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C1QTNF6 is a Prognostic Biomarker
and Related to Immune Infiltration and
Drug Sensitivity: A Pan-Cancer
Analysis
Wei Liu†, Jian Zhang†, Tao Xie†, Xiaoting Huang, Baiyao Wang, Yunhong Tian* and
Yawei Yuan*

Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China

Background: The discovery of reliable cancer biomarkers could tune a diagnosis and
improve the way patients are treated. However, many cancers lack robust biomarkers.
C1QTNF6 has been preliminarily elucidated for its role in some tumors. However, no pan-
cancer analysis has been performed to comprehensively explore the value of C1QTNF6.

Methods: Data from the TCGA database, GTEx database stored in the USUC Xena were
used for analyzing the profiles ofC1QTNF6 expression in normal and tumor tissues in pan-
cancer. Subsequently, the gene alteration rates of C1QTNF6 were acquired on the online
web cBioportal. With the aid of the TCGA data, the association between C1QTNF6mRNA
expression and copy number alterations (CNA) and methylation was determined. Survival
analyses of C1QTNF6were carried out. Moreover, the tumor biological and immunological
characteristics of C1QTNF6 were clarified in the forms of the correlation between
C1QTNF6 expression and hallmark Pathway scores in MsigDB database, immune cell
infiltration, immune-related genes. We conducted a GSEA of C1QTNF6 to illustrate its
potential biological functions. In addition, GDSC2 data with 198 drugs were adopted to
explore drug sensitivity with the change of C1QTNF6 expression.

Result: C1QTNF6 was overexpressed in many types of cancer, Survival analysis showed
that C1QTNF6 independently served as a prognostic indicator for poor survival in many
tumors. Besides, we also identified a positive correlation between C1QTNF6 and cancer
hallmark pathway score, tumor microenvironment related pathways score (TMEp score),
and immune characteristic. In terms of drug sensitivity analysis, we found higher
expression level of C1QTNF6 predicts a high IC50 value for most of 198 drugs which
predicts drug resistance.

Conclusions: Our study provides a new biological marker for pan-cancer, which is
beneficial to the diagnosis and treatment of cancer, which bring a new therapeutic target
for tumors.
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INTRODUCTION

At present, cancer remains a hindrance in the field of medicine
(Hausman, 2019). Compared to normal cells, cancer cells have
several unique hallmarks, including unlimited replication,
overactivation of growth signals, resistance to cell death, immune
re-editing, and metabolic reprogramming (Hanahan and Weinberg,
2011;Macheret andHalazonetis, 2015). These changes are the result of
mutations in a variety of genes, including proto-oncogenes and
suppressor genes (Kroemer and Pouyssegur, 2008; Park et al.,
2020). We hypothesized that these genes may serve as viable
therapeutic targets in cancer treatment. Targeted therapies such as
BRAF inhibitors and VEGF inhibitors have achieved initial efficacy in
the treatment of diverse solid tumors (Davies et al., 2002; Carmeliet,
2005). Besides, immunotherapy based on PD-1/PD-L1 or CTLA-4
mutations offers hope for advanced tumors (Ai et al., 2020; Han et al.,
2020). However, unfortunately, a significant proportion of patients are
less sensitive to targeted therapy or immunotherapy (Qin et al., 2019).
Therefore, there is an urgent need for new biomarkers to guide cancer
treatment.

Complement C1q Tumor Necrosis factor-related Protein 6
(C1QTNF6) is an inflammation-related gene, which has been
preliminarily described to be related to the biological characteristics of
tumors (Wang et al., 2020). Zhang et al. found that C1QTNF6 regulates
proliferation and apoptosis of non-small cell lung cancer (NSCLC)
(Zhang and Feng, 2021). Takeuchi et al. found that C1QTNF6 regulates
angiogenesis and apoptosis in hepatocellular carcinoma through the Akt
pathway (Takeuchi et al., 2011). Therefore,C1QTNF6might perform an
integral function in tumor progression. Nevertheless, no pan-cancer
analysis has been performed to comprehensively demonstrate the value
of C1QTNF6 in multiple cancers.

In recent years, the establishment of several large public databases
has greatly promoted the development of bioinformatics. TCGA and
GTExdatabases are among themost used databases (Blum et al., 2018).
By analyzing cancer transcriptome data and clinical data, we can screen
for meaningful biomarkers to assess patient prognosis or guide
treatment.

Here, bioinformatics analysis was conducted for the purpose of
comprehensively examining the significance of C1QTNF6 in pan-
cancer by combining GTEx and TCGA data. Our results can provide
a robust prognostic marker for multiple cancers. The expression level
of C1QTNF6, as well as its prognostic significance in pan-cancer, was
explored. We further found the role of C1QTNF6 in the tumor
microenvironment (TME), including the correlation between
C1QTNF6 and the immunosuppressive genes, immune cell
infiltration score, chemokines, and chemokine receptors. It is
worth noting that increased C1QTNF6 expression indicates greater
drug resistance. Taken together, our research can also provide a
reference for the understanding of the cancer-immune
microenvironment and cancer therapies.

MATERIALS AND METHODS

Data Download and Expression Analysis
RNA-sequencing samples of the Genotype-Tissue Expression
(GTEx) and The Cancer Genome Atlas (TCGA) were acquired

through UCSC Xena in TCGA TARGET GTEx columns (https://
xena.ucsc.edu). We downloaded the methylation data and DNA
copy number data from cBioportal dataset (https://www/
cbioportal/org/). The differences in the expression levels
between tumors and normal tissues were assessed by means of
the T-test, and a p-value of less than 0.05 denoted a significance.
The analysis was conducted with the help of R software.

Gene Mutation Analysis and Methylation
Analysis
First, mutation analysis was performed on the cBioportal online web.
On the website, the gene was selected as C1QTNF6, and the object of
analysis was set as “TCGAPan-Cancer Atlas”. The frequency analysis
of C1QTNF6 alteration in each cancer was obtained. The cBioPortal
database was utilized for the purpose of acquiring Copy number
alterations (CNA) and methylation data, while methylation data are
from the HM450 types, both the association between the C1QTNF6
expression and the CNA and methylation were calculated the
Pearson’s correlation coefficients.

Survival Analysis
Next, a univariate Cox regression was performed to explore the
prognostic significance of C1QTNF6 in pan-cancer. We also
analyzed the progression-free interval (PFI), disease-free
interval (DFI), disease-specific survival (DSS), and overall
survival (OS). Meanwhile, univariate cox regression and
multivariate Cox regression analysis of C1QTNF6 and other
cliniacal features were carried out in tumors where C1QTNF6
was an independent prognostic indicator. The R package
“Survminer” was used for analysis (Biecek, 2020).

Analysis of C1QTNF6 in Tumor
Microenvironment
The MsigDB database contains 50 hallmark Pathway datasets.
First, Combining the RNA-seq data of 33 cancers and a single-
sample gene set enrichment analysis (ssGSEA) algorithm utilizing
GSVA packages (Hänzelmann et al., 2013), we quantified the
score of each cancer hallmark. The immune characteristic
parameters including ImmuneScore, StromalScore, and
ESTIMATEScore of each cancer were calculated by the
“ESTIMATE” R package (Verhaak, 2016). We adopted the
algorithm that is published in Nature journal and “prcomp”
packages to calculate the tumor microenvironment pathways
score (TMEp score). The immueCellAI database was utilized
for the purpose of acquiring the scores of infiltrating immune
cells from the TCGA pan-cancer (http://bioinfo.life.hust.edu.cn).
A total of 33 cancers were studied for their gene expression levels
of chemokines, chemokine receptors, and immunosuppressive
genes. After obtaining the above scores as well as the immune-
associated genes expression level (chemokines, chemokine
receptors, and immunosuppressive genes) of each tumor, we
used the “corrplot” R package (Simko, 2021) to calculate the
correlation between C1QTNF6 and above scores and immune-
related genes expression, and used the “ggplot2” package to draw
the correlation heat map (Wickham, 2016).
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FIGURE 1 | C1QTNF6 profile in pan-cancer. (A) Integrated GTEx database and TCGA database revelation of C1QTNF6 expression across normal and tumor
tissues. (B) According to the TCGA data, the levels of C1QTNF6 in corresponding tumors and normal tissues varied across various cancers. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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Gene Set Enrichment Analysis of C1QTNF6
in Pan-Cancer
GSEA was launched to explore the potential biological functions
of C1QTNF6 in the tumor process by using “clusterProfiler” (Yu
et al., 2012), The top 20 significant pathways of C1QTNF6 were
obtained in each cancer, we showed GSEA plots of the 8 cancers
with the largest proportion of immune pathways with the help of
“ggridges” packages (Wilke, 2021).

Drug Sensitivity Analysis
We explored the relationship between gene expression and drug
sensitivity from the GDSC2 database (https://www.cancerrxgene.
org/). Subsequently, Spearman- correlation analysis was
employed for the purpose of investigating the correlation
between drugs and C1QTNF6 expression level, and the drugs
with the top 6 strongest positive correlation and the top 6
strongest (only 6) negative correlation were displayed
respectively. Next, we analyzed the difference in sensitivity
between the low- and high-expression group (according to the
median value of C1QTNF6) to 9 commonly used anticancer
drugs, we assessed the sensitivity difference by the Kruskal-
Wallis rank-sum test (p < 0.05).

RESULTS

The Expression of C1QTNF6 in Pan-Cancer
C1QTNF6 was differentially expressed in 26 cancers in the TCGA
cohort. The C1QTNF6 expression level was remarkably up-
regulated in 22 distinct types of tumors, including UCS,
CHOL, STAD, DLBC, SARC, GBM, PAAD, HNSC, LUSC,
KIRC, LUAD, KIRP, LIHC, LGG, LAML, ESCA, READ,
COAD, SKCM, BRCA, THYM, BLCA. C1QTNF6 was
significantly down-regulated in 4 tumors, including ACC,
KICH, PRAD, and THCA; The cancers in the gray box had
significant differences between tumor and normal tissues,
whereas cancers in the white box had no differences
(Figure 1A) Subsequently, paired expression analysis showed
C1QTNF6 was significantly up-regulated in the 13 kinds of
tumors, notably, KIRP, HNSC, LIHC, ESCA, LUAD, COAD,
KIRC, LUSC, CHOL, STAD, BRCA, THCA, BLCA. Paired
expression analysis showed that C1QTNF6 was solely
significantly down-regulated in KICH (Figure 1B).

Gene Mutation Analysis and Methylation
Analysis
First, analysis in the cBioportal database showed the alteration
frequency of C1QTNF6 in Pan-cancer. The results showed that
the alteration frequency of C1QTNF6 in uterine carcinosarcoma
was the highest, and the main type is the amplification mutation
(Figure 2A). Subsequently, we explored the association between
C1QTNF6 and copy number mutation (CNA) in pan-cancer. The
results showed that C1QTNF6 had a strong positive correlation
with CNA in CHOL, UCS, PCPG (Figure 2B). Then, we explored
the correlation between C1QTNF6 and methylation in

pan-cancer. The findings demonstrated that C1QTNF6
exhibited a positive correlation with methylation in LAML,
and a strong negative correlation with ACC and UVM, etc.
(Figure 2C).

Survival Analysis
Subsequently, we investigated the prognostic significance of
C1QTNF6 in pan-cancer. We also evaluated the overall
survival (OS, Figure 3A), disease-specific survival (DSS,
Figure 3B), disease-free interval (DFI, Figure 3C), and
Progression-free interval (PFI, Figure 3D), respectively.
Univariate Cox regression was used to eliminate the
confounding bias. First, in overall survival, C1QTNF6 was an
independent prognostic gene in KIRC, LUAD, LGG, KIRP, ACC,
UVM, MESO, LIHC, HNSC, KICH, BLCA, THCA, and UCEC.
Then, in the analysis of disease-specific survival, C1QTNF6 was
an independent prognostic gene in KIRC, LGG, LUAD, MESO,
KIRP, THCA, UVM, ACC, KICH, HNSC, LUSC, and LIHC.
Subsequent analysis of disease-free survival showed that
C1QTNF6 was an independent prognostic gene in UCEC,
KIRP, LUAD, PAAD, and PRAD. Finally, PFS analysis
showed that C1QTNF6 was an independent prognostic gene in
KIRC, PRAD, LGG, UVM, LUAD, KICH, ACC, MESO, KIRP,
UCEC, THCA, HNSC, and CESC. A value of Hazard ratio greater
than 1 indicates a risk prognostic factor, it is found that C1QTNF6
predicts poor survival in most cancers. At the same time,
univariate cox regression and multivariate cox regression
analysis of C1QTNF6 and clinical features were carried out in
tumors which suggest C1QTNF6 is independent prognostic factor
in OS analysis, the multicox result demonstrate that C1QTNF6 is
an independent factors associated with patients overall survival
time in KIRC, LUAD, LGG, KIRP, ACC, UVM, MESO, LIHC,
HNSC, which is generally consistent with the unicox results
(Supplementary Figures S1A–M). For instance, Univariate
Cox regression analysis showed that age,stage, C1QTNF6 were
significantely associated with the prognosis of ACC, Multivariate
Cox regression analysis showed that C1QTNF6 was an
independent factor after adjusted for other clinical
characteristic in ACC patients.

Correlation Between C1QTNF6 and Cancer
Pathway (Hallmark Pathway Sets)
The correlation between the expression level of C1QTNF6 and the
tumor pathway score was shown in Figure 4. We found that
C1QTNF6 is positively correlated with most cancer super-
pathways. Among these pathways, oncogenic pathways such as
angiogenesis and hypoxia showed a strong correlation with our
C1QTNF6 gene. A few pathways are negatively correlated with
C1QTNF6 expressions, such as Oxidative phosphorylation, fatty
acid metabolism, and bile acid metabolism pathways.

Correlation Analysis of C1QTNF6 and
Microenvironment Related Pathways
We found that C1QTNF6 was strongly correlated with TME
related pathways, such as EMT1, base excision, and mismatch
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FIGURE 2 | CNA and DNA methylation of C1QTNF6 in pan-cancer. (A) alteration frequency of C1QTNF6 in each cancer of TCGA. (B) C1QTNF6 expression and
DNA copy number correlation profile in each cancer of TCGA. The deeper red color means significant cancer types (p < 0.05). (C) correlations between C1QTNF6
expression and DNA methylation, the blue represented negatively correlated, and the red represented positively correlated.
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repair pathways correlated with the onset and progression of
cancer (Figure 5A). Additionally, the activation of these
pathways was highly correlated with the onset and progression

of cancer, and this was highly consistent with our results in
Figure 4. C1QTNF6 gene expression was also significantly
correlated with the immune checkpoint and CD8 T effector

FIGURE 3 | Univariate Cox regression analysis of C1QTNF6. The results were shown with a forest map for (A) OS; (B) DSS; (C) DFI; (D) PFI.
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pathways (Figure 5A). The correlation between C1QTNF6 and
the immune score is shown in Figure 5B. StromalScore,
Estimatescore, and immuneScore were all associated with
C1QTNF6. C1QTNF6 was found negatively correlated with
These findings show that C1QTNF6 could play a critical
function in the control of biological activity in the immune
milieu. Meanwhile, we explored the association between the

infiltration of immune cells and C1QTNF6 expression, and the
findings were demonstrated in Supplementary Figure S2. We
found the expression of C1QTNF6 was negatively correlated with
most immune cells, including B cell, Neutrophil, and CD8_T, and
positively correlated with Monocyte and Macrophage. Next,
GSEA was performed for the purpose of further examining the
association of various pathways, especially immune-related

FIGURE 4 | Heatmap for different hallmark pathway enrichment scores with C1QTNF6 expression level. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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pathways, with C1QTNF6 in pan-cancer. The first 20 related
pathways of GSEA are presented in the form of a mountain map,
and immune-related pathways are marked in red (Figures
6A–H). For instance, in UCS, C1QTNF6 was associated with
the immune system, cytokine pathways, antigen processing-
presentation, neutrophil degranulation, and interleukin
immunomodulatory responses. These results further illustrate
the important role of C1QTNF6 in immune regulation.

Correlation Between C1QTNF6 and
Immune-Related Genes
We further explored the correlation between the C1QTNF6 gene
and genes associated with immune cells in pan-cancer. The
results showed that C1QTNF6 exhibited a positive association
with most immunosuppressive genes, chemokines, and
chemokine receptor genes (Figures 7A–C). Among the
immunosuppressive genes, we found that the immune
checkpoints including LAG3, PDCD1, CTLA4, and TIGIT,
among the chemokines, there are CXCL12, CCL2, CCL26, and

in chemokine receptors, we exhibited the CCR1, CCR10,
CXCR4, etc.

Drug Sensitivity Analysis
A total of 198 drugs were identified as being associated with
C1QTNF6. We showed the 6 drugs (Figure 8A) with the strongest
positive correlation and the 6 drugs with the strongest negative
correlation (only 6 negative, Figure 8B). The drugs that were
identified to have positive correlation with C1QTNF6 were
namely AZD1208 (R = 0.21, p = 5.91E-09), Daprinad (R =
0.21, p = 4.09E-05), crizotinib (R = 0.2, p = 2.38E-08), Vorinostat
(R = 0.2, p = 2.17E-08), PD173074 (R = 0.19, p = 1.69E-07), and
MK-8776 (R = 0.19, p = 1.30E-07). In addition, six drugs were
identified to be negatively correlated with C1QTNF6, namely
Sapitinib (R = -0.17, p = 1.85E-06), Dasatinib e-05 (R = -0.15,
p = 4.22), Trametinib (R = 0.1, p = 0.0042), Osimertinib (R = -0.09,
p = 0.015), AZD8186 (R = -0.09, p = 0.017), and Selumetinib
(R = -0.07, p = 0.0495). The results of the complete drug
sensitivity analysis were presented in Supplementary Table
S1. The commonly used anticancer drug in clinical treatment

FIGURE 5 | Tumor microenvironment role of C1QTNF6. (A) The correlations between the C1QTNF6 expression level and TMEp scores. (B) the correlations
between the C1QTNF6 express level and ImmuneScore, StromalScore, and ESTIMATEscore. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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including Oxaliplatin, Cyclophosphamide, Cytarabine,
Cisplatin, Cytarabine, Vinorelbine, Sorafenib, Docetaxel,
and Fluorouracil were all less effective (higher IC50 value)
in High expression of C1QTNF6 groups (Supplementary
Figure S3).

DISCUSSION

With the development of high-throughput bioinformatics, people’s
understanding of genes or genomes has reached a new level.
Exploration of molecular characterization of disease and
individual genetic composition can facilitate clinical scientists to
diagnose and treat the disease, which also facilitates the
development of drug research and development, especially in
cancer research. The discovery of a few genetic biomarkers has
limited aid in the diagnosis and treatment of cancer, and identifying
more biomarkers or combinations of biomarkers is increasingly
important. In this study, we explore the role of C1QTNF6 with
comprehensive means using TCGA pan-cancer data.

Many studies have preliminarily elucidated the role of
C1QTNF6 in cancer. Qu et al. found that C1QTNF6 is
involved in promoting the proliferation and migration of
gastric cancer cells and reducing apoptosis of gastric cancer
cells (Qu et al., 2019). Han et al. found that C1QTNF6 may be
an independent prognostic factor for lung adenocarcinoma (Han
et al., 2019). Song et al. discovered that C1QTNF6 stimulates

proliferation and attenuated apoptosis in oral squamous cell
carcinoma (Song et al., 2021). Therefore, C1QTNF6 might serve
an instrumental function in the occurrence and progression of
cancer. However, there has not been a comprehensive analysis of
the significance of C1QTNF6 in cancer.

We evaluated the C1QTNF6 expression level in pan-cancer
data and discovered that C1QTNF6 is overexpressed in many
types of cancer, such as LGG, LAML, LIHC, KIRP, LUAD, KIRC,
LUSC, HNSC, PAAD, GBM, READ, ESCA, SARC, DLBC,
SKCM, COAD, STAD, CHOL, THYM, BRCA, UCS, BLCA.
Therefore, monitoring the expression level of C1QTNF6 may
be an effective diagnostic method for these cancers. Subsequently,
the mutation analysis found that the alteration frequency of
C1QTNF6 in uterine carcinosarcoma was the highest.
C1QTNF6 had a strong positive correlation with CNA in
CHOL, UCS, and PCPG. This enriched our understanding of
the functionality of C1QTNF6. Survival analysis showed that
C1QTNF6 was an independent prognostic indicator for many
tumors. Patient prognosis could be improved to a great extent as a
result of this discovery. Analysis of the immune
microenvironment revealed the role of C1QTNF6 in the
immune environment including immune-related gene and
immune cells infiltration. The final drug sensitivity analysis
provided the strongest association with C1QTNF6. This
provides an idea for targeting C1QTNF6 therapy.

Our study found that C1QTNF6 is associated with a variety of
classical pathways in many tumors, including epithelial-

FIGURE 6 | C1QTNF6’s GSEA results in TCGA pan-cancer. (A–H) The most 20 related pathways of GSEA are presented in the form of a mountain map, and
immune-related pathways are marked in red.
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mesenchymal transformation (EMT), angiogenesis, apical
junction, TGF-β signaling pathway, hypoxia, and Notch
pathway. For instance, C1QTNF6 had a significant correlation
with EMT and angiogenesis. EMT has been widely recognized as
a pathway through which cancer cells acquire malignant
biological functions (Lamouille et al., 2014; Dongre and
Weinberg, 2019). Through EMT, the potential of cancer cells
to proliferate, invade and migrate is activated (Owusu-Akyaw
et al., 2019; Pastushenko and Blanpain, 2019). In addition, EMT
has been linked to drug resistance in many tumors (Du and Shim,
2016). Therefore, our study found a strong correlation between
C1QTNF6 and EMT, which could explain the poor prognosis
after overexpression of C1QTNF6 in many tumors. Angiogenesis
which is one of the hallmarks of tumors is also necessary for
tumor proliferation and invasion (Ramjiawan et al., 2017; Li et al.,
2019). At present, antiangiogenic drugs have achieved preliminary
results in the treatment of diverse solid tumors, but a considerable
number of patients lack the persistent response of antiangiogenic
drugs. Besides, our study found a significant positive correlation
between C1QTNF6 and angiogenesis, which is of reference value for
us to further explore the mechanism of tumor angiogenesis and
develop new therapeutic methods. In addition, TFN-ɑ SIGNALING
VIA NFK-β and IL2 STAT5 SIGNALING also showed a strong
relationship with the C1QTNF6 gene. The biological activity of IL2
is related to T cell activation, CD8+ cytotoxicity, B cell activation,
and the antitumor effects of enhanced macrophages, which all have
been widely reported (Abbas et al., 2018).

Immune reprogramming is one of the hallmarks of cancer.
Several therapies based on cancer immunity have been used
clinically, such as immune checkpoints (Zhou et al., 2021). For
instance, results of the bladder cancer clinical trial BLASST-1
showed that Nivolumab (Opdivo) in combination with
gemcitabine and cisplatin neoadjuvant therapy in patients with
muscle-infiltrating bladder cancer (MIBC) achieved a significant
effect: a pathology complete response rate (pCR) of 49% (Gupta
et al., 2020). Therefore, identifying the changes in the cancer-
immune microenvironment not only helps us understand the
pathogenesis of cancer but also promotes the development of
cancer immunotherapy (Huang et al., 2018). According to the
findings of the present research, C1QTNF6 serves a prominent
function in the immune milieu of cancer cells. It is significantly
linked to diverse immune pathways and immune components. In
the TME, stromal and immune cells are the two most crucial
kinds of non-tumor constituents, and both have been considered
to play a crucial role in the diagnosis and prognostic evaluation of
cancers. In tumors, immune and stromal scores can be used to aid
in the quantification of immunological and stromal components
that are present (Bruni et al., 2020). C1QTNF6 shows a great
correlation with the ESTIMATEscore, StromalScore, and
ImmuneScore. Besides, C1QTNF6 is obviously correlated with
many immune checkpoints including LAG3, PDCD1, CTLA4,
which suggested that C1QTNF6 may act as a new immune
checkpoint for tumor immunity. Meanwhile, our results show
that C1QTNF6 also have markable relation with chemokines and
chemokines receptor such as CCL22, CCL5, etc. CCL22 secreted
by the M2 macrophages may recruit Treg T cells, which
suppressed the immune response (Atri et al., 2018). CCL5 is a

FIGURE 7 | C1QTNF6 is correlated with immune-associated genes.
The heatmap demonstrating the correlation between the C1QTNF6
expression level and (A) immunosuppressive genes. (B) chemokine
genes. (C) chemokine receptors. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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FIGURE 8 | Drug sensitivity analysis in the form of correlation chart calculated by online tool GDSC2. (A) The top 6 positively correlated. (B) The only 6 negatively
correlated.
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key chemokine for CD8+ T cells to enter tumor cells (Dangaj
et al., 2019). C1QTNF6 shows a significant association with the
infiltration of monocyte, Macrophage, B cells, Monitoring the
C1QTNF6 expression may reflect the degree of infiltration of
these immune cells, it is noteworthy that C1QTNF6 is not
manifest a strong correlation to all the immune cells because
the activation, chemotaxis, and infiltration of immune cells are
regulated by gene networks, especially in pan-cancer analysis. The
above results indicate that C1QTNF6 has significance for further
exploration in immune regulation in the tumor
microenvironment. These findings were further validated by the
GSEA and correlation exploration betweenC1QTNF6 and immune
cells. In the drug sensitivity analysis, we found higher C1QTNF6
expression in tumors indicates a higher IC50 value for most drugs
in the GDSC2 database, which shows the measurement of
C1QTNF6 expression level may act as a reliable indicator for
clinical therapy. P-gp, a well-known multidrug resistance
protein, encoded by MDR1, it serve as medicine pump by
reverse the concentration of lipophilic drugs with positive
charge inside the cell to the outside of the cell, so that the
intracellular chemotherapy drugs can not reach the effective
concentration and develop drug resistance (Robey et al., 2018).
In non-small-cell-lung cancer, MET amplification is thought to be
responsible for resistance to targeted drugs in EGFR-mutation-
positive patients, which results in malignant biological behavior of
tumors, such as invasion, metastasis, escape from apoptosis
(Coleman et al., 2021). Combining with the C1QTNF6
expression and its drug sensitivity analysis (positively correlated
and negatively correlated), we may establish risk stratification for
cancer patients, which optimize the development and application
of anti-cancer drugs. These findings suggest that C1QTNF6may be
a potential target for cancer therapy, which make contribution to
study the mechanisms of anti-cancer drugs resistance.

Cancer immunotherapy has recently been in full swing.
Effective identification of potential tumor antigens has
contributed to the development of immunotherapy. These
tumor antigens are often associated with more copy number
mutations or methylation changes. Our study provides the
mutation landscape of C1QTNF6 in pan-cancer and the
correlation landscape with copy number variation and
methylation. Furthermore, we identified a correlation between
C1QTNF6 and chemokine receptors. All these results provide a
reference that C1QTNF6 can be used not only as an indicator of the
TME, but also as a highly effective indicator of immune indicators.

Overall, our study is the first pan-cancer analysis of C1QTNF6.
Compared with other studies, our study provided a landscape of
the prognosis and immunity correlation of C1QTNF6 in a variety
of cancers, which is conducive to the precise treatment of cancer.
However, there are also limitations in our study. We lack
experiments to verify our conclusions, which we will improve
in the future.

CONCLUSION

Overall, we identified the value of C1QTNF6 in pan-cancer by
multiple analyses. C1QTNF6, as a promising prognostic

biomarker, manifests its promising prospect in
immunoregulation and a potential target for tumor therapy.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: This study used online resources, which are
available from the TCGA database, GTEx through USUC Xena at
https://xena.ucsc.edu, the cBioportal database at http://www.
cbioportal.org/, and GDSC2 at https://www.cancerrxgene.org/.

AUTHOR CONTRIBUTIONS

WL, JZ, and TX conceived the study. WL wrote the paper and drew
the figures. The data were evaluated by BW and XH. YT and YY
edited and reviewed the manuscript. YY and XH were in charge of
sourcing the necessary funds. All the authors made significant
contributions to the present research and gave their approval to
the final version of the manuscript submitted for publication.

FUNDING

This work was supported by the Guangzhou Science and
Technology Plan Project (grant number 202102020034) and
the National Natural Science Foundation of China (grant
number 81773354).

ACKNOWLEDGMENTS

We would like to thank the Cancer Genome Atlas (TCGA)
working groups for kindly sharing data. We also thank R
Development Core Team and the R community (http://www.r-
project.org) for the time and effort they put into creating and
optimizing R.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2022.855485/
full#supplementary-material

Supplementary Figure S1 | Univariate cox regression and multivariate cox
regression analysis of C1QTNF6 and other clinical features in KIRC, LUAD, LGG,
KIRP, ACC, UVM, MESO, LIHC, HNSC, KICH, BLCA, THCA, UCEC.

Supplementary Figure S2 | Correlation between the expression of C1QTNF6
and the infiltrating levels of immune cell. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.

Supplementary Figure S3 |Drug sensitivity of commonly used anti-cancer drugs in
clinical use in the forms of boxplot charts calculated by online tool GDSC2. (A–I)
Oxaliplatin, Cyclophosphamide, Cytarabine, Cisplatin, Cytarabine, Vinorelbine,
Sorafenib, Docetaxel, Fluorouracil.

Supplementary Table S1 | Drug sensitivity differences according to the C1QTNF6
expression of all the 198 drugs in the GDSC2 database.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 85548512

Liu et al. A Pan-Cancer Analysis of C1QTNF6

16

https://xena.ucsc.edu
http://www.cbioportal.org/
http://www.cbioportal.org/
https://www.cancerrxgene.org/
http://www.r-project.org/
http://www.r-project.org/
https://www.frontiersin.org/articles/10.3389/fphar.2022.855485/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2022.855485/full#supplementary-material
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


REFERENCES

Abbas, A. K., Trotta, E., R Simeonov, D., Marson, A., and Bluestone, J. A. (2018).
Revisiting IL-2: Biology and Therapeutic Prospects. Sci. Immunol. 3, 3. doi:10.
1126/sciimmunol.aat1482

Ai, L., Xu, A., and Xu, J. (2020). Roles of PD-1/pd-L1 Pathway: Signaling, Cancer, and
beyond. ADV. EXP. MED. BIOL. 1248, 33–59. doi:10.1007/978-981-15-3266-5_3

Atri, C., Guerfali, F. Z., and Laouini, D. (2018). Role of Human Macrophage
Polarization in Inflammation during Infectious Diseases. INT. J. MOL. SCI. 19,
19. doi:10.3390/ijms19061801

Biecek, A. K. A. M. (2020). Survminer: Drawing Survival Curves Using ‘ggplot2’.
Available at: https://CRAN.R-project.org/package=survminer.

Blum, A., Wang, P., and Zenklusen, J. C. (2018). SnapShot: TCGA-Analyzed
Tumors. CELL 173, 530. doi:10.1016/j.cell.2018.03.059

Bruni, D., Angell, H. K., and Galon, J. (2020). The Immune Contexture and
Immunoscore in Cancer Prognosis and Therapeutic Efficacy. NAT. REV.
CANCER 20, 662–680. doi:10.1038/s41568-020-0285-7

Carmeliet, P. (2005). VEGF as a KeyMediator of Angiogenesis in Cancer.Oncology
69, 4–10. doi:10.1159/000088478

Coleman, N., Hong, L., Zhang, J., Heymach, J., Hong, D., and Le, X. (2021). Beyond
Epidermal Growth Factor Receptor: MET Amplification as a General
Resistance Driver to Targeted Therapy in Oncogene-Driven Non-small-cell
Lung Cancer. ESMO Open 6, 100319. doi:10.1016/j.esmoop.2021.100319

Dangaj, D., Bruand, M., Grimm, A. J., Ronet, C., Barras, D., Duttagupta, P. A., et al.
(2019). Cooperation between Constitutive and Inducible Chemokines Enables
T Cell Engraftment and Immune Attack in Solid Tumors. CANCER CELL 35,
885–e10. doi:10.1016/j.ccell.2019.05.004

Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002).
Mutations of the BRAF Gene in Human Cancer. NATURE 417, 949–954.
doi:10.1038/nature00766

Dongre, A., and Weinberg, R. A. (2019). New Insights into the Mechanisms of
Epithelial-Mesenchymal Transition and Implications for Cancer.Nat. Rev. Mol.
Cell Biol. 20, 69–84. doi:10.1038/s41580-018-0080-4

Du, B., and Shim, J. S. (2016). Targeting Epithelial-Mesenchymal Transition
(EMT) to Overcome Drug Resistance in Cancer. MOLECULES 21, 21.
doi:10.3390/molecules21070965

Gupta, S., Sonpavde, G., Christopher, J. W., McGregor, B. A., Gupta, S., and
Maughan, B. L. (2020). Results from BLASST-1 (Bladder Cancer Signal Seeking
Trial) of Nivolumab, Gemcitabine, and Cisplatin in Muscle Invasive Bladder
Cancer Undergoing Cystectomy. J. Clin. Oncol. 38. ASCO GU.

Han, M., Wang, B., Zhu, M., and Zhang, Y. (2019). C1QTNF6 as a Novel
Biomarker Regulates Cellular Behaviors in A549 Cells and Exacerbates the
Outcome of Lung Adenocarcinoma Patients. In Vitro Cell Dev. Biol. Anim. 55,
614–621. doi:10.1007/s11626-019-00377-w

Han, Y., Liu, D., and Li, L. (2020). PD-1/PD-L1 Pathway: Current Researches in
Cancer. AM. J. CANCER RES. 10, 727–742.

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of Cancer: the Next
Generation. CELL 144, 646–674. doi:10.1016/j.cell.2011.02.013

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: Gene Set Variation
Analysis for Microarray and RNA-Seq Data. BMC BIOINFORMATICS 14, 7.
doi:10.1186/1471-2105-14-7

Hausman, D. M. (2019). What Is Cancer? PERSPECT. BIOL. MED. 62, 778–784.
doi:10.1353/pbm.2019.0046

Huang, Y., Kim, B. Y. S., Chan, C. K., Hahn, S. M., Weissman, I. L., and Jiang, W.
(2018). Improving Immune-Vascular Crosstalk for Cancer Immunotherapy.
NAT. REV. IMMUNOL. 18, 195–203. doi:10.1038/nri.2017.145

Kroemer, G., and Pouyssegur, J. (2008). Tumor Cell Metabolism: Cancer’s Achilles’
Heel. CANCER CELL 13, 472–482. doi:10.1016/j.ccr.2008.05.005

Lamouille, S., Xu, J., and Derynck, R. (2014). Molecular Mechanisms of Epithelial-
Mesenchymal Transition. Nat. Rev. Mol. Cell Biol. 15, 178–196. doi:10.1038/
nrm3758

Li, S., Xu, H. X., Wu, C. T., Wang, W. Q., Jin, W., Gao, H. L., et al. (2019).
Angiogenesis in Pancreatic Cancer: Current Research Status and Clinical
Implications. ANGIOGENESIS 22, 15–36. doi:10.1007/s10456-018-9645-2

Macheret, M., and Halazonetis, T. D. (2015). DNA Replication Stress as a Hallmark of
Cancer.Annu. Rev. Pathol. 10, 425–448. doi:10.1146/annurev-pathol-012414-040424

Owusu-Akyaw, A., Krishnamoorthy, K., Goldsmith, L. T., and Morelli, S. S. (2019).
The Role of Mesenchymal-Epithelial Transition in Endometrial Function.
HUM. REPROD. UPDATE 25, 114–133. doi:10.1093/humupd/dmy035

Park, J. H., Pyun, W. Y., and Park, H. W. (2020). Cancer Metabolism: Phenotype,
Signaling and Therapeutic Targets. CELLS 9, 2308. doi:10.3390/cells9102308

Pastushenko, I., and Blanpain, C. (2019). EMT Transition States during Tumor
Progression andMetastasis. Trends. CELL BIOL. 29, 212–226. doi:10.1016/j.tcb.
2018.12.001

Qin, W., Hu, L., Zhang, X., Jiang, S., Li, J., Zhang, Z., et al. (2019). The Diverse
Function of PD-1/PD-L Pathway beyond Cancer. FRONT. IMMUNOL. 10,
2298. doi:10.3389/fimmu.2019.02298

Qu, H. X., Cui, L., Meng, X. Y., Wang, Z. J., Cui, Y. X., Yu, Y. P., et al. (2019).
C1QTNF6 Is Overexpressed in Gastric Carcinoma and Contributes to the
Proliferation andMigration of Gastric Carcinoma Cells. INT. J. MOL. MED. 43,
621–629. doi:10.3892/ijmm.2018.3978

Ramjiawan, R. R., Griffioen, A. W., and Duda, D. G. (2017). Anti-angiogenesis for
Cancer Revisited: Is There a Role for Combinations with Immunotherapy?
ANGIOGENESIS 20, 185–204. doi:10.1007/s10456-017-9552-y

Robey, R. W., Pluchino, K. M., Hall, M. D., Fojo, A. T., Bates, S. E., and Gottesman,
M. M. (2018). Revisiting the Role of ABC Transporters in Multidrug-Resistant
Cancer. NAT. REV. CANCER 18, 452–464. doi:10.1038/s41568-018-0005-8

Simko, T. W. A. V. (2021). R Package ‘corrplot’: Visualization of a Correlation
Matrix (Version 0.90). Available at: https://github.com/taiyun/corrplot.

Song, X., Li, L., Shi, L., Liu, X., Qu, X., Wei, F., et al. (2021). C1QTNF6 Promotes
Oral Squamous Cell Carcinoma by Enhancing Proliferation and Inhibiting
Apoptosis. CANCER CELL INT. 21, 666. doi:10.1186/s12935-021-02377-x

Takeuchi, T., Adachi, Y., and Nagayama, T. (2011). Expression of a Secretory
Protein C1qTNF6, a C1qTNF Family Member, in Hepatocellular Carcinoma.
Anal. Cell Pathol (Amst) 34, 113–121. doi:10.3233/ACP-2011-009

Verhaak, K. Y. A. H. (2016). Estimate: Estimate of Stromal and Immune Cells in
Malignant Tumor Tissue from Expression Data. Available at: https://R-Forge.
R-project.org/projects/estimate/.

Wang, J., Zhu, M., Ye, L., Chen, C., She, J., and Song, Y. (2020). MiR-29b-3p
Promotes Particulate Matter-Induced Inflammatory Responses by Regulating
the C1QTNF6/AMPK Pathway. Aging (Albany NY) 12, 1141–1158. doi:10.
18632/aging.102672

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York.

Wilke, C. O. (2021). Ggridges: Ridgeline Plots in ‘ggplot2’.
Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R Package for

Comparing Biological Themes Among Gene Clusters. OMICS 16, 284–287.
doi:10.1089/omi.2011.0118

Zhang, W., and Feng, G. (2021). C1QTNF6 Regulates Cell Proliferation and
Apoptosis of NSCLC In Vitro and In Vivo. Biosci. Rep. 41, 41. doi:10.1042/
BSR20201541

Zhou, C., Wei, W., Ma, J., Yang, Y., Liang, L., Zhang, Y., et al. (2021). Cancer-
secreted Exosomal miR-1468-5p Promotes Tumor Immune Escape via the
Immunosuppressive Reprogramming of Lymphatic Vessels. MOL. THER. 29,
1512–1528. doi:10.1016/j.ymthe.2020.12.034

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liu, Zhang, Xie, Huang, Wang, Tian and Yuan. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 85548513

Liu et al. A Pan-Cancer Analysis of C1QTNF6

17

https://doi.org/10.1126/sciimmunol.aat1482
https://doi.org/10.1126/sciimmunol.aat1482
https://doi.org/10.1007/978-981-15-3266-5_3
https://doi.org/10.3390/ijms19061801
https://CRAN.R-project.org/package=survminer
https://doi.org/10.1016/j.cell.2018.03.059
https://doi.org/10.1038/s41568-020-0285-7
https://doi.org/10.1159/000088478
https://doi.org/10.1016/j.esmoop.2021.100319
https://doi.org/10.1016/j.ccell.2019.05.004
https://doi.org/10.1038/nature00766
https://doi.org/10.1038/s41580-018-0080-4
https://doi.org/10.3390/molecules21070965
https://doi.org/10.1007/s11626-019-00377-w
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1353/pbm.2019.0046
https://doi.org/10.1038/nri.2017.145
https://doi.org/10.1016/j.ccr.2008.05.005
https://doi.org/10.1038/nrm3758
https://doi.org/10.1038/nrm3758
https://doi.org/10.1007/s10456-018-9645-2
https://doi.org/10.1146/annurev-pathol-012414-040424
https://doi.org/10.1093/humupd/dmy035
https://doi.org/10.3390/cells9102308
https://doi.org/10.1016/j.tcb.2018.12.001
https://doi.org/10.1016/j.tcb.2018.12.001
https://doi.org/10.3389/fimmu.2019.02298
https://doi.org/10.3892/ijmm.2018.3978
https://doi.org/10.1007/s10456-017-9552-y
https://doi.org/10.1038/s41568-018-0005-8
https://github.com/taiyun/corrplot
https://doi.org/10.1186/s12935-021-02377-x
https://doi.org/10.3233/ACP-2011-009
https://R-Forge.R-project.org/projects/estimate/
https://R-Forge.R-project.org/projects/estimate/
https://doi.org/10.18632/aging.102672
https://doi.org/10.18632/aging.102672
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1042/BSR20201541
https://doi.org/10.1042/BSR20201541
https://doi.org/10.1016/j.ymthe.2020.12.034
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Jian Zhang,

Southern Medical University, China

Reviewed by:
William Gmeiner,

Wake Forest School of Medicine,
United States
Ann Zeuner,

National Institute of Health (ISS), Italy

*Correspondence:
Weizhen Liu

weizhenliu@hust.edu.cn
Yong You

youunion@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Oncology

Received: 15 January 2022
Accepted: 10 February 2022
Published: 29 March 2022

Citation:
Chen L, Tian B, Liu W, Liang H, You Y
and Liu W (2022) Molecular Biomarker
of Drug Resistance Developed From
Patient-Derived Organoids Predicts

Survival of Colorectal Cancer Patients.
Front. Oncol. 12:855674.

doi: 10.3389/fonc.2022.855674

ORIGINAL RESEARCH
published: 29 March 2022

doi: 10.3389/fonc.2022.855674
Molecular Biomarker of Drug
Resistance Developed From Patient-
Derived Organoids Predicts Survival
of Colorectal Cancer Patients
Lifeng Chen1†, Bo Tian2†, Wen Liu1, Haitao Liang3, Yong You1* and Weizhen Liu4*

1 Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China, 2 Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,
3 Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center),
Shenzhen, China, 4 Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China

The drug 5-fluorouracil (5-Fu) is the critical composition of colorectal cancer (CRC)
treatments. Prognostic and predictive molecular biomarkers for CRC patients (CRCpts)
treated with 5-Fu-based chemotherapy can provide assistance for tailoring treatment
approach. Here, we established a molecular biomarker of 5-Fu resistance derived from
colorectal cancer organoids (CRCOs) for predicting the survival of CRCpts. Forty-one
CRCO cultures were generated from 50 CRC tumor tissues after surgery (82%). The
following experiments revealed a great diversity in drug sensitivity for 10 mM 5-Fu
treatment tested by using organoid size change. Fourteen cases (34.1%) were 5-Fu
sensitive and the other 27 (65.9%) were resistant. Then, differentially expressed genes
(DEGs) associated with 5-Fu resistance were outputted by transcriptome sequencing. In
particular, DEGs were generated in two comparison groups: 1) 5-Fu sensitive and
resistant untreated CRCOs; 2) CRCOs before 5-Fu treatment and surviving CRCOs
after 5-Fu treatment. Some molecules and most of the pathways that have been reported
to be involved in 5-Fu resistance were identified in the current research. By using DEGs
correlated with 5-Fu resistance and survival of CRCpts, the gene signature and drug-
resistant score model (DRSM) containing five molecules were established in The Cancer
Genome Atlas (TCGA)-CRC cohort by least absolute shrinkage and selection operator
(LASSO) regression analysis and 5-fold cross-validation. Multivariate analysis revealed
that drug-resistant score (DRS) was an independent prognostic factor for overall survival
(OS) in CRCpts in TCGA-CRC cohort (P < 0.001). Further validation results from four Gene
Expression Omnibus (GEO) cohorts elucidated that the DRSM based on five genes
related to 5-Fu chemosensitivity and developed from patient-derived organoids can
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predict survival of CRCpts. Meanwhile, our model could predict the survival of CRCpts in
different subgroups. Besides, the difference of molecular pathways, tumor mutational
burden (TMB), immune response-related pathways, immune score, stromal score, and
immune cell proportion were dissected between DRS-high and DRS-low patients in
TCGA-CRC cohort.
Keywords: colorectal cancer, organoids, 5-fluorouracil, drug resistance, molecular biomarker, predict, survival
INTRODUCTION

Colorectal cancer (CRC) is the fourth most common diagnosed
cancer and the second leading cause of cancer death worldwide
(1). CRC tumors are highly heterogeneous in their intratumor
and intertumor characteristics because of microsatellite
instability (MSI), chromosomal instability (CIN), DNA repair
defects, aberrant DNA methylation, and other factors. These
factors determine how colorectal cancer patients (CRCpts)
respond to specific therapy (2). In the era of precision
oncology, implicit molecular characterization of the tumor is
essential in defining the best therapeutic plan. Therefore, the
establishment of prognostic and predictive molecular biomarkers
is increasingly becoming more valuable in cancer treatment
(3, 4).

In clinical practice, although new options have been
developed including targeted therapy and immunotherapy,
chemotherapy based on 5-fluorouracil (5-Fu) is still the critical
composition of CRC treatments (5). However, drug resistance is
ubiquitous, resulting in tumor progression and poor outcome in
CRCpts. For instance, despite advances in response rate with the
advent of various modulation strategies such as monoclonal
antibodies combined with chemotherapy, 5-year relative
survival rate for metastatic colorectal cancer (mCRC) is only
slightly over 12% (6). Approximately half of metastatic CRCs are
resistant to 5-Fu-based chemotherapies (7). One of the major
culprits for this observation is the appearance of drug resistance.
Prognostic and predictive molecular biomarkers for CRCpts
receiving 5-Fu-based chemotherapy can provide assistance for
tailoring treatment approach.

Organoid is a self-organized three-dimensional (3D)
construct and constituted of various cell types that ultimately
generated from stem cells. It is capable of mimicking the
architecture and functionality of primary organs (8). Patient-
derived tumor organoids (PDTOs) have been proven to
recapitulate the tumor’s pathological morphology, marker
expression, chromosomal stability, genomic characterization,
and tumor heterogeneity (8, 9). Recently, several studies
suggested that PDTOs can predict the response to
chemotherapy, chemoradiation, and targeted therapy,
suggesting that PDTOs may represent a companion preclinical
tool in precision oncology (10–12). However, the success rate of
establishing PDTOs from CRCpts still needs to be improved
(<90%), and PDTO-based drug assays require at least 1–2 weeks
(10–13). These challenges may hamper the implementation of
PDTO approach in a clinical setting.
219
PDTOs can more faithfully represent patient tumors than cell
lines that potentially enable more comprehensive insights into
mechanisms of drug resistance (8, 9). In this research, we
successfully generated a gene signature and score system as
molecular biomarkers that can predict the prognosis of
CRCpts by using drug sensitivity data (5-Fu) of colorectal
cancer organoids (CRCOs). Our model may be helpful in
tailoring therapeutic regimens and act as a supplement of
PDTO-guided personalized treatment for CRCpts.
MATERIALS AND METHODS

Study Design
Study Objectives
To generate a gene signature of chemosensitivity developed from
PDTOs and investigate the potential of the gene signature to
predict the survival of CRCpts.

Research Subjects
Surgical specimens from CRCpts were used to establish a
biobank of CRCOs. CRC datasets from The Cancer Genome
Atlas (TCGA) program and Gene Expression Omnibus (GEO)
database were employed to develop and validate the gene
signatures for predicting the survival of CRCpts, respectively.

Study Design
The drug sensitivity of CRCOs to 5-Fu were tested, and
differentially expressed genes (DEGs) related to 5-Fu resistance
were generated by transcriptome sequencing. Gene signature and
drug-resistant score model (DRSM) for predicting the survival of
CRCpts were developed and validated in TCGA and GEO
datasets by using drug-resistant genes (DRGs) associated with
5-Fu resistance, respectively.

The overall flowchart depicting the development and
validation of the gene signatures and DRSM was presented
in Figure 1.

Tumor Samples of Colorectal
Cancer Patients
Fifty surgically resected cancer tissues from previously untreated
CRCpts were collected in the Department of Gastrointestinal
Surgery, Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology. The diameters of the
CRC tissues for CRCO culture were about 5.00–10.00 mm. The
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tissue collections and experiments were reviewed and approved
by the institutional review boards of Union Hospital, Tongji
Medical College. Informed consents were obtained from all the
patients enrolled in this study.

Processing of Surgical Specimen Tissues
After being harvested, the CRC tissues were transferred into 15-
ml centrifuge tubes with cold phosphate buffer saline (PBS)
Frontiers in Oncology | www.frontiersin.org 320
containing gentamicin/amphotericin B (GIBCO, R01510) and
normocin (InvivoGen, antnr-1). The tissues were maintained on
ice prior to tissue disaggregation and organoid culture.

The Isolation and Primary Culture of
Colorectal Cancer Tissues
Primary cancer cells were isolated and cultured using previously
described methods (10, 11, 14). Briefly, CRC tissues were washed
FIGURE 1 | The overall flowchart depicting the development and validation of the gene signatures and drug-resistant score model. The study design was described in
detail in the Methods (Study design). CRC, colorectal cancer; PDTOs, patient-derived tumor organoids; 5-Fu, 5-fluorouracil; DRGs, drug-resistant genes; TCGA, the
cancer genome atlas; GSE, gene expression omnibus series; LASSO, least absolute shrinkage and selection operator; DRSM, drug-resistant score model; DRS, drug
resistant score.
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in cold PBS containing streptomycin/penicillin (GIBCO, 15140-
122) for 5 cycles (5 min per cycle), minced into small pieces, and
incubated at 37°C in digestion solution with 10 ml Dulbecco’s
Modified Eagle Medium (DMEM) (GIBCO, C1199500BT)
containing 1.5 mg/ml collagenase II (Solarbio, C8150), 500 U/
ml collagenase IV (Sigma-Aldrich, C9407), 0.1 mg/ml dispase
type II (Sigma-Aldrich, D4693), 20 mg/ml hyaluronidase
(Solarbio, h8030), 10 mM RHOK inhibitor ly27632 (Sigma-
Aldrich, Y0503), and 1% fetal bovine serum. Tumor tissues
were resuspended every 5 min. For all cases, the digestion was
terminated by adding 10 ml cold PBS until no tissue fragments
were left. The suspension was filtered with 100 mm cell strainer,
and the tumor cells were collected after centrifugation for 5 min
at 300–400g.

Finally, the tumor cells were mixed with Matrigel (Corning,
356231) and seeded into a prewarmed 24-multiwell plate. After
the Matrigel has solidified, the tumor cells were cultured in
CRCO culture medium containing 1× Advanced DMEM/F12
(G IBCO , 12634 - 010 ) , 1× 4 - ( 2 - h yd r o x y e t h y l ) - 1 -
piperazineethanesulfonic acid (HEPES) (GIBCO, 15630080),
1× Glutamax (GIBCO, 35050061), 1× Normocin (InvivoGen,
ant-nr-1), 1× Gentamicin/amphotericin B (GIBCO, R01510), 1×
N2 supplement (Invitrogen, 17502-048), 1× B27 supplement
(Invitrogen, 17504-044), 500 ng/ml R-spondin 1 (Sino
Biological Inc., 11083-HNAS), 100 ng/ml Noggin (Sino
Biological Inc., 50688-M02H), 50 ng/ml epidermal growth
factor (EGF) (Sino Biological Inc., 50482-MNCH), 1 mM n-
Acetylcysteine (Sigma-Aldrich, A9165), 10 mM Niacinamide
(Sigma-Aldrich, N0636), 500 nM A8301 (Tocris, 2939), 3 mM
SB202190 (Sigma-Aldrich, S7067), 10 nM Gastrin (Sigma-
Aldrich, G9145), and 10 nM Prostaglandin E2 (Sigma-Aldrich,
P6532) at 37°C, 5% CO2 incubator.

Colorectal Cancer Organoid Culture
CRCOs were cultured using previously described methods (10,
11, 14). The culture medium of CRCOs was refreshed every 3
days. CRCOs were subcultured every 3–14 days depending on
the growth rate of organoids. CRCOs were passaged by
mechanical dissociation into small fragments through shearing
with 1% Bovine Serum Albumin (BSA)-coated glass pipette tip.
For those dense organoids, they were resuspended in prewarmed
TrypLE™ Express enzyme (1×) (GIBCO, 12605-010) before
mechanical dissociation. After dissociation, CRCOs were
washed with cold PBS several times to clear out the Matrigel.
Finally, CRCO fragments were resuspended in fresh Matrigel,
seeded into a prewarmed 24-multiwell plate, and cultured as
described above.

For CRCO cryopreservation, organoids were harvested and
mechanically dissociated into small fragments as described
above. Then, organoid fragments were mixed with freezing
medium (CELLBANKER™ 2, ZENOAQ, 170905) and frozen
following standard procedures. As required, the frozen CRCOs
were thawed according to standard procedures and cultured as
mentioned before. The culture medium was supplemented with
10 mM RHOK inhibitor Y-27632 for the first 3 days of culture
after thawing.
Frontiers in Oncology | www.frontiersin.org 421
Drug Sensitivity Test of Colorectal
Cancer Organoids
The assays for drug sensitivity of CRCOs were conducted as
described previously (11). Organoid size change at day 24 to day
0 after treatment was used as the indicator for the judgment of
drug sensitivity of CRCOs. The optimal validated cutoff value of
organoid size change was 36.42% (11).

Briefly, well-grown CRCOs were mechanically dissociated
into small fragments, resuspended in 100% Matrigel (≈10
fragments/ml), seeded into 48-well cell culture plate (15 ml,
≈150 fragments/well), and cultured with 300 ml CRCO culture
medium. When organoid size reached about 100 mm (day 0), the
culture medium was replaced with 300 ml fresh medium
containing 10 mM 5-Fu (Selleck, S1209). After 3 days, the 5-
Fu-containing medium was refreshed again. Subsequently, the
culture medium was replaced by fresh drug-free CRCO culture
medium every 3 days in most cases. The medium was refreshed
every 1–2 days during the period from day 7 to day 24 for some
cases, which have grown much faster than others.

Images of CRCOs were obtained every 3 days after 5-Fu
treatment using a ZEISS microscope (ZEISS, Vert.A1). Then,
CRCO size was evaluated by using Image-Pro Plus 6.0 (Media
Cybernetics, Inc.) software. About 100 organoids were measured
per case.

RNA Extraction and Preparation
CRCOs in good condition were collected, homogenized in
TRIzol™ Reagent (Invitrogen, 15596026), and frozen at -80°C.
Organoid RNA was extracted according to the TRIzol Reagent
protocol. RNA contamination and degradation were monitored
on 1% agarose gels. RNA integrity was evaluated using the RNA
Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent
Technologies, CA, USA). RNA purity was examined using the
NanoPhotometer® spectrophotometer (IMPLEN, CA, USA).

Transcriptome Sequencing of Colorectal
Cancer Organoids
A total amount of 1 µg RNA per sample was used as input
material for the RNA sample preparations. Sequencing libraries
were generated using NEBNext® Ultra™ RNA Library Prep Kit
for Illumina® (NEB, USA) following the manufacturer’s
recommendations, and index codes were added to attribute
sequences to each sample. Detailed information about library
preparation for transcriptome sequencing was attached in
Supplementary Methods. The clustering of the index-coded
samples was performed on a cBot Cluster Generation System
using TruSeq PE Cluster Kit v3-cBot-HS (Illumina) according to
the manufacturer’s instructions. After cluster generation, the
library preparations were sequenced on an Illumina Novaseq
platform, and 150-bp paired-end reads were generated.

Gene Expression and Functional
Enrichment Analysis
Fragments per kilobase million (FPKM) was used to evaluate
expression levels of individual genes. To identify differentially
expressed genes (DEGs), the R package limma was used (15),
March 2022 | Volume 12 | Article 855674

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Biomarker From Organoids Predicts Survival
which implements an empirical Bayesian approach to estimate
gene expression changes. DEGs were determined by significance
criteria (P value <0.05) as implemented in the R package limma
(15). The Venn diagram was used to visualize common
significant DEGs between the different conditions.

The clusterProfiler (16) R package was performed to
demonstrate functional enrichment analysis. We identified
functional pathways that were upregulated and downregulated
by running a gene set enrichment analysis (GSEA) (17) of the
adjusted expression data for all transcripts. Enrichment P values
were based on 1,000 permutations and subsequently adjusted for
multiple testing using the Benjamini–Hochberg procedure to
control the false discovery rate (FDR). A developing R package
enrichplot (https://github.com/GuangchuangYu/enrichplot)
implements several visualization methods to help interpret
enrichment results and was adopted to visualize GSEA results.

Datasets of Colorectal Cancer in The
Cancer Genome Atlas and Gene
Expression Omnibus Databases
CRC datasets from TCGA and GEO databases were used for the
development and validation of gene signature and DRSM for
predicting the survival of CRCpts, respectively. It was worth
noting that only stage II–IV CRCpts were enrolled in the current
study because patients with stage I disease underwent surgical
resection but did not receive 5-Fu chemotherapy.

The Cancer Genome Atlas Datasets
The clinical and gene expression data (FPKM, fragments per
kilobase of exon model per million reads mapped) of CRCpts
(TCGA-COAD and TCGA-READ) were obtained from the
Genomic Data Commons (GDC) Data Portal (https://portal.
gdc.cancer.gov/) by using TCGAbiolinks (18).

Gene Expression Omnibus Datasets
The CRC datasets were preliminarily screened by using the
search query as follows: (“colorectal neoplasms”[MeSH Terms]
OR colorectal cancer[All Fields]) AND “Homo sapiens”[porgn]
AND ((“gds”[Filter] OR “gse”[Filter]) AND (“Expression
profiling by array”[Filter] OR “Expression profiling by high
throughput sequencing”[Filter]) AND (“50”[n_samples]:
“10000”[n_samples])) in GEO database. The datasets derived
from cell lines and other irrelevant datasets were eliminated
manually. In particular, CRC datasets were also enrolled through
literature review to avoid missing valuable datasets. Then, the
datasets were obtained by using GEOquery. The preliminarily
selected GEO datasets were as follows: GSE40967, GSE17538,
GSE87211, GSE24551, GSE38832, GSE33113, GSE14333,
GSE39084, GSE71187, GSE12945, and GSE29623.

Univariate and Multivariate
Survival Analyses
For filtration of the prognosis-related genes, we calculated the
prognosis related P value of each gene using univariate and
multivariate survival analyses. The Kaplan–Meier method was
used to generate survival curves, and the log-rank test was used to
Frontiers in Oncology | www.frontiersin.org 522
determine the statistical significance of differences. The hazard ratios
for univariate analysis were calculated using the Cox proportional
hazards regression model. A multivariate Cox regression model was
used to determine independent prognostic factors using R coxph
package. Genes with P values <0.05 were considered significant.

Development of the Drug-Resistant
Score Model
Then, the least absolute shrinkage and selection operator (LASSO)
regression model implemented in the glmnet (v4.0-2) package was
used for the next-step filtration of genes. LASSO regression
penalizes the data-fitting standard by eliminating predictive
variables. To evaluate the variability and reproducibility of the
estimates produced by the LASSO regression model, we repeated
the regression fitting process and calculated the best lambda to
reduce the error rate by 5-fold cross-validation. Twenty-six genes
with non-zero coefficient estimates were retained. The
multivariate Cox regression model was used to estimate the
coefficient and prognosis-related P value of each gene. Five
genes were identified as significant with P value <0.05, for
considering as independent prognostic factors. LASSO
regression was performed to construct the score model shown
as follows: DRS = GEL (gene expression level) (CACNA1D) ×
-0.0563 + GEL (CIITA) × -0.0356 + GEL (PFN2) × 0.0332 + GEL
(SEZ6L2) × 0.0378 + GEL (WDR78) × -0.0386.

The R package MaxStat (https://CRAN.R-project.org/
package=maxstat) was used to test possible cut points and find
the one achieving the maximum rank statistic to separate
datasets into score-low and score-high groups. R package
forestplot was used for presentation of the results of GEO
datasets and TCGA dataset.

Statistical Analysis
The P values were two-sided. A value of P < 0.05 was considered as
statistically significant. CRCO size (day24/d0) was selected as the
parameter to evaluate the sensitivity of CRCOs to 5-Fu treatment,
and 36.4% was used as the cutoff following the results from
previous research (11). Wilcoxon rank-sum test was used for
comparison of two groups. Correlation coefficients were computed
by Spearman and distance correlation analyses. Two-sided Fisher
exact tests were used to analyze contingency tables. To identify
significant genes in the differential gene analysis, we applied the
Benjamini–Hochberg method to convert the P values to FDRs. All
heatmaps, including unsupervised hierarchical clustering, were
generated by the function of pheatmap (https://github.com/
raivokolde/pheatmap). The statistics of survival analysis, RNA
sequencing, gene expression, and functional enrichment analysis
were specifically described above.
RESULTS

Establishment of 41 Colorectal Cancer
Organoid Lines
From April 2018 to August 2018, we obtained 50 surgically
resected cancer tissues from previously untreated CRCpts. All of
March 2022 | Volume 12 | Article 855674
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them were adenocarcinoma. Cancer cells were isolated and
cultured in 3D Matrigel by using the procedures as reported by
Hans Clevers group (14, 19). Considering the interpatient tumor
heterogeneity, we also specifically referred to the impressive
experience from Fujii (20) to improve the success rate of
culture. We favorably generated 41 organoid cultures from 50
tumor tissues (82%). For two, we did not observe growth. The
complete structures of two were disrupted after several days of
swelling. The other five were lost due to bacterial/yeast infection.
Additional analysis showed that PTDO generation was not
correlated with patients’ characteristics (Table S1). It has been
well confirmed that CRCOs recapitulated characteristics of CRC
primary tumor tissues (10, 11, 14). Note that because normal
human colon epithelial organoids require Wnt ligand (Wnt 3a)
in the culture medium (19), it was considered that organoids
cultured in Wnt3a-free media were CRCOs and further
characterization relative to the primary tumor was not
undertaken. Therefore, the histopathological and genomic
(DNA sequencing) features were not characterized in the
current study to confirm that organoids derived from cancer
patients can recapitulate the features of corresponding tumors.

Sensitivity of Colorectal Cancer Organoids
to 5-Fluorouracil
Ex vivo drug sensitivity screen in 3D cancer organoid culture
nominates therapeutic candidates (14, 21). Cell viability testing
using ATP detection assay was the most common approach for
drug sensitivity evaluation of cancer organoids (10, 14, 22, 23).
Organoid size change, serving as a measure of organoid survival,
is as effective as CellTiter-Glo 3D cell viability assay (11) and is
more economical and easier to use. We tested the sensitivity of 41
CRCO lines to 5-Fu by using this method (Figures 2A–D). The
kinetic size change curves and ratios of CRCO size at day 24 to
day 0 [CRCOs size (day24/d0)] after 5-Fu treatment revealed
great diversity in drug sensitivity for 10-mm 5-Fu treatment
(Figures 2C, D), which is consistent with the widely divergent
response of CRCpts to 5-Fu-based chemotherapy (24, 25).

We chose CRCO size change (day24/d0) as the parameter to
evaluate the sensitivity of CRCOs to 5-Fu treatment and 36.4% as
the cutoff according to a previous study (11). CRCO size change
(day24/d0) ranged from 0.035 to 4.65 (Figure 2D). Fourteen
cases (34.1%) were 5-Fu sensitive and the other 27 (65.9%) were
resistant (Figure 2D). Additional analysis showed that organoid
sensitivity to 5-Fu was not correlated with patients’
characteristics (Table S1). After testing the drug sensitivity of
CRCOs to 5-Fu, we continually cultured and expanded the
surviving organoids that were resistant for transcriptome
sequencing analysis subsequently.

5-Fluorouracil-Resistant Molecular
Characteristics of Colorectal
Cancer Organoids
Many intrinsic and extrinsic factors involved in 5-Fu resistance
in CRC have been well studied (26, 27). Here, CRCOs were
employed for the first time to reveal 5-Fu resistance mechanisms
of CRC. We utilized transcriptome sequencing to dissect 5-Fu-
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resistant molecular characteristics of CRCOs (Figures 3A, B).
DEGs were generated in two comparison groups: 1) 5-Fu
sensitive (group A) and resistant (group B) untreated CRCOs;
2) CRCOs before 5-Fu treatment (group C) and surviving
CRCOs after 5-Fu treatment (group D) (Figures 3A, B).
Principal component analysis (PCA) showed a high degree of
similarity between groups A/B and C/D, respectively (Figures
S1A, B). Therefore, the criteria of P < 0.05 and logFC > 0.58 (fold
change >1.5) were used for identification of DEGs (28). Here, 113
and 111 genes were upregulated, and 677 and 2,617 genes were
downregulated in groups B and D compared with groups A and
C, respectively (Figures 3C, D). Only 1 upregulated and 151
downregulated genes were overlapped in the two comparison
groups (Figures 3C, D), demonstrating that these two different
comparison groups (A vs. B, C vs. D) revealed vastly divergent
DEGs. The detailed information of DEGs was listed in Table S2.

Some of these DEGs have been reported to participate in
regulating 5-Fu resistance in CRC. For instance, several genes
upregulated in Group B or Group D, including ALDOA (29),
GLUT2 (SLC2A1) (30, 31), NACC1 (31), POLR2A (32), and
TGFB1 (33), promote 5-Fu resistance in CRC. Besides, some
DEGs (FERMT1 (34),HEY2 (35, 36), ITGB4 (37, 38), PDXP (39),
TIMP1 (40), TP53I3 (39), et al.) probably have a role in 5-Fu
resistance in CRC. Interestingly, the expression levels of most
explored enzymes (TYMS, MTHFR, TP, et al.) involved in the
resistance of 5-Fu and other fluoropyrimidines (26, 41) had no
significant difference in the two comparison groups in the
current study.

We also used GSEA to dissect the pathways associated with 5-
Fu resistance. Most of the pathways that have been shown to be
involved in 5-Fu resistance were identified in the current research
(Figures 3E, F) (42, 43). Pyrimidine metabolic resistance played a
central role in 5-Fu resistance and was also identified here (Figure
S2A) (42, 43). Additionally, other well-proven pathways regarding
5-Fu resistance discovered in the current analysis included
mismatch repair, apoptosis, cell cycle, and mitochondria
(oxidative phosphorylation) (Figures S2B–O). All enriched
pathways were attached as supplementary materials (Figures
S3A–D; Tables S3A, B). Figures S3A–D were deposited in the
Mendeley Database (DOI: 10.17632/rnrmjkvjjc.2).

Screening of Drug-Resistant Genes
Associated With Prognosis in Colorectal
Cancer Patients
First, we screened prognostic genes associated with survival of
CRCpts in TCGA datasets. PCA showed that the gene expression
data of TCGA-COAD and TCGA-READ could be integrated into
a TCGA-CRC dataset for subsequent analysis (Figures 4A, B).
The results showed that the expression levels of 1,784 protein-
coding genes were significantly associated with survival of CRCpts
by using univariate Cox proportional hazards model analysis
(Figure 4C and Table S4). Then, the DRGs were screened out
among the 1,784 genes. There were 77 overlapped genes between
1,784 prognostic protein-coding genes and those DEGs associated
with 5-Fu resistance derived from the CRC PDTOs (DRGs)
(Figure 4C and Table S5).
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Then, multivariate Cox analysis was performed to further
screen candidate genes for the construction of DRSM. Variables
with P value <0.25 in univariate test (44) or reported prognostic
value were selected. Age (P = 2E-04), prior malignancy (P =
0.13), and site of tumor (45) and TNM stage (P < 0.0001) were
included, but gender (P = 0.85) and race (P = 0.91) were excluded
from the multivariate Cox model (Figures 4D–I). Multivariate
Cox analysis disclosed that 46 of 77 DRGs’ expression levels were
significantly correlated with the survival of CRCpts in TCGA-
CRC dataset (Table S6). Expression data of these 46 genes would
be used for the DRSM development next.

Development of the Drug-Resistant Score
Model by Using Drug-Resistant Genes
Associated With 5-Fluorouracil Resistance
To evaluate the contribution of DRGs to CRCpts’ survival, we
applied unsupervised clustering algorithms to group the
expression data of 46 DRGs in TCGA-CRC dataset, and
subsequently, the CRCpts were divided into Group1 (n = 319)
Frontiers in Oncology | www.frontiersin.org 724
and Group2 (n = 190) (Figure 5A). Univariate Cox analysis
showed that patient survival of Group2 was significantly better
than that of Group1 (P = 0.00074) (Figure 5B).

Then, LASSO regression analysis method and 5-fold cross-
validation were used to develop the DRSM for CRCpts in TCGA-
CRC dataset. After the best lambda value and coefficient of 46
DRGs were outputted (Figures 5C, D and Table S7), we
obtained 26 genes with non-zero coefficients (Table S8). Next,
these 26 genes were further filtered using multivariate Cox
analysis in TCGA-CRC dataset. Five genes finally remained
after the second filter: CACNA1D (P = 0.0019), CIITA (P =
0.00503), PFN2 (P = 0.01176), SEZ6L2 (P = 0.02853), and
WDR78 (P = 0.0305).

Afterward, the DRSM was established in TCGA-CRC dataset
by LASSO regression analysis method and 5-fold cross-
validation based on the five genes above (Figures 5E, F). The
result showed that coefficients of the five genes were all non-zero.
The equation of DRS was finally derived: DRS = GEL (gene
expression level) (CACNA1D) × -0.0563 + GEL (CIITA) ×
A B

C D

FIGURE 2 | Sensitivity of CRCOs to 5-Fu. (A) Representative bright-field images of 5-Fu-sensitive CRCOs at day 0 and day 24 after 10-mM 5-Fu treatment in three
selected cases. The CRCOs with disrupted structures are dead and do not have the ability to repopulate. (B) Representative bright-field images of 5-Fu-resistant
CRCOs at day 0 and day 24 after 10-mM 5-Fu treatment in three selected cases. CRCOs with complete structures are alive and have the ability to repopulate. Scale
bar, 200 mm. (C) CRCO size change after 10-mM 5-Fu treatment in six selected cases. The data shown are means with SEM from 8 duplicates. (D) Box plot of
CRCO size change (day24/d0) in all of the 41 cases. Within the box, the horizontal blue center line denotes the median value (50th percentile), while the box contains
the 25th to 75th percentiles of the distribution of values. The blue whiskers mark the minimum and maximum of the values. CRCOs, colorectal cancer organoids; 5-
Fu, 5-fluorouracil; SEM, standard error of mean.
March 2022 | Volume 12 | Article 855674

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Biomarker From Organoids Predicts Survival
A

D
F

E

B C

FIGURE 3 | 5-Fu-resistant molecular characteristics of colorectal cancer organoids (CRCOs). (A) Volcano plot for differentially expressed genes between 5-Fu-sensitive
(group A) and -resistant (group B) untreated CRCOs. (B) Volcano plot for differentially expressed genes between CRCOs before 5-Fu treatment (group C) and surviving
CRCOs after 5-Fu treatment (group D). (C) Venn diagram showed that only 1 upregulated gene was overlapped in the two comparison groups. (D) Venn diagram
showed that 151 downregulated genes were overlapped in the two comparison groups. (E, F) Gene set enrichment analysis (GSEA) using the hallmark and KEGG gene
sets to dissect the pathways associated with 5-Fu resistance, respectively. The pathways that have been validated in literature were marked. 5-Fu, 5-fluorouracil; GSEA,
gene set enrichment analysis; Res, resistant; Sen, sensitive; Aft, after; Bef, before; NES, normalized enrichment score; KEGG, kyoto encyclopedia of genes and
genomes; CRCOs, colorectal cancer organoids.
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-0.0356 + GEL (PFN2) × 0.0332 + GEL (SEZ6L2) × 0.0378 + GEL
(WDR78) × -0.0386.

In TCGA-CRC cohort, the univariate Cox regression model
revealed that the DRS was associated with prognosis of CRC
Frontiers in Oncology | www.frontiersin.org 926
patients in terms of OS (P < 0.0001) (Figure 6A). Multivariate
analysis after adjustment revealed that DRS (P < 0.001), age (P <
0.001), and American Joint Committee on Cancer (AJCC) stage
(P < 0.001) were independent prognostic factors for OS in CRC
A B

C ED

F G

H I

FIGURE 4 | Screening of drug (5-Fu)-resistant genes (DRGs) associated with prognosis in colorectal cancer patients (CRCpts). (A, B) PCA for the gene expression
data of TCGA-COAD and TCGA-READ cohorts. (C) Venn diagram of 5-Fu-resistant genes from patient-derived tumor organoids (PDTOs) and prognostic genes in
TCGA-CRC dataset. (D–I) Univariate analysis for age/prior maliganancy/site of tumor/AJCC stage/gender/race and their correlation with clinical outcome [overall
survival (OS)] in TCGA-CRC cohort. PC, principal components; TCGA, the cancer genome atlas; COAD, colon adenocarcinoma; READ, rectal adenocarcinoma;
5-Fu, 5-fluorouracil; PDTOs, patient-derived tumor organoids; CRC, colorectal cancer; NOS, not otherwise specified; AJCC, American Joint Committee on Cancer;
DRGs, drug-resistant genes; CRCpts, colorectal cancer patients; PCA, principal components analysis; OS, overall survival.
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FIGURE 5 | Development of the drug-resistant score model (DRSM) by using DRGs associated with 5-Fu resistance. (A) Unsupervised clustering of 698 tumor
samples using the expression data of 46 DRGs in TCGA-CRC dataset revealed two molecular subtypes (group1, n = 319; group2, n = 190). (B) Univariate analysis
for groups (1 or 2) and their correlation with clinical outcome [overall survival (OS)] in TCGA-CRC cohort. (C) Optimal parameter (lambda) selection in the LASSO
model using 5-fold cross-validation via minimum criteria for 46 DRGs. (D) LASSO coefficient profiles of the 46 DRGs at the optimal lambda value selected using 5-
fold cross-validation. (E) Optimal parameter (lambda) selection in the LASSO model using 5-fold cross-validation via minimum criteria for 5 DRGs after filtering using
multivariate Cox analysis. (F) LASSO coefficient profiles of the 5 DRGs at the optimal lambda value selected using 5-fold cross-validation. TCGA, the cancer genome
atlas; DRSM, drug-resistant score model; DRGs, drug-resistant genes; 5-Fu, 5-fluorouracil; CRC, colorectal cancer; OS, overall survival; LASSO, least absolute
shrinkage and selection operator.
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patients, and prior malignancy (P = 0.883) and site of tumor (P >
0.2) lost their significance (Figure 6B). The result of receiver
operating characteristic (ROC) curve (AUC = 0.99) indicated
that our DRSM had a favorable prognosis predictive
performance in TCGA-CRC dataset (Figure 6C).

Validation of the Drug-Resistant
Score Model
The prognosis predictive value of our DRSM was subsequently
validated in four GSE datasets. Four GEO datasets [GSE39084
(n = 61), GSE71187 (n = 52), GSE12945 (n = 49), and GSE29623
(n = 37)] were excluded due to the small sample size. Three GEO
datasets [GSE24551 (DFS), GSE33113 (RFS), and GSE14333
(DFS)] were not enrolled for validation because it was rare that
endpoints such as disease free survival (DFS) progression free
survival (PFS), or recurrence free survival (RFS) have been
shown to be true surrogates for OS or disease free survival
(DSS). Hence, 4 of 11 GEO datasets were finally selected for
the validation of DRSM as follows: GSE40967 (n = 233, OS),
GSE17538 (n = 204, OS), GSE87211 (n = 196, OS), and
GSE38832 (n = 104, DSS).

Next, we validated the prognosis predictive value of our DRSM
in GEO datasets. In all of the four enrolled GEO cohorts, the
univariate Cox regression model indicated that the DRS was
significantly associated with prognosis of CRC patients in terms
of OS or DSS with the P values of 8e–04 (GSE40967), 0.0016
(GSE17538), 0.018 (GSE87211), and 0.0044 (GSE38832)
(Figures 6D–G). Further multivariate analysis in three enrolled
GEO cohorts (GSE40967, GSE17538, and GSE38832) also showed
that DRS was an independent prognostic factor for OS or DSS in
CRCpts (Table S9). In the GSE87211 cohort, the multivariate
analysis was not performed because the event number was too
limited (28 events out of 203 cases) and there were at least seven
required variables for Cox regression (age, invasion depth, lymph
node metastasis, metastasis, recurrence, KRAS mutations, and score
level) (46). In GSE38832, there was no statistically significant
difference (P = 0.093) between DRS-high and DRS-low CRCpts
after multivariate Cox regression analysis probably due to the
relatively small sample size (n = 104). Our validation results from
the four GSE cohorts above elucidated that the DRSM based on five
genes of chemosensitivity to 5-Fu developed from patient-derived
organoids can predict the survival of CRCpts.

Predictive Value of Drug-Resistant
Score Model in Colorectal Cancer
Patient Subgroups
To investigate whether our gene signature can serve as a powerful
prognostic indicator in different stages of CRCpts, we performed a
subset analysis based on AJCC staging system in TCGA-CRC
cohort. The results from univariate and multivariate analyses
showed that the DRSM could predict outcomes of stage II, III,
and IV CRCpts, respectively (Figures 7A–C and Table S10).
Embryological, biological, anatomical, and molecular features are
different among right-sided, left-sided, and rectal CRC. Sidedness
has an important role on several aspects of CRC (5). Next, we
tested the prognostic value of DRSM according to tumor location
Frontiers in Oncology | www.frontiersin.org 1128
in TCGA-CRC datasets. Univariate and multivariate survival
analyses revealed that DRS-high CRCpts had worse survival
than DRS-low CRCpts in right-sided colon cancer (P < 0.001,
n = 180) and rectal cancer (P = 0.006, n = 126), but there was no
statistical difference in left colon cancer due to the relatively small
sample size (P = 0.102, n = 113) (Figures 7D–F and Table S10).

TP53 and KRAS are second and third most frequently
mutated genes among the non-hypermutated CRC tumors and
contribute to colorectal carcinogenesis. KRAS mutations predict
poor prognosis in CRC (47, 48). Univariate and multivariate
survival analyses in GSE40967 cohort showed that the DRS-high
CRCpts had worse survival than DRS-low CRCpts with P53
mutations (P = 0.012, n = 82) (Figure 7G and Table S11). There
was no statistically significant difference between DRS-high and
DRS-low CRCpts with wild-type P53 probably because of the
small sample size (P = 0.170, n = 53) (Figure 7H and Table S11).
Univariate and multivariate Cox analyses further exhibited that
our DRSM could serve as an independent predictor of both
KRAS-mutated and wild-type CRCpts’ survival in the GSE40967
dataset (P = 0.008, n = 94; P =0.044, n = 127) (Figures 7I, J and
Table S11). We did not perform subgroup analysis according to
CpG island methylator phenotype (CIMP), CIN, BRAF
mutation, and subtypes from the French national Cartes
d’Identité des Tumeurs (CIT) program in the GSE40967
cohort because of small sample size of subgroups. There were
no appropriate additional variables for subgroup analysis in the
GSE17538, GSE87211, and GSE38832 cohorts.

Functional Enrichment Analyses Between
DRS-High and DRS-Low Patients
Finally, we used DEGs between DRS-high and DRS-low patients in
TCGA-CRC cohort to dissect the difference of molecular pathways,
tumor mutational burden (TMB), immune response-related
pathways, immune score, stromal score, and immune cell
proportion (Figure 8A and Table S12). GSEA method was
employed to determine the upregulated and downregulated
molecular pathways in DRS-high CRCpts based on the kyoto
encyclopedia of genes and genomes (KEGG) and Hallmark gene
sets. The MYC targets, reactive oxygen species pathway, base
excision repair, citrate cycle, and tricarboxylic acid (TCA) cycle
were upregulated, while KRAS signaling, ABC transporters,
calcium signaling pathway, and chemokine signaling pathway
were downregulated in DRS-high CRCpts (Figures 8B, C).
Detailed information about upregulated and downregulated
molecular pathways was listed in supplementary materials
(Figures S4A, B and Table S13). Figures S4A, B were deposited
in the Mendeley Database (DOI: 10.17632/rnrmjkvjjc.2).

TMB is a measure of the amount of mutations carried by
tumor cells. TMB-low is associated with poor prognosis in
CRCpts treated with adjuvant 5-Fu-based chemotherapy (49).
However, there was no significant difference in TMB between
DRS-high and DRS-low CRCpts (Figure 8D). Next, we further
explored the differences in immune response-related pathways,
immune score, stromal score, and immune cell proportion
between DRS-high and DRS-low CRCpts. Our results found
that CD8 T effector, antigen processing machinery, and immune
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FIGURE 6 | Validation of the DRSM. (A) Univariate analysis for drug-resistant score (DRS) (high or low) and its correlation with clinical outcome [overall survival (OS)]
in TCGA-CRC cohort. (B) Multivariate analysis after adjustment revealed DRS, age, and AJCC stage were independent prognostic factors for OS in TCGA-CRC
cohort, and prior malignancy and site of tumor lost their significance. (C) Receiver operating characteristic (ROC) curve (AUC = 0.99) indicated that DRSM had
favorable prognosis predictive performance in TCGA-CRC dataset. AUC indicates area under the curve. (D–G) Univariate analysis for DRS (high or low) and its
correlation with clinical outcome (OS or DSS) in GSE40967, GSE17538, GSE87211, and GSE38832 datasets, respectively. ***P < 0.001. TCGA, the cancer genome
atlas; CRC, colorectal cancer; AJCC, American Joint Committee on Cancer; NOS, not otherwise specified; AUC, area under the curve; CI, confidence interval; GSE,
gene expression omnibus series; DRSM, drug-resistant score model; DRS, drug resistant score; OS, overall survival; ROC, receiver operating characteristic; DSS,
disease free survival.
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checkpoint pathways were significantly downregulated in DRS-
high CRCpts (Figure 8E). Immune score was significantly lower
in DRS-high CRCpts (P = 0.0022) (Figure 8F). There was no
significant difference in stromal score between DRS-high and
Frontiers in Oncology | www.frontiersin.org 1330
DRS-low CRCpts (P = 0.12) (Figure 8G). For immune cell
proportion, T cell CD4 memory resting, T cell CD4 memory
activated, and plasma cells were lower and mast cell activated
and monocytes were higher in DRS-high CRCpts (Figure 8H).
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FIGURE 7 | Predictive value of DRSM in CRCpt subgroups. (A–C) Univariate analysis for DRS (high or low) and its correlation with clinical outcomes
(OS) of stage II, stage III, and stage IV CRCpts in TCGA-CRC cohort, respectively. (D–F) Univariate analysis for DRS (high or low) and its correlation with
clinical outcomes (OS) of right-sided, rectal, and left-sided CRCpts in TCGA-CRC cohort, respectively. (G, H) Univariate analysis for DRS (high or low)
and its correlation with clinical outcomes (OS) of CRCpts with wild-type and mutated P53 in GSE40967 cohort, respectively. (I, J) Univariate analysis for
DRS (high or low) and its correlation with clinical outcomes (OS) of CRCpts with wild-type and mutated KRAS in GSE40967 cohort, respectively. TCGA,
the cancer genome atlas; CRC, colorectal cancer; GSE, gene expression omnibus series; WT, wild type; DRSM, drug-resistant score model; CRCpts,
colorectal cancer patients; DRS, drug resistant score; OS, overall survival.
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FIGURE 8 | Functional enrichment analyses between DRS-high and DRS-low patients in TCGA-CRC cohort. (A) Volcano plot for differentially expressed genes of
CRC tumors between DRS-high and DRS-low CRCpts in TCGA-CRC cohort. (B, C) Gene set enrichment analysis (GSEA) using the hallmark and KEGG gene sets
to dissect the pathways associated with DRS in TCGA-CRC cohort. (D) Box plots of tumor mutational burden (TMB) by DRS (low or high). (E) Box plots of immune
response-related pathways by DRS (low or high). (F, G) Box plots of immune score and stromal score by DRS (low or high). (H) Box plots of immune cell proportion
by DRS (low or high). Within each box, the horizontal black center line denotes the median value (50th percentile), while the box contains the 25th to 75th percentiles
of each group’s distribution of values. The black whiskers mark the 5th and 95th percentiles, and values beyond these upper and lower bounds are considered
outliers. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant. sig, significant; DRS, drug resistant score; TCGA, the cancer genome atlas; CRC, colorectal cancer;
CRCpts, colorectal cancer patients; GSEA, gene set enrichment analysis; KEGG, kyoto encyclopedia of genes and genomes; TMB, tumor mutational burden.
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DISCUSSION

In this study, we investigated whether DRGs developed from
PDTOs could be used to faithfully identify robust drug response
biomarkers. The 5-Fu-resistant genes were established by
analysis of RNA sequencing data from CRCOs and were
employed to generate the DRSM using LASSO regression
analysis in TCGA and GSE CRC datasets. Indeed, we found
that gene signatures of 5-Fu resistance derived from CRCOs
could predict the survival of CRCpts. Our results suggested that
genetic characteristics of drug resistance in PDTOs could
improve the drug response prediction for cancer patients.

Until now, genome-wide mRNA expression levels in CRC
have been obtained in lots of studies by using large-scale genomic
profiling technology. Many gene expression signatures for
survival prediction of CRCpts also have been developed (50–
52), but none was routinely used in the clinic. A systematic
review including 31 gene signatures concluded that although the
published signatures showed significant statistical correlation
with prognosis, their capacity to accurately categorize
independent samples into low-risk and high-risk subgroups
remained limited (52). Consistent with the conclusion above,
the results of the current study in validation cohorts (GSE
datasets) demonstrated that the prediction power of our gene
signatures was moderate, with AUC ranging from 0.557 (95% CI:
0.476−0.639) to 0.672 (95% CI: 0.549−0.794). Strong prediction
power is necessary for gene signatures to be used clinically, even
when patients’ survival differences exist. Thus, further well-
designed research with a large sample size is needed for
developing gene signatures with higher predictive accuracy
in CRCpts.

5-Fu-resistant genes generated from CRC cell lines have been
used to construct gene signatures to predict survival of CRCpts
(34, 53, 54). Considering the advantage of PDTOs over cell lines
(8, 9), gene signatures derived from PDTOs may exhibit better
predictive power. Kong et al. recently reported that biomarkers
that were identified by network-based machine learning using 5-
Fu pharmacogenomic data generated from 19 3D organoid lines
accurately predicted the drug responses of 114 CRCpts (14, 55).
In the current study, the 5-Fu-resistant genes were obtained from
pharmacogenomic and expression data of 41 CRCOs. In
addition to comparing 5-Fu-sensitive and -resistant CRCOs,
we analyzed the gene expression data of CRCOs before 5-Fu
treatment and surviving CRCOs after 5-Fu treatment to generate
5-Fu-resistant genes. It is worth noting that 5-Fu is generally
used in combination with oxaliplatin for CRCpts clinically. The
treatments of CRCpts, especially the drug information, were
often unavailable in TCGA-CRC and GSE datasets used in the
current study. Since 5-Fu is the critical composition of CRC
treatments and used in a vast majority of CRCpts, we only
employed the sensitivity data of CRCOs to 5-Fu for the
development of the DRSM.

Of note, we used organoid size change (d24/d0) after a single
dose (10 mM) of 5-Fu treatment to evaluate the drug sensitivity of
CRCOs in the current study. IC50 after 6 days of drug treatment
was regularly employed in other studies about drug sensitivity
tests of cancer organoids (10, 14, 22, 23). The former method was
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selected in our study according to a research about testing the
response of rectal cancer organoids (RCOs) to drugs and
irradiation (11). Yao et al. (11) tested the response of 80 RCOs
to 5-Fu (10 mM), irinotecan (CPT-11), and irradiation by
using organoid size change (d24/d0) to evaluate the drug
sensitivity of RCOs and found that the organoid data were
highly matched to clinical outcomes of rectal cancer patients
(RCpts). In that study, outcomes of RCpts were accessed by
pathologic tumor regression grade (TRG) of surgical specimens
after neoadjuvant chemoradiation (11). Considering the
sufficient sample size and reliable evaluation methods of
clinical outcomes (11), organoid size change (d24/d0) is a
valid parameter for testing the response of cancer organoids
to treatments. This method is also as effective as CellTiter-Glo
3D cell viability assay (11) and is more economical and easier to
use. In addition, we chose 36.4% as the cutoff of organoid
size change (d24/d0) according to a previous study (11). This
cutoff was derived based on the fact that the primary tumors of
patients with TRG = 0 or 1 were considered to be sensitive to
treatments and other patients with TRG = 2 or 3 were resistant
(11). The 5-year recurrence-free survival rates were 98% (TRG =
0), 90% (TRG =1), 73% (TRG = 2), and 68% (TRG = 3) (56). By
using this cutoff in the current study, more than half of PTDOs
are considered to be resistant to 5-Fu. In fact, the patients with
TRG = 2 can also benefit from neoadjuvant chemoradiation.
Given that we aimed to develop a molecular biomarker of
CRCpts’ survival, this cutoff was exactly appropriate for the
current study.

Our DRSM consisted of five genes, namely, CACNA1D,
CIITA, PFN2, SEZ6L2, and WDR78. CACNA1D encodes
the a 1D subunit of the L-type calcium channel and is
engaged in various calcium-dependent processes, including
neurotransmitter or hormone release, muscle contraction, and
gene expression. CACNA1D showed significant correlations with
chemosensitivity for mitozolamide, cyclodisone, and
deoxydoxorubicin (57). CACNA1D has been also enrolled in
the gene signatures for predicting the benefit of 5-Fu-based
chemotherapy (58, 59). CIITA is a non-DNA-binding
coactivator of major histocompatibility complex (MHC) class
II molecules whose high expression is usually associated with
enhanced involvement of CD4+ lymphocytes in tumor
suppression and a better prognosis (60). PFN2 is an actin
cytoskeleton regulator and serves an important role in cell
motility. The results from Kim et al. (61) suggested that PFN2
promoted the migration, invasion, and stemness of HT29 human
CRC stem cells. SEZ6L2 is a type 1 transmembrane protein and
belongs to the seizure‐related gene 6 (SEZ6) family. Upregulation
of SEZ6L2 correlates with poor prognosis for CRCpts, and
SEZ6L2 knockdown can impair tumor growth by promoting
caspase‐dependent apoptosis in CRC (62). WDR78 is essential
for ciliary beating and axonemal dyneins. Studies showed that
WDR78 has been enrolled in the molecular signatures for
predicting the prognosis of CRCpts (63, 64). In further studies,
we will explore the specific roles and mechanisms of the five
genes in 5-Fu resistance in CRC.

The current research, however, is subjected to several
limitations. The first is the limited sample size of CRCOs. We
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tested the response of 41 CRCO lines to 5-Fu to generate 5-Fu-
resistant genes. The sample size needs to be expanded in further
research. The second limitation concerns that only 5-Fu-resistant
genes were derived, while resistant genes of other clinically used
drugs (oxaliplatin, CPT-11, et al.) for CRCpts were not. In
previous research, 5-Fu-based chemotherapy improves the
survival of resected stage III, a subset of stage II and metastatic
CRCpts (5, 65). Given the fact that drugs other than 5-Fu used
for CRCpts in TCGA and GSE datasets were unable to be
confirmed, we just utilized 5-Fu-resistant genes to construct
the prediction model. Oxaliplatin- and CPT-11-resistant genes
will be incorporated in the model in further study using our own
independent CRCpt cohort. In addition, as with majority of
similar studies, the design of the current study is retrospective.
Our prediction model needed further validation in prospective
clinical studies.

In the current era of precision and personalized cancer
medicine, molecular biomarkers enabling selection of the
appropriate treatments for specific patients are of great
importance (66–68). Cancer organoid technology, together with
molecular biomarkers, holds promise for individualizing cancer
treatment. We here provide suggestions that gene signatures of
drug resistance developed from CRC PTDOs have the potential to
be possible candidates of such molecular biomarkers.
CONCLUSIONS

Taken together, the DRSM developed in the current study by
using 5-Fu-resistant genes derived from CRCOs can predict the
survival of CRCpts in TCGA and GSE CRC datasets. This gene
signature may be useful in tailoring therapeutic regimens and
acts as a supplement of PDTO-guided personalized treatment for
CRCpts. Further study with a large sample size and even a
prospective design is needed.
DATA AVAILABILITY STATEMENT

The RNA sequencing data (raw data) of colorectal cancer
organoids presented in the study are deposited in the Sequence
Read Archive (SRA) of National Center for Biotechnology
Information (NCBI), accession number PRJNA813221. The
Figures S3 and S4 presented in the study are deposited in the
Mendeley Database, DOI 10.17632/rnrmjkvjjc.2. Additional
Frontiers in Oncology | www.frontiersin.org 1633
datasets and materials and associated protocols are available
upon request from the corresponding author (YY and WZL) to
comply with institutional ethics regulation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethics Committee of Tongji Medical College,
Huazhong University of Science and Technology. The patients/
participants provided their written informed consent to
participate in this study.
AUTHOR CONTRIBUTIONS

LFC and WZL designed the current study and supervised the
project. YY also supervised the project. LFC and BT executed
most of the experiments and bioinformatics analysis. WZL was
responsible for CRC tumor sample collection. LFC and BT wrote
the article. WZL and YY provided support for research funding.
BT, WL, HTL, and WZL revised the article. All authors read and
approved the final article.
FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 81873440).
ACKNOWLEDGMENTS

We thank all of the patients and their families for participating in
the current research. We thank Xiaoying Zhu and Fei Gao for
giving help and advice about this research.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2022.
855674/full#supplementary-material

Figures S3 and S4 are available here: DOI 10.17632/rnrmjkvjjc.2.
REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global

Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68:394–
424. doi: 10.3322/caac.21492

2. Turano M, Delrio P, Rega D, Cammarota F, Polverino A, Duraturo F, et al.
Promising Colorectal Cancer Biomarkers for Precision Prevention and
Therapy. Cancers (Basel) (2019) 11(12):1932. doi: 10.3390/cancers11121932

3. De Rosa M, Rega D, Costabile V, Duraturo F, Niglio A, Izzo P, et al. The
Biological Complexity of Colorectal Cancer: Insights Into Biomarkers for
Early Detection and Personalized Care. Therap Adv Gastroenterol (2016)
9:861–86. doi: 10.1177/1756283X16659790

4. De Rosa M, Pace U, Rega D, Costabile V, Duraturo F, Izzo P, et al. Genetics,
Diagnosis and Management of Colorectal Cancer (Review). Oncol Rep (2015)
34:1087–96. doi: 10.3892/or.2015.4108

5. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal Cancer.
Lancet (2019) 394:1467–80. doi: 10.1016/S0140-6736(19)32319-0

6. Siegel RL, Miller KD, Fedewa SA, AhnenDJ,Meester RGS, Barzi A, et al. Colorectal
Cancer Statistics, 2017. CA Cancer J Clin (2017) 67:177–93. doi: 10.3322/caac.21395

7. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P,
et al. Irinotecan Combined With Fluorouracil Compared With Fluorouracil
March 2022 | Volume 12 | Article 855674

https://doi.org/10.17632/rnrmjkvjjc.2
https://www.frontiersin.org/articles/10.3389/fonc.2022.855674/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.855674/full#supplementary-material
https://doi.org/10.17632/rnrmjkvjjc.2
https://doi.org/10.3322/caac.21492
https://doi.org/10.3390/cancers11121932
https://doi.org/10.1177/1756283X16659790
https://doi.org/10.3892/or.2015.4108
https://doi.org/10.1016/S0140-6736(19)32319-0
https://doi.org/10.3322/caac.21395
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Biomarker From Organoids Predicts Survival
Alone as First-Line Treatment for Metastatic Colorectal Cancer: A
Multicentre Randomised Trial. Lancet (2000) 355:1041–7. doi: 10.1016/
S0140-6736(00)02034-1

8. Li M, Izpisua Belmonte JC. Organoids - Preclinical Models of Human Disease.
N Engl J Med (2019) 380:569–79. doi: 10.1056/NEJMra1806175

9. Drost J, Clevers H. Organoids in Cancer Research. Nat Rev Cancer (2018)
18:407–18. doi: 10.1038/s41568-018-0007-6

10. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan
K, et al. Patient-Derived Organoids Model Treatment Response of Metastatic
Gastrointestinal Cancers. Science (2018) 359:920–6. doi: 10.1126/
science.aao2774

11. Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, et al. Patient-Derived Organoids
Predict Chemoradiation Responses of Locally Advanced Rectal Cancer. Cell
Stem Cell (2019) 26(1):17–26.e6. doi: 10.1016/j.stem.2019.10.010

12. Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, et al.
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Background: Cisplatin is the basis of the primary treatment for SCLC chemotherapy.
However, the limited objective response rate and definite drug resistance greatly restrict
the clinical potential and therapeutic benefits of cisplatin use. Therefore, it is essential to
identify biomarkers that can discern the sensitivity of SCLC patients to cisplatin treatment.

Methods: We collected two SCLC cohorts treated with cisplatin that included mutation
data, prognosis data and expression data. The sensitivity of cisplatin was evaluated by the
pRRophetic algorithm. MCPcounter, quanTIseq, and xCell algorithms were used to
evaluate immune cell score. GSEA and ssGSEA algorithms were used to calculate
immune-related pathway scores. Univariate and multivariate Cox regression models
were employed, and survival analysis was used to evaluate the prognostic value of the
candidate genes.

Results:MMP9-High is related to improved clinical prognoses of patients with SCLC (HR
= 0.425, p = 0.0085; HR = 0.365, p = 0.0219). Multivariate results showed that MMP-High
could be used as an independent predictor of the prognosis of SCLC after cisplatin
treatment (HR = 0.216, p = 0.00153; HR = 0.352; p = 0.0199). In addition, MMP9-High
displayed a significantly lower IC50 value of cisplatin and higher immunogenicity than
MMP9-Low SCLC. Compared with MMP9-Low SCLC, MMP9-High included significantly
increased levels of T-cells, cytoxic lymphocytes, B-cells, NK-cells, and dense cells (DCS).
Similarly, the activity of cytokine binding, B-cell, NK-cell mediated immune response
chemokine binding, and antigen presentation pathways in MMP9-High was significantly
higher than that in MMP9-Low.

Conclusion: In this study, we identified that MMP9-High could be potentially considered a
novel biomarker used to ascertain the improved prognosis of SCLC patients after cisplatin
treatment. Furthermore, we indicated that the tumor immune microenvironment of MMP9-
High SCLC is mainly characterized by a large number of infiltrated activated immune cells
as well as activated immune-related pathways.
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INTRODUCTION

Small cell lung cancer (SCLC), which accounts for 13–15% of lung
cancer, is a subtype of lung cancer known to exhibit high malignancy
and poor prognosis (Sabari et al., 2017; Qiu et al., 2019; Luo et al.,
2019). The median survival time of SCLC patients is only
8–13months, and the 5-year survival rate is 1–5% (de Hoyos and
DeCamp, 2014; Carter et al., 2014). Chemotherapy for SCLC is
comprised of a combination approach that includes platinum-based
antineoplastic drugs commonly used in the treatment of various
cancers. Cisplatin a well-known, effective, and widely used first-line
drug with an objective response rate (ORR) of 50–60% (Horn et al.,
2018). However, almost all patients diagnosed with SCLC will
inevitably present with drug resistance and tumor recurrence.
Studies have shown that the functional mechanism of cisplatin
resistance occurs as a result of structural changes to DNA or
cytoplasm, the abnormality of DNA damage repair, the change of
signaling triggered by molecular damage caused by cisplatin, and the
change of compensatory survival signal (Galluzzi et al., 2014; Inoue
et al., 2014; Song et al., 2015). However, the lack of biomarkers used to
identify cisplatin sensitivity in SCLC population is a large clinical
detriment. Therefore, it is of great importance to find biomarkers that
pertain to the sensitivity of SCLC patients undergoing cisplatin
treatment.

Evidence has recognized the close relationship between tumor
immune microenvironment (TIME) and chemotherapeutic
drugs. Tumor-associated macrophages (TAMs), tumor-
associated neutrophils (TANs), myeloid-derived suppressor
cells (MDSCs), regulatory T-cells, Immunosuppressive cells
such as T-regulatory cells (Tregs), and regulatory B-cells
(Bregs) can not only directly inhibit killer cells such as CTL
and NK, but also interact with each other, enhancing the effect of
inhibitory factors and facilitating the recruitment of more
immunosuppressive cells. This process enables tumor cells to
achieve immune escape (Lin et al., 2019). Additionally, TAMs are
known to secrete TGF-β1, which results in the up-regulation of
Gfi-1 expression in tumor cells. Gfi-1 expression in the promoter
region effectively inhibits the expression of CTGF and HMGB1,
which accordingly reduce the sensitivity of tumor cells to
gemcitabine (Xian et al., 2017). TAMs expressed IGF act on
the IGF1 receptor to promote chemotherapy resistance of
gemcitabine and albumin-bound paclitaxel (Ireland et al.,
2016). In addition, the study showed that during the
chemotherapy of gemcitabine, TAMs, G-MDSCs, Tregs and
T-cells decreased, and CTL increased (Mitchem et al., 2013;
Eriksson et al., 2016). Gemcitabine promoted the up
regulation of HLA-DR, CD40, CCR7 and the down regulation
of CD163 and cd206, and inducedM1 polarization (Di Caro et al.,
2016). In conclusion, chemotherapy drugs can act on TIME, and
TIME can also affect the effect of chemotherapy drugs.

Matrix metalloproteinases (MMPs) play an important role in
tumorigenesis, development, invasion and metastasis. MMP9 is
the largest molecular weighted enzyme in the MMP family. The
function of MMP9 is closely related to tumor invasion and
metastasis through its functional degradation of type IV and V
collagen and gelatin (Mondal et al., 2020). Studies have shown
that MMP9 expression is regulated in ovarian cancer, cervical

cancer, non-small cell lung cancer and breast cancer, all of which
demonstrate a close relationship to cisplatin sensitivity (Rauvala
et al., 2006; Braicu et al., 2014; Qiao et al., 2020; Makhoul et al.,
2016). In addition, Li et al. found evidence that MMP9 can
regulate the biological function of monocytes (Zhou et al., 2012;
Li et al., 2021; Xu et al., 2021). Furthermore, Xu et al. found that
the high MMP9 group was significantly enriched in the immune
response pathway and cytokine production pathway (Xu et al.,
2021). However, at present, the expression ofMMP9 and cisplatin
sensitivity in SCLC patients has not been clarified and the
associated relationship with the tumor immune
microenvironment is not clear. Therefore, in this study, we
aimed to explore the relationship between MMP9 expression
and cisplatin sensitivity as well as elucidate the TIME in SCLC, so
as to provide a theoretical basis for the precise treatment of SCLC
and improve the clinical benefits to patients.

METHODS

SCLC Cohort
We collected two published SCLC cohorts from the gene
expression omnibus (GEO) database (Clough and Barrett,
2016), namely SCLC (George et al., 2015) and SCLC (Jiang
et al., 2016). In this study, the inclusion criteria for SCLC
patients were that the included SCLC patients must have
survival data, expression data, and mutation data. According
to the above inclusion criteria, a total of 68 SCLC patients were
recorded from paper 1 (Supplementary Table S1) and 48 SCLC
patients from paper 2 (Supplementary Table S2). We filtered the
mutation data of the two SCLC cohorts according to the
definition and type of non-synonymous mutation in a
maftools R package (Mayakonda et al., 2018). The non-
synonymous mutation data obtained after filtering was then
used for subsequent analyses. The analysis process of this
study is detailed in Figure 1.

Prediction of Cisplatin Sensitivity
We used the pRRophetic algorithm (Geeleher et al., 2014) to
predict the IC50 value of cisplatin by constructing a relevant ridge

FIGURE 1 | The comprehensive study design.
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regression model with a GDSC cell line expression profile as a
training set, and the SCLC cohort as validation set. According to
the median value of MMP9 expression, SCLC patients were
divided into MMP9-High and MMP9-Low categories. The
IC50 values of cisplatin between the two groups were analyzed
using the Mann Whitney U test. Further, a Spearman correlation
test was used to analyze the expression of MMP9 and the related
IC50 value of cisplatin.

Analysis of Tumor Immune
Microenvironment Infiltration
MCPcounter, quanTIseq and xCell algorithms were used to
analyze the expression profile data of SCLC and obtain the
overall score of immune cells (Becht et al., 2016; Aran et al.,
2017; Plattner et al., 2020). GSEA was used to analyze the
difference of signal pathway activity between MMP9-High and
MMP9-Low classes (Reimand et al., 2019). ssGSEA (Hänzelmann
et al., 2013) was used to evaluate the signal pathway activity of
each SCLC patient in the c2 and c5 pathway sets according to the
MsigDB database (Liberzon et al., 2011).

The Predictive Value of MMP9 in an
Immunotherapy Cohort
We verified the prognostic value of MMP9 expression in the
NSCLC cohort receiving ICIs treatment using a CAMOIP
webpage tool (Lin et al., 2021a).

Immunogenicity Analysis
The mutation data and expression data of the TCGA cohort were
downloaded using the TCGAbiolinks R package. The data of
tumor mutation burden (TMB) and neoantigen loads (NALs) of
the TCGA cohort were obtained from published literature
(Thorsson et al., 2018).

Immunohistochemistry
Tissue samples were deparaffinized and rehydrated. After treatment
with endogenous peroxidase blocking solution, theywere treatedwith
specific antibodies against MMP9 (ab76003, Abcam), overnight at
4°C. After they were washed with PBS, the samples were treated with
horseradish peroxidase-conjugated anti-rabbit IgG (SV0002, Boster,
Wuhan, China) and then stained with diaminobenzidine (DAB). All
results were assessed by two pathologists. Expression levels were
scored by multiplying the percentage of positive cells by the staining
intensity. The positivity percentage was scored as 0 if <5% (negative),
1 if 5–30% (sporadic), 2 if 30–70% (focal) and 3 if 70% (diffuse) of the
cells were stained; and staining intensity was scored as 0 for no
staining, 1 for weak to moderate staining and 2 for strong staining. A
score of ≥2 was regarded as ‘high’ and the score of <2 is regarded as
“low” in immunohistochemical staining.

Cell Counting Kit-8 Assay
Cells were cultured at 5 × 103 cells per well in a 96-well plate with
cytotoxic drugs for 24 h. Cytotoxic drugs (cisplatin and
etoposide) were diluted to obtain different concentration
gradients. Absorbance was detected at 450 nm after treatment

with 10 μl CCK-8 reagent (Dojindo, Kumamoto) for 4 h. The
experiments were performed in five replicate wells per sample
and the assays were conducted in triplicate.

Quantitative Real-Time PCR
Total RNA was isolated using Trizol reagent (Invitrogen,
United States), according to the manufacturer’s instructions.
The quantity and purity of the total RNA was measured using
the Nanodrop® ND1000 (Thermo Fisher) and the Agilent
Bioanalyzer. Reverse transcription was performed with 2 μg of
total RNA usingM-MLV reverse transcriptase (Accurate Biology,
AG11728) according to the manufacturer’s recommendations.
Quantitative PCR was performed using CFX96 Touch Real-Time
PCR Detection Instrument (BioRad, United States). Reactions
were performed using SYBR® Green Premix Pro Taq HS qPCR
Kit (ROX Plus) (AG11718). Values were normalized to GAPDH
via the 2−ΔΔCt method.

Statistical Analysis
The statistical results of KM survival analysis were obtained by a
log rank test, and the visual results of KM survival analyses were
obtained by survivor and survminer. Univariate COX and
multivariate COX models were used to verify whether MMP9
can be used as an independent predictor of the prognosis of SCLC
patients treated with cisplatin. The different analysis of continuity
variables between MMP9-High and MMP9-Low groups was
completed by the Mann Whitney U test. In this study, all the
analysis is based on R software. The p value is bilateral, and p <
0.05 is regarded as statistically significant.

RESULTS

MMP9 is an Independent Predictor of the
Prognosis of SCLC Treated With Cisplatin
In order to explore the influence of MMP9 on the prognosis of
patients with SCLC treated with cisplatin, we used the univariate
COX regression model and multivariate COX regression model
to evaluate the SCLC cohort, including SCLC (George et al.) and
SCLC (Jiang et al.). In SCLC (George et al.), we found that only
MMP9-High was related to an improved clinical prognosis of
patients with SCLC, while common clinical factors were not
relevant in the prognosis of patients (Figure 2A; HR = 0.425;
p = 0.0085). Multivariate results showed thatMMP-High could be
used as an independent predictor of prognosis of SCLC after
cisplatin treatment (Figure 2A; HR = 0.216; p = 0.00153). Then,
univariate COX and multivariate COX regression models were
also applied to SCLC (Jiang et al.), and the results showed
that MMP9-High was not only related to significantly
prolonged clinical prognosis time (Figure 2B; HR = 0.365; p =
0.0219) but it can also be used as an independent predictor
(Figure 2B; HR = 0.352; p = 0.0199). The KM curve shows that
MMP9-High is related to significantly prolonged OS in patients
with SCLC (Figure 2C: log-rank p = 0.007; HR = 0.44; Figure 2D:
log-rank p = 0.017; HR = 0.39). We used a Sankey diagram to
visualize the clinical features of two SCLC cohorts one by one
(Figures 2E,F).
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FIGURE 2 | The prognostic value of MMP9. The univariate and multivariate COX regression model of the SCLC (George et al.) (A) and the SCLC (Jiang et al.) (B).
Kaplan-Meier curves comparing the progress free survival (PFS) of patients with MMP9-High and patients with MMP9-Low in the SCLC (George et al.) (C) and the SCLC
(Jiang et al.) (D). A Sankey diagram visualizing the clinical characteristics between MMP9-High and MMP9-Low patients in the SCLC (George et al.) (E) and the SCLC
(Jiang et al.) (F).
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FIGURE 3 | The association between MMP9, immunogenicity, and cisplatin. (A) Comparison of IC50 values of cisplatin between MMP9-High and MMP9-Low
tumors. (B) The association between the IC50 value of cisplatin and the expression of MMP9. (C) Comparison of the tumor mutation burden between MMP9-High and
MMP9-Low tumors. (D) Comparison of neoantigen loads (NALs) between MMP9-High and MMP9-Low tumors. The top 20 mutated driver genes in the SCLC (George
et al.) (E) and SCLC (Jiang et al.) (F). (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; Mann-Whitney U test).
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FIGURE 4 | The association between MMP9 and immune cells. Comparison of immune cells estimated according to MCPcounter between MMP9-High and
MMP9-Low tumors in the SCLC (George et al.) (A) and the SCLC (Jiang et al.) (B). Comparison of immune cells estimated by quanTIseq between MMP9-High and
MMP9-Low tumors in the SCLC (George et al.) (C) and the SCLC (Jiang et al.) (D). Comparison of immune cells estimated by xCell betweenMMP9-High andMMP9-Low
tumors in the SCLC (George et al.) (E) and the SCLC (Jiang et al.) (F). (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; Mann-Whitney U test).
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FIGURE 5 | The association between MMP9 and immune-related signaling. (A) The results of GSEA in the SCLC (George et al.) relating to immune signaling. (B)
The results of GSEA in the SCLC (Jiang et al.) relating to immune signaling. The GSEA of hallmark gene sets was downloaded from the MSigDB, and each run was
performed with 1000 permutations. Differences in pathway activities scored per cell by MMP9-High and MMP9-Low tumors in the SCLC (George et al.) (C) and the
SCLC (Jiang et al.) (D). Shown are t values from a linear model.
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MMP9 is Related to Cisplatin Sensitivity and
Immunogenicity
We employed the pRRophetic algorithm to predict the cisplatin
sensitivity of each SCLC patient to obtain an IC50 value. We
found that MMP9-High had significantly lower IC50 values of
cisplatin than MMP9-Low SCLC (Figure 3A; p < 0.05). Similarly,
the expression of MMP9 was negatively correlated with the IC50
value of cisplatin (Figure 3B, p = 0.001; R = −0.38; method:
spearman). We found that MMP9-High had significantly higher
TMB than MMP9-Low (Figure 3C; All p < 0.05) and NALs
(Figure 3D; all p < 0.05). Figure 3E shows that for SCLC (George
et al.), the type and mutation frequency of the driver genes in the
top 20 mutation frequencies in the cohort. The results showed
that there was no significant difference between the driver genes
in the top 20 mutation frequencies of MMP9-High and MMP9-
Low. In SCLC (Jiang et al.), the mutation frequency of MMP9-
High is significantly higher than that of MMP9-Low in PTPRB
and NTRK (Figure 3F). Supplementary Figures S1A,B shows
the mutual exclusion and co-occurrence of the top 20 driving
mutations in MMP9-High and MMP9-Low, respectively.

MMP9 is Related to Activated Immune Cells
Under the MCPcounter algorithm, whether in SCLC (George
et al.) or SCLC (Jiang et al.), we found that the TIME when
MMP9-High was higher than MMP9-Low was significantly
infiltrated with t-cells, cytoxic lymphocytes, B-cells, NK cells,
and dense cells (DCS) (Figures 4A,B; all p < 0.05). Under the
quanTIseq algorithm, we found that MMP9-High has
significantly increased B cells and m1 macrophages when
compared with MMP9-Low (Figure 4C: George et al.;
Figure 4D: Jiang et al.). With the xCell algorithm, we found
that, compared with MMP9-Low, MMP9-High has significant
DCs and NKT (Figure 4E: George et al.; Figure 4F: Jiang et al.).

MMP9 is Related to the Up-Regulation of
the Immune-Related Signaling Pathway
In order to further explore the difference of signal pathway
activity between MMP9-High and MMP9-Low, we used GSEA
and ssGSEA to evaluate and calculate the signal pathway activity.
Figures 5A,B shows that in SCLC (George et al.) and SCLC (Jiang
et al.), MMP9-High has significantly increased activity of
immune activation related pathways, such as cytokine binding
and immune response mediated by B cells and NK cells when
compared with MMP9-Low. In addition, the results of ssGSEA
analysis showed that the activity of MMP9-High in B-cell, T-cell
and NK cell activation, cytokine secretion, chemokine binding,
and antigen presentation was significantly higher than that of
MMP9-Low (Figures 5C,D).

MMP9 is Related to the Prognosis of
Immunotherapy
In order to explore the role of MMP9 in the prognosis of patients
receiving immune checkpoint inhibitors, we used CAMOIP as a
web tool to verify the relationship between MMP9 and the

prognosis of immunotherapy. We found that in the NSCLC
(Kim et al.) cohort, the PFS time of MMP9-High was
significantly longer than that of MMP9-Low (Figure 6A; log-
rank p = 0.026; HR = 0.4). In another NSCLC (Hwang et al.)
cohort, the PFS time ofMMP9-High was significantly longer than

FIGURE 6 | The prognostic value of the MMP9 in immunotherapy.
Kaplan-Meier curves comparing the progress free survival (PFS) of patients
with MMP9-High and patients with MMP9-Low in the NSCLC (Kim et al.) (A)
and the NSCLC (Hwang et al.) (B).
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FIGURE 7 | (A) The IC50 of H69/H69AR cells to cisplatin. (B) The IC50 of H446/H446DDP to cisplatin. (C) The IC50 of H69AR-NC/H69AR-MMP9 to cisplatin. (D)
The IC50 of H446DDP-NC/H446DDP-MMP9 to cisplatin. (E) The expression level of MMP9 mRNA in H69, H69AR, H446 and H446DDP. (F) The expression level of
CDYL protein in H69, H69AR, H446 and H446DDP. (G) The expression level of MMP9 mRNA in H69AR-NC, H69AR-MMP9, H446DDP-NC and H446DDP-MMP9. (H)
The expression level of CDYL protein in H69AR-NC, H69AR-MMP9, H446DDP-NC and H446DDP-MMP9 (***p < 0.001).
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that of MMP9-Low (Figure 6B; log-rank p = 0.029; HR = 0.37).
These results suggest that MMP9may be an important biomarker
for the prognosis of immunotherapy.

Small Cell Lung Cancer Model Proves that
MMP9 is Related to Cisplatin Sensitivity
In this study, the IC50 values of two pairs of chemotherapy-
sensitive and drug-resistant small cell lung cancer cells to the
first-line chemotherapy drug (cisplatin) were detected using the
CCK8 method. The results showed that the IC50 of
chemotherapy-sensitive H69/H446 small cell lung cancer cells
to cisplatin was significantly lower than that of the corresponding
chemotherapy-resistant cells (H69AR/H446DDP) (Figures
7A,B). To detect the effect of MMP9 on the chemotherapy
resistance of small cell lung cancer cells, this study used the
CCK8method to detect the IC50 value of chemotherapy-resistant
small cell lung cancer cells with upregulated expression of MMP9
to first-line chemotherapy drugs (cisplatin and etoposide). The
results showed that upregulating the expression level of MMP9
(H69-MMP9, H446-MMP9) in chemotherapy-resistant small cell
lung cancer cells significantly reduced the IC50 value of SCLC
cells to chemotherapy drugs (Figures 7C,D), and the subsequent
chemotherapy resistance of cells decreased.

Firstly, the basic expression levels of MMP9 mRNA and
MMP9 protein in small cell lung cancer cells were detected by
real-time fluorescence quantitative PCR and
immunohistochemistry. The results of the real-time
quantitative PCR showed that the expression level of MMP9
mRNA in chemotherapy-resistant H69AR cells and H446DDP
cells was significantly lower than that in chemotherapy-sensitive
H69 cells and H446 cells (Figure 7E) (p < 0.001).
Immunohistochemically, the results also showed that the
expression level of CDYL protein in chemotherapy-resistant
H69AR cells and H446DDP cells was lower than that of their
parents’ chemotherapy-sensitive H69 cells and H446 cells
(Figure 7F). Based on the basic expression level of MMP9 in
the above two pairs of chemotherapy-sensitive and
chemotherapy-resistant small cell lung cancer cells, this study
further uses lentivirus-mediated LV5-MMP9 to up-regulate the
expression level of MMP9 in chemotherapy-resistant H69AR and
H446DDP small cell lung cancer cells. The verification results of
quantitative PCR, and immunohistochemistry showed that we
successfully constructed the small cell lung cancer cell model with
an up-regulated expression of CDYL (H69AR-MMP9,
H446DDP-MMP9). (Figures 7G,H). (p < 0.001).

DISCUSSION

The results of the univariate COX regression, multivariate COX
regression, and KM analysis demonstrated that MMP9-High may
be an independent predictor of improved prognosis in SCLC
patients after receiving cisplatin. In addition, the expression of
MMP9 was negatively correlated with the IC50 value of cisplatin.
Based on the observations pertaining to MMP9, we analyzed the
TIME of patients with SCLC. Compared with MMP9-Low,

MMP9-High displayed significantly increased activated
immune cells and an amplified active immune activation
pathway. In addition, according to the immunotherapy cohort,
MMP9 may represent a suitable novel biomarker for screening
patients undergoing immunotherapy.

Remodeling the immunogenicity of tumor cells may be one of
the reasons underlying the improved prognosis of patients with
MMP9-High SCLC after cisplatin treatment. After cisplatin
induces the death of tumor cells, it will release immunogenic
substances originally located in tumor cells, thus activating the
APC-mediated antigen presentation process, resulting in an anti-
tumor immune response. Evidence from a study investigating the
anti-tumor mechanism of cisplatin employed protein omics
based on mass spectrometry in order to detect the content of
protein in the supernatant of tumor cell culture before and after
cisplatin administration. A total of 2,239 varieties of protein were
identified, of which 526 types were up-regulated more than
3 times after cisplatin treatment, including tumor-driving
genes such as NRAS, heat shock proteins, metabolic enzymes,
and other proteins. Furthermore, APC stimulated by antigenic
substances in these supernatants can significantly enhance the
proliferation and functional level of CD8+T cells, suggesting that
antigen release induced by chemotherapeutic drugs can
significantly activate anti-tumor immune response through the
antigen presentation system (Beyranvand Nejad et al., 2016; Lin
et al., 2020).

In this study, we found that MMP9-High has significantly
higher TMB and NALs than MMP9-Low. Up-regulation of
immunocompetent ligand on the surface of tumor cells may
contribute to the possible mechanisms of improved prognosis in
patients with MMP9-High SCLC after cisplatin treatment. In
addition to the above-mentioned release of immunogenic
substances related to cell death, chemotherapeutic drugs can
also affect the protein expression of tumor cells. Immunogenic
tumor cells remodeling tumor cells can down-regulate the
expression of MHCI to avoid the killing effect of CTL cells. It
has been found that cisplatin can up-regulate MHCI on the
surface of head and neck cancer cells and enhance the
presentation of tumor antigens, thus promoting the
recognition of tumor cells by CTL and the activation of
CD8+T cells (Gameiro et al., 2012; Tran et al., 2017; Lin et al.,
2021b). In addition, cisplatin can also lead to the up-regulation of
MHCI expression in ovarian cancer cells (Grabosch et al., 2019).
After subcutaneous inoculation of tumor cells pretreated with
cisplatin in vitro, it was found that, when compared with the
control group, the tumor cells treated with cisplatin were not
likely to form tumors, and the expression of MHCI in grown
tumors was higher (Nio et al., 2000). Similar results were obtained
with regard to colon cancer cells (Ohtsukasa et al., 2003). We can
infer that cisplatin can up-regulate the expression of MHCI
in vitro and in vivo. In addition to tumor cells,
chemotherapeutics can up-regulate the expression level of
MHCI in antigen presenting cells (APCs) (Jackaman et al.,
2012). In addition, studies reveal that cisplatin can improve
the antigen presenting ability of APC such as DCs(Shurin
et al., 2009; Zitvogel et al., 2013; Lin et al., 2021c). In this
study, we found that MMP9-High has significantly infiltrated
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DCs, higher MHC, and increased antigen presentation activities
compared to that of MMP9-Low.

Inflammatory TIME may be one of the reasons for the
improved prognosis of patients with MMP9-High SCLC after
cisplatin treatment. Chemotherapy drugs can enhance the
sensitivity of tumor cells to immune killing. For example,
cisplatin can enhance the sensitivity of tumor cells to the CTL
specific killing effect (Ramakrishnan et al., 2012). In addition,
active immune effector cells, such as NKs, serve to mediate
cytotoxicity (Lichtenstein and Pende, 1986). Furthermore,
cisplatin also causes effector cells to produce more
cytokines that regulate and promote various immune
responses (Kepp et al., 2013; Huang et al., 2021).
Moreover, chemotherapy can eliminate immunosuppressive
cells such as MDSC and Tregs by inducing apoptosis and
through other mechanisms, so that immunotherapy can
achieve the maximum efficacy. For example, the use of
cisplatin before the injection of DNA vaccine encoding
CRT can reduce the level of MDSC in tumor-bearing mice
(Tseng et al., 2008; Li et al., 2020). Cisplatin is beneficial in
inducing the formation of self-reactive T-cells and anti-tumor
immune responses (Tseng et al., 2008). The CTLs and NKs
with significant infiltration in MMP9-High, respectively,
verified the above results.

However, this research has some limitations. First, the cohorts
of SCLC are very limited, and this study only includes two of the
SCLC cohorts recorded in the current public data. Secondly, the
SCLC cohort lacks data on cisplatin drug sensitivity, and the data
on cisplatin drug sensitivity in this study is based on the
pRRophetic algorithm.

CONCLUSION

Based on the results obtained in this study, we identified that
MMP9-Highmay be a potential new biomarker that facilitates the
improved prognosis of SCLC patients after cisplatin treatment. In
addition, the TIME of MMP9-High SCLC is primarily
characterized by a large number of infiltrated activated
immune cells and activated immune-related pathways.
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Identification of a DNA Damage
Response and Repair-Related
Gene-Pair Signature for Prognosis
Stratification Analysis in
Hepatocellular Carcinoma
Yi Chen,Mengjia Huang, Junkai Zhu, Li Xu,Wenxuan Cheng, Xiaofan Lu†* and Fangrong Yan*

State Key Laboratory of Natural Medicines, Research Center of Biostatistics andComputational Pharmacy, China Pharmaceutical
University, Nanjing, China

Background:Nowadays, although the cause of hepatocellular carcinoma (HCC) mortality
and recurrence remains at a high level, the 5-year survival rate is still very low. The DNA
damage response and repair (DDR) pathway may affect HCC patients’ survival by
influencing tumor development and therapeutic response. It is necessary to identify a
prognostic DDR-related gene signature to predict the outcome of patients.

Methods: Level 3 mRNA expression and clinical information were extracted from the
TCGA website. The GSE14520 datasets, ICGC-LIRI datasets, and a Chinese HCC cohort
were served as validation sets. Univariate Cox regression analysis and LASSO-penalized
Cox regression analysis were performed to construct the DDR-related gene pair (DRGP)
signature. Kaplan–Meier survival curves and time-dependent receiver operating
characteristic (ROC) analysis curves were calculated to determine the predictive ability
of this prognostic model. Then, a prognostic nomogram was established to help clinical
management. We investigated the difference in biological processes between HRisk and
LRisk by conducting several enrichment analyses. The TIDE algorithm and R package
“pRRophetic” were applied to estimate the immunotherapeutic and chemotherapeutic
response.

Results: We constructed the prognostic signature based on 23 DDR-related gene pairs.
The patients in the training datasets were divided into HRisk and LRisk groups at median
cut-off. The HRisk group had significantly poorer OS than the LRisk group, and the
signature was an independent prognostic indicator in HCC. Furthermore, a nomogram of
the riskscore combined with TNM stage was constructed and detected by the calibration
curve and decision curve. The LRisk group was associated with higher expression of HBV
oncoproteins and metabolism pathways, while DDR-relevant pathways and cell cycle
process were enriched in the HRisk group. Moreover, patients in the LRisk group may be
more beneficial from immunotherapy. We also found that TP53 gene was more frequently
mutated in the HRisk group. As for chemotherapeutic drugs commonly used in HCC, the
HRisk group was highly sensitive to 5-fluorouracil, while the LRisk group presented with a
significantly higher response to gefitinib and gemcitabine.
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Conclusion: Overall, we developed a novel DDR-related gene pair signature and
nomogram to assist in predicting survival outcomes and clinical treatment of HCC
patients. It also helps understand the underlying mechanisms of different DDR patterns
in HCC.

Keywords: DNA damage response and repair, hepatocellular carcinoma, prognosis, HBV, chemotherapy

INTRODUCTION

Liver cancer remains a major contributor to the global cancer
burden, and it is estimated that the global incidence cases will
exceed 1 million by 2025 (Llovet et al., 2021). Hepatocellular
carcinoma (HCC) is the most common form of liver cancer and
the fourth-highest cause of cancer mortality (Villanueva, 2019).
Hepatitis B and C virus (HBV and HCV) infection, cirrhosis,
metabolic diseases, and alcohol-related liver disease are the main
risk factors for HCC (Tunissiolli et al., 2018). Although diagnosis
and treatment have made rapid progression in HCC, the 5-year
survival rates remain very low (Siegel et al., 2013). Because of the
different levels of heterogeneity in HCC, particularly interpatient,
intertumor, and intratumor (Hoshida et al., 2009), several
prognostic biomarkers widely used in clinical practice are still
far from satisfying (Liu et al., 2019). Recently, deep mining of
public gene expression data tends to be an effective method to
identify novel gene prognostic signatures to accurately predict
HCC prognosis and guide personalized therapy for patients
(Long et al., 2018; Liu et al., 2019; Liu et al., 2020).

Genomic instability has been reported as a fundamental
hallmark of cancer (Negrini et al., 2010). Genomic instability
refers to the high frequency of harmful changes in the genomic
structure due to DNA damage response (Sahin et al., 2016). To
maintain genome stability, eukaryotic cells evolve several
mechanisms to detect DNA damage, present damage signals,
and mediate cellular responses to eliminate the damage (Ciccia
and Elledge, 2010; Pandita et al., 2013; Su et al., 2018). This
process is called DNA damage response and repair (DDR). The
DDR pathway is an important mechanism that consists of eight
major pathways: mismatch repair (MMR), base excision repair
(BER), nucleotide excision repair (NER), homologous
recombination repair (HRR), checkpoint factors (CPF),
nonhomologous end-joining (NHEJ), Fanconi anemia (FA),
and translesion DNA synthesis (TLS) (Scarbrough et al., 2016;
Song et al., 2021). Furthermore, studies have revealed that the
DDR system plays an important role in tumorigenesis, tumor
progression, and response to therapy (Lima et al., 2019). It is
currently appreciated that tumor progression requires
downregulation of DNA damage response mechanisms and an
increase in genetic instability to achieve uncontrolled
proliferation and adaptability to invasive tumors (Jeggo et al.,
2016). For tumor treatment, genotoxic drugs have been the
mainstay of cancer chemotherapy for over 30 years, which
cause DNA damage exceeding the repair capacity of DDR
systems (Pearl et al., 2015).

DDR pathways are found to be associated with chemotherapy
resistance of HCC (Evans et al., 2016; Chen Y. et al., 2021). HCC
cells strengthen their DDR ability to frustrate the DNA damage

caused by chemotherapy drugs, often leading to chemotherapy
resistance (Al-Hrout et al., 2018; Chen et al., 2018). Consequently,
the DDR pathway may impact HCC patients’ survival by
influencing tumor development and therapeutic response.
Recently, some studies have successfully constructed
prognostic and predictive signatures based on the expression
of the DDR gene (Evans et al., 2016; Sharma et al., 2019; Chen
J. et al., 2021). Taken together, it is significant to explore a
prognostic DDR-related gene signature to predict the outcome
and characterize two different DDR pathway activity subtypes of
HCC patients.

In this study, a gene-pair strategy was used to improve the
robustness of the identification of the predictive signature (Eddy
et al., 2010; Li et al., 2017). Univariate and Lasso-Cox regression
analysis was conducted to construct a novel prognostic
biomarker. We clustered HCC patients into two risk groups
according to 23 DDR-related gene pairs and identified two
subtypes related to prognosis and chemotherapy response. In
addition, the prognostic value of our DDR-related gene pair
signature was further validated in GSE14520 datasets, ICGC-
LIRI datasets, and a Chinese HCC cohort (LIHC-CN).
Collectively, we identified a robust signature to present new
evidence into the prognostic value of the expression of DDR-
related genes in HCC and explore the underlying mechanisms of
DDR patterns and potential therapeutic drugs in HCC treatment.

MATERIALS AND METHODS

Data Collection and Processing
Level 3 mRNA expression, somatic mutation data, and
clinicopathological data were obtained from the TCGA website
(https://portal.gdc.cancer.gov/repository). A segment of copy
number for the TCGA-LIHC cohort was accessed from the
GDAC FireBrowse (http://firebrowse.org/). The raw count data
were transferred to transcripts per kilobase of exon model per
million mapped reads (TPM) data which would represent the
expression of mRNA in the TCGA-LIHC cohort. After filtering
mRNAs with lowmedian absolute deviation (mad ≤0.5) across all
samples and removing the samples without complete survival
information, a total of 351 HCC samples were enrolled in this
study. RNA-seq data, somatic mutation data, and clinical data
with 240 tumor samples were downloaded from the International
Cancer Genome Consortium (ICGC) portal (https://dcc.icgc.org/
projects/LIRI-JP). Raw read count values were transformed into
TPM values for subsequent analysis. The expression data and
detailed clinical information of GSE14520 (including 219 HCC
samples based on the GPL3921 platform) were downloaded from
the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.
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gov/geo/). Additionally, a LICH-CN cohort with 159 Chinese
HCC patients was downloaded for somatic mutation, clinical
outcome, and transcriptome expression FPKM value from the
literature (Gao et al., 2019).

Construction and Validation of the
DDR-Related Gene Pair Signature
DDR-gene list including 557 genes was assembled from relevant
gene lists, including MSigDB from the Broad Institute (http://
www.broad.mit.edu/gsea/msigdb/) or literature (Pearl et al., 2015;
Knijnenburg et al., 2018; Chen J. et al., 2021). Finally, 384 DDR
genes detected in all datasets were analyzed in this study
(Supplementary Table S1). Then, each gene pair was
calculated via their gene expression level in each HCC sample.
According to the pairwise comparison, the calculated score was 0
when the first expression level of the DDR gene was higher than
that of the following DDR gene; otherwise, the calculated score
was 1. DRGP scoring 0 or 1 in more than 90% of the samples were
removed because they could not provide discriminative patients
with different survival. The remaining DRGPs were considered as
initial candidate DRGPs.

Patients were randomly divided into training and testing sets
at cut-of 7:3 in the TCGC cohort. Then, a univariate Cox
regression analysis was performed to identify the significant
DRGPs related to overall survival (OS) if the FDR p-value was
less than 0.05. Next, candidate DRGPs were submitted to LASSO-
penalized Cox regression analysis based on package “glmnet” in R
to construct an optimal prognostic signature in TCGA training
datasets (Friedman et al., 2010). A DDR-related gene pair
riskscore of each sample was calculated based on the lasso
Cox regression model coefficients (β) multiplied with its
DRGP score, as follows:

Riskscore � ∑n

i�1(βi × Scorei)
where Scorei is the relative expression of DRGPs for patient j in
each cohort and βi is the LASSO Cox coefficient of the DRGPsi.
Then, all patients were separated into low- (LRisk) or high-risk
(HRisk) groups at the median cut-off. Kaplan–Meier survival
curves were plotted for prediction of the clinical outcomes in the
two groups via the “survival” package in R. The differences in
survival were evaluated via the log-rank test. Time-dependent
receiver operating characteristic (ROC) analysis curves
were built, and the area under the curves (AUCs) for 1-, 3-,
and 5-year overall survival (OS) were calculated utilizing
the “survivalROC” package in R (Heagerty et al., 2000). The
same method was further investigated in the TCGA testing
cohort, TCGA whole cohort, GSE14520 cohort, and ICGC-
LIRI cohort.

Subgroup Kaplan-Meier Survival Analysis
To explore the diagnostic capability of the DRGP prognostic
signature in different levels of other clinical prognostic
parameters, HCC samples in TCGA sets were stratified into
different subgroups based on age (≥60 and <60), gender
(female and male), TNM stage (I and II + III + IV), grade

(G1+G2 and G3+G4), and TP53 (mutation and wild). Then,
cancer samples in each subgroup were clustered into HRisk and
LRisk groups. The differences in prognosis between the two
groups were assessed via Kaplan–Meier OS analysis, followed
by a log-rank test.

Correlations Between the DRGP Model and
Clinical Properties
To elucidate whether the prognostic model for OS is independent
of other prognostic factors, we presented univariate Cox
regression analysis and multivariate Cox regression survival
analysis to predict the clinical outcomes of HCC patients,
which was visualized via package “forestplot” in R. Hazard
ratio (HR), 95% confidence interval (CI), and p-value were
calculated, respectively.

Construction and Validation of Gene
Prognostic Nomogram
A nomogram was constructed based on all independent
prognostic parameters screened by univariate and multivariate
Cox proportional hazards regression analysis to predict the
probability of 1-, 3-, and 5-year OS using the “rms” package
of R software. Then, we used a calibration curve to visualize the
performance of the nomogram with the observed rates of the
TCGA whole set at corresponding time points by a bootstrap
method with 1000 resamples. Furthermore, decision curve
analysis (DCA) and calibration curves were detected to check
the reliability of our nomogram (Kerr et al., 2016).

Functional Enrichment Analysis
To investigate the difference in biological process between HRisk
and LRisk, we performed some enrichment analysis using
“GSVA” and “clusterprofiler” R packages (Yu et al., 2012;
Hänzelmann et al., 2013). The infiltrating score of 24
microenvironment cell types was calculated with single-sample
gene set enrichment analysis (ssGSEA) in the “GSVA” R package.
Gene set enrichment analysis (GSEA) was conducted between
HRisk and LRisk by using the R “clusterProfiler” package. A
signature of eleven oncogenic pathways and a DDR gene list,
which include eight core DDR pathways, were obtained from the
literature (Pearl et al., 2015; Sanchez-Vega et al., 2018; Lu et al.,
2021). Then, we used the gene set variation analysis (GSVA)
method to generate enrichment scores for each cohort using
the R package “GSVA”. The KEGG gene sets
(c2.cp.kegg.v7.4.symbols.gmt) was selected as the reference
datasets, which was obtained from the MSigDB database.

Prediction of Immunotherapeutic and
Chemotherapeutic Response
For immunotherapy, the tumor immune dysfunction and
exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/) was
applied to predict potential clinical response to immune
checkpoint inhibitors (Jiang et al., 2018). Based on Genomics
of Drug Sensitivity 2016 (GDSC 2016; https://www.cancerrxgene.
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org/), the R package “pRRophetic” was applied to estimate the
chemotherapeutic sensitivity by the half-maximal inhibitory
concentration (IC50) of each HCC sample in four cohorts.
Therefore, we could investigate the different sensitivity of
common liver cancer chemotherapy drugs between HRisk and
LRisk. In addition, in order to identify potential drugs in HCC
samples, we performed a two-step analysis to find candidate
compounds as described previously (Yang et al., 2021). First,
differential drug response analysis between top decile riskscore
samples and bottom decile riskscore samples was conducted to
verify drugs with significantly different estimated IC50 in two
riskgroups (|log2FC| > 0.2). Next, Spearman correlation analysis
was utilized to calculate the correlation coefficients between
riskscore and IC50 of each candidate drug (|Spearman
correlation coefficient| > 0.4).

HBVpca Quantifies the Expression Level of
HBV Virus
HBV oncoproteins were quantified for expression according to
the previous study: HBVgp2_S, HBVgp3_X, HBVgp4_c, and
HBVgp2_pre-S1/S2 (Xue et al., 2021). The four HBV
oncoprotein expressions were identified and presented as
FPKM values. To comprehensively explain the original
expression level of HBV oncoproteins, we established a
variable that was calculated by principal component analysis
(PCA) as the previous study described (Lu et al., 2019).
HBVpca was derived from the first and second principal
components that represented 76.73 and 17.10% of the
variation in the original data, respectively. The coefficients of
four HBV oncoproteins to the first and second principal
components are shown in Table 1.

Mathematically, let Eij denotes the log2(FPKM +1) value of
specific oncoprotein j in sample i, and Cjk represents the
corresponding coefficient of HBV oncoprotein (HBVj;
j∈{1,2,3,4}) for principal component k (k∈{1,2}). The HBVpca

can be calculated as follows:

HBVpca �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E11 / E1j

..

.
1 ..

.

Ei1 / Eij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
C11 / E1k

..

.
1 ..

.

Cj1 / Ejk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ 0.76730.1710
]

Comprehensive Analysis of Genomic
Variation Between Different DRGP
Subgroups
We then investigated the genomic variation between HRisk and
LRisk groups. The mutation landscape was analyzed by the R

package “maftools” with the initial removal of 100 FLAGS
(Mayakonda et al., 2018). The data CNV segments were
detected by Genomic Identification of Significant Targets In
Cancer 2.0 (GISTIC 2.0) analysis. In the process of GISTIC
2.0 analysis, except for the refgene file which was
“Human_Hg19.mat”, parameters were set to the default
parameters. The individual fraction of genome altered (FGA),
fraction of genome lost (FGL) and fraction of genome gained
(FGG) for the HCC in the TCGA cohort were calculated as the
study described (Lu et al., 2021). We also obtained GISTIC calls
comprising −2 (deletion), −1 (loss), 0 (diploid), 1 (gain), and 2
(amplification) from GISTIC2.0 (Wu et al., 2020).

Statistical Analyses
All statistical analyses were performed with R software (version
4.1.1: http://www.r-project.org) and R Bioconductor packages in
this study. Kaplan–Meier analysis with the log-rank test was used
to detect differences of OS between different groups through the
package “survminer” in R. Time-dependent ROC was utilized to
evaluate the predictive accuracy of the DRGP riskscore through
package “survivalROC” in R. Cox proportional hazards
regression for estimating the hazard ratios (HRs) and 95%
confidence interval (CI). Comparison of a continuous variable
in two groups was performed using Wilcoxon rank-sum test.
Correlation between two continuous variables was measured by
Spearman’s rank-order correlation. Differences in proportions
were compared by the Chi-squared test or Fisher’s exact test.

RESULTS

Construction and Validation of the
Prognostic DDR-Related Gene Pair
Signature
The clinical features of HCC samples in the training and
validation sets are listed in Supplementary Table S2. In the
training datasets of 246 patients, 85 patients died during the
follow-up. As tested by the univariate Cox regression OS analysis,
459 DRGPs had significant associations with OS of HCC in the
training set (all FDR p-value < 0.05). Based on LASSO-Cox
regression analysis, 23 DRGPs were independently related to
the prognosis of HCC (Figures 1A,B). Among them, 11 gene
pairs were risk factors for HCC prognosis (HR > 1).
Supplementary Table S3 lists the 23 selected gene pairs and
their coefficients. The regression coefficients and DRGP score of
these 23 gene pairs in each sample were used to calculate the
riskscore in each HCC cohort.

TABLE 1 | Coefficients of four HBV oncoproteins to the first and second principal components.

Principal components HBV oncoproteins

HBVgp2_S HBVgp3_X HBVgp4_c HBVgp2_pre-S1/S2

Componment1 0.62 0.57 0.34 0.41
Componment2 0.29 0.43 −0.74 −0.42
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The patients in the training datasets were divided into HRisk
or LRisk groups at median cut-off. Kaplan-Meier survival analysis
indicated that the HRisk group have a poorer OS than the LRisk
group (hazard ratio (HR) = 3.99, 95% CI = 2.48–6.44, p-value <
0.001, Figure 1C). The values of AUC are 0.76, 0.83, and 0.86 at
1-, 3-, and 5-year follow-up, respectively (Figure 1I), showing

that the signature displays good sensitivity and specificity. The
C-index of the DRGPmodel is 0.80. To determine the predictive
ability of this prognostic model, we calculated individual
riskscore with the aforementioned method and classified the
patients in TCGA-testing set, TCGA whole set and other
validation sets into HRisk and LRisk groups. Similarly, we

FIGURE 1 | Construction and validation of a prognostic DDR-related gene pair signature. (A,B) LASSO regression identified 23 DRGPs. (C–H) The Kaplan–Meier
overall survival (OS) curves in the TCGA training datasets (C), TCGA testing datasets (D), TCGA datasets (E), GSE14520 datasets (F), ICGC datasets (G), and LIHC-CN
datasets (H) show that patients in the HRisk group have a poorer prognosis. (I–N) ROC curves show the predictive efficiency of the signature for patients in the TCGA
training datasets (I), TCGA testing datasets (J), TCGA datasets (K), GSE14520 datasets (L), ICGC datasets (M), and LIHC-CN datasets (N) on the survival rate.
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validated the prediction of signature in these datasets.
Consistent with the above findings, the HRisk patients in all
cohorts have a markedly shorter OS than those in the LRisk
group (Figures 1D–H). The AUCs of ROC curves for 1-,3-, and
5- year OS are shown in Figures 1J–N.

Independent Prognostic Role of the DRGP
Signature
To further explore the clinical potentiality of the prognosis
model in HCC, stratified analysis based on these clinical
characteristics was conducted. As shown in Figures 2A–J
and Supplementary Figure S1, Kaplan–Meier OS curves also
showed that HRisk patients had considerably worse OS than
LRisk patients, which further indicated the excellent prediction
of the DRGP model. We further analyzed whether the riskscore
was an independent prognostic predictor for OS. In univariate
Cox regression analyses, high riskscore was significantly
associated with shorter OS in TCGA cohort (HR = 3.22, 95%
CI = 2.53–4.13, p-value < 0.001, Figure 3A) According to the
multivariate Cox regression analysis results, we considered the
TNM stage (HR = 1.27, 95% CI = 1.00–1.61, p-value = 0.0515)
and riskscore (HR = 2.96, 95% CI = 2.29–3.83, p-value < 0.001]
are both independent prognosis factors for TCGA (Figure 3A).
The independence of the DRGP signature for HCC prognosis
was also confirmed in GSE14520, ICGC, and LIHC-CN cohorts
(Figures 3A,B). Collectively, the signature was an independent
prognostic factor for HCC.

Construction and Verification of a
Prognostic Prediction Nomogram for HCC
We constructed a nomogram based on multivariate Cox
regression analysis for prediction of the 1-, 3-, and 5-year
survival probability in TCGA datasets (Figure 3C). As shown

in the calibration chart (Figure 3D), the nomogram could
robustly predict OS for HCC patients. Moreover, the DCA
curve suggested that riskscore was more beneficial when
compared with the TNM stage alone (Figure 3E). The DCA
curve demonstrated that the net benefit of the combined model
was comparable to the riskscore. These results showed that the
nomogram built with the combined model might help clinical
management.

LRisk Group Associated With Higher HBV
Virus Expression and Higher Proportion of
TIDE-Predicted Responders
A previous study indicated that the high expression of HBV16
E6/E7 was significantly linked to a favorable prognosis because
the inflammatory/immune response of the host may be
stimulated (Lu et al., 2019). To investigate whether HBV
oncoproteins were differentially expressed between two risk
groups in HCC, we calculated the HBVpca by principal
component analysis (PCA) based on the FPKM value of four
HBV oncoproteins in the TCGA cohort. In our study, 96 HVB-
infected HCC patients were identified, the first and second
principal components were used since they covered almost
the variations (93.83%; Figure 4A). We found a significant
difference in HBV virus expression between HRisk and LRisk
(Wilcoxon test, p = 0.018, Figure 4B), and HBVpca has also
observed a mildly negative correlation with riskscore (R =
−0.280, p = 0.006, Figure 4C). It means a high level of
HBVpca corresponds to low risk in HCC patients.

To evaluate the tumor immune microenvironment in
different groups, a ssGSEA method was used to estimate the
infiltration levels of the 24 types of immune cells. The ssGSEA
score and immune cell types which were differentially
infiltrated between LRisk and HRisk groups in the TCGA
set are presented in Figure 4D. The proportion of 24

FIGURE 2 | Kaplan–Meier curves analyses of different clinical subgroups in TCGA cohort. Patients were classified into (A) Age >60 years, (B) Gender: Female, (C)
TNM stage: I, (D) Grade: G1+G2, (E) TP53 wild type, (F) Age ≤60 years, (G) Gender: Male, (H) TNM stage: II + III + IV, (I) Grade: G3+G4, and (J) TP53 mutant type.
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FIGURE 3 | Validation of the independency of the riskscore for prediction of HCC prognosis. (A,B) Univariate and multivariate cox regression survival analysis
validated riskscore was an independent prognosis factor for HCC patients in TCGA datasets (A), GSE14520 datasets (A), ICGC datasets (B), LIHC-CN datasets (B).
The p-value, hazard ratio (HR), and 95% confidence interval (CI) were indicated in the forest plots. The blue circle represents the value of HR each parameter scored.
(C,E) Construct nomogram for survival prediction. (C) which integrated with two independent prognosis factors for predicting the probability of patient mortality at
1-, 3-, or 5-year OS. (D) The calibration plots for predicting patient 1-, 3-, or 5-year OS. (E) DCA curves for two independent prognostic factors or a combination of them
in OS prediction.
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immune cells in each group is shown in a bar plot. The results
revealed that the level of infiltration of dendritic.cells.resting,
macrophages.M0, mast.cells.activated, and
T.cells.CD4.memory.activated in the HRisk group was
significantly higher than that in the LRisk group, while the
level of endothelial cells, mast.cells.resting, and NK
cells.activated in the LRisk were higher than that in the
HRisk group. For further investigating the immune
landscape of different risk groups reflected by the DRGP
signature, validation cohorts GSE14520, ICGC, and LIHC-
CN were also calculated by ssGSEA to verify the

differences in risk groups at the immune level
(Supplementary Figure S2).

We also detected and compared the expression levels of several
immune checkpoints between the LRisk and HRisk groups.
Results showed that the mRNA expression levels of CTLA4,
PDCD1, and TIGIT were consistently overexpressed in the
HRisk in TCGA and ICGC datasets (Figure 5A), but we could
not observe a significant difference in GSE14520 and LIHC-CN
cohorts (both, p > 0.05, not shown). These results suggested that
the HRisk group may contribute to tumor immune dysfunction
and immune exclusion in HCC. To investigate whether LRisk

FIGURE 4 | Immune infiltration and HBVpca score between HRisk and LRisk group in TCGA cohort. (A) Barplots showing that the first and second principal
components present almost all the variations with a summing percentage of 93.83%. (B) Boxplot showing HBVpca difference in the HRisk and LRisk groups (Wilcoxon
test, p = 0.018). (C) Spearman correlation analysis between HBVpca and riskscore (R = -0.280, p = 0.006). (D) Boxplot for TCGA cohort showing the enrichment level of
24microenvironment cell types between HRisk (yellow) and LRisk (blue) groups. Statistical p values were calculated by theWilcoxon test and represented by. < 0.1,
* <0.05, ** <0.01, and *** <0.001.
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responds to immune checkpoint inhibits, we harnessed the TIDE
algorithm to predict the potential response to immunotherapy in
different groups. The higher TIDE score represented less
promising treatment for response to immunotherapy. In our
results, the HRisk group contained lower proportion of TIDE-

predicted responders than LRisk group in all four cohorts (TCGA
(p < 0.001), GSE14520 (p = 0.23), ICGC (p = 0.012), and LIHC-
CN (p = 0.016); Figure 5B). These results suggest that HCC
patients in LRisk might be more beneficial from immune
checkpoint inhibitors.

FIGURE 5 | Differential sensitivity to immunotherapy and chemotherapies between HRisk and LRisk. (A) Boxplot for TCGA and ICGC cohort showing the different
expression levels of six immune checkpoint genes between riskgroups. Statistical p values were calculated by the Wilcoxon test and represented by. < 0.1, * <0.05, **
<0.01, and *** <0.001. (B) Barplots revealed that LRisk might be more likely to response to immunotherapy than HRisk in TCGA (Chi-square test, p < 0.001), GSE14520
(Chi-square test, p = 0.23), ICGC (Chi-square test, p = 0.012), and LIHC-CN (Chi-square test, p = 0.016) cohorts, respectively. (C) Bubble plot showing the drug
sensitivity for eight commonly used chemotherapeutic drugs in liver cancer between HRisk and LRisk across four cohorts, where red and blue bubbles show that either
HRisk or LRisk group is more sensitive to a drug according to the corresponding mean value of predicted IC50; and a black circle wrapped around the bubble presents
whether a statistically significant difference is achieved. Statistical p values were calculated by the Wilcoxon test. (D) The results of Spearman’s correlation analysis and
boxplots for the distribution of seven HRisk sensitivity drugs response analyses in TCGA datasets. (E) The results of Spearman’s correlation analysis and boxplots for the
distribution of five LRisk sensitivity drugs response analyses in TCGA datasets.
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FIGURE 6 | Differentially functional pathways between the HRisk and LRisk group in TCGA. (A) GSEA identified upregulated pathways in HRisk. (B) Heatmap of
enrichment level calculated by GSVA for metabolism-related pathways derived fromGSEA and oncogenic pathways. (C,D)Boxplot of oncogenic pathways (C) and DDR
pathways (D) from GSVA of two riskgroups. Statistical p values were calculated by the Wilcoxon test and represented by. < 0.1, * <0.05, ** <0.01, and *** <0.001.
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Prediction the Sensitivity and
Chemotherapy
Considering that chemotherapy is a common way to treat liver
cancer, we first verify whether the DDR patterns groups may
affect the sensitivity of chemotherapeutic drugs commonly used
for treating liver cancer (including cisplatin, 5-fluorouracil,
gemcitabine, oxaliplatin, doxorubicin, mitoxantrone, gefitinib,
and sorafenib). We found that HRisk groups of all four HCC
cohorts were highly sensitive to 5-fluorouracil (all, p < 0.05;
Figure 5C, Supplementary Figure S3), and four LRisk groups
presented with a significantly higher response to gefitinib and
gemcitabine (all, p < 0.05; Figure 5C, Supplementary Figure S3).
Next, we performed a two-step analysis to find potential
therapeutic compounds. Eventually, the analysis obtained
seven compounds (including CDK9_5576, CDK9_5038,
bleomycin, midostaurin, SNX-2112, BMS-754807, and
podophyllotoxin bromide) that had lower IC50 in HRisk and a
negative correlation with riskscore (Figure 5D, Supplementary
Figure S4) across four datasets and five compounds (including
trichostatin A, gefitinib, afatinib, selumetinib, and EphB4_9721)
were observed to present a significant response to LRisk and a
positive correlation with riskscore (Figure 5E, Supplementary
Figure S4).

Characterization of the HCC Riskgroups
Regarding Different Functional Pathways
To better characterize the two HCC riskgroups, differential
analyses were performed. Gene set enrichment analysis
(GSEA) was conducted using the “clusterProfiler” package,
and enrichment differences of pathways were significant if the
FDR p-value < 0.15 and |NES| >1 in all four cohorts. The results
indicated that 28 metabolism-relevant pathways were
significantly upregulated in LRisk, while HRisk enriched in cell
cycle, DNA replication, spliceosome, and DDR-relevant
pathways (Figure 6A). Thus, the HRisk group presents
upregulated cell cycle procession and DDR pathways which
might contribute to the hyperproliferation and development of
tumor cells. Pathway with significant differences in enrichment in
all four cohorts was considered subclass specific pathway. GSVA
was conducted to quantify and visualize the enrichment of
28 metabolism-related pathways which were classified into
four specific metabolism signatures, including lipid metabolism
relevant pathway, drug metabolism relevant pathway,
carbohydrate metabolism relevant pathway, and amino acids
metabolism relevant pathway (Figure 6A). Results confirmed
that the LRisk group has significant upregulation of metabolism
signatures, consistent with the results from GSEA.

To further investigate the activation of oncogenic pathways
among HRisk and LRisk (Figure 6C), We found that the cell cycle
oncogenic pathway was significantly activated in HRisk, while
LRisk had a higher score of angiogenesis and Wnt activation-
relevant pathways than HRisk (Figure 6D). Considering that the
risk groups were divided based on DDR-relevant genes signature,
we then decided to further explore whether different
characteristics exist in distinct DDR pathways. Eight DDR

core pathways were quantified using the GSVA algorithm.
HRisk group exhibited higher expression for all eight
pathways than LRisk. The same results were demonstrated in
cohorts GSE14520, ICGC, and LIHC-CN (Supplementary
Figures S5−S7).

Relationship Between Riskscore and
Somatic Mutation and Copy Number
Variation
We finally investigated the genomic variations between two
different risk groups in the TCGA cohort. To analyze whether
differences exist in the somatic variations (10%) of HCC between
two riskgroups, R package “maftools” was used (Figure 7A). The
results showed that the HRisk group had significantly high TP53
mutations and less CTNNB1 mutations than the LRisk group
(TP53: 46.3 vs. 12.5%, p < 0.001; CTNNB1: 17.7 vs. 31.8%, p =
0.007; Figure 7B), and we obtained consistent results in ICGC
cohort (TP53: 51.7 vs. 18.8%, p < 0.001; CTNNB1:35.0 vs. 41.9%,
p = 0.2883; Figure 7B) and LIHC-CN cohort (TP53: 73.4 vs.
43.8%, p < 0.001; CTNNB1: 17.7 vs. 21.2%, p = 0.5439; Figure 7B),
respectively. Mutation in TP53 is the most common genetic
change in HCC, and patients with mutated TP53 have shorter
OS than those with wild-type TP53. Therefore, we conducted
special subgroup analyses stratifying samples according to the
combination of TP53 mutation status and riskgroups. We found
that some patients with mutant type TP53 in the HRisk group had
significantly shorter OS than those with mutant wild TP53 in the
HRisk group (p = 0.89 in TCGA, p = 0.58 in ICGC, p = 0.34 in
LIHC-CN; Figure 7C), while patients with mutant type in the
LRisk group had longer OS than those with wild type in the HRisk
group (p = 0.0028 in TCGA; Figure 7C), but no significance could
be calculated in ICGC and LIHC-CN datasets (p = 0.58 in ICGC,
p = 0.40 in LIHC-CN; Figure 7C). These results confirm again
that the prognosis model is robust and superior. Unfortunately,
we could not find the mutation data of GSE14520.

Copy number variations were a common form of genomic
structural change, and an amount of research has demonstrated
chromosomal abnormalities play key roles in HCC. GISTIC 2.0
was used to analyze the copy number of HRisk and LRisk in
TCGA-HCC samples. We first calculate the FGA, FGL, and FGG
scores to evaluate differences in chromosomal instability between
the two risk groups. We found the LRisk group had significantly
lower copy number loss or gain than HRisk, so it was obvious that
LRisk had better chromosomal stability than HRisk (all, p < 0.001;
Figure 8B). Next, we analyzed the copy number in different
specific regions in LRisk and HRisk groups. The most frequent
arm-level aberrations in the HRisk group identified were 13q,
11q, 4q, etc., for copy number loss, and significantly amplified
regions in the HRisk were 1q, 8q, 3q, etc. (Figure 8A). Therefore,
we decided to further explore the relationship between the copy
number variations of specific DDR genes. The relationship
between genes in eight core DDR pathways and their copy
number alterations were calculated by Spearman analyses. The
GISTIC calls of 38 DDR genes (R < −0.2 or R > 0.2) are shown in
Figure 8C, and the corresponding expression of DDR genes are
shown in Figure 8D. These results suggest that HRisk existed
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higher levels of copy number alterations, and both were
associated with overexpression of DDR genes.

DISCUSSION

HCC remains a major public health concern in the world.
Although continuous achievements in early detection,
multimodal therapy, and surgery resection, the mortality is

still high (Siegel et al., 2013). Additionally, an effective
prognostic signature is very important for the prediction and
individualized treatment of HCC. The DDR process is often
exaggerated in HCC and affects the tumor development and
therapeutic response of HCC patients. As a previous study, Li
et al. has developed a seven-gene signature related to the DNA
repair process to predict the prognosis of HCC (Li et al., 2019).
Hence, it is of significance to construct a prediction model based
on the expression profiles of DDR-related gene expression.

FIGURE 7 | Analysis of mutation characteristics in HRisk and LRisk. (A) Oncoprint showing the mutational landscape of mutations with mutated greater than 10%
in TCGA-HCC. Mutations of TP53 and CTNNB1 were significantly mutated in HRisk (Fisher’s exact test, p < 0.001) and LRisk (Fisher’s exact test, p = 0.009) groups,
respectively. (B) Barplots showing the similar distribution of TP53 and CTNNB1 mutation between two riskgroups in TCGA cohort (TP53: 46.3 vs. 12.5%, p < 0.001;
CTNNB1: 17.7 vs. 31.8%, p = 0.007), ICGC cohort (TP53: 51.7 vs. 18.8%, p < 0.001; CTNNB1:35.0 vs. 41.9%, p = 0.2883), and LIHC-CN cohort (TP53: 73.4 vs.
43.8%, p < 0.001; CTNNB1: 17.7 vs. 21.2%, p = 0.5439), respectively. (C) Kaplan–Meier curve analysis of overall survival is shown for patients classified according to
TP53 mutation status and the riskgroup in three cohorts. TP53w, TP53-sequence wild type; TP53m, TP53-sequence mutant type.
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FIGURE 8 | Integrative analysis of copy number alteration and gene expression profiling. (A)Copy number gains and deletions identified by GISTIC2.0 in HRisk and
LRisk. (B) Distribution of fraction genome altered (FGA) and fraction genome loss/gain (FGG/FGL). Bar charts are presented as the mean ± standard error of the mean.
(C) Heatmap of GISTIC calls of 38 DDR genes. (D) Heatmap showing the overexpression pattern of 38 DDR genes.
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In this study, we built and validated a robust 23 DDR-related
gene pair signature for HCC patients’ prognosis and precise
treatment. The prognostic model was validated in the
dependent TCGA, GSE14520, ICGC-JP, and LIHC-CN
cohorts. We divided the HCC patients in each cohort into
HRisk and LRisk according to the median cutoff of riskscore.
Patients in the LRisk group had significantly longer OS than that
in the HRisk group. The signature also demonstrated to be an
independent risk factor for OS in HCC patients in four cohorts.
Furthermore, subgroup analyses showed that the prognostic
model could predict the outcomes of patients in different
subgroups. The nomogram-integrated TNM stage and
riskscore was established, which proved to be a better
predictor than the TNM stage alone. These advantages could
be helpful to make clinical decisions and make nomograms a
superior tool for predicting prognosis.

Hepatitis B virus (HBV) is associated with the rapid
progression of HCC, and its viral load has an adverse effect
on overall survival (Yu and Kim, 2014). Studies have found that
high HBV viral expressionmay stimulate the immune response in
cervical cancer and favored the patient clinical outcome (Lu et al.,
2019). In our study, we compressed the expression of four HBV
oncoproteins into a comprehensive PCA-based score, HBVpca.
96 HBV-associated HCC patients in the TCGA cohort, while 43
patients in the LRisk group had a higher HBV viral load than
those in the HRisk group. These results indicated that high HBV
viral expression is significantly associated with a better prognosis,
which is similar to the previous study. Then, we used the ssGSEA
algorithm to analyze the immune infiltration between HRisk and
LRisk. Although analysis of ssGSEA did not suggest significant
greater levels of immune cell infiltrates in the LRisk group, we
found that the LRisk group might be more beneficial from
checkpoint blockade. The HBV genome can encode the four
proteins, which include S, X, C, and P (Yang et al., 1995). There
are extensive interactions between the HBV genome and the DDR
pathway (Lee et al., 1995). Several findings suggest that HBV viral
expression could disrupt the DNA repair pathways of infected
hepatocytes (Ko and Ren, 2011; Ricardo-Lax et al., 2015;
Schreiner and Nassal, 2017). For example, the hepatitis B virus
X protein (HBx) is known to be a multifunctional protein
encoded by HBV, playing a pivotal role in the development of
viral-induced liver cancer (Becker et al., 1998). HBxmight disturb
several key cellular processes such as cell cycle, DNA repair,
oxidative stress, transcription, protein degradation, signal
transduction, and apoptosis. In some cases, components of the
DDR network may be antiviral and have detrimental impacts on
viral replication (Luftig, 2014; Weitzman and Fradet-Turcotte,
2018). In this study, HCC patients in the TCGA cohort were
differentiated into two groups based on DDR-related gene
expression profiles which showed different DDR patterns.
HRisk group presented upregulated DDR-relevant pathway
and cell cycle process, so we speculate DDR pathway might
have interrupted the replication cycle of HBV proteins in
HRisk so that the LRisk group have a higher HBV expression
level was observed.

GSEA showed core DDR-related pathways (base excision
repair, mismatch repair, homologous recombination), cell

cycle, DNA replication, spliceosome, and p53 signaling
pathway were distinctly enriched in HRisk. Patients in the
DDR-activated subgroup were significantly related to the
inferior prognosis. We also found several significant alterations
of molecular characteristics between HRisk and LRisk groups.
Common somatic changes include mutations p53 and beta-
catenin are frequently detected repeatedly in HCC, resulting in
activation of the Wnt signaling pathway and dysregulation of the
cell cycle, respectively (Jacobs and Norton, 2021). TP53 is the
most frequently mutated in HCC, and patients with TP53
mutations had a poorer prognosis compared with patients
with wild-type TP53 (Villanueva and Hoshida, 2011). We
observed that the TP53 gene was more frequently mutated in
the HRisk. In contrast to the TP53 gene, a larger proportion of
LRisk carried CTNNB1 mutations. CTNNB1 mutations in HCC
were mutually exclusive with TP53 (Calderaro et al., 2017), and
mutation-induced activation of CTNNB1 expression is the
dominant cause of Wnt activation (Takagi et al., 2008). In
addition, LRisk had a significantly higher score of Wnt
activation-relevant signature, which may be activated by
mutated CTNNB1. LRisk group was significantly involved in
many metabolism pathways, including lipid metabolism, drug
metabolism, carbohydrate metabolism, and amino acid
metabolism relevant pathways, indicating that patients in the
LRisk group hold a normal metabolic process (e.g., fatty acid,
gluconeogenesis, and histidine) of liver and the activation of
metabolism relevant signatures is associated with a favorable
prognosis in patients. These findings are in keeping with a
previous proteogenomics study, which proved that CTNNB1-
mutated tumor was concentrated with various metabolic
processes, including amino acid metabolism, glycolysis/
gluconeogenesis, and drug metabolism (Gao et al., 2019).
Along with mutations, chromosomal abnormalities are
frequent genetic events in HCC (Schulze et al., 2016). In
particular, broad genomic deletions have been noted for 1p,
4q, 6q, 8p, 13q, 16p, and 17q and gains for 1q, 6p, 8q, 17q,
and 20q (Jacobs and Norton, 2021). We found that HRisk had
significantly higher copy number alterations than LRisk,
suggesting that HRisk existed a deeper degree of chromosomal
instability. Somatic copy alterations (SCNAs) are widespread in
human cancers that promote tumor initiation and progression
(Beroukhim et al., 2010). Higher levels of SCNAs are associated
with an increased expression level of the cell cycle (Davoli et al.,
2017). Our results indicated that the HRisk group with a
significantly higher cell proliferation signature is related to
higher SCNA levels of DDR genes and expression. Altogether,
our study provides a comprehensive overview of molecular
characteristics between HRisk and LRisk.

Although there are several therapeutic options for HCC,
chemotherapy is one of the most important treatment
modalities for advanced HCC. However, the efficacy of
chemotherapy remains unsatisfactory, so it is necessary to
identify a signature to better predict chemotherapy responses
of HCC patients. Interestingly, the two groups had different
sensitivity to common chemotherapy for treating HCC.
Potential drugs for HRisk and LRisk patients were then
investigated. Cyclin-dependent kinases provided by a family of

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 85706014

Chen et al. DDR Prognosis Model in HCC

62

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


serine kinases primarily control the eukaryotic cell cycle
(Aprelikova et al., 1995). Both CDK9_5038 and CDK9_5576
are CDK9 inhibitors. Bleomycin is classified as an “antitumor
antibiotic” drug, and the drug works by binding to DNA that
could generate lesions on both strands of DNA (Chen and Stubbe,
2005). The epidermal growth factor receptor (EGFR) plays a
central role in the development and progression of different
cancers. Afatinib and gefitinib are the currently available
EGFR-tyrosine kinase inhibitors (EGFR-TKIs), which have
been approved so far for non-small cell lung patients. In this
study, patients in HRisk may be more sensitive to CDK9
inhibitors and Bleomycin, while patients in LRisk may be
more sensitive to EGFR-TKIs, which should be validated in
future clinical trials.

There are several limitations to our study. First, although our
research was validated by other independent cohorts, they were
all retrospective data. Second, highly heterogeneous, intratumoral
heterogeneity in HCC might have an impact on the DRGP
riskscore in each tumor, so its significance for clinical
translation therapy needs to be further confirmed. Moreover,
we determined several drugs that have different sensitivity in
HCC patients. However, investigations about the antitumor
effects of some drugs are lacking.

CONCLUSION

A signature based on the 23 DDR-related gene pairs was
successfully constructed, which stratifies HCC patients into
two riskgroups with different survival outcomes. Enrichment
analysis, CNV, gene mutation, and tumor immune
environmental analyses were conducted between HRisk and
LRisk. The prediction of therapy sensitivity may be helpful to
clinicians in selecting patients that could benefit from further
treatments. These findings may provide a novel prognostic
signature for HCC from a DDR perspective and enhance
biological understanding and clinical strategies in HCC.
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Transcriptomics and Metabolomics
Identify Drug Resistance of Dormant
Cell in Colorectal Cancer
Lang Xie1†, Renli Huang1†, Hongyun Huang1†, Xiaoxia Liu2* and Jinlong Yu1*

1Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China, 2Guangdong Provincial Key
Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital (Guangdong Gastrointestinal and Anal Hospital),
Sun Yat-sen University, Guangzhou, China

Background: Tumor dormancy is an important way to develop drug resistance. This
study aimed to identify the characteristics of colorectal cancer (CRC) cell dormancy.

Methods: Based on the CRC cohorts, a total of 1,044 CRC patients were included in this
study, and divided into a dormant subgroup and proliferous subgroup. Non-negative
matrix factorization (NMF) was used to distinguish the dormant subgroup of CRC via
transcriptome data of cancer tissues. Gene Set Enrichment Analysis (GSEA) was used to
explore the characteristics of dormant CRC. The characteristics were verified in the cell
model, which was used to predict key factors driving CRC dormancy. Potential treatments
for CRC dormancy were also examined.

Results: The dormant subgroup had a poor prognosis and was more likely to relapse.
GSEA analysis showed two defining characteristics of the dormant subgroup, a difference
in energy metabolism and synergistic effects of cancer-associated fibroblasts (CAFs),
which were verified in a dormant cell model. Transcriptome and clinical data identified
LMOD1, MAB21L2, and ASPN as important factors associated with cell dormancy and
verified that erlotinib, and CB-839 were potential treatment options.

Conclusion: Dormant CRC is associated with high glutamine metabolism and synergizes
with CAFs in 5-FU resistance, and the key effectors are LMOD1, MAB21L2, and ASPN.
Austocystin D, erlotinib, and CB-839 may be useful for dormant CRC.

Keywords: tumor dormancy, metabolomics, cancer-associated fibroblasts, colorectal cancer, transcriptomics

INTRODUCTION

Colorectal cancer (CRC) is one of the most common malignant tumors worldwide (Siegel et al.,
2020), and recurrence after surgery and chemotherapy is a leading factor of CRC-related deaths
(Katona and Weiss, 2020). Recent studies have shown that CRC cells can enter a reversible dormant
state leading to chemotherapy resistance (Rehman et al., 2021). In the dormant state, cancer cells
regulate their cell cycle to enter a slow cycle mode (Basu et al., 2022). This allows the cells to survive in
hostile environments such as hypoxia, effects of the immune system, and the effects of chemotherapy
(Ju et al., 2020; Manjili et al., 2022).

In this study, we identified a dormant subgroup of CRC cells based on the transcriptome data of CRC
patients. We then clarified two characteristics in the dormant subgroup of CRC cells, energy metabolism
reprogramming and synergized with CAFs, and verified the results in vitro. Furthermore, we identified
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dormancy-related genes that regulated drug resistance of dormant
CRC cells and predicated three drugs that may be effective against
dormant CRC cells.

MATERIALS AND METHODS

Patients and Samples
In this study, we included 459 patients identified in The Cancer
Genome Atlas-Colon Adenocarcinoma (TCGA-COAD) population
(https://portal.gdc.cancer.gov/) and 585 patients in GSE39582
(Marisa et al., 2013) of the Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/). Raw RNA-sequencing data
counts (level 3) of patients in the TCGA-COAD cohort were
downloaded from the TCGA database as recommended by
guidelines and converted into transcripts per kilobase million for
analysis. Raw CEL files (Affymetrix DNA microarray image
analysis) of patients in GSE39582 were downloaded from the
website mentioned above, and processed by “affy” and
“simpleaffy” R packages (Irizarry et al., 2003).

Identification of CRC Subgroups
The Gene Set Enrichment Analysis (GSEA) website (https://www.
gsea-msigdb.org/gsea/msigdb/cards/GOBP_CELL_CYCLE_
ARREST.html) was searched for gene sets associated with cell
cycle regulation, and the intersections between these gene sets and
the genes in the TCGA-COAD andGSE39582 were identified and
selected for subsequent analysis. Genes of low median absolute
deviation value (≤0.5) across all datasets were excluded.

A total of 223 genes associated with cell cycle arrest genes were
identified. These genes were processed by non-negative matrix
factorization (NMF) clustering (Possemato et al., 2011) using the
R software NMF package (version 0.23.0). Themaximumnumber of
clusters for consistency analysis was 6, and the matrix was drawn 50
times. The consensus map function (CMF) of the NMF package was
used for producing clustered heatmaps. Rank values where the
magnitude of the cophenetic correlation coefficient began to fall
were chosen as the optimal number of clusters (Brunet et al., 2004).

Characterization of CRC Subgroups and
Identification of Dormancy-Related Genes
The Limma package (version: 3.40.2) of R software was used to
study the differential expression of mRNAs. The Log (fold-
change) of all genes in datasets were used to perform GSEA
analysis in webgestalt (http://www.webgestalt.org/) (Liao et al.,
2019) for identification and characterization of CRC
subgroups. An adjusted p value <0.05 and Log (fold-change)
> 1 or Log (fold-change) < −1 were defined as the thresholds
for identifying differentially expressed genes (DEGs) among
CRC subgroups. The intersections of DEGs between the
TCGA-COAD and GSE39582 were selected for prognostic
analysis. The Kaplan-Meier method and log-rank test was
used to compare survival between groups, and data were
reported as p value, hazard ratio (HR), and 95% confidence
interval (CI). Univariate Cox proportional hazards regression
analysis was performed using the R survival and survminer

packages (version 4.0.3). DEGs with a value of p < 0.05 were
considered dormancy-related genes. Gene Set Cancer Analysis
(GSCA, http://bioinfo.life.hust.edu.cn/GSCA/) (Liu et al.,
2018) was used to examine correlations between dormancy-
related genes and cell cycle pathway activity.

Cell Culture and Dormant Cell Model
Construction
The CRC cells lines LoVo and RKO were donated by Dr Xiaoxia
Liu (Affiliated Sixth Hospital, Sun Yat-sen University,
Guangzhou, China). The CRC cell lines HCT116 and DLD1
were obtained from the American Type Culture Collection
(ATCC, United States). Cells were cultured in DMEM
medium (Code: C11875500BT, Gibco, United States) with 10%
fetal bovine serum (FBS) (Code: 10270-106, Gibco), 100 μg/ml
streptomycin and 100 U/mL penicillin in a 5% CO2 atmosphere
at 37°C. 5-Fluorouracil (5-FU) (Code: HY-90006, MCE,
United States) (200 µM) was added to the cultures as a proxy
for more than 4 months to select drug-resistant persister cells.

Cell Cycle Analysis
LoVo persister cells (LoVo-P) and RKOpersister cells (RKO-P) were
collected on day 1 and day 10 after the adding 5-FU. Cells in each
group (1×106) were pelleted, harvested after being starved for 24 h,
fixed with 75% cold ethanol overnight, and stained with propidium
iodide (PI) using a PI kit (Beyotime Biotechnology, Shanghai, China).
Flow cytometry and the cell cycle module of FlowJo™ software
(version 7.0) detected the distributions of cell cycle phases.

Primary Human Cancer-Associated
Fibroblasts Line Generation
Specimens of high-grade CRC (T4Nx) were obtained from
chemotherapy naïve patients (age range 18–70 years)
undergoing surgery at the Sixth Affiliated Hospital of Sun Yat-
sen University (SYSU), China. The study was approved by the
Human Medical Ethics Committee of the Sixth Affiliated
Hospital of Sun Yat-sen University, and informed consent was
obtained from all patients before surgery.

Primary CAFs were isolated from tumor specimens as
previously described (Ligorio et al., 2019; Peng et al., 2021).
Briefly, tumor tissue was chopped with a sterile scalpel and
then digested for 3 h at 37°C using collagenase Digestion
Medium (DMEM, penicillin 100 U/mL, streptomycin 100 μg/
ml, collagenase digestion 125 units/mg). Following tissue
digestion, cells were plated under adherent conditions in
Growth Medium (DMEM, PenStrep 1X, 10% FBS) and
passaged regularly. CAFs grew by adherence with fibroblast-
like morphology and had a strong capacity for proliferation.

Metabolon-Based Energy Metabolism
Detection
LoVo-P or LoVo-nP cells were collected, and metabolites were
extracted and detected. Briefly, cells (5×106) were pelleted,
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washed with cold PBS, and snap-frozen in liquid nitrogen. Cells
were then ultrasonicated at 4°C for 20 min, the supernatant was
collected (20 min at 14,000×g, 4°C), and then sent for Metabolon-
Associated Energy Metabolism analysis (Applied Protein
Technology, Shanghai, China).

The supernatants were dried in a vacuum centrifuge. The dried
samples were dissolved in 100 μL acetonitrile/water (1:1, v/v),
adequately vortexed, and centrifuged (14,000 rpm, 4°C, 15 min).
The supernatants were collected for liquid chromatography-
tandem mass spectrometry (LC-MS/MS) analysis.

U-13C Glucose Labeling
The indicated cells (LoVo-P/nP and RKO-P/nP) cells were grown
to 80-90% confluence in 10 cm cell culture dishes and then
cultured in glucose-free DMEM (Thermo Fisher Scientific)
supplemented with 4.5 g/L U-13C-glucose (Cambridge Isotope
Laboratories, Andover, MA) and 10% FBS for 24 h. The medium
was removed, and the cells were washed twice in the culture dish
with 2 ml saline without disturbing cell attachment. Next, 500 µl
of methanol was added to the cells to quench metabolic reactions,
followed by an equal volume of water. The cells were then
collected by scraping and placed in 2 ml Eppendorf tubes, and
500 µl chloroform was added to each tube. The cell extracts were
vortexed at 4°C for 30 min. The samples were centrifuged at
14,000×g for 5 min at room temperature. For analysis of polar
metabolites, the upper layer of the aqueous phase (700 µl) was
transferred to a new tube for evaporation under airflow (N2 gas or
vacuum concentrator, 3 h, 45°C). The dried metabolites were
stored at −80°C until LC-MS/MS analysis. The LC/MS was
performed at the Metabolic Innovation Center (MIC) of Sun
Yat-Sen University.

Cell Survival and Proliferation Analysis
The cell survival rate was assessed using a Cell Counting Kit-8
(CCK-8) (Dojindo Lab, Japan) assay according to the
manufacturer’s instructions. CAFs were isolated from primary
tumor samples, and then we collected conditioned medium
(CAF-co CM) from each of the CRC cells/CAFs co-culture.
Briefly, a total of 5×104 persister or parental cells were placed
into the upper chamber in 0.2 ml of complete DMEM, and 2×105

CAF cells in 1 ml of complete DMEM was placed in the lower
chamber, and then the cells were incubated for 24 h. The medium
in the lower chamber was collected and defined as CM/co-P and
CM/co-nP, respectively. The CM was filtered with a 0.8 mm filter
to remove cell debris and then used. After that, a total of 5,000
cells/well were seeded into 96-well plates overnight, then cultured
in DMEM containing 10% FBS with 25% CAF-co CM or control
medium and treated with the indicated concentrations of 5-FU
for 72 h. The absorbance at 450 nm was measured using a
Thermo Scientific Varioskan Flash instrument after incubation
with 10 µl CCK-8 solution for 2 h at 37°C, and the proliferation
index was calculated.

Cell proliferation was also assessed via IncuCyte ZOOM
(Essen BioScience). A total of 5,000 cells/well were cultured as
described above 96-well plates and were automatically monitored
and data recorded every 2 h by IncuCyte ZOOM for 72 h.

Drug Sensitivity Analysis
Gene Set Cancer Analysis (GSCA, http://bioinfo.life.hust.edu.cn/
GSCA/) was used for analyzing correlations between the
expressions of dormancy-related genes and drug sensitivity of
cell lines in the Cancer Therapeutics Response Portal database
(CTRP, http://portals.broadinstitute.org/ctrp/). DMEM medium
with CB-839 (Code: S7655, Selleck, United States)] and erlotinib
(Code: HY-50896, MCE, United States) (2 μM) was used for
evaluating drug sensitivity rescue.

Statistical Analysis
Statistical analysis was performed using R (version 4.0.2) and
GraphPad Primer 8.0 (GraphPad Prism, GraphPad Software, La
Jolla, CA). All p values were 2-tailed, and values <0.05 were
considered to indicate statistical significance.

RESULTS

Definition of CRC Dormancy or Proliferation
To define dormancy or proliferation in CRC, we first selected
gene sets in cell cycle arrest (GO: 0007050) and used their
expression data for clustering by NMF. As shown in Figures
1A,C, following the rules of NMF, the optimum number of the
cluster was two in both GSE39582 and TCGA-COAD gene
sets. After defining the two groups, GSEA analysis was
performed, and the normalized enrichment score (NES) and
false discover rate (FDR) were determined; an FDR <0.25 was
considered significant. Only the top and bottom categories
(according to NES) are shown in Figure 1E. The results
showed that hypoactive Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways in the two datasets reflected
processes of cell proliferation such as ribosome generation,
DNA replication, and RNA synthesis. As shown in Figure 1,
the proliferation ability of CRC in group 1 was weaker than
that of group 2; thus, group 1 was considered the dormant
subgroup and the other the proliferous subgroup.

Increasing evidence has shown that dormant cells can evade
the effects of chemotherapy and cause cancer relapse. Thus, we
examined prognostic data of the two groups. The dormant
subgroup showed an unfavorable prognosis concerning overall
survival (OS) and recurrence-free survival (RFS) in the
GSE39582 dataset and an unfavorable prognosis for
progression-free survival (PFS) in the TCGA-COAD dataset
(Figures 1B,D). In addition, the GSEA results also indicated an
enhanced interaction between cells and matrix in the dormant
group of both datasets and obvious differences in energy
metabolism in the TCGA-COAD dataset.

Metabolic Reprogramming in Dormant
Subgroup
In order to verify the characteristics of the dormant subgroup and
clarify the differences between the two subgroups, we constructed
a model of the dormant subgroup in vitro (Cho et al., 2021). CRC
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FIGURE 1 | (A) Consensus map and consensus results of GSE39582 with rank = 2. (B)Overall survival (OS) and recurrence-free survival (RFS) of the dormant and
proliferous subgroups in GSE39582. (C) Consensus map and consensus results of TCGA-COAD with rank = 2. (D) OS and RFA of the dormant and proliferous
subgroups in TCGA-COAD. (E) GSEA results of Group 1 vs. Group 2 in TCGA-COAD and GSE39582.
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FIGURE 2 | (A) Distribution of cell cycle phases in LoVo-P and RKO-P cells on day 1 and 10 after treatment with 5-FU. (B) Half maximal inhibitory concentration
(IC50) of 5-FU between DTP cells (LoVo-P and RKO-P) and parental cells (LoVo-nP and RKO-nP). (C) Heatmap of metabolites in the energy pathway determined by
metabolomics in LoVo-P and LoVo-nP cells. The levels of energy metabolites are shown in Supplementary Table S1. (D) Compared to LoVo-nP cells, the main
discriminant metabolite levels in LoVo-P cells. (E) Schematic illustration of glucose recycling using U-13C-glucose. (F) U-13C-glucose tracing analysis of LoVo and
RKO DTP cells and parental cells. Cells were cultured in U-13C-glucose and DMEM for 24 h to synthesize U-13C metabolites (n = 3). Bars, mean ± SD. *p < 0.05; **p <
0.01; ***p < 0.001.
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cell lines LoVo and RKO were used to construct persister cells by
treatment with 5-FU. After the 5-FU induction period, the
proliferation rates of persister cells (LoVo-P and RKO-P) were
significantly reduced compared with the parental LoVo and RKO
(LoVo-nP and RKO-nP) cells (Figure 2A), and they exhibited
more resistance to 5-FU (Figure 2B). We then examined the cell
cycles of persister cells at different times after removing 5-FU, and
the results showed that LoVo-P and RKO-P cells could return to a
proliferative state.

To better understand the metabolic changes associated with
the dormant status, energy metabolism-related metabolites
were examined by LC-MS/MS-based metabolomics
(Figure 2C). A total of 29 out of 31 metabolites were
identified to be energy metabolism-related, and there were
significant differences in the levels between the two subgroups
(Supplementary Table S1). A total of 12 different metabolites
were significantly altered in persister cells. Compared with the
parental group, five metabolites (α-KG, succinate, cyclic AMP,
FMN, 3-phospho-D-glycerate) were increased, and seven
metabolites (lactate, cis-aconitate, NAD, isocitrate, citrate,
pyruvate, GTP) were decreased in the persister group.
Overall, the results showed that the metabolite levels
involved in glycolysis (lactate and pyruvate) were drastically
reduced, whereas persister cells had increased levels of
metabolites involved in glutaminolysis (such as α-KG and
succinate). The results suggest that drug-tolerant persister
(DTP) cells may have altered their metabolic requirements
in response to the cytotoxic stress (Figure 2D).

Altered metabolism to sustain rapid growth is one of the
hallmarks of cancer (Vander Heiden and DeBerardinis, 2017).
Next, we further examined the metabolic changes in DTP cells by
U-13C-glucose tracing and metabolomics analysis (Figure 2E).
Consistent with our previous data, DTP cells showed a
significantly lower enrichment in glycolytic 13C labeled lactate
than did non-persister cells, indicative of the Warburg effect. By
contrast, DTP cells had significantly higher fractions of α-KG
(M+0), succinate (M+0), fumarate (M+0), malate (M+0), and
citrate (M+0), indicating enhanced Krebs cycle and glutamine
metabolism (Figure 2F). These data, along with the LC-MS/MS-
based metabolomics data, indicate that DTP cells require
glutamine metabolism to meet increased energy demands.

Drivers of Dormant State:
Dormancy-Related Genes and Synergistic
Effect of Cancer-Associated Fibroblasts
After confirming metabolic reprogramming in the dormant
subgroup, we examined the enhanced interaction between cells
and the extracellular matrix in the dormant subgroup. In order to
clarify which stromal cells play critical roles, we first used TCGA-
COAD and GSE39582 transcriptome data to determine DEGs
between the two subgroups according to the pre-set conditions.
As shown in Figures 3A,B, 44 up-regulated DEGs were identified
as overlapping dormancy-related genes between TCGA-COAD
and GSE39582 datasets. RGS2 has been confirmed to regulate a
dormant state in non-small cell lung cancer (NSCLC).
Specifically, RGS2 caused prolonged translational arrest in

dormant cells through persistent eukaryotic initiation factor 2
phosphorylation via proteasome-mediated degradation of
activating transcription factors (Cho et al., 2021). In addition,
a cancer cell in a dormant state is always associated with
chemotherapy resistance and tumor relapse; thus, we used Cox
proportional hazards regression analyses to identify prognosis-
related genes associated with RFS or PFS. The results showed that
in both datasets, APOD, ASPN, FNDC1, GPX3, LMOD1,
MAB21L2, SCG2, SLIT2, and TAGLN were potential genes
causing or maintaining a dormant state of CRC (Figure 3C).
Next, we used the GCSA database to explore the effects of these
nine genes on common cancer-related pathways, and the results
showed that they possibly negatively regulate the cell cycle and
slow down cell metabolism (Figure 3D).

Next, we used the single-cell database GSE146771 (Zhang et al.,
2020) and Characterizing Tumor Subpopulations (TISCH, https://
http://tisch.comp-genomics.org//) (Sun et al., 2021) to ascertain the
expressions of these nine genes in various stromal cells. The result
showed that these nine genes are primarily highly expressed in
fibroblasts (Figures 3E,F). While there is little evidence to show a
direct correlation between fibroblasts and cancer dormancy, CAFs
are the major subpopulation of fibroblasts in tumor stroma, and
CAFs are also related to dormancy-related factors such as
transforming growth factor-beta (TGF-β), interferon (IFN),
insulin-like growth factor (IGF), fibroblast growth factor (FGF),
macrophage-stimulating factor (M-SCF), and interleukin (IL) (Dai
et al., 2021). This may indicate that CAFs can influence the state of
cancer cells through remodeling the ECM, producing exosomes,
mediating the balance of angiogenesis, or recruiting immune cells.

CAFs Maintain the Drug-Tolerant Persister
State of CRC Cells
We speculated a synergistic effect between CAFs and CRC cells in
maintaining the dormant state and enhancing drug resistance. In
order to verify our hypothesis, the regular medium was replaced with
CM/co-P orCM/co-nP and then treatedwith different concentrations
of 5-FU for 72 h. The result showed that CM/co-P conferred more
resistance to 5-FU in RKO and LoVo parental cells than CM/co-nP
and control medium (Figure 4A). To further verify the efficacy of
CM/co-P in other CRC cell lines, we used HCT116 and DLD1 cells.
Consistently, the CCK-8 assay for cell survival showed that the CM/
co-P also could induce 5-FU resistance in HCT116 and DLD1 cells
even under a high concentration of 5-FU (40 μM) (Figure 4B). As
shown in Figure 4C, Phase Object Confluence (%) detected by
IncuCyte ZOOM further confirmed the chemotherapy-resistant in
HCT116 and DLD1 cells after incubation with CM/co-P for up to
96 h treatment with 40 μM 5-FU. These data suggest that CM
collected from CAFs following co-culture with DTP cells can
protect against cytotoxic stress in CRC cells.

Potential Treatment: Focus on ASPN,
LMOD1, and MAB21L2 and Reverse the
Drug-Tolerant Persister State of CRC
It has been shown that if tumor cells remain in a dormant state, they
have developed significantly increased resistance to available
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chemotherapy drugs (Sosa et al., 2014). Following chemotherapy,
residual DTP cells might re-enter the cell cycle and thus regain the
ability to proliferate, causing a recurrence (Lin and Zhu, 2021).
Therefore, it is critical to find new compounds to restore
chemotherapy drug sensitivity that can kill DTP cells effectively.
We used the CTRP drug database via GCSA (Liu et al., 2018) to

analyze the correlations between expressions of the nine dormancy-
related genes and drug sensitivity. All of the genes are up-regulated
in the dormant subgroup, and the gene expression levels of LMOD1,
MAB21L2, and ASPN increased significantly with drug resistance
(Figure 5A). This result suggests that ASPN, LMOD1, and
MAB21L2 are key proteins that drive chemotherapy resistance

FIGURE 3 | (A) Volcano plot of DEGs between Group 1 and Group 2 in GSE39582 and TCGA-COAD. (B) Intersections of DEGs between TCGA-COAD and
GSE39582. (C) Cox proportional hazards regression analyses of nine prognosis-related genes in GSE39582 and TCGA-COAD. (D) Pathway activity of the nine
prognosis-related genes. (E) Annotations of cell subpopulations in GSE146771. (F) Expressions of nine prognosis-related genes among cell subpopulations in
GSE146771.
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and tumor recurrence in the dormant subgroup, and CRC patients
with high expression of LMOD1, MAB21L2, and ASPN are at high
risk of recurrence (Figures 5B–G). In addition, using the CTRP drug
database, we found that sensitivity to austocystin D and erlotinib
increased as LMOD1, MAB21L2, and ASPN expression increased
(Figure 5H).

Interestingly, the EGFR signaling pathway is related to tumor
dormancy and drug resistance (Luo et al., 2018). Besides, The

transport of glutamine is also related to the drug sensitivity of
cetuximab (Ma et al., 2018). Therefore, we speculated that they
might contribute to the death of DTP cells in CRC. Thus, we
verified our hypothesis using DTP cells (LoVo-P, RKO-P), and
the results suggested that erlotinib can restore chemotherapy
drug sensitivity and kill DTP cells (Figure 5I).

Austocystin D is a newly developed anti-cancer drug and is
reported to overcome chemoresistance (Marks et al., 2011).

FIGURE 4 | (A) Comparison of the sensitivity of LoVo (left panel) and RKO (right panel) cells to 5-FU after 72 h incubation with different CMs. Cell viability was
measured by a CCK-8 assay. n = 3. (B) HCT116 (left panel) and DLD1 (right panel) cells incubation with indicated CM were treated with different concentrations of 5-FU
for 72 h, and cell viability was measured by CCK-8 assay. n = 3. (C) Growth curves of HCT116 (left panel) and DLD1 (right panel) cells were cultured under the indicated
conditions for 72 h. The image data for phase object confluence were processed by IncuCyte Zoom software. n = 3. Bars, mean ± SD. *p < 0.05; **p < 0.01; ***p <
0.001.
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FIGURE 5 | (A)Correlation analysis betweenmRNA expression of nine prognosis-related genes and CTRP drug sensitivity. (B–D)Recurrence-free survival (RFS) of
ASPN, LMOD1, andMAB21L2 in GSE39582. (E–G) Progression-free survival (PFS) of ASPN, LMOD1, andMAB21L2 in GSE39582. (H) Correlation analysis between
mRNA expression of ASPN, LMOD1, andMAB21L2 and CTRP drug sensitivity. (I-J) IC50 of 5-FU between DTP cells (LoVo-P and RKO-P) and parental cells (LoVo-nP
and RKO-nP) cultured with erlotinib (2 µM) and CB-839 (2 µM).
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However, it was not available to determine its effect on DTP cells.
What is more, we used CB-839 to inhibit cells’ glutamine
metabolism and found that targeted GLS/GLS2 were the other
strategies for overcoming chemoresistance of DTP cells
(Figure 5J). Therefore, erlotinib, CB-839 may be potential
treatments for overcoming resistance to chemotherapy in CRC
patients.

DISCUSSION

Tumor dormancy is a significant factor in chemoresistance and
cancer relapse. Identifying and characterizing tumor dormancy
can help develop appropriate strategies for reversing the dormant
state to overcome chemoresistance. However, nearly all of the
research regarding the dormant state of cancer is based on cell
and animal models. Our research began with transcriptome data
from two large cohorts of patients with CRC and divided the
patients into those with dormant and proliferous subgroups.
GSEA analysis indicated that the two cohorts have strong
consistency. It is generally believed that increased tumor
proliferative activity in cancer patients often predicts poor
outcomes, such as rapid progression and a poor prognosis,
while weak proliferative activity is associated with a low
degree of invasiveness and a good prognosis. In this study,
patients in the dormant group were at high risk of cancer
recurrence. Furthermore, based on the GSEA analysis, we
identified two major characteristics of the dormant subgroup;
metabolic changes and enhanced interactions with the cell
matrix. At present, there are no other studies that have
examined metabolic changes in dormant CRC cells. In this
study, we found that indicators of cell energy metabolism such
as pyruvate metabolism, the TCA cycle, and oxidative
phosphorylation in the dormant subgroup were significantly
different from that of the proliferous group, and we found
that lactic acid and pyruvate in dormant cells were
significantly reduced, which indicated the reversal of the
Warburg effect (Vander Heiden et al., 2009).

Studies have shown that tumor cells can switch between
aerobic glycolysis and oxidative phosphorylation to survive in a
high-stress environment (Wangpaichitr et al., 2017). This
adaptability is achieved by changing the method of energy
metabolism, called metabolic reprogramming (Faubert et al.,
2020). Metabolic reprogramming is a dominant evolutionary
choice in tumor cells’ malignant transformation, which aids in
survival (Herst et al., 2018). During chemotherapy, drug-
resistant cells usually exhibit higher mitochondrial activity
(Daniel et al., 2021). Drug-resistant cells may also rely on
fatty acid metabolism or glutaminolysis to sustain their
energy needs. Our results showed that the synthesis of lactic
acid and pyruvate in dormant cancer cells were decreased
compared with that of parent cells. We also found increased
metabolites of the TCA cycle, such as α-KG and succinate,
which indicates that energy reprogramming may be present, and
there are alternate synthetic pathways of these metabolites in
DTP cells. This phenomenon illustrates the importance of
glutamine metabolism (Altman et al., 2016; Martinez-

Outschoorn et al., 2017), which can synthesize α-
ketoglutarate into the TCA cycle to produce ATP from
glutamine via glutaminase and glutamate. Therefore, we
detected the flow of carbon sources in dormant CRC cells
and confirmed our hypothesis that dormant cells significantly
increased the effect of glutamine metabolism. This finding
indicates that glutamine is an energy source of dormant CRC
cells. Interestingly, a recent study revealed that CRC cells
exhibited the highest glutamine uptake in the tumor
microenvironment, whereas myeloid cells had the greatest
capacity to take up intra-tumoral glucose (cell-programmed
nutrient partitioning) in the tumor microenvironment.

In addition, other GSEA analysis results suggested that the
interaction between cells and matrix was enhanced in the
dormant subgroup. Further analysis using the single-cell
database indicated that fibroblasts play a critical role in the
interaction. No prior studies examine the interaction between
dormant CRC cells and cancer-associated fibroblasts; however,
studies have shown that CAFs are closely related to tumor cell
proliferation and survival. They can release lactate and glutamine
to create a nutrient-rich microenvironment that assists tumor cell
survival (Whitaker-Menezes et al., 2011; Kim et al., 2013). The
most critical regulatory factor is hypoxia-inducible factor 1α
(HIF-1α), as HIF-1α can regulate the expression of
microcystin 1 (Cav-1) to affect the autophagy level of CAFs
(Kannan et al., 2014). Studies have also shown that fibroblasts
lacking Cav-1 secrete more glutamine into the microenvironment
(Sotgia et al., 2012; Zhao et al., 2016). This mechanism is
consistent with the metabolic characteristics of dormant CRC
cells. i.e., increased demand for glutamine.

CAFs consume more glucose in most solid tumors and secretes
more lactic acid than normal fibroblasts (Zhao et al., 2016). Our co-
culture results showed that CAFs could enhance the drug resistance
of DTP cells. The founding suggests that dormant CRC cells
interact with CAFs to promote glutamine metabolism and resist
the effects of chemotherapy. In order to determine the key drivers
of this effect, we identified 44 DEGs in the two cohorts. Prior study
has shown that RGS2 is a driver of dormant cells in NSCLC (Cho
et al., 2021). Subsequently, nine prognosis-related genes were
identified through univariate analysis, and finally, LMOD1,
MAB21L2, and ASPN were established as potential genes
resulting in drug resistance in CRC dormancy via the CTPR
database. We also predicted that erlotinib, CB-839, and
austocystin D could potentially kill dormant CRC cells and
verified the impact of erlotinib and CB-839 with DTP cells.
According to the Human Protein Atlas (HPA, https://www.
proteinatlas.org/), ASPN and MAB21L2 is located in the
nucleus. In addition, studies have shown that ASPN is enriched
in CAFs (Hesterberg et al., 2021) and can promote cancer cell
metastasis via regulating cell metabolism (Sasaki et al., 2021).

Further studies of how these predicted driver genes regulate
the dormant state of CRC are warranted. In subsequent research,
we will focus on ASPN and regulating CRC dormancy.
Establishing the mechanism of drug resistance in CRC
dormant cells may assist in the development of new types of
chemotherapy that can improve the survival of patients
with CRC.
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GLOSSARY

α-KG alpha ketoglutarate

APOD apolipoprotein D

ASPN asporin

ATP adenosine triphosphate

CAFs cancer-associated fibroblasts

CM conditioned media

Cav-1 microcystin 1

CHARTS characterizing tumor subpopulations

CRC colorectal cancer

CTRP Cancer Therapeutics Response Portal database

DEGs differentially expressed genes

DTP drug-tolerant persister

EGFR epidermal growth factor receptor

FMN1 formin 1

FNDC1 fibronectin type III domain containing 1

FGF fibroblast growth factor

GSCA Gene Set Cancer Analysis

GTP guanosine triphosphate

GPX3 glutathione peroxidase 3

HIF-1α hypoxia-inducible factor 1 alpha

HR hazard ratio

IFN interferon

IGF insulin-like growth factor

IL interleukin

LC-MS/MS liquid chromatography-tandem mass spectrometry

LMOD1 leiomodin 1

MAB21L2 Mab-21 like 2

M-SCF macrophage-stimulating factor

NAD nicotinamide adenine dinucleotide

NES Normalized Enrichment Score

NMF non-negative matrix factorization

OS overall survival

PFS progression-free survival

RGS2 regulator of G protein signaling 2

RFS recurrence-free survival

SCG2 secretogranin II

SLIT2 slit guidance ligand 2

TAGLN transgelin

TCA cycle tricarboxylic acid cycle

TCGA The Cancer Genome Atlas

TGF-β transforming growth factor beta
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TCR Coexpression Signature Predicts
Immunotherapy Resistance in NSCLC
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Background: Lung cancer has the highest morbidity and mortality rate among types of
malignant tumors, and as such, research into prolonging the survival time of patients is
vital. The emergence of immune checkpoint inhibitors (ICIs) has greatly improved the
survival of patients with non-small cell lung cancer (NSCLC), however, the lack of effective
biomarkers to predict the prognosis of immunotherapy hasmade it difficult to maximize the
benefits. T cell receptor (TCR) is one of the most important components for recognizing
tumor cells, and with this study we aim to clarify the relationship between TCR
coexpression and the prognosis of NSCLC patients receiving immunotherapy.

Methods: Univariate COX regression, logistics regression, and KM survival analysis were
used to evaluate the relationship between TCR coexpression and the prognosis of
immunotherapy. Additionally, CIBERSORT, Gene Set Enrichment Analysis (GSEA), and
single-sample GSEA (ssGSEA) algorithms were used to evaluate the tumor immune
microenvironment (TIME) of NSCLC patients.

Results: Univariate Cox regression analysis showed that the TCR coexpression signature
can be used as a clinical prognostic indicator for NSCLC patients receiving immunotherapy
(p = 0.0205). In addition, those in the NSCLC group with a high TCR coexpression
signature had significantly improved progression-free survival (PFS) (p = 0.014). In the ICI
treatment cohort (GSE35640). In addition, there was a high infiltration of CD8+T cells,
activatedmemory CD4+T cells, andM1macrophages in the TIME of thosewith a high TCR
coexpression signature. The results of pathway enrichment analysis showed that patients
with a high TCR coexpression signature had significantly activated signal pathways such
as lymphocyte proliferation and activation, chemokine binding, and inflammatory cytokine
production. Also, we found that patients with a high TCR coexpression signature had an
elevated T cell inflammation gene expression profile (GEP).

Conclusion: We show that the TCR coexpression signature may be useful as a new
biomarker for the prognosis of NSCLC patients undergoing immunotherapy, with high
signatures indicating better treatment response. Additionally, we found that patients with a
high TCR coexpression signature had tumor immune microenvironments with beneficial
anti-tumor characteristics.
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INTRODUCTION

Lung cancer currently has the highest morbidity (11.6%) and
mortality (18.4%) among all tumors (Bray et al., 2018). About
75% are advanced (stage III–IV) at the time of diagnosis, and the
5-years survival rate is less than 20%. Non-small cell lung cancer
(NSCLC) is the most common, accounting for 80–85% of all lung
cancers, and about 57% of patients with advanced NSCLC have
distant metastasis at the time of diagnosis (Zappa and Mousa,
2016; Guan et al., 2019). Chemotherapy, targeted therapy, and
anti-angiogenic drugs have become the cornerstone of treatment
for these patients, but in recent years, the emergence of immune
checkpoint inhibitors (ICIs) has changed the approach to NSCLC
treatment. According to the literature, the 5-years survival rate of
NSCLC patients receiving multi-line therapy that includes
immunotherapy treatment can reach 16% (Gettinger et al.,
2018). For a non-selective population, the objective response
rate (ORR) of ICIs administered without other drugs has been
measured at 19–22%. In order to further optimize the benefits of
immunotherapy, it is necessary to find biomarkers suitable for
predicting the curative effect.

With the rapid development of research in this field, many
prognostic markers relating to immune checkpoint blockade (ICB)
therapy have been found (Lin et al., 2021). The existing markers for
predicting the efficacy of immunotherapy, however, have their
limitations. The application of PD-L1 is limited by the variations
of time, tumor heterogeneity, and differences in detection method
thresholds (Velcheti et al., 2014; McLaughlin et al., 2016; Hui et al.,
2017;Mok et al., 2019) The use of tumormutational burden (TMB) is
limited due to the complexity and high cost of whole exon sequencing
(WES) (Luo et al., 2019), with the biggest obstacle being the
complicated threshold standard, which is difficult to determine
(Gandara et al., 2018). Additionally, in regard to NSCLC,
although some studies have shown that high microsatellite
instability (MSI-H) is related to the efficacy of ICB (Le et al.,
2015; Goodman et al., 2017; Prelaj et al., 2019; Niu et al., 2020;
Huang et al., 2021; Zhang et al., 2021), MSI-H is very rare in lung
cancer. Whether MSI-H can be used as an effective immunotherapy
marker for NSCLC patients remains unverified. Therefore, there is
still a need to investigate biomarkers and establishmodels that predict
the curative effect to further screen for the patients whowould benefit
most from the treatment.

Immune repertoire is defined as the total number of T cells
and B cells with functional diversity within an individual’s
circulatory system at any given time, and is a measure of the
diversity and specificity of the individual’s immune state
(Looney et al., 2019). T lymphocytes recognize new tumor
antigens and proliferate via the T cell antigen receptor
(TCR), which is the key process in activating the host
immune response against cancer cells. As these T cells carry
TCR to recognize and eliminate tumor cells, TCR expression
plays an important role in immunotherapy (Looney et al., 2019;
Morita et al., 2020). Many studies have confirmed that the
characteristics of the baseline TCR repertoire are related to
the curative effect of therapy (Manuel et al., 2012; Robins, 2013;
Robert et al., 2014; Postow et al., 2015). For example, low
baseline T-cell diversity in the peripheral blood of breast

cancer patients undergoing chemotherapy has been linked
with poor prognosis (Manuel et al., 2012). According to
Postow’s research, after CTLA-4 was used, the increased TCR
diversity at baseline was related to an increase in efficacy and
benefits (Postow et al., 2015). In addition, studies have shown
that patients with low T cell diversity in peripheral blood can
receive great benefit from anti-PD-1 treatment (Hogan et al.,
2019). Currently, there is no research in the literature on the
relationship between TCR coexpression signature and the
efficacy of NSCLC after receiving ICB. Therefore, in this
study we explore and verify the role of TCR (specifically the
TCR coexpression signature) in predicting the prognosis of
NSCLC patients after immunotherapy at the level of the
TIME. With these results, we aim to better identify the
population who may benefit most from ICB therapy.

METHODS

Collection of Immunotherapy Cohort and
TCGA Cohort Data
We downloaded an NSCLC cohort published by Hwang and
colleagues on anti-PD-1 from the GEO database, which we
named ICI-NSCLC (GSE136961) (Hwang et al., 2020). This
cohort includes clinical prognosis and expression data for patients
who received immunotherapy. In addition, we downloaded the
expression and clinical data of TCGA-LUAD and TCGA-LUSC
cohorts from the GDC database using the R package named
TCGAbiolinks (Colaprico et al., 2016). In order to better study the
population of NSCLC, we combined the TCGA-LUAD and TCGA-
LUSC cohorts and named it the TCGA-NSCLC cohort. Because there
were very few NSCLC cohorts with both ICI treatment data and
expression data, we collected a melanoma cohort with ICI treatment
from the GEO database and named it ICI-Melanoma (GSE35640)
(Ulloa-Montoya et al., 2013). We also obtained an open-source
bladder cancer cohort treated with ICIs from a published article
by Mariathasan and his colleagues, which we designated ICI-BLCA
(Mariathasan et al.) (Mariathasan et al., 2018; Zhou et al., 2021).

Calculation and Grouping of TCR
Coexpression Signatures
According to the gene set definition in the expression data
published by Hwang and his colleagues, we used the ssGSEA
algorithm (Reas et al., 2007) and the R package named Gene Set
Variation Analysis (GSVA) (Hänzelmann et al., 2013) to analyze
each patient in the ICI-NSCLC (GSE136961), ICI-Melanoma
(GSE35640), ICI-BLCA (Mariathan et al.), and TCGA-NSCLC
cohorts. For each cohort, we divided the patients into high and
low groups according to the median value of TCR coexpression
signatures of all patients in each cohort. The gene set of TCR
coexpression signature was detailed in Supplementary Table S1.

Tumor Immune Microenvironment Analysis
First, we uploaded the expression data of each cohort to the
CIBERSORT webtool (Chen et al., 2018), selected LM22, set the
number of iterations to 1,000, and analyzed the results. From this, we
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were able to measure the prevalence of 22 types of immune cells for
each patient in each cohort. Secondly, as one of the important targets
of ICIs, data on immune checkpoint molecules were obtained from a
published study for comparison (Rooney et al., 2015). Data on the
genes andmolecules that play a very important role in TIMEwas also
obtained from published studies (Rooney et al., 2015; Thorsson et al.,
2018). Using this data, we were able to compare the abundance of
immune cells, the expression of immune checkpoint molecules, and
the expression of immune-related genes among the high and low
groups to determine which elements played a vital role.

Pathway Activity Analysis
We performed a difference analysis on the expression data for each
cohort using the R package named Limma (Ritchie et al., 2015), and
we used the results as the input file for gene set enrichment analysis
(GSEA). We then used the R package named ClusterProfiler to
analyze the enrichment of gene sets in the GO-BP, GO-CC, GO-MF,
KEGG, and REACTOME databases according to the ranked list
(including ENTREZID and logFC) (Subramanian et al., 2005). In
addition, we used the R package namedGSVA to analyze the ssGSEA
of gene sets from the Molecular Signatures Database (MSigDB)
(https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp). By obtaining
the ssGSEA score for each patient, we were able to further
compare the activity differences between the high and low groups
on the same pathway.

Statistical Analysis
For continuous variables such as the abundance of immune cells, the
expression of genes, and ssGSEA score, we used the Mann-Whitney
U test to compare differences between the high and low groups. To
study the predictive effect of TCR coexpression on the prognosis of
immunotherapy, we used univariate COX regression, Kaplan-Meier
(KM) regression, and logistics regression analysis. For the KM
analysis, log-rank P was used to evaluate statistical significance.
All the analyses in this studywere conducted on R software (Version.
3.7). Statistical significance was evaluated by p value, with p < 0.05
regarded as having statistical difference and being bilateral.

FIGURE 1 | Flowchart of data processing for the TCGA dataset and ICI-treated cohort.

FIGURE 2 | High TCR coexpression signature was associated with
improved prognosis of patients receiving immunotherapy. (A) The results of
the univariate regression analyses displayed as a forest map (GSE136961).
The main part of the forest map is used to show the HR and 95%
confidence intervals. Factors associated with improved prognosis are
log10(HR) < 1, and those associated with poor prognosis are log10(HR) > 1.
(B) KM survival curves of PFS for NSCLC patients from the ICI cohort
(GSE136961). (C) KM survival curves of OS for patients in the ICI-BLCA
cohort (Mariathasan et al.). (D) KM survival curves of OS for patients in the
TCGA-NSCLC cohort.
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RESULTS

High TCR Coexpression Signature
Indicated Better Prognosis and Response
to Immunotherapy
Our results showed a positive relationship between the TCR
coexpression signature and the survival benefit and immune
response of NSCLC patients treated with ICB. The process
used to analyze our data is shown in detail in Figure 1. Firstly,
we collected from a public database the expression data for an
NSCLC cohort that had received immunotherapy and used it
to calculate the TCR coexpression signature of each patient.
For the ICI-NSCLC cohort, univariate Cox regression
analysis showed that the TCR coxpression signature can be
used as a predictor of clinical prognosis for NSCLC patients
receiving immunotherapy [Figure 2A; p = 0.0205; Hazard
ratio (HR) = 0.41]. Further analysis showed that the gender of
patients was not related to the prognosis of NSCLC patients
receiving immunotherapy (Figure 2A). No other clinical
features of this cohort were available for analysis. The

results of a survival rate analysis showed that the NSCLC
group with a high TCR coexpression signature had
significantly improved progression-free survival (PFS)
(log-rank p = 0.014; HR = 0.34; 95%Cl: 0.12–0.99;
Figure 2B). In the ICI-BLCA (Mariathasan et al.), we
found that patients with a high TCR coexpression
signature tended towards a prolonged PFS, although the
results were not statistically significant (p = 0.087; HR =
0.8; Figure 2C). It should be noted that, although p > 0.05, the
sample size of this cohort was small and thus may not be
representative. To clarify the relationship between the TCR
coexpression signature and clinical prognosis of NSCLC
patients receiving routine treatment, the TCGA-NSCLC
cohort was used for subsequent analysis. In the TCGA-
NSCLC cohort (Figure 2D), the TCR coexpression
signature did not show a significant relationship with the
survival time of patients undergoing routine treatment (log-
rank p > 0.05). The above results suggest that TCR
coexpression signatures may be a suitable biomarker for
predicting the treatment response of NSCLC patients
receiving ICB therapy.

FIGURE 3 | High TCR coexpression signature was associated with a high proportion of activated immune cells. The 22 immune cell types estimated by
CIBERSORT methods between the high- and low- TCR coexpression signature groups of the ICI-NSCLC (A), TCGA-NSCLC (B), ICI-Melanoma (GSE35640) (C), and
ICI-BLCA (Mariathasan et al.) (D) cohorts. The range of p-values is presented by the asterisks above each box plot (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001;
Mann-Whitney U test).
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FIGURE 4 | High TCR coexpression signature was associated with high expression levels of immune-related genes. (A) Comparison of the expression levels of
immune-related genes between the high- and low- TCR coexpression signature groups. Heat map depicting the mean differences in immune-related gene mRNA
expression between high- and low- TCR coexpression signature groups across different cohorts. The x-axis of the heat map indicates different cohorts, and the y-axis
indicates gene names. Each square represents the fold change or difference of each indicated immune-related gene between the high- and low- TCR coexpression
signature groups in each cohort. Red indicates up-regulation and blue indicates down-regulation. Box plots comparing the expression levels of immune checkpoint
molecules between the high- and low- TCR coexpression signature groups from the ICI-NSCLC (B), TCGA-NSCLC (C), ICI-Melanoma (GSE35640) (D), and ICI-BLCA
(Mariathasan et al.) (E) cohorts. The range of p-values is presented by the asterisks above each box plot (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; Mann-
Whitney U test).
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High TCR Coexpression Signatures Were
Related to a High Infiltration of Activated
Immune Cells
Immune cells play an important role in detecting and killing
tumor cells in the TIME. To clarify the relationship between a
high TCR coexpression signature and the prognosis of
immunotherapy, we used the CIBERSORT algorithm and
evaluated the abundance of immune cell infiltration in the
TIME. In the ICI-NSCLC cohort, we found that the TIME of
the high TCR coexpression signature group had significantly
less regulatory T lymphocytes when compared to low TCR
coexpression signature group (p < 0.05; Figure 3A). In the
TCGA-NSCLC cohort, we found that the high TCR
coexpression signature group had a high infiltration of
CD8+T cells, activated memory CD4+T cells, activated NK
cells, and m1-type macrophages in the TIME. Additionally,
the degree of infiltration for some immune cells with
suppressed or static function in the high group was
significantly lower than that in the low group. This
included naive CD4+T cells, gamma delta T cells (γδ
T cells), resting NK cells, and resting mast cells (p < 0.05;
Figure 3B). In the ICI cohort (GSE35640), CD8+T cells,
activated memory CD4+T cells, follicular helper T cells
(TFH), γ δ T cells, and M1-type macrophages were
significantly more frequent in patients with a high TCR
coexpression signature. We also found that the relative
abundance of CD4+T cells and M2-type macrophages in
the high group was significantly lower than that in the low
group (p < 0.05; Figure 3C). For the second ICI cohort
(Mariathasan et al.), the high TCR coexpression signature
group showed increased CD8+T cells, activated memory
CD4+T cells, TFH, and M1-type macrophages in the
TIME. Accordingly, the high group had a lower proportion
of resting memory CD4+ T cells and M0-type macrophages in
the TIME (p < 0.05; Figure 3D). The above results suggest
that a high TCR coexpression signature is related to a high
infiltration of activated immune cells.

High TCR Coexpression Signatures Were
Related to High Expression Levels of
Anti-Tumor Related Immune Genes
Anti-tumor related immune genes include those relating to
cytotoxic T lymphocytes, antigen processing and
presentation, and immune stimulation. We put together a list
of relevant anti-tumor immunity genes and analyzed them on-
by-one in the four data sets of this study (Figure 4A). The
heatmap in Figure 4A shows multiple changes in expression
level for these genes in both the high and the low TCR
coexpression groups. It can be seen from this figure that the
expression levels of many cytotoxicity related genes (CD8A,
GZMB, GZMA, and PRF1), chemokines (CXCR3, CCL5,
CXCL9, and CXCL10), inflammatory cytokines (INFG, IL1,
TNFSF4, and TNFSF9), and antigen processing and
presentation related genes (TAP1) in the high TCR
coexpression group were significantly higher than those in

low group. We then analyzed the differences in common
immune checkpoint molecules between the two groups. In
the ICI-NSCLC cohort (GSE136961), compared with the low
TCR coexpression group, the high group shows a significantly
lower expression of immune checkpoint molecules, such as
HAVCR2, LAG3, IDO1, CTLA4, TIGIT,PD-1, and
PDCD1LG2 (Figure 4B). In the TCGA-NSCLC cohort,
except for B7-H3, the expression of remaining checkpoint
molecules in the high group was also significantly lower than
that in low group (p < 0.05; Figure 4C). The other two cohorts
undergoing immunotherapy showed similar results, with the
expression of most checkpoint genes in the low TCR
coexpression groups being significantly higher than in the
high groups (Figures 4D, E).

High TCR Coexpression Signature is
Related to High Activity of Anti-Tumor
Related Signal Pathways
Signaling pathways also play an important role in anti-tumor
activity, so we evaluated them in our patient cohorts using
GSEA and ssGSEA. We found significant up-regulation of
anti-tumor immune-related signal pathway activity
[Enrichment score (ES) > 0; p < 0.05] in the high TCR
coexpression signature group (Figures 5A–D). This
included the B cell receptor signaling pathway, adaptive
immune response, B cell activation, immune response-
activating cell surface receptor signaling pathway, positive
regulation of immune response, lymphocyte activation,
positive regulation of leukocyte mediated immunity, and
immunoregulatory interactions between lymphoid and a
non-lymphoid cells. We utilized the ssGSEA algorithm to
evaluate the activity of each pathway for every patient and
found, in all four cohorts (Figure 5E), activation of CD8+

T cells, proliferation of B cells, and lymphocytes, binding of
chemokines including CXCR3, and production of cytokines
(such as IL-10,IL-1). Also, the cytokine-mediated
inflammatory response pathway showed significantly more
activation in the high TCR coexpression group when
compared to the low group. At the same time, activation of
cell cycle checkpoint and DNA damage repair signal pathways
were significantly lower in the high group.

DISCUSSION

In this study, we found that the TCR coexpression signature may
be used as a biomarker to predict the prognosis of
immunotherapy for NSCLC, with a high signature indicating a
better prognosis. In addition, our results revealed that patients
with a high TCR coexpression signature have a TIME with anti-
tumor characteristics, such as a higher proportion of functional
activated immune cells, lower proportion of functional depleted
immune cells, and high expression of cytotoxicity, antigen
treatment and presentation, genes related to
immunostimulation, and a highly activated anti-tumor related
immune response pathway.
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FIGURE 5 | High TCR coexpression signature was associated with a high degree of activated immune-related signaling pathways. Results of the GSEA for the ICI-
NSCLC (A), TCGA-NSCLC (B), ICI-Melanoma (GSE35640) (C), and ICI-BLCA (Mariathasan et al.) (D) cohorts. The low TCR coexpression signature group served as the
control group. Enrichment score (ES) > 0 indicates that the corresponding pathways were significantly enriched in the experimental groups (high TCR coexpression
signature group). The color of the curves corresponds to the font colors of the pathway names. (E)Heat map depicting themean differences in the ssGSEA score of
signaling pathways between high- and low- TCR coexpression signature groups across different cohorts. The x-axis of the heat map indicates different cohorts, and the
y-axis indicates signaling pathways. Each square represents the fold change or difference of each indicated ssGSEA score of signaling pathways between high- and low-
TCR coexpression signature groups in each cohort. Red indicates up-regulation; blue indicates down-regulation.
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As patients with a high TCR coexpression signature had a
consistently higher proportion of functional activated immune
cells, we suggest the metric as one way to significantly improve
the prognosis of immunotherapy. The immune system response to
tumors is extremely complex, and the new antigen polypeptides
formed by tumor mutations need to be both effectively presented
by HLA-I and recognized by T lymphocytes carrying specific TCR.
This is the key to immune activation. Previous studies have shown,
in tissue samples of patients with advanced melanoma, that the
degree of CD8+ T cell infiltration can adequately predict the
efficacy of PD-1/PD-L1 monoclonal antibody treatment (Tumeh
et al., 2014). Antigen treatment and presentation are also very
important components of the anti-tumor immune response (Wang
et al., 2019; Yi et al., 2022), with previous studies showing that
antigen treatment and signature presentation are related to a better
prognosis for patients undergoing immunotherapy (Wang et al.,
2019). In the process of antigen presentation, TAP-mediated
peptides are transported into the endoplasmic reticulum cavity,
where they combine with MHC-I complex, finally resulting in
T cells which recognize new cell surface antigens (Schumacher and
Schreiber, 2015). It has been found that M1 macrophages are able
to use two different mechanisms simultaneously to destroy tumor
cells once they have been recognized (Hu et al., 2016; Liang et al.,
2020). One is that M1macrophages directlymediate cytotoxicity in
order to kill tumor cells. The other is that, stimulated by IFN-γ,
macrophages can increase the secretion of inducible nitric oxide
synthase, cell adhesion molecules, and other substances which
enhance their tumor killing effect (Garrido-Martin et al., 2020). M2
macrophages are able to promote the proliferation of tumor cells
through the arginase pathway, and can also participate in tumor
angiogenesis (Garrido-Martin et al., 2020). For example, they can
produce urokinase-type plasminogen activator and induce the
formation of capillary networks via the release of various matrix
metalloproteinases (Jayasingam et al., 2019). Additionally, M2
macrophages destroy the basement membrane of endothelial
cells by secreting serine protease, metalloprotease, and
cathepsin, and are able to decompose a series of collagen and
other components of the extracellular matrix. In this way, M2
macrophages help the migration of tumor interstitial cells and
tumor cells (Jayasingam et al., 2019; Ham et al., 2020). Using
CIBERSORT, a calculation method for inferring leukocyte
subtypes from tumor expression data, we found that M2 type
macrophages were more predominant than M1 type macrophages
in patients with low TCR coexpression signature (M2 type TAM
predominant). According to the above results, we determined that
patients with a low TCR coexpression signature weremore likely to
show TIME factors that promote the polarization of macrophages
from M1 to M2 type, while in those with high TCR coexpression
signatures, factors that maintain the polarization of M1
macrophages and encourage CD8+ T cell infiltration were more
dominant. In addition, the results of the GSEA and ssGSEA
showed that the activity of signal pathways such as lymphocyte
activation and proliferation were significantly up-regulated in
patients with a higher TCR coexpression signature.

Besides immune cells, high levels of inflammatory cytokine
expression and highly activated inflammatory cytokine
signaling pathways have also been suggested as mechanisms

by which the high TCR coexpression signature group
significantly improves the prognosis of immunotherapy.
Cytokines, such as interleukins, also play an important role
in the TIME. Interleukins are the lymphatic factor of
interaction between leukocytes or immune cells, and are
essential for transmitting cellular information. They activate
and regulate immune cells, mediate the activation,
proliferation, and differentiation of T and B cells, and also
play an important role in the inflammatory reaction. Ayers and
his colleagues (Cristescu et al., 2018) defined a GEP of T cell
inflammation as containing IFN-γ response genes, antigen
presentation, chemokine expression, cytotoxicity, and
adaptive immune resistance. They found that patients with
higher GEP scores of T cells were more likely to benefit from
immunotherapy. In addition, Cristescu et al. found that
patients with high TMB and GEP expression undergoing
treatment with pabrizumab had significantly improved PFS
compared to patients with low TMB or GEP expression. In our
study, we found that genes related to cytotoxicity (CD8A,
GZMB, GZMA, and PRF1), chemokines (CXCR3, CCL5,
CXCL9, and CXCL10), inflammatory cytokines (INFG, IL1,
TNFSF4, and TNFSF9), and antigen processing and
presentation related genes (TAP1) were significantly up-
regulated in patients with a high TCR coexpression
signature. In addition, the results of our GSEA and ssGSEA
showed that the high TCR coexpression signature group had a
higher degree of chemokine binding, CXCR3 chemokine
binding, cytokine (such as IL-10, IL-1) production, cytokine-
mediated inflammatory response, and other signal pathways.

Although our results are promising, some limitations in
this study exist. Firstly, NSCLC cohorts with both
immunotherapy prognosis data and expression data are
very rare, which resulted in the use of only one NSCLC
cohort collected from the public database, and the use of
other cancer immunotherapy cohorts (such as melanoma and
urinary system tumors) for the follow-up verification of TCR
coexpression. Therefore, for future research we will continue
to collect data for NSCLC patients receiving immunotherapy,
to further verify the relationship between TCR coexpression
and predicted prognosis. Secondly, only ssGSEA was used to
estimate TCR coexpression. Moreover, the relationship
between TCR diversity (such as the number of clonal
species) and the TCR coexpression signature is still not
well established. Considering these limitations, we were not
able to comprehensively explore the potential mechanism
between TCR coexpression signatures and the prognosis of
NSCLC patients receiving immunotherapy.

CONCLUSION

In this study, we found that a high TCR coexpression
signature is a potential biomarker for the prognosis of
NSCLC in patients treated with ICB. With regard to the
TIME, we found that patients with a high TCR
coexpression signature have an immune microenvironment
which promotes anti-tumor activity.
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Crosstalk of Histone and RNA
Modifications Identified a
Stromal-Activated Subtype with Poor
Survival and Resistance to
Immunotherapy in Gastric Cancer
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Emerging evidence has revealed the pivotal role of epigenetic modifications in shaping the
tumor microenvironment (TME). However, crosstalk between different modification types
and their clinical relevance in cancers remain largely unexplored. In this study, using ChIP/
MeRIP-seq data of seven human gastric cell lines, we systematically characterized the
crosstalk of four epigenetic modification types including H3K4me1, H3K4me3, H3K27ac,
and N6-methyladenosine (m6A) and identified a recurrent subtype with high FTO
expression and low HDAC1 expression across three independent gastric cancer (GC)
cohorts, which we named the epigenetic-modification-dysregulated (EMD) subtype.
Patients of the EMD subtype were featured with poor survival, stromal activation, and
immune suppression. Extensive relevance to clinical characteristics was observed in the
EMD subtype, including the Lauren classification, MSI status, histological grade, TNM
stage, the Asian Cancer Research Group classification, and the immune/fibrotic
classification. An EMD score was then constructed using WGCNA and ssGSEA
algorithms, to precisely recognize the EMD subtype and indicate prognosis and
response to immunotherapy in multiple independent GC cohorts. Correlations of the
EMD score with tumor mutation burden, tumor purity, aneuploidy score, tumorigenic
pathways, TME characteristics, and FTO/HDAC1 ratio were measured. In vitro
experiments were performed to demonstrate the correlation between FTO and the
epithelial–mesenchymal transition pathway, which suggested FTO as a targetable
vulnerability for GC patients with a high EMD score. Altogether, by comprehensively
analyzing the epigenetic modification patterns of 1518 GC patients, we identified a novel
stromal-activated subtype with poor survival and resistance to immunotherapy, which
might benefit from the combined immune checkpoint inhibition therapy with FTO inhibition.
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1 INTRODUCTION

Gastric cancer (GC), the fifth most common cancer and the third
most common cause of cancer deaths in the world, remains a
non-negligible health problem and social burden globally (Smyth
et al., 2020). Patients with early-stage GC featured a 5-year overall
survival (OS) rate of more than 60%, for whom surgical resection
is the best option (Thrift and El-Serag, 2020). For patients with
advanced GC, chemotherapy represented by fluoropyrimidines
and platinum significantly improves survival and the quality of
life. Unfortunately, due to the high frequency of advanced stage at
diagnosis and chemotherapy resistance, the 5-year overall
survival rate of advanced GC is still less than 5% (Yuan et al.,
2020). As a complex disease with molecular and clinical
heterogeneity, GC shows versatile phenotypes in initiation,
progression, and even the response to treatment among
different patients. Thus, more effective individualized strategies
both in diagnosis and therapy for GC are urgently needed to be
explored.

Epigenetic modification, mainly including DNA methylation,
histone modification, and RNA modification, is a significant
regulatory mechanism of diverse physiological or pathological
processes (Zhao et al., 2021a). Histone modification mainly refers
to the post-translational modifications (PTMs) that occur in the
N-terminal tails of histone proteins of nucleosomes, including but
not limited to methylation, acetylation, and ubiquitination (Zhao
and Shilatifard, 2019). Generally, histone modifications (such as
H3K4me1, H3K4me3, and H3K27ac) enriched at the enhancer or
promoter region presumably facilitate the transcription process
of the targeted genes (Bannister and Kouzarides, 2011). N6-
methyladenosine (m6A), defined as methylation of adenosine
at the N6 position, is one of the most abundant RNAmodification
types in eukaryotic species including mammals, plants, insects,
yeast, and certain viruses (Gu et al., 2020). Recently, accumulating
evidence has suggested the extensive interactions between histone
and m6A modifications, which trigger epigenetic remodeling and
cause profound impacts on various aspects of cancer progression,
including the resistance to medical treatment. (Huang et al., 2019;
Li et al., 2020a; Yang et al., 2021a; Li et al., 2021). For example, Li
et al. uncovered a SOX4/EZH2/METTL3 axis in TMZ-resistant
glioblastoma (GBM), in which EZH2 regulates the METTL3
expression via an H3K27me3 modification-independent
manner, and METTL3 leads to nonsense-mediated mRNA
decay of EZH2 reversely (Li et al., 2021). Moreover, Li et al.
found that the m6A reader YTHDC1 physically interacts with
and recruits KDM3B to m6A-associated chromatin regions,
promoting H3K9me2 demethylation and gene expression,
establishing a direct link between m6A and histone
modification (Li et al., 2020a). Similar interactions have also
been observed in GC. Yang et al.’s study suggested that HDAC3
regulates the FTO (fat-mass and obesity-associated protein)
expression in a FOXA2-dependent manner, thus promoting
the proliferation, migration, and invasion of GC cells (Yang
et al., 2021a).

The tumor microenvironment (TME), known as the soil of the
tumor seed, which plays a pivotal role in tumorigenesis and anti-
tumor immunity, has been recently reported to be shaped by

various epigenetic modifications (Huang et al., 2012; Gu et al.,
2021). For instance, Yin et al. reported that EZH2 depletion
increased generation of the IL-15 receptor (IL-15R), CD122 (+)
NK precursors, and mature NK progeny from both mouse and
human hematopoietic stem and progenitor cells, demonstrating
the impact of histone modification H3K27me3 on early NK cell
differentiation (Yin et al., 2015). Wang et al. found that METTL3/
14-deficient tumors increased cytotoxic tumor-infiltrating CD8+

T cells and elevated secretion of IFN-γ, CXCL9, and CXCL10 in
the TME in vivo, and inhibition of METTL3/14 enhanced
response to anti-PD-1 treatment in pMMR-MSI-L CRC and
melanoma (Wang et al., 2020). However, the epigenetic
modification patterns and their association with TME, prognosis,
and therapeutic response in GC remain poorly investigated.

In this study, we aimed to characterize the extensive crosstalk
between histone and m6A modifications in GC, trying to explain
the molecular and clinical heterogeneity of GC from the
perspective of epigenetic dysregulations.

2 MATERIALS AND METHODS

2.1 Data Acquisition and Processing
As shown in the flowchart of this study (Figure 1), we obtained
ChIP-seq data of three histone modification types (H3K4me1,
H3K4me3, and H3K27ac) in four gastric cell lines (GES-1,
SNU719, NCC24, and YCC10), and MeRIP-seq data of m6A
in three GC cell lines (AGS, BGC823, and SGC7901) from
previously published literature reports with the access number
of GSE135175 (Okabe et al., 2020), GSE166972 (Chen et al.,
2021a), GSE133132 (Yue et al., 2019), and PRJNA595769 in the
Gene Expression Omnibus (or the European Nucleotide
Archive), respectively (Supplementary Table S1). For ChIP-
seq, raw sequencing reads were aligned using Hisat2 (Kim
et al., 2019) with default parameters to the hg19. Sambamba
(Tarasov et al., 2015) was used to remove PCR duplicates and
obtain the uniquely mapped reads. For MeRIP-seq, raw
sequencing reads were aligned using Hisat2 with default
parameters to the hg38. Samtools (Li et al., 2009) was used to
remove the reads with a mapping quality below 30.

Totally 1518 GC patients from eight independent cohorts with
complete transcriptomic data and clinical information were
obtained from The Cancer Genome Atlas TCGA-STAD
(stomach adenocarcinoma, https://portal.gdc.cancer.gov), Gene
Expression Omnibus [GSE62254 (Cristescu et al., 2015),
GSE15459 (Ooi et al., 2009), GSE13861 (Cho et al., 2011),
GSE26899 (Oh et al., 2018), GSE26901 (Oh et al., 2018),
GSE84437, https://www.ncbi.nlm.nih.gov/gds], and European
Nucleotide Archive (PRJEB25780, https://www.ebi.ac.uk)
(Supplementary Table S1). Cohorts were divided into
exploring set (TCGA-STAD, GSE15459, and GSE62254) and
validation set (GSE13861, GSE26899, GSE26901, GSE84437,
and PRJEB25780) (Figure 1). Patients with prior or
synchronous malignancy diagnoses or patients who survived
less than 30 days were excluded from this study. Sva (Jeffrey,
2020) was used to correct the non-biological batch effects among
different cohorts.
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2.2 Collection of Epigenetic Regulators
Epigenetic regulators, defined as the key genes that play crucial
roles in the regulation or function of epigenetic modifications,
mainly include the methyltransferases/demethylases of histone
methylation (H3K4me1 and K3K4me3), acetylases/deacetylases
of histone acetylation (H3K27ac), and writers/readers/erasers of
m6A modification. In our study, totally 43 epigenetic regulators
(Supplementary Table S1), including histone methyltransferases
(SETD1A, SETD1B, KMT2A, KMT2B, KMT2C, and KMT2D),
histone demethylases (KDM1A, KDM1B, KDM2A, KDM2B,
KDM5A, KDM5B, KDM5C, and KDM5D), histone acetylases
(CREBBP and EP300), histone deacetylases (HDAC1, HDAC2,
HDAC3, HDAC8, and HDAC11), m6A writers (METTL14,
METTL3, METTL16, RBM15, RBM15B, ZC3H13, ZCCHC4,
WTAP, CBLL1, and VIRMA), m6A readers (YTHDC1,
YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1, IGF2BP2,
IGF2BP3, HNRNPA2B1, and HNRNPC), and m6A erasers
(ALKBH5 and FTO), were collected from the published
literature (Zhao and Shilatifard, 2019; Zhao et al., 2021a; Deng
et al., 2021) for our study. All the included regulators have been

experimentally demonstrated to regulate one or more
modification types, most of which were reported to participate
in tumorigenesis or progression of GC (Yue et al., 2019; Wu et al.,
2021a). Maftools (Mayakonda et al., 2018) was used to identify
the mutation (Figure 6F) or co-mutation (Figure 2A) events of
epigenetic regulators in the TCGA-STAD cohort. Co-occurrence
events with p values less than 0.05 were defined as the co-
mutation events (Supplementary Table S2).

2.3 Identification of the Epigenetic
Modification-Related Gene
For histone modifications (H3K4me1, H3K4me3, and H3K27ac),
DiffBind (Stark and Brown, 2011) was used to identify the
differentially-histone-modfied site (DHMS) between GC cell
lines and GES-1 according to the criteria of |fold-change| >1
and p < 0.05. BigWig data were downloaded from the GEO with
the access number GSE135175. DESeq2 (Love et al., 2014) was
used to identify the differentially expressed gene (DEG) between
GC cell lines and GES-1 with the criteria of |log2FC| >1 and p <

FIGURE 1 | Flow chart of this study. Three types of data from 14 datasets were used in this study: datasets in red refer to the epigenetic data (ChIPseq or
MeRIPseq) targeting on histone or m6A modifications, datasets in green refer to the RNAseq or array data with complete clinical information (survival or ICI response),
and datasets in yellow refer to the RNAseq data of cell lines with or without FTO depletion. The main method used in each step was also listed.
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FIGURE 2 |Crosstalk between regulators of histone and m6Amodifications. (A) Co-mutation heatmap of epigenetic regulators in the TCGA-STAD cohort. (B)Co-
expression heatmap of epigenetic regulators in the TCGA-STAD cohort. (C) Differential H3K4me1 and H3K27ac modifications in the m6A regulator ZCCHC4. Peaks in
red and green refer to the H3K4me1 and H3K27acmodifications in GC cell lines, respectively, and gray refers to the correspondingmodification in GES-1 as control. The
red line at the bottom refers to the promoter region. (D) Differential m6Amodification in the histone modification regulator KMT2D. Peaks in blue and orange refer to
the immunoprecipitation (IP) signals of AGS and BGC823 cell lines, respectively. Peaks in gray refer to the corresponding input signals. (E) Differential expression of
ZCCHC4 between GC cell lines and GES-1 (p < 0.05). (F) Correlations of KMT2D with the m6A regulators including RBM15, RBM15B, and YTHDF1 (Spearman,
p < 0.05).
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0.05. Form6Amodification, exomePeak2 (Wei, 2020) was used to
identify the m6A-modified site (MMS) in each GC cell line,
according to the criteria of |fold-change|>1 and p < 0.05. The
Wilcoxon test was used to identify the correlatively expressed
gene (CEG) of the 22 m6A regulators using the criteria of |r|>0.3
and adjusted p < 0.05.

Generally, histone methylations/acetylations (such as
H3K4me1, H3K4me3, and H3K27ac) enriched at enhancers or
promoters, as well as m6A modifications enriched at coding
sequence (CDS) or the 3′ untranslated region (3′ UTR) region,
presumably facilitate the expression of target genes (Bannister
and Kouzarides, 2011; Shi et al., 2019). Thus, those genes which
satisfy one of the following criteria were defined as the epigenetic-
modification-related gene (EMRG):

1) At least one DHMS was located in the promoter of the DEG,
and the expression of the DEG changed in the same direction
as the DHMS in at least one GC cell line (SNU719, NCC24,
and YCC10);

2) At least one MMS was located in the CEG in at least one GC
cell line (AGS, BGC823, and SGC7901), and the CEG
positively correlated (r > 0.3, Wilcoxon test) with at least
one of the m6A writers/readers, or negatively correlated (r <
−0.3, Wilcoxon test) with at least one of the m6A erasers.

The promoter region was defined as 3 kb upstream and
downstream of the transcriptional start site (TSS) in each gene.
The correlations between the CEG and m6A regulators were
calculated in the TCGA-STAD cohort. Long non-coding RNAs
(LncRNAs) of the epigenetic modification-related Gene were
defined as the epigenetic-modification-related LncRNA (EMRL),
according to the GENCODE annotations (Yang et al., 2021b).

2.4 Unsupervised Clustering in the
Exploring Set
By performing univariate Cox hazard analysis in the TCGA-
STAD cohort, we selected 34 survival-associated EMRLs (p <
0.01) for further study. Based on the 34 survival-associated
EMRLs, ConsensusClusterPlus (Wilkerson and Hayes, 2010)
was applied to perform unsupervised clustering in the
exploring set with the following parameters: maxK = 7, cluster
algorithm = km, and correlation method = Euclidean.

2.5 Construction of the EMD Score
We first identified 1,674 DEGs between the epigenetic-
modification-dysregulated (EMD) subtype (C4) and cluster C3
using limma (Ritchie et al., 2015). (Supplementary Table S7)
Weighted gene co-expression network analysis (WGCNA)
(Langfelder and Horvath, 2008) was then performed based on
the DEGs to recognize the most positively correlated
(Meturquois, Spearman-r = 0.75) and negatively correlated
(MEblue, Spearman-r = −0.61) gene modules relating to
cluster C4 (Figures 6A–C). We further chose 147 (set1) and
64 (set2) genes from the turquoise and blue modules, respectively,
according to their correlation coefficients with the EMD subtype
and corresponding modules (Figure 6D; Supplementary Table
S8). The single sample gene set enrichment analysis (ssGSEA)

algorithm in R package GSVA (Hänzelmann et al., 2013) was
used to estimate the relative abundance (ssGSEA value) of set1
and set2, respectively, for each patient in the GC cohorts. The
EMD score was defined as the ratio of the two ssGSEA values. Log
transition of the ratio was also performed to make the score less
discrete. For each GC patient, the EMD score was calculated as
follows:

EMD score � log2{ ssGSEA score (set1)/ ssGSEA score (set2)}.

2.6 TME Characterization and Function
Enrichment Analysis
CIBERSORT (Chen et al., 2018) and ESTIMATE (Yoshihara et al.,
2013) were used to evaluate the relative abundance of immune
infiltration and stromal components in tumor samples, respectively.
Deconvolution results of CIBERSORT were evaluated by a derived
p-value (p < 0.05) to filter out the samples with less significant
accuracy. The tumor immune dysfunction and exclusion (TIDE)
algorithm (Jiang et al., 2018) was used to measure the antitumor
immunity features of each patient. ClusterProfiler (Yu et al., 2012)
was used to perform gene set enrichment analysis (GSEA), using the
hallmark gene sets downloaded from the molecular signatures
database (MSigDB).

2.7 Cell Culture and Treatment
Human GC cell lines (SNU719 and SGC7901) were purchased from
American Type Culture Collection (Manassas, United States).
SNU719 and SGC7901 cells were cultured in RPMI-1640
medium (Gibco) with 10% fetal bovine serum (Gibco). Cells were
maintained at 37°C and 5% CO2. SNU719 and SGC7901 cells were
plated onto 6-well plates and reached 70–80% cell confluence on the
day of treatment. Cells were divided into the BS group and the
control group. The BS group was treated with the FTO inhibitor
(Brequinar sodium, V17016, 5 umol/l, InvivoChem), and the DMSO
group was treated with an equivalent DMSO concentration as
control for 48 h.

2.8 Western Blot
48 h after treatment, the EMT markers in SNU719 and SGC7901
were analyzed by Western blot. In brief, whole protein samples of
all groups were extracted, and the concentration was detected by
using the Pierce BCA Protein Assay Kit (Thermo 23225). Equal
amounts of protein (20 ug per well) were loaded, and the samples
were separated by 10% sodium dodecyl sulfate–polyacrylamide
gel electrophoresis. Then, the proteins were transferred to
0.45 μm polyvinylidene fluoride (PVDF) membranes. The
membranes were blocked with 5% nonfat milk and incubated
with primary antibodies at 4°C overnight. Later, the membranes
were washed with TBST three times and incubated with the
secondary HRP antibody at room temperature for 2 h. The
primary antibodies used in this research were as follows:
E-cadherin (20874-1-AP, 1:2000, Proteintech), N-cadherin (22018-
1-AP, 1:2000, Proteintech), Vimentin (10366-1-AP, 1:5,000,
Proteintech), and TWIST1 (25465-1-AP, 1:1,000, Proteintech).
β-actin (3700T, 1:5,000, CST) was used as a loading control.
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2.9 Statistical Analysis
All statistical analyses were performed using R (v4.0.2) (Team, R.
C 2020) and its appropriate packages. p-values <0.05 were
regarded as statistically significant.

3 RESULTS

3.1 Crosstalk between Regulators of
Histone and m6A Modifications
First, we examined the interactions of the four modification
types in the TCGA-STAD cohort. Totally, 211 co-mutation
events (p < 0.05) and 266 co-expression events (|r|>0.3, p <
0.05) were observed in the 43 epigenetic regulators (Figures
2A, B; Supplementary Table S2). These correlations were
further illustrated by the ChIP/MeRIP-seq data from GC cell
lines. Specifically, m6A regulators including ZCCHC4,
IGF2BP3, and VIRMA were differentially expressed between
the GC cell lines and GES-1, which were accompanied by
differential histone modifications in their TSS regions
(Figure 2; Supplementary Figure S1). Similarly, the histone
modification regulators, SETD1A and KMT2D, which showed
positive correlations with the m6A regulators (RBM15,
RMM15B, and YTHDF1), had differential m6A
modification in their exons (Figure 2; Supplementary
Figure S1; Supplementary Table S2). These findings
revealed the active crosstalk between histone and m6A
modifications, both in genome and transcriptome levels.

3.2 Identification of the EMRG and EMRL
To generally characterize the transcriptome landscape altered
by the four epigenetic modification types, we then identified
the dysregulated genes associated with each of the
modification types. Using the criteria described earlier, we
finally identified 4,999 EMRGs of H3K4me1, 3,693 EMRGs of
H3K4me3, 4,095 EMRGs of H3K27ac, and 6,117 EMRGs of
m6A. Previous studies suggested that some histone
modifications (such as H3K4me1, H3K4me3, and H3K27ac)
enriched at the enhancer or promoter region presumably
facilitate the transcription of targeted genes (Bannister and
Kouzarides, 2011). Similarly, unbalanced distribution was also
observed in the m6A modification, with more than 40% of all
modification sites in mRNA being present in 3′ UTRs) (Ke
et al., 2015; Kan et al., 2022). Consistent with the previous
studies, most of MMSs were located at the 3′UTR, followed by
exons, and then the promoter region (Figure 3A). Meanwhile,
for the three histone modification types, most of DHMSs
were located within the promoter (<1 kb), followed by the
promoter (1–2 kb) and promoter (2–3 kb) (Figure 3A).
Among the EMRGs, nearly 50% of genes were
simultaneously regulated by more than one modification
type, which was another evidence for the crosstalk between
different modification types. Specifically, about 360 protein-
coding genes (PCGs) were co-regulated by the four
modification types (Figure 3B).

As another key member of epigenetic regulation, LncRNA was
demonstrated to participate in various tumorigenic processes due

to their extensive biological functions in the transcriptome level
(Sempere et al., 2021; Kan et al., 2021). To further characterize the
epigenetic modification patterns with clinical relevance in GC, we
also identified 370 EMRLs (Supplementary Table S3) from the
EMRG. Interestingly, three EMRLs (PAXIP1-AS2, MNX1-AS1,
and PVT1) were co-regulated by the four modification types
(Figure 3B). LINC00511, previously reported as an oncogene in
several solid tumors (Wu et al., 2020; Peng et al., 2021; Dong et al.,
2021), was significantly modified with H3K4me1
(Supplementary Figure S2) and simultaneously overexpressed
in the three GC cell lines (Figure 3F). Similarly, concomitant
histone modification and overexpression were observed in
LINC01091 (Supplementary Figure S2). Moreover, we found
MNX1-AS1, another oncogene in multiple cancers (Wu et al.,
2019; Li et al., 2020b; Li et al., 2020c; Wu et al., 2021b), was
simultaneously regulated by both histone and m6A
modifications, with differential expression across three GC cell
lines and positive correlations to multiple m6A regulators
(Figures 3C–F). The aforementioned findings shed light on
the close connections inside epigenetic regulators including
epigenetic modifications and LncRNA, offering a new
perspective for exploring the complicated regulation network
of the epigenome.

3.3 Unsupervised Clustering Based on
EMRL Identified an EMD Subtype of GC
Next, we set out to characterize the modification patterns in the
exploring set. Through univariate Cox regression analysis, we
selected 34 EMRLs with a significant prognosis value (p < 0.01)
for further study (Supplementary Table S4). Unsupervised
clustering was then performed based on the 34 survival-
associated EMRLs, which divided the exploring set into four
distinct clusters (Figures 4A, B; Supplementary Figure S3A;
Supplementary Table S5). Surprisingly, extremely similar
expression patterns were observed across the three
independent GC cohorts (TCGA-STAD, GSE15459, and
GSE62254), especially in cluster C4. Specifically, the C4
population of each cohort was characterized by strikingly
elevated EMRLs including ZEB1-AS1, NR2F1-AS1,
MIR100HG, ZFHX4-AS1, and PART1 and the suppression of
EMRLs including HOTTIP, HOXA11-AS, CASC2, and
LINC00467. Moreover, a significant difference in prognosis
was observed among the four clusters, with cluster C4 having
the worst survival and cluster C3 the best (Figure 4C).

Consistently, unbalanced modification patterns both of
histone and m6A modifications were observed in cluster C4.
Specifically, cluster C4 was characterized by the high expression
of multiple histone modification writers (SETD1B, KMT2A, and
CREBBP) and the low expression of histone modification erasers
(KDM1A, KDM1B, HDAC1, and HDAC2). While in the m6A
modification, high-expressed erasers (FTO and ALKBH5) and
low-expressed readers (YTHDF2, YTHDF3, IGF2BP2, IGF2BP3,
and HNRNPC) were observed in cluster C4 (Figure 4D). Then,
we further explored the mutation profiling of cluster C4.
Interestingly, cluster C4 was also featured with a distinctive
mutation pattern, with rarely detected mutations of the
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FIGURE 3 | Identification of epigenetic modification-related LncRNA (EMRL). (A) Doughnut charts showed the distribution of DHMS or MMS in each modification
type. (B)Venn diagram showed the overlaps of EMRG (or EMRL) regulated by different modification types. PCG refers to the protein-coding genes, and LncRNA refers to
the long non-coding RNAs. (C) MNX1-AS1 was potentially regulated by H3K4me3 and H3K27ac in GC cell lines. Peaks in yellow and green refer to H3K4me3 and
H3K27ac, respectively, while gray ones refer to the corresponding modification in GES-1 as control. The red line at the bottom refers to the promoter region. (D)
m6A modification regions of MNX1-AS1 in the AGS cell line. Peaks in blue refer to the immunoprecipitation (IP) signals. Peaks in gray refer to the input signals. (E)
Differential expression of MNX1-AS1 in GC cell lines andGES-1 (p < 0.05). (F)Correlations of MNX1-AS1 with them6A regulators including HNRNPC, HNRNPA2B1, and
IGF2BP2 (Spearman, p < 0.05).
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FIGURE 4 | Distinctive epigenetic modification patterns across three GC cohorts recognized by EMRL. (A) Heatmap showed the highly concordant expression
patterns of the three GC cohorts in the exploring set. (B)Consensus unsupervised clustering divided the exploring set into four distinct clusters. (C) Kaplan–Meier curves
showed the different overall survival of the four clusters. (D)Heatmap showed the distinct expression patterns of the epigenetic regulators in the exploring set. VIRMA and
METTL16 were excluded in this section due to lack of expression information in the GSE15459 or GSE62254 cohort.
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FIGURE 5 |Molecular and clinical characteristics of four epigenetic modification patterns. (A)GSEA analysis identified the differentially activated pathways of cluster
C4 compared with cluster C3. (B)CIBERSORT analysis estimated the relative ratio of tumor-infiltrating cells in clusters C3 and C4. Each value was defined as the relative
ratio compared to the 22 human hematopoietic cell types contained in CIBERSORT. (C) Different TMB, tumor purity, and aneuploidy score among four clusters in the
TCGA-STAD cohort. (D) Clinical relevance of the EMD subtype in the TCGA-STAD cohort. (E) Clinical relevance of the EMD subtype in the GSE62254 cohort (*p <
0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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FIGURE 6 |Construction of the EMD score in the exploring set. (A–D)WGCNA analysis based on 1674 DEGs in the exploring set. (E) Kaplan–Meier curves showed
the different overall survival between the high- and low-EMD score groups in the exploring set. Patients were separated into the high and low groups according to the
median EMD score of each cohort. (F) Mutation landscape of epigenetic regulators in high- and low-EMD score groups in the TCGA-STAD cohort. (G) Risk curves
showed more frequent death events with the increasing EMD score in the exploring set. Dots in yellow referred to death events observed in the cohorts. (H)
Heatmap showed the close correlations of the EMD score with various molecular characteristics including epigenetic regulators, EMRLs, TMEmarkers, oncogenes, and
tumorigenic pathways. All the values were scaled using the Z-score.
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epigenetic regulators (Supplementary Figure S3B). Given
the distinctive modification patterns in transcriptome and
genome levels and the poor prognosis of cluster C4, we named
it the epigenetic-modification-dysregulated (EMD) subtype in
further study. In this section, using survival-associated EMRLs,
we identified a conserved EMD subtype with distinctive
modification patterns in GC.

3.4 Molecular and Clinical Characterization
of the EMD Subtype
To figure out the mechanism underlying the poor prognosis of the
EMD subtype, we comprehensively explored the molecular and
clinical characteristics of the EMD subtype by comparing it with
cluster C3 (cluster with the best prognosis) in the exploring set. In the
GSEA analysis, multiple tumorigenic pathways including the

FIGURE 7 | Recognizing patients with EMD characteristics using the EMD score. (A) Differential EMD score of subtypes in three classification proposals. The ROC
below showed the performance of the EMD score in recognizing the EMD, MSS/EMT, and IE/F subtype in the corresponding cohort. (B) Hallmark pathways correlated
with the EMD score in the validation set. (C) Kaplan–Meier curves showed the different overall survival between the high and low EMD groups in the validation set.
Patients were separated into high and low groups according to the median EMD score of each cohort. (D)Correlations of the EMD score with the ICI outcome in the
cohort PRJEB25780. Patients were divided into high or low groups according to the lower quartile (Q1) of the EMD scores (right panel). (E) GSEA analysis suggested
significant activated EMT and Hedgehog pathways in non-responders compared with the responder.
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epithelial–mesenchymal transition (EMT, p < 0.001), Hedgehog (p =
0.002), TGF-β (p = 0.01), IL2-STAT5 (p = 0.001), KRAS (p < 0.001),
and angiogenesis (p < 0.001) were significantly activated in the EMD
subtype (Figure 5A), whereas pathways including DNA repair (p <
0.001) and G2M checkpoint (p < 0.001) were observed to be
significantly suppressed in the EMD subtype (Figure 5A).

Then, we performed CIBERSORT analysis to explore the TME
characteristic of the EMD subtype. Compared with cluster C3, the
EMD subtype showed a significantly higher ratio of macrophages M2
(p< 0.001) and resting CD4+ T cell (p< 0.01) and a significantly lower
ratio of macrophages M1 (p < 0.05) and activated CD4+ T cell (p <
0.001) (Figure 5B). Moreover, a relatively lower CD4+/CD8+ T cell
ratio was observed in the EMD subtype (p < 0.05, Supplementary
Figure S4A), which usually indicates more advanced tumors or
immune deficiency in cancer patients. In the TCGA-STAD cohort,
we also observed a significant decrease of tumor mutation burden
(TMB, p< 0.001), tumor purity (p< 0.001), and aneuploidy score (AS,
p < 0.05) in the EMD subtype (Figure 5C).

In addition to the distinctive molecular characteristics, the EMD
subtype also showed extensive correlations to various clinical
characteristics of GC (Supplementary Table S6). In the TCGA-
STAD cohort (Figure 5D), we found the EMD subtype as a good
indicator for the IE/F subtype of the newly reported immune/fibrotic
classification (Bagaev et al., 2021) (p < 0.001). Besides, more patients
with MSS subtype (p < 0.001), poor differentiation (p = 0.002), or
diffuse histotype (p < 0.001) were observed in the EMD subtype.
While in the GSE62254 cohort (Figure 5E), the EMD subtype
mostly overlapped with the MSS/EMT subtype of ACRG
classification (Cristescu et al., 2015) (p < 0.001). Similarly, more
patients with advanced TNM stage (p < 0.001), perineural invasion
(p < 0.001), or diffuse histotype (p < 0.001) were observed in the
EMD subtype.

These findings suggested distinctive stromal-activated and
immune-suppressed characteristics of the EMD subtype, which
may account for the poor prognosis of this subtype.

3.5 Construction of the EMD Score in the
Exploring Set
Since clusters C3 and C4 showed marked differences in prognosis
and molecular characteristics, we chose clusters C3 and C4 for
further study. To expand the applicability of the EMD subtype, an
EMD score was then constructed based on the DEGs between the
EMD subtype (C4) and cluster C3 using WGCNA (Figures
6A–D) and ssGSEA algorithms. Strikingly, the EMD score was
closely related to the prognosis in the exploring set, where the
increasing EMD score was accompanied by more death events
(Figure 6G) and worse survival (Figure 6E).

Consistent with the EMD subtype, extensive correlations of the
EMD score with stromal-activated and immune-suppressed TME
characteristics could be observed in the exploring set (Figure 6H;
Supplementary Tables S9, S10). Specifically, patients with a high
EMD score showed activation of multiple pathways (EMT, TGF-β,
and Hedgehog), elevated stromal scores, high abundance of cancer-
associated fibroblast (CAF) and mast cells, whereas those with a low
EMD score showed low MHC-I expression, low infiltration of
activated CD4+ T cells, and low M1/M2 ratio. These were further

evidenced by upregulated markers of EMT activation (ZEB2,
TWIST1, SNAI2, MMP2, CDH2, VIM, etc.), CAF (ACAT2,
DES, TNC, PDGFRB, etc.), and immune-suppressed chemokine
axis (CXCR4, CXCL12, CCL2, and CCR2) with the increasing EMD
score. Moreover, we also observed the overexpression of multiple
immune evasion-related genes (CREBBP, HCFC2, TGFBR2,
WDR7, ATG14, and PPP2R3C), which were experimentally
demonstrated (Lawson et al., 2020), in the patients with a high
EMD score. Additionally, in the TIDE analysis, we found the EMD
score significantly correlated with the exclusion, dysfunction, CAF,
and MSI signature, which implied the potential of the EMD score in
predicting the ICI efficacy. Similar to the EMD subtype, a high EMD
score indicated a lower frequency of regulator mutation (34%, 51%,
Figure 6F). These findings suggested the EMD score as a good
indicator for recognizing the EMD subtype in GC.

3.6 Recognizing Patients with EMD
Characteristics in the Validation Set Using
the EMD Score
We first tested the correlations of the EMDscorewith the four clusters
we identified earlier, ACRG classification, and immune/fibrotic
classification. Strikingly, the EMD score showed an excellent
performance in recognizing the EMD subtype (AUC = 0.96,
Figure 7A) in the exploring set, as well as the MMS/EMT subtype
(AUC = 0.95, Figure 7A) of ACRG classification and the IE/F subtype
of the immune/fibrotic classification (AUC = 0.86, Figure 7A).

To further validate the ability of the EMD score in predicting
prognosis and response to ICI treatment, we calculated the EMD
score for patients in four independent GC cohorts. As we expected, a
high EMD score was closely related to a worse OS (p < 0.05,
Figure 7C) in each cohort of the validation set. Strong
correlations between the EMD score and multiple pathways
(EMT, TGF-β, Hedgehog, etc. Figure 7B; Supplementary Table
S11) could also be observed in the validation set. In the cohort
PRJEB25780, we also observed a distinct difference in the response
rate to immune checkpoint inhibitor (ICI) treatment between high
and low EMD score groups (10 vs. 75%, p = 0.0018, Figure 7D).
Moreover, non-responders were featured with significant activated
EMT (NES = 1.96, p < 0.001) andHedgehog (NES = 1.85, p < 0.001)
pathways compared with the responders (Figure 7E). These findings
successfully validated the ability of the EMD score in recognizing the
patients with EMD characteristics and the potential of recognizing
patients sensitive to ICI treatment in GC.

3.7 FTO as a Potential Target for Patients
with High EMD Score
Fat mass- and obesity-associated protein (FTO) was recently
reported to participate in multiple tumorigenic processes
including immune evasion in several malignant tumors (Li et al.,
2017; Zhao et al., 2020; Tao et al., 2021; Zhou et al., 2021), implying
the therapeutic potential of FTO inhibition in treating multiple
cancers. In this study, high FTO expression and low HDAC1
expression were both observed in patients with high EMD score
(Figure 8A). Moreover, FTO and HDAC1 were the most positively
correlated (Spearman-r = 0.48, p < 0.001) and negatively correlated

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 86883012

Yuan et al. An EMD Subtype of GC

100

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 8 | FTO may serve as a potential target for patients with a high EMD score. (A) Correlations of the EMD score with FTO and HDAC1 in each cohort of the
validation set. (B) Correlations of the FTO/HDAC1 ratio with multiple pathways in the validation set. (C) GSEA analysis confirmed the activation of EMT and Hedgehog
pathways in patients with a high FTO/HDAC1 ratio. (D) Correlations of the FTO/HDAC1 ratio with the activated/resting CD4+ T cell ratio and M1/M2 ratio in the validation
set. Activated/resting CD4+ T cell ratio refers to the ratio of activated CD4+ T cells and resting CD4+ T cells. The M1/M2 ratio refers to the ratio of macrophage M1
and macrophage M2. (E) Kaplan–Meier curves showed the different overall survival between the high and low FTO/HDAC1 ratio group in the whole cohort of this study.
Patients were separated into high and low groups according to the median EMD score of the whole cohort. (F) Barplots showed the fold change of EMT and Hedgehog
markers under FTO depletion in the AGS cell line (GSE178697). (G)Western blot showed the suppression of the EMT pathway under FTO inhibition in the SNU719 cell
line. (H)Western blot showed the suppression of the EMT pathway under FTO inhibition in the SGC7901 cell line (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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(Spearman-r = −0.45, p < 0.001) regulators relating to the EMD
score, which also represented the m6A and histone modifications,
respectively. To characterize the EMD subtypewith both histone and
m6Amodification features, we measured the FTO/HDAC1 ratio for
each GC patient. Interestingly, we found the FTO/HDAC1 ratio
closely correlated with the EMD subtype (Supplementary Figure
S4B), as well as the EMT (r = 0.52, p < 0.001, Figures 8B, C) and
TGF-β (r = 0.34, p< 0.001, Figures 8B, C) pathway activation, which
indicated stromal-activated TME characteristics. Also, a high FTO/
HDAC1 ratio was accompanied by a low CD4+ T cell activation rate
and a low M1/M2 ratio (Figure 8D), which indicated immune-
suppressed TME characteristics. Moreover, a high FTO/HDAC1
ratio was related to a worse OS in the whole cohort of this study
(Figure 8E). These findings revealed the close links of FTO with GC
prognosis and multiple tumorigenic pathways.

These links were further evidenced by the significant
downregulation of activated EMT markers (ZEB2, TWIST1,
SNAI2, MMP2, and CDH2) in a GC cell line with FTO
knockdown (FTO−KD) (Figure 8F; Supplementary Table S12).
Consistently, EMT (p < 0.001) and TGF-β (p = 0.007)
suppressions were also observed in an FTO−KD colon cancer
(CC) cell line (Supplementary Figures S3C–E; Supplementary
Table S12). Targeting FTO, as we assumed, might help to
improve the immune-suppressed TME caused by the activated
EMT and TGF-β pathway.

Brequinar sodium (BS) was reported to bind tightly with FTO
protein and inhibit the demethylase activity of FTO (Su et al., 2020).
To confirm the FTO’s function of regulating the EMT pathway, we
conducted in vitro experiments using two GC cell lines, SNU719 and
SGC7901. Strikingly, when treated with BS, markers of EMT
activation including N-cadherin, Vimentin, and TWIST1 were
downregulated in both cell lines (Figures 8G, H). Although no
significant upregulation of E-cadherin (the epithelial marker) was
observed in the BS-treated cell lines, we still noticed a remarkable
increase of the E-cadherin/N-cadherin ratio after BS treatment,
especially in SGC7901 cell line (p < 0.05, not presented). These
findings suggested FTO as a promising target for inhibiting the
EMT pathway in GC, especially for patients with high EMD score.

4 DISCUSSION

Extensive interactions between epigenetic modification types in
shaping the TME of cancers have drawn increasing attention
recently. Chen et al. systematically characterized the interactions of
four RNAmodification types (m6A, N1-methyladenosine, alternative
polyadenylation, and adenosine-to-inosine RNA editing) and
demonstrated that multilayer alterations of RNA modification
“writer” are associated with patient survival and TME cell-
infiltrating characteristics (Chen et al., 2021b). Zhao et al. focused
on the relationship between LncRNAs and histone/DNA
modifications and identified key LncRNA regulators as a
prognostic biomarker for breast cancer subtypes (Zhao et al.,
2021b). Similarly, regarding GC, Meng et al. (2021) elucidated the
interactions between DNA methylation regulators and generated a
DMS score for separating GC patients with distinctive prognosis and
treatment efficacy (Meng et al., 2021). These studies provided insights

into the active interaction networks of epigenetic modifications,
suggesting their pivotal roles in shaping the TME across multiple
tumors. However, the interactions between histone and RNA
modifications and their impact on the TME in GC had not been
fully explored yet.

In this study, for the first time, we comprehensively depicted the
epigenetic regulation network including histone modification, RNA
modification, and LncRNA in GC. Both in genome and
transcriptome levels, we characterized the crosstalk between
regulators of these four modification types. Zhan et al. found that
several important histone regulator genes, including KMT2D,
KMT2C, CREBBP, and EP300, are frequently altered in
esophageal squamous cell carcinoma (Song et al., 2014). In our
study, we further observed frequent co-mutations of these regulators,
such as KMT2D-CREBBP, KMT2C-EP300, and CREBBP-EP300 in
GC, which implied potential vulnerabilities based on epigenetic-
related synthetic lethality in GC (Yang et al., 2019). Moreover, by
identifying EMRLs using ChIP/MeRIP-seq data, our study added
new evidence to the crosstalk between epigenetic modifications and
LncRNA, which is also one of the key members of epigenetic
regulation (Kan et al., 2021). Meng et al. defined a DMS score
based on specific DNA methylation patterns to recognize GC
patients with immune activation status and enhanced efficacy of
immunotherapy (Meng et al., 2021). Consistent with Meng’s study,
strong links between epigenetic modification patterns and the tumor
environment were observed in GC, which in combination suggested
epigenetic modification as a promising resource for developing new
vulnerabilities for TME-targeting therapy.

With strong complexity and heterogeneity, GC presented
disappointing results in most of the clinical trials on novel agents
during the last decade (Serra et al., 2019). Thus, increasing molecular
classification proposals were developed to characterize the molecular
and clinical features of GC so as to optimize individualized diagnosis
and treatment. ACRG classification is a globally accepted classification
system of GC reported by the Asian Cancer Research Group in 2015,
which divides GC into four subtypes: MSI, MSS/EMT, MSS/TM53
(+), and MSS/TP53 (−) (Cristescu et al., 2015). According to the
GSE62254 cohort, the MSI subtype had the best prognosis with more
than 60% patients of intestinal histotype, while theMSS/EMT subtype
had the worst prognosis, over 80% of whichwere the diffuse histotype.
However, the epigenetic modification patterns underlying the MSS/
EMT subtype remain largely unexplored. In this study, we surprisingly
found the EMD subtype we definedmostly overlapped with theMSS/
EMT subtype (91.4%, Supplementary Table S6) in the GSE62254
cohort. Consistently, the EMD subtype had the worst overall survival
andmostly consisted of diffuse histotype (80%, Supplementary Table
S6). Our findings revealed the distinctive epigenetic modification
patterns existing in the MSS/EMT subtype. By identifying the
EMD subtype, our study provided not only new strategies for
recognizing patients with poor prognosis in GC but also new
sights into the epigenetic characterization of the widely used
ACRG subtype.

Though with the rapid progress of ICI therapy in recent years,
there were still limited GC patients benefiting from the ICI
treatment. According to a meta-analysis based on 2003
patients from nine clinical trials, the objective response rate
and disease control ratio were 9.9 and 33.3%, respectively, for
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advanced gastric or gastroesophageal junction (G/GEJ) cancer
treated with ICI therapy (Chen et al., 2019). Mechanistically, the
immune-suppressed TME may be one of the main causes of the
resistance to ICI treatment. Hegde et al. proposed three distinct
immunophenotypes (inflamed, immune-excluded, and immune-
desert) based on the spatial distribution of CD8+ T cells in the
TME (Hegde et al., 2016). Immune-excluded tumors were
featured with an immune-suppressed TME, represented by
T cells clearly embedded in the tumor stromal
microenvironment with the presence of low MHC-I
expression, TGF-β activation, myeloid inflammation, and
angiogenesis (Hegde et al., 2016). Consistent with immune-
excluded tumors, the EMD subtype we defined was
characterized by the immune-suppressed TME with a low
MHC-I expression, TGF-β activation, and angiogenesis
activation, which also presented a low response rate to ICI
treatment. Moreover, the EMD score we developed showed
promising ability in recognizing GC patients with poor
prognosis and resistance to ICI therapy. Desbois et al.
reported that TGF-β-activated fibroblasts contribute to an
immune-suppressed environment by cytokine production in
ovarian cancer (Desbois et al., 2020; Desbois and Wang,
2021). In our study, TGF-β activation and high abundance of
CAF were both observed in patients with a high EMD score,
strongly implying the close links between TGF-β-activated
fibroblasts and resistance to ICI treatment in GC.

Recently, combined therapy of ICI with radiotherapy,
chemotherapy, or targeted therapy became a prospective
strategy for improving the efficacy of cancer treatment. Results
from CheckMate 649 showed that nivolumab with chemotherapy
improved OS [hazard ratio (HR) 0.71 (98.4% CI 0.59–0.86); p <
0.0001] and PFS [HR 0.68 (98% CI 0.56–0.81); p < 0.0001] in GC
patients with a PD-L1 CPS (combined positive score) of five or
more when compared with chemotherapy alone (Janjigian et al.,
2021). As one of the pivotal roles contributing to the immune-
suppressed TME, the EMT pathway provided multiple
therapeutic targets for combined therapy of ICI (Dongre et al.,
2017; Jiang and Zhan, 2020). Combined ICI therapy with anti-
EMT therapy would be a promising strategy, especially for
patients with significant EMT activation. In our study, close
correlations of the FTO overexpression with a high EMD
score and activation of multiple tumorigenic pathways
including EMT, TGF-β, and Hedgehog were observed.
Moreover, a significant downregulation of the EMT pathway
was observed in two FTO−KD cell lines (Figure 8F, S1C-E),
implying the potential links between FTO and the immune-
suppressed TME. Su et al. demonstrated that FTO inhibition
sensitizes leukemia cells to T cell cytotoxicity and overcomes
hypomethylating agent-induced immune evasion (Su et al.,
2020). Liu et al. developed a novel FTO inhibitor, Dac51,
which can block FTO-mediated immune evasion and synergize
with the checkpoint blockade for better tumor control (Liu et al.,
2021). In this study, through the in vitro experiments of FTO
inhibition conducted in two GC cell lines, we demonstrated that
pharmacological inhibition of FTO significantly suppressed the
EMT pathway. Our findings provided new clues of FTO’s
participation in immune evasion and also suggested FTO as a

potential target of combined ICI therapy with anti-EMT therapy
in GC.

This study also has some limitations. First, the ability of the
EMD score in predicting ICI efficacy needs to be further validated
using more GC cohorts in the future. Besides, it remains unclear
how FTO regulates the EMT pathway. Further studies are
urgently needed to explore the underlying mechanism and
verify the efficacy of combined ICI therapy with FTO
inhibition in GC.

5 CONCLUSION

Collectively, we comprehensively characterized the crosstalk
between histone and RNA modifications and identified the
EMD subtype of GC with poor survival and distinctive TME
characteristics. EMD score is a good indicator for prognosis
and TME characteristics in GC and also might be a promising
tool for recognizing patients suitable for combination ICI
therapy.
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Cancer drug resistance has always been a major factor affecting the treatment of non-
small cell lung cancer, which reduces the quality of life of patients. The clustered regularly
interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9)
technology, as an efficient and convenient new gene-editing technology, has provided
a lot of help to the clinic and accelerated the research of cancer and drug resistance. In this
review, we introduce the mechanisms of drug resistance in non-small cell lung cancer
(NSCLC), discuss how the CRISPR/Cas9 system can reverse multidrug resistance in
NSCLC, and focus on drug resistance gene mutations. To improve the prognosis of
NSCLC patients and further improve patients’ quality of life, it is necessary to utilize the
CRISPR/Cas9 system in systematic research on cancer drug resistance.

Keywords: non-small cell lung cancer, drug resistance, CRISPR/Cas9, gene editing, TKIs

1 INTRODUCTION

Lung cancer is one of the most common cancers and is the leading cause of cancer death, accounting
for approximately 18% of cancer deaths (Sung et al., 2021). Non-small cell lung cancer (NSCLC) is
the most common type of lung cancer, accounting for more than 85% of total lung cancer cases, and
the World Health Organization (WHO) classifies NSCLC into adenocarcinomas, squamous
carcinomas, and large cell carcinomas based on differences in immunohistochemical markers
(Mengoli et al., 2018). The high lethality of lung cancer is associated with difficulty in diagnosis,
treatment, and poor prognosis (Woodard et al., 2016). The mainstay of treatment for NSCLC is
surgery and adjuvant cisplatin-based therapy (Duma et al., 2019), Many challenges remain in the
screening and treatment of lung cancer, and mortality is difficult to control. Although chemotherapy
can prolong survival to some extent in patients with moderately advanced NSCLC, the overall
response rate is only about 30%, the median survival is 8–12 months, and the 1-year survival rate is
30–40% (Reck and Rabe, 2017). The advent of targeted agents has led to improvements in the
treatment of NSCLC.

However, the treatment failure in NSCLC is closely related to the phenomenon of acquired drug
resistance and multidrug resistance (MDR) in prognosis. For example, in NSCLC patients harboring
EGFR gene mutations, the EGFR-TKI class of drugs is the standard first-line treatment, showing
disease progression after 9–13 months despite some therapeutic efficacy (Kelly et al., 2015). Tumors
with EGFR-TKI resistance mechanisms had EGFR secondary mutations, bypass or downstream
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pathway activation: such as HER2 amplification, met
amplification, FGFR1 activation, PI3K/Akt pathway activation,
BRAF mutation, and loss of PTEN expression (Uchibori et al.,
2018; Leonetti et al., 2019).

Clustered regularly interspaced short palindromic repeats/
CRISPR associated protein 9 (CRISPR/Cas9) technology is the
most powerful gene-editing technology after zinc finger nucleases
(ZFNs), transcription activator-like effector nucleases (Talens)
(Carroll, 2011; Joung and Sander, 2013), with flexible and
convenient features, it is inexpensive and has been widely used
in biology, microbiology, agriculture, and animal husbandry.

To further investigate the mechanisms of multidrug resistance
in NSCLC and improve the prognosis and quality of life of NSCLC
patients, we discuss issues related to NSCLC drug resistance by
reversing NSCLC multidrug resistance via CRISPR/Cas9,
screening drug-resistant targets, and targeting therapies.

2 MECHANISM OF THE CRISPR/CAS9
SYSTEM

CRISPR/Cas, an acquired immune defense system that evolved
during long-term evolution in bacteria and archaea to fight

invading viruses and foreign DNA, was first identified in 1987
(Ishino et al., 1987) and was later shown to have powerful gene-
editing functions.

CRISPR gene sequences are constituted by multiple short and
conserved repeats and non-repetitive sequences called spacers,
and CAS proteins are a family of endonucleases. There are three
main stages in the mechanism of acquired immune protection by
CRISPR/Cas9, which are the acquisition of CRISPR spacer
sequences, expression of CRISPR genes, and CRISPR
interference (Deveau et al., 2010). When a foreign gene first
invades a bacterium, CRISPR/Cas9 recognizes the protospacer
adjacent motif (PAM), and cuts the DNA sequence adjacent to
the PAM as a candidate protospacer from the foreign DNA,
inserts downstream of the leader region of the CRISPR sequence,
and repairs. When foreign genes re-invade, CRISPR sequences
are transcribed to form pre-CRISPR-derived RNA (pre-crRNA)
and trans-acting crRNA (tracrRNA), the former of which is
sheared by Cas proteins into mature CRISPR derived RNA
(crRNA). Subsequently, a complex consisting of pre-crRNA,
tracrRNA and cas9 protein allows recognition of the foreign
gene and DNA double-strand cleavage.

A guide RNA (gRNA), consisting of 20–24 bases, recognizes
the PAM on both sides of the target DNA for target sequence

FIGURE 1 | (A): Mechanism of CRISPR/Cas9 system; (B): Mechanism of CRISPR/dCas9 system.
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cleavage, its HNH enzyme will shear the crRNA complementary
DNA strand, while its RUVC active site will shear the
noncomplementary strand, causing double-strand breaks
(DSBs), and the cell performs DNA repair by non-
homologous end joining (NHEJ) and homologous directed
recombination (HDR) pathways, thus creating a permanent
mutation (Figure 1A).

In 2013, Qi et al. introduced h840a mutations in the HNH
domain of the cas9 protein and D10A mutations in the RUVC
domain, which rendered the protein activity defective and,
although DNA could still be precisely targeted, lost its original
function (Qi et al., 2013). The dCas9 can regulate target genes
under the guidance of sgRNAs without generating DSBs. The
dcas9 protein can carry different effector domains, recruit
endogenous transcriptional activators and RNA polymerase to
target DNA sequences for target gene activation, and also disrupt
transcription factor binding or hinder RNA polymerase binding,
thereby silencing target gene expression (McCarty et al., 2020)
(Figure 1B).

3 PRINCIPLES OF MULTIDRUG
RESISTANCE IN NSCLC REVERSED BY
CRISPR/CAS9 TECHNOLOGY
Drug resistance is an essential factor leading to treatment failure
in many intractable diseases, which limits the application of
chemotherapeutics in NSCLC patients, and the reasons why
tumor cells develop drug resistance are complex and variable,
mainly including drug inactivation, enhanced drug efflux,
epigenetic changes, DNA repair ability, apoptosis inhibition,
alteration of drug targets Epithelial-mesenchymal transition
(EMT), etc. (Gottesman, 2002; Panda and Biswal, 2019)
(Figure 2). These mechanisms can act independently or in
combination and act through various signal transduction

pathways. CRISPR/Cas9 has been used for the study of drug
sensitization and resistance. We discuss the key reasons for drug
failure in NSCLC and the role of CRISPR/Cas9 technology.

3.1 Studies on Drug Resistance Genes
NSCLCs are strongly associated with mutations in related genes
that cause alterations in the structure or number of proteins
encoded by the genes, leading to changes in the function of their
associated genes. In addition to the well-known EGFR and ALK,
BRAFmutations, ros1 rearrangements, RET rearrangements, and
others are common in NSCLC. There are a variety of targeted
drugs acting on the relevant receptors (Table 1; Figure 3). The
CRISPR/Cas9 system can be used to remove the functional
regions of drug resistance genes, thereby reversing drug
resistance. It can also be used to knock out or overexpress
drug resistance genes in cell lines and animals, making it
easier to research drug resistance mechanisms in tumors.

3.1.1 EGFR
EGFR is a tyrosine kinase receptor that Homo—or
heterodimerizes with ligands to cause autophosphorylation,
which in turn regulates downstream signaling pathways
leading to tumor proliferation, invasion, metastasis and
angiogenesis. Mutations in the EGFR kinase domain are
present in approximately 10%–40% of patients with NSCLC.
Treatment of EGFR mutant lung cancers with EGFR-TKIs
effectively inhibits tumor progression and prolongs
progression free survival (PFS) in patients with NSCLC
compared with standard chemotherapeutic agents (Schrank
et al., 2018). Approximately 90% of EGFR mutations are
caused by mutations in exon 19 (exon 19 deletion mutation)
and exon 21 (L858R) (Camidge et al., 2014; Robichaux et al.,
2018). After administration of TKIs, most patients develop
acquired resistance, which is usually caused by a secondary
mutation at position 790 in exon 20 (Cross et al., 2014),

FIGURE 2 | Different mechanisms involved in anticancer drug resistance.
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Targeting the third-generation EFGR-TKI Osimertinib for this
resistance occurs where the EGFR c797s mutation blocks efficient
binding of Osimertinib to the target EGFR c797 site (Jia et al.,
2016). Tang et al. proposed an individualized molecular surgical
treatment strategy for EGFR mutant lung cancer using CRISPR/
Cas9 technology, which generates breaks at mutation sites or
exons. The wild-type sequence containing the exon and the donor
DNA with its left and right homology arms would then replace
the mutated sequence or exon by HDR, an approach that would

eradicate the drug resistance gene and thus prevent cancer
progression (Tang and Shrager, 2016). Liu et al. used CRISPR/
Cas9 technology to create renal cell carcinoma (RCC) cell lines
with EGFR knockout, which significantly inhibited cancer cell
proliferation and induced cell arrest in the G2/M phase. However,
knocking out EGFR resulted in high ERK expression, but the
authors discovered that ERK and Akt could be inhibited by
Sunitinib (a multi-targeted TKI) in combination (Liu et al.,
2020), suggesting that CRISPR mediated knockout of drug
resistance genes may be a promising option for future disease
treatment.

3.1.2 ALK
Anaplastic lymphoma kinase (ALK), which belongs to the insulin
receptor (IR) superfamily, is a highly conserved receptor tyrosine
kinase. ALK rearrangements are found in approximately 3%–7%
of NSCLC patients (Devarakonda et al., 2015). ALK is mutated as
a fusion with echinoderm microtubule-associated protein like 4
(EML4), encoding the form of an EML4-ALK fusion protein that
leads to ALK dimerization, which results in the activation of ALK
and its downstream signaling pathways such as JAKs/STAT3 and
RAS/MEK/ERK, leading to aberrant cell proliferation and
differentiation and promoting tumorigenesis (Soda et al., 2007;
Sasaki et al., 2010). In 2014, Blasco et al. designed sgRNAs
targeting intron 14 of the EML4 gene and intron 19 of the
ALK gene in mice, generated DSBs using Cas9, and generated
EML4-ALK rearrangements in non-small cell lung cancer cells,
which were able to promote tumor formation in the lungs of mice,
demonstrating the importance of the CRISPR/Cas9 system for
studying chromosomal rearrangements (Blasco et al., 2014).
EML4-ALK exhibits potent oncogenic properties both in vitro
and in vivo, in which tumor development can be rapidly

TABLE 1 | Summary of targeted therapeutic drugs for non-small cell lung cancer.

Targrt Mechanism of Action Drug Usage Ref

First generation
EGFR-TKIs

Inhibits by binding to the ATP site of the EGFR receptor Erlotinib For first-line treatment of locally advanced or
metastatic NSCLC with sensitive gene mutations in
EGFR.

Zhou et al. (2011)

Gefitinib It is used for single drug continuous treatment of locally
advanced or metastatic NSCLC with platinum and
docetaxel chemotherapy failure

Goss et al. (2013)

Second
generation EGFR-
TKIs

Blocking the EGFR-HER2 signaling pathway Afatinib It can significantly improve the progression free
survival, objective response rate (ORR) and 8-weeks
disease control rate

Park et al. (2016)

Third generation
EGFR-TKIs

Play a role in secondary drug resistance. the binding
of ALK

Osimertinib Targeted treatment of patients with EGFR mutation
and T790M drug resistance mutation significantly
prolonged PFS in patients with NSCLC.

Cho et al. (2019)

First generation
ALK-TKIs

Competitive binding to ATP binding sites blocks. The
binding of the ALK enzyme to ATP, hinders the
subsequent autophosphorylation process, and leads to
the inactivation of the ALK downstream signal pathway

Crizotinib It can effectively inhibit NSCLC caused by ROS 1 gene
rearrangement

Moro-Sibilot et al.
(2019)

Second
generation ALKK-
TKIs

Ceritinib It is applicable to NSCLC patients who progress after
treatment with kezotinib or cannot tolerate its toxic and
side effects

Soria et al. (2017)

BRAF inhibitor The continuous activation of BRAF gene leads to the over
activation of MEK/ERK signaling pathway, which leads to
tumor production and even tumor metastasis

Dabrafenib Combined with trimetinib to treat patients with
advanced NSCLC with braf-v600e mutation

Planchard et al.
(2017)

c-Met inhibitor c-MET can affect the downstream PI3K/Akt and MAPK
pathways, and abnormal c-met activity leads to abnormal
metabolism

Tivantinib Combined with EGFR-TKI can effectively prolong the
PFS of EGFR mutant NSCLC.

Yoshioka et al.
(2015)

FIGURE 3 | Cell signaling in NSCLC drug resistance.
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suppressed using ALK TKIs (Soda et al., 2008). Tumor cells often
develop acquired resistance to ALK inhibitors, resulting from
secondary mutations in the patient’s kinase domain, gene
amplification, and activation of alternative signaling pathways
(e.g., EGFR, kit, IGF1R, etc.) and epithelial mesenchymal
transformation (Spaans and Goss, 2014; Kong et al., 2019).
ALK creates secondary mutations that promote an altered
spatial conformation of the kinase, weaker binding to the
drug, or stronger binding to ATP, leading to the development
of drug resistance. The initial ALK mutation was the L1196m
mutation, and the leucine residue L1196 in the ALK kinase
domain, located at the bottom of the ATP binding pocket, is
mutated to methionine. The thioether side chain of methionine
would create a steric hindrance to hinder the binding of the ALK-
TKI Crizotinib to the ALK kinase, resulting in Crizotinib
resistance (Doebele et al., 2012).

3.1.3 ROS1
The receptor tyrosine kinase ROS proto-oncogene 1 (ROS1)
belongs to a group of receptor tyrosine kinases in the insulin
family of receptors, and ROS1 rearrangements are observed in
approximately 1%–2% of patients with NSCLC (Gainor and
Shaw, 2013). The kinase domains of ALK and ROS1 share
homology, and Crizotinib, an ALK-EML 4 inhibitor, was used
to interfere with ROS1 fusion gene-positive and ALK-EML4
fusion gene-positive lung cancer cells, and Crizotinib was
found to inhibit the growth of hcc78 cells (ROS1 fusion gene-
positive) (Bergethon et al., 2012), Accordingly, some ALK-TKIs
have been shown to be effective in patients with ros1
rearrangement (Huber et al., 2014). Choi et al. achieved the
first CD74-ROS1 translocation event utilizing CRISPR/Cas9
technology in 2014, suggesting that Cas9-induced DSB can
result in chromosome translocation (Choi and Meyerson,
2014). Sato et al. designed gRNAs to target EZR intron 9 and
ROS1 intron 33 and successfully generated EZR/ROS1 fusions in
HBECp53 lung adenocarcinoma cells, which highly induced the
phosphorylation of MEK and ERK, and the MEK/ERK signaling
pathway can mediate the primary or acquired resistance to
ROS11 TKIs in ROS1 rearranged lung adenocarcinoma
patients. Using a combination of Selumetinib and Crizotinib,
the authors effectively inhibited the growth of ros1 fusion positive
cells in vitro and in vivo (Sato et al., 2020), providing a therapeutic
strategy for NSCLC.

3.1.4 KRAS
Kirsten rat sarcoma viral oncogene (KRAS) belongs to the RAS
protein family, and KRAS mutation is a common type of
mutation in non-small cell lung cancer. When KRAS is bound
to guanosine triphosphate (GTP), it is activated and can activate
downstream BRAF/MEK/ERK and PI3K/Akt/mTOR signaling
pathways (Friedlaender et al., 2020). The mutation rate of KRAS
in NSCLC is 20%–30%, and about 97% of these mutations are
point mutations in codon 12 or 13 in exon 2 (Rotow and Bivona,
2017). KRAS is a marker of resistance to EGFR-TKIs drugs, and
KRAS mutation is an indicator of poor prognosis in NSCLC. So
far, no effective KRAS inhibitors have been developed. Gao et al.
used the CRISPR/Cas9 system to knock out KRAS G12S, used

dcas9 KRAB to bind to the target. KRAB, a transcription
inhibitor, can downregulate mRNA transcription. Cas9-sgG12S
suppressed the proliferation of tumor cells by inhibiting the
production of the KRAS (G12S) protein in A549 cells, as well
as the phosphorylation levels of downstream molecules Akt and
ERK. The tumor volume reduced by 46%, the tumor volume
decreased by 30%, and the expression of KRAS mutant protein
decreased dramatically in A549 mice treated with Adv-Cas9-
sgG12S (Gao et al., 2020).

3.1.5 BRAF
V-Raf mouse sarcoma viral oncogene homolog B (BRAF) is a
serine/threonine kinase that is downstream of KRAS in the
MAPK signaling cascade pathway. BRAF is mutated in 60% of
melanomas and drives oncogenes for a variety of malignancies
such as colorectal, ovarian, and papillary thyroid cancer. RAS-
GTP binding to the receptor-binding domain (RBD) activates
RAF, leading to RAF phosphorylation and the induction of MEK
and ERK activation, which results in cell proliferation and
differentiation (Wan et al., 2004). Ding et al. tested the
amplification refractory mutation system in 1680 NSCLC
patients and found that the BRAF mutation rate was 1.7%,
and was mostly found in lung adenocarcinoma patients and
female patients (Ding et al., 2017). The predominant type of
mutation in the brae gene in NSCLC is V600E, with a mutation
rate of over 50% (Li et al., 2014), and investigators have found two
mutations, V458L and K438T, on exon 11 in lung
adenocarcinoma (Brose et al., 2002). Resistance to the BRAF
inhibitor dabrafenib often develops within 8 months (Flaherty
et al., 2010; Chapman et al., 2011). As BRAF mutations are more
common in melanoma, studies utilizing CRISPR/Cas9 for
chemotherapeutic agents have often revolved around the
melanoma. Wu et al. developed a light-inducible CRISPR/Cas9
system to cleave the mutated BRAF gene (BRAF V600E), which
promotes melanoma cell apoptosis and effectively inhibits
melanoma cell proliferation, invasion, and migration (Wu
et al., 2020).

3.1.6 MET
C-MET proto-oncogene, receptor tyrosine kinase (c-MET), a
transmembrane receptor encoded by the met gene, belongs to
the hepatocyte growth factor (HGF) receptor family, and HGF, in
combination with c-MET, undergoes phosphorylation and
autophosphorylation and activates downstream PI3 K/Akt and
MAPK signaling pathways (Pasquini and Giaccone, 2018), MET
amplification accounts for 5%–20% of NSCLC patients and is a
poor prognostic factor for EGFR-TKI acquired resistance
(Bubendorf et al., 2017). Met exon 14 mutations are common
and account for 3% of lung adenocarcinomas (Schrock et al.,
2016). Crizotinib acts as a tyrosine kinase receptor inhibitor
capable of inhibiting c-MET. Togashi and others used
CRISPR/Cas9 system to knock out the exon of MET 14 in
HEK293 cell line, MET phosphorylation raised, protein
expression increased, cell proliferation was reinforced, and cell
sensitivity to Crizotinib was improved (Togashi et al., 2015),
demonstrating that targeted therapy for MET exon 14 deleted
non-small cell lung cancer holds promise.
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3.1.7 Other Genes
Nonspecific conventional chemotherapy drugs, such as cisplatin,
paclitaxel, and etoposide, are also commonly used in the
treatment of NSCLC. Chen et al. silenced Rsf-1 in NSCLC by
CRISPR/Cas9, which inhibited cancer cell inhibition and
migration and promoted cancer cell apoptosis, demonstrating
that Rsf-1 regulates NF-κ B pathways to influence NSCLC
sensitivity to paclitaxel (Chen et al., 2017). Aurora-B is a key
factor regulating mitosis and is frequently overexpressed in lung
cancer. Yu et al. knocked down Aurora-B in the A549 cell line by
CRISPR/Cas9 technology, and demonstrated that Aurora-B
could confer NSCLC drug resistance by inhibiting cell
proliferation, p53 related DNA damage response and apoptotic
pathways, while knocking down Aurora-B was able to restore cell
sensitivity to cisplatin and paclitaxel (Yu et al., 2018). Zhang et al.
found that transducing-like (β) receptor 1 (tbl1xr1) was
overexpressed in NSCLC and promoted cancer progression by
regulating the MEK and Akt signaling pathways through its
master regulator c-MET, knockdown of tbl1xr1 by CRISPR/
Cas9 in A549 and H460 cell lines resulted in an increase in
the number of cells in G0/G1 phase, inhibited cell proliferation
and migration, and promoted apoptosis with a concomitant
increase in sensitivity to cisplatin (Zhang T. et al., 2020).

3.2 Application of CRISPR/Cas9 in
Screening Drug Resistance Genes
CRISPR/Cas9 technology is also being used for genetic screening
of potential drug resistance in NSCLC. Previously, RNA
interference (RNAi) - based genetic screens, the mainstay of
genome-wide loss of function screens, have been effective in
identifying genes in tumor cells that can respond to
chemotherapeutic agents and in studying signaling pathways.
However, there are a series of challenges in the application of
RNAi. For example, the high specificity of RNAi is relative, in
some cases siRNAs produce the off-target phenomenon. RNAi
cannot wholly block the expression of genes in mammalian cells,
especially those that are abnormally highly expressed (Jackson
et al., 2006; Mullenders and Bernards, 2009). CRISPR/Cas9
technology can activate or repress gene expression and can
label functional regions at specific genomic loci, resulting in
accurate genome editing with the advantages of fewer false
positives and lower off-target effects (Evers et al., 2016), which
has now been applied to screen drug resistance genes in a variety
of tumors.

Zeng et al., through genome-wide CRISPR/Cas9 gene
screening, found that inactivation of GPCR related effectors
produced obvious synergistic effects with EGFR inhibition in
EGFRmutated NSCLC cells, deficiency of GPCR related effector -
RIC8A could improve cell sensitivity to chemotherapeutic drugs,
and targeting RIC8A is promising as a new approach to
preventing EGFR-TKI resistance in NSCLC (Zeng et al., 2019).
Lee et al. used CRISPR/Cas9 libraries to screen human lung
cancer cell lines (NCI-H820) and knockdown of the genes
MDM4, PSMA6, PSMB6, ANAPC5, and CDK1 increased the
sensitivity of lung cancer cells to the EGFR-TKI Erlotinib, the
MDM4 inhibitor nutlin-3 synergized with PSMA6, and the

PSMB6 inhibitor Carfilzomib synergized with Erlotinib in vitro
cell lines and in vivo patient-derived xenograft experiments, can
promote tumor cell death, target cell cycle or protein
ubiquitination pathways, and may inhibit Erlotinib resistance
progression (Lee et al., 2021).

3.3 Modification of Cellular Transport
Pathways
Cancer cells often efflux chemotherapeutic agents out of the cell
to lower intracellular drug concentrations by up regulating one or
more adenosine triphosphate binding cassette (ABC) membrane
transporters (Mollazadeh et al., 2018). Three transporters
multidrug resistance protein 1 (MDR1), multidrug resistance-
associated protein 1 (MRP1), and breast cancer resistance protein
(BCRP) - have been implicated in cancer resistance (Sakaeda
et al., 2002; Cole, 2014; Mao and Unadkat, 2015). P-glycoprotein
(P-gp), a member of the ABC superfamily of structural
transporters that have been extensively studied, is encoded by
MDR1 (Panczyk et al., 2007), is widely distributed in tissues such
as the brain, lung, liver, kidney and gastrointestinal tract (Gupta
et al., 2015), and is highly expressed within tumor cells, which
confers drug resistance (Ambudkar, 1995; Li et al., 2016). Studies
in many different types of cancer have shown that increased
expression of any one of these transporters in cancer cells leads to
suboptimal clinical outcomes. Jia et al. showed that the expression
level of P-gp in ovarian cancer tissues was significantly higher
than that in adjacent normal tissues, and increased with higher
clinical stage of ovarian cancer (Jia et al., 2018). EL-Masry et al.
demonstrated that in adult acute myeloid leukemia (AML)
patients, BCRP was highly expressed in 34 out of 50 adult
AML patients (68%) (El-Masry et al., 2018). In chronic
myeloid leukemia (CML), tumor sensitivity can be increased
using febuxostat, a BCRP inhibitor (Ito et al., 2021).

Using the CRISPR/Cas9 system to target the MDR1 gene in
the MDR cell lines KBV 200 and HCT-8/V, Yang et al. were able
to improve vincristine and doxorubicin sensitivity inMDR cancer
cells (Yang et al., 2016a). The PI3K inhibitor BAY-1082439 was
able to down regulate P-gp and BCRP expression, and nonviral
transgenic vector-mediated CRISPR/Cas9 knockdown of PI3K in
non-small cell lung cancer H460 cell line and its resistant subline
H460/MX20 110 α And 110.0 β Subunit, leading to
downregulation of P-gp and BCRP and reversing P-gp-
mediated drug resistance (Zhang L. et al., 2020).

3.5 CRISPR/Cas9 for Epigenetic Regulation
Epigenetic regulation of cancer cells has an important role in the
process of drug resistance. Epigenetics refers to the regulatory
mechanisms of gene expression that result in an altered
phenotype through the modification of DNA bases. Many of
the genes that play a key role in the process of cancer drug
resistance often have abnormal alterations in epigenetics to
escape the body’s immune surveillance. Many of the sites that
are mutated at high frequency on the drug-resistant genomes of
tumors are genes encoding enzymes associated with epigenetic
regulation (Yu et al., 2011; Azad et al., 2013). Common epigenetic
regulations include DNA methylation, histone modification,
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noncoding RNA regulation, and chromatin remodeling, among
others (Dawson and Kouzarides, 2012). DNA methylation is the
addition of a methyl group to the cytosine of certain specific
regions (i.e., the Cp G Islands) where methylation occurs, leading
to the expression of the gene being affected. Transcriptional
inactivation, silencing of tumor suppressor genes when
aberrantly methylated, or activation of oncogenes due to DNA
hypomethylation may underlie tumorigenesis and
chemotherapeutic resistance (Liu B. et al., 2016). Terai et al.
showed that gefitinib-resistant lung cancer cells had significantly
increased methylation relative to parental cells (Terai et al., 2015).
Protein modification refers to the process by which histones
undergo methylation, acetylation, phosphorylation,
ubiquitination and other modifications under the action of
related enzymes (Audia and Campbell, 2016). In
hepatocellular carcinoma (HCC), G9a, a histone
methyltransferase, promotes HCC proliferation and metastasis
by regulating the dimethylation level of rarres3 histone (Wei
et al., 2017). In 2016, Okano et al. initially demonstrated the
essential role of the dCas9-Tet1 and dCas9-Dnmt3a systems for
epigenetic regulation by using Tet1 and Dnmt3a catalytically
inactive cas9 fusion proteins to target the brain-derived
neurotrophic factor (BDNF) promoter Ⅳ and distal enhancer
of myogenic determination factor (MyoD) (Liu X. S. et al., 2016).
In terms of histone deacetylation modification, Liu et al. fused
dCas9 to HDAC1 and achieved deacetylation of histones at the
KRAS promoter and effectively silenced the oncogene KRAS,
providing a novel approach for cancer therapy (Liu et al., 2021).

Rakshit et al. used CRISPR/Cas9 to knock down BRCA1 in
human CD4 + T helper cells and demonstrated that the
expression of the BRCA1 gene in the VEGFA and aimp1 loci
was suppressed in NSCLC, and aberrant expression of multiple
DNA damage/repair factors was found in the aimp1 and VEGFA
loci. However, knockdown of BRCA1 results in high levels of
R-loop formation at the VEGFA and AIMP1 loci, and the R-loop
structure is one of the major intracellular causes of genomic
instability (Rakshit et al., 2021). Choudhury et al. used the
CRISPR/dCas9 system at the promoter region of BRCA1 to
reduce DNA methylation and reactivate gene expression to
restore function to BRCA1 for the purpose of cancer
suppression (Choudhury et al., 2016). Kang et al. used
CRISPR/Cas9 to change the CpG dinucleotides in the
promoter region to unmethylated dinucleotides and achieved
selective DNA demethylation by targeting methylated CpG sites
using the CRISPR/dCas9-Tet1 system (Kang et al., 2019).

Studies on miRNA Expression
MicroRNAs (miRNAs), a class of endogenous non-coding RNAs
with 19–24 nucleotides in length, play key roles in regulating
tumor cell proliferation, differentiation, migration, invasion, and
miRNAs and their mediated signaling pathways are directly
involved in the regulation of multiple cell biological pathways
and cisplatin response in non-small cell lung cancer (Zang et al.,
2017; Santos and Almeida, 2020). Yang et al. demonstrated that
miR-26a could inhibit the HMGA2 mediated E2F1-Akt signaling
pathway by down regulating intracellular high mobility group a 2
(HMGA2) expression, which in turn enhanced cisplatin

resistance (Yang et al., 2016b). MiRNAs can regulate non-
small cell lung cancer apoptosis, and then regulate the drug
resistance of cells. Qiu et al. found that miR-503 specifically
targeted anti-apoptotic protein Bcl-2, and then reversed cisplatin
resistance in non-small cell lung cancer (Qiu et al., 2013).

Overexpression of miR-421 in NSCLC promoted lung cancer
cell migration and invasion and increased the resistance of lung
cancer cells to paclitaxel. CRISPR/Cas9 knockout β- Catenin
downregulates miR-421 levels in A549 cells (Duan et al.,
2019). Knockdown of LHX6 in HCC827/ER cells by CRISPR/
Cas9 system reversed the reduced cell invasion and Erlotinib
resistance caused by downregulation of miR-214 (Liao et al.,
2017). Overexpression of miR-1304 significantly decreased the
number of NSCLC cells and promoted apoptosis. Li et al. showed
that the expression of HO-1 was significantly increased by
knockdown of endogenous miR-1304 by CRISPR/Cas9, and
miR-1304 inhibited NSCLC cell growth by targeting HO-1,
demonstrating that modulation of miR-1304/HO-1 may be a
novel therapeutic avenue (Li et al., 2017).

3.6 Studies on Epithelial Mesenchymal
Transition
Epithelial to mesenchymal transition (EMT) refers to the process
in which, under certain conditions, cells of the epithelial
phenotype appear to have downregulated expression of
characteristic proteins of the epithelial phenotype, whereas
cells of the mesenchymal phenotype are upregulated, that is,
epithelial cells undergo a morphological transition to a
fibroblastic or mesenchymal phenotype, and cells undergo loss
of cell polarity, which enables increased motility (Tsai and Yang,
2013). Key signaling pathways involved in EMT include TGF-β,
Wnt, Notch and Hedgehog et al. (Gonzalez and Medici, 2014;
David et al., 2016; De Francesco et al., 2018; Teeuwssen and
Fodde, 2019). Several methodologies have been utilized to
investigate the role of various genes in the EMT process in
various diseases. RNAi is often used in EMT research, but
because its low specificity is inevitable, CRISPR/Cas9 is now
being widely used to help us identify potential therapeutic targets
for EMT-associated diseases. For example, Survivin, one of the
main members of the inhibitor of apoptosis (IAP), was highly
expressed in a variety of tumor tissues and cells and promoted
EMT, which was associated with proliferation, migration and
chemoresistance in various cancers, such as breast cancer, non-
small cell lung cancer, and prostate cancer. Using the CRISPR/
Cas9 system, Zhao et al. showed that TGF-β could be attenuated
by knockdown of BIRC5, the gene encoding Survivin, in ovarian
cancer cells SKOV3 and OVCAR3 signaling that inhibits cancer
cell proliferation and migration and restores sensitivity to
paclitaxel (Zhao et al., 2017).

Using CRISPR/Cas9 mediated silencing of Smad3/Smad4,
Tong et al. showed decreased mRNA expression of Myocardin
(MYOCD) and downregulation of TGF-β Induced invasion and
epithelial-mesenchymal transition of non-small cell lung cancer
cells (Tong et al., 2020). Perumal et al. used the CRISPR/Cas9
system to knock out the phosphatase and tensin homolog (PTEN)
in the non-small cell lung cancer cell lines A549 and NCI-H460
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by Nuclear translocation of β-catenin and Snail/Slug in lung
cancer cells promotes EMT, which leads to metastasis (Perumal
et al., 2019). Mesenchymal cells are poorly sensitive to EGFR
inhibitors. Raoof et al. identified FGFR1 as the highest genomic
target to re-sensitize cells to EGF816 using a genome-wide
CRISPR screen, and EGFR inhibitors synergize with FGFR1
inhibitors to overcome chemoresistance in NSCLC with
mesenchymal features (Raoof et al., 2019).

4 DELIVERY METHOD OF CRISPR/CAS9
SYSTEM

4.1 Physical Methods
In in vitro experiments, physical methods are often used to deliver
the CRISPR system, which is a simple and efficient way, mainly
including electroporation and microinjection. Cas9-sgRNA
complex encoded by plasmid is delivered through the cell
membrane. Microinjection has high costs and low efficiency.
Chen et al. used electroporation to efficiently deliver cas9/sgRNA
ribonucleoprotein to mouse fertilized eggs to realize mouse
genome editing (Chen et al., 2016).

4.2 Nonviral Vector
Nonviral vectors are less immunogenic, have larger capacities, and
can deliver large genes but less efficiently. Lipid nanoparticles
(LNPS) are one of the most commonly used nucleic acid
delivery systems. Negatively charged nucleic acids complex with
positively charged lipids via electrostatic interactions to form lipid
nanoparticles, which can protect nucleic acids from destruction by
nucleases and enter target cells via endocytosis (Chen et al., 2020).
The method is safe, cost-effective and straightforward, but has low
delivery efficiency. Cationic liposomes, zwitterionic liposomes, and
liposome-like materials have been used in CRISPR delivery
systems. Zhang et al. constructed a novel delivery system based
on polyethene glycol phospholipid modified cationic lipid
nanoparticles (PLNP), which significantly downregulated Polo-
like kinase 1 (PLK-1) protein and inhibited melanoma growth in
vivo and in vitro (Zhang et al., 2017).

Polymeric carriers are widely used for gene-drug delivery with
the advantages of easy synthesis, safety and no immunogenicity.
Kang et al., using polymer derived Cas9 complexed with sgRNA
targeting antibiotic resistance by covalently modifying the protein
with a cationic polymer to induce DNA double-strand breaks,
demonstrated potential applications compared to liposomes for
enhanced delivery efficiency (Kang et al., 2017).

Inorganic nanoparticles can also be used to deliver nucleic
acids with the advantages of low toxicity, high stability, flexibility
and easy regulation (Duncan et al., 2010). Mout et al. used
arginine functionalized gold nanoparticles (ArgNPs) to
cotransport cas9 protein and sgRNA, and ArgNPs delivered
RNP to both the cytoplasm and nucleus and achieved 90–95%
delivery efficiency (Mout and Rotello, 2017).

4.3 Viral Vectors
Lentiviral (LVs) vectors, based on the HIV-1 virus and consisting
of a spherical structure composed of single-stranded RNA, have

been widely used to deliver CRISPR/cas9. The major advantage of
lentiviral vectors is that they can reach 7 kb in load and
accommodate the SpCas9 gene and one or more sgRNAs.
Holmgaard et al. delivered CRISPR/Cas9 system based on
lentiviral vectors. Knockdown of the vascular endothelial
growth factor A (Vegfa) gene has led to new treatments for
ocular diseases (Holmgaard et al., 2017).

Adenoviruses (ADVs) are non enveloped linear double-
stranded DNA viruses with a wide host range, genetic stability,
high transduction efficiency and large loading capacity. Jin et al.
used Gateway cloning technology to develop an integrated
adenoviral vector without traditional enzymatic digestion and
ligation, improving transduction efficiency (Jin et al., 2019).

Adeno associated virus (AAVs) is extremely low
immunogenic relative to other viral vectors and has safety and
therapeutic potential. AAV sequences are long-lived in non-
dividing cells, provide stable transgene expression, and are the
most widely used viral vector to deliver CRISPR/Cas9 systems.

In 2021, Zhang Feng’s team developed a new delivery vector-
selective endogenous encapsidation for cellular delivery (SEND),
which is composed of a retrovirus-like protein, PEG10, that binds
to its mRNA and forms vesicles around it. The research team
modified and designed it to package and deliver specific RNAs
(Segel et al., 2021).

5 DEFICIENCIES AND CHALLENGES

The CRISPR/Cas9 system can well break through the limitations
of traditional diagnosis and combat tumor resistance, and is a
promising therapy, but some problems still need to be solved.

The off-target effect of CRISPR/Cas9 system is a widespread
phenomenon, and the serious consequences caused by off-target
limited CRISPR/Cas9 system from basic research to clinic, mainly
due to the local matching between the recognition sequence of
sgRNA and non-target DNA, the structure of sgRNA, PAM
sequence The cas9 protein, along with regulatory small
molecules of the DSB pathway, among others, all contribute to
targeting efficiency (Zhang et al., 2015). When the concentration
of the cas9 sgRNA complex is increased, the specificity of cas9
cleavage is reduced and the RNA polymerase II transcription
system can be used to express sgRNA and control the amount of
sgRNA expressed (Kiani et al., 2014). In addition to guiding cas9
to bind to specific targets, sgRNAs can also affect the specificity of
targets (Pattanayak et al., 2013). Increasing the guide sequence
length of the sgRNA did not improve target specificity, which was
found to be increased when the sgRNA contained 17–18
nucleotides (Fu et al., 2014). To improve the specificity of
DNA cleavage, investigators have used mutant dCas9 that
forms a dimer with the nuclease Fok I (FOK I-dCas9) to
reduce off-target effects, which is more than 140 fold more
specific than wild-type cas9 (Guilinger et al., 2014).
Meanwhile, direct delivery of purified recombinant cas9
protein and sgRNA into cells can also reduce off-target effects
(Kim et al., 2014).

Recent studies have found that the CRISPR/Cas system may
adversely affect cell growth, and Leibowitz et al. found that
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CRISPR/Cas9 genome editing induces structural changes in the
nucleus, micronuclei, and chromosomal bridges, leading to the
occurrence of chromosomal rearrangement processes (Leibowitz
et al., 2021). Delivery vectors for CRISPR/Cas9 are closely related
to gene editing efficiency, and it is crucial to find safe, efficient,
and specific vectors. The loading capacity of vectors is limited,
and it is challenging to load Cas9 and gRNA into a certain size
carrier and improve the delivery efficiency in vivo. Currently, the
most widely used in vivo experiments are viral vectors, but some
nonviral vectors still need to be developed for more safe and
effective delivery tools (Chen et al., 2020). The intein-mediated
split-Cas9 system, which reconstitutes a full-length SpCas9
protein by fusing the segmented two segments of SpCas9 with
the N-terminus of intein fused to the C-terminus, respectively,
and mediates CIS splicing when both fusion proteins are
coexpressed, has been shown to be effective in addressing the
challenge of insufficient AAV loading capacity (Truong et al.,
2015). Carlson-Stevermer et al. used short RNA and streptavidin
to assemble and deliver a CRISPR repair kit to DNA cleavage
sites, greatly improving the precision of gene editing, which
resulted in an 18 fold increase in accuracy compared with
conventional CRISPR Technology (Carlson-Stevermer et al.,
2017). At the same time, there is a certain risk of
pathogenicity associated with viral vectors, and safety concerns
are also issues to consider when viral vectors are used in animal
experiments.

At the same time, gene knockout causes permanent changes in
genetic material and there are hidden dangers of mutation.
Therefore, it is necessary to find new methods to solve this
problem. Prime editor is a more accurate gene-editing method.
Its protease is fused by cas9 notch enzyme (h840a) and reverse
transcriptase. It can accurately insert and delete the target site
without introducing DSB and donor DNA templates. Compared
with HDR, it has higher efficiency, fewer by-products and a lower
off-target rate (Anzalone et al., 2019).

P53 is a tumor suppressor gene, and CRISPR/Cas9 can induce
p53 mediated DNA damage response, resulting in cell cycle arrest
and other phenomena and reducing the efficiency of genome
editing. Whereas inhibition of p53 predisposes cells to the effects
of other oncogenic mutations (Haapaniemi et al., 2018; Jiang
et al., 2022). Therefore, it is necessary to monitor the function of
p53 when CRISPR/Cas9 is used clinically.

There was a study that detected antibodies against Sacas9 and
Spcas9 in 78% and 58% of donor sera, respectively. Anti-Sacas9
T cells and anti-Spcas9 T cells were found in 78% and 67% of
donors, indicating that there is human immunity to cas9 protein
(Charlesworth et al., 2019). In the future, we need more research
to determine the safety and effectiveness of CRISPR/Cas9 system.

6 CONCLUSION

CRISPR/Cas9 gene-editing technology has developed rapidly since its
inception. Compared with ZFNs and TALENs, CRISPR/Cas9 gene-
editing technology is more straightforward and efficient. It is suitable
for ordinary laboratories and greatly promotes the progress of life
science and basic medical research. Now there is a genome-wide

targeted CRISPR/Cas9 system, which contains all genes of mouse
embryonic stem cells and human cells (Wang et al., 2014). Lu et al.
carried out the world’s first human clinical trial based on CRISPR/
Cas9 gene-editing technology. Immune cells were extracted from the
blood of a patient with metastatic non-small cell lung cancer. The
PD-1 gene that inhibits immune functionwas knocked out in vitro by
CRISPR technology, and then amplified and reinfused into the
patient’s body to achieve the effect of anti-tumor. The safety and
feasibility of this therapy inNSCLCwere proved for the first time (Lu
et al., 2020). In addition, several laboratories are also competing to
plan clinical trials. Researchers at theUniversity of Pennsylvania have
launched trials on myeloma, sarcoma and melanoma.

The use of CRISPR/Cas9 gene-editing technology has also
caused ethical and social problems. Due to the disadvantages such
as being off-target, CRISPR/Cas9 gene-editing technology may
cause some additional harm to patients, and the potential high
risk does not allow CRISPR/Cas9 gene-editing technology to be
used in the treatment of germline genes, Gene editing for
reproductive purposes may irreversibly change the human
genome and bring incalculable impact to mankind. In the
future, more evidence should be collected from animal
experiments to ensure the safety and feasibility of CRISPR/
Cas9 gene-editing technology in clinical practice.

The genetic complexity of non-small cell lung cancer is one of the
main causes of chemotherapeutic drug resistance. Unfortunately, no
effective gene-targeted drugs have been developed. We reviewed and
summarized the progress of CRISPR/Cas9, which provides a reference
for further research on the application of CRISPR/Cas9 gene-editing
technology in the treatment and drug resistance of non-small cell lung
cancer. We believe that further systematic and in-depth research is
necessary. We need to make full use of the advantages of CRISPR/
Cas9 gene-editing technology, explore its potential in the study of drug
resistance mechanisms, promote the rapid development of cancer
research and bring new hope to cancer patients.
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Background: The impact of smoking on the efficacy of anaplastic lymphoma kinase
(ALK)-positive non-small cell lung cancer (NSCLC) treatment is controversial and has not
been systematically explored in the first-line setting. We performed a systematic review
based on a pairwise meta-analysis and a Bayesian network meta-analysis (NMA) to
address this issue.

Methods: PubMed, Embase, Web of Science, Cochrane Library, Clinical-Trials.gov, and
other resources were searched until 5 January 2022. Progression-free survival (PFS) was
considered the main outcome of interest. Randomized controlled trials with smoking
status analysis were included. Cochrane Risk of Bias Tool was performed to assess the
risk of bias. Random effects models were adopted conservatively in meta-analysis. The
NMA was performed in a Bayesian framework using the “gemtc” version 1.0–1 package of
R-4.1.2 software.

Results: A total of 2,484 patients from nine studies were eligible for this study, with
1,547 never-smokers (62.3%) and 937 smokers (37.7%). In a pairwise meta-analysis, in
the overall population, no significant difference was found between never-smokers and
smokers. However, in the subgroup analyses based on crizotinib-controlled studies,
anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) derived better PFS in
the smoking group over the never-smoking group in the Asian population (HR = 0.17, 95%
CI = 0.09–0.31 in the smoking group, HR = 0.39, 95%CI = 0.24–0.65 in the never-smoking
group, p = 0.04, low quality of evidence). In NMA, among never-smokers, lorlatinib ranked
the highest for PFS (SUCRA = 96.2%), but no significant superiority was found among the
new-generation ALK-TKIs except for ceritinib. In smokers, low-dose alectinib performed
best (SUCRA = 95.5%) and also demonstrated a significant superiority over ensartinib (HR
= 0.23, 95%CI = 0.08–0.68, very low quality of evidence), brigatinib (HR = 0.38, 95%CI =
0.14–0.99, low quality of evidence), ceritinib (HR = 0.24, 95%CI = 0.09–0.66, low quality of

Edited by:
Jian Zhang,

Southern Medical University, China

Reviewed by:
Umberto Malapelle,

University of Naples Federico II, Italy
Lian Liu,

Shandong University, China

*Correspondence:
Junguo Bu

bujg@gd2h.org.cn
Yawei Yuan

yuanyawei@gzhmu.edu.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Pharmacology of Anti-Cancer Drugs,
a section of the journal

Frontiers in Pharmacology

Received: 22 February 2022
Accepted: 08 April 2022
Published: 11 May 2022

Citation:
Lin K, Lin J, Huang Z, Fu J, Yi Q, Cai J,

Khan M, Yuan Y and Bu J (2022)
Impact of Smoking on Response to the
First-Line Treatment of Advanced ALK-
Positive Non-Small Cell Lung Cancer:
A Bayesian Network Meta-Analysis.

Front. Pharmacol. 13:881493.
doi: 10.3389/fphar.2022.881493

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8814931

SYSTEMATIC REVIEW
published: 11 May 2022

doi: 10.3389/fphar.2022.881493

119

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.881493&domain=pdf&date_stamp=2022-05-11
https://www.frontiersin.org/articles/10.3389/fphar.2022.881493/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.881493/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.881493/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.881493/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.881493/full
http://Clinical-Trials.gov
http://creativecommons.org/licenses/by/4.0/
mailto:bujg@gd2h.org.cn
mailto:yuanyawei@gzhmu.edu.cn
https://doi.org/10.3389/fphar.2022.881493
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.881493


evidence), crizotinib (HR = 0.18, 95%CI = 0.08–0.41, moderate quality of evidence), and
chemotherapy (HR = 0.11, 95%CI = 0.05–0.28, low quality of evidence).

Conclusion: In general, smoking may not affect the treatment efficacy of advanced ALK-
positive NSCLC in the first-line setting. However, alectinib may perform better in the
smoking Asian population. Moreover, lorlatinib in never-smokers and low-dose alectinib in
smokers could be considered optimal first-line therapy for advanced ALK-positive NSCLC.
Acceptable limitations of evidence, such as study risk of bias, inconsistency, and
imprecision, were present in this NMA.

Keywords: non-small cell lung cancer, anaplastic lymphoma kinase, tyrosine kinase inhibitors, smoking,
progression-free survival, network meta-analysis

1 INTRODUCTION

Lung cancer, one of the most malignant tumors in both sexes,
ranked first in cancer-related deaths and second in newly
diagnosed cancer cases worldwide, with percentages of 18.2%
and 12.2%, respectively (Cancer today, 2022). Non-small cell lung
cancer (NSCLC) accounts for approximately 85% of lung cancer
cases (Thai et al., 2021). Oncogenic alterations gradually play an
increasingly important role in the development. It is well-known
that smoking rates are high, and the role of different smoking
statuses varies significantly in carcinogenesis (Bossé and Amos,
2017; Li et al., 2017; Singal et al., 2019; Wang et al., 2021a; Thai
et al., 2021), among which EGFR mutations are the most
common oncogenic alterations, ranging from 15% in Europe
to 62% in Asia in NSCLC of adenocarcinoma histology. EGFR
tyrosine kinase inhibitors have performed well in the targeted
treatments, extending patients’ median overall survival to more
than 38 months by gefitinib or osimertinib alone, and even to
more than 50 months when combined with chemotherapy.
Interestingly, more and more oncogenic alterations have also
been developed into useful treatment strategies in NSCLC, such
as ALK, RET, NTRK, and ROS1 (Thai et al., 2021).

Anaplastic lymphoma kinase (ALK) gene translocation,
leading to abnormal expression of constitutively active ALK
fusion proteins, is a key mechanism for inducing lung
tumorigenesis of ALK-positive NSCLC (3%–5% of NSCLCs).
It is more common in never- or light-smokers and younger
age and is associated with adenocarcinoma histology (Shaw
and Engelman, 2013; Thai et al., 2021). During the past
decade, ALK tyrosine kinase inhibitors (ALK-TKIs) have
demonstrated remarkable efficacy in the treatment of
advanced or metastatic NSCLC and now are the standard
options in the first-line treatment of advanced ALK-positive
NSCLCs instead of chemotherapy. Compared with cytotoxic
chemotherapy, the first-generation ALK-TKI crizotinib
significantly has extended median progression-free survival
(PFS) of advanced NSCLC (around 11 vs. 7 months)
(Solomon et al., 2014; Wu et al., 2018). Moreover, the PFS has
been remarkably prolonged by the next-generation ALK-TKIs,
such as ceritinib, alectinib, brigatinib, ensartinib, and lorlatinib
(Soria et al., 2017; Zhou et al., 2019; Mok et al., 2020; Nakagawa
et al., 2020; Shaw et al., 2020; Camidge et al., 2021; Horn et al.,

2021). Undoubtedly, targeted therapy is the preferred treatment
of oncogene-driven advanced NSCLC. Although never- or light-
smokers account for a much higher proportion of ALK-positive
NSCLC, it is of great interests and necessitous to figure out the
effect of smoking on ALK-positive NSCLCs treatment efficacy in
the first-line therapy.

To date, previous meta-analyses have investigated the
correlation between smoking status and the efficacy of
advanced NSCLC treatments (Breadner et al., 2020; Li et al.,
2020). However, conflict occurs in the benefit of never-smoking,
as one previous meta-analysis found that never-smokers tended
to benefit from ALK-TKIs compared with cytotoxic
chemotherapy, whereas another denoted that there were
similar benefits regardless of the smoking status. Meanwhile, a
network meta-analysis focusing on the relative efficacy of first-
line targeted therapies in advanced ALK-positive NSCLCs has
simply highlighted the role of smoking in the subgroup analysis
(Wang et al., 2021b). These previous works could be
systematically expanded to determine the correlation between
smoking status and efficacy of ALK-targeted agents in the first-
line treatment of advanced ALK-positive NSCLC.

Therefore, our study attempted to compare the impact of
smoking on the efficacy of advanced ALK-positive NSCLC with
high-quality first-line setting randomized controlled trials.
Furthermore, a comprehensive NMA of the relative efficacy of
first-line treatments according to different smoking statuses was
also performed.

2 MATERIALS AND METHODS

This study was carried out following the guidelines of the 2020
Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) (Page et al., 2021) and the extension
statement of NMA (Hutton et al., 2015). It was registered on
the INPLASY website (registration number:
INPLASY202180009, https://inplasy.com/inplasy-2021-8-0009/,
accessed on 03 August 2021).

2.1 Literature Search and Study Selection
We searched PubMed, Embase, Web of Science, Cochrane
Library, and Clinical-Trials.gov up to 19 August 2021 without
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language limitations for eligible studies, which was finally
updated on 05 January 2022. In addition, abstracts were
searched from the main oncology congresses databases,
including the American Society of Clinical Oncology (ASCO),
the European Society for Medical Oncology (ESMO), and the
World Conference on Lung Cancer (WCLC). The search
strategy is presented in Supplementary Table S2. The
following search terms were used: non-small cell lung
cancer (NSCLC), anaplastic lymphoma kinase (ALK), ALK
tyrosine kinase inhibitors, crizotinib, ceritinib, alectinib,
brigatinib, ensartinib, lorlatinib, entrectinib, and their
medical subject headings (MeSH) terms. The inclusion
criteria were as follows: 1) randomized controlled trials with
clinical outcomes, such as PFS and OS; 2) patients with
pathologically confirmed locally advanced or metastatic
NSCLC; 3) studies with clear baseline characteristics of
patients and ALK mutation status; and 4) studies including
data of smoking status analysis required for meta-analysis. The
relevant titles and abstracts were screened to remove
duplicated and irrelevant publications. Then, the full texts
and relevant reference lists of the other articles were browsed
thoroughly for the final inclusion.

2.2 Data Extraction and Quality Assessment
The following information was extracted: the trial name,
publication year, design, interventions, sample size, race,
patients age and gender, baseline brain metastases, adverse
effects, previous treatments, number of smokers (defined as
current and/or former smokers) and never-smokers, and
hazard ratio (HR) with 95% confidence intervals (CIs) for
PFS of whole group and subgroup. Quality assessment was
performed using the Cochrane Risk of Bias Tool (Higgins et al.,
2011). It includes seven domains (random sequence
generation, allocation concealment, blinding of participants
and personnel, blinding of outcome assessment, incomplete
outcome data, selective outcome reporting, and other bias), for
which a judgment (low, high, or unclear risk) was assessed
respectively. Study selection, data extraction, and risk of bias
assessment were independently executed by two reviewers (KL,
JL). For any unresolved discrepancies, a third reviewer (ZH)
was concerned.

2.3 Data Synthesis and Statistical Analysis
PFS was defined as the time from randomization to RECIST-
defined disease progression or death from any cause. The HR was
regarded as a measure of effect size for PFS. Because overall
survival (OS) is immature for most trials and there is a lack of
smoking subgroup analysis results, this part of the analysis was
not performed.

2.3.1 Pairwise Meta-Analysis
PFS-HR of current smokers and former smokers was
combined as the smoker group when smoking statuses were
multiply categorized. The HR of current smokers in some
studies was ignored because it was not applicable due to a small
population. Heterogeneity across studies was assessed by I2

statistics, with I2 < 25%, 25% ≤ I2 ≤ 50%, and I2 > 50% being

interpreted as signifying low-level, intermediate-level, and
high-level heterogeneity, respectively. If necessary, subgroup
analysis would be performed. Any heterogeneity between the
smoker subgroup and never-smoker subgroup was detected by
the Cochran Q test. A p-value (two-sided) of less than 0.05 was
considered statistically significant. The analysis process was
carried out by RevMan 5.4.1, applying the random-effect
model conservatively.

2.3.2 Network Meta-Analysis
With the model of the lower deviance information criterion
(DIC), which is more feasible (Oravecz and Muth, 2017), a
network meta-analysis of different therapeutic drugs in both
never smokers and smokers based on a Bayesian framework
was performed using the “gemtc 1.0–1” package of R software
(version 4.1.2) (Neupane et al., 2014; Tonin et al., 2017). This
method integrated both direct and indirect comparisons for
any given pair of managements and certain endpoints. The
function mtc.run was applied to generate samples, and we set
10000 simulations for each chain as the “burn-in” period,
yielding 50,000 iterations to obtain the HR of model
parameters when four Markov chains run simultaneously.
The Brooks–Gelman–Rubin diagnosis plots method, trace
plot, and density plot were used to access the model
convergence (Wu et al., 2013). Rank probabilities were
calculated to obtain the hierarchy of each treatment, and a
plot of rank probabilities was created by the “gemtc” package
(Gelman and Rubin, 1992). The probability of the competing
treatments was ranked by the surface under the cumulative
ranking curve (SUCRA), the highest and lowest values of
which mean the highest probability of ranking the best and
worst, respectively (Salanti et al., 2011; Tonin et al., 2017).

Stata/SE 15.1 and RevMan 5.4.1 were used to generate
network and funnel plots for a visual illustration of
relationships among each treatment and evaluation of the
studies’ publication bias. The mtc.anohe command of the
“gemtc” package was used to evaluate global heterogeneity.
A sensitivity analysis was performed by removing the trials
deemed to be heterogeneous to ensure reliability.

2.4 Quality of Evidence
The quality of evidence was assessed in accordance with the
GRADE working group approach (Guyatt et al., 2008; Puhan
et al., 2014). In this method, the quality of evidence was
categorized into four levels (high, moderate, low, and very
low), and the starting point of quality of direct evidence based
on RCTs would be high, which could be downrated to
moderate, low, or very low according to five domains (risk
of bias, indirectness, imprecision, inconsistency, and
publication bias). We used the GRADEpro Guideline
Development Tool (www.gradepro.org) to rate the quality
of evidence in a pairwise meta-analysis. In network meta-
analysis (Puhan et al., 2014), the quality of indirect evidence
was consistent with the lower confidence rating of two direct
comparisons that contribute as first-order loops to the indirect
estimates. As there are no closed loops in this NMA, the direct
or indirect estimates constituted the final outcome.
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3 RESULTS

3.1 Literature Search
Initially, 3,537 eligible studies were yielded from the searching
strategies, including 322 studies from PubMed, 1,364 studies
from Embase, 812 from Web of Science, 994 studies from
Cochrane Library, and 8 studies from Clinical-Trials.gov. In
addition, 37 studies were found from other sources. After
removing 1,419 duplicates, additional 2,063 studies were
excluded by screening the title and abstract. Eventually, nine
studies were included in our analysis according to the inclusion
criteria. The flowchart of the literature screening is presented in
Figure 1.

3.2 Study Characteristics
Table 1 presents the detailed characteristics of included studies.
All of the included nine studies were phase 3 randomized
controlled trials, enrolling 2,484 participants totally, with
1,547 never-smokers (62.3%) and 937 smokers (37.7%).
Among them, three were cytotoxic chemotherapy-controlled
studies, with PROFILE1014 and PROFILE1029 investigating
crizotinib and ASCEND-4 investigating ceritinib and six were
crizotinib-controlled studies, with eXalt3 investigating ensartinib,
ALTA-1L investigating brigatinib, CROWN investigating

lorlatinib, and J-ALEX, ALEX, and ALESIA investigating
alectinib). For race differences, three studies were Asian-only
trials (PROFILE 1029, J-ALEX, and ALESIA), and six were multi-
race trials (Crown, ALEX, ALTA-1L, PROFILE 1014, eXalt3, and
ASCEND-4).

3.3 Quality Evaluation
All nine studies were open-label studies prone to a high risk of
performance bias. However, a low risk of detection bias was
observed in all included studies due to the blinding of outcome
assessment completed by a blinded independent review
committee. Unclear risk occurred in selection bias, attrition
bias, reporting bias, and other bias due to the lack of detailed
information. Detailed quality assessment is illustrated in
Supplementary Figure S1.

Both the trace and density plot (Supplementary Figure S2 for
never-smoker, Supplementary Figure S3 for smoker) and
Brooks–Gelman–Rubin diagnosis plot (Supplementary Figure
S2 for never-smoker, Supplementary Figure S3 for smoker),
showing no single chain fluctuation and normal distribution of
density map, illustrated an excellent convergence of the models
performed in NMA. As seen in Supplementary Figure S4, there
was no significant publication bias in the pooled analyses. In
terms of inconsistency analyses, the global analysis showed low
heterogeneity in nonsmokers and moderate heterogeneity in the

FIGURE 1 | Flowchart of the literature screening. ASCO, the American Society of Clinical Oncology; ESMO, the European Society for Medical Oncology;WCLC, the
World Conference on Lung Cancer; RCTs, randomized controlled trials; ALK, anaplastic lymphoma kinase.
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smokers (I2 = 4%, I2 = 26%, respectively). As no closed loop exits
in this NMA, local inconsistency analysis was not performed.
Thus, a satisfactory consistency among the studies was obtained.
The transitivity across the included studies was well balanced by
strictly including RCTs according to the selection criteria in
this NMA.

3.4 Pooled Efficacy for Never-Smokers
Versus Smokers
Wecompared the pooled efficacy for never-smokers against smokers
in the chemotherapy-controlled studies and crizotinib-controlled
studies, respectively. In chemotherapy-controlled studies (Figure 2,

Supplementary Table S3), the pooled PFS-HR for never-smokers
was 0.42 (95%CI = 0.31–0.57, moderate quality of evidence), while
0.58 (95%CI = 0.44–0.76, moderate quality of evidence) for smokers.
Compared with chemotherapy, treatment with ALK-TKIs exhibited
no statistically significant difference between smokers and never-
smokers (p = 0.14).

In crizotinib-controlled studies (Figure 3, Supplementary
Table S4), the pooled PFS-HR analysis yielded 0.37 (95%CI =
0.31–0.46, moderate quality of evidence) for never-smokers and
0.40 (95%CI = 0.26–0.60, very low quality of evidence) for
smokers. Compared with crizotinib, treatment with both the
second- and third-generation (2/3G) ALK-TKIs presented
similar benefits between smokers and never-smokers (p =

TABLE 1 | Characteristics of the included studies of first-line ALK-TKI treatment for advanced ALK-positive NSCLC.

Study,
year

Design Drug Sample
size

Nonsmoker Only
Asian

PC
(%)

Age
(median)

Male
(%)

BM
(%)

G3AE
(%)

PFS
(months)

HR (95%CI)

PROFILE1014 Solomon
et al. (2014)

Phase III,
open-
label, RCT

Criz 172 106 No 0 52 40 26 NA 10.9
(8.3–13.9)

0.45

2014 Chem 171 112 0 54 37 27 NA 7.0
(6.8–8.2)

(0.35–0.60)

PROFILE1029 Wu et al.
(2018)

Phase III,
open-
label, RCT

Criz 104 78 Yes 0 48 48.1 20.2 NA 11.1
(8.3–12.6)

0.402

2018 Chem 103 72 0 50 41.7 31.1 NA 6.8
(5.7–7.0)

(0.286–0.565)

ASCEND-4 Soria et al.
(2017)

Phase III,
open-
label, RCT

Ceri 189 108 No 0 55 46 31 NA 16·6
(12·6–27·2)

0·55

2017 Chem 187 122 0 54 39 33 NA 8·1
(5·8–11·1)

(0·42–0·73)

J-ALEX Nakagawa et al.
(2020)

Phase III,
open-
label, RCT

Alec_L 103 56 Yes 36 61 40 14 36.9 34.1
(22.1–NR)

0·37

2020 Criz 104 61 36 59.5 39 28 60.6 10·2
(8·3–12·0)

(0.26–0.52)

ALESIA Zhou et al. (2019) Phase III,
open-
label, RCT

Alec_H 125 84 Yes 0 51 51 35 29 NR
(20·3–NR)

0·22

2019 Criz 62 45 0 49 55 37 48 11·1
(9·1–13·0)

(0·13–0·38)

ALEX Mok et al. (2020) Phase III,
open-
label, RCT

Alec_H 152 92 No 0 58 45 42 52 34.8
(17.7–NR)

0.43

2020 Criz 151 98 0 54 42 38 56.3 10.9
(9.1–12.9)

(0.32–0.58)

ALTA-1L Camidge et al.
(2021)

Phase III,
open-
label, RCT

Brig 137 84 No 26 58 50 29 78 24.0
(18.5–43.2)

0.48

2021 Criz 138 75 27 60 41 30 64 11.1
(9.1–13)

(0.35–0.66)

CROWN Shaw et al. (2020) Phase III,
open-
label, RCT

Lorl 149 81 No 0 61 44 26 77.2 NR
(NR–NR)

0.28

2020 Criz 147 94 0 56 38 27 60.6 9.3
(7.6–11.1)

(0.19–0.41)

eXalt3 Horn et al. (2021) Phase III,
open-
label, RCT

Ensa 143 85 No 23.8 54 50.3 32.9 50.4 25.8
(21.8-NR)

0.51

2021 Criz 147 94 28.6 53 52.4 38.8 42.4 12.7
(9.2–16.6)

(0.35–0.72)

ALK, anaplastic lymphoma kinase; TKI, tyrosine kinase inhibitor; NSCLC, non-small cell lung cancer; RCT, randomized controlled trial; Chem, chemotherapy (cisplatin [75 mg/m2], or
carboplatin [target area under the curve of 5–6] plus pemetrexed [500 mg/m2]) given every 21 days; Criz, crizotinib (250 mg twice daily); Brig, brigatinib (90 mg once daily for 7 days, then
180 mg once daily); Ceri, ceritinib (750 mg once daily); Ensa, ensartinib (225 mg once daily); Alec_L, low-dose alectinib (300 mg twice daily); Alec_H, high-dose alectinib (600 mg twice
daily); Lorl, lorlatinib (100 mg once daily); PC, previous chemotherapy; BM, brain metastasis; G3AE, adverse event ≥ grade 3; HR, hazard ratio; CI, confidence interval; NA, not available;
NR, not reached.
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0.80). The smoker subgroup exhibited significant heterogeneity
(I2 = 59%). As such, we conducted subgroup analysis by race. In
Asian-only studies, pooled PFS-HR was 0.39 (95%CI = 0.24–0.65,
moderate quality of evidence) for never smokers and 0.17 (95%CI
= 0.09–0.31, low quality of evidence) for smokers, with significant
difference (p = 0.04). In others, pooled PFS-HR 0.37 (95%CI =
0.29–0.47, moderate quality of evidence) for never smokers and
0.50 (95%CI = 0.36–0.69, moderate quality of evidence) for
smokers had no significant difference (p = 0.15). Moreover, no
significant heterogeneity was found in both subgroup analysis
(Asian-only subgroup: I2 = 29% in never-smoker subgroup, 0% in
smoker subgroup; multirace subgroup: I2 = 9% in never-smoker
subgroup, 25% in smoker subgroup).

3.5 Network Meta-Analysis for Efficacy
Figure 4 presents the network plot of each treatment. Eight
treatments were involved in this NMA, with low-dose alectinib
(ld-alectinib, 300 mg twice daily) and high-dose alectinib (hd-
alectinib, 600 mg twice daily) being regarded as separate treatments.

3.5.1 Network Meta-Analysis for Efficacy in the
Never-Smoker Group
In the never-smoker group, as presented in Figure 5, all ALK-TKIs
were significantly superior to chemotherapy; significant superiority
was observed for all next-generation ALK-TKIs other than ceritinib
when compared to crizotinib (HR = 0.24, 95%CI = 0.14–0.41,
moderate quality of evidence for lorlatinib; HR = 0.37, 95%CI =
0.26–0.51, moderate quality of evidence for hd-alectinib; HR = 0.39,
95%CI = 0.23–0.66, moderate quality of evidence for ensartinib; HR
= 0.43, 95%CI = 0.28–0.65, moderate quality of evidence for
brigatinib; HR = 0.5, 95%CI = 0.28–0.89, low quality of evidence
for ld-alectinib; HR = 1.51, 95%CI = 0.96–2.38, low quality of
evidence for ceritinib); and no significant difference was noticed
between hd- and ld-alectinib (HR = 0.74, 95%CI = 0.38–1.43, low
quality of evidence), with the former showing relatively better
efficacy. Additionally, lorlatinib, presenting highest SUCRA and
Prbest values (SUCRA = 96.2%, Prbest = 82.2%) (Supplementary

Tables S5, S6, Supplementary Figure S5), performed best, followed
by hd-alectinib (SUCRA = 74.1%), ensartinib (SUCRA = 69.7%),
brigatinib (SUCRA = 62.5%), ld-alectinib (SUCRA = 54.5%),
crizotinib (SUCRA = 28.2%), ceritinib (SUCRA = 14.8%), and
chemotherapy (SUCRA = 0.00%).

For assessment of between-study heterogeneity
(Supplementary Figure S6), we found no significant
difference either in the crizotinib-chemotherapy comparison in
both PROFILE1014 and PROFILE1029 or the comparison
between crizotinib and hd-alectinib in both ALEX and
ALESIA, with both showing no heterogeneity (I2 = 0.0%).
Because three trials (J-ALEX, eXalt3, and ALTA-1L) had also
enrolled patients with history of previous chemotherapy, a
sensitivity analysis was performed by excluding these trials.
Then, rank probabilities by SUCRA values were generated in
the remaining studies. Figure 5 and Supplementary Table S6
reveal the same results for the relative ranking of the five
remaining treatment groups. Based on these results, we may
conclude that a history of previous treatment may not affect the
outcomes of our NMA.

3.5.2 Network Meta-Analysis for Efficacy in the
Smoker Group
In the smoker group, as presented in Figure 6, ld-alectinib
showed significantly better PFS than other ALK-TKIs except
for hd-alectinib and lorlatinib (HR = 0.18, 95%CI = 0.08–0.41,
moderate quality of evidence for crizotinib; HR = 0.23, 95%CI =
0.08–0.68, very low quality of evidence for ensartinib; HR = 0.24,
95%CI = 0.09–0.66, low quality of evidence for ceritinib; HR =
0.38, 95%CI = 0.14–0.99, low quality of evidence for brigatinib;
HR = 0.5, 95%CI = 0.18–1.37, moderate quality of evidence for
lorlatinib; HR = 0.62, 95%CI = 0.21–1.83, very low quality of
evidence for hd-alectinib). Though lorlatinib has demonstrated a
greater effect in the never-smoker group, it was not superior to
both ld- and hd-alcetinib in PFS for the smoker group (HR = 0.5,
95%CI = 0.18–1.37, moderate quality of evidence for ld-alectinib;
HR = 0.81, 95%CI = 0.33–1.97, very low quality of evidence for

FIGURE 2 | Comparison between smoking status subgroups in chemotherapy-controlled studies. ALK-TKIs, anaplastic lymphoma kinase tyrosine kinase
inhibitors; Chem, chemotherapy.
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FIGURE 3 | Comparison between smoking status subgroups in crizotinib-controlled studies. (A) Initial analysis. (B) Asian-only subgroup analysis. (C) Multiracial
subgroup analysis. ALEX-c, current smoker subgroup of ALEX; ALEX-p, previous smoker subgroup of ALEX; 2/3G ALK-TKIs, both second- and third-generation
anaplastic lymphoma kinase tyrosine kinase inhibitors; 1G ALK-TKI, first-generation anaplastic lymphoma kinase tyrosine kinase inhibitor.
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hd-alectinib). Additionally, ld-alectinib (SUCRA = 95.5%, Prbest
= 76.9%) (Supplementary Tables S6, S7, Supplementary Figure
S7) was considered to rank first with greatest probability,
followed by hd-alectinib (SUCRA = 81.6%), lorlatinib (SUCRA
= 72.8%), brigatinib (SUCRA = 58.8%), ceritinib (SUCRA =
36.2%), ensartinib (SUCRA = 34.3%), crizotinib (SUCRA =
20.2%), and chemotherapy (SUCRA = 0.01%).

For assessment of between-study heterogeneity
(Supplementary Figure S8), a significant difference was found
in the crizotinib-hd-alectinib comparison in both ALEX and
ALESIA (I2 = 73.5%) but not in the crizotinib-chemotherapy

group in both PROFILE1014 and PROFILE1029 (I2 = 0). High
heterogeneity between ALEX and ALESIA was considered to
result from a small number of smokers in the crizotinib arm (only
14) in the ALESIA study. Under such circumstances, we
performed a sensitivity analysis by excluding ALESIA. The
results (Figure 6 and Supplementary Table S6) showed that
ld-alectinib still performed better, and the relative ranking of
other treatments was consistent with the result from the initial
NMA except for hd-alectinib, which was not better than lorlatinib
and brigatinib. More sensitivity analyses by excluding studies
enrolling patients with a history of previous chemotherapy are

FIGURE 5 |NMA results of never-smoker on progression-free survival (lower left) and sensitivity analysis (upper right), followed by the ranking distribution according
to SUCRA values (lower arrow shape). NMA, network meta-analysis; SUCRA, the surface under the cumulative ranking curve; Chem, chemotherapy; Criz, crizotinib;
Ceri, ceritinib; Alec_L, low-dose alectinib; Alec_H, high-dose alectinib; Brig, brigatinib; Lorl, lorlatinib; Ensa, ensartinib. Values in bold mean statistically significant.

FIGURE 4 | Network constructions for comparisons in progression-free survival of the never-smoker group or smoker group. Chem, chemotherapy; Criz,
crizotinib; Brig, brigatinib; Ceri, ceritinib; Ensa, ensartinib; Alec_L, low-dose alectinib; Alec_H, high-dose alectinib; Lorl, lorlatinib. The “number 1/number 2” listed in the
upper left of each comparison means that number 1 is the number of never-smokers and number 2 is the number of smokers in each comparison.
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shown in Supplementary Table S6. It is concluded that the
similar outcomes, to a certain extent, symbolized the inherent
robustness of the NMA, which confirms the ultimate results.

4 DISCUSSION

On the one hand, it is well-known that smoking is of great
importance in the morbidity and mortality of lung cancer (Loeb
et al., 1984; Jung et al., 2016). On the other hand, the impact of
smoking on treatment decisions is controversial and is recently
being widely investigated (Lin et al., 2018; Li et al., 2020; Xiao
et al., 2020; Chen et al., 2021; Zhao et al., 2021). To our
knowledge, the comprehensive and systematic analysis of the
relationship between smoking status and first-line treatment
efficacy of advanced ALK-positive NSCLC has not been
reported yet. Our present work may contribute to resolving
this discrepancy and provide useful advice for clinical strategy.

As ALK-TKIs have replaced traditional chemotherapies as the
upfront treatments with great advantages in efficacy and safety
(Guidelines Detail, 2022), we classified the included studies into
two groups: the chemotherapy-controlled and crizotinib-
controlled groups. Although we found no difference between
the smoking group and the never-smoking group in both
chemotherapy- and crizotinib-controlled groups, the subgroup
analysis by race in the crizotinib-controlled group indicated that
ALK-TKIs in Asian-only derived better outcomes in the smoking
group compared to the never-smoking group. In contrast to our
outcomes, Breadner’s meta-analysis found a greater degree of
benefit with ALK-TKIs in the never-smoker group (Breadner
et al., 2020). Nonetheless, their study included second-line setting
studies in the chemotherapy-controlled group. Moreover, it is
possible that the advancement of lung cancer may have
constrained the smoking factor from being detected. In real-

world data, smoking history has been regarded as an independent
negative prognostic factor for survival benefits (Jin et al., 2018;
Britschgi et al., 2020). Tobacco use impairs the treatment efficacy
of lung cancer and shortens patients’ survival as smoking tobacco
directly influences response to anti-tumor drugs by affecting
drugs metabolism (Gemine and Lewis, 2016). On the contrary,
immunotherapy performs better in NSCLC patients with a
smoking history (Li et al., 2020; Nie et al., 2020; Zhao et al.,
2021). Notably, both studies in the Asian-only subgroup used
alectinib, despite dosage differences, which may suggest the
excellent efficacy of alectinib in smokers, while the
experimental ALK-TKIs in another group dramatically varied
in multiracial studies.

Recently, network meta-analyses have demonstrated the great
advantage of both lorlatinib and alectinib on PFS, with the former
being the best (Ando et al., 2021; Chuang et al., 2021). Our NMA
of the never-smoking group also supports the advantageous effect
of lorlatinib on PFS with significant superiority over crizotinib
and ceritinib. As it was designed to easily penetrate the
blood–brain barrier and against resistance to all known ALK
mutants (Johnson et al., 2014; Zou et al., 2015; Solomon et al.,
2018; El Darsa et al., 2020), lorlatinib had an extraordinarily good
performance on PFS, not only in the frontline therapy but also in
subsequent therapy owing to the failure of first- or second-
generation ALK inhibitors (Shaw et al., 2020; Kuang and
Leighl, 2021). Nevertheless, interestingly, consistent with
Chuang’s finding of ld-alectinib ranking first in the patients
with baseline brain metastasis (Chuang et al., 2021), the
efficacy of ld-alectinib surpassed that of lorlatinib in the NMA
of the smoking group, although there were no significant
differences. Moreover, ld-alectinib administration resulted in
significantly superior PFS to that of ensartinib, ceritinib,
crizotinib, and chemotherapy. It is a feature of ld-alectinib, but
not hd-alectinib, to show relatively high activity in the smoking

FIGURE 6 | NMA results of smokers on progression-free survival (lower left) and sensitivity analysis (upper right), followed by the ranking distribution according to
SUCRA values (lower arrow shape). NMA, network meta-analysis; SUCRA, the surface under the cumulative ranking curve; Chem, chemotherapy; Criz, crizotinib; Ceri,
ceritinib; Alec_L, low-dose alectinib; Alec_H, high-dose alectinib; Brig, brigatinib; Lorl, lorlatinib; Ensa, ensartinib. Values in bold mean statistically significant.
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subgroup of advanced ALK-positive NSCLC. However, there is
little direct evidence to explain the potent mechanism of this
discrepancy. To our knowledge, smokers suffer far more
mutations than never-smokers, among which TP53 mutation
deserves more attention in lung cancer (Le Calvez et al., 2005;
Ding et al., 2008). It is noted that there is a high rate of TP53 co-
mutation in ALK-positive NSCLC, which has shown a
significantly worse prognosis (Aisner et al., 2017; Kron et al.,
2018). In Yoda’s research, TP53 mutation coexisted in half of the
lorlatinib-resistant samples (Yoda et al., 2018). In the ALTA-1L
study (Camidge et al., 2021), patients with TP53 mutant derived
apparently shorter PFS not only in the crizotinib treatment group
but also in the brigatinib group. However, there was no more
information concerning TP53 mutation and efficacy of other
ALK-TKIs and relevant correlation with smoking. Probably, the
abundant mutations in smokers complicate the drug efficacy.
Therefore, additional studies are required to clarify the potential
optimal treatment for smokers and never-smokers with
elucidation on mechanistic details.

Importantly, adverse effects (AEs) play an indispensable role in
clinical treatment decision-making. A lower dose of alectinib, 300mg
twice daily, is a legally experimental dose resulting from Japanese
authority due to Japan’s historical maximum intake level of sodium
lauryl sulfate, one of the capsule excipients for alectinib (Seto et al.,
2013; Zhou et al., 2019). Inconsistent with theoretical assumptions,
compared with hd-alectinib, 600mg twice daily, dose reduction of
alectinib did not obviously show a better safety profile in J-ALEX (≥
grade 3 AEs in J-ALEX = 36.9%; ALESIA = 29%; and ALEX = 52%).
However, median follow-ups varied in these trials, which may have
an impact on the safety profile. Median follow-up was 42.4 months
for ld-alectinib in J-ALEX and 48.2 months for hd-alectinib in ALEX,
which were much longer than 16.2 months for hd-alectinib in
ALESIA (Zhou et al., 2019; Mok et al., 2020; Nakagawa et al.,
2020). Also, 36% of participants had received previous
chemotherapy in J-ALEX, which may have escalated their adverse
effects. Accordingly, the safety profile of ld-alectinib is not worse than
that of hd-alectinib, which means ld-alectinib is well tolerated.
Lorlatinib (Shaw et al., 2020) is also well tolerated. Although the
rate of adverse events (≥ grade 3) was as high as 77%, most of them
were hyperlipidemia, weight gain, and hypertension. Moreover,
cognitive effects and peripheral neuropathy were common but
generally mild, all of which could be well managed.

Lastly, several limitations in ourNMAare inevitable. First, in these
RCTs, smoking history was not a stratification factor in
randomization and small sample sizes existed, probably resulting
in heterogeneity in patients selection for our meta-analysis and
imprecision of evidence. Second, the direct comparisons were all
based on chemotherapy- and crizotinib-controlled studies, which
means a lack of direct comparison between next-generation ALK-
TKIs and closed loops in the analysis, so the direct evidence among
each comparison is insufficient. Third, there is only one trial for each
of the next-generation ALK-TKI other than alectinib, and insufficient
data may result in instability of the outcome. Fourth, the overall
survival of most next-generation ALK-TKIs studies is immature, and
subgroup outcome of smoking status is rarely presented.
Consequently, extrapolation of long-term outcomes is prevented.
Even with the inherent limitations of this NMA, we strictly follow the

guidelines of PRISMA and the extension statement of NMA, which
improves the quality of our analyses.

5 CONCLUSION

In summary, this systematic review compared the impact of smoking
status on treatment efficacy and the relative efficacy of each frontline
choice in the first-line setting of advanced ALK-positive NSCLC in
terms of PFS. Although, in the overall population, there were no
significant differences between smoking statuses, we found in the
subgroup analyses that ALK-TKIs derived better PFS in the smoking
group over the never-smoking group in the Asian population.
Among never-smokers, lorlatinib ranks the highest for PFS, but
no significant superiority was found among new-generation ALK-
TKIs except for comparison with ceritinib. However, ld-alectinib
performed better than lorlatinib among smokers, with ld-alectinib
ranking first, followed by lorlatinib, brigatinib, hd-alectinib, ceritinib,
ensartinib, crizotinib, and chemotherapy. Moreover, ld-alectinib was
significantly superior to ensartinib, brigatinib, ceritinib, crizotinib,
and chemotherapy. Given the limitations of this meta-analysis,
further research focusing on the smoking status is needed to
verify these conclusions.
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Integrative Pan-Cancer Analysis
Confirmed that FCGR3A is a
Candidate Biomarker Associated With
Tumor Immunity
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Yangfeng Zhang1, Changqian Wang1 and Jiqiang Li1,2*
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Background: Fc gamma receptor 3A (FCGR3A) encodes a receptor for the Fc portion of
immunoglobulin G, which plays a significant role in the immune response. However, the
role of FCGR3A in cancers remains unclear. This study aimed to visualize the prognostic
landscape of FCGR3A in pan-cancer and investigate the relationship between FCGR3A
expression and tumor microenvironment.

Method: Based on the TCGA database, GTEx database, and GDSC database, we
analyzed the expression of FCGR3A in pan-cancers and adjacent normal tissues and its
relationship with prognosis, immune cells infiltration, immune-related genes, DNA
mismatch repair (MMR) genes, DNA methylation, and drugs sensitivity. The gene
alteration frequency of FCGR3A was acquired on the cBioportal website. Moreover,
we constructed PPI networks, performed GO and KEGG analysis to illustrate the function,
and signaling pathways of FCGR3A-related genes, and conducted gene set enrichment
analysis (GSEA) of FCGR3A to further explore its potential biological functions.

Result: The differential analysis results of the publicly available databases showed that
FCGR3A was generally highly expressed in pan-cancer. Survival analysis revealed that
FCGR3A predominated as a risk prognostic factor in most cancers. Additionally, the
expression of FCGR3A was confirmed to be associated with several immune cells
infiltration, multiple immune checkpoint genes, and DNA mismatch repair genes
expression in generalized carcinoma. We also identified a negative correlation between
FCGR3A and DNA methylation levels. Through GO/KEGG and GESA, we found that
FCGR3A was involved in many pathologic and physiological processes, and was most
closely related to tumor immune-related pathways. Drug sensitivity analysis showed that
higher FCGR3A expression predicts a low IC50 value for the vast majority of drugs.

Conclusions: FCGR3A may be an immune-oncogenic molecule that correlates with
tumor immune infiltration levels and affects drug sensitivity, thus it can be served as a
promising biomarker for cancer detection, prognosis, therapeutic design, and follow-up.

Keywords: pan-cancer analysis, FCGR3A, tumor biomarker, immune infiltration, tumor microenvironment,
prognosis, drug sensitivity
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INTRODUCTION

Malignant tumor is one of the main causes of death in the
world and a major obstacle affecting the quality of human life.
So far, there is no absolute cure for cancer (Bray et al., 2018).
Tumor biomarkers can be used for early detection, diagnosis,
therapeutic targets, response prediction, treatment
monitoring, prognosis determination, and personalized
combination therapy. More and more tumor biomarkers,
such as PD-L1, BRCA1/2, BRAF, HER2, etc., have been
discovered, which become an indispensable tool in current
tumor treatment due to its ability to assist various clinical
decisions (Zhou et al., 2015). However, most targeted or
immunotherapy has limited efficacy, so it is necessary to
discover more tumor markers and study their role and
value in generalized cancer, evaluate their correlation with
clinical prognosis and related signaling pathways, in order to
accurately predict prognosis and provide options for tumor
treatment.

There are two FcγRIII genes in the human genome, one
encodes FcγRIIIa and the other encodes FcγRIIIb. These two
proteins share 97% homology at the amino acid level (Gessner
et al., 1995). FCGR3A gene encodes the FcγRIIIa receptor in
most effector cells such as macrophages, NK, and γδ T cells,
and possesses a low affinity for IgG-containing immune
complexes (IC). Human FcγRIIIa (CD16a), a type I
transmembrane protein, is an extensively glycosylated
heterogeneous protein, the Fc-fragment is recognized
through loops of the C-terminal receptor domain of the
FcγRIII, transmitting activating signals in effector cells
(Sondermann et al., 2001). Mutations in the FCGR3A gene
are linked to recurrent viral infections, susceptibility to
systemic lupus erythematosus, and alloimmune neonatal
neutropenia (Cartron et al., 1991; Patel et al., 2020).

FCGR3A is involved in the removal of antigen-antibody
complexes from the circulation, as well as other antibody-
dependent responses (Vance et al., 1993; Hargreaves et al.,
2015). Activation of FcγRIIIa on NK cells plays a key role in
mediating antibody-dependent cell-mediated cytotoxicity
(ADCC), while activation of FcγRIIIa on macrophages is
important in mediating antibody-dependent cellular
phagocytosis (ADCP) (Morvan and Lanier, 2016), which are
the innate immune mechanism that eliminates cancer cells.
They can be used to treat a variety of cancers that overexpress
unique antigens, such as neuroblastoma, breast cancer, B cell
lymphoma, etc. (Pandey and Namboodiri, 2014; Ziakas et al.,
2016; Musolino et al., 2022)

In addition, there is a G559T polymorphism in the FCGR3A
gene, whose two common alleles encode two variants that differ at
position 158, one Val (V158) or one Phe (F158). The binding
affinity of FcγRIIIa to IgG varies with allele variants. Specifically,
FcγRIIIa-V158 has a higher affinity to human IgG1 and IgG3
than does FcγRIIIa-158F, this stronger binding affinity results in
more potent in vitro ADCC and tumor cell death (Koene et al.,
1997). ADCC is a key effector mechanism of NK cells mediated
by therapeutic monoclonal antibody (mAb). Better clinical
outcomes have been observed in patients expressing high-

affinity FcγRIIIa variant (V158) when they were treated with
anti-CD20 or anti-EGFR antibodies (Veeramani et al., 2011). An
over-representation of the FcγRIIIa-158F allele has been reported
as a major risk factor for patients with systemic lupus
erythematosus (SLE) (Edberg et al., 2002). In addition,
FcγRIIIa polymorphisms influence clinical outcomes in
colorectal cancer, squamous cell head and neck cancer, and
ERBB2/HER2-positive breast cancer patients treated with anti-
epidermal growth factor receptor (EGFR) antibodies such as
rituximab, cetuximab, and trastuzumab: Patients with
FCGR3A-157V/V genotypes had significantly longer survival
(Calemma et al., 2012; Gavin et al., 2017; Magnes et al., 2018).

Although the FCGR3A-158 V-F polymorphism impacts
multiple autoimmune and infectious diseases and affects the
response of monoclonal therapy (mAb) in some tumor
patients, there is insufficient scientific evidence regarding the
pathogenic role of FCGR3A in diverse cancers and whether
FCGR3A functions in the immune microenvironment of
different tumors through certain common molecular
mechanisms.

It is well known that cancer is a genetic disease, and even
when patients are affected by apparently the same type of
cancer, the mutant signature of the cancer type can vary from
patient to patient. These genetic changes may affect the
efficacy of anticancer drugs and affect the clinical response
in tumor patients. For example, Venetoclax is effective in small
cell lung cancer with high bcl-2 expression (Lochmann et al.,
2018). However, for the vast majority of tumor types and
available therapeutic agents, the genotype-phenotypic
association between gene expression differences and
anticancer drug responses is not simple (Vuong et al.,
2014). Therefore, in this study, we used multiple databases
to analyze FCGR3A gene expression, prognosis, immune
infiltration correlation, and epigenetic status in pan-cancer,
and to explore the underlying molecular mechanisms and its
relationship with drug sensitivity, so as to evaluate the impact
of FCGR3A on the tumor microenvironment.

MATERIALS AND METHODS

Expression Analysis of FCGR3A in
Pan-Cancer
The expression difference of the FCGR3A gene in pan-cancer
and their adjacent normal tissues were analyzed using the
Sangerbox website (http://sangerbox.com/). Sangerbox is an
open network containing tumor and normal samples data from
The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov/) and the Genotype-Tissue Expression (GTEx) database
(https://gtexportal.org/). To further evaluate FCGR3A
expression in pan-cancer, we also using Tumor Immune
Estimate Resources (TIMER2.0) (http://timer.cistrome.org/)
and Gene Expression Profiling Interactive Analysis (GEPIA2)
(http://gepia2.cancer-pku.cn/#analysis) web server to obtain
the FCGR3A expression prospect in TCGA datasets. In order
to identify the tumor cell types in which FCGR3A is
predominantly expressed, we downloaded the FCGR3A gene
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expression data in 886 tumor cell lines from the Genomics of
Drug Sensitivity in Cancer (GDSC) database (https://www.
cancerrxgene.org/). The R packages “ggplot2” and “ggpubr”
were used to analyze and compare the expression of FCGR3A
in different tumor cell lines. FCGR3A gene expression levels in
pan-cancer single-cell samples were also obtained through the
cancerSCEM website (https://ngdc.cncb.ac.cn/cancerscem/).
In addition, the expression of FCGR3A at the protein level
in different tumors was analyzed in the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) (https://pdc.cancer.
gov/pdc/browse) and the Human Protein Atlas (HPA)
database (http://www.proteinatlas.org/). The criterion for
classifying tumor samples into high and low expression was
the median FCGR3A expression. Kruskal-Wallis rank-sum test
was applied to statistical analysis, with p < 0.05 being deemed
statistically significant.

Survival Prognosis Analysis
Expression data of various genes in pan-cancer were obtained
from TCGA database and the GTEx database by UCSC Xena
(http://xenabrowser.net/datapages/). Extraction of FCGR3A
single-gene expression data with Strawberry Perl (http://
strawberryperl.com/). Survival data also downloaded from
UCSC Xena. To determine the relationship between
expression of FCGR3A and survival prognosis, R package
“survival” was performed to determine the correlation
between FCGR3A mRNA expression with overall survival
(OS), disease specific survival (DSS) and progression-free
survival (PFS), and univariate Cox regression analysis was
used as statistical method. It was described as forest plots using
the R package “forestplot”. Furthermore, we used the “Stage
Plot " module of the GEPIA2 website to obtain violin plots of
FCGR3A expression in all TCGA tumors at different
pathological stages.

Immunological Correlation Analysis
Using the TIMER2.0 web server (http://timer.cistrome.org/) to
acquire the correlation data of FCGR3A expression with
infiltrating immune cells and the abundance of immune cell
markers from the TCGA pan-cancer. The expression status of
immune-related genes (including immunosuppressive genes
and chemokines) in 33 cancers was obtained from the UCSC
Xena website (http://xenabrowser.net/datapages/). R package
“limma” was utilized for the purpose of investigating the
relationship between FCGR3A expression and the
expression level of immune-related genes, and the
correlation coefficient was determined by Spearman’s
correlation analysis. Visualization was carried out through
the R “reshape2” and “RColorBreyer” packages.

Genetic Alteration and DNA Mis-Match
Repair Genes Correlation Analysis
In the cBioPortal website (https://www.cbioportal.org/), select
the “TCGA Pan Cancer Atlas Studies” in the “Quick select”
module, FCGR3A was input to query the characteristics of
genetic change and obtain the change frequency, mutation

type, and CNA (copy number alteration) results of all TCGA
tumors. In addition, R package “limma” was used to estimate
the correlation between the FCGR3A gene and the expression
of four MMRs (MLH1, MSH2, MSH6, and PMS2), and the
results were visualized as correlation heat map by R packages
“reshape2” and “RColorBreyer”. The MMRs gene expression
profiles of various tumors were derived from the TCGA
database.

DNA Methylation Correlation Analysis
Based on the TCGA database, methylation levels of different
tumors and their corresponding normal tissues were analyzed
using the “methylation” module of the UALCAN website
(http://ualcan.path.uab.edu/), and boxplots of difference
analysis were downloaded. Tumor samples were divided
into high- and low-expression groups based on median
FCGR3A expression. On the vertical axis, beta value
ranging from 0 (unmethylated) to 1 (fully methylated)
represent DNA methylation levels. A beta value of 0.7–0.5
is generally considered to be hypermethylation, while a beta
value of 0.3–0.25 is hypomethylation (Men et al., 2017).

FCGR3A-Related Gene Analysis
We used the STRING website (https://cn.string-db.org/) to
obtain the available experimentally determined FCGR3A-
binding proteins according to the following criteria:
network type (“full STRING networks”), meaning of
network edges (“evidence”), active interaction sources
(“experiments, text mining, databases”), minimum required
interaction score [“medium confidence (0.400)”], max number
of interactors to show (“no more than 30 interactors” in 1st
shell) and active interaction sources (“experiments”). Protein-
protein interaction (PPI) networks were visualized using
Cytoscape (version 3.8.2). Next, we conducted Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis for the above
FCGR3A-related genes using the R package “Cluster
Profiler”, and visualized using the “ggplot2” package.

Gene Set Enrichment Analysis of FCGR3A in
Pan-Cancer
With the help of the R software package “clusterProfiler”, we
performed GSEA based on the GO dataset to explore the
biological function of FCGR3A in tumor progression. We
selected eight types of cancer whose prognosis is associated
with FCGR3A expression, and use the “enrichplot” package to
show the top five signaling pathways most significantly
enrichment enriched in the database.

Drug Sensitivity Analysis
The data of gene expression level in pan-cancer cell lines and
the drug sensitivity (IC50) of 265 compounds in these cell lines
were downloaded from the Genomics of Drug Sensitivity in
Cancer (GDSC) database (https://www.cancerrxgene.org/).
Spearman’s-correlation analysis was used to explore the
correlation between drug sensitivity and FCGR3A gene
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FIGURE 1 | Expression level of FCGR3A gene in pan-cancer. (A) FCGR3A expression levels in tumors containing 20 TCGA tissues and paired adjacent non-
cancerous tissues; (B) FCGR3A expression difference in 27 tumors integrating data of normal tissues in GTEx database and data of tumor tissues in TCGA database; (C)
Based on the CPTAC dataset, the expression level of FCGR3A protein in normal and primary tumor tissues was analyzed. *p < 0.05; **p < 0.01; ***p < 0.001.
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expression in 962 cancer cell lines. Then, all cell lines were
divided into low expression and high expression groups
according to the median FCGR3A expression level. Kruskal-
Wallis rank-sum test was used to analyze the drug sensitivity
(IC50) difference of six commonly used anticancer drugs, p <
0.05 was considered statistically significant.

RESULTS

Expression Levels of FCGR3A in
Pan-Cancer
FCGR3A mRNA expression levels were analyzed by using
different databases to detect FCGR3A expression across a
wide range of cancers. The differential expression profile of
FCGR3A in tumor and adjacent tumor tissues was retrieved
from the TCGA database, as shown in Figure 1A. Considering
the small number of normal samples in TCGA, we integrated
data from the TCGA and GTEx database to conducted
FCGR3A expression differential analysis in 27 tumors
(Figure 1B), compared with the corresponding normal
group, FCGR3A was generally overexpressed in the cancer
group, including bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC), colon
adenocarcinoma (COAD), esophageal carcinoma (ESCA),
glioblastoma multiforme (GBM), head and neck squamous
cell carcinoma (HNSC), kidney chromophobe (KICH), kidney
renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), acute myeloid leukemia (LAML), brain
lower grade glioma (LGG), liver hepatocellular carcinoma
(LIHC), ovarian serous cystadenocarcinoma (OV),
pancreatic adenocarcinoma (PAAD), Prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ),
skin cutaneous melanoma (SKCM), stomach adenocarcinoma
(STAD), testicular germ cell tumors (TGCT), thyroid
carcinoma (THCA), and uterine corpus endometrial
carcinoma (UCEC) and uterine carcinosarcoma (UCS).
Meanwhile, a lower expression of FCGR3A was found in
adrenocortical carcinoma (ACC) and lung squamous cell
carcinoma (LUSC) dataset. To further verify the above
results, we applied the TIMER and GEPIA2 website to
obtain the expression status of FCGR3A across various
cancer types of TCGA, and both showed that FCGR3A was
highly expressed in most tumor tissues (Supplementary
Figure S1). Furthermore, to identify tumor cell types that
predominantly express FCGR3A, we analyzed FCGR3A gene
expression levels in pan-cancer single cell lines using the
GDSC database (Supplementary Figure S1A) and the
CancerSCEM website (Supplementary Figure S1B), and the
results showed that FCGR3A was highly expressed in most
tumor cell lines. The top 5 FCG3A-expressing tumor cell lines
in the GDSC database are chronic lymphocytic leukemia
(CLL), TGCT, lymphoid neoplasm diffuse large B-cell
lymphoma (DLBC), LAML, and mesothelioma (MESO),
while the top 5 FCG3A-expressing tumor cell lines in the
CancerSCEM database are GBM, lung cancer, PRAD, LAML,

and coloretal cancer (CRC). Lastly, results from the CPTAC
dataset showed that FCGR3A total protein expression was
higher in primary tissues of breast cancer, clear cell renal cell
carcinoma, colon cancer, head and neck squamous cell
carcinoma, ovarian cancer, pancreatic adenocarcinoma, and
uterine corpus endometrial carcinoma than in normal tissues.
(Figure 1C).

Moreover, to assess FCGR3A expression at the protein level, we
acquired immunohistonchemistry (IHC) results from the HPA
database and compared the results with FCGR3A gene expression
data from TCGA. As shown in Figures 2A–C, the data analysis
results of the two databases were consistent. Normal skin and testis
tissues showed not detected stainingwith FCGR3A IHC, while tumor
tissues showed medium staining. In contrast, normal lung tissue
showed strong FCGR3A staining and lung cancer showed weak
FCGR3A staining.

Prognostic Value of FCGR3A in Pan-Cancer
To evaluate the effect of FCGR3A expression on prognosis, we
conducted univariate Cox regression analysis to analyze the
relationship between FCGR3A expression and OS, DSS and PFS
in TCGA pan-cancer. The results are presented in Figures 3A–C, in
terms of overall survival (OS), FCGR3A was an independent risk
prognostic factor in KIRC (p = 0.026, HR = 1.163), LGG (p < 0.001,
HR = 1.317), thymoma (THYM) (p = 0.026, HR = 1.649) and uveal
melanoma (UVM) (p = 0.011, HR = 1.326), but was a protective
prognostic factor in SKCM (p < 0.001, HR = 0.814). Then, the
analysis of disease-specific survival (DSS) revealed that FCGR3Ahad
a detrimental role in KIRC (p = 0.020, HR = 1.224), LGG (p < 0.001,
HR = 1.322) and UVM (p = 0.019, HR = 1.311). Meanwhile,
FCGR3A played a protective role in SKCM (p < 0.001, HR =
0.807) and THCA (p = 0.013, HR = 0.320). In the analysis of
progression-free survival (PFS), FCGR3A was an independent risk
prognostic factor in GBM (p = 0.023, HR = 1.199), KIRC (p = 0.022,
HR = 1.173), LGG (p < 0.001, HR = 1.274), PRAD (p < 0.001, HR =
1. 593) and UVM (p = 0.016, HR = 1.289), while was a protective
prognostic factor in SKCM (p = 0.010, HR = 0.912). It was suggested
that FCGR3A is mainly a poor prognostic indicator in KIRC, LGG
and UVM, on the contrary, it is also a favorable prognostic factor
in SKCM.

We also examined the differential expression of FCGR3A in
patients with different tumor types based on the main pathological
stage and found that FCGR3A expression was only related to tumor
stage in 5 cancers, including ACC, ESCA, KICH, SKCM, and STAD
(Figure 3D). Notably, differences in FCGR3A expression mainly
occurred between stages I-II or II-III. However, we did not obtain
significant differences in other tumor types.

Correlation Analysis of FCGR3A Expression
and Tumor Immune Microenvironment
Tumor infiltrating immune cells are essential components of the
tumor microenvironment and play a crucial role in the modulation
of tumor initiate development and immune checkpoint response
(Fridman et al., 2011). Here, we first analyzed the relationship
between FCGR3A expression and the infiltration levels of six
common immune cells (B cells, CD4+T cells, CD8+T cells, DC
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cells, macrophages, and neutrophils), and observed a positive
correlation in the vast majority of tumor types. The scatter
diagram of correlation analysis between FCGR3A and immune
infiltrating cells of each tumor can be obtained directly through
the TIMER algorithm. The four highest correlation coefficients,
including CESC, COAD, KIRP, and UCEC, are illustrated in
Figure 4A. Moreover, we also analyzed the correlation between
FCGR3A expression and 25 immune cell markers to identify
potential subtypes of infiltrating immune cells. As shown in
Figure 4B, FCGR3A expression level was significantly positively
correlated with most of the immune cell markers, among which
macrophages, monocytes, and myeloid dendritic cells were the three
immune cell types most closely related to FCGR3A expression.

Gene co-expression analysis was performed to explore the
relationship between FCGR3A and the expression levels of
immunosuppressive genes and chemokines in 33 TCGA-
cancers. As shown in Figure 5, FCGR3A expression showed

significant positive correlation with almost all
immunosuppressive genes (Figure 5A) and chemokine
genes (Figure 5B) in pan-cancer. Therefore, these results
demonstrated that FCGR3A expression affects tumor
immunity in different ways.

Analysis of Genetic Alteration Status of
FCGR3A and the Relationship Between
FCGR3A and DNA Mismatch Repair Genes
The genetic alteration status of FCGR3A in various tumor
samples in the TCGA cohort is shown in Figure 6A. It was not
difficult for us to find that “amplification” was the main
mutation type in most tumors. The alteration frequency of
FCGR3A was the highest in bladder urothelial carcinoma
(>15%), with “amplification” accounting for >90%. All
cholangiocarcinoma, liver hepatocellular carcinoma,

FIGURE 2 | Comparison of FCGR3A gene expression between normal and tumor tissues (left) and immunohistochemistry images in normal (middle) and tumor
(right) tissues. (A) Skin; (B) Testis; (C) Lung. *p < 0.05; **p < 0.01; ***p < 0.001.
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pancreatic adenocarcinoma pheochromocytoma and
paraganglioma, diffuse large B-cell lymphoma, ovarian
serous cystadenocarcinoma, thymoma, and mesothelioma
cases with genetic alteration had FCGR3A amplification.
The “mutation” type of FCGR3A was the dominant type in
skin cutaneous melanoma, with a frequency of approximately
3%. It was noteworthy that there was a certain proportion of
FCGR3A copy number deletion in stomach adenocarcinoma,
prostate adenocarcinoma, and kidney renal papillary cell
carcinoma.

Mismatch repair (MMR) is a post-replicative repair
mechanism, which is critical for maintaining genomic
fidelity (Loeb, 2001). As shown in Figure 6B, FCGR3A was
positively correlated with the expression of four MMR genes
(MLH1, MSH2, MSH6, and PMS2) in most tumor types, while
FCGR3A showed negative correlation with MMR gene
expression in CESC, GBM, LAML, sarcoma (SARC),
mesothelioma (MESO), THCA and THYM. In addition, no
statistical difference was observed in ACC, ESCA, KIRP, and
pheochromocytoma and paraganglioma (PCPG) (p > 0.05).

Association of FCGR3A Expression With
DNA Methylation
A large number of studies have demonstrated that promoter
methylation leads to the inactivation of tumor suppressor
genes, which is an important mechanism of tumor occurrence
and development (Qureshi et al., 2010). Therefore, we used
the UALCAN dataset to analyze the methylation levels of the
FCGR3A promoter in different tumors and normal tissues,
which determined that the methylation levels of the FCGR3A
promoter in 12 tumors including BLCA, BRCA, CHOL,
COAD, ESCA, HNSC, KIRC, LIHC, lung adenocarcinoma
(LUAD), LUSC, PAAD, and PRAD were significantly lower
than those in normal tissues (Figures 7A–L).

PPI Network and KEGG/GO Enrichment
Analysis of FCGR3A Related Genes
In order to further explore the molecular mechanism of
FCGR3A gene in tumorigenesis, we obtained a total of 30
FCGR3A targeted binding proteins by using the STRING tool.

FIGURE 3 | The association between FCGR3A expression levels and prognosis and tumor pathological stage. (A)Overall survival (OS); (B)Disease specific survival
(DSS); (C) Progression-free survival (PFS); (D) Differential expression of FCGR3A in different stages.
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Figure 8A showes the interaction network of these proteins.
Cytoscape software was utilized to further visualized the PPI
network (Figure 8B). The results of GO and KEGG pathway
analysis are presented in Figures 8C,D. The GO enrichment
analysis consisted of three parts: biological process (BP),
cellular component (CC), and molecular function (MF). The
BP primarily included the Fc receptor signaling pathway, Fc
receptor mediated stimulatory signaling pathway, Fc-gamma

receptor signaling pathway, Fc-gamma receptor signaling
pathway involved in phagocytosis, and immune response-
regulating cell surface receptor signaling pathway involved
in phagocytosis. The CC was mainly covered with cell leading
edge, actin filament, site of DNA damage, site of double-strand
break and Arp2/3 protein complex. The MF was primarily
enriched in actin binding, actin filament binding, protein
tyrosine kinase activity, phosphoprotein binding, and non-

FIGURE 4 | Correlation analysis of FCGR3A expression with immune cells infiltration. (A) The scatter plot showed a correlation between FCGR3A and the levels of
infiltration of six major immune cells in CESC, COAD, KIRP, and UCEC; (B) Heat map showed the relationship between FCGR3A expression and 25 immune cell
markers. CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, colon adenocarcinoma; KIRP, kidney renal papillary cell carcinoma;
UCEC, uterine corpus endometrial carcinoma. *p < 0.05; **p < 0.01; ***p < 0.001.
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membrane spanning protein tyrosine kinase activity. The
KEGG pathway was associated with Fc gamma mediated
phagocytosis, pathogenic Escherichia coli infection,
regulation of actin cytoskeleton, Yersinia infection, and
bacterial invasion of epithelial cells.

Correlation Between FCGR3A and Cancer
Pathway
In order to observe the expression and enrichment status of
FCGR3A in GO pathway sets, we divided the human tumor

FIGURE 5 | Correlation analysis of FCGR3A expression with immune-related genes. (A) immunosuppressive related genes; (B) chemokine genes. *p < 0.05; **p <
0.01; ***p < 0.001.
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samples into high expression and low expression group according
to the median FCGR3A expression and analyzed the enrichment
of the GO signaling pathway in the two groups by GSEA. The top
5 signaling pathways with the most significant enrichment in the
eight tumors (including GBM, KIRC, LGG, PRAD, SKCM,
THCA, THYM, and UVM) are listed in Figures 9A–H. It was
found that negative regulation of blood vessel endothelial cell
migration, epidermal cell differentiation, immune response
regulating cell surface receptor signaling pathway, adaptive
immune response based on somatic recombination, immune
receptors built from, humoral immune response, immune
response regulating cell surface receptor signal pathway,
negative regulation of immune system process, positive
regulation of cytokine production, chronic inflammatory
response, erection of external biotic stimulus and adaptive
immune response based on somatic were described as the

most abundant GO pathways in eight tumors whose prognosis
was associated with APOC1 expression. This suggested that
FCGR3A is extensively implicated in the negative regulation of
tumor angiogenesis and the regulation of cancer immune
signaling pathways.

Relationship Between FCGR3A Expression
and Drug Sensitivity
Genetic alterations affect the drug sensitivity of cancer to
clinical treatment and therefore are potential biomarkers for
drug screening. Therefore, we question the association
between mRNA expression levels of FCGR3A and patient
sensitivity to antitumor drugs. Based on the GDSC
database, we performed a correlation analysis between gene
expression level and drug sensitivity of 265 drugs across 963

FIGURE 6 |Mutation characteristics of FCGR3A in different TCGA tumors and its relationship with DNAmismatch repair genes (MMRs). (A) Alteration frequency of
FCGR3Amutation types in different tumors; (B)Heat maps showed the association of APOC1 expression with expression levels of four MMRs genes in various cancers.
*p < 0.05; **p < 0.01; ***p < 0.001.
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cell lines, and a total of 158 drugs were identified to be
associated with FCGR3A expression. Figures 10A,B
exhibites the six drugs with the strongest negative
correlation and the six drugs with the strongest positive
correlation respectively. The IC50s of BYA 61-3606 (r =
−0.190, p < 0.001), KIN001-236 (r = −0.184, p < 0.001),
XDM8-85 (r = −0.180, p < 0.001), IPA-3 (r = −0.177, p <
0.001), PAC-1 (r = −0.170, p < 0.001) and XMD14-99 (r =
−0.173, p < 0.001) were negatively correlated with FCGR3A
expression (Figure 10A). Additionally, the IC50s of six drugs
(only 6), including Bicalutamide (r = 0.083, p = 0.014),
Trametinib (r = 0.090, p = 0.007), PD-0325901 (r = 0.076,
p < 0.020), Doxetaxel (r = 0.073, p = 0.034), AZD6244 (r =
0.072 p = 0.030) and READ119 (r = 0.072, p = 0.030), were
positively correlated with FCGR3A expression (Figure 10B).
Complete drug sensitivity analysis results are shown in
Supplementary Table S1. As shown in Figure 10C, six
commonly used anticancer drugs, such as 5-fluorouracil,
Camptothecin, Etoposide, Doxorubicin, Gemcitabine, and
Methotrexate have lower IC50 values (better efficacy) in
patients with high FCGR3A expression. These results

confirmed our hypothesis that the expression level of
FCGR3A interacts with the sensitivity of antitumor drugs.

DISCUSSION

FCGR3A is the encoding gene of CD16a, and the up-regulation of
FCGR3A results in high expression of CD16a. Almost all NK cells
express the low-affinity Fc γ receptor (FCγR) IIIA/CD16a. The
activated receptor CD16a on the NK cell surface promotes
antibot-dependent cell-mediated cytotoxicity (ADCC), which is
a key effect of NK cells and tumor antigen-targeting mechanism
(Nimmerjahn and Ravetch, 2008).

Many but not all studies have reported significant associations
between functional polymorphisms of Fcγ RIIIA-activated
receptors and antitumor mAb immunotherapy outcomes
(Cartron et al., 2002; Weng and Levy, 2003; Treon et al., 2005;
Calemma et al., 2012; Seidel et al., 2013; Gavin et al., 2017;
Magnes et al., 2018). Unfortunately, whether FCGR3A works in
different tumors through some common molecular mechanism
remains to be answered. A literature search revealed limited and

FIGURE 7 | Correlation between FCGR3A expression and gene promoter methylation. (A) Bladder urothelial carcinoma (BLCA); (B) Breast invasive carcinoma
(BRCA); (C)Cholangiocarcinoma (CHOL); (D)Colon adenocarcinoma (COAD); (E) Esophageal carcinoma (ESCA); (F)Head and neck squamous cell carcinoma (HNSC);
(G) Kidney renal clear cell carcinoma (KIRC); (H) liver hepatocellular carcinoma (LIHC); (I) Lung adenocarcinoma (LUAD); (J) Lung squamous cell carcinoma (LUSC); (K)
Pancreatic adenocarcinoma (PAAD); (L) Prostate adenocarcinoma (PRAD).
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weak data available for a pan-cancer analysis of FCGR3A from a
whole-tumor perspective. Therefore, we comprehensively
examined FCGR3A in pan-cancer based on data from TCGA
and GTEx databases.

We found that FCGR3A was overexpressed in 23 cancers, and
IHC analysis confirmed this trend at the protein level. COX regression
analysis showed that the prognosis analysis data of the FCGR3A gene
proposed different conclusions for different tumors, but these
correlations were only seen in a small number of tumors. High
FCGR3A expressionwasmainly associatedwith poor prognoses of six
cancer types (KIRC, LGG, THYM, PRAD, and UVM), while it was
associated with good prognoses of SKCM and THCA. This difference
may be due to discrepancies in tumor samples, so larger sample sizes
may be needed to verify the above conclusions. Combined with the
above results, FCGR3A is regarded as a potential biomarker or
therapeutic target.

With the clinical success of cancer immunotherapy, there is an
increasing need for a comprehensive understanding of tumor-
immune interactions. Understanding the tumor
microenvironment, including immune cell infiltration, may
help decipher the mechanisms behind tumor development.

The Fc receptor (FcR) plays a major role in normal immunity
and anti-infection and provides the humoral immune system
with cellular effectors. Previous studies have suggested that the
G-protein-coupled receptors (GPCR) of chemokines can detect
chemical attractants produced by bacteria in inflammatory
responses and activate signaling pathways that regulate actin
polymerization and allow cells to migrate to bacteria. Various
receptors, such as Fcγ and C3a receptors, then bind to targets and
activate signaling pathways, resulting in actin aggregation around
the bacteria, forming phagocytic rings (Pan et al., 2016). An
effective mechanism of tumor cell phagocytosis is mediated by
the uptake of Fc receptors (FcR) by antibody-coated tumor cells.
Depending on the nature of the FcR and Fc parts of the antibody,
binding of the cell-associated antigen-antibody complex to FcR
can trigger complement, ADCC, or phagocytosis and induce DC
maturation, thereby stimulating T cell responses against the
captured antigens and antitumor immunity (Rafiq et al., 2002;
Schuurhuis et al., 2006; Dilillo and Ravetch, 2015).

CD8+T cells are known to regulate specific expression of
tumor antigens, so they are considered as key mediators of
tumor destruction and play an indispensable role in

FIGURE 8 | Protein-protein interaction (PPI) network, gene ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of FCGR3A-
related genes. (A,B) PPI network; (C) GO analyses; (D) KEGG analysis.
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immunotherapy (Kishton et al., 2017). Clinical studies on tumor-
infiltrating immune cells have identified the role of cytotoxic
T cells (CTL) and tumor-associated macrophages (TAM) in some
diseases (Bingle et al., 2002; Fridman et al., 2012). In addition to
focusing on CD8+T cells, this study also observed a significant
association between tumor FCGR3A expression and other
immune cells such as CD4+ T cells, B cells, DC cells,
macrophages, and neutrophil infiltration, although the current
study was unable to establish a causal relationship. Interestingly,
the relationship between FCGR3A expression and certain
immune cell markers (such as Th1, Th2, M1/M2
macrophages, mast cells, monocytes, Tregs, and so on) does
not always follow the general trend (Figure 6C), suggesting
specific interactions between FCGR3A and certain immune
cell subtypes. In addition, our study also revealed the co-
expression of FCGR3A and immunosuppression-related genes
and chemokine genes. These results indicate that the expression
level of FCGR3A can affect the tumor immune
microenvironment, which will provide a new reference for the
prognosis of immune checkpoint inhibitors (ICIs) treatment.

Mismatch repair (MMR) genes are efficient guardians of
genomic integrity and stability, and the presence of MMR
gene mutations can predict tumor patients’ sensitivity to
immune checkpoint blocking therapy (Le et al., 2017).
According to our results, the expression of FCGR3A was
positively correlated with the expression of MMRs genes in
most tumors, suggesting that FCGR3A may maintain the
viability of tumor cells by up-regulating DNA mis-match
repair-related genes.

The mutation analysis found that the alteration frequency of
FCGR3A in bladder urothelial carcinoma was the highest, and the
main type is the amplification mutation. This enriched our
understanding of the functionality of FCGR3A. Furthermore,
disruption of DNA methylation patterns is a relatively common
feature in cancer and is associated with various developmental
defects and tumorigenesis (Fernandez et al., 2012). Feinberg, A.P
et al. also reported significant hypommethylation in cancer genes
compared with normal corresponding cells (Feinberg and
Vogelstein, 1983). Similarly, our study reached the same
conclusion, suggesting that FCGR3A may influence DNA

FIGURE 9 | The 5 most relevant signaling pathways of FCGR3A’s GSEA in the GO dataset. (A) Glioblastoma multiforme (GBM); (B) Kidney renal clear cell
carcinoma (KIRC); (C) brain lower grade glioma (LGG); (D) Prostate adenocarcinoma (PRAD); (E) Skin cutaneous melanoma (SKCM); (F) Thyroid carcinoma (THCA); (G)
Thymoma (THYM); (H) Uveal melanoma (UVM).
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methylation and promote tumor development, although the
detailed mechanism is still unknown.

Through GO and KEGG pathway analysis, we further clarified
FCGR3A’s involvement in a variety of biological processes,
molecular functions, and cellular components, mainly including
the Fc receptor signaling pathway, immune response-regulating
cell surface receptor signaling pathway involved in phagocytosis,

humoral immunity, and pathogen infection. Using GSEA
enrichment analysis, it was found that FCGR3A was mainly
enriched in pathways related to negative regulation of
angiogenesis, epidermal cell differentiation, chronic inflammation,
and adaptive immune response.

The analysis of basic gene expression can reveal the
relationship between cell’s resting physiological state and drug

FIGURE 10 | Relationship between FCGR3A expression and drug sensitivity. (A) The top six negatively correlated. (B) The only six positively correlated. (C) The
difference of drug sensitivity of six commonly used anticancer drugs (5-fluorouracil, Camptothecin, Etoposide, Doxorubicin, Gemcitabine, and Methotrexate) in high and
low FCGR3A expression groups was shown in the forms of boxplot charts. *p < 0.05; **p < 0.01; ***p < 0.001.
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sensitivity, which is valuable for the analysis of drug action
mechanism. Through drug sensitivity analysis, we found that
high FCGR3A expression was negatively correlated with IC50
values of most anticancer drugs (i.e., drug response was well).
This is consistent with previous findings (Vuong et al., 2014;
Salvadores et al., 2020) that the level of gene expression is a
predictor of drug response. It is indicated that the measurement
of FCGR3A expression level can be used as a reliable indicator of
clinical treatment, highlighting the potential of FCGR3A as an
anticancer drug target. Even if it is not a direct target of a
compound, it may play a crucial role in the processes before
and after the compound binds to its target, and variations in its
expression may underlie individual differences in drug responses
(Vuong et al., 2014). These results will help us better understand
how drug-target interactions can benefit cancer treatment, and
have important implications for guiding the combination therapy
in patients with advanced or recurrent tumor, and guiding the
drug selection in patients with multiline treatment resistance.

In searchable articles reports, most of studies on FCGR3A
(CD16a) have focused on the pathogenesis, diagnosis, and
treatment of inflammatory diseases such as IgG immune
complexes (including rheumatoid arthritis and systemic lupus
erythematosus), and little attention has been paid to cancer. In
2020, Hofmann L et al. confirmed that CD16-positive exosomes
could be used as an indicator of immunosuppressive grade of
HNSC: the later the tumor stage or the more aggressive the tumor,
the higher the CD16 level of total exosomes in patients (Hofmann
et al., 2020). Sconocchia G et al. found that tumor invasion of
FcγRIII (CD16) + bone marrow cells is associated with improved
survival in colorectal cancer patients (Sconocchia et al., 2011). And
Zhang W et al. indicated that relatively increased CD16 +
monocytes contribute to the pro-tumor microenvironment of
T cell non-Hodgkin lymphoma (Zhang et al., 2020). This
provides an idea for our study. The significance of our work is
to prospectively reveal the interaction of FCGR3A in the tumor
microenvironment and provide insights based on bioinformatics
and computational biology for further understanding the role of
FCGR3A in tumor metabolism and immune regulation.

However, there are still had several limitations in our study.
First, the results of this study were acquired solely from
bioinformatics analysis, lacking actual experimental or
clinical data. Second, tumor tissue information is mainly
derived from the collection of large amounts of microarray
and sequencing data from public databases, and cell-level
analysis of immune cell markers may introduce systematic
bias. Third, although we identified that FCGR3A expression
was associated with survival in some tumor patients and
affected immune cell infiltration, we were unable to prove a

clear causal relationship between FCGR3A altering immune
infiltration and affecting patient survival. The role of FCGR3A
in cancer needs to be further explored and verified through
biological experiments in the future.

In conclusion, FCGR3A not only affects the prognosis of
cancer patients and regulates the immune microenvironment,
but also is a strong predictor for anticancer drug response,
suggesting that FCGR3A may be an immunocarcinogenic
molecule and can be used as a promising biomarker to
provide a direction for immune-based anti-tumor strategies.
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GLOSSARY

ACC adrenocortical carcinoma

ADCC antibot-dependent cell-mediated cytotoxicity

ADCP antibody-dependent cellular phagocytosis

BP biological process

BLCA bladder urothelial carcinoma

BRCA breast invasive carcinoma

CAN copy number alteration

CC cellular component

CESC cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL cholangiocarcinoma

COAD colon adenocarcinoma

CLL chronic lymphocytic leukemia

CRC coloretal cancer

CPTAC Clinical Proteomic Tumor Analysis Consortium

CI confidence interval

CTL cytotoxic T cells

DC dendritic cell

DLBC lymphoid neoplasm diffuse large B-cell lymphoma

DSS disease-specific survival

ESCA esophageal carcinoma

FCGR3A Fc gamma receptors 3A

GBM glioblastoma multiforme

GDSC Genomics of Drug Sensitivity in Cancer

GEPIA Gene Expression Profiling Interactive Analysis

GTEx Genotype-Tissue Expression

GO Gene Ontology

GPCR G-protein-coupled receptors

HER2 human epidermalgrowth factor receptor-2

HNSC head and neck squamous cell carcinoma

HPA Human Protein Atlas

HR hazard ratio

ICI Immune checkpoint inhibitor

IC50 half maximal inhibitory concentration

IHC immunohistonchemistry

KEGG Kyoto Encyclopedia of Genes and Genomes

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma

LAML acute myeloid leukemia

LGG brain lower grade glioma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

MESO mesothelioma

MMR DNA mis-match repair genes

MF molecular function

OV ovarian serous cystadenocarcinoma

OS overall survival

PAAD pancreatic adenocarcinoma

PCPG pheochromocytoma and paraganglioma

PD-L1 programmed cell death-Ligand 1

PFI progression-free interval

PFS progression-free survival

PRAD prostate adenocarcinoma

PPI protein–protein interaction

READ rectum adenocarcinoma

SARC sarcoma

SKCM skin cutaneous melanoma

STAD stomach adenocarcinoma

TAM tumor-associated macrophages

TCGA The Cancer Genome Atlas

TGCT testicular germ cell tumors

THCA thyroid carcinoma

THYM thymoma

TIMER Tumor Immune Estimate Resources

UCEC uterine corpus endometrial carcinoma

UCS uterine carcinosarcoma

UVM uveal melanoma
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Background:Chemotherapy is the basic treatment for colorectal cancer (CRC). However,
colorectal cancer cells often develop resistance to chemotherapy drugs, leading to
recurrence and poor prognosis. More and more studies have shown that the
Homologous recombination (HR) pathway plays an important role in chemotherapy
treatment for tumors. However, the relationship between HR pathway, chemotherapy
sensitivity, and the prognosis of CRC patients is still unclear.

Methods: We collected 35 samples of CRC patients after chemotherapy treatment from
Guangxi Medical University Cancer Hospital, then collected mutation data and clinical
prognosis data from the group. We also downloadedMondaca-CRC, TCGA-CRC cohorts
for chemotherapy treatment.

Result: We found that HR mutant-type (HR-MUT) patients are less likely to experience
tumor metastasis after receiving chemotherapy. Additionally, our univariate and
multivariate cox regression models showed that HR-MUT can be used as an
independent predictor of the prognosis of chemotherapy for CRC patients. The KM
curve showed that patients with HR-MUT CRC had significantly prolonged overall survival
(OS) time (log-rank p = 0.017; hazard ratio (HR) = 0.69). Compared to HR mutant-type
(HR-WT), HR-MUT has a significantly lower IC50 value with several chemotherapeutic
drugs. Pathway enrichment analysis further revealed that the HR-MUT displayed a
significantly lower rate of DNA damage repair ability, tumor growth, metastasis activity,
and tumor fatty acid metabolism activity than HR-WT, though its immune response activity
was notably higher.
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Conclusion: These findings indicate that HR-MUT may be a relevant marker for CRC
patients receiving chemotherapy, as it is closely related to improving OS time and reducing
chemotherapy resistance.

Keywords: colorectal cancer, chemotherapy, biomarker, prognosis, homologous recombination

INTRODUCTION

Colorectal cancer, or colon cancer, is one of the most common
types of malignant tumors found in the human digestive tract and
is a seriously threat to human health. Its incidence rate ranks third
amongst that of all malignant tumors worldwide, and its
mortality rate ranks second (Miller et al., 2020; Liu et al.,
2022a; Liu et al., 2022b). At present, besides surgery,
chemotherapy is the main treatment for colon cancer.
However, due to the high heterogeneity of colon cancer, the
benefits of these treatments for difference patients may vary
greatly. Moreover, the occurrence of chemotherapy resistance
can result in failure of the final treatment of colon cancer patients
(Bian et al., 2016; Fu et al., 2016). Therefore, it is of the utmost
importance to investigate the specific mechanism of the
occurrence and development of colon cancer and any
accompanying chemotherapy resistance in order to develop
new therapeutic targets, reverse chemotherapy resistance, and
ultimately improve the prognosis of colon cancer patients.

Recent studies have shown that the molecular mechanisms of
chemotherapy resistance mainly involve: 1) The reduction of the
activation of drug precursors and the concentration of drugs in
cells through drug efflux and inactivation; 2) Changes in drug
action targets; 3) Disturbance of cell survival and apoptosis; 4)
Hypoxia in the tumor microenvironment; 5) Changes in the
extracellular mechanism; 5) Cytokines and other growth factors
that maintain the activation of tumor survival-related pathways
(Li et al., 2017).

Homologous recombination (HR) is a stable and error-free
repair process that uses homologous sister chromatids as a
template. HR determines the survival and fate of cells
(Gonzalez and Stenzinger, 2021; Liu et al., 2021). Still, despite
its reliability, the main cause of DNA damage in the S/G2 cell
cycle is HR (Lisby and Rothstein, 2015). HR plays an important
role in repairing cisplatin adducts, a DNA repair process that
plays an important role in the chemotherapy resistance of tumor
cells (Zdraveski et al., 2000). For example, HR-deficient
Escherichia coli strains are known to show higher sensitivity
to chemotherapeutic drugs than Nucleotide excision repair
(NER)-deficient Escherichia coli strains (Zdraveski et al.,
2000), while homologous recombination defect (HRD) is
known to be related to chemotherapy resistance in ovarian
cancer patients (Xiao et al., 2017). However, at present, the
relationship between the mutation state of the HR pathway
and the chemotherapy efficacy, prognosis, and chemotherapy
sensitivity of CRC patients is unclear.

In this study, we use data collected from a sample of CRC
patients who have been treated with chemotherapy fromGuangxi
Medical University Cancer Hospital to explore the relationship
between the mutation state of HR pathway and the prognosis of

the chemotherapy efficacy of CRC patients through curative
effect analysis, prognosis analysis, and drug sensitivity analysis.
Through this process, we found that HR-MUT CRC patients had
significantly prolonged survival time and higher sensitivity to
chemotherapy drugs. Therefore, HR-MUT may be a useful
predictive marker for CRC patients receiving chemotherapy in
future treatments.

MATERIALS AND METHODS

CRC Cohort Collection
This study includes samples of primary CRC patients that
underwent colon cancer resection and chemotherapy in
Guangxi Medical University Cancer Hospital between 2015 to
2021. The sample patients were divided into patients with tumor
metastasis and without tumor metastasis. We obtained the
mutation data by targeted sequencing. We also collected the
clinical data of the 35 patients, including their level of
metastasis, sex, TNM stage, Eastern Cooperative Oncology
Group Performance Status (ECOG), age, height, and weight.
All participants signed a written informed consent agreement,
and the work was approved by the Research Ethics Committee of
Guangxi Medical University Cancer Hospital.

To expand our data, we downloaded a CRC cohort for
chemotherapy (Mondaca-CRC; https://www.cbioportal.org/
study/clinicalData?id=crc_apc_impact_2020) from the
cbioportal web tool (Mondaca et al., 2020), as well as the
entirety of the exon sequencing data and clinical data
(including Tumor mutational burden (TMB), Microsatellite
instability (MSI) scores, MSI status, gender, TNM stage,
ECOG and age). We downloaded the RNA sequencing data,
mutation data, and clinical prognosis data of TCGA-COAD and
TCGA-READ from TCGA database (https://portal.gdc.cancer.
gov/) using TCGAbiolinks R package (Colaprico et al., 2016). We
then combined TCGA-COAD cohort and TCGA-READ cohort
into TCGA-CRC cohort, which was used for our subsequent
analysis. The TMB of TCGA-CRC was downloaded from the
previous literature (Lin et al., 2020). Clinical basic information
about Local-CRC, Mondaca-CRC and TCGA-CRC are defined in
Supplementary Table S1–S3, respectively.

Definition of the Abrupt State of HRPathway
We downloaded the gene list of
KEGG_HOMOLOGOUS_RECOMBINATION (Supplementary
Table S4) from MsigDB database (Liberzon et al., 2011). Firstly,
the synonymous mutations in the mutation data from Local-CRC,
Mondaca-CRC and TCGA-CRC were deleted, retaining only the
mutation data of non-synonymousmutation types. According to the
gene list of KEGG_homologus_recombination (HR), we counted the
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mutation number of the HR pathway in each patient. When the
number of gene mutations in a patient’s HR pathway was zero, we
labeled it theHRwild-type (WT). Otherwise, they were referred to as
the HR mutant-type (MUT).

Relationship Between HR Pathway
Mutation and Prognosis or Curative Effect
of CRC Patients
We used logistic regression analysis to explore the relationship
between the mutation status of HR pathway and whether
Local-CRC patients had metastasis after receiving
chemotherapy. In Mondaca-CRC cohort, univariable and
multivariate Cox regression analysis, as well as Kaplan-
Meier analysis, were used to evaluate the influence of HR
pathway mutation on the survival time of CRC patients after
receiving chemotherapy.

Path Enrichment Analysis
Using clusterProfiler R package and gene set enrichment analysis
(GSEA) (Yu et al., 2012), we analyzed the expression profile data
of the HR-MUT and HR-WT groups and compared the
enrichment scores and p values of the HR-MUT and HR-WT
groups to those of GO-BP, GO-CC, GO-MF, KEGG, and
REACTOME. We also used single sample GSEA (ssGSEA) to
analyze the pathway score of each CRC patient (Lin et al., 2022).

Statistical Analysis
The Mann-Whitney U test was used to compare the differences
between the continuity variables of the HR-MUT and HR-WT
groups, while Fisher’ exact test was used to compare the
differences in the classification variables of the HR-MUT and
HR-WT groups. The log-rank test in combination with Kaplan-
Meier analysis was used to calculate the p value. All statistical

analysis and visual analysis in this study were based on R
language. Here, the p value was bilateral and any p value of
less than 0.05 was regarded as statistically significant.

RESULTS

HR-MUT is Related to a Better Curative
Effect and Prognosis in CRC Patients
Receiving Chemotherapy
In order to explore the relationship between the mutation state of
HR pathway and the chemotherapy efficacy and prognosis of
CRC patients (Figure 1), we first analyzed whether HR-MUT can
influence the presence of tumor metastasis in CRC patients after
chemotherapy (Figure 2A). The results showed that HR-MUT
might indeed cause less tumor metastasis in CRC patients after
chemotherapy (OR < 0; p < 0.05). The results displayed in
Figure 2B demonstrate how HR-WT was often found in CRC
patients without tumor metastasis after chemotherapy (p < 0.05).
Meanwhile, as shown in Figure 2C, CRC patients with HR-MUT
often did not display any tumor metastasis after receiving
chemotherapy (p < 0.05). For Mondaca-CRC patients, our
univariable and multivariate Cox regression analysis showed
that HR-MUT could be used as an independent predictor of
chemotherapy prognosis for CRC patients (Figure 2D). Notably,
the Kaplan-Meier curve showed that HR-MUT had significantly
longer OS time than HR-WT (log-rank p = 0.017; HR = 0.69;
Figure 2E).

In order to further verify the relationship between HR-MUT
and the sensitivity of chemotherapeutic drugs, we evaluated the
IC50 value of several chemotherapeutic drugs using pRRophetic
algorithm combined with the CRC patient expression data. From
this analysis, we found that HR-MUT group displayed a

FIGURE 1 | Overall design of the study.
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FIGURE 2 | The prognosis value of the HR-MUT group (A). Logistic regressionmodel of the HR-MUT group and clinical characteristics in the Local-CRC cohort (B).
A comparison between the HRmutation statuses of themetastasis-yes group andmetastasis-no group (C). A comparison between the tumormetastasis statuses of the
HR-MUT and HR-WT groups (D). The univariable and multivariable cox regression model of the HR-MUT group and clinical characteristics in the Mondaca-CRC cohort
(E). KM curve showed the HR-MUT CRC patients displayed a significant improvement in OS time compared with the HR-WT CRC patients in the Mondaca-CRC
cohort (*p < 0.05).
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significantly lower IC50 value with the chemotherapeutic drugs
than the HR-WT group (Figure 3).

HR-MUT is Associated With Higher
Mutation Frequency, TMB, and MSIscore
Next, we compare the genemutation frequencies of theHR-MUTand
HR-WT groups to the top 20mutation frequencies found in the other
CRC cohorts. For Local-CRC, the HR-MUT group had significantly
higher mutation frequency than the HR-WT group in Gli3 (42.9% vs.
3.6%), BRCA2 (42.9% vs. 0.0%), and ITGB2 (42.9% vs. 0.0%) (all p <
0.05; Figure 4A). InMondaca-CRC, theHR-MUT groupwas notably
higher than the HR-WT group in RNF43 (17.3% vs. 6.2%), ARID1A
(21.0% vs. 4.9%), KMT2D (22.2% vs. 4.7%), PTPRS (18.5% vs. 4.7%),
ERBB4 (12.3% vs. 4.1%), PTPRT (11.1% vs. 4.1%), NF1 (9.9% vs.
4.1%), and PTEN (11.1% vs. 3.6%), all of which had significantly
increased mutation frequency (all p < 0.05; Figure 4B).
Supplementary Figures S1A,B shows the mutual exclusion and

co-occurrence of the top 20 gene mutations in the Local-CRC and
Mondaca-CRC cohorts, respectively, while Supplementary Figures
S2A,B show the gene mutation of HR-MUT patients in the Local-
CRC Cohort and Mondaca-CRC Cohort, respectively.

Compared with HR-WT, HR-MUT displayed a significantly
higher level of TMB in Local-CRC andMondaca-CRC (p = 2.55e-
04, Figure 4C; P = 5e-05, Figure 4D). We also found that HR-
MUT had a higher MSI score than HR-WT (p = 2.66e-02;
Figure 4E). Similarly, HR-MUT had a higher prevelence of
instable MSI status (p < 0.0001; Figure 4F).

HR-MUT is Related to the Less Active DNA
Repair Ability of CRC Patients and
Promoting Tumor Metastasis and
Metabolism
In order to further explore the difference between HR-MUT
and HR-WT in pathway activity, we utilized GSEA and

FIGURE 3 | A comparison between the IC50 values of common chemotherapy drugs used on HR-MUT and the HR-WT CRC patients (*p < 0.05; **p < 0.01; ***p <
0.001; ****p < 0.0001).
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FIGURE 4 | The mutation profiles of the HR-MUT and HR-WTCRC patients. Themutational landscape of the top mutated genemutations in the Local-CRC cohort
(A) andMondaca-CRC cohort (B). A comparison of the TMB levels of the HR-MUT group and HR-WT group in the Local-CRC cohort (C) andMondaca-CRC cohort (D).
A comparison between theMSI scores (E) andMSI statuses (F) the HR-MUT and HR-WT groups in the Mondaca-CRC cohort (*p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001).
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ssGSEA. Compared with HR-WT, HR-MUT displayed a
significant increase in immune activity, which is manifested
by an increase in antigen presenting ability, infiltration and
recruitment of CD4+ T cells, and production of INF-gamma
(ES > 0, p < 0.05, Figure 5A; Supplementary Table S5).
Additionally, HR-MUT had significantly reduced tumor
metabolic activity, as well as fatty acid metabolic activity
(ES < 0, p < 0.05; Figure 5B; Supplementary Table S5).
Compared with HR-WT, HR-MUT also had significantly
reduced WNT pathway activity (ES < 0, p < 0.05;
Figure 5C; Supplementary Table S5).

In order to further verify the channel activity, we used the
ssGSEA algorithm and obtained similar results (Figures
6A–D). From this, we found that HR-MUT had
significantly higher immune response ability than HR-WT
(Figure 6A), while HR-MUT had significantly lower DNA
repair ability, tumor metabolism ability, and tumor metastasis
ability (Figures 6B–D).

DISCUSSION

In this study, we found that HR-MUT is related to the reduced
occurrence of tumor metastasis in CRC patients who have
received chemotherapy. Additionally, HR-MUT was related to
a significantly longer OS time than HR-WT for CRC patients
receiving chemotherapy. More importantly, univariate and
multivariate cox regression models showed that HR-MUT acts
as an independent prognostic marker for CRC patients receiving
chemotherapy. From the data derived from the genome level
analysis, we found that HR-MUT CRC patients had significantly
increased TMB and MSI scores, as well as MSI-Instable status, in
comparison to HR-WT CRC patients. Based on the pathway
enrichment analysis, HR-MUT patients displayed a significant
reduction in their DNA repair ability, tumor survival or
metastasis related activity, and tumor metabolic activity.
Conversely, HR-MUT patients displayed a much higher level
of immune response activity. We also found that HR-MUT CRC
patients had a longer survival time after receiving
immunotherapy than HR-WT CRC patients. Therefore, we
speculate that HR-MUT may be a valuable prognostic marker
for CRC patients receiving chemotherapy.

The stronger immune response in the tumor
microenvironment may be one of the potential mechanisms
behind the better prognosis found in HR-MUT patients
receiving chemotherapy. In the HR-MUT group, the activity
of the interferon gamma production pathway was significantly
higher than that of the HR-WT group. In this vein, studies have
shown that although chemotherapeutic drugs can directly clear
divided endothelial cells by inhibiting enzymes involved in DNA
replication or microtubule metabolism, most of the vascular
injuries may be caused by chemotherapy-induced
inflammation (Kerbel and Kamen, 2004; Lee and Wu, 2015).
This is due to the fact that in the process of tumor rejection
induced by cyclopamine, immune downregulation is activated to
produce interferon-γ (IFN-γ), thus inhibiting angiogenesis (Ibe
et al., 2001). IFNγ-γ-mediated vascular inhibition is one of the
important anti-tumor mechanisms of T cells (Qin and
Blankenstein, 2000; Kammertoens et al., 2017), as it can
reduce the expression of Dll4 signaling pathway in endothelial
cells, destroy the connection between endothelial cells, and resist
angiogenesis in tumor tissue (Deng et al., 2014). However, in a
study on early treatment of tumors that combined IFNγ with
chemotherapy, it was found that IFNγ could in fact increase the
mortality rate (Alberts et al., 2008; Zarogoulidis et al., 2013). As
for the activity of IL-6 production, the rates in HR-MUT were
significantly lower than that in HR-WT. Further research on this
topic has revealed that IL-6 activates the STAT3 signaling

FIGURE 5 | The GSEA results. A comparison of the enrichment scores
of immune-related (A), tumor metabolism (B) and tumor metastasis/growth
(C) found in the HR-MUT and HR-WT groups based on the GSEA algorithm.
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pathway of tumor cells and promotes the expression of VEGF,
thereby inducing angiogenesis (Wei et al., 2003). We also found
that the activation of macrophages in the HR-MUT group was
significantly lower than that in the HR-WT group. Earlier
research on this shows that macrophages are one of the main
cell types in the tumor microenvironment, and they can promote
cell survival and chemotherapy resistance by releasing interleukin
-17 (Guo et al., 2017). Similarly, according to an earlier study by
Ruffell. et al., it was found that M2 macrophage inhibited the
production of IL-12 by dendritic cells through the over-secretion
of IL-10, therefore blocking the immune response of CD8+T cells
(Ruffell et al., 2014).

Tumor metabolic reprogramming may also be one of the
important mechanisms involved in CRC chemotherapy resistance.
In our study, we found that lipid metabolism was significantly down-
regulated in HR-MUT. Beyond our own results, other studies have

confirmed that lipid metabolism rearrangement is involved in the
regulation of the CRC cell chemotherapy resistance mechanism
(Fiucci et al., 2000; Cotte et al., 2018), plays a role in the
occurrence and development of CRC (Hwang et al., 2014; Liu
et al., 2016; Mihajlovic et al., 2019; Liu et al., 2020), and has an
impact on the prognosis (de Figueiredo Junior et al., 2018). Research
has also found that lipid droplets (LD) levels in CRC cells are
significantly higher than in those of normal cells, indicating that it
may play a key role in the development of CRC (Accioly et al., 2008).
Many studies have confirmed that lipid metabolism-related enzymes
participate in the occurrence and development of CRC (Liu et al.,
2020), regulate cell proliferation and invasion (Sánchez-Martínez
et al., 2015; Nath and Chan, 2016), and participate in drug resistance
(Fiucci et al., 2000; Cotte et al., 2018). Because of this, fatty acids,
phospholipids, and cholesterol are synthesized actively, and their
concentrations are significantly increased in tumor tissues (Janardhan

FIGURE 6 | The ssGSEA results. A comparison between the ssGSEA scores in the category of immune-related (A), DNA-related (B), metabolism-related (C) and
tumor metastasis/growth related (D) of the HR-MUT and HR-WT based on the ssGSEA algorithm (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9209398

Lin et al. HR and Chemotherapy in CRC

156

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


et al., 2006; Lupu and Menendez, 2006). With this in mind, some
anti-tumor drugs have been developed to significantly reduce cell
cholesterol levels by blocking different steps of cholesterol
biosynthesis (Eliassen et al., 2005; Gorin et al., 2012; Luu et al.,
2013). Except for lipid metabolism, we found that the activity of
glutathione synthesis in HR-MUT group was significantly lower than
that inHR-WT group. Glutaminemetabolism can also promote drug
resistance in tumors by influencing the post-translational
modification of proteins. Treatment with glutamine analogue
DON can increase the sensitivity of pancreatic cancer to
gemcitabine. In past studies, researchers have found that DON
can inhibit hexosamine pathways, which leads to a change in the
glycosylation level of protein groups in the cell as while. This
ultimately affects the sensitivity of tumors to chemotherapy (Chen
et al., 2017). Additionally, glutamine metabolism can affect the drug
resistance of tumors epigenetically. In KRAS mutant colon cancer
cells, SLC25A22 promotes the accumulation of succinic acid, a
metabolite of glutamine in the tricarboxylic acid cycle, which
further increases the local methylation degree of DNA and then
promotes the activation of Wnt signaling pathway. This sequence of
events leads to tolerance of colon cancer cells to chemotherapeutic
drugs (Wong et al., 2020).

In addition to immune response and tumor metabolism
reprogramming, pathways related to tumor growth and metastasis
may also be involved in CRC chemotherapy resistance. Based on
GSEA and ssGSEA, we found that the WNT pathway activity was
significantly upregulated in HR-WT. According to Nagaraj et al., the
expression levels of β-catenin and survivin inA549 sensitive and drug-
resistant cells were higher than those in sensitive cells after cisplatin
treatment (Nagaraj et al., 2015). Furthermore, Novetsky et al.‘s
research indicated that inhibiting the activity of GSK-3β in cells
can activate the WNT pathway, which mediates chemotherapy
resistance (Novetsky et al., 2013). Zhang et al. found that
interfering with β-catenin using siRNA can improve the sensitivity
of tumor cells to chemotherapeutic drugs, further proving that the
WNT pathway plays an important role in chemotherapeutic drug
resistance (Zhang et al., 2015). In our own research, we found that
VEGFR2 pathway was significantly activated in HR-WT. Similarly,
Mann et al. inhibited the phosphorylation of VEGFR2 in tumor cells
and observed that while blood vessels in the tumor remained normal,
the sensitivity of the tumor cells to chemotherapeutic drugs such as
cyclophosphamide and cisplatin was enhanced (Stockmann et al.,
2008).

CONCLUSION

In summary, our research shows that HR-MUT is associated with less
tumor metastasis in CRC patients after receiving chemotherapy. The
HR-MUT CRC patients had significantly improved OS time and, as
such, HR-MUT could be used as a predictor of chemotherapy
prognosis in the future treatment plan. Additionally, HR-MUT
patients had higher TMB levels, MSI scores, and immune response

activity, while they also had lower tumor survival, metastasis pathway
activity, and tumor metabolic reprogramming activity. The activity of
these pathways may greatly increase the sensitivity of HR-MUT
patients to chemotherapy drugs. Therefore, HR-MUT may be used
as a new predictive marker for CRC patients who are receiving
chemotherapy treatment.
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Pan-cancer analysis suggests
histocompatibility minor 13 is an
unfavorable prognostic
biomarker promoting cell
proliferation, migration, and
invasion in hepatocellular
carcinoma
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Histocompatibility Minor 13 (HM13) encoding the signal peptide peptidase plays

an important role in maintaining protein homeostasis but its role in tumors

remains unclear. In this study, 33 tumor RNA-seq datasets were extracted from

The Cancer Genome Atlas (TCGA) database, and the pan-cancer expression

profile of HM13 was evaluated in combination with The Genotype-Tissue

Expression (GTEx) datasets. The prognostic significance of abnormal

HM13 pan-cancer expression was evaluated by univariate Cox regression

and Kaplan-Meier analyses. Co-expression analysis was performed to

examine the correlation between abnormal pan-cancer expression of

HM13 and immune cell infiltration, immune checkpoint, molecules related to

RNA modification, tumor mutational burden (TMB), microsatellite instability

(MSI), and other relatedmolecules. CellMiner database was used to evaluate the

relationship between the expression of HM13 and drug sensitivity. The results

showed overexpression of HM13 in almost all tumors except kidney

chromophobe (KICH). Abnormally high expression of HM13 in adrenocortical

carcinoma (ACC), kidney renal papillary cell carcinoma (KIRP), uveal melanoma

(UVM), liver hepatocellular carcinoma (LIHC), brain lower grade glioma (LGG),

head and neck squamous cell carcinoma (HNSC), and kidney renal clear cell

carcinoma (KIRC) was associated with poor prognosis. Expression of

HM13 correlated strongly with pan-cancer immune checkpoint gene

expression and immune cell infiltration. Drug sensitivity analysis indicated

that the expression of HM13 was an excellent predictor of drug sensitivity.

We verified that both mRNA and protein levels of HM13 were abnormally

upregulated in HCC tissues, and were independent risk factors for poor

prognosis. Furthermore, interference with HM13 expression in Huh-7 and

HCCLM3 cells significantly inhibited proliferation, migration, and invasion.

Therefore, our findings demonstrate that HM13 is a potential pan-cancer
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prognostic marker, thus providing a new dimension for understanding tumor

development.

KEYWORDS

histocompatibility minor 13, pan-cancer, prognostic biomarker, drug sensitivity, cell
proliferation

Introduction

Cancer is a grave threat to public health worldwide owing to

the high morbidity and mortality (Wu et al., 2019). In recent

years, the overall death rate due to cancer in developed countries

such as the United States has decreased owing to advanced

medical technology and the concept of precise and

individualized medicine, however, the situation remains

unfavorable (Golemis et al., 2018). In the United States, daily,

1,700 people die of cancer (Delman, 2020). Incidence and

mortality of cancer in developing countries are showing an

increasing trend. With the rise in the aging population

globally, researchers predict that the incidence of cancer will

double by 2070 relative to 2020 (Soerjomataram and Bray, 2021).

In recent years, although the application of immunotherapy and

individualized targeted therapy has been successful to an extent,

the rate of effectiveness is only 20%, and that of survival among

patients remains unsatisfactory. Therefore, the identification of

new tumor markers is necessary to facilitate early diagnosis and

enhance the prognostic assessment of cancer, thereby increasing

the overall survival rate.

The signal peptide peptidase encoded by Histocompatibility

Minor 13 (HM13) is localized to the endoplasmic reticulum and

is mainly implicated in the regulation of the US2 pathway, which

in turn is responsible for the cleavage of the pro-protease and

catalytic hydrolysis of proteins in the membrane (Loureiro et al.,

2006). Previous studies suggest that HM13 is crucial in the

regulation of the production of lymphocyte surface (HLA-E)

epitopes that generate MHCI-like signal peptides recognized by

the immune system (Lemberg et al., 2001). Moreover,

accumulating evidence shows that HM13 is involved in cell

signaling and intracellular communication (Brown et al., 2000;

Urban et al., 2001). Jian Zhou et al. show that HM13 is highly

expressed in lung cancer tissues and is a potential marker for

early diagnosis of lung cancer (Zhou et al., 2021). Tine Goovaerts

et al. demonstrate that methylation at the promoter level in

HM13 is abnormally dysregulated in breast cancer, thus leading

to its aberrantly high expression and underlies its involvement

(Goovaerts et al., 2018). Currently, very little research has

disclosed how HM13 plays a role in tumor development.

Further, its pan-cancer expression and role in tumorigenesis

remain unclear.

In recent years, with advancements in -omics technology and

the application of high-throughput sequencing methods, large-

omics data have been generated, which are expected to facilitate

studies on the occurrence and related mechanisms underlying

diseases (Sherman and Salzberg, 2020). Thus, in this study, we

analyzed the pan-cancer expression of HM13 in tissues using

RNA-seq datasets in The Cancer Genome Atlas (TCGA). Relying

on the large clinical follow-up data, we investigated the effects of

abnormal HM13 expression on overall and disease-free survival.

Moreover, we elucidated the potential mechanism underlying

HM13 action in tumor development and genesis and identified

the correlation of HM13 expression with tumor mutation load,

immune cell invasion, microsatellite instability, and tumor purity

in the tumor microenvironment. Additionally, by

transcriptomics and proteomics, we verified the expression

and prognostic value of HM13 in hepatocellular carcinoma

(HCC). Furthermore, the effects of HM13 were examined on

cellular migration, proliferation, and invasion in HCC lines.

Herein, the pan-cancer expression of HM13 in tissues was

described using multi-omics data, thus providing a new

dimension for understanding the occurrence of tumors.

Materials and methods

Acquisition of transcriptomic and clinical
data

The unified standardized TCGA pan-cancer dataset and

RNA-seq data from TCGA and GTEx in TPM format

uniformly processed by the toil method were downloaded

from the UCSC database (https://xenabrowser.net/). All

relevant survival data from clinical follow-up were obtained.

Transcriptome data of HCC (ICGC-LIRI-JP) and corresponding

clinical data were extracted from the ICGC database (https://dcc.

icgc.org/). Protein data of HCC (PDC000198) processed by

Z-score standardization and the corresponding follow-up

information were obtained from the CPTAC database (https://

pdc.cancer.gov/). In addition, we obtained the microarray data

and RNA-Seq of HCC from Gene Expression Omnibus (GEO)

database, including GSE36376, GSE63898, GSE64041 and

GSE202853 cohort. Microsatellite instability scores for

33 tumors were obtained from the literature review

(Bonneville et al., 2017). Level 4 Simple Nucleotide Variation

dataset for all TCGA samples processed using the

MuTect2 software was obtained from TCGA (https://portal.

gdc.cancer.gov/), and subsequently, the tumor mutation

burden was calculated (Beroukhim et al., 2010). Purity and

ploidy data for several tumors were obtained from the

literature (Thorsson et al., 2018).
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Differential analysis and prognostic
significance of HM13 expression

The differential expression of HM13 between normal

and tumor tissues was analyzed by the Wilcoxon rank-sum

test. The “survminer” and “survival” packages were used

for Kaplan-Meier and univariate COX analyses to examine

the effects of HM13 expression on the progression-free

survival and overall survival; to estimate the

statistical significance of the results, the log-rank test was

employed.

Correlation and functional enrichment
analyses

Tumour Immune Estimation Resource is a website

(TIMER, https://cistrome.shinyapps.io/timer/) used for

comprehensively evaluating the levels of tumor immune

cells infiltration, and was used to obtain information on

six types of immune cell invasion in common tumors in

TCGA. The corr. test function in the psych package (R

software, version 2.1.6) was employed to calculate the

Pearson’s correlation coefficient between pan-cancer

HM13 expression and immune cell infiltration score.

Additionally, we also calculated the Pearson’s correlation

coefficient between HM13 expression and the previously

reported immune checkpoint genes, RNA modified genes,

TMB, MSI, purity, and ploidy in tumors. The functions of the

GSVA package were used to perform ssGSEA analysis to

predict the infiltration of 24 types of immune cells in HCC

and calculate the association between immune cell

infiltration levels and the HM13 expression (Bindea et al.,

2013). The clusterProfiler package in R was used for

GO annotation and KEGG pathway enrichment analyses.

To construct the potential interaction network for

HM13, the GeneMANIA database (http://genemania.org/)

was used.

Drug sensitivity analysis of HM13

CellMiner database integrates the correlation between

drug sensitivity of tumor cells and genome data for tumor

treatment (Reinhold et al., 2012). The CellMiner database

was used to evaluate HM13 expression and drug sensitivity

data. The Genomics of Drug Sensitivity in Cancer (GDSC)

database (https://www.cancerrxgene.org/) was used to obtain

drug response data for 265 compounds in 1,001 cancer cell

lines. Additionally, the cell lines were categorized as high

expression and low expression based on the median

HM13 expression. The sensitivity of both cell lines to

drugs was compared.

Cell culture

Human normal hepatocytes, LO2, and the HCC cell lines,

including HCCLM3, Huh7, and HepG2, were obtained from

American Type Culture Collection (ATCC, Manassas, VA,

United States). Huh7 and HCCLM3 cells were grown in

DMEM supplemented with 10% fetal bovine serum (FBS).

HepG2 cells were grown in MEM supplemented with 10%

FBS. LO2 cells were grown in RPMI-1640 supplemented with

10% FBS. All cells were cultured in an incubator at 37°C with

5% CO2. Transfection were performed with 70%–80% cell

density, according to the instructions of Lipo3000 (L3000015,

Invitrogen, United States). ShRNA was expressed in pRNA-

H1.1, and the sequences of shRNA-HM13 were as follows:

shRNA-1, GCUGGAGAAGAAAGAGAAATTUUUCUC

UUUCUUCUCCAGCTT; shRNA-2, GGCUGGAGAAGA

AAGAGAATTUUCUCUUUCUUCUCCAGCCTT; shRNA-

3, UGACAGAGAUGUUCAGUUATTUAACUGAACAUC

UCUGUCATT.

Quantitative reverse transcription-
polymerase chain reaction

Total RNA in cells was extracted using the TRIpure reagent

(RP1001, BioTeke, Beijing, China). The concentration of RNA in

each sample was measured on an ultraviolet spectrophotometer

(NANO 2000; Thermo, United States). The RNA was reverse

transcribed into cDNA (D7160L, Beyotime, Shanghai, China)

and stored at −80°C till further use. The primer sequences of

HM13 were 5′-AGCCTGCCCTCCTATACCT-3′ and 3′-TGT
TCCCTCTTTGGATTCTG-5′, and the primer sequences of β-

actin were 5′-GGCACCCAGCACAATGAA-3′, 3′-TAGAAG
CATTTGCGGTGG-5’. Subsequently, a real-time polymerase

chain reaction (RT-PCR) quantitative fluorescence analysis

was conducted for four replicates. The RT-PCR reaction

conditions were as follows: cDNA template 1μL, the primers

(10 μM) 0.5 μl, SYBR GREEN mastermix (PC1150, Solarbio,

Beijing, China) 10 μl, and the volumes were adjusted to 20 μl

with dd H2O. The results were standardized against the gene

expression of β-actin, and the relative levels of expression were

estimated by the 2−ΔΔ Ct method.

Western blot analysis

After the cell confluency reached 90%, protein extraction,

protein quantitative analysis, SDS-PAGE (WLA025, wanleibio,

China) transferring onto PVDF membrane (IPVH00010,

Millipore, United States), blocking with skim milk (Q/

NYLB0039S, YiLi, China), incubation with primary antibody

(20416-1-AP, Proteintech, China), and subsequently, secondary

antibody (WLA023, wanleibio, China) was performed. Finally,
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the results were observed by luminescence using the ECL

substrate (WLA003, wanleibio, China). The Gel image

processing system (Gel-Pro-Analyzer software) (WD-9413B,

LIUYI, China) was used to analyze the optical density values

of the target bands.

CCK8 assay

When the confluency of Huh7 and HCCLM3 cells reached

90%, these were collected and seeded into 96-well culture plates

with 3×103 cells in each well. The experiment was classified into

three, namely, the no-operation, the empty vector, and the sh-

HM13 groups. Each group was designed with five replicates. The

CCK-8 assay was performed at 0, 24, 48, 72, and 96 h.

Clone formation assay

Cells in each group were collected and inoculated in Petri

dishes at the amount of 400 cells per dish. After 14 days, visible

clones formed. The cells were washed 2 times with PBS after

fixation of cells with paraformaldehyde (C104188, Aladdin,

China). Giemsa R1 solution (D010, Nanjing Jiancheng, China)

was added in the plate to stain for 1 min. We then washed the

plate three times with water after satisfactory staining with

R2 solution.

Wound healing assay

The cells were collected, counted, and inoculated in a six-well

plate. After adhering, the cells were transfected; 48 h following

transfection, the original medium was replaced with the serum-

free medium containing 1 μg/ml mitomycin C, and 1 hour later,

the scratch test was performed using a 200 μl pipette

tip. Subsequently, cells were photographed at 24 and 48 h.

Transwell migration and invasion assay

The transwell chambers were constructed usingMatrigel glue

(356,234, Corning, United States). The cells were grown in six-

well plates. When the confluency reached 90%, the cells were

digested and diluted to a density of 5×104 cells/well with serum-

free medium. The invasion assay was performed as follows: Cells

in the Transwell containing Matrigel glue were seeded in the

upper chamber of 24-well plates, and 800 μl of the medium

supplemented with 10% FBS was added to the lower chamber.

The migration assay was performed as follows: In 24-well plates,

the coated lower chambers of Transwell system were placed with

medium containing 10% FBS in 800 μl. Upper chambers were

filled with a 200 μl cell suspension. PBS washed the Transwell and

4% paraformaldehyde phosphate buffer was applied (20 min at

room temperature), and stained with 0.5% crystal violet (5 min).

Cells counting were performed 24 h later.

Statistical analyses

GraphPad Prism 7.0 and R software (version 4.1.1) were used

for calculations, graph plotting, and statistical analyses of all data

in this study. For comparison between two groups of continuous

variables, the statistical significance for the normal distribution

was calculated by independent Student t-test, while differences

between the non-normally distributed variables were estimated

by Mann-Whitney U-test (Wilcoxon rank-sum test). All

statistical p-values were two-tailed, with p < 0.05 indicating

significance.

Results

Pan-cancer expression of HM13

RNA-seq data from TCGA showed that HM13 mRNA

expression was up-regulated in several tumor tissues,

including uterine corpus endometrial carcinoma (UCEC),

cholangio carcinoma (CHOL), glioblastoma multiforme

(GBM), breast invasive carcinoma (BRCA), KIRC, HNSC,

LIHC, KIRP, lung squamous cell carcinoma (LUSC), lung

adenocarcinoma (LUAD), bladder urothelial carcinoma

(BLCA), colon adenocarcinoma (COAD), esophageal

carcinoma (ESCA), prostate adenocarcinoma (PRAD),

stomach adenocarcinoma (STAD), and rectum

adenocarcinoma (READ) (Figure 1A). However, its level of

expression in tumor tissues from patients with KICH was

lower relative to the normal tissues (Figure 1A). Since TCGA

database contains fewer normal samples, we combined the

standardized GTEx and TCGA data from the UCSC database.

Similarly, HM13 expression tended to be high in all tumor types

(Figure 1B). Furthermore, paired analysis was performed to

determine HM13 expression in tumors, and the results

showed high HM13expression in several tumor tissues,

including UCEC, CHOL, BRCA, KIRC, HNSC, LIHC, KIRP,

LUSC, LUAD, BLCA, COAD, ESCA, PRAD, STAD, and READ

(Figure 1C).

Pan-cancer prognostic value of
HM13 expression

To examine the effect of abnormal pan-cancer

HM13 expression on the overall survival time, a univariate

Cox regression analysis was conducted. The results showed

that in several tumors, abnormally high HM13 expression
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predicted worse overall survival time, including the ACC, BRCA,

CESC, KIRC, KIRP, LAML, LGG, LIHC, LUAD, READ and

UVM (Supplementary Figure S1). Next, Kaplan-Meier survival

analysis was performed and the results showed that abnormally

high expression of HM13 was associated with shorter overall

survival time in ACC, KIRP, UVM, LIHC, LGG, LAML, HNSC

and KIRC (Figures 2A–H). Next, the influence of

HM13 expression on disease-free survival was investigated,

and results of the univariate Cox analysis suggested that

patients with ACC, CESC, KIRC, KIRP, LGG, LIHC, TGCG,

and UVM showing high expression of HM13 had worse disease-

free survival (Supplementary Figure S2). Kaplan-Meier analysis

showed that abnormally high expression of HM13 correlated

significantly with shorter disease-free survival time in ACC,

LGG, HNSC, LIHC, KIRC, LUSC, KIRP, and UVM

(Figures 3A–H).

Correlation analysis for HM13 expression
with levels of immune infiltration and RNA
modification-related molecules

Existing literature confirms that the immune

microenvironment is crucial for the development and

prognosis of tumors. Previous studies show that HM13 is

abnormally high expressed in several tumors, which is related

FIGURE 1
Differential expression analysis of HM13. (A). The mRNA Expression level of HM13 from the TCGA database. (B). The mRNA expression of
HM13 from TCGA and GTEx databases. (C). The expression differences of HM13 in tumor and corresponding adjacent tissues were compared with
paired analysis. Mann-Whitney U test was used for this analysis, ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. ACC: Adrenocortical carcinoma,
BLCA: Bladder urothelial carcinoma, BRCA: Breast invasive carcinoma, CESC: Cervical and endocervical cancers, CHOL: Cholangiocarcinoma,
COAD: Colon adenocarcinoma, DLBC: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma, ESCA: Esophageal carcinoma, GBM: Glioblastoma
multiforme, HNSC: Head and Neck squamous cell carcinoma, KICH: Kidney Chromophobe, KIRC: Kidney renal clear cell carcinoma, KIRP: Kidney
renal papillary cell carcinoma, LAML: Acute Myeloid Leukemia, LGG: Brain Lower Grade Glioma, LIHC: Liver hepatocellular carcinoma, LUAD: Lung
adenocarcinoma, LUSC: Lung squamous cell carcinoma, MESO: Mesothelioma, OV: Ovarian serous cystadenocarcinoma, PAAD: Pancreatic
adenocarcinoma, PCPG: Pheochromocytoma and Paraganglioma, PRAD: Prostate adenocarcinoma, READ: Rectum adenocarcinoma, SARC:
Sarcoma, SKCM: Skin Cutaneous Melanoma, STAD: Stomach adenocarcinoma, STES: Stomach and Esophageal carcinoma, TGCT: Testicular Germ
Cell Tumors, THCA: Thyroid carcinoma, THYM: Thymoma, UCEC: Uterine Corpus Endometrial Carcinoma, UCS: Uterine Carcinosarcoma, UVM:
Uveal Melanoma.
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to the prognosis of these patients. However, the relationship

between HM13 expression and the immune microenvironment

remains unclear. The TIMER database provides information on

six types of immune cell invasion in 39 tumors. Thus, using the

TIMER database, we analyzed the expression of HM13 and the

levels of immune cell infiltration. The results suggested that

HM13 was correlated significantly with B cells in several

tumors, and other immune cells in LGG, KIRC, THYM,

GBM, and LIHC (Figure 4A). Next, we obtained 60 immune

checkpoint genes (24 inhibitory and 36 stimulatory) from

relevant literature and analyzed the correlation between

HM13 expression and immunosuppressive points (Thorsson

et al., 2018). HM13 expression was correlated significantly

with CD276, VEGFB, LAG3, TNFSF9, and TNFRSF18

(Figure 4B). Furthermore, HM13 showed a significant

correlation with multiple immunosuppressive point genes

implicated in LGG, UVM, LIHC, KIRC, and other tumors

(Figure 4B). RNA methylation is reportedly involved in

maintaining normal physiology, as well as, pathogenesis and

development of diseases. We analyzed the correlation between

HM13 expression and RNA modification-related molecules,

including m1A, m5C, and m6A. A significant association of

HM13 expression with RNA modification-related molecules in

OV, KICH, ACC, GBM, LGG, and other tumors was observed

(Figure 4C).

Correlation between HM13 expression
and genome heterogeneity

Genomic heterogeneity is an important molecular biomarker

for several tumor types and has important clinical applicability.

Thus, we examined the relationship between HM13 expression

and MSI, TMB, purity, and ploidy. MSI analysis showed that

HM13 expression correlated significantly with MSI of COAD,

DLBC, KICH, LGG, READ, UCEC, and UVM (Figure 5A). TMB

analysis showed that a significant correlation was present

between HM13 expression with BRCA, COAD, KIRC, LGG,

LIHC, LLUAD, PAAD, PCPG, SARC, and UCEC (Figure 5B).

Purity analysis showed that HM13 expression also showed a

marked association with the tumor purity in SARC, UVM, KIRC,

GBM, UCS, and LGG (Figure 5C). Further, ploidy analysis

showed that HM13 expression was correlated significantly

with polyploidy in COAD, STAD, LIHC, STES, READ, and

PAAD (Figure 5D).

Drug sensitivity analysis

Given the developments in precision and individualized

medicine, the effects of gene expression patterns on drug

sensitivity are increasingly being appreciated. Hence, we

FIGURE 2
Effects of pan-cancer HM13 expression on overall survival. Kaplan-Meier method was used to evaluate the effects of abnormal expression of
HM13 on the overall survival rate in ACC (A), KIRP (B), UVM (C), LIHC (D), LGG (E), LAML (F), HNSC (G), and KIRC (H). The p-value was calculated using
the log-rank test.
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evaluated the relationship between the mRNA expression of

HM13 and drug sensitivity. Based on the CellMiner database,

10 drugs associated with the expression of HM13 were identified.

Among them, oxaliplatin (Cor = -0.378, p = 0.003), geldanamycin

analog (Cor = -0.273, p = 0.035), B = by-product of CUDC-305

(Cor = -0.325, p = 0.011), amonafide (Cor = -0.306, p = 0.018),

palbociclib (Cor = -0.296, p = 0.021), AT-13387 (Cor = -0.275,

p = 0.033), pyrazoloacridine (Cor = -0.287, p = 0.026), and

paclitaxel (Cor = -0.270, p = 0.037) showed a significant negative

correlation with the expression of HM13 (Figure 6). However, a

significant positive correlation was observed between sensitivity

to everolimus (Cor = 0.330, p = 0.010) and rapamycin (Cor =

0.266, p = 0.040) and the expression of HM13 (Figure 6).

Additionally, GDSC data showed that low HM13 expression

has a lower IC50 value, including AICAR, AKT. Inhibitor,

AMG.706, Axitinib, and AZD.0530 (Supplementary Figure

S3). These results suggested that the expression of

HM13 might affect the sensitivity of antitumor drugs.

Diagnostic and prognostic value of
HM13 in HCC

Based on the results of the above analyses, we investigated the

role of HM13 in the occurrence and development of HCC. First,

we evaluated the diagnostic value of HM13 expression in HCC.

ROC analysis showed that the expression of HM13 could

differentiate tumor tissues from normal tissues to a certain

extent, and the AUC was 0.962 (Figure 7A). Subsequently, we

evaluated the predictive efficacy of HM13 expression in the

overall survival time of patients with HCC, and the AUCs for

1-, 3-, and 5-years were 0.686, 0.660, and 0.654, respectively

(Figure 7B). In addition, we also found that HM13 expression

was significantly higher in the high histologic grade and high

AFP expression compared with low histologic grade and lowAFP

expression (Supplementary Figures S4A,B). Methylation analysis

showed that significantly higher promoter methylation level of

HM13 was observed in normal tissue (Supplementary Figure

S4D). Genetic alteration displayed that 1.4% of HCC patients

harbor HM13 amplification mutation (Supplementary Figure

S4E). Moreover, we also examined the relationship between

HM13 expression and the expression of EMT-associated genes

(Supplementary Figure S4F). Next, the clinical data were

integrated, and by univariate and multivariate Cox regression

analyses, we confirmed that HM13 expression was an

independent prognostic factor for HCC (Figure 7C). To

promote the application of HM13 expression in the

assessment of clinical prognosis, we constructed a nomogram

in combination with the pathological staging (Figure 7D).

Calibration analysis suggested a relatively stable performance

FIGURE 3
Effects of pan-cancer HM13 expression on disease-free survival. Kaplan-Meier methodwas used to evaluate the effects of abnormal expression
of HM13 on the disease-free survival rate in ACC (A), LGG (B), HNSC (C), LIHC (D), KIRC (E), LUSC (F), KIRP (G), and UVM (H). The p-value was
calculated using the log-rank test.
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of the nomogram for predicting the 1-, 3-, and 5-years overall

survival rate of patients with HCC (Figure 7E). ROC analysis

showed that the nomogram was robust with AUCs of 0.731,

0.739, and 0.702, respectively, for 1-, 3-, and 5-years overall

survival rates of patients with HCC (Figure 7F).

To further determine the expression and prognostic value of

HM13 in HCC, RNA-seq data were obtained from the ICGC

database and standardized processing was performed.

Differential analysis indicated significant overexpression of

HM13 in HCC tumor tissues (Figure 8A). In addition, the

analysis from GEO datasets also indicated that HCC tissues

highly expressed HM13, while it was poorly expressed in the

non-tumor tissues (Supplementary Figures S5A–D). The

Kaplan-Meier survival curve analysis demonstrated that

patients with high HM13 expression had worse overall

survival (Figure 8B). Results of univariate and multivariate

Cox regression indicated that HM13 expression was

independent of other clinical factors for HCC prognosis

(Figure 8C). Additionally, Z-score normalized HCC protein

expression profiles were obtained from the CPTAC database.

Subsequently, we analyzed the protein expression of

HM13 between normal and HCC tumor tissues, and

significant HM13 overexpression was observed in HCC tumor

tissues (Figure 8D). As well, a higher expression level of

HM13 was observed in high tumor stages compared to low

tumor stages (Supplementary Figure S4C). Kaplan-Meier

survival curve also demonstrated that high HM13 expression

was associated with a poor prognosis (Figure 8E). Furthermore,

univariate and multivariate Cox regression analysis also

indicated that HM13 expression at the protein level was an

independent prognostic factor for HCC (Figure 8F).

Based on TCGA RNA-seq data and the ssGSEA algorithm,

we evaluated the infiltration levels of 24 kinds of immune cells in

HCC and calculated their correlation with HM13 expression.

FIGURE 4
Correlation analysis for HM13 expression with immune cell infiltration levels, immune checkpoints, and RNA modification-related molecules.
(A). The correlation betweenHM13 expression and tumor infiltration levels was based on the TIMER database. (B). Pan-cancer co-expression analysis
for HM13 and immune checkpoint genes. (C). Co-expression analysis for HM13 and RNAmodification-relatedmolecules. *p < 0.05, **p <0.01, ***p <
0.001, ****p < 0.0001.
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FIGURE 5
Correlation analysis for HM13 expression with MSI (A), TMB (B), purity (C), and ploidy (D). *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 6
Relationship between HM13 expression and drug sensitivity.

Frontiers in Pharmacology frontiersin.org09

Liu et al. 10.3389/fphar.2022.950156

168

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.950156


HM13 expression showed a strong positive correlation with

TH2 cells, NK CD56 cells, and TFH cells, while a negative

correlation was observed with Tcm and Th17 cells

(Figure 9A). To elucidate the potential function of

HM13 expression in HCC, we classified the samples into

high- and low-risk groups based on the median expression of

HM13, the differential genes between the two groups were

obtained, and GO and KEGG enrichment analyses were

performed. Results of enrichment analysis showed that

HM13 was mainly associated with cellular potassium ion

transport, glycolysis/gluconeogenesis, IL-17 signaling pathway,

and the PPAR signaling pathway (Figures 9B,C). Subsequently,

we identified potential interaction of HM13 using GeneMAN.

The results suggested the potential interaction of HM13 with

SPPL3, SPPL2C, SPPL2A, and SPPL2B (Figure 9D).

HM13 was associated with the
proliferation, migration and invasion of
HCC cells

The immunohistochemical data for HM13 expression in

HCC tissues were extracted from the HPA database (https://

www.proteinatlas.org/). The results showed a higher

HM13 expression in HCC tumor tissues (Figure 10A).

Subsequently, we further investigated the mRNA and protein

level expression of HM13 in HCC cell lines. The results showed

higher mRNA and protein levels of HM13 expression in HCC

lines, including HCCLM3, Huh-7, and HepG2, as compared to

the normal liver cell line, LO2 (Figures 10B,C). A total of three

shRNA constructs of HM13, namely sh1-HM13, sh2-HM13, and

sh3-HM13 were verified for their interference efficiency in Huh-

7 cells. The results showed that sh2-HM13 significantly

interfered with the mRNA and protein expression of HM13

(Figures 10D,E) and was subsequently selected for further

experiments; it was named sh-HM13 (Figure 10F).

CCK8 assays proved that interfering HM13 expression could

significantly inhibit the proliferation of Huh-7 cells (Figure 11A).

Assays of clone formation showed that the knockdown

HM13 inhibited the capacity of Huh-7 cells to form colonies

(Figure 11B). The results of the scratch assay suggested that

interfering with HM13 expression could significantly lead to

inhibited cell migration ability (Figures 11C,D). Further, results

of the transwell migration and invasion assay confirmed that

interfering with HM13 expression could significantly suppress

cell migration and invasion abilities (Figure 11E). Moreover, we

FIGURE 7
Diagnostic and prognostic value of HM13 expression in hepatocellular carcinoma. (A). ROC analysis for HM13 in the diagnosis of hepatocellular
carcinoma. (B). ROC analysis for HM13 for predicting 1-, 3-, and 5-years overall survival in patients with hepatocellular carcinoma. (C). Univariate and
multivariate Cox regression analyses show that HM13 is an independent predictor of poor prognosis in hepatocellular carcinoma. (D). The
nomogram was constructed by combining pathological staging and HM13 expression. (E). Calibration was used to evaluate the validity of the
nomogram. (F). ROC analysis was used to evaluate the predictive efficacy of the nomogram.
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knocked downHM13 inHCCLM3 cells (Figure 12A). The results

of CCK8 assay revealed that suppression of HM13 significantly

reduced cell viability (Figure 12B). Additionally, the scratch test

and transwell experiments demonstrated that knockdown

HM13 inhibited metastasis and invasion of HCCLM3 cells

substantially (Figures 12C–E).

Discussion

Cancer is the leading threat to human health because of its

complicated pathogenesis, rapid progression, and lack of effective

treatment. Understanding high-risk factors for cancer, early

detection, and effective treatment are prerequisites to improve

the overall survival and prognoses of these patients (Roy et al.,

2021). Pan-cancer analysis can help reveal the common basis

underlying the development and occurrence of different tumors,

and provide new clues for elucidating the mechanism of cancer

occurrence and developing personalized precision therapy

(Korenjak and Zavadil, 2019). At present, researchers are

focusing on pan-cancer genomic analyses and correlating

these findings with the results of multi-omics to identify new

tumor markers and therapeutic targets (ITP-CAOWG

Consortium, 2020). Herein, we comprehensively discussed the

expression of HM13 in several tumors for the first time based on

RNA-seq data from TCGA. HM13 expression was abnormal and

up-regulated in several tumor tissues. Combining pairing

analysis with the GETx database, we further confirmed

enhanced HM13 expression in UCEC, CHOL, BRCA, KIRC,

HNSC, LIHC, KIRP, LUSC, LUAD, BLCA, COAD, ESCA,

PRAD, STAD, and READ tumor tissues as compared to those

adjacent to the corresponding carcinoma. Through univariate

Cox regression and Kaplan-Meier survival analyses, we

confirmed high HM13 expression in ACC, KIRP, UVM,

LIHC, LGG, HNSC, and KIRC. Abnormal HM13 expression

was associated with worse progression-free survival and overall

survival.

The role of the tumor immune microenvironment in tumor

development and prognosis has attracted increasing attention

from researchers (Binnewies et al., 2018). Herein, immune cells

can interact with cancer cells to promote/inhibit the growth and

metastasis of tumors (Locy et al., 2018). While advances have

been made in tumor immunotherapy in clinical settings, due to

the complicated relationship between the immune

microenvironment and tumor cells, its efficiency needs further

improvement (Bader et al., 2020; Zhang and Zhang, 2020). In the

present study, HM13 expression correlated negatively with T-

and B cell infiltration in a variety of tumors. A positive

FIGURE 8
The expression level and clinical significance of HM13 in hepatocellular carcinoma (HCC). (A). The mRNA expression of HM13 in ICGC cohort.
(B). Based on the ICGC cohort, Kaplan-Meier plot was used to evaluate the relationship between the expression of HM13 and overall survival. (C).
Univariate and multivariate COX analyses were carried out to determine the effect of HM13 on overall survival. (D). The protein level of HM13 in
CPTAC cohort. (E). Based on the CPTAC cohort, Kaplan-Meier plot was used to evaluate the relationship between the expression of HM13 and
overall survival. (F). Univariate and multivariate COX analyses were carried out to determine the effect of HM13 on overall survival.
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FIGURE 9
Potential function of HM13. (A). Based on ssGSEA method, the relationship between HM13 expression and immune cell infiltration in
hepatocellular carcinoma was evaluated. GO and KEGG functional enrichment analysis of the molecules interacted with HM13 (B,C). (D). Protein-
protein interaction network of HM13 was constructed based on the comPPI.

FIGURE 10
Validation of HM13 in HCC cell lines. (A). Based on the human protein atlas (HPA) database, immunohistochemistry validated that the protein
level of HM13 in HCC. (B). Real time-qPCR was used to determine the mRNA expression of HM13 in HCC cell lines. (C). Western blot was applied to
evaluate the protein level of HM13 in HCC cell lines. The knock down efficiency was determined by real time-qPCR (D) and western blot (E) in Huh-7
cells. (F). Knock down efficiencies of SH-HM13was confirmed bywestern blot in Huh-7 cells. Experiments were repeated three times; *p < 0.05,
**p < 0.01, ***p < 0.001.
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FIGURE 11
The effect of HM13 knockdown on Huh-7 cells functions. Huh-7 cell proliferation was measured by CCK8 assay (A) and colony formation (B).
(C,D). Cell migration was determined by scratch wound assay. (E). Cell migration and invasion were determined by transwells assay. Experiments
were repeated three times; *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 12
The effect of HM13 knockdown on HCCLM3 cell function. (A). RT-PCR and western blot were used to validate the knockdown of
HM13 expression. (B). Using the CCK8 assay, HCCLM3 cells were evaluated for their proliferative capacity. (C). (D). Scratch assays were used to
examine cell migration abilities. (E). Cell migration and invasion were assessed in HCCLM3 cells using the transwell assay. Experiments were repeated
three times; ***p < 0.001.
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correlation was observed with macrophages in LGG, LIHC,

SARC, KICH, OV, and SKCM. Furthermore, the ssGSEA

algorithm verified that HM13 expression showed a certain

positive correlation with macrophages and a negative

correlation with CD8T cells in HCC. Macrophages secrete

pro-inflammatory mediators to promote tumor cell

proliferation and help tumor cell migration through paracrine

routes (Ruffell and Coussens, 2015; Pathria et al., 2019).

CD8T cells are important tumor killer cells and can inhibit

their growth (Farhood et al., 2019; Raskov et al., 2021).

Through immune checkpoint gene expression analysis, the

expression of HM13 was found to exhibit a significant

correlation with several tumor inhibitory genes, especially

VEGFB, LAG3, CD274, and TGFB1. Accumulating evidence

suggests that abnormally high expression of these genes is

associated with the poor prognosis of cancer patients

(Andrews et al., 2017; Lacal and Graziani, 2018; Chen et al.,

2019; Cane et al., 2021). These results can explain why HCC

patients with high HM13 expression are likely to have a poor

prognosis. Therefore, we reasonably speculated that the

expression of HM13 could promote the interaction between

tumor and immune cells, which provides a new indicator for

monitoring immunotherapy or a new adjuvant therapeutic

target. Previous studies suggest that gene expression correlates

with drug sensitivity (Vuong et al., 2014; Salvadores et al., 2020).

In this study, we found that the expression of HM13 correlated

negatively with the sensitivity of several drugs. This suggested

that HM13 mRNA expression could predict drug responses, thus

highlighting the potential of the HM13 as a drug target.

The protein encoded by the HM13 gene is a signal peptide

peptidase, which is mainly localized to the endoplasmic reticulum.

SPP is mainly involved in protein hydrolysis, especially bymediating

the intramembrane cleavage of type 2 transmembrane proteins,

which plays an important role in maintaining protein homeostasis

(Mentrup et al., 2020). Abnormal expression of HM13 is implicated

in several diseases. Hsu FF et al. showed that SPP levels are

abnormally high in lung cancer and breast cancer, and it may

interact with FKBP8 to regulate the proliferation and migration/

invasion ability of lung tumor cells (Hsu et al., 2019). Wei JW et al.

show that HM13 is significantly upregulated in high-grade gliomas,

and its expression correlates positively with the degree ofmalignancy

(Wei et al., 2017). Knocking out HM13 significantly inhibits tumor

cell survival, reduces cytokine secretion in EGFRvIII glioma cells,

and affects the biological behavior of surrounding cells by mediating

the TGF-β pathway (Delman, 2020). In addition, SPP is associated

with the maturation of hepatitis C virus core protein andmay play a

role in HCC (Moriishi, 2017). In this study, we confirmed the trend

of abnormally high HM13 expression in HCC tissues in multiple

databases, both at mRNA and protein levels. It was an independent

risk factor for poor prognosis in HCC. We also verified the higher

expression ofHM13 inHCC cell lines.Moreover, to further examine

the function of HM13 in the progression of HCC, we constructed

shRNA plasmids for HM13. Interfering with HM13 expression

significantly inhibited the growth and migration/invasion of HCC

cells. These results suggested that HM13may play an important role

in tumor genesis and development, thus making it a promising new

marker or therapeutic target. In addition, the enrichment analysis

showed that HM13 may act as effective parameters in regulating

tumor metabolism. The GeneMANA displayed that HM13 may

interact with the SPP-like proteases. Studies have shown that

abnormal overexpression of SPP can activate Notch and mTORC

signaling pathways and promote tumor proliferation and metastasis

(Papadopoulou and Fluhrer, 2020). This suggested that

HM13 might involve in the regulation of Notch and mTORC

pathways.

However, there were still some limitations to be stated in the

present study. We explored the relationship between

HM13 expression and immune cell infiltration and the

expression of immune checkpoint genes based on

bioinformatics analysis. Further in vivo and in vitro

experiments are important to confirm the significance of

observations in this study.

In conclusion, we delineated the pan-carcinoma

expression profile of HM13 and found that its abnormally

upregulated expression correlated with poor prognosis in

patients with tumors. The abnormal expression was

significantly associated with the levels of immune

checkpoint genes and immune cell infiltration.

Furthermore, interference with HM13 expression in Huh-7

and HCCLM3 cells significantly suppressed proliferation and

migration/invasion of tumor cells. Therefore, our findings

suggested that HM13 was crucial for tumor genesis and

development, and could be used as a marker for tumor

diagnosis and prognostic evaluation.
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In the past few years, various somatic point mutations of isocitrate

dehydrogenase (IDH) encoding genes (IDH1 and IDH2) have been identified

in a broad range of cancers, including glioma. Despite the important function of

IDH1 in tumorigenesis and its very polymorphic nature, it is not yet clear how

different nsSNPs affect the structure and function of IDH1. In the present study,

we employed different machine learning algorithms to screen nsSNPs in the

IDH1 gene that are highly deleterious. From a total of 207 SNPs, all of the servers

classified 80 mutations as deleterious. Among the 80 deleterious mutations,

14 were reported to be highly destabilizing using structure-based prediction

methods. Three highly destabilizing mutations G15E, W92G, and I333S were

further subjected to molecular docking and simulation validation. The docking
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results andmolecular simulation analysis further displayed variation in dynamics

features. The results from molecular docking and binding free energy

demonstrated reduced binding of the drug in contrast to the wild type. This,

consequently, shows the impact of these deleterious substitutions on the

binding of the small molecule. PCA (principal component analysis) and FEL

(free energy landscape) analysis revealed that these mutations had caused

different arrangements to bind small molecules than the wild type where the

total internal motion is decreased, thus consequently producing minimal

binding effects. This study is the first extensive in silico analysis of the IDH1

gene that can narrow down the candidate mutations for further validation and

targeting for therapeutic purposes.

KEYWORDS

nsSNPs, IDH1, molecular docking, simulation, binding free energy, introduction

1 Introduction

In primary brain tumor, glioblastoma, also known as grade IV

glioma, is the most common and deadly form of brain tumor

(Wirsching and Weller, 2017). In malignant gliomas, the primary

GBMs account for 90% while the secondary GBMs that emerge from

lower-grade gliomas (LGGs) in younger individuals account for less

than 10% of clinical reports (Ohgaki and Kleihues, 2013). After the

initial diagnosis, the survival for glioma individuals is from 14 to

16months. Recent investigations revealed some metabolic features

that are shared by virtually all GBMs and help to differentiate tumors

from the normal brain (Tan et al., 2020). TheGBMmetabolic features

are the excess generation of lactate in conjunction with the acetate and

glucose oxidations to provide macromolecular precursors and energy.

In low-grade glioma, secondary glioblastoma, and acute myelogenous

leukemia, the oncogenic mutations in the two-isocitrate

dehydrogenase (IDH) encoding genes (IDH1 and IDH2) have

been identified (Agnihotri et al., 2013; Zhou and Wahl, 2019).

Normally in the Krebs cycle, the isocitrate is converted into

a-ketoglutarate (a-KD) by isocitrate dehydrogenases (IDHs) in a

NAD(P)-dependent manner. IDH1, IDH2, and IDH3 are three

IDH isozymes that function in different subcellular

compartments. Various somatic point mutations of IDH1 or

IDH2 have been discovered in a variety of malignancies in recent

years, such as gliomas and AMLs (acute myeloid leukemias) (Yan

et al., 2009; Zhao et al., 2009). Identified mutations such as

IDH1 R132H/C/Q, IDH2 R140Q/W/L, and R172K/T/S/G/M

adversely affect the normal function of IDH protein and

initiate the abnormal activity of protein with IDH mutations

that produced oncometabolite 2-hydroxyglutarate from the

a-KG (Frezza et al., 2010; Huang, 2019). 2-HG may

accumulate to horrifically high levels of 5–35 mmol/g in

human glioma samples with IDH1/2 mutations, which is 100-

fold higher than its normal level in the brain (Dimitrov et al.,

2015).

Single nucleotide polymorphisms (SNPs), which affect

both coding and noncoding regions of DNA, are the most

common genetic changes. SNPs are found every 200–300 bp in

the human genome and account for around 90% of all genetic

differences in the human genome. Nonsynonymous SNPs

cause genetic alteration in the exonic regions of the protein

and disturb their sequence, structure, and normal function by

enhancing the abnormal transcription and translation

mechanisms. Previously, several in silico computational

techniques were developed to quickly and precisely assess

the functional implications of nonsynonymous variation on

protein structure and function (Junaid et al., 2018; Khan et al.,

2020a; Khan et al., 2020b; Khan et al., 2021). Until now, a total

of 298 SNPs with 207 missense mutations in the human

IDH1 gene has been described and deposited to the

gnomAD database.

Although IDH1 plays a crucial role in carcinogenesis

(gliomas) and has a polymorphism character, it is still

unclear how identified nsSNPs alter the protein’s structure

and biological activity. In this study, we employed a number of

computational approaches to find nsSNPs in the IDH1 gene

that are extremely detrimental to the structure and function of

the IDH1 protein.

2 Materials and methods

2.1 Collection of data

The available data on human IDH1 were obtained from

available online databases. The online database gnomAD

(https://gnomad.broadinstitute.org/) was used to retrieve all

predicted SNPs in the human IDH1gene (Karczewski and

Francioli, 2017). The amino acid sequence (UniProt: O75874)

and previously deposited 3D structure (PDB ID: 6BKX) of the

protein that expresses the IDH1 gene were obtained from the

UniProt online database (http://www.uniprot.org/) (Rose et al.,

2010; Consortium, 2015). The whole workflow of the work is

given in Figure 1.
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2.2 Disease-related single nucleotide
polymorphism predictions

2.2.1 Prediction of Functional Consequences of
nsSNPs

Different online servers such as PredictSNP (https://loschmidt.

chemi.muni.cz/predictsnp1/), Polymorphism Phenotyping version 2

(Polyphen-2) (http://genetics.bwh.harvard.edu/pp2), Sorting Intolerant

from Tolerant (SIFT) (http://sift.bii.a-star.edu.sg), Screening of

nonacceptable polymorphism (SNAP) (https://rostlab.org/services/

snap), Protein Analysis Through Evolutionary Relationship

(PANTHER) (http://www.pantherdb.org/tools/csnpScoreForm.jsp,

Multivariate Analysis of Protein Polymorphism (MAPP) (http://

mendel.stanford.edu/SidowLab/downloads/MAPP/), and predictor of

Human Deleterious Single Nucleotide Polymorphism (PhD-SNP)

(http://snps.biofold.org/phd-snp/phd-snp.html) were used to predict

the functional effect of all nonsynonymous single nucleotide

polymorphisms (nsSNPs) (Johnson et al., 2008; Sim et al., 2012;

Adzhubei et al., 2013; Landis et al., 2014; Bendl et al., 2015;

Capriotti and Fariselli, 2017). All of the nsSNPs that were verified

as highly deleterious by all of the aforementioned web servers were

selected for further analysis.

2.2.2 Structure-based stability calculation
For structure-based stability prediction, mCSM and

DynaMut webservers were used to estimate the impact of

each substitution on the structural stability and flexibility

(Pires et al., 2014; Rodrigues et al., 2018). The highly

deleterious mutations were processed for the prediction of

structure-based stability calculation. These servers use graph-

based signatures to estimate the impact of each mutation on

the protein’s structure. The top three mutations were selected

based on the mCSM and DynaMut results together for further

analysis.

2.2.3 Modeling of mutants of IDH1 protein
The crystal structure of the IDH1 protein was extracted from

PDB (Entry ID: 6BKX). Both ligands and water molecules were

separated from the protein structure, and the Chimera software

was used to minimize the wild-type structure of IDH1 protein.

Moreover, the predicted most deleterious mutations such as

G15E, W92G, and I333S were modeled in the wild-type

structure of IDH1 protein using the Chimera software.

2.2.4 Molecular docking of DWP with the wild
type and mutant IDH1

The impact of selected substitutions on the binding of DWP

((6aS,7S,9R, 10aS)-7,10a-dimethyl-8-oxo-2-(phenylamino)-

5,6,6a,7,8,9,10,10a-octahydrobenzo[h]quinazoline-9-carbonitrile with

the wild type and mutant was also evaluated using the molecular

docking approach. For this estimation, a previously described protocol

was employed using AutoDock Vina (Eberhardt et al., 2021).

FIGURE 1
Methodological workflow of the work. Each tool used in each step is also given.
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2.2.5 Molecular dynamics simulation
The highly destabilizing and functional substitutions were

evaluated for the dynamic properties using the

AMBER2.0 molecular simulation tool. For this purpose,

ff14SB force field was recruited for uniformity with the

previous parameters (Salomon Ferrer et al., 2013). A TIP3P

water box (cutoff = 10.0 Å) was employed for solvation, while

neutralizations were performed by adding sodium ions. Each

complex was minimized well in two steps: the first for 6000 steps,

while the second was run for 3,000 steps. The further protocol

used in the previous study was employed. Lastly, for each

TABLE 1 List of highly deleterious and destabilizing mutations in IDH1.
Among the 80 mutations, 14 highly destabilizing ones are shown
in bold.

Index Mutation ΔΔG mCSM Outcome

1 G15E −3.094 Highly Destabilizing

2 D16H −1.439 Destabilizing

3 W23C −2.149 Highly Destabilizing

4 Y34C −1.848 Destabilizing

5 V35A −1.926 Destabilizing

6 Y42C −1.287 Destabilizing

7 D43A −0.396 Destabilizing

8 R49H −2.437 Highly Destabilizing

9 R49C −1.957 Destabilizing

10 R49P −1.427 Destabilizing

11 I76T −2.36 Highly Destabilizing

12 R82S −2.362 Highly Destabilizing

13 R82M −1.294 Destabilizing

14 V83F −1.491 Destabilizing

15 E85G −1.128 Destabilizing

16 L88F −1.714 Destabilizing

17 M91R −0.476 Destabilizing

18 M91T −1.317 Destabilizing

19 W92G −3.644 Highly Destabilizing

20 W92R −1.562 Destabilizing

21 N96H −0.752 Destabilizing

22 T98N −1.142 Destabilizing

23 N101Y −0.377 Destabilizing

24 T106M −0.611 Destabilizing

25 F108V −2.441 Highly Destabilizing

26 R109K −1.318 Destabilizing

27 I113S −1.972 Destabilizing

28 G150R −0.548 Destabilizing

29 V152G −2.065 Highly Destabilizing

30 I154R 0.027 Stabilizing

31 D160Y 0.05 Stabilizing

32 G177D −0.073 Destabilizing

33 Y183C −0.838 Destabilizing

34 A193T −0.975 Destabilizing

35 L207W −1.744 Destabilizing

36 Y208H −2.648 Highly Destabilizing

37 Y208C −1.847 Destabilizing

38 T214S −0.522 Destabilizing

39 Y219H −0.962 Destabilizing

40 Y219C −0.98 Destabilizing

41 D220G −1.683 Destabilizing

42 Y231H −2.007 Highly Destabilizing

43 Y235C −1.24 Destabilizing

44 Y246H −2.036 Highly Destabilizing

45 A256V −0.53 Destabilizing

46 K260N 0.221 Stabilizing

(Continued in next column)

TABLE 1 (Continued) List of highly deleterious and destabilizing
mutations in IDH1. Among the 80 mutations, 14 highly destabilizing
ones are shown in bold.

Index Mutation ΔΔG mCSM Outcome

47 G263E −0.546 Destabilizing

48 D273G −0.293 Destabilizing

49 G274S −0.962 Destabilizing

50 V276M −0.5 Destabilizing

51 S278P −0.225 Destabilizing

52 S278L −0.228 Destabilizing

53 D279H −0.517 Destabilizing

54 M291T −1.405 Destabilizing

55 T292I −0.114 Destabilizing

56 S293I 0.169 Stabilizing

57 P298L −0.358 Destabilizing

58 G300V −0.604 Destabilizing

59 G300D −1.749 Destabilizing

60 E306A 0.57 Stabilizing

61 H309R −0.568 Destabilizing

62 H309Q 0.139 Stabilizing

63 G310R −0.445 Destabilizing

64 R314C 0.301 Stabilizing

65 H315D −0.52 Destabilizing

66 R317C −0.995 Destabilizing

67 R317L −0.082 Destabilizing

68 T325M 0.467 Stabilizing

69 N328S −1.25 Destabilizing

70 N328K −0.122 Destabilizing

71 I330T −2.449 Highly Destabilizing

72 I333S −3.298 Highly Destabilizing

73 G339R −1.576 Destabilizing

74 L346P −1.191 Destabilizing

75 I367T −2.845 Highly Destabilizing

76 G370V −0.276 Destabilizing

77 M372T −1.565 Destabilizing

78 T373I −0.732 Destabilizing

79 T373N −1.561 Destabilizing

80 L401P -1.626 Destabilizing
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complex, a 100 ns production run under constant pressure was

completed. To control the temperature, a Langevin thermostat

with 1 atm pressure and 300 K was used (Zwanzig, 1973). The

particle mesh Ewald (PME) algorithm was used to compute long-

range interactions (Darden et al., 1993; Essmann et al., 1995). The

cutoff distances were set to 10 A˚. For the covalent bonds

involving hydrogen, the SHAKE algorithm was used (Ryckaert

et al., 1977). GPU-accelerated simulation (PMEMD.CUDA) was

used for all of the processes. Post simulation analyses including

dynamic stability calculated as RMSD (root mean square

deviation), residual flexibility estimated as RMSF(root mean

square fluctuation), hydrogen bonding analysis over the

simulation time, and the radius of gyration (Rg) for protein

packing assessment were calculated using CPPTRAJ and PTRAJ

modules of AMBER1.9 (Roe and Cheatham, 2013).

2.2.6 Binding free energy calculation
For the calculation of binding free energy, a whole trajectory

of each complex was subjected toMM/GBSA analysis by utilizing

MMPBSA.PY script (Hou et al., 2011). This widely applicable

approach, which has been previously used to characterize the

binding of various biological complexes, was used for estimation

by employing the following equation:

ΔGbind � ΔGcomplex − [ΔGreceptor + ΔGligand] (1).

Each term in the binding free energy was estimated using the

following equation:

G � Gbond + Gele + GvdW + Gpol + Gnpol (2).

2.2.7 Clustering of MD trajectories using
principal component analysis

To comprehend the motion of MD trajectories, an

unsupervised learning method known as principal component

analysis (PCA) (Pearson, 1901; Wold et al., 1987) was performed

to acquire knowledge regarding the internal motion of the

system. For this purpose, an Amber module known as

CPPTRAJ was used. The spatial covariance matrix was

determined for eigenvector and their atomic co-ordinates.

Using an orthogonal coordinate transformation, a diagonal

matrix of eigenvalues was generated. Based on the

eigenvectors and eigenvalues, the principal components were

extracted. Using these PCs, the dominant motions during

simulation were plotted (Balsera et al., 1996; Ernst et al., 2015).

3 Results and discussion

3.1 Identification of deleterious nsSNPs

The online public resources were used to retrieve all of the

available data on the human IDH1 gene. According to the

information obtained from the online gnomAD database,

there were a total of 298 SNPs in the IDH1 protein. Of these,

207 SNPs were identified as nonsynonymous. These 207 SNPs

were submitted to a different online server to identify the

deleterious mutations. First, the SNPs were submitted to

PredictSNP and MAPP servers, and only 141 and 140 SNPs

were found to be deleterious, respectively (Supplementary Table

S1). The nsSNPs were then submitted to PhD-SNP and SNAP

online tools and found 63 and 55 SNPs as deleterious,

respectively (Supplementary Table S2). The other online

servers such as PolyPhen-1, PolyPhen-2, SIFT, and

PANTHER analyzed the nsSNPs and predicted that out of

119 SNPs only 51, 46, 68, and 80 were deleterious,

respectively (Supplementary Tables S3, S4). All of the nsSNPs

were selected for further analysis and was predicted as highly

deleterious together by all of the abovementioned online servers.

Only 80 mutations were selected for the structure-based stability

analysis using mCSM as shown in Table 1. mCSM predicted that

only 14 mutations (G15E(-3.09), W23C(-2.14), R49H(-2.43),

I76T(-2.36), R82S(-2.36), W92G(-3.64), F108V(-2.44),

V152G(-2.06), Y208H(-2.64), Y231H(-2.00), Y246H(-2.03),

I330T(-2.44), I333S(-3.29), and I367T(-2.84)) out of 80 were

highly destabilizing. These 14 mutations were further verified

using the DynaMut web server.

The reported 14 highly destabilizing mutations were then

processed using the DynaMut server to determine the effect of

these 14 mutations on the flexibility of protein structure. Among

these 14 mutations, 12 mutations induced higher flexibility while

the other two mutations, G15E and V246H, demonstrated

structural rigidity. These changes in flexibility shown in red

and blue were mapped onto the corresponding protein

structure and are presented in Figure 2. Among these

14 mutations, only three mutations were reported to be

consistently highly destabilizing, which were then selected for

further analysis (Table 2).

3.2 Molecular docking analysis of the wild
type and mutants

Molecular docking-based investigation of the binding

variations caused by these mutations in contrast to the wild

type revealed significant differences. The docking score for the

wild type was calculated to be −8.76 kcal/mol. The interaction

analysis revealed multiple hydrogen bonds including Ser326,

Lys374, and Asp375, while various pi–pi interactions and

pi–alkyl interactions were observed. The interaction pattern of

the wild type is given in Figure 3A. On the other hand, despite the

significant reduction in the number of bonding contacts, the

His314 (correspond to His315) hydrogen bond remained

conserved, which has been reported to be associated with the

inhibitory properties of this drug. With a single hydrogen bond

and various other interactions, the docking score for this complex

was calculated to be −7.35 kcal/mol. It can be seen that this
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FIGURE 2
Effect of mutations on the flexibility of different residues. Different colors represent different levels of flexibility. The red regions demonstrate
that the flexibility is increased, the blue regions show that the flexibility is decreased due to the mutations, and gray represents no change in the
flexibility.
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complex has lost important hydrogen bonds of essential residues,

thus reducing the bonding energy and contributing to resistance

to chemotherapy. The interaction pattern of G15E is given in

Figure 3B. Moreover, the docking score for W92G was estimated

to be −8.62 kcal/mol. This complex retained some important

hydrogen contacts, that is, Ser326 and His314 (correspond to

His315), which gives comparable results to the wild type. With

various hydrogen bonding contacts, many pi–pi, pi–alkyl, and

salt bridge contacts were also reported in this complex. The

interaction pattern ofW92G is given in Figure 3C. I333S lies near

the active site and reports a substantial decrease in the bonding

pattern. With only one hydrogen bond of His314 (corresponding

to His315) and pi–alkyl interaction with Val311, this complex

reported a significant decrease in the docking score. The docking

score for this complex was calculated to be −6.87 kcal/mol. The

interaction pattern of I333S is given in Figure 3D.

3.3 Investigation of the dynamic behavior
of the wild-type and mutant complexes

To provide worthy insights into the impact of any particular

mutation on the structure and function of a protein

comprehension of key dynamic features is essential. For

instance, dynamic stability [root mean square deviation

(RMSD)] can be used to estimate the stability of a biological

complex in a dynamic environment. To assess the structural

stability, we herein also calculated RMSD as a function of time.

The wild type and the three mutants were compared and are

shown in Figures 4A–C. The wild type presented more stable

behavior than the three mutants. As shown in Figure 4A, the wild

type initially demonstrated a higher RMD for a short period

(2–6 ns); thereafter, the complex equilibrated and attained

stability at 2.5 Å. The RMSD continued to follow the same

trend until 55 ns and then decreased to 2.1 Å until the end of

simulation. No significant perturbation was observed during the

simulation, and the average RMSD was calculated to be 2.30 Å.

Comparatively, the G15E mutant initially demonstrated

significant perturbations in the RMSD, particularly between

5 and 20 ns. The RMSD then stabilized for a period between

21 and 55 ns and then continued to increase gradually until the

end of the simulation. The complex reported a higher RMSD

between 56 and 73 ns, then abruptly decreased, and then

increased back with major deviation until the end of

simulation. The complex reached the complete stability state

after 80 ns. This shows that this mutation, despite its location

away from the binding cavity, allosterically affects the binding

affinity by compromising the stability of the protein. Since it has

been previously reported that mutations that alter the protein

stability result in radical function, thus this corroborates with the

current findings (Dehury et al., 2020a). The RMSD graph for

G15E mutant is given in Figure 4A. Unlike the wild type and

G15E, the W92G complex demonstrated significant structural

instability from the start of the simulation. The RMSD during the

first 60 ns reported minor deviations at different time intervals,

thus resulting in continuous destabilization effects of mutation.

The RMSD increased to 6.0 Å at 60 ns and then gradually

decreased until 100 ns. An average RMSD for W92G was

recorded to be 3.60 Å and is shown in Figure 3B. On the

other hand, the I333S mutant was reported to be the most

destabilizing mutation among the shortlisted top deleterious

mutations. First, the complex reported significant deviations

until 55 ns and then gradually increased the RMSD and

followed the same pattern to demonstrate significant

deviations until the end of the simulation. An average

RMSD of 3.2 Å was calculated for the I333S complex and

is shown in Figure 4C. It has been reported that mutations

that increase the stability may also increase the binding while

destabilizing mutations decrease the binding. The current

findings strongly corroborate with the previous reports where

the filtration of mutations to obtain the most deleterious

mutations showed that R132C, R132G, R132H, R132L, and

R132S decrease the stability of IDH1 (Kumar et al., 2018).

The stability feature is also reported to be affected by

mutations in other diseases, which results in deleterious

effects (Dehury et al., 2020a). Thus, herein, the mutations

demonstrated destabilizing effects in contrast to the

wild type.

3.4 Protein structure packing analysis

An assessment of protein packing reveals information

regarding the binding and unbinding events that occurred

during simulation. These events are steered by the bonding of

TABLE 2 List of highly deleterious and destabilizingmutations in IDH1.
Among the 14 mutations, three are highly destabilizing reported
by both the servers (mCSM and DynaMut) shown in bold.

Index Mutation ΔΔG ENCoM ΔΔG DynaMut

1 G15E 1.101 −3.347

2 W23C −0.977 −0.288

3 R49H −0.348 −1.701

4 I76T −0.198 −1.926

5 R82S −0.607 −2.139

6 W92G −1.741 −2.633

7 F108V −0.341 −2.520

8 V152G −0.894 −1.667

9 Y208H −0.662 −0.591

10 Y231H −0.369 −0.945

11 Y246H −0.136 −0.100

12 I330T −0.171 −0.733

13 I333S −0.478 −3.413

14 I367T −0.318 −2.610
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small molecules with the protein cavity. For instance, this

approach has been used previously to see the impact of

mutations on the structural compactness when IDH1 binds to

its homodimer (Yuan et al., 2017). Herein, to understand the

structural compactness, radius of gyration (Rg) was calculated as

a function of time. Consistent with the RMSD results, the wild-

type complex reported a uniform pattern of Rg during the

simulation. There was a slight increase in Rg between 40 and

60 ns, but it then stabilized again until the end of the simulation.

The average Rg for this complex was calculated to be 22.5 Å. On

the other hand, for the G15E mutant, despite its similar Rg value,

, wild-type deviations at different time intervals were observed.

This trend can be seen for the whole simulation time period

(0–100 ns), which shows maximum unbinding events induced by

the mutation. The W82G and I333S mutants demonstrated a

similar pattern of Rg for the first 40 ns. With slightly higher Rg

values, the two complexes reported patterns similar to those of

the wild type. However, W92G experienced a continuous

increase in the Rg between 41 and 60 ns and then a decreased

back effect was observed until 70 ns. The Rg value for the

remaining simulation time remained lower; however, major

deviations were reported. On the other hand, I333S reported a

gradual increase in the Rg value after 45 ns and continued to

follow this pattern until 75 ns. The Rg then again decreased and

remained consistent until the end of the simulation. The average

Rg values for W92G and I333S were calculated to be 22.80 Å and

22.78 Å, respectively. Interestingly the other reported mutations

in the interface site, that is, R132C, R132G, R132H, R132L, and

R132S, also demonstrated higher radius of gyration values; thus,

further validating our findings in terms of protein compactness

(Yuan et al., 2017; Bendahou et al., 2020). The Rg graphs for each

complex are shown in Figures 5A–C.

FIGURE 3
Molecular docking analysis of the wild-type and mutant complexes. (A) Representation of the interaction pattern of the wild type. (B)
Representation of the interaction pattern of G15E. (C) Representation of the interaction pattern of W92G. (D) Representation of the interaction
pattern of I333S.
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3.5 Residues’ flexibility indexing

Residues’ flexibility indexing is a key assessment to

understand the role of each residue in different biological

functions. The flexibility can be applied in different domains,

such as molecular recognition, drug binding, cascade signaling,

protein coupling, enzyme engineering, and protein designs. To

estimate the residual flexibility of each complex, we calculated

root mean square fluctuation (RMSF). As shown in Figure 5, all

of the complexes demonstrated a more similar pattern of RMSF

except for the regions between 125 and175 for all of the

complexes. The flexibility at this portion (125–175) revealed a

different pattern, which shows the impact of a particular

mutation on the protein’s internal dynamics. The wild type in

this region demonstrates minimal RMSF, while the three

mutations reported maximum RMSF. This consequently

shows the altered dynamics and residue flexibility by the

induced mutations in the structure, thus altering the binding

of small molecules and function. This overall higher flexibility

with the loss of compactness and intramolecular hydrogen bonds

makes these mutations more deleterious than the other

mutations. The findings are prevalidated by the previous

literature where increased flexibility was observed mediated by

different mutations. Moreover, other diseases mutations are

reported to decrease the binding either due to increasing the

cavity space or affecting the on/off switch, which consequently

increases/decreases the distance between essential atoms

(Dehury et al., 2020b; Dehury et al., 2020c). The RMSF of

each complex is shown in Figure 6.

3.6 Hydrogen bonding analysis

Macromolecular complexes, particularly protein–protein

coupling, are primarily driven by numerous factors, among

which hydrogen bonding and hydrophobic contacts are essential.

The environment of protein interfaces is enriched with water

molecules that work with the residues to form hydrogen bonds

(Chen et al., 2016). The mechanisms underlying protein–protein

interaction as well as the ramifications for hydrogen bonding are

unclear (Chodera and Mobley, 2013). Whether hydrogen bonds

govern protein–protein docking, in particular, is a long-standing

concern, and the mechanism is poorly understood (Patil et al., 2010;

Olsson et al., 2011). Therefore, it is important to understand the

hydrogen bonding landscape in protein–protein association. For

instance, previously, hydrogen bonding was predicted to estimate

the strength of the association between two molecules. As shown in

Figure 7A, the wild type reported an average of 215 hydrogen bonds,

while the G15E complex reported 212 hydrogen bonds over the

simulation time. On the other hand, the W92G complex reported

209 average hydrogen bonds in contrast to the wild type. The

hydrogen bonds in the wild type and I333S were comparable. In the

case of I333S, average hydrogen bonds were calculated to be 215,

FIGURE 4
Dynamic stability analysis of the wild-type and mutant
complexes. (A) Representation of the RMSD of the wild type and
G15E. (B) Representation of the RMSD of the wild type and W92G.
(C) Representation of the RMSD of the wild type and I333S.
The x-axis represents time in nanoseconds while the y-axis
represents RMSD in �A.

FIGURE 5
Radius of gyration analysis of the wild-type and mutant
complexes. (A) Representation of the Rg of the wild type and G15E.
(B) Representation of the Rg of the wild type and W92G. (C)
Representation of the Rg of the wild type and I333S. The
x-axis represent time in nanoseconds while the y-axis represent
Rg in �A.
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same as that of the wild type. This demonstrate that these mutations

alter the internal dynamics, consequently altering the hydrogen

bonding network and causes resistance to the drug. The hydrogen

bonding graphs of all of the complexes are shown in Figures 7A–C.

3.7 Binding free energy calculation

Binding free energy calculation determines the accurate

binding strength and conformation of the small molecule. It

is an essential estimation to re-evaluate the docking

predictions by considering the highest accuracy and

reliability than the conventional docking and alchemical

methods. It is a widely used approach to explore the

interaction strength and reveal the key binding feature,

which steers the overall binding. Considering the

applicability of the MM/GBSA approach, we also

estimated the total binding energy for the wild-type and

mutant complex. As shown in Table 3, the vdW for the wild

type was estimated to be −40.78 ± 0.045 kcal/mol, while for

the mutant it was −35.13 ± 0.054 kcal/mol reported by G15E

mutations, −38.07 ± 0.053 kcal/mol reported by W92G,

and −36.46 ± 0.06 kcal/mol calculated for the I333S

mutant. This shows the loss of important interacting

contacts that remained conserved in the wild type. On the

other hand, the electrostatic energy determined an inverted

trend. In the case of wild type, the electrostatic energy was

calculated to be 3.55 ± 0.034 kcal/mol, while for the

mutations −1.23 ± 0.057 kcal/mol (G15E) and −2.53 ±

0.052 kcal/mol (W92G), and −0.99 ± 0.06 kcal/mol for

I333S mutant was calculated. This shows that due to these

mutations the electrostatic contacts are increased, which

may consequently alter the binding. Moreover, ΔG total

was reported to be −34.77 ± 0.036 kcal/mol for the wild

type and −34.07 ± 0.051 kcal/mol for W92G. The total

binding energy of the wild type and G15E is comparable.

The two mutants, that is, G15E and I333S, demonstrated a

significant decrease in the ΔG total. The ΔG total for the

G15E mutant was calculated to be −30.90 ± 0.041 kcal/mol,

while for I333S, the ΔG total was estimated to be −31.91 ±

0.04 kcal/mol. This consequently shows the impact of these

deleterious substitutions on the binding of the small

molecule. The other parameters of the total binding free

energy are given in Table 3.

3.8 Clustering of protein’s motion

We used the principal component analysis (PCA) to

cluster the protein motions in the simulation trajectories.

FIGURE 6
Residues’ flexibility analysis of the wild-type and mutant complexes. The x-axis represents time in total number of residues while the y-axis
represent RMSF in �A.

FIGURE 7
Hydrogen bonding analysis of the wild-type and mutant
complexes. (A) Representation of H-bonds of the wild type and
G15E. (B) Representation of H-bonds of the wild type and W92G.
(C) Representation of H-bonds of the wild type and I333S.
The x-axis represents time in nanoseconds, while the y-axis
represents H-bond population.
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The two PCs, that is, PC1 and PC2, reflected these motions in

two dimensions. The distributed principal components for

each complex are given in Figures 8A–D. The first three

eigenvectors contributed 54% of the total motion, while the

rest was contributed by the other eigenvectors. In contrast, the

three mutants, that is, G15E the first three eigenvectors

contributed 49%, W92G reported 48%, and I333S reported

44% of the total motion by the first three eigenvectors. The rest

TABLE 3 Total binding free energy for the wild-type, G15E, W92G, and I333S complexes. All of the values are calculated in kcal/mol.

Parameters Wild type G15E W92G I333S

VDWAALS −40.78 ± 0.045 −35.13 ± 0.054 −38.07 ± 0.053 −36.46 ± 0.06

EEL 3.55 ± 0.034 −1.23 ± 0.057 −2.53 ± 0.052 −0.99 ± 0.06

EGB 7.22 ± 0.023 9.64 ± 0.040 10.55 ± 0.056 9.73 ± 0.04

ESURF −4.77 ± 0.003 −4.18 ± 0.007 −4.02 ± 0.005 −4.19 ± 0.008

Delta G Gas −37.23 ± 0.037 −36.36 ± 0.046 −40.61 ± 0.071 −37.45 ± 0.005

Delta G Solv 2.45 ± 0.023 5.46 ± 0.043 6.53 ± 0.056 5.53 ± 0.005

Delta Total −34.77 ± 0.036 −30.90 ± 0.041 −34.07 ± 0.051 −31.91 ± 0.04

FIGURE 8
Principal component analysis of the wild-type and mutant complexes. (A) Representation of PCA of the wild type. (B) Representation of PCA of
G15E. (C) Representation of PCA of W92G. (D) Representation of PCA of I333S. The red to sky blue represent the different conformation states,
whereas the transition states are represented by dark purple.
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demonstrated localized motion by these complexes. The

conformational transition can be easily separated from each

other by sky blue and red colors. This shows that these

mutations had caused different arrangements to bind small

molecules compared to the wild type, where the total internal

motion is decreased, thus consequently producing minimal

binding effects.

3.9 Free energy landscape analysis

The two PCs were then mapped to identify the stable and

metastable states for each complex. As shown in Figures

9A–D, the wild type attained one lowest-energy

conformation, while G15E and W92G attained two lowest-

energy conformations. I333S also attained a single lowest-

energy state. The conformational transition in each complex is

separated by a subspace. This shows that the mutations had

caused a different arrangement to bind small molecules

compared to the wild type, thus consequently producing

minimal binding effects.

4 Conclusion

The current study used genomic mutation screening and

molecular simulation methods to identify the most detrimental

mutations in the IDH1 gene. The investigation of a large number

of mutations revealed that three mutations, G15E,W92G, and I333S,

are themost deleterious and highly destabilizing, which can affect the

binding of a drug. Thesemutations primarily affect the binding of the

drugwith IDH, thus consequently reducing the efficacy of the already

approved drug. Further validations such as molecular docking and

dynamics simulation demonstrated that these mutations do not only

affect the stability but also alter the bonding network. In addition, the

BFE was also observed to have been reduced due to conformational

changes mediated by these mutations. In sum, the current mutations

contribute to drug resistance in glioma, and the atomic features

FIGURE 9
Free energy landscape analysis of the wild-type andmutant complexes. (A) Representation of DEL of the wild type. (B) Representation of FEL of
G15E. (C) Representation of the FEL ofW92G. (D) Representation of the FEL of I333S. The dark regions in each show the lowest-energy conformation
where the conformational states are separated by subspace in each complex.

Frontiers in Pharmacology frontiersin.org12

Suleman et al. 10.3389/fphar.2022.927570

187

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.927570


explored in this study could be used for structure-based drug

designing against resistant glioma.
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