5–2.5 2.0–8.0 2.0–9.0 0–3.5

Intersection density (per

km²)

15.0–50.0 15.0–65.0 15.0–55.0 10.0–30.0 15.0–45.0 20.0–55.0

Road network density

(km/km²)

12.0–20.0 10.0–15.0 18.0–27.0 8.0–14.0 9.0–16.0 12.0–24.0

Functional diversity (%) 2.2–8.2 1.2–2.6 1.5–7.9 1.2–9.4 6.0–9.2 2.3–8.8

Proportion of specific functions (%)

Employment 35.5 25.0 31.0 28.0 12.8 33.0

Living 32.7 16.7 32.3 22.0 33.3 30.7

Recreation 17.8 0.0 23.4 28.0 23.1 24.7

Transportation 14.0 58.3 13.3 22.0 30.8 11.6

km2) should be controlled at a moderate level, while small

block sizes (0–3.5 ha) are encouraged for this type. As

for functional diversity, there is a relatively wide range of

requirements 2.3–8.8%.

The comparison of the six types of urban coastal zones shows

that waterfront functions and local identities should be in line

with waterfront features and hinterland functions to facilitate

coastal zone vitality. The range of the quantitative vitality

indicators of the six coastal zone types also varies evidently

with the hinterland functions, but there are similarities in

vitality design control among the types with similar waterfront

features. For example, the types of H3 and S3 both have the

widest and highest ranges of development and building density.

Similarities are also observed between H2 and S2 in terms

of almost all vitality indicators, and the block sizes of these

two types cover the widest and highest ranges. As for the

H1 and S1 with hinterland functions of living and services,

they have similar recommended design requirements on the

indicators of building densities and block sizes. The most

evident difference that is observed between coastal zones with

similar hinterland functions is in functional diversity in H2

and S2; H2 has a range of 1.2–2.6%, while S2 is between 6.0

and 9.2%.

Discussion and conclusion

This study explores environmental drivers to deliver urban

coastal zone vitality by analyzing the eight coastal zone cases.

Eleven indicators were identified from the literature as being

influential to coastal zone vitality, including development

density, building density, road network density, intersection

density, block size, functional diversity, proportion of specific

functions, waterfront features, local identities, waterfront

functions, and hinterland functions. In general, spatial

form, function, and consistency between them are the key

determinants of urban coastal zone vitality.

Six urban coastal zone types were classified based on their

waterfront features and hinterland functions. Results suggested

that coastal types with similar hinterland functions have similar

characteristics of building density, block size, road network

density, and functional diversity, while development density

and intersection density are more likely to be affected by

waterfront features. In the respect of spatial form, costal zones

with hinterland functions of commercial, cultural, and tourism

require a relatively high level of building and development

density to provide sufficient human activities (Desfor and

Jørgensen, 2004), as well as the small size of blocks to increase
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walkability (Sha et al., 2014). A relatively loose spatial form

with a low level of building and development density and

medium size of building blocks can be more favorable when

coastal zone vitality needs to be balanced with other quality of

life, for example, living and production. A high level of road

network density and intersection density is also necessary for

coastal zone vitality, especially for the type with commercial,

cultural, and tourism as hinterland functions. This can possibly

be explained by their positive relationship with walkability and

connectivity (Li et al., 2020). In addition, the importance of

functional diversity to urban vitality has been confirmed in this

and existing studies (Im and Choi, 2019), though there are

no differences in design constraints found for different coastal

zone types.

Though research findings appear to be conclusive, there

are limitations that exist in this research design and analysis.

First, only eight coastal zone design case studies were selected

to control their construction levels, locations, orientations,

the scales of hinterlands, and the lengths of the coastal

zones. The number of case studies is also constrained by

the lack of an efficient way, and the case study selection

since, to date, there are still no consistent definitions of

urban coastal zone vitality. Though the emerging deep learning

algorithms provided bases for large-scale image analysis, they

have their shortages in identifying qualitative attributes and

their application is also limited greatly by the generality of

training datasets. With the development of artificial intelligence,

the continuous accumulation of basic datasets as well as

the vitality contributors disclosed in this study, they can

together be used in evaluating the vitality of worldwide urban

coastal zones and then, in turn, refine the definition and the

contributors. Also, research outcomes may also be affected by

the accuracy of the obtained data since for most potential

indicators; Google is the only data source involved. Besides,

a part of the quantitative data was retrieved from open-

sourced government websites of different counties and the

investigation years were slightly different—this could also bias

the analysis results. The use of multiple data sources and

robustness tests in future similar studies can help reduce

data errors, though data collection standards may differ

across platforms.

To conclude, this study set out from clarifying the social-

spatial boundary of urban coastal zones and proposed a

typological basis for future relevant research. Through a data-

based case study analysis, a comprehensive perspective of

understanding how urban coastal zone vitality was developed.

Research outcomes provide cues for designing dynamic

urban coastal zones that can be straightforwardly relevant to

environmental planning and design aspects and are responsive

and adaptable to local contexts. More importantly, they can be

applied to coastal zones with similar characteristics or within the

same categories, and thus, have practical values in promoting

coastal city development strategies.

Data availability statement

Publicly available datasets were analyzed in this

study. This data can be found at: [Beijingcitylab.com]

[Github.com/Microsoft/USBuildingFootprints][https://Openst

reetmap.org][Lbs.amap.com][Foursqure.com/products/

places-api][Ditu.amap.com][Gditu.net].

Author contributions

YY and YS: conceptualization, methodology, validation,

resources, and writing—review and editing. YH and HL:

software, investigation, and visualization. YY, YH, and

HL: formal analysis. YY: data curation and writing—

original draft preparation. YS: supervision, project

administration, and funding acquisition. All authors

contributed to the article and approved the submitted version.

Funding

This research was funded by the Nature Science

Foundation of China: 51808393; Shanghai Post-

doctoral Excellence Program: 2021357; Restorative

Urbanism Research Center (RURC), Joint Laboratory for

International Cooperation on Eco-Urban Design, Tongji

University (CAUP-UD-06).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers in Ecology andEvolution 15 frontiersin.org

238

https://doi.org/10.3389/fevo.2022.962299
https://beijingcitylab.com
https://github.com/microsoft/usbuildingfootprints
https://openstreetmap.org
https://lbs.amap.com
https://foursqure.com/products/places-api
https://ditu.amap.com
https://gditu.net
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Yin et al. 10.3389/fevo.2022.962299

References

Balasubramanian, G., Suresh, S., Goswami, S., and Swaminathan, B. and Pereira,
G. F. (2022). Delineation of sensitive coastal zone of northern Ramanathapuram
coast, Tamilnadu, India, using a GIS approach. Geodesy Geodynam. 13, 456–463.
doi: 10.1016/j.geog.2022.03.004

Barragán, J. M., and De Andrés, M. (2015). Analysis and
trends of the world’s coastal cities and agglomerations. Ocean
Coastal Manage. 114, 11–20. doi: 10.1016/j.ocecoaman.2015.0
6.004

Boulos, J. (2016). Sustainable development of coastal cities-proposal of a
modelling framework to achieve sustainable city-port connectivity. Proc. Soc.
Behav. Sci. 216, 974–985. doi: 10.1016/j.sbspro.2015.12.094

Bunce, S. (2011). Public-Private Sector Alliances in Sustainable Waterfront
Revitalization: Policy, Planning, and Design in the West Don Lands. Toronto:
University of Toronto Press, 287–304.

Carter, R. W. G. (2013). Coastal Environments: An Introduction to the Physical,
Ecological, and Cultural Systems of Coastlines. Amsterdam: Elsevier Science.

Chen, Y., Yang, J., Yang, R., and Xiao, X. and Xia, J. (2022a). Contribution of
urban functional zones to the spatial distribution of urban thermal environment.
Building Environ. 216, 109000. doi: 10.1016/j.buildenv.2022.109000

Chen, Z., Dong, B., and Pei, Q. and Zhang, Z. (2022b). The impacts of urban
vitality and urban density on innovation: evidence from China’s Greater Bay Area.
Habitat Int. 119, 102490. doi: 10.1016/j.habitatint.2021.102490

Council, N. R. (1993). Managing Waste Water in Coastal Urban Areas.
Washington, DC: National Academies Press.

Da, T., and Xu, Y. (2016). Evaluation on connectivity of urban waterfront
redevelopment under hesitant fuzzy linguistic environment. Ocean Coastal
Manage. 132, 101–110. doi: 10.1016/j.ocecoaman.2016.08.014

Delclòs-Alió, X., and Miralles-Guasch, C. (2018). Looking at Barcelona
through Jane Jacobs’s eyes: mapping the basic conditions for urban
vitality in a Mediterranean conurbation. Land Use Policy 75, 505–517.
doi: 10.1016/j.landusepol.2018.04.026

Desfor, G., and Jørgensen, J. (2004). Flexible urban governance. The case
of Copenhagen’s recent waterfront development. Eur. Plann. Stu. 12, 479–496.
doi: 10.1080/0965431042000212740

Dovey, K., and Pafka, E. (2014). The urban density assemblage: modelling
multiple measures. Urban Design Int. 19, 66–76. doi: 10.1057/udi.2013.13

Duck, R. W. (2012). Marine spatial planning: managing a dynamic environment.
J. Environ. Policy Plan. 14, 67–79. doi: 10.1080/1523908X.2012.664406

Ewing, R., Hajrasouliha, A., Neckerman, K. M., and Purciel-Hill, M., and Greene,
W. (2016). Streetscape features related to pedestrian activity. J. Plan. Educ. Res. 36,
5–15. doi: 10.1177/0739456X15591585

Gehl, J. (1987). Life Between Buildings. New York: Van Nostrand Reinhold.

Gharaibeh, A. A., Tawil, H. S., and Alomari, A. H. (2022). Developing an
indicative spatial accessibility analysis tool for urban public transportation system.
Case Studies Trans. Policy 10, 175–186. doi: 10.1016/j.cstp.2021.11.015

Gill, A. B. (2005). Offshore renewable energy: Ecological implications
of generating electricity in the coastal zone. J. Appl. Ecol. 42, 605–615.
doi: 10.1111/j.1365-2664.2005.01060.x

Godschalk, D. R., and Brower, D. J., and Beatley, T. (1989). Catastrophic Coastal
Storms: Hazard Mitigation and Development Management. Durham, NC: Duke
University Press.

Gotham, K. F. (2002). Marketing mardi gras: commodification, spectacle and
the political economy of tourism in New Orleans. Urban Stu. 39, 1735–1756.
doi: 10.1080/0042098022000002939

Hagerman, C. (2007). Shaping neighborhoods and nature: urban political
ecologies of urban waterfront transformations in Portland, Oregon. Cities 24,
285–297. doi: 10.1016/j.cities.2006.12.003

Hassan, D. K., and Elkhateeb, A. (2021). Walking experience: exploring
the trilateral interrelation of walkability, temporal perception, and urban
ambiance. Front. Architec. Res. 10, 516–539. doi: 10.1016/j.foar.2021.
02.004

Hoppenbrouwer, E., and Louw, E. (2005). Mixed-use development: theory
and practice in Amsterdam’s eastern docklands. Eur. Plann. Stu. 13, 967–983.
doi: 10.1080/09654310500242048

Hoyle, B. (1999). Scale and sustainability: the role of community groups
in Canadian port-city waterfront change. J. Trans. Geograph. 7, 65–78.
doi: 10.1016/S0966-6923(98)00030-1

Hurley, A. (2006). Narrating the urban waterfront: the role of public history in
community revitalization. Pub. Histor. 28, 19–50. doi: 10.1525/tph.2006.28.4.19

Im, H. N., and Choi, C. G. (2019). The hidden side of the entropy-based land-
use mix index: Clarifying the relationship between pedestrian volume and land-use
mix. Urban Stud. 56, 1865–1881. doi: 10.1177/0042098018763319

Ioppolo, G., and Saija, G. and Salomon, E. R. (2013). From coastal
management to environmental management: the sustainable eco-tourism program
for the mid-western coast of Sardinia (Italy). Land Use Policy 31, 460–471.
doi: 10.1016/j.landusepol.2012.08.010

Jacobs, J. (1961). The Death and Life of Great American Cities. New York, NY:
Modern Library.

Jiang, Y., Han, Y., Liu,M., and Ye, Y. (2022). Street vitality and built environment
features: A data-informed approach from fourteen chinese cities. Sustain. Cities.
Soc. 79, 103724. doi: 10.1016/j.scs.2022.103724

Jiao, L. (2015). Urban land density function: a new method to
characterize urban expansion. Landscape Urban Plan. 139, 26–39.
doi: 10.1016/j.landurbplan.2015.02.017

Jin, X., Long, Y., Sun, W., Lu, Y., and Yang, X., and Tang, J. (2017). Evaluating
cities’ vitality and identifying ghost cities in China with emerging geographical
data. Cities 63, 98–109. doi: 10.1016/j.cities.2017.01.002

Lan, H., and Lau, K. L., Shi, Y., and Ren, C. (2021). Improved urban heat island
mitigation using bioclimatic redevelopment along an urban waterfront at Victoria
Dockside, Hong Kong. Sust. Cities Soc. 74, 103172. doi: 10.1016/j.scs.2021.103172

Latip, N. S. A., and Shamsudin, S., and Liew, M. S. (2012). Functional
dimension at ‘Kuala Lumpur Waterfront’. Proc. Soc. Behav. Sci. 49, 147–155.
doi: 10.1016/j.sbspro.2012.07.013

Lehrer, U., and Laidley, J. (2008). Old mega-projects newly packaged?
Waterfront redevelopment in Toronto. Int. J. Urban Reg. Res. 32, 786–803.
doi: 10.1111/j.1468-2427.2008.00830.x

Li, M., and Shen, Z., and Hao, X. (2016). Revealing the relationship between
spatio-temporal distribution of population and urban function with social media
data. Geo J. 81, 919–935. doi: 10.1007/s10708-016-9738-7

Li, S., Wu, C., Lin, Y., Li, Z., and Du, Q. (2020). Urban morphology
promotes urban vibrancy from the spatiotemporal and synergetic perspectives:
a case study using multisource data in Shenzhen, China. Sustainability 12, 4829.
doi: 10.3390/su12124829

Li, X., Li, Y., Jia, T., Zhou, L., and Hijazi, I. H. (2022). The six dimensions of built
environment on urban vitality: fusion evidence from multi-source data. Cities 121,
103482. doi: 10.1016/j.cities.2021.103482

Liu, S., Lai, S. Q., Liu, C., and Jiang, L. (2021). What influenced the vitality of the
waterfront open space? A case study of Huangpu River in Shanghai, China. Cities
114, 103197. doi: 10.1016/j.cities.2021.103197

Liu, X., Zhu, Z., Jin, L., Wang, L., and Huang, C. (2018). Measuring patterns
and mechanism of greenway use–A case from Guangzhou, China. Urban Forestry
Urban Greening 34, 55–63. doi: 10.1016/j.ufug.2018.06.003

Long, Y., and Huang, C. (2019). Does block size matter? The impact of urban
design on economic vitality for Chinese cities. Environ. Plann. B Urban Anal. City
Sci. 46, 406–422. doi: 10.1177/2399808317715640

Long, Y., Huang, C. J. E., Analytics, P. B. U., and Science, C. (2019). Does block
size matter? The impact of urban design on economic vitality for Chinese cities.
Environ. Plan. B Urban Anal. City Sci. 46, 406–422. doi: 10.1177/2399808317715

Lynch, K. (1984). Good City Form. Cambridge, MA: MIT Press.

Maged, M., Zurina, S., and Mazlan, H. (2010). Mapping coastal geomorphology
changes using synthetic aperture radar data. Int. J. Phys. Sci. 5, 1890–1896.

Mansournia, S., Gharaei, F., and Bahrami, B. (2016). Behavior mapping, an
approach to assessment of urban spaces responsiveness. case study: recreational
space of zrêbar lake Waterfront, Marivan, Kurdistan.Motaleate Shahri 5, 77–90.

Marghany, M. (2014). Simulation of three-dimensional of coastal erosion using
differential interferometric synthetic aperture radar. Global NEST Journal, 16,
80–86. doi: 10.30955/gnj.001055

Martínez, M. L., Intralawan, A., Vázquez, G., Pérez-Maqueo, O., Sutton, P., and
Landgrave, R. (2007). The coasts of our world: Ecological, economic and social
importance. Ecol. Econ. 63, 254–272. doi: 10.1016/j.ecolecon.2006.10.022

Mu, B., Liu, C., Mu, T., Xu, X., Tian, G., Zhang, Y., et al. (2021). Spatiotemporal
fluctuations in urban park spatial vitality determined by on-site observation and
behavior mapping: a case study of three parks in Zhengzhou City, China. Urban
Forestry Urban Greening 64, 127246. doi: 10.1016/j.ufug.2021.127246

Frontiers in Ecology andEvolution 16 frontiersin.org

239

https://doi.org/10.3389/fevo.2022.962299
https://doi.org/10.1016/j.geog.2022.03.004
https://doi.org/10.1016/j.ocecoaman.2015.06.004
https://doi.org/10.1016/j.sbspro.2015.12.094
https://doi.org/10.1016/j.buildenv.2022.109000
https://doi.org/10.1016/j.habitatint.2021.102490
https://doi.org/10.1016/j.ocecoaman.2016.08.014
https://doi.org/10.1016/j.landusepol.2018.04.026
https://doi.org/10.1080/0965431042000212740
https://doi.org/10.1057/udi.2013.13
https://doi.org/10.1080/1523908X.2012.664406
https://doi.org/10.1177/0739456X15591585
https://doi.org/10.1016/j.cstp.2021.11.015
https://doi.org/10.1111/j.1365-2664.2005.01060.x
https://doi.org/10.1080/0042098022000002939
https://doi.org/10.1016/j.cities.2006.12.003
https://doi.org/10.1016/j.foar.2021.02.004
https://doi.org/10.1080/09654310500242048
https://doi.org/10.1016/S0966-6923(98)00030-1
https://doi.org/10.1525/tph.2006.28.4.19
https://doi.org/10.1177/0042098018763319
https://doi.org/10.1016/j.landusepol.2012.08.010
https://doi.org/10.1016/j.scs.2022.103724
https://doi.org/10.1016/j.landurbplan.2015.02.017
https://doi.org/10.1016/j.cities.2017.01.002
https://doi.org/10.1016/j.scs.2021.103172
https://doi.org/10.1016/j.sbspro.2012.07.013
https://doi.org/10.1111/j.1468-2427.2008.00830.x
https://doi.org/10.1007/s10708-016-9738-7
https://doi.org/10.3390/su12124829
https://doi.org/10.1016/j.cities.2021.103482
https://doi.org/10.1016/j.cities.2021.103197
https://doi.org/10.1016/j.ufug.2018.06.003
https://doi.org/10.1177/2399808317715640
https://doi.org/10.1177/2399808317715
https://doi.org/10.30955/gnj.001055
https://doi.org/10.1016/j.ecolecon.2006.10.022
https://doi.org/10.1016/j.ufug.2021.127246
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Yin et al. 10.3389/fevo.2022.962299

Niu, Y., Mi, X., and Wang, Z. (2021). Vitality evaluation of the waterfront
space in the ancient city of Suzhou. Front. Architec. Res. 10, 729–740.
doi: 10.1016/j.foar.2021.07.001

Norcliffe, G., Bassett, K., andHoare, T. (1996). The emergence of postmodernism
on the urban waterfront: geographical perspectives on changing relationships. J.
Transp. Geograph. 4, 123–134. doi: 10.1016/0966-6923(96)00005-1

Othman, A., Al-Hagla, K., and Hasan, A. E. (2021). The impact of attributes of
waterfront accessibility on human well-being: Alexandria Governorate as a case
study. Ain Shams Eng. J. 12, 1033–1047. doi: 10.1016/j.asej.2020.08.018

Papatheochari, T., and Coccossis, H. (2019). Development of a waterfront
regeneration tool to support local decision making in the context of
integrated coastal zone management. Ocean Coastal Manage. 169, 284–295.
doi: 10.1016/j.ocecoaman.2018.12.013

Romero, V. P., Maffei, L., Brambilla, G., and Ciaburro, G. (2016). Modelling the
soundscape quality of urban waterfronts by artificial neural networks. App. Acoust.
111, 121–128. doi: 10.1016/j.apacoust.2016.04.019

Sairinen, R., and Kumpulainen, S. (2006). Assessing social impacts in
urban waterfront regeneration. Environ. Impact Assessment Rev. 26, 120–135.
doi: 10.1016/j.eiar.2005.05.003

Sha, Y., Wu, J., Ji, Y., and Chan, S. L. T. and Lim,W. Q. (2014). XuhuiWaterfront
Area: Urban Restructuring for Quality Waterfront Working and Living. Shanghai
Urbanism at the Medium Scale. Berlin: Springer.

Thirumurthy, S., Jayanthi, M., Samynathan, M., Duraisamy, M., Kabiraj, S.,
and Anbazhahan, N. (2022). Multi-criteria coastal environmental vulnerability
assessment using analytic hierarchy process based uncertainty analysis integrated
into GIS. J. Environ. Manage. 313, 114941. doi: 10.1016/j.jenvman.2022.114941

Unt, A. L., and Bell, S. (2014). The impact of small-scale design interventions on
the behaviour patterns of the users of an urban wasteland. Urban Forestry Urban
Green. 13, 121–135. doi: 10.1016/j.ufug.2013.10.008

Wakefield, S. (2007). Great expectations: waterfront redevelopment
and the hamilton harbour waterfront trail. Cities 24, 298–310.
doi: 10.1016/j.cities.2006.11.001

Wang, F., Zhao, M. X., and Meng, Q. L. (2020). Analysis of the vitality
measurement and correlation factors of urban waterfront space. IOP Conf. Series
Earth Environ. Sci. 612, 012013. doi: 10.1088/1755-1315/612/1/012013

Wang, M., Chen, Z., Mu, L., and Zhang, X. (2020). Road network structure and
ride-sharing accessibility: A network science perspective. Comput. Environ. Urban
Syst. 80, 101430. doi: 10.1016/j.compenvurbsys.2019.101430

Woo, S. W., Omran, A., Lee, C. L., and Hanafi, M. H. (2017). The impacts of the
waterfront development in Iskandar Malaysia. Environ. Dev. Sust. 19, 1293–1306.
doi: 10.1007/s10668-016-9798-3

Xie, P. F., and Gu, K. (2015). The changing urban morphology: waterfront
redevelopment and event tourism in New Zealand. Tour. Manage. Persp. 15,
105–114. doi: 10.1016/j.tmp.2015.05.001

Yang, C., and Shao, B. (2018). Influence of waterfront public space elements
on lingering vitality and strategies: taking two typical waterfronts along Huangpu
River, Shanghai as examples. Urban. Archit 4, 40–47.

Yang, C., Shi, M., and Geng, H. (2018). Study on the pedestrian accessibility
of waterfront area based on an understanding of urban fabric level: taking the
estuary area of Suzhou River in Shanghai as an example. City Planning Rev.
42, 104–114.

Ye, Y., Li, D., and Liu, X. (2018). How block density and typology affect urban
vitality: an exploratory analysis in Shenzhen, China. Urban Geograph. 39, 631–652.
doi: 10.1080/02723638.2017.1381536

Yin, L., and Wang, Z. (2016). Measuring visual enclosure for street walkability:
using machine learning algorithms and google street view imagery. App. Geograph.
76, 147–153. doi: 10.1016/j.apgeog.2016.09.024

Yu, Y., Zhaoxi, Z., Xiaohu, Z., andWei, Z. (2019). Human-scale measurement of
street space quality—a large-scale, high-accuracy evaluation framework combining
street view data and new analytical techniques. Urban Plannin Int. 34, 18–27.
doi: 10.22217/upi.2018.490

Zhang, L., Zhang, R., and Yin, B. (2021). The impact of the built-up environment
of streets on pedestrian activities in the historical area. Alexandria Eng. J. 60,
285–300. doi: 10.1016/j.aej.2020.08.008

Frontiers in Ecology andEvolution 17 frontiersin.org

240

https://doi.org/10.3389/fevo.2022.962299
https://doi.org/10.1016/j.foar.2021.07.001
https://doi.org/10.1016/0966-6923(96)00005-1
https://doi.org/10.1016/j.asej.2020.08.018
https://doi.org/10.1016/j.ocecoaman.2018.12.013
https://doi.org/10.1016/j.apacoust.2016.04.019
https://doi.org/10.1016/j.eiar.2005.05.003
https://doi.org/10.1016/j.jenvman.2022.114941
https://doi.org/10.1016/j.ufug.2013.10.008
https://doi.org/10.1016/j.cities.2006.11.001
https://doi.org/10.1088/1755-1315/612/1/012013
https://doi.org/10.1016/j.compenvurbsys.2019.101430
https://doi.org/10.1007/s10668-016-9798-3
https://doi.org/10.1016/j.tmp.2015.05.001
https://doi.org/10.1080/02723638.2017.1381536
https://doi.org/10.1016/j.apgeog.2016.09.024
https://doi.org/10.22217/upi.2018.490
https://doi.org/10.1016/j.aej.2020.08.008
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Evaluating the barrier of typical
production factor flow in the
Chengdu-Chongqing Urban
Agglomeration based on
multi-source big data

Yang Zhang1,2,3, Xingping Wang1*, Mengrong Ji2, Yulu Chen4

and Feng Yan4

1School of Architecture, Southeast University, Nanjing, China, 2College of Tourism and Urban-Rural
Planning, Chengdu University of Technology, Chengdu, China, 3Key Laboratory of Spatial Intelligent
Planning Technology, Ministry of Natural Resources of the People’s Republic of China, Shanghai,
China, 4Chengdu Economic Development Academy, Chengdu, China

Promoting the free flow of production factors and improving the efficiency of

resource allocation is a necessary requirement for China to achieve high-quality

development. Therefore, it is significant to evaluate the barrier of production

factors flow and analyze its influencing factors. This study, based on the flow

space theory, takes the Chengdu-Chongqing urban agglomeration as an

example, constructs the factor flow barrier index (FFBI) with multi-source

big data (Baidu Migration data, investment data of listed companies and

patent transfer data) and statistical data to evaluate the barriers of three

typical product factors flow (labor flow, technology flow and capital flow).

Moreover, quadratic assignment procedure regressionmodel is used to analyze

how system, economic, society, culture, policy and facility factors affect the

barrier of the three typical production factors flow. The results demonstrate

that: 1) The intensity of the three typical production factors flow of Chengdu-

Chongqing are the highest, and the intensity of three typical production factors

flow between the two cities and other cities are higher than that between other

14 cities. 2) In 120 city pairs, 87, 100 and 106 city pairs have positive FFBI of labor

flow, capital flow and technology flow, respectively. The FFBI of Chongqing

between other cities are mostly positive, indicating the three typical production

factors flow are hindered to some extent. Labor flow is less hindered than

capital flow and technology flow. 3) Administrative division relationships and

administrative level differences have important impact on the barriers of the

three typical production factors flow. City pairs belonging to different provincial

administrative regions or within the same administrative level have larger FFBI.

The barrier of labor and capital are positively affected by the transportation cost

and the similarity of the industrial structure, respectively. The framework and

findings are of great significance for revealing the formation mechanism of the

barrier of production factors flow and provide some guidance for promoting the

free flow of production factors and forming a new pattern of high-quality

development in the Chengdu-Chongqing Urban Agglomeration.
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1 Introduction

Benefiting from economic globalization and China’s reform

and opening-up policy, China has experienced rapid economic

growth in the past 4 decades. In 2021, China’s GDP reaches

US$17.7 trillion, accounting for over 18% of the global economy.

However, the trend of anti-globalization has appeared since the

2008 financial crisis, influencing the way and efficiency of global

resource allocation and changing the world economic pattern

(Andreas et al., 2020; Duan and Jiang, 2021). To this end, the

Chinese government proposes to build a new development

pattern with the domestic cycle as the main body and the

domestic and international dual cycles promoting each other

(“dual circulation” development pattern), and takes high-quality

development as the goal of economic development. It is

foreseeable that China’s economic development will put more

emphasis on efficiency, coordination and comprehensiveness in

the future. Improving resource allocation efficiency can directly

improve total factor productivity, which is considered to be the

most important driving force for high-quality development (Xu

et al., 2022).

Production factors are the source and basis of social

production, which generally consist of six important

components: natural resources, capital, labor, technology,

management and information (Feldstein and Horioka, 1979;

Li and Miao, 2017; Wu et al., 2017). Generally speaking, the

stronger the ability of the region to gather production factors,

the greater the development potential. Production factors are

scarce and profit-oriented, which will produce cross-regional

flow under the guidance of the market (Guo and Zhang, 2017).

When production factors cannot flow freely, economic

cooperation between regions is reduced and more duplicative

industries are built, thereby reducing overall economic

efficiency (Wang and Yang, 2021). Promoting the free flow

of production factors is an important way to improve resource

allocation and realize the integrated development of the

regional economy (Walz, 1997; Chu et al., 2018; Chen, 2020;

Yang et al., 2022). Therefore, promoting the free flow of

production factors is an important starting point to achieve

high-quality development for China. According to the Outline

of the 14th Five-Year Plan (2021–2025) for National Economic

and Social Development and Vision 2035 of the People’s

Republic of China, promoting the smooth flow of resources

is one of the key tasks to build the “dual circulation”

development pattern. To deepen the reform of market-based

allocation and promote the independent and orderly flow of

production factors, the “Opinions on building a more perfect

institutional mechanism for the market-oriented allocation of

factors” was proposed by China government. However, due to

institutional mechanisms and other reasons, there are still some

obstacles that affect the flow of production factors, especially in

the western regions where the level of social and economic

development is relatively backward (Fan, 2022).

The Chengdu-Chongqing urban agglomeration is the region

with the highest development level and greatest development

potential in western China. It stretches across the two provincial

administrative regions of Sichuan and Chongqing and has a

population of more than 95 million. In 2021, the GDP of the

Chengdu-Chongqing urban agglomeration has exceeded

US$1 trillion, accounting for 30.8% of the western regions.

However, compared with the eastern coastal regions, the

Chengdu-Chongqing urban agglomeration is still characterized

with low flow intensity of production factors and insufficient

coordination of regional development (Shi and Pan, 2021).

Taking the Chengdu-Chongqing urban agglomeration as the

study area, this study evaluates and analyzes the barriers to

the three typical and representative production factors, labor,

capital and technology.

The contributions of this study are as follows. First, unlike

most current studies focusing on the intensity of production

factors flow, this study focuses on the barriers of production

factors flow. Second, this paper constructs the factor flow barrier

index (FFBI), which can quantitatively evaluate the factor flow

barrier. Finally, the quadratic assignment procedure (QAP)

regression model is used to analyze the causes of the barriers

of labor, capital and technology flow. This article endeavors to

provide a better understanding of the barrier of production

factors flow, which is of great significance to the high-quality

development of economy in China.

The remainder of this paper is organized as follows. The

literature on production factors flow is reviewed in Section 2. The

research methods, including the study area, data and analytical

methods are explained in Section 3. Section 4 elaborates the

analysis of the strength and barrier of typical production factors

flow. Section 5 concludes the research findings and suggests

avenues of future research.

2 Literature review

With the improvement of transportation and

communication facilities and the deepening of social,

economic and cultural exchanges, the flow of people,

materials, information and other elements between regions is

accelerated, which attracts the attention of researchers

(Mitchelson and Wheeler, 1994; Karemera et al., 2000; Dash

and Rae, 2016). (Castells 1996) proposed the concept of flow

space and considered flows to be real relational data that can
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reflect interactions between cities. The spatial agglomeration and

diffusion of factors caused by the flow of various factors

profoundly shape the regional spatial structure (Moll et al.,

2017). Among these factors, the flow of production factors

such as labor, capital, technology and information is positively

correlated with resource allocation efficiency and is considered to

be an important factor affecting economic growth and regional

coordinated development, drawing widespread attention under

the background of high-quality development (Yin et al., 2021;

Zhou et al., 2022).

Since the spatial immobility of natural resource factors and

the difficulty in quantifying flow intensity of management and

information factors, existing studies mainly focus on the three

production factors of labor, capital, and technology and explore

the flow intensity of these production factors (Ben David, 2010;

Zhou et al., 2019; Ding and Sui, 2021). At present, there are two

kinds of methods to measure the flow intensity of production

factors. The first method is to use gravity model, breaking point

model and potential model to simulate the flow intensity of

production factors based on the relevant statistics (Wang et al.,

2017; Zheng et al., 2020). For example, Lottum andMarks (2011)

applied gravity model to estimate the interprovincial migration

in Indonesia. Niu et al. (2018) used improved breaking point

model to estimate the flow intensity of people and applied to the

urban hinterland range division. This method only considers the

size of relevant statistical indicators and the geographic distance

between cities when simulating the intensity of factors flow, often

deviates with the data of the actual survey (Jung, et al., 2008),

which can be considered as an effective measure under natural

conditions. Another method is to use multi-source big data to

measure the flow intensity of factors or substitute them with

parameters (Wang et al., 2017). For example, (Li et al., 2022),

measured the intensity of people flow in Northeast China based

on Tencent location big data. (Jin et al., 2018). fetched

transaction records from Jingdong Mall website to reflect the

intensity of provincial capital flow. (He et al., 2022). used patent

transfer data and venture capital data between cities to analyze

the intensity of production factors flow in Beijing-Tianjin-Hebei

region. With the development of information technology, this

method has become the main method to measure the intensity of

factors flow. Relatively speaking, evaluating the barrier of

production factor flow is of greater significance in promoting

the free flow of production factors. However, few studies

addressing the evaluation methods for the barrier production

factor flow.

Many studies have focused on the influence factors that affect

the production factors flow (Young, 2000; Xie and Lin, 2016).

Geographical distance, economic development, innovation

environment and administrative level are considered to be the

main factors affecting the intensity of production factors flow

(Torre, 2008; Gao et al., 2021; Gui et al., 2021). QAP regression

model, Geodetector and Tobit model are commonly used to

identify influence factors affecting the intensity of production

factors flow. For example, using Tobit regression model, (Wang

et al., 2022), concluded that factors such as city administrative

level and inter-city innovation cooperation have significant

effects on patent transfer in Northeast China. In the existing

research on the reasons for the formation of production factors

flow obstacles, it is generally believed that the institutional

differences between cities and local protectionism brought

about by administrative division are the fundamental reasons

for restricting the free flow of production factors (Zhang et al.,

2018; Dong and Chi, 2020). However, the above conclusions lack

the support of quantitative models, and few studies have paid

attention to the influence of cultural differences, planning

guidance and other factors on the barriers of production

factors flow.

To sum up, although the existing research has carried out

many fruitful explorations on production factors flow, there are

still some shortcomings. First, the existing studies mostly focus

on the measurement of the intensity of a single production factor

flow, so it is difficult to reflect the intensity of production factors

flow between cities as a whole. Second, it ignores the quantitative

measurement of barriers to production factors flow, which is very

important for evaluating the efficiency of resource allocation.

Finally, few studies have used quantitative models to analyze the

multifaceted factors that cause the barriers of production factors

flow and their mechanisms. Therefore, for the three production

factors of labor, capital, and technology, this paper attempts to

establish a quantitative method to measure the barrier of

production factor flow and use quantitative models to identify

influence factors that affect the barriers of different production

factors flow.

3 Data and methodology

3.1 Study area

The Chengdu-Chongqing urban agglomeration is seated in

Sichuan Province and Chongqing City in Southwest China.

Surrounded by mountains, it is a relatively independent

economic zone (Figure 1). The Chengdu-Chongqing urban

agglomeration covers an area of 185,000 square kilometers and

consists of two central cities, Chengdu and Chongqing, and other

14 cities (Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang,

Leshan, Nanchong, Meishan, Yibin, Guangan, Dazhou, Yaan,

Ziyang), among which, Chongqing is one of the four

municipalities directly under the Central Government in China,

Chengdu is the capital of Sichuan Province, and other 14 cities are

all prefecture-level cities under the jurisdiction of Sichuan

Province. Since ancient times, this area has fertile land and

abundant products, which gave birth to the Bashu culture with

the Ba culture and Shu culture as the main body. In 2021, the per

capita GDP has exceeded US$10,000, which is quite close to the

average level in China.
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In 2021, the Central Committee of the Communist Party of

China and the State Council officially issued the “Outline of the

Construction Plan for the Chengdu-Chongqing Economic Circle”,

focusing on promoting the Chengdu-Chongqing urban

agglomeration to become a growth pole for China’s high-

quality development in the future. In recent years, cooperation

between cities in the Chengdu-Chongqing urban agglomeration

has becomemore intensive, and the intensity of production factors

flow has tended to increase. In order to give full play to the leading

role of Chengdu and Chongqing in the development of

surrounding areas, the Sichuan Provincial People’s Government

and the Chongqing Municipal People’s Government have issued

the “Chengdu Metropolitan Circle Development Plan” and

“Chongqing Metropolitan Circle Development Plan”.

3.2 Data sources

Three types of big data, including Baidu Migration data,

enterprise investment capital data and patent transfer data are

used in this study. Among them, Baidu Migration is a mobile app

based on big data system recording movements of mobile phone

users and is commonly used for population and labor mobility

research (Zhan et al., 2020). This paper screens out the

population flow data between cities in the Chengdu-

Chongqing urban agglomeration from January 1 to 14, 2020,

fully considering working days, rest days and holidays population

inflows and outflows. Enterprise investment capital data comes

from the Qixinbao website (https://www.qixin.com/). By

screening the location of investing companies and invested

companies, we build a 16 × 16 matrix of mutual investment

between cities in 2020. Similarly, patent transfer data is obtained

in a similar manner, and its source website is inCopat (https://

www.incopat.com/).

In addition, this paper also cites a number of statistical

indicators, such as GDP, per capita GDP, urbanization rate,

gross deposits of financial institutions, and the number of patent

authorizations, mainly from the “Sichuan Statistical Yearbook

2021” and “Chongqing Statistical Yearbook 2021”.

3.3 Empirical model

A research framework is developed in this study to achieve

the research objectives. Firstly, based on multi-source big data

and statistical data, the intensity of three kinds of production

factors flow is respectively measured by parametric substitution

and improved gravity model. Secondly, the factor flow barrier

index (FFBI) is established to evaluate the barriers of production

factors flow. Finally, the QAP regression model is used to analyze

the factors affecting FFBI.

3.3.1 Measuring the intensity of production
factor flow

This paper utilizes population migration data to reflect the

intensity of labor mobility due to the difficulty in obtaining the

amount of labor transfer. Patent transfer and enterprise

investment are the main forms of capital and technology flow,

so the data of patent transfer and enterprise investment amount

can be used to represent the intensity of capital and technology

FIGURE 1
Study area.
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flow between cities. Table 1 shows the formulas for calculating

the flow intensity of three kinds of production factors.

In addition, the improved gravity model is applied to estimate

the intensity of production factors flow under natural conditions.

Gravity model is a theoretical model proposed based on the law of

universal gravitation to measure the strength of the connection

between regions (Tinbergen, 1966; Daniel, 2006). Scholars usually

use some aggregate indicators instead of mass to improve the

traditional gravitational model and apply it to the study of distance

decay effects and spatial interactions (Atif et al., 2016; Saleh et al.,

2019). This study takes the total population, the total deposits of

financial institutions, and the total amount of patent authorization

as the total scale of labor, capital, and technology in gravity model,

respectively. Table 2 shows the formulas for estimating the

intensity of three kinds of production factors flow.

3.3.2 Evaluating the barrier of production
factor flow

The intensity of production factor flow calculated using

multi-source big data is often different from that estimated

based on improved gravity models. These intensity difference

can reflect the degree of deviation between the intensity of the

real factor flow and that under natural conditions, which can be

evaluated by FFBI. The calculation formula of FFBI is as follows:

FFBIij � 1 − Iij∑16
i�1,j�1Iij

÷
Iij′∑16

i�1,j�1Iij′

Where FFBIij is the FFBI between city i and city j. Iij is the

calculated intensity of a production factor flow. Jij is the

estimated intensity of a production factor flow. Using this

formula, the FFBI of labor, capital, and technology flows

between the 16 cities in the Chengdu-Chongqing urban

agglomeration can be calculated. If FFBIij is a positive value,

it means that there is an obstacle to the flow of factor between

cities i and j. The larger the value of FFBIij, the stronger the

obstacle. If FFBIij is a negative value, it means that there is a

promotion effect on the flow of factor between cities i and j. The

larger the value of FFBIij, the stronger the promotion effect. If

FFBIij is equal to 0, it means that the flow of elements between

cities i and j is close to the natural state.

3.3.3 QAP regression model
QAP is a resampling-based method that has been widely used

in measuring “relationships” in relational data, which can avoid

the collinearity problem caused by relational data regression (Liu,

2007; Ju and Sohn, 2015; Lee et al., 2016). QAP analysis can be

divided into QAP correlation analysis and QAP regression

model. QAP correlation analysis compares the lattice values

corresponding to two or more square matrices to give the

correlation coefficients between the matrices, and conducts

non-parametric tests on the coefficients (Zhang et al., 2020; Li

et al., 2021). Based on the permutation of matrix data, QAP

regression model studies the regression relationship between

multiple matrices and one matrix, and at the same time

evaluates the significance of R-squared (Cranmer et al., 2017;

Chong et al., 2018). In recent years, the model has been

introduced by some scholars into the study of production

factors flow (Wang et al., 2021).

TABLE 1 Formulas for calculating the intensity of production factors flow.

Variables Formula Description

The intensity of labor flow Lij � Li,j + Lj,i Lij is the calculated intensity of labor flow. Li,j and Lj,i are the number of population flowing from city i to city j and from
city j to city i, respectively

The intensity of capital flow Cij � Ci,j + Cj,i Cij is the calculated intensity of capital flow.Ci,j andCj,i are the total investment flowing from city i to city j and from city j
to city i, respectively

The intensity of
technology flow

Tij � Ti,j + Tj,i Tij is the calculated intensity of technology flow. Ti,j and Tj,i are the number of patents transferred from city i to city j and
from city j to city i, respectively

TABLE 2 Formulas for estimating the intensity of production factors flow.

Variables Formula Description

The intensity of labor flow Lij′ � Li × Lj
Dij

Lij′ is the estimated intensity of labor flow, Li and Lj are the total population of city i and city j, respectively. Dij is the
geographical distance between cities i and j

The intensity of capital flow Cij
′ � Ci × Cj

Dij
Cij
′ is the estimated intensity of labor flow, Ci and Cj are the total deposits of financial institutions of city i and city j,

respectively. Dij is the geographical distance between cities i and j

The intensity of technology flow Tij
′ � Ti × Tj

Dij
Tij
′ is the estimated intensity of labor flow, Ti and Lj are the total amount of patent authorization of city i and city j,

respectively. Dij is the geographical distance between cities i and j
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Based on the QAPmodel, this paper reveals the determinants

of the barrier of three kinds of production factors flow from the

perspectives of system, economy, society, culture, policy and

facility, to better explain the mechanism of FFBI. Among these

perspectives, the system mainly considers administrative

divisions and administrative levels. In the economic aspect,

the difference of per capita GDP is selected as a representative

variable. Since the urban-rural dual structure is an important

feature of Chinese society, the model selects the difference in the

urbanization rate as a social variable. In terms of culture, the

main consideration is that the Chengdu-Chongqing urban

agglomeration can be divided into the Ba cultural area

(Chongqing, Nanchong, Guangan and Dazhou) and the Shu

cultural area (Chengdu, Zigong, Luzhou, Deyang, Mianyang,

Suining, Neijiang, Leshan, Meishan, Yibin, Yaan, Ziyang) in

space. Planning can reflect policies that guide the

development of space, and cities in the same metropolitan

area tend to be more closely linked. The planning scope of

Chengdu Metropolitan Circle includes Chengdu, Deyang,

Meishan and Ziyang. And the planning scope of Chongqing

Metropolitan Circle includes Chongqing and Guangan. In terms

of facility, the shortest car travel time is mainly used as a variable

to measure the convenience of transportation facilities. The

definition of variables is as Table 3. Based on the above

process, the study establishes seven 16 × 16 independent

variable matrices.

4 Results and analysis

4.1 The intensity of production
factors flow

4.1.1 The intensity of production factors flow
calculated by multi-sources big data

Using natural breaks in ArcGIS, we divided the intensity

of three typical production factors flow calculated by multi-

sources big data into five grades (the lowest, lower, medium,

higher and the highest). The colors from blue to red indicate

the intensity from low to high (Figure 2). In terms of labor

flow, the factors flow intensity of Chongqing-Chengdu,

Chengdu-Deyang and Chengdu-Meishan are at the highest

level; the factors flow intensity of Chongqing-Guangan,

Chengdu-Ziyang and Chengdu-Nanchong are at higher

level. Chengdu-Suining has the highest capital flow

intensity. Chongqing-Chengdu, Chengdu-Leshan, Chengdu-

Deyang and Chengdu-Mianyang are at the second level.

Chongqing-Chengdu and Chengdu-Deyang are at the

highest level of technology flow intensity. after these are

Chengdu-Meishan and Chengdu-Suining. It shows that

Chongqing and Chengdu are the two core cities in the

Chengdu-Chongqing urban agglomeration, playing

important dominant roles in the three typical production

factors flow network, and Chengdu plays an even bigger

role than Chongqing. The intensity of labor, capital and

technology flow between other 14 cities are all medium or

below.

4.1.2 The intensity of production factors flow
estimated by improved gravity model

We also divided the intensity of three typical production

factors flow estimated by improved gravity model into five

levels at natural breaks (Figure 3). Whether it is labor mobility,

capital mobility or technological mobility, Chongqing-Chengdu

has the highest intensity of factors flow. Chongqing and

Chengdu are at the centre of the production factors flow

network with the most intensive flows with other cities. For

example, the intensity of labor flow and capital flow of

Chengdu-Deyang, Chengdu-Mianyang, Chengdu-Meishan

are at the highest level. The intensity of technology flow of

Chengdu-Deyang and Chengdu-Mianyang are at higher level.

The intensity of labor flow of Chongqing-Luzhou, Chongqing-

Nanchong, Chongqing-Guangan, Chongqing-Dazhou are also

at higher level. Except for Deyang-Mianyang, the intensity of

labor, capital and technology flow between other 14 cities are all

medium or below.

TABLE 3 Definition of explanatory variables.

Aspect Variables name Abbreviation Definition

System Administrative division relationship ADR If two cities belong to the same provincial-level administrative region, then ADR = 0;
Otherwise, ADR = 1

Administrative level differences ALD If two cities have the same administrative level, ALD = 0; Otherwise, ALD = 1

Economic Difference in per capita GDP D_GDP Difference between GDP per capita of two cities

Society Difference in urbanization rate D_UA Difference between urbanization rates of two cities

Culture Whether belong to the same cultural
division

CD If two cities belong to the same cultural zone, then CD = 0; Otherwise, CD = 1

Policy Whether belong to the same metropolitan
area

MA If two cities belong to the same metropolitan area, then CD = 0; Otherwise, CD = 1

Facility Minimum driving time MDT The minimum travel time by car between two cities

Frontiers in Environmental Science frontiersin.org06

Zhang et al. 10.3389/fenvs.2022.1048378

246

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1048378


4.2 The barrier of production factors flow

Figure 4 illustrates the FFBI of labor, capital and

technology flow between 16 cities in the Chengdu-

Chongqing urban agglomeration. The colors of line and

grid from green to red indicate the FFBI from negative to

positive, reflecting the production factors flow from being

promoted to being hindered.

4.2.1 The barrier of labor flow
As shown in Figure 4A, the FFBI of labor flow between

Chongqing and other cities are all positive, showing that the

labor flow between Chongqing and other cities are hindered.

Except for Chongqing, the FFBI of labor flow of the city pairs

composed by Chengdu and other 14 cities are negative,

indicating that labor flow between Chengdu and other

14 cities are promoted to a certain extent. Another

observable spatial pattern is that the FFBI of labor flow is

smaller between closed cities. For example, the FFBI of

Chongqing-Guangan, Chongqing-Dazhou, Choingqing-

Ziyang and Chongqing-Luzhou are smaller, indicating the

impediment of labor flow between Chongqing and these

neighboring cities are relatively small.

4.2.2 The barrier of capital flow
Unlike labor flow, the FFBI of capital flow of Chongqing-

Suining is negative. That is to say, the capital flow of the city

pairs composed by Chongqing and other cities are not all

hindered. The positive and negative FFBI values of the city

pairs composed by Chengdu and other cities are almost equal.

Among the city pairs consist of Leshan, there are over five ones

where capital flow is facilitated. Notably, the FFBI of capital flow

between Ziyang and other cities are all positive, showing that

the capital flow between Ziyang and other cities are all hindered,

which is similar with the capital flow between Nanchong and

other cities. Overall, the laws of capital flow are more complex

than labor flow, and not much related to spatial proximity

(Figure 4B).

FIGURE 2
The intensity of labor, capital and technology flow calculated by multi-sources big data.

FIGURE 3
The intensity of labor, capital and technology flow estimated by improved gravity model.
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FIGURE 4
The FFBI of labor, capital and technology flow.
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4.2.3 The barrier of technology flow
As shown in Figure 4C, the FFBI of technology flow of the

city pairs involving Chongqing, Zigong, Ziyang are all positive,

showing that the technology flows of these city pairs are

hindered. The positive and negative FFBI values of the city

pairs composed by Chengdu and other cities are almost equal.

Among the city pairs involving Yibin and Guangan, the

technology flow of three city pairs are facilitated. The FFBI of

technology flow of Chengdu-Deyang and Chengdu-Luzhou is the

only negative values in the city pairs involving Luzhou and

Deyang, respectively.

4.3 Determinants of the barrier of typical
production factors flow

By importing the multidimensional independent variable

matrices into the QAP regression model, and then having

performed 2000 times of matrix random permutations to

estimate the standard errors, the regression results are obtained.

Table 4 reports the results of the QAP regression model. The model

fitting result varies from 0.028 to 0.595, and the variables can better

explain the difference of the FFBI of labor flow between cities than

that of capital and technology flow.

In terms of labor flow, there are three variables that have an

impact on the FFBI between cities at a significance level of 5%,

they are ADR, ALD of system and MDT of facility, among which

ADR has a positive impact on the barrier of labor flow. In other

words, since Chongqing and other cities belong to different

provincial administrative regions, the intensity of labor flow

between Chongqing and other cities are hindered to a certain

extent. However, ALD has a negative impact on the barrier of

labor flow, indicating that cities at same administrative levels

have larger FFBI of labor flow.MDT exerts positive impact on the

barrier of labor flow. That is to say, the higher the cost of travel

time between two cities, the greater the impediment to labor flow.

As for the FFBI of capital flow, factors related to system and

society do exert influence. City pairs belonging to different

provincial administrative regions or within the same

administrative level have larger FFBI of capital flow, capital

flows are more hindered. D_UA of society has a positive

impact on the barrier of capital at a significance level of 10%,

indicating capital flow between cities with large urbanization

level gaps is more hindered.

The regression results also show that ADR and ALD of

system are the two factors affecting the barrier of technology

flow at a significance level of 10%. Similar to labor and capital

flow, city pairs belonging to different provincial administrative

regions but within the same administrative level have larger FFBI

of technology flow.

5 Discussion

5.1 Comparison among the barriers of the
three typical production factors flow

In 120 city pairs of the Chengdu-Chongqing urban

agglomeration, 87, 100 and 106 city pairs have positive FFBI

of labor flow, capital flow and technology flow, respectively. The

results show that the three typical production factors flow

between most cities are hindered to a certain extent and only

a small number of production factors flow between cities are

facilitated. For these city pairs, the FFBI of capital flow and

technology flow are also greater than that of labor mobility. Thus,

labor flow is less hindered than capital and technology flow.

Another notable phenomenon is that the FFBI of labor flow are

relatively lower in city pairs consisting of neighboring cities, but

the barriers of capital flow and technology between two cities are

not related to their spatial proximity obviously.

ADR, ALD of system have similar effects on the FFBI of the

three typical production factors flow, indicating that

TABLE 4 QAP regression Model on the FFBI of three typical production factors flow.

Aspect Variable Labor flow Capital flow Technology flow

Standardized
coefficient

p-Value Standardized
coefficient

p-Value Standardized
coefficient

p-Value

System ADR 0.576** 0.000 0.281** 0.044 0.157* 0.071

ALD -0.820** 0.000 -0.520** 0.023 -0.294* 0.092

Economy D_GDP -0.098 0.142 -0.077 0.291 -0.005 0.494

Society D_UA 0.182 0.132 0.366* 0.087 0.212 0.189

Culture CD 0.083 0.145 0.015 0.464 0.110 0.156

Policy MA 0.080 0.106 0.081 0.202 0.006 0.597

Facility MDT 0.408** 0.000 0.125 0.173 -0.083 0.237

R2 0.595 0.071 0.028

*, ** represent a significance level of 10% and 5%, respectively.
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administrative division hinders the three typical production

factors flow in the Chengdu-Chongqing urban agglomeration,

and the Chengdu-Chongqing urban agglomeration is still in the

stage of production factors agglomerated to high-level

administrative cities (Chongqing and Chengdu). The

difference is that time and space compression brought by

informatization makes the capital and technology flow no

longer subject to spatial distance, which is the reason why the

low significance of the MDT factor. The difference in

urbanization rate reflects the proportion of non-agricultural

production population between cities is similar, and the

industrial structure is more similar, which is an important

factor affecting capital flow. In addition, D_GDP of economic

and CD of culture have no significant impact on the FFBI of the

three typical production factors flow, indicating that differences

in economic development levels and cultural are not obstacles to

the three typical production factors flow in the Chengdu-

Chongqing urban agglomeration. Although “Chengdu

Metropolitan Circle Development Plan” and “Chongqing

Metropolitan Circle Development Plan” have been formulated

in the past 2 years, the effect of MA on the barrier of the three

typical production factors flow is not obvious, indicating these

two plans have not guided the free flow of production factors due

to their short implementation time.

5.2 Research and policy implications

The concept of high-quality put forward by Chinese

government emphasizes the high efficiency and coordination

of development. Promoting the free flow of production factors

helps to improve the efficiency and fairness of resource

allocation, which is the key to high-quality development.

Compared with most existing studies focusing on the flow

intensity of production factors, this study further explores the

barriers of three typical production factors flow and their

influencing factors, which is a more direct support for the

research on high-quality development paths. Calculating and

estimating the intensity of production factors flow by multi-

source big data and improved gravity model, based on which the

FFBI is established to evaluated the barrier of labor flow, capital

flow and technology flow. Moreover, three QAP regression

models are established to identify the factors that determine

the barriers of three typical production factors flow. This study

provides a methodological reference for factors flow related

research.

In addition, the analysis of determinants of labor flow,

capital flow and technology flow in the Chengdu-Chongqing

urban agglomeration highlights some implications that could

assist governments in evidence-based policymaking and

policy outputs. Institutional reforms such as exploring the

mode of moderate separation of administrative regions and

economic regions and cultivating sub-central cities are very

necessary, which will effectively break the barriers of the three

typical production factors. In order to promote the free flow of

labor, expressway network should be further optimized and

strengthened, especially the traffic lines between major cities

of Sichuan province and Chongqing. In addition, in order to

form the situation of coordinated industrial development and

efficient capital flow, unified industrial planning of the

Chengdu-Chongqing urban agglomeration should be

compiled.

5.3 Limitations and uncertainty

This research also has several limitations, which also

suggests avenues for further research. One limitation relates

to the accuracy of using FFBI to evaluate the barrier of

production factors flow. The improved gravity model used

in this study mainly draws on previous studies (Wu et al.,

2017), and its estimation of the intensity of the three

production factors flow under natural conditions has not

been fully verified, which may affect the evaluation results

of factors flow barriers to some extent. The second concern is

related to the representativeness of the multi-source big data

used to calculate the intensity of three typical production

factors flow. For instance, Baidu Migration data mainly

reflects population flow (Zhang et al., 2021), including not

only labor flow data, but also population flow for other

purposes such as tourism flow. Thirdly, our research

evaluates the barrier of labor, capital and technology flow

by FFBI, insufficient attention goes to other production

factors such as natural resources, management and data for

some reason. These shortcomings will be addressed through

model optimization and data source supplement, which we

may explore in future research to establish a more

comprehensive understanding of production factors flow.

6 Conclusion

In the analysis of the Chengdu-Chongqing urban

agglomeration, three meta-findings about the barriers of

three typical production factors flow stand out. First,

although there are differences in the intensity of three

typical production flow measured by different methods,

Chongqing and Chengdu are at the centre of the three

typical production factors flow network with the most

intensive flows with other cities, but the intensity of labor,

capital and technology flow between other 14 cities are all

relatively weak. Second, the three typical production factors

flow between most cities are hindered to a certain extent and

only a small number of production factors flow between cities

are facilitated. Labor flow is less hindered than capital and

technology flow. The barriers of three typical production
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factors flow between Chongqing and other cities are nearly all

hindered. And third, administrative division hinders the three

typical production factors flow in the Chengdu-Chongqing

urban agglomeration. Chengdu and Chongqing, as two cities

with high administrative level, their production factors flow

with other cities are facilitated. In addition, the barrier of labor

and capital flow are positively affected by the transportation

cost and the similarity of the industrial structure, respectively.

This study aims to describe the barriers of three typical

product factors flow (labor flow, technology flow and capital

flow) by FFBI and identify the influence factors by QAP

regression model, which help to expand the current research

dimension of production factor flow. Understanding the

differences in influence factors of the barriers of the three

typical production factors flow is greatly beneficial for regional

and urban planners to make breakthroughs in the development

path of the integration mechanism of urban agglomeration.

Administrative division is the key to the barriers of the three

typical production factors flow in the Chengdu-Chongqing

urban agglomeration, and we should be aware of the

difference of other influence factors between the three typical

production flow and aim at the target in promoting the free and

orderly flow of production factors (Li et al., 2021).
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Rainfall events have become more frequent and more serious, leading to

rampant floods. Floods in urban areas greatly impair the serviceability of the

transport system and cause disruption to commuting. However, little is known

about the commute response under various rainfall scenarios in developing

country cities despite the uncertainty of climate change. A high-resolution

flood modeling module and a commute simulation module were integrated to

examine the impact on commuting under floods. Flood maps under three

rainfall scenarios with increasing rainfall intensity and duration were obtained,

and road vulnerability was assessed considering the speed drop. We

innovatively employed location-based service big data to perform commute

simulation under floods based on the shortest time cost principle. The results

show that a large amount of passable but affected commuters become

disconnected commuters as the rainfall intensity increases. Also, commute

loss of each traffic zone would not increase linearly, which means that the

emphasis and strategy of disaster prevention and mitigation are not the same in

different rainfall scenarios. We integrated hot spots of flood exposure, road

vulnerability, and commuting loss and found that there was inconsistent spatial

distribution between the three indicators. This indicates that areas need to take

different measures according to the local damage characteristics. This work

studied the relationship between severe weather conditions and commuting

activity performance at the city level and has important practical guiding

significance for building resilient cities.

KEYWORDS

urban flood, flood mapping, road vulnerability, commute simulation, location-based
service (LBS) data

1 Introduction

Under the backdrop of climate change and its uncertainty, studies predict that future

rainfall intensity and frequency would continue to increase (Kendon et al., 2012; Birch,

2014). With dense population and economic activities, cities have high land-use density

and high proportion of impervious cover area. Moreover, due to the promotion of
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intensive and economical land use, increasing underground

space mining and other construction activities have further

greatly changed the urban built environment (Zhang et al.,

2019). These changes, coupled with inadequate response by

drainage facilities, eventually led to floods. Due to the high-

intensity utilization of urban space, road and drainage systems

have become two highly overlapped systems related to surface

floods. When the drainage system is insufficient or poorly

managed to accommodate the runoff caused by high-intensity

rainwater, the road system would be the first to be directly

affected (Singh et al., 2018; Yang et al., 2019). Flood damage

to road systems will hinder urban traffic and greatly weaken the

service capacity of urban transport systems (Fu et al., 2014;

Borowska-Stefańska and Wiśniewski, 2018). To mitigate the

impact of flood disruptions, it is necessary to obtain

knowledge of traffic response in flood scenarios. Flood

response is often passive and lacks proactive preventive

research in many cities of developing countries. Also, many

researchers have studied coastal cities to explore the impact of

floods on urban commuting (Keeler et al., 2018; Kasmalkar et al.,

2020a). However, there are few case studies exploring traffic

response under floods in inland cities. Therefore, it is very urgent

to evaluate urban road vulnerability and traffic response of inland

cities in developing countries under floods caused by bad

weather.

A recent literature suggests that road vulnerability in bad

weather is receiving increasing attention. A more commonly

accepted definition of road network vulnerability is the

“susceptibility” or “sensitivity” of road networks to disruptions

(Berdica, 2002). According to different research interests of the

research field, the value dimensions of performance indicators to

reveal road vulnerability are different (Jenelius et al., 2006;

Balijepalli and Oppong, 2014; El-Rashidy and Grant-Muller,

2014; Mattsson and Jenelius, 2015). Many scholars in the field

of transportation networks focused on measuring the impact of

local road failure on the overall road network system from a

global perspective (Demirel et al., 2015; Casali and Heinimann,

2019). Scholars who focus on spatial justice tend to reveal local

road damage in spatial units or at the scale of road sections (Liu

et al., 2021). Many researchers often use critical thresholds based

on the work of Shah et al. (2021) to determine whether a road

section can work. Roads that flooded deep below the threshold

are considered normal, while roads that flooded above the

threshold are removed during road network modeling (Chen

et al., 2015; Jie et al., 2016; Coles et al., 2017). This binary

assumption means that the impact on the specific service

performance of roads is ignored. Because flooded roads do

not necessarily mean complete failure, it is possible for them

to travel at a lower speed. Liu et al. (2021) used the actual

monitoring data to distinguish between smooth or congested or

severely congested roads and to measure road vulnerability in

floods, which also means that road damage within the same

threshold is seen as homogenized. Speed, as an important service

performance of road infrastructure, is an important measure

under disturbance, but has not been given sufficient attention in

the current road vulnerability research. Pregnolato et al. (2017)

simulated the relationship between flood depth and the vehicle

speed and plotted the relationship. The characterization of this

relationship opens up the space for discussion of the speed

impact details of flooded roads. Using this equation, the

reduction of network speed during floods can be calculated.

This study will also use the depth speed curve to further modify

the speed of flooded roads to simulate residents’ routes based on

the shortest travel time rule to explore commuting responses in

flood scenarios.

So far, traffic response, especially the commuting theme

under floods, has attracted the attention of many scholars and

accumulated a large amount of contributions. Popular topics for

commuting exposure in floods mainly include the accessibility

assessment between regions, prediction of the amount of

impassable commuters, and the estimation of increased

commuting time costs and their economic costs (Aghababaei

et al., 2021; Borowska-Stefańska and Wiśniewski, 2018;

Debionne et al., 2016; Hauer et al., 2021a; Liu et al., 2021).

Some studies have found knowledge of local commuting

disruption and road performance under flood events by

analyzing the actual traffic data during floods (Chung, 2012;

Liu et al., 2021). The advantage of this data-driven method is that

the results are credible. However, due to the limited financial and

monitoring resources, it is difficult for most cities to collect

spatiotemporal commuting behavior data in real disasters.

Therefore, it is necessary to grasp the knowledge of

commuting response in flood events in advance through

simulation methods. In addition, the uncertainty of climate

change also makes it necessary to know in advance under

various rainfall scenarios. The development of hydrological

models makes it possible to simulate urban waterlogging with

high precision. Integrating the flood simulation module and the

commuting simulation module that can be flexibly applied to

various flood scenarios, to measure the commuting impact under

flood events, is the common method used in many studies

(Kasmalkar et al., 2020b; Tsang and Scott, 2020; Hauer et al.,

2021a).

As for commuting simulation, it is important to accurately

clarify the commuting demands of residents. The commonly

used method is the four-step traffic assignment method,

including trip generation, trip distribution, modal split, and

traffic assignment (Sharma and Chandel, 2020). A commuting

survey sampling dataset was also employed to determine travel

OD demand (He et al., 2021a). Many studies employed the

gravity model and the Monte Carlo method through

demographic data and other spatial data of employment to

estimate travel OD (Hu and Downs, 2019; Liu et al., 2021).

Although this method can be verified by statistical data to some

extent, it is still not the real commuting OD of urban residents

but only a proxy indicator for commuting OD demand. With the

Frontiers in Environmental Science frontiersin.org02

Liu et al. 10.3389/fenvs.2022.1056854

254

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1056854


development of information technology, geographic commuting

big data have gradually been applied to urban studies (Zhao and

Cao, 2020; An et al., 2022). Many Internet companies have the

ability to collect location-based services’ request information

received from various applications loaded on residents’

electronic devices, and the location of urban residents’ homes

and workplaces can be calculated by clustering methods such as

the density-based spatial clustering of applications with noise

(DBSCAN) method (Wang et al., 2021). This kind of emerging

data can greatly help to promote commuting simulation under

floods. However, as far as we know, it is rare to see research that

incorporates this commuting big data into the hazard field to

guide analysis and decision-making. This study obtained flood

maps under various rainfall scenarios using a high-precision

hydrological model and attempted to use Baidu location-based

service (LBS) commuting big data to predict commuting

responses under floods, providing spatial information about

commuting disruptions, thereby contributing to the literature.

This study has three main objectives: 1) to determine road

vulnerability under multiple rainfall scenarios in combination

with the impact of floods on road speed; 2) to predict and

quantify the commute loss under different flood events; and

3) to explore the spatial hot spot patterns of flood exposure, road

vulnerability, and commute loss. This study integrates flood

modeling and spatial analysis to understand the commuting

response under different flood events, aiming to provide a

decision-making basis for disaster prevention and mitigation,

urban planning, and commuting resilience promotion.

The remainder of this article is organized as follows. Section 2

introduces the context of the study area, Wuhan City, the

experimental data and main methods including flood

modeling and commute simulation, and the hot spot analysis

methods used to explore the spatial patterns of flood exposure,

road vulnerability, and commuter impact. In Section 3, the

results of flood exposure are presented first, followed by the

description of road vulnerability and commuting loss. Also, we

integrated the hot spot analysis results of these three indicators

and explained the similarities and differences of spatial high-

value/low-value aggregation patterns. Section 4 is the discussion,

focusing on the theoretical value and application value of this

study and the limitation and the future direction. This article

concludes with Section 5.

2 Materials and methods

2.1 Study area description

Wuhan, as the capital of Hubei Province, is an important

industrial area, educational base, and transportation center in

China, located between 113°41′E-115°05′E and 29°58′N-31°22′N.
The terrain in the central urban area of Wuhan is low and flat,

with an average elevation of about 24 m, which is lower than the

average flood level of the Yangtze River (25.56 m, monitoring

data from 1865 to 2013). Therefore, Wuhan is often threatened

by floods in rainy seasons and has experienced frequent

rainstorms and waterlogging disasters in recent years (Liu

et al., 2021). On 18 June 2011, the maximum 24-h rainfall in

Wuhan reached 200.5 mm, and 88 locations in the urban area

were flooded. On 7 July 2013, the maximum rainfall was

increased to 258.5 mm. In June 2016, Wuhan suffered the

most severe flood disaster since 1998. The maximum rainfall

in a single day reached 582.5 mm, which paralyzed the traffic,

and nearly 200 major roads in the city were impassable

(Zhiqiang, 2016).

The central urban area of Wuhan was adopted as the study

area in this work, circled by the Third Ring Road, and we took the

traffic analysis zone (TAZ) as the smallest research unit

(Figure 1). TAZ was a commonly used research unit in the

current commuting analysis. We divided the TAZs based on the

road network data provided by Wuhan Geomatics Institute and

adjusted it according to the Wuhan Urban Planning Unit.

Finally, we obtained 512 TAZs in central Wuhan with an

average area of 0.91 km2.

2.2 Data acquisition and processing

The data used in this article are mainly used to support

hydrological simulation and commuting simulation. The types

and sources are shown in Table 1. The flood hydrological

simulation module mainly uses vector data including land use

data, digital elevation model data (DEM), drainage network

facilities data, and building data. The urban building data are

derived from the basic geographical conditions monitoring data

of Wuhan City in 2018, and the resolution of digital elevation

model (DEM) data is 10 m.

In the commuting simulation process, commuting OD data

come from location-based service (LBS) data collected by Baidu

whose base station records the user’s location point every 5s, and

the positioning accuracy in the main city of Wuhan is 50 m. In

this study, we collected all of the location records during

21 working days of June 2018. First, we merged all location

records into one dataset and then adopted the density-based

spatial clustering of applications with noise (DBSCAN) to cluster

the location points. If the clusters with large number point of

night time (21:00-8:00) were located in residence land, then its

geometric center was defined as the user’s residence location. In

the same way, clusters’ center of daytime (9:00-17:00) with work

land type was defined as the workplace. When the user stayed at

home, his dwell points stayed around the residence. When he

began to commute, the acquisition time of the first moving points

was the start time. Similarly, the acquisition time of the last

moving points near the workplace was the end time. Meanwhile,

his commuting trajectory was also recorded so that the

commuting distance, time, and speed can be calculated.
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Finally, more than 840,000 commuting OD data were identified

in central Wuhan with attributes of the user’s residence,

employment location, and commuting trajectory

characteristics (including commuting distance, time, and

speed). Furthermore, the transport network data were also

obtained from the General Survey and Monitoring of

Geography and National Conditions in 2018, which includes

attributes of road types, speed limits, and road width. The traffic

speed data were crawled from Amap (http://ditu.amap.com/)

based on the Python program, and the data acquisition time is

from 5 April to 11 April 2021.

2.3 Flood modeling

To capture the flood inundation situation of the area under a

set of rainfall scenarios, we used a hydrodynamic model to

perform hazard simulation instead of directly using flooding

FIGURE 1
Location of the study area: (A) Wuhan’s location in China; (B) Traffic analysis zones in Central Wuhan; (C) Roads in Central Wuhan.

TABLE 1 Names and sources of study data.

Analysis module Data name Data source Resolution

Flood modeling Land use data Hubei Provincial Department of Natural Resources 1 m

Digital elevation model (DEM) data Wuhan Institute of Water Science Researching in Hubei Province 10 m

Drainage facilities data Wuhan Institute of Water Science Researching in Hubei Province 10 m

Urban building data Wuhan Geomatics Institute 10 m

Commute simulation Commuting OD data Wuhan Geomatics Institute 50 m

Transport network data Wuhan Geomatics Institute 10 m

Traffic speed data Amap (http://ditu.amap.com/) —

Frontiers in Environmental Science frontiersin.org04

Liu et al. 10.3389/fenvs.2022.1056854

256

http://ditu.amap.com/
http://ditu.amap.com/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1056854


events records, which cannot satisfy the data demand of

continuous rainfall intensity sequence. The Wallingford

Software model for integrated catchment management

(ICM6.5) is employed in this study to produce outputs for

each time step of the simulation to give flood depths and

velocities. ICM6.5, integrating shallow drainage pipe network

and river channels, can construct one-dimensional and two-

dimensional water conservancy models of urban waterlogging for

comprehensive drainage simulation at high resolution (Sidek

et al., 2021). This study used the Chicago rainfall pattern and

considered rainfall intensity uniform across the model domain.

The rainfall series considered is summarized in Table 2. In this

study, we choose 10-year, 30-year, and 50-year floods to perform

hazard modeling, considering the local climate condition in

Wuhan. The degree of the most severe flood disaster in

Wuhan recently (in 2016) was basically close to a 50-year

flood (People’s Government of Hubei Province, 2016), and the

common rainfall intensity in summer is similar to that of a 10-

year flood. We add a 30-year flood between them in order to set a

continuous sequence.

The process of flood modeling during rainfall consists of

three main steps (Chen et al., 2016).

(1) Model building. Data of drainage facilities responsible for

rainwater discharge functions, including rainwater pipe

networks, drainage ports, pumping stations, and storage

lakes, were imported into InfoWorks ICM6.5, which was

commonly used in flood modeling (Sidek et al., 2021). The

catchment area was divided based on the terrain and image

data, and runoff generation parameters were determined

through the analysis of the underlying surface. The SWMM

(storm water management model) nonlinear reservoir

method (Xiong and Melching, 2005) (i.e., using the finite

difference method to approximate the continuous equation

and theManning equations) was used to simulate the surface

confluence process of subcatchment areas divided in the

runoff generation model.

(2) Model calibration and validation. We selected the actual

measurement data and facility operating condition data in

the water system during heavy rain from 12:00 on 30 June

2016 to 12:00 on 14 July 2016 to calibrate and check the

model. The maximum rainfall in this field on the 7th day is

582.5 mm (Wuhan National Meteorological Station), which

is the highest weekly rainfall since the meteorological record

ofWuhan City. After one-dimensional and two-dimensional

calibrations, the simulated water level and the monitored

water level of eachmonitoring station are evaluated using the

NSE (Nash–Sutcliffe coefficient) (Moriasi et al., 2007). The

closer the NSE to 1, the smaller the deviation between the

simulated value and the measured value, and the better the

simulation effect. NSE <0 means that the simulation

reliability is low, NSE >0.5 means that the simulation

result has good credibility, and NSE ≥0.65 means the

simulation result is very good and has high credibility.

The results of comparative analysis of calculated values of

the main lake nodes (see Supplementary Appendix SA1)

show that the overall agreement between the model

simulation results and the measured data after verification

is good.

(3) Model calculation. For a given scenario of rainfall, water

depth and velocity were calculated dynamically throughout

the simulation period and reported at each time step as each

subcatchment area (divided based on the terrain and image

data). However, with the huge amount of computation,

caution must be applied, the maximum inundation depth

instead of the dynamic changes during the entire process was

selected for subsequent road network analysis to reduce the

calculating burden. This is reasonable in this study as

residents are inclined to make driving decisions based on

the most severe submergence of road sections out of caution.

2.4 Commute simulation under floods

In order to compare the discrepancy between residents’

commuting distance and time under different scenarios, it is

necessary to distribute the commuting routes of every OD pair.

The simulation process is divided into three steps.

(1) OD pairs filtering and road network processing. Different

from the normal scenario, it is vital to consider the impact of

floods on the road under flood scenarios. When the flooded

depth exceeds 30 cm, the air intake of the vehicle will be

submerged, which will seriously affect the performance of

the vehicle (Shah et al., 2021). Therefore, the OD pairs and

roads located in areas with flood depth more than 30 cm

TABLE 2 Rainfall intensity of the simulated design rainfall scenarios with reference to Planning and Design Standards of Wuhan Drainage and
Waterlogging Prevention System (HubeiBureauofQualityandTechnicalSupervision, 2013).

Scenario Recurrence interval (year) Rainfall (mm) Duration (h)

A 10 205 24

B 30 273 24

C 50 303 24
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have been removed. Moreover, although roads with a water

depth of less than 30 cm can pass normally, the speed of

vehicles on this road will be limited. Pregnolato et al. (2017)

proposed a function that described the relationship between

the maximum vehicle speed and water depth under flood

scenarios (Eq. 1):

v(w) � 0.0009w2 − 0.5529w + 86.9448 (1)

where the speed v(w) is the limited maximum speed and w (0 <
w < 300 mm) is the depth of water. It should be noted that

commute simulations in normal scenarios can skip this step.

(2) Shortest path distributing. Based on the OD pairs’ location

and the construction of road network, commute route

distributions were implemented with

ArcMap10.5 software by the extensions module “network

analyst.” Assuming that the commuters tend to take the

least-time-cost path, we applied the new route option in the

network analyst to assign commute paths between origins

and destinations with the objective of minimizing time cost.

Each path’s commute distance and time can also be

calculated.

(3) Results verification. We compared our simulation results

under normal scenario to real commute time and distance in

original OD pair records of the LBS data. The Pearson

correlation coefficient (CORREL) and root mean square

error (RMSE) were used as evaluation indices. Figure 2

shows the fitting curves of the modeled and real commute

time and distance. The modeled results are highly consistent

with the real commute time and distance. The modeled time

and real time have a Pearson correlation coefficient of

0.913** (p < 0.01) and a root mean square error of 0.12,

while the distance has a Pearson correlation coefficient of

0.958**(p < 0.01) and a root mean square error of 1.79.

2.5 Hot spot analysis

Hot spot analysis (Getis-Ord Gi*) can be calculated by

ArcGIS software to obtain the spatial distribution of high-

value and low-value elements and clustering situation. The Z

score of the calculation result represents the multiple of standard

deviation, which can reflect the dispersion degree of the dataset.

A highly affected cluster area by flood surrounding a highly

affected area is called a hot-spot cluster. On the contrary, the less

affected area surrounded by a clustered area of low value is called

a cold spot clustered area (CAO et al., 2020). In this work, Getis-

Ord Gi* local statistics was used to identify statistically significant

hot spots and cold spots of TAZs affected by floods. The

calculation formula is shown in Eqs 2–4.

Gi � ∑n
i�1zhiki − �X∑n

i�1zhi

S

�������������
n∑n

i�1z
2
hi
−(∑n

i�1zhi)
2

n−1

√ (2)

�X � ∑n
i�1ki
n

(3)

S �
����������∑n
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2
i

n
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2

√
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FIGURE 2
Results verification: modeled commute time (A) and modeled commute distance (B).
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where Gi is the Z score of output result; ki is th statistic index of

TAZ i; zhi is the spatial weight between TAZ h and i; n is the total

amount of TAZ; X is the average of statistical index; S is the

standard deviation.

3 Results

3.1 Floodmodeling and exposuremapping

Taking the traffic analysis zones as the analysis unit, we

counted the flood area at different depths under the three rainfall

scenarios (Figure 3), including less than 15 cm, 15–30 cm, and

more than 30 cm, respectively. The results revealed that water

area of depth less than 15 cm increased the smallest, only from

2,679 to 3,176 ha, while water area of depth greater than 30 cm

increased the most of 2,228 ha. We use an indicator of flood

exposure to represent the comprehensive hazard degree. The

space of the traffic analysis zones (TAZs) that bears the disaster

was homogenized, while the degree of flood disaster is considered

and divided into three types including less than 15 cm, 15–30 cm,

and more than 30 cm. Then, AHP (analytic hierarchy process)

(Saaty, 1980) was adopted to derive the severity weight of the

three types of flood depths (see Supplementary Appendix SA2 for

the weight results). The flooded area of each traffic zone was

multiplied by the weight to obtain the flood exposure, and

subsequently, the product results were summarized and shown

at the scale of the traffic analysis zones. As the intensity of flood

increases, flood exposure of a 30-year flood became

approximately 1.7 times that of a 10-year flood, and flood

exposure of 50-year flood became more than twice the 10-

year flood exposure.

Figure 4 shows the spatial distribution of flood exposure

under three flood scenarios, and we put the spatial distribution

map of flood area under three rainfall scenarios in

Supplementary Appendix SA1). Under the 10-year flood

scenario, flood exposure of the whole area is relatively light,

and only three TAZs have more than 18.84 ha of standing water.

With the increase in rainfall intensity, areas seriously flooded

began to increase. Large patches of standing water emerged in

Qiaokou District and Jianghan District in the northwest. The

terrain in this area is relatively low and flat, combined with many

buildings, wide impervious surface, and poor drainage capacity,

resulting in serious water accumulation. Also, there was serious

water accumulation around East Lake, Shahu Lake, South Lake,

and other lakes. This may be due to the generally low terrain

around the lake. If the water storage capacity of the lake exceeds a

certain limit, it is prone to overflow when urban waterlogging

occurs; therefore, the areas around the lake are easily affected.

3.2 Vulnerability assessment of road
networks

Figure 5 shows the proportion of flooded road length under

different floods. In a 10-year flood, 10.53% of the roads are

flooded, and this ratio increases to 13.63% in a 50-year flood.

Among the flooded roads, flooded roads of 15–30 cm depth

accounted for the highest proportion and increased themost with

the increase in flood intensity, which increased twice by

123.19 km from a 10-year flood to a 50-year flood. Flooded

roads of depth more than 30 cm, or failed impassable roads, also

increase in length as the flood intensity increases. The impassable

road in the 10-year flood is 2.35 km, which increases to 3.92 km

FIGURE 3
Characterization of the flood area and flood exposure.
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in the 30-year flood and finally to 11.99 km in the 50-year flood,

more than five times that in the 10-year flood.

The first line of Figure 6 shows the distribution of the roads

affected by standing water under each flood scenario within the

Third Ring. It can be seen that the distribution pattern of the

affected roads is consistent with the standing water, and the

declined velocity of the road in the area with severe stagnation is

relatively high. Specifically, affected roads were mainly present in

Jiang’an District, Jianghan District, and Jiangdi Street of

Hanyang District in the northwest, as well as the area around

East Lake. In terms of the changes in roads velocity under three

scenarios, the speed reduction in the 10-year scenario is relatively

small, generally within 1–10 km/h. With the increase in flood

intensity, the speed limit gradually increases. In the 50-year

scenario, roads with a velocity decline of more than 30 km/h

becomes the major part.

According to the declined velocity of the road, we further

classified the affected roads into three types. The roads with a

decrease in travel speed of 1–10 km/h were divided into low-

declined type, the roads with a decrease of 11–30 km/h were

divided into medium-declined type, and the decrease of more

than 30 km/h were divided into high-declined type. Then, the

proportion of the roads in three types is calculated. The second

line of Figure 6 shows the length ratio of the three declined types in

each TAZ. The area A in Figure 6 located in Jiangdi Street and the

area D located in the north of Jiyuqiao Street both have a high level

of road speed reduction under the three flood scenarios. Almost all

flooded roads in the two areas experienced a speed drop of more

than 30 km/h. The surroundings of area A are all highlands;

therefore, the accumulated water is easy to converge to area A.

Area D is located between Sand Lake and the Yangtze River,

therefore more vulnerable to floods. The declined level of road

speed in area B shows a trend from low tomedium to high. It can be

seen that the drop in the road travel speed is also increasing with the

increase in flood intensity in this area. Area C is the area with more

serious flood exposure under the flood scenario, but the main speed

drop level of the traffic area is relatively low. Even in the 50-year

flood, the main type seemed to be medium, and only a few regions

showed high level. This may be because the area belongs to the

central business district of Wuhan City. The traffic in this area is

relatively congested, and the road speed is low under normal times,

basically around 30 km/h.

FIGURE 4
Spatial distribution of flood exposure under three flood scenarios in traffic analysis zones.
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The impact of floods on the transport network within a traffic

zone includes not only the declined velocity of affected roads but

also the length of roads affected. Therefore, we measure the

vulnerability of the road network in terms of both the length of

the affected roads and the declined velocity (Formula 1).

Roads vulnerability = Affected length of roads × Declined

velocity.

The third line of Figure 6 shows the distribution of road

vulnerability at the scale of the traffic analysis zones in each

scenario. The road vulnerability level is generally low in the 10-

year flood. Only the southern Jiangdi Street, the northwestern

Hanxing Street and Changfeng Street, and the eastern East Lake

Scenic Area Streets showed a higher level. When the flood

intensity increased to 30-year and 50-year return period, the

road vulnerability level increased significantly, showing a spatial

pattern of contiguous distribution of high-level vulnerable traffic

analysis zones.

3.3 Analysis of commute condition under
floods

The commuting loss caused by flood is mainly seen in two

aspects, including commuting trip cancellation and increased

commuting time. Under floods, all commuting trips can be

divided into three categories: disconnected, passable but

affected, and unaffected. Figure 7 shows the statistical results

of the three commuting types under three flood scenarios. The

horizontal axis in the figure represents the commuting distance

in the normal scenario, with a distance interval of 5 km. The left

ordinate represents the proportion of the three types, and the

right ordinate represents the number of commuters of a certain

commuting distance type.

Figure 7 shows that it is dominated by short-distance

commuters in the study area. Commuting trips within

0–10 km account for the vast majority, and the number of

commuting trip gradually decreases with the increase in travel

distance. Among the three types, unaffected commuters account

for the highest proportion in the commuting distance of 0–5 km

under floods, indicating that short-distance commuters are less

vulnerable to floods than long-distance commuters. When

commuting distances are between 30 and 40 km, commuters

are more likely to be disconnected. Also, the proportion and

number of passable commuters in all distance intervals are the

largest in the 10-year flood, and about 80% of commuting trips

can be completed. In the 30-year flood, the order of the number

of the three types is passable but affected commuters >
disconnected commuters > unaffected commuters. With the

increase in flood intensity, the proportion of disconnected

commuters increases gradually, and the proportion of passable

but affected commuters and disconnected commuters decrease

gradually. In the 50-year flood, the proportion of disconnected

commuters exceeds that of passable but affected commuters.

The cumulative distribution function of commute distance in

Figure 8A shows that the slope decreases as the commute

distance increases. The proportion of long-distance

commuters decreases as the commute distance increases, with

more than 50% of commuting distance below 10 km. Moreover,

FIGURE 5
Characterization of the flooded road under three flood scenarios.
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the greater the flood intensity, the greater is the proportion of

short-distance commuters. Within 2 km commuting distance,

the proportion in a 50-year flood is the highest, followed by

the 30-year, and then the 10-year flood. When the distance

exceeds 10 km, the cumulative probability of the four

scenarios is reversed. The cumulative probability under

the normal scenario is the highest, followed by the 10-year

flood, the 30-year flood, and the minimum is the 50-year

flood. This indicates that long-distance commuters are more

vulnerable to flood disruption, while short-distance

commuters are less vulnerable. In addition, the increase in

flood intensity also leads to an increase in the commuting

distance. The cumulative function of commuting in a

baseline scenario reaches saturation at about 25 km, while

the longest commuting distance in the 50-year flood has

reached 80 km.

FIGURE 6
Vulnerability results of roads in traffic analysis zones.
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The results of the commuting time cumulative function

(Figure 8B) are similar to the characteristics of the

commuting distance cumulative function. In the baseline

scenario, more than 50% of the commuting time is less than

15 min, while this value reaches 40 min in the 50-year flood. The

greater the flood intensity, the greater is the proportion of short-

time commuters. Commuting trips within 20 min account for the

highest proportion in the 50-year flood, followed by the 30-year

flood, and then the 10-year flood. When the commuting time

exceeds 20 min, the proportion order changes that cumulative

probability in the 10-year ranks first, followed by that in the 30-

year flood, and then that in the 50-year flood. In the baseline

scenario, the travel time is less than 1 h, while the maximum

commuting time reaches 3 h in the 50-year flood.

Comparing the commuting distance cumulative function

diagram and the commuting time cumulative function

diagram, it can be seen that the slope difference of the

commuting time cumulative function in the baseline scenario

FIGURE 7
Structural analysis of commuters under three flood scenarios.

FIGURE 8
Cumulative function distribution of commuting travel distance (A) and commuting travel time (B) under floods.
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and three flood scenarios is greater, while the difference between

the commuting distance cumulative functions is more moderate.

This shows that there are differences in the results of time-cost

and distance-cost indicators, and the increase in time is greater

than the increase in distance, which is consistent with the

research results of Pyatkova et al. (2019). A study had also

pointed out that the time cost was more suitable for

measuring the delay of the urban network, and the distance

cost is more suitable for sparse road network (Balijepalli and

Oppong, 2014).

Our model divides into two ways in which floods have

impacts on commuting. One is to characterize the number of

unsatisfied OD, including the disconnected commuters due to

flooded homes or workplaces and necessary roads failure. The

other is to measure the cost of extended commuting time due to

floods. In order to better demonstrate the impact on commuting

from floods, we equate each unsatisfied OD with an 8-h extended

travel time (the same as the legal working time in China) and

then normalize the comprehensive commuting loss. The results

were displayed at the traffic analysis zones scale, in which home

and workplace of the commute OD pairs were located.

The top three panels of Figure 9 aggregate the disconnected

commuters by their home traffic analysis zones, while the bottom

three panels aggregate the disconnected commuters by their

workplace traffic analysis zones. Figures 10, 11 show the

results of extended time and comprehensive commute loss in

the same way.

The magnitude of the disconnected OD increases with flood

intensity, as seen in Figure 9. A large number of residents were

unable to accomplish the commuting under the 50-year flood.

The highest values of the disconnected commuters by their

workplace traffic analysis zones were more concentrated in

urban center than that by their home traffic analysis zones.

The distribution of extended time is quite different from that

of the disconnected OD (Figure 10). With the increase in flood

intensity, the extent of extension time did not significantly

deepen. This may be because when the flood intensity

increases, delayed trips in the previous state transformed to

disconnected trips so that the extended time of almost all

traffic analysis zones does not increase globally. High values

of extended time by their home traffic analysis zones are mainly

concentrated in the junction areas of Shizishan Street, Luonan

FIGURE 9
Number of disconnected OD of traffic analysis zones under three flood scenarios.
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Street, and Hongshan Street, while high values of that by their

workplace traffic analysis zones were more north-distributed,

mainly in the junction areas of Zhongnan Road Street, Shuiguo

Lake Street, and Luonan Street.

The distribution of comprehensive commuting loss is more

consistent with the distribution of disconnected OD, as seen in

Figure 11. Areas with a huge commute loss under floods are still

concentrated in the Qiaokou–Jianghan–Jiang’ an areas in the

northwestern and the Guanshan Street in the southeastern. These

two areas should be the key areas for the allocation of flood

control and disaster prevention resources.

3.4 Comparison of flood exposure, road
vulnerability, and commuting loss hot
spots

We normalized these three indicators including flood

exposure, road vulnerability, and commute loss to see and

compare their changes under three flood scenarios, as shown

in Figure 12. All of the three indicators increase with the increase

of flood intensity, but the magnitude of the variation is different.

In the 10-year flood, the normalized value of flood exposure is the

largest, followed by road vulnerability, and then commuting loss.

From the 10-year flood to the 30-year flood, the order of the three

indicators has not changed, but the increase in commuting loss is

higher than the other two indicators. The normalized value of

commuting loss is the highest in the 50-year flood, followed by

road vulnerability, and then flood exposure.

The hot spot analysis tool is employed to analyze flood

exposure, road vulnerability, and commuting loss, and the

high–high adjacent (99% confidence hot spot clustering) and

low–low adjacent (99% confidence cold spot clustering) are

extracted for visualization, as shown in Figure 13.

Flood exposure mainly shows high-value aggregation in

Qiaokou District and Jianghan District in the northwest, and

low-value aggregation in the southern bank of the Hanjiang River

and the southern bank of the Yangtze River at the junction of the

Hanjiang River and the Yangtze River (Lu et al., 2021). As for

road vulnerability, there are two high-value aggregations; one is

located in Qiaokou District and Jianghan District in the

northwest, which is consistent with the distribution of flood

exposure hot spots. It can be seen that there is a high-value

aggregation area of flood exposure, road vulnerability, and

commuting loss under the 30-year flood and 50-year flood in

the northwest. This is mainly due to the serious damage to the

road network caused by the contiguous flood, which makes the

commuting of residents in the area seriously damaged. Another

FIGURE 10
Extended time of traffic analysis zones under three flood scenarios.
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high-value area of road vulnerability is located in the Jiangdi

Subdistrict Office in the southwest of the study area. The road

speed in this area was relatively fast in the baseline scenario,

and the occurrence of floods greatly limits the speed of the

original road speed, resulting in a high-value concentration of

road vulnerability. The low-value aggregation area of road

vulnerability is distributed at the junction of Qingshan

District and Wuchang District in the northeast of the

study area.

The hot spots of commuting loss show two agglomeration

areas in the study area. One is distributed in the northwest, which

coincides with flood exposure and road vulnerability. The other

high-value agglomeration area is located in the Luonan Street

and Hongshan Street office area in the southeast, which is not a

high-value aggregation of flood exposure and road vulnerability.

Due to the poor connectivity of the road network caused by its

geographical isolation, small flood disturbances can make

particularly high commuting losses in this area. The cold spot

aggregation area of commuting loss shows a large distribution

difference under the three floods, mainly the global commuting

pattern would be affected under different floods. In the 10-year

flood, the low-value aggregation area is mainly located at the

junction of Hongshan District and Qingshan District in the

northeast, while located at the junction of the Hanjiang River

and the Yangtze River in the 30-year flood, and the intersection

of the two rivers in the central region and Yongfeng Street in the

west in the 50-year flood.

FIGURE 11
Comprehensive commute loss of traffic analysis zones under three flood scenarios.

FIGURE 12
Normalized curves of flood exposure, road vulnerability, and
commute loss under three floods.
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4 Discussion

In the context of climate change, regional and global floods

are becoming more and more frequent (Birch, 2014). Although

the road network construction in various cities is still constantly

improving and the government is also continuously increasing

investment in the construction of drainage facilities, there is still a

growing trend of flood damage to the road network. China’s

urbanization process is still advancing. As the capital city of

central China, Wuhan’s population concentration in urban areas

has gradually increased, making floods have a great impact on

commuting as a necessary transportation activity (Liu et al.,

2021). Measuring flood exposure, road network vulnerability,

and commuting loss (People’SGovernmentofHubeiProvince,

2016) is critical to building resilient cities. This is an

important contribution of our research. At present, there is a

certain foundation for the combination of a hydrological model

and a spatial analysis tool to explore the commuting risk under

flood (Tsang and Scott, 2020). We integrated flood modeling and

transportation network and further discussed the flood exposure

and commuting loss under various rainfall scenarios based on

commuting simulation. As opposed to a large number of studies

using survey data or statistical data to calculate the amount of

commuting activities (Borowska-Stefańska et al., 2018; Hu and

Downs, 2019; Liu et al., 2021; Sharma and Chandel, 2020), we

innovatively employed Baidu’s commuting big data in this field.

Baidu’s commuting big data have a high data granularity. By

actually monitoring the actual commuting activities of residents,

it can accurately indicate the commuting demands of each

resident (An et al., 2022). It is difficult to conduct a large-

scale survey of commuting activities under floods. Knowing

the accurate origin and destination of residents is an

important guarantee for commuting simulation. In addition,

we took into consideration the speed decline in the

measurement of road vulnerability based on the flood depth-

speed influence curve (Pregnolato et al., 2017). It is worth

mentioning that this is not a monitored road decline rate, but

the predicted road speed decline based on flood exposure results.

Studying the relationship between severe weather conditions

and transportation system performance at the city level has

important practical guiding significance for building

sustainable cities (Hauer et al., 2021b). First of all, flood

exposure under different scenarios can help guide the

investment and improvement of drainage facilities. The road

vulnerability assessment results identified vulnerable road

sections under flood pressure, enabling decision makers to

determine the order of priority interventions. The commuting

loss results show that long-distance commuters are more

vulnerable to flooding than short-distance commuters. In

addition, the spatial distribution of commuting losses was

shown in the form of traffic analysis zones, which helps to

understand the response of urban commuting during floods

and design adaptation and resilience strategies. Through the

simple normalization of the three indicators, we found that

when the flood intensity increased from a 30-year return

period to a 50-year return period, the increase in commuter

losses far exceeded the increase in flood exposure and road

vulnerability. Also, the damage degree of each traffic zone will

not increase linearly with the increase in flood intensity. In areas

that are not severely damaged in a former less severe flood, it is

highly likely that the damage will increase sharply as the flood

intensity increases. The emphasis and strategy of disaster

FIGURE 13
Getis-Ord Gi* results of flood exposure, road vulnerability, and commuting loss under three flood scenarios.
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prevention and mitigation are not the same in different rainfall

scenarios (Liu et al., 2021); therefore, it is very important to

conduct an assessment under various rainfall scenarios.

The hot spot analysis of these three indicators, through the

identification of high-concentration areas, clarifies which places

are urgent to be equipped with resources (He et al., 2021b).

Second, by comprehensively combining the results of flood

exposure, road vulnerability, and commuting loss hot spot

analysis, some enlightening conclusions are also obtained by

exploring the correlation factors and possible causes of overlap

and difference. The northwest of the study area is the overlapping

area of flood exposure, road vulnerability, and commuter loss,

which is also the key area of flood resistance andmitigation in the

future. For the nonoverlapping areas of the three indicators,

different measures should be taken according to the local damage

characteristics. A hot spot of commuting loss but not the other

two indicator was found in the southwest, mainly due to the

defect of the road network caused by the geographical barrier of

Wuhan (Liu et al., 2021), which makes small flood disturbance

also have a great impact on commuting. In order to improve the

traffic resilience under floods, urban decision-makers should give

priority to improving the road network construction in the

region to make it more resilient.

Despite the comprehensive findings, this research has several

limitations. First of all, in order to reduce the computational

burden, we only selected the maximum flood depth when

calculating flood exposure and did not discuss the entire flood

process. Also, our commuting simulation has only been tested in

the baseline scenario. Due to the lack of actual commuting

behavior during the flood period, the reroute results during

the flood period were not actually validated but were

consistent with the previous Wuhan City studies (Liu et al.,

2021; Liu et al., 2021). Because this study focuses on exploring the

response of traffic network and commuting under floods, we only

made the exploration at the traffic analysis zones scale. In order

to provide suggestions for disaster prevention and mitigation,

traffic management and urban planning, the research scale can be

further increased in the future, including the planning unit scale

and the catchment scale that can reflect the topographic

characteristics.

5 Conclusion

This article integrated the flood modeling module and the

commute simulation module to obtain knowledge about

commute response under three rainfall scenarios, including

a 10-year flood, a 30-year flood, and a 50-year flood. High-

resolution flood maps were obtained through the hydrological

model considering the condition of drainage facilities. Road

vulnerability was assessed at the scale of road sections and

traffic analysis zones (TAZs). We considered the declined

speed based on the correlation between flood depth and travel

speed, therefore, a targeted adaptation plan can be designed to

manage them and promote the transport resilience. In the

process of commute simulation, we introduced the Baidu

location-based service (LBS) data to get the accurate

location of residents’ homes and workplaces, and modified

the normal commuting speed based on the calculated speed

under floods to reroute residents’ commute trips. The results

in Wuhan showed that short-distance commutes are less

vulnerable to floods than long-distance commutes. In the

50-year flood, the proportion of disconnected commuters

exceeds that of passable but affected commuters. There are

differences in the results of time-cost and distance-cost

indicators, and the increase in time is greater than the

increase in distance. When the flood intensity increased,

delayed trips in the previous state transformed into

disconnected trips, so the extended time of almost all

traffic analysis zones (TAZs) did not increase globally,

while a number of disconnected commuters did. The hot

spot analysis tool is employed to analyze flood exposure,

road vulnerability, and commuting loss and we finally

integrated them. Spatial distribution inconsistency of hot

spots for flood exposure, road vulnerability, and commute

loss was identified, and these areas need to take different

measures according to the local damage characteristics. This

article examined road vulnerability and commute loss under

floods, which can provide a decision-making basis for disaster

prevention and mitigation, emergency management, and

urban planning in the context of climate change.

Data availability statement

The data analyzed in this study are subject to the following

licenses/restrictions. The original data are confidential and we

have signed a confidentiality agreement with the data holder for

scientific analysis only. Requests to access these datasets should

be directed to huiting_chen@whu.edu.cn.

Author contributions

YL: conceptualization, writing—reviewing and editing, and

supervision. HZ: methodology, writing—reviewing and editing,

visualization, and validation. HC: conceptualization,

methodology, writing—original draft, and software. CC:

methodology, software, and visualization.

Funding

This research was financially supported by the National Key

Research and Development Program of China (No.

2017YFB0503601).

Frontiers in Environmental Science frontiersin.org16

Liu et al. 10.3389/fenvs.2022.1056854

268

http://huiting_chen@whu.edu.cn
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1056854


Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The supplementary material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fenvs.2022.

1056854/full#supplementary-material

References

Aghababaei, M. T. S., Costello, S. B., and Ranjitkar, P. (2021). Measures to
evaluate post-disaster trip resilience on road networks. J. Transp. Geogr. 95, 103154.
doi:10.1016/j.jtrangeo.2021.103154

An, R., Wu, Z., Tong, Z., Qin, S., Zhu, Y., and Liu, Y. (2022). How the built
environment promotes public transportation in Wuhan: A multiscale
geographically weighted regression analysis. Travel Behav. Soc. 29, 186–199.
doi:10.1016/j.tbs.2022.06.011

Balijepalli, C., and Oppong, O. (2014). Measuring vulnerability of road network
considering the extent of serviceability of critical road links in urban areas.
J. Transp. Geogr. 39, 145–155. doi:10.1016/j.jtrangeo.2014.06.025

Berdica, K. (2002). An introduction to road vulnerability: What has been done, is
done and should be done. Transp. Policy 9 (2), 117–127. doi:10.1016/S0967-
070X(02)00011-2

Birch, E. L. (2014). A Review of “ climate change 2014: Impacts, adaptation, and
vulnerability ” and “ climate change 2014: Mitigation of climate change. J. Am. Plan.
Assoc. 80 (2), 184–185. doi:10.1080/01944363.2014.954464

Borowska-Stefańska, M., Domagalski, A., and Wiśniewski, S. (2018). Changes
concerning commute traffic distribution on a road network following the
occurrence of a natural disaster – the example of a flood in the Mazovian
Voivodeship (Eastern Poland). Transp. Res. Part D Transp. Environ. 65,
116–137. doi:10.1016/j.trd.2018.08.008

Borowska-Stefańska, M., and Wiśniewski, S. (2018). Changes in transport
accessibility as a result of flooding: A case study of the Mazovia Province
(eastern Poland). Environ. hazards 17 (1), 56–83. doi:10.1080/17477891.2017.
1343177

Cao, Y., Cao, Y., Li, G., Tian, Y., Fang, X., Li, Y., et al. (2020). Linking ecosystem
services trade-offs, bundles and hotspot identification with cropland management
in the coastal Hangzhou Bay area of China. LAND USE POLICY 97, 104689. doi:10.
1016/j.landusepol.2020.104689

Casali, Y., and Heinimann, H. R. (2019). A topological characterization of
flooding impacts on the Zurich road network. PLoS One 14 (7), e0220338.
doi:10.1371/journal.pone.0220338

Chen, C., Jiang, J., and Li, M. (2016). Jiyu SHUILIMOXING DE QINGSHAN
HAOMIANSHIFANQU PAISHUI FANGLAO FENGXIAN PINGGU. CHINA
WATER& WASTEWATER 17, 105–108. doi:10.19853/j.zgjsps.1000-4602.2016.
17.023

Chen, X., Lu, Q., Peng, Z., and Ash, J. E. (2015). Analysis of transportation
network vulnerability under flooding disasters. Transp. Res. Rec. 2532 (1), 37–44.
doi:10.3141/2532-05

Chung, Y. (2012). Assessment of non-recurrent congestion caused by
precipitation using archived weather and traffic flow data. Transp. Policy 19 (1),
167–173. doi:10.1016/j.tranpol.2011.10.001

Coles, D., Yu, D., Wilby, R. L., Green, D., and Herring, Z. (2017). Beyond ‘flood
hotspots’: Modelling emergency service accessibility during flooding in York, UK.
J. HYDROLOGY 546, 419–436. doi:10.1016/j.jhydrol.2016.12.013

Debionne, S., Ruin, I., Shabou, S., Lutoff, C., and Creutin, J. (2016). Assessment of
commuters’ daily exposure to flash flooding over the roads of the Gard region,
France. J. HYDROLOGY 541, 636–648. doi:10.1016/j.jhydrol.2016.01.064

Demirel, H., Kompil, M., and Nemry, F. (2015). A framework to analyze the
vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm
surges. Transp. Res. Part A Policy Pract. 81, 62–76. doi:10.1016/j.tra.2015.05.002

El-Rashidy, R. A., and Grant-Muller, S. M. (2014). An assessment method for
highway network vulnerability. J. Transp. Geogr. 34, 34–43. doi:10.1016/j.jtrangeo.
2013.10.017

Fu, G., Dawson, R., Khoury, M., and Bullock, S. (2014). Interdependent networks:
Vulnerability analysis and strategies to limit cascading failure. Eur. Phys. J. B 87 (7),
148. doi:10.1140/epjb/e2014-40876-y

Hauer, M., Mueller, V., Sheriff, G., and Zhong, Q. (2021a). More than a nuisance:
Measuring how sea level rise delays commuters in Miami, FL. Environ. Res. Lett. 16
(6), 064041. doi:10.1088/1748-9326/abfd5c

Hauer, M., Mueller, V., Sheriff, G., and Zhong, Q. (2021b). More than a nuisance:
Measuring how sea level rise delays commuters in Miami, FL. Environ. Res. Lett. 16
(6), 064041. doi:10.1088/1748-9326/abfd5c

He, Y., Thies, S., Avner, P., and Rentschler, J. (2021a). Flood impacts on urban
transit and accessibility—a case study of Kinshasa. Transp. Res. Part D
Transp. Environ. 96, 102889. doi:10.1016/j.trd.2021.102889

He, Y., Thies, S., Avner, P., and Rentschler, J. (2021b). Flood impacts on urban
transit and accessibility—a case study of Kinshasa. Transp. Res. Part D
Transp. Environ. 96, 102889. doi:10.1016/j.trd.2021.102889

Hu, Y., and Downs, J. (2019). Measuring and visualizing place-based space-time
job accessibility. J. Transp. Geogr. 74, 278–288. doi:10.1016/j.jtrangeo.2018.12.002

Hubei, F. (2013). Planning and design standards of Wuhan drainage and
waterlogging prevention. System. Available at: http://gtghj.wuhan.gov.cn/
UploadFile/20131030025327433.pdf.

Jenelius, E., Petersen, T., and Mattsson, L. (2006). Importance and exposure in
road network vulnerability analysis. Transp. Res. Part A Policy Pract. 40 (7),
537–560. doi:10.1016/j.tra.2005.11.003

Jie, Y., Yu, D., Zhane, Y., Min, L., and Qing, H. (2016). Evaluating the impact and
risk of pluvial flash flood on intra-urban road network; a case study in the city center
of Shanghai, China. J. hydrology (Amsterdam) 537, 138–145. doi:10.1016/j.jhydrol.
2016.03.037

Kasmalkar, I. G., Serafin, K. A., Miao, Y., Bick, I. A., Ortolano, L., Ouyang, D.,
et al. (2020a). When floods hit the road: Resilience to flood-related traffic disruption
in the San Francisco Bay Area and beyond, 6. doi:10.1126/sciadv.aba2423

Kasmalkar, I. G., Serafin, K. A., Miao, Y., Bick, I. A., Ortolano, L., Ouyang, D.,
et al. (2020b). When floods hit the road: Resilience to flood-related traffic disruption
in the San Francisco Bay Area and beyond. Sci. Adv. 6 (32), a2423. doi:10.1126/
sciadv.aba2423

Keeler, A. G., McNamara, D. E., and Irish, J. L. (2018). Responding to sea level
rise: Does short-Term risk reduction Inhibit Successful long-Term adaptation?
Earth’s. Future 6 (4), 618–621. doi:10.1002/2018EF000828

Kendon, E. J., Roberts, N. M., Senior, C. A., and Roberts, M. J. (2012). Realism of
rainfall in a very high-resolution regional climate model. J. Clim. 25 (17),
5791–5806. doi:10.1175/JCLI-D-11-00562.1

Liu, J., Shi, Z., and Tan, X. (2021). Measuring the dynamic evolution of road
network vulnerability to floods: A case study of Wuhan, China. Travel Behav. Soc.
23, 13–24. doi:10.1016/j.tbs.2020.10.009

Lu, X., Yang, S., Ye, T., An, R., and Chen, C. (2021). A new approach to estimating
flood-affected populations by combining mobility patterns with multi-source data:
A case study of Wuhan, China. Int. J. Disaster Risk Reduct. 55, 102106. doi:10.1016/
j.ijdrr.2021.102106

Frontiers in Environmental Science frontiersin.org17

Liu et al. 10.3389/fenvs.2022.1056854

269

https://www.frontiersin.org/articles/10.3389/fenvs.2022.1056854/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1056854/full#supplementary-material
https://doi.org/10.1016/j.jtrangeo.2021.103154
https://doi.org/10.1016/j.tbs.2022.06.011
https://doi.org/10.1016/j.jtrangeo.2014.06.025
https://doi.org/10.1016/S0967-070X(02)00011-2
https://doi.org/10.1016/S0967-070X(02)00011-2
https://doi.org/10.1080/01944363.2014.954464
https://doi.org/10.1016/j.trd.2018.08.008
https://doi.org/10.1080/17477891.2017.1343177
https://doi.org/10.1080/17477891.2017.1343177
https://doi.org/10.1016/j.landusepol.2020.104689
https://doi.org/10.1016/j.landusepol.2020.104689
https://doi.org/10.1371/journal.pone.0220338
https://doi.org/10.19853/j.zgjsps.1000-4602.2016.17.023
https://doi.org/10.19853/j.zgjsps.1000-4602.2016.17.023
https://doi.org/10.3141/2532-05
https://doi.org/10.1016/j.tranpol.2011.10.001
https://doi.org/10.1016/j.jhydrol.2016.12.013
https://doi.org/10.1016/j.jhydrol.2016.01.064
https://doi.org/10.1016/j.tra.2015.05.002
https://doi.org/10.1016/j.jtrangeo.2013.10.017
https://doi.org/10.1016/j.jtrangeo.2013.10.017
https://doi.org/10.1140/epjb/e2014-40876-y
https://doi.org/10.1088/1748-9326/abfd5c
https://doi.org/10.1088/1748-9326/abfd5c
https://doi.org/10.1016/j.trd.2021.102889
https://doi.org/10.1016/j.trd.2021.102889
https://doi.org/10.1016/j.jtrangeo.2018.12.002
http://gtghj.wuhan.gov.cn/UploadFile/20131030025327433.pdf
http://gtghj.wuhan.gov.cn/UploadFile/20131030025327433.pdf
https://doi.org/10.1016/j.tra.2005.11.003
https://doi.org/10.1016/j.jhydrol.2016.03.037
https://doi.org/10.1016/j.jhydrol.2016.03.037
https://doi.org/10.1126/sciadv.aba2423
https://doi.org/10.1126/sciadv.aba2423
https://doi.org/10.1126/sciadv.aba2423
https://doi.org/10.1002/2018EF000828
https://doi.org/10.1175/JCLI-D-11-00562.1
https://doi.org/10.1016/j.tbs.2020.10.009
https://doi.org/10.1016/j.ijdrr.2021.102106
https://doi.org/10.1016/j.ijdrr.2021.102106
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1056854


Mattsson, L., and Jenelius, E. (2015). Vulnerability and resilience of transport
systems – a discussion of recent research. Transp. Res. Part A Policy Pract. 81,
16–34. doi:10.1016/j.tra.2015.06.002

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and
Veith, T. L. (2007). Model evaluation GUIDELINES for SYSTEMATIC
QUANTIFICATION OF accuracy IN WATERSHED simulations. Trans. ASABE
50 (3), 885–900. doi:10.13031/2013.23153

People’SgovernmentofHubeiProvince (2016). As at 10 : 00 on july 6. Wuhan. ’ s
Wkly. rainfall Exceed. its Hist. maximum, 23. Available at: http://www.hubei.gov.cn/
zwgk/bmdt/201607/t20160706_860661.shtml.

Pregnolato, M., Ford, A., Wilkinson, S. M., and Dawson, R. J. (2017). The impact
of flooding on road transport: A depth-disruption function. Transp. Res. Part D
Transp. Environ. 55, 67–81. doi:10.1016/j.trd.2017.06.020

Pyatkova, K., Chen, A. S., Butler, D., Vojinović, Z., and Djordjević, S. (2019).
Assessing the knock-on effects of flooding on road transportation. J. Environ.
Manag. 244, 48–60. doi:10.1016/j.jenvman.2019.05.013

Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting,
resource allocation. Eur. J. Oper. Res. 9, 97–98. doi:10.1016/0377-2217(82)90022-4

Shah, S. M. H., Mustaffa, Z., Martinez-Gomariz, E., Kim, D. K., and Yusof, K. W.
(2021). Criterion of vehicle instability in floodwaters: Past, present and future. Int.
J. river basin Manag. 19 (1), 1–23. doi:10.1080/15715124.2019.1566240

Sharma, I., and Chandel, M. K. (2020). Impact of past rainfall events on the urban
transport sector of the Mumbai Metropolitan region: Current and future Projections
under BAU scenario. Transp. Dev. Econ. 6 (2), 13. doi:10.1007/s40890-020-00104-1

Sidek, L. M., Jaafar, A. S., Majid, W. H. A. W., Basri, H., Marufuzzaman, M.,
Fared, M. M., et al. (2021). High-resolution hydrological-Hydraulic modeling of

urban floods using InfoWorks ICM. Sustainability 13 (18), 10259. doi:10.3390/
su131810259

Singh, P., Sinha, V. S. P., Vijhani, A., and Pahuja, N. (2018). Vulnerability
assessment of urban road network from urban flood. Int. J. Disaster Risk Reduct. 28,
237–250. doi:10.1016/j.ijdrr.2018.03.017

Tsang, M., and Scott, D. M. (2020). An integrated approach to modeling the
impact of floods on emergency services: A case study of Calgary, Alberta.
J. Transp. Geogr. 86, 102774. doi:10.1016/j.jtrangeo.2020.102774

Wang, J., Qin, S., Xiang, W., Kan, C., and Yan, H. (2021). Tongqin Tezheng Shuju
Queding Fangfa, Zhuangzhi, Dianzi Shebei and Cunchu Jiezhi No. 202110501129.0.

Zhiqiang, L. (2016). Experts Interpret the Causes of frequent Flood in Wuhan.
BeijingNews. Retreved Sep 20 from http://www.xinhuanet.com//politics/2016-07/
07/c_129123063.htm.

Xiong, Y., and Melching, C. (20052005). Comparison of Kinematic-Wave
and nonlinear reservoir routing of urban Watershed runoff. J. Hydrol. Eng. 10
(24), 39–49. 10:1(39). doi:10.1061/(asce)1084-0699(2005)10:1(39)

Yang, Y., Ng, S. T., Zhou, S., Xu, F. J., and Li, H. (2019). A physics-based
framework for analyzing the resilience of interdependent civil infrastructure
systems: A climatic extreme event case in Hong Kong. Sustain. Cities Soc. 47,
101485. doi:10.1016/j.scs.2019.101485

Zhang, Y., Liu, Y., Jin, M., Jing, Y., Liu, Y., Liu, Y., et al. (2019). Monitoring land
Subsidence in Wuhan city (China) using the SBAS-InSAR method with Radarsat-2
Imagery data. Sensors (Basel) 19 (3), 743. doi:10.3390/s19030743

Zhao, P., and Cao, Y. (2020). Commuting inequity and its determinants in
Shanghai: New findings from big-data analytics. Transp. Policy 92, 20–37. doi:10.
1016/j.tranpol.2020.03.006

Frontiers in Environmental Science frontiersin.org18

Liu et al. 10.3389/fenvs.2022.1056854

270

https://doi.org/10.1016/j.tra.2015.06.002
https://doi.org/10.13031/2013.23153
http://www.hubei.gov.cn/zwgk/bmdt/201607/t20160706_860661.shtml
http://www.hubei.gov.cn/zwgk/bmdt/201607/t20160706_860661.shtml
https://doi.org/10.1016/j.trd.2017.06.020
https://doi.org/10.1016/j.jenvman.2019.05.013
https://doi.org/10.1016/0377-2217(82)90022-4
https://doi.org/10.1080/15715124.2019.1566240
https://doi.org/10.1007/s40890-020-00104-1
https://doi.org/10.3390/su131810259
https://doi.org/10.3390/su131810259
https://doi.org/10.1016/j.ijdrr.2018.03.017
https://doi.org/10.1016/j.jtrangeo.2020.102774
http://www.xinhuanet.com//politics/2016-07/07/c_129123063.htm
http://www.xinhuanet.com//politics/2016-07/07/c_129123063.htm
https://doi.org/10.1061/(asce)1084-0699(2005)10:1(39)
https://doi.org/10.1016/j.scs.2019.101485
https://doi.org/10.3390/s19030743
https://doi.org/10.1016/j.tranpol.2020.03.006
https://doi.org/10.1016/j.tranpol.2020.03.006
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1056854


UAV trajectory planning based on
an improved sparrow
optimization algorithm with
multi-strategy integration

Yu Yang1, Qing He1* and Liu Yang2*
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Real-time monitoring of urban high-altitude data is an important goal in the

construction and development of smart cities today. However, with the

development of modern cities, the monitoring space becomes complicated

and narrow because of the different building heights and no-fly zones, which

makes UAV trajectory planning more difficult. In this paper, a multi-strategy

sparrow search algorithm (MSSA) is proposed to solve the UAV trajectory

planning problem in a three-dimensional environment. The algorithm aims

tominimize the flight distance andmaximize the use efficiency of the UAV. First,

the improved algorithm employed a reverse-learning strategy based on the law

of refraction to improve the search range and enhance the optimization

performance. Second, we introduced a random step size generated by Levy

flight into the position update strategy of the participant. The algorithm

accuracy and speed of convergence were improved by the randomness

feature. Finally, the algorithm incorporated the Cauchy mutation to improve

the scout position, which enhanced its ability to jump out of the local optimum

of the algorithm. Sixteen benchmark test functions, Wilcoxon rank sum test, and

30 CEC2014 test function optimization results demonstrated that MSSA had

better optimization accuracy, convergence speed, and robustness than the

comparison algorithms. In addition, the proposed algorithm was applied to the

UAV trajectory planning problem in different complex 3D environments. The

results confirmed that the MSSA outperformed the other algorithms in complex

3D trajectory planning problems.

KEYWORDS

smart cities, trajectory planning, improved sparrow search algorithm, UAV, three-
dimensional

Introduction

With the continuous development of information technology and smart cities (Van

Steen and Leiba, 2018), UAV technology plays an important role in urban emergencies

and transportation networks. Due to their usefulness, reliability, safety, and relatively low

cost (Rodríguez et al., 2021), UAVs (commonly referred to as drones) have become an

indispensable part of the operations of a smart city. In research on UAV technology,
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trajectory planning is the key to the whole system. The main

technical difficulty is to find a feasible way to avoid obstacles

when the starting and ending points are known (Zhao et al.,

2018). At present, many cities around the world are facing the

problem of traffic congestion. In particular, there are periodic or

sudden increases in the number of vehicles during peak hours,

large events, construction work or accidents. In an emergency,

the use of drones can assist traffic police in implementing security

in smart cities, and rapid deployment can collect real-time

information (Qadir, 2021). However, due to the complexity of

the flight environment in modern urban spaces, UAV

monitoring tasks are becoming more and more difficult

(Mohamed, 2020). Therefore, how to outfit a UAV so that it

can find a flight path that avoids obstacles but still maintains the

shortest distance to the destination is a main focus of today’s

UAV research.

The process of UAV trajectory planning is a combinatorial

optimization problem. Currently, UAVs have a low efficiency in

completing tasks in complex areas because of the large scale of

the mathematical model and its high computational complexity.

The complexity and difficulty of real-world optimization

problems continue to increase, as they are subject to strong

constraints and require long computation times, non-convexity,

and wide search space (Shin and Bang, 2020). Path length is the

primary factor to be considered in engineering scenarios, and

optimizing path is of great research significance for improving

flight efficiency. Path optimization aims to maximize the

execution efficiency of the UAV within permissible limits. The

methods for deducing the optimal power flow in trajectory

planning can be divided into traditional optimization

algorithms and metaheuristic algorithms. Traditional

optimization algorithms mainly include the gradient descent

method Salgado et al., 1990), the Newton method (Tinney ea

al., 1967), linear programming (Olofsson et al., 1995), and the

interior point method (Momoh, 1999). These algorithms are

characterized by their use of the objective function to solve the

first- or second-order gradient of control variables. Traditional

optimization algorithms are generally trapped in local optima;

hence, the optimization results depend greatly on the initial value

in solving large-scale problems. In recent years, researchers have

proposed many metaheuristic algorithms by simulating various

biological behaviors and physical phenomena in nature. The

metaheuristic algorithms commonly include Archimedes

optimization algorithm (AOA) (Hashim ea al., 2021), the

tunicate swarm algorithm (TSA) (Kaur et al., 2020), Aquila

optimization (AO) (Abualigah et al., 2021), Harris hawks

optimization(HHO) (Heidari et al., 2019), ant colony

optimization (ACO) (Zhang et al., 2015), grey wolf optimizer

(GWO) (Mirjalili et al., 2014), differential evolution (DE) (Price,

2013), and particle swarm optimization (PSO) (Marini and

Walczak, 2015).

Metaheuristic algorithms are widely used to solve

problems related to power system optimization because of

their simple structure, few adjustment parameters, and lack of

need for gradient information. Wen et al. (2022) proposed a

novel heuristic algorithm based on a three-dimensional (3D)

UAV deployment scheme that could be used by a number of

covered users without increasing the number of UAVs. Fan

et al. (2022b) proposed an improved RRT algorithm based on

the process of extending the random tree, and introduced

ACO to make the planning path asymptotically optimal. Jia

et al. (2022) described a UAV path coverage algorithm based

on a ‘greedy’ strategy and ACO (Zhang et al., 2015) to

minimize flight time and maximize coverage. Shin and

Bang (2022) offered an improved PSO algorithm for path

optimization. Belge et al. (2022) developed a new UAV

trajectory planning algorithm for optimal path planning

and tracking using HHO and GWO. Zhang et al. (2021)

proposed an adaptive convergence factor adjustment

strategy and an adaptive weight factor to update the

individual’s position based on GWO. Zhang et al. (2015)

created an improved constrained DE algorithm to generate

an optimal feasible route. Chang et al. (2021) introduced

Q-learning to improve the dynamic window algorithm and

increase its success rate for path planning in an unknown

mountainous environment. However, the calculations

necessary to use this algorithm are more complex, and

beyond the low computational power of the UAV; the local

FIGURE 1
Flow chart of the trajectory planning system.
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path planning strategy is not applicable to global

optimization.

The sparrow search algorithm (SSA), a swarm intelligence

optimization algorithm proposed by Xue and Shen (2020),

combines simplicity with flexibility. It is very effective for

solving highly nonlinear, multi-variate, and multimodal

function optimization problems. Many researchers have

studied the SSA algorithm and confirmed that it outperforms

the GWO, PSO (Poli et al., 2007), and GA (Whitley, 1994) in

solving numerous types of optimization problems. The SSA has

been used in many other fields. Wu et al. (2021) reported the

application of GGSC-SSA to solve the traveling salesman

problem (TSP); Fan et al. (2022a) even utilized SSA to

improve the quality of medical images; but few published

reports exist on the application of SSA to UAV trajectory

planning. Here we propose a new metaheuristic optimization

algorithm based on the SSA and referred to as MSSA. Since the

B-spline curve cannot guarantee absolute accuracy of the

interpolation points (Thompson and Patel, 1987), we used the

cubic spline interpolation method to smooth the path. First, we

established a 3D environmental model for UAV trajectory

planning that included reference terrain, obstacle areas, and

threat areas. Second, a comprehensive cost evaluation model

of UAV flight was proposed as the objective function. The path

was smoothed by the method of cubic spline interpolation to

obtain an optimal trajectory. Lastly, we analyzed the results and

verified the effectiveness and feasibility of the proposed algorithm

in planning the UAV’s trajectory in the 3D model.

Study area and environment
modelling

Overview of the study area

With the leapfrog development of information science,

various new technologies employing AI for advanced

communication and control have been put forward, many of

which have been applied in UAV operating systems, providing a

foundation for the rapid deployment of UAVs for numerous

uses. At present, UAVs have become an important accessory for

air power in the military, which can perform battlefield

reconnaissance, supply delivery missions, and enemy target

strikes. In addition to military applications, civilian

applications of UAVs have also been accelerating in a number

of areas, including traffic supervision, disaster relief, inspections,

and scientific data gathering. The UAV trajectory problem is a

multi-constraint combinatorial optimization problem. Due to

the size of the mathematical model and the complexity of the

calculation, a suitable cost function and an effective trajectory

planning method are both crucial to the efficient implementation

of UAVs.

Description of trajectory planning

Finding an optimal path using planning algorithms is the

main goal of UAV trajectory planning, and this path must

meet performance indicators and overcome limitations. The

UAV may encounter several hurdles throughout this

trajectory planning process, including terrain threats, fire,

no-fly zones, and performance limitations imposed by the

equipment itself (Bagherian and Alos, 2015). For testing of

this algorithm, we held the UAV’s speed constant and kept

track of the distribution of the mission environment’s peaks

and no-fly zones to make the computation model simpler. The

challenge of trajectory planning was changed into a static

space routing mission problem. The trajectory planning

system is depicted in Figure 1. Figure 1 illustrates the

components of the UAV trajectory planning process, which

included environmental modelling, cost function definition,

track optimization, and track smoothing. Our goal in this

study was to establish an optimal flight path before the UAV

flight mission. By sending the algorithm’s best path data to the

UAV’s flight master control system, the flight trajectory

planning will be accomplished successfully.

Task environment modelling

According to the 3D space environment there were

significant changes in altitude and terrain complexity along

the route (Dübel and Schumann, 2017), and the flight path

may be categorized into areas of plains, mountainous regions,

and hilly areas. A large number of complex factors need to be

considered if the flight must pass through a mountainous or hilly

area. The UAV needs to adjust the travel direction and the flight

altitude continuously in those complex environments, and

trajectory planning must be carried out in 3D space. In this

study, we developed two distinct settings for UAV trajectory

planning and used a function simulation approach to

characterize landform properties. Eq. 1 displays the function

expression:

z(x, y) � sin (y + a) + b sin (x) + c cos (d
�������
y2 + x2)√

+ e cos (y)
+ f sin (f

������
y2 + x2

√
) + g cos (y)

(1)
where (x, y) is the point coordinate of the terrain projected onto

the horizontal plane and z is the height of the corresponding

point coordinate on the Z axis. In Eq. 1, a, b, c, d, e, f, g, and h are

constant coefficients, and the different topography features can

be obtained by changing the size of the constant coefficients in

the modelling process. In this test flight, we simulated the

geographical environment, such as mountains and hills, by

superimposing the mountain model on the base terrain. The
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mathematical expression of the topography model is shown in

Eq. 2:

h(x, y) � ∑
i

hi exp[ − (xi − xoi)2
a2i

− (yi − yoi)2
b2i

] + ho (2)

In Eq. 2, ho and hi represent the height of the reference terrain

and the ith peak, respectively, (xoi, yoi) represent the central

coordinate position of the ith peak, and ai and bi are the slopes of

the ith mountain along the X and Y axes, respectively. The peaks

can show different length and width characteristics by adjusting

the value of those parameters. We can obtain Eq. 3 from Eqs 1, 2:

Z(x, y) � max[z(x, y), h(x, y)] (3)

In practical situations, UAVs frequently encounter areas with

tall buildings and trees that threaten flight safety, or no-fly areas

where UAVs have to avoid obstacles. Therefore, we included a

certain number of threat areas in the UAV trajectory plan to

judge the obstacle avoidance performance of the algorithm.

Graphically, we represented a danger area as a cylinder with a

radius of R to simplify the model. The center position of each

cylinder affords the greatest threat to the UAV, and the threat

decreases from the center to the outside.

UAV track planning modeling

When completing challenging jobs, the UAV trajectory

planner must take into consideration the inherent

performance restrictions of the drone based on environmental

modeling. The final results produced by the algorithm can be

made to comply with the specifications and guarantee that the

intended flight route is valid with a suitable design of the

trajectory evaluation function. We devised a sophisticated

track evaluation algorithm to plan the UAV trajectory based

on real circumstances. The indicators that most affected the

performance of the UAV included track length, flight height,

minimum step size, corner cost, and maximum climb angle.

Trajectory planning is inseparable from searching for the

shortest path because the length of the track is very important for

successful trajectory planning. Obviously, the shortest route can

save on fuel and time and reduce the chance occurrence of

unknown threats. We defined the path as the value of the distance

from the starting to the ending point. Suppose a complete route

has n nodes, the distance between the ith and the i+1-th waypoint

is expressed as li, the coordinates of these two flight points are

expressed as (xi, yi, zi) and (xi+1, yi+1, zi+1), denoted the two points

as g(i) and g(i+1), respectively. The trajectory needs to satisfy the

following conditions in Eq. 4:

{ li � ∣∣∣∣∣∣∣∣g(i + 1) − g(i)∣∣∣∣∣∣∣∣2
Lpath � ∑n−1

i�1 li
(4)

The UAVwill run the risk of crashing or being shot down if it

is unable to avoid obstacles or flying into a hazard region, which

is indicated by the Lpath being Lpath = ∞. Because infinite

functions are challenging to depict in real-world situations, we

deal with them in a penalizing approach. The UAV should fly as

low as it can in the real world to avoid potential radar detection.

However, it is crucial to choose a steady flight altitude because a

low flight altitude would increase the probability of the UAV

colliding with trees, mountains, or the ground. The flying altitude

should not change much because a constant altitude eases the

strain on the control system and conserves fuel. To make the

UAV flight safer, the flight height model given in Eq. 5:

hheight �
�������������
1
n
∑n−1

i�0 (z(i) − �z

√
)2

�z � 1
n
∑n−1

i�0 z(i)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (5)

The maneuverability of a UAV is limited by its corner cost

function. During the flight of the UAV trajectory planning, the

turning angle should not be greater than the preset maximum

turning angle, because of the turning angle size will affect the

flight stability. In this paper, we set the maximum turning

angle to φ and the current turning angle to θ, and ai is the

vector of the ith route segment. The corner formula is shown

in Eq. 6:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos θ � aTi ai+1

|ai||ai+1|
Jturn � ∑n

i�1(cos(Φ − cos θ)) (6)

In Eq. 6, |a| represents the length of the vector a. Through the

description of the above three aspects, we established the cost

function of UAV trajectory planning as follows in Eq. 7:

FIGURE 2
Refraction-learning process in one-dimensional space.
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Jcos t � w1Lpath + w2hheight + w3Jturn (7)

Jcost is the total cost function, and in the parameters wi, i = 1,

2, 3 represent the weight of each cost function and satisfy the

conditions of Eq. 8:

{wi ≥ 0∑3

i�1wi � 1
(8)

We obtained a track consisting of line segments by

processing the total cost function effectively. However, the

resulting track is only theoretically feasible, it is necessary to

smooth the track to meet the actual situation. In this paper, cubic

spline interpolation is used to smooth the UAV trajectory

because the B-spline curve cannot guarantee the absolute

accuracy of the interpolation points.

Sparrow search algorithm

The sparrow search algorithm is a new type of swarm

intelligence optimization algorithm inspired by the feeding

behavior of sparrows in nature. During the food search

process, the sparrow population is divided into two roles:

discoverer and follower. Discoverers generally make up 10%–

20% of the population and lead the other individuals in the search

for food. The discoverers have a high fitness and ability to expand

the search range, while the remaining sparrows follow the

discoverers to the destination. The population requires a

particular number of sparrows to work as scouts and issue

warnings to remind the populace that they can take action in

time when the adversaries attack to escape the threat of natural

enemies. The location update formula for the discoverer is as

follows in Eq. 9:

xt+1
id �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xt
i,j · exp( −h

α · T) if R2 < ST

xt
i,j + Q · L if R2 > ST

(9)

In Eq. 9, h represents the current number of iterations and T

is the maximum number of iterations. The value of xi,j denotes

the current position of the ith sparrow in the jth dimension. The

term, α, is a random number between 0 and 1, andQ is a random

value obeying a standard normal distribution. L represents a 1×D

matrix with all elements 1, alarm value R2∈[0,1], and safety value
ST∈[0.5,1].

When R2<ST, it indicates that the surrounding environment

is currently in a safe state, and the discoverers can search for food

on a wide scale. If R2>ST, it means that there may be natural

enemies in the surrounding environment, and the discoverers

will quickly lead the population from the current position to

avoid predators. Followers update their position according to

their fitness ranking, and the positional update is described in

Eq. 10:

xT+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q · exp( − xT

worst − xT
i,j

i2
) if i> n

2

xT+1
p +

∣∣∣∣∣xT
x,j − xT+1

p

∣∣∣∣∣ · A+ · L otherwise

(10)

In Eq. 10, xt w and xt+1 p represent the global worst position

of the population at the tth iteration and the global optimal

position of the population at the t+1-th iteration, respectively. A

is a matrix of 1×D in which an element is only -1 or +1, with A+ =

AT(AAT)−1. When i > n/2, it indicates that the ith participant is in

a hungry state with poor fitness. In order to obtain higher energy,

the participant needed to fly farther to find food. If i < n/2, the ith

follower will find a random location near the current optimal

position xp to forage. The location of the scouter has been

updated as shown in Eq. 11:

xT+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xT
i,j + Q ·

∣∣∣∣∣xT
i,j − xT

best

∣∣∣∣∣ fi ≠ fg

xT
i,j + K

xT
i,j − xT

worst(fi − fw) + ε
fi � fg

(11)

where K is a step coefficient, which is a random number in [-1,

1], and K represents the moving direction of the sparrows. Q is

a value close to infinitesimal, which exists to avoid the

denominator being zero. fi represents the fitness values of

the ith sparrows, fg and fw are the global optimal fitness and

global worst fitness values within the current search scope,

respectively, ε is the smallest real number, preventing the

occurrence of 0 in the denominator. Individual sparrows face

danger at the edge and approach the globally optimal sparrow

FIGURE 3
Step size of 100 Levy flights.
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when fi ≠ fg. The individual sparrows in the center of the group

can randomly walk among other individuals when fi = fg. This

setup aims to avoid too many individuals reaching a local

optimum, where the algorithm stops iterating and falls into a

local optimum.

Multi-strategy sparrow search
algorithm

The original SSA algorithm used a simple random

function to generate the initial population, which cannot

guarantee the diversity of the population and the stability

of the algorithm. In the sparrow population, the foraging

ability of the discoverers determines the foraging direction

and foraging area of the population and also indicates the

quality of the solution found by the algorithm. The formula

for updating the discoverers’ positions is one of the key

formulas in the SSA. In the later iterations of the SSA, the

sparrow population gradually approaches to the optimal

individual, which leads to a lack of population diversity

and a tendency toward premature convergence of the

algorithm. In the SSA, it can be seen from Eq. 9 that each

dimension of the individual discoverer decreases when

R2<ST. This leads to a decrease in the population diversity

of the algorithm in its later iterations and a lack of

convergence accuracy. In the iterative process of the

algorithm, the location update of sparrows mainly depends

on the information exchanged among individuals, which

easily produces population aggregation and leads to a lack

of diversity. Then, according to Eq. 10, a large number of

followers will flood into the search area around the finder.

When they perceive that the finder has searched for a better

food location, the high population density around the finder

educes the diversity of population positions and easily falls

into a local optimum. In summary, we propose three

corresponding improvement strategies for the original SSA

algorithm, which is prone to local optimal values and

insufficient convergence accuracy. The specific strategies

are discussed below.

Reverse learning strategy based on the law
of refraction

For the SSA in the finder stage, with the continuous

expansion of the search range, a broad and flexible search

mechanism is the key to guiding the entire sparrow

population to find food and avoid danger. When R2 < ST,

the discoverer individuals of each dimension decrease. To

better realize the leading role of the discoverer, this paper

proposes a reverse learning strategy based on the law of

refraction. We calculate the reverse solution of the

candidate solution and select the better solution to

continue the iterative calculation to effectively enhance the

diversity of the algorithm and help the algorithm jump out of

the local extreme value space.

As shown in Figure 2, O is the center point of [a, b], x∈[a, b];
the global optimal individual X takes O as the center point to find

its corresponding reverse individual X′, where a represents the

upper bound and b represents the lower bound. It can be derived

from the law of refraction shown in Eq. 12:

γ � sin θ1
sin θ2

� ((a + b)/2 − x)/h(x′ − (a + b)/2)/h′ (12)

Assuming the scaling factor η � h/h′, the mathematical

model of the reverse individual X′ can be obtained by

deriving Eq. 12 as shown in Eq. 13:

x′ � (a + b)
2

+ (a + b)(2ηγ) − x

ηγ
(13)

Extend Eq. 13 to n-dimensional space to obtain:

x′
j �

(aj + bj)
2

+ (aj + bj)(2ηγ) − xj

ηγ
(14)

In this formula, aj and bj represent the jth dimensional vector

of the upper bound and the jth dimensional vector of the lower

bound, respectively; xj and x’ j represent the jth dimensional

vector of X and x’, respectively. Refraction reverse learning is

performed on the optimal solution in the population, and each

dimension value is mapped to the solution space to obtain a

reverse solution, which not only avoids the interference between

various dimensions but also expands the search range of the

algorithm.

FIGURE 4
Gaussian curve and Cauchy curve distribution diagram.
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Follower position update strategy based
on Levy flight

Although the reverse learning strategy of the refraction law

can help the algorithm to jump out of the local optimal value and

improve the solution accuracy of the algorithm, it cannot expand

the search range of the original population in the optimization

process. Therefore, we introduced the Levy flight strategy to

expand the follower’s optimal range.

According to Eq. 10, a large number of followers in SSA will

flood into the search area around the discoverers when they

perceive that the finder has searched for a better food location,

which has obvious convergence and makes the population

density of the search area too high around the discoverers.

This situation will reduce the diversity of population positions

and easily fall into a local optimum. In this paper, the random

step size s generated by Levy’s flight is introduced into the

follower’s location update strategy, and the uncertainty of

Levy’s flight direction and step size is used to enhance the

multiplicity of follower’s search direction, thus improving the

diversity of population locations and avoiding the search from

falling into local optimal value. The random step size s of the Levy

flight can be calculated by Eq. 15, and the result is shown in

Figure 3:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s � μ/|v|1/β, β � 3/2
μ ~ N(0, σ2

μ), v ~ N(0, σ2
v)

σμ �
⎧⎨⎩ Φ(1 + β) sin(πβ/2)
β · Φ[(1 + β)/2] · 2(β−1)/2

⎫⎬⎭
1/β

, σv � 1

(15)

Figure 3 shows that Levy flight shuttles each other due to

short and long distance searches, producing random steps s with

no definite direction or size. By introducing the Levy flight

strategy, followers can both roughly search over a large range

and finely search over a small range as they approach the

discoverer, which can effectively avoid convergence and

enhance the diversity of population locations. The formula for

updating the position of the follower was changed from Eqs

10–16 with the addition of the Levy flight strategy:

xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q · exp(xt

w − xt
i,j

i2
) if i> n

2

xt+1
p + s ·

∣∣∣∣∣xt
x,j − xt+1

p

∣∣∣∣∣A+ · L otherwise

(16)

According to Formula 10, it can be seen that the individual

with lower fitness value as a follower will reset the solution to a

number near 1 after updating according to the formula, which is

more effective for some objective functions whose optimal

convergence solution is near 1 or 0. However, in practical

engineering applications, the sparrows generally fly to places

with lower fitness values on the whole. At the same time, the

sparrow individuals with moderate fitness values are directly

replaced by the current best individual. Although the

convergence speed is improved to a certain extent, it will

waste the search area of this part of the sparrow population

and reduce the search accuracy. Comprehensively comparing the

characteristics of the individual fitness values of followers,

sparrows with moderate fitness values search in the direction

of the best sparrow individual according to the current search

area, while sparrow individuals with low fitness value fly to search

TABLE 1 Introduction to benchmark functions.

Fun no. Name Function type Range Dim Optimal value

f1 Sphere Single-modal [-100,100] 30/200/500 0

f2 Schwefel’s problem 2.22 Single-modal [-10,10] 30/200/500 0

f3 Schwefel’s problem 1.2 Single-modal [-100,100] 30/200/500 0

f4 Schwefel’s problem 2.21 Single-modal [-100,100] 30/200/500 0

f5 sum spare Single-modal [-10,10] 30/200/500 0

f6 Zakharov Single-modal [-5,10] 30/200/500 0

f7 Generalized Schwefel’s problem 2.26 Multi-modal [-500,500] 30/200/500 -12569.5

f8 Generalized Rastrigin’s function Multi-modal [-5.12,5.12] 30/200/500 0

f9 Ackley’s Function Multi-modal [-32,32] 30/200/500 0

f10 Ceneralized Criewank function Multi-modal [-600,600] 30/200/500 0

f11 Apline Multi-modal [-10,10] 30/200/500 0

f12 Ceneralized penalized function 2 Fixed multi-modal [-50,50] 30/200/500 0

f13 Shekell’s foxholes function Fixed multi-modal [-65,65] 30/200/500 1

f14 Hatman’s function 1 Fixed multi-modal [0,1] 30/200/500 -3.86

f15 Hatman’s function 2 Fixed multi-modal [0,1] 30/200/500 -3.32

f16 Eggcrate Fixed multi-modal [-2π,2π] 30/200/500 0
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TABLE 2 Comparison of optimization results of different improvement strategies for SSA.

Fun no. Algorithm Optimal Worst Mean Standard

f1 SSA 0.00E+00 1.03E-50 3.44E-52 1.89E-51

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 1.32E-65 4.45E-67 2.41E-66

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f2 SSA 0.00E+00 2.28E-21 7.59E-23 4.16E-22

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 5.82E-272 3.09E-273 0.00E+00

SSA3 0.00E+00 5.56E-30 1.89E-31 1.01E-30

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f3 SSA 0.00E+00 4.72E-63 1.61E-64 8.62E-64

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 2.48E-50 8.28E-52 4.53E-51

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f4 SSA 0.00E+00 1.09E-23 3.65E-25 2.00E-24

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 7.88E-306 1.30E-258 4.35E-260 0.00E+00

SSA3 0.00E+00 2.20E-25 8.76E-27 4.06E-26

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f5 SSA 0.00E+00 1.47E-37 4.89E-39 2.68E-38

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 6.54E-44 2.18E-45 1.19E-44

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f6 SSA 0.00E+00 5.29E-37 2.25E-38 9.93E-38

SSA1 0.00E+00 5.65E-35 1.88E-36 1.03E-35

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 2.79E-46 9.29E-48 5.09E-47

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 SSA -1.26E+04 -4.77E+03 -1.14E+04 1.92E+03

SSA1 -1.26E+04 -4.13E+03 -1.02E+04 2.49E+03

SSA2 -1.26E+04 -7.95E+03 -1.20E+04 9.45E+02

SSA3 -1.13E+04 -3.96E+03 -9.30E+03 1.75E+03

MSSA -1.26E+04 -1.26E+04 -1.26E+04 2.03E-01

f8 SSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 0.00E+00 0.00E+00 0.00E+00

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F9 SSA 8.88E-16 8.88E-16 8.88E-16 0.00E+00

SSA1 8.88E-16 8.88E-16 8.88E-16 0.00E+00

SSA2 8.88E-16 8.88E-16 8.88E-16 0.00E+00

SSA3 8.88E-16 8.88E-16 8.88E-16 0.00E+00

MSSA 8.88E-16 8.88E-16 8.88E-16 0.00E+00

f10 SSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(Continued on following page)
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near the best position of the finder. The positions updated by

Levy flight of the follower is changed from Eqs 16, 17:

xt+1
i,j �

⎧⎪⎨⎪⎩
xt+1
p + s ·

∣∣∣∣∣xt
x,j − xt+1

p

∣∣∣∣∣ if i> n

2

xt+1
p + s ·

∣∣∣∣∣xt
x,j − xt+1

p

∣∣∣∣∣ · A+ · L otherwise
(17)

Scouter position update strategy based on
improved Cauchy mutations

In the SSA, the scouters enhance the global exploration

ability of the algorithm to some extent, and the ability to

jump out of the local optimal value is stronger if the number

of scouters is a high percentage of the whole sparrow population.

However, the random selection of scouters limits the more active

sparrow individuals. The mechanism of fixing the number of

scouter in the sparrow optimization algorithm slows down the

optimization accuracy and convergence speed to a certain extent.

Therefore, the improved scouter formula proposed in this paper

on the original Eq. 11 is as follows:

xt+1
i,j � { xt

i,j + Q ·
∣∣∣∣∣xt

i,j − xt
b,j

∣∣∣∣∣ fi ≠ fg

xt
b,j + Q ·

∣∣∣∣∣xt
w − xt

b,j

∣∣∣∣∣ fi � fg

(18)

Because the sparrow optimization algorithm easily falls into a

local optimum, the peak value of the Cauchy distribution

function at the origin is small, but the distribution at both

ends is relatively long. Because the range of the Cauchy

TABLE 2 (Continued) Comparison of optimization results of different improvement strategies for SSA.

Fun no. Algorithm Optimal Worst Mean Standard

SSA3 0.00E+00 0.00E+00 0.00E+00 0.00E+00

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f11 SSA 0.00E+00 5.04E-19 1.68E-20 9.21E-20

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 1.73E-261 5.78E-263 0.00E+00

SSA3 0.00E+00 1.72E-23 5.74E-25 3.14E-24

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f12 SSA -1.03E+00 1.88E-121 -9.63E-01 2.62E-01

SSA1 -1.03E+00 0.00E+00 -9.28E-01 3.15E-01

SSA2 -1.03E+00 -1.03E+00 -1.03E+00 2.32E-11

SSA3 -1.03E+00 -1.03E+00 -1.03E+00 6.45E-05

MSSA -1.03E+00 -1.03E+00 -1.03E+00 1.47E-05

f13 SSA 3.98E-01 3.98E-01 3.98E-01 3.15E-05

SSA1 3.98E-01 8.45E-01 4.13E-01 8.16E-02

SSA2 3.98E-01 3.98E-01 3.98E-01 5.35E-07

SSA3 3.98E-01 6.42E-01 4.23E-01 6.90E-02

MSSA 3.98E-01 3.98E-01 3.98E-01 7.41E-05

f14 SSA -3.86E+00 -3.09E+00 -3.75E+00 2.00E-01

SSA1 -3.86E+00 -3.60E+00 -3.82E+00 5.91E-02

SSA2 -3.86E+00 -3.09E+00 -3.81E+00 1.96E-01

SSA3 -3.86E+00 -3.01E+00 -3.65E+00 2.03E-01

MSSA -3.86E+00 -3.86E+00 -3.86E+00 2.10E-03

f15 SSA -3.24E+00 -1.40E+00 -2.96E+00 3.62E-01

SSA1 -3.30E+00 -2.82E+00 -3.10E+00 1.31E-01

SSA2 -3.32E+00 -3.03E+00 -3.25E+00 9.02E-02

SSA3 -3.17E+00 -1.17E+00 -2.65E+00 5.33E-01

MSSA -3.32E+00 -3.03E+00 -3.23E+00 9.01E-02

f16 SSA 0.00E+00 1.63E-33 5.53E-35 2.97E-34

SSA1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SSA3 0.00E+00 4.17E-52 1.39E-53 7.62E-53

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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distribution function is relatively wide, it is easier to jump out of

the local optimum by using the distribution at both ends of the

Cauchy variation (Li et al., 2017). We used the Cauchy mutation

to generate larger disturbances near the currently mutated

sparrow individual to improve the local search ability of the

algorithm and expand the search space of the algorithm. The

standard Cauchy distribution function formula is as follows:

fc(x) � 1
π( γ

(x − x0)2 + γ2
) −∞< x<∞ (19)

If the random variable x of the Cauchy distribution obeys the

position parameter of x0 and the scale parameter of γ, it is

recorded as Cauchy(γ, x0). When the special case of γ = 1 and x0 =

0, it becomes the standard Cauchy distribution function, and the

corresponding cumulative distribution function is shown in

Eq. 20:

Fc(x) � 1
2
+ 1
π arctan(x − x0

γ
) (20)

There are two main differences because the density function

of the Cauchy distribution is similar to the Gaussian density

function. On the one hand, the Cauchy distribution in the vertical

direction is slightly smaller than the Gaussian distribution. On

the other hand, the closer the Cauchy distribution is to the

horizontal axis in the horizontal direction, the slower the change,

so the Cauchy distribution can be regarded as infinite.

The comparison of the two distributions is shown in Figure 4.

The Cauchy distribution and the Gaussian distribution have

FIGURE 5
Mean convergence curve of the benchmark function. (A) f1mean convergence curve. (B) f2mean convergence curve. (C) f3mean convergence
curve. (D) f4mean convergence curve. (E) f5 mean convergence curve. (F) f6mean convergence curve. (G) f7 mean convergence curve. (H) f8mean
convergence curve. (I) f9 mean convergence curve. (J) f10 mean convergence curve. (K) f11 mean convergence curve. (L) f12 mean convergence
curve. (M) f13 mean convergence curve. (N) f14 mean convergence curve. (O) f15 mean convergence curve. (P) f16 mean convergence curve.
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TABLE 3 Comparison with the results of five metaheuristic algorithms.

Fun no. Name 30 dim 200 dim 500 dim

Mean SD Mean SD Mean SD

f1 SSA[26] 1.28E-52 6.76E-52 5.12E-40 2.80E-39 4.12E-64 2.25E-63

GWO[16] 2.12E-27 3.08E-27 1.17E-07 7.25E-08 1.66E-03 5.71E-04

WOA[34] 2.21E-73 9.78E-73 4.55E-67 2.49E-66 2.68E-71 9.22E-71

TSA[12] 1.91E-21 7.58E-21 3.64E-06 3.57E-06 2.77E-02 1.82E-02

EO[35] 2.48E-41 3.99E-41 1.44E-25 2.04E-25 1.11E-22 1.64E-22

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f2 SSA[26] 3.12E-20 1.71E-19 3.18E-19 1.74E-18 1.89E-26 1.04E-25

GWO[16] 1.18E-16 9.88E-17 3.26E-05 7.11E-06 1.21E-02 2.11E-03

WOA[34] 3.09E-51 1.09E-50 6.10E-49 2.18E-48 6.87E-49 3.18E-48

TSA[12] 9.65E-14 1.78E-13 5.24E-05 3.37E-05 6.84E-03 4.31E-03

EO[35] 5.63E-24 4.83E-24 1.56E-15 8.88E-16 8.77E-14 6.13E-14

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f3 SSA[26] 7.58E-49 3.99E-48 1.04E-42 5.70E-42 2.66E-56 1.46E-55

GWO[16] 1.79E-05 4.40E-05 2.02E+04 8.92E+03 3.22E+05 8.03E+04

WOA[34] 4.52E+04 1.34E+04 5.17E+06 1.56E+06 3.02E+07 1.04E+07

TSA[12] 1.22E-03 5.79E-03 1.72E+05 4.14E+04 1.42E+06 2.42E+05

EO[35] 4.95E-09 5.06E-10 7.62E+02 1.53E+03 2.95E+04 3.08E+04

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f4 SSA[26] 7.37E-20 4.04E-19 1.41E-23 7.74E-23 3.32E-34 1.82E-33

GWO[16] 9.14E-07 6.67E-07 2.38E+01 7.22E+00 6.40E+01 5.40E+00

WOA[34] 5.07E+01 2.83E+01 7.59E+01 2.58E+01 8.04E+01 2.32E+01

TSA[12] 4.57E-01 6.01E-01 9.39E+01 4.14E+00 9.91E+01 3.10E-01

EO[35] 5.06E-10 9.39E-10 2.23E+01 2.48E+01 6.81E+01 1.59E+01

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f5 SSA[26] 1.72E-51 9.40E-51 4.54E-49 2.49E-48 8.45E-50 4.63E-49

GWO[16] 4.03E-29 5.75E-29 1.68E-08 8.39E-09 8.45E-04 2.78E-04

WOA[34] 1.56E-72 8.53E-72 3.49E-71 1.19E-70 1.70E-68 6.15E-68

TSA[12] 3.22E-23 3.46E-23 1.07E-06 1.60E-06 1.32E-02 1.52E-02

EO[35] 1.90E-42 3.16E-42 4.63E-26 1.30E-25 9.77E-23 9.61E-23

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f6 SSA[26] 1.93E-38 1.06E-37 3.33E-40 1.82E-39 1.38E-29 7.56E-29

GWO[16] 2.59E-07 7.08E-07 9.92E+02 2.21E+02 3.88E+03 5.58E+02

WOA[34] 4.98E+02 1.34E+02 3.33E+03 3.94E+02 8.03E+03 1.06E+03

TSA[12] 2.79E-10 3.32E-10 5.03E+02 1.04E+02 1.93E+03 3.31E+02

EO[35] 1.46E-05 3.12E-05 9.35E+02 3.08E+02 3.08E+03 9.19E+02

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 SSA[26] -1.13E+04 1.90E+03 -7.62E+04 8.05E+03 -1.84E+05 2.15E+04

GWO[16] -6.15E+03 8.82E+02 -2.70E+04 6.46E+03 -5.67E+04 9.18E+03

WOA[34] -1.05E+04 1.79E+03 -6.86E+04 1.12E+04 -1.75E+05 2.84E+04

TSA[12] -5.96E+03 5.65E+02 -1.94E+04 1.19E+03 -3.09E+04 1.95E+03

EO[35] -8.85E+03 6.65E+02 -4.26E+04 2.74E+03 -7.41E+04 4.79E+03

MSSA -1.26E+04 9.57E-02 -8.38E+04 1.95E-01 -2.09E+05 1.12E+00

f8 SSA[26] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

GWO[16] 2.30E+00 2.95E+00 2.55E+01 1.45E+01 7.42E+01 2.30E+01

WOA[34] 0.00E+00 0.00E+00 1.52E-14 8.30E-14 3.03E-14 1.66E-13

TSA[12] 1.82E+02 3.73E+01 2.19E+03 2.31E+02 5.89E+03 5.98E+02

(Continued on following page)
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TABLE 3 (Continued) Comparison with the results of five metaheuristic algorithms.

Fun no. Name 30 dim 200 dim 500 dim

Mean SD Mean SD Mean SD

EO[35] 0.00E+00 0.00E+00 1.52E-14 5.77E-14 6.06E-14 2.31E-13

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f9 SSA[26] 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00

GWO[16] 1.11E-13 1.57E-14 2.42E-05 6.94E-06 1.95E-03 3.93E-04

WOA[34] 5.27E-15 2.02E-15 5.27E-15 2.41E-15 3.85E-15 2.48E-15

TSA[12] 1.87E+00 1.57E+00 2.72E-04 1.74E-04 1.06E-02 5.51E-03

EO[35] 8.70E-15 2.17E-15 9.49E-14 2.87E-14 4.85E-13 2.46E-13

MSSA 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00

f10 SSA[26] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

GWO[16] 4.22E-03 1.01E-02 6.69E-03 1.43E-02 6.75E-03 2.50E-02

WOA[34] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.70E-18 2.03E-17

TSA[12] 1.39E-02 1.98E-02 2.63E-02 5.94E-02 3.74E-02 7.96E-02

EO[35] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.11E-03 6.07E-03

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f11 SSA[26] 1.95E-33 1.06E-32 7.03E-24 3.20E-23 5.12E-20 2.81E-19

GWO[16] 4.46E-04 6.57E-04 1.30E-02 3.27E-03 6.83E-02 1.38E-02

WOA[34] 2.53E-43 1.38E-42 1.20E-49 4.86E-49 2.45E-50 7.46E-50

TSA[12] 2.58E+01 6.50E+00 3.50E+02 4.66E+01 8.75E+02 1.96E+02

EO[35] 1.41E-07 7.17E-07 1.23E-15 5.16E-15 1.19E-14 5.56E-15

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f12 SSA[26] -1.03E+00 2.40E-07 -1.01E+00 1.45E-01 -8.60E-01 3.91E-01

GWO[16] -1.03E+00 1.82E-08 -1.03E+00 1.03E-08 -1.03E+00 6.06E-09

WOA[34] -1.03E+00 6.71E-10 -1.03E+00 6.26E-09 -1.03E+00 6.69E-10

TSA[12] -1.03E+00 8.02E-03 -1.03E+00 1.09E-02 -1.03E+00 5.77E-03

EO[35] -1.03E+00 6.39E-16 -1.03E+00 6.18E-16 -1.03E+00 6.39E-16

MSSA -1.03E+00 1.46E-05 -1.03E+00 1.31E-05 -1.03E+00 1.46E-05

f13 SSA[26] 3.98E-01 8.02E-06 3.98E-01 9.38E-06 3.98E-01 5.02E-06

GWO[16] 3.98E-01 3.88E-05 3.98E-01 1.32E-06 3.98E-01 1.27E-04

WOA[34] 3.98E-01 4.45E-05 3.98E-01 9.77E-06 3.98E-01 8.92E-06

TSA[12] 3.98E-01 9.97E-05 3.98E-01 3.50E-05 3.98E-01 8.92E-05

EO[35] 3.98E-01 0.00E+00 3.98E-01 0.00E+00 3.98E-01 0.00E+00

MSSA 3.98E-01 9.24E-05 3.98E-01 5.85E-05 3.98E-01 6.99E-05

f14 SSA[26] -3.81E+00 6.70E-02 -3.76E+00 1.95E-01 -3.80E+00 1.47E-01

GWO[16] -3.86E+00 2.46E-03 -3.86E+00 2.60E-03 -3.86E+00 1.64E-03

WOA[34] -3.85E+00 1.92E-02 -3.86E+00 6.28E-03 -3.86E+00 1.07E-02

TSA[12] -3.86E+00 1.43E-03 -3.86E+00 1.41E-03 -3.86E+00 1.10E-04

EO[35] -3.86E+00 1.44E-03 -3.86E+00 2.49E-15 -3.86E+00 2.49E-15

MSSA -3.86E+00 2.03E-02 -3.86E+00 6.59E-03 -3.86E+00 4.01E-03

f15 SSA[26] -3.05E+00 2.17E-01 -2.96E+00 4.63E-01 -2.91E+00 3.37E-01

GWO[16] -3.25E+00 7.06E-02 -3.24E+00 7.51E-02 -3.27E+00 6.64E-02

WOA[34] -3.25E+00 9.10E-02 -3.20E+00 1.26E-01 -3.26E+00 8.98E-02

TSA[12] -3.24E+00 1.26E-01 -3.26E+00 7.44E-02 -3.25E+00 1.04E-01

EO[35] -3.24E+00 6.99E-02 -3.28E+00 5.85E-02 -3.25E+00 6.92E-02

MSSA -3.21E+00 8.80E-02 -3.24E+00 7.45E-02 -3.21E+00 9.89E-02

f16 SSA[26] 4.77E-40 2.61E-39 1.48E-59 8.09E-59 3.49E-64 1.91E-63

GWO[16] 9.42E-207 0.00E+00 8.88E-205 0.00E+00 1.00E-210 0.00E+00

(Continued on following page)
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certain similarities and their own characteristics. The Cauchy

distribution has a wider range than the Gaussian distribution.

The Cauchy distribution easily generates a random number far

from the origin, which means that the sparrow individual after

Cauchy mutation has a higher probability of jumping out of the

local optimal area. In addition, the peak value of the Cauchy

distribution function is lower than that of the Gaussian

distribution, which can shorten the search time of the

mutated sparrow individuals around the neighborhood.

Therefore, this paper integrates the Cauchy mutation to

improve the scouter position update strategy, increases the

diversity of the population and improves the ability of the

algorithm to jump out of the local optimum. The position

update formula is as follows:

xt+1
i,j � xt

best + xt
i,j · Cauchy (0, 1) (21)

Eqs 9–11, derived from the original work of SSA, specify how

the sparrow is updated and construct the basic flow of the

TABLE 3 (Continued) Comparison with the results of five metaheuristic algorithms.

Fun no. Name 30 dim 200 dim 500 dim

Mean SD Mean SD Mean SD

WOA[34] 4.18E-111 2.29E-110 4.90E-106 2.68E-105 1.38E-109 7.56E-109

TSA[12] 6.90E-95 3.78E-94 1.47E-94 8.04E-94 7.55E-105 4.13E-104

EO[35] 3.42E-205 0.00E+00 4.86E-213 0.00E+00 4.10E-208 0.00E+00

MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

FIGURE 6
Comparison of optimization of each algorithm. (A) f1 mean convergence curve. (B) f2 mean convergence curve. (C) f3 mean convergence
curve. (D) f4mean convergence curve. (E) f5 mean convergence curve. (F) f6mean convergence curve. (G) f8mean convergence curve. (H) f9mean
convergence curve. (I) f10 mean convergence curve. (J) f11 mean convergence curve. (K) f13 mean convergence curve. (L) f16 mean convergence
curve.
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algorithm. Based on the idealization and feasibility of the above

model, the basic steps of the improved SSA can be summarized in

the pseudo-code shown in Algorithm 1.

Simulation experiments of MSSA

Experimental environment parameters
and test functions

The computer configuration used in the simulation

experiment is Intel Core i7-6700HQ, the main frequency is

2.60 GHz, 8 GB memory, 64 bit operating system, and the

computing environment is MATLAB 2019(b). We compare

the SSA, GWO, WOA (Mirjalili and Lewis, 2016), TSA, and

EO (Faramarzi et al., 2020) with MSSA. The basic parameters of

the algorithms were set to the same value, including population

size N = 30, the maximum number of iterations Tmax = 500. The

test function dimensions were divided into low-dimensional (d =

30) and high-dimensional (d = 200 and d = 500).

To test the optimization performance of the MSSA

algorithm, 16 benchmark functions with different

characteristics used in the literature were selected for the

function optimization test. The selected test functions were

divided into three categories. The first category was the single-

modal test function, f1-f6, which is mainly used to evaluate the

optimization accuracy and convergence speed of the algorithm.

The second type is the multi-modal test function, f7-f11, which is

used to test the exploration ability of the algorithm and the ability

to jump out of the local optimal value. The third type is the fixed

multi-modal test function, f12-f16. This paper used the

16 benchmark functions to evaluate the comprehensive ability

of the algorithm. The detailed description and related

information are shown in Table 1.

Comparing MSSA with various
improvement strategies

Optimization performance experiment
To fully verify the optimization effect of the proposed

improved strategy, we denoted the three improvement

strategies as SSA1, SSA2, and SSA3, and compare them

with SSA and MSSA. Each algorithm was independently

run 30 times on 16 benchmark functions, and the optimal

value, worst value, mean value, and standard value were

recorded. The optimal value and the worst value reflected

the single optimization ability of the algorithm, the average

value reflected the convergence accuracy, and the standard

deviation reflected the stability and robustness of the

algorithm. Parameters were uniformly set as follows:

population size N = 30, search space dimension dim = 30,

and maximum number of iterations, Tmax = 500. The results of

experimental optimization are shown in Table 2:

Table 2 shows that for the single-modal test functions, f1-f6,

MSSA can find the theoretical optimal value, illustrating that the

stability is strong. At the same time, SSA1 can reach the

theoretical optimal value and the more stable standard,

showing that the introduction of the lens imaging learning

strategy helps the algorithm to jump out of the local optimal

TABLE 4 Wilcoxon rank sum test results.

Fun. No SSA(p1) GWO(p2) WOA(p3) TSA(p4) EO(p5)

f1 1.31 × 10–07 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f2 1.93 × 10–10 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f3 1.70 × 10–08 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f4 1.66 × 10–11 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f5 1.31 × 10–07 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f6 1.70 × 10–08 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f7 2.15 × 10–10 3.02 × 10–11 3.34 × 10–11 3.02 × 10–11 3.02 × 10–11

f8 NaN 1.17 × 10–12 NaN 1.21 × 10–12 NaN

f9 NaN 1.15 × 10–12 3.06 × 10–09 1.21 × 10–12 3.13 × 10–12

f10 NaN 6.62 × 10–04 3.04 × 10–01 8.86 × 10–07 NaN

f11 1.93 × 10–10 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

f12 3.34 × 10–11 3.02 × 10–11 3.02 × 10–11 2.13 × 10–05 6.32 × 10–12

f13 3.83 × 10–06 1.07 × 10–09 5.00 × 10–09 8.31 × 10–03 1.21 × 10–11

f14 6.41 × 10–01 3.77 × 10–04 5.59 × 10–01 5.53 × 10–08 1.72 × 10–12

f15 1.03 × 10–06 9.79 × 10–05 6.55 × 10–04 3.34 × 10–03 3.06 × 10–11

f16 1.31 × 10–07 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12 1.21 × 10–12

+/ = /- 13/3/3 16/0/0 15/1/1 16/0/0 14/2/2
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value. SSA2 can reach the optimal theoretical value in f1, f2, f5,

and f6, indicating that adding Levy flight can help the population

to deeply mine the global optimal values and improve the global

search ability of the algorithm. For the multi-modal test

functions, f7-f11, there are a large number of local extremes

distributed in their solution space, and it is difficult for the

algorithm to perform global optimization. The MSSA and other

comparative algorithms fall into local optimal solutions when

solving function f9. But MSSA has higher convergence accuracy

and stability in other test functions, and the standards are more

stable than other algorithms.

For the fixed multi-modal functions, f12-f16, MSSA can

find the theoretical optimal value, and the stability is

extremely strong and the standard value is lower than

SSA1, SSA2, and SSA3, indicating that MSSA has stronger

stability and robustness.

Convergence curve experiment
We used the average convergence curve to reflect the

dynamic convergence characteristics of the MSSA in this

paper. We make the algorithm run 30 times independently

under the population size N = 30, maximum number of

iterations Tmax = 500, and the search dimension dim = 30.

Figure 5 presents the average convergence curves of the

16 benchmark functions.

Figure 5 shows that the MSSA has a higher optimization

accuracy solution rate and faster convergence speed in f1-f5 than

under the same number of iterations. The values of f7-f11 and f16
show that the MSSA is able to guarantee the exploration ability

and illustrate that the MSSA can ensure the development ability

without losing the population diversity and optimization

stability. For f6 and f12-f14, the MSSA can converge to the

optimal value faster in the later stages, which indicates that

adopting the three strategies can help the algorithm jump out

of the local optimal value effectively. In general, the MSSA

average convergence curve is below the four comparison

algorithms and takes fewer iterations to reach the theoretical

optimal. From Table 2 and Figure 5, the result illustrates that the

MSSA has higher convergence accuracy, convergence speed,

stronger stability, and better robustness. The experimental

results verify the effectiveness of the proposed algorithm and

achieve the purpose of improving the standard SSA.

Comparing MSSA with other algorithms

Optimization performance experiment
To further test the optimization characteristics of the MSSA

algorithm for the benchmark function, this paper chose the

standard SSA, GWO, WOA, TSA, EO, and MSSA to compare

for optimization performance. For each benchmark function, the

search dimension is set to dim = 30/200/500, the maximum

number of iterations Tmax = 500 and the population size isN = 30.

The test functions of Table 1 are used to perform the

optimization comparison test, and each algorithm is run

30 times independently. The comparison results are shown in

Table 3:

As seen from Table 3, the solution rate of MSSA can reach

100% when solving for the single-modal test function, f1-f6,

which indicates that MSSA has good optimization accuracy

and robustness. For the multi-modal test function, f7-f11,

MSSA can find the theoretical optimal value. For the fixed

multi-modal test function, f12-f16, the MSSA solution results

are very close to or equal to the theoretical optimal value. As

the dimension of the search space increases from 30 to 200 and

500 dimensions, the search accuracy and stability of the

algorithm decrease because the optimization process requires

more computations, but MSSA still has the highest optimization

accuracy. This illustrates that the MSSA has a significant

TABLE 5 Part of the CEC2014 function.

Fun no. Dim Function type Range Optimal

CEC01 30 UN [-100,100] 100

CEC02 30 UN [-100,100] 200

CEC03 30 UN [-100,100] 300

CEC04 30 MF [-100,100] 400

CEC05 30 MF [-100,100] 500

CEC06 30 MF [-100,100] 600

CEC07 30 MF [-100,100] 700

CEC08 30 MF [-100,100] 800

CEC09 30 MF [-100,100] 900

CEC10 30 MF [-100,100] 1000

CEC11 30 MF [-100,100] 1100

CEC12 30 MF [-100,100] 1200

CEC13 30 MF [-100,100] 1300

CEC14 30 MF [-100,100] 1400

CEC15 30 MF [-100,100] 1500

CEC16 30 MF [-100,100] 1600

CEC17 30 HF [-100,100] 1700

CEC18 30 HF [-100,100] 1800

CEC19 30 HF [-100,100] 1900

CEC20 30 HF [-100,100] 2000

CEC21 30 HF [-100,100] 2100

CEC22 30 HF [-100,100] 2200

CEC23 30 HF [-100,100] 2300

CEC24 30 HF [-100,100] 2400

CEC25 30 CF [-100,100] 2500

CEC26 30 CF [-100,100] 2600

CEC27 30 CF [-100,100] 2700

CEC28 30 CF [-100,100] 2800

CEC29 30 CF [-100,100] 2900

CEC30 30 CF [-100,100] 3000
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competitive advantage and stability in solving high-dimensional

and complex optimization problems.

High-dimensional convergence curve
experiment

To compare the optimization performance of the MSSA

and other algorithms, we selected SSA, GWO,WOA, TSA, EO,

and MSSA for high-dimensional function optimization

comparison. This paper used the 12 representative

benchmark functions given in Table 1, the dimension

dim = 500, and the maximum number of iterations, Tmax =

500. The high-dimensional optimization curve of each

algorithm is shown in Figures 6A–L. The convergence

accuracy and speed of the MSSA were significantly higher

than those of the other algorithms, which indicate that the

multi-strategy can effectively prevent the algorithm from

falling into local optima. The results of the optimization

curve illustrated that for the single-modal test functions, f1-

f6, the multi-modal functions test functions, f8, f10, f11, and the

fixed multi-modal function, f16, MSSA can find the optimal

value faster with fewer iterations and higher convergence

accuracy. For the multi-modal function, f9, the optimal

value of MSSA was similar to several other contrast

functions, but the MSSA converged much faster. For the

fixed multi-modal function, f13, MSSA fell into a local

optimum similar to the five compared algorithms, but it

still could find the theoretical optimum; thus, MSSA has

significant advantages over the other algorithms.

TABLE 6 CEC2014 function optimization comparison.

No. SSA GWO WOA TSA EO MSSA

Mean SD Mean SD Mean SD Mean SD Mean SD Mean Std

CEC01 9.554E+08 2.631E+08 1.098E+08 8.610E+07 2.175E+08 1.105E+08 4.116E+08 2.529E+08 1.607E+07 7.842E+06 7.625E+08 2.612E+08

CEC02 7.477E+10 8.241E+09 3.206E+09 2.525E+09 6.849E+09 2.531E+09 3.020E+10 1.016E+10 1.450E+05 1.666E+05 5.933E+10 8.122E+09

CEC03 8.759E+04 3.076E+03 5.134E+04 1.349E+04 1.364E+05 7.675E+04 5.817E+04 1.096E+04 2.289E+04 1.232E+04 8.518E+04 4.116E+03

CEC04 1.369E+04 3.074E+03 6.920E+02 8.595E+01 1.350E+03 3.125E+02 3.325E+03 2.152E+03 5.261E+02 3.970E+01 9.841E+03 2.116E+03

CEC05 5.212E+02 9.680E-02 5.211E+02 7.219E-02 5.209E+02 1.063E-01 5.211E+02 7.515E-02 5.210E+02 8.605E-02 5.210E+02 7.811E-02

CEC06 6.432E+02 2.736E+00 6.169E+02 2.231E+00 6.388E+02 3.369E+00 6.331E+02 3.501E+00 6.112E+02 2.621E+00 6.405E+02 2.563E+00

CEC07 1.258E+03 1.513E+02 7.296E+02 2.719E+01 7.462E+02 1.945E+01 9.799E+02 8.968E+01 7.002E+02 1.168E-01 1.105E+03 9.123E+01

CEC08 1.134E+03 2.557E+01 9.024E+02 3.450E+01 1.052E+03 5.699E+01 1.072E+03 3.917E+01 8.621E+02 1.661E+01 1.099E+03 3.076E+01

CEC09 1.280E+03 3.438E+01 1.023E+03 3.495E+01 1.218E+03 5.999E+01 1.228E+03 4.629E+01 1.004E+03 2.524E+01 1.226E+03 2.770E+01

CEC10 8.566E+03 6.372E+02 3.904E+03 1.268E+03 6.099E+03 9.402E+02 6.759E+03 8.883E+02 3.408E+03 6.872E+02 7.815E+03 5.461E+02

CEC11 8.764E+03 6.220E+02 5.338E+03 1.774E+03 7.636E+03 4.399E+02 7.387E+03 6.106E+02 5.206E+03 7.782E+02 8.437E+03 5.112E+02

CEC12 1.204E+03 1.267E+00 1.203E+03 1.223E+00 1.202E+03 5.587E-01 1.203E+03 4.669E-01 1.202E+03 5.199E-01 1.203E+03 6.070E-01

CEC13 1.308E+03 9.376E-01 1.301E+03 2.225E-01 1.302E+03 9.442E-01 1.304E+03 7.534E-01 1.300E+03 1.018E-01 1.307E+03 7.269E-01

CEC14 1.608E+03 3.762E+01 1.406E+03 7.359E+00 1.420E+03 1.042E+01 1.505E+03 2.852E+01 1.400E+03 1.942E-01 1.578E+03 2.299E+01

CEC15 1.105E+05 4.523E+04 1.804E+03 5.126E+02 2.550E+03 1.105E+03 2.256E+04 3.623E+04 1.510E+03 2.472E+00 5.588E+04 2.556E+04

CEC16 1.613E+03 3.680E-01 1.612E+03 4.505E-01 1.613E+03 4.879E-01 1.613E+03 3.369E-01 1.612E+03 6.038E-01 1.613E+03 2.314E-01

CEC17 1.063E+08 9.442E+07 3.127E+06 2.652E+06 2.355E+07 1.383E+07 1.336E+07 1.277E+07 1.116E+06 7.946E+05 9.002E+07 5.939E+07

CEC18 3.101E+09 2.708E+09 2.865E+07 3.139E+07 6.831E+06 6.326E+06 6.929E+08 1.498E+09 6.086E+03 1.168E+04 1.666E+09 1.164E+09

CEC19 2.377E+03 1.769E+02 1.959E+03 2.991E+01 2.020E+03 6.305E+01 2.090E+03 9.015E+01 1.915E+03 1.975E+01 2.230E+03 1.034E+02

CEC20 6.555E+05 1.016E+06 3.720E+04 1.914E+04 1.578E+05 1.533E+05 7.574E+04 5.123E+04 2.100E+04 9.639E+03 2.980E+05 2.909E+05

CEC21 5.064E+07 4.092E+07 2.340E+06 3.394E+06 1.183E+07 9.843E+06 6.214E+06 6.954E+06 5.188E+05 3.946E+05 3.479E+07 3.409E+07

CEC22 5.127E+03 1.861E+03 2.708E+03 1.610E+02 3.238E+03 2.960E+02 3.487E+03 8.483E+02 2.608E+03 2.130E+02 4.939E+03 5.236E+03

CEC23 2.500E+03 0.000E+00 2.641E+03 1.343E+01 2.715E+03 3.445E+01 2.740E+03 9.350E+01 2.615E+03 1.493E-01 2.500E+03 0.000E+00

CEC24 2.600E+03 0.000E+00 2.600E+03 3.613E-02 2.610E+03 6.295E+00 2.610E+03 2.017E+01 2.600E+03 7.775E-03 2.600E+03 0.000E+00

CEC25 2.700E+03 0.000E+00 2.713E+03 5.881E+00 2.718E+03 2.124E+01 2.730E+03 1.082E+01 2.701E+03 2.503E+00 2.700E+03 0.000E+00

CEC26 2.769E+03 4.420E+01 2.747E+03 5.048E+01 2.717E+03 3.770E+01 2.806E+03 6.982E+01 2.727E+03 4.479E+01 2.766E+03 4.594E+01

CEC27 2.900E+03 0.000E+00 3.422E+03 1.145E+02 3.924E+03 3.295E+02 3.867E+03 2.875E+02 3.282E+03 1.095E+02 2.900E+03 0.000E+00

CEC28 3.000E+03 0.000E+00 4.327E+03 5.250E+02 5.274E+03 7.162E+02 7.836E+03 9.600E+02 3.777E+03 1.204E+02 3.000E+03 0.000E+00

CEC29 3.100E+03 0.000E+00 3.670E+06 5.556E+06 1.800E+07 1.944E+07 8.854E+07 7.142E+07 3.425E+06 4.721E+06 3.100E+03 0.000E+00

CEC30 3.200E+03 0.000E+00 9.243E+04 6.681E+04 5.368E+05 3.128E+05 6.287E+05 3.630E+05 1.109E+04 7.519E+03 3.200E+03 0.000E+00
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Wilcoxon rank-sum test experiment

In general, only the mean and standard deviation are used

for data analysis. The Wilcoxon rank-sum test is a non-

parametric test method for the mean that is not limited by

the overall distribution and has a wide range of applications

(Derrac, J. et al., 2011). To more comprehensively analyze the

performance difference between the MSSA and other

algorithms, we selected the running results of MSSA and

five comparison algorithms in sixteen test functions to

conduct the Wilcoxon rank sum test. The p value can be

considered to reject the null hypothesis when p < 5%,

indicating that there is a significant difference in the test

results. NaN indicates that there are no data to compare with

the algorithm, +, =, and - indicate that the MSSA algorithm’s

optimization performance is better than, equal to, and worse

than the compared algorithms, respectively. The results of the

Wilcoxon rank sum test are shown in Table 4:

As seen from Table 4, the MSSA p value of the Wilcoxon

rank sum test is less than 5%. The experimental results

indicate that there is a significant difference between the

MSSA and the other five algorithms, and the MSSA is

significantly better than the others, further reflecting the

robustness of the MSSA.

FIGURE 7
3D map model information of two environments. (A) 3D map of environment 1. (B) 3D map of environment 2.

FIGURE 8
Simulation results of 3D trajectory planning in environment 1 from two different views.
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CEC2014 test functions experiment

Most of the CEC2014 test functions (Tejani, 2018) are

composed of the weights of multiple basic optimizations test

functions, which makes the characteristics of the test functions

more complex. In this paper, the proposed MSSA was tested

against these complex test functions. On the one hand, these

functions can effectively reflect the superior performance of

MSSA for optimization of a complex function. On the other

hand, the combinatorial optimization of multiple test functions

reflects the applicability of SMSA to different complex

optimization problems. To further test the performance of

MSSA, this paper chose the CEC2014 single objective

optimization function for solution analysis, including unit-

modal, multi-modal, Hybrid, and composition type functions.

Table 5 shows the relevant information of CEC2014 functions.

This study compared the MSSA with five algorithms, including

SSA, GWO, WOA, TSA, and EO. To ensure fairness of the

algorithm comparison, the maximum number of iterations,

Tmax = 1000, the population size was N = 30, and the

dimension, dim = 30, were set to the same values in each

algorithm, which were run 30 times independently, and the

mean and standard deviation were recorded. The results are

shown in Table 6.

The algorithm initialization phase:

1. T: the maximum iterations;

2. Dd: the number of discovers;

3. Sd: the number of scouters;

4. R2: the alarm value;

5. n: the number of sparrows;

6. Perform sparrow population position

initialization;

The algorithm iterates the search phase:

7. while t < Tmax;

8. Ranking of individual fitness values to find the best

and worst individuals;

9. R2 = rand (1);

10. for i = 1: Dd;

11. Using Eq. 14 update the sparrow’s location;

12. end for;

13. for i = 1: (Dd+1);

14. Using Eq. 17 update the sparrow’s location;

15. end for;

16. for i = 1: Sd;

17. Using Eq. 21 update the sparrow’s location;

18. end for;

19. Get the current optimal position;

20. t = t+1;

21. end while;

22. Output global optimum;

Algorithm 1. The framework of the MSSA.

Table 6 shows that MSSA was better than SSA on 22 test

functions, including CEC01, CEC02, CEC03, CEC04, CEC05,

CEC06, CEC07, CEC08, CEC09, CEC10, CEC11, CEC12,

CEC13, CEC14, CEC15, CEC17, CEC18, CEC19, CEC20,

CEC21, CEC22, and CEC26. MSSA can find values close to

SSA on CEC16, CEC23, CEC24, CEC25, CEC26, CEC28, CEC29,

and CEC30. In terms of standard deviation, MSSA is better than

SSA, GWO, and TSA on most test functions. It is worth noting

that MSSA is better than SSA in the remaining 25 test functions

except CEC03, CEC05, CEC16, CEC22, and CEC26. Generally,

FIGURE 9
Comparison of 2D track planning in environment 1.

FIGURE 10
Convergence diagram of track cost function in
environment 1.
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the proposed algorithm has more prominent advantages in the

CEC2014 test function compared with the other eight algorithms.

UAV trajectory planning based on
MSSA

In this section, we established two mathematical models of

trajectory planning constraints in MATLAB and simulation

experiments were carried out in a 3-D environment. This

experiment combines the content of the above sections, and

we conducted simulation experiments on UAV trajectory

planning in two challenging mission environments. We

compared MSSA with the SSA, BOA, WOA, and TSA to

verify the performance improvement of the MSSA in the

trajectory planning problem.

Experimental simulation parameters

The first step in UAV trajectory planning was to initialize the

relevant parameters. The basic parameters of SSA before and

after the improvement were set as follows: the population size

was N = 50, the maximum number of iterations was Tmax = 30,

FIGURE 11
Simulation results of 3D trajectory planning in environment 2 from two different views.

FIGURE 12
Comparison of 2D track planning in environment 2.

FIGURE 13
Convergence diagram of track cost function in
environment 2.

Frontiers in Environmental Science frontiersin.org19

Yang et al. 10.3389/fenvs.2022.1055807

289

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1055807


the proportion of discoverers was set to 20%, the scouter is 10%,

and the alert threshold is set to 0.7.

To compare the performance of MSSA in the trajectory

planning problem, we used two different map models as the

task environment for simulation experiments.We built the three-

dimensional environment and superimposed the threat area on it

to make the model closer to the real environment. The area sizes

of the two environments were 200×200×10 and

200×200×15 respectively. The start and end coordinates were

set as S = (0, 0, 5) and E = (200, 200, 5). The height of the no-fly

zone in the two environments was uniformly set at 10, the radius

are R1 = [10; 8; 6; 7; 5] and R2 = [20; 15; 15]. The center

coordinates were T1 = [115,161; 50,150; 90,20; 175,70] and T2 =

[128,161; 50,150; 60,20]. The coordinates of the center of the

mountain area were A1 = [48,41; 90,90; 162,96; 134,165; 30,135;

150,35] and A2 = [83,37; 149,36; 131,113; 54,118; 66,176;

131,178]. The heights were H1 = [7; 9;7; 6;6; 9] and H2 = [12;

8;7; 11; 6;9]. Slopes along the X axis direction were a1 = [25; 25;

35; 25; 25; 20] and a2 = [25; 25; 35; 30; 25; 20], and slopes along

the Y axis direction were b1 = [25; 25; 30; 20; 30; 20] and b2 = [25;

35; 30; 35; 30; 20]. The 3-D environmental models are shown in

Figure 7.

Convergence curve experiment
The trajectory simulation results of the two mission

environments are shown in Figures 8 and 11, respectively. The

two-dimensional trajectory planning results can be seen in Figures 9

and 12, respectively. The convergence graphs of the track cost

function are in Figures 10 and 13, respectively. Figures 8 and 9

show that the five algorithms can both avoid the no-fly area from

starting point to the target point in the environment. However, SSA,

WOA, BOA, and TSA have large fluctuations. At the same time, the

path is far away from themountain peak and the no-fly area in the 2-

D environment. This indicates that the algorithm falls into a local

TABLE 7 Experimental data of environment 1.

No. SSA BOA WOA TSA MSSA

1 221.9858 428.1988 194.8475 477.7604 223.6669

2 200.8703 249.9676 194.8475 412.8379 214.5968

3 198.3777 249.9676 194.8475 370.6239 211.5184

4 180.7114 222.4805 194.8475 313.0749 211.5184

5 166.1277 211.9584 194.8475 313.0749 211.5184

6 166.1277 211.9584 194.8475 313.0749 208.6994

7 159.4911 211.9584 194.8475 313.0749 183.4661

8 159.4911 211.9584 194.8475 286.9255 180.6388

9 159.4911 211.9584 194.8475 258.2724 177.8031

10 159.4911 211.9584 194.8475 258.2724 177.8031

11 159.4911 206.6703 194.8475 252.3117 177.8031

12 159.4911 206.6703 186.2235 252.3117 176.5868

13 159.4911 169.1189 186.2235 251.7576 176.4338

14 159.4911 169.1189 186.2235 247.0899 174.2706

15 159.4911 169.1189 181.2497 247.0899 174.2706

16 159.4911 169.1189 181.2497 247.0899 168.9351

17 159.4911 169.1189 181.2497 247.0899 168.9351

18 159.4911 169.1189 181.2497 247.0899 148.9273

19 159.4911 169.1189 181.2497 247.0899 148.9273

20 159.4911 169.1189 174.2521 171.1681 134.4919

21 159.4911 169.1189 174.2521 171.1681 134.4919

22 159.4911 169.1189 174.2521 171.1681 132.033

23 159.4911 169.1189 174.2521 171.1681 132.033

24 159.4911 158.9664 174.2521 171.1681 131.4209

25 159.4911 158.9664 174.2521 171.1681 130.6637

26 159.4911 158.9664 154.1683 171.1681 130.3178

27 159.4911 158.9664 146.8336 171.1681 130.3178

28 154.0068 158.9664 144.2572 171.1681 130.3178

29 154.0068 158.9664 139.5953 171.1681 130.3178

30 154.0068 158.9664 139.5953 171.1681 130.26

TABLE 8 Experimental data of environment 2.

No. SSA BOA WOA TSA MSSA

1 395.4108 411.9735 420.1169 459.6827 449.4203

2 350.7416 236.5109 241.8295 357.607 425.1031

3 303.5717 236.5109 241.8295 342.8342 356.2115

4 267.1788 236.5109 241.8295 313.7257 235.2283

5 243.3833 236.5109 241.8295 313.5049 235.2283

6 241.4834 236.5109 186.2959 283.0012 230.3628

7 212.6503 236.5109 186.2959 283.0012 183.3411

8 212.1987 236.5109 186.2959 283.0012 157.4026

9 210.5834 230.8149 186.2959 283.0012 133.7521

10 210.5834 230.8149 186.2959 283.0012 132.6643

11 210.5834 230.8149 186.2959 273.8353 123.9401

12 210.5834 230.8149 186.2959 258.2411 123.9401

13 196.827 230.8149 186.2959 206.6917 123.9401

14 196.827 230.8149 186.2959 206.6917 122.3308

15 196.827 230.8149 186.2959 206.6917 121.5816

16 196.827 197.1322 185.5324 206.6917 121.3304

17 196.827 197.1322 170.6196 206.6917 121.3304

18 196.827 197.1322 170.6196 206.6917 121.3304

19 196.827 197.1322 170.6196 206.6917 121.3304

20 196.827 197.1322 170.6196 206.6917 121.3304

21 196.827 197.1322 170.6196 206.6917 121.3304

22 196.827 197.1322 164.3505 206.6917 121.3304

23 196.827 197.1322 164.3505 206.6917 121.3304

24 196.827 197.1322 164.3505 206.6917 121.3304

25 188.1075 197.1322 154.1458 206.6917 121.3304

26 163.5779 197.1322 153.9173 188.88 121.3304

27 153.2322 197.1322 153.9173 188.88 120.4412

28 153.2322 193.691 153.7423 188.88 120.3047

29 153.2322 193.691 146.4014 188.88 120.2426

30 153.2322 193.691 146.4014 188.88 120.1591
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optimum when planning the trajectory. It is worth noting that the

trajectory planned by MSSA is more stable, the fluctuation range is

moderate, the trajectory is relatively stable, and it maintains a safe

distance from the mountain and the threat area.

In Figure 10, the SSA converges from the seventh iteration to

the 27th iteration, indicating that the original SSA algorithm fell

into a local optimum during the iteration. The values of BOA and

TSA decreased rapidly at the beginning of the iterations, but fell

into a local optimum many times in the later stage. In contrast,

MSSA found the optimal value and jumped out of the local

optima many times, which resulted in an ideal cost function

value, thus demonstrating that MSSA can better avoid falling into

local optima and find the best path.

Figures 11, 12 show that in the second task environment, the

trajectories planned by the four comparison algorithms fluctuated

greatly, which confirms the poor solution quality and insufficiency

of these algorithms in complex trajectory planning. The MSSA is

more stable, and it can be clearly seen that the path planned by the

MSSA is the shortest. Figure 13 shows that MSSA’s optimal fitness

values are lower than those of the comparison algorithms in the 8th

iteration, and the local optimal value is still continuously removed at

the end of the iteration. This shows that the trajectory cost function

obtained by MSSA is smaller and the comprehensive performance

index is better.

Optimization performance experiment

To more objectively compare the performance of the MSSA

with that of the other four algorithms in trajectory planning, this

experiment used five algorithms to conduct 30 repeated

experiments in two task environments. The population size

was N = 30, and the maximum number of iterations was

Tmax = 30. The experimental results are shown in Tables 7

and 8. The statistical results of the experimental data are

shown in Tables 9 and 10. The performance of each

algorithm was evaluated by comparing the optimal value,

worst value, average value, and standard deviation of the track

cost function values obtained.

From Tables 9, 10, MSSA has obvious advantages in the

performance of the UAV trajectory planning problem in the two

environments. In the first environment, although MSSA is not

the fastest in convergence, it did find the best value. In the second

environment, MSSAwas not only faster in convergence speed but

also found the best value. The optimal values showed that the cost

value of the MSSA for acquiring tracks was lower than that of the

SSA, BOA, WOA, and TSA, illustrating that the MSSA had a

stronger global search ability and higher convergence accuracy.

The MSSA had a lower value than the other four algorithms on

average, indicating that the MSSA had better trajectory planning

quality and higher solution stability. In summary, the three

improvement mechanisms proposed in this paper can

effectively improve the algorithm global search ability,

convergence accuracy, convergence speed and stability in

terms of trajectory planning. The MSSA can balance the

global search ability and local development ability of the

algorithm and has excellent performance in solving complex

multi-constraint combinatorial optimization problems such as

UAV 3D trajectory planning. Thus, the trajectory planned by

MSSA can meet the follow-up flight requirements for the UAV.

TABLE 9 Statistical data of experimental results in environment 1.

Algorithm name Optimal value Worst value Mean value

SSA 154.0068 221.9858 164.8511

BOA 158.9664 428.1988 193.6259

WOA 139.5953 194.8475 179.2734

TSA 171.1681 477.7604 247.9587

MSSA 130.26 223.6669 165.4328

TABLE 10 Statistical data of experimental results in environment 2.

Algorithm name Optimal value Worst value Mean value

SSA 153.2322 395.4108 213.1830

BOA 193.691 411.9735 220.9971

WOA 146.4014 420.1169 189.6867

TSA 188.88 459.6827 245.5276

MSSA 120.1591 449.4203 165.6743
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Discussion

As one of the key technologies of the UAV autonomous control

system, flight path planning is a hot research area in current

information science. The UAV trajectory planning problem in a

3-D environment is complicated, computationally intensive and has

many local optimal solutions, which poses great challenges to the

performance of optimization algorithms. Based on analysis of the

path planning problem and swarm intelligence algorithm, a new

sparrow algorithm was proposed. First, the algorithm adopted a

reverse learning strategy based on the law of refraction, enhanced the

diversity of the algorithm, and improved the optimization accuracy

of the algorithm. Second, the random step size of Levy’s flight

boosted the local search capability of the algorithm. Lastly, theMSSA

combined the fusion Cauchy mutation to increase the ability of the

algorithm to jump out of local optima. We performed multiple

ablation experiments in sixteen benchmark test functions with

different characteristics. In the comparison of optimization

performance of various improvement strategies and MSSA

convergence experiments, the results indicated that Levy flight

could help the population to deeply mine the global optimal

values and improve the global search ability of the algorithm,

proving that MSSA had greater stability and robustness than SSA.

In the comparison of convergence performance and high-

dimensional performance with other algorithms, the results

illustrated that MSSA had a significant competitive advantage

and stability in solving complex, high-dimensional optimization

problems. In addition, the Wilcoxon rank sum test and

30 CEC2014 complex functions were tested, and the results were

compared with other metaheuristic algorithms and improved

algorithms. The experimental results demonstrated that the

improved MSSA algorithm had better stability, convergence

accuracy, and optimization performance than other algorithms.

Despite the significantly better performance demonstrated in this

paper, the algorithm strategy could still be further improved. In

subsequent work, refinements to the improved MSSA will be

compared and analyzed with other advanced optimization

algorithms to further improve the global search ability and local

development ability of the algorithm.

Conclusion

An improved sparrow search optimization technique termed

MSSA was proposed to increase the effectiveness of UAV trajectory

planning in a three-dimensional environment. UAV trajectory

planning simulation experiments were carried out in two different

established three-dimensional geographic environments. The results

showed that the path length of the obtained trajectory was

considerably shorter while satisfying the constraints, further

proving the feasibility and applicability of the proposed MSSA for

trajectory planning in a three-dimensional environment. However, in

this paper, the UAV simulation was simplified to a particle and a

fixed flight speed was preset for solving the UAV path planning

problem. In subsequent work, a more realistic UAV dynamics model

should be established, and the flight restrictions of the UAV should

be further studied. The UAV trajectory planning problem can be

solved using the enhanced MSSA algorithm in subsequent work to

significantly enhance the performance of complex environment

trajectory planning from a variety of perspectives.
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Livestock husbandry is a key indicator of economic development,

environmental protection, and food security in the world, which is

vulnerable to environmental changes and economic shocks. In our study on

Kyrgyzstan, we quantified the effects of socio-economic and environmental

factors on the dynamics of livestock sales, self-consumption, and inventory

from 2006 to 2020 using a two-period livestock production model and spatial

panel model. The results showed that from 2006 to 2020, more than 50%

livestock were stocked annually, which means that herders in Kyrgyzstan

preferred to preserve their animals as assets to deal with unknown risks.

Additionally, to gain greater profit, Kyrgyz herdsmen would expand or

downsize their livestock business, tailor self-consumption, and manage

inventory based on the livestock market price, loan on livestock, non-

herding income, and its current stock. Our study found that the

development of animal husbandry in seven oblasts of Kyrgyzstan had spatial

spillover effects, which indicated that the dynamics of the animal husbandry

market and environment not only affected the scale of local animal husbandry

but also had an important impact on adjacent oblasts. Our research contributes

to ensuring the income for herdsmen and the sustainable development of

animal husbandry, thereby promoting high-quality economic development in

developing countries with animal husbandry as a pillar industry.

KEYWORDS

livestock husbandry, Kyrgyzstan, herders, grasslands, spatial spillover effects

1 Introduction

Livestock is an important component of global agriculture and economy, and it plays

a vital role in improving food security, promoting adjustment of the agricultural structure,

and realizing comprehensive utilization of resources (Han et al., 2020; Wei and Zhen,

2020). With continuous population growth and increased demand for living, the global

production of meat was predicted to increase from 229 million tons in 1999 to 465 million
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tons in 2050, which was a huge challenge for livestock production

(FAO, 2006; Gerber and Steinfeld, 2008). To improve the

livelihoods of people and promote sustainable social,

economic, and environmental development in the world, the

United Nations formally adopted the Sustainable Development

Goals (SDGs) in 2015 (WHO, 2015; Arora and Mishra, 2019;

Rosati and Faria, 2019). This proposal encouraged member

countries to jointly explore the sustainable and efficient

animal husbandry production system to provide nutritional

food for residents, which could contribute to SDG1 (no

poverty), SDG2 (zero hunger), SDG3 (good health and well-

being), SDG12 (responsible consumption and production), and

SDG17 (partnerships for the goals) (Breeman et al., 2015;

Varijakshapanicker et al., 2019; Mehrabi et al., 2020). To

reach the growing demand for livestock in the coming

decades, a sustainable balance between domestic products and

imports must be maintained. This provided an opportunity for

countries to export livestock products, livestock equipment, and

breeding technology to expand the scale of livestock in countries

with appropriate land resources (Gerosa and Skoet, 2012; Lan

et al., 2021). Although the temporal and spatial details of grazing

practices were quite different among countries, the combination

of mobile animal husbandry and low-investment crop cultivation

was still the main mode of production in developing countries

with animal husbandry as the economic pillar (Koocheki and

Gliessman, 2005). Developing with the experiences of

environmental changes and natural disasters, nomadic animal

husbandry was a long-term cultural choice for herdsman families

(Zhang et al., 2007). For nomadic society, livestock was the

foundation for herders’ living, which provided food, housing

construction materials, and transportation, as well other goods

and services by exchange (Kerven et al., 2011; Sagynbekova, 2017;

Xu et al., 2019; Haghiyan et al., 2022). However, under modern

pressures, such as population growth, in-country migration,

rapid urbanization, increasing demand for livestock products,

land use change, and climate change, it seemed to pose a severe

challenge for the sustainability of husbandry production

(Tessema et al., 2014; Abay and Jensen, 2020; Raji et al., 2022;

Wafula et al., 2022).

As arable land was scarce and grasslands covered about 56% of

the total land in an arid climate, pastoralism became the main

economic pillar in Kyrgyzstan, which made a significant

contribution to the nation’s economy with livestock production

accounting for over 19.33% of the national GDP (NSCKR, 2020).

Being well-known for the ridges and isolated valleys of the Tian

Shan Mountains, Kyrgyzstan has a tradition of high spatial

mobility, and nomadic civilization has become a part of the

cultural symbol of Kyrgyzstan (Ludi, 2003). Local nomadic

herders usually graze in mountain pastures in summer, but low

temperatures in winter and unpredictable climate disasters force

them to graze in lower altitudes (Borchardt et al., 2011). During

Soviet times, formerly autonomous grazing was replaced by state-

owned farms (sovkhozes) and collective farms (kolkhozes); thus,

herders were forced to form collectives and settle, and the quantity

of livestock increased drastically (Hoppe et al., 2018). The collapse

of the Soviet Union led to the dissolution of the livestock markets

and production-supporting services and resulted in a reduction in

livestock quantity by nearly 60% in Kyrgyzstan (Iñiguez, 2004;

Agadjanian and Gorina, 2019). Due to state-owned farms

dismantling, many collectives broke up into individual

households for lacking investment capital and comprehensive

agricultural knowledge, which further led to a decrease in

livestock productivity (Hauck et al., 2016). Additionally, with

increasing unemployment, rural households had to focus on

private subsistence agriculture. To meet the market demands

for meat, dairy production, and livestock services, the livestock

numbers began to increase again in 2000 (de la Martiniere, 2012),

and animal husbandry was still an important source of income at

the household level in Kyrgyzstan.

Due to relatively weak adaptability, high production

environment risk, and low elasticity, livestock is one of the

most vulnerable industries to climate and society fluctuations

(Megersa et al., 2014). To avoid potential shocks on the

sustainable development of husbandry, recent studies have

been attempting to explore the patterns of livestock dynamics

through theoretical models and field surveys. Tessema et al.

(2014) reviewed and quantified global studies on the

sustainable development of animal husbandry over the past

decades and confirmed the sustainability of animal husbandry

systems, which relied on herders’ adaptability to unpredictable

environments, grazing mobility, and institutional support.

Grounded on a household survey of herders in southern

Ethiopia, a study showed that adjusting the composition of

herds was a vital adaptive strategy to cope with climate

change and poor pasture conditions (Megersa et al., 2014). In

volatile environments, interactions among biophysical,

economic, and institutional factors promoted livestock

migration for better feed resources. According to satellite

imagery and interviews with herders of Kazakhstan, Robinson

et al. (2016) indicated that the effects of economic and

institutional factors on livestock migration and distribution

were increasing. Combining the equilibrium replacement

model of livestock products with the inventory relation, Ge

and Kinnucan (2018) found that good weather conditions

would reduce the number of goats but raise the number of

cattle and sheep. In the market, higher prices had negative

impact on the cattle inventory, while higher feed costs had

positive impact on the stock of cattle and sheep in the Inner

Mongolia Autonomous Region of China. Based on spatial

autocorrelation analysis, standard deviation ellipse, and the

spatial Durbin model (SDM), Han et al. (2020) found that

there were significant positive spatial autocorrelation

characteristics in China’s husbandry industry. The result

revealed that high-productivity land for grazing, people’s

income and living standard, and mechanization level could

promote the development of animal husbandry in China.
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Since the influencing factors of livestock dynamics and their

interaction are complex, many researches have begun to assess

and quantify internal mechanisms and impacts. Climate change,

especially heat stress, could directly affect the metabolism and

nutrient absorption of livestock, indirectly affect food intake,

immune system, and feed supply, and ultimately affect livestock

production (Baumgard et al., 2012). Wolfenson and Roth (2019)

found that hot summer conditions could hinder the reproduction

of cows, leading to a significant decline in worldwide pregnancy

rates. In addition to climate factors, some scholars found that

socio-economic factors also had the impact on the livestock scale.

Based on the socio-economic and livestock quantity data over the

past 40 years in Xilinguole of China, Jiang et al. (2019) revealed

that the land use policy was negatively correlated with the change

in livestock numbers, and the larger population of herders had

significant and positive effects on the quantity of sheep and goats.

Liang et al. (2021) found that population distribution would

directly affect the quantity and structure of livestock

consumption, and the total livestock consumption in

Kazakhstan increased gradually from north to south. Xu et al.

(2019) pointed out that Mongolian herdsmen would adjust their

herd size according to market factors such as current and

expected prices, alternative food prices, and debts. Although

previous studies had focused on livestock dynamic analysis in

general, few research studies had quantified the impact by

integrated factors on the livestock scale, especially in the

Central Asia arid region.

The main aims of this paper are to 1) assess the dynamic

patterns of the livestock scale in Kyrgyzstan from 2006 to 2020; 2)

quantify the impact of socio-economic and environmental factors

on the scale of livestock; and 3) explore sustainable strategies for

the high-quality development of animal husbandry and income

security for herdsmen. To achieve the research objectives, we

referred to the two-period livestock production model to

determine the potential factors affecting the livestock scale.

Then, we used the spatial panel model to quantify the spatial

effects of different factors on the scale of livestock. Finally, we

discussed the potential impact on livestock by different influencing

factors. This study not only quantified the influencing mechanism

of the animal husbandry scale in Kyrgyzstan but also explored

effective paths for the sustainable development of local animal

husbandry and income security for herdsmen. Our results could

provide an important practical experience for high-quality

economic development of countries in arid regions with animal

husbandry as the economic pillar.

2 Materials and methods

2.1 Study area

Kyrgyzstan, a landlocked mountainous country of Central

Asia located in the Tian Shan Mountains and Pamir-Alay

mountain range, is bordered by Kazakhstan to the north,

China to the east, and bounded by Uzbekistan and Tajikistan

to the south and west (Figure 1A). The land area of Kyrgyzstan is

about 199,951 km2, including seven oblasts (provinces) and two

municipalities. With 94% of the territory lying above 1,000 m,

grasslands are the main land cover type (Figure 1B). Taking up

56% of the land, grasslands are one of the most vital natural

resources of Kyrgyzstan (Wang et al., 2020). Due to uneven

seasonal precipitation, the average annual precipitation in

Kyrgyzstan is only 200–800 mm, making it a typically arid

country (Liang et al., 2021). July and August are the hottest

months of the year. In winter, the temperatures are the lowest in

mountain valleys and depressions due to the terrain (Beer et al.,

2008).

Kyrgyzstan is a low-income country with 6.59 million people.

The per capita gross national income is about 1,170 USD, and

more than 63% of residents live in rural areas (World Bank,

2020). Linking Eurasia and theMiddle East, Kyrgyzstan is located

in a key position for international trade with economies like

Russia, the United Kingdom, and China. During the Soviet

Union period, the main agricultural economic activities of

Kyrgyzstan were controlled by state farms, which were the

important livestock and agricultural suppliers of the Soviet

Union. After Kyrgyzstan gained its independence in 1991, the

planned economy transformed into a market economy, the state

farms were demolished, and land and livestock were privatized

(Dabrowski et al., 1995).

2.2 Data resources

In this study, environmental and socio-economic data in

each oblast level from 2006 to 2020 were collected. Socio-

economic data including GDP, population, income, livestock

number (cattle, cows, sheep, goats, and horses) were obtained

from the National Statistical Committee of the Kyrgyz Republic

(NSCKR, http://www.stat.kg/en/). The agricultural loan data

for herds were obtained from the Food and Agriculture

Organization of the United Nations (FAOSTAT, https://

www.fao.org/faostat/en/#home). Compared with other

indexes displaying the static cover conditions of grasslands,

net primary productivity (NPP) can dynamically reflect the

condition of grassland production for livestock feeding in a

certain period. To calculate the grassland NPP value of

Kyrgyzstan from 2006 to 2020, the 1-km spatial resolution

global MODIS NPP product MOD17A3 was acquired from the

NASA MODIS Land Science Team website (https://modis.gsfc.

nasa.gov/). The temperature and precipitation data were

obtained from the NASA MODIS Land Science Team

website (https://modis.gsfc.nasa.gov/), and the land cover

data were obtained from the MODIS Terra–Aqua Combined

Land Cover product MCD12Q1 (https://modisland.gsfc.nasa.

gov/landcover.html).

Frontiers in Environmental Science frontiersin.org03

Yang et al. 10.3389/fenvs.2022.1049187

296

http://www.stat.kg/en/
https://www.fao.org/faostat/en/
https://www.fao.org/faostat/en/#home
https://www.fao.org/faostat/en/#home
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://modisland.gsfc.nasa.gov/landcover.html
https://modisland.gsfc.nasa.gov/landcover.html
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1049187


2.3 Methods

To explore the dynamics of livestock production and driving

factors in Kyrgyzstan from 2006 to 2020 under the changing

socio-economic and environmental conditions, we first

standardized and analyzed the environmental and socio-

economic data and investigated the migration trajectory of the

spatial gravity center of animal husbandry. Second, we used the

two-period livestock production model to describe the livestock

production cycle in Kyrgyzstan and introduced herders’

preferences as part of the mechanism of livestock production

to indicate the characteristics of livestock production dynamics.

Finally, based on the calculation of global Moran’s index and a

series of tests for spatial model selection, we applied the spatial

econometric model and panel data to quantify the driving factors

of livestock production dynamics in Kyrgyzstan (Supplementary

Figure S1).

2.3.1 Statistical processing
In this study, we selected an oblast scale to detect dynamic

livestock sales, self-consumption, and inventory based on the

environment and socio-economic data. In order to directly

compare the data of past decades, all the monetary data in the

socio-economic category were converted to the 2006 constant

dollar using the consumer price index (CPI), which could

eliminate the impact of inflation:

Real price � nominal price/CPI . (1)

As different animals would have different sale prices and

costs, large animals like horses and cattle were standardized

to a national sheep unit in a way that one large animal

equaled four sheep (Wang et al., 2020). In addition, we

used logarithms to standardize the data with different

dimensions.

In order to obtain the annual data of precipitation and

temperature, we interpolated the original monthly data, then

generated the grating image, and used the linear regression

analysis based on the least square method. All the

environmental data were processed using ArcGIS V10.3. We

further carried out descriptive statistics based on the

environment and socio-economic data using STATA 16, and

the brief statistical description of each variable is given in

Supplementary Table S1, which would be employed in the

livestock production model to quantify the driving factors of

livestock production in Kyrgyzstan.

2.3.2 Spatial gravity center of animal husbandry
Based on the geometric center of each oblast, we described

the migration trajectory of livestock husbandry by calculating the

weighted average center of gravity:

�Xt � ∑N

i�1
ZitXi∑N
i�1Zit

, �Yt � ∑N

i�1
ZitYi∑N
i�1Zit

, (2)

where Xi and Yi are the longitude and latitude of the geometric

center of the ith oblast, respectively. Zit represents the quantity

of the livestock sold, consumed, or stocked by the ith oblast in

the tth year and N is the number of oblasts in Kyrgyzstan.

Therefore, ( �Xt, �Yt) could intuitively reflect the change path of

national livestock sales, self-consumption, and inventory

layout.

FIGURE 1
Location of the study area (A) and the distribution of the different land cover types in Kyrgyzstan (B). The terrain map of this study region was
from ESRI, USGS, and NOAA. Land cover data were obtained from the MODIS Terra–Aqua Combined Land Cover product MCD12Q1 (https://
modisland.gsfc.nasa.gov/landcover.html).
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2.3.3 Two-period livestock production model
The livestock scale not only responded to the current

environment and socio-economic conditions but was also

strongly associated with herders’ preferences on the

production cycle, which could affect the herders’ livestock

scale (Rae and Zhang, 2009; Swanepoel et al., 2010). To

simplify the production cycle of livestock, we used the two-

period livestock production model (Xu et al., 2019) to quantify

the dynamics of livestock and its influencing factors from 2006 to

2020 in each oblast of Kyrgyzstan. The original two-stage model

was used to solve the problems of resource consumption and

stock in agricultural production systems like fisheries and

forestry (Packalen et al., 2009; Munavar et al., 2016). This

two-period livestock production model (Xu et al., 2019) took

herders’ preferences of consuming or saving livestock as part of

the mechanism of livestock dynamics and then categorized the

production cycle into two periods: “present” and “future.” In the

present period, herders usually made decisions on livestock sales

and self-consumption according to past market information and

expectations for future markets. Then, the remaining

livestock would become the initial stock for the second period,

and Xu et al. (2019) postulated that herders would sell

and consume the rest of the livestock at the end of the second

period. Based on the assumption, the conceptual model is as

follows:

U � (1 − α) [u(c1) + β · u(c2)] + α[g(x12) + β · g(x22)], (3)

where U is the utility of a herder and α is a parameter that

measures the relative utility weight between sale and self-

consumption. c1, c2 denote the consumption of the present

and future, respectively, and β is the time preference rate of a

herder. u(x) and g(x) are the utility function of sale and self-

consumption, respectively, x12 is the quantity of herder’s self-

consumption in the first period, and x22 is the quantity of herder’s

self-consumption in the second period.

The price of livestock production was the most vital signal for

herders to adjust their livestock scale (Bakucs et al., 2014), and

the variation in the interest rate was an important form to

embody the risk of livestock production (Meuwissen et al.,

2001). To simulate the scenarios of the livestock market, Xu

et al. (2019) brought the price and interest rate into the two-

period livestock production model, which could reflect the

fluctuation of the market condition. Economic production is

essentially the product of the interaction of social resources,

which is confirmed through the calculation and analysis of Eq. 3.

Xu et al. (2019) detected that the dynamic changes of livestock

would be influenced by socio-economic variables (household

education, income, and livestock price) and environmental

variables (annual precipitation and temperature).

The two-period production model has been widely used in the

estimation of agricultural production efficiency, especially in arid

and semi-arid areas with scarce production resources, single

economic activities, and fragile environmental conditions. These

regions need to constantly balance the consumption and inventory

TABLE 1 Specific description of the variables in this study.

Variable Meaning Unit

Preci Annual precipitation mm

Temp Annual temperature °C

NPP Net primary productivity of grassland in each oblast gCm−2 yr−1

Qsale Quantity of livestock sold by herders Per head

Qself-consumption Quantity of livestock consumed by herders Per head

Qt Quantity of livestock inventory at the end of this year Per head

Qt-1 Quantity of livestock inventory at the end of the previous year Per head

Pt Livestock price of this year Dollar/head

Pt+1 Livestock price of the next year Dollar/head

mt Non-herding income of this year Dollar

mt-1 Non-herding income of the previous year Dollar

Edu Number of people graduating from high schools Thousand Capita

Rural Number of rural populations Thousand Capita

Husgrp Output of animal husbandry in each oblast Dollar

Lorate Ratio of loan to income (it reflects the difficulty for borrowing; a higher ratio means loans are easier to borrow) —

Rurate Ratio of rural residents to total population in each oblast —

a0, b0, and c0 Constant term —

a1~a7 Correlation coefficients in Eq. 4 —

b1~b6 Correlation coefficients in Eq. 5 —

c1~c11 Correlation coefficients in Eq. 6 —

ε0, f0, and e0 Random error term —
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of resources to maximize the output (Kimhi, 2006; Asfaw et al.,

2010; Ma et al., 2018). Therefore, we ran three regressions to

quantify the influencing factors of livestock change in Kyrgyzstan:

ln(QSale) � a0 + a1 · ln(Pt) + a2 · ln(Pt+1) + a3 · Lorate + a4

· ln(mt) + a5 · ln(mt−1) + a6 · ln(Qt) + a7

· ln(Rural) + ε0,

(4)
ln(Qself−consumption) � b0 + b1 · ln(Pt) + b2 · ln(Pt+1) + b3

· Lorate + b4 · ln(mt) + b5 · ln(mt−1) + b6

· ln(Qt) + f0,

(5)
ln(Qt) � c0 + c1 · ln(Pt) + c2 · ln(Pt+1) + c3 · Lorate + c4

· ln(Qt−1) + c5 · ln(mt) + c6 · ln(Preci) + c7 · Temp

+ c8 · ln(NPP) + c9 · Rurate + c10 · ln(Husgrp)
+ c11 · Edu + e0.

(6)
All the aforementioned variables and their description are as

follows (Table 1):

2.3.4 Spatial regression analysis
In order to explore the spatial correlation characteristics of

the livestock scale in seven oblasts of Kyrgyzstan, we used the

spatial regression model to quantify the driving factors based on

global Moran’s I analysis.

Compared with the normal linear regression model, the spatial

regression model can accurately identify the spatial effects in a dataset

(Anselin, 2003; Tirkaso andHailu, 2022). Common spatial econometric

models contain three basic forms, namely, the spatial lag model (SLM),

spatial errormodel (SEM), and spatial Durbinmodel (LeSage and Pace,

2010). The specific descriptions of these models are given in

Supplementary Material. Through a series of tests like the Lagrange

multiplier (LM) test, likelihood ratio (LR) test, and Wald test, we took

seven oblasts of Kyrgyzstan as spatial analysis units and selected the

SLM and SDM to explore the dynamics of the animal husbandry

number and its spatial effects on Kyrgyzstan from 2006 to 2020.

3 Results

3.1 Variation in livestock sales, self-
consumption, and inventory

From 2006 to 2020, livestock sales of Kyrgyzstan increased

overall, and a two-fold increase in obvious fluctuations appeared

during this time. As shown in Figure 2A, the scale of national

sales surged in 2006 and reached the first peak of 5.59 million

heads in 2007. After the first peak, the national sales plummeted

to an all-time low with 4.63 million heads in 2009 and then

recovered and displayed a “U-shaped” curve. Since 2011, more

than 5 million heads of livestock have been sold each year, and

sales got the second peak of 8.29 million heads in 2018. It is

obvious that Chuy Oblast had the largest actual covered area as

shown in Figure 2A, which shows that Chuy Oblast sold the most

livestock in Kyrgyzstan. The data series of livestock sales for

Issyk-Kul, Naryn, and Chuy Oblast were relatively stable. By

contrast, Batken, Jalal-Abad, Osh, and Talas Oblast had

significant changes in covered areas, which means that the

proportion of livestock sales in these oblasts was changed.

Among these oblasts, Jalal-Abad Oblast had the largest annual

growth rate of livestock sales with 9.66%, and its covered area

kept increasing.

Figure 2B shows that the dynamic change of national

livestock self-consumption could be divided into three periods

(i.e., 2006–2007, 2008–2018, and 2019–2020). After a slight

increase in 2007, livestock consumption in the country scale

increased by over 16% in 2008. Since then, more than 2 million

heads of livestock have been consumed annually by Kyrgyz

nationals. From 2008 to 2018, the national livestock

consumption grew steadily. After 2018, the livestock self-

FIGURE 2
Variation in livestock quantity in each oblast of Kyrgyzstan
from 2006 to 2020: (A) livestock quantity of sales; (B) livestock
quantity of herders’ self-consumption; and (C) livestock quantity
of inventory.
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consumption remained stable, which was contrary to the trend in

sales. The consumption of livestock was mainly concentrated in

Osh, Jalal-Abad, and Chuy Oblast, and the cumulative proportion

of livestock consumed in these oblasts was more than 66%.

Different from the variation in livestock sales and self-

consumption, the livestock inventory maintained a steady

upward trend, with the number increasing over 50% in the

past decade (Figure 2C). At the same time, the quantity of the

livestock inventory was much larger than that of sales and self-

consumption. In 2020, there were 18,622,750 heads of livestock

stocked in Kyrgyzstan, while the livestock sales were only

6,940,200 heads, and herder families consumed

2,874,370 heads. The amount of inventory reached nearly

2 times of the sum of sales and self-consumption.

3.2 The shifting center of gravity for the
livestock scale

Figure 3 and Table 2 show the shifting center of gravity,

moving distance and direction of livestock sales, self-

consumption, and inventory between 2006 and 2020 in

Kyrgyzstan. It is obvious that the annual moving distance of

livestock sales was much longer than self-consumption and

inventory, and the center of gravity for livestock scales mainly

occurred in Jalal-Abad and Naryn Oblast.

The moving track of the center of gravity for livestock self-

consumption (Figure 3B) shows that the center continued to shift

from northeast to southwest between 2006 and 2020. On the

contrary, the center of livestock inventory has beenmoving to the

northeast (Figure 3C). Though the shifting route looks relatively

chaotic, it is not hard to find that the livestock sale center of

Kyrgyzstan was spiraling northwestward (Figure 3D). Also, the

center of gravity for livestock sales moved dramatically in 2008,

2009, and 2016, respectively.

3.3 Variation in different livestock stock

From 2006 to 2020, the quantity of cattle, cows, sheep and

goats, and horses had a stable increase (Figure 4). Among the

aforementioned livestock, cattle increased by 3 million heads,

which was the largest. Although the number of sheep and goats

increased more than horses, the variation in sheep and goats

showed a convex curve, indicating a slowdown in growth from

4.42% in 2006 to 0.24% in 2020. On the contrary, the trend of

horse numbers showed a concave curve, and the growth rate

increased from 0.70% in 2006 to 3.27% in 2020.

FIGURE 3
Dynamic changes in the distribution and evolution of the livestock scale in Kyrgyzstan from 2006 to 2020: (A) spatial distribution of the center of
gravity for animal husbandry; (B) moving track of the center of gravity for livestock self-consumption; (C) moving track of the center of gravity for
livestock inventory; and (D) moving track of the center of gravity for livestock sale.
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At the oblast level, Jalal-Abad Oblast had the highest

increase in the livestock scale from 2006 to 2020, with the

quantity of sheep and goats, cows, cattle, and horses increased

by 95.01%, 73.82%, 74.74%, and 69.87%, respectively. For

cattle and cows, Osh and Jalal-Abad Oblast showed an increase

of more than 42% of the whole country, and the proportion was

dynamically increasing (Figures 4A,B). The largest quantity of

horses occurred in Naryn Oblast, with the proportion to the total

horse number reached about 25%. At the same time, Issyk-Kul and

Chuy Oblast greatly expanded the horse scale, where the quantity

increased by 69.87% and 97.20%, respectively, and Batken Oblast

showed the smallest increase in horse numbers with 3.56%

(Figure 4D).

3.4 Results of spatial regression analysis of
livestock quantity

According to the estimation of global Moran’s I from

2006 to 2020, the results all showed a significant positive

correlation at the 1% level, which indicates that there is a

significant spatial correlation among the livestock scale in the

seven oblasts of Kyrgyzstan (Supplementary Table S2). To

avoid overfitting, we examined the variance inflation factors

(VIFs) of each explanatory variable and dependent variable.

The result showed that there was no multicollinearity

problem between the variables (Supplementary Tables

S3–S5). To select an appropriate spatial model to detect the

driving factors of livestock production dynamics in

Kyrgyzstan, we applied a series of tests including LM, LR,

and the Wald test. The results given in Supplementary Table

S6 show that the spatial lag model could be used to

quantify the driving factors of livestock sales and self-

consumption, and the spatial Durbin model suited better

for analyzing the dynamics of livestock inventory and its

influencing factors.

3.4.1 The driving factors of livestock sales
As shown in Table 3, the livestock price, the ratio of loan to

income, non-herding income, livestock inventory, and rural

population all exerted significant impact on livestock sales.

The livestock sales were mainly affected by the ratio of loan to

income and livestock price herders expected for the next year;

in particular, the livestock prices of the present and next

years could have opposite effects on sales. Though the

effects of the present livestock price were not significant,

the increase in the present price may lead to a reduction in

livestock sales. For the price expected for the next year, each

1% price increase would promote livestock sales by

2.987 units. As a key indicator which would influence

livestock sales, a higher ratio of loan to income could

encourage local herders to sell more livestock, which has

significantly negative spatial spillover effects on livestock

sale markets in adjacent oblasts.

FIGURE 4
Dynamic changes in different livestock stock in each oblast of Kyrgyzstan from 2006 to 2020: (A) annual stock numbers of cattle; (B) annual
stock numbers of cows; (C) annual stock numbers of sheep and goats; and (D) annual stock numbers of horses.
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TABLE 2 Center of gravity for livestock scale in Kyrgyzstan from 2006 to 2020.

Year Sale Self-consumption Inventory

Longitude Latitude Distance
(mile)

Direction Longitude Latitude Distance
(mile)

Direction Longitude Latitude Distance
(mile)

Direction

2006 74.17 41.48 — — 73.66 41.33 — — 74.05 41.37 — —

2007 74.03 41.42 8.45 Southwest 73.64 41.32 0.71 Southwest 74.06 41.38 0.72 Northeast

2008 74.28 41.58 17.31 Northeast 73.64 41.32 0.12 Northwest 74.05 41.39 0.92 Northwest

2009 74.01 41.60 14.02 Northwest 73.64 41.32 0.32 Southwest 74.05 41.39 0.26 Northeast

2010 74.16 41.65 8.65 Northeast 73.63 41.32 0.32 Southwest 74.06 41.39 0.55 Northeast

2011 74.06 41.59 6.62 Southwest 73.63 41.31 0.27 Southwest 74.05 41.40 0.33 Northwest

2012 74.05 41.51 5.60 Southwest 73.62 41.31 0.34 Southwest 74.06 41.40 0.60 Northeast

2013 74.17 41.51 5.91 Southeast 73.62 41.31 0.32 Southwest 74.07 41.40 0.35 Northeast

2014 74.06 41.60 8.88 Northwest 73.60 41.31 0.72 Southwest 74.08 41.40 0.74 Southeast

2015 74.18 41.63 6.63 Northeast 73.60 41.30 0.37 Southwest 74.08 41.40 0.03 Southeast

2016 74.05 41.53 10.13 Southwest 73.60 41.30 0.12 Southwest 74.09 41.40 0.31 Northeast

2017 74.06 41.53 0.89 Southeast 73.59 41.30 0.22 Southwest 74.09 41.40 0.15 Southwest

2018 74.13 41.52 3.32 Southeast 73.59 41.30 0.23 Southwest 74.10 41.40 0.55 Northeast

2019 74.10 41.52 1.53 Southwest 73.58 41.30 0.24 Southwest 74.11 41.41 0.59 Northeast

2020 74.08 41.48 2.57 Southwest 73.58 41.30 0.25 Southwest 74.11 41.41 0.25 Northeast
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3.4.2 The driving factors of livestock self-
consumption

According to Table 4, all the variation in the livestock price of

the next year, the ratio of loan to income, previous non-herding

income, and current livestock inventory would have significant

effects on herders’ self-consumption. Among them, a higher ratio

of loan to income was the primary signal for herders to increase

their self-consumption, while the main factor restraining

consumption was the higher livestock prices expected for the

next year. With other conditions unchanged, every 1% increase

in the ratio of loan to income would cause extra 14.620 units of

livestock to be consumed. Different from the impact exerted on

livestock sales, both the livestock price of the present year and

next year had negative spatial spillover effects on livestock

quantity for self-consumption.

3.4.3 The driving factors of livestock inventory
As shown in Table 5, the value of R-squared was 0.858, which

showed that this model had good explanatory significance. It was

observed that the livestock inventory in Kyrgyzstan was mainly

influenced by the variation in current non-herding income,

previous inventory, the number of educated people, the

proportion of rural residents to regional population, and the

regional output of animal husbandry. More previous inventory

TABLE 3 Effect of explanatory variables on livestock sales.

Variable Main Direct effect Indirect effect Total effect

Price t −1.572 −1.613 0.503 −1.110

(1.25) (1.36) (0.48) (0.93)

Price t+1 2.987** 3.079** −0.946* 2.133**

(1.32) (1.43) (0.55) (1.01)

Lorate 13.570*** 14.830*** −4.441** 10.390***

(4.98) (4.94) (1.88) (3.89)

m t−1 −0.100** −0.107** 0.032** −0.075**

(0.04) (0.04) (0.02) (0.03)

m t 0.003 0.003 −0.001 0.001

(0.04) (0.04) (0.01) (0.03)

Q t 0.597*** 0.638*** −0.195*** 0.443***

(0.09) (0.10) (0.07) (0.08)

Rural 0.270*** 0.280*** −0.081** 0.199**

(0.10) (0.10) (0.03) (0.09)

R-squared 0.604

Note: ***, **, and * represent that the statistics are significant at the 1%, 5%, and 10% levels, respectively.

TABLE 4 Effect of explanatory variables on livestock self-consumption.

Variable Main Direct effect Indirect effect Total effect

Price t −0.177 −0.140 0.041 −0.099

(1.21) (1.28) (0.35) (0.96)

Price t+1 −5.481*** −5.729*** 1.410** −4.319***

(1.20) (1.27) (0.63) (1.09)

Lorate 14.620*** 15.600*** −3.652** 11.950***

(4.87) (4.69) (1.52) (4.40)

m t−1 0.097** 0.100** −0.024* 0.076**

(0.04) (0.04) (0.01) (0.03)

m t 0.024 0.025 −0.006 0.020

(0.04) (0.04) (0.01) (0.03)

Q t 0.585*** 0.613*** −0.144*** 0.469***

(0.10) (0.09) (0.05) (0.12)

R-squared 0.546

Note: ***, **, and * represent that the statistics are significant at the 1%, 5%, and 10% levels, respectively.
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and educated people would have significant and positive spatial

spillover effects on livestock inventory. Meanwhile, with other

conditions unchanged, every 1% increase in the proportion of the

rural population could facilitate the local livestock inventory

expansion by 2.026 units and encourage the herders in adjacent

oblasts to increase their livestock scale by 3.558 units.

The changes in the environment also had influences on

livestock quantity. It was found that higher precipitation and

grassland productivity could have significant and negative spatial

spillover effects on neighboring livestock inventory. Each 1%

increase in precipitation and grassland NPP could lead to an

overall reduction by 0.052 and 0.099 units of livestock scale in the

seven oblasts of Kyrgyzstan, respectively.

4 Discussion

This study quantified the dynamics of livestock scale and

then assessed the effects of environmental and socio-economic

factors on livestock sale, self-consumption, and inventory.

Results showed that the quantity of livestock in Kyrgyzstan

increased overall from 2006 to 2020 (Figure 4), and there

were different patterns among the livestock distribution and

variations in different oblasts (Figures 3, 4). Based on the

spatial regression analysis, we found that multiple variables

had effects on livestock quantity (Tables 3–5). All the

livestock sales, self-consumption, and inventory were

significantly influenced by the variation in livestock price, the

ratio of loan to income, and non-herding income at different

levels. The higher proportion of rural residents to regional

population would have significant and positive impact on self-

consumption and inventory, respectively. In addition to the

socio-economic factors, the fluctuation of precipitation and

grassland NPP also affected the number of livestock inventory.

4.1 The effects of environmental and
socio-economic factors on livestock
quantity

Our regression analysis showed that a higher non-herding

income could encourage herders to consume more livestock, and

the higher ratio of loan to income would also promote local

herders to sell and consume more livestock (Tables 4, 5). In

Kyrgyzstan, most households made a living with employment

income, savings and loan, social grants, and income from animal

husbandry (Wang et al., 2016; Sagynbekova, 2017). The direct

contribution of livestock to the total income of household

TABLE 5 Effect of explanatory variables on livestock inventory.

Variable Main Direct effect Indirect effect Total effect

Price t −0.037 −0.028 −0.107 −0.135

(0.05) (0.05) (0.10) (0.11)

Price t+1 0.081 0.089* −0.147* −0.058

(0.05) (0.05) (0.09) (0.11)

Lorate 0.238 0.226 0.565 0.790

(0.26) (0.26) (0.52) (0.49)

Q t-1 0.891*** 0.906*** −0.192*** 0.714***

(0.04) (0.04) (0.07) (0.09)

Temp −0.002 −0.001 −0.014 −0.015

(0.00) (0.00) (0.01) (0.01)

Preci 0.003 0.008 −0.060** −0.052**

(0.01) (0.01) (0.03) (0.03)

NPP −0.020 −0.013 −0.085* −0.099**

(0.02) (0.02) (0.05) (0.05)

m t −0.005** −0.004** −0.004 −0.008***

(0.00) (0.00) (0.00) (0.00)

Rurate 2.255*** 2.026*** 3.558*** 5.584***

(0.58) (0.56) (1.25) (1.49)

Husgrp −0.046** −0.054*** 0.113*** 0.059

(0.02) (0.02) (0.04) (0.04)

Edu 0.003* 0.003* 0.001 0.004

(0.00) (0.00) (0.00) (0.00)

R-squared 0.858

Note: ***, **, and * represent that the statistics are significant at the 1%, 5%, and 10% levels, respectively.
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families was limited, and many people diversified their income by

international or internal labor migration (Schoch et al., 2010;

Pica-Ciamarra et al., 2015). Previous studies reported that non-

herding income accounted for about 38% of the total household

income in the rural areas of developing countries (Ragie et al.,

2020). Regional economic development provided non-

agricultural employment opportunities for farmers and

promoted the off-farm income for farmers. This caused strong

and direct shock on animal husbandry, and even the negative

effects were shown on adjacent areas (Wang et al., 2016).

Meanwhile, due to more non-agricultural employment

opportunities emerging and higher non-herding income

increasing, pastoralists might gradually reduce their livestock

scale. Kyrgyzstan’s economy and people’s living standards were

changed greatly after the collapse of the Soviet Union, and

Kyrgyzstan was classified as a lower-middle income country

by the World Bank (World Bank, 2016). In order to improve

people’s living and production standards, microfinance was

introduced in Kyrgyzstan as a poverty reduction tool. Lacking

funds and technology to achieve self-sufficiency in production,

the majority of Kyrgyz pastoralists would be more inclined to

allocate most of the loans to scale up livestock production and

compress production cycles to gain more profits (Ksoll et al.,

2016; Angioloni et al., 2018). Herders also tend to purchase more

food or consume more livestock to enhance living standards

when they receive extra loans (Aldashev, 2019). Therefore, a

higher ratio of loan to income may support Kyrgyz herders to sell

and consume more livestock.

Market price was one of the most important signals that affect

herders’ choices for adjusting the livestock scale. Rucker et al.

(1984) indicated that the change of the present price could have

opposite effects on producers’ decisions, bringing about herders’

different responses to the market situation (Pica-Ciamarra et al.,

2015). Highermarket price could encourage producers to sellmore

livestock immediately to deal with important expenditures like

living or medical costs (Megersa et al., 2014). On the other hand,

producers would expect a more satisfactory price in the future and

expand their stock for higher speculative profit (Ge and Kinnucan,

2018; Xu et al., 2019). Lacking more attractive and optional

investment opportunities, livestock were often taken as main

assets and buffer stocks in Kyrgyzstan (Munavar et al., 2016).

However, only the wealthier large-herd owners could take risks

and regard livestock inventory as investment for a longer term,

while most livestock production came from small herders, who

were more vulnerable to climate and economic fluctuation in

Kyrgyzstan (de la Martiniere, 2012; Sabyrbekov, 2019). Munavar

et al. (2016) defined herders with large livestock and no grazing

services as large-herd owners, and small herders were those who

offered grazing services to obtain seasonal income (Steimann,

2012). For small herders, pressure for longer-term feed costs

and climate uncertainty would weaken their profitability

(Brookfield, 1991; Biglari et al., 2019). The 2008 global financial

crisis caused the surge of energy and food prices in Kyrgyzstan

(Ruziev and Majidov, 2013). The attractive prices promoted

herders to reduce livestock sales for saving capital to deal with

uncertainty and wait for better sale opportunities. This was

consistent with Figure 2A. As long as the livestock price

reaches herders’ anticipation, they prefer to sell more livestock.

Research results showed that more precipitation and higher

grassland NPP could lead herders to reduce their livestock

number in neighboring oblasts. The livestock scale was

vulnerable to feed production, which depended on climate

and environmental conditions (Jaber et al., 2016; Karimi et al.,

2018). Insufficient precipitation, shortage of water resources, and

poor water infrastructure would reduce grassland productivity,

which directly affects the feed price and impacts the cost of

animal husbandry and its size (Sagynbekova, 2017; Chen et al.,

2020; Umuhoza et al., 2021; Kadupitiya et al., 2022). Pastures

with more precipitation benefit for grassland productivity in

Kyrgyzstan (Wang et al., 2020), which could offer abundant and

high-quality feed for livestock and greatly promote the

development of animal husbandry. In addition to the climate

factors, human activities could also contribute to the recovery of

grassland productivity. To ensure the sustainability of pastures,

the Kyrgyzstan government established a series of policies and

laws for pasture management after the country gained

independence. As a result, more than 40% of grasslands

recovered significantly under the joint efforts of the

government and local people from 2000 to 2014 (Wang et al.,

2020). The grassland restoration caused by anthropogenic

activities mainly occurred in Osh, Naryn, Issyk-Kul, and

southern Jalal-Abad Oblasts, which would attract more

herders to migrate and graze in these regions. It is found that

the center of gravity for livestock inventory in Kyrgyzstan shifted

from southern Jalal-Abad to the northeast of Kyrgyzstan

(Figure 3C).

As shown in Table 5, higher grassland NPP and more

precipitation in pastures had significant spatial spillover

effects, which might attract herders to migrate and graze from

other regions (Opiyo et al., 2011). Lacking sufficient funds and

anti-risk ability for long-distance migration, small herdsmen

often grazed in pastures near villages, even if the feed

resources were inadequate (Rahimon, 2012; Steimann, 2012).

With the gradual improvement and stringency of policies of

pasture management, small herders with little access to high-

quality resources will be increasingly restricted (Crewett, 2012).

In contrast, wealthier herders generally possessed significant

power, sufficient funds, and livestock management expertise to

migrate and privileges to graze on more productive pastures

(Sagynbekova, 2017; Kasymov and Thiel, 2019).

4.2 Implication policy

The livestock system is extremely complex and influenced by

different factors. To achieve sustainable development of animal
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husbandry, Kyrgyzstan needs innovative combinations of

system, policy, and technology. First, it is vital for the

government to develop more flexible financial policies to

directly ease the cost pressure on pastoralist families. In many

countries, microfinance is regarded as an important approach to

increase the flow of capital (Hossain, 1988; Hartarska and

Nadolnyak, 2008; Kabir et al., 2017), which is an effective

short-term method to help herdsmen overcome climate

disasters such as drought or snowstorms, and has been

advocated by governments and international organizations

(Turner and Williams, 2002; Ouma et al., 2011; Addison and

Brown, 2014). Meanwhile, the government could steer domestic

investment and foreign capital in animal husbandry by reducing

the tax rate of animal husbandry and increasing production

subsidies for animal husbandry enterprises (Upton, 2004; Dovie

et al., 2006; Zeleke et al., 2021). Second, national and local

managers need to explore a new animal husbandry

production system, which could improve the adaptability and

reproductive efficiency of livestock under fluctuated

environments. This system includes the techniques of feed

and nutrition, genetics and breeding, disease prevention, and

environmental management and then adopts different technical

combinations for different production systems (Zhao et al., 2018;

Enahoro et al., 2019). Third, pasture management should be

transformed from unidirectional to multiple forms and make

herders become the common managers. Providing alternative

and cognitive frameworks, as well as appealing for actions, could

be a more effective way to enhance herders’ self-concept and

produce positive outcomes (Cohen, 2001; Korman, 2012). For

example, pasture managers could provide local herders with jobs

like paid environmental monitors and data collectors, so herders

can obtain extra income and be encouraged to co-create pasture

conservation initiatives (Levine et al., 2017). Furthermore, it is

worthwhile to explore the policies of livestock international

trade, which conduces to promoting national economic

development. The local livestock industry could be supported

by raising import taxes, which could help to protect the market

for domestic livestock production and ensure an income for local

herdsmen (Jaber et al., 2016). For livestock export, developed

countries follow strict food safety and quality standards to meet

the international health standards. The Kyrgyzstan government

should ensure the production and export of animal husbandry by

actively complying with various health measures and actively

exploring the market potential of importing countries with huge

demand for livestock products (Kumar, 2010).

4.3 Innovation and contribution

Some previous studies have indicated that social economic

factors played a dominant role in husbandry development of arid

and semi-arid areas (Ge and Kinnucan, 2018; Xu et al., 2019; Wei

and Zhen, 2020). The results provided more diversified practical

proof for the dynamics of livestock scale and introduced a more

flexible environmental index to strengthen the assessment of

environmental effects on livestock quantity in Kyrgyzstan. This

study also offered a new perspective for research studies on

livestock change in arid and semi-arid areas and proposed

significant measures for developing husbandry economy under

the context of high quality and sustainable development of the

national economy for developing countries. The approach we

used was widely applicable in identifying the impact of climate

change and socio-economic changes on the dynamics of livestock

in arid and semi-arid areas and determined the spatial effects of

socio-economic factors and environmental factors. This research

not only provided new evidence for the efficient development of

animal husbandry in Kyrgyzstan under environmental policies

and financial regulation but also proposed a theoretical and

practical basis for other Central Asian countries to maintain

husbandry and national economy sustainability.

4.4 Limitation and uncertainty

In this study, the two-period livestock productionmodel divided

the operation of the livestock market into two stages, introduced the

herdsmen’s speculative behavior as a weight to the model, and

revealed the specific influencing factors of livestock quantity change

(Xu et al., 2019). However, this model algorithm has not been

verified by a wide range of cases yet, and its control variables may be

incomplete. In addition to the variablesmentioned in this study, four

other variables (i.e., abundance of feed resources, proportion of

productive land area, the improvement of agricultural productivity,

andmechanization level) had direct and positive effects on the grass-

feeding livestock breeding industry (Wang et al., 2016), but the

urbanization level and climatic changes had obvious negative effects

(Peng et al., 2005; Munavar et al., 2016). Therefore, the accuracy of

our model and variable selection may have a certain degree of

limitation.

The analysis of livestock variation was also limited by data

uncertainties as the dataset did not reflect the specific condition

of the household unit. The livestock sales, self-consumption, and

inventory could be significantly influenced by the household size

and livestock structure (Xu et al., 2019; Wei and Zhen, 2020). In

this study, the variables were based on provincial statistics, which

represented the provincial average condition. Although the

official data could objectively reflect the real condition of

husbandry in the seven oblasts of Kyrgyzstan, the household

data based on a field survey were deficient, which could not

reflect the production capacity and income levels of different

families and pastures. Future studies should focus on accessing

and quantifying how the environmental and financial policies

have affected the development of husbandry in Kyrgyzstan. This

is a very promising direction for future policy approaches,

especially in light of the multiple pressures anticipated from

agricultural investment under China’s Belt and Road Initiative.
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5 Conclusion

We used the two-period livestock production model and

spatial panel econometric model to estimate the dynamics of

livestock quantity change and its influencing factors from 2006 to

2020 in Kyrgyzstan. Our results showed that the quantity of

livestock increased overall, and the quantity of livestock for

inventory was far more than sales and self-consumption. In

addition, market price, non-herding income, and current

livestock inventory were the dominant socio-economic factors

contributing to dynamic changes in livestock sales, self-

consumption, and inventory, and the higher proportion of

rural residents and education level could support herders to

expand their livestock scale. The results provided an effective way

to not only guarantee the herders’ livelihood and realize the

sustainable development of animal husbandry but also promote

high-quality economic development for Kyrgyzstan. In a broader

sense, our findings have greatly advanced the understanding of

sustainable development of a grassland ecosystem and animal

husbandry economy in arid and semi-arid regions.
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It is important to explore the correlation characteristics of land markets among

cities in order to promote coordinated developments. Based on the residential

land prices in 168 counties in Hebei Province, this study used spatial

econometric models and social network analysis to analyze the regional

correlation effect and network structure evolution characteristics of

residential land prices. The results indicated that: 1) the regional residential

land price level has significant global spatial autocorrelation and local

autocorrelation. High-High clusters were concentrated in cities around

Beijing and Tianjin and provincial capitals, while Low-Low clusters were

mostly distributed in central and southern Hebei. 2) The direct effect and

spillover effect of influencing factors of residential land price were

significantly different. The residents’ purchasing power, the socioeconomic

level, and the land resources had significant impacts on the residential land price

of the county itself, while the level of infrastructure and the policy environment

had significant impacts on the residential land price of neighboring counties. 3)

The degree centrality and betweenness centrality of residential land price in

central counties of Hebei Province was generally high, showing a trend of

agglomeration. However, the peripheral cities of Hebei Province lacked

important central nodes in the network structure. From 2013 to 2020,

increasing numbers of counties had shown the transmission function of

“bridge,” and the balance of land price in the whole region had been

constantly improved. The study found that the regional residential land price

itself had spatial autocorrelation, and the spillover effect of its related factors

was also the driving force that affects the transmission and diffusion of land

price between counties. The change in the spatial network of county residential

land price was primarily manifested in the transmission process starting from

the central cities. The tightness of the spatial network was related to the number

and distribution of central nodes. Hebei Province should focus on cultivating

urban central nodes with development potential in marginal areas, create more

land market growth poles according to local conditions, and accelerate the
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integration of land factor markets in Beijing, Tianjin, and Hebei to achieve

healthy and balanced development of residential land prices. This study made

up for the shortcomings of previous studies on land price correlations. The

combination of correlation feature analysis and spatial network structure

analysis was more helpful to reveal the characteristics of regional land price

development, and the results could provide a reference for the formulation of

urban land market regulation policies.

KEYWORDS

regional correlation effect, spatial network structure, social network analysis,
residential land price, spatial econometric model

1 Introduction

The land price is an important manifestation of the

relationship between land supply and demand that reflects the

interaction between land resources, the surrounding

socioeconomic conditions and the ecological environment

(Huang and Du, 2021), (Glumac et al., 2019). The land price

provides feedback for the operation of the land market and plays

an important role in the optimal allocation of land resources

(Huang et al., 2022). The residential land price is a key part of the

price of housing, and it is closely related to the operating

mechanism of the real estate market, the level of urbanization,

the degree of social and economic development, and the level of

people’s livelihood (Davis and Palumbo, 2008). Influenced by

regional economic and natural endowment differences, urban

residential land prices show strong regional heterogeneity.

However, due to the existence of capital flow, population

migration, economic cooperation, and other functions

between cities, residential land prices will naturally produce

spatial correlation in theory. The so-called spatial correlation

of urban residential land price refers to the manifestation of the

interaction between urban residential land price and its

influencing factors in space. Due to the difference of land

price level, there are also differences in the spatial connection

of land prices among cities, thus forming several urban

agglomeration collectives. There is attraction within the urban

agglomeration that can generate a networked spatial structure

and enhance the cohesion so as to optimize the allocation of land

elements and promote the development of each city within the

urban agglomeration (Liang et al., 2015).

In recent years, most studies on land prices has focused on

the driving mechanisms of influencing factors and the spatio-

temporal differentiation characteristics of land prices. The

research on influencing factors has involved the identification

and quantification of factors. Some studies have constructed a

multi-factor land price characterization system and revealed the

comprehensive driving mechanisms of multi-factor land prices.

Brano formed a set of characteristic variables that can explain the

price of land in Luxembourg, including Accessibility, Proximity,

Physical, Legal, Social, and Economic factors (Glumac et al.,

2019). Song Jianan constructed a characteristic system of urban

residential land prices in China comprising four variables: land

supply and demand, economic level, social level, and policy

impact (Song et al., 2011a). Han Juan constructed a

characteristic system of urban residential land prices in China

by choosing three variables: urban location, development

potential, and socioeconomic level (Han et al., 2017). Some

studies have investigated the mechanism of certain factors on

land price such as population structure and distribution (Song

et al., 2022), regional environment (Zhu et al., 2018), urban traffic

conditions (Shen and Karimi, 2017), (Sohn, 2014), and national

land policy (Gyourko and Jacob, 2021), (Liu et al., 2022). The

research on the spatio-temporal differentiation characteristics of

land price has included the exploration of the non-stationarity in

time and heterogeneity in space of land prices and the associated

influencing factors. Relevant results have confirmed that plot

ratio, public facilities, population, and environmental factors

have different effects on land price in different regions (Kheir

and Boris, 2016). The impact of natural facilities and educational

facilities on the surrounding land price would gradually increase

over time, while the impact of commercial facilities and public

transport would continue to decline (Zhang et al., 2021). The

above achievements have provided a good foundation for the

research on spatial correlation of land prices and the spatial

network structure.

In studies of the spatial correlation effect on residential land

prices, researchers have explored the characteristics of spatial

correlation of land prices and analyzed the influencing factors of

the spatial correlation effect. The current studies have generally

focused on a single city or several adjacent cities in a region. It is

believed that the urban land price is rising rapidly in the time

dimension while showing relevance in the spatial dimension

(Griffin et al., 2015). Most researchers have attributed the factors

of land price correlation to geographical proximity and have

concluded that the closer the geographical distance, the stronger

the land price correlation between cities (Harris et al., 2013),

(Zhan et al., 2011). Geographic proximity creates conditions for

spatial correlation of land prices between neighboring cities, but

for distant cities, the impact of geographic proximity decreases

with the increase of spatial distance (Zhou and Tang, 2019). For

land prices, the spillover effect is an important factor that leads to

the land price correlations between neighboring cities. The
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spillover effect is reflected in the price transmission between

geographical neighboring regions. The land price fluctuation in

neighboring regions will have a significant impact on the local

land price (Zhou and Tang, 2019). This rule applies not only to

land prices but also to housing prices, which had been confirmed

in city agglomerations in different countries such as the

United Kingdom (Meen, 1999), the United States (Stephen,

1999), Australia (Tu, 2000) and China (Wang et al., 2016),

(Zhang et al., 2015), (Liu and Chen, 2013). In addition to

land price itself, frequent interactions of land price related

factors between cities could also lead to land price related

effects. Land price related factors such as urban traffic

conditions (Okamoto and Sato, 2021), (Niu et al., 2021),

administrative proximity (Zeng, 2019), and regulatory policies

(Zheng et al., 2021) could link land price fluctuations by

promoting the full flow of resources and information elements

between regions. The government should implement land policy

according to the distribution and flow of land elements and

improve and adjust the land supply and demand structure in

order to promote the stable and healthy operation of the local

housing market (Tsai, 2018). The influence mechanism of land

price related factors on land price correlation has become a trend

in land price spatial correlation research, but there are few

relevant achievements at present.

In terms of the research on the spatial network structure of

residential land price, with the accelerated flow of elements

between cities, studies no longer limit their research

perspective to the spatial distribution pattern of residential

land prices, but focus more on the spatial network structure

between cities because of the relationship between regional

residential land prices, focusing on the formation process and

drivers of the spatial network structure of residential land prices.

Relevant results have shown that the number of spillover

relationships between real estate prices in most cities far

exceeded the number of neighboring cities, indicating that the

real estate linkage betweenmultiple cities had broken through the

“neighborhood effect” in the simple geographical sense and

presented a complex network structure (Huang et al., 2009),

(Zhang and Lin, 2015). The rapid progress of market integration

and informatization has strengthened the long-distance

transmission of resources and information and the ability to

trade goods and personnel. This increases the closeness of the

connection between residential land prices in different cities and

makes the network characteristics more prominent (Gan and

Huo, 2016). As to the reasons for the formation of the spatial

network structure of land prices, most researchers believe that the

spatial transmission of real estate prices has a certain regularity,

and the land prices in some areas would lead to changes in the

surrounding areas after the first price change. Family migration,

wealth transfer, spatial arbitrage, and other factors as well as

market heterogeneity factors such as regional land market

development level and public expectations were the main

reasons for the emergence of land price spatial networks

(Elias, 2006). Some researchers also believe that the “ripple

effect” of land price is related to the definition of geographical

regions, and the mode of land price transmission was clear only

between continuous geographical regions (Pollakowski and Ray,

1997), (Wang et al., 2008). With the frequent flow of factors

among cities and the increasingly close cooperation relationships,

the closeness of social and economic development levels,

resource endowment, and infrastructure construction

determine the form and characteristics of urban land price

related networks and also affect the position and role of each

city in the land price transmission process (Zhou et al., 2020).

In terms of research methods, exploratory spatial data

analysis, spatial econometric models (Juethe and Pede, 2011),

GeographicallyWeighted Regression models (Harris et al., 2013),

(Nilsson, 2014) and hedonic price models (Zhu et al., 2014) are

widely used in the research on spatial correlation effects and

driving factors of residential land prices. These methods play

important roles in analyzing the spatial differentiation

characteristics of residential land prices. Spatial econometric

models are used to study the spatial correlation and

heterogeneity of economic phenomena. These models pay

more attention to the spatial relationships between things, and

they have advantages in finding the mechanism of the influence

of land price-related factors on land price correlation (Cheng

et al., 2020). Social network analysis methods are generally used

to discuss the network types and development laws in urban

industrial development (Fu, 2021), tourism economic

development (Gan et al., 2021), ecological efficiency (Xu et al.,

2020), land use efficiency (Xia et al., 2020), spatial planning

(Bacău et al., 2020) and other fields in the region, while

application to research on real estate prices is relatively rare.

In recent years, only a few researchers have used the social

network analysis methods to investigate the network structure

characteristics of real estate price linkage between cities.

However, these studies have verified the applicability of social

network analysis methods in the real estate market, and they

could provide data support and a theoretical basis for different

cities to formulate targeted regulatory policies.

To sum up, most studies have confirmed that urban land

prices generally have regional correlation effects and network

morphological characteristics that can achieve optimal allocation

of land resources to a large extent. However, there are two aspects

worth further exploration: First, the existing studies often discuss

the conduction and correlation of land price itself, ignoring the

spatial correlation effect of land price-related factors (Peng et al.,

2019), (Hu et al., 2016), (Griffin et al., 2015), and thus the

influence mechanism of related factors on land price

correlation needs further exploration. Second, there are few

studies on the combination of regional residential land price

correlation effect and spatial network structure. Most studies

have focused on the analysis of land price correlations between

cities, primarily considering the geographical “neighborhood”

effect or “regional” effect, factors with which it is difficult to grasp
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the overall characteristics of land price linkage. The analysis of

the correlation effect of regional residential land prices and the

spatial network structure is more helpful to comprehensively

reveal the regional local and overall residential land price

development characteristics. Three, most of the current

studies have focused on urban scale residential land price

correlation characteristics, while few studies have focused on

the county scale. The correlation characteristics of land prices at

different scales may be different. The study of small-scale unit

land prices is more conducive to the government being able to

formulate effective regulation policies. The spatial effect of

residential land prices at the county level needs to be explored.

In recent years, the process of urbanization in China has

accelerated significantly, and the demand for land has

increased. The residential land market is becoming more

competitive (Jiang et al., 2021). Hebei Province, which is

the main region used to relieve Beijing’s non-capital

functions, is accelerating the integration of its land market.

The complementary characteristics of land resources between

regions are becoming more prominent (Ma et al., 2020), and

the cross-border exchanges in land markets between regions

are also increasing (Wang et al., 2020). In China, the rational

use of land resources is the key to promoting industrial

transfer from Beijing and Tianjin (Luo et al., 2021).

However, it is unknown whether correlations exist among

the elements of land resources in Hebei or how to coordinate

the development of the inter-city residential land markets.

These questions need to be answered.

The present study considered 168 counties in Hebei

Province as the research object. We used the spatial

econometric model to analyze the regional correlation

effect of residential land prices in the region and used

social network analysis methods to explore the structural

characteristics of the overall regional residential land price

network. This study explains the influence mechanisms of

relevant factors on spatial correlation of residential land prices

through the estimation results of direct and spillover effects,

examines the status and role of each county in the residential

land price linkage network through the measurement results

of degree centrality and intermediary centrality, and depicts

the overall network structure characteristics of residential

land price linkage through the measurement results of

network density, and agglomeration subgroups. This study

answers the following three questions. What factors affect the

linkage of residential land prices in different regions? What is

the position and role of local residential land prices in this

linkage network? What are the characteristics of the network

structure of the linkage of land prices in different regions?

Based on the answers to the above questions, the study has

important theoretical significance and application value to

improve the accuracy of residential land price regulation

policy and build a coordinated regulation mechanism of

cross-regional land markets.

2 Research area, data, and methods

2.1 Research area

The total area of Hebei Province is 188,000 km2,

accounting for 1.96% of China’s total area. It is the only

province in the country with plateaus, plains, mountains,

hills, lakes, and seashores. Hebei Province includes

Shijiazhuang, Baoding, Langfang, Tangshan, Cangzhou,

Handan, Xingtai, Chengde, Zhangjiakou and Hengshui,

11 prefecture-level cities and 168 county-level

administrative units. In 2020, the GDP of Hebei Province

was 3620.69 billion yuan. Tangshan, Shijiazhuang, and

Cangzhou ranked the top three contributors to GDP, with

721.09 billion yuan, accounting for 19.9%, 16.4%, and 10.2%

respectively. The per capita GDP of Hebei Province was

48,564 yuan, a year-on-year growth rate of 4.78%. The

permanent population of Hebei Province was

74.6384 million, accounting for 5.28% of the national

population. Shijiazhuang had the highest population with

10.6471 million people. The population of Hebei Province

is concentrated in the central and southern plains, and the

population in the northern mountainous areas is sparsely

distributed. Differences in the economic level and

population density among cities contribute to the

unbalanced nature of urban land prices. In 2020, the

average residential land price in Hebei Province was

5278 yuan/m2, with significant regional differences. The

average residential land prices in Tangshan, Langfang and

Baoding were high, at 8668 yuan, 6675 yuan, and 6580 yuan/

m2, respectively. In 2020, there was an investment of

581.7 billion yuan to increase the transportation volume in

Hebei Province, a rise of 3.4%. Hebei Province had 7941 km of

railways and 204,737 km of highways, forming a modern

comprehensive transportation system with multiple modes

of transportation. Hebei Province had an annual passenger

volume of 182 million and a freight volume of 2.478 billion

tons in terms of external connections. There are close

economic ties between cities in Hebei Province, and these

are increasing in the current social and economic conditions

(Figure 1).

2.2 Materials and methods

This study applied spatial autocorrelation analysis, spatial

econometric modelling, and social network analysis. Spatial

autocorrelation analysis is the core content of spatial

correlation analysis and is also an important prerequisite for

spatial econometric analysis. Spatial autocorrelation analysis

determines whether residential land prices are spatially

relevant by measuring the degree of spatial correlation and

difference, and the analysis can identify the regional
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FIGURE 1
Research area in Hebei Province, China.
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correlation characteristics of residential land prices at different

levels. Spatial econometric analysis pays more attention to the

spatial relationship between things and can further identify the

impact mechanism of relevant factors on the spatial correlation

of residential land prices and reveal the regional correlation

characteristics of land price driving factors. Social network

analysis can clarify the status and role of each region in the

land price linkage network and depict the overall network

structure characteristics of residential land price linkage. The

combination of spatial autocorrelation analysis, spatial

econometric analysis, and social network analysis is helpful to

fully reveal the regional local and overall land price development

characteristics. A flow chart of the study is presented in Figure 2.

2.3 Data and pre-processing

2.3.1 Residential land price data
This study took 168 county-level administrative units in

Hebei Province as the research object. The research time span

was from 2013 to 2020. The data included residential land

transaction data and socio-economic data for each county in

Hebei Province. The transaction data of residential land is

obtained through China Land Market Network (https://www.

landchina.com/#/), and the websites of natural resource bureaus

of various cities, and field research. The transaction data of

residential land included information such as the name,

location, land use, area, land use period, land source, land

FIGURE 2
Flow chart of the study.
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supply method, transaction price, plot ratio, and contract signing

date. Socio-economic data included Per capital disposable

income, Resident deposit savings, Average salary of employees,

Population density, Urbanization rate, etc. which were derived

from Various statistical yearbooks of Hebei Province from

2013 to 2020. The transaction data of residential land was

mainly used to calculate the residential land price in different

years in each county, and the socio-economic data was mainly

used to build the indicator system of influencing factors of

residential land price. See Table 1 for data source overview.

2.3.2 Social and economic data
To ensure the accuracy of model estimation and objectively

reflect the relationship between residential land prices in the

region, research on the regional correlation effect of residential

land prices needs to consider both the single interaction of

residential land prices between cities, and also other variables

that affect residential land prices. According to the principles of

regional differences, operability, and comparability (Liu et al.,

2019), (Song et al., 2011b), (Lesage and Pace, 2009), we selected

eight land price influencing factors, including land resources,

TABLE 1 Data source overview.

Data name Main contents Main source Quantity obtained

Residential land
transaction data

Name, location, land use, area, land use period, land source,
land supply method, transaction price, plot ratio, and
contract signing date

1. China Land Market Network
(https://www.landchina.com/#/)

Data of 168 counties from 2013 to 2020, a total
of 14,460 residential land transaction data

2. The websites of natural resource
bureaus of various cities

Socio-economic
data

New residential building area、per capita disposable
income、Resident deposit savings、Average salary of
employees、Urban road area per capita、Population
density、Urbanization rate、Tax

1. China Urban Statistical
Yearbook

Data of 168 counties from 2013 to 2020, a total
of 10,752 indicators data

2. Hebei Economic Yearbook

3. Hebei Urban Construction
Statistics Annual Report

4. Hebei Statistical Yearbook

TABLE 2 Descriptive statistics for variables related to spatial analysis.

Variable types Variable name Symbol Average Standard
deviation

Maximum Minimum Define

Explained variable Residential land
price

P 7.35 0.68 9.78 5.25 Total transaction price/Total
transaction area, unit: yuan per

square meter

Land resources New residential
building area

X1 8.46 0.57 9.90 6.10 Unit: hectare

Residents’
purchasing power

per capita
disposable income

X2 10.13 0.24 10.7 9.23 Unit: Yuan per person

Socioeconomic level Resident deposit
savings

X3 51.06 19.95 100 12.44 Unit: million

Average salary of
employees

X4 10.81 0.28 11.62 10.12 Unit: yuan

Infrastructure Urban road area per
capita

X5 3.60 1.11 7.05 0.70 Unit: hectare

Population size Population density X6 7.87 0.59 9.24 5.72 Regional resident population/Built-
up area, unit: people per square

kilometer

Urban development
level

Urbanization rate X7 10.90 0.73 13.23 8.90 Unit: Number of households

Policy environment Tax X8 11.47 1.01 14.00 8.65 Unit: million

Note: Statistical results of all variables except the unit of % are logarithmic.
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residents’ purchasing power, socioeconomic level, infrastructure,

population size, urban development level, and the policy

environment based on existing achievements. The data for

these indicators were derived from China Urban Statistical

Yearbook, Hebei Economic Yearbook, Hebei Urban

Construction Statistics Annual Report, and the Statistical

Yearbook of Cities in Hebei Province. To reduce the influence

of strong fluctuations in the data, the natural logarithm of the

original data of all variables was calculated (Table 2).

In order to ensure the scientific rationality of the survey data,

we used the relevant research methods of Chenxi Li et al. (2021)

to verify and analyze the quality of the survey data, including data

validity test and reliability analysis.

Validity analysis mainly includes content validity and

structure validity. The scientificity of the indicator types used

in this study had been verified by relevant literatures. The data

were from the land market transaction data published by the

government and the publicly issued yearbook data. Combined

with the theoretical elements of the literature and the realistic

elements of the data source, the content validity of the data meets

the requirements. Structural validity refers to the corresponding

relationship between the framework and the measured value,

usually using exploratory factor analysis. In this study, KMO and

Bartlett’s sphericity test were used to measure the correctness of

the selected measurement variables. The KMO value calculated

by SPSS statistics is 0.852, greater than 0.7, Bartlett’s approximate

chi square value is 2631.346, and the Sig. value is .000, less than

.05 (Table 3). This showed that the research data is effective and

suitable for subsequent spatial autocorrelation analysis and

spatial econometric analysis.

Among the reliability analysis methods, Cronbach analysis is

the most widely used measurement method, which directly used

the reliability coefficient value(α) to describe the level of

reliability. In order to further test the authenticity and

credibility of the data, this study used Cronbach reliability

analysis method to measure the reliability level of the data. If

the coefficient of Cronbach’s αS0.7, it indicates that the data

reliability is acceptable, and the larger the reliability coefficient

value, the better (Feng and Tian, 2011), (Chai et al., 2019).

Calculated by SPSS statistics, the coefficient of Cronbach’s α
of the total amount table was 0.956, which met the standard. This

proved the reliability of the study data (Table 4).

2.4 Methods

2.4.1 Inspection method
2.4.1.1 Spatial autocorrelation

Moran’s I was used to test the global spatial autocorrelation

of residential land prices and provide a basis for the selection of

subsequent spatial econometric models. The value range of

Moran’s I was [−1, 1]. If the Moran’s I value was greater than

0, it meant that the residential land price showed a positive spatial

correlation. When the index was closer to 1, there was a closer

relationship between residential land prices among counties. If

the Moran’s I was equal to 0, it means that there was no spatial

autocorrelation for residential land prices. If the Moran’s I was

less than 0, it indicated that there was a negative spatial

correlation between residential land prices. When the Moran’s

I was close to −1, there was a greater difference in residential land

prices among counties. The calculation formula is as follows:

I �
∑n
i�1
∑n
j�1
Wij Xi − �X( ) Xj − �X( )

S2∑n
i�1
∑n
j�1
Wij

, S2 � 1
n
∑n
i

Xi − �X( ) (1)

where I is the global Moran’s index; Xi and Xj are the residential

land prices of county i and j; n is the number of counties and

districts;Wij is the spatial weight matrix of county i and j; �X is the

average residential land price in the counties and districts of

Hebei Province.

To further identify the spatial agglomeration characteristics

of residential land prices among local counties and districts, this

study used localMoran’s I to measure the correlation between the

residential land price in a county and in its neighboring counties.

The value range of the local Moran’s Ii was [−1, 1]. If Moran’s Ii
was greater than 0, it meant that the residential land price was

spatially positively correlated, e.g., the residential land price

between counties and districts had a “High–High” or

“Low–Low” cluster phenomenon. If the Moran’s Ii was equal

to 0, it meant that there was no spatial autocorrelation for

residential land prices. If the Moran’s Ii was less than 0, it

TABLE 3 Test results of KMO and Bartlett.

Kaiser–Meyer–Olkin measure of sampling adequacy .852

Bartlett’s sphericity test Approximate chi-square 2631.346

Df 200

Sig .000

TABLE 4 Reliability statistics results.

Variable Cronbach’s alpha Number

X1- X8 0.945 8
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meant that the residential land price was negatively correlated

with space, and there was a “High–Low” or “Low–High” cluster

phenomenon.

Ii �
∑n
j ≠ i

Wij Xi − �X( ) Xj − �X( )
1
n∑ Xi − �X( )2 (2)

where Ii is the local Moran’s I of county i; Xi and Xj are the

residential land prices of counties i and j; n is the number of

counties; Wij is the spatial weight matrix of counties i and j; �X is

the average of residential land prices in counties and districts of

Hebei Province.

2.4.1.2 Basic regression test

Before the quantitative regression of county residential land

prices, this study considered whether there were certain

constraints between the assumed factors. The three main test

methods for econometric models are the Lagrange multiplier

(LM) test, Wald test, and likelihood ratio (LR) test. These three

methods were used to test whether the constraints we set were

established, and methods were tested in turn. The LM test was

used to assess whether there was a serial correlation in the

residual series of the model. It can supplement the Moran’s I

estimation results and improve the accuracy of the spatial

dependence estimation of the residential land price model.

The LM statistic is defined as:

LM � λ̂′ Var λ̂( )[ ]−1λ̂→d χ2 K( ) (3)

where λ is the Lagrange multiplier vector; Var(λ̂) is a covariance
matrix; K is the number of constraints (the number of

explanatory variables); λ̂→
d
χ2 means that the sample follows a

normal distribution.

The Wald test and LR test were used to select and

determine the applicable form of the specific spatial

econometric model. In the Wald test, if the p-value of the

Wald-lag test was significant, and the p-value of the Wald-

error test was not significant, the Spatial Lag Model (SLM) was

applicable. If the p-value of the Wald-lag test was not

significant, and the p-value of the Wald-error test was

significant, the Spatial Error Model (SEM) model was

applicable. If the p-values of both the Wald-error test and

the Wald-error test were significant, then the Spatial Dubin

Model (SDM) model was used. The Wald statistic is

defined as:

Wald � β̂U − β̂R( )′ Var β̂U( )[ ]−1 β̂U − β0( )→d χ2 K( ) (4)

Where β̂U represents an unconstrained estimator; β̂R represents a

constrained estimator; β0 means known parameters.

In the LR test, if the p-value of the LR-lag test was significant,

but the p-value of the LR-error test was not significant, then the

SLM model was applicable. If the p-value of the LR-lag test was

not significant, but the p-value of the LR-error test was

significant, then the SEM model was applicable. If the p-value

of both the LR-lag test and the LR-error test were significant, then

the SDM model was used. The LR statistic is defined as:

LR � −2 ln L β̂R( )
L β̂U( )⎡⎢⎢⎣ ⎤⎥⎥⎦ � 2 lnL β̂R( )[ ]→d χ2 K( ) (5)

where L(β̂U) represents the unconstrained likelihood function

maximum; L(β̂R) represents the constrained likelihood function

maximum.

After determining the specific form of the model, we needed

to analyze its internal effect dimensions.We selected a fixed effect

and a random effect using the Hausman test. If the p-value of the

Hausman test was high, the fixed effect model was used,

otherwise the random effect was used. The Hausman statistic

is defined as:

β̂FE − β̂RE( )′ Var β̂FE( )∧

− Var β̂RE( )∧[ ] β̂FE − β̂RE( )→d χ2 K( )
(6)

where β̂FE is the fixed effects estimator; β̂RE is the random effects

estimator.

2.4.2 Spatial econometric model
In theory, the frequent interaction of land price related

factors between cities leads to the correlation of land price.

The change of related factors of land price in any region will

not only affect its land price level, but also affect the land price

level of the region with spatial correlation. Spatial econometric

model is introduced in this study to explore the direct and

indirect effects of related factors on residential land prices in

various regions, and to reveal the influencing mechanism of

related factors on the correlation of land prices. The spatial

econometric model incorporated spatial effects into the model,

which addressed the spatial dependence problem in the

traditional linear regression model and measured the

interaction between various factors that influenced the

residential land price in counties and districts. The spatial

Durbin model is a generalized form of the spatial econometric

model, containing both endogenous interaction effects (WY) and

exogenous interaction effects (WX). The spatial Durbin model

was able to explore the regional correlation effect of the

residential land price and the correlation path of each

influencing factor from the dimensions of the intrinsic direct

effect and the extrinsic spillover effect in the application process.

The calculation is as follows:

Yit � c + ρWYit + αXit−1 + βWXit−1 + εit (7)

where Yit is the explained variable (residential land price); X is the

explanatory variable matrix (the influencing factors of residential

land prices); ρ, α, β are the coefficients to be estimated; ε is the

residual; i is the county, t is the year; W is the spatial weight

matrix. The test of a correlation effect on residential land prices
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between counties and districts was whether the coefficient ρ in

the model was significant. If ρ was significant, this meant that the

residential land price of a county was affected by other counties

and districts, and there was a correlation effect. If ρ was not

significant, this meant that the residential land price in a county

was not affected by other counties and districts, and there was no

correlation effect.

In the model, the parameter estimation results of each

influencing factor cannot directly characterize the specific

correlation path of the residential land price. Therefore, on

the basis of the research of LeSage (Fu, 2021) and others, this

study used partial differential decomposition to decompose the

impact of various influencing factors on residential land prices

into direct effects and spillover effects. The expression is adjusted

as follows:

Y � I − ρW( )−1 αX + βWX( ) + I − ρW( )−1ε (8)
transform the expression:

Y � ∑k
r�1
Sr W( )Xr + V W( )ε (9)

V W( ) � I − ρW( )−1
� I + ρW + ρ2W2 + ρ3W3 + . . . is space multiplier matrix

(10)
Sr W( ) � V W( ) Iαr + βr( ) (11)

The matrix form is as follows:

Y1
Y2
Y3
Y4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ∑k
r�1

Sr W( )11 Sr W( )12 / Sr W( )1n
Sr W( )21 Sr W( )22 / Sr W( )2n

..

.

Sr W( )n1 Sr W( )n2 / Sr W( )nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X1r

X2r

..

.

Xnr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + V W( )ε

(12)
where Sr(W)ij represents the ith and jth factors in Sr(W), and

V(W)i represents the ith row in V(W), and thus the expression is

as follows:

Yi � ∑k
i�1

Sr W( )i1 + Sr W( )i2X2r +/Sr W( )inXnr[ ] + V W( )iε

(13)
where the diagonal mean Sr(W)ii represents the direct effect

value, indicating that the change of the influencing factor r of a

county will play an elastic role in the local residential land price.

The non-diagonal mean Sr(W)ij represents the indirect effect

value, indicating that the change of the influencing factor r of one

county will have an overflow effect on the residential land price in

other counties in the region. The mean value of the matrix row

(column) Sr(W) represents the comprehensive value of the spatial

effect, representing the degree to which a county influencing

factor affects the total residential land price in the area.

2.4.3 Social network analysis
The current study formed a county-level association

network system of residential land prices by connecting the

residential land price nodes in the counties of Hebei Province.

By observing the characteristics of network centrality,

network density, and agglomerated subgroups, we were able

to analyze the organizational structure characteristics of the

regional residential land price spatial network in Hebei

Province. This analysis helped to identify the role and

status of residential land prices in each county in the

network structure, the degree of connection, and the

characteristics of regional subgroups.

2.4.3.1 Network centrality calculation method

Network centrality is an important indicator to measure the

degree of centralization of residential land price nodes. Network

centrality can be divided into point degree centrality, closeness

centrality and betweenness centrality.

Point degree centrality represents the influence and

competitiveness of a land price node. Counties with higher

centrality have a higher land price influence. The expression is

as follows:

CRD i( ) � CAD i( )
n − 1

(14)

where CRD(i) is the relative degree centrality of city i; CAD(i) is the

absolute degree centrality of city i, and n is the number of other

cities connected to city i in the network.

Betweenness centrality represents the degree of connection

between residential land price nodes. It is used to measure the

ability of a land price node to be unaffected by other nodes.When

the degree of the node is higher, it has a stronger ability to

transmit and control information, and a higher degree of linkage

to the spatial network. The expression is as follows:

CRBi � 2CABi

n2 − 3n + 2
�
2∑n

j
∑n
k
bjk i( )

n2 − 3n + 2
(15)

where CRBi is the relative betweenness centrality of city i; CABi is

the absolute betweenness centrality of city i.

2.4.3.2 Network density calculation method

Network density was used to measure the degree of

connection between all nodes in the network structure,

which showed the cohesion of the spatial network. It could

comprehensively reflect the impact of the residential land

price spatial network on each land price node and the

closeness of the communication between each node. When

the network density value was high, there was a greater effect

of the spatial network on the land price nodes, there was a

higher degree of interaction between the land price nodes, and
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the space was more closely related. The expression is as

follows:

D � ∑k
i�1
∑k
j�1

d mi,mj( )
k k − 1( ) (16)

where D is the network density, k is the number of nodes in the

network structure (168 counties in Hebei Province); d(mi,mj) is

the relationship between mi and mj. If there was an association

between county i and county j, then d(mi,mj) was 1, otherwise it

was 0.

2.4.3.3 Cohesive subgroup calculation method

Cohesive subgroup analysis was used to identify small urban

land price groups in the residential land price spatial network by

simplifying the complex land price network. We could identify

the number of agglomerated subgroups and the members of land

price nodes within different subgroups through data analysis.

This was able to show how subgroups were related, how they

were connected, and how they were organized.We used UCINET

software and CONCOR to carry out the calculation and analysis

of cohesive subgroups.

3 Results

3.1 Spatial autocorrelation results

This study used ArcGIS10.2 software to calculate Moran’s I

(Figure 3). The global Moran’s I index was 0.44, and the Z value

was 8.94, exceeding the test threshold of 2.58, and the p-value

passed the 1% significance test. It showed that the spatial

distribution of the residential land price in the region had a

strong global autocorrelation. Geoda was used to generate the

LISA aggregation map (Figure 4). The results showed that the

spatial distribution of residential land price in the region also had

significant local autocorrelation characteristics. High-High

clusters were mainly concentrated in cities around Beijing and

Tianjin and provincial capitals and were distributed in

14 counties including Dachang and Xianghe in Langfang,

Mancheng in Baoding, and Gaocheng in Shijiazhuang. The

Low-Low clusters were mostly distributed on the southern

and central Hebei, involving 20 counties. Therefore, it could

be judged that the data set of this study could further carry out

spatial correlation effect analysis.

FIGURE 3
Moran’s I of residential land prices.
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3.2 Spatial econometric results

3.2.1 Basic regression
The spatial econometric correlation analysis referred to

the research process established by Anselin (Anselin et al.,

1996). First, a series of regression tests was carried out on the

residential land price, which was used to select and determine

the applicable model for specific spatial measurement. The

test results are shown in Table 5. 1) The LM spatial

dependence test showed that: LM-Lag, LM-Error and their

robustness tests passed the significance test at the levels of 5%,

1%, 1%, and 1% in turn, which indicates that the data in this

study were suitable for use in the spatial econometric model

for parameter estimation. 2) Both the Wald test and the LR

test passed the 1% significance level test, and it was

determined that the specific form of the spatial panel

model was the Spatial Durbin model. 3) The Hausman test

had a value of 38.13, which met the 1% significance level and

showed that the spatial Durbin model under fixed effects was

the most suitable choice to analyze the regional correlation

effect of residential land prices between counties and districts

in Hebei Province.

FIGURE 4
LISA cluster map of Hebei.
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3.2.2 Spatial Durbin model estimation
After logarithmic processing of all research data, this study

used the STATA spatial measurement tool to estimate the results,

as shown in Table 6.

The spatial lag coefficient of the residential land price was

0.158, and it passed the significance test at the level of 1%. This

result indicated that the residential land price in Hebei Province

had a significant positive spatial correlation effect in geographical

space. The changes in residential land prices in adjacent counties

had interactive linkage and radiation effects, which were

manifested in the form of synchronized increases and decreases.

Among the total effects of the different variables on the

residential land price, Residents’ purchasing power, Social and

economic level, Land resources, and Urban development level

variables had a positive impact on the residential land price at

the 1% significance level. Every 1% increase in the Per capita

disposable income increased the residential land price by

.587%. Every 1% increase in Average salary of employees

increased the residential land price by .324%. Every 1%

increase in Resident deposit Savings increased the

residential land price by .134%. Every 1% increase in New

residential building area increased the residential land price

by .063%, and every 1% increase in Urbanization rate

increased the residential land price .008%. The variable of

population size also had a positive impact on the residential

land price at the 10% significance level. Every 1% increase in

population density increased the residential land price

by .045%.

3.2.3 Decomposition of the spatial correlation
effect

The spatial Durbin model included the residential land price

and the spatial lag terms of each variable. To further test the

specific influence of each variable on the spatial effect of

residential land price, this study used a partial differential

solution to decompose the spatial effect of each variable and

analyze the internal transmission mechanism of each variable’s

impact on the residential land price as a direct effect and a

spillover effect. The direct effect represented the contribution of

each variable to the residential land price within the county, and

the spillover effect represented the contribution of each variable

of the residential land price within the county to the residential

land price in neighboring counties. The results are shown in

Table 7.

TABLE 5 Series of test results of spatial Econometric model.

Test Statistics

Spatial dependence test LM Lag 6.347**

LM Error 11.939***

Robust LM Lag 8.734***

Robust LM Error 14.325***

Wald test Wald test (SAR) 21.36***

Wald test (SEM) 22.00***

LR test LR test (SAR) 21.18***

LR test (SEM) 22.12***

Hausman test 38.13***

Note: *, **, *** indicate that the significance test was passed at the 10%, 5%, and 1% levels.

TABLE 6 Estimation results of spatial Durbin model.

Variable name Coefficient Variable name Coefficient

W·lnP 0.158*** — —

LnX1it-1 0.063*** LnX5it-1 −0.027

LnX2it-1 0.587*** LnX6it-1 0.045*

LnX3it-1 0.134*** LnX7it-1 0.008***

LnX4it-1 0.324*** LnX8it-1 0.039

Note: 1) *, **, ***, respectively, indicate that the significance test was passed at the level of 10%, 5% and 1%. 2)W · lnP is the spatial lag coefficient of residential land price; lnX represents the

total impact of variable x on residential land price.
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3.2.3.1 Direct effect

Residents’ purchasing power, Socio-economic level, Land

resources, Population size and Urban development level all

had a direct impact on residential land price within the

county to varying degrees. The direct influence of each

variable was in the order of Per capita disposable

income >Average salary of employees > Residents’ deposit

savings > New residential building area > Population

density > Urbanization rate. The per capita urban road area

and taxation both showed negative effects, but these were not

significant. The per capita disposable income had the greatest

influence on residential land prices in the county, at the 1%

significance level, every 1% increase raised the residential land

price in the county by .585%. The urbanization rate had the

lowest degree of influence, at the 1% significance level, every 1%

increase raised the residential land price by .008%.

3.2.3.2 Spillover effect

Socio-economic level, Infrastructure, Policy environment all

had an indirect impact on the residential land price of

neighboring counties to varying degrees. The contribution of

each variable to the spatial spillover effect of residential land

prices in neighboring counties was in the order of Average salary

of employees > Per capita road area > Residents’ deposit

savings# > Tax > New residential building area (# indicates a

negative impact). The per capita disposable income and

Population density had a negative effect, and the Urbanization

rate had a positive effect, but none of these were significant. The

average salary of employees was the most significant factor

affecting the residential land price in neighboring counties. At

the 1% significance level, every 1% increase in the average salary

of employees increased the residential land price in neighboring

counties by .899%. The contribution of the newly added

residential building area to the residential land price in the

neighboring counties was relatively low, but also showed a

positive impact. Every 1% increase raised the residential land

price in the neighboring counties by .072%.

3.3 Spatial association network measure

3.3.1 Individual network structure
The evolution of the individual network structure was

dominated by the centrality characteristics. Centrality analysis

mainly measured the role and dominance of node cities in the

spatial network. Owing to the differences in economic level and

resource conditions of cities, as well as the influence of traffic

conditions and geographical location, node cities had different

roles in the spatial network. The analysis of the individual

network structure clarified the position of each network node

city in the overall network. This study used UCINET to calculate

the degree centrality and betweenness centrality of 168 counties

and districts in Hebei Province in 2013 and 2020.

3.3.1.1 Degree centrality

As shown in Figure 5; Table 8, in 2013, the high-value areas of

degree centrality were mainly distributed in the center of Hebei

Province, with values of 115 in Qiaoxi of Shijiazhuang, 93 in

Yuhua of Shijiazhuang, and 92 in Chang’an of Shijiazhuang; In

2020, the central high-value areas expanded to the surrounding

areas, mainly in the central and southern parts of Hebei Province,

in which Anci of Langfang reached 108, Yunhe of Cangzhou

reached 104, and Zhengding of Shijiazhuang reached 96. From

2013 to 2020, the average degree centrality of residential land

price in Hebei Province increased from 37.988 to 41.321, showing

an overall upward trend. The high-value degree of centrality

areas gradually became clustered in the central region, including

Chang’an and Yuhua of Shijiazhuang, Jingxiu of Baoding, and

Guangyang of Langfang. The average degree centrality of each

node county expanded, and more counties played a growing role

in the spatial network of residential land prices.

3.3.1.2 Betweenness centrality

As shown in Figure 6; Table 8, in 2013, the high-value areas of

betweenness centrality were scattered in the central part of Hebei

Province, including values of 2547.85 in Qiaoxi of Shijiazhuang,

TABLE 7 Estimation of the direct effect and spillover effect of the spatial econometric model.

Variable Direct effect Spillover effect

lnX1it-1 .066*** .072**

lnX2it-1 .585*** −.231

lnX3it-1 .131*** −.137**

lnX4it-1 .352*** .899***

lnX5it-1 −.019 .243**

lnX6it-1 .046* −.055

lnX7it-1 .008*** .003

lnX8it-1 −0.037 .088*

Note: *, **,***, respectively, indicated that that the significance test was passed at the level of 10%, 5% and 1%.
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1041.007 in Guangyang of Langfang, and 730.411 in Lianchi of

Baoding. In 2020, the high-value areas of betweenness centrality

expanded to the periphery, concentrated in the central and

coastal areas of Hebei Province, with a small area in the north

of the region. The highest values were in Yunhe of Cangzhou at

1684.134, Anci of Langfang at 1274.999, and Qiaoxi of

Shijiazhuang at 768.572. From 2013 to 2020, the average value

of betweenness centrality rose from 313.917 to 326.845, although

the change trend showed a fluctuating distribution. The number

of cities in the high-value areas increased, mainly in the central

part of Hebei Province, and their role as “bridges” in the network

structure was clear.

3.3.2 Overall network structure
3.3.2.1 Network density

Network density was used to measure tightness of the overall

spatial network structure of residential land prices in Hebei

Province. A high-density network will have a greater impact

on the counties and districts in the region, and the flow of

resource elements will be more active. As shown in Figure 7, from

FIGURE 5
Map of the degree centrality of residential land prices in the counties of Hebei.

TABLE 8 Average value table of residential land price centrality in Hebei Province.

2013 2014 2015 2016 2017 2018 2019 2020

Degree centrality 37.988 39.488 39.631 39.971 40.298 40.892 41.417 41.321

Betweenness centrality 313.917 322.399 317.458 320.083 321.839 318.279 322.685 326.845
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a numerical point of view, the network density value of

residential land price in Hebei Province was low overall. From

2013 to 2020, the network density ranged between .1614 and

.1663, indicating that the spatial network connection of

residential land prices in the counties and districts of Hebei

Province was weak. Over time, the network density value showed

an upward trend, increasing from .1614 in 2013 to .1663 in 2020.

This indicated that since 2013, the links among residential land

price activities between counties and districts in Hebei Province

had gradually increased. The network correlation coefficient

reflected the robustness and vulnerability of the spatial

network itself. The number of network relationships increased

from 4527 in 2013–4665 in 2020, and the network structure

gradually became more robust.

3.3.2.2 Cohesion subgroups

This study divided four agglomerate subgroups with the help

of social network analysis tools. Agglomerate subgroups have

distinct hierarchical structure and significant geographical

proximity, as shown in Figure 8. The number of counties and

role attributes included in the subgroups are shown in Table 9.

The number of association relationships between county nodes

within the four subgroups was high. The correlation coefficients

of subgroup1 to subgroup4 were 830, 884, 893, and 683,

respectively. The number of internal county nodes was 43, 41,

48, and 36, respectively. Owing to the change in the relationship

among residential land prices between counties, the counties

included in the subgroup also changed. The strength of the

relationship between the sending and receiving counties in

subgroup1 was 1402 and 1290, and the ratio of the expected

to actual internal relationship was .25 and .64. The strength of the

relationship between the sending and receiving counties in

subgroup3 was 1408 and 1312, and the ratio of the expected

to actual internal relationship was .28 and .68. Both

subgroup1 and subgroup3 reflected the fact that the actual

internal relationship ratio was greater than the expected

internal relationship ratio, the ratio of the sending to receiving

relationship was the ratio of the sending to receiving relationship

FIGURE 6
Betweenness centrality change map of residential land prices in Hebei province.
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was more than 1. Therefore, both subgroup 1 and 3 reflected

counties that showed a mutual spillover effect in the residential

land price space network, and they played both an external

connection role for other subgroups in the residential land

price network. The intensity of the correlation between the

sending and receiving association of subgroup2 was 1005 and

1211, and the ratio of the expected to actual internal relationship

was .24 and .73. The intensity of the correlation between the

sending and receiving association of subgroup 4 was 850 and 852,

and the ratio of the expected to actual internal relationship was

.21 and .80. Subgroups 2 and 4 reflected the fact that the ratio of

the sending to receiving relationship was the ratio of the sending

to receiving relationship was less than 1. Therefore, both

subgroup 2 and subgroup 4 were net beneficiary counties,

receiving a higher proportion of the radiation effect of

residential land prices.

4 Discussion

4.1 Spatial autocorrelation analysis

There was a significant spatial autocorrelation between

counties in Hebei Province. The change of the residential land

price within a county was not only constrained by the existing local

conditions, but also by the land price of adjacent counties. Owing

to the influence of various factors such as resource endowment,

policy measures, and facility conditions, there was a distinct spatial

heterogeneity in residential land prices among counties.

High–High clusters involved five counties in Langfang, two

counties in Baoding, one county in Cangzhou, and six counties

in Shijiazhuang. Most of the High–High cluster counties in

Langfang, Baoding and Cangzhou were adjacent to Beijing and

Tianjin, with pronounced regional advantages. These cities were

within a 1 h radius of Beijing and Tianjin, and they had strong

economic influence from Beijing and Tianjin. They also received

policy dividends from the provincial capital city; the land transfer

price was higher; they were closely connected with surrounding

counties, and there was a significant spatial correlation effect.

High-High cluster counties in Shijiazhuang were mostly

downtown counties. Shijiazhuang is the political, economic,

scientific, technological, financial, cultural, and information

center of Hebei Province and is also an important central city

in the Beijing-Tianjin-Hebei region of China. After years of

development, Shijiazhuang has accumulated significant

advantages. In 2020, Shijiazhuang had a permanent population

of 11.24 million, ranking first in the province, with a GDP of

593.51 billion yuan, ranking third in the province. The large

population, abundant capital, convenient transportation system,

and complete infrastructure allowed the real estate market in this

area to develop to a high degree, and the residential land price in

the central area formed a “convex area.” Low-Low cluster counties

involved one county in Chengde, two counties in Zhangjiakou,

three counties in Baoding, two counties in Shijiazhuang, one

county in Hengshui, eight counties in Xingtai, and three

counties in Handan. Low-Low cluster counties in Chengde,

Zhangjiakou, Baoding and Shijiazhuang were mostly located in

FIGURE 8
Spatial network cohesion subgroup map.

FIGURE 7
Spatial network density and changes in the correlation
coefficient.
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the ecological conservation areas of Yanshan and Taihang

Mountains. These counties were located in mountains and hills,

and the complex terrain conditions restricted the urban

construction and development to a certain extent. The

disadvantages of inconvenient transportation, low land grade,

and weak urban competitiveness finally led to low activity of

the real estate market and low overall residential land prices.

Low-Low cluster counties in Hengshui, Xingtai, and Handan

were located in the plain area of southern Hebei Province.

Most of these counties were poor, with weak resources and

technical strengths. They were far from the city centers and

had weak radiation and driving effects from developed counties.

Low economic level and location disadvantage were the main

reasons for the slow development of the real estate market and low

residential land prices in these counties.

4.2 Spatial correlation effect analysis

Owing to the existence of spatial correlation, the influencing

factors of residential land price also showed a significant spatial

effect. However, there were important differences among the

influencing factors on the residential land price and its spatial

correlation effect. The direct effect and spillover effect reflected

the internal mechanism of different influencing factors on the

residential land price, which were important in analyzing the

trend of the housing land market.

4.2.1 Factors and mechanism affecting the land
price of the county itself

According to the results, the per capita disposable income,

average salary of employees, resident deposit savings, new

residential building area, and population density indicators

had a significant positive impact on residential land prices in

the region, of which per capita disposable income had the largest

impact on residential land prices. This conclusion was similar to

the research results of ZHOU (Zhou et al., 2019). ①The per

capita disposable income reflected the purchasing power of

residents, while the average salary of employees and resident

deposit savings reflected the living standard of residents. The

stronger the residents’ purchasing power and living standard, the

stronger the residents’ demand for real estate (including rigid

demand and improvement demand) and the greater the

competition in land transactions, which led to the rise of

residential land prices. In addition, the above three indicators

reflected the social and economic development level of a region

from the perspective of residents’ living conditions. Higher social

and economic development level is usually accompanied by

higher local financial income, more rapid urban development,

and greater real estate development investment scale that are the

main reasons for the positive interaction between these three

indicators and residential land prices.②The driving effect of new

residential building on residential land prices was related to the

dependence of local governments on land finance in recent years.

The increase of residential building area means the increase of

residential land. In theory, the increase of residential land can

effectively meet the vigorous demand for real estate, alleviate the

contradiction between supply and demand, and thus play a role

in restraining or stabilizing land prices. However, in recent years

the “land finance” model has been an important means for

Chinese local governments to accumulate urban capital and

promote urbanization and economic development. In this

mode, the increase of residential land could meet the capital

needs of local governments for infrastructure and public facilities

TABLE 9 The relationship and role of subgroups in the residential land price spatial network.

Subgroup1 Subgroup2 Subgroup3 Subgroup4 Number of
cities

Subgroup1 830 120 337 3 43

Subgroup2 311 884 16 0 41

Subgroup3 254 1 893 164 48

Subgrou4 7 0 162 683 36

Expected internal
relationship ratio

Actual internal
relationship ratio

Strength of the
connection

Strength of the
received contact

Partition
role

Subgroup1 .25 .64 1402 1290 Overflowing
each other

Subgroup2 .24 .73 1005 1211 Net beneficiary

Subgroup3 .28 .68 1408 1312 Overflowing
each other

subgroup4 .21 .80 850 852 Net beneficiary
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construction, stimulate infrastructure construction, improve

urban environment, and also increased the competition of real

estate developers for land purchase and the expectations of

consumers for housing purchase, which would drive the

increase of land transfer prices. ③The driving effect of

population density on residential land price was the specific

performance of market supply and demand mechanisms. The

population density reflected the relationship between the land

quantity and the potential land demand of the population. The

coordinated development of residential land and population

change could stabilize the land price. In a certain period of

time, the increase in population density would bring about an

imbalance between supply and demand, leading to an increase in

housing demand and thus driving up land prices.

4.2.2 Factors and mechanisms affecting land
prices in neighboring counties

According to the results, the average salary of employees,

urban road area per capital, taxes, and new residential building

area had significant positive spillover effects on residential land

prices in nearby areas, among which the average salary of

employees had the greatest impact. However, residents’

deposit savings had a significant negative spillover effect on

residential land prices in nearby areas. ①Higher average

salaries of employees could not only increase residents’ local

demand for housing but also increase residents’ desire to buy

houses in nearby areas. Especially under the background of strict

regulation and control policies in some cities, developers were

willing to bid for land at a higher price in anticipation of the flow

of housing demand sand thus the land price in nearby areas

would rise. ②With the improvement of traffic facilities and

convenience, people had more ways of commuting, shorter

commuting times, and wider choice of residence. People

tended to consider neighboring regions with better living

environments and infrastructure, and this increased the

demand for residential land in surrounding counties to a

certain extent and promoted the rise of residential land prices.

③Taxes were closely related to residents’ living pressures, and an

increase in residents’ living pressures directly affected the choice

of real estate. When the real estate price within a particular

county was relatively high, the availability of housing land in

surrounding counties with a relatively low residential land price

was able to ease the pressures of life, thereby driving an increase

in the residential land prices in the surrounding counties.

④Increased areas of new housing also drove the residential

land prices in the surrounding areas. The reason might be

that under the background of cooperation and competition

between counties, the increase of new residential building area

had a certain “demonstration effect”. The increase of residential

building area in a certain county might prompt the neighboring

county governments to take similar actions, increase the supply

of residential land, and thereby increased the pace of real estate

development. Therefore, when the real estate development in

some counties was strong, it would spill over to the neighboring

counties through the expectation of the market development,

causing the residential land prices in the neighboring areas to

rise. ⑤Residents’ deposit savings had a certain degree of

inhibition on neighboring areas. Different from the per capita

disposable income, the increase of residents’ deposit savings

indicated the decline of residents’ consumption ability, and

the residents’ enthusiasm for purchasing or consuming in

other places was reduced when the local living conditions

were met; this reduced the pace of the real estate market in

nearby areas to a certain extent, thus playing a role in curbing the

rise of residential land prices.

4.3 Spatial association network analysis

4.3.1 Characteristics of individual network
structure

After decomposing the spatial effect of the residential land

price, it was found that the counties were connected through a

number of influencing factors. This expanded the linkage in the

residential land price among different counties and formed a

closely related spatial network. Counties differed in geographical

location, economic level, and resource conditions, and they

played different roles in the allocation of land resources over

the entire region.

Counties with a high degree centrality had a strong radiation

and guidance role in the spatial network owing to their

advantages of location and development level. These counties

could achieve coordination and interaction with other county

nodes and easily attract the inflow of economic and resource

factors from surrounding counties. The inflow of economic and

resource elements from the surrounding counties showed the

Matthew effect of accumulated advantage. In 2013, the central

high-value counties were mainly distributed in the central urban

areas of Langfang, Shijiazhuang, and Baoding. Counties of

Langfang and Baoding made full use of resources from the

integration of Beijing-Tianjin-Hebei by virtue of its proximity

to Beijing and Tianjin and thus developed rapidly. Shijiazhuang,

as the capital of Hebei Province, played the role of “the third

pole” in the coordinated development of Beijing, Tianjin, and

Hebei. According to the data of China Land Price Information

Service Platform, in 2013 the residential land prices of Langfang,

Shijiazhuang and Baoding were 3059 yuan/m2, 2245 yuan/m2

and 2441 yuan/m2 respectively, prices that were among the top

cities in Hebei Province. Under the effect of price leverage, the

surrounding labor, capital, and other land production factors of

these three cities were concentrated in the center of the city. The

good scale efficiency had promoted them to form the economic

development pole and land price radiation center in Hebei

Province. With the in-depth implementation of the

coordinated development of Beijing, Tianjin, and Hebei,

Beijing’s industrial transfer had promoted the economic
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development and residential land prices of Cangzhou, Hengshui,

Xingtai and other cities in central Hebei Province. The data

showed that from 2013 to 2020, the GDP growth rates of

Cangzhou and Hengshui were 31.58% and 51.85%

respectively, and the residential land price growth rates were

9.12% and 9.62% respectively, both of which were in the forefront

of Hebei Province. The rapid economic growth had promoted the

development of the land market, and these two cities had

gradually formed a secondary radiation center of land prices

in central Hebei Province. From the perspective of the

distribution pattern of central high-value counties, the spatial

network structure of residential land price in Hebei Province had

gradually evolved from the decentralized central nodes

dominated by Langfang, Shijiazhuang, and Baoding central

areas in 2013 to a network-like central node group dominated

by Langfang, Shijiazhuang, Baoding, Cangzhou, and Hengshui

central areas in 2020. The change in the spatial network was

manifested in the conduction process starting from the central

city, a pattern that conformed to the central characteristics of the

ripple effect. Under the radiation of the above urban centers,

more counties had gradually played leading roles in the

residential land price spatial network. The peripheral cities of

Hebei Province lacked important central nodes in the network

structure, and there were distance barriers from important

central nodes. For example, Kangbao of Zhangjiakou, located

in the northern part of Hebei Province, was at the edge of the

spatial network, far from important economic centers, and it

lacked central city nodes to participate in the connection. It was

weakly driven by the radiation of cities with a high level of

development, and the speed of reflection and regulation of land

price information was slow.

The betweenness centrality of residential land prices in Hebei

Province also rose overall, and the connection between counties

was gradually smooth. Similar to the distribution pattern of

degree centrality, the counties with high betweenness

centrality were largely distributed in Shijiazhuang, Baoding,

and Langfang in 2013. These counties not only had a strong

ability to mobilize the land production factors of their own

counties in the network structure but also showed a strong

“bridge” role with high transmission capacity, becoming

important media driving the connection between counties. In

2020, the structure of the spatial network changed from a single

center with a scattered distribution to a multi-intermediary

center with a centralized distribution. Two secondary

intermediary centers of the network formed in Cangzhou

central urban area and Hengshui central urban area. From

2013 to 2020, the number of counties with betweenness

centrality above 300 increased from 7 to 14. More counties

played important roles in land price transmission. Land prices

between counties became more closely related. Superior

geographical location and convenient transportation provided

better conditions for the contact and cooperation between

counties and in the middle of Hebei Province. Influenced by

the Beijing Tianjin radiation, Langfang’s socio-economic and

land market changes were more sensitive, and it had become an

important city node to transmit Beijing radiation and guide land

price changes in Baoding and surrounding counties. Cangzhou

had the regional advantage of being close to Tianjin and had

become an important city node to transmit Tianjin’s radiation

and guide the land price of surrounding counties. As the city with

the strongest economic strength and the most mature land

market in Hengshui’s surrounding cities, Shijiazhuang

naturally became the most attractive city for Hengshui’s land

prices. The present study found that in the spatial connection

network structure of land prices in central Hebei, Shijiazhuang,

Hengshui, and Cangzhou, the three central node cities were

basically consistent with the Shijiazhuang-Hengshui-

Cangzhou-Huanghua port intercity railway station cities

currently planned and constructed in Hebei Province. This

indicated that the results were in line with the current

planning of the Chinese government on road network

construction and promoting the coordinated development of

Beijing-Tianjin-Hebei urban agglomeration industries.

4.3.2 Overall network structure characteristics
The spatial network density of residential land prices in the

counties and districts of Hebei Province slowly increased from

0.1614 in 2013 to 0.1663 in 2020. The overall network structure

had some weak connection characteristics, and there was still

room for improvement in the degree of spatial correlation. The

transmission role of node cities in the process of spatial network

development constantly increased. The number of network

associations increased to 4,665 in 2020, reaching a peak, and

the closeness of connections between cities was still improving.

The increase of network density value year by year benefited from

the evolution of land price multi-core structure. The spatial

correlation network of residential land price in Hebei

Province gradually evolved from the initial three core to five

core driven evolution, and the position of the five core growth

poles tended to be stable. In particular, the formation of

Cangzhou and Hengshui, two intermediary central nodes, had

gradually changed the relationship between counties in the

province from unbalanced to relatively balanced. This trend

was conducive to the full flow of land resource elements in

the network and the benign interaction between different nodes.

The increase in the number of network relations reflected the

stability and reconstruction of the overall network structure.

With the changes in the land market level, industrial

development, and policy mechanism of each city, Hebei

Province is likely to realize the new pattern of reconstruction

and optimization, and the spatial network connection and

interaction of residential land prices in the region may be

more frequent.

The distribution of subgroups had a strong correlation with

the geographical location and policy environment of each county.

The counties with similar geographical location and policy
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environment had frequent economic exchanges, and the

residential land markets had close exchanges and cooperation

that made it easier to combine into urban subgroups. Subgroup

1 was composed of Shijiazhuang and Hengshui counties, as well

as the southern counties of Baoding and Cangzhou. Subgroup

3 was composed of Zhangjiakou counties, including the counties

in the north of Baoding and Cangzhou and the counties in the

south of Langfang. Subgroups 1 and 3 occupied the core position

in the network. The land market environment of counties

included in these two subgroups was superior. They were not

only closely related internally but also displayed strong spillover

effects, and they had close external communication with other

subgroups. However, the close relationship between counties in

subgroup 1 was weaker than that in subgroup 3, and thus it was

necessary for subgroup 1 to accelerate its development and

promote the coordinated improvement of economic strength

and network status. Subgroup 2 was composed of Xingtai and

Handan counties and also included a few counties in the south of

Shijiazhuang and Hengshui. Subgroup 4 comprised Chengde,

Qinhuangdao, and Tangshan counties, including the counties in

the north of Langfang. Subgroups 2 and 4 played the role of edge

subgroups. Their internal structure was relatively loose, and their

interactions with other subgroups were insufficient, and thus the

network edge risk was high. On the one hand, the diffusion effect

of land factor marketization in Xingtai, Handan, Chengde,

Qinhuangdao, Tangshan, and other cities was weaker than its

siphon effect. On the other hand, these two subgroups lacked

important central nodes and were spatially separated from the

existing central nodes. Therefore, it was necessary to accelerate

the cultivation and construction of more growth poles in

subgroups 2 and 4, promote the orderly development of the

land market pattern of the residential land price spatial

correlation network in Hebei Province, and enhance the dual

driving role of the center and the network.

4.4 Advice

Accurately identifying the correlation characteristics of

urban residential land prices in the region will help improve

the pertinence of regulatory measures. According to the research

results, we put forward suggestions on regional land price

regulation measures from three aspects:

First, we should explore the market regulation policy of

differentiated residential land and build a city cluster with

coordinated land price development. In view of the

unbalanced development of residential land prices in Hebei

Province, the government should consider the economic

development status, functional positioning, leading industries,

and land price differences of each city and customize

development strategies for each city. For the central cities

(Langfang, Shijiazhuang, and Baoding) with rapidly rising

land prices, we can adjust and control the land demand by

rationally allocating new construction land, activating the use

of idle land, and optimizing the financial credit policy for

residential land to ensure the healthy and stable development

of the residential land market. For marginal cities (Chengde,

Zhangjiakou, Qinhuangdao, and Handan) and mountainous

counties where land prices are rising slowly, we should give

full play to the advantages of ecological resources, improve the

income level of residents by vigorously developing distinctive

economies, strengthen economic cooperation among counties by

improving transportation networks, and guide superior real

estate enterprises and high-end technical talents to settle in

through policies such as taxation, finance, and talent incentive

plans to realize the balanced development of residential land

prices in central cities.

Second, we should accelerate the optimization of residential

land price network structure and strengthen the role of the network.

On the one hand, we can further enhance the core leading function

of the leadership subgroups in the network and enhance its

radiation effect through the external transfer of the existing

central city land elements. Subgroup 1 and Subgroup 3 should

give play to their interconnection advantages and continue to build

Cangzhou and Hengshui as two intermediary centers, actively

playing the role of outward connection while undertaking

Beijing’s industrial transfer and driving the development of

marginal subgroups by establishing long-term cooperation

mechanisms such as talent exchange and industrial coordination.

On the other hand, edge subgroups should strengthen external

connections, focus on cultivating potential network centers, and

reduce network edge risks. Subgroup 2 focuses on cultivating

Xingtai as the intermediary center, creating a “Shijiazhuang-

Xingtai-Handan” connecting channel to radiate around the

counties; Subgroup 4 focuses on the construction and cultivation

of Tangshan as the intermediary center and creates a

“Qinhuangdao-Tangshan-Chengde” connecting channel to

radiate to surrounding counties. By creating more growth poles,

we will promote the orderly development of the network pattern

and the communication ability between subgroups.

Third, Hebei Province should not only promote the network

of the internal land market of the urban agglomeration but also

actively build the external network of coordinated development.

This province can play an important role in the national

important strategy of “Beijing-Tianjin-Hebei coordinated

development.” On the one hand, more dense transportation

lines should be built within Hebei Province, making it easier

to connect the weak areas with the core cities. We can try to make

the marginal cities such as Zhangjiakou, Chengde, Qinhuangdao,

Handan, Beijing, and Tianjin have greater contact. On the other

hand, we can accelerate the integration of the Beijing-Tianjin-

Hebei land factor market. In the process of formulating the land

space planning, the three areas of Beijing, Tianjin, and Hebei

should break the situation of separate administration to

organically connect the resources and guide reasonable

competition among the cities by perfecting the construction of
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the land price information network platform in order to realize

the coordinated and healthy development of the land market.

5 Conclusion

By exploring the spatial correlation effect of residential land

prices in counties of Hebei Province and the characteristics of

spatial network structure, this study reached the following

conclusions:

1) There was a significant spatial correlation effect of residential

land prices between counties in Hebei Province. First, the

regional residential land price level has significant global

spatial autocorrelation and local autocorrelation. High-

High clusters were mainly concentrated in cities around

Beijing and Tianjin and provincial capitals, while Low-Low

clusters were mostly distributed on the central and southern

Hebei. Second, the residential land price changes in adjacent

counties will produce interactive linkage, which is manifested

in the form of simultaneous increase and decrease. The

residents’ purchasing power, the socioeconomic level, and

the land resources have a significant impact on the residential

land price of the county itself, while the level of infrastructure,

and the policy environment have a significant impact on the

residential land price of neighboring counties.

2) The centrality of residential land price in central counties of

Hebei Province was generally high, and showed a trend of

agglomeration. The spatial network characteristics of

residential land prices were mainly manifested in the

conduction process starting from the central county, which

conformed to the centrality characteristics of the ripple

pattern. However, the peripheral cities of Hebei Province

lacked important central nodes in the network structure, and

the risk of land price development marginalization was high.

The betweenness centrality of residential land prices in

counties around Beijing and Tianjin and provincial capital

cities was generally high. The betweenness centrality of

counties had evolved into a multi-core structure. More and

more counties showed the role of “bridges” with transmission

characteristics, and the balance of the entire regional land

price network had been constantly improved.

3) The spatial network connection of residential land prices in the

counties of Hebei Province was weak, but the network density

was slowly increasing, and there was a large space to improve the

tightness of spatial connection. The counties in Hebei Province

can be divided into four subgroups, among which the residential

land prices of provincial capital cities and surrounding counties

(subgroup1), southernHebei counties (subgroup2), and counties

around Beijing and Tianjin (subgroup3) had a good interaction

relationship. The residential land prices of subgroup1 and

3 played an important role in conducting the spatial network,

while subgroup 2 and 4 had less interaction with other

subgroups. The government departments should implement

the integrated development strategy based on the overall

functional orientation of Hebei, the development foundation

and potential of each city, and realize the coordinated

development of the whole region.

Theremay be amajor limitations in this study. Due to the lack of

data, this study did not consider the two cities of Beijing and Tianjin,

and only focused onHebei Province. The higher land price level and

stronger economic radiation capacity in Beijing and Tianjin may

have an impact on the structure of residential land price network in

Hebei Province. The study in the Beijing-Tianjin-Hebei region may

make the conclusion more scientific and valid, which is also the

direction of the authors’ follow-up research.
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Influence of spatial scale on the
study of access fairness of urban
park green space

Shuna Xu* and Yinzhen Wang

College of Urban and Environmental Sciences, Xuchang University, Xuchang, Henan, China

Park green space is an important ecological factor of the urban built-up
environment, and it plays an increasingly important role in improving human
welfare and the quality of urban life. Accessibility analysis of urban park green
space is an issue of social equity and environmental justice that has received
widespread attention. The accessibility of a city’s park green space must be
evaluated under the correct scale and resolution before it can be applied to
urban green space planning. To measure the impact of different research scales
on accessibility, Weidu District of Xuchang City, Henan Province, China, was taken as
the experimental area. The Gaussian-based two-step floating catchment area
method was used to compare and analyze the accessibility differences under
three scales: subdistrict, community, and residential quarter. The influence of the
source and destination point modes on accessibility was analyzed at the residential
quarter scale. Results show that the accessibility of park green space at the subdistrict
scale is different from that at the community and residential quarter scales in terms of
spatial distribution characteristics and quantitative relationship. The accessibility of
the geometric centermode and the entrance and exit mode at the residential quarter
scale is similar in overall distribution and different in local quantity. Overall, the
accessibility of the park green space at the residential quarter scale under the
entrance and exit mode and the spatial fairness of visiting the park green space
are better than that under the geometric mode. Therefore, accessibility analysis of
park green space should be performed cautiously when taking the aggregation unit
as the basic research unit. The accessibility of the aggregation unit is not the
statistical summary of its subunits, especially when the area of the aggregation
unit is far larger than the walking range of residents, and is thus likely to lead to wrong
conclusions. Accessibility analysis should be conducted on the finest scale possible
rather than the aggregation scale and use true distance rather than the centroid-to-
centroid surrogate to obtain reliable results for further guiding urban green space
planning.

KEYWORDS

park green space, accessibility, spatial fairness, Gaussian-based two-step floating
catchment area method, urban green space planning

1 Introduction

The World Urban Report 2020 (Knudsen et al., 2020) shows through detailed
demonstration that urbanization will continue to be the driving force of global growth. In
the next 10 years, the proportion of the urban population in the global population will increase
from 56.2% at present to 60.4% in 2030. While providing convenience for people’s lives, high
urbanization also brings a series of environmental pressures, such as the urban heat island effect
and air pollution. Research shows that a causal relationship exists between the increase in lung
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cancer, cardiopulmonary disease, pediatric asthma, and urban air
pollution (Larondelle and Lauf, 2016). As an important ecological
factor of the urban built environment, park green space plays an
important role in improving human wellbeing and urban life quality
by improving the ecological environment, increasing sports activities
and social interaction within the neighborhood, and improving
people’s ability to participate in society (Hunter et al., 2019). Wang
and Lan (2019) showed that the quantity, quality, and accessibility
indicators of urban park green space have a significant negative
correlation with the incidence rate of cardiopathy, chronic
pneumonia, and hypertension. People often engage in outdoor
entertainment activities in the natural environment near their
residence, which can not only increase their health and happiness
but also help them cope better with work pressure, mental fatigue, and
depression (Buchecker and Degenhardt, 2015; Kondo et al., 2018;
Hunter et al., 2019; Wang and Lan, 2019). Therefore, by providing
accessible, attractive, well-maintained green spaces with room for
socialization and encouraging people to use it, urban green spaces
can effectively promote the physical and mental health of urban
residents (Hunter et al., 2015; Kruize et al., 2019).

However, providing adequate park green spaces is challenging
because housing, retail, and commercial developments, and transport
infrastructure are all competing for limited space (Hunter et al., 2019).
In most cases, park green spaces are not evenly distributed in the space
within the cities (You, 2016). Unfair access to park green space may
lead to environmental injustice, which can be accompanied by social
stratification and housing segregation (Xiao et al., 2019). Thus,
analyzing the spatial distribution characteristics of urban park
green space accessibility is of great significance in promoting the
fair and reasonable layout of urban park green space and improving
the overall happiness of urban residents. Access to park green space is
referred to as “accessibility,” which is a key factor that affects the
selection and use frequency of park green space (Žlender and Ward
Thompson, 2016; Agimass et al., 2018; Mears et al., 2019; Tardieu and
Tuffery, 2019; Zhang and Tan, 2019; Tu et al., 2020). Two kinds of
accessibility measure methods exist. Place-based accessibility
measures examine the proximity to desired activity locations from
key locations in an individual’s daily life, such as the home or
workplace. People-based accessibility measures rely on detailed
observations of an individual’s activity schedule and space-time
constraints (Neutens et al., 2010). Place-based accessibility is
affected by the size and location of residential and recreational
areas, the road network between them, and the mode of travel.
Two main methods can be used for early place-based accessibility
analysis: the travel cost and gravity model methods. The travel cost
method determines the nearest park green space from the residential
area according to the principle of minimum cost (distance, time, and
money) (e.g., Ala-Hulkko et al., 2016; Wüstemann et al., 2017).
Information such as the number of people living in the area and
the scale of the park green space is not considered. The gravity model
method assumes that spatial interaction decreases with the increase in
the spatial distance between the residence and the destination. The
gravity model is used to measure the attraction of each park green
space to a certain residence and adds these attractions to obtain the
accessibility of the park green space of the residence (e.g., Lee and
Hong, 2013; Xiao et al., 2017). This method considers the distance
between residence and park green space, number, and scale of the park
green space. However, the influence of the size of the resident
population is ignored. In view of the shortcomings of the above

two methods, the two-step floating catchment area method (Radke
and Mu, 2000), its improved version (the enhanced two-step floating
catchment area method; Luo and Qi, 2009), and the Gaussian-based
two-step floating catchment area method (Dai, 2011) have been
increasingly used in the accessibility analysis of park green space
(e.g., Shen et al., 2017; Wei, 2017; Li et al., 2019). The two-step floating
catchment area method calculates the ease with which each resident
can reach the park green space according to the population of the
residence and the area of the park green space and their spatial
distribution characteristics and path distances.

At present, place-based accessibility analysis of park green space is
mostly based on administrative division units (e.g., You, 2016; Shen
et al., 2017; Wei, 2017; Li et al., 2019; Wang and Lan, 2019; Hu et al.,
2020; Shi et al., 2020; Zhang et al., 2022) or grid units (e.g., Ala-Hulkko
et al., 2016; Xing et al., 2018; Guo et al., 2019; Shi et al., 2020) to analyze
the spatial distribution characteristics, time-varying characteristics,
and the correlation between accessibility and population, and
socioeconomic indicators, and then analyze the spatial and social
fairness of the urban green space distribution. These methods take the
geometric center of the aggregation area as the source point and the
geometric center of the park green space as the destination point to
calculate the accessibility of the park green space of each research unit
at a specific spatial scale. Spatial aggregation can affect the results of
accessibility analysis (Miller, 2016). A major difference exists between
the source and destination points here, and the actual origins and
destinations of travelers in reality, bringing great uncertainty to the
final accessibility results. Ahuja et al. (2021) pointed out the problem
of mismatch between zone and movement scales in place-based
accessibility analysis. This type of research is lacking in operability
to guide the practice of urban green space planning (Liu et al., 2020).
Tan and Samsudin (2017) studied the scale effect of the spatial fairness
of urban park green space and found that the unfairness at the small
scale was more intense than that at the large scale. They also
emphasized the need to guide urban park planning at the
neighborhood scale.

What impact will different research scales have on the accessibility
analysis of urban park green space, and would different location
selection methods of source and destination points have a
significant impact on the accessibility results? In view of this
problem, this paper takes Weidu District of Xuchang City as the
experimental area and analyzes the spatial distribution characteristics
of urban park green space accessibility and their relationship at three
scales, namely, subdistrict (the fourth-level administrative division in
China), community (the fifth-level administrative division in China),
and residential quarter (the most basic population gathering area in
the city). In China, the first two administrative division scales are
frequently used as basic units for the accessibility analysis of urban
park green space. A subdistrict consists of several communities, while
a community consists of several residential quarters. At the residential
quarter scale, the differences and relations between the two modes of
accessibility are compared and analyzed, with one taking the
geometric centers of the residential quarter and the park green
space as the source and destination points (geometric center
mode), and the other taking the entrance and exit of the two as
the source and destination points (entrance and exit mode). The
possible problems in the analysis of different research scales and
accessibility modes are summarized to determine the research scale
and method suitable for guiding the practice of urban green space
planning.
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2 Method and material

2.1 Method

2.1.1 Accessibility model
The accessibility model is used to analyze the access of residents to

the park green space (accessibility). On the basis of the spatial location,
scale, and road network of the park green space and the residence area,
the Gaussian-based two-step floating catchment area method (Dai,
2011) is used to calculate the accessibility of each residence. The
process is divided into two steps.

In the first step, for each park green space j, path distance
threshold d0 is given to form its spatial service range. For the
population of each residence place k falling within its service
range, the Gaussian equation is used to assign the corresponding
weight according to the distance from the park green space. Then,
the weighted sum is derived to obtain the potential users of park
green space j. Next, the size of the green space is divided by the
number of potential users to obtain supply and demand ratio Rj

(m2/person).

Rj � Sj∑k∈ dkj ≤ d0{ }G dkj, d0( )Pk

(1)

where Pk is the population of residence place kwithin the service scope
of green park j (dkj ≤ d0); dkj is the distance from the geometric center
(or entrance) of residence place k to the geometric center (or entrance)
of park green space j; Sj is the scale of park green space j, which is
expressed by the area; and G(dkj, d0) is a Gaussian equation that
considers the space friction problem. The calculation method is shown
in Eq. 2.

G dkj, d0( ) � e−
1
2( )× dkj

d0
( )2

− e−
1
2( )

1 − e−
1
2( ) , if dkj ≤ d0

0, if dkj > d0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

In the second step, for each residence place i, given path distance
threshold d0, the reachable range is formed. Similarly, the supply ratio
(Rl) of each park green space l within the reachable range is weighted
by the Gaussian equation. Then, the weighted sum of these supply
ratios is used to obtain the park green space accessibility (Ai) for each
residence place i. The size of Ai indicates the per capita occupancy of
the urban park green space in each residence place within its reach,
given in m2/person.

Ai � ∑
l∈ dil ≤ d0{ }G dil, d0( )Rl (3)

where l refers to all the park green spaces within the accessible
space of residence place i (dil ≤ d0). Considering that the
recreational activities of the residents who visit the park green
space are mainly walking and cycling, distance threshold d0 is set
to 1,000 m, that is, approximately 10–15 min’ walk. This threshold
is determined for two reasons. First, 1,000 m (or 10–15 min) is an
acceptable walking distance for residents to visit the park green
space (You, 2016; Žlender and Ward Thompson, 2016; Guo et al.,
2019; Nesbitt et al., 2019; Tu et al., 2020). In addition, the
Gaussian-based two-step floating catchment area method itself
accounts for the travel friction effect. Thus, a longer distance
threshold can reduce the number of residential areas that have
zero accessibility.

2.1.2 Location of source and destination points
In the accessibility analysis of urban park green space, given that the

residence place and the park green space are both polygons, the points
that can represent them must be taken as the source (starting) and
destination (end) points, respectively. In this study, twomethods are used
to select the source and destination points. First, the geometric centers of
the subdistrict, community, and residential quarter areas are used as the
source points and the geometric centers of the park green space are used
as the destination points. Then, the distance between the source and
destination points is the path distance between the two geometric centers
(geometric center mode). Second, at the residential quarter scale, the
entrance and exit positions are used as the source points, and the entrance
and exit positions of the park green space are used as the destination
points. Urban residential quarters are mainly closed, with one or more
gates as entrances and exits. Some open urban villages have no gates.
Thus, one or more intersections of urban roads with the main road
through urban villages are selected as entrances and exits. Parks are also
divided into two categories: closed walled parks with their gates as exits,
and open park green space without enclosures, with the first place along
each road from each direction to it serving as the entrances. Given that the
residential quarter and the park green space may have more than one
entrance and exit, multiple paths from the residential quarter to the park
green space may exist. According to the principle of the best path, the
shortest path distance is selected as the distance between the residential
quarter and the park green space (entrance and exit mode), as shown in
Figure 1.

2.2 Material

2.2.1 Experimental area
Weidu District of Xuchang City, located in the middle of Henan

Province has a long history. The district is an important birthplace of
Chinese culture and has a beautiful environment. Weidu is known as

FIGURE 1
Schematic of the distance between residential quarter and park
green space in entrance and exit mode.
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the “National Ecological Garden City,” which is the highest
comprehensive award in the field of urban construction in China.
The district now has 16 subdistricts (including one economic and
technological development zone) with a total area of 97 km2. In 2020,
the permanent resident population was 598,600, and the gross
domestic product is CNY 42.11 billion (Chen and Cui, 2021).

Weidu District belongs to the warm temperate monsoon zone
with a mild climate. The annual average temperature is 14.7°C, the
number of hours of sunshine is 2,280 h, the annual precipitation is
579 mm, and the frost-free period is 217 days. The district is located
in the hinterland of the Central Plains, which has a flat terrain. The
terrain inclines from northwest to southeast. In the west are gentle
low hills with alluvial deposits in front of mountains, with the
highest elevation of 95 m. The rest of the area is part of the
Huanghuai alluvial plain, with the lowest elevation of 65 m. The
river is part of the Yinghe River system of the Huaihe River Basin
(Weidu District government, 2020).

Weidu District has 115 park and green spaces within 1 km,
covering a total area of about 1,179 ha and mainly composed of
riverside parks and leisure squares. In recent years, Xuchang City
has implemented the river lake water system connection project in the
central urban area. The newly built urban park green spaces are
arranged along the water system, forming a connected open green
leisure space without walls, as shown in Figure 2.

2.2.2 Data sources
The data sources include subdistrict boundaries, community

boundaries, the spatial distribution data of residential quarters, the
population of residential quarters, urban road networks, and park
green spaces. The subdistrict boundary data were obtained from the
Yearbook of Weidu District, People’s Government of Weidu District
Xuchang City, 2018. The community boundary data mainly came
from the subdistrict-by-subdistrict field survey and some from the
Xuchang Natural Resources and Planning Bureau. The spatial

distribution data of residential quarters, urban road networks, and
park green spaces were obtained from QuickBird images (.5 m
panchromatic image and 2 m multispectral image) of the study
area in 2014, and an unmanned aerial vehicle was used to update
the data of the urban fringe to the end of 2020. Given the difficulty of
obtaining the population data of the residential quarter scale in the
study area, the number of residential buildings is used to replace the
population. The number of residential buildings is obtained from three
sources: the real estate service platform HomeLink (https://xc.lianjia.
com/), the planning permission document of the Xuchang Natural
Resources and Planning Bureau (http://zrzyhghj.xuchang.gov.cn/),
and field surveys. The total number of residential buildings in the
subdistrict and community levels is obtained through zonal statistics
(Xu et al., 2017). Therefore, the result of this study is the accessibility
situation of park green space when the occupancy rate reaches 100%.
In addition, to avoid the boundary effect, we buffered the study area
outward by 1 km during data processing. Accessibility analysis is
implemented using ArcGIS10.7 and MATLAB R2015a.

3 Results

3.1 Accessibility difference under different
research scales

The accessibility of the park green space at the subdistrict,
community, and residential quarter scales is shown in Figures
3A–C, respectively. The source points are the geometric centers of
the subdistrict, community, and residential quarter areas, and the
destination points are the geometric centers of the park green space.
The statistics of accessibility at different scales are shown in Table 1.

From the spatial distribution perspective, the subdistrict scale
shows completely different characteristics from the other two
scales. At the subdistrict scale, the accessibility of park green space
is slightly higher in the east-west central region than in the other
regions and low in the south and north regions. At the community and
residential quarter scales, the distribution characteristics are similar,
that is, the accessibility in the east and midwest regions is higher than
that in the other regions.

From the quantitative relationship among different scales, the
accessibility on the subdistrict scale is generally low. The accessibility
in 5 of the 16 subdistricts is 0, indicating that residents in these
5 subdistricts have no park green space to visit within the 1,000 m
distance threshold, the average value is 5.59 m2/household, and the
median value is only 1.73 m2/household. The accessibility at the
subdistrict scale cannot reflect the comprehensive situation of the
communities and residential quarters under its jurisdiction. For
example, the accessibility of Gaoqiaoying subdistrict in the north is
0; among the six communities under its jurisdiction, the accessibility of
the Banqiao community is as high as 1745.30 m2/household and that
of the Daluozhuang community is as high as 694.85 m2/household,
respectively, ranking first and second in accessibility at the community
scale. The accessibility of Weibei subdistrict in the northeast is 0;
among the five communities under its jurisdiction, the accessibility of
the Guolou community is 566.24 m2/household, and that of the Jinwan
and Wangzhuang communities are 59.98 and 15.09 m2/household,
respectively. The accessibility of Banjiehe subdistrict in the southeast is
0, but at the community scale, 14 of the 19 communities under its
jurisdiction are far greater than 0. The accessibility of Beida subdistrict

FIGURE 2
Distribution of subdistrict, community, and residential quarter and
parks in the study area.
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in the center of the study area is 0, but the accessibility of 4 of the
6 communities under its jurisdiction are greater than 0.

To compare the relationship of accessibility between different
scales in a statistical sense, the subdistrict and community scale
accessibilities summarized by the residential quarter are obtained
by weighted averaging the accessibility at the residential quarter
scale according to the population (number of households).
Weighted averaging the accessibility at the community scale
according to the population (number of households) obtains the

overall subdistrict scale accessibility of the community. The
Spearman’s correlation coefficient between original accessibility and
aggregate accessibility at the subdistrict and community scales is
shown in Table 2. No significant correlation exists between the
accessibility at the subdistrict scale and the two kinds of
accessibility obtained by the weighted aggregation of the
communities and the residential quarters, respectively. However, a
significant correlation exists between the latter two, indicating a
significant difference between the accessibility at the subdistrict

FIGURE 3
Figures (A–C) show the accessibility of the park green space at the subdistrict, community, and residential quarter scales under the geometric center
mode. Figure (D) shows the accessibility at the residential quarter scale under the entrance and exit mode.

TABLE 1 Accessibility statistics under different research scales (m2/household).

Level Minimum Maximum Mean Median Standard deviation

Statistics

Subdistrict 0 32.31 5.59 1.73 8.52

Community 0 1745.3 50.95 6.29 187.22

Residential quarter (geometry centers) 0 1624.3 17.36 4.41 72.12

Residential quarter (entrance and exits) 0 1326.7 17.04 6.84 55.49
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scale and the community and residential quarter scales. The latter two
have similar spatial distribution characteristics, which is also
confirmed by the significant correlation between the accessibility at
the community scale and the accessibility summarized by the
residential quarters.

3.2 Accessibility difference of different source
and destination points under the same
research scale

The accessibility at the residential quarter scale is presented in
Figure 3C, which shows that the geometric centers of the residential
area and the park green space are taken as the source and destination
points (geometric center mode), respectively. Figure 3D shows the
entrances and exits of the residential quarter and the park green space
as the source and destination points (entrance and exit mode),
respectively.

From the spatial distribution perspective, overall similarities and
local differences between the two accessibility modes can be observed.
Overall, the south-central regions have poor accessibility, whereas the
surrounding residential areas have good accessibility. This rule is
obvious in the entrance and exit mode. Locally, the former has more
residential quarters with poor accessibility than the latter. For
example, the residential quarters with poor accessibility distributed
at the edge of the study area shown in Figure 3C correspond to the
high accessibility shown in Figure 3D).

From the statistical relationship between the two modes, the
Spearman’s correlation coefficient is .730 (p = .000, n = 1,318),
indicating a significant sequential correlation between the two
modes and confirming their overall similar characteristics. The
hierarchical statistical diagram of accessibility under the two modes
is shown in Figure 4. Under the geometric center mode, many
residential quarters have very low and high accessibility values, and
the accessibility among different residential quarters changes greatly,
indicating the poor spatial fairness of the park green space. However,

TABLE 2 Spearman’s correlation coefficient (p-value) between accessibility at subdistrict and community scales, and the corresponding weighted summary results.

Accessibility Accessibility summarized by
communities

Accessibility summarized by
residential quarters

Subdistrict scale
(n = 16)

Accessibility .167 (.536) −0.015 (.956)

Accessibility summarized by
communities

0.647** (.007)

Accessibility summarized by
residential quarters

Community scale
(n = 123)

Accessibility Accessibility summarized by residential
quarters

Accessibility 0.618** (.000)

Accessibility summarized by
residential quarters

**The correlation is significant at the .01 level (double tailed)

FIGURE 4
Statistical chart of two accessibility levels at the scale of residential area.
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in the entrance and exit mode, few residential quarters have very low
or very high accessibility values, while many residential quarters have
medium accessibility, and the accessibility changes are small, that is,
the spatial fairness of park green space access is good. This finding can
also be confirmed from Table 1.

To sum up, in addition to the overall similarity, the two
accessibility modes also have the following differences: 1) In the
geometric center mode, the accessibility of 236 residential quarters
is 0, indicating that they have no park green space to access within the
1 km distance threshold. In the entrance and exit mode, the number of
residential quarters with accessibility of 0 is reduced to 100. 2) In the
entrance and exit mode, the accessibility of 720 residential quarters is
greater than that of the geometric center mode, that of 498 residential
quarters is less than that of the geometric center mode, and the
accessibility of 100 residential quarters is unchanged (0 in both
modes). 3) Under the entrance and exit mode, the accessibility
difference between residential quarters is small, indicating that the
fairness of accessing the park green space is good, while the
accessibility difference between residential quarters under the
geometric center mode is large, which corresponds to strong spatial
unfairness.

4 Discussion

4.1 Analysis of the influence of research scale
on accessibility

Accessibility reflects the utilization possibilities of the park green
space from a population perspective (Ala-Hulkko et al., 2016). In the
Gaussian-based two-step floating catchment area method, the factors
that affect the accessibility of urban park green space mainly include
the number and spatial distribution of population, the number and
spatial distribution of park green spaces, and the road network. The
space range of the park green space is unchanged, while the population
aggregation can be based on different scales. The impact of scale on
accessibility is mainly manifested in two aspects: One is the scale effect
caused by different levels of population spatial aggregation, and the
other is the distance error between the residential area and the park
green space. Spatial aggregation can affect the results of an accessibility
analysis, with the results varying simply by changing the level of spatial
aggregation (Miller, 2016). This is known as the scale effect in the
modifiable areal unit problem. This study compares the accessibility
results of the park green space under three spatial scales. The
residential quarter is the most basic population gathering area of
the city, while the community and subdistrict are the aggregation-level
units. The population area and the park green space show a discrete or
adjacent polygon distribution in space. In each polygon, the points
that can represent the location of the population gathering area and
the park green space are selected as the source and destination points
in the accessibility analysis. No real starting point exists in the
population aggregation-level units; it is often replaced by its
geometric center. The area of the research unit affects the
accessibility, and the uncertainty increases with the area. The
accessibility on the subdistrict scale in the study area is generally
low, which is different from the other two scales. The accessibility of
5 subdistricts is 0. One of the most important factors is that the area of
the study unit is extremely large. The smallest subdistrict area spans
1.18 km2, the largest subdistrict area is 12.53 km2, and the average

value is 5.72 km2. When the subdistrict area is more than 4 km2 and
the path distance threshold is set to 1 km, the subdistrict has difficulty
accessing the park green space outside its jurisdiction. The park inside
the subdistrict must also be arranged near the geometric center point.
And the road network has to be smooth. Otherwise, the subdistrict has
no park green space to access, such as Gaoqiaoying subdistrict. Weibei
subdistrict and the economic and technological development zone
have many park green spaces. However, because they are far away
from the geometric center and/or have a poor road network, their park
green space accessibility is 0. Therefore, smaller zones or
“homogeneous zones” are preferred in accessibility analysis (Riva
et al., 2009; Ahuja et al., 2021). In our research, the residential
quarter is the smallest and relatively homogeneous research unit
because the house price and residents’ socioeconomic
characteristics of the same residential quarter are relatively similar.

When the geometric centers are used as the source and destination
points, the geometric center is connected to the nearest road when
calculating the path distance between the source and destination
points, with the vertical intersection between them taken as the
starting and end points. The geometric centers of the polygons are
affected by their location, shape, and area. Without changing the
number and distribution of the population, changing the shape of the
population gathering area and its aggregation unit is likely to change
the position of its geometric center. The distributions of the
population in urban space and the urban road network are uneven.
There is a certain randomness in terms of which road the geometric
center is closest to. Moreover, given that the acceptable path distance
for walking to the park green space is mostly within 1 km, the error of
this path distance is sufficient to bring uncertainty to the accessibility
analysis results. Therefore, using true distance between zones rather
than the centroid-to-centroid surrogate can reduce the impact of scale
on accessibility calculation (Miller, 2016). However, as communities
and subdistrict are population aggregation units, there is no real
starting point, and distance error is inevitable. On the scale of
residential quarters, they have real starting points (gates), and the
distance error can be avoided.

4.2 Analysis of the influence of the location of
source point and destination point on
accessibility

The location of different source and destination points affects the
accessibility by affecting the path distance between them. Place-based
accessibility measures depend strongly on how distance is measured
(Ahuja et al., 2021). In particular, the activities of visiting park and
green space by walking in cities are highly sensitive to distance (Grahn
et al., 2003). In the same research scale, the path distances between
different source and destination points also vary, resulting in different
accessibility results. In the geometric center mode, the system is
associated with the geometric center with the nearest road and
takes the vertical intersection of the geometric center and the
nearest road as the starting and end points. The starting and end
points are often not the location of the entrance and the exit.
Therefore, certain differences in the distance between the two paths
exist, thereby affecting the final accessibility. The distance difference
between the two paths is also affected by the area of the residential
quarter. Given that the area of the residential quarter is generally small
relative to the distance threshold (the average value is .02 km2), a
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significant correlation exists between the accessibility under the two
different source and destination point modes, and the spatial
distribution characteristics of the accessibility are similar, but
significant differences in local areas exist. The main reasons are as
follows.

First, the geometric center mode will lead to the error of the path
distance between the residential quarter and the park green space.
Usually, the residential quarter and the park green space have more
than one entrance and exit. Open and fenceless park green spaces have
even more entrances and exits. Thus, multiple paths are available from
the residential quarter to the park green space. According to the
principle that human activities always tend to select the spatial
location with the best effect according to certain goals, one of the
shortest routes is selected as the path distance between the two.
Therefore, the distance between the residential quarter and the
park green space in the entrance and exit mode is usually shorter
than that in the geometric center mode. As a result, the accessibility of
most residential areas in the entrance and exit mode is higher than that
in the geometric center mode. However, some residential quarters in
the entrance and exit mode are less accessible than those in the
geometric center mode. The main reason for this condition is that
under a certain distance threshold (1 km here), many residential
quarters can access the park green space under the entrance and

exit mode (the number of residential communities with accessibility of
0 under the entrance and exit mode is greatly reduced), resulting in the
increased service population of the corresponding park green space.
Accordingly, the accessibility of the residential quarter that is near the
park green space with a very high accessibility is reduced. The
residential quarter with constant accessibility (equal to 0) is far
from the park green space, and the path distance under both
modes is greater than the distance threshold.

Second, in some special but not unusual cases, the geometric
center mode will lead to the path distance mistake, and the final
accessibility result is far from the actual situation. For example, the
seven residential communities in the southeast of the Banjiehe
subdistrict (yellow polygon in Figure 5A) are very near the park
green space, but their accessibility is 0 under the geometric center
mode, which obviously does not conform to the actual situation. The
main reason for this phenomenon is that the geometric center of the
park green space is near the road on the west side, so the end point is
located on its west road. When the residents in the residential quarter
located in the east of the park want to visit the park, they must go
around the end point on the west side, thereby greatly increasing the
path distance. When the path distance exceeds the threshold of 1 km,
the accessibility of the residential quarter is 0, as shown in Figure 5C.
In the entrance and exit mode, the entrance and the exit are located on

FIGURE 5
Figures (A, C) show the pathdistance between residential quarter and park green space under geometric center mode. Figures (B, D) show the path
distance between them in the entrance and exit mode.
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the road, and the above problems do not exist (Figure 5B). The
residential quarter in the figure has one entrance and exit, and the
open park green space without walls has multiple entrances and exits.
After calculation, the path distance from the entrance and exit of the
residential quarter to the five entrances and exits of the park is less
than 1 km, and the shortest one is taken as the path distance between
the two (Figure 5D). Therefore, the accessibility of these seven
residential areas in the entrance and exit mode is greater than 0,
which is in line with the reality.

4.3 Enlightenment to urban green space
planning

In view of the accessibility of park green space and the resulting
spatial fairness, different conclusions may be obtained under different
research scales. Therefore, the following three ideas are proposed for
urban green space planning.

First, the evaluation and planning of urban green space should be
conducted at a suitable scale. Activities such as visiting parks and green
space are considered ecosystem cultural services. The assessment of
urban ecosystem services under the correct scale and resolution is the
premise of the application to urban planning practice (Cortinovis and
Geneletti, 2018). Assessing under an inappropriate scale may even
have a negative impact (Larondelle and Lauf., 2016). For recreational
activities that involve walking as the main travel mode, the activity
range is relatively small. When the basic research unit is far larger than
the activity range, the risk of drawing a wrong conclusion is great. For
example, the accessibility of the park green space calculated at the
subdistrict scale in this study is far lower than that in the actual
situation. The spatial distribution characteristics of the accessibility
obtained at the community scale and the residential quarter scale are
similar, but significant differences in numerical values exist. Therefore,
the larger aggregation unit is unsuitable for the basic unit of
accessibility analysis. The smaller aggregation unit can be used to
analyze the overall characteristics of accessibility distribution, but the
value will have certain errors. Therefore, a better approach would be to
undertake accessibility analysis at the finest possible spatial scales
(Mears et al., 2019). All kinds of life behaviors of urban residents are
carried out around the residential quarters. Accordingly, the
accessibility of park green space must be analyzed and urban green
space planning must be guided by taking the residential quarter as the
basic unit.

Second, the evaluation and planning of urban green space should
not ignore the impact of details. A better approach would be to use the
true distance between zones rather than the centroid-to-centroid
surrogate (Miller, 2016). To our knowledge, place-based
accessibility analysis is mostly based on the spatial aggregation
level: administrative division units (e.g., You, 2016; Shen et al.,
2017; Wei, 2017; Li et al., 2019; Wang and Lan, 2019; Hu et al.,
2020; Shi et al., 2020; Zhang et al., 2022) or grid units (e.g., Ala-Hulkko
et al., 2016; Xing et al., 2018; Guo et al., 2019; Shi et al., 2020), on which
scale centroid-to-centroid surrogate is inevitable. When evaluating the
accessibility of park green space and the fairness of its spatial
distribution under the residential quarter scale, two different
accessibility modes will lead to the difference in the path distance
between the residential quarter and the park green space. This
difference often increases with the area of the residential quarter
and the park green space, thus increasing the difference in accessibility.

In some cases, the accessibility results under the two modes are
different. The accessibility difference between residential quarters
under the geometric center mode is relatively large, corresponding
to the relatively high spatial unfairness of accessing park green space,
while the accessibility difference between residential quarters under
the entrance and exit mode is relatively small, corresponding to a
relatively low spatial unfairness of accessing park green space. For
recreational activities that require people to reach the green space for
experiential interaction to benefit, the consistency of the source and
destination points with the reality will directly affect the scientificity
and accuracy of the evaluation results and further affect the
subsequent green space planning and optimization. For example, in
the geometric center mode, the real situation of some residential
quarters with low accessibility or even 0 is not the case but is caused by
the calculation mode. Therefore, taking the entrance and exit of the
residential quarter and the park green space as the source and
destination points conforms to the daily activities of the residents.
Without changing the existing population and the distribution status
of the park green space, the accessibility of the park green space can be
improved by optimizing the entrance and exit positions of the
residential quarter and the park green space. For residential
quarters with limited access to park green space, the park green
space can be visited by increasing the entrance and exit of
residential quarters, increasing the entrance and exit of park green
space, or changing the closed park green space into an open one.

Third, the conclusions on the fairness of people with different
social and economic backgrounds visiting the park green space
obtained by taking the aggregation area as the research unit should
be treated with caution. The accessibility analysis results are often
further related to the population, social economy, and other factors in
the study area, influencing the conclusion as to whether the access
enjoyed by people with different social and economic backgrounds to
the park green space is unfair. When this activity is performed on the
aggregation area, the conclusions are often uncertain because the
accessibility of the aggregation area is not obtained through simple
summary statistics of the sub-areas, such as the population and other
factors. Shen et al. (2017) analyzed the correlation between the
accessibility of public green space and socioeconomic factors in
downtown Shanghai on the basis of the subdistrict scale. The
results show that the accessibility of public green spaces is related
to social status and family composition. Married couples who have
children have high accessibility, whereas the elderly and the
unemployed population have low accessibility. However, Xiao et al.
(2017) conducted a study based on the community scale in the same
research area and found that the low-income groups in Shanghai are
not at a disadvantage in terms of entering urban parks. In addition to
the research scales, the two studies adopted different accessibility
methods and indicators of social and economic factors.

4.4 Limitations and prospects

The first limitation of this study is the determination of distance
threshold. At present, the distance threshold values that were used
include 300 m (Schipperijn et al., 2010a; Mears et al., 2019), 400 m
(Tan and Samsudin, 2017; Wei, 2017), 500 m (Wüstemann et al.,
2017), 600 m (Schipperijn et al., 2010b), 800 m (Wei, 2017), 1,000 m
(You, 2016; Nesbitt et al., 2019; Tu et al., 2020), 1,200 m (Shen et al.,
2017), 1,600 m (Xiao et al., 2017), or 10–20 min’ walking distance
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(Guo et al., 2019) and 15 min’ walking distance (Žlender and Ward
Thompson, 2016). Given that the Gaussian-based two-step floating
catchment area method itself accounts for the travel friction effect and
a longer distance threshold can reduce the number of residential areas
with zero accessibility, a distance threshold of 1 km was determined in
this study. Because of the space limitation, this study did not compare
the impact of scale on accessibility under other distance thresholds.
From the results of this study, we can infer that the influence of scale
on accessibility increases with the decrease in the distance threshold.
In addition, although not the focus of this study, given the difficulty of
obtaining the permanent population data of each residential quarter in
this study, the number of building households is used to replace the
number of population, that is, with the assumption that the occupancy
rate of each residential quarter is 100% and each household has the
same population, the final accessibility results may have a certain
deviation. Finally, this feature is also a common disadvantage of all
place-based accessibility measures that assume that the residential area
is the most relevant area that affects residents’ behavior, thus facing the
well-known problem of ecological fallacy, which involves erroneously
ascribing attributes of an aggregate unit to individuals (Kwan and
Hong, 2009). With the development of location-aware technologies,
people-based accessibility research is no longer difficult. Place-based
measures should be enhanced and complemented with people-based
measures that are more sensitive to individual activity patterns and
accessibility in space and time (Miller, 2016).

5 Conclusion

Accessibility analysis is one of the important methods of testing
the rationality and fairness of spatial distribution and an important
reference for the optimization of urban park green spaces. This
analysis is the premise of application to urban green space
planning to evaluate the accessibility of a city’s park green space
under the correct scale and resolution. To measure the impact of
research scale on accessibility, on the basis of the Gaussian-based two-
step floating catchment area method, this paper compares and
analyzes the accessibility characteristics of urban park green space
under three spatial scales, namely, the subdistrict, community, and
residential quarter scales, under the 1 km walking distance threshold
in the research area. The influence of the two source and destination
points modes on accessibility is analyzed at the residential quarter
scale. The following conclusions can be drawn from the analysis:

(1) Accessibility analysis of park green space should be performed
cautiously when the aggregation unit is taken as the basic research
unit. The accessibility of the aggregation unit is not the statistical
summary of its subunits, especially when the area of the
aggregation unit is generally larger than the walking range of
residents, and is thus likely to lead to wrong conclusions. In
accessibility analysis, two types of polygon (i.e., population
aggregation unit and park green space) must be abstracted into
two types of points (i.e., source and destination points). A large
area of the polygon corresponds to less representativeness of the
points and to greater uncertainty.

(2) When the finest urban population gathering area (residential
quarter here) is taken as the research unit, the consistency of
the source and destination points with the reality will directly

affect the scientificity and accuracy of the evaluation results. The
accessibility values of the two different source and destination
point modes in the study area are similar in overall distribution
and different in local quantity. Overall, the accessibility of the park
green space in the residential quarter under the entrance and exit
mode is better than that under the geometric mode, and the
accessibility difference between the residential quarters is small,
that is, the spatial fairness of visiting the park green space is good.
The main reason for this finding is that under the entrance and
exit mode, residential quarters and parks often have more than
one entrance and exit, so residents have multiple paths to choose
from. In some cases, the geometric center mode will cause the path
distance to be completely inconsistent with the reality, resulting in
incorrect accessibility results.

(3) Place-based accessibility analysis should be conducted on the
finest scale possible rather than the aggregation scale.
Moreover, a better approach is to use true distance rather than
the centroid-to-centroid surrogate between the source and
destination points. Only when the research scale and distance
measure match the daily travel of residents in reality can reliable
accessibility be obtained, which is also an important prerequisite
for further guiding urban green space planning.
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The nighttime lights accurately and coherently depict how humans live. This study
uses nighttime light measurements to quantify changes in nighttime lighting and
refugee population in Ukraine before and after the war. We combined the Theil–Sen
estimator with the M-K test to explore the trends of nighttime light. In addition, we
constructed a linear model using nighttime light data and a portion of the UNHCR
refugee data. Our results reveal that 1 week after the start of the Russo-Ukrainian
War, the nighttime light area and the average nighttime light DN value in Ukraine
exhibited a steep decline of about 50 percent. Our findings showed taht refugee
population changes calculated throughmodels and nighttime light data weremostly
consistent with UNHCR data. We thought that the nighttime light data might be used
directly to dynamically estimate changes in the refugee movement throughout the
war. Nighttime light changes has significant implications for international
humanitarian assistance and post-war reconstruction.

KEYWORDS

nighttime lights, Russian–Ukrainian War, refugee population, mapping, spatio–temporal

1 Introduction

The Russian–Ukrainian War is one of the worst conflicts of the 21st century. Since the
commencement of the conflict on February 24, Russia and Ukraine, particularly the Ukrainian
populace, have sustained significant losses (Aljazeera, 2022; BBC, 2022; CBC, 2022; Guardian,
2022; NPR, 2022; UN News, 2022). Currently, the fight is increasing and expanding. Both
countries, particularly Ukraine, will incur more losses if the crisis persists. Under the current
circumstances, it is vital to conduct a scientific assessment of the refugee population, which will
draw the world’s attention to this unfortunate conflict and persuade the parties to continue
peace discussions via the influence of public media. Simultaneously, it is crucial to create a
scientific basis for international assistance to Ukraine and, more importantly, to build post-war
domestic reconstruction indicators for Ukraine.

There are now multiple sources for the dynamic estimation of the Ukrainian domestic refugee
population during the Russian–Ukrainian War, including reports from the Ukrainian government,
western media, and the United Nations Refugee Agency. Using nighttime lights and remote sensing
data to assess the war’s dynamics is a practical and efficient method. The USDefenseMeteorological
Satellite Program (DMSP) developed the Operational Linescan System (OLS) in the twentieth
century. The original goal of the systemwas to remotelymeasure the faint reflection of moonlight by
clouds at night to obtain the inversion of nighttime meteorological data. However, OLS can catch
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city lights sensitively in conditions of a clear night sky, which has spurred
the development of nighttime light remote sensing (Croft, 1978; Deren
and Xi, 2015). Numerous researchers have adopted this approach because
of the extensive utility of nighttime light remote sensing in studies of
global and regional urbanization, population change, and economic
activity. Through literature reviews, some researchers have
summarized the applications of nighttime light data from various
industries in studies of the nature and society. In addition, they have
voiced concerns about the limitations and difficulties of nighttime lighting
data and have made proposals for its development and improvement
(Zhao et al., 2019). Many studies have examined the origin, data platform,
application orientation, and remote sensing nighttime light data
development trends. Nighttime light data were analyzed to assess the
potential for data mining from new data sources, knowledge discovery,
ground observations, and geographical conditions, i.e., global situation
monitoring (Deren and Xi, 2015).

Numerous nighttime light remote sensing applications have been
devised and applied in studies of urbanization, population change,
economic activity, conflict assessment, greenhouse gas emissions, and
the environment. The possible impact of soil resources on
construction lands can be evaluated using the DMSP/OLS
nighttime light image dataset in conjunction with census data and
soil map data (Imhoff et al., 1997). They used DMSP/OLS multi-
temporal nighttime light data in urban development for iterative
unsupervised classifications. The data then permitted the
construction of maps of regional and urban dynamic changes
(Zhang and Seto, 2011; Stokes and Seto, 2019; Liu et al., 2012).
The inversion of nighttime light data on regional urbanization and
economic growth is a mature topic of the study. Using multi-year
nighttime light images in conjunction with urban street network data
to capture the urban form and features of different regions has enabled
a spatial–temporal analysis of urban expansion (Duque et al., 2019).
The nighttime light data produced by the Visible Infrared Imaging
Radiometer Suite (VIIRS) carried out by the Suomi National Polar-
orbiting Partnership (S-NPP) satellite, when combined with local
economic data and modeled with quadratic polynomials, allow the
relationship between city-level gross domestic product (GDP)
distribution characteristics and landform types to be investigated
(Zhao et al., 2017). The study of the population distribution using
the data on nighttime lights dates back to the 1990s. Using DMSP/OLS
image composite data and high-resolution census data to perform
comparative research, the regularity of image-valued areas and
population residential areas can be determined (Sutton et al., 1997;
Lo, 2001). Additionally, nighttime light data can be utilized to gauge
social and economic growth (Chen and Nordhaus, 2011; Shi et al.,
2014; Wu andWang, 2019). Using nighttime light data to dynamically
assess war-torn and underdeveloped countries can determine the
status and development of post-war rehabilitation work and serve
as a significant source of data for tracking humanitarian crises in the
destination country. Furthermore, this analysis provides scientific
evidence for the following recuperation and development of local
economic activities (Li et al., 2017; Li et al., 2018). Social and
productive human activities accompany the nighttime illumination.
When losses are inflicted by war or natural catastrophes, a quantitative
framework can be developed, and multi-temporal nighttime light data
can be used to quantify the extent of the damage to economic activities
rapidly. Also, the nighttime light data can even provide scientific
information for recovery and post-disaster reconstruction (Qiang
et al., 2020).

In exploring the application scope of the aforementioned
nighttime light data, we discovered that nighttime lights are
relatively mature in their ability to reflect the population and social
activities. The aforementioned research focused primarily on the
inversion, reasoning, and historical nighttime light data analysis.
Most of the timescales were for years or months, which was
reasonable for the long history of a region or country. Despite the
significant changes in some areas in a short time, there are few research
results on whether nighttime lights can induce inversion. In addition,
the existing rules between nighttime lights and population activities,
economic activities, and production activities reflect additional studies
regarding the use of nighttime lights and the inversion of human social
activities. However, further research was required for other levels,
including emergency and the tendency of emergency inversion. In this
study, we analyzed nighttime light data using empirical models and
combined them with the Office of the UN High Commissioner for
Refugees (UNHCR) data to develop a logistic regression model to
explain population changes. Before and after the war, a quantitative
analysis of dynamic spatial–temporal changes in nighttime lights and
the refugee population was carried out. Ultimately, we aimed to
evaluate the effectiveness of these new methods for exploring
dynamic nighttime lights and refugee population changes during
the war.

2 Data and methodology

2.1 Study area

Ukraine is situated in Eastern Europe, with the Black Sea to its
south, the Russian Federation to its east, Belarus to its north, and
Poland, Slovakia, Hungary, and Romania to its west. With a
population of 41.17 million people, the country is geographically
located at the intersection of the European Union and the
Commonwealth of Independent States (excluding Crimea).
Ukraine’s administrative division consists of 24 regions (Figure 1),
one autonomous republic, and two municipalities (UNdata, 2022). On
24 February 2022, conflict broke out between Russia and Ukraine on
the grounds of the “demilitarization and de-Nazification”, and the
conflict officially turned into a full-scale war on that date (CNN,
2022a; CNN, 2022b; TASS, 2022).

We intended to perform a dynamic assessment of war damages
in Ukraine, and our study area encompassed the entirety of
Ukraine. Considering that the conflict significantly impacted the
capital, Kyiv, we chose Kyiv as a specific research objective in this
study to clarify the impact before and after the war. The Crimea
region was excluded from the study due to the absence of
demographic statistics for these areas.

2.2 Data sources

Nighttime light data were obtained from the Day–Night Band (DNB)
sensor of the VIIRS onboard the S-NPP and Joint Polar Satellite System
(JPSS) satellite platforms (NASA-Suomi NPP, 2022). The DNB’s ultra-
sensitive performance in low-light conditionsmarks amajor improvement
in the resolution and calibration over Defense Weather Satellite Program
(DMSP)-generated nighttime light images from the previous generation
(Román et al., 2018). TheDNB sensor delivers global nighttime visible light
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data and daily measurements of near-infrared (NIR) data suited for Earth
system science applications (UNdata, 2022). The BlackMarble product kit
(VNP46) comprises the Daily Atmosphere Sensor Top (TOA) nighttime
light (NTL) product (VNP46A1) and the Daily Moonlight-adjusted
nighttime light product (VNP46) (VNP46A2). Compared to
VNP46A1, VNP46A2 can more realistically reverse the anthropogenic
light sources on the Earth’s surface. VNP46A2 utilizes all high-quality,
cloud-free, atmospheric, terrain, vegetation, snow, lunar, and stray
nighttime light-corrected DN values to estimate nighttime lights and
have other inherent surface optical properties (Román et al., 2018;
Román et al., 2019; Román et al., 2020; Román et al., 2021).
Additionally, the Black Marble product kit (VNP46) comprises the
Moonlight adjustable nighttime light product (VNP46A3) and the
Annual Light adjustable nighttime light product (VNP46) (VNP46A4).
VNP46A3 and VNP46A4 are the abbreviated names for the third and
fourth nighttime light (NTL) products, respectively, in the Black Marble
suite. VNP46A3 and VNP46A4 provide monthly and yearly composites
derived from daily atmospherical and lunar bi-directional reflectance
distribution function (BRDF)-corrected NTL radiance to eliminate the
influence of artifacts and biases. This study utilized the VNP46A2 data
series (NASA-VNP46A2, 2022; NASA- VNP46A4, 2022).

The United Nations High Commissioner for Refugees (UNHCR) is a
global organization dedicated to saving lives, protecting rights, and
building a better future for refugees, forcibly displaced communities,

and stateless people. The UNHCR provides data on refugee population
border crossings fromUkraine during the war and offers daily information
on the influx and departure of refugees into and out of Ukraine (https://
data.unhcr.org/en/situations/ukraine). The time and location of the fight
between the Russian and Ukrainian soldiers were obtained from the
website global conflict tracker, an interactive guide to ongoing conflicts
of concern to the United States, including background information and
resources (https://www.cfr.org/global-conflict-tracker).

2.3 Data preprocessing

For the nighttime light data on VNP46A2 and VNP46A4, we
initially employed a Python encoding technique to obtain the ‘gap-
filled BRDF-corrected DNBNTL’ and ‘Temporal Radiance Composite
Using All Observations During Snow-free Period’ layers, respectively.
Then, using visual contrast interpretation, we found the dates for
which complete data were available in the daily Ukrainian night light
data. Finally, these data were converted into a raster format with a unit
of nWatts/cm/sr, and the georeference coordinate was WGS 1984.
Moreover, we compiled daily values of VNP46A2 into weekly and
monthly data (Román et al., 2020). Then, 10 weeks before
(16 December 2021 to 23 February 2022) and after (24 February
2022 to 2 May 2022) the beginning of the Russian–UkrainianWar, the

FIGURE 1
Study area.
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obtained nighttime light images were combined. Additionally, we
collected nighttime light data (VNP46A4) from 2012 to 2021 for a
long-term nighttime light trend analysis.

On the auxiliary data side, we used Python encoding to convert the
obtained UNHCR data from XML to CSV, making it easier to analyze. In
addition, we utilized visual interpretation to track sites of daily battles in the
Russian–Ukrainian War and used GIS tools to organize the time and
position of the matches mentioned previously into data tables.

2.4 Methodology

2.4.1 Calculation of the total nighttime lights DN
value

In this study, we employed the digital number value (DN value) of
nighttime lights, which referred to the digital grayscale reflection of the

brightness of surface nighttime lights on the image grid. The nighttime
light DN value is usually a comprehensive indicator of a region’s
socioeconomic development level. A higher DN value suggests a
higher degree of regional development and vice versa. We
introduced a yearly average DN value of nighttime lights, the sum
of the daily average DN values of nighttime lights in the area. The
changes in the yearly average DN values of the annual nighttime lights
can be used to characterize the evolution of an area over several years
(Chen et al., 2003; Zhuo et al., 2003). The average DN value of
nighttime lights is expressed as follows:

NTLtotal � ∑DNM

i�1
DNi × ni , (1)

where DNi and ni represent the i th grayscale pixel value and the
number of pixels in the administrative unit, respectively. Also, M

FIGURE 2
Ukrainian nighttime light spatial changes from 16 December 2021 to 2 May 2022.
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represents the total number of pixels in the interval [1, DNM ] in the
administrative unit. In this study, weekly nighttime light data were
composited by daily nighttime light data.

2.4.2 Analysis of the trend of nighttime lights
We used the Theil–Sen estimator and the M-K test to calculate the

trend of changes in image DN values during peacetime and war in
Ukraine. The Theil–Sen estimator is a robust linear regression method
that selects the median slope across all lines using two-dimensional
sample pairs. Compared to the trend analysis based on the least
squares method, the Theil–Sen estimator can avoid the lack of time
series data and the influence of data distribution on the analysis
results, eliminate the interference of outliers on the time series, and be
used to identify trends in the univariate time series (Burn and Elnur,
2002; Wang et al., 2020).

Q � median
NTLj −NTLi

j − i
1< i< j< n. (2)

In the formula,median represents the median value of the slopes, i
and j are the time series numbers, andNTLi andNTLj are image DN
values of the time series in the i th week and the j th week, respectively.
The slope Q is greater than 0, indicating an upward trend; when Q is
less than 0, it shows a downtrend trend. The M-K test does not require
samples to follow a certain distribution, which can eliminate a few
outliers and is suitable for non-normally distributed data. The
inspection process is as follows:

τ � ∑n−1
i�1 ∑n

j�i+1sign NTLj−NTLiNTLj−NTLi( ), and
sign NTLj−NTLi( ) � 1NTLj −NTLi > 0

0NTLj −NTLi � 0
−1NTLj −NTLi < 0

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ . (3)

The statistics for constructing trend analysis tests are as follows:

UMK �

τ − 1

Var τ( )[ ] 1
2
τ > 0

0 τ � 0

τ + 1

Var τ( )[ ] 1
2
τ < 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (4)

Var τ( ) � n n − 1( ) 2n + 5( )
18

. (5)

In the formula, NTLi and NTLj are the image DN values in the i
th week and the j th week, respectively, and n represents the time series
length; sign is a symbolic function. At a given significance level α, when
|UMK|> u1−α/2, it means that the study sequence significantly changes
at the α level.

Due to the unstable and complicated changes in all aspects of
society throughout the war, months may not be the optimum unit of
time to describe variations in nighttime lights, population, and
economic activities. For analysis purposes, we composited the daily
nighttime light data into weekly data. We selected the period between
16 December 2021 and 4 May 2022, 10 weeks before and 10 weeks
after the start of the war, for a total of 20 weeks of nighttime light data.
In addition, we combined the daily nighttime light data based on an
analysis of the nighttime light change trend to compare the trend of
the nighttime light 10 weeks from the start of the war (2022.2.24 to
2022.5.4) with nighttime light trends during peacetime for 10 weeks
(2021.12.16 to 2021.2.23).

2.4.3 Verification of the reliability of the nighttime
light-driven model

This study used the Nash–Sutcliffe efficiency index (NSE) and R
square (R2) to verify the model’s reliability. The NSE is a widely used
and potentially reliable statistic for assessing the model’s goodness of
fit (Schaefli and Gupta, 2007; Moriasi et al., 2007). R2 indicates the
degree to which the data fit the regression model (the goodness of fit).
The data on Ukrainian nighttime lights and refugee population from
24 February 2022 (the beginning of the war) to 2 May 2022 were
processed by a statistical distribution fitting and was confirmed to
satisfy a normal distribution. Then, for modeling purposes, we utilized
the Ukrainian domestic nighttime light data and refugee population
data for this period. In addition, we used 50% of the nighttime light
data and refugee population data for modeling analyses and the
remaining 50% for model accuracy verification.

NSE � 1 − ∑n
i�1 Qmi − Qoi( )2∑n
i�1 Qoi − Qo( )2 , (10)

R2 �
∑n
i�1

Qoi − Qo( ) Qmi − Qm( )⎡⎣ ⎤⎦2

∑n
i�1 Qoi − Qo( )2∑n

i�1
Qmi − Qm( )2. (11)

In the formula,Qmi is the total nighttime light DN value calculated
by the model on i th night; Qoi is the actual total nighttime light DN
value on i th night; Qo refers to an average value of the actual total
nighttime light DN value at night.

The variation range of the NSE is from −∞ to 1. When the NSE
calculation result is 1, the observed value is the same as the simulated
value; if the NSE is between 0.5 and 1, it means that the model result is
acceptable, and when the NSE result is less than 0, it is considered that
the model reliability is poor. R2 represents the correlation between the
simulated value of the model and the measured value. The closer the
value is to 1, the better the simulation effect.

3 Results

3.1 Nighttime light trends in Ukraine

Figure 2 depicts the nighttime light area and DN value distribution
in Ukraine in the 10 weeks before and after the outbreak of the
Russian−Ukrainian War (16 December 2021 to 4 May 2022). Ten
weeks before the start of the war, the nighttime lights in Ukraine were
stable on a national scale. The range of nighttime lights fluctuated but
altered little. In the first week following the outbreak of war, the
national nighttime light area was reduced by 50% (Figure 3A)
(24 February 2022 to 2 March 2022). In the following weeks, the
national nighttime light area hovered at 50% of its pre-war level
(3 March 2022 to 4May 2022). The fifth week following the start of the
conflict was the darkest in Ukraine, and the nighttime light area was
almost 75% smaller than that before the war, indicating that the war
caused significant damage to Ukraine in a short amount of time. In
addition, after the start of the conflict, the average nighttime light DN
value, maximum nighttime light DN value, and total nighttime light
DN value decreased dramatically throughout the country (Figures 3A,
B). In Ukraine, the highest nighttime light DN value and total
nighttime light DN value were lowered by more than 90% than the
week before and after the war. The change in nighttime lights
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demonstrated that the conflict affected the quantity and quality of
nighttime lights in Ukraine.

The changing map of nighttime lights provided a more concrete
depiction of the oblast- and city-scale destruction wrought by the war
in Ukraine. Based on the area of nighttime lights and the average DN
value, we discovered that all oblasts had a substantial decline in the
area and DN value during the first week of the war. In the weeks that
followed, the nighttime lights exhibited low-value fluctuations much
below pre-war values (Figure 4). From a spatial perspective, the city
and oblast with the greatest reduction in the nighttime light area were
the capital Kyiv (Figure 5), Cherkasy oblast in the center, Kyiv oblast,
Donetsk oblast, Sumy oblast, and Ternopil oblast in the west, and these
oblasts and cities had 50% fewer nighttime lights than before the war.
In addition, the average nighttime light DN value changed, which
indicates the quality of nighttime lights varied dramatically by oblasts,
decreasing significantly in Donetsk and Sum oblasts in the east and
Ternopil Oblast in the west. However, certain oblasts, including
Luhansk, Zakarpattia, and Kherson, experienced few modifications,
which might be because nighttime lights in these places did not meet
high standards before the war.

Changes in the nighttime light area and nighttime light DN value
indicated a gradual disappearance from the city’s periphery to the
center of the town. The DN value of the city’s central district’s
nighttime lights decreased from a high value to a low value
(Figure 5). Changes in the city’s nighttime lights revealed the war’s
spatial–temporal impact on the operation and vibrancy of the city.

In addition, to scientifically reflect the changes in nighttime lights
in Ukraine during the Russian–Ukrainian War, we presented the
nighttime light data from consecutive years in peacetime and
conducted trend analyses in conjunction with nighttime light data
of the war. We performed a trend analysis on the monthly nighttime
light data from 2012 to 2021 (combined daily data) and wartime
nighttime light data. We discovered that the nighttime light area of the
entire nation had fallen marginally, particularly in the central and
eastern parts. During the 10 years between 2012 and 2021, the DN
value of nighttime lights increased or decreased dramatically in some
regions (Figure 6A). During the conflict period from February 24th to
2 May 2022, however, the nighttime light area across the nation
reduced drastically and on a wide scale. Similarly, the light intensity
gradually decreased (Figure 6B).

Since nighttime lights did not fluctuate significantly during times
of peace, we investigated the short-term trend of nighttime lights in
the country using data from 10 weeks before and after the start of the
conflict. Using the Theil–Sen estimator and the M-K test, the trend of
DN values at the pixel scale was analyzed. We found a significant
reduction in the nighttime light DN value, which accounted for 5.24%,
the severely reduced nighttime lights accounted for 15.17%, and only
0.45% of the region grew enormously. The remaining areas, which
comprised 79.14%, exhibited little change (Figure 7).

From February 24 to May 2, nighttime lights showed a noticeable
reduction, particularly in the capital Kyiv and built-up areas around it.
Other oblasts, particularly Kharkiv and Donetsk in the east, saw a
decrease in nighttime lights. The middle and western regions, where
fighting and strife were less frequent and severe, had a less significant
impact on nighttime lights than the eastern region. In addition, there
was the periodic dimming of nighttime lights in areas where there was
no fighting, which may have been caused by a power supply gap or
artificial dimming.

3.2 Refugee population trends in Ukraine

We examined both variables based on the preceding findings,
which indicated a general downward tendency in nighttime light
changes in Ukraine and an upward trend in the UNHCR-registered
refugee population data throughout the same period. The refugee
population dataset registered by the UNHCR corresponded to a
normal distribution, with a strong association coefficient (−0.89)
with nighttime lights of Ukraine for the same period, as
determined by the statistical distribution fitting. Then, we fit the
data on nighttime lights and refugee populations. We analyzed the
data trend changes using linear, polynomial, exponential, and
S-shaped functions and determined that the S-shaped function was
the most acceptable match. After multiple attempts, we decided that
the logistic equation employed for the fit was the most appropriate in
terms of the goodness-of-fit and statistical significance. As depicted in
Figure 8A, the logistic equation was utilized to fit nighttime light data
and refugee population registration data in order to generate a model
for the final calculation of the registered refugee population using the
total nighttime light DN value. The model was expressed as y =

FIGURE 3
Weekly nighttime lights area trends (A) and nighttime lights DN value changes (B) in Ukraine from 16 December 2021 to 2 May 2022.
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3684039.53/{1 + exp[−1.19E-5*(x-584851.5)]}, where y was the
refugee population registered on a specific day; x was the total
nighttime light DN value of the Ukrainian nightlight on the same
day; the goodness-of-fit of the model was 0.69, and the model was
significant at the level of 0.05. In addition, the NSE of the model
reached 0.78, indicating that the reliability of the model was acceptable
and that the simulated values of the model were well correlated with
the observed values. The comparison between the simulated and
observed results is shown in Figure 8B.

From the aforementioned results, we found that the decrease
in the total nighttime light DN value was mainly due to the decline
in the area of nighttime lights and the reduction in the average
nighttime light DN value. We utilized the daily nighttime light
area and the average nighttime light DN value to examine the
association between refugee population levels and nighttime
lights. The correlation coefficient between the registered
refugee population and area of nighttime lights was −0.52, and

the correlation relationship with the average DN value of
nighttime lights was −0.53. However, because the total
nighttime light DN value is a product of the average DN value
and area, we concluded that the effect of the location of nighttime
lights and the average nighttime light DN value on the change in
the refugee population were almost the same. Based on this
consideration, we classify the changes in the DN value and
nighttime light area before and after the conflict by Jenks
Natural Breaks Classification (Chen et al., 2013); the
classification situation is depicted in Table 1.

From Table 1, we calculated the weekly change in the refugee
population after the war began, as depicted in Figure 9. After the war
started, the refugee population increased significantly in the 2nd, 5th,
and 8th weeks and increased slightly in the 1st, 3rd, 6th, and 9th weeks.
The 4th and 7th weeks saw minimal variations from the previous
week. The refugee population demonstrates a cyclical variation over
3 weeks, with a “low-high-low” trend, as depicted in Figure 8.

FIGURE 4
Weekly analysis of nighttime light trends in all oblasts of Ukraine (2021.12.16–2022.5.2).
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4 Discussion

4.1 Relationship between nighttime lights and
conflicts

Based on the aforementioned analytical findings, it is certain that
war conflicts have contributed to the decline of the light.
Consequently, we considered analyzing and discussing nightlights
and frequency of military conflicts throughout the same period.
However, we compared the total intensity of nighttime lights and
frequency of national disputes using a time series. We found that when
the number of conflicts decreased, the fluctuation degree of the overall
nighttime light intensity gradually reduced. Yet, the two trends were
not entirely congruent (Figure 10), considering that the disappearance

of nighttime lights was varied. The times of wars and conflicts were
only a vague concept. It was challenging to gather and quantify
additional information, such as the scope of disputes, their severity,
their duration, and their subsequent consequences. Changing the
number of conflicts made it impossible to adequately assess the
relationship between the two variables.

Although it was difficult to quantify the precise relationship
between nighttime lights and the number of conflicts, the overall
trend was consistent. As a result, we would continue our discussion
based on the general trend relationship between the two concepts. We
considered that as the war proceeded, the country’s nighttime lights
would grow dimmer, symbolizing the immense damage caused by the
conflict. Furthermore, across the nation, the frequency of conflict was
not connected with the disappearance of the total nighttime light DN

FIGURE 5
Weekly Kyiv city nighttime light spatial change from 16 December 2021 to 2 May 2022.
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value, indicating that observing the nighttime light conditions was not
an effective way to determine the conflict situation in the area.
Nonetheless, hostilities may erupt on other battlefields or at
different scales, and the statistical analysis results may be vastly
different; hence, the inferences require additional research. These
estimates are useful as reference values and can be used to
compare war losses, but more supplementary data are necessary to
determine the extent of war damage.

4.2 Relationship between nighttime lights and
refugees

Almost no research has been conducted on the correlation between
nighttime lights and the movement of war refugees. Actual and reliable
statistics are used to determine whether nighttime lights reflect the trend of
the refugee population. This study’s data were derived from the United
Nations Refugee Agency’s daily statistics to depict the refugee population’s

FIGURE 6
Comparison of the nighttime light DN value and area change from 2012 to 2021 (A) and from February 24 to 2 May 2022 (B).

FIGURE 7
Nighttime light trends in Ukraine from 16 December 2021 to 2 May 2022.
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flow accurately. We eventually evaluated and adopted the logistic equation
to construct the model of nighttime lights and refugee population
fluctuations. Due to the high upper limit of nighttime light data, the
changes were quite adaptable. However, the refugee population will not
continue to expand indefinitely. Consequently, as the total nighttime light
DN value grows in a linear regression equation, the convergence is

problematic and the model fails. A more precise expression, such as the
logarithm or multiple linear regression equation, is required for a broader
perspective. Still, more supplementary data may be necessary to develop
these equations and confirm the model’s validity. This study employed a
brief and continuous training data time series. The relationship between the
refugee population and nighttime light data in Ukraine is reasonably basic

FIGURE 8
Relation between the refugee population and the total nighttime light DN value (A); validation of the model of migration and nighttime lights using the
UNHCR data (B).

TABLE 1 Classification of changes in the refugee population.

NTL area change grid number NTL average DN value change nW/cm2/sr2 Change in the value

>50000 >1 No significant change

>50000 <1 Slight increase

<50000 >1 Slight increase

<50000 <1 Significant increase

FIGURE 9
Trends in the refugee population by the grade within 9 weeks after the beginning of the war.
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and linear. It is impossible to estimate how long the current war situation in
local conflicts will persist. However, based on the actual refugee population
statistics and nighttime light inversion, the regression model developed for
this study can achieve the research objectives.

We discussed the two situations according to the changing trend of
nighttime lights and the refugee population, suppose the war continues in
its current state. In this instance, the nighttime light area of Ukraine will
continue to diminish in the original region, as will the averageDNvalue of
nighttime lights. According to our research, the fading of nighttime lights
indicates a progressive transition from the city’s periphery to its center.
The average DN value of the city center’s evening lighting gradually
declines. Based on nighttime lights and the refugee populationmodel, our
analysis reveals that the refugee population continues to grow, with the
majority originating from urban areas. However, it is based on the
assumption that the war commences or concludes. In that
circumstance, the refugee population and nighttime lights will depict a
different state. Then, this study’s refugee population calculation model
driven by nighttime light data may no longer be applicable.

4.3 A depiction of the war by nighttime lights

The nighttime light is an inversion of the behavior and scope of
human activity, just as a war is an abnormal and unpredictable act
initiated by humans. Consequently, a relationship exists between the two.
Li used the DMSP/OLS and VIIRS monthly composites to illustrate the
variations in nighttime lights in Syria and Iraq during the war (Li et al.,
2017; Li et al., 2018). The study indicates a rule that the war quickly
destroys a country’s nighttime lights, but post-war reconstruction allows
nighttime lights to return gradually. As detailed previously, this
circumstance also occurred in Ukraine, although the war between
Russia and Ukraine remains in a stalemate. Furthermore, our
simulations show that more nighttime lights in Ukraine will disappear
as the war continues. Whether in Ukraine, Syria, or Iraq, the fact that the
war may quickly extinguish nighttime lights holds true. The
disappearance of nighttime lights also indicates changes in the spatial
and temporal dimensions of the war. The timescale of nighttime lights

employed by Li et al. in the Iraqi and Syrianwarswas amonth. In contrast,
we used a week, which more accurately reflects the severity and brutality
of the war and sensitivity of nighttime lights to the war. Furthermore,
modeling, which employs weekly nighttime light data and refugee
populations, followed by simulations of refugee population
movements, can provide timely humanitarian assistance under specific
circumstances and on finer timescales. Overall, nighttime lights offer an
approximation of the extent and course of the war’s impacts, but they are
insufficient to adequately depict their particulars.

5 Conclusion

In this study, the refugee population and multi-day nighttime light
data were used for mathematical modeling, and then, daily nighttime
light data were compiled and analyzed. Before and after the beginning
of the Russian–Ukrainian War, nighttime lights in Ukraine changed,
and the refugee population changed as follows:

1) In the first week following the start of the war, the nighttime light
area and average nighttime light DN value in Ukraine exhibited a
sharp downward trend. The rate of decline then slowed. The
changes in nighttime lights were especially pronounced in and
around Kyiv and the northern and eastern regions.

2) During the first week, the refugee population in Ukraine increased
the most, followed by a gradual decrease. After the start of the war,
the refugee population shifted cyclically, exhibiting a
“low–high–low” pattern. From the central and eastern regions
poured an influx of displaced people. If the war continues, the
number of refugees will continue to rise.

3) Following the outbreak of war, the Ukrainian state and society
suffered a sudden decline, which was reflected in the alteration of
nighttime lights. Affected by the transit time and other ground
factors, night lights may not always reflect the actual status of the
population and society; hence, assessing war losses based on
nighttime lights may necessitate additional supplementary data
for an accurate assessment.

FIGURE 10
Conflicts and total nighttime light DN values in Ukraine during the war period.
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Using nighttime light data to model the dynamic estimation of the
changes in the refugee population of Ukraine during the war is crucial
for calculating human losses in Ukraine and the subsequent supply of
international humanitarian aid and post-war rehabilitation under the
current war conditions.
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Unraveling the supply-service
relationship between high-speed
railway and conventional railway: A
temporal perspective
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1School of Resource and Environmental Sciences, Wuhan University, Wuhan, China, 2Key Laboratory of
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With the rapid development of high-speed railway (HSR), many scholars have studied
the competition between HSR and aviation or inter-city coach, but few studies have
discussed the supply-service relationship within the railway system. This paper
explores the competition and cooperation between HSR and conventional
railway (CR) at the city-pair level of 39 core cities in China from the temporal
perspective. Comprehensive considering the departure time and arrival time
between city pairs as the representation of train service quality, we find that the
proportion of superior quality service of high-speed train (HST) is far higher than that
of conventional train (CT). However, the time slots representing the competition
degree show that CR with fewer superior quality trains is easier to be replaced than
HSR. The supply-service relationships of the railway system indicate that HSR has
become the main transportation mode between core cities, and the CR, as an
auxiliary transportation, shows a certain complementary effect in the temporal
perspective. Spatially, HSR and CR services are more likely to generate temporal
competition on the mainline, but temporal complementarity between city pairs on
non-arterial lines. This study can provide inspiration for regional spatial planning by
better understanding the operation strategy of railway passenger transport system.

KEYWORDS

intercity competition modes, supply service quality, substitutability degree, highspeed
railway, conventional railway

Highlights

• A new method to identify the supply service relationship between high speed railway
(HSR) and conventional railway (CR) is proposed.

• We propose a method to divide train service quality based on time availability.
• We find the characteristics of quantity and quality of HSR and CR are very different.
• The supply service relationship between HSR and CR shows that they have cooperation

potential in terms of time.

1 Introduction

As a physical connection between cities, railway is one of the most important basic
conditions for urban development. High-speed railway (HSR), as the most significant
technological breakthrough of railway system since 1964, has greatly shortened the intercity
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travel time (Spiekermann and Wegener, 1994; Shaw, Fang, Lu, and
Tao, 2014). Because of its high accessibility and high frequency, HSR
generates substitution effect by attracting passengers from other
transport modes, which leading to a reallocation of the passenger
market (Lee and Chang, 2006; Zhang et al., 2018; Wang et al., 2020b;
Yang et al., 2018a). For example, China has built the world’s largest
HSR network after more than 10 years of rapid development, making
the proportion of railway passenger traffic in 2020 to be 4.4 times that
in 2010. In addition, HSR also reduces CO2 emissions and haze
pollution by influencing the intercity traffic patterns (Jiang et al.,
2021; Li et al., 2022). However, the high construction and operation
costs of HSR cannot be ignored by government departments and
urban planners. Therefore, exploring the competition and cooperation
between HSR and other intercity traffic modes is an important
research issue for regional sustainable development and
transportation optimization.

The impacts of HSR on air travel have been analyzed in many
countries due to the high speed characteristics of two transport modes
(Dobruszkes et al., 2014; Castillo-Manzano et al., 2015; Delaplace and
Dobruszkes, 2015; Zhang et al., 2018). In recent years, the impacts of
HSR on the railway system have gradually attracted the attention of
scholars. For example, the change of passenger flow indicates that the
development of HSR has a strong substitution effect on conventional
railway (CR) in China due to the time-saving advantages of HSR
(Cheng and Chen, 2021). But CR is still the best choice for cities with
lower population density and poor socioeconomic performance (Shaw
et al., 2014). Recent studies have shown the importance of cooperation
between HSR and CR in improving travel efficiency and achieving
spatial and social equity (Zhang. H et al., 2020; Huang and Zong,
2022). However, although some studies have compared the similarity
and difference of the spatial pattern between HSR and CR from
accessibility or network structure (Zhang. H et al., 2020; Huang
and Zong, 2022), the exploration from the time dimension has not
yet been seen. Therefore, it is necessary to deeply study the operation
strategy of railway passenger transportation system from the
perspective of time.

Traditionally, the schedules reflect the operation and
management strategy of public transport supplier (Burghouwt
and de Wit, 2005; Dobruszkes, 2011; Huang and Wang, 2017),
which scholars have used to conduct a large number of empirical
studies. For example, while there is potential temporal competition
between China’s HSR and airlines, the two have complementary
spatial and temporal effects in resisting different types of hazards
(Wang et al., 2020b; Li and Rong, 2022). In the railway system, train
schedules show that the service intensity of HSR and CR are
complementary in terms of spatial distribution (Huang and
Zong, 2022). Railway departments operate more frequent high-
speed trains (HST) during the peak hours of passenger travel
(Wang et al., 2020b), but the characteristics of time slot between
HST and conventional trains (CT) have not yet received attentions.
To fill this gap, this paper explores the supply-service relationship
between HSR and CR at the city-pair level based on train schedules,
in order to better understand the competition and cooperation
strategy of railway system. In addition, this paper measures the
service quality level by comprehensively considering the departure
time and arrival time of trains to distinguish the homogeneous
train service in previous studies. And we assume that the smaller
the time slot of departure time, the greater the degree of
competition between HST and CT in the same city pair.

As the HSR is mainly designed to connect large cities, in general,
core cities benefit more from HSR than peripheral cities (Levinson,
2012; An et al., 2022). In addition, studies have shown that the core
layer is the densest cluster in the railway network structure (Zhang. H
et al., 2020), carrying most of the traffic flow (Huang and Zong, 2022).
Therefore, we attempt to enrich the research on HSR and CR supply-
service relationships among core cities, and take 39 core cities with
high administrative level or high population in China as research
objects. Under the study objectives above, this paper 1) analyzed the
distribution characteristics of service intensity of the HST and CT
between core city-pairs, 2) distinguished the service quality types of
HST and CT which determined by both departure time and arrival
time, and 3) measured the level of substitutability between HST and
CT from time slot perspectives. Furthermore, according to the
quantity and quality of trains, the improved classification method
identifies relationships between HSR and CR at the city-pair level,
including single mode dominant type, cooperation complementary
type and competition type.

The structure of this paper is as follows: Section 2 reviews the
existing researches on the relationship between HSR and other
transportation modes; Section 3 introduces the development of
HSR in China and the research methods in this paper. Section 4
presents the results; Section 5 discusses the policy implications of the
relationship between the two rail services; and Section 6 draws
conclusions.

2 Literature review

The emergence of HSR has directly shortened the space-time
distance, and indirectly changed the intercity travel mode. Empirical
studies in many countries show that the construction of HSR can
significantly improve the accessibility between cities (Shaw et al., 2014;
Wang, 2018; Weng et al., 2020), making some governments strive for
HSR stops. Due to differences in geographic regions and population
sizes, the impacts of HSR development on economic growth are
uneven (Guo et al., 2020; Jiao et al., 2020; Zhang. F, et al., 2020).
With the advantages of low price compared with air and time saving
compared with CR, HSR has led to the redistribution of market share
by attracting passengers from other transportation modes (González-
Savignat, 2004; Lee and Chang, 2006; Yang et al., 2018a). In addition,
studies have shown that HSR has become an important tool to
promote regional integration by providing convenient intercity
travel services, which in turn will generate new intercity
transportation needs (Cascetta and Coppola, 2015). For example,
due to the high housing prices in Beijing and the convenient HSR
services with surrounding small cities, a number of passengers have
taken HST as their daily commuter. However, HSR is not always the
best choice for low-density and economically underdeveloped areas
due to the huge cost of construction and operation.

Many studies have explored the competitiveness of intercity
transport from different perspectives, including individual trips,
changes in passenger traffic, and provision of services. For
individuals, although the influence degree of each factor varies
depending on the travel distance, transportation mode choice is the
result of the combination of transportation mode attributes, travel
attributes, and individual passenger attributes (Castillo-Manzano
et al., 2015; Lee et al., 2016; Li. X. W et al., 2021). Specifically,
passengers with higher education levels, higher income levels, or
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business trips are more likely to choose comfortable and time-saving
transportation modes, such as HSR and airline. While passengers who
are concerned about travel costs and are not time-sensitive are more
likely to choose CR or intercity coach (Wang et al., 2017; Zhou et al.,
2019). In terms of passenger traffic, HSR is more competitive in cities
with better social economy, regardless of whether it is compared to
airline or CR (Yang et al., 2018a; Yang et al., 2018b; Cheng and Chen,
2021). Empirical evidence shows that HSR is the most competitive
compared to airline when the travel distance is within 500–800 km
(Chen, 2017). In China, the substitution effect of HSR on CR varies
spatially in different corridors (Huang and Zong, 2022). In terms of
supply, the frequency change in the time dimension and the travel
time change in the space dimension of HSR have a significant impact
on air passenger flow (Yang et al., 2018a). Considering the high cost of
HSR, railway operators need to adjust the service frequency of HSR to
cover the cost.

In addition to competition, HSR has great demand and
potential for cooperation with other transportation modes,
including multimodal combined transport and
complementation. From the perspective of individual travel, the
combined of multiple transportation modes can significantly
improve the accessibility and transportation efficiency of the
whole journey chain. For example, integrated railway stations
can realize rapid transfer between HST and CT, which
significantly improve the efficiency of the railway system
(Zhang. H et al., 2020). In addition, the effective connections
between HSR and urban public transport can significantly
shorten the total travel time (Huang and Zong, 2021), making
up for the lack that HSR stations are far away from urban centers
(Wang et al., 2013; Diao et al., 2017). Therefore, the travel
efficiency will be further improved with the construction of
comprehensive stations that can serve multiple transportation
modes. In terms of spatial cooperation and complementarity,
HST services in China are more concentrated in regions with
better socio-economic performance, while CT services are better
at providing more extensive geographical coverage (Huang and
Zong, 2022). As for temporal coordination and complementation,
HST and air services coordinate and facilitate round-trip travel.
Further, the space-time complementary effect of multiple traffic
modes can improve the robustness against different types of
hazards (Li and Rong, 2022).

In recent years, the importance of HSR services has been
recognized, and many scholars have shifted from location-based
network structures to timetable-based service characteristics. On
one hand, location-based reachability often overestimates the
results due to ignoring the intensity differences of services
between nodes (Moyano et al., 2018). On the other hand,
location-based evaluations only reveal the potential of transport
network configuration, which cannot reflect the actual operational
characteristics of traffic facilities. Fortunately, the availabilities of
more and more operation schedules make it possible for scholars to
explore transportation services from the perspective of suppliers.
For example, small cities in Europe and China are underserved by
HSR due to insufficient potential markets (Moyano and
Dobruszkes, 2017; Huang and Zong, 2022). In addition, traffic
dispatching not only affects the competition of multimodal
transport (Dobruszkes et al., 2014; Castillo-Manzano et al.,
2015; Lee et al., 2016; Broman and Eliasson, 2017), but also
affects the time competition across transport modes (Espinosa-

Aranda et al., 2015). Previous studies have investigated the
competition between HSR and flights between cities by using
the time window method, which only considered the departure
time (Wang et al., 2020b).

To sum up, the introduction of HSR will have great impacts on the
market share and service supply of other transportation modes.
Therefore, exploring the competition and cooperation among
different transportation modes is of great significance for
optimizing transportation services. Existing studies have carried out
a lot of researches on the relationship between HSR and airline, while
the relationship between HSR and CR in the railway system has not
received enough attentions. Although scholars have explored the
spatial distribution of HSR and CR, they are limited to differences
in spatial network structure and spatial service distribution. The
relationship between these two transport services has not been
analyzed from the perspective of time. Therefore, we interpreted
the competition and collaboration between HSR and CR supply
services from a time perspective. This study not only enriches the
empirical research of comparative analysis of different intercity traffic,
but also has important significance for optimizing the railway service
system.

3 Background and methods

3.1 Development of Chinese railways

Since the reform and opening up from 1978, in order to better
serve the development of urbanization, China’s traditional railway
lines have rapidly formed the main trunk lines shown in Figure 1A.
China released the HSR construction plan in 2004 (revised in
2016), and opened the first high standard HSR line between
Beijing and Tianjin in 2008. In order to relieve the pressure on
CR from the growing passenger demand, the Chinese government
usually arranged HSR lines to be parallel to the existing CR lines
(Figure 1B). The construction of China’s HSR network is long-term
and balanced, and the opened lines gradually expand from large
cities to small and medium-sized cities and inland areas (Perl and
Goetz, 2015; Xu et al., 2018). At present, “the four-horizontal and
four-vertical HSR trunk lines” have been put into operation, and
“the eight-horizontal and eight-vertical HSR lines” are also being
gradually opened. The latest research shows that China’s train
service presents a complex hierarchical network (Xin and Niu,
2022), and core cities have a large number of HST services and CT
services at the same time (Huang and Zong, 2022). Therefore, this
paper takes cities with high administrative level or urban
permanent population larger than one million in mainland
China as core cities, including 39 cities in Figure 1, which is the
research object of this paper.

As shown in Table 1, there are seven types of train number initials
in the train timetable. The minimum planned running speed of the
train prefixed with C\D\G is 200 km/h, which is called HST in this
paper. CT include four types of railway trains, but the maximum speed
is only 160 km/h. The Chinese government regards HSR as an
important tool to improve railway transport capacity (Wu et al.,
2014). Therefore, the number of HST in service is increasing year
by year, while the number of CT is experiencing a gradual decline.
G-type trains are the most in operation between core cities, and HST
accounts for three-quarters of the total trains (Table 1).
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3.2 Data and network construction

Since the railway timetable is adjusted at a certain time, and the
schedule of 1 day is fixed for a period of time, we obtained
the domestic railway timetable of September 2020 (http://www.
12306.com), which can represent the daily dynamics of intercity
railway service arrangement. The location of the railway station
was found on Baidu map (https://map.baidu.com). Geographic
vector data obtained from 14 million basic topographic
maps, including national boundaries in China. The
administrative location coordinates of core cities selected are
also from Baidu map, which is used to calculate the distance
between cities.

The train schedule directly reflects the connections between
stations. We first used the P-space model to build the connection
networks of HSR and CR. Subsequently, we simplified the station
connection network to the city connection network according to the
station attribution. We noticed that some cities may have more than
one railway station. For example, Wuhan has three railway stops:
Wuhan Station, Wuchang Station and Hankou Station. In the
process of simplifying the network, we ignored the connection
between stations in the same city, and considered the connection
between multiple stations of the same train between two cities as only
one connection. We defined city pairs with only one service as
OnlyHSR/OnlyCR city pairs, while city pairs with both HST and CT
services are defined as overlapping city pairs. For actual travel,
passengers need to choose a way of overlapping city pairs
according to their own conditions. Therefore, it is necessary to

further explore whether these two railway services are competitive
or complementary in overlapping city pairs from a temporal
perspective.

3.3 Methods

3.3.1 Supply service intensity
The supply service intensity is measured by the train frequency

widely used in current research (Jiao et al., 2017; Wang et al.,
2020b). For a city pair, the obtained supply service intensity is the
number of trains between the departure city and the arrival city in
1 day, which can be obtained from the train schedule. For a city, we
no longer emphasized the directionality of service supply, and
measured the service intensity with the sum of the train frequency
of the city as the departure endpoint and the arrival endpoint, as
shown below.

Ti � ∑n

j�1,j ≠ i
Lij +∑n

j�1,j ≠ i
Lji (1)

Where Ti represents the total intensity of supply services
obtained by city i, and the higher the value, the more important
the status of city i in the network. Lij represents the frequency of
trains which taking city i as the departure city and city j as the
arriving city, and Lji is the opposite. The total number of nodes in
the service network is n, that is, the 39 selected core cities. In
addition, we use relative strength (Limtanakool et al., 2007; Yang
et al., 2019) to compare the spatial differences of supply services, as
shown below:

FIGURE 1
Spatial distribution of CR lines (A) and HSR lines (B) in operation in 2020.

TABLE 1 Classification of train types.

Train prefix G- D- C- Z- T- K- Pure number

Max speed 350 300/250 250/200 160 140 120 100

Train type HST HST HST CT CT CT CT

Trains Number 2,383 1,158 565 189 121 932 62
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RSLij � Lij∑n

j�1Lij
n( ) (2)

RSTi � Ti∑n

j�1Ti

n( ) (3)

Where RSLij is the ratio of the supply service intensity of a city pair to
the average intensity of all city pairs in the same network. RSTi is the
supply service intensity of a city, and its calculation method is
consistent with RSLij. If the relative intensity is greater than 1, it
means that the supply service intensity of the city pair or the city is
higher than the average level.

3.3.2 Definition of supply service quality
This paper defines the service quality of trains from the perspective

of time, which is different from that characterized by topology and
number of trains (Zhang. F et al., 2020). Railway scheduling
determines the availability of train services in terms of time, which
in turn influences passenger travel mode choices (Dobruszkes et al.,
2014; Castillo-Manzano et al., 2015; Lee et al., 2016). Many empirical
studies of door to door full journey show that the time spent before
and after the train can not be ignored. Therefore, we believe that the
time when passengers can connect with public transport is the
superior time period of trains. In China, although the service time
of bus or subway varies slightly in different cities or seasons, we find
that it is usually between 6:30–22:30. Therefore, we defined this time
period as superior service time.

This study defined the service quality provided by the train based
on the departure time and arrival time. As shown in Figure 2, the color
of the arrow represents the service quality types. Specifically, if the
time of train T1 in departure city i and destination city j are both
within the superior time period, it is considered that T1 provides
superior service for city pair ij. If only the departure time or the arrival
time is within the superior time period, it is considered as a moderate
service, including 4 situations. If the departure time and arrival time
are both not within the superior time period, it is considered to be a
poor service, which also includes 4 situations. It is worth noting that
the stopping time of a train at different stations varies, which may lead

to differences in the quality service provided by the same train between
different city pairs.

3.3.3 Measures of substitutable index
Broman and Eliasson (2017) proposed that the competition

took place between trains with similar departure times. In this
paper, considering the quality of train services, it is recognized that
only superior train services can compete (Borenstein and
Netz, 1999). Put forward an index to quantify the time
difference, the Time Difference Index (TDI), which refers to the
absolute difference between the departure times of two
transportation modes. For example, if an HST is scheduled at 8:
00 a.m. and a CT is scheduled at 22:00 p.m., in this case, the TDI
value is equal to 14. Since we define the superior service time as 6:
30 to 22:30, the maximum TDI is 16 h. Superior overlapping city
pairs, that is, city pairs with both superior quality CT and HST, are
the objects that need to measure TDI. We calculate the TDIs
between all superior HSTs and CTs in the same city, and
calculate their average and minimum values, as shown in the
following formula.

TDIave � ∑M
m�1∑N

n�1 THST,m − TCT,n

∣∣∣∣ ∣∣∣∣
MN

(4)
TDI min � min

M,N
THST,m − TCT,n

∣∣∣∣ ∣∣∣∣ (5)

Where TDIave and TDI min represent the average and minimum values
of all TDIs in the same city, respectively. THST,m and TCT,n represent
the departure time of themth superior HST and the nth superior CT of
the city pair, respectively. The service frequencies of the superior HST
and superior CT of this city pair are M and N, respectively. In general,
the smaller the TDIave, the closer the departure times between HST
and CT for this city pair. A larger TDI min means that the schedules for
HST and CT are less likely to overlap.

Some studies have suggested that different transportation modes
with TDI less than 1 h are substitutable (Wang et al., 2020b).
According to this scheme, we regard HST and CT services with
TDI less than 1 h as mutually replaceable, and count the
frequencies of HST and CT that can be replaced according to the
city pair, as shown below.

FIGURE 2
Classification methods of railway service quality.

Frontiers in Environmental Science frontiersin.org05

Zhang et al. 10.3389/fenvs.2023.1057812

362

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1057812


RNij,m,n � 1, THST,m − TCT,n

∣∣∣∣ ∣∣∣∣≤ t
0, THST,m − TCT,n

∣∣∣∣ ∣∣∣∣> t{ (6)

RNHST
ij � m

∣∣∣∣RNij,m,n � 1, 1≤m≤M, 1≤ n≤N{ }∣∣∣∣∣ ∣∣∣∣∣ (7)
RNCT

ij � n
∣∣∣∣RNij,m,n � 1, 1≤m≤M, 1≤ n≤N{ }∣∣∣∣∣ ∣∣∣∣∣ (8)

RIij �


















RNHST

ij

QHST
ij

p
RNCT

ij

QCT
ij

⎛⎝ ⎞⎠
√√

(9)

Where RNij,m,n indicates whether the mth HST or the nth CT in city
pair ij has a CT/HST that can be replaced, and t represents the radius
of the time window, which is set as 1 in this paper. RNHST

ij and RNCT
ij

represent the number of replaceable HST trains and CT trains for
city pair ij, respectively. RIi represents the comprehensive
substitutability of the two services for city pair ij. The larger the
value, the higher the probability that the HST and CT services on the
city pair can be replaced, and the more intense the competition
between the two railway services. QHST

ij and QCT
ij represent the

number of superior HST and superior CT service trains for city
pair ij, respectively.

3.3.4 Classification of relationship types
Some studies have explored the relationship between different

transportation modes, including spatial relationship or temporal
relationship (Wang et al., 2020b; Huang and Zong, 2022). For the
relationship types, it is generally considered that they can be classified
as single transportation mode dominant, multi-modal coordination
and complementary type, and multi-modal competition type.
However, there is no consensus on the specific method of
classifying relationship types, which needs to vary depending on
the indicators measured in the study. Therefore, according to the
general cognition, this paper divides the relationship between HSR
and CR into the above three types. By referring to relevant studies
(Wang et al., 2020b) and combining with the specific indicators
measured in this paper, we propose a method to classify the
supply-service relationship between HSR and CR at the city-pair
level from the temporal perspective, as shown below. It is worth
noting that the classification of relationship types is only for
overlapping city pairs with superior HST and superior CT at the
same time.

The first step can distinguish the dominant type of single railway

model. For some city pairs, the number of superior HST in a day may

be significantly larger or smaller than that of CT, indicating that

intercity travel is dominated by a single train mode. Taking into

account the Pareto principle (Craft and Leake, 2002), we defined HST

as dominant when HST accounts for more than 80% of the total

superior service for a city pair. On the contrary, the city pair is

considered to be the CT dominant type when the proportion of

superior CT exceeds 80% of the total superior services. It is

possible that the city pairs with different single-model dominant

have very different characteristics, which is why rail providers use

different approaches to primarily serve them.
The second step distinguished is the type of coordination

complementarity. Coordination complementarity as defined in
existing studies implies the integration or maximization of benefits
between different transportation modes (Givoni and Banister, 2006;
Jiang and Zhang, 2014; Xia and Zhang, 2017). However, the
coordination complementarity defined in this paper is for the TDI

of departure time between HST and CT in a city pair. If the minimum
TDI is large, it means that the train can serve passengers at different
times for 1 day, which meeting the travel needs of different travel
periods. Based on the thinking of time slot in previous studies (Wang
et al., 2020b), we also divided city pairs with TDImin greater than 4 h
into coordination complementary types.

In the third step, the competition types of the two railway services
are divided. The competition in this paper is defined from the
perspective of passengers. If the time slot of HST and CT in the
same city pair is small, passengers need to consider choosing one, in
which case there is competition between the two rail services. For
different city pairs, we note the significant differences in the degree of
competitions. Therefore, we further divided the competition into full
competition, partial competition and slight competition according to
the minimum TDI and substitutability index measured in 3.3.3. In this
process, the substitutable index is graded based on a three-point scale,
as shown in the following 3 steps. 1) Full competition: TDImin is
within 1 h, and the substitutable index is greater than 0.67. Not only
the departure times of HST and CT between these city pairs are close,
but also the frequency of substitutable trains is high; 2) Partial
competition: TDImin is within 1 h, and the substitutable index is
between 0.33–0.67 or TDImin is greater than 1 h but less than 2 h,
indicating that the degree of competition between HST and CT of
these city pairs is moderate; 3) Slight competition: TDImin is within
1 h, but the substitutable index is less than 0.33 or TDImin is greater
than 2 h but less than 4 h, which means that there is less competition
between HST and CT for these city pairs.

4 Results

4.1 Distribution of supply service intensity

As shown in Figure 3A, B, the HSR network has higher service
intensity and CR network covers a wider space. CR network serves
1,137 city pairs among all core cities, while HSR network only
includes 810 city pairs. The HSR network mainly connects cities
in the southeast of Hu Huanyong Line, with a daily average
frequency of 19.96. The CR network has a long distance feature,
which makes the average distance between city pairs reach
1276.22 km. But 76.67% of the city pairs have a relative strength
lower than 1. Generally speaking, the service intensity of the two
networks are both limited by the distance. The greater the distance
between cities, the lower the service intensity. However, there are city
pairs with large distance but high service intensity in both networks.
For example, the distance between Urumqi and Xi’an in CR network
exceeds 2,100 km, while there are still 16 traditional trains every day.
And the distance between Beijing and Shanghai in the HSRnetwork
is close to 1,100 km, while there are nearly 50 high-speed trains
every day.

The relative service intensity of HSR is more advantageous in the
south, while CR is more advantageous in the north. As shown in
Figure 3C, there are 412 OnlyCR city pairs, but their relative strength
is relatively low, and only 2 city pairs have RSL exceeding 2. Some
OnlyHSR city pairs have higher RSL, with Fujian-Xiamen having the
highest value, close to 5. For overlapping city pairs, the relative
intensity of the two services varies greatly, with 76.41% of them
having higher CR service intensity. According to the spatial
distribution of service intensity, we found that the high CR

Frontiers in Environmental Science frontiersin.org06

Zhang et al. 10.3389/fenvs.2023.1057812

363

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1057812


service city pairs represented by the green circles are generally
located in the northern region, while the high HSR service city
pairs represented by the red circles are generally located in the
southern region. In addition, some cities have very low HSR and CR
frequencies (shown by the yellow circles), indicating that these two
services work together to meet the transportation needs of these city
pairs.

For cities, the daily train service intensity of the two networks is
very different. On the whole, the average daily train frequency of
each city in CR network is 359.74, while the value of HSR is as
high as 872.92. Specifically, in CR network, the values of relative
service intensity in Zhengzhou, Beijing and Shijiazhuang are
greater than 2. In the HSRnetwork, the service intensity values
of Nanjing, Shanghai and Guangzhou are more than twice the
average. As shown in Figure 3D, compared with the CR network,
the relative intensity of cities in the HSR network are quite
different, with the most significant increase in Hefei and
Nanjing (green circle), while the most significant decrease in
Shenyang and Lanzhou (red circle). This means that the two rail
service levels are spatially unbalanced. Some cities represented by
the Yangtze River Delta region have better HSR services, while
some cities represented by the three northeastern provinces have
more advantages in CR services.

4.2 Time based quality of HST and CT services

The time structure of train operation reflects the quality
characteristics of supply service. The daily departure and arrival
rhythm of trains in HSR and CR networks are quite different.We
aggregated the number of departing and arriving HST(CT) per hour in
a day from the train schedule, as shown in Figures 4A, B. In HSR
network, the trend of departure and arrival rhythm changes with time
is the same, but the changing time nodes are different. The number of
HST departures and arrivals both surged from 6 a.m, and the peak
numbers were almost the same. The peak time of HST departure is 9:
00 a.m. to 17:00 p.m., while the peak time of HST arrival is 14:00 p.m.
to 22:00 p.m. The intersection of the two curves shows that the number
of HST departures is greater than the number of arrivals before 12:
00 during the day, while the opposite is true after 17:00 p.m. In CR
network, the departure number of CTs wavelike rises with time, while
the arrival number of CTs has the opposite trend. Unlike the HSR
network, CT has more arrivals than departures before 12:00 a.m. This
means that the service time of HSTs and CTs is different in a day, and
they are complementary to each other to a certain extent.

Considering the departure time and arrival time of trains between
city pairs, as shown in Figures 4C, D, the service levels of different train
types are very different. In the HSR network, G-type service is the

FIGURE 3
The spatial distribution of service intensity in CR network (A) and HSR network (B), and the comparison of RSL (C) and RST rank (D) between the two
railway modes.
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largest, accounting for 72.75%, and C-type service only accounts for
5.92%. However, the superior service proportion of G-type and C-type
are both about 90%, while that of D-type is only 82.85%. In the CR
network, K-type trains serve the most, accounting for 62.74%,
followed by Z-type trains. Type T has the best service quality, with
superior services accounting for 55.01%. Other-types trains are not
only the least in number but also the worst in service. In general, the
service quality of HST is much higher than that of CT. As there are few
high-speed trains running at night, most HST departure and arrival
times are located in superior service areas, making the proportion of
superior service as high as 88.33%. The superior service rate of CTs is
only 51.08%, which means that only half of CTs can provide
convenient boarding and alighting services for passengers.
However, for price-conscious passengers, HST’s superior service is
not attractive. Therefore, although the quantity and quality of CT
services are not dominant, it still has the potential to replace HST to a
certain extent.

For city pairs, the distribution of superior services in HST and
CT is very different. Figures 5A, B show the change in the number
and quality of services for city pairs with distance. In the HSR
network, the superior service rates of most city pairs are distributed
on both sides of the average, which means that the average can
reflect the overall situation. Most of the city pairs with RSL greater
than 1 have a higher proportion of superior service rates than the
average, which means that these city pairs with greater service

intensity also have higher service quality. In addition, citie pairs
with low service intensity also have the possibility of high service
quality. In the CR network, the city pairs with superior ratios of
0 and 1 account for 15.39% and 33.25%, respectively, so that the
average value cannot represent the general value. The proportion of
superior ratios in cities with greater service intensity is widely
distributed with RSL. For example, the superior CT ratio between
Beijing and Shijiazhuang is as high as 63.89%, while the value
between Tianjin and Shenyang is only 11.11%. We noticed that
although some city pairs are close in distance, their service intensity
and superior ratio are very small.

For cities, as shown in Figures 5C, D, the proportion of superior
ratios in the HSR network decreases slightly with the increase of RSL,
but this trend is more obvious in the CR network. However, the
proportion of HST and CT superior rates have nothing to do with the
size of the urban resident population. Cities are divided into 4 types
based on RSL and average quality rate. In the HSR network, among the
super cities, Shenzhen and Tianjin belong to high quantity and high
quality, while Chengdu and Chongqing belong to low quantity and
low quality. Suzhou, Hefei and Shijiazhuang, which belong to big
cities, also belong to high quantity and high quality. In the CR
network, although the central provincial capital cities of
Zhengzhou, Wuhan and Changsha have greater service intensity,
the superior service rates of them are lower than 40%. This means
that these cities have a large number of trains passing by due to their

FIGURE 4
Daily rhythme of HSTs (A) and CTs (B) and the service quality of HSTs (C) and CTs (D) for overlapping city pairs.
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FIGURE 5
Distribution characteristics of HST superior service (A) and CT superior service (B) with RSL at city pair level, and the distribution characteristics of HST
superior service (C) and CT superior service (D) with RST at city level.

FIGURE 6
Number distribution characteristic of city pairs of TDIave (A) and TDImin (B), and the average number of trains of TDIave (C) and TDImin (D).
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superior geographical location, but the departure or arrival times of
these trains are mostly during non-quality service time periods.

4.3 Interchangeability of superior HSTs
and CTs

This paper assumes that competition only occurs between
premium HST and CT services, that is, non-premium services
with similar departure times cannot substitute for premium
services. We calculate the time difference index between
superior HST and CT services for the same city pair, for a total
of 624 city pairs. Figure 6A shows that the number of city pairs in
the hourly interval of TDIave follows a normal distribution. The
number of city pairs with TDIave between 4 and 8 account for
72.87%, and these cities have a higher number of superior HST and
CT services (Figure 6C). This is because the train departure times of
high-frequency city pairs are widely distributed in the superior
time, resulting in a large time slot difference between HST and CT.
For city pairs with fewer train frequencies, if the TDIave is very
small, the departure time of HST and CT is relatively concentrated,
which will lead to greater competition. Conversely, if TDIave is
very large, it indicates that the departure times of HST and CT are
very scattered, and the two services have complementary effects
in time.

Different from TDIave, Figure 6B shows an exponential
distribution of the number of city pairs per hour in TDImin.The
proportion of city pairs with CT services before or within 1 h after
HST departure accounted for 59.71%. This suggests that superior
HST services in these city pairs are at risk of being replaced by CT
services at least once. The average superior HST and CT services of
city pairs with a TDImin of more than 4 h did not exceed 5 trains
(Figure 6D), indicating that the two rail services play a
coordinating and complementary role in the connection between
these city pairs. Combined with Figure 3, we found that the
endpoints of a few city pairs with TDImin over 10 h are not on
the same trunk line, such as Nanning-Hefei, Guangzhou-Jinan,
Changsha-Taiyuan and Tianjin-Lanzhou. In addition, the
departure time of the railway service between these city pairs
follows the mode of “HST in the morning, CT in the

evening”.In general, HST and CT services are more likely to
generate temporal substitutability on trunk lines and temporal
complementarity between non-trunk city pairs.

We further analyze the substitutability degree between
superior HST and CT services in city pairs with TDImin less
than 1 h. There are 372 city pairs, and they have 89.21% superior
HST services and 82.44% superior CT services, respectively.
Overall, 59.01% of these HST services can be replaced, while up
to 74.05% of these CT services are at risk of being replaced. For city
pairs, the degree of mutual substitution between HST and CT
services varies with the number of services and the distance
between city pairs. As shown in Figure 7A, the substitutability
of most city pairs with more than 150 superior HST services
exceeds 80%, indicating that these city pairs have fierce
competition for HST and CT. In addition, distant city pairs
generally have lower quality HST services, but the substitution
degree of them widely distributed between 0 and 1. As shown in
Figure 7B, there are 147 city pairs facing HST competition for all
superior CT services, accounting for 39.52% of the potential
competing pairs. They include not only short-distance high-CT
service city pairs, such as Beijing-Shijiazhuang, but also long-
distance low-CT service city pairs, such as Fuzhou-Xi’an. Only a
few city pairs with high CT service have low substitutability, such
as Lanzhou-Urumqi.

4.4 Types of supply-service relationships of
HSTs and CTs

According to the classification framework of 3.3.4, we obtain the
relationship types of HST and CT for 624 overlapping superior city
pairs, and the results are summarized in Table 2. Specifically, HST
services dominate 34.67% of the city pairs, significantly higher than the
number of city pairs dominated by CT services. The proportion of city
pairs with complementary coordination between HST and CT is
13.48%. In addition, 9.47% of the city pairs have fierce competition
between HST and CT services, and the city pairs with partial and slight
competition both account for about 20%. Figure 8 shows the
characteristics and spatial distribution of the three types of service
relationship patterns.

FIGURE 7
Distribution characteristics of substitutable degree of superior HST (A) and superior CT (B).
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4.4.1 City pairs dominated by a single service
As shown in Figures 8A, B, the spatial distribution of HST-

dominated and CT-dominated city pairs is very different. Spatially,
the city pairs dominated by HST are mainly concentrated between
cities along the eastern coast, southwest and the Yangtze River
Economic Belt. The average distance of these city pairs is the
smallest, only 698.73 km, and the average superior superior HST
reaches 43.50 frequencies per day. The C-type HSR provides high-
frequency connections between urban agglomerations. Typical city
pairs are Beijing-Tianjin in the Beijing-Tianjin-Hebei region,
Shanghai-Nanjing in the Yangtze River Delta, and Guangzhou-
Shenzhen in the Pearl River Delta. A few CT-dominated city pairs
are characterized by long distances and low frequencies, with an
average distance of 1417.38 km. Except for Urumqi-Lanzhou, the
frequency of superior CT per day in other cities does not exceed 8.
Typical city pairs are Tianjin-Guangzhou and Lanzhou-Guangzhou in
the north-south direction, Shanghai-Nanning and Shanghai-Lanzhou
in the east-west direction. We note that more than half of the CT-
dominant city pairs have Lanzhou as the endpoint.

4.4.2 Complementary coordination city-pairs
As shown in Figure 8C, the spatial range of coordinated

complementary city pairs is relatively wide, and also has the
characteristics of long distances. While the average premium HST
and CT for these city pairs were particularly low, the difference in
departure times for both rail services was more than 4 h. Typical city
pairs include Beijing-Lanzhou, Fuzhou-Chengdu, and Nanjing-
Changchun. For individuals, travelers in competing city pairs may
have different transportation options in the same time period, while
travelers in coordinated and complementary city pairs have more
choices of departure time within a day. This shows the importance of
considering the time factor when analyzing the competition of
different transportation modes, otherwise it would be impossible to
distinguish between low-frequency competition and coordination and
complementarity. For low-frequency competitive city pairs, the
railway department should coordinate the departure times of the
two railway services as much as possible when the train services
remain unchanged. For low-frequency coordinated and
complementary city pairs, the primary consideration is to increase
train frequency.

4.4.3 Competitive city-pairs
About half of the citie pairs have competitive relationship between

HSR and CR, and their competitive degree and spatial distribution are

very different. As shown in Figure 8D, the city pairs with full competition
are generally medium distance, with an average of 880.69 km, and the
average number of high quality HST is about twice that of CT. Among
them, a few city pairs are not only close to each other but also have high
train service frequency, such as those located in northeast China and the
Beijing-Tianjin-Hebei region. In addition, as a transit hub between
northwest China and central and eastern China, Xi’an -Lanzhou city
pair is also in full competition with high frequency. Partially and slightly
competitive city pairs were generally long distance (Figures 8E, F), but the
average distance was lower than that of coordinately coupled and CT-
dominated city pairs. In addition, the high quality train frequency of
partially competitive city pairs is higher than that of slightly competitive
city pairs, and the average number of high quality HST of both two types
is only slightly higher than that of CT. However, there are some
differences in the spatial distribution of these two types of
competition. Partially competitive city pairs generally end up with
cities in the central and western regions, especially Beijing, Tianjin,
Shijiazhuang and Zhengzhou. The slightly competitive city pairs
generally end in cities in the northern region, and some of them have
higher train frequency. Furthermore, those cities with low frequency and
low level of competition have potential coordination and cooperation re-
lations.

5 Discussion

This paper explores the relationship of supply services between
HSR and CR from a temporal perspective, extending the study of
railway systems from spatial to spatiotemporal perspective. The results
show that China’s HSR and CR services are spatially and temporally
differentiated, and have shown a certain complementary pattern, but
the two still have great potential for cooperation. Specifically, we divide
the service quality of HST and CT from the perspective of time, which
makes up for the lack of homogeneity of trains in different city pairs.
Since most of the HST departure and arrival times are in the superior
time period, the proportion of superior service is as high as 88.33%,
while that of CT is only 51.08%. This means that the previous measure
that only used train frequency to express strength has overestimated
the CR level of some cities to a certain extent. For example,
Zhengzhou, due to its superior geographical location, has the most
CTs services every day, but only 37.00% of them are provided with
superior services. Further, we found, HST and CT also have high-
frequency competition and low-frequency competition, similar to the
competition of HST and air (Wang et al., 2020b). In addition, HST and

TABLE 2 Summary of supply-service relationship of superior overlapping cities.

City pair types Counts Percent (%) Distance Superior HSTs/Day Superior CTs/Day

(km)

HST dominant 216 34.67 698.73 5.34 43.50

CT dominant 15 2.41 1417.38 6.87 1.27

Coordination and cooperation 84 13.48 1216.75 1.61 1.94

Full competition 59 9.47 880.69 10.36 21.90

Partial competition 131 21.03 1138.50 4.27 7.39

slightly competition 118 18.94 1137.35 3.87 5.65
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CT have cooperation potential not only in space (Huang and Zong,
2022), but also in time. This shows the importance of considering the
time factor when analyzing the relationship between services of
different transport modes.

Although the route length of HSR in China’s railway system is still
lower than that of CR, the service provided by HSR is much higher

than that of CR in terms of quantity and quality. Therefore, China has
entered the era of HSR, which is inseparable from the multi-faceted
policy support of the government (Li. H et al., 2021). On the one hand,
HST’s high-intensity service provides convenient conditions for
passengers to travel, gradually changing the public’s perception of
travel difficulties (Lee and Chang, 2006; Delaplace and Dobruszkes,

FIGURE 8
Spatial distribution of relationship types betweenHSR andCR: (A)HST dominated city pairs; (B)CT dominated city pairs; (C)Coordinated complementary
city pairs; (D) Fully competitive city pairs; (E) Partially competitive city pairs; (F) Slightly competitive city pairs.
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2015; Wei et al., 2017). As a result, more and more passengers choose
HST as their first choice for travel, and new travel behaviors are
constantly being born (Wang et al., 2019). On the other hand, HSR
provides opportunities for economic interaction between core cities
and provides transportation conditions for the creation of a unified
national economic market. At the same time, the HSR service of core
cities to surrounding small cities provides a guarantee for regional
integration.

For HSR, the current challenges come from two aspects. On the
one hand, due to the continuous impact of COVID-19, the
government’s control of travel behavior has greatly reduced
intercity interaction (Cai et al., 2021). For example, in the first half
of 2022, the net profit of Beijing-Shanghai Railway, which was the
most profitable in the past, has lost 1.028 billion yuan, a year-on-year
decrease of 137%. Another challenge comes from the fact that most of
the HSR stations are built far away from the city center, and the HSR
stations have insufficient driving force for the city. However, with the
country’s strict control of urban expansion, it is difficult to realize the
original intention of allowing HSR to drive urban development.

For CR in the HSR era, the impact is self-evident, but there are still
two opportunities. On the one hand, opportunities come from low-
and middle-income groups, i.e., price-sensitive but time-insensitive
travelers (Lee and Chang, 2006; Delaplace and Dobruszkes, 2015; Wei
et al., 2017). It is necessary to make full use of CT’s features of night
operation and low price to openmore trains with “starting at night and
arriving at morning.” So as to provide comfortable and affordable
services for long-distance cities, especially core cities of non-trunk
lines. On the other hand, opportunities come from cities with small
population and underdeveloped economy. From the perspective of
social equity, it is also necessary to open HST in these cities. However,
due to the high operation and maintenance costs of HSR, these cities
have limited access to HST services (Moyano and Dobruszkes, 2017).
Therefore, for cities that have opened HSR, the CT service should be
staggered by more than 4 h from the HST service as much as possible.
For city pairs without direct HSR, CR service should improve service
quality on the basis of satisfying service quantity.

Our findings have policy implications for the sustainable
development of both rail systems and cities. First, the method of
exploring the service relationship considering the quantity and quality
of trains can provide inspiration for the railway department to
improve the policy. Secondly, the results of this paper determine
the different modes of HST and CT supply service relationship
between core cities, which can provide some support for railway
dispatching optimization. For example, in the highly competitive
market, the railway department should pay more attention to the
service quality of HST and CT. In addition, the city pairs with low
frequency competition can be transformed into coordinated city pairs
by optimizing train dispatching. Third, this paper reveals the
advantages and disadvantages of the core cities in different aspects
of railway services, which helps to determine the city’s position and
formulate development strategies. For example, although CR services
have certain advantages in the three northeastern provinces, their
proportion of superior services is lower than the average of all cities.

6 Conclusion

The rapid development of HSR not only shortens the time and space
distance, but also affects the market share of other intercity

transportation. As the future development direction of integrated
transportation network, in-depth study of the competition and
cooperation mode between HSR and other modes is a very
important research issue for regional development and transportation
optimization. Previous studies mostly analyzed the similarities and
differences of different transportation modes from a spatial
perspective, while the research on the relationship between multiple
transportation modes from a time perspective was insufficient. This
paper takes China’s core cities as the research object, and interprets the
relationship between HSR and CR supply services from the perspective
of time and space, so as to better understand the operation strategy of the
railway passenger transport system. Specifically, the HSR network has
higher service intensity and is more advantageous in the south, and the
CR network covers a wider range of space and has an advantage in the
north. Due to the fact that there are few high-speed trains at night, the
proportion of HST superior services is as high as 88.33%. And only half
of the CTs can provide passengers with superior pick-up and drop-off at
the same time. Additionally, 59.01% of HST services can be replaced,
while up to 74.05% of CT services are at risk of being replaced. Spatially,
HST and CT services are more likely to generate temporal substitution
on themainline and temporal complementarity between city pairs on the
non-mainline.

In conclusion, based on the difference in operating time between
HST and CT, we found that in addition to being competitive, they are
complementary in terms of time to a certain extent. What we
emphasize is the importance of time competition and cooperation
between the two railway supply services to ease the pressure on
passenger flow and achieve social equity. However, our study has at
least two limitations. On the one hand, due to the availability of data,
we cannot obtain the exact number of seats purchased between city
pairs. In this study, we considered the train capacity of different
trains and the same train in different city pairs to be homogeneous.
At present, the allocation of seat tickets in China is dynamic, and
more trains can represent more actual seats to a certain extent.
Therefore, the limitations of the data do not affect the validity of our
conclusions. On the other hand, we assume that passenger
preferences in different cities are consistent, that is, the demands
for HST and CT are the same. Due to the differences in the
economies of different regions, the proportions of time-sensitive
and price-sensitive passengers are actually different. To understand
the supply relationship between the two railway modes from the
perspective of passengers, a large-scale survey is needed to
distinguish passenger preferences in different regions, so as to
better realize the rational allocation of HST and CT services. In
short, our research only discusses the time differences and
similarities between HSR and CR in China from the perspective
of suppliers. In short, our study only explores the differences and
similarities of train services between HSR and CR in China from a
temporal perspective. Due to China’s vast geographical scope and
differences in economic development, it is necessary to conduct in-
depth research on the relationship between HSR and CR from
different perspectives and data.
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