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Editorial on the Research Topic

Mechanism and pharmacodynamic material basis of neurodegenerative

disease therapies

Neurodegenerative disorders exert a profound global impact, causing a gradual

deterioration of the nervous system and leading to the progressive loss of neurons. These

conditions disrupt vital communication pathways, resulting in impaired cognition, memory,

behavior, sensory perception, and motor function (Wilson et al., 2023). The high prevalence

of neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease

(PD), among the aging population underscores the urgent need for effective treatments.

Currently, available treatments for neurodegeneration are limited or non-existent, imposing

significant socioeconomic and personal burdens.

In recent years, the emergence of “omic” approaches, such as genomics, transcriptomics,

epigenomics, and metabolomics, has provided unprecedented insights into the

understanding of neurodegenerative diseases (Badhwar et al., 2020). Despite these

advancements, therapeutic interventions capable of curing these conditions are still

lacking. Therefore, it is imperative to actively pursue new drug candidates and effective

treatment strategies. The primary focus of this Research Topic is to utilize “omics” in

studying biomarkers, pathogenesis, and disease progression, while also identifying novel

therapeutic targets for neurodegenerative diseases and related conditions. This issue

accepted 10 exceptional papers, including original research articles and reviews. Through

these contributions, we aim to shed light on the latest advancements and discoveries in

the field, fostering a deeper understanding of neurodegenerative diseases and providing a

platform for the development of novel treatment modalities.
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Exploring potential therapeutic natural
compounds for neurodegenerative
diseases such as AD

Currently, effective therapies for neurodegenerative

diseases such as AD remain elusive. AD is the most prevalent

neurodegenerative disorder and the leading cause of dementia

among the elderly (Alzheimer’s Association, 2023). Clinical

treatment of AD focuses primarily on syndrome control and

lacks effective therapy. Although the recent approval of two

drugs, aducanumab and lecanemab, by the United States FDA for

treating AD has sparked controversy, there is growing interest

in exploring natural compounds as a promising avenue for AD

treatment (Zhang et al., 2012; Xia et al., 2017). An important

aspect of this issue is the significant number of studies dedicated

to investigating novel approaches for the treatment of AD, with

a particular emphasis on utilizing natural compounds. These

studies delve into the exploration of alternative therapeutic

strategies, aiming to identify potential interventions that harness

the power of nature. By dedicating considerable attention to this

aspect, this issue contributes to the growing body of research

dedicated to advancing AD treatment through the exploration of

natural compounds.

Zhou et al. investigated the therapeutic effects of Alpiniae

oxyphyllae Fructus (AOF) on AD using metabolomics. They

found that treatment with AOF in APP/PS1 transgenic mice with

AD reversed significant alterations in 31 metabolites in plasma,

including notable changes in bile acids, indicating the potential

of AOF to ameliorate AD symptoms by modulating bile acid

metabolism and highlighting the need for further research into its

therapeutic mechanisms.

Liu et al. found that Ginkgo biloba L. leaf extract (GBLE)

reversed the significant alterations in 60 metabolites observed

in APP/PS1 mice with AD, similar to the response seen with

donepezil, an established AD medication. This suggests that

GBLE restores lipid metabolic balance and may contribute to its

neuroprotective effects in AD treatment, providing insights into

AD pathogenesis and the therapeutic potential of GBLE.

Li et al. demonstrated that total saikosaponins (TS) from Radix

bupleuri (Chaihu) improved cognitive function, reduced amyloid-

beta (Aβ) generation and plaque deposition, enhanced autophagy,

downregulated β-secretase 1 (BACE1), nuclear factor-κB (NF-κB),

and inflammatory factors, activated nuclear factor 2 (Nrf2), and

potentially regulated gut microbiota while alleviating oxidative

stress, suggesting TS as a potential therapeutic strategy for AD

pending further investigation into the underlying mechanisms.

Wang et al. investigated the therapeutic effect and

mechanism of Anemarrhenae Rhizoma (AR) on AD

using a rat model induced by D-galactose and aluminum

chloride (AlCl3). Metabolomics analysis using mass

spectrometry identified 32 significantly affected metabolites

in the serum, indicating the influence of AR on various

metabolic pathways. The findings from behavior studies,

histopathological observations, and biochemical analyses

supported the therapeutic potential of AR in AD prevention

and treatment, providing valuable insights into its

therapeutic mechanism.

Wu et al. identified phenylpropanoid sucrose esters from

Fallopia dentatoalata that exhibited moderate inhibitory

effects against acetylcholinesterase (AChE) and potential

inhibitory effects against butyrylcholinesterase (BuChE), with

certain compounds acting as non-competitive inhibitors of

AChE and others acting as competitive inhibitors of BuChE,

suggesting their potential as anticholinesterase therapeutics

for AD.

Song et al. investigated the protective effects of

matrine (MAT) on retinal ganglion cells (RGCs) in optic

neuritis (ON), a condition associated with vision loss

and inflammation. The study found that MAT treatment

reduced inflammation and demyelination, and promoted

RGC survival by upregulating the expression of Sirtuin

1 (SIRT1) and its downstream molecules Nrf2 and PGC-

1α, suggesting its potential as a therapeutic intervention for

optic neuritis.

Investigating immune infiltration in AD
for developing therapeutic targets

Zhang et al. analyzed the immune cell composition in the

entorhinal cortex of AD patients and identified 81 immune-related

differentially expressed genes. They found decreased lymphocyte

scores and increased myeloid cell scores in AD patients and

identified 37 genes involved in innate immunity, with eight genes

being potential drug targets. These findings provide insights into

potential therapeutic targets relevant to the immune components

in AD, contributing to the understanding and treatment of

the disease.

Highlighting the roles of exosomes in
AD development and diagnosis

The review by Zou et al. offers a comprehensive

overview of the roles of exosomes in AD, highlighting

their involvement in AD development, their potential as

biomarkers in various body fluids, and their significance

in AD diagnosis and treatment. This review underscores

the potential of exosomes as valuable tools for AD

diagnosis, treatment, and clinical management of

AD-related dementia.

Identifying BAG5 as a potential
diagnostic biomarker for PD with the
PINK1 R492X mutation

In their study, Fu et al. found lower expression levels

of Bcl2-associated athanogene 5 (BAG5) in the skin

tissues of PD patients with the R492X PINK1 mutation

than healthy controls. They also discovered that BAG5

interacts with the R492X mutated PINK1 protein and
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facilitates its degradation through the ubiquitin/proteasome-

dependent pathway. These findings highlight the potential

of BAG5 as a diagnostic biomarker and provide insights

into therapeutic targets for PD patients with the R492X

PINK1 mutation.

Targeting ferroptosis for the treatment
of ischemic stroke

Wei et al.’s review highlights the role of the neurovascular

unit (NVU) in ischemic stroke and underscores ferroptosis as a

significant factor in stroke progression and NVU regulation,

suggesting that targeting ferroptosis holds promise as a

therapeutic strategy to prevent severe brain damage and

reduce the risk of neurodegenerative conditions associated

with ischemic stroke.

Perspectives

The primary objective of this Research Topic was to provide

the scientific community with valuable insights into recent

advancements in studying the mechanisms and pharmacodynamic

material basis of therapies for neurodegenerative diseases. By doing

so, we aimed to contribute to the development of more effective

therapeutic strategies, with the ultimate goal of benefiting patients

worldwide who are affected by these debilitating conditions.

Through this collective effort, we aspire to make significant

strides toward improving the lives of individuals suffering from

neurodegenerative diseases.
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In Vitro and in Silico Analysis of
Phytochemicals From Fallopia
dentatoalata as Dual Functional
Cholinesterase Inhibitors for the
Treatment of Alzheimer’s Disease
Yichuang Wu1†, Xiangdong Su1†, Jielang Lu1, Meifang Wu1, Seo Young Yang2, Yang Mai1,
Wenbin Deng1* and Yongbo Xue1*

1School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China, 2Department of Pharmaceutical
Engineering, Sangji University, Wonju, South Korea

Current studies have found that butyrylcholinesterase (BuChE) replaces the biological
function of acetylcholinesterase (AChE) in the late stage of Alzheimer’s disease. Species in
the genus of Fallopia, rich in polyphenols with diverse chemical structures and significant
biological activities, are considered as an important resource for screening natural
products to against AD. In this study, thirty-four compounds (1–34) were isolated from
Fallopia dentatoalata (Fr. Schm.) Holub, and their inhibitory effects against AChE and
BuChE were assessed. Compounds of the phenylpropanoid sucrose ester class emerged
as the most promising members of the group, with 31–33 displaying moderate AChE
inhibition (IC50 values ranging from 30.6 ± 4.7 to 56.0 ± 2.4 µM) and 30–34 showing
potential inhibitory effects against BuChE (IC50 values ranging from 2.7 ± 1.7 to 17.1 ±
3.4 µM). Tacrine was used as a positive control (IC50: 126.7 ± 1.1 in AChE and 5.5 ±
1.7 nM in BuChE). Kinetic analysis highlighted compounds 31 and 32 as non-competitive
inhibitors of AChE with Ki values of ~30.0 and ~34.4 µM, whilst 30–34 were revealed to
competitively inhibit BuChE with Ki values ranging from ~1.8 to ~17.5 µM. Molecular
binding studies demonstrated that 30–34 bound to the catalytic sites of BuChE with
negative binding energies. The strong agreement between both in vitro and in silico studies
highlights the phenylpropanoid sucrose esters 30–34 as promising candidates for use in
future anti-cholinesterase therapeutics against Alzheimer’s disease.

Keywords: Fallopia dentatoalata, Alzheimer’s disease, cholinesterase (AChE, BChE), polyphenols, phenylpropanoid
sucrose esters, kinetic—spectrophotometric method, molecular docking

INTRODUCTION

Alzheimer’s disease (AD) is a chronic and occult neurodegenerative disease featured by permanent
memory loss and progressive cognitive impairments, which is relatively prevalent in the elder population
(Wang and Zhang, 2019). The progression of AD believes to involve with multiple complicated
pathogenesis and etiologies, and the cholinergic hypothesis is the earliest and most widely studied
pathogenetic mechanism of AD (Du et al., 2018; Wang and Zhang, 2019). According to the cholinergic
hypothesis, acetylcholine (ACh) is an essential neurotransmitter which acts as a chemical messenger
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when secreted by nerve cells (Du et al., 2018). This signaling is
important for numerous biological processes, including the support
of cognitive functions and memory in the central nervous system
(CNS), and activating muscles in the peripheral nervous system
(PNS) (Krátký et al., 2018). The cholinesterases, including
acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase
(BuChE, EC 3.1.1.8), are a group of esterases that catalyze the
hydrolysis of cholinergic neurotransmitters into choline and their
corresponding acids, which results in the return of the activated
cholinergic neuron back to its resting state (Nicolet et al., 2003).
AChE is regarded as a high-performance cholinesterase with highly
specific catalytic activity towards ACh (80%), while BuChE, a
substitute for AChE, is a non-selective cholinesterase, which can
degrade both ACh and butyrylcholine (Nicolet et al., 2003; Dvir
et al., 2010). Previous studies have demonstrated that ACh
deficiency can cause several neurological disorders in the cortical
cholinergic sites of the brain among patients with AD (Martinez
and Castro, 2006). Several pharmacotherapeutics that act as
acetylcholinesterase inhibitors (AChEIs) have been demonstrated
to increase the concentration of ACh and thereby contribute to the
alleviation the symptoms of AD (Martinez and Castro, 2006).
Although AChEIs hitherto still remain the most prevailing drugs
for the treatment of AD, those drugs demonstrate the limited
clinical outcomes and fail to prevent the disease progression
(Wang and Zhang, 2019). Research into the pathological
mechanisms of the disease has revealed that AChE levels
accumulate at a much higher rate than those of BChE during
the early stages of AD, whereas towards the later stages of the
disease, the levels of BChE increase and ultimately substitute the
function of AChE (Mesulam et al., 2002; Martinez and Castro,
2006). Whilst a number of AChE inhibitors that originate from
natural sources have been developed into therapeutic agents for the
treatment of AD, the number of BChE inhibitory therapeutics from
the natural pool is substantially lower (Clive et al., 2005). The
phytochemical study outlined herein aims to address this deficiency
through the characterization and biological evaluation of the natural
constituents isolated from F. dentatoalata.

F. dentatoalata is an annual plant with wing-shaped flowers
which belongs to the genus Fallopia. It is naturally distributed
throughout several East Asian countries, including China, Japan,
and India. F. dentatoalata is a popular cultivated species in China,
especially in the Jiangsu, Hubei, and Jilin provinces (Meng et al.,
2021a). In recent decades, a substantial number of phytochemical
studies have led to the isolation of various chemical constituents
from F. dentatoalata, including anthraquinones, stilbenes,
amides, and flavonoids (Meng et al., 2021a). Fallopia
multiflora is the most popular Fallopia species and its roots
enjoy use as a traditional Chinese medicine, mainly to boost
immunity and prevent aging (Lin et al., 2015). Moreover, recent
studies have demonstrated its preventive and curative effects in
the treatment of neurodegenerative diseases (Qian et al., 2020).
Some evidence indicates that the chemical constituents of F.
dentatoalata share a similar profile to those of F. multiflora.
Emodin (21) and tetrahydroxystilbene-2-O-β-D-glucoside (26), for
example, are twomajor compounds isolated from F. dentatoalata and
F. multiflorawhich exhibit a wide range of neurobiological properties
including neuroprotection and anti-neuroinflammation (Fakhri et al.,

2021; Semwal et al., 2021). In adidtion, extracts from F. multiflora
have been reported to show inhibitory activity against AChE (IC50:
9.11 μg/ml) and BuChE (IC50: 4.83 μg/ml) (Li et al., 2017). By
contrast, the chemical extracts from F. dentatoalata have yet to
have their inhibitory activities agaisnt AChE and BuChE assessed.

Our ongoing program to discover natural anti-cholinergic
candidates from Fallopia species has resulted the isolation of
thirty-four compounds from the aerial parts of F. Dentatoalata,
which are disclosed for the first time herein. The chemical
structures of these isolates were elucidated based on extensive
methods of characterization, including 1D- and 2D-NMR, HR-
FAB-MS spectroscopic analyses, and by comparison with
previously reported data. Enzymatic assays were conducted to
evaluate their inhibitory activities against AChE and BuChE.

MATERIALS AND METHODS

General Experimental Procedures
Column chromatographic procedures were performed using
silica gel (80–120 mesh and 200–300 mesh, Qingdao Marine
Chemical Co. Ltd., Qingdao, China) and Sephadex™ LH-20 gel
(40–70 μm; Merck, Darmstadt, Germany), whereas precoated
silica gel (GF254, Qingdao Marine Chemical Co. Ltd.,
Qingdao) plates were used for TLC analyses. Spots were
visualized by heating silica gel plates sprayed with 10% H2SO4

in EtOH. UV spectra were recorded using a Waters UV-2401A
spectrophotometer equipped with a DAD and a cell of 1 cm
pathlength. Methanolic samples were scanned from 190 to
400 nm in 1 nm steps. Semipreparative HPLC was performed
on an Agilent 1120 apparatus equipped with a UV detector and a
reversed-phase C18 column (5 μm, 10 × 250 mm,Welch Ultimate
XB-C18). 1D (1H, 13C) spectra of all compounds were recorded
on Bruker AM-600, AM-500, and AM-400 NMR spectrometers
(Bruker, Karlsruhe, Germany), with TMS as the internal
reference. |Enzymatic activity experiments were performed
using SpectraMax i3x (Molecular Devices, Austria).

Chemicals and Reagents
All HPLC solvents were purchased from Guangdong Guanghua
Sci-Tech Co. Ltd. (Guangzhou, China). Acetylcholinesterase
(C3389), acetylthiocholine iodide (A5751),
butyrylcholinesterase (C1057), butyrylthiocholine iodide
(B3253), and 5,5-dithiobis (2-nitrobenzoic acid) (DTNB),
tacrine and dimethylsulfoxide (DMSO) were purchased from
Sigma-Aldrich Co. (St. Louis, Missouri, United States). All
chemicals and solvents used in column chromatography and
assays were acquired from commercial sources.

Plant Material
The dried aerial parts of F. dentatoalata were collected from
Nanyang City of Henan Province in China and taxonomically
identified by Prof. Zulin Ning (Key Laboratory of Plant Resources
Conservation and Sustainable Utilization, Chinese Academy of
Sciences). A voucher specimen (SYSUSZ-2019-X3) was deposited
at the Department of Natural Medicines, School of
Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University.
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Extraction and Isolation
The air-dried aerial parts of F. dentatoalata (9.3 kg) were
extracted using 70% aqueous ethanol (15 L × 4 × 2 h at room
temperature) with ultrasonic assistance. The combined extracts
were filtered and evaporated under reduced pressure to yield a
brown residue (1.6 kg). The residue was suspended in H2O and
successively partitioned with petroleum ether (PE) (10 L), ethyl
acetate (EA) (10 L), and n-butanol (10 L), yielding petroleum
ether (121.3 g), ethyl acetate (93.0 g) and n-BuOH (311.3 g)
extracts.

The ethyl acetate layer was subjected to silica gel
(100–200 mesh) column chromatography (CC)
(CH2Cl2−MeOH, 100:1–1:1 v/v) to obtain seven fractions (Fr.
1–7). Fr. 2 (10.0 g) was decolorized using MCI gel CC
(MeOH–H2O, 20–100%, v/v) to afford three subfractions (Fr.
2A−2C). Fr. 2B was subjected to silica gel CC (PE−EA, 20:1–5:1,
v/v) to yield compound 21 (18.0 mg). Compound 22 (15.0 mg)
was purified from Fr. 2C by silica gel CC (PE-EA, 20:1–5:1, v/v).
Fr. 3 (8.3 g) was decolorized using MCI gel CC (MeOH–H2O,
20–100%, v/v) to afford three subfractions (Fr. 3A−3C). Fr. 3A
was successively separated via Sephadex LH-20 CC
(CH2Cl2−MeOH, 1:1, v/v) and silica gel CC (CH2Cl2−MeOH,
50:1–10:1, v/v) to afford compound 5 (5.0 mg) and 17 (10.0 mg).
Compounds 1 (15.0 mg), 3 (8.0 mg), and 16 (13.0 mg) were
purified from Fr. 3B by silica gel CC (CH2Cl2-MeOH, 50:1–10:
1, v/v). Fr. 4 (7.0 g) was subjected to silica gel CC
(CH2Cl2−MeOH, 50:1–10:1, v/v) to afford four subfractions
(Fr. 4A−4D). Fr. 4D was successively separated via MCI CC
(MeOH–H2O, 20–100%, v/v) and Sephadex LH-20 CC
(CH2Cl2−MeOH, 1:1, v/v) to afford compounds 28 (16.0 mg)
and 29 (26.0 mg). Fr. 5 (17.5 g) was subjected to silica gel CC
(CH2Cl2−MeOH, 50:1–1:1, v/v) to afford six subfractions (Fr.
5A−5F). Fr. 5D was successively separated via Sephadex LH-20
CC (CH2Cl2−MeOH, 1:1, v/v) and silica gel CC (CH2Cl2−MeOH,
50:1–30:1, v/v) to afford 7 (26.0 mg). Fr. 5E was successively
separated via silica gel CC (CH2Cl2−MeOH, 30:1–2:1, v/v),
Sephadex LH-20 CC (CH2Cl2−MeOH, 1:1, v/v), and semi-
preparative HPLC (MeOH−H2O, 30:70 to 80:20, v/v, 3 ml/
min) to afford 18 (10.0 mg, tR 6.3 min) and 19 (2.0 mg, tR
6.6 min). Fr. 5F was successively separated via Sephadex LH-20
CC (CH2Cl2−MeOH, 1:1, v/v) and semi-preparative RP-HPLC
(MeCN–H2O, 20:80–60: 40, v/v, 3 ml/min) to afford 30 (4.0 mg,
tR 7.1 min), 31 (7.0 mg, tR 8.1 min), and 32 (5.0 mg, tR 7.3 min).
Fr. 6 (35.0 g) was subjected to silica gel CC (CH2Cl2−MeOH, 50:
1–1:1, v/v) to afford six subfractions (Fr. 6A−6F). Fr. 6C was
successively separated via Sephadex LH-20 CC (CH2Cl2−MeOH,
1:1, v/v) and silica gel CC (CH2Cl2−MeOH, 30:1–5:1, v/v) to
afford compounds 26 (16.0 mg) and 27 (8.0 mg). Fr. 6D was
successively separated via silica gel CC (CH2Cl2−MeOH, 30:1–2:
1, v/v), Sephadex LH-20 CC (CH2Cl2−MeOH, 1:1, v/v), and semi-
preparative RP-HPLC (MeOH−H2O, 40:60 to 80:20, v/v, 3 ml/
min) to afford compounds 4 (10.0 mg, tR 8.9 min), 8 (5.0 mg, tR
5.7 min), 9 (15.0 mg, tR 11.7 min), 11 (2.0 mg, tR 10.1 min), and
24 (15.0 mg, tR 13.6 min). Similarly, compounds 10 (12.0 mg, tR
15.1 min), 12 (74.0 mg, tR 11.5 min), 13 (24.0 mg, tR 12.7 min), 20
(6.0 mg, tR 16.6 min), 33 (6.0 mg, tR 17.4 min), and 34 (7.0 mg, tR
19.6 min) were obtained from Fr. 6E and Fr. 6F by semi-

preparative RP-HPLC (MeOH–H2O, 20:80–80:20, v/v, 3 ml/
min). Fr. 7 (7.0 g) was successively separated via silica gel CC
(CH2Cl2−MeOH, 20:1–0:1, v/v) and semipreparative RP-HPLC
(MeOH–H2O, 20:80–100:0, v/v, 3 ml/min) to afford two
subfractions (Fr. 7A−7B). Fr. 7B was successively separated via
Sephadex LH-20 CC (CH2Cl2−MeOH, 1:1, v/v), silica gel CC
(CH2Cl2−MeOH, 20:1–1:1, v/v), and semipreparative RP-HPLC
(MeOH–H2O, 50:50–100:0, v/v, 3 ml/min) to afford 2 (10.0 mg,
tR 4.6 min), 6 (7.0 mg, tR 6.3 min), 14 (10.0 mg, tR 7.6 min), 15
(10.0 mg, tR 8.7 min), 23 (6.0 mg, tR 12.6 min), and 25 (10.0 mg,
tR 9.1 min).

Lapathoside B (30)
Yellowish amorphous solid. UV (MeOH): λmax (log ε) 217 (2.70),
323 (3.20) nm, see Supplementary Figure S6. 1H (600 MHz,
CD3OD-d4) and 13C-NMR (151 MHz, CD3OD-d4) data, see
Supplementary Table S1; HR-FAB-MS m/z
1039.2842 [M+Na]+ (calcd for C51H52NaO22

+ 1039.2848), see
Supplementary Figure S1.

Vanicoside B (31)
Yellowish amorphous solid. UV (MeOH): λmax (log ε) 213 (3.00),
318 (5.10) nm, see Supplementary Figure S7. 1H (600 MHz,
CD3OD-d4) and 13C NMR (151 MHz, CD3OD-d4) data, see
Supplementary Table S1; HR-FAB-MS m/z
1011.2840 [M+Na+CH3OH]+ (calcd for C50H52NaO21

+

1011.2899), see Supplementary Figure S2.

Lapathoside A (32)
Yellowish amorphous solid. UV (MeOH): λmax (log ε) 215 (4.70),
322 (5.80) nm, see Supplementary Figure S8. 1H (600 MHz,
CD3OD-d4) and 13C NMR (151 MHz, CD3OD-d4) data, see
Supplementary Table S1; HR-FAB-MS m/z
1004.3183 [M+NH4]

+ (calcd for C50H54NO21
+ 1004.3188), see

Supplementary Figure S3.

Smilaside J (33)
Yellowish amorphous solid. UV (MeOH): λmax (log ε) 2218
(4.70), 235.7 (3.20), 332 (5.80) nm, see Supplementary Figure
S9. 1H (400 MHz, CD3OD-d4) and 13C NMR (101 MHz,
CD3OD-d4) data, see Supplementary Table S2; HR-FAB-MS
m/z 858.2823 [M+NH4]

+ (calcd for C41H48NO19
+ 858.2821), see

Supplementary Figure S4.

Smilaside G (34)
Yellowish amorphous solid. UV (MeOH): λmax (log ε) 229 (2.70),
314 (4.70) nm, see Supplementary Figure S10. 1H (600 MHz,
CD3OD-d4) and 13C NMR (150 MHz, CD3OD-d4) data, see
Supplementary Table S2; HR-FAB-MS m/z
833.2271 [M+Na]+ (calcd for C40H42NaO18

+ 833.2263), see
Supplementary Figure S5.

AChE and BuChE Assays
In vitro cholinesterase assays were performed using a modified
version of previously published methods (Kim et al., 2016).
Briefly, 130 µL of enzyme (acetylcholinesterase and
butyrylcholinesterase: 0.05 Unit/mL) in 50 mM potassium
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phosphate buffer (pH 7.4) was mixed with 20 µL of compounds
(1–0.002 mM) dissolved in methanol in a 96-well plate. 25 µL of
1 mM DTNB [5,5′-dithiobis (2-nitrobenzoic acide)] and 25 µL of
5 mM substrate, acetylthiocholine iodide (A5751), and
butyrylthiocholine iodide (B3253) were sequentially added to
wells in the plate. Plates were incubated at 37°C for 30 min
then monitored with a Microplate reader (SpectraMax i3x)
(405 nm). Tacrine was used as positive control. The inhibition
ratio was calculated using the equation:

Inhibitory activity(%) � [(ΔC − ΔI)/ΔC] × 100

Where C and I are the intensity of control and inhibitor after
20 min, respectively.

Molecular Docking Simulation
Autodock package 4.2 (La Jolla, CA. United States) was used
for the molecular docking of receptor with ligand. Ligands
were built as 3D structures and minimized with MM2 charge
using Chem3D Pro 17.1. For flexible ligands, single bonds were
assigned using AutoDockTools. The 3D structures of BuChE
(pdb ID: 1P0I) was derived using the RCSB protein data bank.
Hydrogens were added to both, then each were assigned with
computed gasteiger charges. To simulate docking, a grid
containing the active site was set (grid points X.Y.Z
80.80.100 for AChE, and X.Y.Z 60.80.70 for BuChE) with
0.375 �A spacing. Docking simulations of protein structures

and newly built ligands were performed using the Lamarckian
Genetic Algorithm. Finally, ligands were docked into the box
25,000,000 times, then the results of the top 50 ranks were
extracted. Data were presented in figures using Discovery
Studio and Ligpot (Cambridge, United Kingdom) and
Chimera (San Francisco, CA, United States).

Statistical Analysis
All inhibitory concentration data was obtained from independent
experiments carried out in triplicate. Results are shown as the
mean ± standard error of the mean (SEM). The results were
subjected to analysis using Sigma plot 14.5 (Systat Software Inc.,
San Jose, CA, United States).

RESULTS AND DISCUSSION

Isolation and Identification
In this study, thirty-four compounds (1–34) were isolated from
the aerial parts of F. dentatoalata via extensive column
chromatography. These were identified as apigenin (1) (Ha
et al., 2012), isovitexin (2) (Jayasinghe et al., 2004), kaempferol
(3) (Fukai and Nomura, 1988), afzelin (4) (Xu et al., 2009),
astragalin (5) (Otsuka et al., 1989), kaempferol-3-rutinoside (6)
(de Sa de Sousa Nogueira et al., 2013), luteolin (7) (Zhang et al.,
2015), quercetin (8) (Lesjak et al., 2018), guaijaverin (9) (Yoshida

FIGURE 1 | Structure of isolated compounds 1–34 from F. dentatoalata.
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FIGURE 2 | Inhibitory activity of compounds 1–34 at 100 µM towards AChE and BuChE (A). IC50 values of 31–33 on AChE (B) and 30–34 BuChE (C). Lineweaver-
Burk plots (D,F) and Dixon plots (E,G) of compounds 31 and 32 on AChE. Lineweaver-Burk plots (H, J, L, N, P) and Dixon plots (I, K, M, O, Q) of compounds 30–34 on
BuChE.
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et al., 1992), hyperoside (10) (Isaza et al., 2001), tamarixetin-3-
rhamnoside (11) (Norman et al., 2021), quercitrin (12) (Chen
et al., 2008), isoquercitrin (13) (Jin et al., 2009), rutin (14)
(Kazuma et al., 2003), quercetin-3-O-robinoside (15) (Dossou
et al., 2021), myricetin (16) (Zhang et al., 2004), myricitrin (17)
(Kil et al., 2019), (+)-catechin (18) (Foo et al., 1997), (-)-
epicatechin (19) (Lin and Lee, 2010), zizyflavoside B (20)
(Yang et al., 2020), emodin (21) (Meselhy, 2003), physcion
(22) (Jo et al., 2011), glucofrangulin A (23) (Bezabih and
Abegaz, 1998), torachrysone-8-O-β-D-glucoside (24) (Zhao
et al., 2017), polydatin (25) (Yi et al., 2020),
tetrahydroxystilbene-2-O-β-D-glucoside (26) (Tsai et al., 2018),
(E)-2,3,5,4′-tetrahydroxystilbene-2-O-(2″-O-galloyl)-β-D-
glucoside (27) (Nguyen et al., 2020), protocatechuic acid (28)
(Meng et al., 2021b), gallic acid (29) (Chen et al., 2021),
lapathoside B (30) (Takasaki et al., 2001), vanicoside B (31)
(Kumagai et al., 2005), lapathoside A (32) (Takasaki et al., 2001),
smilaside J (33) (Zhang et al., 2008), and smilaside G (34)
(Takasaki et al., 2001). Identification was enabled by
comparison of their spectroscopic data with those reported
previously, see Supplementary Table S3–S13 (Figure 1).

Enzyme Assays
Compounds were first evaluated in vitro for their inhibitory
activities against AChE and BuChE at a concentration of
100 µM. The amount of 5-thio-2-nitrobenzoic acid produced

from the substrates (acetylthiocholine iodide and
butyrylthiocholine iodide) was quantified in the presence or
absence of compounds using a SpectraMax i3x model at
405 nm. Tacrine was used as a positive control (IC50: 126.7 ±
1.1 in AChE and 5.5 ± 1.7 nM in BuChE). Compounds 1–34
exhibited inhibitory effects on AChE and BuChE with different
ratios, ranging from 0.9 ± 0.3% to 73.8 ± 0.4%, and from 2.3 ±
0.3% to 96.3 ± 2.0% of the control value at 100 μM, respectively
(Figure 2A). Among them, compounds 31–33 exhibited more
than 60% inhibition in a dose-dependent manner on AChE, with
IC50 values of 32.3 ± 4.7, 30.6 ± 4.7, and 56.0 ± 2.4 µM,
respectively (Figure 2B; Table 1). Compounds
30–33 displayed potent inhibitory activities against BuChE
with IC50 values of 2.7 ± 1.7 and 10.9 ± 4.9 µM, while
compound 34 exhibited a moderate inhibition on BuChE with
an IC50 value of 17.1 ± 3.4 µM (Figure 2C; Table 1).

Structure-activity relationships (SAR) of compounds 30–34
were guided by their IC50 values in order to better understand
their respective pharmacophores (Supplementary Figure S11).
Compound 33 (IC50:10.1 µM) with a p-coumaroyl motif linked to
the C-4 position of fructose, demonstrated an inhibitory effect
comparable with compound 30 (IC50:10.9 µM), while compound
31 (IC50: 7.5 µM), which has a feruloyl group linked to the C-6′
position of glucose and a p-coumaroyl linked to the C-3 position
of fructose, exhibited an inhibitory activity over 2-fold higher
than that of Compound 34 (IC50:17.1 µM). In addition, the

TABLE 1 | Inhibitory activity of compounds 30–34 against AChE and BuChE.

Comp AChEa BuChEa

IC50 (µM) Inhibition type Ki (µM) IC50 (µM) Inhibition type Ki (µM)

30 >100 ‒ ‒ 10.9 ± 4.9 Competitive ~12.1
31 32.3 ± 4.7 Non-Competitive ~30.0 7.5 ± 4.1 Competitive ~3.5
32 30.6 ± 4.7 Non-Competitive ~34.4 2.7 ± 1.7 Competitive ~1.8
33 56.0 ± 2.4 ‒ ‒ 10.1 ± 4.6 Competitive ~8.5
34 >100 ‒ ‒ 17.1 ± 3.4 Competitive ~17.5
Tacrineb 126.7 ± 1.1 nM ‒ ‒ 5.5 ± 1.7 nM ‒ ‒

aAll compounds were examined in triplicate.
bPositive control.
(‒) Not tested.

TABLE 2 | Binding site residues and docking scores of compounds 30–34 bound to BuChE obtained using Autodock 4.2.

Comp Binding
energy

(kcal/mol)

Hydrogen bond
interaction

Van der
Waals

Hydrophobic interactions Other interactions

π-π
stacked

π-σ π-alkyl π-anion/
cation

π-
amide

30 –7.13 Asn83, Ser287, Asn289,
Tyr282, Gln270

Val288, Trp82, Ser79, Tyr332, Leu273,
Thr284, Leu274

Phe278 Ile356 Asp70

31 –7.36 Gly78, Trp430, Ser72,
Asn289, Gly116

Gln71, Asp70, Thr284, Ile69, Thr120,
Met437, Tyr440, Trp82, Ser79

Ala328, Ala277 Gly283

32 –7.55 Ala277, His438, Pro285,
Val331, Gln71

Ile69, Tyr440, Met437, Trp430, Leu286,
Asp70, Thr284

Phe278 Ala328, Trp82,
Ala277

33 –5.33 His438, Ser198, Asp70,
Thr120, Gly283

Phe398, Ile356, Gly117, Gln119, Asn83,
Ser79, Trp82, Tyr332, Ser72

Phe329 Trp231 Pro285 Thr284
Gly116

34 –5.23 Ile69, Ser72, Thr284,
Pro281

Asp70, Tyr332, Gln119, Thr120, Leu286,
Gln71, Gly117, Phe278

Phe329 Pro285 Gly116
Trp231 Ile356
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FIGURE 3 | The best poses of compounds 30–34 (30, red; 31, green; 32, orange; 33, yellow; 34, blue) docked with BuChE (A). Molecular docking models (B, D, F,
H, J) and 2D ligand interaction diagrams (C, E, G, I, K) of BuChE inhibition at the catalytic pocket by compounds 30–34, respectively. Different interactions between
compounds and amino acid residues in the catalytic site are designated by the following: thick light purple stick models represent compounds 30–34, green dotted lines
represent hydrogen bonds, light green lines represent Van der Waals interactions, dark pink lines represent π–π and π–σ interactions, and light pink lines represent
π–alkyl interactions.
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presence of a feruloyl group at C-6′, a p-coumaroyl group at C-6,
and a feruloyl group linked to the C-1 position of fructose such as
those found in compound 32 (IC50: 2.7 µM), are likely to be the
structural units most responsible for the observed anti-
cholinesterase activities. Consequently, the inhibitory activities
decreased in the order 32 > 31 > 33 > 30 > 34, with compound 32
being the most potent of the series.

Enzyme Kinetics Study
The binding mechanisms of isolated compounds which displayed
IC50 values less than 50 µM against cholinesterase were
investigated. This was achieved by performing enzyme kinetic
studies on AChE/BuChE in the presence of different
concentrations of compounds 30–34 (2–90 µM) at various
steady-state substrate concentrations (0.07–5 mM). The
interactions between compounds and cholinesterase are
represented using classic double-reciprocal Lineweaver-Burk
and Dixon plots (Lineweaver and Burk, 1934; Dixon, 1953).
Compounds 31 and 32 were revealed to have various Vmax

values and a Km value, which confirmed both were non-
competitive inhibitors that docked with both AChE and
substrate-bound AChE (Figures 2D,F) (Lee et al., 2018). The
resulting linear equations for compounds 30–34 with BuChE led
to a series of lines with different slopes that crossed at similar
intercepts on the vertical axis and different points on the
horizontal axis. Compounds 30–34 were therefore designated
as competitive inhibitors of BuChE (Figures 2H,J,L,N,P) (Kim
et al., 2016). Furthermore, the intersections of the lines on the
Dixon plots indicated that the inhibition constants (Ki) of
compounds 31 and 32 towards AChE were ~30.0 and
~34.4 μM, respectively (Figures 2E,G; Table 1). The Ki values
of compounds 30–34 for the inhibition of BuChE were ~12.1,
~3.5, ~1.8, ~8.5 and 17.5 μM, respectively (Figures 2I,K,M,O,Q;
Table 1).

Molecular Docking of BuChE Inhibition
Kinetic studies demonstrated that compounds 30–34 significantly
downregulated the catalytic activity of BuChE by competitively
binding to its active site. Previous researches demonstrated that the
active site gorge of BuChE include: catalytic triad (Ser198-His438-
Glu325), acyl loop (Ala277-Leu286-Val288), π-cation site (Tyr82-
Ala328), ꞷ-loop (Ile69-Ser79), oxyanion hole (Ala199-Gly116-
Gly117), and peripheral site (Asn68-Glu70-Tyr332) (Nicolet et al.,
2003; Vyas et al., 2010). Molecular docking simulations were
subsequently performed in order to confirm and identify their
binding energies and outline the binding interactions (i.e.
hydrogen-bonding, Van der Waals, and hydrophobic
interactions) between ligands 30–34 and BuChE (Table 2). Full
docking views of each phenylpropanoid sucrose ester bound to the
catalytic site of BuChE are shown in Figure 3.

Compound 30 achieved and Autodock score of –7.13 kcal/mol
(Table 2). Hydroxyl and carboxyl groups displayed hydrogen
bonding with the key amino acids Asn83 (2.72 Å), Ser287
(2.66 Å), Asn289 (2.61 Å), Tyr282 (2.83 Å), and Gln270
(3.19 Å) (Figures 3B,C). An aromatic ring of the feruloyl
group attached to C-1 of fructose exhibited π-π stacking with
Phe278 at a distance of 4.59 Å. Other residues from different

active sites, including Val288, Trp82, Ser79, Tyr332, Leu273,
Leu274, Thr284, Ile356, and Asp70, showed bonding with 30
via Van der Waals, π-alkyl and π-anion interactions
(Figures 3B,C).

Compounds 31 and 32 displayed stable binding energies of
–7.36 and –7.55 kcal/mol when bound to the active site, which
arose as a result of interactions with five (Gly78 at 2.09 Å,
Trp430 at 2.31 Å, Ser72 at 2.90 Å, Asn289 at 2.38 and 2.68 Å,
Gly116 2.78 Å) and six (Ala277 at 2.02 Å, His438 at 2.03 Å,
Pro285 at 2.01 and 2.50 Å, Val331 at 2.48 Å, Gln71 at 2.41 Å)
hydrogen bonds to amino acid residues in the BuChE active
site, respectively (Figures 3D,E; Table 2). Both 31 and 32
shared the same catalytic residues of Tyr440, Met437, Asp70,
Ile69 (via Van der Waals interactions) and Ala328 and Ala277
(via π-alkyl interactions) (Figures 3D–G; Table 2).
Furthermore, compound 31 exhibited additional Van der Waals
interactions with Gln71, Thr284, Thr120, Trp82, Ser79, and a π-
amide interaction with Gly283, which further confirmed its
interaction with BuChE (Figures 3D,E; Table 2). The
remaining residues of Trp430, Leu286, Thr284, and Trp82 from
the active site formed Van der Waals and π-alkyl interactions with
compound 32 (Figures 3F,G; Table 2).

Compounds 33 and 34 bound to the catalytic region of
BuChE with a relatively large binding energies of –5.33 and
–5.23 kcal/mol respectively, which suggests that the number of
phenylpropanoids affects the binding energy. As shown in
Figures 3H–K, compounds 33 and 34 formed five hydrogen
bonds (His438 at 2.35 Å, Ser198 at 2.16 Å, Asp70 at 2.36 and
2.58 Å, Thr120 at 2.02 Å, Gly283 at 2.12 Å), meanwhile 34
formed four (Thr284 at 1.74, Pro281 at 2.02 Å, Ile69 at
2.11 Å and Ser72 at 3.04 Å), respectively (Table 2).
Additionally, 33 and 34 shared the same residues of
Tyr332, Gly117, and Gln119 (via Van der Waals
interactions), Phe329 and Trp231 (via π-π and π-σ
interactions), Pro285 and Gly116 (via π-alkyl and π-amide
interactions), respectively (Table 2). The other residue
interactions of 33 and 34 are similar with those of
compounds 30–32 (Figure 3; Table 2). The molecular
docking results are consistent with the those from the
kinetic studies, which confirm compounds 30–34 to be
competitive inhibitors binding at the catalytic active site of
BuChE. Furthermore, molecular docking simulations between
these isolates and BuChE enzyme suggest that
phenylpropanoid sucrose esters represent a novel molecular
architecture in the development of BuChE inhibitors.

CONCLUSION

Thirty-four previously reported compounds were isolated
from the MeOH extracts of the aerial parts of F.
dentatoalata. These compounds were further classified into
seventeen flavonoids and their glycosides (1–17), two flavan-3-
ols (18–19), a biflavone (20), three anthraquinones (21–23), a
naphtolic glycoside (24), three stilbenoid derivatives (25–27),
two phenolic acids (28–29), and five phenylpropanoid sucrose
esters (30–34). The inhibitory activities of all compounds

Frontiers in Pharmacology | www.frontiersin.org July 2022 | Volume 13 | Article 9057088

Wu et al. Anticholinesterase Inhibitors From Fallopia dentatoalata

14

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


against AChE and BuChE were evaluated. To the best of our
knowledge, this is the first phytochemical investigation on
potential anti-cholinesterase candidates from F. dentatoalata.
However, several compounds already have been evaluated for
their potential anti-cholinesterase effects before, especially
flavonoids (Wu et al., 2017; Borowiec et al., 2022). For
examples, compounds 1, 5 and 19 showed over 50%
inhibitions against AChE and BuChE, which further proved
to be comparable with reported values (Kim et al., 2016;
Nugroho et al., 2018; Islam et al., 2021; Karatas et al.,
2022). In addition, compounds 31–33 showed moderate
inhibition of AChE, and were determined to be non-
competitive inhibitors. Compounds 30–34 significantly
suppressed the activity of BuChE and were identified as
competitive inhibitors. In vitro and in silico results indicate
that the phenylpropanoid sucrose esters 30–34 from F.
dentatoalata hold potential as candidates for future
development as anti-cholinesterase therapeutics against AD.
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Alzheimer’s disease (AD) is a neurodegenerative disease characterized by

memory loss and cognitive dysfunction in the elderly, with amyloid-beta (Aβ)
deposition and hyperphosphorylation of tau protein as the main pathological

feature. Nuclear factor 2 (Nrf2) is a transcription factor that primarily exists in the

cytosol of hippocampal neurons, and it is considered as an important regulator

of autophagy, oxidative stress, and inflammation. Total saikosaponins (TS) is the

main bioactive component of Radix bupleuri (Chaihu). In this study, it was found

that TS could ameliorate cognitive dysfunction in APP/PS1 transgenic mice and

reduce Aβ generation and senile plaque deposition via activating Nrf2 and

downregulating the expression of β-secretase 1 (BACE1). In addition, TS can

enhance autophagy by promoting the expression of Beclin-1 and LC3-II,

increasing the degradation of p62 and NDP52 and the clearance of

phosphorylated tau (p-tau), and reducing the expression of p-tau. It can also

downregulate the expression of nuclear factor-κB (NF-κB) to inhibit the

activation of glial cells and reduce the release of inflammatory factors. In

vitro experiments using PC12 cells induced by Aβ, TS could significantly

inhibit the aggregation of Aβ and reduce cytotoxicity. It was found that

Nrf2 knock-out weakened the inhibitory effect of TS on BACE1 and NF-κB
transcription in PC12 cells. Moreover, the inhibitory effect of TS on

BACE1 transcription was achieved by promoting the binding of Nrf2 and the

promoter of BACE1 ARE1. Results showed that TS downregulated the

expression of BACE1 and NF-κB through Nrf2, thereby reducing the

generation of Aβ and inhibiting neuroinflammation. Furthermore, TS can

ameliorate synaptic loss and alleviate oxidative stress. In gut microbiota

analysis, dysbiosis was demonstrated in APP/PS1 transgenic mice, indicating

a potential link between gut microbiota and AD. Furthermore, TS treatment

reverses the gut microbiota disorder in APP/PS1 mice, suggesting a therapeutic

strategy by remodeling the gut microbe. Collectively, these data shows that TS

may serve as a potential approach for AD treatment. Further investigation is
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needed to clarify the detailed mechanisms underlying TS regulating gut

microbiota and oxidative stress.

KEYWORDS

total saikosaponins, Alzheimer’s disease, Aβ, p-tau, Nrf2, autophagy, gut microbiota

1 Introduction

Alzheimer’s disease (AD) is a progressive and multifaceted

neurodegenerative disorder of the central nervous system with

dementia, loss of memory, and cognitive disturbance (Luo et al.,

2016). At present, cholinesterase inhibitors (ChEIs) and

N-methyl-D-aspartate receptor antagonists such as donepezil,

rivastin, galantamine, and memantine have been approved for

clinical treatment of AD, which are single-target drugs that can

only show mild and temporary improvement in learning and

memory dysfunction accompanied by hepatotoxicity or

cholinergic crisis, indicating that improving cognitive function

through a single target is not a feasible therapeutic approach

(Yang et al., 2017; Liu et al., 2018; Osama et al., 2020; Scheltens

Philip, 2021). Therefore, developing multi-target, low-toxicity,

and effective drugs for the treatment of AD is necessary.

The neuropathological features of AD include the deposition

of Aβ plaques in the neocortex and neurofibrillary tangles

(primarily composed of tau aggregates) in the marginal and

cortical joint areas (Busche & Hyman, 2020). Genetic studies

have shown that mutations in amyloid precursor protein (APP)

or enzymes that produce Aβ can cause autosomal dominant

hereditary AD; thus, Aβ is considered as the key initiator of the

disease. The Aβ cascade hypothesis indicates that Aβ can induce

a series of harmful responses, including increased inflammation,

synaptic dysfunction, and neuronal loss, and promote tau protein

phosphorylation (Tsai et al., 2015; Pereira et al., 2019; Busche &

Hyman, 2020; Zetterberg & Bendlin, 2021). The

hyperphosphorylation of tau protein (a microtubule-associated

protein) is related to the tangles of nerve fibers, which can also

aggravate the inflammation of the nervous system, affect the

mitochondrial function of neurons, and promote the decline of

cognitive function (Tsai et al., 2015; Wang Z. Y. et al, 2016).

Recently, the therapeutic effect of Nrf2 on AD has been reported:

Nrf2 is highly expressed in astrocytes, providing a

neuroprotective effect (Cuadrado et al., 2018; Osama et al.,

2020). In NRF2-deficient mice, the levels of insoluble p-tau

and Aβ increased significantly, which aggravated cognitive

impairment in APP/PS1 mice (Branca et al., 2017; Rojo et al.,

2017; Osama et al., 2020). In addition, considerable literature has

shown that NRF2 promotes the clearance of APP and tau by

upregulating the expression of autophagy genes, which plays an

important role in maintaining cellular redox dynamic balance

and regulating neuroinflammation (Pajares et al., 2016; Pajares

et al., 2018; Osama et al., 2020). Therefore, Nrf2 plays a central

role in the pathological process of AD.

Recently, several studies have focused on elucidating the two-

way communication pathway between intestinal bacteria and the

central nervous system: microbe–gut–brain axis. Clinical and

laboratory studies have revealed the changes in intestinal flora

and its metabolites related to the occurrence and development of

AD (Wang Z. Y. et al, 2016; Cryan et al., 2020), and some studies

have proven that abnormal microbiota may cause AD. Based on

previous reports, the level of trimethylamine N-oxide produced

by dietary choline metabolism is increased in patients with

dementia, which is positively correlated with p-tau, a

biomarker of AD (Vogt et al., 2018). In addition, intestinal

microbiota-bile acid (BA) can significantly decrease the

concentration of primary bile acid (CA) in patients with AD,

which is closely related to cognitive decline

(MahmoudianDehkordi et al., 2019). Furthermore, scientists

have transplanted feces of AD animals into aseptic APP

transgenic mice. The accumulation of Aβ is accelerated after

transplantation, demonstrating that intestinal microflora

contributes to the development of AD pathology. Considering

the vital role of intestinal flora in AD, more studies have focused

on the intervention of AD based on microbiota. For example,

Clostridium butyricum (CB) could improve cognitive

impairment and Aβ deposition in APP/PS1 mice, reduce

neuroinflammation mediated by microglia, and reverse the

abnormal changes of gut microbiota (GM) and butyric acid,

indicating that CB can play the role of anti-AD by regulating the

GM–gut–brain axis (Sun et al., 2020). Therefore, the therapy

based on intestinal microbiota may provide a new direction for

the treatment of AD (Harach et al., 2017).

Radix bupleuri (Chaihu) is a traditional Chinese medicine

widely used to treat fever, influenza, inflammation, chronic

hepatitis, cancer, nephrotic syndrome and other diseases (Park

et al., 2015; Lin et al., 2016). It was recorded that Chaihu show

ability to nourish liver and blood, promote blood circulation and

Qi flow in the brain (Liang et al., 2012), thus it could be used to

treat brain disease. Many traditional prescriptions with Chaihu as

the main drug such as Chaihu Shugan San and Xiaochaihu Tang

have been used in AD treatment and reported to show potent

anti-AD effects (Zhao et al., 2012; Liu et al., 2019a; Zeng et al.,

2019; Sohn et al., 2021). Saikosaponins, a group of oleanane

triterpenoid saponins, are the main bioactive component in

Chaihu. More than 100 different saikosaponins have been

identified, of which the main components are saikosaponin a

and d. Saikosaponins show various bioactivities such as

anticancer, antiviral, antipyretic, hepatoprotective,

neuroprotective, immunomodulatory, and antibacterial effects
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(Park et al., 2015; Lee et al., 2016; Lin et al., 2016; Kim, 2018; Li

et al., 2020). Recent studies have shown that saikosaponins have

multiple effects on inflammation, antioxidant balance, and

injury: SSd can inhibit the production of reactive oxygen

species (ROS) and upregulate the expression of antioxidant

enzymes, namely, superoxide dismutase (SOD) and

malondialdehyde (MDA); SSa and SSd can also inhibit the

expression of inflammatory factors in mouse macrophages

induced by LPS, indicating that saikosaponins may be used to

treat AD through antioxidation and inhibition of

neuroinflammation (Kim, 2018). At present, few studies have

been conducted on the use of saikosaponins in the treatment of

AD. Lee et al. have shown that SSc can inhibit the secretion of

Aβ1-40 and Aβ1-42 and the phosphorylation of tau and promote

nerve growth factor-mediated axonal growth (Lee et al., 2016;

Kim, 2018). Based on these evidence, total saikosaponins (TS)

may have a therapeutic effect in AD treatment, but the effect and

mechanism need to be further elucidated.

The present study aimed to investigate the therapeutic effect

of TS on APP/PS1 transgenic mice and underlying mechanisms.

The results reveal that TS downregulated the transcription and

expression level of BACE1 through the Nrf2 pathway to reduce

Aβ production and senile plaque deposition. The inhibitory effect
of TS on BACE1 transcription was achieved by promoting the

binding of Nrf2 and the promoter of BACE1 ARE1. In addition,

TS promoted autophagy by regulating the expression of

autophagic proteins, thereby reducing the level of p-tau. In the

aspect of neuroinflammation, TS could downregulate NF-κB
transcription and expression through Nrf2, thus inhibiting the

activation of glial cells and reducing the production of

inflammatory factors. TS was found to ameliorate synaptic

loss and alleviate oxidative stress. Furthermore, TS could

reverse the GM disorder in APP/PS1 mice and improve the

diversity of GM. Collectively, this study can provide a new insight

and potential approach for the treatment of AD.

2 Materials and methods

2.1 Preparation of total saikosaponins

Radix Bupleuri was purchased from the Chinese Medicinal

Material market in Bozhou, China (Lot No. 20190311). Total

saikosaponins were prepared using a modified method based on

previous report (Li et al., 2013). Briefly, 3 kg air-dried roots were

sliced and reflux-extracted by 80% ethanol (adjusted to pH 9 with

KOH) for two times, 90 min each. The extract solution was

concentrated under vacuum to 3 L, and then subjected to column

chromatography using 4.5 L AB-8 macroporous absorption

resin. It was eluted with water, 30% ethanol, 70% ethanol and

95% ethanol successively. The 70% ethanol elution was collected

and evaporated under vacuum, and then dried using vacuum

freeze dryer to yield TS. Three main monomeric saponins in TS

were determined using HPLC, and the content of SSa, SSd, SSc

was 17.11, 12.52, 3.36%, respectively.

2.2 Animal experiment procedure

Eight-month-old APP/PS1mice and wild-type (WT) C57BL/

6J mice (half male and half female, weighing 25 ± 5 g) were

purchased from Beijing Huafukang Experimental Animal

Technology Co., Ltd. All animal procedures were performed

in accordance with the Provision and General Recommendation

of Chinese Experimental Animals Administration Legislation

and approved by the Ethic Committee of Ningxia Medical

University (No. 2016–037). Throughout the study, all mice

were kept in a pathogen-free environment with a light/dark

cycle of 12 h and free access to food and water under

constant temperature and humidity (22 ± 1°C and 45–55%,

respectively). APP/PS1 mice were randomly divided into five

groups (n = 10): model group; low, middle, and high-dose TS

FIGURE 1
Diagram of behavioral experimental equipment. (A)
Schematic diagram of Y-maze experimental device. (B) Schematic
diagram of NOR experiment. (C) Schematic diagram of Morris
water maze device.
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groups; and donepezil group (positive control). C57BL/6J WT

mice were used as blank control. The mice of TS groups were

intragastrically administrated with different doses of TS (20, 40,

and 80 mg/kg), and the positive group was given donepezil

(5 mg/kg). The blank group and model group were given the

same amount of normal saline as control. The administration

lasted for 30 days, and behavioral tests including Y maze test,

novel object recognition (NOR) test, and Morris water maze test

were performed on days 22–30. Then, mice were sacrificed

by cervical dislocation on day 31, and samples were collected

for further assessment.

2.3 Behavioral experiments

One month after drug treatment, Y-maze test was performed

to evaluate the working memory ability as previously described

(Liu et al., 2019b). The Y maze consists of three identical arms,

each with an angle of 120° and a size of 30 cm × 8 cm × 15 cm

(length × width × height). A movable partition was placed in the

center, and different geometric figures were affixed to each arm of

the maze as a visual marker. The three arms of the Y maze were

randomly set as the novel arm, the start arm, and the other arm.

A camera was placed 1.5 m above the maze to record the

movement track of the mice. The diagram of the Y maze is

shown in Figure 1A. The Y maze experiment consists of two

stages with an interval of 1 h. The first stage is the training period.

After blocking the new arm with a partition, the mice were placed

into the starting arm to move freely for 10 min in the maze. After

1 h, during the second stage of detection, a new different arm

septum was opened, and similarly, the mice were placed into the

starting arm to move freely for 5 min in the three arms. Before

each trial, the maze was thoroughly cleaned with 75% ethanol to

eliminate scent cues. The residence time of mice in the new arm

was recorded.

The NOR test was conducted to evaluate the ability to

distinguish new object as previously reported (Scott et al.,

2017). The schematic diagram of the NOR test is shown in

Figure 1B. During habituation, each mouse was allowed to

explore freely for 5 min in the test box (50 cm × 50 cm ×

30 cm). During training, which started 24 h later, two identical

objects were placed in the test box. Each mouse was placed in the

box and allowed to explore freely for 5 min, and the touching

times of mice to each object were recorded. After 24 h, one of the

original objects was replaced by a new object similar in size but

different in shape and color. Each mouse was placed in the test

box and allowed to explore freely for 5 min. The touching times

of mice to each object were recorded. After each test, the test box

and objects were cleaned with 75% ethanol. The times of

exploring new and old objects were statistically analyzed, and

the discrimination index (DI) was calculated. DI = (TN−TF)/

(TN+TF), where TN is the number of times to explore new

objects, and TF is the number of times to explore old objects.

Morris water maze test was carried out to evaluate spatial

learning and memory ability as previously described (Liu et al.,

2019). In brief, the test was carried out in a round stainless-steel

pool with a diameter of 1.2 m, which was divided into four

quadrants. A 10 cm diameter hidden platform was placed at the

center of the IV quadrant, 1 cm below the water surface. The

water temperature was kept at 22–24°C. The schematic diagram

of the water maze system is shown in Figure 1C. The experiment

lasted for 5 days, and each mouse was trained two times a day.

During the place navigation test, mice were released into the

water facing the pool wall from the edge of each quadrant and

allowed to swim freely for 60 s until they found the hidden

platform. If a mouse could not find the platform within 60 s, then

it will be placed onto the platform and stayed for 30 s. Mice were

trained two times a day for 3 days. Twenty-4 hours after the

training period, the place navigation test was carried out. The

time each mouse spent to find the hidden platform was recorded

as escape latency. Afterward, the spatial probe test was

performed, in which the platform was removed, and the mice

were released into the water to swim freely for 60 s. The following

data were recorded: 1) latency, the time mouse spent to reach the

hidden platform area for the first time; 2) number of crossing, the

number of times the mouse passed through the hidden platform

area; 3) time in the target quadrant, the time mouse spent in the

quadrant of the former hidden platform. All experimental data

were analyzed using the WMT-100S analysis system (Techman

Software, Chengdu, China).

2.4 Brain tissue preparation

After the behavioral test, the mice were anesthetized and

perfused with PBS containing heparin (10 U/mL) precooled at

4°C. The brain was removed and divided into two parts along the

sagittal plane. The left hemisphere was fixed with 4%

paraformaldehyde, and paraffin-embedded sections were

prepared for immunohistochemical experiments. The right

hemisphere was stored at −80°C for further ELISA and

Western blot experiments.

2.5 Immunohistochemical staining

The brain tissue soaked in 4% paraformaldehyde (Solebo)

was trimmed, dehydrated, waxed, and then embedded. The

repaired wax block was cut into a cross-section with a

thickness of 4 μm and then dewaxed and rehydrated after

baking. Antigen repair was performed with 0.01 m sodium

citrate solution (pH 6.0). Endogenous peroxidase was blocked

with 3% hydrogen peroxide solution (Solebo) and then blocked

with 3%BSA for 30 min. The slices were then incubated overnight

at 4°C with antibodies p-tau (Ser396, 1:200, Affinity, AF3148),

Iba-1 (1:200, GeneTex, GTX101495), GFAP (1:200, CST, 3670),
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Synaptophysin (1:200, Abcam, ab32127), PSD-95 (1:200, Abcam,

ab12093), and NeuN (1:200, Abcam, ab177487). On the second

day, after washing with PBS three times, the slices were incubated

with HRP-sheep and rabbit anti-IgG (1:200, Abbkine, A21020),

HRP-sheep anti-mouse IgG (1:200, Beijing Zhongshan Biological

Engineering Co., Ltd.), Alexa Fluor 488-donkey anti-rabbit IgG

secondary antibody (1:200, Abcam, ab150073), and Alexa Fluor

594-donkey anti-sheep IgG (1:200, Abcam, ab150132), followed

by coloration with DAB (Beijing Zhongshan Jinqiao

Biotechnology Co., Ltd.), and finally dehydrated. The second

anti-rabbit IgG antibody was incubated with the second antibody

of donkey anti-rabbit IgG (1:200, Beijing Zhongshan Bio-

Engineering Co., Ltd.), followed by coloration by DAB

(Beijing Zhongshan Jinqiao Biotechnology Co., Ltd.), and then

sealed using a neutral gum (Beijing Zhongshan Jinqiao

Biotechnology Co., Ltd.). All sections were observed by using

an optical microscope (DP73-ST-SET, Olympus, Japan) or sealed

with an anti-fluorescence quenching agent.

2.6 Quantification of cerebral Aβ levels

Aβ40 and Aβ42 are markers of amyloid deposition in the

cerebral cortex of patients with AD (Olsson et al., 2016). The

levels of Aβ in mouse brain were determined using Aβ40 and

Aβ42 Elisa kits (China Peptide Biochemistry Co., Ltd. and IBL

Co., Ltd.) according to the instructions of the manufacturer. The

sample to be tested was properly diluted with dilution buffer and

coated in an ELISA plate at 100 μL per hole at 4°C overnight, and

the coating solution was discarded the next day and washed nine

times for 60 s each time. In addition, the labeled antibody

working solution, 100 μL per well, was incubated at 4°C for

1 h, and the plate was washed nine times for 60 s each time.

Afterward, TMB substrate chromogenic solution was added,

100 μL per well, and light reaction was avoided for 20 min at

37°C. Finally, absorbance was determined at 450 nm after

termination.

2.7 Measurement of oxidative stress and
inflammatory cytokines

TNF-α, IL-6, and IL-1β in the samples were evaluated using

ELISA kit according to the manufacturer’s protocol (Biolegend),

and oxidative stress was assessed by using MDA, SOD, and GSH

kits according to the manufacturer’s protocol (Shanghai

Biyuntian Biotechnology Co., Ltd.).

2.8 Cell culture

PC12 cells from the Library of Chinese Academy of Sciences

cells were incubated in DMEM (Basal Media, J210908)

containing 10% fetal bovine serum (Gibco, 10099141C) and

1% penicillin/streptomycin (Hyclone) at 37°C. The cells were

cultured in a Petri dish or cell culture plate to 70–80% fusion.

2.9 Cell viability assay

The cells were seeded in a 96-well plate (5 × 104 cells/well)

and treated with different concentrations of TS (0.01, 0.1, 0.1, and

10 μg/ml), 1 μM of Aβ, 10 μM of CQ (MCE), or 0.1–3.2 μM of

Rapa (MCE) for 24 h. Then, the cells were incubated with 5 mg/

ml of MTT (50 μL/well) for 4 h. The supernatant was removed,

and 150 μL of DMSO was added. The absorbance was measured

at 570 nm using a microplate reader. The absorbance values of

each group were normalized to the ratio in the control group.

2.10 Thioflavin T fluorescence assay

Thiosulfonate T (ThT) was used for immunofluorescence

assay of amyloid fibers in vitro. In addition, 10 μM of Aβ42 was

mixed with 0.2 μg/ml of TS and incubated at 37°C. Then, 180 μL

of ThT (5 μM) and 20 μL of samples were mixed in a 96-well

plate. The fluorescence value of ThT in the solution was detected

at different time points using a fluorescence microplate reader

(excitation wavelength of 448 nm and emission wavelength of

485 nm).

2.11 Small ribonucleic acid interference

PC12 cells were cultured in a six-well cell culture plate (3 ×

105 cells/well). The liposome transfection reagent

(LipoFiterTM3, HB-TRLF3) and Nrf2-siRNA (Santa Cruz, sc-

155128) were mixed at 1:1 and added to the serum-free DMEM.

After incubation in the six-well plate for 6 h, total RNA was

extracted and incubated with fresh DMEM containing serum for

36 h. Then, RT-qPCR was performed as described in

Section 2.13.

2.12 Chromatin immunoprecipitation

The ChIP was performed using ChIP Assay kit (Beyotime

Biotechnology, P2078) according to the manufacturer’s protocol.

Briefly, PC12 cells treated with TS were cross-linked for 10 min

in 10 ml of 1% formaldehyde solution at room temperature and

then quenched for 5 min with glycine solution. Cells were washed

two times with cold PBS containing PMSF. Then, the cells were

scraped, collected, and centrifuged at 4°C and 1000 g for 2 min,

and the supernatant was removed. The precipitate was re-

suspended with SDS lysis buffer containing PMSF and

incubated on ice for 10 min for full cleavage. Chromatin
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fragments were treated with SONICS (1 min, 5 s on/5 s off)

ultrasound. Then, the ultrasonically treated sample was

centrifuged at 4°C and 12000 g for 5 min. The supernatant

was placed in an ice bath, and the ChIP dilution buffer

containing 1 mM PMSF in 1.8 ml was added to dilute the

sample to a 2 ml final volume. A 50 μL sample solution was

used as Input for follow-up detection. The rest of the sample

solution was mixed with 70 μL Protein A+G Agarose/Salmon

Sperm DNA and rotated slowly at 4°C for 30 min to reduce the

non-specific binding to the target protein or target DNA

sequence. Then, the sample was centrifuged at 4°C and 1000 g

for 1 min, and the supernatant was transferred to a new

centrifuge tube. Subsequently, 1.43 μL of Nrf2 antibody was

added and rotated slowly at 4°C to mix overnight. Afterward,

60 μL of Protein A+G Agarose/Salmon Sperm DNA was added

and mixed slowly at 4°C for 60 min to precipitate the protein or

the corresponding complex recognized by the primary antibody.

Then, the solution was centrifuged at 4°C and 1000 g for 1 min.

The supernatant was removed carefully, and low-salt immune

complex wash buffer, high-salt immune complex wash buffer,

and LiCl immune complex wash buffer were used to wash the

precipitate once; TE buffer was used to wash the precipitate two

times. Then, the solution was centrifuged for 1 min at 4°C and

1,000 g, and the supernatant was removed carefully. The freshly

prepared 250 μL of elution buffer was added, vortexed, mixed

well, rotated at room temperature, and continuously eluted for

5 min. Afterward, the solution was centrifuged for 1 min at

1,000 g, and the supernatant was removed and combined,

obtaining a total of 500 μL of supernatant. Twenty microliters

of 5M NaCl was added to 500 μL of supernatant and 2.5 μL of

15MNaCl to obtain a 50 μL input and then heated at 65°C for 4 h

to remove the cross-linking between protein and genomic DNA.

The 520 μL sample was purified by DNA. Forty microliters of TE

was used to re-suspend DNA precipitates for qPCR detection of

the target gene.

2.13 Quantitative real-time polymerase
chain reaction

After homogenization of PC12 cells, total RNA was extracted

using a total RNA extraction reagent (RNAsimple Total RNA

Kit, TIANGEN, DP419) and homogenized in accordance with

the regulations of manufacturers, and Promega

deoxyribonuclease I (Promega) was used to remove pollution.

Five hundred nanogram of each sample were used for first-strand

cDNA synthesis (RevertAid First-strand cDNA Synthesis Kit,

Thermo, K1622). Then, CFX connect (Biorad) were used for real-

time RT-PCR. PCR amplification was performed with SYBR

PreMix Ex TaqTMII (Takara). The amplification conditions of

all genes were as follows: amplification at 95°C for 30 s, 40 times

amplification at 95°C, amplification for 5s, and amplification for

30 s at 60°C. The differences between the Ct values for

experimental and reference genes were calculated as ΔΔCt.
The qRT-PCR primer sequences are listed in Table 1.

2.14 Western blot analysis

Tissue and cell lysates were obtained using a whole protein

extraction kit (Key GEN, Nanjing, China). The protein

concentration in the supernatant was determined by

bicinchoninic acid assay (Key GEN, Nanjing, China). Then,

the proteins were separated by SDS-polyacrylamide gel

electrophoresis and electro-transferred to polyvinylidene

fluoride. After blocking with 5% skimmed milk powder, the

film was incubated at 4°C overnight with different primary

antibodies: Nrf2 (1:1,000, Proteintech, 16396-1-AP), BACE1

(1:1,000, Proteintech, 12807-1-AP), p-tau (Ser 396, 1:500,

Affinity, AF3148), NDP52/CALCOCO2 (1:1,000, Proteintech,

12229-1-AP), p62 (1:200, Santa Cruz, sc-48402), LC3 (1:200,

Santa Cruz, sc-398822), Beclin-1 (1:200, Santa Cruz, sc-48341),

mTOR (1:200, Santa Cruz, sc-517464), p-TFEB (1:1,000, Affinity,

AF3708) and β-actin (1:1,000, Affinity, AF7018). The membrane

was washed in TBST (0.5% Tween-20) three times, incubated

with anti-rabbit or anti-mouse IgG second antibody (1:20,000,

Abbkine, A21010) at room temperature for 1 h, and developed

using an enhanced chemiluminescence kit (Key GEN, Nanjing,

China). Imprinting was captured using an image analyzer

(Amersham Imager 600, General Electric Company,

United States), and the relative intensity of the bands was

quantified by ImageJ software.

2.15 Fecal sample collection and
deoxyribonucleic acid extraction

After intragastrical administration for 4 weeks, mouse fecal

samples were collected in a clean cage. Uncontaminated feces

were collected and placed in a sterile and enzyme-free EP tube,

immediately stored in dry ice, and then frozen at −80°C. A Total

DNA was isolated using the MagPure Soil DNA LQ Kit (D6356-

03, Personal Biotechnology Co., Ltd., Shanghai, China). The

NanoDrop 2000ultraviolet spectrophotometer was used to

measure the quality of the DNA. The purified samples were

stored at −20°C for further analysis.

2.16 16S rRNA gene high-throughput
sequencing and sequencing data analysis

16S rRNA can be used as the characteristic nucleic acid

sequence of species, and it is considered as the most suitable

index for bacterial phylogenetic and taxonomic identification. In

this experiment, bacterial 16S rRNA at the V3-V4 region was

amplified using gene universal primers: 338F (5′-ACTCCTACG
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GGAGGCAGCA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′). The amplification

products were recovered by 2% agarose gel electrophoresis

method and quantified by Quant-iT PicoGreen dsDNA Assay

Kit. The sequencing libraries were constructed on the Illumina

Nova Seq system (Personal Biotechnology Co., Ltd., Shanghai,

China).

2.17 Analysis of gut microbiota

ASVs (amplicon sequence variants) were clustered and

dereplicated by DADA2, and the similarity was 100%

(Callahan et al., 2016) (Personal Biotechnology Co., Ltd.,

Shanghai, China). Compared with Greengenes database

(Release13.8, http://greengenes.secondgenome.com/), ASVs

were annotated with a taxonomic identifier. QIIME2 (2019.4)

software was used to show the specific composition of each group

at different species taxonomic levels. Chao1 index and Observed

species index were used as indicators to measure Alpha diversity

according to species richness. R programming language was used

to count the number of ASVs in each group according to the

grouping of samples, and bray-curtis clustering algorithm and

average clustering method was used to calculate the distance

matrices of each sample to evaluate the similarity between

samples. The clustering results of each sample were calculated

and presented in the form of heat map. Finally, the importance

index of marker species was analyzed by Random Forest

algorithm. The random forest analysis and nested hierarchical

cross test were used in QIIME2 and https://www.genescloud.cn/

home online software.

2.18 Statistical analysis

All the experiments were repeated three times, and all the

data in each experiment were represented as means ± SEM and

processed using GraphPad Prism (version 8, GraphPad Software

Inc., CA, United States). Using one-way ANOVA or two-way

ANOVA with Dunnett’s multiple comparison post hoc test to

compare the differences among the groups. For comparisons

between two groups, the significance of difference between

means was determined by Student’s t-test. A p value

of <0.05 was considered as statistical significance.

3 Results

3.1 Total saikosaponins treatment
alleviates cognitive impairment in APP/
PS1 mice

The effect of TS on spatial memory ability impairment in APP/

PS1micewas evaluated byMWMtest (Figures 2A–C). Comparedwith

WT mice, the escape latency of APP/PS1 mice in the place navigation

test was significantly increased (Figure 2A, p< 0.0001), and the number

of crossing platform and the timespent in the target quadrant were

significantly decreased (Figure 2B, p < 0.0001; Figure 2C, p < 0.001),

indicating that the spatial memory ability of APP/PS1 mice was

seriously impaired. Compared with APP/PS1 mice, the escape

latency in the middle and high-dose TS treatment group was

remarkably shortened (Figure 2A, p < 0.05 and p <
0.01 respectively), and the number of crossing platform and

timespent in the target quadrant were significantly increased after

high-dose TS treatment (Figure 2B, p < 0.05; Figure 2C, p < 0.01),

indicating that 80mg/kg TS treatment could significantly improve the

spatial memory impairment of APP/PS1 mice.

The effect of TS on spatial workingmemory ability impairment in

APP/PS1 mice was evaluated by Y-maze test. APP/PS1 mice showed

less residence time in the new arm than WT mice (Figure 2D, p <
0.01), whereas middle and high-dose TS treatment significantly

increased the residence time (Figure 2D, p < 0.01 and p < 0.0001,

respectively), indicating that TS could effectively improve the spatial

working memory ability of APP/PS1 mice.

The effect of TS on the NOR ability impairment in APP/

PS1 mice was evaluated by NOR test. The results showed that

compared withWTmice, the DI of APP/PS1 mice was significantly

lower than that of WT mice (Figure 2E, p < 0.0001). After middle

and high-dose TS treatment, the DI significantly increased,

indicating that TS could improve NOR ability in APP/PS1 mice

(Figure 2E, p < 0.01 and p < 0.0001 respectively). Collectively, these

data indicated that TS treatment could significantly alleviate

cognitive impairment in APP/PS1 mice.

3.2 Total saikosaponins treatment reduces Aβ
level and senile plaque in APP/PS1mice brain

The levels of soluble and insoluble Aβ40 and Aβ42 in brain

tissue were measured by ELISA. Compared with WT mice, the

TABLE 1 qPCR primer information.

Primer name Sequence (Forward) Sequence (Reverse)

BACE1 GTCCTTCCGCATCACCATCCTTC ACTGTGAGACGGCGAACTTGTAAC

BACE1 ARE1 ACAGGTTCAGATGGGAGAAGACC AGGAGTAGGGATTTTGGAGGGAC

NF-κB GGATGGCTTCTATGAGGCTGAACTC CTTGCTCCAGGTCTCGCTTCTTC

Frontiers in Pharmacology frontiersin.org07

Li et al. 10.3389/fphar.2022.940999

23

http://greengenes.secondgenome.com/
https://www.genescloud.cn/home
https://www.genescloud.cn/home
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.940999


levels of soluble and insoluble Aβ40 and Aβ42 in the brain of

APP/PS1 mice significantly increased (Figures 3A–D, p <
0.0001), which were remarkably decreased after high-dose TS

treatment (Figures 3A–D, p < 0.0001). Medium-dose TS

treatment reduced the soluble Aβ42 level (Figure 3B, p <
0.01) and insoluble Aβ40 and Aβ42 levels (Figure 3C, p <
0.001; Figure 3D, p < 0.0001). Low-dose TS treatment only

reduced the levels of insoluble Aβ40 and Aβ42 (Figure 3C,

p < 0.05; Figure 3D, p < 0.0001). These results indicated that

TS significantly reduced the level of Aβ in the brain of AD mice.

Thioflavine S (ThS) is a fluorescent dye with β-folding
binding properties, which is widely used to observe the

aggregation of amyloid plaques (Shin et al., 2021; Zhao et al.,

2021). The ThS staining results showed no senile plaque in the

brain of WT mice, and the number and area of senile plaques in

the brain of APP/PS1 mice were significantly increased (Figures

3E,F, p < 0.0001), which were remarkably declined after TS

treatment (Figures 3E,F). Collectively, these data showed that TS

treatment was effective in reducing the production of Aβ and

formation of senile plaques in the brain of APP/PS1 mice.

3.3 Total saikosaponins inhibits the
expression of BACE1 via promoting the
Nrf2 pathway in APP/PS1 mice to reduce
Aβ deposition

Aβ peptide is produced by sequential cleavage of APP

mediated by BACE1 and γ-secretase, and the increase of

BACE1 will lead to a sharp increase in Aβ production

FIGURE 2
TS ameliorated cognitive impairment in APP/PS1 mice. (A) The effect of TS on the escape latency in APP/PS1 mice was investigated by Morris
water maze (####p < 0.0001, *p = 0.0277, **p = 0.0010). (B) The effect of TS on the number of crossing platform in APP/PS1mice was investigated by
Morris water maze (####p < 0.0001, *p = 0.0353, **p = 0.0044). (C) The effect of TS on the time spent in the target quadrant in APP/PS1 mice by
Morris water maze (###p = 0.0007, **p = 0.0042). (D) The effect of TS on the residence time in APP/PS1 mice was evaluated by Y-maze test
(##p = 0.0015, **p = 0.0024, ***p = 0.001, ****p < 0.0001). (E) The effect of TS on the discrimination index in APP/PS1mice was investigated by NOR
test (####p < 0.0001, **p= 0.0021, ****p < 0.0001). # Compared withWT group; * Compared withmodel group. Data are presented asmean ± S.E.M.
(n = 10).
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(Osama et al., 2020). Therefore, the effects of TS on the

expression of BACE1 and Nrf2 were examined to explore

the mechanism of TS-mediated reduction of Aβ production.

First, MTT experiments were performed, and results revealed

that TS could significantly inhibit the cytotoxicity induced by

Aβ in PC12 cells (Figure 4A, p < 0.0001). Subsequently, the

effects of TS on Nrf2 and BACE1 protein expression in vivo

and in vitro were investigated using the APP/PS1 mouse

model and Aβ-induced PC12 cell model. The results

showed that compared with WT mice and blank

PC12 cells, the expression level of Nrf2 protein in the

model group decreased in vivo (Figures 4B,C, p < 0.05) and

in vitro (Figures 4E,F, p < 0.05), and the expression of

BACE1 protein increased in vivo (Figures 4B,D, p < 0.05)

and in vitro (Figures 4E,G, p < 0.001). After TS treatment, the

expression of Nrf2 protein increased in vivo (Figures 4B,C)

and in vitro (Figures 4E,F). Similarly, the expression of

BACE1 protein decreased in vivo (Figures 4B,D) and

in vitro after TS treatment (Figures 4E,G).

PC12 cells were transfected with Nrf2-siRNA to silence the

Nrf2 gene to explore the role of Nrf2 in the anti-AD effect of TS.

The transfection efficiency reached more than 50% based on the

results of Western blot analysis (Figures 4H,I, p < 0.05). QPCR

was used to investigate the effect of TS on BACE1 transcription

after Nrf2 silencing (Figure 4J). The result showed that the

transcription level of BACE1 in the model group increased

significantly (Figure 4J, p < 0.0001) compared with the blank

group, which was decreased after TS treatment (Figure 4J, p <
0.05). After Nrf2 gene silencing, the inhibitory effect of TS on

BACE1 transcription was remarkably attenuated, indicating that

TS inhibits the transcription of BACE1 through Nrf2.

Next, ChIP assay was performed to study whether TS can

promote the binding of Nrf2 to BACE1 promoter. Nrf2 binding

to ARE1 in rat BACE1 ARE1 promoter was increased in

FIGURE 3
TS treatment decreased the levels of Aβ and senile plaque in the brain of APP/PS1 mice. (A) The effect of TS on the levels of soluble Aβ40 in the
brain of APP/PS1micewasmeasured by ELISA (####p <0.0001, ***p=0.0003, ****p < 0.0001). (B) The effect of TS on the levels of soluble Aβ42 in the
brain of APP/PS1 mice was measured by ELISA (####p < 0.0001, **p = 0.0015, ****p < 0.0001). (C) The effect of TS on the levels of insoluble Aβ40 in
the brain of APP/PS1 mice was measured by ELISA (####p < 0.0001, *p = 0.0220, ***p = 0.0002, ****p < 0.0001). (D) The effect of TS on the
levels of insoluble Aβ42 in the brain of APP/PS1micewasmeasured by ELISA (####p < 0.0001, ****p <0.0001). (E) The effect of TS on the senile plaque
in the brain of APP/PS1 mice was investigated by ThS fluorescence. (F) Quantitative analysis of the number of senile plaques in the brain of APP/
PS1mice (####p < 0.0001, ****p < 0.0001). (G)Quantitative analysis of the positive area of senile plaques in the brain of APP/PS1mice (####p < 0.0001,
**p = 0.0069, ****p < 0.0001). #Compared with WT group; *Compared with model group. Data are presented as mean ± SEM (n = 6).
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TS-treated PC12 cells compared with controls (Figure 4K, p <
0.001), but the negative primers on rat GAPDH promoter had no

significant change. Therefore, Nrf2 can directly bind to the

ARE1 region of BACE1 promoter, and TS can promote the

binding of Nrf2 and BACE1 promoter.

ThT fluorescence assay was used to evaluate the effect of TS

on Aβ aggregation. The results showed that Aβ gradually

accumulates from monomer to fibril formation with time,

which was indicated by the increasing fluorescence density of

ThT. TS incubation could inhibit Aβ aggregation in a

concentration-dependent manner (Figure 4L). Co-incubation

of 5 μg/ml of TS with 10 μM of Aβ could inhibit the

aggregation of Aβ (Figure 4L, p < 0.001). Collectively, these

results showed that TS could reduce the level of BACE1 by

activating the expression of Nrf2, thereby reducing the formation

and aggregation of Aβ.

FIGURE 4
TS treatment promoted Nrf2 to inhibit the expression of BACE1 in the brain of APP/PS1 mice. (A) The effect of TS on the survival rate of Aβ-
induced PC12 cells for 24 hwas evaluated byMTT assay (####p < 0.0001, ****p < 0.0001). (B) The effect of TS onNrf2 and BACE1 proteins in the brain
of APP/PS1 mice were detected by Western blot. (C)Quantitative analysis of the relative expression level of Nrf2 protein in each group (#p = 0.0195,
*p= 0.0151). (D)Quantitative analysis of the relative expression level of BACE1 protein in each group (#p= 0.0343, ***p= 0.0008, ***p= 0.001).
(E) The effect of TS on Nrf2 and BACE1 protein in Aβ-induced PC12 cells were detected by Western blot. (F) Quantitative analysis of the relative
expression concertation of Nrf2 protein in each group (#p = 0.0119, **p = 0.0027, ***p = 0.0003). (G)Quantitative analysis of the relative expression
concertation of BACE1 protein in each group (###p = 0.0003, **p = 0.0016, ***p = 0.0003, ***p = 0.0002, ***p = 0.0001). (H) PC12 cells were
transfected with Nrf2-siRNA and transfection reagent at 1:1 for 36h, and the expression of Nrf2 was detected by Western blotting. (I) Quantitative
analysis of the relative expression level of Nrf2 protein in Nrf2-siRNA and ns-siRNA groups (*p =0.0199). (J) The effect of TS on transcription the level
of BACE1 in Nrf2−/− PC12 cells was investigated by qPCR (##p=0.0093, ####p < 0.0001, *p= 0.0234, ++p=0.0030). (K) The effect of TS on the level of
Nrf2 and BACE1 promoter binding was investigated by CHIP experiment (***p = 0.0008). (L) The effect of TS on the level of Aβ aggregation was
detected by ThT fluorescencemethod (**p = 0.0058, ***p = 0.0003, ***p = 0.0002). #: Comparing with WT group; *: Compared with model group;
+: Compared with ns siRNA group. Data are presented as mean ± SEM (n = 3).
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3.4 Total saikosaponins treatment reduces
p-tau protein level via inducing autophagy

Hyperphosphorylation of tau protein leads to formation of

neurofibrillary tangles and cognitive impairment. The effect of

TS on the level of p-tau (Ser396) in the hippocampus and cortex

of APP/PS1 mice was evaluated by immunohistochemical

staining. Compared with WT mice, the levels of p-tau in the

hippocampus and cerebral cortex of the model group mice were

significantly higher (Figures 5A,B, p < 0.0001; Figures 5A,C, p <
0.0001), whereas the levels of p-tau in the low and middle-dose

TS treatment groups were significantly lower than those in the

FIGURE 5
Effects of TS on expressions of p-tau, NDP52, p62 and LC3-II proteins in APP/PS1 mice. (A) The effect of TS on p-tau (ser396) in hippocampus
and cortex of APP/PS1 mice was investigated by immunohistochemistry. (B)Quantitative analysis of the percentage of p-tau (Ser396) positive area in
the hippocampus of APP/PS1 mice (####p < 0.0001, ***p = 0.0007, ****p < 0.0001). (C) Quantitative analysis of the percentage of p-tau (Ser396)
positive area in the cortex of APP/PS1 mice (####p < 0.0001, **p = 0.0016, ****p < 0.0001). (D) The effects of TS on expressions of p-tau (Ser
396), NDP52, p62 and LC3-II proteins in the brain of APP/PS1 mice were detected byWestern blot. (E)Quantitative analysis of the relative expression
level of p-tau (Ser 396) protein in each group (#p = 0.0332, *p = 0.0436, **p = 0.0042). (F) Quantitative analysis of the relative expression level of
NDP52 protein in each group (###p = 0.0008, *p = 0.0177, **p = 0.0086). (G) Quantitative analysis of the relative expression level of p62 protein in
each group (#p = 0.0379, **p = 0.0086). (H)Quantitative analysis of the relative expression level of LC3-II protein in each group (#p = 0.0216, **p =
0.0073). (I) Quantitative analysis of the relative expression level of Beclin-1 protein in each group (#p = 0.0496, *p = 0.0136). #Compared with WT
group; *Compared with model group. Data are presented as mean ± SEM (n = 3).
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model group (hippocampus: Figures 5A,B, p < 0.001 and p <
0.0001, respectively; cerebral cortex: Figures 5A,C, p < 0.01 and

p < 0.0001, respectively). The effect of TS on the level of p-tau

protein in vivo and in vitro was further investigated by Western

blot. The level of p-tau in the brain of APP/PS1 mice was higher

than that of WT mice (Figures 5D,E, p < 0.05), whereas low and

middle-dose TS treatment significantly decreased the level of p-

tau in the brain of APP/PS1 mice (Figures 5D,E, p < 0.05 and p <
0.01 respectively). These data indicated that TS treatment could

reduce p-tau level in the brain of APP/PS1 mice.

In exploring the mechanism of TS reducing p-tau protein level,

the effects of TS on autophagy were examined. The changes in the

expression of autophagic proteins were assessed by Western blot

assay. The results showed that compared with WT mice, the

expression of LC3-II and Beclin-1 in the model group decreased

(Figures 5D,H, p < 0.05; Figures 5D,I, p < 0.05), whereas the

expression of NDP52 and p62 increased (Figures 5D,F, p <
0.001; Figures 5D,G, p < 0.05), indicating that autophagy was

inhibited. After treatment with TS, the expression of LC3-II and

Beclin-1 increased significantly (Figures 5D,H,I), whereas the

FIGURE 6
TS treatment promoted autophagy and clear p-tau. (A) The effect of TS on p-tau (Ser 396), NDP52, p62 and LC3-II and Beclin-1 proteins in the
Aβ-induced PC12 cells were detected by Western blot. (B)Quantitative analysis of the relative expression concertation of p-tau (Ser 396) protein in
each group (#p=0.0409, *p=0.0130, **p=0.0029). (C)Quantitative analysis of the relative expression concertation of NDP52 protein in each group
(#p = 0.0113, **p = 0.0057). (D) Quantitative analysis of the gray value of p62 protein bands in each group (##p = 0.0093, *p = 0.0312, **p =
0.0084, **p= 0.0093, **p=0.0047). (E)Quantitative analysis of the relative expression concertation of LC3-II protein in each group (####p < 0.0001,
**p = 0.0053, **p = 0.0037). (F) Quantitative analysis of the relative expression concertation of Beclin-1 protein in each group (###p = 0.0002, *p =
0.0356). (G) Quantitative analysis of the relative expression level of mTOR protein in each group (#p = 0.0450, *p = 0.0359, **p = 0.0068). (H)
Quantitative analysis of the relative expression level of p-TFEB protein in each group (#p = 0.0435, *p = 0.0129, **p = 0.0099). #Compared with WT
group; *Compared with model group. Data are presented as mean ± SEM (n = 3).
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expression of NDP52 and p62 decreased in a dose-dependent

manner (Figures 5D,F,G).

Consistent results were obtained in in vivo experiments usingAβ-
induced PC12 cells. As shown in Figure 6, the level of p-tau in the

model group was increased compared with the blank group (Figures

6A,B, p < 0.05), whereas TS treatment could reduce the level of p-tau

in Aβ-induced PC12 cells (Figures 6A,B, p < 0.05 and p < 0.01,

respectively). Meanwhile, levels of autophagy-related proteins also

changed in Aβ-induced PC12 cells. Compared with the blank group,

the expression of LC3-II and Beclin-1 in the model group was

FIGURE 7
TS promoted autophagy in Aβ-induced PC12 cells to clear p-tau. (A) The effect of CQ on the survival rate of Aβ-induced PC12 cells for 24 h was
evaluated by MTT assay (####p < 0.0001, ****p < 0.0001). (B) The effects of CQ on expression of p-tau (Ser 396), NDP52, p62, LC3-II and Beclin-1
proteins in the Aβ-induced PC12 cells after TS treatment were detected byWestern blot. (C)Quantitative analysis of the relative expression level of p-
tau (Ser 396) protein in each group (#p = 0.0128, *p = 0.0205, +p = 0.0495). (D) Quantitative analysis of the relative expression level of
NDP52 protein in each group (#p = 0.0134, *p = 0.0217, +p = 0.0386). (E)Quantitative analysis of the relative expression level of p62 protein bands in
each group (#p = 0.0226, *p = 0.0124, +p = 0.0200). (F) Quantitative analysis of the relative expression level of LC3-II protein in each group (#p =
0.0101, *p = 0.0277, **p = 0.0016). (G) Quantitative analysis of the relative expression level of Beclin-1 protein in each group (##p = 0.0013, **p =
0.0056). (H)MTT assay was used to test the effect of Rapa on PC12 cells for 24 h (****p < 0.0001). (I) The effects of Rapa on expression of p-tau (Ser
396), mTOR and p-TFEB proteins in the Aβ-induced PC12 cells after TS treatment were detected by Western blot. (J) Quantitative analysis of the
relative expression level of p-tau (Ser 396) protein in each group (#p = 0.00175, ***p = 0.0002, *p = 0.0315, +p = 0.0442). (K)Quantitative analysis of
the relative expression level of mTOR protein in each group (##p = 0.0062, ***p = 0.0002, *p = 0.0305, +p = 0.0250). (L)Quantitative analysis of the
relative expression level of p-TFEB protein in each group (##p = 0.0041, ****p < 0.0001, *p = 0.0288, ++p = 0.0081). #: Compared with WT group;
*Compared with model group; +Comparing with TS+Aβ group. Data are presented as mean ± SEM (n = 3).
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decreased (Figures 6A,E, p < 0.0001; Figures 6A,F, p < 0.001), whereas

the expression of NDP52, P62, mTOR and p-TFEB was increased

(Figures 6A,C, p< 0.05; Figures 6A,D, p< 0.01; Figures 6A,G, p< 0.05;
Figures 6A,H, p < 0.05), which indicated that autophagy was

suppressed. TS treatment could significantly increase the

expression of LC3-II and Beclin-1 (Figures 6A,E,F) and reduce the

expression of NDP52, P62, mTOR and p-TFEB (Figures

6A,C,D,G,H), indicating that TS may reduce the p-tau protein

level by promoting autophagy.

Subsequently, CQ, an inhibitor of autophagic degradation, was

employed to further clarify the mechanism of TS on autophagy and

the relationship between autophagy inhibiting and p-tau reducing

effects of TS. The MTT experiment results showed that CQ

treatment could protect PC12 cells from Aβ-induced reduction

in cell viability (Figure 7A). The levels of p-tau and autophagic

proteins were detected using western blot analysis. It was found that

compared with the TS group without CQ treatment, the p-tau level

of the TS group treated with CQwas higher (Figures 7B,C, p < 0.05),

indicating that CQ could inhibit p-tau reducing effect of TS.Western

blotting results of autophagic proteins showed that compared with

the TS dose group without CQ treatment, the level of NDP52 in the

TS group treatedwithCQ increased (Figures 7B,D, p< 0.05), and the
expression of Beclin-1 decreased (Figures 7B,E, p < 0.05), indicating

that CQ inhibited the degradation of autophagosomes. No

significant difference in the expression of p62 and LC3-II was

observed. Furthermore, Rapamycin (Rapa), an mTOR inhibitor

and autophagy inducer, was employed to further clarify the

mechanism of TS on p-tau clearance through lysosome and

autophagy. MTT results showed that Rapa treatment had no

significant effect on cell viability at 0.1 or 0.2 μM (Figure 7H).

We then examined the levels of p-tau and lysosome-associated

proteins via western bolt analysis. It was found that compared

with the TS groupwithout Rapa treatment, the level of p-tau, mTOR

and p-TFEB in the TS group treated with Rapa was decreased

(Figures 7I–K, p < 0.05; Figures 7I,L, p < 0.01), indicating that Rapa

could prompt p-tau clearance effect of TS through increasing the

number of lysosomes and promoting the degradation of

autophagosomes. Taken together, TS could reduce p-tau protein

level by promoting autophagy, and the increase of autophagy flux is

positively correlated with the clearance of p-tau.

3.5 Total saikosaponins treatment
attenuates oxidative stress and
inflammation in brain tissue of APP/
PS1 mice

Considering the key role of oxidative stress and inflammation in

the etiology of AD, the levels of key biomarkers of oxidative stress and

inflammation in mice brain were evaluated using ELISA. Firstly, the

levels of inflammatory factors were detected. The results showed that

compared with the WT mice, the levels of TNF-α, IL-1βand IL-6 in

the brain of the model group mice were significantly increased

(Figures 8A–C, p < 0.0001). While high dose of TS could

significantly reduce the levels of TNF-α, IL-1β and IL-6 (Figures

8A–C, p < 0.01, p < 0.0001, p < 0.05, respectively) in the brain of AD

mice.Middle dose of TS only decreased the level of TNF-α (Figure 8A,
p < 0.05).

Then the levels of oxidative stress markers in mice brain were

measured, including the levels of MDA, SOD and GSH. The results

showed that compared withWTmice, the levels ofMDA andGSSG

in the brain of APP/PS1 mice were increased (Figures 8D,G, p <
0.0001, p < 0.05, respectively), while the levels of SOD, GSH and the

ratio of GSH/GSSG were significantly decreased (Figures 8E,F,H, all

p < 0.0001). Compared with the model group, different dose of TS

treatment significantly reduced the content of MDA in the brain of

APP/PS1 mice (Figure 8D, p < 0.0001). High-dose TS treatment

could significantly increase the content of antioxidant SOD, GSH

and the ratio of GSH/GSSG (Figures 8E,F,H, p < 0.05, p < 0.01, p <
0.01, respectively), and decrease the content of GSSG (Figure 8G, p <
0.05) in the brain of AD mice. Medium dose of TS can increase the

level of GSH and the ratio of GSH/GSSG (Figures 8F,H, p < 0.05).

These results suggested that TS treatment could inhibit oxidative

stress and neuroinflammation in the brain of AD mice.

3.6 Total saikosaponins inhibits
neuroinflammation through Nrf2/NF-κB
pathway

The activation of astrocytes and microglia is considered as key

event in the progression of AD, which was evaluated using Iba-1 and

GFAP immunohistochemical staining. The results of GFAP

immunostaining showed that compared with WT mice, the

activation of astrocytes in the brain of model group mice was

significantly increased (Figures 9A,B, p < 0.0001), while TS could

significantly reduce the positive staining area of GFAP (Figures 9A,B),

suggesting that TS could inhibit the excessive activation of astrocytes

in the brain of ADmice. The results of Iba-1 immunostaining showed

that the activation of microglia in the brain of model mice was

significantly increased than that of WT mice (Figures 9A,C, p <
0.0001), and TS treatment could significantly reduce the activation of

microglia (Figures 9A,C, p < 0.0001). The above results suggested that

TS treatment could significantly inhibit the activation of glial cells

including astrocytes and microglia in the brain of APP/PS1 mice.

In order to investigate the mechanism of TS in inhibiting

neuroinflammation, the expression of Nrf2 and NF-κB protein in

the brain of APP/PS1 mice and Aβ-induced PC12 cells were

examined. The results showed that compared with blank group,

the expression level of NF-κB protein in the model group

increased both in vivo (Figures 9D,E, p < 0.01) and in vitro

(Figures 9F,G, p < 0.01). After treatment with TS, the expression

of NF-κB protein decreased in high dose of TS in vivo (Figures

9D,E, p < 0.05) and in 10 μg/ml of TS in vitro (Figures 9F,G, p <
0.05), suggesting that TS could inhibit the expression of NF-κB in

the brain of APP/PS1 mice and Aβ-induced PC12 cells.
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Nrf2-siRNA transfected PC12 cells were employed to further

explore the role of Nrf2 in the down-regulation of NF-κB
expression induced by TS. It was found that compared with

the blank group, the transcription level of NF-κB in the model

group increased significantly (Figure 9H, p < 0.001), which was

decreased after treatment with TS (Figure 9H, p < 0.05). After

Nrf2 gene silencing, the inhibitory effect of TS on NF-κB
transcription was remarkably attenuated, suggesting that TS

inhibits the transcription of NF-κB through Nrf2.

3.7 Total saikosaponins treatment
ameliorate synaptic loss in APP/PS1 mice

Synaptic loss is an important pathological feature of AD,

which is highly correlated with cognitive function impairment in

AD patients or animal models (John & Reddy, 2021). Presynaptic

protein synaptophysin and postsynaptic protein PSD-95 are two

synaptic marker proteins (John & Reddy, 2021). Postsynaptic

density protein PSD-95 is the main scaffold protein of dendritic

spine coordinating the relationship between neurotransmitters

and receptors, and ultimately determining the synaptic response

(Savioz et al., 2014; John & Reddy, 2021). Synaptophysin and

PSD-95 immunofluorescence assay was performed to verify the

effect of TS on synaptic loss. The results of immunofluorescence

staining in mice brain showed that the levels of synaptophysin

(Figures 10A,B, p < 0.0001) and PSD-95 (Figures 10A,C, p <
0.0001) in the brain of AD mice were significantly lower than

those of WT mice. While TS treatment could significantly

increase the levels of synaptophysin (Figures 10A,B) and PSD-

95 (Figures 10A,C), suggesting that TS treatment could

effectively prevent synaptic loss in the brain of AD mice.

3.8 Total saikosaponins treatment
reverses the microbiota disorder in APP/
PS1 mice

16S rRNA gene sequencing was used to analyze and evaluate

the effect of TS on GM in APP/PS1 mice. The Chao1 index and

FIGURE 8
TS treatment inhibited cerebral inflammation and oxidative stress in APP/PS1mice. (A) The effect of TS on the levels of TNF-α in the brain of APP/
PS1micewasmeasured by ELISA (####p <0.0001, **p=0.0065, ***p=0.0008). (B) The effect of TS on the levels of IL-1β in the brain of APP/PS1mice
was measured by ELISA (###p 0.0002, ***p = 0.0002). (C) The effect of TS on the levels of IL-6 in the brain of APP/PS1 mice was measured by ELISA
(####p < 0.0001, *p = 0.0209). (D) The effect of TS on the levels of MDA in the brain of APP/PS1 mice was measured by ELISA (####p < 0.0001,
****p < 0.0001). (E) The effect of TS on the levels of SOD in the brain of APP/PS1 mice was measured by ELISA (####p < 0.0001, *p = 0.0129). (F) The
effect of TS on the levels of GSH in the brain of APP/PS1micewasmeasured by ELISA (####p < 0.0001, *p=0.0177, **p =0.0020). (G) The effect of TS
on the levels of GSG in the brain of APP/PS1 mice was measured by ELISA (#p = 0.0123, *p = 0.0248). (H) Quantitative analysis of the ratio of GSH/
GSSG (####p < 0.0001, *p = 0.0178, **p = 0.0010). #Compared with WT group; *Compared with model group. Data are presented as mean ± SEM
(n = 6).
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observed index show the significant change of bacterial

communities in alpha diversity among different groups

(Figure 11A), indicating the exits of microbiota dysbiosis in

APP/PS1 mice, and TS reverses this pathological change. The

Venn diagram showed the difference of ASV numbers detected

in three groups of mice (Figure 11B), indicating that the

composition of flora changed among the three groups. Then,

the gut bacterial composition at the phylum level was profiled. As

shown in Figure 11C, the main bacteria in three groups are

identified. The result revealed that the microbiome at the phylum

level underwent a disorder in APP/PS1 mice, and TS treatment

remarkably affected the microbiome composition, indicating a

potential mechanism and a therapy target of AD though the

gut–brain axis. Heatmaps of most differentially abundant taxa

revealed the change trend in three groups. Based on heatmap

analysis (Figure 12), the abundance of Desuflovibrio,

FIGURE 9
TS treatment reduced astrocytes andmicroglia activation in APP/PS1 mice. (A) The effects of TS on the activation of astrocytes andmicroglia in
the brain of APP/PS1 mice were investigated by immunohistochemical staining. (B) Quantitative analysis of the percentage of GFAP positive area in
the brain of APP/PS1 mice (####p < 0.0001, *p = 0.0312, ****p < 0.0001). (C)Quantitative analysis of the percentage of Iba-1 positive area in the brain
of APP/PS1 mice (####p < 0.0001, ****p < 0.0001). (D) The effects of TS on expressions of Nrf2 and NF-κB proteins in the brain of APP/PS1 mice
were detected by Western blot. (E)Quantitative analysis of the relative expression level of NF-κB protein in each group (##p = 0.0068, *p = 0.0243).
(F) The effects of TS on expressions of Nrf2 and NF-κB proteins in the Aβ-induced PC12 cells were detected byWestern blot. (G)Quantitative analysis
of the relative expression level of NF-κB protein in each group (##p = 0.0048, *p = 0.0126). (H) The effect of TS on the transcription level of NF-κB in
Nrf2−/− PC12 cells was detected by qPCR. (###p = 0.0003, ####p < 0.0001, *p = 0.0382, ++p = 0.0013). #Compared with WT group; *Compared with
model group; +Compared with ns siRNA group. Data are presented as mean ± SEM (n = 3).
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Helicobacter, Mucispirillum, Roseburia, and Clostridium

increased in APP/PS1 mice, whereas it was reduced after TS

treatment. Random forest analysis suggests thatHelicobacter and

Mucispirillum show a significant difference among the groups

(Figure 13), indicating that these bacteria were involved in the

pathogenesis of AD, and TS prevents cognitive impairment in

APP/PS1 mice by remodeling the GM.

4 Discussion

In this study, it was demonstrated that TS has protective

effects on cognitive function and neuropathological impairments

in APP/PS1 transgenic mice, reducing Aβ production, senile

plaque deposition, p-tau level, oxidative stress, and inflammatory

response; inhibiting glial cell activation; and improving synaptic

function. As shown in Figure 14, the underlying mechanism was

found to involve reducing Aβ deposition by activating the Nrf2/

BACE1 signaling pathway and promoting autophagy by

regulating the expression of NDP52 and other autophagy-

related proteins, thereby reducing the level of p-tau, which has

been rarely reported in previous literature. With regard to

neuroinflammation, TS can downregulate NF-κB expression

through Nrf2, which inhibited the activation of glial cells and

reduced the production of inflammatory factors. Moreover, TS

could upregulate the expression of anti-oxidative stress factors

such as SOD and downregulate the expression of oxidative stress

factors such as MDA through Nrf2, thereby exerting an anti-

oxidative stress effect. Furthermore, it was found that TS could

significantly affect the diversity, composition, and abundance of

FIGURE 10
TS treatment improved synaptic dysfunction in APP/PS1mice. (A) The effect of TS on the level of synaptophysin and PSD-95 in the brain of APP/
PS1 mice was investigated by immunofluorescence assay. (B) Quantitative analysis of the percentage of synaptophysin positive area in the brain of
APP/PS1 mice (####p < 0.0001, *p = 0.0496, ****p < 0.0001). (C)Quantitative analysis of the percentage of PSD-95 positive area in the brain of APP/
PS1 mice (####p < 0.0001, **p = 0.0059, ***p = 0.0002, ****p < 0.0001). #Compared with WT group; *Compared with model group. Data are
presented as mean ± SEM (n = 6).
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FIGURE 11
Differences in the diversity and composition of gut microbial genes among WT mice, APP/PS1 mice and TS treatment APP/PS1 mice. (A) Alpha
diversity analysis-Chao1 index and Observed species index box chart. (B) Venn diagram. (C)Column pictures of relative abundance and composition
of gut microbiota at phylum level in each group. *p < 0.05 versus WT group (n = 5).

FIGURE 12
Heatmaps of most differentially abundant taxa in WT mice, APP/PS1 mice and TS treatment APP/PS1 mice. (A) Heat-map of microbial
community composition. (B) Random forest analysis map. n = 5 for each treatment.
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intestinal flora and GM. The results showed that TS could

significantly downregulate the abnormally increased

abundance of Helicobacter, Mucispirillum, Roseburia, and

Clostridium in APP/PS1 transgenic mice, indicating that TS

may have a protective effect on AD by regulating GM.

Three behavioral experiments were used to investigate the

effects of TS on the cognitive function of APP/PS1 mice. The

results indicated that TS treatment could significantly improve

the cognitive function of APP/PS1 mice. APP/PS1 transgenic

mice are an AD mouse model expressing mutations in APP and

presenilin genes transcribed under the control of a neuron-

specific Thy1 promoter. These two genes can lead to early

onset of familial AD by jointly exacerbating Aβ or tau

pathology (Dodiya et al., 2019; Soto-Faguas et al., 2021).

Based on previous studies, APP/PS1 mice develop brain

amyloid lesions at 6–8 weeks of age; Aβ accumulates in the

cerebral cortex and hippocampus at 8 months, and

hyperphosphorylated tau near Aβ plaques and reduced

synaptic density are observed (Kosel et al., 2020). Senile

plaques are secreted proteins released by stepwise proteolysis

FIGURE 13
Relative abundance of five representative microbial species at the genus levels in WT mice, APP/PS1 mice and TS treatment APP/PS1 mice. (A)
Desulfovibrio. (B) Helicobacter (#p = 0.0113, **p = 0.0084). (C) Roseburia. (D) Mucispirillum (#p = 0.0239, *p = 0.0169). (E) Clostridium. Data were
expressed as mean ± SEM. #Compared with WT group; *Compared with model group (n = 3).

Frontiers in Pharmacology frontiersin.org19

Li et al. 10.3389/fphar.2022.940999

35

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.940999


of APP, whereas hyperphosphorylation of tau leads to the

formation of NFTs in AD (Lee et al., 2016). Therefore, the

APP/PS1 mouse model has been widely used in the study of

AD, which is a pathological model with Aβ aggregation and

senile plaque deposition, tau hyperphosphorylation, and synaptic

dysfunction, which is also consistent with our experimental

results. In addition, after antibiotic or bacterial treatment,

APP/PS1 mice have reduced Aβ deposition, improved

cognitive memory function, and reduced inflammatory levels

(Cryan et al., 2019). Jing Sun et al. also used this model to study

the reduction of microglia-mediated neuroinflammation by

probiotic CB in relation to its metabolite butyric-mediated

regulation of the brain–gut axis (Sun et al., 2020). These

results indicate that the APP/PS1 mouse model achieves the

conditions for GM experiments.

Nrf2 is a transcription factor that primarily exists in the

cytosol of hippocampal neurons, regulates many antioxidant

enzymes, such as heme oxygenase-1 (HO-1) and quinine

oxidoreductase 1 (NQO1), and upregulates proinflammatory

cytokines through the ARE pathway (Kobayashi et al., 2016;

Bahn et al., 2019; Ren et al., 2020). After oxidative stress,

Nrf2 translocates into the nucleus in response to this pathway,

Keap1/Nrf2/ARE, initiating the transcription of anti-oxidative

stress genes such as SOD, upregulating GSH levels, and

downregulating peroxidase MDA levels (Tu et al., 2019;

Osama et al., 2020; Toma et al., 2021). Therefore,

Nrf2 activation can protect our body from harmful stress by

upregulating antioxidant defense, inhibiting inflammation, and

maintaining protein homeostasis and play a protective role in AD

brain (Ren et al., 2020). Nrf2 levels could decrease with age in

postmortem human brain and animal models of AD (Ren et al.,

2020; Wei et al., 2020). Significantly reduced levels of Nrf2 were

also detected in APP/PS1 mice and Aβ-induced cell models.

Recent studies have shown a correlation between Nrf2 deficiency

and AD because Nrf2 not only reduces oxidative stress and

inflammation but also directly or indirectly regulates autophagy

in vivo and in vitro (Pajares et al., 2016; Branca et al., 2017; Jan

et al., 2017; Rojo et al., 2017; Ren et al., 2020). Transcriptional

analysis suggests that the brain of Nrf2 knockout mice replicates

the least normal pathway in the human AD brain (Rojo et al.,

2017; Wei et al., 2020). Subsequently, some studies have found

that Nrf2 knockout exacerbates cognitive deficits in mouse

models of AD, induces multiple stress responses, and

aggravates AD pathologies (Branca et al., 2017; Rojo et al.,

2017; Ren et al., 2020). This result indicates that Nrf2 can be

activated through the genetic or pharmacological pathways to

play a neuroprotective effect.

APP is a single-pass transmembrane protein expressed in

high levels in the brain, and three enzymes are responsible for

cleaving APP: α-secretase, BACE1, and γ-secretase (Lee et al.,

2016). Aβ, a derivative of APP, is primarily produced by

sequential cleavage of BACE1 and γ-secretase, and deposited

in the brains of AD patients in the form of plaques (Lee et al.,

2016; Jiang et al., 2020; Han et al., 2021; Ledo et al., 2021).

Increased concentration and activity of BACE1 was also observed

in AD brain and body fluids (Lee et al., 2016; Hampel et al., 2021).

Some ingredients of traditional Chinese medicine have been

found to show effects on BACE1. Ginsenosides can reduce the

activity and expression of BACE1, but have no effect on the levels

of total APP and SAPPα (Cao et al., 2016; Singh et al., 2021).

Baicalein shows potent anti-BACE1 activity and can inhibit Aβ-

FIGURE 14
The therapeutic effects and relatedmechanisms of TS against
AD. The following pathological phenomena occur in the AD brain:
(1) increased Aβ generation, aggregation and increased deposition
of senile plaques; (2) enhanced activation of microglia and
astrocytes, elevated inflammatory cytokines levels; (3) increased
oxidative stress and decreased secretion of antioxidant stress
factors; (4) increased synaptic loss; (5) aggravated gut mictobiota
dysbiosis and increased the pathogenic bacteria. Finally, these
pathological changes led to the cognitive dysfunction of the AD
patients. TS treatment could improve cognitive function through
multiple mechanisms. Firstly, TS regulated the transcription and
expression of BACE1 via Nrf2, reduced the generation and
aggregation of Aβ, thus inhibited the deposition of senile plaque.
Secondly, TS downregulated the expression of p62 and NDP52 by
promoting autophagy, upregulated the expression of LC3-II and
Beclin-1, thus promoting the clearance of p-tau. Thirdly, TS
downregulated the transcription and expression of NF-κB via Nrf2,
reduced the levels of inflammatory cytokines, thus ameliorated the
neuroinflammation. Fourthly, TS increased the level of SOD and
reduced the level of MDA, alleviating oxidative stress. Eventually,
TS ameliorated synapse loss and alleviated the gut microbiota
dysbiosis. Red arrows represent upregulation and blue arrows
represent downregulation. AD, Alzheimer’s disease; TS, Total
saikosaponins; Nrf2, nuclear factor 2; BACE1, β-secretase 1; Aβ,
amyloid-beta; p-tau, phosphorylated tau; NF-κB, nuclear factor-
κB; TNF-α, tumour necrosis factor α; IL-1β, interleukin-1β; IL-6,
interleukin-6; SOD, superoxide dismutase; MDA,
malondialdehyde.
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induced PC12 cytotoxicity (Singh et al., 2021). Thus, the effect of

TS on BACE1 expression was investigated. Aβ is a polypeptide

composed of 39–42 amino acids, and the most common Aβ
fragments contain 40 or 42 amino acids. The levels of soluble and

insoluble Aβ40 and Aβ42 in brain tissue were examined (Lee

et al., 2016; Fao et al., 2019; Kwak et al., 2020). It was found that

high doses of TS significantly reduced the levels of soluble and

insoluble Aβ40 and Aβ42 in the brain, whereas different doses of

TS significantly reduced the deposition of senile plaques in APP/

PS1 mice. It was also found that TS could effectively inhibit Aβ
aggregation and diminish cytotoxicity in PC12 cells after Aβ-
induced in vitro studies by ThT and MTT assays. The

abovementioned results indicated that TS treatment

significantly reduced Aβ generation and aggregation in AD

mice and cells. In the mechanism study, it was found that TS

reduced BACE1 expression in APP/PS1 mice in vivo and in Aβ-
induced PC12 cells in vitro, indicating that TS inhibits Aβ
formation by reducing BACE1 expression. The results were

consistent with previous report, which found that treatment

with therapeutic drugs significantly inhibited the expression of

BACE1 and reduced the release of SAPPβ in APPswe/

PS1ΔE9 mice, but it did not change the expression of full-

length APP, PS1, a disintegrin, metalloproteinase 10

(ADAM10), and other cleavage products, including SAPPα,
neprilysin, and insulin-degrading enzyme in APPswe/

PS1dE9 mice (Wei et al., 2020). Therefore, Aβ was primarily

reduced by inhibiting β-secretase-induced amyloid generation

but not by increasing non-amyloid production.

Recently, Nrf2 was found to negatively regulate

BACE1 expression and improve cognitive deficits in mouse

models of AD (Bahn et al., 2019; Ren et al., 2020). Bahn et al.

revealed a previously unknown molecular mechanism, in

which Nrf2-deficient AD mice had significantly increased

BACE1 and BACE1-AS expression and Aβ deposition, and

more severe cognitive dysfunction compared with 5xFAD and

Nrf2 knockout mice, whereas the activation of Nrf2 inhibited

BACE1 and BACE1-AS expression and Aβ production and

improved cognitive dysfunction and AD-related pathological

characteristics (Bahn et al., 2019). Thus, it was hypothesized

whether TS could inhibit BACE1 expression by activating

Nrf2, thereby reducing Aβ formation. Subsequently, the

changes of Nrf2 and BACE1 and the relationship between

them after TS treatment were investigated. The results showed

that TS could reduce the expression of BACE1 by activating

Nrf2, and when Nrf2 was knocked down, the effect of TS on

inhibiting BACE1 expression was attenuated, which indicated

that TS negatively regulated the expression of BACE1 by

activating Nrf2, thereby inhibiting the production and

deposition of Aβ. Moreover, using CHIP assay, it was

found that Nrf2 could directly bind to the ARE1 site in the

BACE1 promoter, and TS could promote the binding of

Nrf2 and BACE1 promoters to inhibit the transcription of

BACE1.

Tau primarily accumulates in the medial temporal lobe, and

its main function is to bind and stabilize microtubules, which are

a major component of the neuronal cytoskeleton, providing

structural support to neurons, and binding is regulated by its

phosphorylation state (Lee et al., 2016; Maass et al., 2018; Lowe

et al., 2019; Kosel et al., 2020; Kwak et al., 2020; Limorenko &

Lashuel, 2022). In AD, abnormally phosphorylated tau detaches

from microtubules and begins to accumulate with other tau

filaments (Lee et al., 2016). This process has two stages:

paired helical filament (PHF) stage, in which these aggregated

tau filaments form PHF, and neurofibrillary tangle (NFT) stage,

in which the formed PHF winds around each other to form

insoluble double-fiber NFT in the cell and eventually

accumulates in the form of NFT (Jo et al., 2014; Lee et al.,

2016; Limorenko & Lashuel, 2022). In this process, microtubule

disassembly can cause the collapse of neurons, impairing the

ability of neurons to communicate with one another (Jo et al.,

2014; Lee et al., 2016). Among the multiple phosphorylation sites

associated with AD, tau is phosphorylated at Thr231 and

Ser396 during the PHF stage, whereas it is primarily

phosphorylated at Ser396 during the NFT stage. In addition,

Aβ can induce tau phosphorylation at Thr231 and Ser396 (Lee

et al., 2016). Collectively, tau is primarily phosphorylated at

Ser396, and it belongs to the C-terminal domain, which plays

a key role in regulating tau aggregation (Jo et al., 2014). Thus, the

effect of TS on p-tau (Ser396) level were examined. The results

showed that TS could reduce the accumulation of p-tau (Ser396)

and reduce the level of p-tau (Ser396) in the hippocampus and

cerebral cortex of APP/PS1 mice. In the study of Saikosaponin C

(SSc) by Lee et al., they found that SSc had an inhibitory effect on

p-tau but not on the expression of total Tau (Tau5) (Lee et al.,

2016). Combined with their study, TS and its monomeric

saponin SSc can reduce p-tau level in AD brain.

At present, increasing evidence shows that impaired

autophagy is closely related to the pathogenesis of AD. The

researchers found that autophagosomes and lysosome

accumulated in the brains of AD patients by electron

microscopy and that autophagic flux was inhibited (Zhang

et al., 2021). In addition, autophagy plays an important role

in tau pathology. Data have shown that once autophagic flux is

blocked, the clearance of Tau is affected, and insoluble tau

aggregates accumulate remarkably (Zhang et al., 2021). In the

brains of AD patients, hyperphosphorylated tau colocalized with

the autophagic marker LC3 and autophagic receptor p62, which

was not observed in controls (Piras et al., 2016; Zhang et al.,

2021). The turnover of LC3 is an essential process during

autophagic activation, in which LC3-I is modified by

phosphatidyl ethanolamine and converted to LC3-II (Jiang

et al., 2018). Autophagic receptors interact with LC3,

including p62, NBR1, and NDP52, of which p62 and

NDP52 are the most studied. They can direct autophagic

targets to autophagosomes, which then fuse cargo-containing

autophagosomes with lysosomal vesicles and promote the
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degradation of autophagosomes (Jo et al., 2014; Menzies et al.,

2017; Viret et al., 2018). Based on previous results, the

downregulation of p62 expression is induced by

Nrf2 activation, and the accumulation of hyperphosphorylated

tau is observed in p62 knockout mice, and few studies have

investigated the effect of NDP52 on tau (Jo et al., 2014). Jo et al.

showed that compared with p62, their data strongly indicated

that NDP52 may be the main autophagy adaptor that promotes

phosphorylated tau degradation (Jo et al., 2014). Based on the

abovementioned findings, whether the reduction of p-tau level by

TS was through the autophagy of p62 and NDP52 was

investigated. The changes in the expression levels of

autophagic proteins such as p62 and NDP52 and the changes

in p-tau in APP/PS1 mice and Aβ-induced PC12 cells after TS

treatment were examined. The results showed that after TS

treatment, the expression of LC3-II and Beclin-1 increased,

and the expression of NDP52 and p62 decreased in AD mice

and cells, indicating that the autophagic flux increased, whereas

the level of p-tau significantly decreased; after subsequent

administration of the autophagic degradation inhibitor CQ,

the levels of NDP52 and p62 increased, and the clearance of

p-tau decreased, indicating that TS upregulated the expression of

autophagy-related proteins such as NDP52 and p62 by

promoting autophagy and promoted the formation and

degradation of autophagosomes, thereby promoting the

clearance of p-tau.

Transcription factor EB (TFEB) is also an important

autophagic factor, which is highly expressed in the central

nervous system and active in neurons and astrocytes (Bao

et al., 2016; Sachchida Nand Rai, 2021). TFEB can regulate

the expression of genes involved in the autophagy-lysosome

pathway (Puertollano et al., 2018; La Spina et al., 2020), and

regulate autophagy flux by promoting the occurrence of

lysosomes and autophagosomes and regulating autophagy

body-lysosome fusion, thus promoting autophagic clearance

(Sachchida Nand Rai, 2021). Evidences revealed that TFEB

could effectively reduce the nerve fiber entanglement and the

level of p-tau, thus ameliorating cognitive dysfunction (Wang H.

et al, 2016; Sardiello, 2016; Sachchida Nand Rai, 2021).

Therefore, TFEB has become a potential therapeutic target

for the development of effective drugs. MTOR complex 1

(mTORC1) can negatively regulate TFEB, promote the

production of p-TFEB and inhibit its nuclear translocation,

thus hinder the process of autophagy degradation (Saftig &

Haas, 2016; Napolitano et al., 2020). In this study, after

treatment with TS, we observed a decrease in the levels of

p-TFEB and mTOR, indicating that TS can inhibit the

expression of mTOR, reduce the production of p-TFEB,

and promote the nuclear translocation of TFEB to regulate

autophagosome-lysosome fusion. After administration of

Rapa, the levels of p-TFEB, mTOR and p-tau decreased,

indicating that TS down-regulated the expression of p-

TFEB and mTOR, accelerated autophagy degradation by

promoting autophagosome-lysosome fusion, thus boosting

the clearance of p-tau.

Oxidative stress can lead to a severe imbalance between the

production of ROS and reactive nitrogen species and antioxidant

defenses (Butterfield & Halliwell, 2019). Extensive studies have

shown that oxidative stress has a great impact on the

pathogenesis and progression of AD, and the relationship

between oxidative stress and AD neurodegeneration has been

widely reported (Cheignon et al., 2018; Butterfield & Halliwell,

2019; Wei et al., 2020). The indicators which were examined to

represent changes in oxidative stress included MDA, SOD, GSH,

GSSG, and the ratio of GSH/GSSG. MDA is a major aldehyde

produced by the peroxidation decomposition of unsaturated fatty

acids, a studied indicator of the degrees of lipid peroxidation,

reflecting the overproduction of ROS and the ability to surpass

the endogenous antioxidant defense system (Liu et al., 2020; Pau

et al., 2021). In addition, the antioxidant enzymes SOD and GSH

and GSSG play an important role in regulating the balance of the

oxidative stress system. SOD, an important free radical

scavenging enzyme in organisms, is the first line of defense

against oxidative stress, which can catalyze O2

disproportionation reaction to eliminate oxygen free radicals

produced in the body, thereby protecting cells from oxygen

free radicals (Balamurugan et al., 2018; Liu et al., 2020). In

addition, SOD and MDA can verify the oxidative stress status

of cells, and the imbalance between them often leads to

pathological factors of neurodegenerative diseases (Liu et al.,

2020). Moreover, glutathione peroxidase (GSH) is widely present

in the human body, and it specifically catalyzes the reduction of

hydrogen peroxide by reducing glutathione to protect the

structure and function of cell membrane (Liu et al., 2020). In

addition, the ratio of GSSG/GSH is a good marker of oxidative

stress, depletion of GSH content, increase of GSSG content, and

imbalance of GSH/GSSG ratio in AD patients and animal models

(Vida et al., 2017). Our experimental results demonstrated that

TS could decrease the content of MDA and GSSG, increase the

content of SOD and GSH, and the ratio of GSH/GSSG, indicating

that TS could inhibit the oxidative stress state in APP/PS1 mice.

The regulation of oxidative stress is closely related to the function

of mitochondria. Mitochondrial dysfunction plays an important

role in the AD pathogenesis (Rai et al., 2020). Evidence shows

that in the pathogenesis of AD, excessive production of ROS

leads to oxidative stress, which seriously impairs the function of

mitochondria and leads to neuronal damage (Rai et al., 2020).

The effect of TS on mitochondrial function was not investigated

in this study, which is needed to be further elucidated.

Neuroinflammation processes can produce proinflammatory

cytokines (including IL-1β, IL-6, IL-1β, and TNF-α), and the

innate immune cells involved in the process primarily include

microglia and astrocytes (Leng & Edison, 2021). The release of

proinflammatory molecules may lead to synaptic dysfunction,

neuronal death, and inhibition of neurogenesis. For example, IL-

1β leads to synaptic loss by increasing prostaglandin
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E2 production, when the NF-κB pathway is inhibited, TNF-α
leads to neuronal death by activating tumor necrosis factor

receptor 1 (TNFR 1) (Leng & Edison, 2021). Therefore, the

effects of TS on the activation of microglia and astrocytes and the

release of proinflammatory cytokines were examined. It was

found that TS could reduce the levels of Iba-1 and GFAP and

the activation of microglia and astrocytes, thereby reducing the

levels of TNF-α, IL-1β, IL-1, and the release of proinflammatory

factors in APP/PS1 mice to inhibit neuroinflammation.

The abovementioned results illustrate that TS can inhibit

glial activation and neuroinflammation in APP/PS1 transgenic

mice, and the underlying mechanism was further investigated. It

has been shown that Aβ can activate the NF-κB pathway in

astrocytes, which can act on receptors on neurons and microglia,

leading to neuronal dysfunction and microglial activation (Leng

& Edison, 2021). Numerous studies have shown an interaction

between Nrf2 and NF-κB signaling pathways, which regulate the

main pathway of inflammatory response (Wardyn et al., 2015;

Tom et al., 2019; Sorrenti et al., 2020). The effect of Nrf2 is related

to its ability to antagonize NF-κB, and the activation of Nrf2 can

inhibit the NF-κB pathway. For example, the Nrf2 agonist SFN

can reduce the activity of NF-κB (Sorrenti et al., 2020). Thus, the

NF-κB signaling pathway was selected to investigate the effects of

TS on inflammatory factors and glial activation to improve the

mechanism of TS. It was found that TS treatment significantly

inhibited the expression of NF-κB in APP/PS1 mice and Aβ-
induced PC12 cells by in vivo and in vitro experiments. However,

in Nrf2 knockout PC12 cells, the transcriptional effect of TS

inhibition of NF-κB was weakened, demonstrating that TS

improves neuroinflammation by acting on Nrf2 to

downregulate the expression of NF-κB.
Synapses, the junctions between two neurons, are

important structures for maintaining the normal functional

network of neurons, and they are considered as pathologically

relevant factors for cognitive decline (Lee et al., 2016; Wei

et al., 2020). The presynaptic vesicle protein synaptophysin

and postsynaptic protein PSD-95 play crucial roles in synaptic

transmission, synaptic maturation, and synaptic plasticity,

and if the molecular network between synapses controls the

transmission of synaptic signals and synaptic plasticity, then

disturbances in synaptic function may lead to long-term

neuronal damage and cognitive decline (Lee et al., 2016). In

our results, TS increased the expression of synaptophysin and

PSD-95 in APP/PS1 mice and alleviated synaptic dysfunction.

Similarly, Chao Wei and Lee et al. found that SSc treatment

could increase the protein levels of synaptophysin and PSD-

95, thus enhancing synaptic integrity (Lee et al., 2016; Wei

et al., 2020). Collectively, TS and its monomeric saponin SSc

could protect synaptic function via upregulating the

expression of synaptophysin and PSD-95.

Considerable evidence shows that AD is closely related to

GM. Clinical data and animal experimental studies show

intestinal flora imbalance in AD patients and models,

which can promote neuroinflammation and amyloidosis,

thereby playing a role in the occurrence and development

of AD. Moreover, various drugs have been proved to achieve

therapeutic effects through flora, such as probiotics,

antibiotics and GV-971. In order to comprehensively

evaluate the protective effect of TS, we applied 16s rRNA

high-throughput sequencing to analyze the structural

diversity, composition, and abundance of GM in WT mice,

APP/PS1 transgenic mice, and TS intervention mice. Our

results showed that the abundance of Desuflovibrio,

Helicobacter, Mucispirillum, Roseburia, and Clostridium in

APP/PS1 mice was significantly higher than that in WT

mice, which was partly consistent with previous research.

Furthermore, we found that TS treatment reversed the

abnormal upregulated abundance of these flora, indicating

that TS may play a protective role in AD by regulating GM.

Further investigation are needed to verify how TS exerts

therapeutic effect against AD through GM. Existing studies

have shown a close relationship between GM and

inflammation (Giau et al., 2018; Garcez et al., 2019; Wang

et al., 2019; Sun et al., 2020). Therefore, whether TS can reduce

the inflammatory response by regulating GM is a reasonable

research direction.

In conclusion, TS plays a comprehensive role in the

treatment of AD through the abovementioned ways, which

can effectively ameliorate the cognitive impairment in AD

mice. How TS plays a protective role by regulating the GM

need to be further investigated. Whether GM affect the release of

inflammatory factors or the deposition of Aβ through their

metabolites, such as short-chain fatty acids, may be the next

research direction in the future.
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Parkinson’s disease (PD) is a degenerative, progressive nervous system disorder with
an unknown cause. PINK1 [phosphatase and tensin homolog deleted on chromosome
10 (PTEN)-induced putative kinase 1] causative mutations R492X may cause autosomal
recessive early-onset parkinsonism. In this study, we utilized patient samples and cell line
system to investigate roles of Bcl2-associated athanogene 5 (BAG5) in PD patients with
R492X PINK1 mutation. We show that the expression levels of BAG5 in the skin tissues
from PD patients with R492X PINK1 mutation are markedly lower than those from the
healthy control subjects in a small cohort of patients, which has not been recognized
before. In addition, we demonstrate that BAG5 physically binds to R492X mutated
PINK1 protein. Furthermore, we reveal that BAG5 promotes the degradation of R492X
mutated PINK1 protein via ubiquitin/proteasome-dependent pathway, suggesting that
decreased level of BAG5 may lead to R492X mutated PINK1 protein accumulation.
These findings suggest that BAG5 may serve as an early detection biomarker for PD
patients with R492X PINK1 mutation and provide important new insights on how BAG5
affects R492X mutated PINK1 protein, highlighting therapeutic targets for this disease.

Keywords: R492X PINK1 mutation degradation, Bcl2-associated athanogene 5, ubiquitination, Parkinson’s
disease, skin

INTRODUCTION

The phosphatase and tensin homologue deleted on chromosome 10 (PTEN)-induced putative
kinase 1 (PINK1) is a mitochondria-targeted serine/threonine kinase with a mitochondrial
localization signal (MLS) domain and a functional serine/threonine kinase domain (Matsuda
et al., 2013; Wang et al., 2014; Vizziello et al., 2021; Kakade et al., 2022). MLS parts include
a mitochondrial-targeting sequence (MTS) and a putative transmembrane domain (TD), the

Abbreviations: BAG5, Bcl2-associated athanogene 5; BD, BAG domain; CHX, cycloheximide; co-IP, co-
immunoprecipitation; EGFP, enhanced green fluorescent protein; FITC, fluorescein isothiocyanate; GFP, green fluorescent
protein; HA, haemagglutinin; MG132, carbobenzoxy-Leu-Leu-leucinal; MLS, mitochondrial localization signal; MTS,
mitochondrial-targeting sequence; PD, Parkinson’s disease; PINK1, PTEN-induced kinase 1; PINK1 R492X, PTEN-
induced kinase 1 p.R492X mutation; PTEN, phosphatase and tensin homolog; TD, transmembrane domain; UPS,
ubiquitin/proteasome system.
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degradation of N-terminal domain was reported to affect the
cellular location of PINK1 (Eldeeb and Ragheb, 2020; Sekine,
2020; Vizziello et al., 2021). PINK1 has been well-known for the
notion of neuroprotective roles, as it protects cells from damage-
mediated mitochondrial dysfunction (Brunelli et al., 2020). In
addition, PINK1 is also known to be implicated in various
processes like apoptosis and mitophagy (Voigt et al., 2016; Li
et al., 2022). The PINK1 (or PARK6) gene was identified to be
linked to Parkinson’s disease (PD) for the first time by linkage
analysis of consanguineous families with early-onset autosomal
recessive PD and is recently reported as one of the most
commonly mutated genes in early onset PD (Valente et al., 2004;
Agarwal and Muqit, 2022; Gan et al., 2022). More than 50 PINK1
mutations have been found to impair mitochondrial functional
throughout the kinase and carboxyl-terminal regulatory domains
of PINK1 (Rochet et al., 2012; Matsuda et al., 2013). The R492X
mutation in the PINK1 gene was identified by Hatano et al.
(2004). Despite the neurotoxicity of R492X mutated PINK1
protein, inducing mitochondrial dysfunction and oxidative stress,
the underlying molecular mechanisms are still to be explored
(Leites and Morais, 2021).

The Bcl-2 associated athanogene (BAG) family is a group
of chaperone regulators (Qin et al., 2016). All members of the
BAG protein family contain BAG domain (BD), which mediates
direct interaction with the ATPase domain of Hsp70/Hsc70
molecular chaperones (Bracher and Verghese, 2015). The BAG
family proteins perform diverse functions including apoptosis
and protein degradation (Bracher and Verghese, 2015). BAG5
is a unique member of the BAG family with five BDs. Previous
studies have reported that BAG5 inhibited both Parkin E3 ligase
and Hsp70 chaperone activities thereby enhancing dopaminergic
neuron degeneration (Berliner et al., 1986; De Snoo et al., 2019).
This suggests that BAG5 is involved in proteasome-mediated
protein degradation, which is also associated with Parkinson’s
disease. In addition, two early studies demonstrated that BAG5
inhibited MPP+-induced apoptosis through both endogenous
and mitochondria-mediated pathways of apoptosis (Peviani et al.,
2012; Wang et al., 2014).

In this study, we first found that the expression levels of
BAG5 in the skin tissues from a small cohort of PD patients
with R492X PINK1 mutation markedly decreased compared
with those from the healthy control subjects. Furthermore,
we demonstrated that BAG5 promotes the degradation of
R492X mutated PINK1 protein via ubiquitylation-dependent
pathway. These data suggest that BAG5 may serve as an early
detection biomarker for PD patients with R492X PINK1mutation
and provide important new insights on how BAG5 affects
R492X mutated PINK1 protein, highlighting therapeutic targets
for this disease.

MATERIALS AND METHODS

Parkinson’s Disease Patients and Skin
Biopsy
Skin tissues were obtained from two patients with PD
harboring R492X PINK1 mutation and two healthy controls.

Punch biopsy of the skin (3 mm) were elevated with local
anesthesia from the left lateral calf. Samples were immediately
fixed in 4% paraformaldehyde and kept at 4◦C for at least
2 days. The study was performed with the approval of the
Institutional Ethics Committee of the Zhengzhou University
(2015-81100949).

Plasmid Constructs
Plasmids have been previously described (Wang et al.,
2014). Briefly, the mammalian expression plasmid pKH3-
HA-PINK1 was a kind gift from Dr. Bin Li (University
of Science & Technology of China). Full-length BAG5
cDNA was amplified from a human fetal brain library
(Invitrogen) using the primers 5′-cggaattctatgcgtttccattggttaccc-
3′ and 5′-cgcggatccgtactcccattcatcaga-3′ and inserted into
pcDNA3.1(+)/myc-HisA vector at BamHI/EcoRI sites. pEGFP-
BAG5 was constructed by subcloning a fragment excised from
pcDNA3.1(+)/myc-HisA-BAG5 into pEGFP-N3 vector at
BamHI/EcoRI sites. All constructs were sequenced to confirm
their fidelity. HA-PINK1R492X was constructed similarly with
HA-PINK1 (Che et al., 2013).

Cell Culture, Transfections, and RNA
Interference
Human embryonic kidney 293 (HEK293) cells (purchased
from the Type Culture Collection of the Chinese Academy
of Sciences, Shanghai, China) were maintained in DMEM
(GIBCO, United States) supplemented with 10% newborn
calf serum (GIBCO, United States), 100 U/ml penicillin and
100 mg/ml streptomycin (Invitrogen, United States), at 37◦C
in a humidified incubator of 5% CO2. The mammalian
expression plasmid enhanced green fluorescent protein
(EGFP)-BAG5, haemagglutinin (HA)-PINK1 and HA-
PINK1R492X were gifts provided by Professor Guanghui
Wang (Che et al., 2013) (Soochow University, China). The
HA tag was added to the N-terminal of PINK1 or PINK1
R492X, the expression was confirmed by immunostaining
(Supplementary Figure 1). Transfections were performed
using Lipofectamine 2000 (Invitrogen, United States)
according to the instructions. Cycloheximide (CHX)
was purchased from Sigma and carbobenzoxy-Leu-Leu-
leucinal (MG132), a proteasome inhibitor, was obtained
from Calbiochem. Plasmids and Lipofectamine 2000 were
premixed in OPTI-medium (GIBCO, United States) for
30 min and then applied to the cells. After transfection
for 6 h, the medium was replaced with fresh medium
containing 15% FBS, and cells were treated for another
24 h and harvested subsequently. According to the
manufacturer’s instructions (Invitrogen), 50 pmol of BAG5
siRNA was transfected using Oligofectamine. Oligo RNA
was purchased from Gene-Pharma (Shanghai, China)
containing the following sequences: siBAG5 sense, 5′-
GGAGAUAUUCAGCAAGCUATT-3′, siBAG5 antisense,
5′-UAGCUUGCUGAAUAUCUCCTT-3′; siRNA control sense,
5′-UUCUCCGAACGUGUCACGUdTdT-3′, siRNA control
antisense, 5′-ACGUGACACGUUCGGAGAAdTdT-3′.
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FIGURE 1 | Decreased level of BAG5 in the skin tissue of patients with R492X PINK1 mutation. (A) Immunofluorescence staining for the expression of BAG5 in skin
tissues from healthy individuals (NC, left) and patients with PD harboring R492X PINK1 mutation (PD, right). (B) Western blotting was performed using skin tissues
from healthy individuals (N1 and N2) and PD patients with R492X PINK1 mutation (P1 and P2). (C) Quantitative data from (B) (Density of endogenous BAG5 against
GAPDH) using NIH ImageJ. The data represent the intensity of BAG5 band of the healthy individuals (N1 and N2) or PD patients with R492X PINK1 mutation (P1 and
P2), respectively. GAPDH serves as a loading control.

Immunoprecipitation and Western
Blotting Analysis
Whole cell lysates were sonicated in lysis buffer [50 mM
Tris–HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mg/ml
aprotinin, 10 mg/ml of leupeptin, 0.5 mM Pefabloc SC, 10 mg/ml
of pepstatin, 1% NP-40]. Cellular debris was removed by
centrifugation at 12,000× g for 20 min at 4◦C. The supernatants
were incubated with the antibodies in 0.01% BSA for 4 h at 4◦C.
After incubation, protein G Sepharose (Roche, Switzerland) was

used for precipitation. The beads were washed with 1 × PBS
for six times, and proteins were eluted with SDS sample
buffer for immunoblot analysis. The samples were subjected
to SDS-PAGE. After transferred to nitrocellulose membranes,
blots were blocked with 15% non-fat dry milk in TBST (0.25%
Triton X-100 in PBS, pH 7.4) for 1 h, and then incubated with
primary antibodies overnight at 4◦C. After washing three times
in TBST, the membrane was incubated with anti-rabbit IgG
(Cell Signaling Technology, United States) or anti-mouse IgG
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FIGURE 2 | BAG5 interacts with R492X mutated PINK1 protein. (A) BAG5
interacts with PINK1 and R492X mutated PINK1 protein. We performed co-IP
assays using HEK293 cells expressing GFP-BAG5 and HA-PINK1 or
HA-PINK1R492X. Cell lysates were subjected to co-IP with rabbit polyclonal
anti-HA tag antibody. The IP and input lysates were analyzed by
immunoblotting with mouse monoclonal anti-HA tag antibodies. The results
showed that BAG5 interacts with both wild type PINK1 and R492X mutated
PINK1 protein. (B) Co-localization of GFP-BAG5 and HA-PINK1R492X.
HEK293 cells were transfected with EGFP-BAG5 and HA-PINK1 or
HA-PINK1R492X. Images show regional co-localization of BAG5 with R492X
mutated PINK1 protein.

(Cell Signaling Technology, United States) for 1 h. Membranes
were washed for three times and proteins were visualized using
an ECL detection kit (Pierce Chemical, United States). The
primary antibodies used were mouse monoclonal anti-HA tag
antibody (Abcam, United Kingdom), rabbit polyclonal anti-HA
tag antibody (Cell Signaling Technology, United States), rabbit
polyclonal anti-GAPDH antibody (Cell Signaling Technology,
United States), mouse monoclonal anti-BAG5 antibody (Abcam,
United Kingdom), rabbit polyclonal anti-green fluorescent
protein (GFP) antibody (Abcam, United Kingdom), and
rabbit polyclonal anti-ubiquitin antibody (Cell Signaling
Technology, United States).

Immunohistochemistry and
Immunohistofluorescence
HEK293 cells were washed with 1 × PBS and fixed with 4%
paraformaldehyde for 5 min. Then cells were incubated with
0.25% Triton X-100 for 15 min and blocked in 4% FBS for
20 min, subsequently incubated with the primary antibodies
overnight at 4◦C. Frozen skin tissue sections were washed in

1 × PBS for five times and incubated with 0.3% Triton X-100
at room temperature for 30 min. After blocking the non-specific
binding sites using 1 × PBS containing 2% BSA, the skin tissue
sections were incubated with the primary antibodies overnight
at 4◦C. Following three washes with 1 × PBS containing 0.3%
Triton-100, fluorescein isothiocyanate (FITC)-conjugated goat
anti-mouse IgG was applied as secondary antibody (Vector
Laboratories, United States) for 2 h at room temperature.
Images were captured by using Nikon Labphoto-2 fluorescence
microscope. The human subject studies were approved by the
Institutional Ethics Committees of the Zhengzhou University.
Written informed consent for skin biopsy was obtained from all
patients and healthy individuals participating in the study.

Statistical Analysis
All statistical analyses were performed using Student’s t-test or
one-way ANOVA using SPSS statistical software package (SPSS
version 8.0). Data were shown as mean ± SD or mean ± SEM.
A p value less than 0.05 was considered statistically significant.

RESULTS

Expression of BAG5 in the Skin Tissues
From Patients With R492X PINK1
Mutation Is Lower in Comparison to
Health Controls
The BAG family proteins exhibit multiple functions including
apoptosis and protein degradation (Bracher and Verghese,
2015), and previous studies have shown that BAG5 inhibited
both Parkin E3 ligase and Hsp70 chaperone activities thereby
enhancing dopaminergic neuron degeneration (De Snoo et al.,
2019; Chen et al., 2020). We then hypothesized that BAG5
is involved in the pathogenesis of R492X PINK1 mutation in
autosomal-recessive PD. To test this hypothesis, we performed
skin biopsy from two patients with PD harboring R492X
PINK1 mutation and two healthy controls. We found that the
decreased level of BAG5 was detected in patients with R492X
PINK1 mutation compared with healthy control subjects by
immunofluorescence (Figure 1A) and Western blotting analysis
(Figures 1B,C). These results suggest that BAG5 is implicated in
the pathogenesis of R492X PINK1 mutation in PD.

BAG5 Interacts With R492X Mutated
PINK1 Protein
To determine the relationship between BAG5 and R492X
mutated PINK1 protein, we first used co-immunoprecipitation
(co-IP) experiments to examine if there is a direct interaction
between BAG5 and R492X mutated PINK1 protein. We
co-transfected with EGFP-BAG5 and HA-PINK1 or HA-
PINK1R492X vectors in HEK293 cells. After immunoprecipitation
with a rabbit polyclonal anti-HA tag antibody, the
immunoprecipitants were subjected to immunoblot analysis with
a mouse monoclonal anti-GFP or anti-HA tag antibody. EGFP-
BAG5 was co-precipitated with HA-PINK1R492X, suggesting
that BAG5 physically binds to R492 mutated PINK1 protein.
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FIGURE 3 | BAG5 promotes R492X mutated PINK1 protein degradation. (A) HEK293 cells were transfected with EGFP, EGFP-BAG5, negative control siRNA (NC
siRNA), BAG5 siRNA and HA-PINK1R492X for 36 h. Cells extracts were analyzed by immunoblot using the specific antibodies. HA-PINK1R492X was decreased in
GFP-BAG5-expressing cells, whereas knockdown of BAG5 increased the level of HA-PINK1R492X. (B) Quantitative data from A were shown. Values shown are the
means ± SEM from the experiments. Level of statistical significance, *p < 0.05, #p < 0.01. (C) HEK293 cells were transfected for 36 h with either EGFP or
EGFP-BAG5 with HA-PINKR492X, then cells were incubated for the indicated times in the presence of 100 mg/ml CHX. Cells were resuspended in lysis buffer, and
the proteins were analyzed by immunoblot using anti-HA tag antibody. (D) The expression level of HA-PINK1R492X was significantly lower in
GFP-BAG5-overexpressing cells than in GFP-overexpressing cells. Values shown are the means ± SEM, level of statistical significance, *p < 0.05. All experiments
were performed more than thrice.

The results are shown in Figure 2A. Then, we detected
subcellular co-localization of GFP-BAG5 with HA-PINK1 and
HA-PINK1R492X in HEK293 cells co-transfected with HA-PINK1
or HA-PINK1R492X and EGFP-BAG5. As shown in Figure 2B,
HA-PINK1 was distributed most in the mitochondrial-rich
perinuclear region (Matsuda et al., 2013; Liu et al., 2017), and
GFP-BAG5 was evenly distributed throughout the whole cell.
Furthermore, HA-PINK1 and GFP-BAG5 were co-localized in
perinuclear region. HA-PINK1R492X was distributed unevenly
around the nucleus, and largely co-localized with GFP-BAG5
(Figure 2B). These results confirmed that BAG5 interacts with
R492X mutated PINK1 protein.

BAG5 Promotes Degradation of R492X
Mutated PINK1 Protein
Previous studies showed that BAG5 was involved in regulating
degradation of specific proteins by ubiquitin/proteasome-
dependent pathways (Wang et al., 2014). We next investigated
the effect of BAG5 on degradation of R492X mutated PINK1
protein. HEK293 cells were co-transfected with HA-PINK1R492X

and EGFP-BAG5 or EGFP-N1 (control) for about 36 h. The
expression level of HA-PINK1R492X was markedly lower in
cells co-transfected with EGFP-BAG5, but not in cells co-
transfected with EGFP tag alone (Figure 3A). To further
confirm the role of BAG5 in degradation of R492X mutated

PINK1 protein, we knocked down the expression of endogenous
BAG5 by siRNA. As shown in Figures 3A,B, the down
regulation of BAG5 significantly increases the expression of
HA-PINK1R492X in HEK 293 cells. Subsequently, we examined
the stability of HA-PINK1R492X in cells stably expressing
either GFP or GFP-BAG5 after CHX treatment to block total
protein synthesis. The poor expression of HA-PINK1R492X

in GFP-BAG5-overexpressing cells provides evidence that
overexpression of GFP-BAG5 accelerates cellular degradation of
HA-PINK1R492X (Figures 3C,D).

BAG5 Increases the Ubiquitination of
R492X Mutated PINK1 Protein
Previous studies demonstrated that PINK1 was mostly degraded
by the ubiquitin-proteasome system (UPS) (Whiten et al., 2021).
To explore whether overexpression of BAG5 increased the
ubiquitination of R492X mutated PINK1 protein, HEK293 cells
were co-transfected with HA-PINK1R492X and EGFP-BAG5 or
EGFP-N1 for about 36 h, and then cells were treated with
the proteasome inhibitor MG132 for 12 h. Cell lysates were
collected and immuno-precipitated using affinity-purified rabbit
anti-HA tag antibodies. As shown in Figure 4, overexpression
of EGFP-BAG5 significantly increased the ubiquitination of HA-
PINK1R492X compared with EGFP control in the presence of
MG132 (Figure 4). Thus, the results show that BAG5 accelerates
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FIGURE 4 | BAG5 increases ubiquitination of R492X mutated PINK1 protein.
HEK293 cells were co-transfected with HA-PINK1R492X and EGFP-N1 or
EGFP-BAG5. The cells were treated with 10 mM MG132 for 12 h and
subjected to immunoprecipitation using rabbit polyclonal antibodies against
HA tag. Inputs and immunoprecipitants were subjected to immunoblot
analysis using anti-ubiquitin, anti-EGFP, anti-HA tag or anti-GAPDH antibody.

the degradation of R492X mutated PINK1 protein via increasing
ubiquitination of R492X mutated PINK1 protein.

DISCUSSION

In this study, we show that the expression level of BAG5 in
R492X PINK1 mutated PD patients is much lower than that in
healthy controls. We then demonstrated that BAG5 promoted
the degradation of R492X mutated PINK1. Moreover, we reveal
that BAG5 functions through physically interacting with R492X
mutated PINK1 protein. The evidence from this study indicates
that BAG5 functions as a modulator controlling the expression
level of R492X mutated PINK1 protein. Decreased expression of
BAG5 promotes R492X mutated PINK1 protein accumulation
and mitochondrial dysfunction, which potentially enhances the
cytotoxic effect of R492X mutated PINK1 protein in patients
with R492X PINK1 mutation. Although, the interaction between
endogenous BAG5 and R492X mutated PINK1 and how BAG5
expression is regulated in PD patients with such mutation need
to be further investigated, these data highlight the therapeutic
targets for PD patients with R492X PINK1 mutation.

Bcl-2 associated athanogene family consists of 6 protein
members, characterized by the same BAG domain, and is found

to participate in cell proliferation and survival, increasing stress
tolerance, and cancer development (Pattingre and Turtoi, 2022).
BAG5 is exceptional in this group of protein since it consists
solely of the five BAG domains (Bracher and Verghese, 2015).
Ying et al. (2013) showed that BAG5 reduced the degradation of
PTEN and maintained its levels via an ubiquitination-dependent
pathway. Che et al. (2015) demonstrated that BAG5 stabilized
pathogenic ataxin3-80Q by inhibiting its ubiquitination as
determined by western blotting and co-immunofluorescence
experiments. Qin et al. (2017) revealed that BAG5 could
decrease DJ-1’s stability and reduce its function on mitochondrial
protection. These studies indicated that BAG5, as a key
chaperone regulator of heat shock proteins, regulates ubiquitin-
mediated degradation of many other proteins. The authenticity
of our results is verified in line with the property above of
BAG5. Wang et al. (2014) demonstrated that BAG5 inhibited
PINK1 degradation through direct interaction with PINK1
through the UPS and BAG5 protected mitochondria against
neurotoxin MPP+- and rotenone-induced oxidative stress. Here,
we show that BAG5 promotes R492X mutated PINK1 protein
degradation in this study. Mutations in PINK1 gene are the
second most common cause of autosomal recessive early-
onset PD (Wang et al., 2018; Li et al., 2021). In 2004,
R492X PINK1 mutation was first identified in autosomal
recessive early-onset parkinsonism (Hatano et al., 2004). Previous
study by Yuan et al. (2010) revealed that stable expression
of the R492X mutated PINK1 protein, unlike the wild-type
PINK1 protein, causes mitochondrial cytochrome C release
and cellular apoptosis. The R492X mutation seems to be a
dominant-negative or gain-of-function dominant mutation that
can induce cellular mitochondrial dysfunction and oxidative
stress, especially with the environmental neurotoxin (MPP+).
Therefore, the mechanism by which BAG5 exhibits an opposite
effect on the degradation of the two proteins is not clear
and remains to be further investigated. A simple explanation
might be that BAG5 is involved in cellular mitochondrial and
oxidative stress response/modulation and has multiple functions,
one of which leads to a change in protein structure. Individual
properties and physiological situation of the R492X mutated
PINK1 protein might have been changed, which consequently
resulted in different reactions to BAG5.

CONCLUSION

In summary, we show that the expression levels of BAG5
decline in the skin tissues from patients with R492X PINK1
mutation compared with control cases. Further, our results help
demonstrate that BAG5 promotes the degradation of R492X
mutated PINK1 protein via the UPS pathway in vitro. Although
further studies on expanded patient samples from a large cohort
and on why BAG5 level is decreased in PD patients with R492X
PINK1 mutation are needed, the level of BAG5 in the biopsied
skin may be used for an indication of the patients’ condition or
a diagnostic biomarker of familial juvenile parkinsonism. This
study may also highlight potential therapeutic effect of targeted
regulation of BAG5 for PD patients with R492X PINK1 mutation.
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Alzheimer’s disease (AD) is the sixth leading cause of death worldwide

and cannot be e�ectively cured or prevented; thus, early diagnosis, and

intervention are important. The importance of exosomes, membrane-bound

extracellular vesicles produced in the endosome of eukaryotic cells, in the

development, diagnosis, and treatment of AD has been recognized; however,

their specific functions remain controversial and even unclear. With the

development of exosome extraction, isolation, and characterization, many

studies have focused on exosomes derived from di�erent cells and body fluids.

In this study, we summarized the roles of exosomes derived from di�erent

body fluids and cells, such as neuron, glial, stem, and endothelial cells, in the

development, diagnosis, monitoring, and treatment of AD. We also emphasize

the necessity to focus on exosomes frombiological fluids and specific cells that

are less invasive to target. Moreover, aside from the concentrations of classic

and novel biomarkers in exosomes, the size and number of exosomesmay also

influence early and di�erential diagnosis of AD.

KEYWORDS

Alzheimer’s disease, mild cognitive impairment, exosome, biomarkers, neuron, glial

cells

Introduction

Alzheimer’s disease (AD) is one of the leading causes of death worldwide and the

most common form of dementia, comprising 60–80% of all cases (Landeiro et al.,

2018). The global number of patients with AD is expected to rise to 65.7 million

in 2030 and 115.4 million in 2050, at a rate of one new case every 3 s (Prince

et al., 2013). AD is characterized by the accumulation of amyloid plaques formed by

extracellular aggregates of the amyloid-β (Aβ) peptide, neurofibrillary tangles formed

of intracellular hyperphosphorylated microtubule-associated tau proteins, and axonal

degeneration. It can affect memory, use of language, and behavior and may develop

into a severe disability, causing a huge burden to both families and society (Ghidoni

et al., 2018). Currently, more than 99% of clinical trials for AD therapy have failed
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(Cummings et al., 2014), and only seven FDA-approved

palliative drugs are available. Therefore, timely diagnosis and

intervention are important in the early stages of AD.

According to the 2011 guidelines from the National

Institute on Aging and the Alzheimer’s Association (Jack

et al., 2011), reliable biomarkers for AD only included the

levels of Aβ1-42, total tau, and phosphorylated tau in the

cerebrospinal fluid (CSF), which are expensive, invasive, and

infeasible for screening. It has been estimated that, even in

high-income countries, only 20–50% of dementia cases were

correctly recognized and documented in primary care (Zheng

et al., 2016). However, neuropathological alterations in patients

with AD were reported to begin 10–20 years before the

development of clinical symptoms (Villemagne et al., 2013).

Thus, it is necessary and meaningful to find reliable and feasible

biomarkers to help effectively diagnose AD, especially in the

early stages.

In the last decade, many studies have found that extracellular

vehicles (EVs) play key roles in the management of normal

physiological environments, including waste management, stem

cell maintenance, and tissue repair, as well as in pathological

processes, including AD (Ratajczak et al., 2006; Gatti et al.,

2011; van der Pol et al., 2012; Watson et al., 2019). Exosomes,

30–150 nm in diameter, are main EVs that originate in the

endosome, and can carry multifarious molecular cargo, such as

nucleic acids, lipids, and proteins (DeLeo and Ikezu, 2018; Yokoi

et al., 2019). In the central nervous system, exosomes are critical

for intercellular communication, maintenance of myelination,

synaptic plasticity, and trophic support of neurons (Hornung

et al., 2020). Currently, exosomes play important roles in the

development, diagnosis, and treatment of AD; however, their

specific functions remain controversial and even unclear. For

example, some study found that exosomes could help spread

tau proteins and encourage Aβ aggregation (Song et al., 2020a;

Ruan et al., 2021); however, other studies reported that neuronal

exosomes could restrain Aβ oligomerization, accelerate Aβ

fibril formation, and facilitate microglia-mediated Aβ clearance,

implying that exosomes from different cell types might exhibit

different effects on the development of AD (Yuyama et al., 2012,

2014; Asai et al., 2015; Dinkins et al., 2017). Since exosomes

secreted from different cell types contain particular and different

types of markers, it is possible to identify their origins and

isolate them from a specific cell subgroup, and corresponding

extraction and purification methods have also been developed

in recent years (Goetzl et al., 2019; Hornung et al., 2020).

Thus, it is feasible and meaningful to recognize, extract, and

analyze specific cell-derived exosomes based on the features

of the targeted diseases. Noticeably, because exosomes are the

main type of EVs, many authors interchangeably used the

terms EVs and exosomes (Hornung et al., 2020). Thus, we

also include some important studies taking about EVs in this

review. Moreover, it is still challenging for effective and specific

extraction, isolation, and characterization of exosomes, thus, the

mentioned exosomes in many cases could also contain small

amounts of other EVs.

Considering the above and based on previous published

studies, in this reviewwemainly discuss and summarize the roles

of exosomes derived from different body fluids and cells in the

development, diagnosis, monitoring, and treatment of AD, as

well as the remaining challenges in this field.

Exosomes from various body fluids
provide possibilities for the early
diagnosis and intervention of
Alzheimer’s disease

Cerebrospinal fluid-derived exosomes

A review reported that a large percentage of modulated

proteins originate from exosomes, most of which are involved in

the growth, development, maturation, and migration of neurons

and neurotransmitter-mediated cellular communication (Bastos

et al., 2017). Thus, CSF-derived exosomes have been widely

studied, and their proteome has been recognized as a potential

new reservoir for biomarker discovery in neurological disorders,

including AD (Street et al., 2012). It has also been reported that

more than 400 unique proteins mainly involved in AD, as well

as the aging and telomere length pathway, were considerably

enriched in CSF-derived EVs (Muraoka et al., 2019), and some

proteins such as HSPA1A, NPEPPS, and PTGFRN could be used

to monitor the progression of mild cognitive impairment (MCI)

converted to AD (Muraoka et al., 2020). Moreover, the levels

of total tau and p-181-tau in CSF-derived EVs were not only

positively correlated with, but also higher than those in total

CSF in individuals with AD (Guix et al., 2018; Muraoka et al.,

2019). Thus, CSF-derived exosomes (or EVs) play important

roles in the early and differential diagnosis of AD. However,

the techniques used to derive exosomes from CSF still require

refinement to reduce volume and variability.

Blood-derived exosomes

Since the collection of exosomes from the CSF is invasive, it

is necessary and urgent to find less or non-invasive biomarkers

from other body fluids. Exosomes consist of a lipid bilayer

encapsulating the cytosol and have an efficient capability to cross

the blood-brain barrier without the loss of their biomarkers,

thereby reaching many biological fluids, such as blood, urine,

saliva, and synovial fluid (Colombo et al., 2012). Thus, the

exosomes in these body fluids could dynamically reflect the

pathological changes occurring in some inaccessible sites, such

as the brain, making them promising biomarkers for the first

step of multistage diagnoses.
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Of these different body fluids, plasma and serum are the

most widely used for the extraction of exosomes. Interestingly,

previous studies have shown that the levels of exosome-bound

Aβ could correlate better with PET imaging of brain amyloid

plaques and differentiate various clinical stages of dementia

compared to unbound or total circulating Aβ (Lim et al., 2019).

Further extensive analyses of abnormal protein levels in neural

cell-derived exosomes could identify patients with AD up to a

decade ahead of clinically detectable cognitive losses (Goetzl,

2020). These reports imply that the levels of biomarkers in brain-

derived, blood-borne exosomes can better reflect alterations

occurring in the brain (Guix et al., 2018; Lim et al., 2019). It was

also reported that the levels of Aβ1-42, total tau, p-181-tau, and

p-S396-tau in neuron-derived exosomes (NDEs) from plasma

were highly correlated with those in CSF and could differentiate

patients with AD from those with MCI and/or controls with

an accuracy of up to 96.4% (Fiandaca et al., 2015; Jia et al.,

2019). Moreover, it was reported that patients who eventually

developed AD had considerably higher levels of 181-tau and/or

p-S396-tau in their NDEs compared to their plasma, even 10

years prior to diagnosis, compared to those who did not develop

AD (Fiandaca et al., 2015; Winston et al., 2016).

Apart from the classic biomarkers, many other promising

biomarkers such as lysosomal proteins, GAP43, neurogranin,

SNAP25, and synaptotagmin 1 in NDEs from plasma could

predict the development of AD at least 5 years before cognitive

impairment and differentiate AD from frontotemporal dementia

with 95.8% accuracy (Goetzl et al., 2015a; Jia et al., 2021).

Another study also found that neuro-protective transcription

factors such as repressor element 1 silencing transcription

factor, low-density lipoprotein receptor-related protein 6, and

heat shock factor 1 in NDEs from plasma decreased 2–10

years before the onset of clinical AD symptoms, implying a

possible early pathogenic contribution of increased neuronal

susceptibility to neurotoxic proteins in AD rather than higher

levels of pathogenic proteins (Goetzl et al., 2015b). Furthermore,

miRNAs such as miR-9-5p, miR-598, miR-125b, miR-29, miR-

342-3p, and miR-193b, which are highly stable and resistant to

degradation in exosomes, could be promising biomarkers for

early clinical diagnosis and monitoring of AD (Riancho et al.,

2017; Chen et al., 2019; Dong et al., 2020). Recently, a meta-

analysis found that exosome-derived markers in serum had a

higher diagnostic value for AD and MCI than those in plasma,

implying that isolating exosomes from serum is a more accurate

and non-invasive detection method (Xing et al., 2021).

Exosomes derived from urine and other
body fluids

A pilot study found that the levels of Aβ1-42 and p-

S396-tau in urinary exosomes were higher in patients with

AD than in controls, suggesting that it is a promising non-

invasive biomarker (Sun et al., 2019). Comprehensive proteomic

profiling analysis identified 336 differentially expressed proteins,

including 44 brain cell biomarkers in urinary exosomes, of which

22 were further verified. Notably, annexin 2 and clusterin were

markedly decreased in AD mouse models compared to control

mice (Song et al., 2020b). Moreover, 48 differentially expressed

miRNAs in urinary exosomes, including 18 upregulated and

30 downregulated ones, were identified and verified prior to

the identification of Aβ plaque deposition, which was predicted

to display gene targets and important signaling pathways

closely associated with AD pathogenesis (Song et al., 2021).

Furthermore, other non-invasive body fluids, such as saliva-

derived exosomes (Han et al., 2018; Rani et al., 2021) are also

promising for the early diagnosis of AD. However, associated

studies are limited and need to be further explored, and the

collections of saliva samples needs to be further standardized in

clinical application.

Exosomes derived from di�erent
cells play di�erent roles in the
development, diagnosis, and
treatment of Alzheimer’s disease

Exosomes derived from neural cells play multifaceted roles

in the nervous system, including in synaptic plasticity, the

neuron-glia interface, neuroregeneration, neuroprotection, and

the dissemination of neuropathological molecules (Upadhya

et al., 2020). It has also been reported that exosomes derived

from various types of neural cells, including neurons, glia, stem

cells and so on, play different roles in the development of AD

(Figure 1) (Song et al., 2020a); therefore, it is vital to distinguish

and analyze specific cell-derived exosomes.

Neuron-derived exosomes

As the basic structural and functional unit of the nervous

system, neurons mediate various neural activities such as the

conduction of excitation. Proteins in exosomes are released

from affected neurons and propagate along neuroanatomically

connected regions of the brain, leading to the spread of

neurodegenerative diseases. Full-length tau proteins, which are

more prone to aggregation, were found to be higher inside

NDEs than in their free form (Guix et al., 2018), implying that

NDEs could promote the transmission of tau. Moreover, the

levels of P-S396-tau and P-T181-tau in NDEs can predict the

development of AD up to 10 years before the clinical onset of

sporadic AD (Fiandaca et al., 2015). Furthermore, a recent study

demonstrated that NDEs, but not total exosomes, in plasma

samples of AD patients could induce complement-mediated
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FIGURE 1

Summary of the e�ect of exosomes derived from di�erent cells on the development of Alzheimer’s disease.

neurotoxicity, leading to the decrease of cell viability (Nogueras-

Ortiz et al., 2020).

However, beneficial effects of NDEs on extracellular Aβ

have also been found. NDEs may drive conformational changes

in Aβ to form non-toxic amyloid fibrils and promote uptake

and degradation by microglia (Yuyama et al., 2012). With

enriched expression of glycosphingolipids, ceramide, and the

GPI-anchored protein PrPc, NDEs showed stronger affinity for

Aβ than other origin-derived exosomes, such as those from

glial cells (Joshi et al., 2015; Yuyama et al., 2015). Moreover, it

was reported that intracerebral infusion of NDEs into mouse

brains could decrease the levels of Aβ and attenuate Aβ-induced

synaptic density toxicity in the hippocampus (Yuyama et al.,

2014, 2015), which implies that supplementation or promotion

of NDE generation could be a novel therapeutic approach for

AD (Yuyama et al., 2019).

Moreover, NDEs can also be used to diagnose AD. A meta-

analysis showed that the area under the curve (AUC, 95%

confidence interval) of miRNA and other biomarkers in NDEs

for the diagnosis of AD or MCI was up to 0.89 (0.86–0.92), and

a sub-group analysis found that NDEs from plasma had a higher

AUC value (Xing et al., 2021). Higher levels of alpha-globin,

beta-globin, and delta-globin in NDEs were found in patients

with AD compared to those in controls (Arioz et al., 2021).

The levels of presynaptic proteins, including synaptotagmin

and synaptophysin, as well as postsynaptic proteins, including

synaptopodin and neurogranin, in plasma NDEs were reported

to be markedly lower in patients with AD, which was also

correlated with the extent of cognitive loss (Goetzl et al., 2016a,

2018a). Many other biomarkers in NDEs were also found to

be markedly different between patients with AD and controls,

such as the level of Ser/Tyr phosphorylation of the insulin

receptor substrate 1 (indicating insulin resistance), lysosomal

enzymes and ubiquitin (indicating lysosomal dysfunction), and

cellular survival factors (indicating impaired cellular stress

responses) (Goetzl et al., 2015a,b; Kapogiannis et al., 2015).

Furthermore, with the specific expression of neuronal, L1,

or neural cell adhesion molecules, NDEs could be effectively

isolated from total plasma/serum exosomes using a precipitation

or immunoaffinity method with according antibodies (Fiandaca

et al., 2015). With this isolation method, NDEs were found to

comprise up to 15% of total plasma exosomes (Kapogiannis

et al., 2015).

Glial cell-derived exosomes

Brain function depends on coordinated interactions between

neurons and glial cells, including astrocytes, microglia, and

oligodendrocytes. However, the specific functions of glial cells

and their derived exosomes remain controversial. For example,

it has been reported that exosomes in glia could be transferred

into neurons via cargo molecule-dependent and membrane

contact-dependent mechanisms, which could benefit neurons or

reversely disseminate the disease (Brites and Fernandes, 2015).

Astrocyte-derived exosomes

As the most abundant type of glial cells in the brain,

astrocytes accumulate at sites of Aβ peptide deposition,

internalizing and degrading aggregated peptides, which is

considered a protective process (Wyss-Coray et al., 2003).
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Cellular experiments have shown that Aβ1-42 can inhibit

exosome release from astrocytes by activating the c-Jun N-

terminal kinase signaling pathway, thereby increasing the

levels of astrocyte-derived exosomes (ADEs) via ultrasound

stimulation can reverse oligomeric Aβ-induced cytotoxicity and

help the clearance of Aβ plaques in vitro (Abdullah et al., 2016;

Deng et al., 2021). Moreover, neuroprotective proteins such as

synapsin 1, angiogenesis-associated molecules such as vascular

endothelial growth factor, and matrix metalloproteinases

involved in extracellular matrix proteolysis have been found

in ADEs or astrocyte-derived EVs (Proia et al., 2008; Sbai

et al., 2010; Wang et al., 2011). ADEs could also prolong

the extracellular survival of protective endosomal-lysosomal

cargo, such as the cysteine-protease inhibitor cystatin C, with

their limiting membrane (Mathews and Levy, 2019). Efficient

exosome release would help modulate flux via the neuronal–

endosomal pathway by decompressing potential “traffic jams”

and contributing to the degradation of neuronal debris

(Mathews and Levy, 2019).

However, when a large amount of Aβ accumulates

within astrocytes for a prolonged period without degradation,

severe endosomal–lysosomal defects would occur in the

astrocytes. Astrocytes can then release engulfed Aβ1-42

protofibrils through exosomes, leading to severe neurotoxicity

to neighboring neurons (Söllvander et al., 2016). Animal

experiments have also revealed that Aβ and tau released into

the serum are most likely from ADEs in the brain (Rosas-

Hernandez et al., 2019). Moreover, reducing the secretion of

ADEs by neutral sphingomyelinase 2 loss-of-function could

improve pathology and cognition in the 5XFAD mouse model

(Dinkins et al., 2016). Recently, it was reported that some subsets

of astrocytes contain amyloid precursor proteins (APP), β-

secretase, and γ-secretase, which are required for the generation

of Aβ peptides. These components are increased by fibrillary

Aβ1-42 and several inflammatory cytokines (Zhao et al.,

2011; Goetzl et al., 2016b). Furthermore, certain inflammatory

and neurodegenerative reactions would elicit a coordinated

response, leading to astrocyte hyperplasia and their conversion

into reactive phenotypes, which could increase the expression

of pro-inflammatory elements and damage both synapses and

neurons (Liddelow and Barres, 2017; Goetzl et al., 2018b).

Astrocytes can also release pathological factors such as S100β,

a protein enriched in the brain of patients with AD that

contributes to peri-plaque pathology (Mrak et al., 1996).

Recently, a deep RNA sequencing study reported that ADEs

influence neurodegenerative diseases mainly through metabolic

and ubiquitin-dependent protein balance (Xie et al., 2022).

Therefore, it is hard to deem the effect of astrocytes and ADEs

on the development of AD as either “protective” or “disruptive.”

Currently, studies on the ability of classic biomarkers in

ADEs to help in the diagnosis of AD are still lacking. The levels

of complement proteins such as C1q, C3b, C3d, and cytokines

including IL-6, TNF-α, and IL-1β in ADEs were found to be

considerably different between patients with AD and controls,

which could also distinguish between moderate and preclinical

stage AD (Goetzl et al., 2018b; Goetzl, 2020). As components of

neurotoxic neuroinflammation, complement proteins in plasma

ADEs could be predictive biomarkers of patients with MCI

progressing into AD, with considerably higher levels of C1q,

C4b, factor D, fragment Bb, C5b, C3b, and C5b-C9 in converters

within 3 years (Winston et al., 2019). The expression of the anti-

human glutamine aspartate transporter has been widely used for

the isolation of ADEs (Goetzl et al., 2018b). Moreover, plasma

ADEs prominently express higher levels of glial fibrillary acidic

protein and glutamine synthetase than NDEs, which could be

used to distinguish between ADEs and NDEs (Goetzl et al.,

2016b). Since, the cargos in exosomes derived from human

neuron and astrocyte cells were mainly recognized as useful

biomarkers for the diagnosis of AD, thus related results from

previous studies were summarized in Table 1.

Microglia-derived exosomes

As the primary innate immune cells in the brain,

microglia can detect tissue damage and microbial infection, and

phagocytose not only dying cells and, protein aggregates, but

living neurons, and synapses (Neumann et al., 2009; Schafer

et al., 2012). It was also found that exosomes added to mixed

brain cultures containing all major cell types were preferentially

taken up by microglia (Fitzner et al., 2011). Moreover,

microglial-derived EVs could influence neurite outgrowth and

modulate neuronal activity (Delpech et al., 2019; Paolicelli et al.,

2019). However, it is relatively difficult to define the function

of microglia as “protective” or ‘disruptive”, because they can

dynamically switch between different phenotypes depending on

the stage of the disease (Guo et al., 2021).

Microglia can phagocytize tau-containing cytopathic

neurons or synapses and efficiently transmit tau to neurons via

phagocytosis and exosomes. Thus, microglia and microglia-

derived exosomes (MDEs) are positively correlated with tau

pathology, and their depletion dramatically suppresses the

propagation of tau and reduces excitability in the dentate gyrus

(Schafer et al., 2012; Asai et al., 2015; Ruan et al., 2020). When

tau-containing MDEs are taken up by neurons, abnormal

aggregation of tau is further triggered (Asai et al., 2015).

Moreover, reactive microglia may release exosomes carrying

the inflammatory markers, including iNOS, IL-1β, TNF-α,

MHC class II, IL-6, miR-155, miR-146a and miR-124, and

pro-resolving genes, including IL-10 and arginase 1, leading

to a more damaging pro-inflammatory state throughout the

brain (Frühbeis et al., 2013; Fernandes et al., 2018). Deep

RNA sequencing also demonstrated that MDEs influence

neurodegenerative diseases through immune inflammation and

oxidative stress (Xie et al., 2022). Suppressing the expression

of miR-21-5p is considered a promising novel strategy for the

treatment of neuroinflammation (Yin et al., 2020). Furthermore,
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TABLE 1 Exosomes derived from human neuron and astrocyte cells as AD biomarkers in previous studies.

References Disease group Control group Body fluid Cell source Isolation

method

Validation

techniques

Cargo change

1 Fiandaca et al.

(2015)

AD, n= 57 Cognitively normal controls,

n= 57

Serum Neuron anti-NCAM ELISA ↑total tau, P-S396-tau, P-T181-tau,

Aβ1-42

2 Goetzl et al. (2016a) AD, n= 24 Cognitively normal (1–10

years before the diagnosis of

AD), n= 24

EDTA plasma Neuron anti-L1CAM ELISA ↑P-S396-tau, P-T181-tau, Aβ1-42

3 Winston et al.

(2016)

AD, n= 10 Cognitively normal controls,

n= 10

Plasma Neuron anti-L1CAM ELISA ↑P-S396-tau, P-T181-tau, Aβ1-42

↓neurogranin, repressor element

1-silencing transcription factor

Progressed to AD

within 36 months,

n= 20

Stable MCI, n= 20

4 Jia et al. (2019) AD, n= 28 Amnestic MCI, n= 15;

healthy controls, n= 29

Plasma Neuron anti-NCAM ELISA ↑Aβ42, T-tau, P-T181-tau

5 Arioz et al. (2021) AD, n= 20 Healthy controls, n= 20 Serum Neuron anti-L1CAM LC-MS/MS ↑alpha-globin, beta-globin, delta-globin

6 Goetzl et al. (2017) AD, n= 28 Cognitively normal controls,

n= 28

EDTA plasma Neuron anti-L1CAM ELISA ↓neuronal pentraxin 2, neurexin 2a,

GluA4-containing glutamate receptor,

neuroligin 1

AD, n= 18 Cognitively normal (6–11

years before the diagnosis of

AD), n= 18

neurexin 2a, GluA4-containing

glutamate receptor, neuroligin 1

7 Goetzl et al. (2016b) AD, n= 12 Cognitively normal controls,

n= 28

EDTA plasma Neuron anti-L1CAM ELISA ↓synaptophysin, synaptopodin,

synaptotagmin, neurogranin,

growth-associated protein 43

AD, n= 9 Cognitively intact or with

MCI (1–10 years before the

diagnosis of AD), n= 9

8 Kapogiannis et al.

(2015)

AD, n= 26 AD normal controls, n= 26 Plasma Neuron anti-L1CAM ELISA ↑P-serine 312-IRS-1

↓P-pan-tyrosine-IRS-1

AD, n= 22 Cognitively normal (1–10

years before the diagnosis of

AD), n= 22

(Continued)
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TABLE 1 Continued

References Disease group Control group Body fluid Cell source Isolation

method

Validation

techniques

Cargo change

9 Goetzl et al. (2015a) AD, n= 26 AD normal controls, n= 26 Plasma Neuron anti-L1CAM ELISA ↑cathepsin D, lysosome-associated

membrane protein 1, ubiquitinylated

proteins

↓heat-shock protein 70

AD, n= 20 Cognitively normal (1–10

years before the diagnosis of

AD), n= 20

10 Goetzl et al. (2015b) AD, n= 24 AD normal controls, n= 24 Heparin

plasma

Neuron anti-L1CAM ELISA ↓low-density lipoprotein

receptor-related protein 6, heat-shock

factor-1, repressor element 1-silencing

transcription factor

Preclinical AD

(1–10 years before

diagnosis of AD), n

= 16

Cognitively normal controls,

n= 16

11 Goetzl et al. (2016a) Amnestic MCI or

early AD, n= 12

Cognitively normal controls,

n= 10

EDTA plasma Astrocyte anti-ACSA-1 ELISA ↑β-secretase 1, sAPPb, Aβ42

↓septin-8, GDNF

12 Goetzl et al. (2018a) Early AD, n= 28 Cognitively normal controls,

n= 28

EDTA plasma Astrocyte anti-ACSA-1 ELISA ↑IL-6, TNF-α, IL-1β, C1q, C4b, factor B,

factor D, Bb, C3b, C3d, C5b-C9 terminal

complement complex

↓CR1, CD46, CD59, DAF

AD, n= 16 Cognitively normal (5–12

years before the diagnosis of

AD), n= 16

↑C4b, C3d, factor B, Bb, C3b, C5b-C9

terminal complement complex, TNF-α,

IL-1β

↓CD59, DAF

13 Winston et al.

(2019)

AD, n= 20 Cognitively normal controls,

n= 20

EDTA plasma Astrocyte anti-ACSA-1 ELISA ↑C1q, C4b, factor D, Bb, C5b, C3b,

C5b-C9

Progressed to AD

within 3 years, n=

20

Stable MCI during the

36-month study, n= 20

AD, Alzheimer’s disease; MCI, mild cognitive impairment; L1CAM, L1 cell adhesion molecule; NCAM, neural cell adhesion molecule; ACSA-1, human glutamine aspartate transporter.
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it was demonstrated that MDEs and microglia-derived EVs

not only had higher APP and Aβ1-40 production, carried

oligomeric Aβ, and mediated Aβ transmission, but also

promoted the extracellular aggregation of Aβ1-42 to form

small soluble neurotoxic species, which strongly increased Aβ

neurotoxicity (Joshi et al., 2014; Fernandes et al., 2018; Gouwens

et al., 2018). However, it has been reported that microglia and

neighboring neurons could work together to clear Aβ peptides

via exosomes (Guo et al., 2021). Microglia-depleted mice had

increased levels of soluble Aβ in the brain, and statins could

promote the degradation of extracellular Aβ by stimulating

the secretion of MDE-associated insulin-degrading enzymes,

indicating a beneficial role of microglia in the metabolism

of extracellular Aβ (Fuhrmann et al., 2010; Tamboli et al.,

2010). Furthermore, cargo molecules in microglia derived

EVs, including trombospondin-1 and 4, can suppress neuronal

apoptosis and promote neurite outgrowth and synaptogenesis,

implying a neuroprotective role (Drago et al., 2017). Thus,

further investigation of the roles of microglia and MDEs in

central nervous system disorders is required.

Recently, advances in single-cell RNA sequencing have

helped unravel some questions in the field of microglia through

the discovery of a new phenotype called “disease-associated

microglia.” These accumulate around plaques and exhibit

upregulated gene expression of apolipoprotein E (APOE) and

trigger the receptors expressed on myeloid cells 2 (TREM2),

which are considered genetic risk factors for AD (Keren-

Shaul et al., 2017). However, another study found that TREM2

knockout ameliorated amyloid pathology in the early stages of

AD, but exacerbated it later in the disease process (Jay et al.,

2017), which highlights the roles of microglia and MDEs in AD

pathology depending on the stage of the disease. Furthermore, a

reproducible and efficient method for yielding purified primary

microglia cells and effectively isolating and characterization of

MDEs based on CD11b/c has been proposed in recent years

(Murgoci et al., 2018), which is beneficial for further studies

on MEDs.

Oligodendrocyte-derived exosomes

Although few studies have focused on the potential

roles of oligodendrocytes in AD pathogenesis, some gene

variants that increase the risk of AD have been found

to be predominantly expressed in oligodendrocytes. Interact

with axon, oligodendrocyte played an important role in

neuronal integrity. Oligodendrocyte-derived exosomes (ODEs)

may be internalized by neurons through endocytosis, which

could contribute to neuroprotection and long-term axonal

maintenance under normal, or oxygen and glucose-deprived

conditions (Frühbeis et al., 2012; Fröhlich et al., 2014).

Moreover, it was reported that markedly increased numbers of

both newly generated and mature oligodendrocytes following

treatment with mesenchymal stromal cell-derived exosomes

considerably decreased amyloid-β precursor protein density

and improved neurological outcomes (Zhang et al., 2021).

ODEs can also participate in the management of oxidative

stress by transferring human superoxide dismutase and catalase.

When stress resistance occurs following ischemia, neurons

take up more ODEs (Krämer-Albers et al., 2007). Notably,

alterations in the composition of ODEs under some pathological

conditions may switch immunologically inert exosomes into

active ones, which may trigger inflammatory reactions in

the brain. Furthermore, an immunocapture protocol based

on common oligodendrocyte biomarkers, such as 2,3-cyclic

nucleotide-3-phosphodiesterase, can extract and isolate ODEs

for further study (Yu et al., 2020).

Stem cell-derived exosomes

Stem cell-derived exosomes play important roles in the

therapy for AD (Vasic et al., 2019; Sivandzade and Cucullo,

2021). Compared with traditional stem cell transplantation,

stem cell-derived exosomes are relatively easier to manage,

have lower immunogenicity, and have a lower risk of tumor

formation, making them a potential therapeutic method

(Guo et al., 2020). When the unique functionalities of

exosome-derived membranes are combined with synthetic gold

nanoparticles (AuNPs), efficient brain targeting can be achieved

(Khongkow et al., 2019). In 5xFAD accelerated transgenic

mouse model of AD, human neural stem cell-derived EVs

showed the regenerative potential on the neurocognitive and

neuropathologic hallmarks, and significantly reduced dense core

Aβ plaque accumulation and microglial activation in the AD

brain (Apodaca et al., 2021).

Mesenchymal stem cells (MSCs), a type of adult pluripotent

stem cell, are derived from connective tissue especially

adipose tissue. MSCs can reduce the Aβ plaque burden

by the internalization and degradation of Aβ oligomers via

the endosomal-lysosomal pathway. Electron microscopy and

proteomic analysis further revealed that the therapeutic effect of

MSCs was due to their exosomes (Lai et al., 2010). With well-

characterized immunoregulatory neurotrophic and regenerative

properties, MSC-derived exosomes were considered as a

promising candidate for AD therapy and most widely studied.

In mouse models, MSC-derived exosome administration via

the lateral ventricle or intravenous injection could reduce Aβ

expression and improve AD-like behaviors (Chen et al., 2021;

Liu et al., 2022). Enzymatically active neprilysin, the most

important Aβ-degrading enzyme in the brain, is also found in

MSC-derived exosomes (Joshi et al., 2015). Moreover, MSC-

derived EVs were considered as the best cell-free candidates for

promoting a reparative process by activating positive responses

in the brain microenvironment via intercellular communication

(Elia et al., 2019). MiRNA-22-loaded exosomes derived from

adipose-derived MSCs can decrease the release of inflammatory
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factors, thereby playing a synergetic therapeutic role in AD

(Zhai et al., 2021). Moreover, miR-223 loaded MSC-derived

exosomes protected neuronal cells from apoptosis via the PTEN-

PI3K/AKT pathway, providing a potential therapeutic approach

for AD (Wei et al., 2020). Furthermore, a previous study

proved the safety of MSC-derived EVs (Nassar et al., 2016),

and a clinical trial was conducted to evaluate their safety

and effectiveness in patients with mild to moderate dementia

(www.clinicaltrials.gov, NCT04388982). It is worth noting that

the efficacy was dosage-dependent, and the lower dose of

exosomes was found to be more neuroprotective (Venugopal

et al., 2017). Moreover, specific MSC-related molecules, such as

CD29, CD44, CD90, and CD73, could help recognize and isolate

MSC-derived exosomes.

Noticeably, even if EVs derived from native stem cells

have potential in the treatment of neurodegenerative diseases

including AD, its clinical application is still limited due to

the short half-life, limited targeting, rapid clearance after

application, and insufficient payload (Bang and Kim, 2022).

Some strategies such as engineered EVs by genetic modification

could improve stability, targeting ability and EVs tracking (Lino

et al., 2021), thus, associated technologies need to be further

explored and developed to prompt the clinical therapeutic

application of stem cell-derived exosomes.

Endothelial cell-derived exosomes

Exosomes derived from endothelial cells (EDEs) of the

human brain microvasculature contain P-glycoprotein, a

member of the ABC transporter family, which can effectively

transport Aβ out of the brain. Thus, it has been reported that

EDEs can greatly facilitate the cerebral clearance of Aβ and

potently ameliorate cognitive dysfunction in AD mice (Pan

et al., 2020). CD81-normalized levels of Aβ1-40 and Aβ1-42 in

plasma EDEs were also found to be considerably higher in the

preclinical AD/MCI group with small cerebral vascular disease

than in controls, which often occurs before the presentation of

neuronal and other cellular changes in AD (Abner et al., 2020).

Moreover, endothelial proteins such as vascular cell adhesion

molecule-1 and endothelial nitric oxide synthase can be used for

the precipitation and enrichment of EDEs when using immune-

specific absorption procedures for the analysis of cargo proteins

(Goetzl et al., 2017).

The size and number of exosomes
could be promising biomarkers for
the diagnosis of AD

A recent study found that not only the constitution Aβ and

p-S396-tau in exosomesmarkedly differed between patients with

AD compared to the controls, but the exosomes from patients

with AD were smaller and lower in quantity, as determined

by transmission electron microscopy (TEM) and nanoparticle

tracking analysis (NTA), contributing to the early diagnosis of

AD (Sun et al., 2020). Since TEM and NTA technology are

widely used to visualize and characterize extracted exosomes,

it is feasible to combine information on the size and number

of exosomes with biomarker levels for the early and differential

diagnosis of AD (Szatanek et al., 2017).

The size of exosomes

One study reported that the size of plasma exosomes was

smaller in an AD group than in the control group, which is

beneficial for early diagnosis of AD (Sun et al., 2020). However,

some studies found larger size of plasma EVs in patients with

AD than in controls, which could be induced by the uptake

and accumulation of Aβ (Longobardi et al., 2021). Moreover,

in another study, no significant difference was observed in the

diameters of EVs in the CSF between patients with AD and the

controls (Saugstad et al., 2017). These inconsistent results are

likely to be due to the differences in exosome types and sources.

Thus, further studies need to be conducted to explore the roles

of specific exosomes in the diagnosis of AD.

The number of exosomes

Some studies have reported markedly lower concentrations

of plasma exosomes in patients with AD compared to those in

controls (Sun et al., 2020; Longobardi et al., 2021). Considering

both the size and concentration of exosomes, the diagnostic

performance to distinguish between dementia and controls

was high, with a sensitivity of 83.3% and specificity of 86.7%

(Longobardi et al., 2021). Moreover, APOE4 was found to

drive the downregulation of brain exosome biosynthesis and

release, which plays an important role in endosomal and

lysosomal deficits and could lead to a higher risk of AD

development (Peng et al., 2019). However, other studies found

that astrocytes in AD could induce an increased release of

exosomes containing toxic proteins, and exposure to amyloid

in vitro could increase the production of cell-derived exosomes

(Dinkins et al., 2014; Chiarini et al., 2017). Another study found

that the number of serum exosomes in transgenic mice with

AD was considerably higher than that in wild-type mice, with

increased ADEs and decreased EDEs (Rosas-Hernandez et al.,

2019). Moreover, NDEs from participants with Down syndrome,

who had characteristic neuropathological features of AD at the

age of 40 years and eventually developed AD, had 39% higher

levels of exosomes on average than those from the control

group [(1,433 ± 87 pg/ml) vs. (1,027 ± 87 pg/ml)] (Hamlett

et al., 2018). It was also reported that upregulation of exosome

release was recognized as a useful mechanism to help clear these
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deleterious proteins, which could also be recognized in urine

samples (Sun et al., 2019). Furthermore, a basic study found

that preventing exosome secretion could reduce the formation

of amyloid plaques in vivo; thus, drugs interfering with exosome

secretion, such as neutral nSMase2, could be used as potential

drug targets in AD (Dinkins et al., 2014, 2015).

These inconsistent results could also be related to the

differences in exosome types and sources, as well as different

efficacies of extraction across different samples. Thus, more

studies are needed to reach a definite conclusion in which

the standardized process of exosome extraction, isolation, and

characterization plays an important role. Moreover, the released

exosomes were mostly recognized by the CD81 marker, which

could be interfered with possible increased soluble CD81 levels

per exosome. Thus, an accurate count of exosome numbers is

important. NTA using ALIX as an exosome marker or other

burgeoning high-sensitivity exosome-counting systems, such as

Exo-counter and single molecule array, has been proven to

be more accurate for the determination of exosome amounts

(Fiandaca et al., 2015; Kapogiannis et al., 2015; Eitan et al., 2017;

Yokose et al., 2020; Ter-Ovanesyan et al., 2021).

Conclusion

The role of specific cell-derived exosomes in the

development, diagnosis, monitoring, and treatment of AD

has attracted increasing attention in recent years. However, the

conclusions of different studies are largely inconsistent and

many mechanisms remain unclear. Thus, we summarize the

roles of exosomes derived from different body fluids and cells in

the development, diagnosis, monitoring, and treatment of AD

in this study, and emphasize the necessity to focus on exosomes

from specific cells and less-invasive biological fluids. Moreover,

aside from the concentrations of classic and novel biomarkers in

exosomes, we recognized and summarized the roles of the size

and number of exosomes play in early and differential diagnosis

of AD at first.

Interestingly, a recent study pointed out that a few proteins

that had not yet been reported to be expressed in neurons

were highly expressed in NDEs, implying that some NDEs

may originate in non-neuronal tissues (Pulliam et al., 2019).

Thus, the process and mechanism of specific cell-derived

exosomes, from their origin, formation, and transportation

to their ultimate roles in AD, still need to be further

studied. Second, the standardization and automation of the

whole process of extraction, isolation, and characterization,

including the size and number of specific cell-derived exosomes,

remain a challenge (Doyle and Wang, 2019; Guo et al.,

2020; Hornung et al., 2020) and need to be developed

and optimized. Moreover, methods which is time-saving,

low-cost, and convenient, must be explored for clinical

applications. Furthermore, it is crucial to accurately measure

the levels of promising biomarkers in exosomes, particularly

classical Aβ and tau, which are of great importance for

their clinical application. The levels of Aβ1-42 in NDEs are

<10 pg/ml, and that of p-181-tau is ∼100 pg/ml, which is

difficult to accurately determine with the traditional ELISA

method. Therefore, automatic detection platforms, such as

electrochemiluminescence instruments and single molecule

arrays, and technologies with stronger anti-interference abilities,

such as mass spectra, need to be developed. Except for the

exosomes in CSF, further studies should focus on specific cell-

derived exosomes in plasma, urine, and other non-invasive

fluids, considering not only their internal biomarkers, but also

their sizes and numbers.
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Anemarrhenae Rhizoma (AR) has multiple pharmacological activities to prevent

and treat Alzheimer’s disease (AD). However, the effect and its molecular

mechanism are not elucidated clear. This study aims to evaluate AR’s

therapeutic effect and mechanism on AD model rats induced by

D-galactose and AlCl3 with serum metabolomics. Behavior study,

histopathological observations, and biochemical analyses were applied in the

AD model assessment. Gas chromatography-mass spectrometry (GC-MS) and

liquid chromatography-mass spectrometry (LC-QTOF/MS) were combined

with multivariate statistical analysis to identify potential biomarkers of AD

and evaluate the therapeutic effect of AR on AD from the perspective of

metabolomics. A total of 49 biomarkers associated with the AD model were

identified by metabolomics, and pathway analysis was performed to obtain the

metabolic pathways closely related to themodel. With the pre-treatment of AR,

32 metabolites in the serum of AD model rats were significantly affected by AR

compared with the AD model group. The regulated metabolites affected by AR

were involved in the pathway of arginine biosynthesis, arginine and proline

metabolism, ether lipid metabolism, glutathione metabolism, primary bile acid

biosynthesis, and steroid biosynthesis. These multi-platform metabolomics

analyses were in accord with the results of behavior study, histopathological

observations, and biochemical analyses. This study explored the therapeutic

mechanism of AR based on multi-platform metabolomics analyses and

provided a scientific basis for the application of AR in the prevention and

treatment of AD.
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Introduction

Alzheimer’s disease (AD), the most common cause of

dementia in people over 65, is rising as our population ages.

The outbreak of COVID-19 has accelerated the progression to

death in AD patients (Xia et al., 2021). AD is a slowly progressive

brain disease that begins many years before symptoms emerge.

The hallmark pathologies are the accumulation of the protein

beta-amyloid outside neurons and twisted strands of the protein

tau inside neurons in the brain. The current hypotheses of AD

mainly include the amyloid cascade hypothesis, the tau protein

hypothesis, the inflammation hypothesis, the iron

dyshomeostasis, the ferroptosis hypothesis, and the oxidative

stress hypothesis (Wang et al., 2022). The AD biomarkers, such

as CSF measures of Aβ1-42, t-tau, and p-tau, can assess aged

patients’ overall health and diseased condition and the

pathogenic processes and pharmacological effects of any

therapy (Olsson et al., 2016). However, concerning invasive

approaches and high cost, it is essential to identify new

biomarkers in other less invasive and easily collectible body

fluids like the serum, urine, and expiratory gas. As AD’s

pathogenesis and progression are not fully developed, no

disease-modifying treatments are available for AD. Currently

approved drugs, including inhibitors to cholinesterase enzyme

and antagonists to N-methyl-d-aspartate acid (NMDA), can only

provide symptomatic relief or delay the progression of the disease

(Athar et al., 2021). Recently, owing to several failed attempts in

AD drug development to act on one target, attention has been

paid to multiple therapeutic strategies to design and develop

drugs capable of hitting more than one target (Benek et al., 2020;

Xie et al., 2020; Husain et al., 2021). In China, traditional Chinese

medicine (TCM) has been frequently applied in treating AD, and

extensive progress researches have shown exceptional advantages

due to the multi-target, multi-system, and multi-pathway

capacity (Chen et al., 2020).

Anemarrhenae Rhizoma (AR, “zhimu” in Chinese), derived

from the rhizome of Anemarrhena asphodeloides Bunge., is

frequently used as a traditional Chinese medicine to treat AD

and other memory deficits associated with aging. AR and the

components also have been demonstrated by excellent biological

and pharmacological activity, such as immunomodulatory, anti-

inflammatory, anti-diabetes, anti-tumor, anti-depression,

anticoagulation, etc (Wang et al., 2018; Liu et al., 2021).

Timosaponin A-III (TA-III) was screened and identified as a

potentially active component for the anti-AD activity, and

BACE1 was proven to be a potential high-affinity target

(Wang et al., 2020). Previous researches have shown that

Timosaponin-BII possesses a neuronal protective and anti-

inflammatory effect, possibly by suppressing the production of

pro-inflammatory factors IL-1, IL-6, and TNF-α(Hu et al., 2005;

Li et al., 2007; Lu et al., 2009; Huang et al., 2012). Sarsasapogenin

was proved to be a promising structural template for developing

new anti-Alzheimer drug candidates and is a bioactive lead

compound (Wang et al., 2018). Multiple studies reported that

mangiferin had neuroprotective effects via the regulation of

antioxidant and anti-inflammatory pathways and PI3K/Akt,

Nrf2/HO-1, and ERK1/2 signaling pathways (Liu et al., 2021).

Consequently, AR is a suitable candidate for the comprehensive

treatment of AD. However, the effect of AR extract on AD and

the therapeutic mechanism have not been thoroughly

investigated in vivo.

Metabolomics, a snapshot of the complete set of small-

molecule, is especially suitable to provide a comprehensive

systems-level study of the relationship between metabolites,

disease, and drugs for complicated, multi-pathway involved

pathological systems such as AD (Badhwar et al., 2020). With

the rapid progress in mass spectrometry, bioinformatics, and

systems biology, metabolomics-based technology provides a high

potential strategy for discovering diagnostic markers and

studying the pathological mechanism for AD (Cuperlovic-Culf

and Badhwar, 2020). In the past, numerous metabolomics studies

were implemented to investigate the actionmechanisms of TCMs

on AD (Yi et al., 2017; Sun et al., 2018; Zhang et al., 2020).

Nevertheless, the considerable heterogeneity and dynamism of

the human metabolome make it impossible for a single analytical

to simultaneously determine the entire set of metabolites from

complex biological samples (Gonzalez-Dominguez et al., 2017).

Hence, the complementary analytical platforms for

metabolomics analysis to unravel the underlying pathology of

AD are recommended urgently.

In the present paper, gas chromatography-mass spectrometry

(GC-MS) and liquid chromatography-mass spectrometry (LC-

QTOF/MS) were combined with multivariate statistical analysis to

identify potential biomarkers of AD model rats induced by both

D-galactose (D-Gal) andAlCl3. Furthermore, the therapeutic effects of

AR and the mechanism underlying the effects on the pathogenesis of

AD were also explored using a metabolomics strategy. Also, the

Morris water maze (MWM) test is processed to examine the memory

and spatial learning ability ofmodel rats and rats pre-treated byAR. In

addition, we also performantioxidant assays such asmalondialdehyde

(MDA), superoxide dismutase (SOD), and nitric oxide (NO) in the

hippocampus of rats to study the mechanism of AD on oxidative

stress and investigate the influence of AR in the rat model of AD. The

workflow for therapeutic effect and mechanism analyses of AR on

Alzheimer’s disease is shown in Figure 1. Those studies provided

theoretical basics for designing and developing novel drugs for AD.

Materials and methods

Chemicals and materials

AR was purchased from the Shanghai Leiyunshang

pharmaceutical Company. The AR extract was prepared by

ethanol reflux. AR powder was extracted by 95% ethanol and

reflux for 4 hours, and then the filtered residue dregs were
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decocted twice with water for 1 hour. All the filtrate was

combined and concentrated to a proper amount in a vacuum.

D-Gal and AlCl3 were purchased from Sinopharm Chemical

Regent Co., Ltd. (China). Methoxyamine hydrochloride,

Pyridine, MSTFA, TMCS, Adonitol, and HPLC grade

acetonitrile, methanol, and formic acid were obtained from

Sigma-Aldrich (United States). 2-Chloro-L-Phenylalanine was

purchased from Shanghai Yuanye Biotechnology Co., Ltd. The

water was provided byWatsons (China). The ELISA kits of SOD,

NO, and Ach were purchased from Nanjing Jiancheng

Bioengineering Institute (China). Other reagents and solvents

of analytical grade were provided by SinopharmChemical Regent

Co., Ltd. (China).

Instruments

1290 Infinity UHPLC system (Agilent, United States),

XSelect HSS T3 (2.1 × 100 mm, 2.5 μm, Waters,

United States), 6530 QTOF/MS (Agilent, United States), Trace

GC ultra-gas chromatograph (Thermo Fisher Scientific,

United States), an Agilent DB-5MS column DSQ II mass

spectrometer (Thermo Fisher Scientific, United States),

Electronic balance (Switzerland Mettler company, Japan),

high-speed freezing centrifuge (Thermo Fisher Scientific,

United States), DZG-6020 vacuum drying oven (Shanghai

Yiheng experimental instrument company, China). ZH-Mm

Tis water maze equipment (Zhenghua biological instrument

equipment company, China), Tecan infinite M200 pro

multifunctional microplate reader (Switzerland), Vortex-6

vortex instrument (Macao slinberg Instrument Manufacturing

Co., Ltd.); RVC2-18CD plus vacuum concentrator (Beijing

gaodetong Technology Co., Ltd.).

Animals and modeling

Twenty-four male Sprague-Dawley rats (200 ± 20 g) were

purchased from the JOINN Laboratories (China) Co., Ltd.

Animal license number is SCXK (Hu) 2018–0006, animal

certification number was 20180006032138. They were raised

in an air-conditioned environment (temperature: 24 ± 2°C,

humidity: 40%–77%) with a 12 h light-dark cycle, and food

and water were available. The experiment begins after a week

of adaptation. D-gal was dissolved in normal saline to obtain

30 mg/ml solution. AlCl3 was dissolved in water to get a 60 mg/

ml solution. The rats were randomly divided into four groups: the

blank control group (CN), the AD model group (AD), the AR

treatment group of low dosage (LD), and the AR treatment group

of high dosage (HD), with six rats in each group.

FIGURE 1
The workflow for therapeutic effect and mechanism analyses of AR on Alzheimer’s disease. AR: Anemarrhenae Rhizoma.
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The HD and LD groups were given AR solutions by

intragastrical administration (i.g.,) at the dose of

200 mg·kg−1and 100 mg kg−1 from the first day to the last

days, respectively. In contrast, the blank control group and

the AD model group were given equal volumes of distilled

water. The AD model rats in the AD model group, the HD

group, and the LD group were induced by intraperitoneal

injection (i.p.) of D-Gal combined with intragastrical

administration (i.g.) of AlCl3 for 15 days from eighth days

to twenty-second days, while the rats in the blank control

group were given an equal volume of distilled water and

saline. The whole modeling, drug administration, and

behavior study procedure are shown in Figure 2A. All the

operations had followed the guidelines of Animal

Experimentation of Naval Medical University and were

approved by the Animal Ethics Committee of the institution.

Behavior study of Alzheimer’s disease
model rats

The Morris water maze test (MWM) was conducted in a

circular tank (diameter, 140 cm; height, 50 cm) filled with water

(25 ± 2°C) to a depth of 35 cm, which was equipped with a

submerged escape platform (10 × 10 cm) under the surface and

located in a fixed position and surrounded by several spatial cues

in a dimly-illuminated room. The water temperature was kept at

22–25°C. Spatial cues of different geometry were decorated by the

FIGURE 2
Effect of AR on AD model in MWM. (A) Schematic representation of the experimental procedure (B) Abridged general view of rat in testing, (C)
Escape latency in location sailing test (D) Crossover times in spatial probe task, (E) Time in the target quadrant in spatial probe task. CN, the blank
control group, AD, the AD model group, LD, the AR treatment group of low dosage (LD), HD, and the AR treatment group of high dosage (HD).*p <
0.05, **p < 0.01, compared with CN group; #p < 0.05, ##p < 0.01, compared with AD group).
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poolsides to help the rats recognize the platform position. The

rats were individually handled for 3 min day every day for three

consecutive days before the training. In the orientation

navigation experiment, training was carried out twice daily for

5 days. In each trial, the animals were introduced into the pool at

one of the four different starting positions around the pool in a

random sequence. If the animal failed to escape within the 60 s, it

would be guided to the platform and stay there for 20 s. The time

for the rats to find the platform was called escape latency, and the

path to the submerged escape platform was recorded. On day

seven, the rats are submitted to a spatial probe test session 24 h

after the last training session. The submerged platform was

removed in the probe test, and the rats were placed in the

water for 2 min. The number of crossing over the original

position of the platform, the distance navigated, and time

spent in the target quadrant, the effective platform quadrant,

compared to the opposite quadrant were calculated.

Collection and processing of biological
samples

The day after assessing MWM tests, rats were fasted

overnight, with free access to water; blood samples were

collected from the abdominal aorta of all groups just before

sacrificing the rats by cervical decapitation. The fresh blood was

centrifuged after 30 min (4°C, 4,000 rpm, 15 min), and the clear

supernatant serum was stored in the refrigerator at −80°C.

After collecting the blood, the heads of the rats were moved

onto the dry ice, and the hippocampus region was rapidly

dissected on an ice-cooled glass plate, washed with saline, and

divided into two portions. The first portion was homogenized

with a homogenizer to give 10% (w/v) homogenate in the ice-cold

medium in nine volumes of a 50 mM phosphate buffered saline

(PBS, pH 7.0) containing 0.1 mmol/L ethylene-diamine-tetra-

acetic acid (EDTA). The clear supernatants were prepared by

centrifugation (4°C, 4,000 rpm, 30 min) for Ach, NO, and MDA

assays. The second portion of the hippocampal was used for

histopathological investigation.

Biochemical analysis and
histopathological analysis

Hippocampus Ach levels, NO levels, SOD levels, and MDA

levels were all measured using ELISA kits according to the

manufacturer’s instructions.

Every fresh rat hippocampus was placed in 4%

paraformaldehyde as a fixative. Hematoxylin and Eosin (H&E)

staining were performed to identify changes in hippocampus

FIGURE 3
(A–D) The hippocampus levels of ACh, SOD, NO, and MDA. *p < 0.05, **p < 0.01, compared with CN group; #p < 0.05, ##p < 0.01, compared
with AD group.
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CA1 formation and hippocampus CA3 formation. The

histopathological alterations were then viewed and recorded

under a light micro-scope at ×400 magnification.

Metabolite extraction, derivatization and
GC–MS analysis

The metabolite extraction and derivatization method were

based on the derivatization method by MSTFA. 200 μl of serum

was accurately taken and added with 600 μl methanol with 2 μg/

ml adonitol as an internal standard. After 3-min vortex and

centrifugation at 4°C, 13,200 rpm for 25 min, 150 μl supernatant

was separated and concentrated under a continuous gas nitrogen

flow until the solvent was evaporated entirely. In a pyridine

solution, the residue was dissolved in 75 μl of 20 mg/ml

methoxyamine hydrochloride. After a 5-min vortex and

oscillation at 70°C for 1 h, 75 μl of derivatization reagent

MSTFA with 1% TMCS was precisely added. After a 5-min

vortex and oscillation at 50°C for 1 h to full derivatization, 100 μl

of n-heptane was added precisely. Finally, the supernatant was

collected after centrifugation at 4°C, 13,200 rpm for 5 min. The

quality control (QC) sample was prepared by mixing the

supernatant of every sample and tested at regular intervals.

GC-MS analysis was undertaken on a Trace GC Ultra

coupled to a Thermo DSQ II mass spectrometer. The

metabolites were separated by a capillary gas chromatography

column Agilent DB-5MS. The program was initially set to 70°C,

maintained for 4 min, programmed to 220°C at a rate of 4°C

min−1, programmed to 310°C at a rate of 8°C min−1, and then

maintained for 4 min. Helium was used as carrier gas at a flow

rate of 1.0 ml min−1, and samples were injected in a 1:10 split

ratio with the injector and transfer line isothermally at 260°C.

The ion source temperature was maintained at 200°C for electron

ionization, and the full scan mode with a mass range of m/z

50–650 was used after electron impact ionization. The solvent

delay was set at 6 min.

Metabolite extraction and LC-QTOF/MS
analysis

Three times the volume of the cold methanol with 2 μg/ml 2-

Chloro-L-Phenylalanine as an internal standard was added to the

serum samples. The mixture was centrifuged at 13,200 rpm for

25 min at 4°C, followed by vortexing for 3 min 150 μl supernatant

was separated and concentrated under a continuous gas nitrogen

flow until the solvent was evaporated entirely. The dried residue

was dissolved in 200 μl methanol with 2 μg/ml 2-Chloro-

L-Phenylalanine. After 15-min vortex and centrifugation at

13,200 rpm for 15 min at 4°, the supernatant was collected for

test. The quality control (QC) sample was prepared as the

procedure of GC-MS QC in part 2.7.

Chromatographic analysis was performed using Agilent

1290 Infinity UHPLC equipped with a Waters XSelect HSS

T3. The mobile phase was composed of 0.1% formic acid in

water (A) and 0.1% formic acid in acetonitrile (B) at a flow rate of

0.4 ml/min. The column was eluted with a gradient of 2% B at

0–2 min, 2%–98% B at 2–17 min, 98% B at 17–19 min. The

column was maintained at 40°C, and the injection volume was

3 μl for each run. The LC-QTOF/MS metabolomics profiling

analysis was performed on Agilent 6530 QTOF/MS in both

positive electrospray ionization interface (ESI+) and negative

electrospray ionization interface (ESI-). The MS parameters were

set as follows: capillary voltage of 4.0 kV (ESI+)/3.5 kV (ESI-),

fragmentor voltage of 120.0 V, drying gas flow of 11.0 L/min, the

gas temperature of 350°C, and skimmer voltage of 60.0 V. The

full-scan data were acquired from 50 to 1000 m/z over a run time

of 19 min.

Data processing and statistical analysis

Both GC-MS data files and LC-QTOF/MS data files were

processed by XCMS in R (v3.6.2) for peak finding, peak

alignment, peak filtering, and the removal of isotope ions.

For GC-MS, the method of target free filtration was adopted,

in which only the ions with the most substantial peak value at

the same retention time were retained (the retention time

window is 0.01 min). The zero values were reduced, and the

value count of the bucket required more than 80%. Then the

individual bucket value was normalized according to the peak

value of the internal standard. The processed LC-QTOF/MS

and GC-MS data were then analyzed by multivariable analysis,

including partial least square-discriminant analysis (PLS-DA)

and Orthogonal Partial Least Squares Discrimination Analysis

(OPLS-DA) by SIMCA software (version 14.0, Umetrics). The

OPLS-DA of serum profiles was performed to screen the

potential biomarkers of AD rats induced by AlCl3/D-gal.

Features with variable importance of projection (VIP) >
1.0 and p < 0.05 (Student’s t-test) were selected as the

potential differential metabolites for subsequent analysis.

As to the LC-QTOF/MS, potential candidate biomarkers

were further identified by comparing the accurate mass

with standard substances of online databases, including

HMDB, KEGG, and PubChem online. Then, the best-

matching ions were used as candidate biomarkers.

Similarly, as to the GC-MS potential differential

metabolites, metabolite identification was performed by

executing similarity searches in the NIST2017 mass spectral

library (National Institute of Standards and Technology,

Gaithersburg, United States) and metabolites with a NIST

match factor (SI or RSI) of ≥600 were investigated. Analysis of
metabolic pathways was performed using MetaboAnalyst and

KEGG metabolic pathway database by the topological feature

of the metabolic path.
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All statistical analysis was performed through the one-way

ANOVA analysis and the Student’s t-test, and all experimental

data were expressed as mean ± standard deviation. Statistical

significance was accepted if the p-value was less than 0.05.

Results

Behavior study results

In the orientation navigation experiment, with the increase of

the trail times, all the rats’ average escape latency decreased

gradually over the training days. Furthermore, the escape

latencies among the AD model group were longer than those

of the blank control. To the rats in the LD and HD groups pre-

treated with AR, their escape latency significantly decreased from

the third day to the sixth day compared to the AD group. In the

spatial probe test on day seven, both the number of crossing over

the original position and the time spent in the target quadrant of

the platform of the rats in the AD model group decreased

noticeably compared to the blank control group. At the same

time, a trend was reversed by pre-treatment with AR. All the

MWM results shown in Figure 2 indicated the successful

establishmentindicated the successful establishment of the AD

model and AR could ameliorate the impairment of spatial

learning and memory of AD model rats induced by D-Gal

and AlCl3 to some extent.

Biochemical analyses and
histopathological observations

The results of the biochemical analyses are shown in

Figure 3. Decreased ACh concentration (p < 0.01) and SOD

activity (p < 0.01) in the hippocampus were found in the AD

model group compared to the control group. Meanwhile, AR

pre-treatment significantly increased ACh concentration and

the SOD activity in the hippocampus compared with the AD

model rats. Similarly, compared with the control group, the

contents of NO, MDA in the hippocampus of the AD model

group were significantly increased (p < 0.005 and p < 0.05),

and significantly decreased contents (p < 0.01) were observed

in the LD group and the HD group compared with AD

model rats.

Neurons in the hippocampus CA1 region and

hippocampus CA3 region are vulnerable to the memory

circuit, and the degeneration is a major pathologic

characteristic of AD. As shown in Figure 4, the pyramidal

cells in the CA1 area were seen in about five layers. The

pyramidal cells in CA1 and CA3 areas were neatly arranged

and structurally intact, with the cytoplasm and nucleus clearly

delineated. No apparent glial cell proliferation was found.

However, sections from the hippocampus of AD group rats

exhibited marked neuronal degeneration: the decreased

number of surviving neurons, the sparsely disordered

arrays of the neurons, the blurred cell boundaries, and the

karyopyknotic phenomenon. Compared to the AD model rat

brains, the damage to neurons was remarkably ameliorated in

the hippocampus of the rats in the LD group and HD group.

The biochemical analysis results and H&E staining results

indicated that AR could prevent and alleviate AD symptoms and

slow down the progress.

Multi-platform metabolomics analysis

OPLS-DA focused on the inter-group difference between

the AD and control groups, and both the LC-QTOF/MS and

GC-MS results showed that the control and model groups

were separated (Figure 5). With the LC-QTOF/MS

metabolomics platform, we found the level of

39 metabolites significantly altered in the AD group

FIGURE 4
H&E staining in the therapeutic effect of AR against AD with a microscope. (A,C,E,G) the hippocampus CA1 of CN, AD, LD, and HD group
(B,D,F,H) the hippocampus CA3 of CN, AD, LD, and HD group.
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compared with the blank control group. The levels of

11 metabolites like retinyl ester and hypoxanthine were

increased in the AD group, and those of 28 metabolites like

L-Arginine and L-Valine were reduced in the AD group

(Table 1). These regulated metabolites were involved in the

pathway of retinol metabolism, cysteine and methionine

metabolism, ether lipid metabolism, arginine biosynthesis,

purine metabolism, arginine and proline metabolism,

glutathione metabolism, glycerophospholipid metabolism,

and tryptophan metabolism, et al. (Figure 6A). With the

GC-MS metabolomics platform, we found the level of

11 metabolites significantly altered in the AD group

compared with the blank control group, and the levels of

these 11 metabolites like citrulline and L-ornithine were

increased (Table 1). These regulated metabolites were

involved in arginine biosynthesis, arginine and proline

metabolism, primary bile acid biosynthesis, steroid

biosynthesis, glutathione metabolism, steroid hormone

biosynthesis, and butanoate metabolism, et al. (Figure 6B).

All the regulated metabolites analyzed by the LC-QTOF/MS

and GC-MS were involved in the pathway of arginine

biosynthesis, retinol metabolism, arginine and proline

metabolism, cysteine and methionine metabolism, ether

lipid metabolism, purine metabolism, glutathione

metabolism, primary bile acid biosynthesis, steroid

biosynthesis, glycerophospholipid metabolism (Figure 6C).

Effect of Anemarrhenae Rhizoma on
biomarkers and metabolic pathways

To characterize the efficacy of AR for preventing and

treating AD, PLS-DA analyses of serum profiles obtained

from the LC-QTOF/MS platform and GC-MS platform

were performed to get a global overview of the response in

the control group, AD model group, and oral administration

AR group. The PLS-DA score plot (Figure 7) showed that the

control group and AD group were separated, while the

metabolic trajectory of rats pre-treated with AR moved to

that of the control group while away from the AD model rats.

These results indicated that AR could restore the pathological

process of AD on a global metabolite level to prevent and treat

AD. Furthermore, the relative amounts of the differential

metabolites were compared among the blank control group,

the AD model group, the LD group, and the HD

group. 23 metabolites in the serum of rats pre-treated by

AR in the LD group or the HD group tested by LC-QTOF/MS

were significantly affected by AR compared with those in the

AD model group (p < 0.05, Figure 8), and nine metabolites in

the LD group or the HD group tested by GC-MS were

significantly affected by AR compared with which in the

AD model group (p < 0.05, Figure 8). Of note, all the

regulated metabolites affected by AR were involved in the

pathway of arginine biosynthesis, arginine and proline

metabolism, ether lipid metabolism, glutathione

metabolism, primary bile acid biosynthesis, steroid

biosynthesis, et al. (Figure 6D), indicating that AR could

partly correct the disturbed metabolic alterations in AD

rats through these pathways.

Discussion

In this research,D-Gal and AlCl3 were used to prepare the rat

model of AD according to many previous investigations. We

evaluated the AD model using a classical behavior study with the

Morris water maze test, biochemical analysis, and

histopathological observations. The results indicated that

establishing the AD model with neuronal damage was

successful, and AR could alleviate the symptoms of AD model

rats induced byD-Gal/AlCl3 and slow down the progress to some

extent.

The difference in metabolic profiles of the AD model rats in

vivo can be analyzed through the metabolomics method. In our

study, an untargeted metabolomic method based on multi-

platform analyses combining LC-QTOF/MS and GC-MS

FIGURE 5
OPLS-DA score plots of potential biomarkers in the control group (CN) and ADmodel group (AD) in positivemode of LC-QTOF/MS (A), negative
mode of LC-QTOF/MS (B), and in GC-MS (C).
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TABLE 1 Major potential biomarkers of AD model group induced by D-Gal/AlCl3 and related metabolic pathways.

No. Metabolite Exact
mass

Formula Adduct/
method

Trend Related pathway

1 L-Carnitine 161.1052 C7H15NO3 M + H ↓** Carnitine synthesis

2 Cysteic acid 169.0045 C3H7NO5S M + FA-H ↑** Taurine and hypotaurine metabolism

3 LysoPE (18:0/0:0) 481.3168 C23H48NO7P M + H ↑* lysophospholipid

4 Cysteinylglycine 178.0412 C5H10N2O3S M + Cl ↑** Glutathione metabolism

5 L-Arginine 174.1117 C6H14N4O2 M + H ↑* Aminoacyl-tRNA biosynthesis

6 Indoxyl sulfate 213.0096 C8H7NO4S M-H ↑* neurotoxin

7 L-Methionine 149.051 C5H11NO2S M + H ↑* Aminoacyl-tRNA biosynthesis

8 Stearoylcarnitine 427.3662 C25H49NO4 M + K ↑** Mitochondrial beta-oxidation of long chain
saturated fatty acids

9 L-Valine 117.079 C5H11NO2 M + K ↑* Aminoacyl-tRNA biosynthesis

10 2-Aminobenzoic acid 137.0477 C7H7NO2 M + H ↑** Tryptophan metabolism

11 D-Proline 115.0633 C5H9NO2 M + H ↑*** Cysteine and methionine metabolism

12 CE (5:0) 470.4124 C32H54O2 M + K ↑** Steroid biosynthesis

13 Retinyl ester 302.2246 C20H30O2 M-H ↓** Retinol metabolism

14 LysoSM(d18:1) 465.3457 C23H50N2O5P M + NH4 ↑*** lysophospholipid

15 LysoPC(22:5 (4Z,7Z,10Z,13Z,16Z)/0:0) 569.3481 C30H52NO7P M + FA-H ↓* lysophospholipid

16 PC(18:1 (9Z)e/2:0) 549.3794 C28H56NO7P M + H ↑* Ether lipid metabolism

17 LysoPC(P-18:0/0:0) 507.3689 C26H54NO6P M + H ↑** lysophospholipid

18 Guanine 151.0494 C5H5N5O M + H ↑* Purine metabolism

19 Xanthine 152.0334 C5H4N4O2 M-H20-H, M
+ Cl

↑* Purine metabolism

20 DG (14:1n5/0:0/14:1n5) 508.4128 C31H56O5 M + K ↓* diglyceride

21 LysoPC(0:0/20:4 (5Z,8Z,11Z,14Z)) 543.3325 C28H50NO
7P M + FA-H ↑*** lysophospholipid

22 Cholic acid 408.2876 C24H40O5 M-H ↑** Primary bile acid biosynthesis

23 Methyl hippurate 193.0739 C10H11NO3 M-H ↑* fatty acid metabolism

24 2-Hydroxyvaleric acid 118.063 C5H10O3 M-H ↑*** lactic acidosis

25 LysoPC(0:0/16:0) 495.3325 C24H50NO7P M + Cl ↓* lysophospholipid

26 LysoPE (P-18:0/0:0) 465.3219 C23H48NO6P M-H ↑* lysophospholipid

27 N-Stearoyl Methionine 415.312 C23H45NO3S M + Na ↑** N-acylamides

28 N-Nervonoyl Threonine 467.3975 C28H53NO4 M + K ↑** N-acylamides

29 Cholyltyrosine 571.3509 C33H49NO7 M + H ↑* bile acid-amino acid conjugates

30 Cholylhistidine 545.3465 C30H47N3O6 M + H ↓** bile acid-amino acid conjugates

31 PA (5-iso PGF2VI/8:0) 606.3169 C29H51O11P M-H ↓* oxidized phosphatidic acid

32 DG (PGD2/0:0/10:0) 580.3975 C33H56O8 M + Cl ↓* triacylglycerol

33 DG (20:4 (7E,9E,11Z,13E)-3OH
(5S,6R,15S)/0:0/8:0)

552.3662 C31H52O8 M + Cl ↓** triacylglycerol

34 DG (20:3 (8Z,11Z,14Z)-2OH (5,6)/0:0/8:0) 538.387 C31H54O7 M + H ↑* triacylglycerol

35 5-Methoxyindoleacetate 205.0739 C11H11NO3 M-H20-H ↑** Tryptophan metabolism

36 Prolylphenylalanine 262.1317 C14H18N2O3 M + Cl ↑** dipeptide

37 Acetamidopropanal 115.0633 C5H9NO2 M + H ↑*** polyamine metabolism

38 Hypoxanthine 136.0385 C5H4N4O M-H ↓* Purine metabolism

39 LysoPC (0:0/20:4 (5Z,8Z,11Z,14Z)) 543.3325 C28H50NO7P M + Cl ↓* lysophospholipid

40 L-proline 115.0633 C5 H9 N O2 GC-MS ↑*** Arginine and proline metabolism

41 Butanoic acid 117.0426 C4H7NO3 GC-MS ↑** Butanoate metabolism

42 Citrulline 175.0957 C6H13N3O3 GC-MS ↑*** Arginine biosynthesis

43 Acetylglycine 116.921 C4H7NO3 GC-MS ↑* Acetylglycine

44 L-Pyroglutamic acid 129.0426 C5H7NO3 GC-MS ↑* Glutathione metabolism

45 Methoxyacetic acid 90.0317 C3H6O3 GC-MS ↑* a secondary metabolite

(Continued on following page)
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techniques was used to describe the characters of AD rats.

Metabolites diversity and broad dynamic range in cellular

abundance currently prohibit the possibility of using single-

analysis procedures to measure all metabolites. Many

combinations of analytical methods have been developed to

achieve adequate metabolite coverage (Alseekh et al., 2021).

GC-MS or LC-QTOF/MS in metabolomics analysis takes

advantage of the high separation efficiency of the

chromatographic system and the high sensitivity of MS

detection (Kiseleva et al., 2021). Samples should be collected

appropriately and extracted tomaintain analyte yield in these two

methods; however, samples for GC–MS must be performed an

additional step, derivatization, to prevent degradation of the

molecules at high temperatures and increase the volatility of

the volatility metabolites (Zeki et al., 2020). In our study, a total of

39 metabolites were found significantly altered in the AD group

with the LC-QTOF/MS metabolomics platform. With the

continuous improvements in the related technologies, LC-

TABLE 1 (Continued) Major potential biomarkers of AD model group induced by D-Gal/AlCl3 and related metabolic pathways.

No. Metabolite Exact
mass

Formula Adduct/
method

Trend Related pathway

46 Urea 60.0324 CH4N2O GC-MS ↑* Arginine biosynthesis

47 Cholesterol 386.3549 C27H46O GC-MS ↑* Primary bile acid biosynthesis

48 3-Hydroxybutyric acid 248.1264 C4H8O3 GC-MS ↑* Butanoate metabolism

49 Lactic acid 90.0317 C3H6O3 GC-MS ↑** Glycolysis/Gluconeogenesis

Note, ↑ and ↓ values denote an increase and decrease, respectively. *p < 0.05, **p < 0.01, compared with the CN, group.

FIGURE 6
(A)Main metabolic pathways of potential biomarkers analyzed by LC-QTOF/MS. (B)Main metabolic pathways of potential biomarkers analyzed
by GC-MS (C) The main metabolic pathways of potential biomarkers analyzed by LC-QTOF/MS and GC-MS. (D) Regulatory pathway analysis of AR
treatment.
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FIGURE 7
PLS-DA score plots of the serum samples from CN group, AD group, LD group, and HD group in positive mode of LC-QTOF/MS (A), negative
mode of LC-QTOF/MS (B), and in GC-MS(C).

FIGURE 8
Potential biomarkers associated with AR pre-treatment in rat serum in positive mode of LC-QTOF/MS, negative mode of LC-QTOF/MS, and
GC-MS. *p < 0.05, **p < 0.01, compared with CN group; #p < 0.05, ##p < 0.01, compared with AD group.
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QTOF/MS has unequivocally become an established informative

technique for metabolomics studies and has been utilized mostly

(Khamis et al., 2017; Chaleckis et al., 2019). Previous studies have

concluded that a vast number of metabolites studied using the

LC-QTOF/MS platform could help shed light on alteration in the

metabolic pathway in AD (Reveglia et al., 2021). Yet it is worth

noting that, in this research, a total of 10 low molecular weight

metabolites such as butanoic acid, citrulline, urea, cholesterol,

and lactic acid were detected, and nine of which had not been

identified by the LC-QTOF/MS method. GC-MS is the most

suitable alternative for identifying volatile and semi-volatile

metabolites. It has been widely employed to profile low

molecular weight metabolites in AD research, such as free

fatty acids, cholesterol derivatives neurotransmitters, and

others (Luan et al., 2019; Kiseleva et al., 2021). In this

research, the combination of GC-MS with LC-QTOF/MS also

achieved a comprehensive pathway analysis result.

The development of proteinopathies, specifically the

accumulation of the protein beta-amyloid and the cytotoxic

aggregates of twisted tau protein, are the main features of AD.

Without being sure of the mechanistic roles of the

proteinopathies in the pathogenesis of AD, pathogenic protein

aggregation remains strongly implicated in AD. Previous

research elucidated that arginine could prevent the misfolding

and aggregation of proteins and predicted that arginine might

also prevent the aggregation and cytotoxicity of amyloidogenic

proteins, particularly amyloid-beta and tau in AD (Mamsa and

Meloni, 2021). However, accruing evidence suggests the

alterations in polyamine homeostasis, such as the increase of

arginine, are adaptive and beneficial when they follow a moderate

temporary stimulus. In contrast, a maladaptive polyamine

response will contribute to malfunction and degeneration

(Polis et al., 2021). In our experiment, serum arginine level

was found to be increased in the AD model group. And also,

some metabolites such as arginine, citrulline, urea, proline, and

some other metabolites related to arginine biosynthesis and

metabolism were found to be altered in the AD model group.

The pathways of arginine biosynthesis, arginine and proline

metabolism were also concluded to be the top five crucial

pathways with our pathway analysis. With the pre-treatment

of AR, citrulline, urea, and proline were observed to correct to the

control group. As some researches showed, there were AD- and

age-related changes in the tissue concentrations of L-arginine

and its downstream metabolites (L-citrulline, L-ornithine,

glutamate, and glutamine, and some other metabolites) in a

metabolite manner, which is in accord with our metabolomics

results and the memory impairment of model mice in our

behavior study (Liu et al., 2014).

Oxidative stress is one of the critical pathological events

contributing to the degenerating cascades in AD (Ionescu-

Tucker and Cotman, 2021). MDA is one of the best

investigated products of oxidative stress, and the higher

concentration of MDA is always measured in biological

samples as biomarkers of lipid peroxidation (Tsikas, 2017).

With the low antioxidant enzyme levels and high oxygen

consumption, the central nervous system is vulnerable to

oxidative stress (Kumar et al., 2017). Glutathione (GSH) is an

essential antioxidant with important functions related to AD and

is tightly linked to other redox mechanisms GSH, and GSH-

associated metabolism represents the primary defense for the

protection of cells from oxidative stress, while the extracellular

redox state is mainly maintained by cysteine/cystine (Haddad

et al., 2021). Pyroglutamic acid, also called 5-oxoproline,

pyroglutamic acid, is a product of disordered glutathione

metabolism, and elevated blood levels may be associated with

problems of glutathione metabolism (Liss et al., 2013). Cysteinyl-

glycine is a dipeptide composed of cysteine and glycine derived

from the breakdown of GSH. In our experiment, both the serum

levels of pyroglutamic acid and cysteinyl-glycine were found to

be increased in the AD model group induced by D-Gal/AlCl3,

accompanying glutathione metabolism disorders in the AD

model group. With the pre-treatment of AR, the glutathione

metabolism pathway was regulated, and levels of cysteinyl-

glycine decreased significantly. These results were in accord

with biochemical analyses in which the contents of MDA in

the hippocampus of the AD model group were significantly

increased, and SOD levels in the hippocampus of the AD

model group were decreased significantly, all of which were

regulated by the pre-treatment of AR.

ACh is a signal transmitter of cholinergic neurons and

has a vital role in cognitive processes. The metabolic process

ACh is closely related to AD. ACh is involved in the

modulation of acquisition, encoding, consolidation,

reconsolidation, extinction, and memory retrieval

(Ferreira-Vieira et al., 2016). It has been reported that the

specific degeneration of cholinergic neurons occurs in AD

and contributes to the memory loss exhibited by AD patients

(Li et al., 2017). In this research, with the pre-treatment of

AR, Ach was observed to correct to the control group. The

behavior study results indicated that AR could prevent and

ameliorate the impairment of spatial learning and memory of

AD model rats induced by D-Gal and AlCl3. NO is produced

from the metabolism of L-arginine and is characterized as an

unconventional neurotransmitter (Zuccarello et al., 2020).

The role of NO in AD remains controversial since there are

studies suggesting a neuroprotective function, while others

support a neurotoxic action; however, abnormal NO

signaling in the brain is one of AD’s characteristics. It has

been reported that excessive NO reacts with oxygen anion

superoxide to form peroxynitrite and cause cellular damage

(Calabrese et al., 2007). This research found increased NO

concentration in the hippocampus in the AD model group

compared to the control group, and AR pre-treatment

decreased NO. The results indicated that NO in AD might

remain a neurotoxic action and AR might havie

neuroprotective function.
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Conclusion

This research was undertaken to clarify AR’s therapeutic

effect and mechanism on AD based on multi-platform

metabolomics analyses. The rat model of AD was

established by D-galactose and AlCl3. A serum

metabolomics approach, combined with behavior study,

histopathological observations, and biochemical

analyses, was used to identify metabolic changes in AD

model rats and to evaluate the effects of AR. A total of

49 metabolites related to the pathways of the arginine

biosynthesis, arginine and proline metabolism, ether

lipid metabolism, glutathione metabolism, and some other

pathways were identified in the serum of AD rats. Biological

interpretation of metabolite profiles illustrated that

treatment with AR influenced arginine biosynthesis

and metabolism, cysteine and methionine metabolism,

purine metabolism, and glutathione metabolism the

most in the pathogenesis of AD. The results that the

cognitive dysfunctions, pathophysiological changes,

and indexes of biochemical analyses of the AD model

rat were reversed by pre-treatment with AR verified

disturbance of pathways and the regulation of AR on

AD. These results provide metabolomic evidence for

the efficacy of AR in AD treatment. However, the

mechanism of how AR influence these pathways and

which active ingredients are absorbed into the blood

and act on AD targets need validation. Validating these

results and excavating the therapeutic mechanism of AR

on AD intervention would be of considerable interest in

the future.
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Optic neuritis (ON), characterized by inflammation of the optic nerve and

apoptosis of retinal ganglion cells (RGCs), is one of the leading causes of

blindness in patients. Given that RGC, as an energy-intensive cell, is

vulnerable to mitochondrial dysfunction, improving mitochondrial

function and reducing oxidative stress could protect these cells. Matrine

(MAT), an alkaloid derived from Sophora flavescens, has been shown to

regulate immunity and protect neurons in experimental autoimmune

encephalomyelitis (EAE), an animal model of multiple sclerosis and ON.

However, the protective mechanism of MAT on RGCs is largely unknown. In

this study, we show that MAT treatment significantly reduced the degree of

inflammatory infiltration and demyelination of the optic nerve and increased

the survival rate of RGCs. The expression of Sirtuin 1 (SIRT1), a member of an

evolutionarily conserved gene family (sirtuins), was upregulated, as well as its

downstream molecules Nrf2 and PGC-1α. The percentage of TOMM20-

positive cells was also increased remarkably in RGCs after MAT treatment.

Thus, our results indicate that MAT protects RGCs from apoptosis, at least in

part, by activating SIRT1 to regulate PGC-1α and Nrf2, which, together,

promote mitochondrial biosynthesis and reduce the oxidative stress

of RGCs.

KEYWORDS

matrine, optic neuritis, mitochondrial biosynthesis, oxidative stress, SIRT1, PGC-1α,
Nrf2

Introduction

Optic neuritis (ON), a common cause of visual defects in young people, is an

inflammatory disease of the optic nerve, which is characterized by immune cell

infiltration and subsequent demyelination (Kobayter and Chetty, 2019; Pihl-Jensen

et al., 2021). Patients typically experience a sharp decrease in vision, orbital pain

aggravated by eye movements, an afferent papillary defect, and dyschromatopsia, with
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or without swelling of the optic nerve head. ON is the initial

manifestation in approximately 20% of multiple sclerosis

(MS) patients, and 50% of ON patients will develop MS

during the disease (Kimura et al., 2017). Severe, even

irreversible, visual loss can occur in ON, neuromyelitis

optica (NMO), and experimental autoimmune

encephalomyelitis (EAE), an animal model of MS (Azuchi

et al., 2017).

There is increasing evidence that irreversible vision loss

may result from inflammation of the optic nerve and apoptosis

of the retinal ganglion cells (RGCs) (Liu et al., 2017; Zhang

et al., 2020). Because the long axons of RGCs are vulnerable to

lack of energy, they are highly reliant on mitochondria and are

sensitive to mitochondrial dysfunction and oxidative stress

(Lin and Kuang, 2014). Indeed, mitochondrial oxidative stress

can induce neuronal damage in experimental ON (EON) (Qi

et al., 2007). The activation of sirtuin 1 (SIRT1), a member of

an evolutionarily conserved gene family (sirtuins) encoding

NAD+ dependent deacetylases that regulates various

components of cellular metabolism (Martin et al., 2015),

can prevent RGC loss in ON by reducing oxidative stress

and promoting mitochondrial function in neuronal cell lines

(Khan et al., 2012). SIRT1 may function via regulating the

expression of peroxisome proliferator-activated receptor γ
coactivator-1α (PGC-1α), a metabolic coactivator that

induces mitochondrial biogenesis and respiration by

interacting with transcription factors (Finck and Kelly,

2006; Gerhart-Hines et al., 2007). SIRT1 also plays an

important role in regulating the expression and activation

of nuclear factor erythroid 2-related factor 2 (Nrf2) (Ding

et al., 2016), a basic leucine zipper transcription factor that

activates the gene network related to antioxidant defense and

cell detoxification (Johnson and Johnson, 2015).

Matrine (MAT), a natural alkaloid component extracted

from the herb Radix Sophorae Flavescentis, with a molecular

weight (MW) of 258.43 (C15H24N2O), has been widely used

in the clinical treatment of human hepatitis B and

leukocytopenia with very few adverse reactions (Wang

et al., 2017). Previous studies have shown that MAT can

significantly improve the neural function of EAE and

reduce central nervous system (CNS) and peripheral

inflammatory responses (Kan et al., 2017; Zhang et al.,

2017). Recent studies have shown that MAT can enhance

mitochondrial function and inhibit oxidative stress in

oligodendrocytes of EAE (Wang et al., 2019). In addition,

we have conducted a preliminary exploration of the protective

effect of MAT in RGCs in EON (Kang et al., 2021); however,

the mechanism underlying this effect has not yet been

elucidated. We focused on this issue in the present study

and found that MAT regulates the expression and activation

of PGC-1α and Nrf2 by activating SIRT1, promotes

mitochondrial biosynthesis, and reduces oxidative stress,

thus having a therapeutic effect on EON.

Materials and methods

Animals and EAE induction

Female Wistar rats (6–8 weeks old, 180–200 g) were

purchased from the Jinan Pengyue Experimental Animal

Breeding Co., Ltd., China, and raised under the condition of

specific pathogens at the Laboratory Animal Center of the Henan

Academy of Chinese Medicine, China. EAE was induced as

described previously (Chu et al., 2021). Briefly, the spinal cord

homogenate of guinea pigs (Jinan Jinfeng Experimental Animal

Co., Ltd., China) was emulsified with the same volume of

complete Freund’s adjuvant (Sigma, St. Louis, MO,

United States) containing 6 mg/ml Bacillus Calmette–Guérin

vaccine (Solarbio Bio-Technology Co., Shanghai, China). Each

rat was injected subcutaneously at four separate sites on the back

with 0.5 ml of antigen emulsion.

Ethics approval and consent to
participate

This study was approved by the Ethics Committee of

Scientific Research of Henan Academy of Chinese Medicine;

the ethical review number is HNTCMDW-20170601. All of the

protocols were approved, and every effort was made to ensure

minimal animal suffering.

MAT treatment and clinical scoring

The immunized rats were stochastically divided into three

groups (n = 10, each group) (Kobayter and Chetty, 2019): EAE

rats were injected intraperitoneally (i.p.) with 250 mg/kg/day

MAT (Meilunbio, Dalian, China) (Kan et al., 2013) (Jiangsu

Chia Tai-Tianqing Pharmaceutical Co. Ltd., Jiangsu, China),

starting from day 11 after immunization (p.i.); EAE rats were

injected intraperitoneally with the vehicle as a control group

(Pihl-Jensen et al., 2021); and non-immunized rats i.p. injected

with the vehicle were used as the naive control group (Kimura

et al., 2017). From the date of immunization, changes in body

weight, clinical signs, and neurological function scores were

observed and recorded by two independent observers. The

EAE model score uses the five-point scale: 0 = no clinical

score; 1 = tail weakness; 2 = hind limb weakness; 3 = hind

limb paralysis; 4 = forelimb paralysis; and 5 =moribund or death.

Histopathological evaluation

The rats were sacrificed on day 17 p.i. After extensive

perfusion with physiological saline solution, the optic nerves

and retinas were removed and post-fixed with FAS eyeball
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fixative (Servicebio, Wuhan, China). The tissue was then

embedded in paraffin and cut into 2–5 μm thick sections,

dewaxed in xylene, and rehydrated. Hematoxylin–eosin (H&E)

staining was used to detect inflammatory infiltration, and Luxol

fast blue (LFB) staining was used to detect demyelination. The

degree of infiltration of inflammatory cells and demyelination in

the optic nerve was assessed by a double-blind investigator,

similar to the open standard. For inflammation, 0 = no

infiltration, 1 = a little cell infiltration of the optic nerve or

optic nerve sheath, 2 = moderate infiltration, 3 = serious

infiltration, and 4 = substantial infiltration. For demyelination,

0 = no demyelination, 1 = scattered demyelinating lesions, 2 =

partial demyelinating lesion, and 3 = large number of

demyelinating lesions. Scores of inflammation, infiltration, and

demyelination were evaluated by Image-Pro Plus 6.0 software.

Each experiment was repeated three times, and the results were

averaged.

Immunofluorescence double labeling

Briefly, non-specific binding was blocked with 3% bovine

serum albumin (BSA) (Serotec, United Kingdom) and

permeabilized with 0.3% Triton X-100 in 1% BSA-PBS for

30 min. The sections were then incubated in blocking solution

at 4°C overnight with primary antibodies specific for rabbit anti-

Nrf2 (1:100), rabbit anti-SIRT1 (1:100), rabbit anti-PGC-1α (1:

300), and rabbit anti-TOMM20 (1:250) (all from Abcam,

Cambridge, United Kingdom) and then incubated with

secondary antibody donkey anti-rabbit FITC (1:200; IgG;

Proteintech, Wuhan, China) at room temperature (RT) for

2 h. After being permeabilized with 1% BSA-PBS for 3 ×

5 min, the sections were incubated with rabbit anti-Brn3a (1:

100; IgG; Bioss, Beijing, China) specific primary antibody in

blocking solution overnight at 4°C, then incubated with

secondary antibody donkey anti-rabbit Cy3 (1:200; IgG;

Proteintech) at RT for 2 h, mounted with 4’,6-diamidino-2-

phenylindole (DAPI, 1:1,000; Roche, Basel, Switzerland),

washed with PBS, cover-slipped, and examined under a

fluorescence microscope (Leica Microsystem AG, Switzerland).

As a negative control, additional sections were treated similarly,

but the primary antibodies were omitted. All pictures were

captured by a confocal microscope (Olympus Fluoview

FV1000). For each group, ten sections were examined in a

blinded fashion. Image-Pro Plus 6.0 software was used to

calculate the quantification of target protein expression.

Cell Culture of RGC-5

Rat retinal ganglion cells (RGC-5) were purchased from iCell

Bioscience Inc., Shanghai, China. Cells were maintained in

Dulbecco’s modified eagle medium (iCell Bioscience Inc.,

Shanghai) supplemented with 10% heat-inactivated fetal

bovine serum (iCell Bioscience Inc., Shanghai) and in a

humidified atmosphere containing 5% CO2 at 37°C. RGC-5

cells were seeded into 6-well plates. Cells were treated in four

groups: for the control group, 2 ml complete medium was added.

For the TNF-α group, 2 ml of TNF-α (MedChemExpress,

Shanghai, China) at a concentration of 50 ng/ml was added to

the medium. For the MAT group, 2 ml (50 ng/ml) of TNF-α and

100 μM of MAT were added to the medium. For the MAT + Ex-

527 group, 2 ml (50 ng/ml) of TNF-α, 100 μM of MAT, and

38 nM of EX527 (Beyotime Biotechnology, Shanghai, China)

were added. All groups were cultured for 48 h before harvest.

Western Blot

After treatment, total protein from both cell lysate and the

supernatant was isolated from N9 cells with RIPA lysis buffer

(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.25% deoxycholic

acid, 1% Nonidet P-40, one mM EDTA) including the protease

and phosphatase inhibitor (Beyotime Biotechnology, Shanghai,

China). For Western blot analysis, 8%–10% SDS-PAGE was used

to resolve equal amounts of protein samples from both cell lysate

and supernatant. The gel was transferred onto polyvinylidene

fluoride (PVDF) membranes (Sigma-Aldrich, United States), and

the membranes were blocked with 5% BSA in Tris-buffered

saline containing 0.05% Tween-20 (TBST). Membranes were

probed with primary antibodies at 4°C overnight. The following

day, the incubated membranes were washed four times with

TBST and then incubated with the horseradish peroxidase

(HRP)-conjugated secondary antibodies. The antigen–antibody

complex was screened by chemiluminescence using the

Supersignal West Dura ECL reagent (Thermo Scientific,

United States). Protein bands were detected with a

densitometer (Bio-Rad, Shanghai). Band density analysis was

performed with ImageJ software (National Institutes of Health,

United States).

Measurement of mitochondrial
membrane potential (ΔΨM)

For the measurement of mitochondrial membrane potential

(ΔΨM), cells were harvested and stained with JC-1 (Beyotime

Biotechnology, Shanghai, China) and Rhodamine 123 (Beyotime

Biotechnology, Shanghai, China) and were quantified by flow

cytometry analysis as described previously (Pal et al., 2020). JC-1

dye is a lipophilic, cationic dye developed to detect ΔΨM in

healthy and apoptotic cells. After two washes with phosphate-

buffered saline (PBS) to remove media, trypsin-treated cells were

harvested, washed again with PBS, and then incubated in 500 μL

JC-1 dye for 20 min. Samples were then washed with PBS once

and analyzed immediately by an FACS analyzer (Luminex,
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Guava® easyCyteTM). Rhodamine 123 is a cationic fluorescent

dye. Treated cells were harvested and washed once with PBS and

incubated with 500 μl of Rho123 dye (2 μM) for 30 min at a 37°C

shaker incubator. After incubation, cells were washed with PBS

and analyzed immediately by an FACS analyzer.

Statistical analyses

Multiple comparisons were performed using one-way

ANOVA, followed by the Student–Newman–Keuls test.

Clinical EAE scores and mean body weight were compared at

individual time points between vehicle- and MAT-treated rats.

Statistical software (GraphPad Prism 7.0, IBM SPSS Statistics 27)

was used for statistical analyses; p < 0.05 was considered

significant. Given that ON can occur bilaterally or unilaterally

in either eye (Khan et al., 2017), each eye was used as an

independent data point for all histological experiments.

Results

MAT alleviated the severity of optic
neuropathology

As we reported before, MAT effectively suppresses CNS

inflammation, demyelination, and axonal loss in optic nerves,

as well as RGC apoptosis in EON (Kang et al., 2021). Briefly, we

FIGURE 1
MAT promoted SIRT1 expression in RGCs. Eyeballs were harvested from naive rats, MAT- and vehicle-treated EAE rats. (A) Immunofluorescence
double staining suggested that SIRT1 (FITC, green) were colocalized with Brn3a (Cy3, red) in the eyeball retina of EAE rats (200×). Scale bars, 10 μm.
(B)Quantitative analysis of the number of positive cells. (C)Quantitative analysis of the rate of positive cells. Data representmean± SD; n = 10 rats per
group. ** p < 0.01, *** p < 0.001, comparison between naive and vehicle-treated EAE groups. ## p < 0.01, comparison between vehicle- and
MAT-treated EAE groups.
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first induced an animal model of EON in Wister rats and then

treated it from day 11 p.i., which resulted in a significant

reduction in clinical scores for EAE and mitigation in weight

loss in the MAT-treated group compared to saline-treated model

rats. In order to verify the correlation between the clinical signs of

EAE and EON, optic nerve transverses of all groups were

examined by HE and LFB staining. Inflammatory infiltrates

were diffusely distributed in the optic nerve of vehicle-treated

rats, and this infiltration was significantly inhibited by MAT

treatment. Furthermore, MAT treatment significantly reduced

optic nerve demyelination compared to the EAE group (data

shown in Supplementary Material).

MAT promoted SIRT1 expression in RGCs

To investigate the effect of MAT treatment on

SIRT1 expression, we tested the number of cells that

colocalized SIRT1 with Brn3a (RGCs marker) by

immunofluorescence double staining. As shown in Figure 1A,

it was observed on the paraffin section of the sagittal plane of the

eye that the expression of SIRT1 was reduced in the vehicle-

treated EAE rats compared with the naive rats. In contrast, its

expression was significantly increased after treatment with MAT

(Figures 1B,C). These results indicate an upregulating effect of

MAT on the SIRT1 expression in RGCs.

FIGURE 2
MAT elevated the expression of Nrf2 and PGC-1α. Eyeballs were harvested from naive rats, MAT- and vehicle-treated rats. (A)
Immunofluorescence double staining suggested that Nrf2 (FITC, green) were colocalized with Brn3a (Cy3, red) (200×). Scale bars, 10 μm. (B)
Quantitative analysis of the number of positive cells. (C) Quantitative analysis of the rate of positive cells. (D) Immunofluorescence double staining
suggested that PGC-1α (FITC, green) were colocalized with Brn3a (Cy3, red) in the eyeball retina (200×). Scale bars, 10 μm. (E) Quantitative
analysis of the number of positive cells. (F)Quantitative analysis of the rate of positive cells. Symbols representmean ± SD; n = 10 rats per group. **p <
0.01, ***p < 0.001, comparison between naive and vehicle-treated groups. ##p < 0.01, comparison between vehicle- and MAT-treated EAE groups.
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Increased expression of Nrf2 and PGC-1α
by MAT treatment

Nrf2 is a key factor in the oxidative defense system, and SIRT1 is

involved in the expression and activation of Nrf2. We, therefore,

studied Nrf2 expression on the retina by immunofluorescence

double staining to illustrate the effect of MAT on oxidative stress

in ON (Figure 2A). The expression level of Nrf2 in the vehicle group

was reduced compared to that in the naive group. This expression

was significantly increased in the MAT-treated group compared to

that in the vehicle-treated group (Figures 2B,C).

The PGC-1α expression has been considered to play a non-

negligible role in mitochondrial biosynthesis. Therefore, we used

immunofluorescence double staining to study the PGC-1α in the

retina on the ON model (Figure 2D). Our results showed that the

expression of PGC-1α in the immunized groups was significantly

lower than in the normal group, whereas its expression in the MAT

treatment group was markedly higher than in the vehicle-treated

group (Figures 2E,F). These results indicate that MAT can promote

the expression of PGC-1α.

MAT could promote Nrf2/PCG-1α
expression in RGC-5 by upregulating the
SIRT1 expression

To confirm that MAT could prevent RGC death through the

SIRT1-PCG-1α/Nrf2 pathway, we used the RGC-5 cell line to

perform the experiment. The PCG-1α and Nrf2 protein

expression in RGC treated by TNF-α were attenuated

FIGURE 3
MATcould promote Nrf2/ PCG-1α expression in RGC-5 through upregulating SIRT1 expression. (A) PCG-1α andNrf2 protein expression in RGC cells
treated by TNF-α were attenuated compared to control group, as well as SIRT1 expression. MAT co-treatment could improve the expression of SIRT1,
PCG-1α and Nrf2 significantly. This effect could be revised by EX527, an SIRT1 inhibitor. (B-D) Quantitative analysis of the relative expression of each
molecule. Symbols represent mean ± SD; ** p < 0.01, ***p < 0.001, comparison between control and TNF-α groups. ##p < 0.01, ### p < 0.001,
comparison between TNF-α and MAT groups. $$p < 0.01, $$$ p < 0.001 comparison between MAT and MAT+EX527 groups.
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compared to the control group, as well as the SIRT1 expression.

MAT co-treatment could improve the expression of SIRT1,

PCG-1α, and Nrf2 significantly. This effect could be revised

by EX527, a SIRT1 inhibitor (Figure 3).

MAT affected mitochondrial biosynthesis

Previous studies had shown that MAT protected

mitochondrial membrane integrity by inhibiting cytochrome c

(Cyt c) release (Wang et al., 2019). Therefore, we decided to

explore the effects of MAT on mitochondria in the retina. We

determined the expression of TOMM20, a mitochondrial outer

membrane transporter commonly used to label mitochondria, in

RGCs by immunofluorescence double staining (Figure 4A). The

percentage of TOMM20+ Brn3a+ cells in the retina was

remarkably reduced during the disease period. However, it

was increased in the MAT treatment group (Figures 4B,C).

Thus, MAT can enhance mitochondrial biosynthesis in the

retina.

FIGURE 4
MAT motivated mitochondrial biosynthesis. Eyeballs were harvested from naive rats, MAT- and vehicle-treated EAE rats. (A)
Immunofluorescence double staining suggested that TOMM20 (FITC, green) were colocalized with Brn3a (Cy3, red) in the eyeball retina of EAE rats.
Scale bars, 10 μm. (B) Quantitative analysis of the number of positive cells. (C) Quantitative analysis of the rate of positive cells. Symbols represent
mean ± SD; n = 10 rats per group. **p < 0.01, ***p < 0.001, comparison between naive and vehicle-treated EAE groups. ##p < 0.01, comparison
between vehicle- and MAT-treated EAE groups. (D-G) TNF-α expose increase in loss of mitochondrial membrane potential (ΔѰM) in retinal cells.
FACS analysis using JC-1 dye and Rhodamine-123 dye showing increase in mitochondrial membrane potential ((ΔѰM) with MAT treatmen in RGC-5
cells and this effect could be attenuated by EX527. Symbols represent mean ± SD; ** p < 0.01, comparison between control and TNF-α groups. &&p <
0.01, comparison between TNF-α and MAT groups. ##p < 0.01 comparison between MAT and MAT+EX527 groups.
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Mitochondrial membrane potential (ΔѰM) reflects the

functional status of the mitochondrion. We used JC-1 and

Rho123 for the qualitative measurement of ΔѰM in RGC-5

cells. Cells with healthy mitochondria show high ΔѰM, whereas

cells with damaged mitochondria show low ΔѰM. FACS analysis

showed that, with the exposure of TNF-α to RGC-5 cells for 48 h,
a significant decrease in ΔѰMwas observed, and this was revised

by 100 μM MAT, whose effect could be attenuated by Ex527

(Figures 4D,E). To support these findings, we checked the ΔѰM

level using Rho123 dye. There was a gradual decrease in the

ΔѰM level in the TNF-α group. However, the decreased level of

mitochondrial ΔѰM upon TNF-α exposure was revised after the

treatment of MAT, and this effect could be attenuated by the

SIRT1 inhibitor (Figures 4F,G).

Discussion

Axons of RGCs, which form the optic nerve, are demyelinated in

various optic neuropathies, including ON (Wang et al., 2018), and

have very limited spontaneous regeneration after injury (Benowitz

et al., 2017). ON, which usually occurs in patients with MS and its

animal model, EAE (Quinn et al., 2011; Murphy et al., 2020), can

cause optic nerve damage and subsequently the death of RGCs

(Moore and Goldberg, 2010). It has been recently shown that MAT

can limit the inflammation and demyelination of the optic nerve and

reduce RGCs apoptosis (Kang et al., 2021). However, the mechanism

of this natural alkaloid during this process is still unclear. Herein, we

show that the MAT treatment induces SIRT1, PGC-1α, and

Nrf2 expression; promotes mitochondrial biosynthesis; and

reduces oxidative stress, thereby preventing the loss of RGCs and

exerting protective effects on the optic nerve in ON.

Mitochondria are cytoplasmic organelles responsible for

producing adenosine triphosphate (ATP), and they play an

important role in regulating cellular calcium metabolism, reactive

oxygen species (ROS) production, and apoptosis (Mancini et al.,

2018). It has been discussed that during the progression of optic

neuritis, the oxidative injury to the mitochondrion began prior to

inflammatory cell infiltration and continued (Guy, 2008). When the

mitochondrial respiratory chain synthesizes ATP, it also produces

ROS, mainly in the shape of superoxide, because of the leakage of

electrons to oxygenmolecules. The increase inmitochondrial electron

transport chain activity usually increases the production of by-

products ATP and ROS, while the amassing of superoxide in the

mitochondria is noxious to cells (Packialakshmi and Zhou, 2018).

Due to the central metabolic function of mitochondria and its

involvement in the pathophysiology of neurodegenerative diseases,

diabetes, and cancer, it has become the focus of basic and translational

research (Kappler et al., 2019). Mitochondria are reported to be

abundant in the RGCs, and the number of mitochondria in

unmyelinated axons is higher than in myelinated axons (Kitaoka

et al., 2013). Talla et al. also showed that the reduced activity of the

optic nerve complex I in EAEmice increases mitochondrial oxidative

stress, which leads to neurodegeneration related to permanent vision

loss (Talla et al., 2015). Among molecules that regulate mitochondria

function, the SIRT1 expression could prevent the loss of RGC by

reducing oxidative stress and maintaining energy homeostasis

(Munemasa and Kitaoka, 2015). Most capabilities of

SIRT1 happen in the nucleus, where SIRT1 deacetylates histones

or other proteins, such as transcription factors or chromatin

remodeling proteins (Kim et al., 2015). Although SIRT1 is mostly

located in the nucleus, the regulation of mitochondrial biogenesis and

function primarily depends on the distribution of SIRT1 in the

cytoplasm and mitochondria (Aquilano et al., 2013). Furthermore,

SIRT1 regulates cell survival and apoptosis by mediating the

deacetylation of p53 (Kulkarni et al., 2014; Yarahmadi et al.,

2019), a tumor suppressor gene that contributes to the

oligomerization of pro-apoptotic proteins in mitochondria through

transcription-dependent and non-transcription-dependent pathways,

which may induce mitochondrial outer membrane permeability and

mitochondrial Cyt c release (Tu et al., 2018; Vidhyapriya et al., 2018).

Our experimental results show significantly enhanced expression of

SIRT1 in RGCs after MAT treatment both in vivo and in vitro,

suggesting that MAT may regulate mitochondrial function by

upregulating the SIRT1 expression of RGCs, thereby preventing

their loss in ON.

Mitochondrial oxidative stress is generally considered to be the

major agent of many neurodegenerative diseases such as MS and

ON (Khan et al., 2017). Nrf2 is an important transcription factor of

the mitochondrial endogenous antioxidant pathway, which affects

the expression of multiple antioxidant pathways, including

glutathione and cytoprotective genes (Osborne et al., 2016).

Under redox-equilibrium cellular conditions, Nrf2 is sequestered

in the cytoplasm and undergoes proteasome-mediated degradation

(McMahon et al., 2003). During oxidative stress, modification of key

binding proteins allows Nrf2 to dissociate and enter the nucleus,

recruiting transcription mechanisms to participate in the

antioxidant response elements (AREs) and stimulating

transcription of target genes associated with antioxidant defense

and cellular detoxification (Chen et al., 2015). In addition, the

activation of the Nrf2 antioxidant pathway and nuclear

accumulation are also regulated by SIRT1 (Zhao et al., 2019).

Nrf2 is referred to as the molecular switch of Nrf2/Keap1/ARE

signaling and is also a paramount part of the ROS signaling pathway,

which can be activated by oxidative stress inducers (Liu et al., 2018).

The activation of the Nrf2/ARE signaling pathway is also a self-

defense and protection mechanism of cells in response to oxidative

stress (Cheng et al., 2017; Yu et al., 2019) and has a neuroprotective

effect in EAE-related ON (Larabee et al., 2016). To explore the effect

of MAT on Nrf2 expression in RGCs of EAE rats, we found that the

expression of Nrf2 was significantly increased uponMAT treatment,

suggesting that MAT promotes mitochondrial biosynthesis and

reduces oxidative stress, which may be related to the promotion

of Nrf2 expression. Moreover, the Nrf2 expression was inhibited by

EX527, a SIRT1 inhibitor, suggesting MAT upregulated the

Nrf2 expression in RGCs by activating the SIRT1 pathway.
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It has been shown that the activity of Nrf1 and Nrf2 can be

induced by the PGC-1 transcriptional coactivators family, composed

of PGC-1α, PGC-1β, and PGC-1-related coactivators. This activity

leads to the transactivation of many genes encoding mitochondrial

biogenic specific proteins (Selvakumar et al., 2018). PGC-1α is a

major regulator of cellularmetabolism and is involved in guiding the

expression of nuclear regulatory genes related to mitochondrial

biogenesis and antioxidant stress (St-Pierre et al., 2006). PGC-1α
has no DNA binding activity of its own but can jointly activate a

large number of transcription factors; for example, its interaction

with NRFs can promote mitochondrial gene expression and

proliferation (Bruns et al., 2019). Consequently, PGC-1α is an

intermediary of oxidative phosphorylation and mitochondrial

biogenesis and is generally considered the main regulator of

mitochondrial function in mammals (LeBleu et al., 2014). The

deacetylation state of PGC-1α is the activation state during

mitochondrial biogenesis (Price et al., 2012). SIRT1 directly

interacts with PGC-1α to regulate PGC-1α activity, and with the

increase in the transcriptional activity of PGC-1α, mitochondrial

gene transcription and mitochondrial biogenesis are also enhanced

(Ma et al., 2017). By co-activating with Nrf2, PGC-1αmodulates the

expression of metabolic genes in the nuclear and mitochondrial

genomes and thus serves as a crucial regulator of accommodative

response to oxidative stress (Sharma et al., 2015). PGC-1α is also an
important regulator of the mitochondrial endogenous antioxidant

defense system, which works by regulating numerous antioxidant

proteins, independent of Nrf2 (Osborne et al., 2016). Reduced PGC-

1α expression in the retina is involved in all major processes of

retinal damage and subsequent repair (Egger et al., 2012). Moreover,

the PGC-1α signaling pathway is a significant regulator of astrocyte

reactivity and RGC homeostasis as it adjusts the pathogenic

sensitivity of the inner retina to metabolic and oxidative damage

(Guo et al., 2014). Consistent with these observations, PGC-1α
expression in the retina of ON rats and RGC-5 treated with TNF-α
both were significantly increased after MAT treatment and could be

attenuated by EX527, suggesting that MAT may promote

mitochondrial biogenesis and maintain RGC homeostasis by

SIRT1/PGC-1α pathway.

In conclusion, our study shows that MAT can effectively

inhibit the disease progression of ON and protect RGCs. MAT

activates the SIRT1, PGC-1α, and Nrf2 expression in the

retina to promote mitochondrial biosynthesis and reduce

oxidative stress, which could be revised by the

SIRT1 inhibitor. Thus, we believe that MAT treatment

could protect RGCs from apoptosis in ON by the SIRT1-

PGC-1α/Nrf2 pathway.
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Alzheimer’s disease (AD) is one of the most common neurodegenerative

diseases and manifests as progressive memory loss and cognitive

dysfunction. Neuroinflammation plays an important role in the

development of Alzheimer’s disease and anti-inflammatory drugs reduce

the risk of the disease. However, the immune microenvironment in the

brains of patients with Alzheimer’s disease remains unclear, and the

mechanisms by which anti-inflammatory drugs improve Alzheimer’s

disease have not been clearly elucidated. This study aimed to provide an

overview of the immune cell composition in the entorhinal cortex of patients

with Alzheimer’s disease based on the transcriptomes and signature genes of

different immune cells and to explore potential therapeutic targets based on

the relevance of drug targets. Transcriptomics data from the entorhinal cortex

tissue, derived from GSE118553, were used to support our study. We

compared the immune-related differentially expressed genes (irDEGs)

between patients and controls by using the limma R package. The

difference in immune cell composition between patients and controls was

detected via the xCell algorithm based on the marker genes in immune cells.

The correlation between marker genes and immune cells and the interaction

between genes and drug targets were evaluated to explore potential

therapeutic target genes and drugs. There were 81 irDEGs between

patients and controls that participated in several immune-related pathways.

xCell analysis showed that most lymphocyte scores decreased in Alzheimer’s

disease, including CD4+ Tc, CD4+ Te, Th1, natural killer (NK), natural killer T

(NKT), pro-B cells, eosinophils, and regulatory T cells, except for Th2 cells. In

contrast, most myeloid cell scores increased in patients, except in dendritic

cells. They included basophils, mast cells, plasma cells, and macrophages.

Correlation analysis suggested that 37 genes were associated with these cells

involved in innate immunity, of which eight genes were drug targets. Taken

together, these results delineate the profile of the immune components of the
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entorhinal cortex in Alzheimer’s diseases, providing a new perspective on the

development and treatment of Alzheimer’s disease.

KEYWORDS

Alzheimer’s disease, entorhinal cortex, immune, transcriptomic, drug

Introduction

Alzheimer’s disease (AD) is one of the most common

neurodegenerative diseases (Jack et al., 2010). Approximately

50 million people worldwide suffer from dementia, and by 2050,

more than 100 million people will experience dementia, which

places a heavy economic burden on societies and families

(Lane et al., 2018; Jing et al., 2021). The clinical features of

AD include progressive memory loss and cognitive dysfunction.

The main pathological changes in AD include β-amyloid

deposition, neurofibrillary tangles, neuronal loss, synaptic

dysfunction, and neuroinflammation in the brain (Serrano-

Pozo et al., 2011; Jack et al., 2013; Spires-Jones & Hyman,

2014; Oliveros et al., 2022; Peng et al., 2022). Despite significant

advancements in assessing AD, both from basic and clinical

studies, there is currently no effective treatment to prevent

or reverse AD. Therefore, the etiology and pathogenesis of

the disease require further study and elucidation. Moreover,

there is an urgent need for effective drugs to prevent and delay

the progression of AD. In recent years, increasing research

evidence has revealed that neuroinflammation plays a crucial

role in AD (Heneka et al., 2015; Ransohoff, 2016; Lindestam

Arlehamn et al., 2019). Central microglia, astrocytes, and

peripheral monocytes are considered to be the main cells

involved in neuroinflammation. Microglia can penetrate cell

surface receptors and is hypothesized to play an important

role in the inflammatory response in AD (Paresce et al., 1996;

Bamberger et al., 2003; Liu et al., 2005; Stewart et al., 2010).

The results from animal studies have suggested that

peripheral mononuclear cell infiltration is associated with

amyloid plaques (Simard et al., 2006). Furthermore, a mouse

model demonstrated that peripheral mononuclear phagocytes

play a critical role in reducing Aβ plaque accumulation (Simard

et al., 2006). Pathological responses of astrocytes include

reactive astrogliosis, a complex multistage pathologically

specific response of astrocytes, which is usually considered to

protect nerves and restore damaged nerve tissues (Sofroniew,

2009; Sofroniew & Vinters, 2010). Except for activated

microglia, hypertrophic reactive astrocytes that accumulate

around senile plaques are often observed both in

postmortem human tissue from ADs (Medeiros & LaFerla,

2013) and in animal models with the disorder (Olabarria

et al., 2010).

In addition to resident immune cells such as microglia and

astrocytes, there are also infiltrating immune cells in the brain.

Most infiltrating immune cells are mainly present in the border

regions of the brain, and immune infiltrating cells are absent in

the brain parenchyma under normal conditions (Cugurra et al.,

2021). These border region cells can affect the brain by secreting

cytokines, modulating adjacent epithelial and ependymal cells,

and altering cerebrospinal fluid composition. These cells are

involved in tissue homeostasis and may enter the brain

parenchyma when an abnormality occurs; therefore, they may

play a central role in promoting recovery and may also accelerate

the pathological process. Many previous studies have concluded

that inflammation has a damaging effect on neurons in the brains

of patients with AD and the usage of anti-inflammatory drugs

can reduce the risk of the disease (Aisen, 2002). In the past

decade, there have been several reports of anti-inflammatory

drugs, especially nonsteroidal anti-inflammatory drugs

(NSAIDs), for the treatment of AD. Multiple meta-analyses

have produced strong, generally consistent statistical evidence

that the use of NSAIDs has resulted in a halved or even lower risk

of developing AD (McGeer et al., 1996; Anthony et al., 2000).

Therefore, exploring the immunological differences between

patients with AD and controls may provide evidence for the

treatment of AD.

The entorhinal cortex is a vital link between the cerebral

cortex and hippocampus, and it plays a crucial role in the

formation and retrieval of memory (de Calignon et al., 2012).

The molecular mechanism of entorhinal cortex alterations is

significant for the prevention and treatment of AD. Our study

aimed to provide a landscape of different immune cell

compositions in the entorhinal cortex between patients with

AD and controls based on the transcriptomics and signature

genes of different immune cells by using the xCell algorithm

(Aran et al., 2017). Combined with correlation analysis, genes

related to immune microenvironment differences and the

potential therapeutic targets involved in therapy were further

identified. These results provide evidence to comprehensively

understand the association between immune infiltration and

disease in the brain parenchyma of patients with AD and to

obtain new ideas for its prevention and treatment.

Materials and methods

Data collection

The Gene Expression Omnibus (GEO) database is an

international public repository that archives and freely

distributes high-throughput gene expression and other
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functional genomics datasets (Clough & Barrett, 2016). It mainly

refers to gene sequencing data, including microarray, second-

generation sequencing, and third-generation sequencing data,

which can be downloaded by using the GEOquery package in

the R programming environment (Davis & Meltzer, 2007). The

GSE118553 dataset contain transcriptomic data of the entorhinal

cortex, temporal cortex, frontal cortex, and cerebellum brain

region from controls, asymptomatic AD, and AD subjects.

Neuropathological evaluation for neurodegenerative diseases

was performed in accordance with standard criteria (Patel et al.,

2019). Among them, transcriptomic data from the entorhinal

cortex of controls and ADs were extracted to support this

study. The characteristics of the entorhinal cortex tissue from

ADs and control samples in the GSE118553 dataset are shown in

Table 1. According to the data processing instructions, the

expression matrix was maximum likelihood estimation

background corrected by using the R package MBCB (Allen

et al., 2009), log2 transformed, and robust spline normalization

by using the R package Lumi (Du et al., 2008). The data were

annotated by using the GPL10558 platform. For multiple probes

corresponding to the same gene, the average value of all probes was

used as the gene expression value. The characteristics, such as age

and sex, were also obtained from the GSE118553 dataset. We

turned age into a categorical variable based on the median of it to

facilitate comparison of baseline differences between ADs and

controls. The differences between the two groups were studied

using Chi-square tests in R. Propensity score matching (PSM),

performed with the matching package, was applied to eliminate

baseline differences.

Immune-related differentially expressed
genes between Alzheimer’s diseases and
controls

Differentially expressed genes (DEGs) between 37 ADs and

24 controls were detected with the limma package based on the

cutoff criteria of a |log 2-fold change (FC)| > 0.5 and adjusted p

value <0.05 (Ritchie et al., 2015). The immune-related gene (IRG)

list was downloaded from ImmPort (https://www.immport.org/

home) (Bhattacharya et al., 2018). Immune-related DEGs

(irDEGs) were visualized using the Venn diagrams package

(Nagpal et al., 2021), and the function of irDEGs was

annotated by using Metascape (metascape.org), which is an

online bioinformatic pipeline for multiple gene lists that

allows effective gene function annotation and data-driven gene

prioritization decisions (Zhou et al., 2019).

Immune cells in samples

xCell, using a set of 10,808 genes for calculating the score of

64 immune and stromal cell types based on a novel gene

signature–based method, was used to calculate the scores for

immune cell infiltration in the entorhinal cortex tissue of each

sample (Aran et al., 2017). The gene markers of each cell type are

displayed in Supplementary Table S1 (Aran et al., 2017). According

to the cell gene markers, a total of 34 immune cell types can be

scored with xCell. A total of 21 of all immune cell types were

lymphoid cells. The different cell type scores between ADs and

controls were estimated with the Mann–Whitney U test, and a p

value <0.05 was considered statistically significant. t-Distributed

stochastic neighbor embedding (tSNE) analyses were performed

with all cell signature genes to visualize all samples in 2D maps by

using the tSNE algorithm (Kobak & Berens, 2019). Cell signature

differentially expressed genes (csDEGs) were selected and displayed

with a percent stacked bar chart.

Correlation between cell signature genes
and immune cells

To explore the gene potential causes of the differences in

immune cells between ADs and controls, Pearson correlation

analysis was used to assess the relationship between differentially

expressed signature genes and corresponding cell scores, with a p

value <0.05 considered statistically significant. The genes may

play critical roles in causing cell differences between ADs and

control. Similarly, the Pearson correlation analysis was

performed to reveal the correlation between myeloid cells and

lymphocytes in ADs, as well as the correlation between different

cell types. Correlations between genes and each cell type were

performed to detect potential genes that contribute to the

association between cell types.

Drug-targeted immune gene
identification and functional annotation

In this study, we used three properties to identify potential

therapeutic target immune genes. First, the gene is an immune

cell signature gene or associated with immune cells, which has

been obtained in the aforementioned analysis; second, the gene is

associated with AD, which can be determined with GeneCards

inferred functionality scores higher than 40 by the GeneCards

TABLE 1 Characteristics of the entorhinal cortex tissue in AD and
control samples in the GSE118553 dataset.

Controls ADs p

Age (=<80/> 80) 17/7 13/24 0.006

Sex (Male/Female) 12/12 14/23 0.348
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database (https://www.genecards.org/); last, the gene is the target

of drug action, which can be determined by the PharmGKB

database (Hewett et al., 2002). The functions of target genes were

annotated by Kyoto Encyclopedia of Genes and Genomes

(KEGG) functional enrichment analysis. The expression of

drug-targeted immune genes between the two groups is

shown as a boxplot with ggplot2. Receiver operating

characteristic (ROC) curves and areas under the ROC curve

(AUCs) were examined by the pROC package to determine the

predictive value of drug-targeted immune genes (Mandrekar,

2010). The relationship between potential targets and drugs was

visualized by using Cytoscape 3.5.1 (Shannon et al., 2003).

Prediction of candidate miRNAs

MicroRNAs (miRNAs) are small noncoding RNAs that

direct posttranscriptional repression of many mRNAs and

thereby regulate -diverse biological processes from cell

proliferation and apoptosis to organ development and

immunity (Bartel, 2009). We selected candidate miRNAs

whose expression levels were correlated with those potential

therapeutic target immune genes by using the ENCORI

database (https://starbase.sysu.edu.cn/). The miRNAs with

clipExpNum higher than t times and that regulated more than

two target immune genes were screened, and they were

considered to play critical value in participating in the

expression level of selected drug-targeted immune genes. The

expression of predicted miRNAs was obtained from GSE48552,

which includes early-stage and late-stage AD subjects. The

DESeq2 package was applied to detect differentially expressed

miRNAs at different stages and between females and males.

Results

irDEGs between patients with Alzheimer’s
disease and controls

In total, 31,426 mRNA expression profile data from

24 controls and 37 patients with AD in the GSE118553 dataset

were used for this study. The characteristics of all samples are

displayed in Table 1. There was a significant difference in age

between the two groups (p = 0.006), whereas no significant

difference was found in sex. The normalized mRNA expression

levels in all samples are shown in Supplementary Figure S1.

According to the screening criteria, 1,610 DEGs were detected

between patients and controls. Among these genes, 81 DEGs were

related to immunity. A heatmap of the differentially expressed

genes and a Venn diagram of the irDEGs are shown in Figures

1A,B. A KEGG functional enrichment analysis of irDEGs in

Metascape showed that these genes were significantly enriched

in several immune systemKEGG pathways, such as the chemokine

signaling pathway, interleukin (IL)-17 signaling pathway, Th17 cell

differentiation, B-cell receptor signaling pathway, hematopoietic

cell lineage, T-cell receptor signaling pathway, C-type lectin

FIGURE 1
Expression of IRGs in the entorhinal cortex for AD and control samples in the GSE118553 dataset. (A). Heatmap of 1,610 DEGs in the entorhinal
cortex for AD and control samples in theGSE118553 dataset. TheDEGswere filteredwith |log2 fold change (FC)| > 0.5 and adjusted p value <0.05. (B).
In total, 81 IRGs in DEGs are displayed with a Venn diagram. (C). In total, 12 immune system pathways were significantly enriched with 81 irDEGs.
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FIGURE 2
Immune cells in the entorhinal cortex between AD and control samples. (A). Comparison of the scores of immune cells between AD and control
samples: CD4+ Tc, CD4+ Te, Th1, NK, NKT, and pro-B cells, eosinophils, and Tregs were decreased in ADs (p < 0.05). In contrast, basophils, mast cells,
plasma cells, and macrophages had elevated scores (p < 0.05). (B). Comparison of immune cell scores between older and younger patients in AD
samples: no significant difference was detected. (C). Comparison of the score of immune cells between females andmales in AD samples: only
CD4+ Tem was significantly different between the two groups (p < 0.05).
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receptor signaling pathway, natural killer cell–mediated

cytotoxicity, Th1 and Th2 cell differentiation, Fc gamma

R–mediated phagocytosis, Toll-like receptor signaling pathway,

and platelet activation (Figure 1C). These results illustrate the

involvement of immunity in AD progression at the transcriptome

level.

Differences in immune cells between
patients with Alzheimer’s disease and
controls

Gene expression data were analyzed according to the xCell

algorithm to calculate 34 immune cell scores in each entorhinal

FIGURE 3
Correlation between differentially expressed marker genes and corresponding immune cells. (A) tSNE plot for AD and control individuals by
using immune cell markers. (B). DEG proportions in immune cell markers. (C) Difference in age was reduced after PSM. (D) Comparison of immune
cell scores between AD and control samples after PSM. (E) Results both before PSM and after PSM are displayed with a Venn diagram. After PSM,
changes in 11 immune cell scores were the same as before PSM.

Frontiers in Pharmacology frontiersin.org06

Zhang et al. 10.3389/fphar.2022.941656

95

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.941656


cortex sample, and 14 immune cell scores differed between the

two groups (Figure 2A). Among these immune cells, nine were

lymphocytes, and the remaining five were myeloid cells. Overall,

among the differential immune cell types, except for Th2 cells,

which were elevated in patients, most of the lymphocyte scores

decreased in ADs, including CD4+ Tc, CD4+ Te, Th1, natural

killer (NK), NK T- and pro-B cells, eosinophils, and regulatory

T cells. In contrast, most myeloid cells had elevated scores, except

for interstitial dendritic cells (iDCs). They included basophils,

mast cells, plasma cells, and macrophages. We also compared age

and sex differences in immune cell scores in AD samples and

found no significant differences in immune cell scores across age

groups (Figure 2B). There were no significant differences in

immune cell scores between sexes, except for CD4+ Tem

(Figure 2C). The results indicated that the immune differences

may be independent of sex and age. Using t-distributed stochastic

neighbor embedding (tSNE) to reduce the dimension of the data

according to the expression of the marker genes in the two

groups, patients and controls could be roughly distinguished.

(Figure 3A). The ratio of differential genes to cell marker genes is

shown in Figure 3B, and the number of csDEGs accounted for

less than 10% of the corresponding cell marker genes.

Considering the age difference between the AD and control

groups, we used PSM to perform 1:1 matching between the

two groups to investigate whether there was an effect of age

on immune infiltration. There were 18 samples in each group

after matching (Table 2), and there was no difference in age

(Figure 3C). We performed immune infiltration analysis using

xCell and found that most of the results were consistent

with those of prior matching (Figures 3D,E). The results

were different for eosinophils, mast cells, and NK cells, in

addition to significant differences in gamma delta T cells

(p < 0.05) and monocytes (p < 0.05). Since most of the

results did not significantly change after matching for age

considering that the reduction in sample size may lead to

poorer feasibility of the results, we used the data before

matching for further analysis.

Correlation between csDEGs and immune
cells

We explored whether the differences in immune cells were

caused by differentially expressed marker genes. The DEGs in the

different immune cells are shown in Figures 4A,B. In basophils,

mast cells, macrophages, and Th2 cells, most of the differential

marker genes were elevated in patients. This finding indicated

that the differences in these cells in the AD group may be related

to the different marker genes. We performed a correlation

analysis between the expression levels of the different marker

genes and the corresponding cell scores, and the results showed

that FBP2, GZMA, KCNJ9, and R3HDM1 were positively

correlated with these cells, whereas GRIN1, PMP2, ZMYND10,

ADCY2, PNMA3, RASL12, and SLC24A2 were significantly

negatively correlated (Figures 4C,D). The results also

suggested that these genes may contribute to cellular

differences between patients and controls.

Correlation in immune cells

To reveal the interrelationships between immune cells in AD

samples, we performed the Pearson correlation analysis between

intercellular scores in immune cells. The correlation between

myeloid cells and lymphoid cells is shown in Figure 5A, and there

was no significant correlation between myeloid cells and immune

cells (cor = 0.3, p = 0.07). The correlation between immune cells

is shown in Figure 5B. There was a close association between

differential immune cells, most of which were positively

correlated, such as basophils and iDCs, mast cells, NK cells,

pro-B cells, eosinophils, iDCs, pro-B cells, and Th1 cells. In

addition, Th2 cells were negatively correlated with NKT and

Th1 cells. We further explored the potential genes leading to cell-

to-cell correlation using the correlation analysis between marker

genes and cell scores. A total of 51 marker genes were

significantly associated with the differentially expressed cells

(Figure 5C). Among these genes, 37 immune genes were

associated with innate immunity.

Drug-targeted immune genes associated
with innate immunity

In the GeneCards database, there are 3,676 genes related to

AD according to the inferred functionality scores (>40).
Moreover, 2,500 genes were identified as drug targets in the

PharmGKB database. Through intersection analysis, we finally

identified eight potential therapeutic target genes acting on

innate immune cells: GABRA1, GRIN1, GRM4, BMPR1A,

GLB1, NTRK2, KCNN3, and TRPM3 (Figure 6A). According

to the enrichment analysis results in Metascape, BMPR1A

participated in cytokine–cytokine receptor interactions, fluid

shear stress, and atherosclerosis, Hippo signaling pathway,

signaling pathways regulating pluripotency of stem cells, and

the tumor growth factor (TGF)-beta signaling pathway

(Figure 6B). These pathways may play important roles in

the association with immune cells involved. The expression

TABLE 2 Characteristics of the entorhinal cortex tissue in AD and
control samples after propensity score matching.

Controls ADs p

Age (=<80/> 80) 11/7 11/7 1

Sex (Male/Female) 11/7 8/10 0.317

Frontiers in Pharmacology frontiersin.org07

Zhang et al. 10.3389/fphar.2022.941656

96

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.941656


FIGURE 4
Correlation between immune cells and related gene detection. (A). Differentially expressed marker genes in lymphoid cells. (B). Differentially
expressedmarker genes inmyeloid cells. (C). Heatmap of the correlation between differentially expressedmarker genes and corresponding immune
cells. (D). Plot of the correlation between differentially expressedmarker genes and corresponding immune cells: FBP2,GZMA, KCNJ9, and R3HDM1
are positively correlated with the corresponding cells. GRIN1, PMP2, ZMYND10, ADCY2, PNMA3, RASL12, and SLC24A2 were significantly
negatively correlated with the corresponding cells.
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levels of these eight genes in the AD and control groups are

shown in Figure 6C. GABRA1, GRIN1, and GRM4 were

significantly increased in AD, whereas BMPR1A, GLB1,

NTRK2, KCNN3, and TRPM3 were significantly decreased

(Figure 6C). The significant correlation between the eight

genes and immune cells is displayed in Figure 7. We

proceeded to test the diagnostic value of the gene expression

levels to detect AD in our cohort using the ROC analysis.

Almost all AUCs of genes were higher than 0.8, and the

AUCs for BMPR1A and TRPM3 were higher than 0.95,

confirming that these genes can predict AD with high

sensitivity and specificity, despite the small sample size

(Figure 8). There were 36 drugs targeting these eight genes,

including memantine, cycloserine, riluzole, and diclofenac

sodium, which have been reported to be beneficial in reducing

the incidence of AD (Figure 9).

Prediction of candidate miRNAs

miRNAs play a significant role in immune responses, such as

maturation, proliferation, differentiation, and activation. Using

the ENCORI database, we predicted miRNAs that may regulate

the expression of drug-targeted genes. A total of 14 miRNAs,

which may be involved in regulating gene expression and thus

affecting immune infiltration, were screened as those with

clipExpNum > 2 and that regulated > 2 target immune genes

(Figure 10A). They participate in the regulation of immune

infiltration by regulating the expression of BMPR1A, GLB1,

GRM4, and KCNN3. In GSE48552, 10 miRNAs were detected

from six early-stage AD patients and six late-stage AD patients,

and four miRNAs had different expression levels in different

disease states (Figure 10B). hsa-miR-320c was highly expressed in

early-stage AD, whereas hsa-miR-18a-5p, hsa-miR-18b-5p, and

FIGURE 5
Correlation between myeloid cells and lymphoid cells in ADs. (A). Plot of the correlation between myeloid cells and lymphoid cells: no
significant difference was detected (p = 0.07). (B). Heatmap of the correlation between immune cells: a close correlation between immune cells. (C).
Heatmap of the correlation between cell scores and genes: 51 marker genes were significantly associated with the differentially expressed cells.
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hsa-miR-491-5p were highly expressed in late-stage AD. We also

assessed the expression of those miRNAs between sexes in AD,

and no significant difference was detected (Figure 10C).

Discussion

In this study, we aimed to describe the immune cell landscape

and related genes that cause specificity in the entorhinal cortex

between patients with AD and control patients. We found that

81 irDEGs between patients with AD and controls, such as those

involved in chemokine signaling, IL-17 signaling, Th17 cell

differentiation, B-cell receptor signaling, hematopoietic cell

differentiation, T-cell receptor signaling, C-type lectin receptor

signaling, NK cell–mediated cytotoxicity, and Th1 and Th2 cell

differentiation, were enriched in several immune system

pathways. The immune cell landscape of brain tissues showed

that several lymphocyte scores were decreased in AD, including

CD4+ Tc, CD4+ Te, Th1, NK, NKT, pro-B cells, eosinophils, and

Tregs. Significantly increased basophils, mast cells, and plasma

cells, all of which are myeloid cells, were discovered in AD. The

involvement of innate immunity in AD progression has been

revealed at the transcriptomic level. In addition, the correlation

between marker genes and immune cells detected potential genes

that contributed to the immune specificity in the two groups. A

close correlation was observed between the differentially scored

immune cells. Finally, eight target genes and 36 drugs that may

act on innate immunity were identified, which showed a high

AUC in the identification of AD and may provide new strategies

for AD treatment.

Neuroinflammation has a significant effect on the

pathophysiology of AD (Heneka et al., 2015; Ransohoff, 2016;

Lindestam Arlehamn et al., 2019). Infiltrating immune cells in

border regions can affect the brain by secreting cytokines,

modulating adjacent epithelial and ependymal cells, and

altering cerebrospinal fluid composition (Cugurra et al., 2021).

These cells are involved in tissue homeostasis, and they may enter

the brain parenchyma when abnormalities occur. Studies have

shown that impaired meningeal lymphatic function may be a

factor in the aggravation of AD pathology (Louveau et al., 2016;

DaMesquita et al., 2018). Similarly, dysfunction of the meningeal

lymphatic system has been implicated in the pathogenesis of

FIGURE 6
Function and expression of drug-targeted genes associated with myeloid cells in AD. (A). Eight drug-targeted genes associated with myeloid
cells for AD were selected. (B). Pathways from KEGG analysis with 81 irDEGs associated with drug-targeted genes. (C). Boxplot displaying the
expression of eight drug-targeted genes in the entorhinal cortex between AD and control samples: GABRA1, GRIN1, and GRM4 are significantly
increased in AD samples, whereas BMPR1A, GLB1, NTRK2, KCNN3, and TRPM3 are decreased in AD samples.
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other classic autoimmune neurodegenerative diseases, such as

multiple sclerosis and autoimmune encephalitis (Hsu et al., 2019;

Schwartz et al., 2019). In AD, neuroinflammation is not a passive

system activated by the emergence of senile plaques and

neurofibrillary tangles but instead plays an equally (or greater)

role in the pathogenesis of plaques and tangles themselves

(Zhang et al., 2013). The important role of neuroinflammation

is supported by the findings that immune receptor genes, such as

TREM22 and CD33, are associated with AD (Bradshaw et al.,

2013; Griciuc et al., 2013; Guerreiro et al., 2013). Innate

immunity plays a major immune role in AD (Heppner et al.,

2015). Innate immune cell hyperexcitability was reported to be

associated with cognitive decline (Nam et al., 2022). In a murine

amyloidosis model, IFN-I signaling represents a critical module

within the neuroinflammatory network of AD and prompts

concerted cellular states that are detrimental to memory and

cognition (Roy et al., 2022). Collective histological,

bioinformatics and molecular analyses highlight the

permanent activation of microglia, the brain’s resident

immune cells, and the association of many AD risk

polymorphisms and rare variants with microglia and innate

immunity (Zhang et al., 2013; Huang et al., 2017). Scientists

have recognized these and have focused their efforts on therapies

aimed at modulating innate immunity. In the present study, we

found that the AD group had significantly lower scores for

eosinophils, macrophages, NK, NKT, and Treg cells, while

higher scores for basophils, mast cells, and macrophages in

AD were detected. This result also supports the important

role of innate immunity in the development of AD.

In addition to characterizing differences in immune cell

profiles between patients with AD and controls, we identified

eight genes with potential roles in innate immune cells and

36 drugs with potential therapeutic effects by correlation

analysis and combining the GeneCards and PharmGKB

databases. These genes and drugs may provide evidence for

the treatment of AD. BMPR1A encodes a morphogenetic

protein receptor. The ligands of these receptors are members

of the TGF-β superfamily involved in the regulation of cell

FIGURE 7
Plot of the correlation between eight genes associated with immune cells: there is a close correlation between genes and immune cells.
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proliferation, differentiation, and apoptosis and therefore play

essential roles during embryonic development and pattern

formation (Morikawa et al., 2016). TGF-β regulates a variety

of important cell and tissue functions, such as cell growth and

differentiation, angiogenesis, extracellular matrix production,

immune function, cell chemotaxis, apoptosis, and

hematopoiesis (Flanders et al., 1998). In this analysis, the

TGF-β signaling pathway was significantly enriched in KEGG

analysis, indicating its critical function in the neuroinflammation

of AD. Chemokines are cytokines that orchestrate innate and

adaptive immune responses and are differentially regulated

in several neuroinflammatory disorders (Charo & Ransohoff,

2006). Our previous analysis provides evidence regarding viral

infection in AD development (Sun et al., 2022). In our study,

we found that the differential expression of BMPR1 was

significantly related to the occurrence of AD, which may

FIGURE 8
ROC curve of eight genes in predicting AD samples: blue area represents the 0.95 CI value of each gene for the prediction of AD; red curve is the
ROC curve of eight genes in predicting AD; almost all AUCs of the gene were higher than 0.8, and the AUCs for BMPR1A and TRPM3 were higher
than 0.95.

FIGURE 9
Potential drugs of selected genes from the PharmGKB database: 36 drugs targeted these eight genes.

Frontiers in Pharmacology frontiersin.org12

Zhang et al. 10.3389/fphar.2022.941656

101

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.941656


provide new evidence for the treatment of AD in the future. In

our analysis, we also found that NPC2, METTL7A, and ARL5A

were highly expressed in patients with AD compared to controls.

According to previous reports, NPC2 is considered to be closely

related to lipid metabolism (Awan et al., 2022) and tumor

metastasis (de Araujo et al., 2021). The relevance of

METTL7A to lipid metabolism has also received attention (Yi

et al., 2020). APOE, a key gene in the development of AD,

encodes a multifunctional protein with central roles in lipid

metabolism (Liu et al., 2013). These studies all indicate that

lipid metabolism may play an important role in AD

development. ARL5A belongs to the ARF family, which are

members of the Ras gene superfamily of GTP-binding

proteins that are involved in a variety of processes, such as

cellular communication, endoplasmic reticulum binding,

vesicle transport, and protein synthesis (Lin et al., 2002; Wang

et al., 2005). The association between ARL5A and AD has not

been reported and needs to be further studied.

These results suggest that a number of drugs act on innate

immune cells through the eight immune genes identified and that

they may play an important role in the prevention and treatment

of AD. For example, memantine, cycloserine, riluzole, and

diclofenac sodium have all been reported to have beneficial

effects on reducing the incidence of AD. Memantine, an

N-methyl-D-aspartate receptor (NMDAR) antagonist, is

clinically quite effective for behavioral symptoms and is often

added to cholinesterase inhibitors to enhance their effects,

whereas aducanumab has recently been approved for

amyloidosis (Langa et al., 2004; Giacobini et al., 2022).

Aducanumab is used to mitigate the neurotoxicity associated

with AD and other neurodegenerative disorders. Memantine

blocks the NMDAR subtype of the glutamate receptor,

preventing excessive activation of the glutamate receptor while

allowing normal activity (Langa et al., 2004). Its blockade

antagonizes the overactive glutaminergic system in the central

nervous system (CNS), which is hypothesized to be involved in

FIGURE 10
Potential miRNAs regulated selected genes. (A). Potential miRNAs regulating selected genes were obtained from the ENCORI database. (B).
Expression of miRNAs between early-stage and late-stage ADs from GSE48552: hsa-miR-320c, hsa-miR-18a-5p, hsa-miR-18b-5p, and hsa-miR-
491-5p were differentially expressed between the two groups. (C). Expression of miRNAs between females and males ADs from GSE48552: no
significant difference was detected between the two groups.
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the neurotoxicity of AD. NMDA encephalitis is an important

autoimmune encephalitis, and its associated syndromes and

immune-mediated mechanisms have been described (Muñoz-

Lopetegi et al., 2020). Our results suggest that memantine may

exert a therapeutic effect by affecting GRIN1 expression in mast

cells. These results may offer new perspectives for the treatment

of NMDA autoimmune encephalitis and AD with memantine.

D-cycloserine exhibits partial agonist activity at the glycine site of

the NMDA subtype of the glutamate receptor, promoting

receptor activation and improving cognition and memory,

which has been validated as a cognitive benefit in patients

with AD (Bowen et al., 1992; Tsai et al., 1999). Riluzole, the

glutamate modulator, is FDA-approved for the treatment of

amyotrophic lateral sclerosis, with potential benefits for

cognition, aging, and structural and molecular markers of AD

(Matthews et al., 2021). Diclofenac is chemically related to the

finasteride class of NSAIDs and has been shown to improve

cognition in two independent studies using mouse models of AD

(Joo et al., 2006; Daniels et al., 2016). It is also associated with a

reduced risk of developing AD (Stuve et al., 2020).

miRNAs play important gene regulatory roles in animals and

plants by pairing with mRNAs of protein-coding genes to direct

their posttranscriptional repression (Bartel, 2009). Therefore, we

also predicted miRNAs that might regulate the expression of

drug-targeted genes. We found that these 14 microRNAs might

be involved in regulating gene expression, thereby affecting

immune infiltration. hsa-miR-320a, hsa-miR-495, and hsa-

miR-122-5p have been reported to be associated with

autoimmune disease-related outcomes (Yao et al., 2019;

Cordes et al., 2020; Ni & Leng, 2020; Fu et al., 2021). It is

noteworthy that the reports for hsa-miR-320a, hsa-miR-320b,

and hsa-miR-320c involved central immunity (Regev et al., 2018).

Our results predict the important role of autoimmunity in AD

development in the related assessment of miRNAs, and they

reveal powerful new endogenous combinatorial therapeutic

targets.

In conclusion, this study attempted to clarify the possible

mechanism of the immune microenvironment involved in the

occurrence and development of AD by analyzing the immune

microenvironment of the entorhinal cortex of patients with

AD and to describe the association between genes on drugs

and immune cells. However, this study still has certain

limitations. First, the application of drugs affects

transcriptome expression, but we were not able to obtain

reliable information on drug usage from GEO dataset.

Second, age may have an effect on immune infiltration, but

considering that the smaller sample size would lead to less

reliable results, our study did not use age-matched data for

analysis. Third, the results were not validated with biological

experiments, which are strictly limited by ethics. In the future,

we will further study the role of the immune

microenvironment in the pathogenesis of AD using more

samples and animal models. In conclusion, our study

describes the specificity of the immune cell landscape and

associated genes contributing to AD in the entorhinal cortex,

which provides new insights into the treatment of AD.
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Stroke is a common disease in clinical practice, which seriously endangers

people’s physical and mental health. The neurovascular unit (NVU) plays a key

role in the occurrence and development of ischemic stroke. Different from

other classical types of cell death such as apoptosis, necrosis, autophagy, and

pyroptosis, ferroptosis is an iron-dependent lipid peroxidation-driven new form

of cell death. Interestingly, the function of NVU and stroke development can be

regulated by activating or inhibiting ferroptosis. This review systematically

describes the NVU in ischemic stroke, provides a comprehensive overview

of the regulatory mechanisms and key regulators of ferroptosis, and uncovers

the role of ferroptosis in the NVU and the progression of ischemic stroke. We

further discuss the latest progress in the intervention of ferroptosis as a

therapeutic target for ischemic stroke and summarize the research progress

and regulatory mechanism of ferroptosis inhibitors on stroke. In conclusion,

ferroptosis, as a new form of cell death, plays a key role in ischemic stroke and is

expected to become a new therapeutic target for this disease.

KEYWORDS

stroke, neurovascular unit (NVU), ferroptosis, inhibitors, therapeutic target

Introduction

Stroke is a common disease in clinical practice, which seriously endangers people’s

health and is mainly divided into two subtypes, including ischemic and hemorrhagic

stroke (Peisker et al., 2017). Current evidence suggests that ischemic stroke accounts for

approximately 85% of the morbidity of stroke (Benjamin et al., 2018), mainly due to

cerebral blood circulation disorder, localized brain tissue necrosis or softening caused by
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ischemia and hypoxia, leading to corresponding nervous system

function defects (Sacco et al., 2013). Ischemic stroke is also a

serious disease with high mortality, and the resulting severe

cognitive and motor impairments can significantly burden

families and society (Owolabi et al., 2015; Donkor, 2018). The

post-ischemic brain is characterized by the accumulation of

amyloid plaques and neurofibrillary tangles, followed by the

development of dementia (Yang et al., 2019). Therefore,

ischemic stroke increases the neurological deficits in dementia

patients (Owolabi et al., 2015).

It is widely thought that the neurovascular unit (NVU)

plays a crucial role in the occurrence and development of

ischemic stroke (Iadecola, 2017), as well as in the remodeling

of blood vessels and nerves after stroke (Leigh et al., 2018).

The past decade has witnessed significant inroads in

pathological research on ischemic stroke with the discovery

of a new form of cell death in the NVU of ischemic stroke,

namely ferroptosis (Doll et al., 2017; Magtanong and Dixon,

2018; Zhou et al., 2021).

In recent years, ferroptosis has become a research hotspot

(Dixon et al., 2012). During ferroptosis, a high abundance of

unsaturated fatty acids on the cell membrane undergo lipid

peroxidation under ferrous iron or ester oxygenase, thereby

inducing cell death (Yang et al., 2016). The occurrence and

execution of ferroptosis depend on the interaction of amino

acid, lipid and iron metabolism (Ursini andMaiorino, 2020), and

its sensitivity is also regulated by several key pathways and

processes (Chen et al., 2021a). Ferroptosis is associated with

various diseases such as Parkinson’s disease (Mahoney-Sanchez

et al., 2021), tumor (Kim et al., 2016), and renal failure (Adedoyin

et al., 2018), and the development of these diseases can be

intervened by activating or inhibiting ferroptosis.

In ischemic stroke, pathological changes are closely related to

ferroptosis, such as iron metabolism disorder, lipid peroxidation,

and increased ROS (Hu et al., 2019; Ren et al., 2020). An

increasing body of evidence from recently published studies

substantiates the correlation between ferroptosis and stroke

(Hu et al., 2019; Ren et al., 2020). This review provides a

FIGURE 1
Schematic diagram of the pathological mechanism of ischemic stroke. Ischemic stroke triggers cascades of complex events that cause
oxidative stress and excitotoxicity due to the accumulation of ROS and calcium (Ca2+), blood-brain-barrier (BBB) breakdown and activated
inflammatory responses. Excessive ROS and Ca2+ lead to mitochondrial dysfunction and activation of apoptotic factors, ultimately leading to
apoptosis and necrotic cell death.
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comprehensive overview of the NVU of ischemic stroke and the

role of ferroptosis in ischemic stroke, providing new insights into

the application of ferroptosis in treating ischemic stroke.

NVU in ischemic stroke

Although significant progress has been made in better

understanding the mechanism of neuron injury and repair after

ischemia (Figure 1), there is still a lack of effective treatment for this

disease (Chan, 1996; Hu et al., 2017; Yang et al., 2017). In the past,

research on cerebral ischemic injury was mostly limited to neurons

(Yang et al., 2019) or different cell groups and structures in the brain

(Yang et al., 2017; Qin et al., 2019), ignoring the integrity of brain

function and the interaction between different structures. Recently, the

concept of the neurovascular unit as a newprotective target for ischemic

brain injury has been proposed (Cai et al., 2017; Zhao et al., 2020a).

The neurovascular unit is mainly composed of neurons, glial

cells (including astrocytes, microglia, oligodendrocytes), and the

blood-brain barrier (BBB, including vascular endothelial cells,

astrocytic end-foot processes, basal lamina and pericytes) to

maintain homeostasis of the central system (Pardridge, 1991),

and extracellular matrix that maintains the integrity of the brain

tissue environment (Lo and Rosenberg, 2009; Iadecola, 2017).

The NVU maintains the normal physiological function of

neurons and the repair of damaged neurons, which

emphasizes the importance of the interconnection and mutual

influence between neurons, glial cells and cerebrovascular

(Stamatovic et al., 2008; Lo and Rosenberg, 2009) and

provides the foothold for further study of neuron injury and

protection mechanism. Overall, the NVU plays a key role in the

clinical treatment of ischemic stroke and is increasingly valued by

researchers and clinicians (Iadecola, 2017).

Neurons

It is well-established that neurons are most vulnerable to

cerebral ischemia-reperfusion injury (CIRI) (Lo and Rosenberg,

2009) and are continuously affected by several pathological

reactions such as inflammation, excitatory amino acid toxicity,

and oxidative stress after CIRI (Rohnert et al., 2012). Among

them, excitatory amino acids include glutamate and aspartate

(Brann and Mahesh, 1994), glutamate is the main excitatory

neurotransmitter in the mammalian central nervous system,

which can have long-term effects on the structure and function

of neurons, and glutamate-mediated excitatory signal transduction

can affectmammalian brain functions, including cognition,memory

and learning. The release of a large number of excitatory amino acids

will activate plenty of ion channels and lead to persistent intracellular

Ca2+ level increase, cell damage and death, which is called excitatory

amino acid toxicity (Gillessen et al., 2002). While, this excitotoxicity

caused by excitatory amino acids is one of the earliest and widely

recognized molecular mechanisms of CIRI (Lai et al., 2014). When

the brain is in a state of ischemia and hypoxia, the release of

excitatory neurotransmitters is increased and reuptake is impaired

due to metabolic disorders, and eventually the level of excitatory

neurotransmitters in the ischemic region increases rapidly that leads

to aberrant activation of many Ca2+-dependent pathways and

initiation of apoptosis, necroptosis and autophagy processes in

the brain (Shen et al., 2022). Current evidence suggests that

neuronal death accounts for the poor prognosis in ischemic

stroke (Chen et al., 2020). Indeed, assessing the severity of an

ischemic stroke and the cause of death depends largely on the

number of neurons dying in the affected brain area (Lazarov and

Hollands, 2016).

Microglia

Microglia are innate immune cells in the brain, accounting

for approximately 5–20% of glial cells (Benveniste, 1997). The

main functions of microglia are to recognize pathogens,

phagocytose necrotic or apoptotic cells, remove damaged

neurons, tissue fragments, small and inactive synapses,

infected small molecules and macromolecules, regulate T cell

response, and induce inflammatory process (Nimmerjahn et al.,

2005). In addition, microglia have extensive connections with

other NVU cells (Thurgur and Pinteaux, 2019), which can

regulate the microenvironmental homeostasis of NVU, and

have positive significance for maintaining the barrier function

of BBB (Abdullahi et al., 2018). When an ischemic stroke occurs,

neurons activate microglia to differentiate into M1-and M2-

phenotypes by releasing certain soluble factors and

intracellular components (Akhmetzyanova et al., 2019; Qin

et al., 2019). It is well-established that M1-type microglia have

a pro-inflammatory and deleterious effect on the ischemic brain

(Yu et al., 2022), while M2-type microglia can reduce the

inflammatory response and exert neuroprotective effects

(Varin and Gordon, 2009; Soehnlein and Lindbom, 2010).

In addition, microglia can affect the activity of neurons by

releasing ATP and stimulating astrocytes to release glutamate to

increase the excitatory postsynaptic potential (Barakat and

Redzic, 2016; Illes et al., 2021). After cerebral ischemia,

microglia release many inflammatory factors (Soehnlein and

Lindbom, 2010), destroy the normal function of neurons and

damage vascular endothelial cells, thereby destroying the BBB

structure and aggravating brain edema (Yenari et al., 2010).

Oligodendrocytes

Oligodendrocytes are the myelinating cells in the central

nervous system (CNS) and originate from oligodendrocyte

progenitor cells (OPCs). OPCs can differentiate into

oligodendrocytes or astrocytes according to the environment
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(Hughes et al., 1988). Endothelial cells promote the proliferation

of OPCs by releasing trophic factors such as brain-derived

neurotrophic factor (BDNF) and basic fibroblast growth factor

(bFGF) (Dugas et al., 2008) and release vascular endothelial

growth factor A (VEGF-A) to promote oligodendrocyte

migration (Guo et al., 2008; Arai and Lo, 2009). The main

function of oligodendrocytes is to form an insulating myelin

sheath wrapping the axons in the CNS, assist in the efficient

transmission of bioelectrical signals, and maintain and protect

the normal function of neurons (Baumann and Pham-Dinh,

2001; Kuhn et al., 2019). Abnormalities in oligodendrocytes not

only lead to demyelinating lesions of the CNS but also cause

neuronal damage, psychiatric diseases, and even brain tumors

(Kuhn et al., 2019). Under ischemic conditions, the expression of

Nogo-A in oligodendrocytes is upregulated (Kern et al., 2013),

thereby inhibiting axonal remodeling, impairing neuronal

function, and triggering the early breakdown of BBB by

secreting matrix metalloproteinase-9 (Mandai et al., 1997;

Dewar et al., 2003).

Vascular endothelial cells

Vascular endothelial cells (VECs) constitute a monolayer of

specialized cells strategically positioned between the vascular wall

and the bloodstream (Kruger-Genge et al., 2019). Ischemic stroke

results from a combination of factors such as platelet adhesion

and aggregation and related release reactions (Del Zoppo, 1998),

fibrin protease activation, and fibrin formation after vascular

endothelial injury (Zhou et al., 2020). Under normal conditions,

certain active factors released by VECs play a protective role in

regulating vascular tension, coagulation, fibrinolysis, and

maintaining normal blood pressure and hemodynamics

(Sandoo et al., 2010). Once the vascular endothelium is

damaged, the exposed subendothelial layer can cause platelet

adhesion and aggregation, leading to thrombosis (Chen and

Lopez, 2005). The stimulated VECs can also release tissue

factors to promote the extrinsic coagulation process involving

coagulation factor XII and accelerate thrombosis (Lopes-Bezerra

and Filler, 2003). Notably, prolonged ischemia-hypoxia and

ischemia-reperfusion (I/R) can damage VECs (Zhou et al.,

2020). In addition, ischemia and hypoxia can induce the

expression of VEGF (Ramakrishnan et al., 2014), which can

promote the proliferation of VECs and participate in

angiogenesis, thereby suppressing ischemic stroke and playing

a neuroprotective role (Lopes-Bezerra and Filler, 2003; Zhou

et al., 2020).

Astrocytes

In glial cells, astrocytes perform multiple homeostatic

functions to maintain the survival and stability of the NVU

(Becerra-Calixto and Cardona-Gomez, 2017), exerting

neuroprotective, angiogenic, immunomodulatory,

neurogenic, and antioxidant effects with the ability to

modulate synaptic function (Daneman and Prat, 2015;

Becerra-Calixto and Cardona-Gomez, 2017). Under

physiological conditions, astrocytes release various

neurotrophic factors, which can repair damage to neurons

and VECs (Ye et al., 2018). During cerebral ischemia, the

energy supply of brain cells is insufficient, resulting in the

dysregulation of intracellular calcium and sodium pumps

(Peng et al., 2019). Because of the extensive gap junctions

and hemichannels in astrocytes, the gap junctions are

destroyed, and Ca2+ and toxic substances are rapidly

transmitted, causing astrocytes to release a large amount of

glutamate to aggravate the excitatory amino acid toxicity (Lim

et al., 2021). On the other hand, astrocytes are overactivated in

the acute phase of ischemia, eventually forming a glial scar

that hinders the repair of neurons (Sofroniew, 2009).

Pericytes

Brain pericytes are located in the center of the NVU and

respond by receiving, integrating and processing signals from

neighboring cells (Hamilton et al., 2010; Armulik et al., 2011;

Winkler et al., 2011). They are critical in maintaining the normal

function of the CNS and are involved in the formation and

maintenance of BBB, cerebral blood flow (CBF) regulation,

immunoregulation, angiogenesis, and stability. Overwhelming

evidence substantiates that the dysfunction and loss of pericytes

play a key role in the pathogenesis of various cerebrovascular

diseases (Winkler et al., 2011). It has been shown that after

ischemia, pericytes begin to detach from the cerebral

microvessels (Zhou et al., 2022), which causes the destruction

of tight junctions between cells, resulting in the destruction and

leakage of the BBB (Bergers and Song, 2005). The platelet-derived

growth factor receptor β (PDGFRβ) on pericytes is upregulated

after cerebral ischemia and can combine with PDGFβ secreted by
VECs to promote the recruitment and migration of pericytes for

neovascularization to promote maturation (Makihara et al., 2015;

Hutter-Schmid and Humpel, 2016). It has been shown that

pericytes begin to secrete VEGF within 24 h after ischemic

stroke, which promotes angiogenesis in the peri-infarct area

by activating VEGFR in endothelial cells (Shibuya, 2011; Yang

et al., 2017; Zhou et al., 2022). Under ischemic and hypoxic

conditions, pericytes can exhibit pluripotent stem cell properties

and participate in immune responses (Davidoff, 2019;

Fernandez-Morales et al., 2019). A recent study found that

TNF-α could promote the release of IL-6 from pericytes,

which contributed to the activation of microglia (Matsumoto

et al., 2018a).

This NVU theory emphasizes the important connection

between neurons, glial cells and microvessels after cerebral
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ischemia, corroborating that all components of NVU are

involved in the pathological process of cerebral ischemia

injury (Stamatovic et al., 2008; Mcconnell et al., 2017). This

connection is realized through cell-cell and cell-matrix

interaction. There are many chemicals involved in the

regulation of BBB permeability in different cell types of NVU.

These regulatory chemicals fall into different categories, such as

proinflammatory cytokines (e.g., TNF-α, IL-1, IL-6),

neurotransmitters (e.g., NO), ROS and other substances

(Table 1). Comprehensive treatment of NVU can effectively

combat ischemic stroke. Therefore, NVU provides a

theoretical basis for the current research and treatment of

neurological diseases, and targeting NVU from a global

perspective may bring new opportunities for treating ischemic

stroke.

Mechanisms and key regulators of
ferroptosis

Programmed cell death plays an important role in

homeostasis and disease development. Among them,

ferroptosis is a newly discovered form first proposed by

Stockwell et al., in 2012 (Dixon et al., 2012). Ferroptosis is

significantly different from other types of cell death such as

apoptosis, necrosis, autophagy, and pyroptosis at the

morphological, biochemical, and genetic levels (Dixon et al.,

2012). The morphological features of ferroptosis are mainly

manifested in mitochondria, including reduced volume,

increased membrane density, and reduced numbers or absence

(Chen et al., 2021a; Jiang et al., 2021). Regarding biochemical

characteristics, ferroptosis manifests as glutathione depletion,

TABLE 1 The functions and regulators of NVU.

NVU
components

Functions Regulators References

Neurons Critical in the regulation of BBB function, innervate
endothelial cells and their associated astrocytes.
Maintain the homeostasis of the brain
microenvironment, provide nutritional support for the
brainetc.

Mcl-1/Bcl-2, OXR1, P53/Caspase-3, TRAF3,
ADIPOR2etc.

Awooda et al. (Awooda et al., 2015)

Anilkumar et al. (Anilkumar et al.,
2020)

Cregan et al. (Cregan et al., 1999)

Astrocytes As a part of the blood-brain barrier, can connect
capillaries and neurons, participate in the nutritional
support of neurons and the regulation of
electrophysiological activities, and can secrete a large
number of neurotrophic factors and growth factors to
maintain the stability of the microenvironment and
repair after injury

AQP-4, TLR4, TGF-β, ADIPOR2, Nrf2, ApoE,
MCSF, IL-6, MCP-1, MMP-9, GFAP, GLT-1,
GLAST, PARsetc.

Becerra-Calixto et al.
(Becerra-Calixto and
Cardona-Gomez, 2017)

Hiroko (Ikeshima-Kataoka, 2016)

Cekanaviciute et al. (Cekanaviciute
and Buckwalter, 2016)

Microglia As an innate immune effector cell, microglia is
necessary for the normal development of the nervous
system

TLR, MHC-II, CD16/32, BDNF, GDNF, VEGF,
BMP-7, TGF-β, CSF-1, TNF-α, TNF-β, IGF-1,
NADPH oxidase, IL-1, IL-4, IL-5, IL-6, IL-8, IL-10,
pro-MMP-9, NO, ROSetc.

Kim et al. (Kim and De Vellis,
2005)

Hamel (Hamel, 2006)

Colonna et al. (Colonna and
Butovsky, 2017)

Kang et al. (Kang et al., 2020)

Oligodendrocytes Their main function is to wrap axons in the central
nervous system, form an insulating myelin structure,
assist in the efficient transmission of bioelectrical
signals, maintain and protect the normal function of
neurons

Nogo-A, CNTF, IGF-1, NT-3, PDGFetc. Nave et al. (Nave and Werner,
2014)

Plemel et al. (Plemel et al., 2014)

Vascular endothelia
cells (VECs)

As the physical barrier of the BBB, VECs are formed by
preventing cells and molecules from passively entering
the brain through tight junctions between cells

NF-κB, NO, Prostacyclin, EDHF, Eicosanoids,
TIMP-2, VCAM-1, ICAM-1, P-selectin, MMPsetc.

Onat et al. (Onat et al., 2011)

Henke et al. (Henke et al., 2007)

Kathrina et al. (Marcelo et al., 2013)

Pericytes Vital in the formation and maintenance of BBB
integrity, angiogenesis, and removal of toxic substances

Angiopoientin-1, MIF, Occludin, SIPT1, MRPetc. Rustenhoven et al. (Rustenhoven
et al., 2017)

Hori et al. (Hori et al., 2004)

Extracellular
matrix (ECM)

Mediating cell differentiation, proliferation, adhesion,
morphogenesis and phenotype

Collagen, Undulin, Tenascin, Fibronectin,
Dermatan sulfate, Decorinetc.

Bonnans et al. (Bonnans et al.,
2014)

Zhang et al. (Zhang et al., 2021a)

Basal lamina Located on the outside of the lumen of the cerebral
microvascular endothelium, it is composed of
extracellular matrix proteins secreted by VECs,
pericytes, and astrocytes, and is involved in the
regulation of vascular integrity

Collagen, Laminin, Fibronectin, Elastin,
Proteoglycans, Merosin, Dystroglycan, Nidogen,
Growth factors, MMPsetc.

Hoshi et al. (Hoshi and Ushiki,
2004)

Nguyen et al. (Nguyen et al., 2021)
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glutathione peroxidase 4 (GPX4) inactivation, and lipid peroxide

accumulation (Chen et al., 2021a; Jiang et al., 2021).

It has been confirmed that ferroptosis is closely related to

neurodegenerative diseases, tumors, cardiovascular and

cerebrovascular diseases, and acute kidney injury (AKI)

(Ward et al., 2014; Fang et al., 2019; Bao et al., 2021), and

its inhibitors can effectively delay disease progression and

improve clinical symptoms (Angeli et al., 2017). However, the

regulatory mechanism of ferroptosis has not yet been fully

elucidated. With significant progress achieved in the study of

ferroptosis, various regulatory factors and mechanisms have

been discovered, suggesting that it is mainly related to iron

metabolism disorder, amino acid antioxidant system

imbalance, and lipid peroxide accumulation (Figure 2)

(Dixon et al., 2012; Chen et al., 2021a). When iron

metabolism disorder causes the increase of intracellular free

iron, iron catalyzes the production of ROS through the Fenton

reaction, and ROS further promotes lipid peroxidation,

causing the accumulation of lipid peroxides and inducing

ferroptosis (Dixon et al., 2012; Stockwell et al., 2017; Chen

et al., 2021a). Indeed, an in-depth study and elucidation of the

pathophysiological mechanism of ferroptosis can provide new

ideas and treatment methods for ferroptosis-related diseases.

Iron metabolism

Iron metabolism disorders, especially iron overload, are key to

ferroptosis (Dixon et al., 2012). Fe3+ in the blood circulation is

combined with transferrin and transported to the cell through

transferrin receptor 1 (TFR1) on the cell membrane surface

(Beguin et al., 2014). Then Fe3+ is reduced to Fe2+ and released

into the labile iron pool (LIP) in the cytoplasm (Kakhlon and

Cabantchik, 2002), while excess iron is stored in ferritin (Jacobs et al.,

1972). During this process, nuclear receptor coactivator 4 (NCOA4)

acts as an adaptor protein to mediate the targeted transport of

ferritin to lysosomes for autophagic degradation, thereby releasing

free Fe2+, a process called ferritinophagy, mainly responsible for iron

release and recovery (Mancias et al., 2014). Part of Fe2+ is transported

out of cells through ferroportin1 (FPN1) on the cell membrane to

ensure that the intracellular iron concentration is not excessively

high under physiological conditions (Zhang et al., 2011; Zhang et al.,

FIGURE 2
Regulatory mechanisms of ferroptosis. The primary metabolism involved in ferroptosis can be roughly divided into three categories: iron
metabolism, System Xc−/GSH/GPX4 pathway, and lipid peroxidation. Besides, the FSP1-CoQ10-NAD(P)H pathway, which exists as an independent
parallel system with GPX4 and GSH, inhibits phospholipid peroxidation and ferroptosis.
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2012). Current evidence suggests that ironmetabolism disorders can

increase intracellular LIP and cause an increase in intracellular free

iron (Ravingerova et al., 2020).

Due to the instability and high reactivity of Fe2+, hydroxyl

radicals can be generated through the Fenton reaction (Thomas

et al., 2009), which can directly react with polyunsaturated fatty

acids (PUFAs) in the plasma membrane to generate a large

amount of lipid ROS (Magtanong et al., 2016), and further

promote lipid peroxidation and peroxide accumulation,

inducing cell ferroptosis (Stockwell et al., 2017).

System Xc−

The cystine-glutamate antiporter System Xc− is widely

distributed in the phospholipid bilayer of biological cells

(Bannai, 1986; Sasaki et al., 2002; Bridges et al., 2012). It is a

heterodimer composed of light chain solute carrier family seven

member 11 (SLC7A11) and heavy chain solute carrier family

three member 2 (SLC3A2) (Sato et al., 1999; Broer and Wagner,

2002; Verrey et al., 2004). The System Xc− can export intracellular

glutamate to the extracellular space while importing cystine into

the cytoplasm, where cystine is reduced to cysteine, which is

involved in glutathione (GSH) synthesis (Seib et al., 2011).

Glutathione peroxidase (GPX), whose active center is

selenocysteine, catalyzes the conversion of reduced GSH to

oxidized glutathione (GSSG), converting toxic peroxides into

hydroxyl compounds to protect cell membranes from oxidative

stress damage (Guan et al., 2017).

GPX4 is the only enzyme found in the GPX family that can

reduce peroxides in lipid membranes, and its antioxidant

effect is significantly higher than other family members

(Margis et al., 2008). In particular, GPX4 can degrade

hydrogen peroxide and other small molecule peroxides

induced by iron overload in cells, preventing ferroptosis

caused by the accumulation of ROS (Borchert et al., 2018).

The antioxidant activity of GPX4 depends on GSH, which acts

as an electron donor and converts toxic lipid hydroperoxide

into non-toxic lipid alcohol (L-OH) (Fei et al., 2020). When

System Xc− is blocked, glutamate and cystine cannot be

exchanged, resulting in the accumulation of intracellular

glutamate, decreased GSH synthesis and GPX4 activity,

thereby increasing ROS in lipids and inducing cell

ferroptosis (Forcina and Dixon, 2019).

Lipid peroxidation

Lipid peroxidation refers to the loss of hydrogen atoms of

lipids under the action of free radicals or lipid peroxidase,

resulting in the oxidation, fragmentation and shortening of

lipid carbon chains and the production of lipid free radicals,

lipid hydroperoxides (LOOH) and reactive aldehydes (such as

malondialdehyde and 4-hydroxynonenal) and other cytotoxic

substances, eventually cause lipid oxidative degradation reactions

that damage cells (Ayala et al., 2014). ROS are a group of

molecules with partially reduced oxygen, including peroxides,

superoxides, singlet oxygen, free radicals, etc., which cause cell

death by damaging DNA, RNA and lipid molecules (Su et al.,

2019; Villalpando-Rodriguez and Gibson, 2021). As a member of

intracellular ROS, lipid peroxides are the ultimate executors of

ferroptosis (Cheng et al., 2021). The deleterious effect of lipid

peroxidation is mainly reflected in the oxidative degradation of

two important biofilm components, including

phosphatidylethanolamines (PEs) and PUFAs (Gaschler and

Stockwell, 2017).

PUFA is the main component of phospholipids in cell and

organelle membranes and is also an important substrate for the

synthesis of PE (Stubbs and Smith, 1984). PUFA has a high

affinity for free radicals, and the hydrogen atoms between its

double bonds are easily oxidized by free radicals (Cunnane,

1994). The lipid peroxidation reaction of PUFA is roughly

divided into two stages (Kanner et al., 1987; Girotti, 1998;

Ayala et al., 2014). First, ROS acquire hydrogen atoms in

PUFA to generate lipid radicals (Yin et al., 2011);

subsequently, lipid radicals interact with oxygen molecules to

generate lipid peroxyl radicals (LOO-) (Chamulitrat and Mason,

1989). LOO- can reportedly abstract hydrogen atoms from other

PUFAs to form lipid radicals and lipid hydroperoxides

(Chamulitrat and Mason, 1989; Girotti, 1998). Moreover,

LOO- participates in the oxidation process of PUFAs, which

ensures that the lipid peroxidation of PUFAs exhibits the

characteristics of a cascade reaction (Yin et al., 2011).

However, the affinity between PE and free radicals is not

high, and oxidation sites need to be formed under the action of

two enzymes before lipid peroxidation occurs (Pratt et al., 2011).

First, long-chain acyl-Coa synthetase-4 (ACSL4) utilizes

arachidonic acid (AA) and adrenic acid (AdA) to synthesize

arachidonoyl-CoA (AA-COA) and adrenoyl-CoA (AdA-COA)

(Ma et al., 2021); then, AA/AdA-COA combines with PE to form

PE-AA/AdA under the catalytic action of

lysophosphatidylcholine acyltransferase 3 (LPCAT3) (Kagan

et al., 2017).

PE-AA/AdA is easily oxidized to cytotoxic PE-AA/AdA-

OOH by free radicals or Arachidonate 15-Lipoxygenase

(ALOX15), which promotes ferroptosis (Kagan et al., 2017).

LOX-mediated lipid hydroperoxide production has been

suggested to be involved in ferroptosis (Shintoku et al., 2017).

The accumulation of lipid peroxides, especially phospholipid

peroxides, is a hallmark event of ferroptosis (Shintoku et al.,

2017). High levels of ACSL4 and LPCAT3 have been detected in

various tumors, such as renal and liver cancer cells (Luo et al.,

2021). At present, the expression of these two enzymes has been

used to assess the sensitivity of various tumor cells to ferroptosis

(Yuan et al., 2016a; Doll et al., 2017; Kagan et al., 2017;

Magtanong and Dixon, 2018).
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Nrf2

Nuclear factor-E2-related factor 2 (Nrf2) is a transcription

factor with a leucine zipper structure, which plays a key anti-

oxidation role (Jaiswal, 2004). The activity of Nrf2 is strictly

regulated by Kelch-like ECH-associated protein 1 (Keap1)

(Kobayashi and Yamamoto, 2006). Under normal conditions,

Nrf2 binds to Keap1 and is inactivated with ubiquitination and

degradation in the proteasome (Zhang et al., 2004). Once in a

state of oxidative stress, Keap1 is degraded by autophagy to

release Nrf2 (Kaspar et al., 2009). Free Nrf2 rapidly translocates

to the nucleus, which binds to antioxidant response elements

(AREs) in the promoter region to drive antioxidant gene

expression, balance oxidative stress and maintain cellular

redox homeostasis (Kwak et al., 2007).

It is well-established that Nrf2 can regulate a variety of

antioxidant enzymes, such as superoxide dismutase (SOD),

catalase (CAT), glutathione peroxidase (GPX), glutathione

reductase (GR), NAD(P)H quinine oxidoreductase (NQO1)

and so on (Dhakshinamoorthy et al., 2000; Zhu et al., 2005).

Therefore, Nrf2 is considered an important regulator of

ferroptosis and a therapeutic target for tumors and

neurodegenerative diseases highly associated with oxidative

stress (Abdalkader et al., 2018; Song and Long, 2020).

P53

p53 has attracted much interest as a tumor suppressor molecule

since its discovery (Harris, 1996). The p53 molecule can induce

apoptosis and cell cycle arrest, exerting a strong tumor suppressor

effect (Chen, 2016). In 2015, Jiang et al. linked p53 to ferroptosis for

the first time (Jiang et al., 2015) and demonstrated that mutation of

p53 can inhibit the activity of System Xc−, downregulate the

expression of SLC7A11 (Jiang et al., 2015), and reduce the

activity of GPX4, thereby promoting lipid peroxidation and

inducing ferroptosis (Jiang et al., 2015). It is widely thought that

p53 is at the core of a powerful signaling network; it regulates the

sensitivity of cells to ferroptosis in different cell types and under

different stress factors through several independent signaling

pathways (Harris and Levine, 2005; Huang, 2021).

In addition to increasing sensitivity to ferroptosis, p53 appears to

have an opposing effect (Liu et al., 2020a). When cells undergo

cysteine deprivation, another signaling pathway is activated, with

increased expression of wild-type p53 to induce p21 transcription or

inhibit DPP4 binding to NOX1, ultimately inhibiting cell

susceptibility to ferroptosis (Wang et al., 2012; Badgley et al.,

2020). These two functions seem contradictory, but they are

unified in cells. On the one hand, ferroptosis, as a form of

regulated cell death, has physiological significance in the

evolution of species, and p53 can achieve the purpose of

removing abnormal cells and inhibiting tumorigenesis by

increasing the sensitivity of cells to ferroptosis (Jiang et al., 2015;

Liu et al., 2020a); on the other hand, when metabolic stress occurs,

p53 can reduce the sensitivity of cells to ferroptosis by enhancing the

ability to regulate ROS level to help normal cells survive the damage

induced by various stress factors and promote cell survival

(Tarangelo et al., 2018). Overwhelming evidence substantiates

that cell types and p53 mutation sites may influence the

mechanism of p53 in regulating cell ferroptosis (Wynford-

Thomas and Blaydes, 1998; Wang et al., 2008; Ji et al., 2022),

although the specific underlying mechanism warrants further study.

FSP1

Previous studies suggested that GPX4 and free radical

antioxidants regulate ferroptosis. Recently, Marcus Conrad and

José Pedro Friedmann Angeli’s team used a clonal expression

strategy to screen for genes that can inhibit ferroptosis caused by

loss of GPX4 in human cancer cells and found that flavoprotein

apoptosis-inducing factor mitochondria-related 2 (AIFM2) is an anti-

ferroptosis gene and renamed AIFM2 to ferroptosis suppressor

protein 1 (FSP1). FSP1, originally described as a pro-apoptotic

gene, showed the ability to inhibit ferroptosis induced by GPX4

knockout (Doll et al., 2019). In addition, the researchers found that

the main mechanism of FSP1 in inhibiting ferroptosis is to reduce

Coenzyme Q10 (CoQ10) with NAD(P)H, inhibit lipid peroxidation,

and resist the occurrence of ferroptosis (Doll et al., 2019). The FSP1-

CoQ10-NAD(P)H pathway exists as an independent parallel system,

which, together with GPX4 and glutathione, inhibits phospholipid

peroxidation and ferroptosis (Bersuker et al., 2019; Doll et al., 2019).

Their anti-ferroptosis properties have been widely used in the study

of anti-tumor therapy (Bersuker et al., 2019). Growing evidence

suggests that when GPX4 is inactivated, FSP1 can continue to

maintain tumor growth in vivo, while deletion of GPX4 and

FSP1 can inhibit tumor growth (Doll et al., 2019). As a novel

ferroptosis inhibitor, FSP1 provides a new direction for disease

research.

ACSL4

ACSL4 is a lipid metabolism enzyme required for lipid

peroxidation and belongs to the ACSL family (Lopes-Marques

et al., 2013). Current research suggests that PUFAs can be used as

substrates for lipid peroxidation (Ayala et al., 2014), and their

accumulation is a marker of ferroptosis; thus, the intracellular

PUFAs content determines the development of ferroptosis and

increased content can promote the progression of lipid

peroxidation-induced ferroptosis (Das, 2019; Kuang et al.,

2020). ACSL4 can activate free PUFAs and then complete the

peroxidation process of membrane phospholipids with the

participation of the other key enzymes, LPCAT3 and ALOX15

(Lee et al., 2021). Therefore, the ACSL4/LPCAT3/

ALOX15 pathway can promote lipid peroxidation-induced
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ferroptosis (Lee et al., 2021). Zhang et al. showed that PKCβII,
one of the isoforms of PKC (Steinberg, 2008), is an important

lipid peroxidation sensor activated by lipid peroxidation during

ferroptosis that can phosphorylate ACSL4 to amplify the effect of

lipid peroxidation, eventually inducing ferroptosis (Zhang et al.,

2022). This study also confirmed that the PKCβII-ACSL4
mechanism affects the efficacy of cancer immunotherapy by

regulating ferroptosis (Zhang et al., 2022).

Other regulatory mechanisms

Heat shock proteins (HSP) are a class of highly conserved

molecular chaperones expressed in response to environmental

stress and render cells resistant to different types of cell death

(Feder and Hofmann, 1999). For example, HSPB1 can inhibit

ferroptosis by reducing iron uptake (Sun et al., 2015);

HSPA5 binds to and stabilizes GPX4, thereby indirectly

avoiding the damage of lipid peroxidation in ferroptosis (Zhu

et al., 2017); however, the HSP9 inhibitor CDDO can inhibit

ferroptosis in tumor cells, suggesting that HSP90 may play a

different role in ferroptosis (Qin et al., 2015).

Mitochondria have been reported to participate in the

pathogenesis of ferroptosis (Gao et al., 2019). CDGSH iron-

sulfur domain 1 (CISD1) is a class of mitochondrial iron-

exporting proteins that inhibit ferroptosis by preventing the

accumulation of iron and the production of ROS in

mitochondria (Yuan et al., 2016b). In addition, voltage-

dependent anion channels (VDACs) located in the

mitochondrial outer membrane play an important regulatory

role in ferroptosis (Lemasters, 2017). It has been shown that

Erastin, a ferroptosis inducer (Shibata et al., 2019; Zhao et al.,

2020b), can act on VDAC to promote the release of a large

number of oxides, causing ROS-dependent mitochondrial

dysfunction and bioenergy exhaustion to induce ferroptosis

(Zhao et al., 2020b), while the reduction of VDAC expression

can reduce the occurrence of Erastin-induced ferroptosis (Yang

et al., 2020).

Epigenetics is a key factor in regulating gene expression, and

more and more research results show that epigenetic regulation

(e.g., DNA methylation, histone modification and miRNA) plays

an important role in ferroptosis (Jaenisch and Bird, 2003; Wu

et al., 2020). DNA methylation is the most widely studied

epigenetic modification. Increased DNA methylation may lead

to gene silencing, while decreased methylation activates gene

expression (Newell-Price et al., 2000), and DNA methylation is

closely related to iron metabolism and can control the expression

of ferroptosis-related genes (e.g.,GPX4 and SLC7A11) to regulate

ferroptosis (Zhao et al., 2022). Currently, DNA methylation is

widely used as a diagnostic, predictive, and prognostic biomarker

for multiple cancers (Huo et al., 2019). According to the histone

modification studies, it was found that reducing histone 2A

ubiquitination (H2Aub) on the SLC7A11 promoter can

downregulate SLC7A11 and prevent ferroptosis (Zhang et al.,

2019a); the histone 2B monoubiquitination (H2Bub1)

modification is significantly down-regulated during the

induction of ferroptosis, and artificial inhibition of

endogenous H2Bub1 can significantly increase the sensitivity

of cells to the ferroptosis inducer Erastin (Wang et al., 2019); in

addition, histone deacetylase (HDAC) can regulate iron

metabolism by inhibiting HAMP gene expression (Sukiennicki

et al., 2019). There are also many studies reporting that a large

number of microRNAs (miRNAs) can regulate ROS metabolism

and ferroptosis (Zhang et al., 2020a). Mitofusin (Mfn) is a key

protein that maintains mitochondrial morphology, regulates

cellular lipid metabolism, endoplasmic reticulum stress and

ROS generation (Papanicolaou et al., 2011), and plays a

potential role in ferroptosis (Wei et al., 2020). miR-195, miR-

125a and miR-761 have all been reported to regulate the

mitochondrial function and metabolism of breast cancer cells,

pancreatic cancer cells and liver cancer cells by targeting Mfn2,

respectively, and affect the growth of tumor cells (Guo et al.,

2017; Pan et al., 2018; Purohit et al., 2019); miR-137 can

negatively regulate ferroptosis by directly targeting glutamine

transporter SLC1A5 in melanoma cells (Luo et al., 2018). These

further reveal the miRNA regulation role in ferroptosis, which

contributes to an in-depth understanding of the mechanism of

ferroptosis.

Ferroptosis in ischemic stroke

An increasing body of evidence from recently published studies

suggests that ferroptosis is closely related to various diseases, such as

tumor and neurological diseases (Ward et al., 2014; Fang et al., 2019;

Bao et al., 2021). On the one hand, ferroptosis inducers can induce

ferroptosis in abnormal cells, and tumor cells are highly sensitive to

ferroptosis (Wu et al., 2019). Accordingly, ferroptosis can be induced

in tumor cells to treat tumors. Non-targeted strategies based on

nanoparticles have been designed to deliver iron, peroxides and

other toxic substances to kill tumor cells (Zhang et al., 2019b; Raj

et al., 2021).

The discovery of various enzymes regulating ferroptosis has

enabled the targeted therapy of tumors, the most prominent

target being GPX4, which is expressed in most tumor cells and is

important for cell survival (Zhang et al., 2020b). GPX4-deficient

cancer cells can be efficiently eliminated by the FSP-specific

inhibitor iFSP1, while in GPX4-expressing cancer cells,

iFSP1 cooperates with RSL3 to induce cancer cell ferroptosis

(Gaschler et al., 2018). Therefore, FSP1 inhibitors may have

clinical applications, especially for treating drug-resistant tumors

or tumors that exhibit de-differentiation characteristics (Wang

et al., 2021a). In addition, pharmacological or genetic inhibition

of system Xc− to prevent the development and metastasis of

various tumors has yielded good efficacy and low toxicity in

mouse models (Zhu et al., 2019).
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On the other hand, ferroptosis inhibitors can inhibit

ferroptosis in normal cells and can be used to prevent or treat

neurological diseases (Angeli et al., 2017). Studies have found

that ferroptosis is associated with Parkinson’s disease (Mahoney-

Sanchez et al., 2021). Ferroptosis is an important cell death

pathway of dopaminergic neurons (Do Van et al., 2016), and

the ferroptosis inhibitor ferrostatin-1 can reportedly inhibit

neuronal cell death in vitro and in vivo (Reichert et al., 2020).

Interestingly, it has been reported that many pathological

features of Alzheimer’s disease are associated with an

imbalance in iron homeostasis, and iron overload in the brain

may be responsible for the rapid cognitive decline in Alzheimer’s

patients (Belaidi and Bush, 2016). Water maze experiments

showed that mice with GPX4 knockout in the cerebral cortex

and hippocampal neurons showed significant cognitive

impairment and degeneration of hippocampal neurons. The

degree of neurodegeneration was reduced after treatment with

Vitamin E or the ferroptosis inhibitor Liproxstatin-1 (Hambright

et al., 2017; Lane et al., 2018). These studies suggest that

ferroptosis is widely involved in regulating the functions of

neurons related to learning and memory.

It has been established that the levels of intracellular lipid

peroxides and Fe2+ are increased during stroke, and

ferroptosis inhibitors can upregulate the levels of GSH,

GPX4 or system Xc− to alleviate brain damage, indicating

that ferroptosis affects the progression of stroke (Magtanong

and Dixon, 2018; Zhang et al., 2021b). Studies have shown that

ferroptosis inhibitors protect mice from ischemia-reperfusion

injury in a middle cerebral artery occlusion (MCAO) model

(Tuo et al., 2017), suggesting that ferroptosis can lead to

neuronal death and NVU damage after ischemic stroke (Xu

et al., 2022). Understanding the roles of iron metabolism,

amino acid metabolism, and lipid metabolism of ferroptosis in

ischemic stroke provides theoretical support for treating this

disease (Jiang et al., 2021). The following content specifically

discusses the role of ferroptosis in ischemic stroke (Figure 3).

Iron metabolism and ischemic stroke

It is well-established that iron homeostasis in the brain is

disrupted after ischemic stroke, which impedes NVU

FIGURE 3
Themechanisms of ferroptosis in ischemic stroke. Following ischemic stroke, the BBB is disrupted, which allows Fe3+ in the blood to be released
into cells through TF and TFR1, then stored in the endosome, where Fe3+ is converted into Fe2+ and transported to the cytoplasm by DMT1 with the
cooperation of STEAP3. The excess Fe2+ generates ROS and participates in the synthesis of PUFA lipid peroxides (L-OOH), which can induce
ferroptosis; System Xc− is simultaneously impaired, which inhibits cystine-glutamate exchange and reduces the generation of GSH and GPX4,
thereby inhibiting lipid alcohol (L-OH) production, ultimately leading to ferroptosis. Additionally, the Nrf2 pathway can inhibit ferroptosis and alleviate
ischemic stroke injury by inducing GSH, SLC7A11, and GPX4 transcription.
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recovery (Hu and Song, 2017). Intracellular iron overload is

the main mechanism for inducing ferroptosis after cerebral

ischemia, and the inhibition of iron overload can suppress

ferroptosis in ischemic stroke and reduce damage (Fang

et al., 2018). Under pathological conditions of ischemia

and hypoxia, the expression of ferritin, transferrin, and

TFR1 in the brain is increased, resulting in increased iron

uptake by neurons and oligodendrocytes in the NVU

(Kawabata, 2019; Ng et al., 2019). The acidic environment

of ischemia and hypoxia can cause the overexpression of

divalent metal-ion transporter 1 (DMT1) in microglia (Rotin

et al., 1986; Chang et al., 2006), resulting in increased brain

iron content (Cheli et al., 2018); meanwhile, ischemia can

upregulate TFR1 levels, resulting in increased iron uptake

(Chen et al., 2019; Tang et al., 2021).

There is a rich literature available suggesting that serum

hepcidin and iron concentrations are elevated in patients with

ischemic stroke, indicating that hepcidin is critical in cerebral

ischemic iron overload (Davalos et al., 1994; Petrova et al.,

2016). During ischemic stroke, the expression of interleukin-6

(IL-6) in cells increases hepcidin through the JAK/

STAT3 pathway (Cojocaru et al., 2009), which causes

FPN1 degradation, resulting in reduced iron release and

thus intensified iron accumulation in cells (Cojocaru et al.,

2009; Zhou et al., 2017). Therefore, the rational application of

iron metabolism inhibitors, such as deferoxamine and iron

chelators, to reduce the iron content in the brain after an

ischemic stroke can reduce neuronal death and promote the

recovery of NVU function after ischemic stroke (Jones et al.,

2020; Roemhild et al., 2021; Yang et al., 2021).

In 2017, Tuo et al. revealed the relationship between Tau

and ferroptosis and the role of ferroptosis in CIRI using the

MCAO mouse model (Tuo et al., 2017). Tau can promote

neuronal iron efflux and inhibit ferroptosis, which may

be related to the reduction of tau caused by cerebral

ischemia. Meanwhile, ferroptosis inhibitors liproxstatin-1

(Lip-1) or ferrostatin-1 (Fer-1) can significantly reduce

neurological damage, indicating that ferroptosis can

aggravate CIRI.

After ischemic stroke, the BBB is destroyed, leading to

cerebral edema and aggravating brain tissue damage and

neurological dysfunction (Abdullahi et al., 2018).

Numerous studies have shown that systemic iron pools are

transferred to neurons in the brain parenchyma when the BBB

is disrupted, thereby exacerbating ferroptosis. Accordingly,

changes in iron content in brain tissue reflect the degree of

BBB dysfunction (Degregorio-Rocasolano et al., 2019). Iron

accumulation accompanies the entire pathological process,

and iron metabolism is considered an important

pathophysiological factor involved in secondary injury after

ischemic stroke (Waldvogel-Abramowski et al., 2014;

Roemhild et al., 2021).

Amino acid metabolism and ischemic
stroke

As the brain’s most abundant excitatory neurotransmitter,

glutamate is a critical regulator in maintaining neural function

(Zhou and Danbolt, 2014). NVU damage and death caused by

excessively high extracellular glutamate concentration is known

as excitotoxicity (Yang et al., 2019). In ischemic stroke, when the

brain is in a state of ischemia and hypoxia due to metabolic

disorders, glutamate release is increased, and reuptake is

hindered, resulting in a rapid increase in glutamate levels in

the ischemic area of the brain (Castillo et al., 1996). Subsequent

activation of glutamate receptors leads to abnormal activation of

several signaling pathways and iron deposition to stimulate cell

death (Griesmaier and Keller, 2012; Willard and Koochekpour,

2013). Therefore, glutamate excitotoxicity is widely thought to be

one of the mechanisms of ferroptosis (Zhang et al., 2021c).

Indeed, glutamate excitotoxicity after cerebral ischemia,

described as ferroptosis, can be effectively suppressed by the

ferroptosis inhibitor Fer-1 (Xie et al., 2022).

As mentioned above, system Xc− has a positive effect on

inhibiting ferroptosis; however, the increase of extracellular

glutamate content caused by cerebral ischemia is mainly

caused by system Xc− (Ikeda et al., 1989), and inhibiting the

expression of system Xc− can hinder ferroptosis, thereby

reducing cerebral ischemia damage (Vespa et al., 1998).

Domercq et al. showed that system Xc− was upregulated in

astrocytes and microglia in a rat model of stroke, while its

inhibition reduced inflammation and attenuated CIRI (Matute

et al., 2006; Martin et al., 2018). It can be concluded that the

increased expression of System Xc− during cerebral ischemia does

not inhibit but promote the occurrence of ferroptosis, which may

be due to the upregulated expression of System Xc−, leading to the

excitotoxic effect caused by glutamate release exceeding its own

antioxidant protective effect (Polewski et al., 2016).

In addition, GSH, as an endogenous inhibitor of ferroptosis,

is reportedly related to ischemic stroke (Zhang et al., 2021b).

Enhancing the expression of GPX4 and GSH synthesis can

inhibit ferroptosis and reduce ischemic stroke injury (Zhang

et al., 2021b). Increased lipid peroxidation levels and decreased

GSH levels have been detected in an MCAO model (Liu et al.,

2020b). Moreover, Edaravone has been proposed to counteract

ferroptosis in various conditions, especially in cystine deficiency

leading to decreased GSH content, and has been clinically

approved for the treatment of acute ischemic stroke (Kikuchi

et al., 2009; Matsumoto et al., 2018b). In addition, selenium (Se)

can effectively enhance and maintain the activity of GPX4

(Ferguson et al., 2012; Liu et al., 2021). After ischemic stroke,

Se supplementation can effectively inhibit GPX4-dependent

ferroptosis and endoplasmic reticulum (ER) stress-induced cell

death and improve NVU function by promoting

GPX4 expression (Alim et al., 2019). In recent years, much
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emphasis has been placed on understanding the direct effects of

GPX4 and GSH on stroke.

Lipid metabolism and ischemic stroke

Lipid peroxidation is a key driver of ferroptosis, stimulated by

oxidative stress (Lee et al., 2021). ROS can accumulate to toxic

levels during oxidative stress, leading to cellular damage and

dysfunction, whereas antioxidants can prevent cellular damage

by converting ROS into harmless molecules (Conrad et al., 2018).

ROS are produced in large quantities during ischemic stroke,

along with decreased levels of endogenous antioxidants, leading

to oxidative stress (Cadenas, 2018). For example, the 1,2,4-

triazole derivative compound 11 can exert a neuroprotective

effect by promoting the expression of Nrf2 and SOD to induce an

antioxidant effect (Lao et al., 2022). During a stroke, AA and AdA

on the cell membrane can generate lipid peroxides through a

series of reactions (Mccall et al., 1987; Nishizawa et al., 2021).

Growing evidence suggests that ACSL4 and LOX, especially 12/

15-LOX, are increased in ischemic stroke (Jin et al., 2008; Singh

and Rao, 2019).

LOX is a key enzyme that causes lipid peroxidation and

induces ferroptosis (Shintoku et al., 2017). It has been reported

that 12/15-Lox gene deletion can reduce the infarct size after

stroke (Singh and Rao, 2019). Additionally, 12/15-LOX were

highly expressed in a cerebral ischemia model, and their

inhibitors could inhibit the damage of ferroptosis to NVU

cells (Jin et al., 2008). For example, the specific inhibitor

ML351 has been reported to exert a protective effect against

CIRI (Tourki et al., 2021). Moreover, ACSL4 participates in the

synthesis and remodeling of PEs, thus affecting the synthesis of

lipid peroxides, and upregulation of its expression can contribute

to ferroptosis (Kuwata et al., 2019). It has been shown that in

ischemic stroke, ACSL4 is upregulated and mediates neuronal

death, ultimately leading to stroke injury (Li et al., 2019).

Moreover, the ACSL4 inhibitor rosiglitazone can inhibit

ferroptosis and protect brain function (Li et al., 2019). Cui

et al. found that knockout of ACSL4 protects mice from

cerebral ischemia, whereas its overexpression can exacerbate

brain damage (Cui et al., 2021). Other studies have found that

the accumulation of Fe2+ and ROS decreased, the expression of

ACSL4 and TFR decreased, and GPX4 and FTH1 increased in

MCAO model cells treated with safflower flavin thus inhibiting

neuronal ferroptosis in MCAO (Li et al., 2021).

These findings suggest that both ACSL4 and LOX involved in

lipid metabolism can serve as innovative therapeutic targets for

ischemic stroke (Cui et al., 2021), inhibiting ferroptosis by

reducing ROS accumulation and lipid peroxidation, providing

new ideas for the treatment of ischemic stroke (Li et al., 2021).

Additionally, mounting evidence suggests that Nrf2 is an

important regulator of the cellular antioxidant defense system

(Abdalkader et al., 2018), and its moderate activation is beneficial

in alleviating cerebral ischemic injury (Lao et al., 2022). Although

little evidence is available that changes in Nrf2 levels directly

affect ferroptosis in stroke, several studies have suggested that the

Nrf2 pathway can alleviate stroke injury (Shih et al., 2005; Liu

et al., 2018; Lao et al., 2022). It has also been shown that

Epicatechin can regulate oxidative stress through the

Nrf2 pathway via penetrating the BBB, thus protecting against

transient cerebral ischemic injury (Chang et al., 2014).

Treatment of ischemic stroke by
targeting ferroptosis

With the gradual recognition of the role of ferroptosis in

ischemic stroke, treating ischemic stroke by inhibiting ferroptosis

has become a research hotspot. As the pathological stimulus

signals of ischemic stroke, ischemia, hypoxia and hypertension

can all lead to brain damage (Khoshnam et al., 2017), during

which local brain tissue metabolism changes, such as the

reduction of GSH, GPX4 and tau proteins, and the increase of

lipoxygenase (LOX) and BBB permeability, specifically

manifested as iron overload and the enhancement of lipid

peroxidation, that boost the generation of ROS and ultimately

trigger ferroptosis-related cell death (Magtanong and Dixon,

2018). In addition, the restoration of normal blood circulation

after ischemic stroke for a period of time will lead to CIRI (Lo and

Rosenberg, 2009). Cerebral ischemia-reperfusion will lead to the

activation of a variety of cell death pathways, including

ferroptosis (Chen et al., 2021b). The phenomenon of

increased lipid peroxidation and increased intracellular iron

levels contribute to amplify the cerebral oxidative stress and

inflammatory response, that further aggravate neuronal injury

during reperfusion. Therefore, ferroptosis mediates and

aggravates ischemic stroke injury (Figure 4). Major

therapeutic advances include ferroptosis inhibitors, iron

homeostasis regulators, lipid peroxidation pathway inhibitors,

and ROS generation inhibitors. Table 2 summarized some key

factors related to regulating ferroptosis, as well as therapeutic

reagents in stroke and their functional mechanisms.

Current evidence suggests that ferroptosis inhibitors Fer-1 or

Lip-1 can effectively reduce brain damage after reperfusion in a

mouse model of ischemic stroke (Tuo et al., 2017; Feng et al.,

2019), and Edaravone can be used to treat patients with acute

ischemic stroke (Enomoto et al., 2019; Kobayashi et al., 2019).

Mechanistic studies have suggested that Edaravone can scavenge

free radicals and inhibit lipid peroxidation, thereby inhibiting

oxidative damage (Kikuchi et al., 2013). Moreover, the

intravenous administration of Edaravone after I/R in rats

prevented the progression of cerebral edema and cerebral

infarction, alleviated the accompanying neurological

symptoms, and inhibited delayed neuronal death (Watanabe

et al., 2018). In recent years, iron chelation therapy has been

shown to suppress ferroptosis in a CIRI model (Cappellini et al.,
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2006; Grignano et al., 2020). Deferoxamine (DFO), a high-

affinity iron chelator with the ability to bind to free iron ions

to form stable complexes that weaken the Fenton response, has

been approved by the U.S. Food and Drug Administration (FDA)

for the treatment of iron overload-related diseases (Hanson et al.,

2009; Tevlin et al., 2021). The ferroptosis inhibitor deferoxamine,

which also acts as an iron chelator, improved cognitive

impairment after stroke in diabetic rats with MCAO (Hanson

et al., 2009). In addition, CoQ10 was found to possess beneficial

effects in a rat MCAO model and improved the prognosis of

neurological impairment in patients with acute ischemic stroke

(Nasoohi et al., 2019). Therefore, as an endogenous lipid-soluble

antioxidant, CoQ10 can effectively inhibit lipid peroxidation and

is expected to be a drug that hinders ferroptosis (Littarru and

Tiano, 2007; Rizzardi et al., 2021). Another drug inhibiting

ferroptosis during ischemic stroke is Se (Ramezani et al.,

2021). Alim et al. found that Se supplementation activates

GPX4 homeostatic transcription in vivo, inhibiting cellular

ferroptosis and improving neurological function (Alim et al.,

2019). Octreotide has anti-inflammatory and antioxidant effects

and protects the brain from cerebral ischemic injury by activating

the Nrf2/ARE pathway (Wang et al., 2015). In patients with

cerebral ischemic injury, melatonin has been reported to reduce

nerve cell ferroptosis by increasing Nrf2, and significantly

improve the learning, memory and cognitive abilities (Koh,

2008).

Intriguingly, several traditional Chinese herbal medicines

have also been shown to inhibit ferroptosis in ischemic stroke.

The monoterpenoid phenol carvacrol has been reported to

effectively reduce ROS expression, reduce iron deposition and

elevate GPX4 levels, thereby protecting hippocampal neurons

from CIRI (Friedman, 2014; Li et al., 2016). Galangin inhibition

of ferroptosis by activating SLC7A11/GPX4 can reportedly

attenuate CIRI (Guan et al., 2021). In addition, Naotaifang

extract has been reported to inhibit neuronal ferroptosis by

downregulating TFR1/DMT1 and upregulating the SCL7A11/

GPX4 pathway, thereby improving neurological function in post-

ischemic rats (Lan et al., 2020).

Although these traditional Chinese medicines have not been

clinically validated to improve the condition of ischemic stroke

FIGURE 4
Possiblemolecularmechanisms of ferroptosis and potential therapeutic targets in ischemic stroke. The decrease of GSH, GPX4, tau protein, and
the increase of lipoxygenase (LOX), and BBB permeability, can lead to the occurrence of ferroptosis in ischemic stroke. Iron chelators like
deferoxamine (DFO), ciclopirox (CPX) and 2,2-bipyridyl (2,2-BP) can inhibit ferroptosis; Lipoxygenase inhibitors like Baicalein, Vitamin E, ML351 and
Zileuton can suppress LOXs activity to rescue cells from ferroptosis; Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) inhibit radical-trapping
antioxidants which activate LOXs to prevent ferroptosis in cells.
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patients, their safety and lack of toxicity may facilitate their

clinical translation (Fung and Linn, 2015).

Outlook

Ischemic stroke is a common disease that seriously endangers

human health, and its incidence has increased in recent years

(Sacco et al., 2013). Its complex pathological process and related

mechanisms have become a research hotspot (Peisker et al., 2017;

Yang et al., 2019). Thrombolytic therapy for cerebral ischemic

injury has been limited by the narrow therapeutic time window,

CIRI induction, and a high risk of hemorrhagic transformation,

emphasizing the need for new treatments (Ringleb et al., 2002;

Schellinger and Warach, 2004).

As the concept of NVU was proposed, researchers began to

assess the feasibility of treating ischemic stroke from multiple

approaches and perspectives (Cai et al., 2017; Zhao et al., 2020a).

Stroke caused by different causes was regarded as a reactive

injury process involving brain NVU (Yenari et al., 2010; Hu et al.,

2017; Iadecola, 2017). In the treatment after brain injury, it has

been transformed from single neuron protection to more

comprehensive and in-depth protection of NVU (Wang et al.,

2021b). The pathophysiological changes of NVU are typically

characterized by tissue hypoxia, inflammation, activation of

angiogenesis, and complex interactions between various

components of NVU, which together lead to increased BBB

permeability, brain edema, neuronal dysfunction and injury

(Stanimirovic and Friedman, 2012). Cerebral ischemic injury

is an inflammatory stimulus response, and all cellular

components and matrix components of NVU are involved

and make related responses (Ishikawa et al., 2004). The

research and development of traditional drugs is limited to a

certain pathological link in the pathological process of NVU, so

the effect is not ideal. Therefore, during the treatment, the overall

structure of NVU should be targeted, and the dynamic changes of

each component should be coordinated to reduce nerve damage

and promote repair. Ferroptosis is a new cell death mode

discovered in recent years, with the continuous research, it

has been recognized that ferroptosis plays an important role

in a wide range of biological processes, including normal

physiology and various pathological conditions (Stockwell

et al., 2017). At present, the morphology, biology, and

mechanism pathways of ferroptosis are partially understood,

but the process of ferroptosis involves a variety of

mechanisms, which are precisely regulated by signaling

pathways. Questions remain as to how ferroptosis is related to

the occurrence of diseases and whether it is associated with other

modes of cell death to mediate the progression of diseases.

Therefore, further in-depth study of the mechanism of

ferroptosis and its role in different disease types is of great

significance for finding therapeutic targets for related diseases

and the development of targeted drugs.

The pathogenesis of ischemic stroke is complicated, current

evidence suggests that ferroptosis plays an important role in the

progression of ischemic stroke, inhibiting ferroptosis can

alleviate ischemic stroke injury (Li et al., 2019; Liu et al.,

2020b; Zhang et al., 2021b). When ischemic stroke occurs,

iron ion aggregation in neurons leads to iron overload, which

causes ROS aggregation through Fenton reaction, and GSH level

TABLE 2 Pharmacological research progress on ferroptosis in ischemic stroke.

Characteristics Regulations Reagents and mechanisms

Morphological characteristics: Mitochondrial volume
decreases, membrane density increases, and mitochondria
decrease or disappear

Positive regulators: ACSL4,
Hmox1, NCOA4

Inducers Mechanism

Erastin Inactivates and decreases the level of GSH.

RSL3 Inactivates GPX4 and causes accumulation of lipid
hydroperoxides

Inhibitors

Deferoxamine As an iron chelator, it can prevent iron-dependent
lipid peroxidation

Liproxstatin-1 Inhibits mitochondrial lipid peroxidation and
restores the expression of GSH, GPX4 and FSP1

Biochemical characteristics: Ferroptosis is manifested as
GSH depletion, GXP4 inactivation, and lipid peroxide
accumulation

Negative regulators: GPX4,
Nrf2, HSPB1, SLC7A11, FSP1

Selenium Protects GPX4 and upregulates GPX4 expression

Ferrostatin-1 Prevents glutamate-induced neurotoxicity and
inhibits lipid peroxidation

Ceruloplasmin Oxidizes ferrous ions to less toxic ferric forms

N-Acetylcysteine
(NAC)

Maintains intracellular GSH level and lower
endogenous oxidant level

Vitamin D An antioxidant and a regulator of iron metabolism

Vitamin E inhibits LOX activity by competing at the substrate-
binding site and by scavenging hydroxyl group
radicals
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is significantly reduced and lipid peroxidation increase in

ischemic stroke mouse model (Liu et al., 2020b), indicating

that ferroptosis is also a way of neurons death during the

pathophysiological process of ischemic stroke. Ferroptosis

inhibitors and iron chelators can effectively reduce the

damage of neurons during ischemic brain death, suggesting

that there are potential targets in the ferroptosis pathway to

regulate ischemic stroke and its inhibition during ischemia has

huge prospects for clinical application (Zhou et al., 2021).

However, investigating the role of ferroptosis in ischemic

stroke is still in its preliminary stages, and many questions

remain to be answered. For example, during ischemia and

hypoxia, different cell types of NVU in brain tissue (Wang

et al., 2021b), including neurons, microglia, astrocytes,

oligodendrocytes, etc., are stimulated and damaged (Cai et al.,

2017), and ferroptosis occurs in these different cell types,

although its role remains to be elucidated (Doll et al., 2017;

Jiang et al., 2021; Lee et al., 2021; Nishizawa et al., 2021),

warranting further studies. In the field of basic research, there

is a lack of effective biomarkers for ferroptosis, such as caspase

activation in apoptosis or autolysosome formation in autophagy

(Earnshaw et al., 1999; Hundeshagen et al., 2011). Accordingly,

exploring specific biomarkers of ferroptosis is urgent. Over the

years, studies of the molecular mechanisms of ferroptosis in

ischemic stroke have mostly focused on cell and animal models,

indicating that more clinical studies on patients with ischemic

stroke are required. In addition, drug development targeting

ferroptosis in ischemic stroke is an important aspect of research.

Among the ferroptosis inhibitors, only one drug, Edaraavone, is

used to treat patients with acute ischemic stroke (Enomoto et al.,

2019; Kobayashi et al., 2019). Other drugs have been found to be

effective in animal and cell models of stroke (Hanson et al., 2009;

Narayan et al., 2021). Therefore, there is an urgent need to

develop and validate effective drugs in clinical treatment,

including traditional Chinese medicine.

Although ferroptosis, as a new mode of cell death, plays a key

role in ischemic stroke and is expected to become a new

therapeutic target to improve the outcomes of this patient

population, ischemic stroke is regulated by a variety of cell

death pathways. Both ferroptosis and other programmed cell

death modes (including cell apoptosis, necroptosis and

autophagy) play an important role in the pathological process

of ischemic stroke. More andmore evidence has shown that there

are interacting signaling pathways between these cell death

modes with similar initial signals and molecular regulators.

For example, p53, not only induces apoptosis, but also

regulates ferroptosis (Hong et al., 2017). In the relationship

between ferroptosis and necroptosis, iron overload leads to the

opening of the mitochondrial permeability transition pore

(MPTP), which exacerbates RIP1 phosphorylation and leads

to cell necroptosis (Tian et al., 2020); HSP90 induces

necroptosis and ferroptosis by promoting

RIP1 phosphorylation and inhibiting GPX4 activation (Wang

et al., 2018). In addition, research have shown that ferroptosis is

an autophagic cell death process (Gao et al., 2016). Knockdown

of autophagy-related Atg5 and Atg7 genes can limit Erastin-

induced ferroptosis by reducing intracellular iron and lipid

peroxidation, and knockdown of NCOA4 can inhibit ferritin

degradation and prevent ferroptosis (Lu et al., 2017), however,

the specific mechanism of autophagy mediated ferroptosis needs

to be further explored. This evidence suggests a strong crosslink

between them, combination therapy targeting different cell death

pathways may be the most effective strategy for the treatment of

ischemic stroke.
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Introduction: Ginkgo biloba L. leaf extract (GBLE) has been reported to be

effective for alleviating cognitive and memory impairment in Alzheimer’s

disease (AD). Nevertheless, the potential mechanism remains unclear.

Herein, this study aimed to explore the neuroprotective effects of GBLE on

AD and elaborate the underlying therapeutic mechanism.

Methods: Donepezil, the most widely prescribed drug for AD, was used as a

positive control. An integrated metabolomics and lipidomics approach was

adopted to characterize plasma metabolic phenotype of APP/PS1 double

transgenic mice and describe the metabolomic and lipidomic fingerprint

changes after GBLE intervention. The Morris water maze test and

immunohistochemistry were applied to evaluate the efficacy of GBLE.

Results: As a result, administration of GBLE significantly improved the cognitive

function and alleviated amyloid beta (Aβ) deposition in APP/PS1 mice, showing

similar effects to donepezil. Significant alterations were observed in metabolic

signatures of APP/PS1 mice compared with wild type (WT) mice by

metabolomic analysis. A total of 60 markedly altered differential metabolites

were identified, including 28 lipid and lipid-like molecules, 13 organic acids and

derivatives, 11 organic nitrogen compounds, and 8 other compounds, indicative

of significant changes in lipid metabolism of AD. Further lipidomic profiling

showed that the differential expressed lipid metabolites between APP/PS1 and

WT mice mainly consisted of phosphatidylcholines, lysophosphatidylcholines,

triglycerides, and ceramides. Taking together all the data, the plasma metabolic

signature of APP/PS1 mice was primarily characterized by disrupted

sphingolipid metabolism, glycerophospholipid metabolism, glycerolipid

metabolism, and amino acid metabolism. Most of the disordered metabolites

were ameliorated after GBLE treatment, 19 metabolites and 24 lipids of which

were significantly reversely regulated (adjusted-p<0.05), which were
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considered as potential therapeutic targets of GBLE on AD. The response of

APP/PS1 mice to GBLE was similar to that of donepezil, which significantly

reversed the levels of 23 disturbed metabolites and 30 lipids.

Discussion: Our data suggested that lipid metabolism was dramatically

perturbed in the plasma of APP/PS1 mice, and GBLE might exert its

neuroprotective effects by restoring lipid metabolic balance. This work

provided a basis for better understanding the potential pathogenesis of AD

and shed new light on the therapeutic mechanism of GBLE in the treatment

of AD.

KEYWORDS

Ginkgo biloba L. leaf extract, Alzheimer’s disease, metabolomics, lipidomics,
neuroprotective effects

1 Introduction

Alzheimer’s disease (AD) is the dominant type of dementia

and manifests a progressive decline in memory and cognitive

function in parallel with behavioral disorders (Knopman et al.,

2021). It is characterized by classical pathophysiological

hallmarks of extracellular accumulating beta-amyloid (Aβ)
and intraneuronal tau-laden neurofibrillary tangles (Breijyeh

and Karaman, 2020). As the fifth leading cause of death in

the elderly, AD has become one of the most important public

health issues (GBD 2016 Dementia Collaborators, 2019). At

present, there are approximately 50 million AD cases

worldwide and this number is projected to triple by 2050 with

the growth of geriatric population (Scheltens et al., 2021), causing

enormous burden for the public health system in the world

(Wong, 2020). However, there are no cures for this disease up till

now. Therefore, it is urgent and significant to decode the

mechanisms of AD and discover new strategies for AD

therapy. Traditional Chinese medicine (TCM), with

characteristics of multi-components and multi-targets, has

been applied in clinical practice for thousands of years. It has

attracted increasing attention for the treatment of AD, due to the

comparable efficacy and fewer side effects than conventional

drugs (Sun et al., 2013). Some novel natural compounds isolated

from herbs have shown neuroprotective effects and are regarded

as potential anti-AD drugs (Andrade et al., 2019; Suresh et al.,

2022).

As one of the most universal herbal supplements, Ginkgo

biloba L. and its different preparations have been utilized to treat

neurological and cardiovascular disorders for millennia with

good effectiveness on blood stasis and chest stuffiness

(Tabassum et al., 2022). It is considered to possess the

efficacies of promoting blood circulation to remove blood

stasis and obstacles in the channels, increasing cerebral

bloodflow, and protecting nerve cells (Li et al., 2018). A

standard Ginkgo biloba L. leaf extract (GBLE), EGb761,

demonstrated significant symptomatic improvement in

cognitive function and behavior in patients with mild-to-

moderate dementia, and was listed in local clinical guidelines

in Switzerland, Germany, and some Asian countries (Savaskan

et al., 2018). Promising chemical components identified in GBLE

mainly include flavonoids, terpenoids, biflavonoids, and organic

acids, exhibiting a variety of pharmacological activities, such as

preventing oxidative stress, increasing cerebral blood flow,

protecting Aβ toxicity, affecting neurotransmission and

neuroplasticity (Tabassum et al., 2022). Accumulating clinical

evidence has shown the therapeutic effects of GBLE on

behavioral and psychological symptoms in AD patients

(Nowak et al., 2021). Despite definite efficacy of GBLE, the

underlying mechanism remains enigmatic, especially its effects

on metabolic alterations of AD.

Evidences have suggested that metabolic dysregulation

plays an important role in the pathophysiology of AD

(Poddar et al., 2021). The lipid-related abnormalities were

observed in the initial report of neuropathology (Alzheimer

et al., 1995), and the lipid dyshomeostasis became a focus of AD

research until recent decades. Both animal and clinical studies

demonstrated that disrupted lipid metabolism was closely

related to the pathogenesis and progression of AD (Touboul

and Gaudin, 2014; Peña-Bautista et al., 2022). However, the

impact of GBEL on plasma metabolome and lipidome in AD

has not been investigated. Comprehensive metabolomic

analysis can holistically detect the endogenous metabolic

changes in biological systems, providing a powerful approach

for understanding mechanism of disease and its response to

TCM. Lipidomics, an important branch of metabolomics,

focuses on identifying and characterizing lipid classes,

subclasses and molecular species. An integration of

metabolomics with lipidomics offers a global atlas of the

metabolic landscape, which is becoming an emerging tool to

evaluate therapeutic effects and reveal potential mechanism

of TCM.

Herein, an ultra-high-performance liquid chromatography-

mass spectrometry- (UHPLC-MS-) based metabolomic and

lipidomic profiling analysis was performed in the plasma of

wild-type and amyloid precursor protein (APP)/presenilin-1
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(PS1) double-transgenic mice, a prominent mouse model of AD.

It is the first exploratory investigation on the plasma metabolome

and lipidome of APP/PS1 mice treated with GBLE. This study

may provide a novel insight into the neuroprotective effects of

GBLE and the potential mechanisms of ameliorating AD

pathology, which are significant for improving clinical

outcome and development of new drugs from Ginkgo biloba

L. for AD.

2 Materials and methods

2.1 Materials and chemicals

The standardized GBLE drops (Ginaton®) were

manufactured by Dr. Willmar Schwabe GmbH & Co KG

(Karlsruhe, Germany, batch number: 0190321), containing

40 mg/ml of a standardized dry extract of Ginkgo biloba (EGb

761®). The ginkgo flavone glycosides account for 24% of the exact

and terpenelactones for 6%. The chemical profiling of GBLE was

analyzed using ultra-high performance liquid chromatography

coupled with a Q Exactive hybrid quadrupole-orbitrap high

resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS,

Thermo Fisher Scientific, San Jose, CA, United States). The

chromatographic separation was performed on an ACQUITY

UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 μm, Waters,

United States) maintained at 40°C with a flow rate of 0.20 ml/

min. The mobile phase consisted of solvent A (ultra-pure water

containing 0.1% formic acid) and solvent B (acetonitrile). The

gradient elution was as follows: 5% B at 0–4 min, 5%–10% B at

4–15 min, 10%–20% B at 15–30 min, 20%–40% B at 30–45 min,

40%–100% B at 45–51 min, 100% B at 51–56 min, 100%–5% B at

56–56.2 min, 5% B at 56.2–60 min. The injection volume was set

to 5 μl.

A total of 21 chemical constituents in GBLE were

purchased from Chengdu Must Bio-technology Co., Ltd.

(Sichuan, China), with the purities ≥98%. The endogenous

metabolite standards were offered by Sigma-Aldrich (St Louis,

MO, United States) and J&K Scientific Ltd. (Beijing, China).

Rabbit anti-Aβ anti-body was purchased from Wuhan

Servicebio Technology CO, LTD. (GB111197, Wuhan,

China). HPLC-grade acetonitrile, methanol and isopropanol

were obtained from Fisher Scientific (Fair Lawn, NJ,

United States). Donepezil hydrochloride and methyl tert-

butyl ether (MTBE) were bought from J&K Scientific Ltd.

(Beijing, China). Formic acid of chromatographic grade was

supplied by Aladdin Industrial Co., Ltd. (Shanghai, China).

Ammonium formate was purchased from Sigma-Aldrich (St

Louis, MO, United States). Deionized water was prepared by

the Milli-Q water purification system (Millipore, Shanghai,

China). Other chemicals and reagents were all of analytical

purity.

2.2 Animals and experimental design

The six-month-old male APP/PS1 double transgenic mice

(B6C3-Tg) and wild type (WT) littermates were purchased

from Huachuang Sino Pharmaceutical Technology Co., LTD.

(Jiangsu, China). After 7 days of acclimation, the APP/PS1 mice

were randomly divided into APP/PS1 group (n = 10), APP/

PS1+Donepezil group (n = 10), and APP/PS1+GBLE group (n =

10). The littermate wild-type mice were served as WT group

(n = 10). Mice in the APP/PS1+GBLE group were given GBLE

by gavage at a dose of 50 mg/kg (10 mg/ml) daily for

90 consecutive days. The dosage was determined based on

the dose conversion coefficient between mouse and human

in line with previous studies (Yu et al., 2021). Mice in the APP/

PS1+ Donepezil group were given donepezil orally (1 mg/kg/

day) for 90 days. Mice in the APP/PS1 group and WT group

were intragastrically administrated with saline solution

(5 ml/kg/day) for 90 days. Design of animal experiment was

shown in Supplementary Figure S1. All animal studies were

conducted in accordance with the National Institutes of Health

Guidelines for the Care and Use of Laboratory Animals, and the

experiments were approved by the Animal Ethics Committee of

Zhengzhou University (ZZU-LAC20220225[13]).

2.3 Morris water maze test

The Morris water maze (MWM) test is one of the most

common behavioral tests to assess spatial learning and memory

abilities of mice. At the last week of administration in this study,

the MWM test was carried out in a circular tank (diameter,

120 cm; height, 40 cm) filled with opaque water, and a hidden

platform (diameter, 12 cm) was placed about 1 cm below the

water surface (Figure 1A). The procedures were conducted

according to previous studies with minor modifications (Yi

et al., 2020).

Overall, this experiment lasted for 6 days, including place

navigation test and spatial probe test (Figure 1B). In the place

navigation test, mice were subjected to a spatial acquisition

experiment to evaluate their spatial learning ability during a

5-day training period, and each mouse was trained to find the

hidden platform twice a day with a 1-h interval. Subsequent

spatial probe test was performed on the sixth day to assess spatial

memory retention ability of mice, during which the mice were

released into water to swim freely for 60 s after removing the

submerged platform. The following data were recorded: 1)

Escape latency, defined as the time for the mice to find the

hidden platform area for the first time; 2) The number of crossing

over the original position of platform; 3) The distance and time

spent in the target quadrant for the mice. SANS video tracking

system (SA201, Jiangsu, China) was applied to record and

analyze the experimental data.
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FIGURE 1
The performance of mice in Morris water maze (MWM) test. (A) Schematic diagram of MWM equipment. (B) Illustration of place navigation test
and probe test in MWM. (C) The swimming speeds of mice in different groups during five consecutive training days. (D) The escape latencies of mice
in different groups during five consecutive training days. *: p < 0.05, ***: p < 0.001 for APP/PS1 group versusWT group; #: p < 0.05, ###: p < 0.001 for
APP/PS1+Donepezil group versus APP/PS1 group;̂ : p < 0.05 for APP/PS1+GBLE group versus APP/PS1 group. (E) The escape latencies ofmice in
different groups on the 5th day. (F) The average crossing number over the platform during the probe test. (G) The percentage of distance in target
quadrant during the probe test. (H) The percentage of time spent in target quadrant during the probe test. Data were presented asmean ± SEM. *: p <
0.05, **: p < 0.01, ***: p < 0.001. (I) Representative swimming paths of mice in the four groups during the probe trial.
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2.4 Sample collection

Two days after the MWM test, the blood samples were

collected in anti-coagulation tubes by cardiac puncture and

mice were sacrificed by cervical dislocation. After centrifuging

at 3000 rpm at 4°C for 10 min, the supernatant plasma was

transferred and stored at −80°C until metabolomic and

lipidomic analysis. The brain was dissected from skull and

immerged in 4% paraformaldehyde (PFA) for further

immunohistochemistry assays.

2.5 Immunohistochemistry

The brain tissue samples were embedded in paraffin blocks,

and then sectionalized at a thickness of 5 µm. The paraffin

sections were deparaffinized in xylene and rehydrated in

gradient ethanol. Antigen retrieval was achieved by immersing

the sections in a repair box filled with citric acid buffer (PH 6.0)

in a microwave oven. Subsequently, sections were sealed with 3%

H2O2 to block the activity of endogenous peroxidase. The brain

sections were then incubated with rabbit anti-beta-amyloid

antibody diluted at 1:500 at 4 °C overnight. After washing

with PBS (PH 7.4) three times for 5 min each, sections were

incubated with goat anti-rabbit IgG (1:200, HRP labeled) for

50 min at room temperature. DAB color developing solution was

added to the sections, and the positive showed brownish yellow.

Sections were then counterstained with hematoxylin. The Images

and representative photos were acquired under a microscope.

2.6 Untargeted metabolomic experiments

2.6.1 Sample preparation
Sample preparation and data acquisition were performed

according to previously published work (Liu et al., 2020).

Analytes were extracted from plasma by protein precipitation

with methanol for metabolomics studies. Ketoprofen and 2-

chloro-L-phenylalanine were used as internal standards for the

ESI− and ESI+ modes respectively on the basis of literature

(Huang et al., 2019). A 150 μL aliquot of ice-cold methanol

containing 500 ng/ml ketoprofen and 50 ng/ml 2-chloro-

L-phenylalanine was added to 50 μL plasma. After being

vortexed for 60 s, the mixture was centrifuged at 13,000 rpm

for 10 min at 4 °C. Subsequently, the supernatant was carefully

transferred to a sample vial for further UHPLC-Q-Orbitrap

HRMS analysis. To evaluate the robustness of analytical

platform, pooled quality control (QC) sample was prepared by

mixing an equal volume of each plasma sample.

2.6.2 LC-MS/MS analysis
Untargeted metabolomics analysis was performed on

Thermo Scientific UltiMate 3000 UHPLC system coupled to a

Q-Exactive Hybrid Quadrupole-Orbitrap high resolution mass

spectrometer (Thermo Scientific, San Jose, United States)

equipped with a heated electrospray ionization source

operating in both positive and negative ion modes as

previously described (Liu et al., 2020). Chromatographic

separation was achieved on a Waters ACQUITY UPLC HSS

T3 column (2.1 × 100 mm, 1.8 µm), while the column oven

temperature was maintained at 40 °C. The ultra-pure water

containing 0.1% (v/v) formic acid (A) and acetonitrile (B)

were used as mobile phase and eluted at a flow rate of 0.3 ml/

min. The gradient elution was set as follows: 0–1 min, 5% B;

1–9 min, 5%–100% B; 9–12 min, 100% B; 12–12.1 min, 100%–

5% B; 12.1–15 min, 5% B, and the injection volume was 5 μl. The

optimized MS parameters were: ion spray voltage, 3.5 kV (+) and

2.8 kV (−); capillary temperature, 320 °C; ion source temperature,

350°C; sheath gas flow rate, 40 arb (+) and 38 arb (−); auxiliary

gas flow rate, 10 arb; collision energy, 20, 40, and 60 eV. The

resolution was 70,000 for full MS scan and 17,500 for dd-MS2

scan, and the scan range was performed at 80–1,200 m/z, both in

positive and negative ion modes. The samples were injected in

random order, and a QC sample was analyzed every five sample

runs in the analytical batch. All the raw data were acquired and

processed using Thermo Xcalibur 3.0 software (Thermo

Scientific, San Jose, United States).

2.7 Lipidomic experiments

2.7.1 Sample preparation
The preparation of plasma samples followed the previous

publications with minor modification (Matyash et al., 2008; Chen

et al., 2021). In general, aliquots of 50 μl plasma samples were

pipetted into 2 ml Eppendorf tubes. A total of 300 μl pre-chilled

methanol was added to each sample and vortexed for 1 min.

Then, 1 ml ofMTBE was added and the mixture was incubated in

a shaker at room temperature for 60 min to extract the lipids.

Phase separation was induced by adding 250 μl of distilled water

to the mixture, followed by votexing for 30 s. After storing at

room temperature for 10 min, the mixture was centrifuged at

13,000 rpm for 10 min at 4°C. Subsequently, 2 × 400 μl of the

upper phase were transferred into two Eppendorf tubes

respectively and dried in a vacuum centrifuge. Finally, the

residues were reconstituted with 70 μl of isopropanol/

acetonitrile (9:1, v/v) for LC-MS/MS analysis.

2.7.2 LC-MS/MS analysis
Lipidomic analysis was also performed on Thermo Scientific

UltiMate 3000 UHPLC system coupled to Q-Exactive Hybrid

Quadrupole-Orbitrap high resolution mass spectrometer

(Thermo Scientific, San Jose, United States). The lipid

compounds separation was achieved on an ACQUITY UPLC®

CSH C18 column (1.7 mm × 100 mm, 1.8 µm) maitained at 40°C

with a flow rate of 0.3 ml/min. The mobile phase consisted of
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water/acetonitrile (4:6, v/v) for solvent A and isopropanol/

acetonitrile (9:1, v/v) for solvent B, with both A and B

containing 10 mM ammonium formate. Analysis was carried

out under gradient elution condition as follows: 0–2 min, 30%B;

2–25 min, 30%–100% B; 25–30 min, 100% B. The injection

volume of each sample was 5 μl. Data was acquired using full

MS/dd-MS2 approach in positive and negative ion modes,

respectively. The MS parameters were the same as that of

metabolomic analyses. The QC sample process identical to

that of metabolomic experiment was also performed in the

lipidomic analysis.

2.8 Data processing and statistical analysis

For the animal experiments, data was analyzed by SPSS

22.0 software (IBM Corp, Armonk, NY, United States) and

GraphPad Prism 9.4.1 software (GraphPad Software Inc, San

Diego, United States). Student’s t-test was used for

comparisons between two groups, whereas one-way

ANOVA was conducted for comparisons among groups.

The data are presented as means ± standard error of the

mean (SEM). A p-value less than 0.05 was considered

statistically significant.

For the metabolomic analysis, LC-MS/MS raw data was

preprocessed using Compound Discoverer (CD) 3.3 software

(Thermo Fisher Scientific, San Jose, CA, United States). The

workflow incorporated several defined steps, such as noise

filtering, peak detection, retention time (RT) alignment, and

feature annotation. The spectra were selected from raw data and

then aligned with mass error of 5 ppm and RT tolerance of

0.2 min. QC samples were used for compound annotation based

on fragment matching with public databases as well as

additional RT against our in-house library. The mzCloud

and mzVault databases were applied for compound

annotation on MS/MS level with a mass tolerance of

10 ppm. ChemSpider, Human Metabolome Database

(HMDB), Kyoto Encyclopedia of Genes and Genomes

(KEGG), and MassList (CD internal database for

endogenous metabolites) were used to annotate features

based on exact mass with a mass tolerance of 5 ppm.

Compound peak areas were normalized to the constant sum

using embedded function before statistical analysis (Hao et al.,

2018).

A data matrix including retention time (tR), mass-to-charge

ratio (m/z) values, and peak area was generated from

CD3.3 software, and the 80% rule was employed to handle

missing values in the dataset. Then, the resulting three-

dimensional matrix was imported into SIMICA software

(version 14.1, Umetrics, Sweden) for multivariate statistical

analysis, including principal component analysis (PCA) and

orthogonal partial least-squares discriminant analysis (OPLS-

DA). Each metabolite variable was scaled to unit variance prior

to performing PCA and OPLS-DA. PCA was conducted to

evaluate the overall distribution of data, evaluate

reproducibility and stability of QC samples, and explore

outliers. OPLS-DA was applied to screen differential features

between comparable groups, and model validity was assessed by

permutation test (200 permutations). Benjamini–Hochberg

false discovery rate (FDR) procedure was employed for the

multiple test adjustments, and adjusted-p values <0.05 were

considered statistically significant. The differential features

were selected with variable importance in the projection

(VIP) value >1.0 and adjusted-p value <0.05. Differential

metabolites were identified by searching ChemSpider,

HMDB, KEGG, MassList, mzCloud, mzVault, as well as in-

house-built spectral libraries based on the accurate mass, MS/

MS fragments, and isotope pattern matching, and further

confirmed using available reference standards.

For the lipidomic analysis, acquired MS/MS data were

processed using Thermo Scientific LipidSearch 4.2 software

for peak detection, lipid annotation, peak alignment, and

relative quantitation (Bhawal et al., 2021). The main

parameters were set as follows: precursor tolerance, 5 ppm;

product tolerance, 5 ppm; intensity threshold for product ion,

5.0%. The search results from individual files were aligned using a

0.25 min tolerance window and the data merged for each

annotated lipid. Subsequently, the data obtained from

LipidSearch software were subjected to multivariate statistical

analysis including PCA and OPLS-DA using SIMICA

14.1 software. The FDR-adjusted p values and fold change

(FC) values were calculated according to peak areas. The

differential lipids were selected based on the following criteria:

VIP value >1.0 and adjusted-p value <0.05.
After that, the significantly altered metabolites and lipids

were imported into MetaboAnalyst 5.0 software (https://www.

metaboanalyst.ca/) for further analyses. Hierarchical clustering

heatmaps were generated using ward’s cluster method and

Euclidean distance type. Pearson correlation analyses were

performed to measure the strength of associations between

metabolites. The altered metabolic pathways were determined

by “Pathway Analysis” module based on the Mus musculus

KEGG pathway library, and the results from pathway

enrichment analysis were combined with pathway topology

analysis. Finally, a global perturbed pathway network formed

with differential metabolites and lipids was depicted to reflect the

overall metabolic disturbance in APP/PS1 mice and the effects

of GBLE.

3 Results

3.1 Chemical composition of GBLE

The total ion chromatograms (TIC) of GBLE in positive

ion mode and negative ion mode were shown in
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Supplementary Figure S2. A total of 81 components were

identified, including 54 flavonoids and their glycosides,

13 terpenoids, 10 carboxylic acids, and 4 other

compounds, 21 compounds of which were confirmed by

comparison with reference standards. The chemical

information of these constituents was described in

Supplementary Table S1. The results showed that

flavonoids and terpenoids are the main compositions in

GBLE, and these components exhibited higher response in

negative ion mode.

3.2 Effects of GBLE on the cognitive
behavior and brain pathology of APP/
PS1 mice

3.2.1 GBLE ameliorates learning and memory
impairments in APP/PS1 mice

MWM test was conducted to evaluate the neuroprotective

effect of GBLE on the learning and memory deficits in APP/

PS1 mice. There was no significant difference in swimming speed

among all groups (Figure 1C). As shown in Figure 1D, gradually

FIGURE 2
Effects of GBLE on the expression of β-amyloid in hippocampus and cortex by immunohistochemistry. (A–D) Immunohistochemical staining of
β-amyloid plaques in hippocampus (100×) of WT, APP/PS1, APP/PS1+ Donepezil, and APP/PS1+GBLE groups, respectively. (E–H)
Immunohistochemical staining of β-amyloid plaques in cortex (100×) for each group. (I–L) Immunohistochemical staining of β-amyloid plaques in
cortex (400×) for each group.
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FIGURE 3
UHPLC-Q-Orbitrap HRMS-based untargeted metabolomic analysis. (A,B,C) Comparisons of representative total ion chromatograms for
plasma samples from WT, APP/PS1, APP/PS1+Donepezil, and APP/PS1+GBLE groups in positive ion mode. (D,E) OPLS-DA score plots and
corresponding permutation tests for APP/PS1 vs. WT in positive ion mode. (F,G)OPLS-DA score plots and corresponding permutation tests for APP/
PS1+Donepezil vs. APP/PS1 in positive ion mode. (H,I) OPLS-DA score plots and corresponding permutation tests for APP/PS1+GBLE vs. APP/
PS1 in positive ion mode.
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decreased escape latencies were observed over time during the

five consecutive days of place navigation period for the mice in

WT group, APP/PS1+Donepezil group, and APP/PS1+GBLE

group. In contrast, the mice in APP/PS1 group showed no

improvement in finding the hidden platform, indicating a

learning impairment. Treatment with donepezil or GBLE

dramatically improved their spatial learning ability after

training, especially on the fifth day (Figure 1E), and GBLE

exhibited a similar effect to donepezil. Evidently, the escape

latency of APP/PS1 mice treated with GBLE decreased to

50.1% on the fifth day with the value of 25.14 ± 4.54 s,

compared with the first day. In the probe test (without the

platform), APP/PS1 mice crossed the original position of

platform fewer times and spent less time in the target

quadrant than WT mice, suggesting memory decline in the

AD model. At the same time, treatment with GBLE

significantly attenuated memory impairment of APP/PS1 mice

as evidenced by increased number of crossing the original

position of missing platform, elevated % distance and % time

spent in the target quadrant (Figures 1F–H). In addition,

Figure 1I demonstrated the typical swimming paths for

different groups in the probe test on the 6th day. Together,

these results indicated that GBLE treatment could noticeably

ameliorate the cognitive deficits of APP/PS1 mice.

3.2.2 GBLE disaggregates Aβ plaques in the brain
of APP/PS1 mice

Accumulation of β-amyloid aggregates in the brain is

considered to be associated with cognitive impairment of AD.

Therefore, the Aβ levels in the hippocampus and cortex of the

mice were examined through immunohistochemistry staining.

There were no Aβ deposits detected in the hippocampus and

cortex of WT mice (Figures 2A,E,I), while robust Aβ plaques

were clearly observed in that of APP/PS1 mice (Figures 2B,F,J).

By contrast, the Aβ plaques were significantly disaggregated after
90 days of GBLE treatment (Figures 2C,G,K), exhibiting a similar

result as the mice of APP/PS1+Donepezil group (Figures

2D,H,L). These results demonstrated that GBLE could

alleviate Aβ accumulation and aggregate in the brain of APP/

PS1 mice.

3.3 Global metabolic alterations in plasma
samples of APP/PS1 mice and the
protective effects of GBLE treatment

3.3.1 Reliability Assessment of the analytical
method

Representative typical total ion chromatograms of plasma

samples obtained from UHPLC-Q-Orbitrap HRMS analysis for

different groups were shown in Figures 3A–C. QC samples and

internal standards were applied in the current research to assess

the reproducibility and stability of analytical strategy.

Unsupervised PCA models for the whole dataset were

generated to explore the clustering trend of all the samples.

As shown in Supplementary Figures S3A,B, the tightly clustered

QC samples in the PCA score plots both in positive and negative

ion modes confirmed stability of LC-MS system and high

reliability of acquired data throughout the run. In addition,

over 90% (93.34% for positive ion mode and 96.82% for

negative ion mode) of the ion features possessed relative

standard deviation (RSD) values ≤30% across the QC samples,

providing further evidence for the robustness of analytical

method (Supplementary Figures S3C,D). Meantime, RSD

values for the internal standards were also calculated across all

the samples, and the values were 4.9% for 2-chloro-

L-phenylalanine and 6.5% for ketoprofen. Supplementary

Figures S3E,F represent variations of relative abundance with

injection order for the ESI+ and ESI− internal standards,

respectively. The results demonstrated satisfactory stability

and high reproducibility of analytical strategy in this study.

3.3.2 Plasma metabolomic profiling
distinguished APP/PS1 mice from WT group

Significant discriminations in plasma metabolic phenotypes

between APP/PS1 and WT groups were observed by OPLS-DA

models from data produced by ESI+ (R2Y = 0.998 and Q2 = 0.746,

Figure 3D) and ESI− mode (R2Y = 0.998 and Q2 = 0.518,

Supplementary Figure S4A), respectively. Furthermore,

permutation tests of 200 cross-validation were performed to

validate each OPLS-DA model, and the results suggested high

goodness of fit and good predictive capability of the constructed

models (Figure 3E, Supplementary Figure S4B). After combining

positive and negative data, 305 ion features that significantly

contributed to the metabolic distinction between the two groups

were screened. The volcano plot graphically depicts −log10

(p-value) versus log2 (FC) for ion features between the

comparison (Figure 4A).

As shown in Table 1, a total of 60 differential metabolites

(43 metabolites detected in positive ion mode and 17 metabolites

in negative mode) were identified between APP/PS1 and WT

groups according to accurate m/z and MS/MS fragments, and

11 metabolites of which were confirmed by reference standards.

Wherein the levels of 31 metabolites obviously increased in APP/

PS1 mice compared with WT group, mainly including oleamide,

sphinganine, linoleamide, ketosphingosine, sphingosine, and

sphingosine 1-phosphate, while 29 metabolites such as 3-

hydroxytetradecanoic acid, 5′-methylthioadenosine, adenosine,

palmitic amide, and Cer(d18:0/14:0) exhibited significant down-

regulated trends. Metabolite set enrichment analysis on the basis

of a library containing 464 main chemical class metabolite sets

showed that fatty amides, sphingoid bases, amino acids and

peptides, amines, and fatty acids and conjugates were notably

affected in APP/PS1 group (Figure 4B). The differential

metabolites were classified based on HMDB database. As

illustrated in Figure 5A, different colors of each pie represent
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FIGURE 4
(A) The volcano plot of ion features for the comparison between APP/PS1 group vs. WT group. (B)Overview of enriched differential metabolite
sets. (C) Metabolic pathways enrichment analysis on the basis of differential metabolites between APP/PS1 vs. WT group. (D) Heatmap of Pearson
correlation matrix between the 60 differential metabolites. (E) Metabolic pathways enrichment analysis on the basis of differential metabolites
between APP/PS1+GBLE vs. APP/PS1 group. (F)Metabolic pathways enrichment analysis on the basis of differential metabolites between APP/
PS1+Donepezil vs. APP/PS1 group.
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TABLE 1 Differential metabolites between the comparison of APP/PS1 and WT groups and the change trends in response to GBLE treatment.

No Differential metabolites m/z Rt (min) Formula Ion mode APP/PS1 vs. WT APP/PS1+Donepezil vs.
APP/PS1

APP/PS1+GBLE vs.
APP/PS1

VIP Adjusted-p value FC Adjusted-p value FC Adjusted-p value FC

1 Spermidine 146.16513 0.67 C7H19N3 P 1.39 4.26E-02 1.20 ↑a 9.69E-02 0.83 ↓ 9.32E-01 0.98 ↓

2 Methylhistamine 126.10269 0.68 C6H11N3 P 1.80 1.21E-02 1.59 ↑a 4.47E-02 0.66 ↓a 2.44E-02 0.63 ↓a

3 Histamineb 112.08716 0.68 C5H9N3 P 1.34 4.10E-02 1.35 ↑a 1.63E-03 0.56 ↓c 4.50E-02 0.71 ↓a

4 Pipecolinic acidb 130.08627 0.71 C6H11NO2 P 1.39 4.26E-02 0.80 ↓a 1.31E-01 1.20 ↑ 2.52E-02 1.19 ↑a

5 Cholineb 104.10720 0.82 C5H13NO P 1.33 4.28E-02 0.91 ↓a 1.14E-02 1.23 ↑a 1.54E-01 1.08 ↑

6 Glutamineb 147.07627 0.85 C5H10N2O3 P 1.36 4.28E-02 1.12 ↑a 7.38E-01 1.02 ↑ 2.58E-02 0.87 ↓a

7 Taurineb 124.00612 0.87 C2H7NO3S N 1.97 1.78E-02 1.29 ↑a 7.58E-01 1.03 ↑ 7.63E-01 0.96 ↓

8 Prolylleucine 229.15440 0.88 C11H20N2O3 P 1.54 2.94E-02 1.31 ↑a 3.86E-01 0.88 ↓ 6.71E-01 0.93 ↓

9 Ascorbic acid 2-sulfate 254.98130 0.89 C6H8O9S N 1.64 3.69E-02 1.26 ↑a 4.95E-01 0.91 ↓ 9.32E-01 1.02 ↑

10 Pyruvic acid 87.00742 0.95 C3H4O3 N 1.86 2.81E-02 1.57 ↑a 1.97E-01 0.78 ↓ 3.44E-02 0.65 ↓a

11 Glycerol 3-phosphate 171.00533 0.96 C3H9O6P N 2.10 1.22E-02 0.69 ↓a 2.45E-03 1.68 ↑c 4.50E-02 1.27 ↑a

12 Adenosine 268.10368 1.33 C10H13N5O4 P 2.48 2.67E-05 0.24 ↓c 4.32E-03 3.09 ↑c 9.84E-02 3.00 ↑

13 N-Acetyl-L-glutamate 188.05560 1.34 C7H11NO5 N 1.79 2.99E-02 0.63 ↓a 5.91E-01 1.11 ↑ 3.10E-01 0.82 ↓

14 Tyrosineb 180.06571 1.36 C9H11NO3 N 1.62 3.88E-02 0.74 ↓a 7.66E-01 0.95 ↓ 8.78E-01 0.97 ↓

15 Serotoninb 177.10216 1.92 C10H12N2O P 1.57 2.81E-02 2.88 ↑a 2.62E-01 0.63 ↓ 5.76E-01 0.77 ↓

16 Levulinic acid 115.03884 2.50 C5H8O3 N 1.47 4.49E-02 1.24 ↑a 3.54E-01 0.87 ↓ 4.43E-01 1.11 ↑

17 Glutamyltyrosine 311.12348 2.96 C14H18N2O6 P 1.46 3.69E-02 0.63 ↓a 6.04E-01 1.14 ↑ 6.84E-01 0.92 ↓

18 5′-Methylthioadenosine 298.09662 3.50 C11H15N5O3S P 2.31 3.06E-04 0.65 ↓c 8.32E-05 1.58 ↑c 6.85E-03 1.74 ↑c

19 Riboflavinb 377.14523 4.10 C17H20N4O6 P 1.37 3.87E-02 1.16 ↑a 4.12E-02 0.88 ↓a 8.78E-01 1.02 ↑

20 Hippuric acidb 180.06544 4.19 C9H9NO3 P 1.42 3.69E-02 1.48 ↑a 3.21E-01 0.85 ↓ 9.84E-02 1.44 ↑

21 Indole 118.06525 4.20 C8H7N P 1.40 3.74E-02 1.58 ↑a 4.70E-01 0.86 ↓ 7.87E-02 1.50 ↑

22 N-Heptanoylglycine 186.11273 4.44 C9H17NO3 N 2.02 1.45E-02 1.19 ↑a 7.09E-02 0.86 ↓ 4.96E-02 0.86 ↓a

23 Cinnamoylglycine 204.06582 5.15 C11H11NO3 N 1.68 3.50E-02 1.78 ↑a 6.62E-01 0.87 ↓ 9.32E-01 0.97 ↓

24 3-Hydroxytetradecanoic acid 262.23719 5.18 C14H28O3 P 2.61 4.20E-06 0.65 ↓c 3.63E-02 1.24 ↑a 1.90E-02 1.26 ↑a
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TABLE 1 (Continued) Differential metabolites between the comparison of APP/PS1 and WT groups and the change trends in response to GBLE treatment.

No Differential metabolites m/z Rt (min) Formula Ion mode APP/PS1 vs. WT APP/PS1+Donepezil vs.
APP/PS1

APP/PS1+GBLE vs.
APP/PS1

VIP Adjusted-p value FC Adjusted-p value FC Adjusted-p value FC

25 Undecanoylglycine 266.17200 6.18 C13H25NO3 P 1.60 2.81E-02 1.29 ↑a 7.39E-02 0.78 ↓ 4.04E-01 0.86 ↓

26 Palmitic acid 274.27325 6.56 C16H32O2 P 1.64 2.81E-02 0.83 ↓a 5.38E-01 1.08 ↑ 2.58E-02 1.29 ↑a

27 Phytosphingosine 318.29944 6.60 C18H39NO3 P 1.42 3.82E-02 0.85 ↓a 7.55E-01 1.03 ↑ 7.29E-02 1.26 ↑

28 Brassylic acid 243.15975 6.96 C13H24O4 N 1.77 3.26E-02 0.85 ↓a 5.65E-01 1.05 ↑ 6.85E-03 1.24 ↑c

29 Linoleamide 280.26292 7.02 C18H33NO P 2.51 2.67E-05 1.95 ↑c 8.32E-05 0.54 ↓c 1.90E-02 0.66 ↓a

30 Ketosphingosine 298.27348 7.02 C18H35NO2 P 2.47 4.21E-05 2.24 ↑c 6.01E-04 0.53 ↓c 1.90E-02 0.61 ↓a

31 Oleamide 282.27854 7.42 C18H37NO P 2.70 4.70E-07 2.06 ↑c 2.57E-05 0.55 ↓c 7.87E-02 0.70 ↓

32 Sphingosine 300.28910 7.42 C18H37NO2 P 2.45 4.62E-05 1.81 ↑c 1.59E-03 0.62 ↓c 1.50E-01 0.74 ↓

33 Sphinganine 302.30458 7.57 C18H39NO2 P 2.53 1.39E-05 1.65 ↑c 1.59E-03 0.69 ↓c 9.39E-01 1.01 ↑

34 Sphingosine 1-phosphate 378.24130 7.63 C18H38NO5P N 2.80 4.74E-05 1.30 ↑c 5.69E-04 0.72 ↓c 2.38E-01 0.89 ↓

35 Eleostearic acid 279.23118 7.77 C18H30O2 P 1.50 3.26E-02 0.63 ↓a 7.09E-02 1.67 ↑ 7.63E-01 1.10 ↑

36 Octadecanedioic acid 337.23409 7.77 C18H34O4 P 1.43 3.69E-02 0.68 ↓a 7.09E-02 1.62 ↑ 9.36E-01 1.02 ↑

37 12,13-DiHOME 313.23823 7.78 C18H34O4 N 1.54 4.28E-02 0.69 ↓a 1.06E-01 1.66 ↑ 8.63E-01 1.07 ↑

38 Sphinganine 1-phosphate 382.27086 7.81 C18H40NO5P P 1.91 6.74E-03 1.39 ↑c 3.63E-02 0.78 ↓a 3.93E-01 1.28 ↑

39 LysoPE (22:6) 526.29159 8.17 C27H44NO7P P 1.69 1.78E-02 1.23 ↑a 3.63E-02 0.82 ↓a 4.47E-01 0.93 ↓

40 Docosahexaenoic acidb 327.23255 8.20 C22H32O2 N 2.06 1.45E-02 1.18 ↑a 9.69E-02 0.87 ↓ 2.38E-01 1.13 ↑

41 Phosphocholineb 184.07265 8.56 C5H14NO4P P 1.45 3.82E-02 0.68 ↓a 3.63E-02 1.64 ↑a 1.36E-01 1.46 ↑

42 Tetradecanoylcarnitine 372.31015 8.91 C21H41NO4 P 1.49 3.58E-02 0.85 ↓a 3.63E-02 1.13 ↑a 5.68E-01 1.06 ↑

43 Retinal 285.22070 8.91 C20H28O P 1.53 3.26E-02 1.99 ↑a 9.58E-01 0.98 ↓ 8.63E-01 0.89 ↓

44 PS(18:1/22:2) 840.57575 8.92 C46H84NO10P N 1.80 3.23E-02 1.74 ↑a 5.91E-01 1.15 ↑ 8.63E-01 1.10 ↑

45 Epoxyeicosatrienoic acid 319.22738 8.93 C20H32O3 N 1.75 3.29E-02 2.02 ↑a 9.12E-01 0.97 ↓ 9.32E-01 0.96 ↓

46 LysoPC(17:0) 510.35456 8.98 C25H52NO7P P 1.33 4.51E-02 0.82 ↓a 2.36E-01 1.15 ↑ 1.90E-02 1.33 ↑a

47 Glycidyl Stearate 341.30430 9.24 C21H40O3 P 1.41 3.69E-02 1.21 ↑a 7.47E-01 0.97 ↓ 9.32E-01 0.99 ↓

48 Cer(d18:0/14:0) 512.50289 9.68 C32H65NO3 P 1.84 9.36E-03 0.69 ↓c 7.69E-01 0.96 ↓ 8.05E-02 1.29 ↑

(Continued on following page)
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TABLE 1 (Continued) Differential metabolites between the comparison of APP/PS1 and WT groups and the change trends in response to GBLE treatment.

No Differential metabolites m/z Rt (min) Formula Ion mode APP/PS1 vs. WT APP/PS1+Donepezil vs.
APP/PS1

APP/PS1+GBLE vs.
APP/PS1

VIP Adjusted-p value FC Adjusted-p value FC Adjusted-p value FC

49 Pipericine 336.32532 9.78 C22H41NO P 1.78 1.45E-02 1.89 ↑a 3.63E-02 0.56 ↓a 3.93E-01 0.81 ↓

50 Eicosapentanoic acid 301.21712 9.85 C20H30O2 N 2.31 5.38E-03 1.36 ↑c 4.32E-03 0.72 ↓c 4.50E-02 0.82 ↓a

51 Palmitoyl ethanolamide 300.28907 9.86 C18H37NO2 P 1.78 1.45E-02 0.82 ↓a 3.63E-02 1.37 ↑a 1.90E-02 1.25 ↑a

52 Oleoyl ethanolamide 326.30463 10.05 C20H39NO2 P 1.87 1.10E-02 0.82 ↓a 1.89E-02 1.45 ↑a 3.88E-04 1.55 ↑c

53 Cer(d18:0/16:0) 540.53402 10.06 C34H69NO3 P 1.37 4.10E-02 0.77 ↓a 1.93E-01 0.83 ↓ 4.43E-01 1.12 ↑

54 Pristanoylglycine 356.31512 10.20 C21H41NO3 P 1.53 3.26E-02 0.83 ↓a 5.91E-01 1.09 ↑ 2.38E-01 1.10 ↑

55 Myristic amide 228.23177 10.42 C14H29NO P 1.61 2.81E-02 0.66 ↓a 3.63E-02 1.36 ↑a 3.44E-02 1.33 ↑a

56 Capsiamide 270.27852 10.46 C17H35NO P 1.60 2.81E-02 0.84 ↓a 5.65E-01 1.09 ↑ 2.91E-01 1.11 ↑

57 Stearoyl ethanolamide 328.32032 10.73 C20H41NO2 P 1.48 3.68E-02 0.82 ↓a 4.88E-01 1.12 ↑ 4.43E-01 1.10 ↑

58 Typhasterol 447.34780 10.81 C28H48O4 N 1.82 2.81E-02 0.77 ↓a 9.79E-01 1.00 ↓ 1.51E-01 1.21 ↑

59 Erucamide 338.34090 10.85 C22H43NO P 1.92 9.36E-03 0.82 ↓c 5.65E-01 1.09 ↑ 1.59E-01 1.07 ↑

60 Palmitic amide 256.26292 11.24 C16H33NO P 2.24 4.46E-04 0.67 ↓c 8.43E-02 1.15 ↑ 5.64E-03 1.24 ↑c

aAdjusted-p values <0.05.
bMetabolites were identified by reference standards.
cAdjusted-p values <0.01; Rt, retention time; VIP, variable importance in the projection obtained from APP/PS1 group vs. WT group; 12,13-DiHOME, 12,13-dihydroxy-9-octadecenoic acid; LysoPE, lysophosphatidylethanolamine; PS, phosphatidylserine;

LysoPC, lysophosphatidylcholine; Cer, ceramide; P, positive ion mode; N, negative ion mode.
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FIGURE 5
Classification and heatmap analysis of differential metabolites. (A) Pie charts showing the HMDB compound classification of disorded
metabolites in APP/PS1 and regulated metabolites by Donepezil and GBLE, respectively. (B) Heat map showing the average levels of metabolites in
each group. The colors from red to white in the heatmap indicate higher levels of metabolites.
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FIGURE 6
Violin plots showing the average peak area changes of each metabolite significantly ameliorated by GBLE.
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different HMDB classification. The results demonstrated that

these metabolites consisted of 28 lipid and lipid-like molecules,

13 organic acids and derivatives, 11 organic nitrogen

compounds, and 8 other compounds, indicative of significant

changes in lipid metabolism of AD.

Subsequently, metabolic pathway enrichment analysis was

performed to further investigate the potential pathogenesis of

AD. These significantly altered metabolites in plasma of APP/

PS1 mice were mainly involved in sphingolipid metabolism,

glycerophospholipid metabolism, histidine metabolism,

riboflavin metabolism, and taurine and hypotaurine

metabolism (Figure 4C). Additionally, the correlation heatmap

displays relationships between the 60 differential metabolites

(Figure 4D). It was shown that the levels of unsaturated fatty

amides and metabolites related to sphingolipid metabolism

correlated negatively with saturated fatty amides and fatty acyl

ethanolamides.

3.3.3 Effect of GBLE treatment on the metabolic
abnormality of APP/PS1 mice

The OPLS-DA models were also established for the

comparisons between APP/PS1+Donepezil/GBLE group and

APP/PS1 group based on the LC-MS/MS data derived from

positive and negative ion mode, respectively (Figures 3F–I,

Supplementary Figures S4C–F). Analogously, the score plots

both revealed remarkable separations for the two

comparisons. To probe the influence of GBLE on the

metabolic aberration of AD, the metabolic signatures of WT,

APP/PS1, APP/PS1+ Donepezil, and APP/PS1+GBLE groups

were compared by focusing on the levels of the above

differential metabolites. It was noteworthy that the vast

majority of these 60 metabolites showed opposite trends for

APP/PS1 vs. WT and APP/PS1+GBLE vs. APP/PS1, and

19 metabolites of which were significantly reversely regulated

by GBLE, mainly including oleoyl ethanolamide, palmitic amide,

brassylic acid, 5′-methylthioadenosine, ketosphingosine, and

lysoPC(17:0) (Table 1). For the positive control group,

23 disordered metabolites were significantly reversed by

donepezil. The effect of GBLE on regulating metabolic

disturbance in APP/PS1 mice was similar to but slightly

weaker than that of donepezil, and the regulated metabolites

were somewhat different in the two groups. The HMDB

classification for the obviously regulated metabolites was

displayed in Figure 5A, and the area of each pie chart

represented the relative proportion for each class of

metabolites. This figure illustrated that most of the altered

metabolites after GBLE intervention were classified as lipids

and lipid-like molecules.

The relative levels of these differential metabolites across

different groups were visualized in a heat map based on the

average of each group. As shown in Figure 5B, the color

discrimination between APP/PS1 group and WT group was

obvious, indicating the metabolic disturbance in AD. Most

metabolites were reversibly regulated after GBLE and

donepezil treatment as reflected by the change trends of

colors. Furthermore, the violin plot visually exhibited the

levels of 19 significantly altered metabolites in three different

groups (Figure 6), and the impact of GBLE on the perturbed

metabolites was evident. Metabolic pathway analysis was

conducted to explore the underlying mechanism of GBLE in

ameliorating AD. The 19 differential metabolites between APP/

PS1+GBLE and APP/PS1 group were primarily associated with

histidine metabolism, alanine, aspartate and glutamate

metabolism, glycerophospholipid metabolism, glycerolipid

metabolism, and pyruvate metabolism (Figure 4E). The

impacts of major metabolic pathways were slightly different

from that of donepezil treatment (Figure 4F).

3.4 Lipid signatures of APP/PS1 mice and
the regulation effects of GBLE treatment
on abnormal lipid metabolites

3.4.1 Lipid identification
Plasma untargeted metabolomic profiling suggested that the

disordered metabolites and disturbed metabolic pathways in

APP/PS1 mice mainly related to lipid metabolism. In line

with this, the lipidomic analysis was further performed using

UHPLC-Q-Orbitrap HRMS. In total, 1,116 and 513 lipid features

covering varies subclasses were detected in positive and negative

ion modes, respectively (Figure 7A and Figure 7B). After

combining data derived from the two different ion modes and

removing duplicated lipids, 1,175 lipid metabolites in six major

categories were obtained, including 687 glycerophospholipids,

329 glycerolipids, 103 sphingolipids, 28 saccharolipids, 21 sterol

lipids, and seven fatty acyls. Figure 7C delineates the number of

every lipid subclass belonging in each category.

3.4.2 Characterization of differential lipid
metabolites in plasma samples between APP/
PS1 and WT groups and the role of GBLE in
regulation of lipids

The unsupervised PCA analysis was carried out, and there

was a clear trend towards separation for APP/PS1 vs. WT group

and APP/PS1+Donepezil/GBLE vs. APP/PS1 group as presented

in the 3D score plot (Figure 8A). Additionally, it was noteworthy

that QC samples were clustered in the center of the score plot,

confirming the good reproducibility of instrument and high

reliability of lipidomic data. Moreover, the OPLS-DA score

plots showed complete separations between APP/PS1 and WT

groups (R2Y = 0.999, Q2 = 0.807; Figure 8B), between APP/

PS1+Donepezil and APP/PS1 groups (R2Y = 0.943, Q2 = 0.757;

Figure 8C), and between APP/PS1+GBLE and APP/PS1 groups

(R2Y = 0.961, Q2 = 0.833; Figure 8D).

The differential expressed lipid metabolites between APP/

PS1 and WT mice were determined conforming to VIP
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scores >1.0 and adjusted-p values <0.05. Of the 68 altered lipids,

49 were significantly increased in APP/PS1 group mainly

belonging to triglycerides (TG), lyso-phosphatidylcholines

(LPC), phosphatidylcholines (PC), and sphingomyelins (SM)

subclasses, while 19 were decreased mainly including

phosphatidylinositols (PI), lyso-phosphatidylinositols (LPI),

phosphatidylethanolamines (PE), and a fraction of PC and

LPC (Figure 8E).

Taking the above disturbed lipid metabolites as the

evaluation indices of therapeutic effect, the role of GBLE

treatment on the plasma lipid fingerprint of AD was

investigated through a comparison of APP/PS1+GBLE group

vs. APP/PS1 group. As shown in Figure 8F, a number of

differential lipids exhibited obvious recovery trend after

treatment with GBLE. The effect of GBLE on lipid

metabolism disorder in APP/PS1 mice was similar to but

slightly weaker than that of donepezil. The result indicated

that a lipid disorder occurred in APP/PS1 mice, and this

abnormality could be ameliorated by GBLE administration. In

general, GBLE showed significant effect on lipid metabolism in

APP/PS1 mice.

4 Discussion

In the present study, an integrated metabolomics and

lipidomics approach was adopted to characterize the

metabolomic phenotype of APP/PS1 mice and describe the

metabolic fingerprint change after GBLE intervention. Taking

together all the data, here, we delineated a metabolic correlation

network based on the differential metabolites and lipids, and

proposed several significant metabolic pathways in response to

GBLE treatment for APP/PS1 mice (Figure 9). The major

findings of this work are summarized as follows: 1)

FIGURE 7
Delineation of plasma lipids detected by UHPLC-Q-Orbitrap HRMS. (A,B) Scatter plots of lipid features detected in positive and negative ion
modes, respectively. (C) Pie charts showing the number of every lipid subclass belonging in each category. Cer, ceramides; CerG1,
monogylcosylceramide; ChE, cholesteryl ester; DG, diglyceride; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; SM, sphingomyelin; So, sphingoshine; TG, triglyceride; MGDG,
monogalactosyldiacylglycerol; dMePE, dimethylphosphatidylethanolamine; PS, phosphatidylserine; OAHFA (O-acyl)-1-hydroxy fatty acid; LdMePE,
Lysodimethylphosphatidylethanolamine; PG, phosphatidylglycerol; LPG, lysophosphatidylglycerol; PEt, phosphatidylethanol; PAF, platelet-
activating factor; cPA, cyclic phosphatidic acid; SQDG, sulfoquinovosyldiacylglycerol; ZyE, zymosteryl; SiE, sitosteryl ester; MGMG,
monogalactosylmonoacylglycerol; CerP, ceramides phosphate; phSM, phytosphingosine; StE, stigmasteryl ester; GP, glycerophospholipids; GL,
glycerolipids; SP, sphingolipids; SL, saccharolipids; ST, sterol lipids; FA, fatty acyls.
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FIGURE 8
UHPLC-Q-Orbitrap HRMS-based lipidomic analysis. (A) Three dimensional PCA plot of all the plasma samples from different groups. (B)OPLS-
DA score plot for APP/PS1 vs. WT group. (C) OPLS-DA score plot for APP/PS1+Donepezil vs. APP/PS1 group. (D) OPLS-DA score plot for APP/
PS1+GBLE vs. APP/PS1 group. (E) Bubble chart of differential lipids for APP/PS1 vs. WT group. (F)Heatmap of the 68 differential lipids among the WT,
APP/PS1, APP/PS1+Donepezil, and APP/PS1+GBLE groups. The colors from blue to red indicates the elevation of lipid metabolites.
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FIGURE 9
Disturbedmetabolic pathway network in APP/PS1mice and the interventional effects of GBLE by integratingmetabolomics and lipidomics data.
The red arrows represent alteredmetabolites in APP/PS1mice comparedwithWT group, and the blue arrows represent the regulatedmetabolites by
GBLE treatment. *: adjusted-p < 0.05, **: adjusted-p < 0.01.
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Administration of GBLE significantly improved the cognitive

function and alleviated Aβ deposition in APP/PS1 mice. 2) The

plasma metabolic signature of APP/PS1 mice was primarily

characterized by disrupted sphingolipid metabolism,

glycerophospholipid metabolism, glycerolipid metabolism,

and amino acid metabolism. 3) GBLE treatment could

reverse the disturbance of many key endogenous metabolites

and regulate abnormal metabolism in APP/PS1 mice,

particularly lipid dishomeostasis. The results may be helpful

in understanding the potential pathogenesis of AD and shed

new light on the therapeutic mechanism of GBLE in the

treatment of AD.

In recent years, metabolomics has been widely employed to

characterize the metabolic alterations of diseases and provides a

potential approach to explore the complex action modes of

TCMs. During the past 10 years, over hundreds of

metabolomics studies have been conducted to uncover the

metabolic changes in multiple biological matrices including

plasma, serum, cerebrospinal fluid, urine, feces, and tissues of

different AD animal models and patients (González-Domínguez

et al., 2018; Dai et al., 2022). These studies demonstrated

disturbances of energy-related metabolism, fatty acid

metabolism, nitrogen metabolism, amino acid metabolism,

and many others related to AD. Similarly to previous studies,

significant alterations were observed in levels of

glycerophospholipids, sphingolipids, glycerolipids, fatty acids,

amino acids, and nucleotides in the present work. Lipidomics

analysis showed significant changes in the levels of PCs, LPCs,

PEs, Cers, SMs and some other lipids, corroborating the pivotal

role of lipid metabolism in the pathogenesis of AD, despite not

entirely consistent change with previous literatures on AD-

related lipidome and phospholipidome (González-Domínguez

et al., 2014a; González-Domínguez et al., 2014b).

Lipids, the essential components of cellular membranes, play

crucial roles inmany biological processes, such as maintenance of

cell structure and function, energy storage, signal transduction

and regulation of gene expression (Brügger, 2014; Han, 2016).

The lipids have been classified into eight categories: fatty acyls,

glycerolipids, glycerophospholipids, sphingolipids, sterol lipids,

saccharolipids, prenol lipids, and polyketides (Fahy et al., 2005),

and each category consists of further lipid subclasses. Among

these lipids, glycerophospholipids, sphingolipids, and cholesterol

are mainly localized in neuronal membranes and myelin (Wang

et al., 2021). Abnormal lipid metabolism is closely correlated with

neurological diseases and affects cognitive function (Wong et al.,

2017). It is widely accepted that the accumulation of Aβ is

strongly associated with cognitive dysfunction of AD. Lipid

rafts, enriched in sphingolipids and glycerophospholipids, not

only promote the generation of Aβ peptides and facilitate the

formation of toxic oligomers, but also host specific neuronal

receptors which participate in the signal transduction of

neuropathological events. A wealth of evidence has

unambiguously linked lipid rafts to neurodegenerative

diseases, including AD (Mesa-Herrera et al., 2019). Previous

studies have shown significant alterations in molecular structure

and functionality of lipid rafts in the frontal cortex of brains in

AD patients (Rushworth and Hooper, 2010). Therefore, we

speculated that the metabolic disorder of sphingolipids and

glycerophospholipids induced the abnormal expression of Aβ
via breaking down the lipid rafts homeostasis. Nevertheless, it is

still no consensus on the change trends of various lipids for AD

from previous studies.

In this work, one of the most changes was observed in

sphingolipid metabolism in the plasma of APP/PS1 mice.

Compared with WT mice, the levels of sphingosine,

sphinganine, 3-ketosphingosine, sphingosine-1-phosphate

(S1P), sphinganine-1-phosphate and sphingomyelins (SM)

were significantly increased in APP/PS1 mice, while ceramides

presented both negative and positive associations with AD.

Ceramides, with the structure containing a long-chain

sphingoid base and one N-acylated fatty acid, are central

molecules in the biosynthesis and catabolism of sphingolipids

(Pralhada Rao et al., 2013). According to the fatty acids contained

in the structure, previous study demonstrated that the increase of

ceramides containing very long fatty acids was more pronounced

in AD (Cutler et al., 2004), which was associated with the elevated

expression of long-chain ceramide synthase (Katsel et al., 2007).

It was corroborated by the increased level of Cer (d16:0/20:4) in

APP/PS1 mice in this work. Some previous researches have

demonstrated that upregulated ceramides can promote

aggregation of Aβ through the effect on lipid rafts (Badawy

et al., 2018). On the other hand, the increased level of unsaturated

fatty acid-containing ceramide (Cer d16:0/20:4) together with a

significant decrease in several saturated fatty acids-containing

ceramides (Cer d16:1/16:0, Cer d18:1/16:0, Cer d18:0/14:0, and

Cer d18:0/16:0) were observed in APP/PS1 mice. The results

could be consequent with the elevated activity of stearoyl-CoA

desaturase, which was associated with AD (Astarita et al., 2011).

Our results were consistent with a recent study (Huynh et al.,

2020). In addition, SM may be another specific biomarker for

AD, which increased the risk of AD in previous clinical studies

(Varma et al., 2018). Toledo reported that increase in levels of

SMs in AD patients was related to cognitive decline and brain

atrophy (Toledo et al., 2017). Kosicek found significantly

increased SMs levels in the cerebrospinal fluid in patients with

AD compared with healthy controls (Kosicek et al., 2012). In

accordance with this, here we showed that APP/PS1 mice

displayed elevated levels of SM(d16:0/27:5), SM(d16:0/24:2),

and SM(d16:0/26:5) in plasma. S1P, a signaling molecule, is

produced by ceramides via ceramidase and subsequent

sphingosine kinase. Previous studies have reported that

ceramidase is up-regulated in AD (He et al., 2010), as well as

the activity of sphingosine kinase 2 (Takasugi et al., 2011), which

could be responsible for the significantly increased levels of S1P

in APP/PS1 mice in the present study. Excitingly, our results

suggested that GBLE showed significant improvement in the
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disturbed sphingolipid metabolism, and sphingolipids may serve

as putative therapeutic targets of GBLE on AD.

The results also suggested significant alterations in

glycerophospholipids and glycerolipids for APP/PS1 mice,

such as PCs, LPCs, PEs, LPEs, PIs, LPIs, and TGs. Glycerol 3-

phosphate, a key molecule in the initial step of glycerolipid and

glycerophospholipids metabolism, was significantly lower in

APP/PS1 mice when compared with WT group, which is in

agreement with a recent research (Watanabe et al., 2021).

Previously published researches supported possible

associations between glycerophospholipids and amyloid

deposits related to pathology of AD (Whiley et al., 2014). Huo

et al. discovered that increased levels of some PCs were related to

cognitive impairment (Huo et al., 2020). Toledo reported that the

levels of PCs were elevated in the cerebrospinal fluid of AD

patients and associated with aberrant Aβ1-42 (Toledo et al.,

2017). Similar to these results, most PCs were upregulated in the

plasma of APP/PS1 mice in the present study. In fact, researches

on the levels of PCs in AD were not uniform and the results were

somewhat controversial (Toledo et al., 2017; Huo et al., 2020;

Bhawal et al., 2021). These contrary findings could arise by

diverse functions of different PCs, which can be responsible

for the minority of decreased PCs in our study. Our results

implicated that specific PCs, rather than PCs as a whole, might

play important roles in AD. LPCs serve as mediators in multiple

neuronal pathways involved in neurobiology of AD (Frisardi

et al., 2011), and previous studies have reported decreased levels

of LPCs in AD (González-Domínguez et al., 2014b). However, in

the present work, it was observed that the levels of LPCs

containing fatty acids with carbon atoms <20 were decreased,

while those with carbon atoms >20 were increased in the plasma

of APP/PS1 mice, which might be worthy to be studied further.

In addition, numerous studies reported reduced levels of PEs

(Igarashi et al., 2011; González-Domínguez et al., 2014b), as

confirmed in our data. As for glycerolipids, the levels of TGs were

markedly increased in APP/PS1 mice, and our findings were

consistent with a related study in which a higher level of TG was

observed in the serum of AD patients (Berezhnoy et al., 2022).

Notably, most of these changes showed a significant correction

after GBLE administration. The close relationship between these

molecules and AD may provide a new strategy for further

research on the treatment of this disease.

Besides, we observed a dramatic disorder in the fatty amides

levels in the plasma of APP/PS1 mice. In a recent study on AD

biomarker discovery, the plasma fatty amides were demonstrated

to be associated with brain amyloid burden, hippocampal

volume, and memory (Kim et al., 2019). Palmitic amide is a

primary fatty acid amide and plays a pivotal role in cellular signal

transduction. Decreased serum palmitic amide in AD was

reported earlier (Chu et al., 2016). Oleamide has been early

identified in the brains of sleep-deprived mice and cats (Cravatt

et al., 1995) and is a vital regulatory lipid in central nervous

system. Kim M. et al. Identified significantly higher levels of

oleamide and linoleamide in the plasma of AD patients (Kim

et al., 2019). These findings agreed with our results, and we found

that the saturated fatty amides seemed decreased while

unsaturated fatty amides were increased in APP/PS1 mice.

The opposite directions could be attributed to increased

desaturase activity in AD. Indeed, so far very little is known

about the biological function of fatty amides, which may be key

therapeutical targets in the treatment of AD.

Additionally, the APP/PS1 mice showed perturbed amino

acid metabolism, tricarboxylic acid (TCA) cycle and fatty acids

oxidation, and these alterations were ameliorated following 3-

month GBLE administration. The dyshomeostasis of aromatic

amino acids and the synthesis of neurotransmitters was

associated with AD (González-Domínguez et al., 2021), which

was corroborated by the altered tyrosine and serotonin in the

present work. Histamine and methylhistamine were significantly

elevated in APP/PS1 mice, and previous evidence suggested that

neurotransmitter systems including neuronal histamine could

contribute to the development and maintenance of AD-related

cognitive deficits (Zlomuzica et al., 2016). Acylglycines are

produced through the action of glycine N-acyltransferase and

they are normally minor metabolites of fatty acids. Elevated levels

of acylglycines (cinnamoylglycine, heptanoylglycine, and

undecanoylglycine) appeared in the plasma of APP/PS1 mice,

indicating a disordered fatty acid oxidation in AD. The increased

level of pyruvate was related to dysregulated TCA cycle, which

was consistent with previous studies (Rushworth and Hooper,

2010). In this work, we also found APP/PS1 mice displayed a

declined level of acylcarnitine, which was not merely a cofactor in

β-oxidation, but also had beneficial effects in the treatment of

neurological diseases (Jones et al., 2010). Various studies have

reported important deregulations in the metabolism of purines

and pyrimidines (González-Domínguez et al., 2021). Adenosine,

an important neuroprotective factor (Rahman, 2009), was

dramatically decreased in APP/PS1 mice and upregulated by

GBLE intervention, as well as methylthioadenosine.

Of note, in addition to AD, GBLE is also used for

prevention and therapy of myocardial ischemia. A

metabolomics study demonstrated that the cardioprotective

effect of GBLE was achieved through comprehensive

regulation of multiple metabolic pathways covering lipid,

energy, amino acid and nucleotide metabolism (Wang

et al., 2016). The similar regulating effect of GBLE on

different diseases seems to reflect the strategy of

“homotherapy for heteropathy” for TCM.

To sum up, we comprehensively described the metabolic

signatures of AD and evaluated the effects of GBLE on plasma

metabolome and lipidome in APP/PS1 mice. However, this work

has some limitations worth noting. Firstly, the metabolomic and

lipidomic profiles were obtained only based on the plasma

samples. Characterizing the metabolic signatures of brain

tissues is needed in future studies, and a comprehensive

research through combining the data from plasma and brain
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tissue is crucial for unveiling the pathological mechanisms of AD

and therapeutic targets of GBLE. Secondly, we observed that

numerous endogenous metabolites were regulated by GBLE.

However, the molecular mechanisms are still not well

understood. It is essential to further explore the causality and

investigate the biological context in which theses metabolites

operate by integrating additional information such as protein and

gene expression in the future. Besides, this study only includes

male mice, and it is uncertain whether the effect of GBLE is the

same in female mice. Nevertheless, this study provides a better

understanding on the metabolism-based neuroprotective effects

of GBLE on AD.

5 Conclusion

In conclusion, we delineated the metabolic disturbance in the

plasma of APP/PS1 mice and investigated the overall therapeutic

effect of GBLE on AD through UHPLC-MS/MS-based

metabolomic and lipidomic approach. The metabolic

perturbation in APP/PS1 mice was primarily related to

sphingolipid metabolism, glycerophospholipid metabolism,

glycerolipid metabolism, and amino acid metabolism, and this

dyshomeostasis could be ameliorated by GBLE treatment. These

results deepen our knowledge about the pathophysiological

mechanisms of AD, provide available evidence for the

neuroprotective effect of GBLE administration, and reveal the

characteristic of multiple components, targets and pathways for

traditional Chinese medicines.
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Introduction: Alpiniae oxyphyllae Fructus (AOF) has been abundantly utilized for the
treatment of diarrhea, dyspepsia, kidney asthenia, and abdominal pain in China. AOF is
effective for treating AD in clinical trials, but its exact mode of action is yet unknown.

Methods: In this study, metabolomics was combined to ascertain the alterations in
plasma metabolism in APP/PS1 transgenic mice, the therapy of AOF on model mice,
and the dynamic variations in 15 bile acids (BAs) concentration.

Results: 31 differential biomarkers were finally identified in APP/PS1 group vs. the WT
group. The levels of 16 metabolites like sphinganine (Sa), lyso PE (20:2), lysoPC (17:0),
glycocholic acid (GCA), deoxycholicacid (DCA) were increased in APP/PS1 group,
and those of 15metabolites like phytosphingosine, cer (d18:0/14:0), and fumaric acid
were reduced in APP/PS1 group. After AOF treatment, 29 of the 31 differential
metabolites showed a tendency to be back-regulated, and 15 metabolites were
significantly back-regulated, including sphinganine (Sa), lyso PE (20:2), glycocholic
acid (GCA), deoxycholic acid (DCA). The relationship between BAs level and AD had
been received increasing attention in recent years, and we also found notable
differences between DCA and GCA in different groups. Therefore, a BAs-targeted
metabonomic way was established to determine the level of 15 bile acids in different
groups. The consequence demonstrated that primary BAs (CA, CDCA) declined in
APP/PS1 model mice. After 3 months of AOF administration, CA and CDCA levels
showed an upward trend. Conjugated primary bile acids (TCA, GCA, TCDCA,
GCDCA), and secondary bile acids (DCA, LCA, GDCA, TDCA, TLCA GLCA)
ascended in APP/PS1 group. After 3 months of AOF treatment, the levels of most
BAs decreased to varying degrees. Notably, the metabolic performance of DCA and
GCA in different groups was consistent with the predictions of untargeted
metabolomics, validating the correctness of untargeted metabolomics.

Discussion: According to metabolic pathways of regulated metabolites, it was
prompted that AOF ameliorated the symptom of AD mice probably by regulating
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bile acids metabolism. This study offers a solid foundation for further research into the
AOF mechanism for the therapy of AD.

KEYWORDS

Alpiniae oxyphyllae fructus, alzheimer’s disease, untargeted metabolomics, targeted
metabolomics, bile acids

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative illness with
recollection loss and cognitive abnormalities as typical symptoms
(Lane et al., 2018; Weller and Budson, 2018). In recent years, the
number of AD patients and the fatality rate have risen year by year. It
is challenging for ordinary households to afford the treatment of AD
patients (Scheltens et al., 2021). Corresponding to this severe form, the
drugs currently exploited to treat AD can only relieve the syndrome
and cannot be cured (Li et al., 2021). The familiar pathological features
of AD include abnormal accumulation of Aβ protein,
hyperphosphorylation of tau protein, and synaptic dysfunction (Ju
and Tam, 2022). The chemicals of traditional Chinese medicine
(TCM) are plentiful and can act on multi-targets and multi-
pathways (Li et al., 2021). In the treatment of AD, TCM has
received more and more attention.

Alpiniae oxyphyllae fructus (AOF), which is the dry grown-up fruit of
Alpinia oxyphylla Miq. Has a long history of application in traditional
clinical Chinese medicine (Yang et al., 2020). In traditional medicine,
AOF has been widely utilized for treatment of emesis, diarrhea, frequent
urination, spermatorrhea and so on (Li R. et al., 2022). Modern
pharmacological research manifested that AOF had anti-oxidant (Bian
et al., 2013), anti-inflammatory (Qi et al., 2019), neuroprotective (Liu
et al., 2020), anti-AD (Bian et al., 2021), and other effects. AOF contains a
variety of chemical components, including sesquiterpenes, volatile oils,
flavonoids, diarylheptanoids, steroids, and glycosides (Chen et al., 2013;
Zhang et al., 2018). At present, the efficacy of AOF in AD is remarkable,
but its potential therapeutic mechanism is not clear.

By using high-throughput data analysis, metabolomics seeks to keep
track of how endogenous metabolites respond dynamically to external
perturbations (Nielsen, 2017). Therefore, metabolomics is often used to
observe the progression of diseases and to provide information on the
relationship between diseases, drugs, and metabolites. Ultra high-
performance liquid chromatography-quadrupole/orbitrap high-
resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) is
regarded as a suitable platform for metabolomic research. The
mechanism of TCM therapy for AD had been extensively explained
in recent years using untargetedmetabolomics (Zhang et al., 2020; Chen
et al., 2022;Wang et al., 2022). Targetedmetabolomics characterize high
sensitivity and quantitative precision, which focuses on a particular class
of metabolites. In additon, the concept of the brain-gut axis has opened
up a new perspective for the prevention and treatment of AD in recent
years (Cryan et al., 2019; Doifode et al., 2021). Some scholars even claim
that the gut was the “second brain”. The contact between the brain and
the gut may be accomplished by BAs metabolism (Mulak, 2021). So, in
comprehensive metabolomics, it is essential to pay attention to changes
in typical BAs.

In the present study, the Morris Water Maze (MWM) test and
immunohistochemical (IHC) test were utilized to evaluate the
therapeutic effect of AOF on AD from behavioral and pathological
perspectives, respectively. After that, the untargeted metabolomics

based on UHPLC-Q-orbitrap HRMS discovered that the treatment of
AD by AOFmay be related to bile acid metabolism. In addition, 15 bile
acids were quantified using targeted metabonomics analysis. The
specific operation process of this study is shown in Figure 1.
Untargeted and targeted metabolomics work together produced a
highly accurate prediction of the mechanism of action of AOF in the
treatment of AD. In conclusion, this study offeres additional proof that
AOF can reduce AD symptoms, indicating that it may be used as a
medicine to treat AD in the future.

2 Material and methods

2.1 Chemicals and materials

Alpiniae Oxyphyllae Fructus was obtained from the Henan
Tongrentang Drug Co., Ltd. (Zhengzhou, China), which was
authenticated by Professor Hanbing Li (Henan University of Chinese
Medicine). The reference substances of oplopanone, nootkatone, and
valencene were acquired from J&K Scientific Co., Ltd. (Beijing, China).
The references of 15 bile acids and its isotope internal standard were
purchased from Bazoe Medical Co., Ltd., containing cholic acid (CA),
chenodeoxycholic acid (CDCA), taurocholic acid (TCA), glycocholic
acid (GCA), taurochenodeoxycholic acid (TCDCA),
glycoursodeoxycholic acid (GCDCA), deoxycholic acid (DCA),
ursodeoxycholic acid (UDCA), lithocholic acid (LCA),
taurodeoxycholic acid (TDCA), tauroursodeoxycholic acid
(TUDCA), Glycoursodeoxycholic acid (GUDCA), Glycolithocholic
acid (GLCA), taurolithocholic acid (TLCA), CA-d4, DCA-d4, LCA-
d4, GLCA-d4, TCA-d5, TLCA-d5, TCDCA-d5 and GCA-d4. Purity of
all standards is more than 98%. Donepezil hydrochloride were
purchased from J&K Scientific Co., Ltd. (Beijing, China). The HPLC
grade acetonitrile and methanol were obtained from Fisher Scientific
(Pittsburgh, PA, United States of America). HPLC-grade formic acid
was obtained from the Aladdin Industrial Corporation (Shanghai,
China). There were also other analytical-grade chemicals and reagents.

2.2 Animals

APP/PS1 male mice (B6C3-Tg) and wild type (WT) littermates
(both were 6 months old, 30–40 g in weight) were acquired from
Huachuang Sino Pharmaceutical Technology Co., LTD. (Jiangsu,
China). For 1 week before the experiment, all animals were kept at
a constant temperature of 25°C, 65% humidity, and a 12-h light/dark
cycle. After 7 days, the APP/PS1 mice were erratically separated into
APP/PS1 (n = 6), APP/PS1+Donepezil (n = 6), APP/PS1+AOF (n = 6).
The littermate wild-type mice served as the WT group (n = 6). Mice in
the APP/PS1+Donepezil group were given donepezil orally (1 mg/kg)
for 3 months. The APP/PS1+AOF group and was administrated with
AOF at 0.5 g/kg for 3 months. In this work, the dosage was established
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using the dose conversion coefficient between mice and humans (Zuo
et al., 2021). Saline solution (5 mL/kg/d) was intragastrically
administered to the APP/PS1 group and the WT group for
3 months. All animal experimentation protocols adhered to the
Experimental Animal Administration Regulations, and the
operations were assented to by the Animal Ethics Committee of
Zhengzhou University (No. ZZU-LAC20220225 [13]).

2.3 Preparation of AOF extract

AOF was elaborated by refluxing extraction way. The AOF was
crushed and then passed through a 40-mesh sieve. 100 g AOF powder
was precisely weighed, 10 times 95% ethanol was added, soaked for
1 h, and extracted at reflux for 1 h. The residue was extracted twice
with 95% ethanol. Then the combined extracts were filtered, mixed,
and dried under low pressure after being evaporated. The solution
(1.0 g/mL) was made by adding methanol with the necessary amount
of freeze-dried AOF powder and then put into an ultrasonic disperser
for 10 min. The prepared solution was filtered by 0.22 μm membrane
before entering to UHPLC-MS/MS system.

2.4 Morris water maze test

The MWM studies were conducted to assess the mice in each group’s
capacity for spatial learning and memory following the final treatment (Li
et al., 2022a). The experimental apparatus consists of a circular pool filled
with opaque water (diameter 120, height 40), a circular target platform, and
an image acquisition system. The target platform should be positioned in
the middle of one of the pool’s four identically sized quadrants. Before the
start of the experiment, opaque water 2 cm higher than the target platform
was injected into the pool, and the water temperature was maintained at
about 25°C ± 2°C. The MWM experiment is divided into two parts: the
positioning and navigation test and the space exploration test. The day
before the test,micewere arbitrarily swum inwater for 3 min to adapt to the
environment. The positioning and navigation experiment lasted for 5 days.
Eachmousewas placed in thewater from twodifferent quadrants every day,
allowing it to freely find the target platform. Calculate the escape latency
time by timing how long eachmouse took to find the platform.On the sixth
day, a space exploration experiment was carried out to investigate the
memory ability of each group of mice. The platform was removed and the
mice were forced to swim from two different quadrants. The time spent in
the target quadrant and crossing times were recorded and analyzed by the
SANS video tracking system (SA201, Jiangsu, China). Continuous
intragastric administration during this experiment. Finally, all
experimental data of MWM were statistically analyzed by GraphPad
Prism 9.4.1 software. The Student’s t-test was employed to compare the
two groups, while theANOVAwas utilized to comparemultiple groups. All
data were displayed in means ± standard deviation (Mean ± SD). p <
0.05 was treated as a statistically observable difference.

2.5 Sample collection

The animals underwent a one-night fast, anesthesia, heart
puncture blood collection, and 5% sodium heparin anticoagulation
after theMWMexperiment. After centrifuging at 3500 rpm for 10 min
by 4°C centrifuge, the supernatant plasma was transferred for

metabolomic analysis. After the blood is taken, the skull is opened
and the whole brain is removed, immersed in 4% paraformaldehyde
(PFA) for further immunohistochemistry (IHC) assay.

2.6 Immunohistochemistry

Immunohistochemistry (IHC) was used to assess pathological
alterations in the mouse’s brain’s cortex and hippocampus. The
brain tissue was sectioned and fixed in paraffin. Then gradually
started the following operations. 1) Paraffin sections were dewaxed
and hydrated by xylene and gradient ethanol. 2) To repair the
antigens, the sections were submerged in citric acid (pH 6.0)
antigen repair solution. 3) 3% H2O2 was added to block
endogenous peroxidase. 4) The tissue was uniformly covered with
3% BSA in the tissue ring and closed at room temperature for 30min.
5) Add 1:500 diluted rabbit anti-beta-amyloid dropwise. 6) Slides were
washed 3 times with shaking in PBS (pH 7.4) for 5 min each time.
Subsequently, goat anti-rabbit IgG (1:200, HRP labeled) was added to
the circle, and incubate at room temperature for 50min. 7) Add DAB
coloring solution, positive for brownish yellow. 8) The cell nucleus was
restained with hematoxylin and dehydrated. 9) Microscopic
examination, image collection, and analysis.

2.7 Plasma untargeted metabolomics

2.7.1 UHPLC-Q-orbitrap HRMS method
In the qualitative profiling of AOF extracts and plasma untargeted

metabolomics, an UHPLC-Q-orbitrap HRMS system was utilized. The
column adopted a Waters ACQUITY UPLC HSS T3 column (2.1 ×
100mm, 1.8 µm) adhered to 40°C of the column oven temperature.
The mobile phase consisted of pure water with 0.1% (v/v) formic acid
A) and acetonitrile B). The gradient elution was set as follows: For
qualitative profiling of AOF extracts 0–3.0 min, 5% B; 3.0–35min,
5.0%–25% B; 35–43min, 25%–40% B; 43–53min, 40%–100% B;
53–57min, 100% B; 57.1–60min, 5% B; For plasma untargeted
metabolomics: 0–1.0 min, 5% B; 1.0–9.0 min, 5%–100% B; 9.0–12.0 min,
100% B, 12.0–12.1, 100%–5% B, 12.1–15min, 5% B; The flow rate and
injection volume were 0.3 mL/min and 5 μl, respectively.

The optimized MS function was as follows: ion spray voltage,
+3.5 kV and −2.8 kV; the ion source temperature was 350°C; the
capillary mperature was 320°C; auxiliary gas flow rate, 10 arb; the
sheath gas flow rate, +40 arb and -38 arb; the scan range was from 80 to
1200 m/z in all ion modes. The resolution of full MS scan and dd-MS2

scan were 70,000 and 17,500, respecively. Nitrogen as the collision gas
was used to stabilize the spray.

2.7.2 Blood sample preparation
The plasma samples were taken out of the −80°C refrigerator and

melted on ice. The 150 μl aliquot of ice-cold methanol (containing
500 ng/mL, ketoprofen +50 ng/mL, 2-chloro-L-phenylalanine) was
deposited with a 50 µl plasma sample. Then the mixture was
vortexed for 1 min and centrifuged for 10 min at 13,300 rpm.
Finally, transferred the supernatant to the sample vial. The order of
injection of samples was random. The QC sample was collected from
an equal volume of each plasma sample. And every five sample runs in
the analytical batch, a QC sample was examined to evaluate the
robustness of the analytical platform.
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2.7.3 Data processing and statistical analysis
For the untargeted metabolomic analysis, UHPLC-Q-orbitrap HRMS

data was processed by Compound Discoverer (CD) 3.3 software for peak
alignment. CD provided a data matrix containing retention time, accurate
relative molecular mass, and peak area of each compound. Subsequently,
this data matrix was used for multivariate statistical analysis by SIMICA
software (version 14.1, Umetrics, Sweden). To understand the changes in
overallmetabolism, evaluate the stability ofQC samples, and filtered out the
outliers, PCA analysis was used to process the data matrix. The OPLS-DA
was used to specifically observe the separation between the two groups.
200 permutations test was utilized to appraise the validity of the OPLS-DA
model. The features with variable importance in the projection (VIP) >
1.0 and p-value <0.05 were deemed as potential differential metabolites.

2.8 Targeted metabolomics analysis of bile
acids

2.8.1 UHPLC-MS/MS -MRM method
In the quantitative analysis of fifteen bile acids, an UHPLC-MS/

MS system was employed. Chromatographic separation occurred in a
Waters ACQUITY UPLC® BEH C18 column (2.1 mm × 50 mm,
1.7 μm). The flow rate was 0.6 mL/min. A (water) and a mixture of
B (acetonitrile containing 2% water, 0.2% ammonium formate (1 mol/
L), and 0.05% ammonia water) made up the mobile phase. The
gradient elution procedure was as follows: 30% B (0–0.6 min),
30%–40% B (0.6–2.6 min), 40%–95% B (2.6–3.0 min), 95% B
(3.0–3.5 min), 95%–24.5% B (3.5–3.8 min), and continuing at
24.5% B up to 7.0 min. For all samples and standard solutions, the
injection volume was 5 μl.

The AB SCIEX™ × 3200 spectrometer (Foster City, CA)
equipped with a Shimadzu Prominence UHPLC (Pleasanton,
CA). The mass spectrometer was run in the ESI− mode with
multiple reaction monitoring (MRM). The column temperature
and sample tray temperature were 55°C and 8°C. The parameters
were as follows: ion spray voltage was set at –4.5 kV, source
temperature maintained at 500°C, and the flow of ion source
gas1 (GS1) and ion source gas2 (GS2) were 40 L/h and 60 L/h,
respectively. The transitions and collision energy levels of 15 BAs
are lsited in Supplementary Table S2.

2.8.2 Standard stock solutions preparation
Each bile acid was individually dissolved in the suitable ratio of 50%

methanol to produce the stock standard solutions (1.0 mg/mL). The final
mixed standard solution was created by combining each stock solution
with 50% methanol. The mixture of standard solutions was successively
diluted with 50% methanol to generate several working standard
solutions. The middle solution was then constantly diluted in 50%
acetonitrile to obtain working solutions involving 80, 160, 320, 640,
1280, 2560, and 5120 ng/mL of CA, DCA, CDCA, LCA, GCA, GLCA,
GCDCA, TLCA, TDCA, TCDCA, TUDCA; Low, medium and high
concentrations of these acids were 480, 960, and 1920 ng/mL 40, 80, 160,
320, 640, 1280, and 2560 ng/mL of GUDCA, UDCA, GDCA, and TCA;
Low, medium, and high concentrations of these bile acids were 240, 480,
and 960 ng/mL.

2.8.3 Data acquisition and processing
The Analyst® 1.6.2 application (AB SCIEX™, Foster City, CA) was

used for acquiring and integrating data. The software allows the
exported data to be saved in the proper folder.

FIGURE 1
The flow chart of the whole experiment.
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3 Results

3.1 Identification of the chemical composition
of AOF

The base peak intensity (BPI) chromatograms demonstrate in
Supplementary Figure S1. A total of 41 compounds were identified
from AOF (Supplementary Table S1), including 20 sesquiterpenoids,
seven flavonoids, 4 aldehydes, 2 phenolic acids, 1 diarylheptanoid,
1 alkaloid, 1 sterol, and 5 others. As the main characteristic chemical
components of AOF, sesquiterpenoids are closely related to the
neuroprotective effect. The 20 sesquiterpenoids found in this study
included seven eudesmane sesquiterpenoids, seven eremophilane
sesquiterpenoids, 5 cadinane sesquiterpenoids, and 1 oplopanone
sesquiterpenoids.

3.2 AOF improves learning and memorizing
abilities of APP/PS1 model mice

To investigate the influence of AOF on learning and memorizing
abilities in AD mice, MWM was carried out 3 months after
administration. As shown in Figure 2A, in the previous directional
navigation experiment, with the extension of training days, the escape
latency of all groups gradually declines. In addition, from the day 2, the

escape latency of the APP/PS1 model group was longer than that of the
WT group (p < 0.01).

On the day 3, compared with APP/PS1 model group, the escape
latency of the APP/PS1+Donepezil group and APP/PS1+AOF
began to decrease (p < 0.05). The escape latency of the APP/
PS1+Donepezil group significantly decreased on days 4 and 5 of
treatment (p < 0.01). Although the effect of AOF on the escape
latency was not as fast as the positive drug, but the escape latency of
APP/PS1+AOF was also observably decreased on the day 5 (p <
0.01). As shown in Figure 2B, the swimming trajectories of the WT
group were complex, but the APP/PS1 group was single and clear.
There was no difference in average swimming speed among all
groups (Figure 2C). In the spatial probe task, compared with the
WT group, the time spent in the target quadrant and the number of
platform crossings of the APP/PS1 model group were markedly
reduced (p < 0.01). After AOF treatment, both indicators of model
mice were improved (p < 0.05). To sum up, these results proved that
oral AOF can alleviate cognitive impairment in APP/PS1 mice.

3.3 AOF relieves the Aβ deposition in the brain
of APP/PS1 mice

After the MWM experiment, all brain tissues were collected
for the IHC test. The expressions of Aβ proteins in the

FIGURE 2
Effect of AOF on APP/PS1 mice in MWM. (A) Escape latency in directional navigation experiment. (B) Representative images of swimming trajectories. (C)
The swimming speeds of mice in different groups (D) Time in the target quadrant in spatial probe task. (E) Number of platform crossings in spatial probe task.
*p < 0.05, **p < 0.01, compared with WT group; #p < 0.05, ##p < 0.01, compared with APP/PS1 group.
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hippocampus and cerebral cortex of 4 groups were observed and
compared by IHC. As shown in Figure 3 (AB, DE, IJ), compared
with the WT group, Aβ plaques were clearly increased in the
hippocampus and cortex of the APP/PS1 group. After AOF
treatment in 3 months, The Aβ plaques of brain tissue
were significantly reduced Figure 3 (BD, FH, JL),
displaying an alike result as the mice of APP/PS1+Donepezil
group.

3.4 Untargeted plasma metabonomics results

3.4.1 Multivariate statistical analysis of plasma
metabolites

UHPLC-Q-Orbitrap HRMS was utilized to explore the plasma
metabolic profiles of WT, APP/PS1, and AOF mice in ESI+ and ESI−

modes. To study the changes in the overall metabolism of each
group, unsupervised PCA analysis was firstly used to evaluate the
mass spectrometry data. As shown inSupplementary Figure S2, the
WT group, APP/PS1 group, and AOF group showed a significant
tendency of separation. The QC samples are clustered together,
which indicates the stability of the analytical instrument. Then,
we used OPLS-DA to specifically observe the separation between
the two groups. As shown in an OPLS-DA score, there was a clear
separation in APP/PS1 group vs.WT group (Figures 4A,B) and AOF
group vs. APP/PS1 group (Figures 4E,F). In addition,
200 permutation tests were utilized to check the above OPLS-DA
model, and the outcomes demonstrate that the model has an
excellent fitting degree and excellent prediction ability (Figures
4C,D; Figure 4 G, H).

3.4.2 Differential metabolite identification and
analysis

With the UHPLC-Q-Orbitrap HRMS metabolomics platform,
115 ion peaks were found in APP/PS1 group vs. the WT group by
VIP values >1.0 and p values <0.05. Subsequently, 31 endogenous
differential metabolites were defined in APP/PS1 group vs. WT
group (Table 1). The levels of 16 metabolites like sphinganine,
and lyso PE (20:2), lysoPC(17:0), glycocholic acid (GCA),
deoxycholic acid (DCA) were increased in APP/PS1 group, and
those of 15 metabolites like phytosphingosine, cer (d18:0/14:0),
and fumaric acid were reduced in APP/PS1 group. As shown in
Table 1, when AOF was administered for 3 months, 94% (29/31) of
the metabolites had a tendency to retract and 48% (15/31) had a
significant retract (p < 0.05).

To more vividly show the changes of metabolites in plasma between
different groups, Origin 2021 was used for heat mapping (Figure 5). The
difference between the groups is obvious according to the color.
Compared with the WT group, the metabolites of the APP/PS1 group
displayed a different color trend. It is worth noting that most of the
dysregulated metabolites were improved after the administration of AOF.
The above differential metabolite results indicated that AOF could reverse
the metabolic abnormalities in model mice.

Furthermore, the differential metabolites were classified by
HMDB. The classification results are displayed in pie charts. As
shown in Figure 6A and Table 2, the different colors and areas
represent different HMDB classifications and metabolite numbers.
The results demonstrated that the 31 differential metabolites included
17 lipids and lipid-like molecules, 9 organic acids and derivatives,
2 organoheterocyclic compounds, 2 organic nitrogen compounds,
1 nucleosides, nucleotides, and analogues. The pie chart of the

FIGURE 3
Effect of AOF on APP/PS1 mice in IHC test. (A–D)DAB-stained Aβ plaques in the hippocampal region (100×) of WT, APP/PS1, APP/PS1+ Donepezil, APP/
PS1+AOF groups. (E–H) DAB-stained Aβ plaques in the cortex (100×) of WT, APP/PS1, APP/PS1+ Donepezil, APP/PS1+AOF groups. (I–L) Amplified views
(400×) of the cortex in each group. WT, APP/PS1, APP/PS1+ Donepezil, APP/PS1+AOF groups.
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15 metabolites significantly regulated by AOF was shown in Figure 6B.
Of the 15 metabolites significantly regulated by AOF, 2 metabolites
(DCA, GCA) were classified as bile acids, alcohols and derivatives.

3.4.3 Metabolic pathway analysis
To explore the potential mechanism of AOF in alleviating AD

symptoms, the differential metabolites in each group were introduced
into Metabo Analyst 5.0 for further biological analysis. The
31 differential metabolites in APP/PS1 vs. WT were mainly
enriched in sphingolipid metabolism, phenylalanine, tyrosine and
tryptophan biosynthesis, tyrosine metabolism, TCA cycle, lysine
degradation, glycerophospholipid metabolism, primary bile acid

biosynthesis (Figure 7A). Compared with the APP/PS1 group,
significantly callback metabolites in the APP/PS1+AOF group were
mainly participate in sphingolipid metabolism, TCA cycle,
glycerophospholipid metabolism, tyrosine metabolism, and primary
bile acid biosynthesis (Figure 7B). Subsequently, the information on
differential metabolites and metabolic pathways was integrated to
construct a comprehensive network metabolic map for the AOF
treatment of AD (Figure 8). This figure clearly shows the changes
and associations of various metabolites in APP/PS1 vs.WT, and APP/
PS1+AOF vs. APP/PS1. It should be noted that the metabolic
disorders and the improvement of AOF were closely related to the
metabolic pathway of BAs.

FIGURE 4
Multivariate statistical analysis of the plasma metabolites. (A–B) OPLS-DA score plots for APP/PS1 vs. WT in ESI+ and ESI− ion mode. (C–D)
200 permutation tests for APP/PS1 vs. WT in ESI+ and ESI− ion mode. (E–F) OPLS-DA score plots for APP/PS1+AOF vs. APP/PS1 in ESI+ and ESI− ion mode.
(G–H) 200 permutation tests for APP/PS1+AOF vs. APP/PS1 in ESI+ and ESI− ion mode.
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3.5 Targeted metabolomics

To assess the intimacy between changes in BAs metabolism and
the relief of AD symptoms by AOF, we performed targeted
quantitative validation of the bile acid profile by UHPLC-MS/
MS-MRM method. Primary BAs (CA, CDCA) come from
cholesterol in the liver. GCA and TCA are glycine-conjugate
and taurine-conjugate of CA respectively. Similarly, GCDCA
and TCDCA are glycine-conjugate and taurine-conjugate of
CDCA. Under the action of anaerobic bacteria, CA is converted
to secondary bile acids DCA, and CDCA is converted to secondary

bile acids LCA and UDCA. DCA, UDCA, and LCA are coupled
with glycine and taurine to form GDCA, TDCA, GUDCA,
TUDCA, GLCA, and TLCA, respectively.

In this study, a significant downward trend ((p < 0.01)) of CA
and CDCA was also found in APP/PS1 model mice (Figures 9A,B).
After 3 months of AOF administration, CA and CDCA levels of
APP/PS1 mice showed an upward (p < 0.05) trend. Conjugated
primary bile acids TCA (Figure 9C, p < 0.05), GCA (Figure 9D, p <
0.05), TCDCA (Figure 9E, p < 0.01), GCDCA (Figure 9F, p < 0.01)
had an upward trend in APP/PS1 group. After 3 months of AOF
treatment, the metabolic disorders of TCA, GCA, TCDCA, and

TABLE 1 Differential metabolites between APP/PS1 vs. WT and the callback function of AOF.

Ion mode Metabolite Formula ppm m/z Rt APP/PS1/WT AOF/ApP/PS1

ESI+ 3-Oxalomalic acid C6H6O8 2.44 206.0068 0.809 ↑* ↓

Aminoadipic acid C6H11NO4 −0.16 161.0688 0.868 ↓* ↑

N6-Acetyl-L-lysine C8H16N2O3 −1.24 188.1159 1.272 ↓* ↑

Nicotinic acid C6H5NO2 0.58 123.0321 1.273 ↓* ↑#

Adenine C5H5N5 2.17 135.0548 1.329 ↓* ↑#

Adenosine C10H13N5O4 −1.13 267.0965 1.331 ↓* ↑#

Aspartyl-Leucine C10H18N2O5 −0.52 246.12144 2.258 ↓* ↑

Phytosphingosine C18H39NO3 -2.41 317.2922 7.258 ↓* ↑

Sphinganine C18H39NO2 −2.29 301.2974 7.565 ↑* ↓##

Sphinganine 1-phosphate C18H40NO5P −1.97 381.2637 7.811 ↑** ↓

LysoPE (20:2) C25H48NO7P 1.61 505.3177 8.383 ↑* ↓##

LysoPC(17:0) C25H52NO7P −0.52 509.3479 9.667 ↑* ↓#

Cer(d18:0/14:0) C32H65NO3 −1.34 511.4958 9.675 ↓* ↑

Linoleamide C18H33NO −1.95 279.2557 9.784 ↑** ↓##

Oleamide C18H35NO −1.99 281.2713 10.35 ↑* ↓##

Hexadecanamide C16H33NO −2.05 255.2557 11.103 ↓* ↓

ESI- Fumaric acid C4H4O4 −10.46 116.0097 0.929 ↓* ↑#

N-Acetyl-L-glutamic acid C7H11NO5 −4.16 189.0629 1.363 ↓* ↑

Tyrosine C9H11NO3 −4.77 181.073 1.383 ↓* ↓

2-methylcitric acid C7H10O7 −2.98 206.042 1.392 ↓* ↑

L-gamma-Glutamyl-L-leucine C11H20N2O5 −0.47 260.1371 3.565 ↓* ↑

Thromboxane B2 C20H34O6 −0.01 370.2355 6.086 ↑* ↓#

Glycocholic acid C26H43NO6 −0.27 465.3089 6.369 ↑* ↓##

Sphingosine 1-phosphate C18H38NO5P −0.15 379.2487 7.642 ↑** ↓#

LysoPE (22:6) C27H44NO7P −1.09 525.285 8.189 ↑* ↓#

Docosahexaenoic Acid C22H32O2 −1.01 328.2399 8.204 ↑* ↓#

Deoxycholic acid C24H40O4 -0.66 392.2924 8.259 ↑* ↓##

Palmitic acid C16H32O2 −1.94 256.2397 8.392 ↑** ↓

Stearic acid C18H36O2 −1.16 284.2712 9.306 ↑* ↓

Eicosapentanoic acid C20H30O2 −0.32 302.2245 9.851 ↑** ↓

Tiaprost C20H28O6S −1.44 396.1601 10.383 ↓* ↑
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GCDCA were all alleviated to different degrees. Similarly,
secondary bile acids DCA (Figure 9G, p < 0.05), LCA
(Figure 9I, p < 0.01), and correspondingly conjugated bile acids
GDCA (Figure 9K, p < 0.01), TDCA (Figure 9J, p < 0.01), TLCA
(Figure 9N, p < 0.01), GLCA (Figure 9O, p < 0.05) were elevated in
the APP/PS1 group and declined in the APP/PS1+AOF
group. Notably, the metabolic performance of DCA and GCA
in different groups was consistent with the predictions of
untargeted metabolomics, validating the correctness of
untargeted metabolomics.

To explore which enzymatic processes play a key role in bile
acid metabolism, we explored seven bile acid ratios in different
groups of mice (Figure 10). The ratios of primary BAs to primary
BAs (CA: CDCA) can reflect changes in the classical and alternative
metabolic pathways of liver BAs (MahmoudianDehkordi et al.,
2019). As shown in Figure 10A, CA: CDCA ratio had no significant
change in the WT group and APP/PS1 group, and the callback
effect was not obvious after AOF treatment. DCA: CA and LCA:
CDCA is a common form of secondary bile acids: primary bile acids
that reflect changes in gut microbiome enzymes. Among them,

FIGURE 5
Heat map of differential metabolites in the plasma.

FIGURE 6
Differential metabolites were classified by HMDB database. (A) Differential metabolites were classified for APP/PS1 vs. WT. (B) Differential metabolites
were classified for APP/PS1+AOF vs. APP/PS1.
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DCA: CA is significantly related to the diagnosis of human
Alzheimer’s disease (Nho et al., 2019). In this study, significant
differences in DCA: CA (Figure 10B) and LCA: CDCA (Figure 10C)
values were found in plasma samples from different groups of mice.
AOF can reduce DCA: CA and LCA: CDCA values in APP/
PS1 mice, suggesting that AOF may slow down the progression
of AD from the bile acid metabolism pathway. Finally, we
investigated the effect of the combination of taurine and glycine
on the dysmetabolism of secondary bile acids (Figures 10D–G).
Except for TLCA: LCA, GDCA: DCA, TDCA: DCA, and GLCA:

LCA had no significant association with AD, and AOF failed to
significantly alter the metabolic disorder of bile acids, although
there was a trend of correction.

4 Discussion

This research was the first to confirm the anti-AD effect of AOF
and explore its potential mechanism by combining the overall
behavioral performance, brain plaque deposition, plasma

TABLE 2 Detailed classification of differential metabolites.

A

Linoleamide Lipids and lipid-like molecules Fatty Acyls

Oleamide Lipids and lipid-like molecules Fatty Acyls

Hexadecanamide Lipids and lipid-like molecules Fatty Acyls

Thromboxane B2 Lipids and lipid-like molecules Fatty Acyls

Docosahexaenoic Acid Lipids and lipid-like molecules Fatty Acyls

Palmitic acid Lipids and lipid-like molecules Fatty Acyls

Stearic acid Lipids and lipid-like molecules Fatty Acyls

Eicosapentanoic acid Lipids and lipid-like molecules Fatty Acyls

Tiaprost Lipids and lipid-like molecules Fatty Acyls

LysoPE (20:2) Lipids and lipid-like molecules Glycerophospholipid

LysoPC(17:0/0:0) Lipids and lipid-like molecules Glycerophospholipid

LysoPE (22:6) Lipids and lipid-like molecules Glycerophospholipid

Glycocholic acid Lipids and lipid-like molecules Bile acids, alcohols and derivatives

Deoxycholic acid Lipids and lipid-like molecules Bile acids, alcohols and derivatives

Sphingosine 1-phosphate Lipids and lipid-like molecules Phosphosphingolipids

Dihydrosphingosine 1 phosphate Lipids and lipid-like molecules Phosphosphingolipids

Cer(d18:0/14:0) Lipids and lipid-like molecules Ceramides

B

3-Oxalomalic acid Organic acids and derivatives Carboxylic acids and derivatives

L-gamma-Glutamyl-L-leucine Organic acids and derivatives Carboxylic acids and derivatives

Aminoadipic acid Organic acids and derivatives Carboxylic acids and derivatives

N6-Acetyl-L-lysine Organic acids and derivatives Carboxylic acids and derivatives

Aspartyl-Leucine Organic acids and derivatives Carboxylic acids and derivatives

2-methylcitric acid Organic acids and derivatives Carboxylic acids and derivatives

Fumaric acid Organic acids and derivatives Carboxylic acids and derivatives

N-Acetyl-L-glutamic acid Organic acids and derivatives Amino acids, peptides, and analogues

Tyrosine Organic acids and derivatives Amino acids, peptides, and analogues

C

Sphinganine Organic nitrogen compounds Amines

Phytosphingosine Organic nitrogen compounds Amines

D

Nicotinic acid Organoheterocyclic compounds Pyridinecarboxylic acids and derivatives

Adenine Organoheterocyclic compounds Purines and purine derivatives

E

Adenosine Nucleosides, nucleotides, and analogues Purine nucleosides
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untargeted metabolomics, and targeted metabolomics results of
transgenic mice. In this study, UHPLC-Q-Orbitrap HRMS was
utilized to qualitatively analyze AOF, and 20 sesquiterpenoids
were identified. As a characteristic component of AOF,
sesquiterpenoids had been shown to play a neuroprotective role

by alleviating oxidative stress, and have significant effects on
amyloid-β-triggered cognitive impairment and neuronal
abnormalities (Shi et al., 2014; Zhang et al., 2018). In addition,
kaempferol (Li et al., 2019), 5-HMF (Liu et al., 2014), and chrysin
(Talebi et al., 2021) had been proved to have anti-AD potential. The

FIGURE 7
(A) Main metabolic pathways of the differential metabolites for APP/PS1 vs. WT. (B) Main metabolic pathways of the differential metabolites for APP/
PS1+AOF vs. APP/PS1.

FIGURE 8
Disorder metabolic network in APP/PS1 mice and the interventional effect of AOF.
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above studies on the material basis of AOF suggested the therapeutic
potential and value of AOF for AD.

The classic pathological feature of AD is the abnormal deposition
of Aβ in the brain forming a large number of Aβ plaques (Ballard et al.,
2011). Mutations in APP and PS1 genes lead to excessive deposition of
Aβ42 for the purpose of simulating the pathological features of AD

(Vassar, 2004), and therefore APP/PS1 mode is recognized worldwide
as a transgenic animal model for exploring AD. MWM, the gold
standard of AD behavior, is commonly utilized to test the memory and
learning ability of rodents. The MWM experiment demonstrated that
AOF could improve the learning and memory impairment of APP/
PS1 model mice. IHC was used to compare the expression levels of Aβ

FIGURE 9
AOF reversed most BAs levels in different groups of APP/PS1 mice. (A–O) CA, CDCA, TCA, GCA, TCDCA, GCDCA, DCA, UDCA, LCA, TDCA, GDCA,
TUDCA, GUDCA, TLCA, and GLCA, respectively. Data are presented as mean ± SEM (n = 6). *p < 0.05, **p < 0.01, compared with WT group; #p < 0.05, ##p <
0.01, compared with APP/PS1 group.
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in the hippocampus and cortex of different groups of mice. The
yellow-brown plaques in the APP/PS1 group were considerably
more than in other groups. After AOF treatment, the plaques
became less numerous and lighter in color. These results suggested
that AOF may treat AD by reducing the expression of Aβ. In
conclusion, AOF could adjust the behavioral characteristics and
reduced the abnormal accumulation of Aβ in the hippocampus and
cortex, which provided an experimental basis for the clinical use of
AOF in the therapy of AD.

The etiology of AD is complex, and AOF has been commonly
used to treat forgetfulness since ancient times. This study
attempted to explain the therapeutic effect of AOF in terms of
the disturbance and back regulation of potential differential
metabolites in plasma. 31 plasma differential metabolites were
found between the APP/PS1 and WT groups, 15 of which could be
significantly back-regulated by AOF. It mainly involved
sphingolipid metabolism, TCA cycle, glycerophospholipid
metabolism, tyrosine metabolism, and primary bile acid
biosynthesis. Lipids are critical components for maintaining
normal cell structure and function, storing energy, and
conducting signals (Gaschler and Stockwell, 2017; Wong et al.,
2017). Dysregulation of lipid homeostasis is highly associated with
neurodegenerative disease AD (Kao et al., 2020). In our study,

AOF might improve AD symptoms through sphingolipid,
glycerophospholipid, fatty acid, and bile acid metabolic pathways.

Sphinganine (Sa), sphinganine-1-phosphate (Sa1P), sphingosine-1-
phosphate (S1P), ceramide (Cer), and phytosphingosine located in the
sphingolipid metabolism pathway were all differential metabolites of WT
and APP/PS1 groups. Compared with the WT group, Sa, Sa1P, and S1P
levels in APP/PS1 group were significantly upregulated. After 3months of
AOF treatment, Sa1P showed a downward trend, and Sa and S1P
considerably decreased. Ceramides are sphingolipids with a wide range
of biological activities (Di Pardo and Maglione, 2018). Our data showed
that the levels of phytosphingosine and cer (d18:0/14:0) in the APP/
PS1 group decreased significantly, and the concentration of cer (d18:0/14:
0) showed an upward trend after AOF treatment. Previous studies have
shown that glycerophospholipid metabolism is closely related to the
pathogenesis of AD (Kalli, 2020). Phosphatidylcholine (PC),
phosphatidylethanolamine (PE), lysoPC, and lysoPE were located in
glycerophospholipid metabolism. It found that increased lysoPC
intensifies Aβ deposition and induces neurotoxicity (Sheikh et al.,
2015). In our study, lysoPC(17:0), lysoPE (20:2), and lysoPE (22:6)
levels increased observably in the APP/PS1 group and decreased
markedly after AOF treatment. In the fatty acid metabolic pathway,
the levels of palmitic acid, stearic acid, docosahexaenoic acid (DHA), and
eicosapentanoic acid (EPA) all prominently escalate in APP/PS1 groups.

FIGURE 10
Ratios of primary and secondary BAs in different groups of APP/PS1 mice. (A–G) CA: CDCA, DCA: CA, LCA: CDCA, GDCA: DCA, TDCA: DCA, GLCA: LCA,
and TLCA: LCA, respectively. Data are presented as mean ± SEM (n = 6). *p < 0.05, **p < 0.01, compared with WT group; #p < 0.05, ##p < 0.01, compared with
APP/PS1 group.
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After AOF treatment, palmitic acid, stearic acid, and EPA showed a
downward trend, while DHA was significantly improved. Palmitic acid
and stearic acid have been proven to increase amyloid protein in cortical
neurons and promote tau hyperphosphorylation. DHA (Bazan et al.,
2011; Petermann et al., 2022) and EPA (Shahidi, 2018) are unique
polyunsaturated fatty acids, which can regulate synaptic function and
improve salient transmission, and have great significance in
neurodegenerative diseases.

BAs eliminate liver cholesterol, a crucial factor in AD. In the liver,
cholesterol is converted into the primary bile acids CDCA and CA.
Secondary bile acids (DCA, UDCA, LCA) are produced by the
dehydrogenation of primary bile acids by 7α-dihydroxylation. AOF
might improve AD symptoms because it could regulate probiotics and
inhibit pathogenic bacteria. The link between the brain and the gut
might be liaised by BAs metabolism.

5 Conclusion

AD is a complex neurodegenerative disease. In this work, we come
to three conclusions. 1) AOF could correct the behavior of model mice
and reduce the deposition of AB in the brain. 2) Untargeted
metabolomics showed that 15 plasma metabolites were significantly
back-regulated by AOF, mainly involving the sphingolipid,
glycerophospholipid, fatty acid, and bile acid metabolic pathways.
3) After AOF treatment, all BAs showed a correction trend, and most
of the metabolites went back significantly. In summary, our study
explored the mechanism of action of AOF in treating AD, and
provided evidence for BAs as a potential diagnostic indicator for AD.
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