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Network biologists have found that proteins associated to human disorders form disease modules in 
the human protein interaction network (depicted with different color in the figure). Moreover, modules 
that are topologically close to each other correspond to diseases with similar phenotypes or symptoms, 
or to conditions that co-occur. As a result, the development of computational approaches to predict 
protein interactions and detect spurious ones is crucial in the emerging field of network medicine.
Image by Gregorio Alanis-Lobato
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The identification and mapping of protein-protein interactions (PPIs) is a major goal in systems 
biology. Experimental data are currently produced in large scale using a variety of high-through-
put assays in yeast or mammalian systems. Analysis of these data using computational tools 
leads to the construction of large protein interaction networks, which help researchers identify 
novel protein functions. 

However, our current view of protein interaction networks is still limited and there is an active 
field of research trying to further develop this concept to include important processes: the 
topology of interactions and their changes in real time, the effects of competition for binding 
to the same protein region, PPI variation due to alternative splicing or post-translational mod-
ifications, etc.

In particular, a clinically relevant topic for development of the concept of protein interaction 
networks is the consideration of mutant isoforms, which may be responsible for a pathological 
condition. Mutations in proteins may result in loss of normal interactions and appearance of 
novel abnormal interactions that may affect a protein’s function and biological cycle.

This Research Topic presents novel findings and recent achievements in the field of protein 
interaction networks with a focus on disease. Authors describe methods for the identification and 
quantification of PPIs, the annotation and analysis of networks, considering PPIs and protein 
complexes formed by mutant proteins associated with pathological conditions or genetic diseases.
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The Editorial on the Research Topic

Protein Interaction Networks in Health and Disease

The identification and annotation of protein-protein interactions (PPIs) is of great importance in
systems biology. Big data produced from experimental or computational approaches allow not only
the construction of large protein interaction maps but also expand our knowledge on how proteins
build up molecular complexes to perform sophisticated tasks inside a cell. However, if we want
to accurately understand the functionality of these complexes, we need to go beyond the simple
identification of PPIs. We need to know when and where an interaction happens in the cell and
also understand the flow of information through a protein interaction network.

Another perspective of the research on PPI networks is the study of their relation to disease.
In disease conditions, mutations that alter the secondary structure of one protein might perturb
its PPIs, as well. Thereafter many things can go wrong via cascading effects, caused by the inter-
relatedness of the mutated protein to other proteins through the PPI network. Such perturbations
could block the formation of a protein complex or lead to the formation of new protein
complexes and the activation of abnormal signaling pathways. These events could alter the cellular
transcriptome profile and further contribute to disease pathogenesis. That is why the maintenance
of the proper structure and functionality of a PPI network is crucial for cellular homeostasis. Its
disruption can cause complex effects and understanding them requires advanced methods for
analysis.

The aim of this Research Topic is to present novel findings and recent achievements in the
field of PPI networks. Thematically, it is divided into two parts. First, we present methods for
the identification and quantification of PPIs; second, we describe computational approaches to
annotate interactomes and extract information related to disease prediction or disease progression.

The first four articles deal with the identification and quantification of PPIs. In the first work,
Suter et al. describe the application of next generation sequencing (NGS) for the characterization
of binary PPIs. Authors present an accurate method to analyze yeast two-hybrid data by NGS and
also interpret interaction data via quantitative statistics. They also discuss how this methodology
can be used to discover differential PPIs allowing the identification of disease mechanisms
(Suter et al.).

The next two review articles describe mass spectrometry (MS) based approaches. Yang
et al. present methods that can determine the relative abundance of purified proteins in
a sample enabling the identification of transient PPIs in different conditions. Additionally,
when combined with proximity tagging methods, MS may illuminate spatial or temporal
PPIs, especially those of signaling pathways whose perturbation may underlie human diseases
(Yang et al.). Meyer and Selbach indicate how MS can be used to identify dynamic changes
in the interactome. Stable isotope labeling in aminoacids and affinity purification-MS can
shed light on the dynamic behavior of proteins even at different stages of an experiment

5
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following perturbation. Authors also describe how MS may
identify the stoichiometry of proteins in complexes. These
methodologies can be employed to study the dynamic changes of
PPIs under normal and disease conditions (Meyer and Selbach).

In the next article, Buntru et al. review novel cell-based
assays for the detection of PPIs and discuss their strengths
and weaknesses. Compared to traditional genetic or biochemical
methods, these techniques provide quantitative information of
PPIs even in the context of living cells. This information
can be used to prioritize a large number of PPIs, allowing
researchers to better describe the biological systems and
improve our understanding of disease processes (Buntru et
al.).

The second part of the Research Topic is comprised of
seven papers dealing with the annotation of protein interaction
networks. Alanis-Lobato describes computational mining tools
to improve the reliability of protein networks and predict new
interactions based on the topological characteristics of their
components. He also provides examples on how the integration
of clinical data can highlight disease modules in these networks
or indicate similarities between diseases (Alanis-Lobato).

Pelassa and Fiumara study the functional role of
homopolymeric amino acid repeats (AARs) in proteins and
their PPIs. AARs are considered to mediate PPIs and in some
cases correlate with human diseases, such as polyglutamine
expansions involved in Huntington’s disease. The authors
describe a computational screening of the human interactome
and show that AAR-containing network components have a high
degree of connectivity. They also indicate an overlap between
AARs and interaction domains suggesting that AARs play an
important role in shaping protein interaction networks (Pelassa
and Fiumara).

Lecca and Re present WG-Cluster, a novel algorithm for
the detection of modular structures in protein networks. This
tool combines network node and edge weight information of
connected proteins improving the biological interpretability of a
PPI. The authors also apply their technique in biological datasets
from patients with colorectal cancer and indicate differentially
active cellular processes in normal vs. tumor conditions (Lecca
and Re).

In the next article, Chen and colleagues use the dynamical
network biomarkers method to detect early disease signals in a
breast cancer cell model. The authors pinpoint critical network
changes and highlight a number of pathways associated with the
pre-transition from the normal state to a cancer cell progression
stage. They also suggest the use of these signals as targets for
disease intervention (Chen et al.).

Databases collecting data on experimentally verified PPIs are
a valuable resource for the research community. In particular,
there are studies that extract biological knowledge from analysis
of these global data. However, the different intensity with which

different proteins have been studied, influences the amount
of data that is available for certain proteins leading to wrong
statements. Schaefer et al. study the biases that affect the human
PPI data due to research heterogeneity, propose measures to
correct this and show an application to proteins involved in
cancer.

Yeger-Lotem and Sharan present computational approaches
to construct tissue or disease-specific interactomes. They indicate
how the combination of transcriptome profiles with proteomics
data could categorize PPIs from large networks according to their
occurrence in specific tissues. In parallel, they present the effect of
disease-causing mutations on protein stability and subsequently
on the integrity and structure of protein networks in an affected
tissue (Yeger-Lotem and Sharan).

In the last article of this topic, Theofilatos et al. argue about
the challenges of computational analysis of PPI data and present
future goals such as biomarker discovery or identification of
pathogenic PPIs and their drug targeting. Authors also support
that the integration of environmental or clinical data in protein
networks will allow their in-depth study and the construction of
personalized interactomes (Theofilatos et al.).

In the past decade, network biology focused on the
representation of the binary interaction of proteins. Today, the
field of PPI research capitalizes and hops above the establishment
of such previous work and resources, identifies existing
limitations, and proposes further avenues of investigation, as
reflected in this Frontiers Research Topic. A tight connection
between experimental and computational efforts is a hallmark
of the articles that we present here, which set the tone
that PPI research will follow in the next years. If anything
remains unchanged, this is our awareness of the fact that
diseases are often caused by the malfunction of large protein
complexes. This holds as the main motivation of research
in the field, which screams for more complete and reliable
interactomes, ultimately crucial in order to identify relevant
pathogenic mechanisms and design therapeutic intervention
strategies.
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The yeast two-hybrid (Y2H) system exploits host cell genetics in order to display binary
protein–protein interactions (PPIs) via defined and selectable phenotypes. Numerous
improvements have been made to this method, adapting the screening principle for
diverse applications, including drug discovery and the scale-up for proteome wide
interaction screens in human and other organisms. Here we discuss a systematic
workflow and analysis scheme for screening data generated by Y2H and related assays
that includes high-throughput selection procedures, readout of comprehensive results
via next-generation sequencing (NGS), and the interpretation of interaction data via
quantitative statistics. The novel assays and tools will serve the broader scientific
community to harness the power of NGS technology to address PPI networks in health
and disease. We discuss examples of how this next-generation platform can be applied
to address specific questions in diverse fields of biology and medicine.

Keywords: protein–protein interactions, yeast two-hybrid, interactome mapping, next-generation sequencing,
quantitative interaction profiles

INTRODUCTION

Networks of protein–protein interactions (PPIs) govern essentially all biological processes
and mechanisms, such as receptor-ligand recognition, immune responses, intracellular and
extracellular signaling, growth regulation, and development. Early on, PPI networks or
“interactomes” were recognized as the next frontier in biomedicine after the completion of the
human genome project (Mendelsohn and Brent, 1999). The role of interaction networks in
complex diseases is now a central focus in network biology (Vidal et al., 2011; Sharma et al., 2015).
Innovative concepts and technologies are therefore required to satisfy a broad and unmet need for
highly reliable and efficient mapping of PPIs.

The charting of interactomes is in many ways more challenging than that of genomes. Proteins
are encoded by multiple transcript isoforms and are localized in diverse cellular compartments
with distinct milieus. Moreover, variations in amino acids and post-translational modifications
affect and determine PPIs. Hence, from a practical perspective, working with proteins is more
demanding than working with DNA. For these reasons, to this date, our technical capabilities
for systematic approaches toward PPI networks remain limited, when compared with the routine
deciphering of genomes, transcriptomes, and exomes at high efficiency and low cost by next-
generation sequencing (NGS) technologies (Shendure, 2011; Shendure and Lieberman Aiden,
2012; Mardis, 2013).

Over the last 30 years, diverse technologies have been developed to detect PPIs that are based
on different principles with individual strengths and weaknesses. Affinity purification followed
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by mass-spectrometry (AP-MS) is the standard method to
identify protein complexes (Bensimon et al., 2012; Dunham et al.,
2012). On the other hand, a variety of assays, such as yeast
two-hybrid (Y2H), as well as protein fragment complementation
(PCA) in yeast and various mammalian assays, are currently
applied for the in vivo screening of binary interactions to identify
direct binding partners (Stynen et al., 2012). These assays rely
on the reconstitution of PPIs in vivo and the direct or indirect
activation of reporters for selection and scoring of interactions.

Since its inception (Fields and Song, 1989; Gyuris et al.,
1993), Y2H has emerged as a widely applied approach for
the exploration of novel PPIs and interactome-wide screens
(Vidal and Fields, 2014). The assay relies on the splitting of
a transcription factor into its DNA binding and activation
domains. In most implementations, the bait protein is fused
to the DNA binding domain, whereas the prey or a library
of prey cDNAs is fused to the activation domain. A physical
interaction between bait and prey reconstitutes the transcription
factor and activates one or several reporter genes, allowing
selection of yeast cells expressing interacting bait-prey pairs.
After selection for growth, only a small minority of cells with
interacting proteins is enriched over a large background of cells
containing non-interacting proteins. Y2H provides therefore a
genetic selection system, in which interaction partners can be
identified by sequencing the DNA encoding the prey proteins that
interact with a defined bait protein.

A variety of other existing in vivo assays for screening binary
PPIs can be considered alternative implementation of Y2H
principles, such as split ubiquitin system for membrane proteins
(Obrdlik et al., 2004; Jones et al., 2014), the reverse Y2H screening
system and the two-bait interaction trap to explore the effect
of allelic variants on PPIs (Vidal et al., 1996; Xu et al., 1997).
The yeast one-hybrid technique is a variant for the identification
of proteins that bind to DNA motifs and transcription factor
binding sites (Fuxman Bass et al., 2015). With yeast three-
hybrid (Y3H) the goal is identification of proteins binding to
small molecule drugs (protein-drug interactions; PDIs; Moser
and Johnsson, 2013).

In this article, we give an overview on existing methods
that present different solutions to use NGS as readout for Y2H
data. We also present our own experimental and bioinformatics
platform that we developed for this purpose and discuss howNGS
can overcome the existing limitations of Y2H and diverse other
binary interaction assays.

YEAST TWO-HYBRID TECHNOLOGIES
AND MAPPING OF INTERACTOMES

High-throughput Y2H assays have been instrumental in
proteome-wide screens for the mapping of PPIs that were so
far undertaken in human and various model organisms (Uetz
et al., 2000; Rual et al., 2005; Stelzl et al., 2005; Yu et al., 2008;
Simonis et al., 2009; Rolland et al., 2014). A recent focus for
high-throughput Y2H is on differential PPIs of normal and
disease-associated alleles occurring in the human population
(Dittmer et al., 2014; Sahni et al., 2015). In matrix-based Y2H

procedures, comprehensive collections of bait and prey strains
are combined in high-throughput, using robotic infrastructure
(Uetz et al., 2000, 2004; Stelzl et al., 2005). Yeast clones are
arrayed on defined matrix positions, therefore PPIs are scored
as visual readouts, eliminating the need to do DNA sequencing
for identification. Moreover, the use of annotated full-length
open reading frames (ORFs) also circumvents potential artifacts
that are associated with cDNA libraries. On the other hand, the
requirement for preassembled and defined libraries restricts this
method to human and well-defined model organisms for which
ORF collections have been made. Moreover, the automated setup
that is required for this approach is expensive and not readily
available for many researchers.

Despite the importance of Y2H as a discovery system,
most Y2H results, also those generated in high-throughput
experiments, are not based on truly quantitative measurements.
This contrasts with gene expression and protein–DNA
interactions which have been systematically explored with
DNA microarrays and NGS. Notably, the use of DNA
microarrays for parallel identification of Y2H screening
results was recognized early on (Cho et al., 1998). More recently,
a microarray-Y2H screening and scoring system was introduced
and applied to identify interaction partners of huntingtin and
ataxin-1, two important determinants for neurodegenerative
diseases (Suter et al., 2013). Using the Qi-Sampler repeat
sampling tool (Fontaine et al., 2011), microarray-Y2H results
were benchmarked against sets of known positives (golden
sets) and other gene sets for statistical enrichments. High-
confidence microarray-Y2H interactions correlated with
positives from the literature and PPIs that were confirmed
with luminescence-based mammalian interactome mapping
as an alternative assay. Moreover, the quantitative scoring of
interaction data and comparison to background controls allowed
the elimination of many non-specific binders or sticky prey
proteins.

The first adaptation of NGS technology for Y2H came
from the lab of Marc Vidal (Yu et al., 2011). In the Stitch-
Seq method, the sequences of putatively interacting bait and
prey proteins are concatenated so that they comprise a single
amplicon for a massive and parallel NGS readout. The method
was successfully used to generate high-throughput Y2H datasets
(Rolland et al., 2014). The Y2H-Seq approach by the group of
Ulrich Stelzl relies on the combination of NGS with matrix
Y2H (Weimann et al., 2013). It demonstrated the advantages
of the NGS readout for scalability by sequencing the results
of hundreds of separate screens through barcode indexing in
a single Illumina run. A higher interaction coverage in the
screened interactome space was achieved by increasing the
sensitivity for detection of PPIs. The Y2H-Seq screens resulted
in a network of 523 interactions involving 22 methyltransferases
or demethylases for previously undiscovered cellular roles in
non-histone protein methylation. However, while Y2H-Seq and
Stitch-Seq are powerful tools and pioneering implementations
of NGS for Y2H, they are intended for interactome screenings
with ORF libraries and aim primarily at increasing scale and
sensitivity but do not fully exploit the quantitative potential
of NGS.
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A NEXT GENERATION SOLUTION FOR
Y2H SCREENS

We believe that the perceived shortcomings of Y2H such as
inconsistent or non-reproducible results, lack of quantitation,
laborious procedures, and above all, high rates of false positive
results can be traced to the lack of an adequate readout
system. With next-generation interaction screening (NGIS), we
developed an innovative concept and methodology to harness
the power of NGS technologies for the exploration of PPIs.
The application of NGS removes the main restrictions on Y2H
imposed by the cost of DNA sequencing. Replacing conventional
Sanger sequencing with NGS leads to a massively increased
throughput while reducing the cost of sequencing per screen
to a small fraction of the conventional readouts (1,000–10,000-
fold or more). Currently we are providing screening services for
clients that include experimental work, data analysis, and the use
of a cloud-based platform (Figure 1). NGIS procedures can be
applied to every available Y2H and Y2H variant setup for binary
interaction screens.

The technical principle of NGIS is shown in Figure 2. Tissue-
or organ derived cDNA libraries that were cloned into Y2H
prey vectors are combined with individual Y2H bait strains

via cDNA transformation and mating procedures, and grown
on selective medium. Selected prey cDNA clones are then
amplified and products are fragmented and sequenced at their
entire lengths with Illumina MiSeq or HiSeq. Most important,
entire pools are sequenced after unbiased selection without the
need to isolate individual clones. Another benefit of the NGIS
protocol is that multiple repeat screens can now be undertaken
to screen at maximum sensitivity, such that a weak enrichment
corresponding to a single clone can be detected in a larger overall
population and maximum coverage of the interaction space is
achieved.With bioinformatics tools and algorithms adapted from
RNA-Seq analytical methods, NGIS data can be processed to
assign fold change and false discovery rate for every cDNA clone
being sequenced in the assay. By comparing replicated bait results
with controls (unrelated baits), the maximum information can
be extracted out of the assays, scoring false positives and also
taking into account the occurrence of false negatives and the
reproducibility of the screening results.

With substantial cost reduction for screening and sequencing,
it is worthwhile to generate large repeat datasets only for the
purpose of screening the background of non-specific interactions.
Indeed, non-specific Y2H activation by a subset of prey cDNAs
(sticky preys) often makes up a majority of all hits in a

FIGURE 1 | Pipeline for Next-generation interaction sequencing (NGIS). Specific target binding in Y2H (or related assays) results in distinct populations of
cDNAs that are identified and quantified via NGS. Interactions are scored and interpreted in a bioinformatics pipeline with quantitative statistics.

FIGURE 2 | Screening principle and applications for NGIS. Experimental scheme for NGS based interaction profiling. Bait-specific screening results/profiles are
compared to original cDNA pools and control screens to uncover background and non-specific interactions. Prey cDNAs that interact with the bait are enriched and
quantitated using next-generation sequencing (NGS) and bioinformatics analysis. Bait-specific enrichments (blue) can be quantitatively distinguished from
non-specific enrichments (red) and non-selected preys (orange, green).
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Y2H screen (Uetz, 2002). Hence, without prior knowledge,
conventional Y2H requires specificity tests to confirm each
identified PPI after the screening procedure is done, usually by
isolation of cDNAs and retests with control strains (Vidalain
et al., 2004). Using the NGIS screening scheme, bait specific
DNA enrichments can be scored for specificity and non-
specific interactions can be excluded a priori. This closes an
existing gap to other technologies, such as AP-MS for which
control datasets for background contaminants are routinely
applied to distinguish bona fide interactors from non-specific
contaminants (Lavallée-Adam et al., 2011; Mellacheruvu et al.,
2013). Importantly, Y2H screening data can be viewed and
interpreted as interaction profiles, comparable to transcription
profiles in RNA sequencing (Trapnell et al., 2012; Law et al.,
2014). Quantitative comparisons between different screen sets
allow data mining and predictions for gene function that are
impossible to do with the conventional Y2H readout by Sanger
sequencing (Suter et al., 2013).

With NGIS interaction and interactome profiles, binary
interaction screens can be adapted in several ways and toward
different goals (Table 1). The primary goal in most Y2H
screens is to define the function of proteins by identifying
their molecular neighborhoods and to find specific targets that
are relevant in diseases, e.g., proteins with functions in cancer
or host receptors for pathogen effector proteins in microbial
pathogenesis. NGIS interaction profiles and gene enrichment
analysis help to understand the function of proteins of interest
and the search for relevant interaction targets. An approach
related to ours, Quantitative Interactor Sequencing (Qi-Seq),
applied the split-ubiquitin system and Illumina NGS to screen for
plant host targets for the HopZ2 effector protein that is secreted
by the Gram-negative bacterial pathogen Pseudomonas syringae,
and identified the Arabidopsis thalianaMLO2 protein as a target
(Lewis et al., 2012).

Besides the discovery of novel PPIs, NGIS also provides a
systematic approach to address changes in interaction profiles
introduced by variants and polymorphisms in proteins that
underlie phenotypes in complex and inheritable diseases. A
number of studies have shown that Y2H assay is well-suited to
detect changes in PPIs that are introduced by disease-specific
alleles or random-generated amino acid mutations (Vidal et al.,
1996; Xu et al., 1997; Dreze et al., 2009; Rolland et al., 2014).

TABLE 1 | Solutions provided by NGIS for diverse problems and
applications.

Area Problem Solution

Biological pathways Mechanism of diverse
diseases

Comparative interaction
profiling

Microbial pathogenesis Host virulence
determinants

Comparative interaction
profiling

Complex and
inheritable diseases

Variants of unknown
significance

Parallel interaction
fingerprints

Protein engineering Determinants of protein
and peptide binding

Complete interaction
landscapes

Drug discovery Search for drug targets Three-hybrid target
discovery

A recent study profiled the interactions of several thousand
missense mutations across a spectrum of Mendelian disorders
(Sahni et al., 2015). The analysis indicated that two-thirds of
disease-associated alleles perturb PPIs, while common variants
from healthy individuals rarely affect interactions. Our NGIS
platform provides a rapid way to compare PPI patterns from
wild-type and mutant versions of the same protein. Quantitative
Y2H data will not only show presence or absence of individual
PPIs, but also shift in overall interaction patterns, which may
cause gain or loss of protein function.

PERSPECTIVES AND FUTURE
CHALLENGES

An immediate use of NGS based interaction screens with Y2H
or Y2H variant techniques can be seen in the extraction of
valuable and specific leads from quantitative and comprehensive
interaction profiles. PPI profiles can be from wild-type and
mutant proteins, as well as from isoforms of the same proteins,
and also from full length proteins and their individual domains.
Often, researchers are not interested in the complete set PPIs
exhibited by a target of interest, but rather in a set of PPIs that
are altered in disease. By providing an effective way to discover
differential or regulated PPIs, NGIS could therefore constitute an
important application to explore biological pathways and disease
mechanisms.

Other areas in which NGIS could have an impact are protein
engineering and target discovery for small molecule drugs (see
Table 1). Considering that protein domains rather than full-
length proteins are at the basic level of proteome organization,
screening for protein fragments often reveals specific interaction
sites and also PPIs that are masked in full length-proteins by
steric hindrance. The value of fragment-based Y2H approaches
was demonstrated previously (Boxem et al., 2008; Waaijers et al.,
2013). NGS with complex cDNA libraries for high-resolution
mapping of interaction sites could therefore be instrumental to
achieve a full coverage of the protein interaction space. Reducing
the lengths of interaction motifs further down to peptides,
NGIS can also be applied for peptide aptamers for which Y2H
has been instrumental (Bickle et al., 2006; Hamdi and Colas,
2012). We can also envision a role for NGIS procedures for the
selection and optimization of scaffolds for aptamer displays. For
example, libraries of novel aptamer scaffolds could be selected
that can be targeted to diseased tissue and used both extra- and
intracellularly. Scaffolds could then be optimized for functional
interactions with proteins of interest.

Within the proper framework, NGIS could also, in principle,
be applied for Y2H-based protein-drug interactions, such as Y3H
to screen for novel protein targets that bind to known drugs
(Moser and Johnsson, 2013), or to address the disruption of PPIs
and protein complexes by small molecule binding (Flusin et al.,
2012). The screening and selection in small volumes of liquid
culture as opposed to large volumes of agar plates is a prerequisite
for efficient screens in the presence of drugs. Quantitative analysis
of NGIS data could be used to effectively distinguish drug-specific
from non-specific interactions.
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By providing quantitative measurements, reproducibility by
repeat assays, background controls for false positives, streamlined
scoring and statistical analysis, NGIS overcomes existing
bottlenecks of Y2H, thus providing a valuable technology and
service platform. In addition, reconstruction of the components
for Y2H fusion expression and reporter selection could increase
accuracy, speed, automation, and cost-effectiveness for Y2H
screens. A wide repertoire of sequence elements and well-
characterized parts is now available for this purpose, although
less attention had been paid to PPI and interaction affinities than
to transcription parameters (Galdzicki et al., 2011). Regulated
promoters that could compensate for differential expression of
individual bait proteins could allow a better comparison between
different interaction profiles. Another area for improvements is
the use of new reporter assays to score interactions. For example,
fluorescence measurements by cytometry for Y2H were already
recognized as an alternative to the existing reporter systems
(Chen et al., 2008). We expect that improved Y2H and Y2H-like
assays will unlock the full potential of interaction screening and

therefore provide a great benefit for biological and biomedical
sciences.

AUTHOR CONTRIBUTIONS

BS developedNGS for Y2H screens is responsible for content and
wrote the article. J-HM and SD-K are scientific collaborators and
advisors for the NGIS technology, XZ does the bioinformatics
and codeveloped the concept. GP and AM, helped develop
the Y2H procedures. All authors read and commented the
manuscript.

FUNDING

Original research on the NGIS technology was supported by
the National Science Foundation (NSF) with Small Business
Innovation Research (SBIR) grant no 121608.

REFERENCES

Bensimon, A., Heck, A. J., and Aebersold, R. (2012). Mass spectrometry-based
proteomics and network biology. Annu. Rev. Biochem. 81, 379–405. doi:
10.1146/annurev-biochem-072909-100424

Bickle, M. B., Dusserre, E., Moncorgé, O., Bottin, H., and Colas, P. (2006).
Selection and characterization of large collections of peptide aptamers through
optimized yeast two-hybrid procedures. Nat. Protoc. 1, 1066–1091. doi:
10.1038/nprot.2006.32

Boxem, M., Maliga, Z., Klitgord, N., Li, N., Lemmens, I., Mana, M.,
et al. (2008). A protein domain-based interactome network for
C. elegans early embryogenesis. Cell 134, 534–545. doi: 10.1016/j.cell.20
08.07.009

Chen, J., Zhou, J., Bae,W., Sanders, C. K., Nolan, J. P., and Cai, H. (2008). A yEGFP-
based reporter system for high-throughput yeast two-hybrid assay by flow
cytometry. Cytometry A 73, 312–320. doi: 10.1002/cyto.a.20525

Cho, R. J., Fromont-Racine, M., Wodicka, L., Feierbach, B., Stearns, T., Legrain, P.,
et al. (1998). Parallel analysis of genetic selections using whole genome
oligonucleotide arrays. Proc. Natl. Acad. Sci. U.S.A. 95, 3752–3757. doi:
10.1073/pnas.95.7.3752

Dittmer, T. A., Sahni, N., Kubben, N., Hill, D. E., Vidal, M., Burgess, R. C., et al.
(2014). Systematic identification of pathological lamin A interactors.Mol. Biol.
Cell 25, 1493–1510. doi: 10.1091/mbc.E14-02-0733

Dreze, M., Charloteaux, B., Milstein, S., Vidalain, P. O., Yildirim,M. A., Zhong, Q.,
et al. (2009). ‘Edgetic’ perturbation of a C. elegans BCL2 ortholog. Nat. Methods
6, 843–849. doi: 10.1038/nmeth.1394

Dunham, W. H., Mullin, M., and Gingras, A. C. (2012). Affinity-purification
coupled to mass spectrometry: basic principles and strategies. Proteomics 12,
1576–1590. doi: 10.1002/pmic.201100523

Fields, S., and Song, O. (1989). A novel genetic system to detect protein-protein
interactions. Nature 340, 245–246. doi: 10.1038/340245a0

Flusin, O., Saccucci, L., Contesto-Richefeu, C., Hamdi, A., Bardou, C.,
Poyot, T., et al. (2012). A small molecule screen in yeast identifies
inhibitors targeting protein-protein interactions within the vaccinia virus
replication complex. Antiviral Res. 96, 187–195. doi: 10.1016/j.antiviral.20
12.07.010

Fontaine, J. F., Suter, B., and Andrade-Navarro, M. A. (2011). QiSampler:
evaluation of scoring schemes for high-throughput datasets using a repetitive
sampling strategy on gold standards. BMC Res. Notes 4:57. doi: 10.1186/1756-
0500-4-57

Fuxman Bass, J. I., Sahni, N., Shrestha, S., Garcia-Gonzalez, A., Mori, A., Bhat, N.,
et al. (2015). Human gene-centered transcription factor networks for enhancers
and disease variants. Cell 161, 661–673. doi: 10.1016/j.cell.2015.03.003

Galdzicki, M., Rodriguez, C., Chandran, D., Sauro, H. M., and Gennari, J. H.
(2011). Standard biological parts knowledgebase. PLoS ONE 6:e17005. doi:
10.1371/journal.pone.0017005

Gyuris, J., Golemis, E., Chertkov, H., and Brent, R. (1993). Cdi1, a human G1 and
S phase protein phosphatase that associates with Cdk2. Cell 75, 791–803. doi:
10.1016/0092-8674(93)90498-F

Hamdi, A., and Colas, P. (2012). Yeast two-hybrid methods and their
applications in drug discovery. Trends Pharmacol. Sci. 33, 109–118. doi:
10.1016/j.tips.2011.10.008

Jones, A. M., Xuan, Y., Xu, M., Wang, R. S., Ho, C. H., Lalonde, S., et al. (2014).
Border control–a membrane-linked interactome of Arabidopsis. Science 344,
711–716. doi: 10.1126/science.1251358

Lavallée-Adam, M., Cloutier, P., Coulombe, B., and Blanchette, M. (2011).
Modeling contaminants in AP-MS/MS experiments. J. Proteome Res. 10,
886–895. doi: 10.1021/pr100795z

Law, C. W., Chen, Y., Shi, W., and Smyth, G. K. (2014). Voom: precision weights
unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15,
R29. doi: 10.1186/gb-2014-15-2-r29

Lewis, J. D., Wan, J., Ford, R., Gong, Y., Fung, P., Nahal, H., et al. (2012).
Quantitative Interactor Screening with next-generation Sequencing (QIS-Seq)
identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae
type III effector HopZ2. BMC Genomics 13:8. doi: 10.1186/1471-2164-13-8

Mardis, E. R. (2013). Next-generation sequencing platforms. Annu. Rev. Anal.
Chem. (Palo Alto Calif.) 6, 287–303. doi: 10.1146/annurev-anchem-062012-
092628

Mellacheruvu, D., Wright, Z., Couzens, A. L., Lambert, J. P., St-Denis, N. A., Li, T.,
et al. (2013). The CRAPome: a contaminant repository for affinity purification-
mass spectrometry data. Nat. Methods 10, 730–736. doi: 10.1038/nmeth.2557

Mendelsohn, A. R., and Brent, R. (1999). Protein interaction methods–toward an
endgame. Science 284, 1948–1950. doi: 10.1126/science.284.5422.1948

Moser, S., and Johnsson, K. (2013). Yeast three-hybrid screening for
identifying anti-tuberculosis drug targets. Chembiochem 14, 2239–2242.
doi: 10.1002/cbic.201300472

Obrdlik, P., El-Bakkoury, M., Hamacher, T., Cappellaro, C., Vilarino, C.,
Fleischer, C., et al. (2004). K+ channel interactions detected by a genetic system
optimized for systematic studies of membrane protein interactions. Proc. Natl.
Acad. Sci. U.S.A. 101, 12242–12247. doi: 10.1073/pnas.0404467101
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Protein–protein interactions are at the core of all cellular functions and dynamic alterations
in protein interactions regulate cellular signaling. In the last decade, mass spectrometry
(MS)-based proteomics has delivered unprecedented insights into human protein
interaction networks. Affinity purification-MS (AP-MS) has been extensively employed for
focused and high-throughput studies of steady state protein–protein interactions. Future
challenges remain in mapping transient protein interactions after cellular perturbations
as well as in resolving the spatial organization of protein interaction networks. AP-MS
can be combined with quantitative proteomics approaches to determine the relative
abundance of purified proteins in different conditions, thereby enabling the identification
of transient protein interactions. In addition to affinity purification, methods based on
protein co-fractionation have been combined with quantitative MS to map transient
protein interactions during cellular signaling. More recently, approaches based on
proximity tagging that preserve the spatial dimension of protein interaction networks
have been introduced. Here, we provide an overview of MS-based methods for analyzing
protein–protein interactions with a focus on approaches that aim to dissect the temporal
and spatial aspects of protein interaction networks.

Keywords: mass spectrometry-based proteomics, protein–protein interactions, transient interactions, spatial
interactions

PROTEIN INTERACTIONS ARE DEFINED BY TEMPORAL
AND SPATIAL CONSTRAINTS

Protein–protein interactions are at the core of all cellular functions and dynamic alterations
in protein interactions regulate cellular signaling (Scott and Pawson, 2009). Accurate and
comprehensive mapping of protein–protein interaction networks is essential for understanding
the regulatory mechanisms of cellular processes and signaling pathways as well as for identifying
perturbed cellular signaling underlying human diseases. Proteins can form stable interactions and
function as part of permanent protein assemblies, however a large proportion of protein–protein
interactions are defined by temporal and spatial constraints. Protein–protein interactions can
be dynamically altered in response to the intrinsic and extrinsic stimuli (Perkins et al., 2010).
Transient protein interactions are frequently induced by posttranslational modifications (PTMs)
and, depending on their cellular function, have a range of affinities and lifetimes (Nooren and
Thornton, 2003; Seet et al., 2006). Prominent examples include the recruitment of DNA repair
factors to sites of DNA lesions, cell cycle-regulated interactions and the formation of receptor
signaling complexes after growth factor stimulation. Furthermore, protein–protein interactions are
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restricted by cellular compartments and can be regulated by
protein re-localization to specific cellular structures or organelles.
The transient nature and spatial organization are therefore
important features that need to be considered when analyzing
protein–protein interaction networks (Figure 1).

MASS SPECTROMETRY-BASED
PROTEOMICS FOR ANALYSIS
OF PROTEIN–PROTEIN INTERACTIONS

Mass spectrometry (MS)-based proteomics has become an
indispensable tool in modern molecular and cell biology research
(Larance andLamond, 2015). In shotgun or bottomupproteomics
approaches, proteins are extracted from cells or tissues and
digested into peptides using specific proteases (Aebersold and
Mann, 2003). The resulting peptides are separated according to
hydrophobicity using high-pressure liquid chromatography and
identified by tandemMS (LC-MS/MS).

The most commonly employed approach to study
protein–protein interactions in vivo is affinity purification-
MS (AP-MS; Gingras et al., 2007; Vermeulen et al., 2008;
Meyer and Selbach, 2015). In AP-MS workflows, a protein
of interest (bait protein) is co-purified with its interaction
partners and the purified proteins are subsequently identified
by LC-MS/MS. Purification of the bait protein can be achieved
using antibodies that specifically bind to the endogenous bait
protein. Alternatively, epitope tags can be employed that enable
robust and reproducible purification of the bait protein and
its interaction partners using highly specific affinity matrices.
The latter approach is especially beneficial when antibodies
recognizing the bait protein are not available; however, the
introduction of epitope tags usually involves overexpression of
the bait protein and can lead to non-physiological interactions.

The power of AP-MS for high-throughput discovery of
protein–protein interactions has been exemplified by recent
landmark studies from the Mann and Gygi laboratories that
demonstrated systematic analyses of human protein–protein
interactions and mapped 28,500 and 23,744 unique interactions,
respectively (Hein et al., 2015; Huttlin et al., 2015). These studies
represent a milestone in the long-term effort to comprehensively
map human protein–protein interactions.

In addition to AP-MS, co-fractionation strategies have been
employed to study cellular organelles and protein complexes. The
Mann laboratory has employed biochemical fractionation based
on density gradient centrifugation to define the composition of
cellular organelles (Andersen et al., 2003; Foster et al., 2006).More
recently, Havugimana et al. (2012) andWan et al. (2015) employed
extensive biochemical fractionation and MS to determine the
composition of soluble protein complexes in human cells and in
cells from diverse metazoan model organisms.

RESOLVING TRANSIENT
PROTEIN–PROTEIN INTERACTIONS

Most studies conducted have so far investigated steady state
protein–protein interactions, leaving the temporal and spatial
aspects of protein–protein interactions largely disregarded.

Mapping transient protein–protein interactions during
cellular signaling and in response to cellular perturbations
remains a major future challenge. For instance, changes in
protein interactions induced by growth factor stimulation or
cellular stress, as well as interactions between PTM-catalyzing
enzymes and substrates, can often not be captured using
conventional methods for analyses of protein interactions.
Accordingly, efforts are ongoing to design proteomics methods
that permit analysis of transient and low affinity protein
interactions.

AP-MS Combined with Quantitative Mass
Spectrometry-Based Proteomics
Affinity purification combined with quantitative MS-based
proteomics can be used to identify dynamic protein–protein
interactions (Figure 2). In this approach, affinity purifications are
performed under different conditions and the relative abundance
of interaction partners is then determined by quantitative MS-
based approaches, including metabolic and chemical labeling as
well as label-free methods (Ong andMann, 2005; Bantscheff et al.,
2012). Affinity purification is often combined with stable isotope
labeling with amino acids in cell culture (SILAC) to monitor
protein interactomes after different types of cellular perturbations,
including DNA damage (Mosbech et al., 2012; Brown et al., 2015)
and ligand stimulation (Satpathy et al., 2015). In addition, this
approach has been applied to study the temporal dynamics of
protein interactions during cell cycle progression (Hubner et al.,
2010; Pagliuca et al., 2011).

Recently, data-independent acquisition (DIA) methods have
been employed to map changes in protein–protein interactions
after cellular perturbations. Analysis of peptide samples from
affinity purification experiments has typically been performed
using data-dependent acquisition methods (DDA). Due to the
semi-stochastic precursor ion selection in DDA methods, the
complete set of peptides can often not be reproducibly identified
across all samples. In DIA methods, fragment spectra for
the entire mass range are acquired by co-isolating precursor
ions in isolation windows of selected m/z ranges. Collins
et al. (2013) have described a method for mapping dynamic
changes in protein–protein interactions by combining affinity
purification with DIA usingMS-sequential window acquisition of
all theoretical spectra (MS-SWATH). The authors have analyzed
interaction partners of 14-3-3β in cells stimulated with insulin-
like growth factor for different time periods and reproducibly
quantified 1,967 proteins across all samples. A similar approach
has been used by Lambert et al. (2013) to map the interaction
partners of wild type and mutant forms of CDK4 as well as to
probe the effects of Hsp90 inhibition on CDK4 interactions.

In Vivo Reversible Crosslinking
A complementary approach to affinity purification that aims to
capture transient and low affinity protein–protein interactions is
reversible chemical crosslinking (Hall and Struhl, 2002; Vasilescu
et al., 2004; Klockenbusch and Kast, 2010; Smith et al., 2011).
Chemicals that mediate protein crosslinks, such as formaldehyde,
are applied to cells before lysis to “freeze” protein–protein
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FIGURE 1 | Protein–protein interactions are defined by temporal and spatial constraints. Many protein interactions are transient and occur only at specific
time points, for instance in a particular cell cycle stage. These transient interactions can be mediated by posttranslational modification or by dynamic changes in
expression of the binding partners. In addition to temporal constrains, protein interactions are spatially restricted by cellular compartments.

interactions in vivo by forming reversible covalent bonds between
adjacent amino acids, thereby providing a snapshot of the protein
interactome (Figure 2). Following crosslinking, cells are lysed
and proteins are subjected to conventional affinity purification
protocols. Crosslinks are reversed after purification, often simply
by boiling, and affinity-purified proteins are identified by LC-
MS/MS. In addition to formaldehyde, other crosslinkers that
are commonly used for protein–protein interaction studies
are NHS-esters and imidates that react with primary amines
in the proteins to yield stable amide bonds. If crosslinking
is combined with epitope tagging of the bait protein and
purification with affinity matrices such as GFP-Trap and Ni-
NTA, cell lysis and washing can be performed under denaturing
conditions, thus enabling the recovery of poorly soluble proteins
and reducing contamination with non-physiological interactions
that might occur during the purification (Tagwerker et al.,
2006). Formaldehyde-based crosslinking and purification under
denaturing conditions has been employed to identify interaction
partners of Skp1, an essential component of the SCF ubiquitin
ligase complex, and to map the dynamic interaction partners of
the 26S proteasome across cell cycle phases (Tagwerker et al.,
2006; Kaake et al., 2010). The fact that the crosslinking procedure
requires optimization for different cell types and bait proteins
might be the reason that this technique has not so far been

frequently used for the investigation of transient protein–protein
interactions.

Co-fractionation Combined with
Quantitative Mass Spectrometry
Kristensen et al. (2012) have developed a method that employs
quantitative MS based on SILAC and high-performance
size-exclusion chromatography to monitor changes in the
cellular interactome in response to growth factor stimulation
(Figure 2). Using this approach, the authors have identified
350 proteins whose association with a complex increased or
decreased after cells were stimulated with the epidermal growth
factor. A particular feature of this method is that it allows
mapping of dynamic changes in the cellular interactome without
the need to overexpress bait proteins and perform affinity
purifications. In addition, size-exclusion chromatography enables
the heterogeneity of protein complexes within the cells to be
determined, by monitoring the distribution of a protein among
different complexes. Another advantage of this method is that it
provides the possibility to analyze the interactome within a single
subcellular compartment, thereby providing a spatial dimension
and avoiding the risk of non-physiological interactions that can
occur after cell lysis and loss of cellular compartmentalization.
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FIGURE 2 | Mass spectrometry-based proteomics methods for analysis of temporal and spatial aspects of protein–protein interactions. In affinity
purification approaches, an antibody that specifically binds to endogenously expressed bait protein is used to purify the protein of interest and its interaction partners.
Alternatively, a bait protein fused to an epitope tag is ectopically expressed in cells and purified using affinity matrices or tag-specific antibodies. To increase the
probability of capturing transient and weak interactions, chemicals that mediate protein–protein crosslinks can be applied to cells before lysis to “freeze” interactions
by forming reversible covalent bonds between adjacent amino acids (A). In co-fractionation-based methods, proteins are subjected to extensive fractionation, for
instance by high-performance size-exclusion chromatography, and the precise co-elution of two proteins is used as evidence for their interaction (B). In spatially
restricted enzymatic tagging BirA* or APEX is fused to a protein of interest and ectopically expressed in cells. Biotinylation of proximal proteins is triggered by the
addition of biotin for 24 h (BioID) or biotin-phenol for 1 min (APEX). Cells are lysed under denaturing conditions and biotinylated proteins are recovered using
streptavidin followed by LC-MS/MS analysis (C).

RESOLVING SPATIAL ORGANIZATION
OF PROTEIN–PROTEIN INTERACTIONS
BY PROXIMITY TAGGING
In addition to defining transient protein–protein interactions,
another challenge lies in resolving the spatial organization of
protein interaction networks. In affinity purification approaches,
proteins localized to different cellular compartments are

mixed during cell lysis and subjected to purification under
native conditions, which might lead to the formation of non-
physiological interactions. Recently developed methods for
spatially restricted enzymatic tagging using the promiscuous
biotin ligase BirA* (BioID) or the engineered ascorbate peroxidase
(APEX) can be employed to overcome this problem and preserve
the spatial dimension of interactions (Roux et al., 2012; Rhee
et al., 2013).
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Biotin Ligase-Based Proximity Tagging
(BioID)
BirA is a biotin ligase from E. coli that activates biotin to biotinoyl
5-AMP (bioAMP) in an ATP-dependent reaction (Chapman-
Smith and Cronan, 1999). Biotinoyl 5′-AMP is then transferred
to substrate proteins containing a specific BirA recognition
sequence (Beckett et al., 1999). An engineered mutant form of
BirA (R118G) with abolished substrate specificity and reduced
affinity for biotinoyl 5′-AMP promiscuously biotinylates proteins
in its proximity (Choi-Rhee et al., 2004; Cronan, 2005). Roux et al.
(2012) devised a method called BioID in which the promiscuous
biotin ligase BirA* is fused to a protein of interest and expressed
in mammalian cells. After incubation of the cells with biotin,
the BirA*-fusion protein biotinylates proteins in its proximity
(Figure 2). Subsequently, cells are lysed under denaturing
conditions and biotinylated proteins are selectively isolated using
streptavidin and identified by LC-MS/MS. The authors tested
the utility of BioID by fusing BirA* to the nuclear envelope (NE)
component lamin A (LaA) that is highly insoluble and therefore
difficult to study with conventional methods for interactome
analysis. Analysis of biotinylated proteins in cells expressing
BirA*-LaA by LC-MS/MS identified known LaA interactors
as well as the novel NE component SLAP75 (Roux et al.,
2012). BioID possesses several advantages over conventional
affinity purification. Firstly, BirA*-based biotinylation of
proteins occurs in living cells and therefore non-physiological
interactions that might occur after cell lysis and loss of cellular
compartmentalization are avoided. Secondly, proximity-
dependent biotinylation by the promiscuous biotin ligase BirA*
can capture low affinity interactions that will frequently be lost
in conventional affinity purification. Furthermore, BioID allows
the use of denaturing lysis conditions, which helps to identify
proteins that are insoluble under commonly used native lysis
conditions and reduces contamination with non-specific binders.
However, BioID also has limitations that should be considered
during experimental design. Activated biotin targets primary
amines (predominantly lysine residues) and the efficacy of the
biotinylation depends on the number and availability of primary
amines in proteins (Roux et al., 2013). As result, the abundance
of the purified biotinylated proteins does not necessarily correlate
with the strength or stoichiometry of the association. Moreover,
biotinoyl 5′-AMP has a half-life of minutes, which might lead
to a large labeling radius (Rhee et al., 2013). In the BioID-LaA
experiment, the authors showed that histone proteins constitute
only a small fraction of the identified proteins, although they are
lysine rich and highly abundant in the nucleus, which provides
evidence against the idea that BioID generates widespread
biotinylation (Roux et al., 2012). Importantly, BioID does not
distinguish interaction from proximity, which needs to be taken
into account during data analysis. BioID has been successfully
employed to identify interaction partners of proteins and to
characterize the composition of subcellular organelles, such
as the centrosomes and the nuclear pore, which are otherwise
refractory to traditional approaches (Couzens et al., 2013;
Firat-Karalar et al., 2014; Coyaud et al., 2015; Dingar et al., 2015;
Rodriguez-Fraticelli et al., 2015; Zhou et al., 2015). A recent study
employed BioID to identify over 50 putative substrates of the

ubiquitin ligase SCFβ-TrCP1/2 indicating a potential application of
BioID for the analysis of substrates of PTM-catalyzing enzymes
(Coyaud et al., 2015). The Gingras laboratory has performed
a side-by-side comparison of AP-MS and BioID for analyzing
interaction partners of chromatin-associated proteins (Lambert
et al., 2015). Interestingly, they concluded that BioID enables the
identification of a larger number of interaction partners and that
identified interaction partners are significantly less abundant than
interaction partners identified by AP-MS. Another observation
from this study is the relatively small overlap between the
interaction partners identified by AP-MS and BioID, suggesting
that both approaches have a bias for specific subsets of proteins
and might have a complementary value for comprehensive
identification of protein interaction partners.

Ascorbate Peroxidase-Based Proximity
Tagging
Another enzymatic proximity tagging approach developed by the
Ting laboratory uses an engineered ascorbate peroxidase (APEX)
(Martell et al., 2012). APEX is a monomeric mutant derived from
the plant APEX with increased enzymatic activity. Like wild type
peroxidase, APEX catalyzes H2O2-dependent polymerization
and local deposition of DAB (3,3′-diaminobenzidine), which
subsequently recruits electron dense osmium, yielding electron
microscopy (EM) contrast (Lam et al., 2015). Based on the
observation that APEX is active in all cellular compartments and
withstands strong EM fixation, Martell et al. (2012) demonstrated
the utility of APEX for EM analysis of a variety of mammalian
organelles and specific proteins.

In addition to DAB, APEX also oxidizes numerous phenol
derivatives such as biotin-phenol to phenoxyl radicals that
covalently react with electron-rich amino acids. In cells expressing
APEX fused to a protein of interest, biotinylation of proximal
proteins is initiated by incubating cells with biotin-phenol and
H2O2 for 1 min. The proximal proteins can subsequently be
purified using streptavidin under denaturing conditions and
identified by LC-MS/MS analysis (Figure 2). Rhee et al. (2013)
selected mitochondria as a model organelle for testing APEX-
based identification of organelle proteins. To test the spatially
restricted labeling capacity of APEX, mitochondrial matrix-
targeted APEX was used to investigate the protein composition
of the mitochondrial matrix and inner mitochondrial membrane.
Using LC-MS/MS, the authors have identified 495 proteins, 94%
of which had prior mitochondrial annotation. Thirty-one of those
495 proteins had never been correlated with mitochondria and
are therefore potentially novel mitochondrial proteins. Of note,
only subunits with exposure to matrix space were identified,
indicating that phenoxyl radicals do not pass through the inner
mitochondrial membrane, proving further the specificity of
APEX-based proximity tagging (Lam et al., 2015).

APEX-based proximity tagging can provide spatially and
temporally resolved proteomic maps and can be potentially
employed to study weak and dynamic protein interactions as well
as enzyme-substrate relations. APEX requires only 1 min to label
proximal proteins rather than the 24 h required for the BioID
method. It therefore, has a better temporal resolution and offers
a better platform to study transient protein–protein interactions
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under different conditions and time points. Furthermore,
phenoxyl radicals are short lived (<1 ms) and therefore have
a small labeling radius (<20 nm). It is worth mentioning that
APEX can also be used to confirm the subcellular localization
of target proteins using EM or fluorescent microscopy. To date,
the applicability of APEX beyond the mapping of proteins in
membrane-bound cellular organelles has not been demonstrated,
and it remains to be addressed if APEX-based proximity tagging is
suitable for analysis of interaction partners of individual proteins
or protein substrates of PTM-catalyzing enzymes.

CONCLUSION

Mass spectrometry-based proteomics has delivered
unprecedented insights into human protein interaction networks.
To date, most studies have focused on mapping steady-state
protein–protein interactions. Future challenges remain in the
identification of transient and low affinity interactions during
cellular signaling, as well as in understanding the spatial
organization of protein interaction networks. Although affinity
purification combined with quantitative MS-based proteomics is
a powerful approach for the identification of dynamic protein
interactions, transient and low affinity interactions, such as
those induced by growth factor stimulation or cellular stress, are
frequently lost. In vivo chemical crosslinking, in which chemicals
that form reversible covalent bonds are applied to cells before lysis
to “freeze” protein–protein interactions can help to identify these
interactions. The need to optimize the crosslinking procedure
for different cell types and bait proteins hinders the routine use
of this method for analyzing transient protein interactions. In
addition to AP-MS, approaches based on protein co-fractionation

combined with quantitative MS have been successfully employed
to analyze transient protein interactions during cellular signaling.
Spatially restricted enzymatic tagging approaches, such as BioID
andAPEX, preserve the spatial organization of protein interaction
networks and enable analysis of protein interactions in insoluble
structures, thereby complementing AP-MS. Importantly, these
approaches do not enable a distinction to be made between
interaction partners and non-interacting proximal proteins.
Therefore, combining affinity purification and spatially restricted
enzymatic tagging could help to produce a more accurate and
comprehensive picture of protein–protein interaction networks
of interest. This strategy has the potential to become a standard
procedure for protein interaction studies, as has already been
exemplified by a recent study that focused on chromatin-
associated protein complexes (Lambert et al., 2015)
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While the genomic revolution has dramatically accelerated the discovery of disease-
associated genes, the functional characterization of the corresponding proteins lags
behind. Most proteins fulfill their tasks in complexes with other proteins, and analysis
of protein–protein interactions (PPIs) can therefore provide insights into protein function.
Several methods can be used to generate large-scale protein interaction networks.
However, most of these approaches are not quantitative and therefore cannot reveal
how perturbations affect the network. Here, we illustrate how a clever combination of
quantitative mass spectrometry with different biochemical methods provides a rich toolkit
to study different aspects of PPIs including topology, subunit stoichiometry, and dynamic
behavior.

Keywords: mass spectrometry based proteomics, quantitative proteomics, protein–protein interaction,
stoichiometry, cross-linking

Introduction

Proteins do not act in isolation but typically mediate their biological functions by interacting with
other proteins (Charbonnier et al., 2008). Owing to the central importance of protein–protein
interactions (PPIs) in biology, methods have been developed to study multiple aspects of PPIs
(Meyerkord and Fu, 2015). For example, X-ray crystallography and NMR provide detailed
spatial information about interaction interfaces. Surface plasmon resonance (SPR), isothermal
titration calorimetry (ITC), and förster resonance energy transfer (FRET) provide binding
affinities and kinetics. However, all of those methods require a priori knowledge of the
interaction partners and suffer from the drawback of a low throughput. Technologies like protein
microarrays, phage display and the yeast two-hybrid system permit high-throughput screens
for PPIs. However, these approaches rely on in vitro assays or heterologous biological systems.
Therefore, it is not clear if PPIs detected by these methods occur in the relevant in vivo
context.

Affinity purification combined with mass spectrometry (AP-MS) has emerged as a particularly
attractive method for PPI mapping (Gingras et al., 2007). A major advantage is that this method
allows unbiased detection of PPIs under physiological conditions. Importantly, AP-MS can assess
PPIs in relevant biological contexts such as mammalian cell lines or even tissues. Moreover, AP-MS
experiments have the advantage that they can provide quantitative information (q-AP-MS). This
greatly increases the confidence in interaction partners that are identified and can also be used to
study the impact of perturbations on PPIs.

We argue that q-AP-MS is one of the most powerful technologies to map PPIs in health and
disease. The aim of this Mini Review is to briefly explain the general principle of q-AP-MS and
to emphasize the versatility of AP-MS to investigate various aspects of PPIs including quantities,
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topology, subunit stoichiometry, and dynamic behavior. We
will begin with a brief introduction to quantitative shotgun
proteomics.

Quantitative Shotgun Proteomics

The principle idea of shotgun proteomics is that protein samples
are first digested into peptides (Aebersold and Mann, 2003).
These peptides are then separated by high performance liquid
chromatography (HPLC) and directly (“online”) transferred into
a mass spectrometer. This instrument performs two important
tasks. First, it measures the mass to charge ratios (m/z) and
intensity of the peptides eluting from the HPLC column (MS1).
Second, in order to determine the amino acid sequence, the
instruments selects individual peptides for fragmentation and
records the resulting fragment spectra (MS2). Data generated in
thismanner is then compared to protein databases for peptide and
protein identification (Eng et al., 2011).

Until a decade ago, the field of proteomics has used mass
spectrometry mainly to draw qualitative conclusions about the
existence of a protein in a given sample. The reason for this is
that the intensities of peaks in a mass spectrum are not directly
proportional to the amounts of the corresponding peptides.
Hence, mass spectrometry is intrinsically not a quantitative
technology (Ong and Mann, 2005). However, over the past
several years various technologies have been developed to enable
proteome-wide quantification using mass spectrometry (Gstaiger
and Aebersold, 2009; Cox and Mann, 2011; Bantscheff et al.,
2012). One idea relies on the incorporation of stable heavy
isotopes into proteins through metabolic (SILAC) or chemical
labeling approaches. This permits different cell populations to
be mixed and analyzed together, since the mass-shift introduced
by the labeling makes them distinguishable. Relative changes in
peptide intensities reflect differences in the abundance of the
proteins under distinct experimental conditions. Alternatively,
proteins can be quantified using computational methods (“label-
free quantification”; Figure 1B). This may be based solely
on how often peptides have been chosen for fragmentation
(spectral counting) or on all intensities obtained from precursor
peptide scans. Care should be taken when employing the
first approach, since it provides only very rough abundance
estimates (Rinner et al., 2007; Gingras and Raught, 2012).
While the choice of a quantification approach depends on
various factors, stable isotope-based methods are generally
more precise than label free approaches since samples can be
combined and analyzed together (Sury et al., 2010; Lau et al.,
2014). For example, while stable isotope-based methods can
detect even minor changes in protein abundance, label free
approaches typically require a twofold change or more (Cox et al.,
2014).

Specificity and Sensitivity

A major challenge in AP-MS is to distinguish true interaction
partners from non-specific contaminants. An early idea to
address this problem was tandem affinity purification (TAP;
Puig et al., 2001). Here, the protein of interest is expressed as

a fusion with two different biochemical tags. Two consecutive
rounds of affinity purification are then employed in order
to remove non-specific contaminants. Although this approach
has been used successfully in many studies, it has two major
disadvantages. First, only very stable complexes survive the
procedure, which means that TAP cannot be used to study more
dynamic interactions. Second, the sensitivity of modern mass
spectrometers is so high that they still detect many non-specific
binders after TAP. An alternative idea is to use a single purification
step and to exclude non-specific contaminants based on prior
knowledge. The “contaminant repository for affinity purification”
(CRAPome) was built for this purpose and contains information
about frequently observed unspecific binders (Mellacheruvu et al.,
2013). While this is generally a good idea, one important
limitation is that the non-specific background depends on specific
experimental conditions. In other words, not all proteins in the
CRAPome are necessarily contaminants in a specific experiment,
nor are all contaminants in a specific experiment contained in the
CRAPome.

Quantitative proteomics offers an attractive solution to address
these challenges (Figure 1A). In quantitative AP-MS (q-AP-MS),
the quantity of proteins that co-purify with the bait is compared
to a negative control (Vermeulen et al., 2008; Paul et al., 2011).
In this set-up, true interaction partners can be identified by their
specific abundance ratio while non-specific contaminants bind
equally well under both conditions, which results in a 1:1 ratio.
Hence, q-AP-MS uses quantification to filter out non-specific
contaminants. This greatly increases confidence in identified
interaction partners, even under mild biochemical purification
conditions.

Perturbations

One of the major advantages of q-AP-MS is that it can assess
dynamic changes in PPIs upon perturbation (Figure 1C). To
this end, the proteins which co-purify with a bait protein under
normal and perturbed conditions are compared in a quantitative
manner. An early example of this general principle employed
the immobilized SH2-domain of the adapter protein Grb2
to study epidermal growth factor (EGF) receptor signaling
(Blagoev et al., 2003). SH2 domains interact with specific
tyrosine-phosphorylated motifs. Therefore, the immobilized
domain was used in cells stimulated with EGF to pull down
interacting proteins. Cells that had not been stimulated served
as a negative control. Subsequently, a quantitative comparison
of the two pull-down contexts revealed proteins recruited to
Grb2 upon activation by EGF. After this pioneering work, the
same idea was used to assess dynamic PPIs during cell signaling
with different experimental designs. For example, immobilized
peptides carrying specific posttranslational modifications
and their unmodified counterparts were used to identify
modification-dependent interactions (Selbach et al., 2009; Bartke
et al., 2010; Francavilla et al., 2013). Immunoprecipitation
of endogenous or epitope-tagged proteins before and after
stimulation has also been frequently employed (Collins et al.,
2013; Zheng et al., 2013; Sury et al., 2015). Finally, quantification
can reveal differences in the interaction partners of wild-type
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FIGURE 1 | Approaches to q-AP-MS experiments. (A) The left hand side
depicts the typical workflow of a SILAC-based q-AP-MS experiment.
Differentially SILAC-labeled cells are transfected with a tagged protein of
interest or a control vector containing only the tag, respectively. Proteins are
immunoprecipitated with antibodies directed against the tag. Samples are
mixed prior to elution. Eluted proteins are cleaved into peptides and analyzed
by Liquid-Chromatography Mass Spectrometry (LC-MS). (B–G) The right
hand side depicts how q-AP-MS can be employed to study different aspects

of PPIs. (B) Label-free quantification provides an alternative to SILAC.
(C) Immunoprecipitation can compare changes in PPIs upon perturbation.
(D) Transient interactions and complex structure can be studied by
cross-linking. (E) Submodule composition and PPI dynamics can be
revealed by sequential elution with increasing concentrations of SDS.
(F) Limited proteolysis provides a means to detect interaction interfaces.
(G) The stoichiometry of complexes can be revealed by comparing
abundances of the different subunits.
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proteins and disease-associated variants (Lambert et al., 2013;
Hosp et al., 2015). If those mutations map to a protein with
unknown function, an AP-MS experiment can provide valuable
insights based on the known functions of identified interaction
partners.

In vivo Interactions

Many AP-MS studies make use of overexpressed and/or tagged
proteins as baits. However, this may interfere with the normal
in vivo function of the protein and thus lead to false-positive
or false-negative results. Overexpression artifacts can be limited
when tagged proteins are expressed at near-endogenous levels, for
example using bacterial artificial chromosomes (Hubner et al.,
2010). However, it is still possible that the tag interferes with
protein function. It has been shown recently that even cloning
scars between the protein and the tag can lead to false-positive
identifications (Banks et al., 2015). This problem can be addressed
by targeting the endogenous protein with specific antibodies.
While this has been employed successfully (Malovannaya et al.,
2011; Lundby et al., 2014), an important caveat is that antibody
cross-reactivity may lead to false-positive results. In case of tagged
proteins the specificity can be assessed using untransfected cells
as negative controls, but this is not possible when the endogenous
protein is targeted. To address this issue, many published studies
have used control antibodies. However, due to differences in the
cross-reactivity of various antibodies, this strategy is questionable.
A better control is to knock down the protein of interest in
the control condition, which makes it possible to use the same
antibody for comparison (Selbach andMann, 2006). Nevertheless,
the lack of good antibodies is an important limitation and one
of the reasons why epitope-tagged proteins still dominate such
studies.

Another important consideration is that the interaction
partners identified in cell lines may not necessarily be relevant in
vivo. More and more studies therefore purify proteins and their
interaction partners directly from animal models (Cheeseman
et al., 2004; Angrand et al., 2006; Bartoi et al., 2010; Rees
et al., 2011; Hanack et al., 2015). With the advent of genome
editing techniques such as CRISPR it is now possible to generate
genomic tag knock-ins in an efficient manner (Sander and Joung,
2014). This makes it much easier to create tagged versions
of endogenous proteins for in vivo interactome mapping and
tissue culture experiments. Most of the methods discussed
here are generally applicable to any organism. Even the SILAC
approach, which was originally developed for metabolic labeling
of tissue culture cells, has since been extended to a number
of model organisms (Kirchner and Selbach, 2012). Thus, we
expect that in vivo interaction proteomics will become more
widespread.

Cross-linking

Upon cell lysis, proteins are brought into an artificial environment.
This can result in the loss of weak or transient interactions or
the formation of in vitro interactions in the lysate. One way to
address this problem is in vivo cross-linking (Kaake et al., 2014;

Figure 1D). Newly formed covalent bonds between interacting
proteins permit stringent purification conditions whichminimize
in vitro interactions and preserve transient interactions (Tardiff
et al., 2007; Fang et al., 2012). Moreover, the identification of
cross-linked peptides can provide valuable information about
the structure of proteins and complexes (Rappsilber, 2011;
Walzthoeni et al., 2013). Despite these advantages, most AP-MS
experiments performed today do not employ cross-linking. One
reason is that cross-linked peptides are typically less abundant
and are thus more difficult to identify than regular peptides.
To address this problem, several strategies that enrich for cross-
linked peptides have been developed (Rinner et al., 2008; Nessen
et al., 2009).

Interaction Interfaces

Cross-linking requires that target sites be accessible, which
makes it difficult to apply this approach to interfaces buried
within a protein complex. This limitation is actually used as an
advantage in several other methods to provide information about
interaction interfaces. For example, protein painting employs
small molecular dyes which adhere to the accessible surfaces of
protein complexes, excluding binding interfaces (Luchini et al.,
2014). During the subsequent digestion, only peptides within
interaction interfaces are accessible to trypsin and can thus be
identified. Limited proteolysis (Feng et al., 2014) is an approach
that is complementary to protein painting, in that it reveals
only peptides outside interaction interfaces that are accessible
to trypsin (Figure 1F). Another possibility is to treat samples
with heavy (i.e., deuterated) water: hydrogen-deuterium exchange
(HDX; Mandell et al., 2005) relies on the fact that amides hidden
within protein–protein interfaces are not in direct contact with
the solvent and will exchange their hydrogen atoms at a lower
rate than more accessible amides. The corresponding changes in
the peptide mass can then be detected using mass spectrometry.
These techniques are not only useful in the study of PPIs but can
additionally provide information about protein structure (Chorev
et al., 2015).

Stoichiometry

The approaches mentioned above typically rely on relative
quantification. Thus, they can be used to distinguish specific
interaction partners from contaminants and to quantify dynamic
changes in PPIs upon perturbation. However, these methods can
only compare the same protein under different conditions. They
do not provide information about the stoichiometry of the distinct
members of a complex. One way to compare different proteins in
a complex is tomeasure their absolute abundances using synthetic
isotope-labeled reference peptides as spike-in standards (Schmidt
et al., 2010). For a large number of proteins, this is tedious
and expensive. The SH-quant approach therefore incorporates an
additional reference peptide into the affinity tag that is used for
the pull-down (Wepf et al., 2009). This permits quantification of
the bait and also of prey proteins, in the event they have been used
as baits in another experiment. This “correlational quantification”
allows the measurement of protein complex stoichiometry
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and absolute protein complex abundances. Alternatively, the
stoichiometry of protein complexes can also be analyzed through
a combination of affinity purification and intensity-based absolute
quantification (iBAQ; Figure 1G; Schwanhausser et al., 2011;
Smits et al., 2013). The latter approach has the advantage that
it is easy to implement and does not require the tagging of
multiple baits. It is also important to keep in mind that the
same bait protein can be part of multiple protein complexes.
Therefore, not all proteins that co-purify with a bait are necessarily
members of the same complex. Distinguishing between these
different complexes requires the individual pull-down of all
components.

Dynamic Interactions

Not all of the specific interaction partners of a protein necessarily
belong to a stable complex. Some interaction partners interact
only transiently. The dynamic behavior of proteins can be
investigated by mixing protein samples at different stages of an
AP-MS experiment.Metabolic labeling approaches such as SILAC
allow a mixing of samples directly after cells are harvested (Ong
et al., 2002). While this minimizes experimental differences in
sample handling, it also results in the loss of dynamic interactions
with high on/off rates: During incubation with antibodies,
these dynamic interaction partners will be exchanged between
both conditions and reach equilibrium over time. Alternatively,
samples may first be mixed after affinity purification. When
both protocols are performed in parallel on the same samples,
the data can be used to identify the dynamic components in
protein complexes (Mousson et al., 2008;Wang andHuang, 2008).
A related idea uses increasing concentrations of SDS to elute
precipitated proteins sequentially (Figure 1E; Texier et al., 2014).

These data can be used to dissect the submodular composition of
complexes due to their different binding properties.

Binding affinity is a particularly relevant quantity with regard
to characterizing the interaction between two proteins. Typically,
binding affinities aremeasured usingmethods such as ITC or SPR
assays which require considerable quantities of purified proteins.
q-AP-MS experiments can also be designed in a way to provide
information about binding affinities (Sharma et al., 2009): First,
a known quantity of an immobilized bait is incubated with cell
extracts to pull down interactors. Next, the supernatant from this
experiment is used in a second pull-down with the same bait.
The quantification of the proteins in both pull-downs can then be
used to infer the dissociation constants of the interactions. While
so far this technique has only been used to calculate equilibrium
dissociation constants (Kds) of proteins interacting with small
molecules and peptides, it should be generally applicable to a
range of ligands, including entire proteins, used as baits.

Conclusions

The examples described above show that a combination of
quantitative shotgun proteomics with various biochemical
methods can provide a rich toolkit to explore various aspects
of PPIs. This can be employed to (i) identify binding partners
with high specificity, (ii) assess the stoichiometry of complexes,
(iii) provide information about interaction interfaces, (iv) analyze
binding affinities, and (v) study dynamic changes of PPIs upon
perturbation. Bearing in mind possible pitfalls (Duncan et al.,
2010), mass spectrometers can thus be regarded as “Swiss army
knives” for PPI research. Since instruments are becoming faster,
more sensitive, easier to operate and cheaper, we expect these
approaches to become available to more and more scientists.
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Protein–protein interactions (PPIs) play a key role in many, if not all, cellular processes.
Disease is often caused by perturbation of PPIs, as recently indicated by studies of
missense mutations. To understand the associations of proteins and to unravel the
global picture of PPIs in the cell, different experimental detection techniques for PPIs
have been established. Genetic and biochemical methods such as the yeast two-hybrid
system or affinity purification-based approaches are well suited to high-throughput,
proteome-wide screening and are mainly used to obtain qualitative results. However,
they have been criticized for not reflecting the cellular situation or the dynamic nature of
PPIs. In this review, we provide an overview of various genetic methods that go beyond
qualitative detection and allow quantitative measuring of PPIs in mammalian cells,
such as dual luminescence-based co-immunoprecipitation, Förster resonance energy
transfer or luminescence-based mammalian interactome mapping with bait control.
We discuss the strengths and weaknesses of different techniques and their potential
applications in biomedical research.

Keywords: PPI analysis, FRET, DULIP, FCCS, PLA, Interactome Mapping, BiFC, LUMIER, BRET, Quantification of
protein-protein interactions

INTRODUCTION

Physical interactions between proteins are crucial to most biological processes. Hence, major
efforts have been made to systematically identify protein–protein interactions (PPIs) using
the yeast two-hybrid (Y2H) system and affinity purification–mass spectrometry (AP/MS)
approaches (Stelzl et al., 2005; Yu et al., 2008; Guruharsha et al., 2011). However, these
methods are mainly suited for providing qualitative data, especially at the large scale. For a
more comprehensive functional description of interactions, additional information is required.
Knowledge of interaction strength, e.g., is of particular importance. It informs us of binding
affinities and lifetimes of protein complexes, which are critical for the dynamic regulation of
cellular systems (Perkins et al., 2010; Hieb et al., 2012). In summary, a better understanding
of complex cellular processes not only requires knowledge of which proteins interact but
also of the characteristics of interactions. To obtain such insight, quantitative experimental
techniques for the detection of PPIs in mammalian cells have moved into focus (Hieb et al.,
2012; Chen et al., 2015). These include biochemical methods such as quantitative affinity-
purification and mass spectrometry (qAP–MS; Hosp et al., 2015) or genetic methods such
as using luminescence-based mammalian interactome mapping with bait control (LUMIER
with BACON; Taipale et al., 2014). Using qAP–MS, e.g., the association of proteins with
neurodegenerative disease proteins such as amyloid precursor protein (APP), presenilin-1
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and ataxin-1 (ATXN-1) have been quantitatively analyzed and
the effects of disease-causing mutations on PPIs have been
systematically assessed in pull-down assays (Hosp et al., 2015).
The quantitative investigation of PPIs using LUMIER with
BACON revealed a comprehensive Hsp90–client interaction
network, which provided insight into previously unknown
organization principles of functional chaperone modules in
mammalian cells (Taipale et al., 2014).

A recent study suggests that about 60% of disease-causing
mutations in proteins influence their association with other
proteins. It was estimated that half of those mutations leads to
a complete loss of protein interactions while the other half only
perturbs a particular subset of interactions (Sahni et al., 2015).
A pathological poly-glutamine expansion in ATXN-1, causally
related to spinocerebellar ataxia type 1 (SCA1), e.g., was found to
induce binding of the protein to RBM17 rather than CiC, thereby
promoting disease (Lim et al., 2008). To detect such changes in
affinity and to map how interaction profiles of individual proteins
are changed through mutations, methods that allow quantitative
PPI analysis are urgently needed.

However, the available methodologies do not yet permit a
full quantitative assessment of PPIs at the cellular level. Current
methods to study binary PPIs in mammalian cells can broadly
be classified in two groups. Assays like bimolecular fluorescence
complementation (BiFC), bimolecular luminescence
complementation (BiLC) and proximity ligation assay (PLA)
yield a quantitative readout without allowing conclusions about
interaction strengths, while assays like Förster resonance energy
transfer (FRET), bioluminescence resonance energy transfer
(BRET), fluorescence cross-correlation spectroscopy (FCCS),
dual luminescence-based co-immunoprecipitation (DULIP) and
LUMIER with BACON provide a quantitative readout that can be
used to determine binding strengths. In this paper, we will review
recent developments in quantitative PPI detection technologies
and provide an overview of relevant applications of these
methods in biomedical research. We focus on genetic approaches
in mammalian cells, as mass spectrometry-based methods have
been recently reviewed elsewhere (Meyer and Selbach, 2015).
Protein microarrays also provide important insights on PPIs
and can provide quantitative readouts (MacBeath and Schreiber,
2000; Jones et al., 2006). They also have been reviewed elsewhere
and will not be discussed here (Wolf-Yadlin et al., 2009).

An overview of the discussed methods and their capabilities is
provided in Table 1.

FLUORESCENCE CROSS-CORRELATION
SPECTROSCOPY

Fluorescence correlation spectroscopy (FCS) was described for
the first time over 40 years ago (Magde et al., 1974; Macháň,
2014). It was developed to measure chemical reaction rates
and diffusion coefficients by analyzing the thermodynamic
fluctuations in the fluorescence intensity of a system. FCS is now
a well-established biophysical method, which in combination
with confocal microscopy is routinely used to obtain quantitative
information about the abundance of fluorescently tagged proteins TA
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in living cells (Macháň, 2014). Through the expansion of the
method to dual-color FCCS it became possible to quantify
interactions of labeled proteins in vivo under physiological
conditions (Schwille et al., 1997).

Fluorescence cross-correlation spectroscopy allows the
measurement of protein mobility, concentration and interactions
by exploiting the temporal fluorescence fluctuations of two
fluorescently labeled particles under a confocal laser scanning
microscope diffusing through a minute focal volume (Figure 1A).
As a distinct number of fluorescently labeled molecules diffuse
through the focal volume (Haustein, 2014), the fluorescence
signals fluctuate in a manner dependent on the mobility and
concentration of the investigated proteins. An autocorrelation
function of the fluctuating fluorescence signals provides
the diffusion coefficients and concentrations of molecules.
Importantly, FCCS utilizes two spectrally different fluorophores,
e. g., monomerized green or red fluorescent proteins, to label
a pair of proteins (Bacia et al., 2006). If the differently labeled
proteins are associated with each other, they pass through the
effective volume in a synchronized way. This causes simultaneous
fluctuation of their fluorescence signals leading to an increase
in the amplitude of the cross-correlation function, allowing the
determination of in vivo interaction strengths for proteins of
interest (Boeke et al., 2014). However, co-migration does not
fully prove a direct binary interaction of two-labeled molecules.
Thus, validation with other methods that are more stringent in
this regard is necessary (Shi et al., 2009).

Quantitative in vivo FCCS analysis, e.g., revealed binding
strengths for PPIs involved in the extracellular signal-regulated
kinase/mitogen-activated protein kinase (ERK/MAPK) pathway
(Sadaie et al., 2014). The generated quantitative data was utilized
to perform computer-assisted simulations to model the ERK-
/MAPK-signaling cascade, uncovering that Shc binding to EGFR
is critical for the regulation of the pathway. Similarly, systematic
FCCS studies of 41 PPIs revealed important information about
the regulation of clathrin-mediated endocytosis in yeast (Boeke
et al., 2014). Through the in vivo measurement of interaction
strengths for selected interactions likely to be involved in
endocytosis the protein Ede1 was discovered as a crucial scaffold
for the organization of this process. These results highlight the
application power of FCCS for quantitative detection of PPIs
in cells and show that quantitative PPI information improves
our current understanding of signal transduction pathways.
Through the systematic application of FCCS it seems feasible that
comprehensive, quantitative interactome maps can be generated
in the future.

BIMOLECULAR COMPLEMENTATION
METHODS: PROTEIN-FRAGMENT
COMPLEMENTATION ASSAY (PCA),
BiFC, AND BiLC

Protein-fragment complementation assays have been utilized
for a long time to detect PPIs in yeast or mammalian cells
(Johnsson and Varshavsky, 1994; Kerppola, 2006). PCAs are

classical reporter assays, in which a fluorescent protein or
enzyme, e.g., is split in two and the parts are then fused
to the N- or C-terminal end of the potential interactors. If
the proteins of interest interact, the fragments unite, emitting
measurable fluorescence or displaying quantifiable enzymatic
activity. Different PCA variants have been used successfully in
small- or proteome-scale applications to detect PPIs (Tarassov
et al., 2008; Sung et al., 2013; Petschnigg et al., 2014).

One of the most commonly used PCA variants is the BiFC
assay, which is based on the reconstitution of a fluorescent
protein such as the green fluorescent protein (GFP) (Kerppola,
2008; Kodama and Hu, 2012). In an application of BiFC,
an N-terminal GFP fragment (NGFP) containing the first
157 amino acids and a C-terminal GFP fragment (CGFP)
fragment containing 81 terminal amino acids were fused to
peptides that are known to assemble into antiparallel leucine
zippers (Ghosh et al., 2000). The interaction of the peptides
led to the reconstitution of functional GFP molecules that
exhibited a single excitation maximum at 475 nm and an
emission maximum at 506 nm. Today, multiple BiFC assays
with many different split fluorescent proteins (FPs) are available
for application, including ECFP, EGFP, EYFP (Figure 1B),
Venus, Citrine, Cerulean, or mCherry [reviewed in Miller
et al., 2015]. However, all PPI detection assays with split-
FP variants suffer from spontaneous self-assembly of the
utilized fragments, which results in relatively high background
fluorescence in cells. To overcome this limitation, variants of
the Venus-based BiFC PPI detection system with an improved
signal-to-noise ratio were developed (Kodama and Hu, 2010).
Another disadvantage of most if not all currently available
BiFC methods is that split–FP fusions form irreversible protein
complexes in vitro and in vivo, which can lead to false-positive
results. Also, they only allow measuring the association of
protein complexes but not their dissociation (Ciruela et al.,
2010).

A related PCA is the BiLC assay, which uses luciferases
rather than fluorescent proteins (Figure 1C). As for BiFC,
several variants of the method are available that utilize
different luciferases such as firefly (Paulmurugan et al., 2002),
Renilla (Paulmurugan and Gambhir, 2003), Gaussia (Remy and
Michnick, 2006), or NanoLuc R© (Dixon et al., 2015). Importantly,
the reconstitution of the luciferase fragments is reversible in
these assays, allowing the detection of both association and
dissociation of fusion proteins in living cells in real-time (Remy
and Michnick, 2006). Compared to BiFC, BiLC assays offer
a higher signal-to-noise ratio, which is very advantageous for
the large-scale detection of PPIs in cells. BiLC assays were
also utilized to study the localization of PPIs in cells (Kaihara
et al., 2003). However, due to the relatively low number of
emitted photons this can be a very challenging task (Kato,
2012).

The power of BiFC-based PPI detection methods lies in
their ability to identify weak or transient interactions in cells
(Miller et al., 2015). This is because fusion proteins are stabilized
in complementation assays and fluorescent signals are only
observed when the tagged fusions interact directly. The relatively
weak interaction between the SH3 domain of c-Abl and the
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FIGURE 1 | Overview of genetic protein–protein interaction (PPI) methods. (A) In Fluorescence cross-correlation spectroscopy (FCCS) measurements,
co-migration of two fluorescently labeled molecules through a focal volume is quantified. (B) bimolecular fluorescence complementation (BiFC) utilizes two
non-fluorescent fragments of EGFP or a variant. Upon interaction of the two labeled proteins, the fragments can reassociate, resulting in fluorescence. (C) The
principle of bimolecular luminescence complementation (BiLC) is similar to BiFC but is based on two fragments of a luciferase. In contrast to BiFC, the reassociation
is reversible. (D) Close proximity of two DNA oligomer-labeled antibodies allows circularization of two additional oligomers after hybridization. The product is
amplified in a rolling circle reaction and subsequently detected with fluorescently labeled probes. (E) During Förster resonance energy transfer (FRET), energy is
transferred non-radiatively from an excited donor molecule to an acceptor molecule. In case the acceptor is also a fluorophore, the transmitted energy is emitted at a
longer wavelength (the so called sensitized emission). (F) bioluminescence resonance energy transfer (BRET) is similar to FRET with the difference that a luciferase
serves as a donor molecule. (G) In dual luminescence-based co-immunoprecipitation (DULIP) assays, two proteins of interest are fused to firefly or Renilla luciferase,
respectively. An additional PA-tag allows precipitation of the bait protein from the lysate. If an interaction occurs, co-precipitation of the prey protein is indicated by
luminescence arising from the firefly luciferase.

poly-proline peptide p41 (Kd = 1.5 µM), e.g., could be readily
detected in intact cells using a YFP-based BiFC assay (Morell
et al., 2007). Recently, a recombinase enhanced bimolecular
luciferase complementation (ReBiL) platform was established
that allows the detection of low-affinity PPIs in living cells. It
enabled the discovery of the interaction between the E3 ubiquitin
ligase FANCL and the ubiquitin-conjugating enzyme UBE2T
(Kd = 0.454 µM), two key players in DNA repair processes (Li
et al., 2014).

BiFC and BiLC allow rapid, sensitive investigation of PPIs in
cells with a quantitative data output both in focused experiments

as well as on the proteome scale (Sung and Huh, 2010). To
assess binding affinities of interacting proteins in cells, however,
both unbound and bound protein molecules would need to
be quantified. This is not possible with BiFC or BiLC assays
because only interacting fusion proteins show fluorescence or
luminescence complementation (Figures 1B,C). Finally, it is
important to note that the lack of information on unbound
FPs in BiFC assays may lead to false positive as well as false
negative results in systematic PPI screenings, simply because the
expected bait and prey fusions may not be properly expressed in
cells.
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PROXIMITY LIGATION ASSAYS

The proximity ligation assay utilizes antibodies to which short
single-stranded DNA oligonucleotides, often termed PLA probes,
have been attached (Fredriksson et al., 2002; Söderberg et al.,
2006; Weibrecht et al., 2010). When bound to two proteins that
are in close proximity in biological systems (distance < 30 nm),
these antibody–DNA probes facilitate the ligation of additional
DNA molecules by ligases and subsequent amplification by
polymerase chain reaction or a rolling circle mechanism. The
amplified DNA molecules function as templates for the binding
of fluorescently labeled oligonucleotide probes that act as
surrogate markers for interacting proteins (Figure 1D). The dual
recognition by PLA probes required for the formation of DNA
reporter molecules decreases non-specific signals because only
ligated reporters are amplified (Weibrecht et al., 2010).

Proximity ligation assays have the advantage over methods
like BiFC or FCCS that associations between proteins can be
identified and quantified without additional tags. The only
requirement is the availability of specific, high-affinity antibodies
against the proteins of interest that can be modified with DNA
oligonucleotides. In the last 10 years, multiple variants of PLAs
have been developed, which can be applied to the detection of
protein–protein, protein–DNA, and protein–RNA interactions
(Swartzman et al., 2010; Hansen et al., 2014). Furthermore,
the method was adapted for the identification of interactions
dependent on post translational modifications. Recently, e.g.,
an SH2-PLA was established, which allows the quantification
of interactions between an SH2 domain and phosphotyrosines
in the EGFR using a microtiter plate format (Thompson et al.,
2015). This method, which is highly sensitive and has a large
dynamic range, has a wide array of applications both in basic and
translational cancer research. Similarly, an in situ PLA variant
was successfully applied to detect the Erα/Src/PI3K protein
complex in breast cancer cells and patient samples (Poulard et al.,
2014), suggesting that the method has the potential to be utilized
as diagnostic tool.

Although several studies have generated quantitative
information about PPIs using PLAs, e.g., through secondary
methods like color segmentation image analysis (Gajadhar
and Guha, 2010; Leuchowius et al., 2010; Pacchiana et al.,
2014), the currently available variants cannot be utilized
to define binding strengths of interactions. To obtain such
information, knowledge about the abundance of both bound
and unbound protein molecules would be required. However,
PLAs remain powerful tools to validate interactions initially
identified in high-throughput screens under physiological
conditions.

FRET-BASED METHODS

The fundamental theory of FRET was established in the first half
of the 20th century (Cario and Franck, 1922). Its great potential
for biological research, however, has only been realized in the
past 20 years, after different techniques had been developed that
allowed the application of FRET in biological systems (Mills

et al., 2003; Wallrabe and Periasamy, 2005; Ma et al., 2014).
This, in particular, includes the combination of FRET with
microscopy techniques, which allow the investigation of PPIs
with temporal and spatial resolution in vivo (Sun et al., 2013).
FRET is a distance-dependent process in which, through dipole–
dipole interactions, an exited fluorophore molecule (the donor)
transfers energy non-radiatively to another fluorophore molecule
(the acceptor), resulting in acceptor emission (Lakowicz, 2013).
Alternatively, dark quenchers can be used as acceptors for
studying, e.g., membrane–protein interactions (Cho et al., 2016).
There are three main conditions that need to be met for
efficient FRET: (i) there must be “spectral overlap” of the donor’s
emission and the acceptor’s excitation spectra, (ii) the donor
and acceptor fluorophores (termed FRET pair) must be in close
proximity and (iii) the dipoles of the donor and acceptor must
be aligned (Lakowicz, 2013). Due to the fact that FRET efficiency
is proportional to the inverse of the sixth power of the distance
between the donor and the acceptor, only fluorophores that are
in very close proximity (<10 nm) show FRET (Clegg, 1995).
Thus, FRET allows the detection of direct interactions between
proteins, whereas methods such as FCCS, PLA, DULIP, or
LUMIER with BACON cannot distinguish between proteins that
directly interact or are only present in the same complex (Li et al.,
2015).

To measure FRET with microscopic techniques several
basic approaches have been developed. This includes acceptor
photobleaching (Szabà et al., 1992), fluorescence life-time
imaging microscopy (Wallrabe and Periasamy, 2005), spectral
imaging (Chen, 2011), and sensitized emission, which still is
the most commonly applied FRET method. Sensitized emission
measurements can be performed using standard confocal and
wide-field microscopes with appropriate filters or fluorescence
microplate readers. Three channels are normally required for
the imaging of donor, acceptor and FRET signals. The sensitized
emission method, also called three-cube FRET, is based on
the detection of acceptor fluorescence after donor excitation
(Gordon et al., 1998; Mattheyses and Marcus, 2015). However,
it is important to note that usually it is not possible to visualize
sensitized emission directly due to contamination of the FRET
signal by both donor and direct acceptor fluorescence. Thus, the
measurement has to be corrected for donor bleed-through and
acceptor cross-excitation, which can be performed through the
calculation of calibration factors obtained from measurements
with reference samples containing either donor or acceptor
molecules alone (Mattheyses and Marcus, 2015). Currently,
various algorithms are available to correct for these fluorescence
contaminations, which all give comparable results (Zal and
Gascoigne, 2004; Chen et al., 2006). Subsequent normalization
to the donor or acceptor protein level (or a combination
of both) provides a quantitative FRET signal (Hoppe et al.,
2002; Zal and Gascoigne, 2004; Chen et al., 2006; Elder et al.,
2009).

To study PPIs with FRET, the proteins of interest need to be
tagged with appropriate donor and acceptor fluorophores. This
is possible through the production of genetically encoded fusions
with fluorescent protein tags in cells using multiple expression
plasmids (Hochreiter et al., 2015). This includes FRET pairs
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such as ECFP/EYFP (Figure 1E), mTurquoise/mCitrine
or EGFP/mCherry that are commonly applied for the
investigation of PPIs in cells (Day and Davidson, 2012;
Mattheyses and Marcus, 2015). A major strength of FRET-
based interaction studies in living cells is that quantitative
information about PPIs can be obtained. This is achieved
through saturation experiments in which FRET is monitored
in cells coexpressing a constant amount of donor-tagged
protein with increasing amounts of acceptor-tagged protein
or vice versa (Carriba et al., 2008; Martínez-Muñoz et al.,
2014). Through such an approach, FRET50 values can be
calculated, which provide an indication about the binding
strength of tagged interacting proteins. However, it needs
to be noted that FRET measurements in living cells can
provide information about binding affinities only when the
absolute concentrations of investigated proteins are known.
Such information, however, is generally not available without
additional measurements in standard FRET-based PPI studies
(Sun et al., 2013). Nevertheless, a recent study demonstrated
that reliable in vivo binding affinities between the proteins
glutathione (GSH) and glutathione-S-transferase (GST) can
be obtained from FRET measurements in intact cells (Chen
et al., 2015). Thus, FRET microscopy and spectroscopy are
powerful techniques that can provide highly reliable information
about the binding strengths of PPIs, even at subcellular
resolution.

BRET-BASED METHODS

Bioluminescence resonance energy transfer is a biophysical
technique that, similar to FRET, can be readily applied for
quantifying PPI strengths in living cells (Pfleger and Eidne, 2006).
One distinction between the two methods is that FRET involves
energy transfer between two fluorophores, one of which requires
extrinsic excitation by a suitable light source, whereas BRET
occurs after oxidation of a substrate (e.g., coelenterazine) through
a luciferase enzyme (Figure 1F). Previous studies indicate that
different luciferase enzymes such as Renilla luciferase (Rluc)
or NanoLuc in combination with various fluorophores (e.g.,
EYFP) are suitable for in-cell BRET experiments and for the
quantification of PPIs using BRET50 values (Hamdan et al.,
2006; Szalai et al., 2014; Brown et al., 2015). The assembly
of G protein-coupled receptors, e.g., was successfully studied
in mammalian cells with the help of BRET (Stoddart et al.,
2015). Furthermore, it was shown that a sequential BRET–
FRET technique (termed SRET) is able to detect the interactions
between three proteins in vivo (Carriba et al., 2008). Combined
BRET and FRET methods are powerful tools to analyze the
assembly of higher-order protein complexes and the effects of
posttranslational modifications on PPIs. Recently, a BRET–FRET
approach was applied to study the oligomerization of the proteins
CCR5, CD4 and CXCR4, which are of critical importance for
the infection of cells by HIV-1 (Martínez-Muñoz et al., 2014).
Thus, novel fluorescence and luminescence-based methods allow
the systematic quantitative analysis of protein complexes in cell
models. They might be advanced for routine validation of PPIs

identified in high-throughput screens with qualitative assays
(Rolland et al., 2014).

LUCIFERASE-BASED
CO-IMMUNOPRECIPITATION METHODS

Co-immunoprecipitation (Co-IP) is commonly used to detect
PPIs in protein extracts (Phizicky and Fields, 1995). However,
identifying interactions with Co-IPs is laborious and time
consuming, making the method unsuitable for systematic
screening. To overcome these limitations, a luminescence-based
Co-IP assay – termed LUMIER – was developed, which provides
at least semi-quantitative PPI information and can be performed
in microtiter plates (Barrios-Rodiles et al., 2005). Here, bait
and prey proteins are co-produced as FLAG and Renilla
fusions in mammalian cells and interactions are detected by
luciferase enzymatic assays in co-immunoprecipitates. LUMIER
has the advantage that large numbers of bait/prey pairs can be
systematically tested for putative interactions under relatively
well-defined assay conditions. The method was successfully
applied for the generation of a dynamic PPI network for the
TGF beta pathway (Barrios-Rodiles et al., 2005) as well as for
the identification of inhibitors of the Wnt pathway (Miller et al.,
2009), indicating that it is suitable for the elucidation of novel
signaling pathway components with high confidence.

The original LUMIER assay has the disadvantage that
the FLAG-tagged bait proteins cannot be quantified in co-
immunoprecipitates, which may lead to false negative results
in large-scale PPI screenings. To overcome this limitation, an
improved version of the LUMIER assay was recently established
(Taipale et al., 2012, 2014), which was termed LUMIER with bait
control (LUMIER with BACON). Here, the immunoprecipitated
FLAG-tagged bait proteins are systematically quantified by
ELISA. LUMIER with BACON, which can also be performed
in microtiter plates, facilitates the calculation of quantitative
interaction scores that can be used for hierarchical clustering
of PPIs and the prediction of potential functional modules.
Applying LUMIER with BACON, a quantitative chaperone
interaction network was generated that enabled the identification
of regulators of cellular proteostasis (Taipale et al., 2014).

A dual luciferase reporter pull-down (DLR-PD) assay for
the detection of PPIs in mammalian cells was also reported
(Jia et al., 2011). In this assay, bait and prey proteins are
co-produced in cells as firefly and Renilla luciferase fusions,
respectively. In addition, the expressed bait protein harbors a
HAVI-tag that is recognized and biotinylated by the co-produced
biotin-protein ligase BirA. The DLR-PD assay was shown to
successfully detect nuclear and cytoplasmic PPIs in HEK293
cell lysates, suggesting that the method can be applied for
PPI screening. However, pull-down assays with beads are not
easy to scale up for high-throughput applications. To overcome
this limitation, most recently a DULIP assay was developed
for interactome mapping in mammalian cells (Trepte et al.,
2015). This method can be performed in 384-well microtiter
plates and can be automated for large-scale interaction screens
(Figure 1G).
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In DULIP assays the bait and prey proteins are co-produced
as Renilla and firefly luciferase fusions in mammalian cells,
respectively. In addition, the expressed bait protein harbors a
protein A (PA) tag (Li, 2010) that allows the co-precipitation
of bait/prey complexes in microtiter plates. The successful
expression of bait and prey fusion proteins as well as the success
of bait/prey co-precipitation can be quantified using DULIP. This
enables the calculation of quantitative, normalized interaction
ratios for all tested protein pairs, which can be utilized to create
quantitative PPI interaction maps. The method, e.g., was capable
of detecting the effects of point mutations on the interaction
strength of synaptic proteins (Trepte et al., 2015), suggesting
that it might be suitable for more comprehensive investigations
of the effects of disease-causing mutations on PPIs. Taken
together, luminescence-based assays are powerful PPI detection
methods that, in the future, might allow us to obtain quantitative
information about interactions in large-scale systematic studies.

CONCLUSIONS AND OUTLOOK

Resulting from multiple high-throughput PPI screening efforts
with genetic and biochemical methods (Stelzl et al., 2005;
Yu et al., 2008; Rolland et al., 2014), we currently possess
large databases with unexplored interactions. Their further
characterization requires quantitative experimental strategies
that are easy to implement in laboratories and allow the
identification of interactions at medium to high throughput in
mammalian cells. Recent developments indicate that quantitative
PPI information can be generated in vivo with methods such
as FCCS, BRET, DULIP, or LUMIER with BACON (Table 1).
This opens new avenues for interactomics researchers because
the dynamics and strengths of PPIs can be assessed for the

first time with these techniques. Also computational approaches
to predict or filter PPIs relevant to a given question will
profit enormously from direct prioritization of PPIs based on
quantitative interaction data. It seems now possible to capture
a broad range of high-, medium- and low-affinity interactions
and to link this information to specific cellular processes. In
the long run, this will enable us to describe the molecular
principles of biological systems in more detail and to improve
our understanding of disease processes. We suggest that truly
quantitative interactome research is now within reach and efforts
need to be intensified to obtain comprehensive quantitative PPI
data sets in living cells.
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High-throughput detection of protein interactions has had a major impact in our

understanding of the intricate molecular machinery underlying the living cell, and has

permitted the construction of very large protein interactomes. The protein networks that

are currently available are incomplete and a significant percentage of their interactions

are false positives. Fortunately, the structural properties observed in good quality social

or technological networks are also present in biological systems. This has encouraged

the development of tools, to improve the reliability of protein networks and predict

new interactions based merely on the topological characteristics of their components.

Since diseases are rarely caused by the malfunction of a single protein, having a more

complete and reliable interactome is crucial in order to identify groups of inter-related

proteins involved in disease etiology. These system components can then be targeted

with minimal collateral damage. In this article, an important number of network mining

tools is reviewed, together with resources fromwhich reliable protein interactomes can be

constructed. In addition to the review, a few representative examples of how molecular

and clinical data can be integrated to deepen our understanding of pathogenesis are

discussed.

Keywords: interactome, proteome, network, reliability, prediction, medicine, disease, pathogenesis

1. Introduction

The existence of living cells is not possible without organized and coordinated communication
between proteins. Failure of the control mechanisms that underlie these delicate relationships can
lead to disease or even death (Lesk, 2007). This highlights that the study of the complex network of
interactions between proteins is crucial to improve our understanding of the intricate mechanisms
that make life possible (Lesk, 2007; Loscalzo and Barabasi, 2011). To ease the analysis of this
involved biological machine, it is commonly represented as a network of nodes, linked to each
other if there is evidence of their physical or functional relationship.

Today we have access to vast Protein Interaction Networks (PINs) from different organisms,
due to high-throughput experimental techniques that are often an improved variation of yeast-
two-hybrid screenings, or of co-immunoprecipitation followed by mass spectrometry (Vidal et al.,
2011). Nevertheless, these networks are incomplete and contain a significant number of false

36

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://dx.doi.org/10.3389/fgene.2015.00296
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2015.00296&domain=pdf&date_stamp=2015-09-23
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:g.alanis-lobato@imb-mainz.de
http://dx.doi.org/10.3389/fgene.2015.00296
http://journal.frontiersin.org/article/10.3389/fgene.2015.00296/abstract
http://loop.frontiersin.org/people/241469/overview


Alanis-Lobato Mining protein interaction networks

positive interactions (Kuchaiev et al., 2009). However, it is
fortunate that their structural properties are not different from
those observed in good quality social or technological networks
(Albert and Barabási, 2002; Liu et al., 2011; Cannistraci et al.,
2013a) (Figure 1A). These topological similarities have prompted
the development of tools, based on node-connectivity properties,
aimed at improving the reliability and completeness of complex
networks (Cannistraci et al., 2013a).

FIGURE 1 | (A) In protein interactomes, only a few proteins, known as hubs, have a high number of interactors (node degree) and the rest interact only with a small

number of proteins (left). In addition, PINs are highly clustered (middle) and every protein is easily reachable from anywhere in the network (right), compared to graphs

with the same number of randomly linked nodes. (B) The number of common neighbors (normalized by the maximum) and the gene ontology (GO) similarity (biological

process or BP shown) of protein interactions is higher than for disconnected protein pairs in the observed network. (C) The goal of neighborhood-based link

prediction and reliability assessment is to assign a likelihood score to the observed or potential interaction between two proteins x and y. The formulae for

representative link predictors are listed and applied to the toy network on the left. Ŵ(x) is the set of neighbors of node x, Ŵ̄(x) is the same set but including x and the

local community links (LCL) are highlighted in red. (D) There is compelling evidence that complex networks, like PINs, lie on low-dimensional manifolds embedded in

high-dimensional space. When protein networks are mapped to low dimensions, good candidate interactions lie in close proximity. (E) The link prediction performance

of several of the topological techniques discussed in this review, measured by the minimum Area Under the Sparsification curve (AUS) amongst four networks (for

details of these datasets, see Cannistraci et al., 2013b). Red bars correspond to methods proposed for networks in general and green bars to methods proposed for

bio-networks. (F) High-quality PI resources, like STRING or HIPPIE, assign a confidence score to each of their reported interactions, based on the different evidence

sources supporting them.

The reliability indices and predictions resulting from
the application of these methods can be integrated with
other sources of high-quality protein interactions (PIs).
With these, one can construct reliable PINs that, together
with clinical and genetic data, represent the fundamental
pieces of information used in the emerging field of network
medicine (Barabási et al., 2011; Loscalzo and Barabasi,
2011).
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2. Topological Reliability Assessment and
Prediction of Protein Interactions

The observable network topologies of biological systems are
not complete and contain spurious interactions. In addition,
the mechanisms that lead two proteins to interact are not
fully understood yet. As a consequence, traditional machine
learning algorithms cannot be easily applied to PINs. Not only
is the definition of features to discriminate between interacting
and non-interacting proteins a challenging task, but also the
construction of positive and negative sets of interactions to
train these algorithms. For example, two unlinked proteins in
the observable network cannot be considered as part of the
negative set: it could very well be that they are disconnected
due to experimental constraints that prevented scientists from
observing their interaction. Alternatively it could be that, two
linked proteins represent a false positive that is part of the dataset
because one of the interactors is, for example, a sticky protein
(Saito et al., 2002).

In this context, the assignment of likelihood scores to
connected and disconnected pairs of proteins, on the mere basis
of the observable network topology, is a convenient means to
improve the degree of confidence and completeness of PINs
(Cannistraci et al., 2013a). Although reliability assessment of
PIs deals with connected proteins pairs and PI prediction with
disconnected pairs, the methods used for one or the other
are the same. The following subsections account for the most
important techniques to perform these functions. A more in-
depth description of these approaches can be found in, for
example, Lü and Zhou (2011).

2.1. Neighborhood-based Techniques
In 2001, Newman found that the relative probability of
collaboration between scientists increases with their number of
common acquaintances (Newman, 2001). Figure 1B shows that
this is also applicable to PINs: the number of common neighbors
(CNs) is higher for connected protein pairs than for disconnected
ones, in a high quality human interactome. This inspired the
creation of the CN index, which assigns high likelihood scores
to protein pairs with many CNs.

Newman’s findings triggered the development of a myriad of
neighborhood-based approaches (Lü and Zhou, 2011). Some of
them are only normalizations of CN, like Jaccard’s index (Jaccard,
1912) or the Dice Similarity (Dice, 1945), but others really depart
from it. For example, Preferential Attachment (PA) (Newman,
2001) is the product between the number of neighbors of the two
nodes being analyzed, andAdamic andAdar (2003) and Resource
Allocation (Zhou et al., 2009) assign higher likelihood scores to
node pairs whose CNs do not interact with other components.
Other indices, like Local Path (Lü et al., 2009) or Katz (Katz,
1953), not only take the number of CNs into account but also
the neighbors of these CNs and so on, up to a user-specified
depth.

In 2013, Cannistraci and colleagues introduced a paradigm
shift in topological link prediction, by noting that the presence
of a tightly connected set of CNs increases the probability of
interaction between non-adjacent nodes (Cannistraci et al.,

2013a). Thus, they introduced a family of neighborhood-
based approaches by changing the formulation of popular
techniques with the inclusion of the number of links between
CNs. The simplest example is the so-called Cannistraci-
Alanis-Ravasi index (CAR) that multiples this number
by CN.

Although the above mentioned techniques can be applied to
PINs, they were formulated for networks in general and do not
consider any particular biological assumption. The pioneers of
PI reliability assessment and prediction are Saito and colleagues.
In 2002, after observing that the partners of sticky proteins and
self-activators do not interact with anything else in PINs, they
proposed the Interaction Generality index (IG1), which assigns
low reliability scores to protein pairs whose neighbors have very
few partners (Saito et al., 2002). They later introduced the IG2,
which postulates that closed-loop motifs are indicative of PIs
(Saito et al., 2003).

Another two indices put forward in the context of protein
interactomes are the Interaction Reliability by Alternative Paths
index (IRAP) and its successor IRAP* (Chen et al., 2006b).
According to these indices, the likelihood that two proteins
interact increases if there is a large number of alternative network
paths through which they can communicate. Unfortunately,
these techniques, together with IG2, are computationally
demanding, which prompted the development of more efficient
and accurate methods (Chen et al., 2006a) such as the Functional
Similarity Weight (FSW) and the Adjusted Czekanowski-Dice
Dissimilarity (Chua et al., 2006; Liu et al., 2009; Alanis-Lobato
et al., 2013). These approaches are interesting because they bet for
a lenient integration of the CN and PA indices: protein pairs with
lots of common interactors are good candidate PIs, but if one of
the two proteins has very few partners, the confidence score is
penalized.

All the afore-mentioned techniques represent, in general, an
efficient and accurate way to identify protein pairs that are good
candidates for interaction (see the formulation of some of them
and their application to a toy example in Figure 1C). However,
they all strongly depend on topological information to work
properly. As a consequence, they perform poorly when applied
to very sparse networks, like the PINs of non-model or poorly
annotated organisms (You et al., 2010).

2.2. Maximum Likelihood Techniques
Maximum likelihood approaches, introduced mainly for link
prediction, rely on the underlying community structure of
complex networks. In the Hierarchical Random Graph (Clauset
et al., 2008), the space of all possible dendrograms of a
network is searched to get the ones that best fit its hierarchical
structure. Non-adjacent pairs of nodes that have high average
probability of being connected within these dendrograms
represent good candidates for interaction. In the Stochastic
Block Model (Guimerà and Sales-Pardo, 2009), in which a
network is partitioned into groups, the probability that two
nodes are connected depends on the groups to which they
belong. An important issue with these approaches is that they are
computationally expensive and not parameter-free (Lü and Zhou,
2011).
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2.3. Network Embedding Techniques
Data analysts are regularly faced with the problem of
finding meaningful low-dimensional representations of high-
dimensional data. Algorithms such as Multidimensional Scaling
or Principal Component Analysis embed data to low dimensions
by preserving inter-sample distances or covariances but, if the
dataset under study contains non-linear structure, they fail to
provide useful mappings (Tenenbaum et al., 2000). To solve this
issue, non-linear dimensionality reduction algorithms, such as
Isometric FeatureMapping (ISOMAP), are commonly employed.
Under the hypothesis that the biological features that lead to
a PI are complex and non-linear, one could assume that PINs
are shaped over a manifold embedded in a high-dimensional
space, where interacting proteins are geometrically close to each
other and disconnected pairs are far apart (Kuchaiev et al., 2009;
You et al., 2010; Cannistraci et al., 2013a). This highlights that
if a reasonable measure of dissimilarity between proteins is
established, a pairwise dissimilarity matrix can be constructed
and used to reveal the low-dimensional geometry of the analyzed
network. Good candidates for interaction are finally determined
via closeness relationships in the reduced space (Figure 1D).

Nataša Pržulj and her colleagues are pioneers in the modeling
of PINs with geometric graphs. Their computational experiments
show close matches between important topological properties
of PINs and geometric random graphs (Przulj et al., 2004).
Their results support the hypothesis that PINs do have an
underlying geometric structure. These conclusions resulted from
the embedding of networks to low dimensions, using the
shortest-paths between nodes as dissimilarity and investigating
whether proteins pairs that map close to each other are indeed
more likely to interact (Higham et al., 2008; Kuchaiev et al.,
2009). In 2010, You and co-workers extended this idea with the
application of FSW to the PIN after embedding, with the aim to
refine the identification of candidate PIs (You et al., 2010).

Around the same time period, a group of physicists and
network scientists were independently developing a framework
to model complex networks, resting on the assumption that a
hidden metric space underlies them and shapes their topology
(Boguñá et al., 2009). Contrary to Pržulj and You, who map
PINs to a Euclidean space, this group’s hypothesis is that complex
networks respect the rules of hyperbolic spaces (Krioukov et al.,
2010, 2012). This choice is reasonable: trees (subgraphs touching
all network nodes without cycles), which abstract the skeleton or
hierarchy of complex networks, need an exponential amount of
space to branch [the total number of nodes at depth d in a b-ary
tree is (bd+1 − 1)/(b − 1)] and only hyperbolic spaces expand
exponentially, providing enough space for a complex network
to grow (Krioukov et al., 2010). This premise evolved into a
model able to produce scale-free and strongly clustered networks,
by simply distributing nodes at random in hyperbolic space
and connecting those that are hyperbolically close to each other
(Papadopoulos et al., 2012). In addition, the fact that two nodes
are connected in a real network correlates strikingly well with
short hyperbolic distances between them (Krioukov et al., 2010;
Papadopoulos et al., 2012). These results confirm that complex
networks, like PINs, do possess an intrinsic organization shaped
by geometric principles that agree well with hyperbolic ones.

However, current algorithms to map networks to hyperbolic
space depend on a Metropolis-Hastings algorithm that requires
some manual intervention to converge in a reasonable amount of
time (Papadopoulos et al., 2012). More computationally efficient
methods are currently under development.

Finally, in the non-centered Minimum Curvilinear
Embedding (ncMCE), a technique that has been successfully
applied in different fields (Alanis-Lobato et al., 2015), the
Minimum Spanning Tree (MST) is extracted from the network
under scrutiny to construct a matrix of pairwise distances
between nodes over the MST. The network is then projected to
low-dimensions by singular value decomposition of this matrix
and, in contrast to previous approaches, that assign likelihood
scores by directly measuring Euclidean distances between
node pairs (Kuchaiev et al., 2009; You et al., 2010), in ncMCE
the network is reconstructed in the reduced space so that its
edges are weighted by the distances between connected nodes.
Likelihood scores are then the shortest-paths between nodes in
this low-dimensionally projected, weighted network (Cannistraci
et al., 2013b). It is not surprising that this technique achieves
a remarkable performance in the prediction of PIs: measuring
distances between proteins over the MST, corresponds to
navigating one of the discrete representations of the hyperbolic
geometry underlying the network under study. As previously
mentioned, hyperbolic spaces are smooth versions of the trees
abstracting the hierarchy of PINs (Krioukov et al., 2010).

2.4. General Framework for Measuring the
Effectiveness of These Techniques
In order to benchmark the accuracy of a link prediction
technique, the following framework is commonly employed:

1. Remove L randomly selected PIs from the observable network
topology.

2. Assign confidence scores to disconnected protein pairs in the
pruned network with a topological technique and sort them
decreasingly (best candidate interactions positioned at the top
of this list).

3. Take L protein pairs from the top of the sorted list and
compute the proportion present in the set of interactions
removed in 1. This is a measure of the technique’s precision.

4. Repeat steps 1–3 t times, removing different sets of randomly
selected PIs.

5. Repeat steps 1–4 removing 2L, 3L, etc. interactions, up to the
point where the network loses connectivity. This allows for
the construction of a sparsification curve (SC), whose points
are the mean precisions of the technique applied at each
sparsification level.

This evaluation depicts the ability of a topological approach to
predict accurately under the presence of less and less network
information. Nonetheless, it has an intrinsic problem because,
as discussed above, some of the candidate interactions with high
confidence scores may not be part of the randomly removed
set of PIs. However, they may represent good candidates that
current technologies cannot measure. Moreover, members of
the removed set of links may be false positives that good link
predictors are correctly discarding by giving them low scores.
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Subsequently, researchers have opted for using Gene Ontology
(GO) similarities (Yu et al., 2010) to discriminate between good
and bad candidate PIs. This is based on the guilt-by-association
principle (Oliver, 2000), which states that if two proteins are
involved in similar bio-processes, they are more likely to interact
(see Figure 1B). Although Resnik’s index (Resnik, 1999) is the
prevailing GO similarity, Wang’s index is worth mentioning
because it was formulated specifically for the GO (Wang et al.,
2007). Another interesting method improves GO similarities by
considering the inherent uncertainty originating from the GO
incompleteness (Yang et al., 2012).

Figure 1E presents the minimum area under the SC for most
of the topological techniques described in this section, when they
are applied to four yeast networks for the link prediction task
(Cannistraci et al., 2013a,b). This figure depicts the robustness
of each technique, as their worst performance is exposed. Despite
the good results of some of these methods, there is still room for
improvement, and development of approaches that consider the
scale-free structure and geometry of PINs remain active subjects
of research (Papadopoulos et al., 2012; Zhu et al., 2013).

3. Resources for High Confidence Protein
Interactions

Proteins with a high likelihood to interact can considerably
reduce the universe of possible pairs to test in the lab and guide
wet-lab validations. These interactions can then be integrated
with available repositories of high-quality PIs that attach
confidence scores to each reported interaction (see Figure 1F).
One of such resources is the Search Tool for the Retrieval of
Interacting Genes (STRING), which provides a combined score
that indicates higher confidence when more than one source
of evidence supports an interaction (Szklarczyk et al., 2011).
STRING evidence sources include computational associations
(neighborhood-based, co-occurrence, co-expression, text
mining), high-throughput experiments, other databases, and
interactions identified in other organisms. The current version
of STRING (available at http://string-db.org) provides an
interactive network viewer and access to interactions between
almost 10 million proteins, from more than 2000 organisms
(Szklarczyk et al., 2015).

The Human Integrated Protein-Protein Interaction rEference
(HIPPIE) retrieves interactions from major expert-curated
databases and calculates a score for each PI, reflecting its
combined experimental evidence. This score is a function of the
number of studies supporting the interaction, the quality of the
experimental techniques used to measure it and the number of
organisms in which it is present (Schaefer et al., 2012). In HIPPIE
(http://cbdm-01.zdv.uni-mainz.de/∼mschaefer/hippie/), one
can query the interactors of a protein or a set of proteins
and explore the resulting network in an interactive viewer.
Furthermore, the results can be filtered by PI type, tissue,
functions, directionality and inhibitory/activating effect
(Schaefer et al., 2013).

Another worth-mentioning resource is INstruct (http://
instruct.yulab.org/). It collects interactions from eight major
expert-curated databases and filters out low-quality PIs, to keep

only those supported by domain-domain interactions obtained
from co-crystal structures (Wang et al., 2012; Meyer et al., 2013).
INstruct provides a web-based interface to query its extremely
high-quality PINs for 7 different species. The network properties
depicted in Figures 1A–C correspond to the INstruct PIN for
human.

It is important to stress that when querying interactions from
these resources, high-confidence should be preferred over size.
In a recent study, Rolland and colleagues assembled PIs from
7 public databases and found that interactions supported by
multiple sources can be validated at rates that are significantly
higher than those of PIs supported by a single method (Rolland
et al., 2014). This is critical, because meaningful results about
human health and disease can only be achieved when using
high-confidence PINs.

4. Protein Interaction Networks in Health
and Disease

It is possible that the first work that advocated for a systems-
based approach to disease is the one by Goh et al. (2007). They
take advantage of the Online Mendelian Inheritance in Man
(OMIM) repository to build a bipartite network of disorders
linked to their associated genes (see Figure 2A middle). Starting
from this network, projections are carried out, one to the disease
space (Figure 2A left) and the other to the gene space (Figure 2A
right). In the disease projection, they observe a giant network
component, suggesting shared genetic origins of its constituent
diseases. The gene projection provides phenotypic relationship
between gene pairs and presents a high overlap with a network
of high-quality PIs (Goh et al., 2007). Moreover, essential human
genes tend to encode hub proteins and are found to be expressed
in most tissues. Whereas, disease genes are less connected and
possess tissue specificity (Goh et al., 2007).

A similar analysis, focused on the gene projection, was
performed considering only autoimmune diseases (Alanis-
Lobato et al., 2014). After the application of a community
detection algorithm, it was found that genes associated
with related diseases clustered together (see Figure 2B). This
community organization also revealed the presence of clusters
disconnected from themain network component, suggesting that
the genes forming them are disease specific.

Given a set of proteins associated with a patient’s phenotype,
Lage and co-workers are able to rank disease-causing proteins
as the top candidates with the help of a phenotype similarity
score. This also allows them to identify previously unknown
disease-causing complexes (Lage et al., 2007). In a similar
fashion, a tool named CIPHER scores and prioritizes phenotype-
gene pairs, based on an integrated human protein and
phenotype network, to reliably predict disease genes (Wu et al.,
2008).

In 2014, Zhou and colleagues extracted disease and symptom
terms from the Medical Subject Headings (MeSH) in PubMed
and linked diseases with symptoms via bibliographic records
(Figure 2A middle). Instead of simply mapping this network to
the disease space, they describe each disease with a vector of
symptoms, with entries quantifying the strength of association
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FIGURE 2 | (A) A bipartite network of diseases and their associated genes or symptoms can be mapped to the disease or gene/symptom space by linking nodes of

one type that are connected with the same nodes of the other. The weight of the edges in the resulting projection indicates the number of such common nodes. (B)

The application of a community detection algorithm to the Autoimmune Disease Network, mapped to the gene space, reveals groups of genes associated with similar

disorders and high levels of co-morbidity (adapted from Alanis-Lobato et al., 2014). (C) An example human protein interactome in which gene products associated

with diseases A, B, and C have been labeled with different colors. According to Menche et al. (2015), the topologically closer two diseases are (like B and C), the

higher the GO similarity and co-expression of their associated proteins and the higher their co-morbidity and symptom similarity.

between each symptom and the disease. Later, they compute a
pairwise cosine-similarity matrix between these vectors and only
the most significant similarities are considered to construct a
network of weighted links between diseases (Zhou et al., 2014).
Analysis of the resulting network shows that disease pairs with
high symptom similarity are more likely to share associated genes
and PIs. This symptom-based disease network is also organized
in highly interconnected communities of similar diseases, which
shows that similar symptoms imply similar disorders.

The recent work of Menche and colleagues is quite relevant,
as it shows that, despite its incompleteness and biases, the

current human PIN can be mined and integrated with disease
data to uncover pathobiological relationships between disorders
and better understand their etiology. After compiling a network
of roughly 140k interactions between more than 13k human
proteins, nodes are labeled with their associated diseases with
the help of OMIM and a set of 299 disorders defined by MeSH.
Although the disease module hypothesis predicts that proteins
associated with the same trait should be highly interconnected
(Barabási et al., 2011; Loscalzo and Barabasi, 2011), they find that
only a few disease-specific proteins form a connected subgraph.
Whereas, the rest appear to be randomly distributed in the
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PIN because missing links isolate them from their module
(Menche et al., 2015). In spite of this result, the small disease
subgraphs are significantly larger than the random expectation
and their topological properties are biologically meaningful: GO
similarity between module members is significantly high and the
topologically closer two diseases are, the higher the GO similarity
and co-expression of their associated proteins and the higher
their co-morbidity and symptom similarity (see Figure 2C).

5. Conclusion

Viewing the relationships between cell compartments and
their constituting molecules as a complex circuitry of tightly
interconnected components is widespread in systems biology
(Vidal et al., 2011). This has led to breakthroughs that the study
of the individual system components would not have made
possible (Takahashi and Yamanaka, 2006; Levine and Oren, 2009;
Ravasi et al., 2010). However, available interactomes are far from
complete, which makes the production of high quality datasets
crucial to unravel the complex relationships between genotype
and phenotype (Barabási et al., 2011; Loscalzo and Barabasi,
2011).

Since the identification of biological features to distinguish
between interacting and non-interacting proteins is very difficult,
mining the topological characteristics of PINs is useful in the
reliability assessment and prediction of PIs (Cannistraci et al.,
2013b). The best candidates can be integrated with resources of

high-confidence PIs to reconstruct well-grounded interactomes
(Szklarczyk et al., 2015). Clinical and pathological information
can then be superimposed on these networks to detect
disease modules, identify co-morbidity and similarities between
diseases and even make new protein-disorder associations. All
of this by using simple, yet powerful network-based tools
(Goh et al., 2007; Alanis-Lobato et al., 2014; Menche et al.,
2015).

As the quantity and quality of molecular datasets increase,
network science offers a new means to analysing interacting gene
products at a systems level (Loscalzo and Barabasi, 2011). This
will allow, in the near future, for a redefinition of diseases as
sub-networks of a molecular interactome, overlapping with or
in close proximity to other similar diseases, rendering a clear
picture of the network components whose perturbation has
phenotypic impact. Consequently, the integration and holistic
analysis of genetic, genomic, chemical, environmental, clinical,
and therapeutic data are rapidly driving the development of
network medicine, a promising approach aimed at unraveling
disease etiology.
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Homopolymeric amino acids repeats (AARs), which are widespread in proteomes,

have often been viewed simply as spacers between protein domains, or even as

“junk” sequences with no obvious function but with a potential to cause harm

upon expansion as in genetic diseases associated with polyglutamine or polyalanine

expansions, including Huntington disease and cleidocranial dysplasia. A growing body

of evidence indicates however that at least some AARs can form organized, functional

protein structures, and can regulate protein function. In particular, certain AARs can

mediate protein-protein interactions, either through homotypic AAR-AAR contacts or

through heterotypic contacts with other protein domains. It is still unclear however,

whether AARs may have a generalized, proteome-wide role in shaping protein-protein

interaction networks. Therefore, we have undertaken here a bioinformatics screening

of the human proteome and interactome in search of quantitative evidence of such a

role. We first identified the sets of proteins that contain repeats of any one of the 20

amino acids, as well as control sets of proteins chosen at random in the proteome.

We then analyzed the connectivity between the proteins of the AAR-containing protein

sets and we compared it with that observed in the corresponding control networks.

We find evidence for different degrees of connectivity in the different AAR-containing

protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate,

polyproline, and other AARs show significantly increased levels of connectivity, whereas

networks containing polyleucine and other hydrophobic repeats show lower degrees

of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid,

and -lipid interaction domains are significantly enriched in specific AAR protein groups.

These findings support the notion of a generalized, combinatorial role of AARs, together

with conventional protein interaction domains, in shaping the interaction networks of the

human proteome, and define proteome-wide knowledge that may guide the informed

biological exploration of the role of AARs in protein interactions.
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INTRODUCTION

Homopolymeric amino acid repeats (AARs) are found in a large
number of eukaryotic proteins (Faux, 2012). These repetitions in
the primary sequence of proteins have been initially understood
simply as unstructured “spacers” between protein domains
or even just as “junk” peptides devoid of specific functions
(Green and Wang, 1994; Karlin and Burge, 1996; as discussed
in Haerty and Golding, 2010), but prone in some cases to
misfolding, as in genetic diseases related to the expansion of
polyglutamine (polyQ) or polyalanine (polyA) repeats (Almeida
et al., 2013). A growing body of evidence is changing these views
by showing how at least some of these repeats have defined
structural propensities and functional properties. For instance,
we have recently found that polyQ and polyA repeats can form
coiled coil supersecondary structures which can regulate the
oligomerization, interactions, and functions of proteins (Fiumara
et al., 2010; Pelassa et al., 2014). Several studies have now explored
the functional consequences of the appearance and variation in
length of AARs in transcription factors and in other proteins in
which they are particularly enriched, showing how these repeats
can alter the function of proteins, thus ultimately modulating
developmental and post-developmental processes (e.g., Fondon
and Garner, 2004; Anan et al., 2007; O’Malley and Banks, 2008;
Nasu et al., 2014).

One of the possible mechanisms by which AARs could
regulate the function of proteins that contain them is by
mediating the interactions of these proteins with other proteins
or with other cellular components such as nucleic acids and lipids
in membranes. In support of this hypothesis, we have shown for
example that polyQ or polyA repeats can mediate interactions
between proteins that contain them (e.g., Fiumara et al., 2010;
Pelassa et al., 2014), while polyproline (polyP)-II structures and
proline-rich sequences can mediate protein-protein interactions
by binding to non-repetitive interaction domains (Yu et al.,
1994). Evidence exists that some charged AARs may also drive
protein-nucleic acid and protein-lipid interactions (Dean, 1983;
Nam et al., 2001; DeRouchey et al., 2013).

AARs and conventional protein-protein, -nucleic acid, and -
lipid interaction domains, are often found together in the
same proteins. Thus, AARs and non-repetitive, conventional
interaction domains may work combinatorially in defining the
overall specificity and strength of the interactions of their parent
proteins with other proteins or with other interaction partners.
Initial evidence indicates indeed the possibility that AARs in
proteomes, also together with non-repetitive sequences, may
participate in the definition of entire protein-protein interaction
networks. For example, it has been shown that disease-related
and other polyQ proteins could drive the formation of protein-
protein interaction networks based on coiled coil-mediated
interactions (Fiumara et al., 2010; Petrakis et al., 2012; Schaefer
et al., 2012) and this may also be the case for polyA proteins
(Pelassa et al., 2014).

It is still unclear, however, to what degree the emerging roles
of polyQ AARs in shaping protein-protein interaction networks
in proteomes may be generalized to other AARs. Can other
AARs also drive the formation of protein-protein interaction

networks? And, with which conventional protein interaction
domainsmayAARs cooperate in establishing these interactomes?
The answer to these questions must ultimately come from
biological experiments. However, given the scale and complexity
of the biological problems raised by such questions, proteome-
wide bioinformatics screenings may be essential for guiding
the informed biological exploration of all the possible roles of
AARs in establishing protein-protein interaction networks, also
together with conventional protein interaction domains.

Based on these premises, we have undertaken here a
quantitative bioinformatics analysis of the protein-protein
interaction networks formed by the proteins containing AARs
of each one of the 20 amino acids. Furthermore, we have
determined whether specific protein-protein, -nucleic acid, and
-lipid interaction domains are overrepresented in each one
of the 20 AAR-containing protein groups. The results of our
analyses overall provide quantitative support to the hypothesis
that, together with conventional protein interaction domains,
AARs may play a generalized, combinatorial role in establishing
protein-protein interaction networks.

RESULTS

Analysis of Interactomes Reveals
Differential Connectivity in AAR-Containing
Protein Groups
To determine the potential involvement of AARs in establishing
protein-protein interaction networks, we first analyzed the
interactomes formed by the proteins of each of the 20 groups
of proteins of the human proteome containing repeats of at
least four units of any one of the 20 amino acids. This AAR
length threshold allows one to identify proteins that contain not
only long, pure homopolymeric AARs but also more fragmented
repeats at a more advanced stage of their “life cycle” (Buschiazzo
andGemmell, 2006; Pelassa et al., 2014). To perform this analysis,
we preliminarily scanned the Uniprot complete human proteome
in search of proteins containing repeats of the different amino
acids. We thus defined 20 protein groups that were identified
as “polyX” groups, were X stands for the standard single letter
code for one amino acid (i.e., from A to Y). These groups contain
variable numbers of proteins ranging from just one, as for the
polyWgroup, tomore than 1000 proteins, as for the polyL, polyA,
and polyG groups (Supplementary Table 1). We then extracted
the known interactions of the proteins of each polyX group
(represented schematically by red nodes in Figure 1A) from
the whole human protein interactome reported in the BioGrid
database (Stark et al., 2006), using the g:Profiler (Reimand et al.,
2011) interface (Figure 1A), with the exception of the polyW
group which contained only one protein. As statistical controls,
for each polyX group, we also extracted in the same way the
interactions of five groups of proteins selected randomly in the
human proteome, each one containing the same number of
proteins as the polyX group (green nodes in Figure 1A indicate
schematically one of these control groups). We were thus able
to define protein networks formed by either polyX proteins and
their interactors, or by the equinumerous, randomly selected
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proteins and their interactors (schematized in Figure 1B as AAR
protein network and random protein network, respectively). These
interactomes thus contain two types of interactions, which are
schematized in the lower part of Figure 1B. One type, that we
called “type a” interactions, are between two proteins that both
contain the AAR or that are both part of the list of randomly
selected proteins. The other type of interactions, i.e., “type b,” is
formed by an AAR protein with a protein that does not contain
the AAR, or by a protein of the random group with another
protein that is not part of the group.

FIGURE 1 | Extraction of interaction networks of AAR proteins from the

total human interactome. (A) Schematic simplified representation of the

human interactome in graph form. Gray circles represent proteins and black

lines represent binary interactions between proteins as derived from the

BioGrid database. Red circles represent proteins containing a given AAR.

Green circles represent proteins selected randomly as a control group for the

AAR protein group. (B) Simplified schemes representing in graph form (left

scheme) the interaction network formed by proteins containing a given AAR

(red circles) and their interactors (gray circles), or (right scheme) the interaction

network formed by randomly selected proteins (green circles) and their

interactors (gray circles). The lower part of the panel shows the two types of

interactions that were defined in the interactomes above. Type a interactions

occur between two AAR-containing proteins or between two proteins of the

randomly selected control group. Type b interactions occur between an

AAR-containing protein and an interactor that does not contain the repeat, or

between a protein of the random control group and an interactor that is not

part of the random protein group.

To determine whether proteins containing a certain AAR
have an increased, decreased, or similar propensity to establish
interactions among themselves in comparison with randomly
selected proteins, we calculated two quantitative indexes
by analyzing the AAR and the random protein networks
(Figures 2A,B). The first index shows to what extent proteins
containing a given AAR tend to interact with proteins containing
the same AAR (type a interactions) rather than with proteins
devoid of it. The second index shows the density of type a
interactions in each AAR network.

Thus, we first calculated for each AAR protein network the
number of type a interactions as a proportion of the total number
of interactions, i.e., type a/(type a+ type b). The same proportion
was also calculated for each of the five random control networks.
The value of the proportion in the AAR protein network was
then normalized to the value of the proportion calculated for
each of the five corresponding random protein networks. The
resulting five normalized values were then averaged and are
plotted in Figure 2A (mean ± SEM). This analysis revealed
that, for instance, the proportion of type a interactions in the
interactome of polyQ proteins is on average 1.81 ± 0.06 (n = 5)
times greater than in the corresponding control networks. This
difference in the distribution of type a and type b interactions
between the polyQ network and the average of the control
random networks was statistically significant (p < 0.001, χ

2

test with Yates’ correction), indicating that polyQ proteins tend
to establish significantly more interactions with other polyQ
proteins than expected by chance. This observation was not
unique to polyQ proteins, and in fact similar results were found
also for other networks of proteins containing repeats formed by
other polar (polyS), charged (poly-D, -E, -K, -R) or small/cyclic
(poly-A, -G, -P) amino acids. Conversely, proteins containing
polyL or other hydrophobic repeats (poly-C, -M, -Y) tend to have
fewer interactions with each other than expected, although this
trend is statistically significant only for the polyL group. Other
networks of proteins with hydrophobic AARs (poly-I and -V)
display non-significant trends toward a slight increase in the
proportion of type a interactions. The case of polyF networks
is difficult to interpret due to the small number of proteins
(n = 61) containing this repeat and to the consequently higher
statistical variability that was observed in the five corresponding
control networks. Finally, poly-N, -H, and -T networks did
not deviate from what expected by chance in terms of
type a connectivity.

Second, we calculated for each polyX network the average
number of type a interactions per AAR-containing protein and
we normalized this value to the corresponding value calculated
for each of the five control random networks. The average of the
resulting five normalized values for each AAR group is shown
in Figure 2B. A One-way ANOVA analysis revealed overall
significant differences among the AAR groups [F(18, 76) = 53.69,
p < 0.001]. Furthermore, the Dunnett post-hoc test, using as a
control group the polyM group which has the mean value closest
to 1, revealed significant differences (p < 0.05 in all instances)
from the polyM group for all the AAR protein groups that were
also significant in Figure 2A, with the addition of the polyY
group.
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This analysis showed, for example, that polyQ proteins
establish 2.39 ± 0.06 (n = 5) times more interactions with other
polyQ proteins than expected by chance. Also other networks
of proteins containing repeats of polar (polyS), charged (poly-
D, -E, -K, -R), or small/cyclic (poly-A, -G, -P) amino acids
display 1.25–1.7 times more per-node interactions than expected

FIGURE 2 | Analysis of interaction networks formed by AAR proteins.

(A) Number of type a interactions as a proportion of the total number of

interactions in the polyX protein network [i.e., type a/(type a + type b)]

normalized to the same proportion calculated for each of the five control

networks. The bars represent the average of these five normalized ratios ±

SEM. Asterisks indicate polyX networks for which the proportion of type a

interactions differs significantly from that expected by chance (p < 0.05, χ
2

test with Yates’ correction). (B) Sub-networks comprising only type a

interactions were further analyzed and the number of per node interactions in

the AAR protein sub-network was counted and normalized to the number of

per node interactions in control sub-networks of random proteins. For each

polyX network, this normalized value was calculated for each one of the five

control networks. The graph shows, for each polyX protein group, the average

normalized number of type a interactions per node ± SEM. (C) Sample

sub-networks (polyE, polyA, and polyL) containing only type a interactions

such as those that were analyzed in (B) (left graphs), with one of their

respective random networks (right graphs). Note how the density of the polyE

and polyA networks is higher than that of the corresponding control networks,

whereas the density of the polyL network is lower that of the control network.

by chance, as also illustrated in the sample networks shown in
Figure 2C. This figure illustrates how, for instance, networks
of polyE or polyA proteins display a higher density of type a
connections than the corresponding control networks. Again,
networks of proteins containing certain hydrophobic AARs
(poly-L, -Y) displayed a significantly lesser number of per node
connections than expected by chance, as one can also appreciate
visually in Figure 2C which shows how the density of the polyL
network is lower than that of a random network. Finally, the
density of type a connections in poly-T, -N, -I, -H, -F, -M,
and -V networks did not significantly differ from that of the
corresponding control networks. Taken together, these findings
show a substantial concordance of the two indexes that we used to
characterize the type a connectivity of the AAR protein networks.
In fact, we observed a significant correlation between the two
indexes of the 19 AAR groups (r = 0.69, n = 19, p < 0.01).
Thus, AAR groups in which the first index is high and statistically
significant tend to have also higher values for the second index
(e.g., polyQ, polyP, polyE), and this general concordance of the
two indexes strengthens the conclusion that these AARs are
associated with a higher degree of interactivity among proteins
that contain them. Conversely, in some particular cases like that
of polyF, even though the first index is high, but not significantly,
the second index is close to the value expected by chance, thus
indicating overall that the presence of this repeat is not associated
with a greater connectivity between the proteins that contain it.

Taken together, these findings indicate that the presence of
certain AARs in protein networks associates with a higher degree
of connectivity. These AARs are those formed by certain polar
(poly-Q, -S), charged (poly-D, -E, -K, -R), or small/cyclic (poly-
A, -G, -P) amino acids, suggesting that these repeats themselves,
or protein domains they co-occur with, or they are found within,
may promote protein-protein interactions and the formation
of interaction networks. Conversely, the presence of certain
hydrophobic repeats like polyL and polyY in proteins seems to
disfavor the formation of interaction networks, possibly owing
to the fact that these repeats are often found in transmembrane
domains that sequester proteins in membranes (see Section
Discussion).

Possible Roles of AARs in Protein-Protein,
-Nucleic Acid, and -Lipid Interactions
In principle, several non-exclusive structural mechanisms
(Figure 3) may underlie the enhanced mutual interaction
propensity of proteins containing certain AARs. Interestingly,
some of these possibilities have already been demonstrated
experimentally, while others will need to be further investigated
in biological experiments. In the simplest case (Figure 3A), AARs
themselves may be the structural mediators of protein-protein
interactions. For instance, polyQ and polyA repeats can mediate
protein interactions and oligomerization by forming coiled-coil
structures (Fiumara et al., 2010; Pelassa et al., 2014). Another
possibility (Figure 3B) is that AARs in one protein interact with
another structural domain of another protein, as known for
the case of proline-rich stretches forming polyproline-II (PP-II)
structures which can be bound by SH3 domains (Yu et al., 1994).
The enrichment of such AAR-targeting interaction domains in
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FIGURE 3 | Possible roles of AARs in protein interaction networks. Schematic representation of possible modes of interaction between two AAR-containing

proteins (gray bars) mediated either by (A) homotypic AAR-AAR contacts, or (B) by heterotypic AAR-interaction domain contacts, or (C) homotypic AAR-AAR and

domain-domain contacts, or by (D) homotypic domain-domain interactions.

the same proteins containing the AAR may explain the increased
tendency of such proteins to interact with each other. In some
polyX networks (Figure 3C) interactions may also be promoted
synergistically by AARs and other conventional protein-protein
interaction domains. For instance, polyQ and/or polyA repeats
and flanking sequences with coiled coil propensity may co-
operate in protein interactions (Fiumara et al., 2010; Pelassa
et al., 2014). In principle (Figure 3D), certain AARs may even
not have a direct role in promoting the interactions between
proteins in which they are present (Figure 3D). In this case,
the interaction would be mediated by conventional protein-
protein interaction domains that are overrepresented in the
AAR protein group. AARs in this scenario may be involved in
interactions with other cellular components like nucleic acids and
lipids, or may have other roles unrelated to protein interaction.
A possible example of this scenario may be that of proteins
containing both charged repeats like polyK and conventional
CC domains. In this case, while coiled coils could mediate the
protein-protein interactions, the charged repeats may mediate
instead interactions with negatively charged surfaces such as the
phospolipid bilayer.

Biological experiments will be ultimately necessary for
discriminating between these possibilities for the different
polyX protein groups. As a first step in this direction,
however, it may be important to determine initially, through
a systematic proteome-wide analysis, which protein domains
are significantly overrepresented in each polyX protein group.
These domains may in fact be responsible, together with
AARs or by themselves, for the increased mutual interaction
propensity of AAR-containing proteins. Thus, this analysis may
ultimately guide the biological exploration of the role of AARs in

protein interaction networks by indicating which AAR/domain
associations are most likely to determine an increase in protein
interactivity such as we observe in certain AAR-containing
protein groups.

Co-occurrence in Proteins of AARs and
Protein-Protein Interaction Domains
To determine whether specific protein domains are
overrepresented in the different groups of polyX proteins,
we analyzed statistically their domain composition using
the DAVID database (Dennis et al., 2003). Specifically, we
searched for protein domains which are enriched in each of
the polyX protein lists (except for polyW) using a stringent
statistical criterion (p < 0.05 after applying the Benjamini-
Hochberg adjustment). Overall, this analysis revealed the
overrepresentation of multiple types of protein domains in most
polyX protein groups, with the exception of the poly-C, -M, -N,
and -Y groups. An exhaustive list of these domains is reported
in the Supplementary Table 2 and is represented graphically in
Figures 4, 5 and in Supplementary Figure 1. We categorized
these domains in four groups, i.e., (i) protein-protein, (ii)
protein-nucleic acid, (iii) protein-lipid interaction domains,
and (iv) domains involved in other functions or with unclear
function. Some domains belong to more than one category as
they have been shown to mediate multiple functions (e.g., DNA
binding and protein-protein interactions).

Several polyX groups of proteins displayed selective
enrichments of domains belonging to these four categories,
and individual domains can co-occur with multiple types
of AARs. The highest number of significant enrichments of
protein-protein interaction domains was observed in the poly-S,
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FIGURE 4 | Overrepresentation of protein-protein, -nucleic acid,

and -lipid interaction domains in proteins containing polar and

charged AARs. (A) Schematic radial representation of the protein domains

that are significantly enriched in protein groups containing AARs formed by the

polar amino acids indicated by the dark gray letters. The legend in the upper

left quadrant (X) shows how protein-protein interaction domains are indicated

in red, protein-nucleic acid interaction domains in dark yellow, protein-lipid

interaction domains in orange, and domains with other or unknown functions

in black. (B) As in (A) for groups of proteins containing charged AARs.

-E, -K, -R-, -P, and -L groups. Conversely, using the stringent
criteria that were adopted, no significant overrepresentation of
domains was observed in the poly-C, -M, -N, and -Y groups.

A paradigmatic case of co-occurrence of AARs and protein-
protein interaction domains is that of coiled coil domains. These
structural domains are indeed significantly overrepresented in
proteins containing polar (poly-Q, -S), charged (poly-E, -K, -R),
and small/cyclic (poly-A, -G, -P) AARs. Interestingly, in some of
these cases (polyQ, polyA) the AARs themselves are known to
form coiled coil structures often as part of conventional coiled
coil domains (Fiumara et al., 2010; Pelassa et al., 2014), and the

FIGURE 5 | Overrepresentation of protein-protein, -nucleic acid,

and -lipid interaction domains in proteins containing small/cyclic and

hydrophobic AARs. Schematic radial representation, as in Figure 4A, of the

protein domains that are significantly enriched in protein groups containing

AARs formed by small/cyclic (A) or hydrophobic (B) amino acids.

same may be in principle possible for short poly-S, -E, -K, and -R
stretches when embedded in conventional coiled coil sequences.
On the other hand, polyP and polyG stretches form other types
of structures (Adzhubei et al., 2013) and their observed co-
occurrence with coiled coil domains in the same proteins may
not be obviously due to overlap between the AAR and the domain
but to other functional reasons. These observations indicate that,
at least in certain cases, the observed enrichments of certain
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domains in some polyX protein groups may result from the at
least partial overlap of the repeat and the domains (see the last
section of the Results and the Supplementary Table 3). Besides
coiled coils, other domains such as the bromodomain, which
binds acetylated lysine residues on histone proteins, and the
PDZ domain, which is commonly found in signaling proteins,
are similarly overrepresented in multiple polyX protein groups
(poly-D, -E, -K, -P, -Q, -S and poly-P, -R, -S, respectively).
Other protein-protein interaction domains tend to co-occur
more specifically only with a few polyX protein groups. For
example, SH3 domains are enriched only in the poly-P and -S
groups, whereas HEAT domains, helical structures involved in
intracellular transport, are overrepresented only in the polyD
protein group. Interestingly, some nucleic acid-binding domains
which also function as protein-protein interaction domains, like
the Homeobox domain, are overrepresented especially in protein
containing certain polar (polyQ) charged (polyH), or small/cyclic
(poly-A, -G, -P) repeats. PolyL proteins represent a quite unique
case as they contain a high number of protein-protein interaction
domains, mostly associated with trans-membrane or secreted
proteins. Such abundance of overrepresented domains in the
polyL group may be likely explained by the fact that polyL
repeats are often found in signal peptide and transmembrane
regions which are characteristic of proteins targeted to the
secretory pathway or to cellular membranes with ligand/receptor
functions (see Section Discussion). Notably, protein-protein
interaction domains are conversely rarely co-occurring with
other hydrophobic AARs.

Co-occurrence in Proteins of AARs and
Protein-Nucleic Acid Interaction Domains
Domains known to mediate protein-nucleic acid interactions are
frequently overrepresented in different polyX protein groups.
In particular, multiple DNA-binding domains (e.g., Homeobox,
Fork head, helix-loop-helix (HLH), helicase domains) co-occur
in proteins with charged, polar, and small/cyclic AARs. The
particular enrichment of DNA binding domains in groups of
proteins containing charged repeats may reside in the capacity
of charged AARs to bind DNA and chromatin components such
as the histones (e.g., Dean, 1983; DeRouchey et al., 2013). Thus,
charged AARs may have synergistic roles with DNA binding
domains in driving the interaction of proteins with the nuclear
genetic material. Instead the co-occurrence of this type of domain
with hydrophobic AARs is quite exceptional. Interestingly, RNA-
binding domains (RBD) are particularly enriched in protein
groups containing polar (polyQ) and small/cyclic (poly-A, -G,
-P) AARs, but not, at variance with DNA-binding domains,
in protein groups with charged AARs, except for the group
containing polyR repeats which may favor RNA binding (e.g.,
Nam et al., 2001).

Co-occurrence in Proteins of AARs,
Protein-Lipid Interaction Domains, and
Other Domains
We also found evidence for the overrepresentation of some lipid-
binding domains in some polyX proteins groups. Rodopsin-like

and class C G-protein-coupled receptors are overrepresented in
polyI, polyF, and polyL proteins. PolyI repeats also co-occur with
synaptobrevin domains. In most cases the hydrophobic repeats
lie within the domains themselves as part of transmembrane
regions (Supplementary Table 3). Two other lipid-binding
domains are enriched in non-hydrophobic polyX protein groups.
The CH2 domain targets proteins to membranes and is
overrepresented in proteins containing polyK repeats, whichmay
indeed also contribute to phospholipid binding (e.g., Reuter et al.,
2009), whereas the pleckstrin homology (PH) domains, which
bind phosphoinositides, are overrepresented in the poly-E, -S,
and -P protein groups.

Taken together, these findings indicate that specific patterns
of co-occurrence exist in proteins between AARs and protein
domains that mediate interactions with other proteins, nucleic
acids, and lipids. These domains, together with the AARs
themselves, may contribute to shaping interactomes as illustrated
in Figure 3.

Overlap of AARs and Protein Domains
As observed for polyQ and polyA repeats in coiled coil domains
(Fiumara et al., 2010; Pelassa et al., 2014), the possibility exists
that certain repeats may not only co-occur with interaction
domains in the same proteins but may also be embedded within
these domains. To determine whether this is the case, we verified
in the NCBI Conserved Domains Database (CDD) (available at
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), for each
significant AAR-domain co-occurrence, in which proportion of
proteins the AAR and the domain overlap for at least four
residues. We found that in 148 out of 189 significant cases of
AAR-domain co-occurrence no overlap exists between AARs
and the domains that co-occur with them in the same proteins.
However, for 41 cases of AAR-domain co-occurrence there
is some sign of overlap between repeats and domains. In 21
cases, the overlap is observed in between 25 and 100% of
the proteins containing the AAR-domain combination in the
CDD database (Supplementary Table 3). For example, short
polyR repeats were observed within the homeobox domains
in 15 out of 22 proteins (i.e., 68%) that contain the polyR-
homeobox association, and within the HLH domain in 8 out of
16 proteins (i.e., 50%) containing the polyR-HLH association.
These observations indicate that AARs can be part of protein
interaction domains and possibly play a functional role in
them.

DISCUSSION

The results of our analyses indicate overall that the presence of
certain types of AARs in protein networks is associated with
a significantly increased protein-protein connectivity, and that
significant patterns of co-occurrence, and in some cases overlap,
exist between AARs and conventional protein interaction
domains. These findings suggest that different types of AARs
may play a generalized, combinatorial role in shaping protein
interaction networks together with conventional protein-protein
interaction domains they co-occur with.
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Structural and Functional Roles of AARs in
Protein Interactions
We found that proteins that contain a variety of polar (polyQ
and polyS), charged (poly-D, -E, -K, -R), and small/cyclic (poly-
A, -G, -P) repeats show a greater tendency to interact among
themselves, in comparison with proteins devoid of these AARs.
This is also paralleled, in the networks formed by proteins
bearing these “interaction-enhancing” AARs, by a higher number
of AAR-containing interaction partners per AAR protein. The
opposite phenomena were observed for the protein groups
containing certain hydrophobic AARs, like polyL and polyY,
whereas for other AAR protein groups there was no evidence
for statistically significant changes in type a connectivity. The
observed reduction in connectivity among proteins containing
polyL and polyY may likely result from the fact that these
hydrophobic repeats are mostly part of transmembrane domains
and signal peptides (Hikita and Mizushima, 1992; Zhou et al.,
2001). In fact, the localization in membranes may limit relatively
the possibility of proteins to interact with other proteins in the
same membrane compartment, while preserving the possibility
of interaction with intra- and extra-cellular (or intra- and extra-
luminal, in the case of organelles) proteins. On the other hand,
the increased propensity for mutual interactions observed among
proteins containing poly-Q, -S, -D, -E, -K, -R, -A, -G, and -P
repeats may have several possible, and not mutually exclusive,
explanations, as schematized in Figure 3. Experimental evidence
already indicates that at least polyQ and polyA repeats may
directly mediate protein-protein interactions by forming coiled
coil structures that can also interact with conventional, non-
repetitive coiled coils (Fiumara et al., 2010; Schaefer et al.,
2012; Pelassa et al., 2014). This type of interaction between
proteins mediated directly by homotypic AAR-AAR contacts
may not be a universal phenomenon in the polyX interactomes
with enhanced connectivity that we have analyzed. In fact,
polyproline-II structures in proline-rich and polyP-containing
proteins are known to establish heterotypic interactions with
SH3 domains (Yu et al., 1994) which we find being enriched
precisely in the same polyP protein group. Thus, the enhanced
connectivity observed in some AAR protein networks may
result from the enrichment in them of interaction domains
capable of AAR binding. While this possibility needs to be tested
experimentally for the different AARs, our analyses identified a
relatively restricted subset of significantly enriched domains in
each polyX protein group that may play a role similar to that of
SH3 domains in the interactome of polyP proteins. AARs and
conventional protein interaction domains may also cooperate in
mediating the binding of proteins to other proteins or to nucleic
acids and cellular membranes. This seems particularly plausible
for charged AARs. Charged AARs can indeed bind DNA and
RNA (e.g., Dean, 1983; Nam et al., 2001; DeRouchey et al., 2013)
and may therefore cooperate with sequence-specific DNA- or
RNA-binding domains in stabilizing protein interactions with
nucleic acids. Charged AARs can also bind histones and may
cooperate with DNA-binding domains within the same protein
that bind histone-associated DNA. Positively charged AARs can
also bind phospholipids (Schwieger and Blume, 2007; Reuter
et al., 2009) and we found indeed evidence of a significant

overrepresentations of CH2 lipid binding domains in polyK
proteins.

Physiological and Pathological Roles of
AARs in Shaping Protein Interactomes
Taken together these observations indicate that, given their
widespread presence in proteomes and their frequent co-
occurrence with protein interaction domains, polyQ -S, -D, -E,
-K, -R, -A, -G, and -P AARs may play a significant, generalized
role in shaping protein interaction networks. Interestingly, most
of these interaction-enhancing AARs can form defined secondary
and supersecondary structures like α-helical coiled coil structures
in the case of polyQ and polyA repeats (Fiumara et al., 2010;
Pelassa et al., 2014), and polyproline II (PP-II) and polyglycine
II (PG-II) structures (e.g., Adzhubei et al., 2013) in the case of
polyP and polyG repeats, respectively. Also PolyE and polyK
repeats can form helical structures in a pH-dependent manner
(Inoue et al., 2005; Mirtič and Grdadolnik, 2013), and it
is thus conceivable that short repeats of glutamate or other
charged amino acids may well be incorporated into defined
protein structures. Thus, AARs may favor the formation of
protein interactions not only as intrinsically disordered domains
through the formation of “fuzzy” complexes (van der Lee et al.,
2014) but also through the formation of defined secondary
structures, similar to conventional, non-repetitive interaction
domains. This conclusion is also supported by our observation
that conventional protein interaction domains can contain short
AARs within them, which are likely to take part in some aspect of
their structure/function.

Different AARs can co-occur in the same protein groups,
as observed for polyQ and polyA repeats (Pelassa et al.,
2014), and for other AARs (Pelassa and Fiumara, unpublished
observations). These observations, together with the existence
of specific patterns of co-occurrence of AARs and protein
interaction domains, strongly suggest the existence of a
combinatorial protein interaction code defined by the variable
co-occurrence in different protein groups of multiple types of
AARs and of conventional interaction domains. These domains
can indeed establish homotypic AAR-AAR and domain-domain
interactions, as well as heterotypic AAR-domain and domain-
domain interactions. Thus, the combination in one protein
of AARs and of various types of interaction domains can
finely tune the specificity and stability of the binding of the
protein to other proteins, but also to nucleic acids and to
phospholipids in membranes. Our observations identify overall
a number of potentially relevant AAR-domain co-occurrences
whose functional relevance ought to be experimentally tested
in different biological contexts, such as transcriptional and
translational regulation, protein trafficking, et cetera. Biological
experiments guided by our findings may ultimately help to
define the exact role and the relative contribution of AARs
and of co-occurring interaction domains in shaping both the
physiological interactomes in the human proteome and the
aberrant, pathological protein interaction networks that are
established in polyQ or polyA expansion diseases.

Thus, in conclusion, the results of our analyses contribute
proteome-wide quantitative evidence supporting the existence of
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physiological, structural and functional roles of AARs, and pave
the way to the informed biological dissection of AAR-mediated
protein interaction networks in health and disease.

MATERIALS AND METHODS

Datasets
The complete reference proteome of Homo sapiens was retrieved
from the Uniprot database (www.uniprot.org) in FASTA format
without isoforms. The proteins containing AARs of at least
four units were identified using ad hoc Perl scripts as
in Pelassa et al. (2014). The domain composition of the
proteins of interest was derived performing batch searches
on the NCBI CCD website (available at http://www.ncbi.nlm.
nih.gov/Structure/cdd/wrpsb.cgi). Necessary conversions of the
different protein identifiers found in the different databases
were performed using the DAVID (https://david.ncifcrf.gov/) or
Biomart (www.biomart.org) databases.

Definition and Analysis of PolyX Protein
Interactomes and Control Random
Interactomes
Protein interaction networks formed by proteins containing a
given AAR and their interactors were extracted form the BioGrid
database of protein-protein interactions using the g:Profiler web
interface (available at http://biit.cs.ut.ee/gprofiler/), deselecting
the “significant only” option so that all interactions could be
downloaded in a tab-delimited text files. Control networks
formed by proteins selected at random in the human proteome
and their interactors were obtained in the sameway. Randomness
in the selection of the proteins was achieved by using a random
number generator to select protein IDs from a complete list of
all the human protein IDs ordered as elements of an array. In
particular, we reiteratively used the Perl “rand” function to select
sets of random elements of the desired numerosity from the
elements of this array. The files derived from g:Profiler for both
AAR and random networks were then analyzed with ad hoc Perl
scripts in order to identify and quantify “type a” and “type b”
interactions (see Section Results).

Analysis of the Overrepresentation of
Protein Domains in PolyX Protein Groups
The protein domains that are overrepresented in the polyX
protein groups were identified using the DAVID database.
We searched, using the “Protein domains” selection menu, for
“Pfam” domains enriched with a Benjamini score <0.05. Coiled

coil domains were identified, using the “Functional categories”
selection menu, searching for “SP_PIR_KEYWORDS.”

Analysis of the Overlap Between AARs and
Protein Domains
The overlap between AARs and conventional domains in
proteins was determined using ad hoc Perl scripts. These scripts
compared for each protein the relative positions of the AARs and
of protein domains whose positions were derived from the NCBI
CDD database (see the Section Datasets above). The overlap of
coiled coil domains with polyQ and polyA repeats was shown
previously (Fiumara et al., 2010; Schaefer et al., 2012; Pelassa
et al., 2014), and here we did not analyze further the coiled
coil/AAR overlap.

Graphs
Bar graphs were generated using Excel software (Microsoft).
Network graphs were generated using CytoScape software
(available at www.cytoscape.org) selecting the “degree sorted
circle layout.” Other schematic representations and figures were
generated using Photoshop Elements 11 software (Adobe).

Data Analysis and Statistics
Data were processed and analyzed statistically using Excel
(Microsoft) and SPSS 21 (IBM) software. Appropriate statistical
tests were performed as indicated in the text and p < 0.05 was
considered as statistically significant in all instances.
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Detection of the modular structure of biological networks is of interest to researchers

adopting a systems perspective for the analysis of omics data. Computational systems

biology has provided a rich array of methods for network clustering. To date, the

majority of approaches address this task through a network node classification based on

topological or external quantifiable properties of network nodes. Conversely, numerical

properties of network edges are underused, even though the information content which

can be associated with network edges has augmented due to steady advances in

molecular biology technology over the last decade. Properly accounting for network

edges in the development of clustering approaches can become crucial to improve

quantitative interpretation of omics data, finally resulting in more biologically plausible

models. In this study, we present a novel technique for network module detection, named

WG-Cluster (Weighted Graph CLUSTERing). WG-Cluster’s notable features, compared

to current approaches, lie in: (1) the simultaneous exploitation of network node and

edge weights to improve the biological interpretability of the connected components

detected, (2) the assessment of their statistical significance, and (3) the identification

of emerging topological properties in the detected connected components. WG-Cluster

utilizes three major steps: (i) an unsupervised version of k-means edge-based algorithm

detects sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects

connected components which are then scored and selected according to the statistical

significance of their scores, and (iii) an analysis of the convolution between sub-graph

mean edge weight and connected component score provides a summarizing view of

the connected components. WG-Cluster can be applied to directed and undirected

networks of different types of interacting entities and scales up to large omics data

sets. Here, we show that WG-Cluster can be successfully used in the differential analysis

of physical protein–protein interaction (PPI) networks. Specifically, applying WG-Cluster

to a PPI network weighted by measurements of differential gene expression permits to

explore the changes in network topology under two distinct (normal vs. tumor) conditions.

WG-Cluster code is available at https://sites.google.com/site/paolaleccapersonalpage/.

Keywords: protein–protein network, weighted network, node weight, edge weight, clustering, connected

component, entropy
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1. Introduction

With biology increasingly becoming a data-rich field, objectives
of systems biology research include organizing molecular
interactions as networks and characterizing their structure,
dynamics, and controllability. Since the turn of the century, high-
throughput interaction mapping has emerged as an extremely
useful approach to identify the constituents and connections
of these networks. For instance the systematic identification of
pairwise protein interactions (Rual et al., 2005; Petschnigg et al.,
2014) or protein associations into complexes (Havugimana et al.,
2012) has been enormously valuable both for understanding the
function of individual proteins and for elucidating the organizing
principles of the cellular physical architecture. Additional types
of interactions have been charted including protein-DNA (Chen
et al., 2015), protein-RNA (Moore et al., 2014; Re et al., 2014)
and kinase-substrate (Linding et al., 2007; Varjosalo et al.,
2013) interactions. Many of the molecular interaction data
generated find their way into database resources that are available
online (Turner et al., 2010; Horn et al., 2014; Orchard et al.,
2014). The ability to generate, process and integrate omics
data is instrumental to increasingly faithful reconstructions of
the information flow in biological systems. In this vein, the
conceptualization of biological systems as networks and the
subsequent reconstruction of their modular organization acquire
great interest (Barabási and Oltvai, 2004; Barabási et al., 2011;
Ideker and Krogan, 2012). The notion of a module refers
to a discrete entity whose constituent elements are similar
in some quantifiable (e.g., chemical, physical, or functional)
property and/or in the profile of their relationships. Biology
displays many examples of modules which generally accomplish
relatively separable functions such as nucleic acid synthesis, DNA
replication, mitotic spindle assembly and protein degradation
(Hartwell et al., 1999; Barabási and Oltvai, 2004).

In recent years, a rich collection of computational approaches
has emerged for module detection in weighted networks,
where weights can be constrained by topological or alternative
numerical properties of nodes (for example, node molecular
activity extracted from transcriptomics profiling) and edges (for
example, edge confidence). Aside from weight assignment either
to nodes (Ideker et al., 2002; Bader and Hogue, 2003) or to
edges (Tanay et al., 2004; Liu et al., 2009; Pandey et al., 2014),
clustering algorithms differ in the procedures for findingmodules
including, for example, simulated annealing (Ideker et al., 2002),
greedy (Chuang et al., 2007; Nacu et al., 2007), genetic (Klammer
et al., 2007), and network propagation (Vandin et al., 2011; TCGA

Research Network, 2013) algorithms. Despite all of this exciting

research in network clustering, some limitations stand out as
remarkable. First, processing tens of thousands of nodes and
the edges among them is hard to accomplish in fast timescales.
Second, albeit equally interesting properties, it remains unclear
how to meaningfully account for both node and edge weights in
a module detection procedure.

Here, we present a novel algorithm for modular structure
detection, named WG-Cluster (Weighted Graph CLUSTERing),

which seeks to address previous shortcomings to detect modules.

Within WG-Cluster, a module is defined as a connected

component where nodes are characterized by homogeneous
weights and are connected by edges of homogeneous weights.
To this aim, WG-Cluster combines an edge-based network
clustering with a fast-gready algorithm. The treatment of
network edge weights within WG-Cluster represents a novelty
compared to most clustering algorithms since, by the initial
edge-based network clustering, network edge weights underlie
the subsequent detection and prioritization of the connected
components. Furthermore, the procedural choice adopted by
WG-Cluster permits to obtain modules, homogeneous not
only in node weights but also in edge weights, without
discernible additional cost in computational efficiency. Module
prioritization can become particularly useful in applications
related to differential network analysis where the primary goal
is to identify modules changing across different conditions.
Finally, it is worth mentioning here also the introduction
of a measure of the significance of the returned connected
components which is based on node weights. WG-Cluster is
here applied for the analysis of a differential network, i.e.,
a network where node and edge weights are defined by the
changes observed in node and edge numerical properties between
two conditions. Differential network analysis is useful to tackle
the dynamic nature of molecular interactions, for instance
as a consequence of environmental shifts. Computational
integration of a network with molecular profiles acquired in
different contexts has shown a popular approach to extract
context-dependent responsive modules, which mark strikingly
changed regions of the network. The input network for
the current WG-Cluster application is a differential network,
which was obtained by integrating a physical protein–protein
interaction (PPI) network with changes in gene expression
between a normal and tumor conditions. Our analysis showed
that WG-Cluster is useful for comprehensively analysing the
quantitative changes affecting nodes or interactions in the
network and for recognizing modules which link to functional
properties.

2. Materials and Methods

2.1. Data Description and Pre-processing
We gathered multi-assay omics data to define the weighted
network which is the primary input to WG-cluster. We collected
PPIs from the open-access IntAct database which adopts a
merging algorithm and a scoring system to provide richly
annotated molecular interaction data. IntAct PPIs are described
in the controlled vocabulary specified by the Proteomics
Standards Initiative for Molecular Interaction (PSI-MI) data
(Hermjakob et al., 2004) and adhere to the guidelines (Orchard
et al., 2007) about the Minimum Information required for
reporting a Molecular Interaction Experiment, which were
supplied by the International Molecular Exchange (IMEx)
consortium. PPIs involving human protein entities were selected
and downloaded along with their confidence scores. Protein
identifiers defined by the Universal Protein Resource (Uniprot)
protein accessions (http://www.uniprot.org/) were mapped to
gene identifiers defined by the HUGO Gene Nomenclature
Committee (HGNC) gene symbols (http://www.genenames.
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org/). We next integrated the IntAct PPIs with tumor-
dependent changes in messenger RNA (mRNA) expression
profiles. Processed gene expression data related to colon
adenocarcinoma were downloaded from The Cancer Genome
Atlas (TCGA) (http://cancergenome.nih.gov/). mRNA profiles
were generated from 155 tumor and 19 normal tissue samples.
Processed data were lowess normalized and collapsed by gene
symbol (log2 scale). A differential co-expression score was
computed for each gene pair, by subtracting the pairwise
Pearson’s correlation coefficient in the tumor condition from
that in the normal condition. Next, the IntAct PPI confidence
scores were multiplied by the differential co-expression scores
to estimate the change in the interaction strength resulting
from the differential co-expression of the mRNAs encoding
the interacting proteins. The product between the IntAct score
and the differential co-expression score defines the final weight
of an edge in the differential network. The weight of a node
in the differential network was obtained by computing the
ratio between the average values of mRNA expression across
samples in the normal and tumor conditions (mRNA fold
change). This differential network, where both nodes and edges
were weighted, was the primary input to the WG-Cluster
algorithm.

2.2. WG-Cluster
The WG-Cluster algorithm is implemented in R (R software
available at http://www.r-project.org), which provides one of
the most widely used, most flexible and mature open source
environments. For the most computationally intense tasks
WG-Cluster employs built-in R functions implemented as a
C(++) or Fortran code, that are optimized and faster than
functions coded in R from scratch. The input data consist of
the network edges reported in Simple Interaction File (SIF)
format (Cytoscape, 2015) and of node weights reported in tabular
format (node, weight). The algorithm sequentially executes
three computational modules. First, it estimates the optimal
number of clusters (sub-graphs) that split up the graph (i.e.,
network) and executes a Lloyd’s K-means clustering (Du et al.,
2006) of the edge weights to detect sub-graphs with edges of
similar weights. Second, a fast-greedy modularity optimization
procedure (Clauset et al., 2004) finds (if any) the connected
components (i.e., modules) in each sub-graph. An entropy
score is computed for each connected component and is used
as a measure of the statistical significance of the connected
component. Finally, an analysis of the convolution between sub-
graph mean edge weight and connected component entropy
allows for a summarizing view of both properties in the
detected connected components (Figure 1). In the following,
we give the details about each computational module of WG-
Cluster. Hereafter, we will denote with V the number of
vertices and with NE the number of edges in the input
graph.

2.2.1. Detection of Sub-graphs
The optimal number of sub-graphs which partition the input
graph is estimated by minimizing the total within-clusters sum of
squares (WCSS) obtained with a K-means procedure. For a set of

edge weights w = (w1,w2, . . . ,wNE), K-means clustering tries to
find a set of K sub-graphs S = (S1, S2, . . . , SK) that is a solution
to the minimization problem:

WCSS =

K
∑

i=1

∑

w∈Si

||w− µi||
2

where µi is the mean of the edge weights w in the sub-graph Si.
An elbow in the curve interpolating the points (nsub-graphs,

WCSS) suggests the appropriate number of sub-graphs noptimal.
In our implementation, noptimal is estimated as the minimum
value of nclusters at which the first derivative of WCSS w.r.t.
nsub-graphs is null within a tolerance 0 < ǫ≪ 1, i.e.,

∣

∣

∣

∣

d WCSS

dnsub-graphs

∣

∣

∣

∣

≤ ǫ.

The first derivative of the curve (nsub-graphs, WCSS) is calculated
by the Stineman algorithm (Johannesson and Bjornsson, 2012).
Algorithm 1 reports the pseudo-code of the first module of
WG-Cluster.

The problem of WCSS minimization is known to be NP-
hard, implying long running times, that can become unacceptable
in case of biological networks with thousands of nodes and
tens of thousands of edges. Furthermore, if the input data
do not have a strong clustering structure, the procedure may
not converge. For this reason, WG-Cluster adopts the Lloyd’s
algorithm whose complexity is linear in the number of edges
and number of sub-graphs, and is recommended in case of
data poorly clustered (Du et al., 2006). Algorithm 2 presents
the pseudo-code of the Lloyd’s K-means. Those iterations are
repeated until the centroids stop changing, within a tolerance
quantified by the parameter threshold (see the pseudo-
code 2).

In Supplementary Material (Section 1.1) we present the
exploratory analysis of other clustering approaches and the
motivation of the choice of the K-means algorithm in WG-
Cluster.

2.2.2. Detection of Connected Components
Each sub-graph Si (i = 1, . . . ,K) returned by the K-means

clustering is decomposed into connected components C
(i)
l

(with
l = 1, 2, . . . , Li, where Li is the number of connected
components in the sub-graph Si) via a fast-greedy optimization
procedure (Clauset et al., 2004), as illustrated in Figure 2. The
entropy of each connected component is calculated as follows:

E
C
(i)
l

= −

N(C
(i)
l
)

∑

j=1

pj log2 pj

dj
(1)

where N(C
(i)
l
) is the number of nodes in the connected

componentC
(i)
l
, pj is the fold change of the expression level (from

normal to tumor condition) of gene j (normalized between 0 and
1) and dj is the sum of the weights of the edges adjacent to the
node representing gene j (known as node strength). Denoting
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FIGURE 1 | Algorithmic modules of WG-Cluster. WG-Cluster takes as

input the SIF file of the network edges and a text file reporting node

labels in the first column and node weights in the second one. If the

second file is not available, WG-Cluster by default assigns an equal

weight to all nodes. WG-Cluster implements three computational

modules: (i) an unsupervised version of the K-means algorithm identifies

sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects

the connected components of each sub-graph utilizing similarity in node

topological properties, (iii) the estimates of the convolution of connected

component entropy and sub-graph mean edge weight guide the

selection of significant connected components representative of global

trends in the network. Complexity of modules for estimating the optimal

number of sub-graphs and for running the Lloyd’s K-means is linear in

the number of edges NE and number of iterations; the complexity of

the module for detecting connected components is O(V (log V )2 ), where

V is the number of vertices.

with D(j) the number of nodes directly connected to node j, dj
is thus defined as

dj =

D(j)
∑

h=1

wjh.

where wjh is the edge weight between the node j and its directly
connected node h.

The entropy is used as a measure of significance of the
connected components. In order to establish a threshold on

the entropy significance, we generated for each connected

component C
(i)
l

an ensemble of 100 random connected
components with the same degree distribution of the reference

connected component C
(i)
l
.

A connected component is considered significant, and
retained, if its entropy value is more than three standard
deviations far from the mean entropy of the corresponding
ensemble of random connected components. Let denote with

{C
(i′)
l′
}, where l′ ∈ {1, 2, . . . , L′i} with L′i ≤ Li, and i′ ∈

{1, 2, . . . ,K ′} with K ′ ≤ K.
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Algorithm 1 | Compute the optimal number of sub-graphs K

1: procedure FIND_NR_SUB_GRAPHS(edge.weights,
max.n.sub.graphs, seed)

2:

3: NE← Number of edges of the graph
4:

5: 1. Calculate the within-cluster sum of squares (wcss) via a

K-means solution.

6:

7: wcss[1]←(NE - 1)× Variance(edge.weights)
8:

9: set.seed(seed)
10: for (i in 2:max.n.sub.graphs) do
11: wcss[i] ←

∑i
1

(

calculate.wcss
(

K-means(edge.weights, centroids= i)
) )

12: end for

13:

14:

15: 2 Estimate d WCSS/dn.sub.graphs with the Stineman

algorithm.

16:

17: n.sub.graphs← 1:max.n.sub.graphs
18: wcss.derivative ← Stineman.derivative(n.sub.graphs,

wcss)
19:

20: 3. Set a tolerance value.

21:

22: tolerance← ǫ

23:

24: 4. Find the first local minimum of d WCSS/dn.sub.graphs
25:

26: wcss.derivative.null← {−ǫ ≤ wcss.derivative ≤ ǫ }
27: K← wcss.derivative.null[1]
28:

29: 5. Return the optimal number of sub-graphs K.
Return K

30:

31: end procedure

2.2.3. Convolution of Mean Edge Weight and Entropy
Both the connected component entropy and the mean
weight of the edges of the sub-graph to which a connected
component belongs are considered to classify the connected
components.

The convolution of the entropy of selected connected
components (Eselected) with the mean edge weight MW
of the sub-graphs to which they belong is performed as
follows:

Eselected[h] ∗MW[h] =
∑

q

Eselected[q] ·MW[q− h] (2)

where Eselected = {E
C
(i′)

l′
} is the vector of the entropies

of the significant connected components, and MW =

Algorithm 2 | Lloyd’s K-means algorithm

1: procedure LLOYD_K_MEANS(edge.weights, K, distance)
2:

3: 1. Randomly choose K items from the edge weights

vector and use these as the initial means.

4:

5: 2. Iterations of assignments and centroid

recalculation.

6: while distance(centroids, edge.weights) > threshold do

7: a. Assign edge weights to the centroids
8: for i ≤ NE do

9: Assign edge.weights[i] to closest sub-graph
according to the distance measure.

10: end for

11: b. Recalculate centroids.
12: end while

13: end procedure

{(1/NE(i
′))

∑NE(i
′)

l=1 wl} is the mean edge weight of the sub-graph
to which they belong.

The convolution in Equation (2) calculates the area overlap
between the probability distributions of the entropy and of the
mean edge weight as a function of the amount by which one
of the distribution is translated. The area of the overlap of the
two distribution measures the similarity between the entropy and
mean edge weight distribution. The density of the convolution
is a spectrum of the frequency of this similarity score and
offers a way to classify the connected components by their
membership to intervals of frequency corresponding to local
maxima or minima of the convolution density. Maxima of the
convolution density correspond to the most frequent values of
similarity between entropy and mean edge weight, whereas local
minima correspond to the least frequent values of similarity.
Then, connected components can be classified according to
the frequency of the convolution between their entropy and
the mean edge weight of the sub-graph to which they belong.
Algorithm 3 provides the steps of the pseudo-code implementing
the procedure of detection and selection of significant connected
components.

2.3. Functional Analysis of Connected
Components
Enrichment analysis based on the generic Gene Ontology
(GO) slim (http://geneontology.org/), a cut-down version of the
Gene Ontology annotations, was conducted for each retained
connected component (hypergeometric test). GO enrichment p-
values were transformed in Benjamini-Hochberg false discovery
rate (FDR) values and retained at the significance level of 0.05.

3. Results

3.1. Performances on synthetic data
We evaluated the performances of WG-Cluster in processing
Erdös-Rényi random graphs, consisting of 500 nodes and an
increasing number of edges, in terms of user CPU running time.
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FIGURE 2 | Sub-graph decomposition into connected components. The algorithm first clusters the input graph into sub-graphs consisting of similar edge

weights and next detects the connected components present within each sub-graph.

Algorithm 3 | Detection and selection of connected components

1: procedure DECOMPOSE_GRAPH(sub-graphs, node.weights)
2:

3: 1. Detection of connected components and calculation of

their entropy.

4:

5: for (i in 1:K) do
6:

7: a. Fast-greedy decomposition of the i-th sub-graph

into connected components.

8: connected.components[[i]] ←

fast.greedy.decomposition(sub-graph[i])
9:

10: b. Entropy calculation.

11:

12: for (l in 1:Li) do
13: (b.1) entropy of connected components with

Equation (1).

14:

15: connected.components.entropy[l]
16: ←

entropy(connected.components[[i]][l], node.weights)
17:

18: (b.2) Generate an ensemble of random

weighted Erdös-Renyi connected components.

19:

20: for (v in 1:100) do
21: random.cc.component
22: ←

erdos.renyi.graph(nr.of.nodes=N(C
(i)
l
),

nr.of.edges=NE(C
(i)
l
))

23: edge.weights.random.cc.component ←

Unif(0, 1)
24: node.weights.random.cc.component ←

Unif(0, 1)
25: random.cc.entropies[v]
26: ← calculate.entropy(random.cc.

component,node.weights.random.cc.component,edge.
weights.random.cc.component)

27: end for

28:

29: (b.3) Calculate the mean of the entropies of the

ensemble of random connected components.

30: random.cc.entropy[l]
31: ← calculate.mean.entropy(random.cc.

entropies)
32: (b.4) Select connected components.
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33: if cc.entropy[l] /∈
[

-3 σ + random.cc.entropy[l] ,
+3 σ + random.cc.entropy[l]

]

then

34: selected.connected.components← C
(i)
l

35: else

36: discard C
(i)
l

37: end if

38: end for

39: end for

40:

41: 2. Convolution of Entropy (E) and mean edge weight

(MW).

42:

43: (a) Calculate the density of the convolution estimated

by Equation (2).

44: density.of.convolution← density(convolve (E, MW))
45: (b) Detect the maxima of the convolution density.

46: (c) Select and return the connected components whose

values of convolution of (E, MW) fall under convolution

density maxima.

47: end procedure

Edge weights were drawn from a uniform distribution
between 0 and 1 and clustered in 10 groups. A uniform
distribution between 0 and 1 was also used to obtain node
weights.We comparedWG-Cluster running times to the running
times of three widely used deterministic hierarchical approaches
to graph clustering: (i) edge betweenness based clustering, (ii)
label propagation, and (iii) InfoMap, which were selected because
they handle directed (as well as undirected) and weighted
networks as WG-Cluster does (see Table 1 for a summary
of the currently available deterministic clustering methods
implemented in R). Non-deterministic clustering algorithms
[e.g., Walktrap (Pons and Latapy, 2005), Spinglass (Reichardt
and Bornholdt, 2006), and label propagation (Raghavan et al.,
2007)] were left out of this comparative analysis since they
require the determination of the number of runs needed to
build a consensus partition. This parameter often depends on
the topological structure of the graph and can remarkably affect
the performances (that are usually satisfactory on single runs).
We also excluded from the comparison the algorithms that do
not handle the processing of undirected networks [e.g., Leading
eigenvectors, (Newman, 2006)]. From this analysis, WG-Cluster
showed to outperform the alternative algorithms (Figure 3).

In Supplementary Material, Section 1.2, we provide a more
comprehensive analysis of the time complexity of WG-Cluster
applied to random graphs of increasing number of edges and
number of nodes.

Finally, further improvements in efficiency will be tested in
the next version of WG-Cluster by the usage of recent libraries
developed specifically to perform an optimized memory-efficient
management of large datasets. The input/output and data
rearrangement operations on large datasets are computationally
time consuming, and their speeding is one of the main
research topic engaging the developers of the majority of
programming languages. R proposed two major solutions to
optimize the efficiency of massive dataset processing (Kane
and Emerson, 2013; Adler et al., 2014). Using these solutions,

TABLE 1 | Summary of widely used hierarchical methods for module

detection.

Method Type of graph Weighted

edges

Weighted

nodes

Edge-Betweenness (Girvan

and Newman, 2001)

Directed and

undirected

True False

Fast-greedy (Clauset et al.,

2004)

Directed and

undirected

True False

InfoMap (Rosvall and

Bergstrom, 2008)

Directed and

undirected

True True

“True” and “False” in the two last columns stand for “the method can process also”

and “the method does not process,” respectively. For instance, edge-betweenness

clustering method can process and take into account edge weights, but it does not handle

information about node weights.

FIGURE 3 | Running times to cluster random weighted graphs with

increasing number of edges. WG-Cluster running time on a random

weighted graph of 500 nodes and an increasing number of edges is compared

with that achieved by the edge betweenness graph clustering algorithm

(Girvan and Newman, 2001) and that of InfoMap (Rosvall and Bergstrom,

2008). Each algorithm was utilized in its R implementation on a desktop

Windows 8.1 PC with a 3.1 GHz CPU. WG-Cluster ensured faster running

time and a RAM usage inferior to 3Gb.

WG-Cluster could take advantage of the benefits of R (i.e.,
interactive data analysis and rich, flexible statistical programming
environment), and, at the same time, of the benefit of C(++)
language, i.e., an optimized memory-efficient management of big
datasets.

3.2. Application
Biological systems are highly dynamical entities by depending
on environment, tissue type, disease state or development.
Nonetheless, relatively little effort has been spent in differential
network analysis, i.e., the analysis of the changes occurring in
a network in response to different conditions. Even though an
increasing number of studies seek to analyse the dynamics of
networks directly, through experimental mapping of networks
across multiple conditions (Grossmann et al., 2015; Martin et al.,
2015), a longstanding approach in differential network biology
is to construct differential networks by integrating static (at
standard laboratory conditions) molecular interaction networks
(e.g., PPI networks) with changes observed in messenger RNA
expression in different biological conditions (de Lichtenberg
et al., 2005). The resulting differential network is a weighted
network where node weights reflect the changes in mRNA
expression levels and where edge weights reflect the changes in
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interaction strengths due to differential mRNA co-expression
levels under the two conditions. It is worth noting that the
strongest differential interactions are not necessarily the strongest
ones in the static networks. Since both node and edge properties
are deeply ingrained in the clustering procedure,WG-Cluster can
provide a unique view of the differences in network topology
between any two biological conditions.

As a proof-of-principle, we applied the WG-Cluster approach
to analyse the differential PPI network that arises when tumor
and normal conditions are contrasted. The current application
focused on the colorectal cancer which stands among the
most common cancers with more than 1.2 million new cases
and about 600,000 deaths per year worldwide (Jemal et al.,
2011). Messanger RNA expression data were obtained from
The Cancer Genome Atlas which, importantly, provides samples
from tumor tissues and from matched normal tissues. We
acquired PPIs from the IntAct database because it provides a
heuristic scoring system which relies on the available annotation
evidences associated with an interacting pair of proteins. The
differential network was constructed as follows: a node was
weighted by the mRNA fold change and an edge was weighted by
multiplying the IntAct PPI confidence score with the difference
of the mRNA co-expression scores between the normal/tumor
conditions. In the Supplementary Material (Sections 1.3 and
1.4), we provide a full description of this network edge weight
model. Furthermore, we show that this network edge weighting
approach leads to improved clustering quality compared to
the classical approach which is based only on differential co-
expression. The differential network consisted of 5569 nodes
and 18,078 edges, out of which 8880 were strengthened and
9198 weakened in the tumor condition compared to the
normal one.

Applying WG-cluster to the differential network detected
6215 connected components which were arranged in 29
sub-graphs of distinct mean edge weights. Upon connected
components detection, WG-Cluster allows the estimation of
the statistical significance of the entropy of each connected
component by comparing the observed value against the
distribution of entropies obtained from appropriately
randomized connected components. The rate of connected
component exclusion appeared stably moderate when
we incremented the number of standard deviations from
the expected entropy value; setting this number at three
resulted in the exclusion of 26.87% of connected components
(Figure 4A). Statistically significant connected components can
be prioritized by any sort of network property such as mean
edge weight of the sub-graph, or entropy or number of nodes
by connected component. It is noteworthy that the numerical
features associated with each connected component provide
complementary information. For instance, correlation between
mean edge weight and entropy values was not statistically
significant (Spearman’s coefficient = −0.02, P = 0.15). Since
the mean weight of the edges in a sub-graph reflects the mean
change in interactions strength and the entropy of a connected
component reflects the mRNA expression changes, the observed
lack of correlation is interesting because it is in agreement with
previous data showing that the strongest differential interactions

do not necessarily involve the strongest differential genes (Ideker
and Krogan, 2012).

The last WG-Cluster step implements the convolution of the
probability distribution of the connected component entropy
with that of the sub-graph mean edge weight. This operation
offers an appealing way to classify connected components in
terms of both of those properties which, in our vision, are
of equal interest. Since we were interested into obtaining a
summarizing view of the network clustering, we selected the
connected components yielding the most frequent convolution
values (Figure 4B).We then interpreted those convolution values
in terms of the corresponding sub-graph mean edge weight and
connected component entropy values.

The number of the connected components obtained was
found to increase in sub-graphs yielding lower mean edge weight
(Figure 4D); conversely, no trend was detectable by analysing the
mean entropy of the selected connected components resulting
from each sub-graph (Figure 4E). Since the edge scores in the
differential network result from the product of the IntAct scores
with the differential co-expression scores, we verified that a low
mean edge weight depended on low differential co-expression
score, which resulted to be the case; indeed, the percentage of
interactions where the differential co-expression score was higher
than the IntAct score positively correlated with the sub-graph
mean edge weight (Figure 4C).

In summary, by a general survey of WG-Cluster outcome, the
majority of the detected connected components were found to
consist of moderately changing interactions. More interestingly,
the arrangement of the detected connected components by
decreasing sub-graphmean edge weight (as shown in Figure 4D),
which is inherent to WG-Cluster, streamlined the identification
of connected components of markedly changing interactions.
Those connected components, albeit limited in number, are
undoubtedly the most interesting for unveiling the most striking
changes in network topology between tumor/normal conditions
(Figure 4D). Gene Ontology enrichment analysis was conducted
to broadly assess the functional significance of module selection
since exploring the fine details of specific modules is out
of the scope of our study. This analysis showed that sub-
graph clustering by mean edge weight broadly corresponded
to a clustering of GO biological processes (Figure 5). Genes
involved in cell cycle, cell death, mRNA processing and protein
modification processes were found to be overrepresented in
modules of weakened interactions in the tumor compared to the
normal condition (sub-graph positive mean edge weight). On the
other hand, genes acting in cell adhesion, extracellular matrix
organization and cell-cell signaling resulted overrepresented in
modules of interactions which were found strengthened in the
tumor vs normal condition (sub-graph negative mean edge
weight). It is reassuring that the GO categories overrepresented in
the connected components were largely found in agreement with
a previous survey of pathways consistently overrepresented in a
large collection of signatures of differentially expressed genes of
prognostic value in colorectal cancer (Lascorz et al., 2011). This
case study showed that WG-Cluster allows shedding light into
the network organization by fast and statistically robust module
detection. In the context of a differential network analysis, it
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FIGURE 4 | Network properties of WG-Cluster reconstructed

modules. (A) Bar plot displaying the fraction of connected components

which are discarded / retained according to the number of standard

deviations of the entropy from the mean value of the distribution of

entropy derived from randomized connected components. (B) Density

plot of the convolution between the connected component entropy and

mean edge weight of the respective sub-graph. Maximum points in the

density plot are highlighted by arrows. The number at each arrow

denotes the number of selected connected components, i.e., connected

components whose entropy and mean edge weight correspond to

convolution intervals at the maxima of the density plot. (C) Dot plot

displaying the percentage of interactions yielding differential

co-expression scores higher than IntAct scores as a function of

subgraph mean edge weight. Scores are taken in absolute value.

(D) Bar plot showing the fraction of connected components retained in

each sub-graph. (E) Bar plot showing the mean entropy of connected

components selected solely on the basis of entropy significance or on

the basis of convolution analysis in each sub-graph.

delivers emergent information about the quantitative changes of
interaction strength and gene mRNA abundance between two
conditions, and allows the user to pursue specific modules on the
basis of any available biological rationale, including the extent of
changes in interaction strength, the extent of mRNA fold change
or the functional characterization of modules.

4. Discussion

Molecule interconnectivity in human cells is daunting with ∼
20,000 protein-coding genes and ∼ 87,000 protein isoforms.
Consequently, a network formalization of cellular processes
is extremely useful to analyse the growing amount of data
on many types of interactions, which include but are not

limited to physical PPIs. A rich array of methods is currently
available to detect network modular organization (Andreopoulos
et al., 2009; Chen et al., 2014). Major limitations of most
clustering methods, in very general terms, include the high
computational cost and the inefficiency in exploiting the
knowledge on edge strength (Toubiana et al., 2013). These
aspects appear increasingly limiting in the light of the steady
increase in the size of interaction maps and of the efforts to
achieve interaction scoring standards (Villaveces et al., 2015).
In this work, a new algorithm for network clustering has been
developed that leverages existing information on both network
nodes and edges to efficiently provide statistically significant
modules. The detected modules are allowed to overlap, which
reflects a common biological scenario, where, for instance,
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FIGURE 5 | Module enrichment in Gene Ontology categories. Heat map showing in each sub-graph the number of connected components which resulted

statistically significant enriched in GO Biological Process categories (adjusted P-value < 0.05). Vertical bar colors denote the sign of sub-graph mean edge weights.

proteins can participate in multiple functions by participating to
multiple functional modules. Within WG-Cluster, the connected
components are homogeneous in terms both of node weights
and of edge weights. We required homogeneity to extend to
the numerical properties assigned both to network nodes and
edges as both of them are expected to be biologically informative
and useful to prioritize the study of the clustering results. To
detect the modules, not only the reachability among nodes but
also the homogeneity in the edges connecting the nodes has
to be verified. To avoid the simultaneous verification of both
requirements, which is highly time-consuming, WG-Cluster
separates the two operations, firstly by identifying sub-graphs of
homogeneous edge weights and, secondly, by detecting modules
within each sub-graph. This procedural choice ensures, in an
efficient way, connected components to be homogeneous in
edge weights by construction. Furthermore, an entropy score
is assigned to each connected component, which reflects the
weights of nodes included in the connected component. The
entropy score is utilized to measure the statistical significance
of each component. Although not submitting node weights
is allowed in WG-Cluster, it is worth noting that this choice
invariably leads to entropy estimates which only depend on

purely structural node properties. Therefore, partial input data
limits the richness of information which could be made available
by WG-Cluster. Finally, a convolution analysis of the entropy
of the connected components with the mean edge weight of
the sub-graphs was introduced to provide a global overview of
the returned connected components and inform downstream
analysis.

WG-Cluster is a method to cluster weighted networks
into connected components, where nodes are homogeneous in
their weights and are connected to each other by edges of
homogeneous weights, and therefore WG-Cluster is suitable for
many applications. A prominent applicative context is related
to differential network analysis, which can discern cellular
processes differently active under different conditions, such
as with or without treatment by a pharmacological agent,
with or without disease. Differential approaches have begun
to drive considerable efforts in network biology, through
the development of experimental assays to directly capture
condition-specific networks (Ochoa and Beltrao, 2015) or
through the integration of networks with condition-specific
molecular profiles (Ideker et al., 2002; Jansen et al., 2002; Guo
et al., 2007).
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The case study presented here suggests WG-Cluster as a
possible method for differential network analysis. A network of
physical PPI interactions, which are scored utilizing community
standards and are deposited in the IntAct database, was
integrated with mRNA expression data acquired from colon
adenocarcinoma tumor samples or from normal samples. Our
integrative approach relied on the rationale that the strength
of a protein–protein interaction depends on the extent of
congruent protein levels and on their protein affinity. Under
the assumption that protein expression can be approximated
with mRNA expression and that the interaction score in IntAct
reflects the interaction affinity, we specified nodes and edge
weights of the differential network as follows. Node weights
were defined by the mRNA level fold changes while edge
weights were defined by the product of the IntAct scores
with the differential mRNA co-expression scores between
the two conditions. Applying WG-Cluster to the differential
network permitted to prioritize modules in the PPI network
representing regions of progressively decreasing changes between
the tumor and normal conditions. Despite the fact that the
majority of interactions changed moderately between the two
conditions, the organization of the detection of weighted
connected components by sub-graph, which is implemented
in WG-Cluster, permitted to streamline the identification of
modules of markedly changing interactions. Furthermore, it
was possible to discern modules of interactions which get
weakened or strengthened in the tumor compared to the
normal condition. Interestingly, separating the modules by
average increase or decrease in the strength of their interactions

reflected also on their functional enrichment into distinct GO
categories.

WG-Cluster is available as an open-source tool at https://sites.
google.com/site/paolaleccapersonalpage/ for the community of
computational biologists to encourage its further development
and/or its integration in general analytical workflows.
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Identifying the pre-transition state just before a critical transition during a complex

biological process is a challenging task, because the state of the system may show

neither apparent changes nor clear phenomena before this critical transition during the

biological process. By exploring rich correlation information provided by high-throughput

data, the dynamical network biomarker (DNB) can identify the pre-transition state. In this

work, we apply DNB to detect an early-warning signal of breast cancer on the basis

of gene expression data of MCF-7 cell differentiation. We find a number of the related

modules and pathways in the samples, which can be used not only as the biomarkers

of cancer cells but also as the drug targets. Both functional and pathway enrichment

analyses validate the results.

Keywords: cell differentiation, dynamical network biomarker (DNB), pre-transition state, critical transition, early-

warning signal, breast cancer

Introduction

Breast cancer, one of the most common cancers, is clearly a heterogeneous, complex, interrelated
disease involving multi-factorial etiologies. The tumorgenesis of breast cancer is typically
characterized by a combination of the interactions between environmental (external) factors and a
genetically susceptible host (Ou et al., 2010). The prevalence of breast cancer as well as the growing
economic and societal burden of the treatment is making it urgently necessary to implement
interventions to prevent or at least delay the occurrence of breast cancer. However, it is still a
challenging task to detect breast cancer in its early stage since it is usually silent and without
clear symptoms in its initial stages, while irreversible complications may develop rapidly before the
implementation of effective treatment (Saini et al., 2011).Many studies of breast cancer are based on
MCF-7 cells. MCF-7 is the acronym of Michigan Cancer Foundation-7. TheMCF-7 cells are cancer
cells that are classified as invasive breast ductal carcinoma. Although the underlying molecular
mechanism of the progression for MCF-7 cells is far from clear, it has been found that heregulin
(HRG) and epidermal growth factor (EGF) are involved in inducing the critical transition of cell
differentiation or proliferation (Normanno et al., 1994; Suzuki et al., 2004; Nagashima et al., 2007;
Saeki et al., 2009). In this work, we quantitatively analyze time-course microarray data of MCF-7
cells, and identify the key genes, i.e., dynamical network biomarker (DNB), which may indicate the
imminent critical transition of the cancer cells during cell differentiation or proliferation.
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We previously hypothesized that a complex biological process
(e.g., disease progression) can be divided into three stages or
states (Figures 1A,B): (A) a before-transition stage (or a normal
state) with high resilience and robustness to perturbations; (B)
a pre-transition stage (or a pre-disease state), just before the
critical transition to the disease state, i.e., occurring before an
imminent phase transition point is reached, therefore, with
low resilience and robustness due to its dynamical structure;
(C) an after-transition stage (or a disease state), representing
a seriously deteriorated stage possibly with high resilience and
robustness again, because it is generally difficult for the system
at this state to recover or return to the normal state even after
treatment (Chen et al., 2012; Liu et al., 2012a). This classification
is supported by the observations that there exist catastrophic
shifts during the progression of many chronic diseases, i.e., the
sudden deterioration of diseases (Litt et al., 2001; McSharry et al.,
2003; Venegas et al., 2005; Hirata et al., 2010; He et al., 2012).
A drastic or qualitative transition in a focal system or network,
from a normal state to a disease state, corresponds to a so-called
bifurcation point in dynamical systems theory (Gilmore, 1993;
Murray, 2002). When the system is near a bifurcation point,
or a critical point, there exists a dominant group, which we
called as the DNB. The DNB can be defined by the following
three conditions (Chen et al., 2012): The correlation between any
pair of members in DNB becomes very strong; The correlation
between one member of DNB and any other molecule of non-
DNB becomes very weak; Any member of DNB becomes highly
fluctuating. The DNB is not only a theoretical concept, but also
has been successfully applied to real biological data, and used to
identified the early-warning signals of sudden deterioration of
several complex diseases (Li et al., 2013; Liu et al., 2013a,b, 2014a;
Zeng et al., 2014; Tan et al., 2015).

In this work, by applying the DNB approach to the datasets
of MCF-7 breast cancer cell line (GSE13009, GSE6462, and
GSE10145), we identify the DNB members composed by a group
of genes that may indicate the imminent critical transition during
the progression of breast cancer cells.

Methods

We first describe the theoretical basis, i.e., the DNB theory, and
then provide the procedures used to preprocess input datasets
and implement the detail DNB score algorithm.

Theoretical Basis
As explained in Section Introduction, a biological process can
be generally divided into the three stages, i.e., (A) the before-
transition state (or normal state in complex diseases), (B) the
pre-transition state (or pre-disease state in complex diseases)
and (C) the after-transition state (or disease state in complex
diseases) (Figure 1A). The before-transition state is a stable
state representing a stable stage with high resilience, during
which the state may change gradually. The pre-transition state
is a state defined as the limit of the before-transition state just
before a critical transition. This state is considered to be still
reversible to the before-transition state since appropriate external
interventions can drive it back to the before-transition state

relatively easily. However, further progression beyond the pre-
transition state will result in a drastic transition to the after-
transition state, another stable state, and it is difficult to return to
the before-transition state even with intensive interventions. The
after-transition state represents a seriously ill stage in complex
diseases.

Different from the traditional biomarkers, e.g., molecular
biomarkers and network biomarkers (Liu et al., 2012b; Wen
et al., 2014; Zhang et al., 2014, 2015), which are designed to
distinguish the disease samples from normal samples and thus
reflect the severity or presence of the illness at the disease state,
the DNB theory aims to distinguish the pre-disease samples from
normal samples according to the critical dynamical behavior of
DNB molecules (Liu et al., 2014b). In other words, the DNB
method is designed to identify a group of strongly correlated
and significantly fluctuating molecules, which are also called “the
leading network” because those genes may lead the transition of
the whole system from the normal state to the disease state (Liu
et al., 2012a).

Although elucidating the critical transition at the network
level holds the key to understand the fundamental mechanism
of disease development or cell differentiation, it is notably hard
to reliably identify the pre-transition state because there may
be little apparent difference between the before-transition and
pre-transition states. This is also the reason why diagnosis based
on traditional biomarkers may fail to indicate the pre-transition
state. The theoretical basis for detecting DNB is summarized
by the following conditions (Figures 1C,D), which have been
proven to hold simultaneously when the system approaches the
pre-transition state (Chen et al., 2012):

1. Deviations of a group of molecules called DNB among the
whole population of molecules, drastically increases (the
fluctuation condition);

2. Correlation between any twomolecules among DNB increases
(the internal correlation condition);

3. Correlation between any molecule in DNB and another in
non-DNB decreases (the external correlation condition);

4. There are no drastic changes for deviations and correlations of
molecules among the remaining molecules of the system, i.e.,
non-DNB.

Dynamics satisfying the preceding conditions can be viewed as
locally herding behavior, i.e., members in a DNB subnetwork act
together with strongly correlated fluctuation. These conditions
imply an imminent regime shift or a phase transition, and
therefore, can be used to signal the impending emergence of the
critical transition. Such a phenomenon can also be described as
the DNB molecules get dynamically correlated or connected so
that the system can be reorganized in a different way.

Data Processing and Algorithm
Three gene expression profiling datasets were downloaded
from the NCBI GEO database (ID: GSE13009, GSE6462, and
GSE10145) (www.ncbi.nlm.nih.gov/geo). In these datasets, probe
sets without corresponding gene symbols were not considered
in our analysis. The expression values of probe sets mapped
to the same gene were averaged. Genes in the DNBs for the

Frontiers in Genetics | www.frontiersin.org July 2015 | Volume 6 | Article 252 | 67

http://www.ncbi.nlm.nih.gov/geo
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Chen et al. Identifying cell differentiation by DNB

FIGURE 1 | The outline for identifying the transition state by DNB

based on time-course data. (A) The progression of breast cancer cells

can be divided into three states, i.e., the before-transition state, the

pre-transition state, and the after-transition state. (B) A system at the

before-transition state or the after-transition state is stable with high

resilience, while it is unstable with low resilience when it is at the

pre-transition state. (C) In the pre-transition state, large fluctuations of the

DNB members are correlated strongly. This critical phenomenon do not

appear at the before-transition and the after-transition states. (D) The

DNB members show large fluctuations in their expressions at the

pre-transition state, compared with smaller fluctuations of the expressions

at the before-transition and the after-transition states.

three datasets were linked and correlated by the combined
functional couplings among them from various databases of
protein-protein interactions of STRING, FunCoup, and BioGrid.
In each disease dataset, the expression profiling information was
mapped to the integrated networks individually for identifying
the corresponding DNB. For each species, we downloaded
the biomolecular interaction networks from various databases,
including BioGrid (http://www.thebiogrid.org), TRED, KEGG
(http://www.genome.jp/kegg), and HPRD (http://www.hprd.
org). First, the available functional linkage information for
Mus musculus and Homo sapiens was downloaded from these
databases and combined. For instance, after removing any
redundancy in dataset GSE13009, we obtained 37,950 linkages
in 13785 human genes. Next, the genes evaluated in these
microarray datasets were mapped individually to their integrated
functional linkage networks. In order to trigger critical changes,
MCF-7 cells were exposed to growth factors heregulin (HRG) for
up to 6 h and the temporal expression of transcription factors was
monitored (Saeki et al., 2009). There were the case group and the
control group for the experiment. For the case group, the gene

expressions were recorded respectively in 17 time points (10min,
15min, 20min, 30min, 45min, 1 h, 1 h 30min, 2 h, 3 h, 4 h, 6 h,
8 h, 12 h, 24 h, 36 h, 48 h, and 72 h). The networks were visualized
using Cytoscape (www.cytoscape.org) and a part of the functional
analysis was based on Integrate and understand complex omics
data (IPA). The detailed algorithm is given in the Supplementary
Materials.

Results

The Identified DNB and the Pre-transition State
Applying the DNB method to dataset GSE13009, the DNB
containing 104 genes was identified for HRG-induced
differentiation of cancer cells. We listed all of the identified
DNB members in Supplementary Table S1 “Detail description
of the identified DNB.” The process of identifying the DNB
can be found in “The algorithm for identifying the DNB” of
Supplementary Materials. During the progression of cancer
cells, we also identified the pre-transition state between the
before-transition state and the after-transition state (Figure 2),
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which is the critical stage when the progression of MCF-7 cells
is just before the differentiation triggered by HRG (Nagashima
et al., 2007). Actually, based on Figure 2, the sharp increase
of the DNB score (the red curve) represents an indicative
early-warning signal 1–1.5 h after the expose to HRG, and thus
before the differentiation detected by molecular markers. In fact,
the original assay showed that the AP-1 complex in HRG-treated
MCF-7 cells contains c-JUN, c-FOS, and FRA-1, although the
association of c-JUN in the complex is transient (Saeki et al.,
2009). Besides, the stimulation of MCF-7 breast cancer cells
with EGF and HRG resulted in very similar early transcription
profiles up to 90min; however, subsequent cellular phenotypes
differed after 3 h (Saeki et al., 2009), which suggests that the
differentiation is around 3 h (the 9th sampling time point). The
bootstrap validation (the blue curves) is also known in Figure 2,
which exhibits that the randomly chosen groups containing the
same number of genes with DNB are insensitive to the critical
transition.

Figure 3 shows the dynamical evolution in the whole feature
network based on the case data. It can be seen from Figure 3

that the selected 104 genes (the top right corner in each network)
are strongly correlated with large fluctuations 1–1.5 h before the
critical transition, which provides a significant signal indicating
the pre-transition stage of cell differentiation, while other genes
show no significant signal. Clearly, when the differentiation is
impending, these selected genes form a special subnetwork, the
so-called DNB, which makes the first move from the before-
transition state toward the after-transition state during the
transition. Interestingly, members of the DNB behaved similarly
to other genes after the system moved to the after-transition
state. It can be seen that, on the other hand, neither the
whole gene network nor the DNB presents a signal before or

FIGURE 2 | The DNB scores for the identified dominant group and

bootstrap groups. The DNB scores are shown for the identified dominant

group (red curve) and 10 groups from bootstrap (blue curves). It can be seen

that for the red curve, the DNB score increases sharply from the 6th point (1 h)

and reaches the peak at the 7th point (1.5 h). For the bootstrap analysis, we

randomly selected 10 gene sets, each of which is composed of the same

number of members as the dominant group. Then the DNB score was

calculated for each randomly chosen group.

after the transition, which shows the sensitivity of the DNB
method only at the pre-transition state. In fact, the DNB method
reveals the existence of the pre-transition state, which, however,
may not be detected by molecules such as EGR4, FOSL-1,
FHL2, and DIPA, although these four transcription factors are
proved to be effective for indicating the differentiation of breast
cancer cells (Saeki et al., 2009). In other words, the molecular
biomarkers cannot provide early-warning signals before the cell
differentiation (at 3 h, or the 9th sampling time point). Therefore,
the benefits brought by the DNB method in signaling the pre-
transition state make the identification and management of
high-risk cases effective.

Validation
Hereto we have shown the sensitivity and effectiveness of
the identified DNB. Figures 4A,B respectively show the DNB
scores based on independent datasets GSE6462 and GSE10145.
From dataset GSE6462, it can be seen from Figure 4A that the
identified DNB also showed a signal for large dose (1 and 10 nM)
HRG expose at the 4th sampling point (30min), while there is
no clear signal for small dose (0.1 and 0.5 nM) HRG expose. It
agrees with the original experiments (Nagashima et al., 2007) that
HRG-induced cellular differentiation of MCF-7 cells is observed
around 60min. From Figure 4B, it can be seen that the signal is
detected by theDNB score at the 4th time point, which also agrees
with the observations and shows the sensitivity of the identified
DNB. The bootstrap analysis for both datasets is shown in Figure
S1 of Supplementary Materials.

Functional Analysis
Heregulin (HRG) can induce dose-dependent transient
and sustained intracellular signaling, proliferation, and
differentiation of MCF-7 breast cancer cells (Barlund et al.,
2002; Huang et al., 2009). In the infected host, some metabolic
pathways responded to these interruptions and became
increasingly disordered. The following results show that some
reported phenomena were consistent with our investigations,
which also provides novel insights into the biological
processes.

The identified DNB module is related to the regulation
of an apoptotic process (GO:0042981) with the significant P-
value (2.93E-06), the regulation of the programmed cell death
(GO:0043067) with the significant P-value (4.10E-05) and the
regulation of the cell death (GO:0010941) with the significant
P-value (7.41E-04) by the website tool DAVID Bioinformatics
Resource (Huang et al., 2009). By the pathway analysis in the
KEGG database, we found that seven genes (CEBPA, SMAD3,
GSK3B, LAMC2, MMP1, PIK3R3, and RXRA) in this DNB
module participate in cancer pathways, and many genes of
this module also take part in other cancer-related pathways,
e.g., the Wnt signaling pathway with P-value (9.10E-03), the
p53 signaling pathway with P-value (1.10E-04), and the ECM-
receptor interaction with P-value (2.30E-03).

Many genes in this DNB module have been proved to be
related to a cancer or tumor process, and in particular, some
of these genes are associated with breast cancer. For example,
BCAS4 is an important gene for breast tumor development
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FIGURE 3 | Dynamical changes in the network including the

selected DNB during the progression of HRG-induced breast

cancer. The figures show the dynamical changes of the molecular

network at (A) 0.25 h, (B) 0.5 h, (C) 1 h, (D) 1.5 h, (E) 2 h, (F) 4 h, (G)

8 h, and (H) 24 h. It can be seen that, the DNB members are correlated

strongly while each member shows large fluctuation in its expression

during 1–1.5 h. This critical phenomenon does not appear before or after

this period, i.e., the before-transition or the after-transition state. Thus, the

pre-transition stage is around 1–1.5 h, just before the cell differentiation

triggered by HRG (7).

and progression (Barlund et al., 2002). ARID3B is one of genes
which regulates cell motility and actin cytoskeleton organization
(Casanova et al., 2011) and is found to be associated with breast
cancer onset (Akhavantabasi et al., 2012). TNFRSF21 encodes
a tumor necrosis factor receptor, which can regulate the NF-
kappaB and mediate an apoptosis process (Kasof et al., 2001).
LAMC2 encodes the gamma chain isoform laminin, which is
involved inmany biological processes, and LAMC2 is also proved
to be related to the breast cancer process (Sathyanarayana et al.,
2003; Koshikawa et al., 2005). Therefore, DNB for HRG-induced
breast cancer can mainly induce cancer by affecting the processes
of regulation of apoptosis, regulation of programmed cell death
and regulation of cell death.

Discussion

Breast cancer is a progressive disease and its deterioration
course is primarily characterized by cancer cell differentiation
or proliferation, which significantly damages the health of

women all over the world. Detecting the early-warning
signal of the cell differentiation of cancer cells provides an
opportunity to interrupt and prevent the continuing costly
cycle of managing breast cancer and its complications. The
critical transition of cancer cells involving proliferation or
differentiation can be induced by a ligand of the ErbB family
receptor, heregulin, which evokes kinase activity of MCF-
7 cells. Actually, in MCF-7, HRG induced graded signaling
and early transcription, followed by auto-induction of multiple
positive/negative feedback mechanisms, and prolongation of
signaling activity might switch cells irreversibly (Saeki et al.,
2009). It is an important future problem to analyses whether the
HRG-induced critical transition is reversible in the pre-transition
state.

In this work, we applied the DNBmethod to the identification
of the pre-transition state on the basis of a composition of
microarray data from the breast cancer cell line. First, we
introduced the DNB approach which aims at detecting the critical
signals of the cell differentiation and indicating the pre-transition
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FIGURE 4 | The validation of DNB based on independent datasets.

To validate the sensitivity and effectiveness, we calculated the DNB score

using the identified genes, based on two independent dataset. (A) The

DNB scores based on GSE6462. The red curve represents the case of

large dose HRG usage (1and 10 nM), while the blue curve stands for the

case of small dose HRG expose (0.1 and 0.5 nM). It can be seen that

there is a signal at the 4th sampling point (30min) when the MCF-7 cells

are exposed to large dose of HRG. (B) The DNB score based on

GSE10145. The curve shows that a peak of DNB score is at the 4th

sampling point (4 h).

state or stage. Second, based on the cell line data, we identified the
pre-transition stage right before the cell differentiation induced
by heregulin (HRG) during the progression of cancer cells.
Actually, an indicative early-warning signal is presented by DNB
at 1 h after the expose to HRG. The validation based on bootstrap
(Figure 2) and other two datasets (Figure 4) demonstrated the
sensitivity and effectiveness of the identified DNB for the HRG
triggered differentiation. Besides, we showed that somemetabolic
pathways responded to the HRG-induced interruptions and
became increasingly disordered during the biological process.
Therefore, the DNB method provides a new way to pry into the
underlying mechanism of cell differentiation and thus is helpful
to achieve the timely intervention. This is the main value in the
potential applications of the DNB method from a network point
of view.

On the other hand, there are limitations of this work. First,
the validity of the identified pre-transition state and the DNB
needs further supports from biological experiments and clinical
studies. Second, the method is insensitive when the genes are
not differentially expressed (see the algorithm stated in the
Supplementary Material). The algorithm is also needed to be
further improved on the aspects of both sensitivity and accuracy.
Although this work is merely a step toward detecting the

early-warning signals of critical transition during cancer cell
progression of breast cancer and the algorithm is expected to be
improved in both time saving and capacity efficient ways, it opens
a window of an opportunity for experimental and clinical study
on the early-warning system of breast cancer.
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Protein–protein interaction (PPI) networks are associated with multiple types of biases
partly rooted in technical limitations of the experimental techniques. Another source of
bias are the different frequencies with which proteins have been studied for interaction
partners. It is generally believed that proteins with a large number of interaction partners
tend to be essential, evolutionarily conserved, and involved in disease. It has been
repeatedly reported that proteins driving tumor formation have a higher number of
PPI partners. However, it has been noticed before that the degree distribution of PPI
networks is biased toward disease proteins, which tend to have been studied more often
than non-disease proteins. At the same time, for many poorly characterized proteins no
interactions have been reported yet. It is unclear to which extent this study bias affects
the observation that cancer proteins tend to have more PPI partners. Here, we show
that the degree of a protein is a function of the number of times it has been screened
for interaction partners. We present a randomization-based method that controls for
this bias to decide whether a group of proteins is associated with significantly more
PPI partners than the proteomic background. We apply our method to cancer proteins
and observe, in contrast to previous studies, no conclusive evidence for a significantly
higher degree distribution associated with cancer proteins as compared to non-cancer
proteins when we compare them to proteins that have been equally often studied as
bait proteins. Comparing proteins from different tumor types, a more complex picture
emerges in which proteins of certain cancer classes have significantly more interaction
partners while others are associated with a smaller degree. For example, proteins of
several hematological cancers tend to be associated with a higher number of interaction
partners as expected by chance. Solid tumors, in contrast, are usually associated with
a degree distribution similar to those of equally often studied random protein sets. We
discuss the biological implications of these findings. Our work shows that accounting
for biases in the PPI network is possible and increases the value of PPI data.

Keywords: protein–protein interactions, study bias, network analysis, degree distribution, cancer genes
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Introduction

Protein–protein interaction (PPI) networks are important
models of the functional organization of the cell. To date
many small and large scale studies exist mapping PPIs in
human (the integrated database HIPPIE; Schaefer et al., 2012,
hosts PPIs from 34,625 different studies). However, we are still
far from the complete knowledge of the human interactome
(Venkatesan et al., 2009), especially when its (spatial and
temporal) dynamics and context-dependence are taken into
account (Ideker and Krogan, 2012; Schaefer et al., 2013). High
error rates associated with the experimental methods applied
to measure PPIs have been recognized as a major burden for
completing this goal (Von Mering et al., 2002). However, besides
experimental error, other biases pose problems on the analysis of
PPI networks.

Protein–protein interaction networks are associated with two
types of biases: technical biases caused by limitations inherent
to the experimental techniques applied to generate the PPI
networks and study biases driven by the research interests guiding
the selection of bait proteins tested for interaction partners.
Examples for technical biases are the tendency of tandem affinity
purification followed by mass spectrometry (TAP/MS) to detect
interactions between highly abundant proteins (Von Mering
et al., 2002; Björklund et al., 2008; Ivanic et al., 2009) and
interactions involving small proteins under 15 kDa (Gavin et al.,
2002). Yeast two-hybrid (Y2H) tends to detect interactions
between protein pairs located in the nucleus (Jensen and Bork,
2008).

The study bias arises due to the fact that proteins are studied
an uneven amount of times: some proteins (e.g., with higher
biomedical relevance) are studied more often than proteins with
unknown biological function. In yeast, the more GO terms a
protein is annotated to the more likely it is to be studied (Gillis
and Pavlidis, 2011; Gillis et al., 2014). This type of bias is
particularly strong in aggregated networks (Gillis et al., 2014)
as are commonly used in network biology. Not surprisingly,
highly studied proteins are associated with a higher number
of known PPI partners (their degree; Hakes et al., 2008). This
poses a major challenge on the analysis and interpretation of PPI
networks: it might misleadingly suggest a correlation between the
biological relevance of a protein and network properties as, for
example, the degree of a protein. Indeed, several studies reported
a higher degree for essential proteins (Coulomb et al., 2005) and
for disease proteins such as cancer proteins (Wachi et al., 2005;
Jonsson and Bates, 2006; Rambaldi et al., 2008). It is unclear
to which extent the reported higher degree of disease proteins
reflects biological properties of disease proteins in networks and
how much their degree is influenced by the fact that disease
proteins are studied more often than other proteins.

The observation that disease proteins have more interaction
partners than non-disease proteins led to numerous
computational studies using directly or indirectly the degree of a
protein as a predictor for its function or disease relation (e.g., Xu
and Li, 2006; Nie and Yu, 2013) that thereby might only reveal
highly studied proteins that are more likely to be associated to
the studied function anyway.

To avoid misleading conclusions from biased PPI networks,
it was repeatedly proposed to rely on non-biased large scale
screens for the analysis of network properties of distinct protein
classes (Zotenko et al., 2008; Rolland et al., 2014). However, the
experimental coverage of the protein set of interest is usually
low when only a single or few large scale studies are considered.
To our knowledge, there is only one study that addressed the
bias directly with a normalization strategy for the analysis of
properties of HIV targets (Dickerson et al., 2010).

Here, we first aim to quantify the impact of the study bias
on the observed degree distribution in a large integrated PPI
network. We then investigate if one of the most frequently made
claims with respect to network properties of disease proteins, the
higher degree of cancer proteins, holds whenwe take into account
the higher number of times these proteins have been tested for
PPI partners. Surprisingly, we find that a much more complex
picture of the degree-disease relation emerges when correcting
for the study bias, with a high heterogeneity across different
cancer types.

Materials and Methods

Protein–Protein Interaction Data
Protein–Protein Interactions were retrieved fromHIPPIE version
1.5 (Schaefer et al., 2012). HIPPIE is an integrated PPI resource
aggregating all PPIs from various expert-curated databases.
HIPPIE implements a confidence score, which reflects the
amount and type of evidence supporting an interaction (such
as the number of studies reporting an interaction). However,
for the purpose of this analysis we considered all 122,755
PPIs in HIPPIE as we reasoned that filtering for experimental
evidence would further increase the study bias in the resulting
subnetwork. Bait usage statistics were extracted from the PPI
databases Mint (Chatr-aryamontri et al., 2007), IntAct (Kerrien
et al., 2007), and iRefWeb (Turner et al., 2010). We annotated
the number of studies in which a protein was used as a
bait.

Statistical Analyses
Statistical hypothesis testing was performed with the R statistical
computing environment. For estimating the significance of the
Pearson correlation, the test statistic was based on Pearson’s
product moment correlation coefficient. The confidence interval
was based on Fisher’s Z transform. The randomization test was
performed by replacing each cancer protein by a non-cancer
protein that had been equally often tested as a bait. To obtain
reasonably distinct random protein sets we included proteins
with similar bait usage when there were fewer than four proteins
that had been tested as a bait equally often. Therefore, we
successively extended a random set with similarly often studied
proteins until the size of the set exceeded four proteins. First, we
included proteins tested as baits 20 times more or 20 times less
often than the original protein. If there were still less than four
proteins in the range we successively increased the range to 150
times tested and then to 250 times tested more or less than the
original proteins.
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Cancer Data
A recent study analyzed almost 5000 different human cancer
exomes and their matched normal-tissue samples to detect
significantly mutated genes in a representative selection of 21
tumor types under a unified statistical framework (Lawrence
et al., 2014). From this study, we extracted the enrichment of
somatic point mutations for each gene and tumor type. We
considered a gene a cancer gene if the enrichment q-value (the
false discovery rate adjusted equivalent to the p-value) was below
0.1 for the respective tumor type. From the 21 different cancer
types, we analyzed 15 that were associated with at least seven
genes.

Gene Ontology Enrichment
For the GO term enrichment analysis we used the tool
ConsensusPathDB (Kamburov et al., 2011). For the analysis
of highly studied proteins, only terms below a q-value
threshold of 0.01 were considered. For the analysis of
functions associated with highly connected cancer genes, we
applied the same q-value threshold to select terms enriched
among all genes of the respective cancer and additionally
tested for the resulting terms if they were significantly more
associated with highly connected proteins (as compared to lowly
connected).

Results

Highly Studied Proteins have More Protein
Interaction Partners
To quantify the relation between the number of times a protein
has been studied and the reported number of PPI partners, we
computed the degree of each protein from the integrated PPI
database HIPPIE (Schaefer et al., 2012). Next, we recorded how
many times each protein has been studied as a bait in studies
reporting PPIs (Figure 1A displays the fraction of proteins for
which we had information on how often they had been tested
as bait proteins). Finally, we annotated the number of PubMed
abstracts linked to each protein (as a proxy for the number
of studies reporting the protein; provided by the PubMed FTP
server; downloaded on January 8, 2015). In Figure 1B the
number of interaction partners of a protein is plotted against
the number of studies in which the protein has been tested for
interaction partners (Figure 1B shows the relation in log–log
space, Supplementary Figure S1 on linear scale). Figure 1C
visualizes the relation between the number of interaction partners
and both the number of all studies and of studies testing the
protein as a bait for interaction partners after grouping the
number of interaction partners into quartiles. As expected, the
correlation between the number of times a protein has been
tested for interaction partners as a bait protein and the interaction
degree of a protein (Pearson correlation of 0.520) is higher than
the correlation between the total number of times a protein has
been studied (including studies not focused on PPIs) and the
degree (Pearson correlation of 0.334). However, both variables
are significantly correlated with the protein interaction degree
(p < 10−16; see Materials and Methods).

Properties of Highly Studied Proteins
Using ConsensusPathDB (Kamburov et al., 2011) we evaluated
the enrichment of functions and pathways in the set of 7114
bait proteins in terms of q-values (see Materials and Methods
for details). In accordance with a previous study that investigated
functional categories enriched among entire networks (Futschik
et al., 2007), we found a strong enrichment of proteins
with nuclear localization, or with functions in cell cycle and
metabolism (q < 10−4) among the proteins used as baits. When
calculating the enrichment of functional terms and pathways
among the 173 proteins most frequently used as a bait (at least
20 times) relative to that of the full bait list, most strongly
enriched were “pathways related to cancer” (q < 10−39). Other
strongly enriched protein classes were related to viral infection
[Hepatitis B (q < 10−28), Epstein–Barr (q < 10−21), HIV
(q < 10−17), and Herpes simplex (q < 10−15)] and signaling
pathways [TNFalpha (q < 10−28), TGFbeta (q < 10−24), and
Leptin signaling (q < 10−23)]. While the enrichment of nuclear
proteins in the entire bait set might be caused by a technical
detection bias of the still predominantly used Y2H assay, which
requires nuclear localization of the bait and prey proteins, the
strong enrichment for cancer pathways in the frequently studied
bait set clearly indicates a selection bias toward proteins with high
biomedical relevance.

Correcting for the Bait Usage Bias
To reconfirm the previously reported (Wachi et al., 2005;
Jonsson and Bates, 2006; Rambaldi et al., 2008) difference in
the degree distribution between cancer and non-cancer proteins,
we retrieved and pooled somatically mutated cancer genes from
21 different tumor types (Lawrence et al., 2014). We compared
the number of PPIs of cancer proteins to the number of PPIs
of non-cancer proteins. We observed that the cancer proteins
have a significantly higher number of PPI partners (p < 10−16;
Wilcoxon Mann–Whitney test; Figure 2A) but we suspected that
this difference could be an artifact caused by the largely different
number of times the two protein classes have been studied for
interaction partners.

To investigate this artifact, we randomly generated sets
of non-cancer proteins equivalent (in terms of having been
studied as baits) to the set of cancer proteins. This was
done by replacing each cancer protein by a randomly selected
protein used the same number of times as a bait protein
than the cancer protein (or similar number of times if no
protein existed that was tested the exact same number of
times). For each of the 10,000 generated random sets, we
calculated the mean number of interaction partners (Figure 2B).
We found that cancer proteins tend to be involved in more
PPIs than non-cancer proteins used as baits as often as
cancer proteins. However, we did not observe a significant
difference (a p-value computed as the fraction of times the
mean degree of the randomized set was larger than the
observed mean degree for cancer proteins; p = 0.0626). The
lack of a significant difference between cancer proteins and
equally often studied random protein sets (as compared to the
highly significant difference between cancer proteins and all
non-cancer proteins) suggests that previous observations on
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FIGURE 1 | (A) For slightly more than half of the proteins in HIPPIE we
had information of how often they had been tested as bait proteins for
interaction partners. (B) The number of studies in which a protein has
been tested as a bait for interaction partners is positively correlated with
the number of reported interactions (Pearson correlation of 0.520).

(C) The protein–protein interaction (PPI) degree distribution has been split
into four equally sized quartiles (1.Q–4.Q). The distribution of numbers of
all studies and only those studies testing the associated proteins as baits
for interaction partners are shown for the quartiles. Pearson correlation
values (r) are indicated.

particular network characteristics of cancer proteins are biased
by the differential research interest in disease versus non-disease
proteins.

Studying the Degree Distributions of Different
Cancers
Next we investigated if the deviation between observed and
expected degree distributions differs across cancer types.
Therefore, we applied the same randomization strategy as
before to correct the study bias in the degree distributions
of cancer proteins from 15 different tumor types (Lawrence
et al., 2014). An interesting picture emerged: while proteins
from several cancer types had close to random expectation
degree distributions, most cancers of the hematological system
had the highest deviation between mean of the observed

degree distribution and the mean of the degree distribution
of randomly sampled protein sets studied similarly often
for interaction partners (Figure 3). The highest deviations
between observed and expected degree distribution were for
chronic lymphocytic leukemia (CLL; p = 0.0248; randomization
test), diffuse large B-cell lymphoma (DLBCL; p = 0.0354;
randomization test) and acute myeloid leukemia (LAML;
p = 0.0525; randomization test). Interestingly, the higher degree
distribution of hematological cancer proteins is achieved by
distinct protein sets and not an artifact of overlapping cancer
protein sets: no protein was associated to these three cancers
and just three proteins appeared in association with two (see
Supplementary Table S1).

To investigate possible functional reasons for the higher
than expected by chance degree distribution of hematological
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FIGURE 2 | (A) Without correcting for the study bias the PPI degree
difference between cancer proteins and non-cancer proteins is highly
significant (∗∗∗ p < 10−16). (B) The number of PPIs is not significantly
enriched for cancer proteins as compared to equally frequently studied
random protein sets. The histogram shows the mean degree of 10,000

random gene sets with the same bait usage distribution as the cancer
protein set. The position of the red dotted line indicates the mean degree of
the cancer protein set. The p-value is computed as the fraction of times the
mean degree of the randomized set was larger than the observed mean
degree and is not significant (p = 0.0626).

cancer proteins, we computed for the proteins from those cancer
classes the ratio between the degree and the number of times
a protein had been tested as a bait protein (as a proxy for
a bias normalized degree estimate; Supplementary Table S1).
For each of the three cancer types, we focused on the 50%
of the proteins with the highest ratio. Interestingly, in two of
the cases the most highly connected proteins were indicative of
cancerogenesis processes specific to the respective hematological
tumor.

Two (RPS15 and XPO1) of the three CLL proteins with the
highest ratio of degree to experiments (out of six CLL proteins
for which we have PPI experimental data) are involved in the
establishment of ribosome localization (while none are from
the proteins with a lower ratio). The third of the highest ratio
proteins (SF3B1) is also a ribonucleoprotein. The higher degree
of the ribosome-related proteins (p = 0.05; Fisher test) is not
surprising as 100s of closely interacting proteins are involved in
the biogenesis and transport of the ribosomal subunits (Fromont-
Racine et al., 2003; Altvater et al., 2012). Interestingly, CLL cells
show impaired assembly of ribosomes (Rubin, 1971), which likely
reduces their metabolic activity and helps them to avoid cell death
(Defoiche et al., 2010).

Of the seven DLBCL proteins with the highest ratio, five
were involved in the activation of leukocytes (of a total of 13
DLBCL proteins with bait usage information). From the six
proteins with lower ratio none was associated with this function
(p < 0.05; Fisher test). Interestingly, many lymphomas resemble
gene expression patterns of activated B cells (Alizadeh et al.,
2000). Leukocyte activation has been shown to be driven by a
large and highly interconnected protein network (Calvano et al.,
2005).

The examples of ribonucleoproteins in CLL and leukocyte
activators in DLBCL illustrate how selection for tumor-specific
functions modify the observed degree distribution of each tumor.

In conclusion, there is no generally elevated connectivity of
cancer proteins. Only in some cancer types groups of proteins
tend to be mutated that belong to highly interconnected cellular
networks.

To estimate how robust our observations are with respect to
variations in the computation of the test statistic, we repeated
the randomization procedure computing the median degree of
the original and randomized protein sets instead of the mean.
The overall observation remained unchanged: random proteins
with bait usage similar to that of cancer proteins have higher
degree than random proteins without any constraints on the bait
usage (both for mean and median; Supplementary Figure S2).
However, using the median we observed a significant degree
enrichment for cancer proteins (p < 0.01; randomization test)
and this time CLL, LAML, and BRCA had significantly higher
number of PPIs as compared to random sets (all p < 0.05;
randomization test).

Discussion

Here, we quantify how the frequency with which a protein has
been studied for interaction partners affects its reported degree
distribution. We estimate that the resulting bias is higher than
previously quantified biases resulting from technical limitations.
For example, the correlation between protein abundance and
degree ranges for different TAP/MS networks from 0.21 to 0.46
(Ivanic et al., 2009) while we observe a correlation >0.5 between
the number of times a protein has been tested as a bait and its
degree.

Our findings have a dramatic impact on the common
understanding of the relation between protein function and
degree. Specifically, we challenge the previous finding that cancer
proteins tend to have more interaction partners than non-cancer
proteins (Wachi et al., 2005; Jonsson and Bates, 2006; Rambaldi
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FIGURE 3 | The distributions show the log2 of the mean degree of
proteins of the specific cancer type divided by the mean degree of
10,000 randomized protein sets with the same bait usage distribution
(a value of 0 would therefore signify that the mean degree of the cancer
protein set equals the observed mean degree of the random protein set,
positive values that the mean degree of the proteins of the respective
cancer type is higher than for the random set and, vice versa, negative
values that the mean degree of the random set proteins is higher as for
the proteins of the cancer type). Blue boxes indicate that the mean of the

original degree distribution of the respective cancer type is significantly higher
(p < 0.05; randomization test) as those of randomized protein sets with the
same bait usage distribution. The cancer types on the x-axis are: BLCA, bladder
cancer; BRCA, breast cancer; CLL, chronic lymphocytic leukemia; CRC,
colorectal cancer; DLBCL, diffuse large B-cell lymphoma; ESO, esophageal
adenocarcinoma; GBM, glioblastoma multiforme; HNSC, head and neck
cancer; KIRC, kidney clear cell carcinoma; LAML, acute myeloid leukemia;
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MEL,
melanoma; MM, multiple myeloma, and UCEC, endometrial cancer.

et al., 2008). In fact a more complex picture emerges: while some
cancer types are associated with proteins of lower or average
connectivity, others are associated with promiscuous proteins.
The different degree distributions correlate with functional
specificities of the tumor types. Interestingly, the higher degree
distribution of hematological cancer genes is driven by largely
different protein sets with distinct functions (the proteins
with the highest ratio between degree and bait usage are
ribonucleoproteins for CLL and proteins involved in leukocyte
activation for DLBCL).

From our analysis it follows that many cancer gene prediction
approaches might have overestimated their performance as
they directly or indirectly use the PPI degree as a feature for
classification. A classifier that preferentially selects proteins with
high degree will therefore favor highly studied proteins, which in
turn are more likely to be cancer proteins. This should be taken
into consideration by either using less biased networks from
proteome-scale screens or by omitting degree-related features for
classification.

One limitation of the presented method is that the reported
number of times a protein has been tested as a bait gives only
a rough and a lower bound estimate as for many experiments
this information is not available in the public databases. Also,
the distinction between bait and prey protein might not apply
to all types of experimental methods (as for example for
crystallization of complexes). As described in the Results section,
our method shows a certain sensitivity with respect to the
chosen statistics. However, the overall tendency in the results
stayed the same when the median instead of the mean was
computed: randomly sampled proteins that have been studied
as often as cancer proteins are more similar in their degree
distribution to cancer proteins as to arbitrarily often studied
proteins.

In summary, we argue for the crucial importance of
taking into account the number of times a protein has been
studied when analyzing PPI networks. Ignoring the resulting
degree distribution bias is not just leading to wrong biological
assumptions on the relation between network topology and
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protein function but also introduces circularity into network-
based disease gene prediction.

To come to reliable conclusions regarding degree differences
between protein classes, it would be generally favorable if rarely
studied proteins would be increasingly often tested for PPI
partners to eliminate the differences in the very uneven bait
usage distribution. While these sharp differences persist, the here
presented methods can help to reduce the impact of the study
bias when comparing degree distributions and could be applied
to other disease protein classes.
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FIGURE S1 | The number of studies in which a protein has been tested as
a bait for interaction partners is plotted against the number of reported
interactions in linear scale.

FIGURE S2 | We randomly sampled 100 protein sets of size 10 (a) from the
cancer proteins, (b) equally often studied (as bait) non-cancer proteins,
and (c) non-cancer proteins without any constraints on the bait usage. We
computed both the mean and the median for each of the resulting 300 protein
sets. The resulting mean/median degree distributions are shown. Although with
this sampling strategy all distributions are pairwise dissimilar (∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001), the random proteins that have been studied as often
as the cancer proteins have a much more similar degree distribution to the cancer
proteins as compared to randomly sampled background proteins (even though
the similarity is higher when the mean is computed than when the median is
computed).

TABLE S1 | The table shows hematological cancer proteins for which PPI
and bait usage information was available. Gene name and entrez gene id,
tumor type and the ratio between the degree and the number of times the protein
has been tested as a bait are indicated.
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Rolland, T., Tşan, M., Charloteaux, B., Pevzner, S. J., Zhong, Q., Sahni, N., et al.
(2014). A proteome-scale map of the human interactome network. Cell 159,
1212–1226. doi: 10.1016/j.cell.2014.10.050

Rubin, A. D. (1971). Defective control of ribosomal RNA processing in stimulated
leukemic lymphocytes. J. Clin. Invest. 50, 2485–2497. doi: 10.1172/JCI106749

Schaefer, M. H., Fontaine, J.-F., Vinayagam, A., Porras, P., Wanker, E. E.,
and Andrade-Navarro, M. A. (2012). HIPPIE: integrating protein interaction
networks with experiment based quality scores. PLoS ONE 7:e31826. doi:
10.1371/journal.pone.0031826

Schaefer, M. H., Lopes, T. J. S., Mah, N., Shoemaker, J. E., Matsuoka, Y., Fontaine,
J.-F., et al. (2013). Adding protein context to the human protein-protein
interaction network to reveal meaningful interactions. PLoS Comput. Biol.
9:e1002860. doi: 10.1371/journal.pcbi.1002860

Turner, B., Razick, S., Turinsky, A. L., Vlasblom, J., Crowdy, E. K., Cho, E.,
et al. (2010). iRefWeb: interactive analysis of consolidated protein interaction
data and their supporting evidence. Database (Oxford) 2010:ba9023. doi:
10.1093/database/baq023

Venkatesan, K., Rual, J. F., Vazquez, A., Stelzl, U., Lemmens, I., Hirozane-
Kishikawa, T., et al. (2009). An empirical framework for binary interactome
mapping. Nat. Methods 6, 83–90. doi: 10.1038/nmeth.1280

Von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., et al.
(2002). Comparative assessment of large-scale data sets of protein-protein
interactions. Nature 417, 399–403. doi: 10.1038/nature750

Wachi, S., Yoneda, K., and Wu, R. (2005). Interactome-transcriptome analysis
reveals the high centrality of genes differentially expressed in lung
cancer tissues. Bioinformatics 21, 4205–4208. doi: 10.1093/bioinformatics/
bti688

Xu, J., and Li, Y. (2006). Discovering disease-genes by topological features in
human protein-protein interaction network. Bioinformatics 22, 2800–2805. doi:
10.1093/bioinformatics/btl467

Zotenko, E., Mestre, J., O’Leary, D. P., and Przytycka, T. M. (2008).
Why do hubs in the yeast protein interaction network tend to be
essential: reexamining the connection between the network topology and
essentiality. PLoS Comput. Biol. 4:e1000140. doi: 10.1371/journal.pcbi.10
00140

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Schaefer, Serrano and Andrade-Navarro. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org August 2015 | Volume 6 | Article 260 | 80

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


MINI REVIEW
published: 19 August 2015

doi: 10.3389/fgene.2015.00257

Frontiers in Genetics | www.frontiersin.org August 2015 | Volume 6 | Article 257 |

Edited by:

Miguel Andrade,

Johannes-Gutenberg University of

Mainz, Germany

Reviewed by:

Matteo Barberis,

University of Amsterdam, Netherlands

Oksana Sorokina,

The University of Edinburgh, UK

*Correspondence:

Esti Yeger-Lotem,

Department of Clinical Biochemistry

and Pharmacology, Ben-Gurion

University of the Negev,

PO Box 653,

Beer-Sheva 84105, Israel

estiyl@bgu.ac.il;

Roded Sharan,

Blavatnik School of Computer

Science, Tel Aviv University,

PO Box 39040, Tel Aviv 69978, Israel

roded@post.tau.ac.il

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Genetics

Received: 28 May 2015

Accepted: 17 July 2015

Published:

Citation:

Yeger-Lotem E and Sharan R (2015)

Human protein interaction networks

across tissues and diseases.

Front. Genet. 6:257.

doi: 10.3389/fgene.2015.00257

Human protein interaction networks
across tissues and diseases
Esti Yeger-Lotem 1* and Roded Sharan 2*

1Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel, 2 Blavatnik

School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Protein interaction networks are an important framework for studying protein function,

cellular processes, and genotype-to-phenotype relationships. While our view of the

human interaction network is constantly expanding, less is known about networks that

form in biologically important contexts such as within distinct tissues or in disease

conditions. Here we review efforts to characterize these networks and to harness them

to gain insights into the molecular mechanisms underlying human disease.

Keywords: protein interaction network, tissue-specific network, disease-specific network, network perturbation,

gene expression

Introduction

Protein molecules constitute the main building blocks of cells and mediate most cellular processes.
In human, they are encoded by over 22,000 different genes, which give rise to many more proteins
through alternative splicing mechanisms. These numerous proteins do not work in isolation:
instead, they interact with each other and with other types of molecules to form complex cellular
machines and to pass signals within cells and across tissues. In recognition of the fundamental
role of these molecular interactions, much effort has been invested in the last two decades in
their mapping. From small-scale experiments that measure interactions between a few proteins,
mapping has changed to large-scale screens using high-throughput techniques such as yeast two-
hybrid and co-immunoprecipitation (e.g., Rual et al., 2005; Stelzl et al., 2005; Ewing et al., 2007;
Rolland et al., 2014). Owing to these mapping efforts, our current view of the physical interactions
between human proteins encompasses over 200,000 interactions among over 20,000 proteins, and
is continuously expanding. The resulting network of all known protein-protein interactions (PPIs),
known as the human interactome, has become a key framework for studying protein function,
cellular processes, and genotype-to-phenotype relationships, as reviewed elsewhere (Barabási et al.,
2011; Vidal et al., 2011). However, this broad network is also limited. PPIs have rarely been
measured in the context of distinct cell types, tissues, or in disease conditions, making it difficult to
model and understand context-related phenotypes.

While knowledge of human context-specific PPIs is limited, we are witnessing a rapid
accumulation of context-specific molecular expression profiles. The human body consists of tens
of tissues, sub-tissues, and cell types that differ from one another in morphology and function.
In a seminal study published more than a decade ago, Su et al. (2004) opened a window into their
molecular characteristics by profiling the transcriptomes of 79 human tissues via DNAmicroarrays.
Other studies profiled the transcriptomes of human tissues by techniques such as massively parallel
signature sequencing (Jongeneel et al., 2005), expressed sequence tags (EST) (Hillier et al., 1996),
and next generation RNA sequencing (e.g., Illumina’s BodyMap 2.0). Most recent is the RNA
sequencing of multiple human tissues from a number of individuals by the Genotype Tissue
Expression project (Mele et al., 2015). The proteomes of human tissues have also been profiled by

19 August 2015

81

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://dx.doi.org/10.3389/fgene.2015.00257
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:estiyl@bgu.ac.il
mailto:roded@post.tau.ac.il
http://dx.doi.org/10.3389/fgene.2015.00257
http://journal.frontiersin.org/article/10.3389/fgene.2015.00257/abstract
http://loop.frontiersin.org/people/141022/overview
http://loop.frontiersin.org/people/185605/overview


Yeger-Lotem and Sharan Interaction networks across tissues and diseases

immunohistochemistry (Pontén et al., 2009; Uhlén et al., 2015)
and mass-spectrometry techniques (Kim et al., 2014; Wilhelm
et al., 2014). In addition to efforts to profile normal tissues,
profiling techniques have also been employed to characterize
different diseases. One of the more prominent initiatives is
The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013),
which is actively mapping genomic, transcriptomic, proteomic,
and epigenomic changes in cancerous tissues compared to
normal tissues. These measurements shed light on the parts
of the interactome that are active in these diverse contexts,
although direct experimentation is required to reveal the actual
PPI changes, in particular the formation of novel interactions
(Ideker and Krogan, 2012). Below we discuss efforts to harness
these context-specific molecular expression profiles to elucidate
network properties of human tissues and to identify interaction-
based disease mechanisms.

Features of Tissue and Cell-type Specific
Networks

Given the lack of context-specific PPIs that were measured in
different tissues and cell types, many studies revert to identifying
PPIs that are feasible in these contexts. Their underlying
assumption is that a PPI is feasible within a specific context
if the corresponding proteins are expressed in that context.
Of course not all feasible interactions actually take place, as
they depend on many other factors such as localization and
conformation of the two proteins, yet co-expression is necessary.
Additionally, co-expression has often been based on RNA levels,
as protein expression levels were rarely available. This approach
had been used previously in model organisms to analyze their
network dynamics in response to stimuli (Luscombe et al.,
2004) or during cell cycle (de Lichtenberg et al., 2005), and
has been used extensively for analyzing tissue interactomes
(e.g., Lopes et al., 2011; Barshir et al., 2013; Song et al., 2014).
Some differences in the sets of PPIs that are feasible within
tissues and involve tissue-specific (TS) proteins and globally
expressed (GE) “housekeeping” proteins are exemplified in
Figure 1.

One of the first questions that had been asked was whether
genes and PPIs that appear to be TS or GE have distinct
topological features relative to the generic human interactome or
to each other. Dezso et al. (2008) complied transcriptome profiles
of 31 tissues, and found that the set of GE genes was larger than
previously assumed. They showed that the topology of the GE PPI
network was characterized by higher connectivity and shorter
paths between proteins relative to the generic interactome. Lin
et al. (2009) analyzed the number of interactions (degree),
closeness, and betweenness centralities of GE and TS proteins
within the generic PPI network. They found that GE genes
were more central and may form a core, while clusters of TS
genes attach to the core at more peripheral positions in the
network. Using the data of Su et al. (2004), Bossi and Lehner
(2009) found extensive direct interactions between GE and TS
proteins, and suggested a model for the evolution of TS functions
through the modification of core cellular processes. Souiai et al.

(2011) used EST data across 45 tissues to test whether tissue-
specificity is encoded in the interactome. They also found that GE
genes were located at the topological center of the interactome.
Denoting interactions occurring at a subset of tissues as TS
interactions (TSI), they found that TSI involved in regulatory
and developmental functions were also central, whereas TSI
involved in organ physiological functions were peripheral. Kiran
et al. (Kiran and Nagarajaram, 2013) analyzed features of highly
connected proteins, namely hubs, in tissue interactomes. They
showed that, among other features, TS hubs were associated
with a lower degree of interactome centrality as compared with
GE hubs. Waldman et al. (2010) analyzed translation efficiency,
and showed that genes that were translated more efficiently in a
specific tissue encode proteins that tend to havemore interactions
in that tissue, relative to other proteins in the same tissue.

The application of RNA-sequencing to human tissues revealed
that many more transcripts were expressed per tissue than
previously acknowledged (Ramsköld et al., 2009). Emig and
Albrecht (2011) were among the first to harness RNA-sequencing
data to the analysis of tissue interactomes. They showed that, in
contrast to previous studies based on microarray profiles, TSI
were less common, and were mainly involved in transmembrane
transport and receptor activation. They also suggested that a
considerable part of tissue-specificity is likely to be achieved by
alternative splicing and interactions involving protein isoforms
(further discussed in Buljan et al., 2012). In accordance with
this suggestion, Ellis et al. (2012) demonstrated experimentally
that neural-regulated exons can remodel PPIs by stimulating
and repressing different partner interactions. Another study
showed that proteins enriched with splice variants tend to occupy
central positions in tissue interactomes (Sinha and Nagarajaram,
2014). Recently, it was claimed that splicing play mostly a
complementary role in driving cellular specificity, except for the
brain, which exhibits a more divergent splicing program (Mele
et al., 2015).

Another technological breakthrough that is taking place in
recent years is the profiling of proteomes at large scale. Since
the correlation between transcript and protein levels is partial
(Schwanhausser et al., 2011), proteome profiling opens a more
direct way to identify feasible PPIs. Liu et al. (2014) used
proteomic data (Kim et al., 2014) to analyze tissue interactomes.
They showed that, relative to the generic interactome, tissue
interactomes are smaller, sparser, and that hubs may have more
important roles. Barshir et al. (2013) combined transcript and
protein measurements to create 16 extensive tissue interactomes.
Their comparative analysis (Barshir et al., 2014) revealed that
each tissue interactome is dominated by a core sub-network that
is common to all tissues, with only a small fraction being TS.Most
tissue hubs were GE and retained their large PPI degree across
tissues, and were enriched in regulatory functions. Lastly, they
found in each tissue a significant correlation between transcript
expression level and number of PPIs involving the encoded
protein.

An important application of tissue interactomes is to shed
light on disease mechanisms. Lage et al. (2008) systematically
mapped over 1000 heritable diseases to the tissues in which
they manifest clinically by using text-mining. They showed that
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FIGURE 1 | Feasible protein interactions change between tissues.

All protein interactions (A) and feasible protein interactions that connect

“global genes,” which are expressed in all three tissues, with

tissue-specific genes that are expressed in one tissue out of adipose

(B), or thyroid (C), or muscle (D). Data of the genes expressed per

tissue were extracted from GTEx Portal (Mele et al., 2015) and limited

to genes with 50 counts and above. Data of protein interactions were

extracted using MyProteinNet (Basha et al., 2015) from BioGrid

(Chatr-Aryamontri et al., 2015), DIP (Xenarios et al., 2002), IntAct

(Kerrien et al., 2012), and MINT (Licata et al., 2012) databases. Only

global genes that have tissue-specific interactions in each of the three

tissues are shown.

proteins and complexes that were linked to diseases tend to
be over-expressed in the tissue where defects cause pathology,
with the exception of proteins and complexes associated with
cancers. Magger et al. (2012) showed that the usage of tissue
interactomes, created from a generic interactome by removing
or penalizing interactions involving non-expressed proteins,
considerably improved the prioritization of disease genes. Li
et al. (2014) assessed tissue interactomes weighted by DNA
methylation data, and showed that they enhance prediction of
disease genes. Barshir et al. (2014) focused on genes causing
hereditary diseases and found that they tend to have PPIs that
occur exclusively in the tissue where defects cause pathology.
They demonstrated that these tissue-exclusive PPIs can highlight
disease mechanisms, and, owing to their small number, suggested
that they constitute an efficient filter for interrogating disease
etiologies.

Perturbed Networks in Disease

Protein networks are perturbed in disease due to sequence
mutations and expression changes. Zhong et al. (2009) were

the first to systematically probe the effect of sequence
(disease-causing) mutations on PPIs. They focused on known
mutations causing Mendelian disorders and categorized them
according to whether they have a truncation effect (“truncating,”
including nonsense mutations, out-of-frame indels, or defective
splicing) or not (“in-frame,” including missense mutations
and in-frame indels). They showed that truncating mutations
seem to lead to node-removal effects in the PPI network,
while in-frame mutations are associated with edge-specific
perturbations.

In a later study, Wang et al. (2012) examined the effect
of disease-causing mutations using a structurally resolved PPI
network, consisting of interactions and their atomic-resolution
interfaces. They found that in-frame mutations tend to occur
on the interaction interfaces of causal proteins and no similar
enrichment was detected in non-interacting domains. This
suggests that PPI perturbations play an important role in disease.
Additionally, they found that the disease specificity for different
mutations on the same gene can be explained by their location
within the interface, further underscoring the importance of PPIs
for the study of disease mechanisms.
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On the technological side, Wei and Yu (Wei et al.,
2014) developed an experimental pipeline to examine the
consequences of different mutations on protein stability and
interactions. They used the pipeline to show that disease
causing mutations on interactions interfaces are more likely to
perturb the corresponding interactions than mutations away
from interfaces. Lambert et al. (2013) developed an experimental
pipeline to score modulated interactions. The pipeline couples
affinity purification to data-independent mass-spectrometric
acquisition. The authors used it to identify interaction changes
following disease-associated mutations and drug exposure.

Recently, Rolland et al. (2014) compared the impact of
mutations associated with human disorders to that of common
variants with no reported phenotypic consequences on PPIs.
They focused on 32 genes with 115 disease and common variants,
testing up to four disease and four common variants per disease
gene for their impact on the ability of the corresponding proteins
to interact with known interaction partners. They found that
disease variants were 10-fold more likely to perturb interactions
than common variants; more than 55% of the 107 interactions
tested were perturbed by at least one disease-associated variant.
In a follow-up study, Sahni et al. (2015) investigated the
consequences of 2890 disease-causing missense mutations in
1140 genes. Out of 197 mutations covering 89 proteins with at
least two PPI partners (in the HI-II-14 map of Rolland et al.,
2014), 26% were found to cause a complete loss of interactions,
31% resulted in specific loss of some interactions, and 43%
did not change the interaction partners. Disease mutations
were shown to perturb interactions that are functionally

relevant in the particular tissue affected by the specific disease.
Sahni et al. further conclude that gain of interactions is
a rare event in human disease, finding very little evidence
for it.

The Road Ahead

Network biology in the past decade was focused on general
networks per species, representing the interaction potential of
every two proteins. It is becoming clear that these networks, while
providing important insights, do notmaterialize in all conditions.
Rather, different sub-networks are formed in different contexts
depending on protein expression, structure, and more. In the
future, when interactome measurements become as standard
and inexpensive as genome sequencing, one can envision the
construction of patient-specific networks that could dramatically
improve our understanding of human disease and its treatment.
With the accumulation of more individual-specific network data,
statistical techniques that are currently limited to sequence data,
such as association studies, could be generalized to the network
world, ever refining our views of cells and organisms.
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Introduction

Proteins have been proven to be among the most significant cellular molecules as they participate
in most cellular functionalities. Researchers have deployed a variety of experimental methods
for the identification of Protein–Protein Interactions (PPIs). The emergence of high-throughput
experimental techniques for the prediction of PPIs, revealed a wide range of PPIs in many
organisms. This information alongside with information from small scale experimental techniques
has been stored in public available databases and repositories. It is well-known that experimental
data includemany false positive predictions and provide only low coverage on the full interactomes.
This fact has led to the design and development of many computational methods for the prediction
of PPIs (Theofilatos et al., 2011).

The experimental PPI data have been extensively used in many studies during the last decades
and their availability gave a significant boost in training new algorithmic models for the prediction
of PPIs and in the overall analysis of PPI data.

Despite the promising results of algorithmic solutions for PPIs’ analysis which fostered
molecular biology research, in our opinion the research on computational methods for analyzing
PPI data has been recently stagnated. Using the online tool MLtrends introduced by Palidwor and
Andrade-Navarro (2010) in a preliminary investigation we have observed that the publications
related to the search term “protein–protein interactions” AND analysis (abstract and title were
searched for this term) present a constant increase in absolute numbers. However, when applying
normalization by dividing with the total number of annual publications, we observe a relatively
stable percentage of publications related PPI analysis in the last decade. In contrast, systems biology
publications present a big positive slope in the last decade even when normalized by the total
number of annual publications. This diversification shows that even if the actual total number
of publications related to PPIs analysis is increasing as the total number of scientific journals
is increasing in the last decade, their total impact on the systems biology domain is decreasing.
Additionally, only a few PPI based research works have been published lately with significant
impact in clinical research and translational bioinformatics.

In this paper, first we summarize the developments on computational analysis of PPI data and
second, we present our belief about the future of PPI data analysis emphasizing in presenting
the constraints that have delayed the transition from the current methodologies to a holistic
bioinformatics approach, for linking biological and clinical data. Specific solutions are also

1Latin phrase meaning ′′Where are you going?
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proposed for all these constraints in order to achieve the optimal
exploitation of PPI bioinformatics’ approaches.

State-of-the-art and Recent Advancements

of the Computational Analysis of PPI Data

A wide range of computational methodologies and tools have
been proposed during the last decade for the analysis of PPI data.
These methods are emphasizing on algorithmic solutions for the
problems of predicting and scoring PPIs, the construction of PPI
networks, the prediction of protein complexes, and the functional
annotation of proteins. The results of these solutions have been
uploaded to public available databases and many tools have
been supplied to the molecular research scientific community
enabling the analysis of the PPIs from a single organism in
a few days. State of the art computational methods for the
prediction of PPI combine information from different sources
and have presented adequate classification performance. Recent
approaches (Zhang et al., 2012; Saha et al., 2014; Theofilatos
et al., 2014) have attempted to overcome the bottlenecks in
this PPIs prediction, namely the definition of negative datasets,
the feature selection, the class imbalance, the tradeoff between
classification performance and interpretability, missing features
values and the calculation of a confidence score for every PPI.
The advancements on the computational prediction and scoring
of PPI enabled the construction of binary PPI networks with
increased coverage on the full interactome. Many tools have been
developed so far offering efficient and interactive visualization
of large PPI networks (Smoot et al., 2011; Li et al., 2013;
Tripathi et al., 2014). As a next step, significant results have been
extracted from the analysis of PPI graphs. This analysis includes
methods for predicting protein complexes (Chen et al., 2014)
and the functional and topological characterization of proteins
(Ma et al., 2014). Recent approaches (Nepusz et al., 2012; Hanna
and Zaki, 2014; Theofilatos et al., 2015) have attempted to face
with some of the remaining challenges for the prediction of
protein complexes such as the prediction of overlapping clusters
and the management of weighted PPI graphs thus increasing
the accuracy having limited prior knowledge for known protein
complexes. One of the ultimate goals of PPI data analysis is
to functionally characterize proteins and their interactions. The
main limitation of protein function prediction until now is
that a combined framework to characterize the full proteome
functionally of a single organism having a meaningful confidence
score for every annotation does not exist. However, with the
continued development of new algorithms and the improvement
of experimental techniques we strongly believe that this will be
achieved in the next few years.

Bottlenecks in Computational Analysis of

PPI Data and Reasons for its Reduced

Impact in pharmacy and Medicine

Computational methodologies for the analysis of PPIs
undoubtedly contributed to the advancement of systems
biology research. In our opinion, however we have reached

the point where research on novel computational methods
has stagnated and further advancements in systems biology
research cannot be achieved solely through the development
of more sophisticated algorithmic solutions. Recently, many
researchers have suggested that advancements in the field of
PPIs research will be facilitated by improved integration of
clinical and molecular data, introducing new clinical phenotype
data, such as the ones coming from integrated data using the
technologies of smart sensors and personalized medicine, in a
format manageable to computational approaches (Tiffin et al.,
2009). The recent advances in other fields of molecular biology,
such as the next generation sequencing data and their analysis,
has enabled the transformation of traditional bioinformatics to
translation bioinformatics. Despite the large availability of works
describing specific combinations of datasets to develop tools
suitable for disease genes prioritization, “our understanding of
how to perform useful predictions using multiple data sources
or across biological networks is still rudimentary” (Nabhan and
Sarkar, 2014), and in particular, to our knowledge, only a few
systematic studies focused on the exploitation of integrated
network methods in medicine applications (Schaefer et al., 2012;
Vinayagam et al., 2014).

For all these reasons, a new approach and more ambitious
objectives should be set for the analysis of PPI data in order
to overcome all these limitations, to meet clinical needs and
cover the lost space in translation bioinformatics analysis which
has been gained by genomics and transcriptomics analysis. The
main challenges for PPI analysis according to our opinion,
except from the already mentioned data integration task and
the linkage of PPI data with clinical data, are the incorporation
of environmental information in the PPI data analysis, the
extended study of PPIs among different organisms, e.g., host–
pathogen interactions, the three dimensional reconstruction of
2D PPI networks for better representation of protein structure,
isoforms and spatial information, the design of new methods for
biomarker discovery using PPI data and the development of new
methods which will facilitate drug discovery using PPI data. In
addition, as firstly proposed by Lopes et al. (2011) and adopted
by Schaefer et al. (2012) and Furlong (2013), the availability of
condition-specific interactomes that are more representative of
the interactions of the proteins in a given tissue or under certain
conditions will improve the significance of such analysis. This
could be done by providing more realistic results, especially for
the exploration of human diseases, where the network topology
properties of proteins encoded by disease genes in interactomes
should be reassessed with spatiotemporal resolution in healthy
and disease states.

Traditional PPI analysis’ approaches study physical and
functional PPIs without taking into account environmental
influences which may strongly affect a PPI or even the formation
of a protein complex. Specifically, it is known that the post
translational modifications of proteins, which play an important
role in enabling them to interact with other proteins, are
significantly affected by environmental changes. Moreover, most
complex diseases are attributed to generalized disturbances in
genetic and proteomic level in cooperation with environmental
causes. In order to exploit PPI analysis in medicine application,
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it should be combined with environmental information and one
way to achieve this is the integration of metabolomics data.

Another field of PPI analysis, which has not yet been
thoroughly explored, is the study of interactions between proteins
from various organisms with a striking example being the
interactions of proteins from host and pathogen organisms which
play a significant role in the viability of the affected cells. Until
recently there existed a lack of large scale efforts to analyze
host–pathogen interactions (Krishnadev and Srinivasan, 2008).
However, these data are now available and a few methods, such
as (Kleftogiannis et al., 2015), for their analysis have already been
published presenting the potential of this field.

One of the most significant new ideas is the one proposed
by Garbutt et al. (2014). This idea refers to the prevalent two
dimensional format of the PPI graphs which is oversimplified and
may lead to loss of information. To take advantage of the dynamic
nature of PPI data, a new three dimensional representation
should be stated integrating protein structure, conformation,
isoforms and spatial information. Several recent research works
take advantage of this idea to incorporate atomic-level protein
structure information in PPI networks (Das et al., 2014) in order
to examine the structural principles of disease mutations over
a PPI network, or even to elucidate the genetic and molecular
mechanisms of underlying human diseases (Wang et al., 2012).

One of the ultimate goals of PPI analysis should be
the biomarkers’ discovery. PPI networks contain significant
information for the cellular mechanisms and functionalities
which should be exploited to uncover disturbances in a
network level. The traditional methods which attempt to
uncover biomarkers from genetic variations or differences in the
expression level have limited applicability as they export a large
number of biomarkers without being able to locate the cause
of the disturbance. When studying diseases in a network level,
the variations are smaller and network based biomarkers are
most likely to represent the cause of the disease. For this reason,
more emphasis should be given to methods for comparing
networks and locating biomarkers from the disturbed proteins,
protein interactions, and protein complexes. Preliminary reports
on methods for biomarkers’ discovery through PPI networks
comparison, revealed a new controversial issue (Wang et al.,
2011). There are some arguing that hubs in PPI networks are
most likely to be found as biomarkers and others arguing against.
This issue should be further studied and clarified in order to
uncover the network metrics which are adequate to be used for
biomarker discovery using PPI graphs.

Another field of PPI analysis which should be further
reinforced is drug discovery through PPI data. PPI data
analysis has a variety of applications in drug discovery so far

(Engin et al., 2014). An interesting idea to reduce the possible
complications of a potential drug is to target proteins which are
interacting with the target protein but have reduced significance
in the overall network topology or even are leafs of the PPI graph.
Even more such ideas are required to be implemented in a novel
way to exploit PPI networks and their topological characteristics
in the drug design process.

In the last 5 years significant initiatives, such as ELIXIR-Data
for Life (Crosswell and Thornton, 2012) and Global Alliance

for Data Sharing (Hayden, 2013), have attempted to promote
biological data sharing, provide the adequate infrastructures
and bring together molecular biologists, bioinformaticians and
clinicians in order to translate life science research mainly
to medicine and bioindustries. These initiatives should be
even more re-enforced and promoted in order to integrate
productively the knowledge and experience of so different fields
toward the realization of personalized medicine. These efforts
will be eased by the expected universal adoption of electronic
medical records standardization and omics translation to clinical
medicine (Issa et al., 2014). However, the full clinical potential
of these initiatives will still remain unexplored until they are
formed in a network perspective that place them within the
systems medicine context. Protein–protein interaction analysis
will by nature play a significant role in this network-perspective
formation.

Conclusions

In this opinion article we have presented our belief about
the future of PPI data analysis emphasizing in presenting
the constraints that delayed the transition from the current
methodologies to a holistic bioinformatics approach, for linking
biological and clinical data. The main constraints that should be
surpassed are the incorporation of environmental information,
the host–pathogen PPI data analysis and the expansion of the
traditional 2D representation of PPI networks with a more
flexible and informative 3D one. These constraints are of equal
importance and most of them should be surpassed in order
to ease the exploitation of PPI analysis in clinical applications.
Moreover, we have stated the most significant areas of clinical
applications of PPI data analysis which are biomarkers and drug
discovery, and we have proposed certain ideas for advancing PPI
analysis in these fields. The next few years, a new boost of clinical
data is expected through the new electronic health records and
data coming from the developing technologies of smart sensors
and personalized medicine (Groves et al., 2013; Yang et al., 2015)
and the computational analysis of PPI data should be ready to
exploit this boost.
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