Background: T-2 toxin is recognized as one of the high-risk environmental factors for etiology and pathogenesis of Kashin-Beck disease (KBD). Previous evidence indicates decreased serum fluorine level in KBD patients. However, whether fluoride could regulate carboxylesterase 1 (CES1)-mediated T-2 toxin hydrolysis and alter its chondrocyte toxicity remains largely unknown.
Methods: In this study, in vitro hydrolytic kinetics were explored using recombinant human CES1. HPLC-MS/MS was used to quantitative determination of hydrolytic metabolites of T-2 toxin. HepG2 cells were treated with different concentration of sodium fluoride (NaF). qRT-PCR and western blot analysis were used to compare the mRNA and protein expression levels of CES1. C28/I2 cells were treated with T-2 toxin, HT-2 toxin, and neosolaniol (NEO), and then cell viability was determined by MTT assay, cell apoptosis was determined by Annexin V-FITC/PI, Hoechst 33258 staining, and cleaved caspase-3, and cell cycle was monitored by flow cytometry assay, CKD4 and CDK6.
Results: We identified that recombinant human CES1 was involved in T-2 toxin hydrolysis to generate HT-2 toxin, but not NEO, and NaF repressed the formation of HT-2 toxin. Both mRNA and protein expression of CES1 were significantly down-regulated in a dose-dependent manner after NaF treatment in HepG2 cells. Moreover, we evaluated the chondrocyte toxicity of T-2 toxin and its hydrolytic metabolites. Results showed that T-2 toxin induced strongest cell apoptosis, followed by HT-2 toxin and NEO. The decreased the proportion of cells in G0/G1 phase was observed with the descending order of T-2 toxin, HT-2 toxin, and NEO.
Conclusions: This study reveals that CES1 is responsible for the hydrolysis of T-2 toxin, and that fluoride impairs CES1-mediated T-2 toxin detoxification to increase its chondrocyte toxicity. This study provides novel insight into understanding the relationship between fluoride and T-2 toxin in the etiology of KBD.
Selenium deficiency is one of the main risk factors for Kashin-Beck disease (KBD). This study aimed to detect the status of selenium and zinc in the urine of children from endemic areas of KBD over three consecutive years and to evaluate whether selenium and zinc levels in children in Shaanxi Province remain normal after stopping selenium supplementation. The samples of urine were collected in consecutive years (2017–2019) to detect selenium content by hydride generation atomic fluorescence spectrometry (HGAFS) and to detect zinc content by atomic absorption spectrophotometry (AAS). Generalized estimation equation (GEE) analysis was integrated to assess the comprehensive nutritional status and dietary structure of children. Data were processed in duplicate and analyzed by SPSS 18.0. This study included 30 X-ray-positive KBD cases and 123 healthy children aged 7–12 years. A total of 424 urine and 137 hair samples were collected over three consecutive years for selenium determination. The mean value of urinary selenium in all subjects was 6.86 μg/l (2017), 8.26 μg/l (2018), and 4.04 μg/l (2019), and the mean value of urinary zinc in all subjects was 0.36 mg/l (2017), 0.39 mg/l (2018), and 0.31 mg/l (2019) for the three consecutive years of 2017–2019. The mean values of urinary selenium were 6.56 and 6.94 μg/l (2017), 8.69 and 8.14 μg/l (2018), and 4.57 and 3.90 μg/l (2019) in the KBD-X and normal groups, respectively; and the mean value of urinary zinc were 0.38 and 0.35 mg/l (2017), 0.41 and 0.39 mg/l (2018), and 0.43 and 0.28 mg/l (2019) in the KBD-X and normal groups, respectively. The mean value of hair selenium in 137 subjects was 275.08 μg/kg and the mean values of hair selenium were 267.48 and 276.61 μg/kg in the KBD-X group and normal group, respectively. The level of selenium/zinc showed a trend of increasing first and then decreasing during the three consecutive years. The level of selenium in all subjects from the endemic areas was lower than normal, which reminds us to monitor the state of KBD constantly and adjust selenium salt supplementation in accordance with the changes in the KBD state.