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Circadian rhythms are biological processes displaying endogenous and entrainable oscillations 
of about 24 hours. They are driven by a group of genes called clock genes that have been widely 
observed in plants, animals and even in bacteria. In mammals, the core clock genes are rhyth-
mically expressed in both the suprachiasmatic nucleus (SCN), the master clock residing in the 
hypothalamus, and almost all peripheral tissues where they control numerous target genes in a 
circadian manner, and thus affect many physiological and biochemical processes. Evidence sug-
gests that disruption of the circadian rhythms (or desynchronization) is a significant risk factor 
for the development of metabolic diseases, cardiovascular diseases, cancer and sleep disorders. 
Evidence also suggests that the disruption suppresses immune function and increases vulnerabil-
ity to infectious diseases. Restoring or strengthening the circadian rhythm may be therapeutic for 
these conditions. This becomes exceptionally important in modern societies because many people 
are suffering from frequent desynchronization due to shift working, exposure to artificial light, 
travel by transmeridian air flight, and involvement in social activities. Besides, the temporal var-
iations in the incidence and severity of many diseases, such as the onset of cardiovascular events, 
chronic obstructive pulmonary disease (COPD), inflammatory diseases and mental disorders 
have also drawn increasing attention to the circadian clock. The circadian rhythms affect not only 
the health status, but also the drug efficiency. The effects (and side effects) of many drugs vary 
with biological timing. The tolerance of many medications displays circadian variation as well. 
The timing of medical treatment in coordination with the body clock may significantly increase 
the desired effects of drugs, and lower the dose and toxicity. In addition, circadian rhythms can 
also be modulated by some therapeutic drugs, for example, melatonin and modafinil, which 
are used to treat circadian rhythm sleep disorders. In this Research Topic, we assembled a series 
of critical review and research articles that focus on the therapeutic implications of circadian 
rhythms. Topics include, but are not limited to: 

• Circadian disruption caused diseases or disorders and related intervention 
• Temporal manifestation of diseases or disorders and therapeutic implications
• The effects of circadian rhythms on drugs
• The effects of drugs on circadian rhythms
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Circadian rhythms are biological processes displaying endogenous and entrainable oscillations of
about 24 h. In mammals the sleep/wake cycle, core body temperature fluctuation, and diurnal
variation of blood pressure and heart rate are among the most well-known circadian rhythms.
These rhythms are not just the consequence of activity/rest cycles, but are also controlled by
molecular clocks, a biological network of fundamental value in the harmonization of physiological
and biochemical processes with the external environment. Substantial evidence suggests that:

1. Dysregulation of the circadian system is a significant risk factor for many health problems such
as metabolic disorders, cardiovascular diseases, impaired immune function, and accelerated
aging. Restoring or strengthening the circadian rhythmmay be therapeutic for these conditions.

2. The incidence and severity of many diseases, such as the onset of cardiovascular events,
chronic obstructive pulmonary disease (COPD), inflammatory diseases, and mental disorders,
are time-dependent.

3. The efficiency and side effects of many drugs has temporal variations.
4. Circadian rhythms can be modulated by some drugs.

Despite the large amount of experimental and epidemiological evidence, the importance of
circadian rhythms has not been paid much attention in real clinical settings. The aim of this
Research Topic in Frontiers is to highlight the therapeutic implications of circadian rhythms.

The mating behavior or close-proximity (CP) displays day/night variation in some insects
including Drosophila melanogaster, which is controlled by molecular clocks and affected by food
consumption. For example, CP rhythm is abolished in per or tim-null flies, and dampened under
low-nutrient conditions. In the research article, Inositols affect the mating circadian rhythm of
Drosophila melanogaster (Sakata et al., 2015), Sakata et al. found that CP rhythm significantly
enhanced by feeding the flies with powdered ice plant, a little-known vegetable that may improve
hyperglycemia in a streptozotocin-induced diabetic rat model. Among various components of ice
plant, myo-inositol could increase the amplitude and shorten the period of CP rhythm. Real-time
reporter assays showed that myo-inositol also shortened the period of the circadian reporter gene
Per2-luc in the mouse cell line NIH3T3. Their data suggested that ice plant and myo-inositol
may be beneficial to insect reproduction, while its potential role in mammals need to be carefully
investigated.

There’s obvious day/night variation in urinary voiding with much more during the day than
at night in human. However, a large portion of human beings suffer excessive urination at night
(nocturia), which dramatically decreases quality of life. Therefore, understanding the underlying
mechanism has significant clinical relevance. Most studies on the circadian rhythm of micturition
were focused on urine production by the kidneys. Although smooth muscle cells from mouse
bladder express a functional and autonomous circadian clock at the molecular level, very few
studies show circadian rhythms in the bladder function. In the research article, Evaluation of
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mouse urinary bladder smooth muscle for diurnal differences
in contractile properties (White et al., 2014), White et al.
measured spontaneous (phasic) and nerve-evoked contractions
of mouse bladder tissue strips collected frommultiple time points
during 24 h and found phasic contraction, but not nerve-evoked
contraction displayed diurnal rhythm.

Circadian rhythm has significant therapeutic implications
in the central nervous system. It has long been known that
circadian disruption by frequent shift work, jet lag, or exposure
to artificial light is a risk factor for several neurodegenerative
diseases, including Alzheimer’s disease. Conversely, many
neurodegenerative diseases result in circadian abnormalities.
Besides, mice lacking clock genes, such as Bmal or Clock/Npas2,
developed marked astrogliosis. In the mini-review, Circadian
clock disruption in neurodegenerative diseases: cause and effect?
(Musiek, 2015), Musiek reviewed recent studies implicating
circadian rhythms and neurodegeneration and emphasized
future research directions and potential therapeutic strategies for
neurodegenerative diseases.

Cardiovascular disease (CVD) is a leading cause of death
worldwide and new approaches in the management of CVD
are clearly warranted. Since cardiovascular function and the
onset of many CVDs display obvious diurnal variations, novel
pharmacologic compounds that target the circadian mechanism
may have potential clinical applications. Two review articles
in current research topic were focused on the cardiovascular
system and circadian rhythms from different views. In Recent
advances in circadian rhythms in cardiovascular system (Chen and
Yang, 2015), Chen and Yang summarized recent advances in the
understanding of the relationship between circadian rhythm and
cardiovascular physiology and diseases including blood pressure
regulation and myocardial infarction. In Therapeutic applications
of circadian rhythms for the cardiovascular system (Tsimakouridze
et al., 2015), Tsimakouridze et al. mainly focused on circadian
biomarkers, chronotherapy for CVDs and new drugs targeting
circadian clocks.

Biological clock and metabolism are tightly intertwined. On
one hand, the disturbance of circadian rhythms negatively affects
metabolic homeostasis, and thus may promote the development
of obesity and diabetes. On the other hand, high fat consumption
alters circadian behavior in mice, while temporal restriction of
food consumption limits mouse weight gain on a high fat diet
via restoring the robustness of clock gene oscillation. In mini-
review, Circadian clocks, feeding time, and metabolic homeostasis
(Paschos, 2015), Paschos collected evidence about the association
between circadian misalignment and metabolic homeostasis and

discussed the role of feeding time in energy metabolism. In
another review paper, Rodent models to study the metabolic effects
of shiftwork in humans (Opperhuizen et al., 2015), Opperhuizen
et al. provided a thorough view of animal models that are used
to mimic human shiftwork. They divided published models
in four categories, i.e., altered timing of food intake, activity,
sleep, or light exposure and scored and compared their effects
on metabolic parameters. They also discussed the drawback of
animal studies and evaluated the translatability to human beings.

Mothers who experience breastfeeding problems in the early
post-partum period are more likely to discontinue breastfeeding

within 2 weeks. A major risk factor for shorter breastfeeding
duration is delayed lactogenesis II (DLII). Based on the facts that
circadian clocks coordinate hormonal and metabolic changes
to support lactation in rodent studies, and disruption of the
circadian system intervenes the initiation of lactation and
negatively impacts milk production, Fu et al. (2015) hypothesized
that DLII is related to disruption of themother’s circadian system.
Authors reviewed literatures that support this hypothesis, and
described interventions that may help to increase breastfeeding
success.

The treatment of circadian disorders has drawn attention
recently. However, the development of pertinent drugs has a
high failure rate possibly due to the variations in chronotype.
Therefore, similar to treatment of given cancers, personalized
medicine might become a standard for drug development in the
field of chronobiology. In Personalized medicine for pathological
circadian dysfunctions (Skelton et al., 2015), Skelton et al.
reviewed the current clinical trials of circadian drugs and the
history of personalized medicine in oncology, and discussed how
personalized medicine can be used in future clinical trials for
circadian disorders.

As presented above, we recruited two research articles,
six review articles, and a hypothesis and theory article that
covered multiple aspects of Therapeutic Implications of Circadian
Rhythms, frommodel organisms to human, from central nervous
system to peripheral tissues, and from clinical study to drug
development. Although much attention has been paid to this
field in recent years, we are still far from our goal, especially the
translation of basic science into clinical applications. Therefore,
we encourage researchers to continue contributing to our
understanding of the clinical relevance of circadian systems.
Finally, we would like to thank all authors who contributed
papers to our research topic. We would also like to thank all
reviewers and editorial board for helping us to underscore the
importance and organization of this Research Topic.
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Most physiological systems show daily variations in functional output, entrained to the day–
night cycle. Humans exhibit a daily rhythm in urinary voiding (micturition), and disruption of
this rhythm (nocturia) has significant clinical impact. However, the underlying mechanisms
are not well-understood. Recently, a circadian rhythm in micturition was demonstrated in
rodents, correlated with functional changes in urodynamics, providing the opportunity to
address this issue in an animal model. Smooth muscle cells from mouse bladder have
been proposed to express a functional and autonomous circadian clock at the molecular
level. In this study, we addressed whether a semi-intact preparation of mouse urinary
bladder smooth muscle (UBSM) exhibited measurable differences in contractility between
day and night. UBSM tissue strips were harvested at four time points over the diurnal cycle,
and spontaneous (phasic) and nerve-evoked contractions were assessed using isometric
tension recordings. During the active period (ZT12-24) when micturition frequency is higher
in rodents, UBSM strips had no significant differences in maximal- (high K+) or nerve-evoked
contractions compared to strips harvested from the resting period (ZT0-12). However,
a diurnal rhythm in phasic contraction was observed, with higher amplitudes at ZT10.
Consistent with the enhanced phasic amplitudes, expression of the BK K+ channel, a key
suppressor of UBSM excitability, was lower at ZT8. Higher expression of BK at ZT20 was
correlated with an enhanced effect of the BK antagonist paxilline (PAX) on phasic amplitude,
but PAX had no significant time-of-day dependent effect on phasic frequency or nerve-
evoked contractions. Overall, these results identify a diurnal difference for one contractile
parameter of bladder muscle. Taken together, the results suggest that autonomous clocks
in UBSM make only a limited contribution to the integrated control of diurnal micturition
patterns.

Keywords: UBSM, BK channel, Kcnma1, circadian rhythm, peripheral rhythm, urodynamics, isometric tension,

lower urinary tract

INTRODUCTION
Most physiological systems, including the urinary system, exhibit
daily (24-hr) variations in functional output that are entrained
to the day–night cycle. Humans exhibit a daily rhythm in uri-
nary voiding (micturition), and nocturia, excessive urination at
night, is a persistent disorder affecting >50% of people in some
age groups and significantly decreasing quality of life (Ticher
et al., 1994; Hetta, 1999; Neveus et al., 1999; Weiss et al., 2008).
The circadian variation in urination depends on daily urine
production, the physical properties of the bladder, and neural con-
trol. Dysfunction in these pathways may contribute to nocturia,
but the identification of causal relationships has been limited.
The diurnal variation in glomerular filtration rate (GFR) in the
kidney is well-documented in humans and animals (Koopman
et al., 1985; Zuber et al., 2009), and in some cases, nocturia in
humans is associated with a loss of the diurnal variation in GFR
(De Guchtenaere et al., 2007). However, not all cases of nocturia
are caused by polyuria. Diminished bladder capacity is a major
contributor to nocturia and can result from nocturnal detrusor

overactivity and neurogenic bladder (Weiss et al., 2008). Few direct
comparisons have been made between the physical properties of
the bladder during the day and night under controlled condi-
tions (Herrera and Meredith, 2010). Thus the aspects of the lower
urinary tract that influence normal circadian micturition pat-
terns, and consequently that contribute to nocturia, are essentially
unknown.

Recently, rodents have been found to be an appropriate model
for addressing the basis for daily rhythm in micturition. In rodent
models, the day–night difference in urine voiding is in part
driven by urine production by the kidney, coordinated through
hormonal control via aldosterone and vasopressin linked to the
circadian clock (Jin et al., 1999; Zuber et al., 2009). Rats and mice
demonstrate a circadian rhythm in micturition frequency and vol-
ume, correlated with daily changes in functional bladder capacity
(Herrera and Meredith, 2010; Negoro et al., 2012). At night, the
rodent’s active period, bladder capacity is reduced and micturi-
tion frequency is increased compared to day, when rodents sleep.
Both renal and micturition rhythms are disrupted by mutations
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in ‘clock genes’ that abolish circadian rhythms (Zuber et al., 2009;
Negoro et al., 2012; Noh et al., 2014).

To dissect the mechanism of circadian rhythms in micturi-
tion, the validation of daily changes in urodynamic proper-
ties established the bladder as a target for circadian regulation
(Herrera and Meredith, 2010). Like many other peripheral tissues
in the body, smooth muscle has been shown to possess intrin-
sic rhythms (Reilly et al., 2008; Paschos and FitzGerald, 2010;
Su et al., 2012). Cultured bladder smooth muscle cells show
circadian rhythms in gene expression, suggesting there is an
autonomous circadian clock at the level of bladder muscle.
Daily oscillations have been observed in several transcription
factors previously demonstrated to drive the core clock mech-
anism in SCN and other peripheral tissues (Negoro et al.,
2012; Noh et al., 2014). These transcription factors are linked
to Cx43 expression in bladder cells, a gap junction chan-
nel that regulates bladder storage capacity, as well as other
genes associated with smooth muscle contractility (Negoro
et al., 2012). These data predict that UBSM possesses robust
autonomous rhythmicity, yet no direct evidence demonstrating
daily variations in baseline UBSM contractility has been reported
to date.

To address this issue, in this study we recorded contractile activ-
ity from urinary bladder smooth muscle (UBSM) strips harvested
at four time points to identify any differences in spontaneous and
evoked contractile amplitudes over the circadian cycle. The expres-
sion pattern of the BK K+ channel (KCa1.1, Kcnma1), a potent
regulator of smooth muscle excitability (Meredith et al., 2004) and
output of the central circadian clock (Meredith et al., 2006), was
also assessed in UBSM, and contractile activity was recorded in
the presence of a BK channel blocker to determine whether the
diurnal difference in contractility was reduced.

MATERIAL AND METHODS
MICE
All procedures involving mice were conducted in accordance with
The University of Maryland School of Medicine animal care and
use guidelines. C57BL6/J WT mice were group housed on a stan-
dard 12:12 h light:dark cycle (LD) until experimental procedures.
Time points over the circadian cycle are referred to as zeitgeber
time (ZT), denoting time in hours relative to the 24 h cycle. Lights
on is defined as ZT0, and lights off is ZT12. Mice were euthanized
by inhalation of saturating isoflurane vapors, followed by rapid
decapitation.

ISOLATION OF UBSM AND WESTERN BLOTTING
For Western blots, mouse (3–4 mo) urinary bladders were sol-
ubilized in lysis buffer (137 mM NaCl, 1% Triton X-100, 0.5%
deoxycholate, 40 mM HEPES, pH 7.4, 1 mM EDTA, pH 7.4,
2 μg/ml aprotinin, 1 μg/ml leupeptin, 2 μg/ml antipain, 10 μg/ml
benzamidine, and 0.5 mM phenylmethylsulfonyl fluoride). The
insoluble fraction was separated by centrifugation (14,000 g for
5 min). 5 μg of soluble supernatant protein was loaded per lane
and subjected to SDS-PAGE on a 7.5% acrylamide gel. Proteins
were transferred to a nitrocellulose membrane, and membranes
were blocked (4% dry non-fat milk, 2% normal goat serum,
10 mM Tris (pH 8), 0.15 M NaCl, and 0.1% Tween 20) for

1-hr. Primary antibodies in blocking solution were incubated
overnight at 4◦C each of mouse monoclonal α-Slo (1 μg/ml
L6.60, Neuromab, University of California at Davis, Davis, CA,
USA) and mouse monoclonal DM1a α-tubulin (1:10,000, T-9026,
Sigma). Membranes were labeled with 1:500 SuperSignal West
Dura horseradish peroxidase-conjugated goat α-rabbit and α-
mouse secondary antibodies (Pierce), and proteins were visualized
by SuperSignal chemiluminescence detection (Pierce). Densitom-
etry of BK band to DM1α anti-tubulin was performed as described
previously (Meredith et al., 2006).

ISOMETRIC TENSION RECORDINGS
After euthanasia, urinary bladders were removed and placed in ice-
cold dissection solution composed of (in mM) 80 monosodium
glutamate, 55 NaCl, 6 KCl, 10 glucose, 10 HEPES, and 2 MgCl2,
with pH adjusted to 7.3 with NaOH. The bladder was cut open
to expose the urothelial surface and rinsed several times with dis-
section saline to remove residual traces of urine. The urothelial
layer was carefully dissected away from the smooth muscle layer
and discarded. Small strips of detrusor (2–3 mm wide and 5–
7 mm long) were cut from the bladder wall. Silk threads were
attached to each end of the strips, and the strips were transferred
to cold (4◦C) physiological saline solution (PSS) containing (in
mM) 119 NaCl, 4.7 KCl, 24 NaHCO3, 1.2 KH2PO4, 2.5 CaCl2,
1.2 MgSO4, and 11 glucose and aerated with 95% O2–5% CO2

to obtain pH 7.4. Each strip was mounted in a tissue bath (15-
ml volume) containing aerated PSS (95% O2–5% CO2, 37◦C;
MyoMED myograph system; Catamount Research and Devel-
opment Inc., St. Albans, VT). Initial tension was applied as
indicated, and strips were equilibrated for 45 min with bath solu-
tion exchanges every 15 min. 60 mM KCl in PSS was delivered
for 5 min to produce a maximal contraction, and then washed
out with two 10 min PSS washes. KCl-induced contractions were
repeated twice. Strips with no baseline contractile activity were not
included in the dataset. KCl-induced contractile amplitudes were
determined from the third KCl application, either the maximal
contractile amplitude (peak) or 5 min post-KCl (steady-state).
Area under the curve (AUC) values were obtained from the
integral of the contractile response covering the initial rise to
5 min post-KCl. All time points indicate the time of contractile
assays.

For phasic contractions, force transducers were calibrated
for 1 g and contractile activity was recorded for 30 min
after the KCl applications and wash out (Herrera et al., 2003;
Meredith et al., 2004). Frequency and amplitude were determined
for each strip from 5 min of continuous spontaneous activity
within the 30 min recording window (MiniAnalysis, Synaptosoft,
Inc.). Phasic amplitude values were normalized to the KCl-
evoked amplitude to account for any variability in cutting the
strips. AUC and rise time values were obtained from each con-
tractile event in the 5 min period (MiniAnalysis, Synaptosoft,
Inc.) and averaged for each strip. For pharmacology experi-
ments, Paxilline (PAX; 10 μM; Sigma) or DMSO (0.1% vehicle
control) was added in each chamber after 30 min. Analysis of
phasic activity after drug or vehicle was performed on 5 min
of continuous spontaneous activity, 30 min after Pax or DMSO
application.
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For nerve-evoked contractions, frequency-response curves
were constructed by measuring the electric field stimulation (EFS)-
induced contraction amplitude at stimulus frequencies of 0.5, 2,
3.5, 5, 7.5, 10, 12.5, 15, 20, 30, 40, and 50 Hz. Pulse ampli-
tude was 20–30 V of alternating polarity. Pulse width was 0.2 ms,
and stimulus duration was 2 s. Stimuli were given every 3 min
using a model PHM-152V stimulator (Catamount Research and
Development Inc; Herrera et al., 2005; Werner et al., 2007). Ampli-
tude was determined in Myograph software (Catamount Research
and Development, Inc.). EFS-evoked amplitude values were nor-
malized to the KCl-evoked amplitude. EFS-evoked amplitudes
normalized to the 50-Hz amplitude value were fit with a stan-
dard exponential function to derive the frequency of half maximal
activation (OriginLab, Northampton, MA, USA). For pharmacol-
ogy experiments, one 5 min PSS wash was conducted after the first
EFS, followed by addition of Pax (10 μM) or DMSO (0.1%) and a
post-drug EFS after 30 min.

STATISTICS
Group averages are reported ±SE. Reported n’s are the number
of animals, with 1–4 strips averaged together for each animal as
indicated in figure legends. Statistical significance was determined
across time points at p < 0.05 by one-way ANOVA (or repeated
measures ANOVA across frequencies EFS-evoked contractions
across time points) with Bonferroni post hoc tests in SPSS v19
(IBM Corp., Armonk, NY, USA). Cosinor analysis was performed
with software available at http://www.circadian.org/software.html
(Refinetti et al., 2007).

RESULTS
BASELINE AND PHASIC CONTRACTILE ACTIVITY IN MOUSE UBSM AT
DIFFERENT TIMES OF DAY
In nocturnal rodents, micturition frequency is higher during the
night (active) period, compared to daytime. We hypothesized
that strips of UBSM tissue harvested during the dark period

would demonstrate stronger contractile activity than strips har-
vested during the day, when micturition frequency is low and
the bladder relaxes to store urine (Herrera and Meredith, 2010;
Negoro et al., 2012). Thus, to determine whether contractile prop-
erties of UBSM varied by time of day, isometric tension recordings
were performed at ZT4, 10, 16, and 22 (Figure 1A). Isolated strips
were denuded of the urothelium, but nerve terminals are retained
in this prep, enabling both spontaneous and nerve-evoked con-
tractions (Kullmann et al., 2014). UBSM strips were affixed to a
solid support, and an initial stretch was applied (1.5 g). After the
initial relaxation, 60 mM KCl was applied to induce depolarization
of the muscle and elicit a maximal contraction (Figure 1B).

To characterize whether a daily rhythm was present contractile
activity, the KCl-induced responses were compared across time
points. No significant differences were found in the peak, steady-
state, or integrated KCl-induced amplitudes between timepoints
(Figures 1C–E). Application of higher initial tension (2.5 g) also
did not reveal any significant difference in maximal KCl-induced
amplitude (Table 1). These data suggest that the basic contractile
apparatus does not undergo daily alterations that have a major
consequence on function.

Next, we addressed whether phasic activity in UBSM strips
differed by time of day. Phasic contractions result from the
spontaneous action potential activity of smooth muscle cells
within the UBSM strip (Brading, 1997). Phasic contractions are
proposed to be important in maintaining bladder tone, and
reduction of phasic contractility is correlated with bladder relax-
ation to accommodate filling (Herrera et al., 2003; Kullmann
et al., 2014). Greater than 80% of strips exhibited phasic contrac-
tions, similar to previous results on this mouse strain background
(Herrera et al., 2003). There was no significant difference in the
number of strips with phasic activity at each time point (p > 0.05,
Fisher’s Exact test, n’s as indicated in Figure 2 legend). These
results show that phasic activity is generated throughout the daily
cycle.

FIGURE 1 | High K+-induced excitation–contraction responses are

similar across the circadian cycle in isolated UBSM strips. (A) Schematic
of the circadian cycle and four time points examined in this study. Mice are
nocturnal, resting during the daytime light period, zeitgeber time (ZT) 0–12,
and being active at night during the nighttime dark period, ZT12-24.

(B) Representative 60 mM KCl-induced contractions. KCl was applied for
5 min, followed by a 10 min washout. Contraction values were obtained from
the third KCl application. (C) Peak amplitude. (D) Steady-state amplitude.
(E) Area under the curve (AUC). All data are mean ± SE, n = 5–6 mice (20–24
UBSM strips) per timepoint. For all comparisons, p > 0.05 (one-way ANOVA).
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Table 1 | Effect of time of day on UBSM contractility at two initial

tensions.

1.5 g 2.5 g

Initial tension

ssKCl-Induced amplitude ns ns

Phasic amplitude *ZT4/ZT10 *ZT4/ZT10

Phasic frequency ns ns

EFS amplitude ns ns

Half-max frequency ns ns

Paxilline

Phasic amplitude *ZT17

Phasic frequency ns

EFS amplitude ns

For 1.5 g initial tension, n’s are reported in the previous figure legends. For
2.5 g initial tension, n = 8 animals (1–2 UBSM strips averaged per animal).
ssKCl, steady-state KCl-induced amplitude. ns, no significant difference across
timepoints (p > 0.05, one-way ANOVA). *p < 0.05 (one way ANOVA, and the
indicated post hoc comparison (Bonferroni) was significant at p < 0.05.

Urinary bladder smooth muscle strips isolated at ZT4 had
the lowest phasic amplitudes (Figures 2A,B). By ZT10, pha-
sic amplitude was fourfold greater than ZT4 (Figure 2B). The
amplitudes decreased at ZT16 and ZT22 (Figure 2B). Fitting
the data to a cosine function also established ZT10 as the peak
contractile amplitude of the 24-hr rhythm (p = 0.01, Refinetti
et al., 2007). Similarly, the integrated area of the phasic contrac-
tion was greater at ZT10 (Figure 2D). Although not significant,
the time to peak contraction (rise time) was shorter on aver-
age at ZT10. Furthermore, in independent experiments, phasic

activity from UBSM with a higher initial tension applied also
showed a significant difference between ZT4 and ZT10 contractile
amplitudes (Table 1). Taken together, these data suggest that
a daily rhythm in phasic contractile amplitude is present in
UBSM. In contrast, there was no significant difference in the fre-
quency of phasic contractions across the daily cycle (Figure 2C;
Table 1).

NERVE-EVOKED CONTRACTILE ACTIVITY IN UBSM AT DIFFERENT
TIMES OF DAY
Coordinated bladder contraction during micturition is controlled
by the parasympathetic nerves encapsulated in the bladder wall
(Andersson and Arner, 2004). To investigate diurnal differences
in nerve-evoked contractile activity, nerve-mediated release of
neurotransmitter was elicited by electrical field stimulation (EFS).
Physiological frequencies from 0.5 to 50 Hz, mimicking the exci-
tation that occurs during micturition in vivo, were applied to
strips harvested at different times of day, and the peak contractile
responses were measured (Figure 3A). In the presence of 1 μM
tetrodotoxin, no contractile response could be elicited (n = 3), val-
idating that the contractions in response to EFS at each frequency
were entirely derived from nerve activity.

Increasing stimulation frequencies produced greater contractile
force (Figures 3A,B). However, no significant differences in EFS-
evoked contractions across time points were found (Figure 3B;
Table 1). To reveal any frequency-dependent differences across
timepoints, contraction amplitudes at each frequency were nor-
malized to the maximal EFS-evoked response at 50 Hz (Figure 3C).
While no significant differences were obtained, ZT10 showed a
slight reduction in the frequency of half-maximal contraction
(Figure 3D), suggesting a trend toward enhanced sensitivity to
nerve-mediated stimulation at ZT10. Nevertheless, on the whole,
no substantial differences were found that would provide clear

FIGURE 2 | Spontaneous (phasic) contractions are larger at ZT10.

(A) Representative phasic contractile activity at ZT10 and ZT22.
(B) Phasic amplitude differs by time of day. p = 0.03 (one-way
ANOVA), *Bonferroni post hoc, p < 0.04. (C) Phasic frequency is not

different across time points, p = 0.17 (one-way ANOVA). (D) AUC.
p = 0.03 (one-way ANOVA). (E) Rise time of phasic events. p = 0.08
(one-way ANOVA). All data are mean ± SE, n = 6–7 mice (10–12
UBSM strips) per timepoint.
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FIGURE 3 | Nerve-evoked (EFS) contractions are not different

between timepoints. (A) Representative EFS-evoked contractions at ZT10
and ZT22. (B) EFS-evoked contractions, elicited by 0–50 Hz stimulation, are
not different between timepoints. (C) EFS-evoked amplitudes normalized to

the maximal amplitude at 50 Hz. (D) Frequency of half-maximal activation,
derived from fits of data in (C), was not different between timepoints. All data
are mean ± SE, n = 6 mice (12 UBSM strips) per timepoint. For all
comparisons, p > 0.05 (one-way ANOVA).

evidence of a daily rhythm in nerve-mediated contraction of
UBSM tissue.

BK CHANNEL EXPRESSION AND FUNCTION IN UBSM AT DIFFERENT
TIMES OF DAY
BK channels are major regulators of UBSM excitability, and
block or loss of BK channel activity in UBSM leads to increased
phasic and EFS-evoked contractile amplitude and frequency
(Meredith et al., 2004; Thorneloe et al., 2005). In addition, BK
channels are also key regulators of the circadian rhythm in pace-
maker excitability in the brain (Meredith et al., 2006; Kent and
Meredith, 2008; Montgomery et al., 2013). To determine whether
there was any evidence for BK channel involvement in the daily
variation in UBSM phasic contractility, we first assessed the expres-
sion of BK from bladders harvested at ZT8 versus ZT20. BK
expression was low at ZT8 (Figure 4A), similar to the time window
with the highest phasic contractile amplitudes (Figures 3A,B).
Conversely, BK expression was higher at ZT20, when phasic
amplitudes were lower. The 2.3-fold increase in BK expression
at ZT20 compared to ZT8 was similar to the difference in magni-
tude between the peak and trough of BK expression in the SCN
circadian pacemaker (Meredith et al., 2006).

To determine the functional impact of blocking BK channels
at different times of day, we applied a BK channel blocker, PAX,
to UBSM strips and recorded phasic and EFS-evoked contrac-
tile responses. The results are plotted as the proportional change
after PAX from baseline. We found an increase in both the phasic

amplitude and frequency after application of PAX (Figures 4B–D),
but not after application of DMSO (control). The effect of PAX
to enhance phasic contractions is consistent with previous data
showing the BK channel to be a critical suppressor of UBSM
contractility (Meredith et al., 2004). The PAX-induced increase in
phasic frequency did not vary by time of day (Figure 4D). How-
ever, the PAX-induced increase in phasic amplitude was highest
at ZT17 (Figures 4B,C), parallel to the increased BK protein
expression observed at ZT20 (Figure 4A). These data suggest
that inhibition of BK channel activity has a limited diurnal effect
on phasic contractile amplitude, and the time window of the
enhanced effect of PAX is consistent with the phase of increased
BK protein expression in bladder.

Application of PAX also resulted in an enhancement of EFS-
evoked amplitudes (Figures 4E,F). The PAX-induced increase in
EFS-evoked amplitude was frequency dependent, with a larger
proportional increase at low compared to high frequencies. Nev-
ertheless, the PAX-induced increase in EFS-evoked amplitudes was
not found to significantly differ by time of day (Figure 4F). Thus
the results obtained with PAX generally corroborate the pattern of
diurnal changes observed in baseline contractility – i.e., an effect
on phasic amplitude, but not phasic frequency or EFS-evoked
contractions.

DISCUSSION
Mice have recently been shown to express a bona fide circadian
rhythm in micturition, and this rhythm has been proposed to rely
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FIGURE 4 | Expression and functional impact of the BK channel on

UBSM contractility at different times of day. (A) Representative Western
blot showing BK channel and DM1α protein expression at ZT8 and ZT20
(top). Average BK expression normalized to DM1α (bottom). ZT8 expression
is significantly lower than ZT20 (p = 0.03, t -test, n = 4 mice per
timepoint). (B) Representative phasic contractile activity at ZT11 and ZT17,
at baseline and after Paxilline (PAX) application. (C,D) Fold-increase in
phasic amplitude (C) and frequency (D) after PAX or DMSO (control)
application. The effect of PAX and time were significant for phasic

amplitude (factorial ANOVA, p = 10−4 and 0.01, respectively), but only the
effect of PAX was significant on phasic frequency (p = 10−8). n = 3–6
mice (6–12 UBSM strips) per timepoint and condition. DMSO had no effect
on either parameter. (E) Representative EFS-evoked contractile activity at
ZT11 and ZT23, at baseline and after PAX application. (F) Increase in
EFS-evoked amplitude after PAX or DMSO (control) as a proportion of
baseline. The effect of PAX was significant (factorial ANOVA, p = 10−5), but
the effect of time was not (p = 0.99). n = 5–6 mice (10–12 UBSM strips)
per timepoint and condition. All data are mean ± SE.

on an intrinsic clock housed within UBSM (Negoro et al., 2012;
Noh et al., 2014). This hypothesis predicts that strips of UBSM
tissue harvested across circadian timepoints would demonstrate
cyclic alterations in contractile properties. The central finding of
this study was that acutely isolated UBSM tissue exhibits only a
limited diurnal difference in contractile properties. We did not
find significant evidence for rhythms in the output of the basic
(KCl-induced) contractile apparatus in UBSM (Figure 1), or in
nerve-evoked contractions (Figure 3). Instead, we found a single
major difference in the amplitude, but not frequency, of phasic
contractions (Figure 2). Notably, the observations were consistent
across datasets from UBSM strips with two different initial ten-
sions applied (Table 1). Taken together, these data did not show
the expected co-variance of related parameters that would pro-
vide strong support for a diurnal rhythm in UBSM contractile
properties. Furthermore, these data suggest the conclusion that

UBSM possesses only limited intrinsic machinery for functional
autonomous control of contractility.

Although limited, the time of day-dependent difference in pha-
sic contraction identified here could potentially involve the activity
of the BK K+ channel. The BK channel has been previously
shown to regulate phasic contractions in UBSM (Meredith et al.,
2004). The increased phasic amplitude at ZT10, compared to other
timepoints, parallels the lower expression of BK protein in UBSM
at ZT8. A reduction of BK expression at this time could facilitate
the observed increase in phasic amplitude. Similarly, application
of PAX, an inhibitor of BK channel activity, produced the largest
effect on phasic amplitude at ZT17, near the timepoint of higher
BK protein expression (ZT20, Figure 4). Although these data are
suggestive of BK channel involvement in the daily difference in
phasic activity, not all the results fit this hypothesis. For example,
BK channel antagonists are also known to significantly enhance
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phasic frequency and EFS-evoked contractions (Meredith et al.,
2004). Yet no significant time of day difference could be detected
in these parameters at baseline or after BK inhibition with PAX.
It is not clear how BK channel function would contribute selec-
tively to suppressing phasic amplitude at ZT17, when PAX has a
maximal effect, but not have an impact on phasic frequency or
EFS-evoked contractions. Future studies that directly address the
nature of excitation–contraction coupling at different times of day
will be required to address this dilemma.

One question that remains outstanding is the functional sig-
nificance of the diurnal rhythm in phasic amplitude. Phasic
contractions are thought to be important for maintaining bladder
tone, decreasing with bladder relaxation to accommodate filling
(Herrera et al., 2003; Kullmann et al., 2014). The increase in pha-
sic contractile amplitude at ZT10, a timepoint which occurs at the
end of the rest (light) phase, may indicate the bladder is intrin-
sically programmed to switch out of a urine storage mode (light
phase) to facilitate increased micturition when entering the active
(dark) phase. Recordings of bladder capacity from rats in the day
or night are consistent with this idea (Herrera and Meredith, 2010),
but concomitant measurements of UBSM and bladder properties
in the same animal model across timepoints will be required to
correlate the precise phase relationship.

From a clinical perspective, understanding the underlying
pathology of nocturia will require identifying the circadian
mechanisms that are deranged in the pathophysiological state.
Systemic disruption of the mechanism for encoding circadian
rhythm, via mutation of Cry1/Cry2 or Per1/Per2 double knock-
out mice, alters both the circadian pattern of micturition and
gene expression (Negoro et al., 2012; Noh et al., 2014). How-
ever, tissue-specific deletions will be necessary to parse out
the relative contributions of central, renal, and peripheral
clocks to the circadian rhythm in urodynamics. To date, the
lower urinary tract has not been comprehensively investigated
as a contributor to nocturia. However, the results reported
here showing minimal diurnal differences in USBM contrac-
tility contrast with recent reports of robust circadian oscil-
lations reported in cultured bladder cells expressing a Per2-
luciferase reporter and clock gene expression in acutely har-
vested bladder tissue (Negoro et al., 2012). Our data suggest
the possibility that these oscillations in gene expression may
not drive intrinsic rhythms in UBSM contractile activity in a
meaningful way.

The only other study to provide data directly addressing the
presence of intrinsic rhythms in contractility found a circadian
rhythm in muscarinic-stimulated UBSM contraction, but no
clear rhythm in either nerve-evoked or direct muscle-stimulation
evoked responses (Wu et al., 2014). Although this study dif-
fered methodologically from the data presented here, where
Wu et al. (2014) cultured the bladder strips and applied dex-
amethasone to synchronize circadian rhythmicity, it could be
interpreted as consistent with our data with respect to a lack
of rhythmicity in EFS-evoked contractions. Taking these initial
investigations together, the lack of a robust circadian rhythm
in UBSM contractility in our study, and the emergence of
a circadian difference only with muscarinic-stimulated UBSM
contraction (Wu et al., 2014), underscores the importance of

continued investigation of alternative mechanisms focusing on
both descending outflow through autonomic control of the blad-
der, as well as the kidney and polyuria, in the treatment of
nocturia.
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Breastfeeding improves maternal and child health. The American Academy of Pediatrics
recommends exclusive breastfeeding for 6 months, with continued breastfeeding for at
least 1 year. However, in the US, only 18.8% of infants are exclusively breastfed until
6 months of age. For mothers who initiate breastfeeding, the early post-partum period
sets the stage for sustained breastfeeding. Mothers who experience breastfeeding prob-
lems in the early post-partum period are more likely to discontinue breastfeeding within
2 weeks. A major risk factor for shorter breastfeeding duration is delayed lactogenesis II
(DLII; i.e., onset of milk “coming in” more than 72 h post-partum). Recent studies report
a metabolic–hormonal link to DLII. This is not surprising because around the time of birth
the mother’s entire metabolism changes to direct nutrients to mammary glands. Circadian
and metabolic systems are closely linked, and our rodent studies suggest circadian clocks
coordinate hormonal and metabolic changes to support lactation. Molecular and environ-
mental disruption of the circadian system decreases a dam’s ability to initiate lactation
and negatively impacts milk production. Circadian and metabolic systems evolved to be
functional and adaptive when lifestyles and environmental exposures were quite differ-
ent from modern times. We now have artificial lights, longer work days, and increases in
shift work. Disruption in the circadian system due to shift work, jet-lag, sleep disorders,
and other modern life style choices are associated with metabolic disorders, obesity, and
impaired reproduction. We hypothesize that DLII is related to disruption of the mother’s
circadian system. Here, we review literature that supports this hypothesis, and describe
interventions that may help to increase breastfeeding success.

Keywords: breastfeeding, chronodisruption, circadian clocks, delayed onset of lactogenesis II, lactation, metabo-
lism, pregnancy, sleep

INTRODUCTION
The World Health Organization recommends breast milk as the
ideal food source for growth and development of infants (1).
Human milk functions not only as food for the infant, but also
protects against infection, promotes intestinal, immune, and cog-
nitive development (2), and stimulates establishment of the unique
gut microbiome (3, 4) of the breastfed infant. Breastfeeding also
has beneficial effects on short- and long-term maternal and infant
health outcomes. Teens and adults who were breastfed as babies are
less likely to be overweight or obese and less likely to develop type-2
diabetes as well as perform better on intelligence tests (4). Mothers
who breastfeed return to their pre-pregnancy weight faster, have
lower rates of obesity, and lower risks of developing breast and
ovarian cancers (1).

Due to the tremendous health benefits of breastfeeding, the
American Academy of Pediatrics recommends exclusive breast-
feeding (i.e., no supplementation with formula or solid food)
for about 6 months, with continuation of breastfeeding for 1 year

or longer as mutually desired by mother and infant (5). Eco-
nomic analysis of breastfeeding benefits revealed that $13 billion
in healthcare costs would be saved and 911 infant deaths prevented
each year if 90% of families in the US complied with medical
recommendations to breastfeed exclusively for 6 months (6). How-
ever, rates of adequate breastfeeding are far below national targets.
The 2011 National Immunization Survey reported rates of breast-
feeding initiation were at 79.2%, with breastfeeding rates dropping
precipitously after that. Exclusive breastfeeding fell by 20%, to
59% at 1 week post-partum, 40.7% at 3 months, and only 18.8%
of mothers exclusively breastfed for 6 months (7).

The most common reason mothers cite for stopping breast-
feeding before their infant reached 2 weeks old, was that the baby
was unsettled, a behavior often interpreted by mothers as indicat-
ing an insufficient milk supply (8). Delayed lactogenesis II (DLII),
the onset of milk “coming in” more than 72 h post-partum, is a
major contributor to early formula supplementation, inadequate
breastfeeding, and breastfeeding cessation (9, 10). Further, infants
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of mothers who experience DLII are seven times more likely to
lose excessive weight the first 5 days after birth (11).

LACTOGENESIS IN WOMEN
Lactogenesis occurs in several stages. Lactogenesis I occurs during
pregnancy and is the initiation of the synthetic capacity of the
mammary glands. Lactogenesis II commences after delivery and is
the initiation of plentiful milk secretion. Changes in milk composi-
tion from colostrum to mature milk in combination with a sudden
feeling of breast fullness mark the onset of lactogenesis II, which
normally occurs between 30 and 40 h following the birth of a full-
term infant (10). Lactogenesis II is initiated post-partum by a fall in
progesterone while prolactin levels remain high. The process does
not depend on suckling of the infant until about the third or fourth
day post-partum. Comparison between breastfeeding and non-
breastfeeding women showed prolactin levels and milk secretion
volumes are the same between groups of women the first 2 days
post-partum (12, 13). Beginning day 3, post-partum prolactin lev-
els begin to become significantly less in non-lactating women (12),
and by day 4, secretion volume is lower in non-lactating women
with lack of milk-removal initiating mammary involution and
compositional differences in breast secretions between the groups
(13). Thus, although breastfeeding is not necessary for initiation
of lactogenesis II, it is essential for the continuation of lactation.
The final stage of lactogenesis, lactogenesis III, also called galac-
topoiesis, is the production and maintenance of mature milk from
day 9 post-partum, until weaning.

RISK FACTORS FOR DELAYED ONSET OF LACTOGENESIS II
Risk factors associated with DLII include primiparity, Cesarean
delivery, longer duration of labor, and elevated blood cortisol con-
centrations (Table 1). The risk for low milk volume on day 4
post-partum was 4.3-fold (95% confidence interval-CI: 1.5–12.4)

Table 1 | Risk factors for delayed or failed lactogenesis II [Modified

from Ref. (10)].

Delayed lactogenesis II

Primiparity

Psychosocial stress/pain

Maternal obesity

Diabetes

Hypertension

Stressful labor and delivery

Cesarean section

Delayed first breastfeed episode

Low perinatal breastfeeding frequency

Elevated cortisol

Failed lactogenesis II and/or low milk supply

Breast surgery/injury

Retained placental fragments

Cigarette smoking

Hypothyroidism, hypopituitarism

Ovarian theca-lutein cyst

Insufficient mammary glandular tissue

Polycystic ovarian syndrome

higher for mothers of pre-term infants delivered by Cesarean
section versus vaginally (14). In this study, Cesarean delivery was
associated with pregnancy-induced hypertension, delayed milk
expression initiation, and low pumping frequency. Together, these
findings suggest a composite of underlying risk factors contributes
to the association of Cesarean delivery with DLII and low milk
volume.

Studies of primiparous women revealed that independent risk
factors for DLII were maternal age ≥30 years, body mass index
(BMI) in the overweight or obese range, and infant birth weight
>3600 g (15). A dose-response relation to BMI was evident, with
risk of DLII being 1.84 (95% CI: 1.02–2.80) times higher in over-
weight and 2.21 (95% CI: 1.52–4.30) times higher in obese women,
as compared with women with a BMI in the healthy range (15). In
obese women, DLII was not associated with psychosocial factors,
such as planned duration of breastfeeding or behavioral beliefs
about breast- and bottle-feeding (16). Therefore, it is likely that
there is a physiological basis for the delay. Older maternal age and
higher BMI are known risk factors for gestational diabetes (17).
Lower glucose tolerance in the antenatal period was associated
with longer time to onset of lactation (18), and prolactin release in
response to suckling in the early post-partum period was found to
be significantly lower in the overweight/obese women compared
to healthy weight women (19). Importantly, low prolactin levels in
women, as described for Sheehan’s syndrome, are associated with
failed lactogenesis II (20). In addition, DLII often leads to failed
lactogenesis II (14). Failed lactogenesis II is a condition wherein
the mother is either able to achieve full lactation but an extrinsic
factor has interfered with the process, or one or more factors results
in failure to attain adequate milk production (10). Failed lactoge-
nesis II can be described further in the context of two types of
conditions: a primary inability to produce adequate milk volume,
or a secondary condition as a result of improper breastfeeding
management and/or infant-related problems (10).

METABOLIC-HORMONAL ADAPTATIONS TO LACTATION
Lactation is the continuum of reproduction in mammals, and the
most energetically demanding stage. Metabolically, the reproduc-
tive process in females can be divided into three periods which
correspond to the energetic needs of the fetus and neonate. Period
one spans the first two-thirds of pregnancy. There is little demand
for nutrients by fetus during the first two trimesters, so the mother
uses this time to store energy by increased consumption and
enhanced lipogenesis (21). To support large gains in fetal growth,
the mother transitions to a catabolic state in the last third of
pregnancy, period two. Period two is characterized by increased
gluconeogenesis, decreased peripheral tissue glucose utilization,
increased fatty acid mobilization from adipose, and increased
amino acid mobilization from muscle (22). Period three is lacta-
tion. During this period, the dam’s metabolism changes to accom-
modate the even greater energetic demands of milk synthesis. All
the lactose and protein and most lipids in milk are synthesized in
mammary gland, and thus the mammary gland has a high require-
ment for circulating substrates (glucose, amino acids, free fatty
acids, and triglycerides) (21–23). In addition to further increasing
metabolic responses described for period 2, there are substantial
increases in size and complexity of the maternal intestine, liver,
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and cardiovascular system, including increased mammary blood
flow, increased blood flow to liver and gastrointestinal tract, and
higher cardiac output (24). Thus, the transition from pregnancy
to lactation represents a major physiological change requiring on
the one hand, coordinated changes in various body tissues, and on
the other hand, mammary-specific changes to support a dominant
physiological process (production of milk).

During pregnancy and at the onset of lactation, dramatic
changes in circulating levels of reproductive and metabolic hor-
mones (e.g., estrogen, progesterone, placental lactogen, prolactin,
leptin, and cortisol) occur (12, 25). Hormonal changes stimu-
late metabolic changes in almost every organ of the body so
that nutrients and energy can be diverted to the fetus to support
growth before birth and then to the mammary gland to support
milk synthesis post-partum (26, 27). Therefore, factors affecting
metabolic-hormonal regulation (e.g., obesity, diabetes, hypothy-
roidism) during pregnancy, may also impact the ability of the
mother to initiate lactation.

During pregnancy, the high levels of circulating progesterone
enable differentiation of the mammary gland while inhibiting
the secretory process of the mammary gland. Once the placenta
is expelled after birth, progesterone levels decline rapidly, and
increasing prolactin levels trigger the beginning of lactogenesis
II (28). Neonatal suckling induces a neuroendocrine response that
stimulates secretion of prolactin and glucocorticoids as well as
oxytocin, which stimulates expulsion of milk from the gland (29).
Increases in prolactin, estradiol, and cortisol levels during the
periparturient period decrease peripheral tissue insulin sensitivity
and responsiveness. These changes in insulin homeostasis result
in increased rates of lipolysis and gluconeogenesis and decreased
rates of glucose uptake by adipose and muscle, and decreased pro-
tein synthesis in muscle with concomitant increases in protein
degradation and amino acid release (23, 30). Thyroid hormones
are also essential for efficient milk production (31). A study of
women with insufficient lactation found that the nasal admin-
istration of thyrotropin-releasing factor increased prolactin and
daily milk volume (32).

HYPOTHESIS: METABOLIC–HORMONAL–CIRCADIAN CLOCK
LINK TO DELAYED LACTOGENESIS II
As outlined above,maternal hormonal milieu stimulates metabolic
adaptations to reproductive state and mammary gland respon-
siveness. Therefore, it follows that conditions with a hormonal
etiology (e.g., diabetes, hypothyroidism, or obesity) may inter-
fere with these adaptations and cause a delay in lactogenesis II
(10). Furthermore, some delivery modes and conditions that result
in a delay in breastfeeding initiation and/or breast stimulation
(e.g., pre-term, Cesarean, or a prolonged second stage of labor)
may impact periparturient hormonal milieu needed to stimulate
metabolic and mammary-specific adaptations needed to initiate
copious milk secretion. We hypothesize that disruption of the cir-
cadian timing system during pregnancy and peripartum play a
role in DLII.

The circadian timing system is intimately linked and recip-
rocally regulated by hormones and metabolism, and below we
describe our preliminary studies that support this hypothesis. In
addition, we summarize findings from a comprehensive database

search in PubMed used to further support our hypothesis. In
searching the literature to investigate this hypothesis, we found
one of the immediate challenges encountered was the lack of stud-
ies conducted relating to the circadian timing system in pregnant
or lactating women (33–36). In addition, information about what
was considered normal or abnormal for circadian rhythms in preg-
nancy and lactation was lacking. Thus, much of the evidence used
to develop and support our hypothesis was drawn from studies
conducted on a more general population or inferred from animal
studies.

THE CIRCADIAN TIMING SYSTEM
Nearly all physiological and behavioral functions of animals are
rhythmic including secretion patterns of hormones, sleep–wake
cycles, metabolism, and core body temperature. These circadian
rhythms, 24 h cycles in biochemical, physiological, or behavioral
processes, evolved as a common strategy among animals to coor-
dinate internal systems and synchronize these systems to the
environment (37, 38). Circadian rhythms are generated at the mol-
ecular level by circadian clocks. In mammals, circadian clocks are
regulated hierarchically, with the master circadian clock located
centrally in the suprachiasmatic nuclei (SCN) of the hypothala-
mus. In addition to the SCN,there are peripheral clocks distributed
in every organ. The intrinsic rhythmicity of the SCN is entrained
by synchronization to the 24-h day to regularly occurring envi-
ronmental signals. The light–dark cycle is the most important
environmental cue for entraining the master clock (39). Other cues
include exercise, food availability, temperature, and stress, which
directly or indirectly entrain the SCN (40, 41). The SCN inte-
grates this temporal information and translates it into hormonal
and autonomic signals that influence and synchronize peripheral
clocks in every tissue of the body (42). In turn, peripheral clocks
drive the circadian expression of local transcriptomes, thereby
coordinating metabolism and physiology of the entire animal.

The circadian timing system must continuously adapt to and
synchronize with the environment and the body’s internal signals
in order to organize clocks into a coherent functional network
that regulates behavior and physiology. Hallmarks of organiza-
tion of circadian timing are the perception of environmental
input, integration of time-related information into the circadian
clock “device” (molecular clock), and transmission of adjusted
timing information as output of metabolic and physiological
processes (Figure 1). The molecular clock mechanism is based
on a transcription-translation feedback loop. At the core of this
loop are two transcription factors,CLOCK (or its ortholog NPAS2)
and BMAL1, which in the form of a heterodimer drive rhythmic
expression of output genes either directly via E-box regulatory
element in their promoter regions, or indirectly by other tran-
scription factors whose expression is under clock control (43).
Among transcriptional targets of this complex are Period and
Cryptochrome genes, whose products function as negative regula-
tors of CLOCK/BMAL1-mediated transcription [Figure 1; (44)].
Approximately, 10–20% of genes expressed in a tissue exhibit
circadian rhythms (45). Tissue-specific clock-controlled genes
are involved in rate-limiting steps critical for organ function.
For example, in the liver, molecules involved in metabolism of
carbohydrate, lipid, and cholesterol encode genes that exhibit
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FIGURE 1 | Hallmarks of organization of clocks and circadian timing
system. (A) Illustration of primary input (light) to the SCN and outputs that
include regulation of hormones (e.g., prolactin and cortisol) and metabolism.
(B) Illustration of the transcription-translation feedback loop of the core
molecular clock device, with proposed inputs [prolactin (PRL) and cortisol] and
outputs (regulation of breast development and milk production) of mammary
clock. At the core of the transcription-translation feedback loop are two

transcription factors, CLOCK (or its ortholog NPAS2) and BMAL1, which in the
form of a heterodimer drive rhythmic expression of output genes either
directly via E-box regulatory element in their promoter regions, or indirectly by
other transcription factors whose expression is under clock control (43).
Among transcriptional targets of this complex are Period and Cryptochrome
genes, whose products function as negative regulators of
CLOCK/BMAL1-mediated transcription.

coordinated circadian expression (45). We propose that the mam-
mary clock functions to regulate gland development and metabolic
output [Figure 1; (46)].

Intimate interactions and reciprocal regulation occur between
metabolic and circadian systems. The endogenous circadian tim-
ing system coordinates daily patterns of feeding, energy utilization,
and energy storage across the daily 24 h cycle (47). Many meta-
bolic hormones exhibit circadian rhythms. For example, cortisol
levels are highest in the early morning and lowest at the first part
of the biological night (47). Further, the SCN is responsible for
a 24-h rhythm in plasma glucose concentrations, with the high-
est concentrations occurring toward the beginning of the activity
period (48).

CHRONODISRUPTION: CONSEQUENCES TO METABOLISM
AND HEALTH
Disruptions of normal circadian timing can evoke a multitude of
downstream effects, including reorganizing the entire physiologi-
cal state. Depressive mood (41), light, activity, and eating at night
[e.g.,night-shift work and night-eating syndrome; (49–53)], exces-
sive weight (54), stress, and sleep disturbances (55) have all been
characterized as chronodisruptors, i.e., factors that disrupt circa-
dian rhythms. Circadian disruption can result in disorders such as
diabetes, obesity, and cardiac disease (56–58). In humans, living in
modern industrialized societies with 24 h access to light coupled

with work and social obligations often leads to behaviors that are
inappropriately timed relative to endogenous circadian rhythms.
Night-shift work is an example of severe circadian disruption, as
workers are awake, active, and eating during their biological night
and trying to sleep and fast during their biological day (59).

Animal studies demonstrated that being active and feeding dur-
ing the usual rest phase leads to alterations in metabolism and
weight gain, even with the same caloric intake (60). In humans,
internal desynchronization can be induced by a forced 28-h sleep–
wake cycle (8 h sleep, 20 h awake), which is outside the range
of entrainment for the human circadian clock (61). After four
cycles, this protocol results in circadian misalignment, in which
the behavioral sleep–wake cycle is 12 h out of phase with the cir-
cadian cycle. In these misaligned conditions, leptin rhythms are
blunted, postprandial glucose and insulin are increased, and cor-
tisol rhythms are 180° out of phase with the behavioral rhythm.
Nearly half of the participants undergoing the 28-h cycle exhibited
a pre-diabetic state during circadian misalignment (62).

Epidemiological studies have shown night-shift work, which
disrupts the circadian system, is associated with development
of obesity. Studies of women with phase-delayed eating pat-
terns, such as not eating breakfast or night-eating syndrome,
are associated with increased BMI, altered metabolism, changes
in plasma hormone concentrations and rhythms, and depressive
mood (52, 53). At the molecular level in humans, a single
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nucleotide polymorphism in CLOCK is associated with abnormal
fatty acid metabolism and development of fatty liver, and a poly-
morphism in the BMAL1 core circadian clock gene is associated
with susceptibility to hypertension and type-2 diabetes (63, 64).

In reciprocal, the over-fat state is characterized by alterations of
circadian rhythms. In obese mice, there is attenuation of rhythmic
gene expression patterns (65), and a delay in circadian entrainment
to light-phase shift (66). Circadian rhythms of glucose and insulin
are elevated in obese rats throughout the 24-h period. Levels of
growth hormone, prolactin, and thyroxine are depressed. Serum
levels of corticosterone do not exhibit distinct circadian rhythms
and are elevated throughout the circadian cycle in obese rats (67).
Similarly, in obese humans, basal levels of cortisol are higher with
an attenuation of the circadian rhythm (68) and a lengthening of
rhythm period (54).

With the advent of electric lighting, humans in industrialized
societies are exposed to light at night. The natural light–dark cycle
is the most salient cue for entraining the master clock to the 24-h
day. The SCN communicates photoperiodic information to the
pineal gland, where light inhibits melatonin secretion, such that
melatonin secretion normally occurs at night. Melatonin has a
fundamental role in regulating and timing several physiological
functions, including glucose homeostasis, insulin secretion, and
energy metabolism (69). As such, metabolism is impaired after a
reduction in melatonin production, and the basic processes asso-
ciated with acquisition and utilization of energy are functionally
altered after exposure to extended periods of artificial lighting
(70). Chronic light at night exposure suppresses melatonin levels
as well as disrupts central clock rhythms, both of which are impli-
cated in metabolic disturbances that predispose individuals to the
development of type-2 diabetes, obesity, and metabolic syndrome
(70). For example, a recent cross-sectional study of 500 people in
Japan (71) found that elderly people sleeping in lighter rooms had
higher body weight, waist circumference, and BMI; in that study,
light exposure and obesity outcome variables were all objectively
measured, although the BMI of participants was generally low (an
average of 22.8). A large cohort study of 100,000 women revealed
that the association between light at night exposure and obesity
increased the odds of obesity with increasing levels of light at night
exposure (72).

Sleep is cooperatively regulated by homeostatic and circa-
dian factors. Voluntary sleep curtailment has become common
in many modern life styles. For example, although the National
Institutes of Health recommends that adults need 7–8 h of sleep
per day (73), data from the National Health Interview Survey,
found nearly 30% of adults reported an average of ≤6 h of sleep
per day in 2005–2007 (74). Less than 1 week of sleep curtail-
ment in healthy young men was associated with lower glucose
tolerance, lower thyrotropin concentrations, and raised evening
concentrations of cortisol (75). Poor sleep quality is also asso-
ciated with increased risk for depression (76). Whereas short
sleep duration is associated with increased incidence of dia-
betes, obesity (77), as well as increased all-cause mortality (78),
there also appears to be a consistent association of poor sleep
quality and short sleep duration with increased risk of cardio-
vascular disease, an association that is stronger in women than
men (79, 80).

Disrupted sleep includes both abnormal sleep patterns and
sleep deprivation. Studies have shown that disrupted sleep cycles
impair the function of adipocytes, which regulate leptin levels (81).
Abnormal leptin levels may lead to irregular meal times (82). This
disrupts the balance between insulin and glucose cycles, causing
reductions in insulin sensitivity and increases in glucose concen-
tration, a prelude to diabetes (47, 81, 83). Lipid metabolism is
similarly impaired, which may lead to increased lipogenesis, and
by extension, obesity (82, 83). Impaired carbohydrate and lipid
metabolism from disrupted circadian rhythms have also been
linked to increased risk of cardiovascular disease (83, 84).

In human studies of shift work and atypical schedules, irregular
sleep and disruptive circadian rhythms appear together, indicat-
ing that the two are closely related and that the presence of one
usually entails the other (85, 86). In humans, sleep is normally
timed to occur during the biological night, when body temper-
ature is low and melatonin is synthesized. The sleep–wake cycle,
and associated cycles of darkness and light and fasting and feed-
ing, interacts with the circadian system and is a major driving
factor of rhythms in physiology and behavior (87). Desynchrony
of sleep-wake timing and other circadian rhythms, such as occurs
in shift work and jet-lag, is associated with disruption of rhythmic-
ity in physiology and endocrinology (87). Insufficient or mistimed
sleep reduces the rhythmicity of clock-controlled transcripts and
expression of core circadian clock genes. Thus, circadian disrup-
tion occurs as a result of irregular sleep patterns, (47, 82, 85, 86),
and in converse circadian abnormalities can also result in sleep
disturbances (88).

In summary, changes in glucose and lipid metabolism, abnor-
mally high levels of cortisol at night, changes in melatonin, leptin,
and thyroid hormone levels, as well as cardiovascular problems
and development of type-2 diabetes are commonly associated with
disruptions in circadian rhythms. Exposure to light, activity or
eating at night, sleep disturbances/curtailment, depression, and
stress are common chronodisruptors in many modern life styles
and work schedules, and thus may be partly responsible for the rise
in metabolic disease and obesity apparent in many industrialized
societies (89).

CIRCADIAN SYSTEM REGULATION OF AND ADAPTATIONS
TO PREGNANCY AND LACTATION
As highlighted in multiple recent review articles (33, 90–92), much
more work is needed to understand interactions among circadian
clocks, metabolism, and female reproductive cycles and states.
What is known, is that the circadian system plays a key role in
the timing of reproductive events and hormones important to the
regulation of pregnancy and lactation. For example, neural mech-
anisms regulating ovulation are under circadian control in many
species to ensure that the timing of greatest fertility coincides with
the period of maximal sexual motivation (93). SCN lesions result
in infertility in rodents, due to the lack of the ability to synchronize
events for ovulation (94), and mice with mutant core clock genes
or core clock-gene knocked-out mice exhibit reduced fertility and
fecundity (95, 96).

The SCN has been shown to be necessary for normal func-
tioning of the hypothalamic-pituitary-gonadal (HPG) axis, and
rhythms of clock-gene expression have been recorded in brain
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regions controlling both the HPG and hypothalamic-pituitary-
adrenal (HPA) axis (97). Rhythmic gene expression of prolactin in
pituitary mammotrophs was shown to be mediated by CLOCK–
BMAL1 binding to clock-gene regulatory elements (98). In addi-
tion, ovariectomized and estradiol-treated rats fail to exhibit a
prolactin surge following SCN lesions. Furthermore, SCN lesion
also prevents the twice daily prolactin surge induced by mating in
rodents, which maintains the corpus luteum and thus the secre-
tion of progesterone and pregnancy maintenance [for review, see
Ref. (93)], suggesting the central clock plays a direct or indirect
role in regulation of prolactin secretion. Therefore, it is interesting
to speculate that decreased blood prolactin observed in healthy,
young non-pregnant women following exposure to partial sleep
deprivation (99) is due to the disruption of the master clock.

Circadian rhythms in behavior and physiology change sub-
stantially as female mammals transition through the reproductive
states of non-pregnancy, pregnancy, and lactation, with changes
in circadian rhythms supporting physiological demands unique
to each of these stages (100–104). For example, to compensate
for increases in the daily temperature minimum during gesta-
tion studies of pregnant laboratory animals showed phase of body
temperature rhythm was advanced and amplitude decreased rel-
ative to non-pregnant controls (100). Further, to compensate for
the increased need for sleep in early pregnancy, sleep patterns are
altered in pregnant rodents (103, 105).

Sleep is also significantly impacted by pregnancy in women.
A study of 192 pregnant women surveyed retrospectively found
88% had alterations in sleep compared with their usual experience
(106). Reported changes included insomnia, parasomnias (night-
mares and night terrors), restless leg syndrome, snoring, and sleep
apnea. Among the most frequent self-reported causes of sleep dis-
turbance during pregnancy were urinary frequency, back or hip
ache, and heartburn. A prospective, cohort study of healthy nul-
liparous women found compared with the baseline assessment
done before 20 weeks gestation, mean sleep duration in the third
trimester was significantly shorter (7.4 h compared with 7.0 h),and
overall poor sleep quality became significantly more common as
pregnancy progressed (107). Okun and Coussons-Read collected
qualitative sleep data at 12, 24, and 36 weeks’ gestation, and found
as early as 12 weeks, pregnant women reported an increased num-
ber of naps, nocturnal awakenings, time spent awake during the
night, and poorer sleep quality than non-pregnant women (108).

The dramatic fluctuations in reproductive hormones that occur
during pregnancy and the transition from pregnancy to the
post-partum period are accompanied by alterations in circadian
rhythms of melatonin (109, 110) and cortisol (111). In season-
ally breeding animals, melatonin regulates reproductive hormones
and behavior (112). During pregnancy in humans, night time
melatonin levels increase linearly with progressive weeks of ges-
tation, and fall in the early post-partum period (110). Changes
in cortisol dynamics during pregnancy are due in part to the
remodeling of maternal HPA axis, which results in an altered
maternal stress response and energy balance, as well as rising pla-
cental cortico-releasing hormone (CRH) levels (113). Change in
the HPA axis and placental CRH result in attenuated rhythms
of plasma cortisol and a period of hypercortisolism beginning in
mid-gestation. Following birth of the neonate, maternal plasma

levels of cortisol drop due to loss of placental CRH, if the mother
breastfeeds, attenuation in cortisol rhythms and stress response
continue throughout lactation (114, 115). Synchronization among
the multitude of molecular clocks in the body is believed to be reg-
ulated in part by cortisol circadian rhythms which are regulated
by the central clock (116). Thus, changes in cortisol secretion pat-
terns during pregnancy and lactation have the potential to affect
circadian rhythms across the entire body.

Timing of parturition in women also shows signs of being reg-
ulated by the circadian timing system. For example, the onset of
labor and spontaneous membrane rupture peaks at night between
midnight and 4:00 a.m. (117–119), and the timing of births peak
around 1:00–2:00 p.m. for primiparous women (120). Further, a
nested, randomized, controlled clinical trial that compared morn-
ing versus evening administration of prostaglandin and its success
rate in inducing labor, reported no difference in rate of Cesarean
delivery, however morning inductions required less oxytocin, had
a shorter induction to birth interval, and were less likely to result
in instrumental vaginal births for primiparous mothers (121).

During lactation in women, the potent lactogens, prolactin and
cortisol, exhibit circadian variation in secretion. The prolactin-
secretory response to nursing is superimposed on the endogenous
circadian rhythm of prolactin secretion, thus the suckling stimu-
lus elevates prolactin levels more effectively at certain times of day
when the circadian input enhances the suckling stimulus-evoked
secretory response (122). Studies in lactating rabbits revealed tim-
ing the single bout of daily suckling that occurs in this species
shifted PER1 expression in SCN clock and in peripheral clocks
of the brain (76, 77). Our in vitro studies showed prolactin and
glucocorticoids can directly affect mammary clock, with prolactin
inducing phase shifts in core clock genes expression, suggesting
that external cues emanating from neonate can have effects on
maternal circadian physiology.

Our rodent studies also demonstrated that during the transi-
tion from pregnancy to lactation, dynamic changes in core clocks
occurred in multiple tissues. The amplitude of core clock genes’
expression increased significantly in the SCN and liver (123). Work
of others found that expression of PER2 expression shifted and
amplitude increased in SCN in early pregnant versus diestrus
rats (124). The central clock functions to synchronize the tim-
ing of metabolic and reproductive functions, and thus changes
in the SCN during the transition in physiological states may
function to mediate coordinated changes in tissue-specific metab-
olism needed to support pregnancy and lactation. Increases in
amplitude of hepatic expression of core clock genes’ rhythms
during the transition from pregnancy to lactation, likely reflect
the increase in liver metabolic output (123). In addition, changes
revealed in mammary clock dynamics led us to hypothesize that
differentiation-driven changes during the transition from preg-
nancy to lactation in the mammary clock are stimulated, in part,
by peripartum changes in prolactin and glucocorticoids. Further,
we envision that differentiation-associated changes in mammary
clock mediate the increase in metabolic output of the gland during
lactation (123).

Milk synthesis and composition shows circadian variation in
lactating women (24). Approximately, seven percent of the genes
expressed in the lactating breast show circadian oscillation; many
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of these genes regulate cell growth and differentiation as well
as metabolic pathways (125). Offspring of homozygous female
Clock-∆19 mutant mice fail to thrive suggesting that the muta-
tion affects the dam’s ability to support milk production during
lactation. Our studies of Clock∆19 mice revealed poorer mam-
mary development and evidence for delayed or failed lactogenesis
II, with in vitro studies demonstrating a role for Clock in reg-
ulating mammary epithelial growth and differentiation (unpub-
lished data). Miller et al. have evidence to suggest that prolactin
release is altered in Clock∆19 mice (126). Thus, both systemic and
mammary-specific alterations likely account for negative impact
of Clock∆19 mutation on lactation. The photoperiod effect on
ruminant milk production (127) and our studies with cattle show-
ing circadian disruption significantly decreases milk production
(46), also support a role for the circadian timing system in mediat-
ing systemic metabolism and mammary metabolic output during
lactation.

CONSEQUENCES OF CHRONODISRUPTION ON ABILITY OF
MOTHER TO SUPPORT OFFSPRING
Several rodent studies have been designed to determine if circadian
disruption impacts pregnancy outcome. These studies found that
exposing mice immediately after confirmed mating to continuous
shifts in the light-dark cycle (a chronic jet-lag model) resulted in a
significant decrease in the number of full-term pregnancies (128).
Rat dams exposed to chronic jet-lag throughout gestation gained
70% less weight during the first week of pregnancy than those
housed in control conditions. In late pregnancy (gestation day 20),
chronic jet-lag exposure profoundly disrupted timing of corticos-
terone, leptin, glucose, insulin, free fatty acids, triglycerides, and
cholesterol concentrations in these dams. Further, expression of
gluconeogenic and circadian clock genes in maternal and fetal liver
was arrhythmic relative to controls (129). Offspring of rat dams
exposed to a chronic jet-lag paradigm from the first day of preg-
nancy to lactation day 10 developed metabolic problems such as
obesity, hyperleptinemia, and glucose tolerance/insulin insensitiv-
ity when they reached maturity (130). These studies demonstrate
that exposure to chronic circadian disruption during pregnancy
impacts the normal maternal metabolic-hormonal adaptations
to this physiological state. Further, these perturbations may con-
tribute to the programing of poor metabolic homeostasis in adult
offspring.

In humans, a polymorphism in the circadian clock-gene
BMAL1 was shown to be associated with increased risk of mis-
carriages (131). Studies of shift workers found night and rotating
shift work during pregnancy increased the risk of pre-term birth,
low birth weight, and miscarriage (132, 133). For example, a retro-
spective study of a large cohort in women (National Birth Cohort
in Denmark) reported a fixed night work schedule increases risk
of post-term birth (odds ratio, 1.35; 95% CI, 1.01–1.79). Fixed
evening work had a higher risk of full-term low birth weight (odds
ratio, 1.80; 95% CI, 1.10–2.94); and shift work as a group showed a
slight excess of small-for-gestational-age babies (odds ratio, 1.09;
95% CI, 1.00–1.18) (134). A population-based prospective cohort
study conducted in Sri Lanka found risk factors for small-for-
gestational-age were shift work and exposure to physical and
chemical hazards during second and third trimesters (odds ratio,

4.20; 95% CI, 1.10–16.0), as well as sleeping ≤8 h during second
or third trimesters (odds ratio, 2.23; 95% CI, 1.08–4.59) (135).

A prospective cohort study of approximately 1,200 healthy
pregnant women was used to evaluate the influence of mater-
nal self-reported sleep duration during early pregnancy on blood
pressure levels and risk of hypertensive disorders of pregnancy.
Investigators found that the mean third trimester systolic blood
pressure was higher for women reporting ≤6 and 7–8 h sleep
compared with women reporting 9 h of sleep, with odds ratio
for pre-eclampsia in very short (<5 h) sleepers being 9.52 (95%
CI, 1.83–49.40) (136). Sleep disturbances in early pregnancy are
also associated with higher risk for development of hyperglycemia
(137). Moreover, gestational diabetes mellitus risk was increased
among women sleeping <4 h compared with those sleeping 9 h
per night during early pregnancy with relative risk for overweight
women threefold higher (138). Snoring, which is associated with
sleep disturbances, was associated with a 1.86-fold (95% CI, 0.88–
3.94) increased risk of gestational diabetes, with the risk being
6.9-fold (95% CI, 2.87–16.6) higher in overweight women who
snored compared with lean women (138). Hyperleptinemia is also
an important clinical risk factor for adverse pregnancy outcomes
such as pre-eclampsia and gestational diabetes mellitus (139–141).
A cross-sectional study of 830 pregnant women found that shorter
sleep (≤5 h) and longer sleep (≥9 h) were associated with elevated
leptin among overweight or obese women (142).

Researchers have also linked abnormalities in circadian
rhythms with development of mood disorders such as bipo-
lar disorder, major depression, and seasonal affective disorder
(143, 144). Individuals with major depression exhibit blunted or
abnormal circadian rhythms in body temperature, plasma corti-
sol, norepinephrine, thyroid stimulating hormone, blood pressure,
pulse, and melatonin (143). Studies of depressed pregnant women
found significantly lower levels and phased-advanced melatonin
secretion in pregnant women with personal and family histories
of depression relative to women without history of depression
(110). Further, in healthy women, plasma melatonin levels became
increasingly elevated as pregnancy progressed but this increase
did not occur in depressed women (110). Thus, it is interesting
to speculate whether mothers with depression are at an increased
risk for shorter breastfeeding duration and increased breastfeed-
ing difficulties (145), in part, through physiological disruption
of the circadian timing system, which in turn impacts her milk
production (Figure 2).

The association of maternal obesity with DLII appears to have
a physiological basis related to alterations in hormones and meta-
bolic adaptations needed to initiate copious milk production
(Figure 2). In rodent models of obesity, the normal hormonal
response to the periparturient period is altered, with a lower rise in
prolactin and insulin levels during the transition from pregnancy
to lactation and significantly higher corticosterone levels (146–
148). In obese humans, basal levels of cortisol are also higher with
an attenuation of the circadian rhythm (68) and a lengthening
of rhythm period (54). Circadian rhythms of plasma cortisol are
believed to be a primary signal for synchronization of periph-
eral clocks (149). Glucocorticoids also regulate milk synthesis
(150). However, antenatal treatment with glucocorticoids delays
secretory activation in ewes (151), and treatment of animals with
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FIGURE 2 | Proposed relationships among metabolic-hormonal-circadian
clock changes needed to initiate lactogenesis II during the periparturient
period, and how related risk factors interfere with initiation. Arrows

indicate inductive relationship. “T” indicates an inhibitory relationship.
Question marks indicate areas needing further research to support proposed
relationship/mechanism.

supra-physiological of glucocorticoids depresses milk production
in an established lactation (150). Thus, the delay in onset of lacto-
genesis II experienced by obese women may be due to alterations in
coordinated changes and interactions among circadian timing sys-
tem, endocrine milieu, and metabolism needed to initiate copious
milk secretion (Figure 2).

CONCLUSION AND POTENTIAL INTERVENTIONS
Although there is a paucity of information available to understand
the role of the circadian timing system in mediating metabolic and
hormonal adaptations to pregnancy and lactation, there is strong
evidence that clocks play a role in regulating metabolic and hor-
monal homeostasis in animals. The circadian system functions to
prepare physiological systems and behavioral activity for antici-
pated changes in the environment (e.g., day–night cycle). In addi-
tion, the circadian system also prepares for anticipated changes
in physiological–reproductive state (e.g., seasonal fertility in some
species). Chronic disruption of the circadian timing system has
negative impacts on fertility and fecundity in females. Fertility
and fecundity depend on precise hormonal timing and adequate
metabolic adaptions to support the extra energy investment of
reproduction (92, 152). Similarly, the initiation of lactogenesis II,
requires timing coordinated changes in hormones and metabolism
to initiate copious milk production in the early post-partum. Thus,
we hypothesize that chronic disruption of the maternal circadian
timing system during pregnancy and peripartum alters hormones
and metabolic adaptations resulting in DLII (Figure 2).

Human lactation is a complex phenomenon and the initia-
tion and duration of breastfeeding is influenced by many demo-
graphic, physical, social, and psychological variables. Interventions
developed to increase the rates of successful breastfeeding target
management strategies to ensure adequate milk supply (153–155).
Although there is evidence to suggest that the circadian system
plays a significant role in lactation and maternal behavior, cur-
rent breastfeeding interventions do not encompass management

strategies and education that take into account circadian disrup-
tions. Depressive mood, light, activity, and eating at night (e.g.,
night-shift work and night-eating syndrome), excessive weight,
and sleep disturbances are well characterized chronodisruptors.
These chronodisruptors have also been associated with hor-
monal and metabolic alterations during pregnancy and inadequate
breastfeeding outcomes.

Therefore, we propose the need to test interventions aimed
at maintaining circadian alignment (e.g., limiting exposure to
chronodisruption) during three stages that impact the ability of
the mother to initiate and maintain lactogenesis: (1) during preg-
nancy; (2) in the hospital; and (3) after post-partum discharge
from the hospital. Interventions during pregnancy may include,
raising mothers’ awareness of their sleep, eating and exercise
patterns through diaries and self-monitoring, as well and edu-
cating mothers about sleep hygiene and consequences of sleep
deprivation and interrupted sleep cycle and exposure to light at
night.

Good sleep hygiene, together with circadian alignment of food
intake, a regular meal frequency, as well as attention for pro-
tein intake or diets, may contribute to cure sleep abnormalities
and overweight/obesity (47). Circadian alignment diminishes the
urge to overeat, normalizes substrate oxidation, stress, and insulin
and glucose metabolism. In addition, circadian alignment impacts
leptin concentrations, lipid metabolism, blood pressure, appetite,
energy expenditure, and substrate oxidation, and normalizes the
experience of food reward (47). For example, a clinical trial inves-
tigated whether sleep extension under real-life conditions is a
feasible intervention in 16 healthy non-obese adults who were
chronically sleep restricted (156). The intervention was 2 weeks
of habitual time in bed, followed by 6 weeks during which par-
ticipants were instructed to increase their time in bed by 1 h
per day. Continuous actigraphy monitoring and daily sleep logs
during the entire study showed that sleep time during week-
days increased (mean actigraphic data: 44± 34 min, P < 0.0001;
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polysomnographic data: 49± 68 min, P = 0.014), without any sig-
nificant change during weekends. Changes from habitual time in
bed to the end of the intervention in total sleep time correlated
with changes in glucose and insulin levels, as well as with indices
in insulin sensitivity.

In the hospital, interventions may include implementing light–
dark cycles and/or light filters that help to maintain circadian
alignment; educating families about the importance of limited
visiting hours and number of visitors; and implementing Baby
Friendly Hospital Initiative (157) to include quiet time and light-
dark cycles. Discharge interventions may include providing educa-
tion about sleep hygiene, diet, and activities important to maintain
circadian alignment.

Exposure to lighting environments that more closely align to
the Earth’s natural light–dark cycles may prove to limit metabolic-
hormonal disturbances during pregnancy and promote normal
metabolic-hormonal adaptations during the peripartum needed
to initiate lactation. An example of the recognition that hospital
lighting environment impacts physiology, health, and develop-
ment, comes from studies of infants in Neonatal Intensive Care
Units (NICU) [for review, see Ref. (158)]. Providing a light–dark
cycle in the NICU increased sleeping time in infants, decreased
the time spent feeding, and increased weight gain resulting in
earlier hospital discharge relative to infants exposed to constant
lighting typical of some hospital nurseries (159, 160). In addi-
tion, exposure to a light–dark cycle promoted heart rate stability,
improved oxygen saturation, establishment of daily melatonin
rhythms, and a better tolerance to milk (160). These studies
demonstrate that exposure to a light–dark cycle immediately after
birth promotes beneficial effects on the development of infants,
and thus support the need for research on the impact of hospi-
tal lighting environment on maternal physiology and maternal-
offspring interactions in the peripartum that affect breastfeeding
outcomes.

Recent studies using animal and clinical models have demon-
strated that filtering short wavelengths (below 480 nm) for noc-
turnal lighting can attenuate alterations in hormone secretion
(melatonin and glucocorticoids), and in central and peripheral
clock-gene expression induced by nighttime light exposure (161).
In humans, use of optical filters led to an improvement in mood
and cognitive performance under controlled laboratory condi-
tions as well as during field-based shiftwork studies. For example,
studies found that use of optical filters during shift work increased
sleep duration and quality on nights immediately following night
shifts (161). Thus, a method to improve or prevent many of the
health problems associated with circadian misalignment, includ-
ing timing to onset of lactogenesis II may be to incorporate optical
filters into glasses or as coverings for light bulbs in work places
and hospitals for procedures that require night time exposure to
light (161).

If these proposed interventions prove to mitigate the develop-
ment of metabolic and hormonal imbalances that increase the risk
of DLII, the rates of adequate breastfeeding may increase. Impor-
tantly, since many of the external factors that disrupt circadian
clocks are modifiable by changes in lifestyle or external environ-
ment, the interventions we suggest are minimally invasive and thus
are readily implementable during pregnancy and peripartum.
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Disturbance of the circadian system, manifested as disrupted daily rhythms of physiologic
parameters such as sleep, activity, and hormone secretion, has long been observed as a
symptom of several neurodegenerative diseases, including Alzheimer disease. Circadian
abnormalities have generally been considered consequences of the neurodegeneration.
Recent evidence suggests, however, that circadian disruption might actually contribute to
the neurodegenerative process, and thus might be a modifiable cause of neural injury.
Herein we will review the evidence implicating circadian rhythms disturbances and clock
gene dysfunction in neurodegeneration, with an emphasis on future research directions
and potential therapeutic implications for neurodegenerative diseases.

Keywords: circadian clock, Bmal1, Per2, neurodegeneration, Alzheimer disease, Huntington disease

INTRODUCTION
Numerous studies over the past 30 years have described a wide
variety of circadian and sleep-wake cycle aberrations which occur
in aging and neurodegenerative diseases (Ju et al., 2014; Videnovic
et al., 2014a). Many behavioral and physiologic processes oscillate
with a 24 h period, including sleep–wake, activity, body temper-
ature, blood pressure, and hormone secretion. These circadian
rhythms are frequently disrupted in patients with neurodegener-
ative disease, including Alzheimer disease (AD), Parkinson dis-
ease (PD), Huntington disease (HD). Systemic circadian rhythms
in mice and humans are maintained via the function of the
body’s master clock in the suprachiasmatic nucleus (SCN), which
receives input from the retina and synchronizes oscillations in
peripheral organs to the light:dark cycle. On a cellular level, cir-
cadian rhythms are generated by a transcriptional–translational
feedback loop consisting of the bHLH/PAS transcription factors
BMAL1 and CLOCK, which heterodimerize and drive transcrip-
tion of many genes, including their own negative feedback repres-
sors, including PERIOD (Per) and CRYPTOCHROME (Cry) and
REVERB genes, which repress BMAL1/CLOCK-mediated tran-
scription (Mohawk et al., 2012). This transcriptional machinery,
which we will refer to herein as the core circadian clock, is present
in most cells in the body, including neurons and astrocytes in the
SCN and throughout the brain. The core circadian clock regulates
the circadian expression of thousands of genes in a tissue-specific
manner, and is a major regulator of cellular metabolism, stress
response, and many other functions (Bass and Takahashi, 2010;
Evans and Davidson, 2013). While whole-organism rhythms are
known to be disrupted in many neurodegenerative diseases, far
less information exists regarding specific alterations in clock pro-
tein expression and function in these conditions. Furthermore, it
remains unclear if or how circadian disruption might influence
the neurodegenerative process itself, or if the core clock represents

a reasonable therapeutic target for the treatment or prevention
of neurodegeneration. We will focus on these issues in this
review.

PART 1: IS THERE EVIDENCE OF CORE CIRCADIAN CLOCK
DYSFUNCTION IN NEURODEGENERATIVE DISEASES?
In AD, both sleep and circadian dysfunction are commonly
reported. While sleep disturbances in AD are beyond the scope of
this discussion and have been reviewed elsewhere (Ju et al., 2014;
Peter-Derex et al., 2014), it is important to mention that subtle
sleep disturbances appear to occur early in the disease process
and may predict amyloid-beta (Aβ) plaque pathology and precede
subsequent development of clinical dementia (Ju et al., 2013; Lim
et al., 2013a; Spira et al., 2013). Disrupted circadian rhythms in
activity, physiologic parameters, and melatonin secretion have
been reported in AD reported by several groups (Witting et al.,
1990; Skene and Swaab, 2003; Hatfield et al., 2004; Wu et al., 2006;
Hu et al., 2009; Coogan et al., 2013). A proposed mechanism
of circadian dysfunction in AD is degeneration of the SCN,
as loss of critical vasopressin and vasoactive intestinal peptide
(VIP)-expressing neurons in this region has been reported in AD
patients (Swaab et al., 1985; Zhou et al., 1995; Farajnia et al.,
2012). Transcriptional analysis of postmortem human brain tissue
has revealed detectable oscillations in core clock genes in various
brain regions based on time of death, and shown that in AD
brains the phase of oscillation is dysregulated between various
regions (Cermakian et al., 2011; Lim et al., 2013b). Rhythms in
whole-genome DNA methylation could also be detected which
appear to become less robust with age or in AD brains (Lim et al.,
2014). Circadian oscillation of clock genes in the human pineal
gland was disrupted even at very early pathological stages of AD,
mirroring loss of rhythmic melatonin secretion in AD patients
(Skene and Swaab, 2003; Wu et al., 2006). Thus, in human AD
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there is evidence of disturbed rhythms of clock gene expression
which appear to begin early in the disease course.

Animal models of AD also exhibit disturbances of behavioral
and physiologic circadian rhythms. In mice, these disturbances
appear to correlate with the degree of amyloid plaque burden,
and can in some cases be rescued with anti-Aβ immunother-
apy, suggesting that aggregated forms of Aβ might disrupt clock
mechanisms (Wisor et al., 2005; Sterniczuk et al., 2010; Duncan
et al., 2012; Roh et al., 2012). However, while one study described
damped expression of Per2 in the SCN of APP-PS1 transgenic
mice (Duncan et al., 2012), more detailed molecular analysis of
clock gene function in AD mouse models is lacking. In Drosophila,
two groups have found that pan-neuronal expression of arctic
mutant human Aβ causes marked degradation of behavioral
circadian rhythms, despite preserved clock gene oscillation in the
central pacemaker cells (Chen et al., 2014; Long et al., 2014). Chen
et al. (2014) found that restricted Aβ expression in central clock
(PDF) neurons did not disrupt clock gene oscillation or cause
behavioral arrhythmicity, which Aβ expression in glia surround-
ing the clock neurons did both. Thus, in flies, Aβ does not directly
disrupt clock gene function in the central pacemaker, but acts
more peripherally (and perhaps on glia) to disrupt behavioral
rhythms. While the biological relevance of this fly models of Aβ

toxicity to humans is debatable, these findings provide leads for
further research in mammalian models.

In the case of PD, the second most common age-related
neurodegenerative condition, there is ample evidence of disrupted
circadian rhythms and sleep–wake disturbance in humans and
mouse models (Videnovic and Golombek, 2013). PD patients
exhibit progressive disruption of activity rhythms (Niwa et al.,
2011), as well as damped circadian oscillation of both melatonin
release and Bmal1 expression in peripheral blood monocytes
(Cai et al., 2010; Breen et al., 2014; Videnovic et al., 2014b).
Fly and mouse models of PD which expresses mutant human
α-synuclein, a protein implicated in PD pathogenesis, develop
behavioral circadian disruption early in its disease course (Gajula
Balija et al., 2011; Kudo et al., 2011a). Synuclein transgenic mice
display normal Per2 oscillation in the SCN, but have damped
electrical output from the SCN, again suggesting disordered SCN
function or synchrony (Kudo et al., 2011a).

Huntington disease, unlike AD and PD, is an autosomal disor-
der caused by trinucleotide expansion within the huntingtin gene.
Neurodegeneration occurs earlier in HD patients and initially
involves the basal ganglia. Sleep and circadian rhythm dysfunction
are common in HD (Morton et al., 2005; Aziz et al., 2010), though
there is a paucity of studies on clock gene expression and function
in human HD. Several mouse models of HD, which express
expanded human huntingtin, develop pronounced impairment in
behavioral circadian rhythms (Morton et al., 2005; Kudo et al.,
2011b). The R6/2 line exhibits behavioral arrhythmicity as well as
dysregulated clock gene oscillation in vivo in the liver and SCN
(Morton et al., 2005; Maywood et al., 2010). Interestingly, clock
gene oscillation appears to be normal in liver or SCN explants
from R6/2 mice, suggesting that some other aspect of the internal
milieu of the R6/2 mouse is causing arrhythmicity in vivo (Pallier
et al., 2007; Maywood et al., 2010). In another HD mouse line
(BACHD) the rhythmicity of electrical output of the SCN was

disrupted, while the oscillation of Per2 transcription was grossly
intact (Kudo et al., 2011b). These findings suggest support the
idea that dysfunction of the neural networks within the SCN,
rather than the cell-intrinsic clock gene oscillation, underlies
circadian impairment in HD model mice. Accordingly, decreased
expression of the neuropeptide VIP and the VIP receptor VPAC2,
which are critical for SCN function (Aton et al., 2005), was also
observed in R6/2 mice (Fahrenkrug et al., 2007). It appears that
in HD mice, disrupted peripheral rhythms may adversely impact
SCN function, leading to further systemic circadian arrhyth-
micity, though the details of this mechanism are still being
explored.

PART 2: IS THERE EVIDENCE THAT CLOCK DISRUPTION
EXACERBATES NEURODEGENERATION?
While circadian disturbances in aging and neurodegenerative
diseases have been duly noted, a key question is whether these
disturbances influence disease pathology. This question is much
more difficult to examine, and has received significantly less
attention. In Drosophila, levels of oxidative stress markers, as well
as cellular content of the critical antioxidant glutathione show
circadian oscillation which is dependent on the clock gene Period
(Per, Krishnan et al., 2008; Beaver et al., 2012). Per deletion
exacerbates oxidative injury and shortens lifespan in Drosophila
(Krishnan et al., 2008, 2009). Disruption of clock function via
Per deletion also accelerates neurodegeneration in flies bearing
a carbonyl reductase mutation which causes oxidative injury
to neurons (Krishnan et al., 2012). However, in fly models of
Aβ pathology which express different human Aβ isoforms, Per
deletion did not impact neurodegeneration or behavior, though
lifespan was decreased. Conversely, levels of Cryptochrome (Cry),
which serves as a light-responsive modulator of clock function in
Drosophila, decline in parallel with damped circadian rhythms in
old flies, while Cry overexpression restores robust rhythms and
enhances lifespan (Rakshit and Giebultowicz, 2013). Thus, the
clock genes Per and Cry clearly appear to contribute to regulation
of brain aging and neurodegeneration in fly models.

In mice, evidence linking circadian dysfunction and neu-
rodegeneration is emerging. Chronic disruption of circadian
rhythms in mice via housing in 20:4 light:dark conditions leads to
decreased neuronal dendritic arborization and cognitive deficits,
demonstrating that disturbed circadian rhythms have negative
implications for the brain, though the exact degree of clock
gene dysregulation and the role of other factors such as stress
are unknown (Karatsoreos et al., 2011). Accordingly, studies
in rats and hamsters have demonstrated cognitive impairment
and decreased hippocampal neurogenesis following chronic “jet
lag” protocols, during which circadian rhythms are disrupted
by frequent shifting of the light:dark cycle (Gibson et al., 2010;
Kott et al., 2012). Mechanistically, RevErbα-mediated regulation
of fatty acid binding protein 7 (Fabp7), both of which are strongly
controlled by the core clock, has been implicated in neurogenesis
(Schnell et al., 2014). Similarly, RevErbα shows dynamic activity-
dependent regulation in the dendrites of hippocampal neurons
and interacts with oligophrenin-1, a regulator of dendritic spines
(Valnegri et al., 2011). In a mouse model of AD, Aβ levels in
the brain interstitial fluid show pronounced circadian oscillation
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(Kang et al., 2009), though it unclear if this is a direct effect of the
sleep–wake cycle or may be more directly clock-mediated.

In order to gain some appreciation of the role of clock genes in
maintaining brain homeostasis, our group performed functional
and neuropathologic analysis of mice with global deletion of
Bmal1. Bmal1 knockout (KO) mice developed marked astrogliosis
which was evident by 2 months of age and progressed to involve
the entirety of the cortex, striatum, and hippocampus (Musiek
et al., 2013). These mice also had increased levels of oxidative
damage in the cortex, and exhibited spontaneous degeneration
of presynaptic terminals and diminished cortical functional con-
nectivity. We found a similar phenotype in Clock;Npas2 double
KO mice, which like Bmal1 KOs have completely disabled core
clock transcriptional function (DeBruyne et al., 2007), but not
in Per1/Per2 double mutant mice, which are arrhythmic but
have intact core clock-mediated transcription (Bae et al., 2001).
We subsequently generated brain-specific Bmal1 KO mice which
have preserved SCN Bmal1 expression and intact systemic circa-
dian activity and sleep rhythms, but disrupted BMAL1-mediated
transcription in cortical, striatal, and hippocampal neurons and
astrocytes. These mice also developed severe astrogliosis, sug-
gesting that positive-limb core clock function is required locally
in neurons and/or astrocytes to prevent pathology, independent
of the SCN or sleep–wake cycle (Musiek et al., 2013). Finally,
we found that neurodegeneration induced by the mitochondrial
complex II inhibitor 3-nitropropionic acid, which has been used
to model HD (Beal et al., 1995), was exacerbated in Bmal1
hemizygous mice, which have intact systemic rhythms but only
half the normal level of BMAL1 protein expression in the brain.
Thus, it appears that the core clock transcriptional machinery
plays a critical role in protecting the brain from oxidative injury,
and that this function is not entirely dictated by systemic circadian
rhythms. Accordingly, we found that Bmal1 directly regulates
the transcription of several important redox defense genes in
the brain, including Nqo1 and Aldh2. We are currently working
to identify novel mechanisms by which the core clock mediates
neuroprotection or neurodegeneration, and to understand the
relative importance of systemic circadian rhythms and clock
gene oscillation versus static transcriptional function in this
process.

Conversely, the effect of improving circadian function on
pathology in a mouse model of neurologic disease has been
demonstrated, at least initially. In the aforementioned R6/2 mouse
model of HD, pharmacologic induction of rhythmic sleep nor-
malized Per2 oscillation in the SCN and lead to improvements
in cognition (Pallier et al., 2007; Pallier and Morton, 2009).
Furthermore, when food was provided to these mice only during
a strategic window in the circadian cycle, rhythms in behav-
ior were restored and metabolic abnormalities in these mice
improved, suggesting that synchronizing the food-entrainable
oscillator could overcome the circadian defect. Thus, correcting
peripheral rhythms by imposing circadian sleep or feeding sched-
ules can mitigate cognitive impairment in a mouse model of
HD (Maywood et al., 2010). The application of these methods,
or more specific molecular targeting of the core clock or its
outputs, now needs to be evaluated in other animal models of
neurodegeneration.

Human data demonstrating a contributory effect of circadian
disruption to neurodegeneration is scarce, though several encour-
aging findings have emerged. Two observational studies exam-
ining young female flight attendants who routinely flew across
multiple time zones found that the group that those afforded
shorter recovery time between cross-time zone flights (who thus
experienced more severe circadian disruption) had higher cortisol
levels, smaller temporal lobe volumes on MRI, and performed
more poorly on hippocampal-based cognitive testing than ground
crew members or other flight attendants with less severe jet lag
exposure (Cho et al., 2000; Cho, 2001). In the field of AD, a small
amount of human data now also exists which supports a role
for circadian disruption in disease pathogenesis. Three separate
genetic polymorphism in the Clock gene have been linked to
increased risk of AD in Han Chinese populations (Chen et al.,
2013a,b; Yang et al., 2013), though these findings have not been
reported by other large AD genetics consortiums. An epidemi-
ologic study of daily activity data from of over 1,200 initially
cognitively-normal older women demonstrated that diminished
circadian rhythm amplitude, robustness, or phase delay were
associated with increased risk of developing dementia during
the 5 year follow-up period (Tranah et al., 2011). On a more
mechanistic level, circadian oscillations in the level of the Aβ in
cerebrospinal fluid of older adults has been described and suggest
possible regulation of Aβ metabolism by the circadian clock,
though it does not demonstrate a clear role for these oscillations
in the disease process (Kang et al., 2009; Huang et al., 2012).
Further research into circadian function in prodromal AD and
other neurodegenerative disease, and how this relates to disease
risk or progression is needed.

CONCLUSIONS AND THERAPEUTIC PERSPECTIVES
Taken in total, there is promising early data but not iron-clad
proof that circadian clock disruption contributes to the pathogen-
esis of age-related neurodegenerative diseases. Two major chal-
lenges in this area are apparent. First, distinguishing the specific
effects of alterations in sleep from those of the circadian clock
is difficult but necessary. Activity data (actigraphy) in humans
is often used as a biomarker of sleep or circadian rhythms, and
the two processes are often lumped together, obscuring specific
conclusions about either. Of further concern is the fact that
disrupting sleep impacts core clock protein function (Mongrain
et al., 2011), while deleting clock genes also alters sleep (Laposky
et al., 2005). Disentangling these two processes is important if we
hope to identify specific downstream pharmacologic targets from
either pathway to treat or prevent neurodegenerative diseases.

The second major challenge involves distinguishing the spe-
cific importance of circadian oscillation versus the “static” func-
tion of clock proteins in the brain. While circadian oscillations
are observed in thousands of transcripts in many tissues, includ-
ing the brain, the physiological relevance of these oscillations
remains in many cases unclear (Zhang et al., 2014). Clock proteins
exert various functions in cells, some of which may have less
dependence on these oscillations. Ultimately, the function of clock
proteins is never completely disengaged from their oscillation, as
the BMAL1/CLOCK DNA binding shows clear circadian variation
(Koike et al., 2012), but the relative importance of rhythmic versus
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static function remains a key therapeutic question. If restoration
of robust systemic oscillations is the therapeutic goal, then thera-
pies might target the SCN. Vasopressin V1a and V1b, as well as
VIP VPAC2 receptors, play critical roles in synchronizing SCN
neurons and their response to phase shift, and thus might rep-
resent tractable therapeutic targets to optimize systemic rhythms
(Aton et al., 2005; An et al., 2013; Kudo et al., 2013; Yamaguchi
et al., 2013). Behavioral manipulations such as imposed light:dark
exposure, timed melatonin treatment, or rhythmic meal schedules
might have shown promise in HD mouse models and might also
be considered (Pallier et al., 2007; Maywood et al., 2010). Finally,
novel small molecule modulators of clock oscillation are being
developed which alter the period, amplitude, or frequency of
SCN output (Hirota et al., 2010; Chen et al., 2012). However,
if bolstering clock gene expression outside the SCN is the more
advantageous strategy, then a new set of therapies would need to
be developed. In this case, downstream neuroprotective targets of
the core clock would need to be identified and screening pursued
to identify compounds or strategies which enhance core clock
transcription of these protective downstream targets. Because
the clock serves as an orchestrator of a multitude of biological
processes, there is great potential for clock-targeted therapeu-
tics to simultaneously ameliorate multiple pathologic aspects of
complex neurodegenerative diseases. Thus, it is important to
more fully understand the mechanisms by which the circadian
clock regulates brain function and neurodegeneration, such that
rational strategies to target the clock for neuroprotection can be
devised.
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Our current 24-h society requires an increasing number of employees to work nightshifts

with millions of people worldwide working during the evening or night. Clear associations

have been found between shiftwork and the risk to develop metabolic health problems,

such as obesity. An increasing number of studies suggest that the underlying mechanism

includes disruption of the rhythmically organized body physiology. Normally, daily 24-h

rhythms in physiological processes are controlled by the central clock in the brain in close

collaboration with peripheral clocks present throughout the body. Working schedules of

shiftworkers greatly interfere with these normal daily rhythms by exposing the individual

to contrasting inputs, i.e., at the one hand (dim)light exposure at night, nightly activity and

eating and at the other hand daytime sleep and reduced light exposure. Several different

animal models are being used to mimic shiftwork and study the mechanism responsible

for the observed correlation between shiftwork and metabolic diseases. In this review we

aim to provide an overview of the available animal studies with a focus on the four most

relevant models that are being used to mimic human shiftwork: altered timing of (1) food

intake, (2) activity, (3) sleep, or (4) light exposure. For all studies we scored whether and

how relevant metabolic parameters, such as bodyweight, adiposity and plasma glucose

were affected by the manipulation. In the discussion, we focus on differences between

shiftwork models and animal species (i.e., rat and mouse). In addition, we comment on

the complexity of shiftwork as an exposure and the subsequent difficulties when using

animal models to investigate this condition. In view of the added value of animal models

over human cohorts to study the effects and mechanisms of shiftwork, we conclude with

recommendations to improve future research protocols to study the causality between

shiftwork and metabolic health problems using animal models.

Keywords: shiftwork, metabolism, animal model, circadian desynchronization, glucose, lipids, activity, obesity

Introduction

Our current 24-h society requires an increasing number of employees to work nightshifts and
as a result millions of people worldwide work during the evening or night for a certain period
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during their life. In the Netherlands, 16% of the working popu-
lation works regularly or occasionally during the night, whereas
51% of the population sometimes or regularly works during
the evening (Centraal Bureau voor de Statistiek, 2013). Epi-
demiological studies show correlations between shiftwork and
an increased risk of cancer, cardiovascular disease, sleep distur-
bances, impaired psychosocial health and gastrointestinal prob-
lems (Matheson et al., 2014). Moreover, the last two decades,
population-based studies have shown that there is also an associa-
tion between shiftwork and development of metabolic problems,
including metabolic syndrome (Van Amelsvoort et al., 1999;
Karlsson et al., 2001, 2003; Biggi et al., 2008; Suwazono et al.,
2008; Lin et al., 2009; Pietroiusti et al., 2010; Kubo et al., 2011;
Li et al., 2011; Tucker et al., 2012; Ye et al., 2013; Kawabe et al.,
2014; Kawada and Otsuka, 2014), altered glucose metabolism (De
Bacquer et al., 2009; Suwazono et al., 2009; Oyama et al., 2012),
altered lipid metabolism (Biggi et al., 2008; De Bacquer et al.,
2009; Dochi et al., 2009) and high blood pressure (Morikawa
et al., 1999; Sakata et al., 2003; De Bacquer et al., 2009; Lin
et al., 2009). Population-based studies are limited in their use for
understanding causality and underlying mechanisms to explain
the relationship between shiftwork and disease. Using experi-
mental studies in humans is problematic due to the fact thatmany
metabolic outcomes, such as body weight and composition, are
long-term effects. Certainly, acute effects of shiftwork conditions
on metabolic parameters can be studied in humans, which is cur-
rently done (McHill et al., 2014). Therefore, animal studies have
been used to gain more insight in these questions. In the current
review we provide an overview of the different animal models
that are available to investigate the mechanism underlying the
negative health consequences of shiftwork.

Daily 24-h rhythms are present throughout the body’s physi-
ology and can be observed in, for example, sleep, food consump-
tion, body temperature and numerous hormone levels (Dibner
et al., 2010). These rhythms are regulated by the central circadian
clock in the suprachiasmatic nucleus (SCN) of the hypothalamus

FIGURE 1 | Shiftwork can be disentangled into different aspects (blue

blocks), for some of these aspects animal models have been

developed (green blocks). Each of these aspects might contribute to

health risks associated with shiftwork. However, all aspects strongly interact,

making it difficult to separate the effects of each single aspect. In most

animal studies only one of the aspects is manipulated, however, it is

important to keep in mind that by manipulation of one aspect, other aspects

might be affected as well due to this interaction.

and circadian oscillators in peripheral tissues and organs (the
so-called peripheral clocks). The endogenous rhythmicity of the
SCN neurons ultimately results from the interaction between a
set of rhythmically expressed genes, so-called clock genes, which
are expressed in almost every cell of the body. In the SCN, the
nearly 24-h (i.e., circadian) rhythms produced by these clock-
genes are synchronized to the exact 24-h rhythms in the outer
world by their sensitivity to (sun)light (Dibner et al., 2010). The
synchronizing stimuli for peripheral clocks in non-SCN tissues
are less clear, in addition to nervous and humoral signals from
the SCN, behavioral signals such as body temperature, energy
metabolism and (feeding) activity also likely play a role (Hastings
et al., 1998; Dibner et al., 2010).

In general, the working schedules of shiftworkers profoundly
interfere with these normal daily rhythms (Puttonen et al., 2010;
Fritschi et al., 2011). Shiftwork leads to a disruption of the circa-
dian rhythms produced by the central and peripheral clocks by
confronting them with opposing signals, i.e., light at night and
food consumption and activity during the sleep period. There-
fore, shiftwork is a challenge that contains many aspects, which
might be related to the negative health effects (Figure 1): (1)
social pattern: shiftwork affects social life due to working hours
that conflict with working hours of social contacts; (2) activity:
shiftwork affects the timing of people’s activity and, as a conse-
quence, possibly affects the amount of activity; (3) sleep: shift-
work affects timing of sleep and possibly duration and quality
of sleep; (4) nutrition: shiftwork affects timing of food intake
and possibly meal frequency and composition; (5) light expo-
sure: shiftwork affects the timing of light exposure, with possibly
different intensity and duration of exposure; (6) sun exposure:
shiftwork might affect the duration of sun exposure and as a
consequence vitamin D levels. Shiftwork comprises alterations at
different levels of the circadian system that each have their own
effect, but are interacting as well (Figure 1; Puttonen et al., 2010;
Fritschi et al., 2011). For example, the altered timing of activity in
shiftworkers may result in sleep disturbances (duration, quality,
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and timing), altered nutrition (composition, caloric intake and
timing), changed lighting exposure conditions (duration, inten-
sity, and timing), reduced sunlight exposure (possible effect on
vitamin D levels) and disturbances in social life. Each of these
aspects might, to a greater or lesser extent, contribute to nega-
tive health effects. For several aspects, animal models have been
developed to examine the metabolic health effects upon manipu-
lation of these aspects of shiftwork individually or in combination
(Figure 1). To our knowledge, no animal models have so far been
developed to study effects of “social life” and “sun exposure.”

The aim of the present review is to provide an overview of the
available animal studies investigating the mechanism underlying
the negative health consequences of shiftwork and their outcome.
In addition, we discuss human relevancy of the available ani-
mal models for shiftwork to gain insight into animal to human
translatability and aid future investigations in choosing optimal
animal models. Next to animal models mimicking circadian dis-
ruptive shiftwork aspects, consequences of circadian disruption
have also been studied in animals using genetic manipulation or
SCN lesions. These animal models are not within the scope of
the present review, since we do not consider them to represent
human shiftwork.

To increase the animal to human translatability the focus of
the present review is on animal models investigating the relation-
ship between shiftwork and metabolic risk factors (Haffner, 1998;
Carnethon et al., 2004; Esquirol et al., 2011) since these factors
are easily translatable from humans to animals and vice versa. In
addition, these factors can be measured almost non-invasively in
humans and often appear before the full blown disease, allow-
ing for shorter follow-up time and more time for preventive
measures or intervention.

Studies were included in the review when they investigated
metabolic parameters such as bodyweight, food intake, activ-
ity, glucose metabolism (including plasma glucose, insulin and
glucagon levels, glucose tolerance, and glycogen levels), leptin
levels, and lipid metabolism (including plasma cholesterol and
triglyceride levels).

Methods

Search Strategy
A literature search was performed to obtain an overview of
the current scientific literature on studies using animal mod-
els for shiftwork to investigate the relationship between shift-
work and metabolic function. The search strategy was designed
by an information specialist (RIVM) using the MESH-database
of Pubmed, to include all MeSH terms and its synonyms and
several electronic databases were used (Medline, Embase, BIO-
SIS Previews en SciSearch). In brief, the search strategy com-
bined keywords related to shiftwork with keywords related to
metabolic risk factors. Examples of key words for shiftwork: shift
work∗, shiftwork∗, night work∗, night shift∗, rotating shift∗, jet
lag, working rhythm∗, “irregular working hours,” time restricted,
“constant light,” “continuous light,” “light at night,” biological
clock∗, body clock∗, chronobiology∗, circadian clock∗. Examples
of key words for metabolic risk factors: weight, body weight,
weight change, metabolic syndrome, obesity, adiposity, glucose,

glucose tolerance, lipid metabolism, energy metabolism, insulin,
insulin sensitivity, hypertension, leptin. Only papers published
after 1993 were included. For the complete search strategy see
Supplementary Data.

The search resulted in 1550 publications, but only 44 were
included as these met the following criteria:

(1) Using animal models for shiftwork
(2) Investigate effects on at least one of the following metabolic

risk factors for disease (Haffner, 1998; Carnethon et al.,
2004):

bodyweight and related measures (BMI, fat percentage) or
glucose homeostasis: including plasma glucose levels, glucose tol-
erance, plasma insulin levels, insulin sensitivity or lipid home-
ostasis: including plasma levels of triglycerides, cholesterol, free
fatty acids, HDL or LDL.

The search included papers in English, Dutch, French, and
German. However, only papers in English fitted the above men-
tioned criteria. In addition to this search strategy, the present
knowledge of the authors and references from included papers
(“snowball method”) were used to include additional papers that
fitted the above mentioned criteria (including papers published
before 1993) or investigated parameters related to metabolic
dysfunction.

Categorization of Studies
Included studies were divided in four different categories as pre-
sented in Figure 1: (1) Models using “timing of food intake,”
(2) models using “timing of activity,” (3) models using “tim-
ing of sleep,” and (4) models using “timing of light.” For each
study the outcome parameters were determined, which included
the abovementioned metabolic risk factors for disease as well
as circadian parameters (e.g., activity, cortisol) and gene expres-
sion. For these parameters, results are described in the text
and summarized in the table for overview purposes. In the
Tables 1–5, the left column holds the metabolically relevant
parameters which were scored for and were most frequently
measured in the studies. The rat and mouse columns repre-
sent the number of studies in which an effect of the manipu-
lation (compared to the control condition) was found in this
species against the number of studies in which it was measured.
In the total column, results are divided in direction of effects
and presented as the number of studies observing that direc-
tion is summarized. This was not done for gene expression. The
most right column shows the studies in which the parameter
was measured in this category of models. In the tables, stud-
ies are counted twice when multiple experiments are performed
in one article, for instance when two types of mice were used.
Occasionally, the effect of the manipulation was measured on
the total level as well as the rhythm of a parameter within the
same study. In this case, both effects are included in the total
column.

With these tables we aim to provide an overview of the
metabolic parameters that are influenced per category and type of
animals used. Results of effect on gene expression are described
in the text and summarized in the table as “gene expression.” The
present review was aimed at providing a narrative overview of
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TABLE 1 | Summary of animal studies in which timing of food intake was manipulated to mimic human shiftwork.

Food Rat Mouse Total Studies

Bodyweight 1/3 6/8 +: 3/11 (27, 3%)

−: 4/11 (36, 4%)

o: 4/11 (36, 4%)

Arble et al., 2009; Bray et al., 2010, 2013; Salgado-Delgado et al., 2010a, 2013; Jang et al., 2012;

Sherman et al., 2012; Yoon et al., 2012; Reznick et al., 2013; Oyama et al., 2014; Shamsi et al., 2014

Food intake total 1/3 4/8 +: 0/11 (0%)

−: 5/11 (45, 5%)

o: 6/11 (54, 5%)

Arble et al., 2009; Bray et al., 2010, 2013; Salgado-Delgado et al., 2010a, 2013; Jang et al., 2012;

Sherman et al., 2012; Yoon et al., 2012; Reznick et al., 2013; Oyama et al., 2014; Shamsi et al., 2014

Activity total 1/2 2/5 +: 2/7 (28, 6%)

−: 1/7 (14, 3%)

o: 4/7 (57, 1%)

Arble et al., 2009; Bray et al., 2010, 2013; Salgado-Delgado et al., 2010a; Sherman et al., 2012; Yoon

et al., 2012; Reznick et al., 2013; Shamsi et al., 2014

EE total 1/1 2/2 +: 0/3 (0%)

−: 3/3 (100%)

o: 0/3 (0%)

Arble et al., 2009; Bray et al., 2010, 2013; Reznick et al., 2013

RER 1/1 2/2 +: 1/3 (33, 3%)

−: 1/3 (33, 3%)

∼: 1/3 (33, 3%)

o: 0/3 (0%)

Bray et al., 2010, 2013; Reznick et al., 2013

Adiposity 2/3 3/4 +: 3/7 (42, 8%)

−: 2/7 (28, 6%)

o: 2/7 (28, 6%)

Arble et al., 2009; Bray et al., 2010; Salgado-Delgado et al., 2010a, 2013; Sherman et al., 2012; Reznick

et al., 2013; Shamsi et al., 2014

Glucose metabolism 2/3 4/6 +: 1/9 (11, 1%)

−: 2/9 (22, 2%)

∼: 3/9 (33, 3%)

o: 3/9 (33, 3%)

Bray et al., 2010, 2013; Salgado-Delgado et al., 2010a, 2013; Jang et al., 2012; Sherman et al., 2012;

Yoon et al., 2012; Reznick et al., 2013; Shamsi et al., 2014

Lipid metabolism 2/2 3/5 +: 1/7 (14, 3%)

−: 2/7 (28, 6%)

∼: 4/7 (57, 1%)

o: 2/7 (28, 6%)

Bray et al., 2010, 2013; Salgado-Delgado et al., 2010a; Sherman et al., 2012; Yoon et al., 2012; Reznick

et al., 2013; Shamsi et al., 2014

Corticosterone 2/2 2/3 +: 1/5 (20%)

−: 0/5 (0%)

∼: 3/5 (60%)

o: 1/5 (20%)

Salgado-Delgado et al., 2010a; Sherman et al., 2012; Bray et al., 2013; Reznick et al., 2013; Shamsi

et al., 2014

Melatonin

Leptin 1/1 0/1 +: 1/2 (50%)

−: 0/2 (0%)

∼: 1/2 (50%)

o: 1/2 (50%)

Bray et al., 2010; Sherman et al., 2012; Reznick et al., 2013

Ghrelin 1/1 +: 0/1 (0%)

−: 1/1 (100%)

∼: 0/1 (0%)

o: 0/1 (0%)

Sherman et al., 2012

BP/Heart rate 2/2 +: 0/2 (0%)

−: 2/2 (100%)

∼: 0/2 (0%)

o: 0/2 (0%)

Schroder et al., 2014

Gene expression 2/2 10/10 12/12 (100%) Damiola et al., 2000; Jang et al., 2012; Sherman et al., 2012; Yoon et al., 2012; Bray et al., 2013; Reznick

et al., 2013; Salgado-Delgado et al., 2013; Oyama et al., 2014; Shamsi et al., 2014

For detailed description of the columns, see Methods section.

+, number of studies with increases; −, number of studies with decreases; ∼, number of studies with altered rhythm; o, number of studies with no effect. For glucose metabolism a +

indicates increased basal levels of glucose, HbA1c or insulin, increased HOMA index or decreased glucose tolerance.

EE, energy expenditure; RER, respiratory exchange ratio; BP, blood pressure.
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TABLE 2 | Summary of animal studies in which timing of activity was manipulated to mimic human shiftwork.

Activity Rat Mouse Total Studies

Bodyweight 5/6 +: 3/6 (50%)

−: 2/6 (33, 3%)

o: 1/6 (16, 7%)

Murphy, 2003; Tsai and Tsai, 2007; Salgado-Delgado et al., 2008, 2010a, 2013; Leenaars et al., 2012

Food intake total 2/6 +: 1/6 (16, 7%)

−: 1/6 (16, 7%)

o: 4/6 (66, 7%)

Murphy, 2003; Tsai and Tsai, 2007; Salgado-Delgado et al., 2008, 2010a,b, 2013

Activity total 4/6 +: 0/6 (0%)

−: 4/6 (66, 7%)

o: 2/6 (33, 3%)

Salgado-Delgado et al., 2008, 2010a,b, 2013; Leenaars et al., 2012; Hsieh et al., 2014

EE total

RER

Adiposity 2/2 +: 2/2 (100%)

−: 0/2 (0%)

o: 0/2 (0%)

Salgado-Delgado et al., 2010a, 2013

Glucose metabolism 3/3 +: 1/3 (33, 3%)

−: 2/3 (66, 7%)

∼: 0/3 (0%)

o: 0/3 (0%)

Salgado-Delgado et al., 2008, 2010a, 2013

Lipid metabolism 2/2 +: 0/2 (0%)

−: 0/2 (0%)

∼: 2/2 (100%)

o: 0/2 (0%)

Salgado-Delgado et al., 2008, 2010a

Corticosterone 2/2 +: 0/2 (0%)

−: 0/2 (0%)

∼: 2/2 (100%)

o: 0/2 (0%)

Salgado-Delgado et al., 2008, 2010a

Melatonin

Leptin

Ghrelin

BP/Heart rate

Gene expression 1/1 1/1 (100%) Salgado-Delgado et al., 2013

For detailed description of the columns, see Methods section.

+, number of studies with increases; −, number of studies with decreases; ∼, number of studies with altered rhythm; o, number of studies with no effect. For glucose metabolism a +

indicates increased basal levels of glucose, HbA1c or insulin, increased HOMA index or decreased glucose tolerance.

EE, energy expenditure; RER, respiratory exchange ratio; BP, blood pressure.

available studies and their findings, due to heterogeneity studies
were not assessed for quality.

Results

Animal studies that model human shiftwork can be divided into
four main categories. The first three categories are based on
desynchronization of peripheral clocks from the central clock by
the unnatural timing of food intake, sleep or activity. The remain-
ing category consists of studies that manipulate the timing of
light exposure, including alterations of duration (i.e., continuous

light) and timing of light exposure. Some studies used a shiftwork
model that combines multiple categories and those will be men-
tioned repeatedly in the different categories if appropriate. Below
we discuss the main findings of studies using a shiftwork model
within the categories where the models fit best.

Category 1: Models Using “Timing of Food
Intake”
Shiftwork models using shifted and/or restricted timing of food
availability are based on the knowledge that food intake is the
most important Zeitgeber for peripheral clocks, in the same
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TABLE 3 | Summary of animal studies in which timing of sleep was manipulated to mimic human shiftwork.

Sleep Rat Mouse Total Studies

Bodyweight 3/3 0/2 +: 1/5 (20%)

−: 3/5 (60%)

o: 2/5 (20%)

Barf et al., 2010, 2012a,b; Barclay et al., 2012; Husse et al., 2012

Food intake total 1/2 1/2 +: 2/4 (50%)

−: 0/4 (0%)

o: 2/4 (50%)

Barf et al., 2010, 2012a; Barclay et al., 2012; Husse et al., 2012

Activity total 0/1 0/2 +: 0/3 (0%)

−: 0/3 (0%)

o: 3/3 (100%)

Barclay et al., 2012; Barf et al., 2012a; Husse et al., 2012

EE total 0/1 +: 0/1 (0%)

−: 0/1 (0%)

o: 1/1 (100%)

Barf et al., 2012a

RER

Adiposity

Glucose metabolism 3/3 2/2 +: 3/5 (60%)

−: 2/5 (40%)

∼: 0/5 (0%)

o: 0/5 (0%)

Barf et al., 2010, 2012a,b; Barclay et al., 2012; Husse et al., 2012

Lipid metabolism 2/2 +: 2/2 (100%)

−: 1/2 (50%)

∼: 0/2 (0%)

o: 0/2 (0%)

Barclay et al., 2012; Husse et al., 2012

Corticosterone 1/2 1/2 +: 2/4 (50%)

−: 0/4 (0%)

∼: 0/4 (0%)

o: 2/4 (50%)

Barclay et al., 2012; Barf et al., 2012a,b; Husse et al., 2012

Melatonin

Leptin 2/2 2/2 +: 1/4 (25%)

−: 3/4 (75%)

∼: 0/4 (0%)

o: 0/4 (0%)

Barclay et al., 2012; Barf et al., 2012a,b; Husse et al., 2012

Ghrelin

BP/heart rate

Gene expression 2/2 2/2 (100%) Barclay et al., 2012; Husse et al., 2012

For detailed description of the columns, see Methods section.

+, number of studies with increases; −, number of studies with decreases; ∼, number of studies with altered rhythm; o, number of studies with no effect. For glucose metabolism a +

indicates increased basal levels of glucose, HbA1c or insulin, increased HOMA index or decreased glucose tolerance.

EE, energy expenditure; RER, respiratory exchange ratio; BP, blood pressure.

way as light is for the central clock. Shifting timing of food
intake disrupts the orchestrated synchrony between peripheral
and brain clocks, which might lead to metabolic problems
as peripheral organs such as liver and muscle are essential
for energy homeostasis. Shifting the timing of food intake is
an interesting approach as metabolic disorders such as obe-
sity are also associated with aberrant dietary habits (i.e., quan-
tity, composition and frequency) and shiftworkers also have

changed dietary habits. Moreover, more recently several stud-
ies have suggested that also the timing of food intake is cru-
cial to maintain energy homeostasis (Gluck et al., 2011; Garaulet
et al., 2013; Hibi et al., 2013; Garaulet and Gomez-Abellan,
2014; Wang et al., 2014) and shifting the timing of food
intake is another characteristic feature of shiftworkers (Low-
den et al., 2010). All in all making this a relevant model for
shiftwork.
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TABLE 4 | Summary of animal studies in which continuous light (LL) or dimlight (LDim) at night exposure was used to mimic human shiftwork.

LL/LDim RAT Mouse Total Studies

Bodyweight 1/5 5/6 +: 6/11 (54, 5%)

−: 0/11 (0%)

o: 5/11 (45, 4%)

Natelson et al., 1993; Dauchy et al., 2010; Fonken et al., 2010; Gale et al., 2011; Coomans et al.,

2013a; Aubrecht et al., 2014; Borniger et al., 2014

Food intake total 0/2 2/7 +: 1/9 (11, 1%)

−: 1/9 (11, 1%)

o: 7/9 (77, 7%)

Dauchy et al., 2010; Fonken et al., 2010; Coomans et al., 2013a; Shi et al., 2013; Aubrecht et al., 2014;

Borniger et al., 2014

Activity total 0/5 +: 0/5 (0%)

−: 0/5 (0%)

o: 5/5 (100%)

Fonken et al., 2010; Shi et al., 2013; Aubrecht et al., 2014; Borniger et al., 2014

EE total 2/2 +: 0/2 (0%)

−: 2/2 (100%)

o: 0/2 (0%)

Coomans et al., 2013a; Borniger et al., 2014

RER 2/2 +: 2/2 (100%)

−: 0/2 (0%)

o: 0/2 (0%)

Coomans et al., 2013a; Borniger et al., 2014

Adiposity 1/1 +: 1/1 (100%)

−: 0/1 (0%)

o: 0/1 (0%)

Shi et al., 2013

Glucose metabolism 3/4 3/3 +: 4/7 (57, 1%)

−: 0/7 (0%)

∼: 2/7 (28, 6%)

o: 1/7 (14, 3%)

Dauchy et al., 2010; Fonken et al., 2010; Gale et al., 2011; Coomans et al., 2013a

Lipid metabolism 1/2 +: 0/2 (0%)

−: 0/2 (0%)

∼: 1/2 (50%)

o: 1/2 (50%)

Dauchy et al., 2010

Corticosterone 2/2 +: 1/2 (50%)

−: 0/2 (0%)

∼: 2/2 (100%)

o: 0/2 (0%)

Dauchy et al., 2010

Melatonin 4/4 +: 0/4 (0%)

−: 2/4 (50%)

∼: 2/4 (50%)

o: 0/4 (0%)

Dauchy et al., 2010; Gale et al., 2011

Leptin

Ghrelin

BP/Heart rate

Gene expression

For detailed description of the columns, see Methods section.

+, number of studies with increases; −, number of studies with decreases; ∼, number of studies with altered rhythm; o, number of studies with no effect. For glucose metabolism a +

indicates increased basal levels of glucose, HbA1c or insulin, increased HOMA index or decreased glucose tolerance.

EE, energy expenditure; RER, respiratory exchange ratio; BP, blood pressure.

The first evidence for food as a strong entrainment sig-
nal for circadian physiology (metabolic and clock gene expres-
sion rhythms, hormone secretion rhythms) came from so-called
restricted feeding studies. This type of studies usually restricts
food availability to a short period (e.g., 2–4 h) during the light

phase (which is the resting phase of nocturnal rodents) to study
entrainment of peripheral clocks. Clearly these are important
studies for chronobiology in general and still are performed fre-
quently to look for and try to understand better the food entrain-
able oscillator. However, such restricted-feeding models are not
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TABLE 5 | Summary of animal studies in which exposure to L/D shifts was used to mimic human shiftwork.

L/D shifts Rat Mouse Total Studies

Bodyweight 2/5 3/4 +: 4/9 (44, 4%)

−: 1/9 (11, 1%)

o: 4/9 (44, 4%)

Vilaplana et al., 1995; Tsai et al., 2005; Bartol-Munier et al., 2006; Oishi, 2009; Gale et al., 2011;

Karatsoreos et al., 2011; Oishi and Itoh, 2013; Voigt et al., 2014

Food intake total 2/3 1/3 +: 2/6 (33, 3%)

−: 1/6 (16, 7%)

o: 3/6 (50%)

Vilaplana et al., 1995; Tsai et al., 2005; Bartol-Munier et al., 2006; Oishi, 2009; Karatsoreos et al., 2011;

Oishi and Itoh, 2013

Activity total 2/2 +: 0/2 (0%)

−: 2/2 (100%)

o: 0/2 (0%)

Tsai et al., 2005; Bartol-Munier et al., 2006

EE total

RER

Adiposity

Glucose metabolism 2/3 3/3 +: 4/6 (66, 7%)

−: 1/6 (16, 7%)

∼: 0/6 (0%)

o: 1/6 (16, 7%)

Bartol-Munier et al., 2006; Oishi, 2009; Gale et al., 2011; Karatsoreos et al., 2011; Oishi and Itoh, 2013

Lipid metabolism 0/1 1/2 +: 1/3 (33, 3%)

−: 0/3 (0%)

∼: 0/3 (0%)

o: 2/3 (66, 7%)

Bartol-Munier et al., 2006; Oishi, 2009; Oishi and Itoh, 2013

Corticosterone

Melatonin 2/2 +: 0/2 (0%)

−: 0/2 (0%)

∼: 2/2 (100%)

o: 0/2 (0%)

Gale et al., 2011

Leptin 1/1 +: 1/1 (100%)

−: 0/1 (0%)

∼: 0/1 (0%)

o: 0/1 (0%)

Karatsoreos et al., 2011

Ghrelin

BP/Heart rate 1/1 +: 0/1 (0%)

−: 0/1 (0%)

∼: 1/1 (100%)

o: 0/1 (0%)

Tsai et al., 2005

Gene expression 1/1 1/1 (100%) Oishi and Itoh, 2013

For detailed description of the columns, see Methods section.

+, number of studies with increases; −, number of studies with decreases; ∼, number of studies with altered rhythm; o, number of studies with no effect. For glucose metabolism a +

indicates increased basal levels of glucose, HbA1c or insulin, increased HOMA index or decreased glucose tolerance.

EE, energy expenditure; RER, respiratory exchange ratio; BP, blood pressure.

an adequate reflection of human food intake behavior during
shiftwork as they restrict the duration of food intake to a (very)
short period and therefore were not included in this review.

Food restriction studies in which food availability is shifted
or restricted to a certain phase of the day (i.e., a large part of or
the complete light period or dark period) provide a more suitable
approach to mimic human feeding behavior during shift work.

One of the first studies with food availability restricted to either
the 12-h light or 12-h dark phase was done by Damiola et al. and
they showed a strongly disturbed circadian rhythm according to
altered daily body temperature rhythms in mice that could eat
only during the light (i.e., resting) phase. Several clock genes in
liver adjusted their expression to the timing of food intake (Dami-
ola et al., 2000). Although alterations in gene expression cannot
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be translated directly into functional changes, it does indicate that
food has strong entraining properties even on amolecular level in
mice. More recently, Bray et al. performed a short-term exper-
iment and observed metabolic changes within the first 9 days
after restricting food intake to the light or dark phase. Whole
body energy metabolism was affected within 24 h of food restric-
tion and this was visible in a 5 h phase advance of rhythm in
energy expenditure, higher resting energy expenditure (RER) and
increased caloric intake. Restricting food to the resting phase
caused an increase of bodyweight and blunted plasma glucose
and corticosterone rhythm, whereas triglyceride levels were not
affected (Bray et al., 2013). A short term experiment by Oyama
et al. focused on the effects of food timing on inflammatory
response but additionally found reduced food intake and body-
weight in mice fed during the light phase (Oyama et al., 2014).
Jang et al. performed the same restriction protocol but studied
long-term effects (5–9 weeks). Surprisingly, they observed a pro-
tective effect of restricting food to the resting phase with lower
bodyweight and food intake when compared to (chow or high-
fat diet) ad libitum fed animals. Bodyweight did not differ from
animals pair-fed during the active phase. Also, alterations in the
expression of lipogenic, gluconeogenic and fatty acid oxidation-
related genes in liver were found in feeding time-restricted ani-
mals (Jang et al., 2012). Shamsi et al. entrained mice to 16L:8D or
8L:16D photoperiods and restricted food availability to light- or
dark phase. Neither photoperiod nor food timing affected body-
weight when compared to ad libitum feeding. Plasma insulin
increased in light phase fed animals despite the photoperiod,
whereas plasma glucose tended to be lower and triglycerides sig-
nificantly decreased when feeding during light was compared to
ad libitum or dark phase feeding. Rhythms in plasma glucose,
insulin and triglyceride secretion shifted by light phase feeding
when compared to dark phase feeding and some effects (mostly
amplitude) changed over time (i.e., 7 vs. 35 days). Interestingly,
long photoperiod caused light phase fed animals to increase glu-
cose tolerance but decrease insulin tolerance compared to dark
phase fed animals and ad libitum fed animals respectively. Gene
expression of metabolic and clock genes in liver was altered by
feeding during light phase in both amplitude and phase. Corti-
costerone rhythm was shifted by light phase feeding after 35 days
but not after 7 days (Shamsi et al., 2014). Reznick et al. took a
similar approach with a 3-week study performed withWistar rats
instead of mice. No effect was found on bodyweight gain or epi-
didymal white adipose tissue, but animals fed during the resting
phase decreased their food intake and total activity levels. Rats fed
during the light period showed a 12-h shift in RER and damp-
ening of activity and energy expenditure diurnal variation. The
rhythm of plasma insulin altered with higher 24-h levels, corti-
costerone showed an additional peak and the rhythm of glycogen
shifted to an opposite phase in liver but showed increased lev-
els in muscle. Triglyceride levels in liver were reduced whereas
muscle content was unaffected in animals fed during the light
period. Expression of several other proteins and genes involved
in energy metabolism and clock regulation in liver and muscle
tissue showed phase changes or altered expression levels. In the
same study this experimental design was used for a group of rats
fed a high fat diet which aggravated many of the observed effects

found in chow day-fed animals with additional disruption of lep-
tin and NEFA (non-esterified fatty acids) levels (Reznick et al.,
2013).

A series of studies performed with male Wistar rats used
a forced activity protocol as a model for shiftwork (Salgado-
Delgado et al., 2008, 2010a,b, 2011, 2013). The effects of forced
activity will be described below (see category 2), but the non-
working “control” groups of these studies are relevant for the
timing of food category. When food was restricted to the rest-
ing phase, i.e., chow only available from ZT0 to ZT12, rats dis-
played a dampening of their core body temperature rhythm, an
additional peak in the plasma corticosterone rhythm, and a shift
in triglyceride secretion, but no differences were observed for
the plasma glucose and activity rhythm or total activity. Total
food intake remained the same but bodyweight and peritoneal
fat accumulation were increased when compared to ad libitum or
night fed (food available from ZT12 to ZT24) animals (Salgado-
Delgado et al., 2010a). The observed accumulation of abdominal
fat was reproduced by the same group in another study where a
decreased glucose tolerance in rats fed during the resting phase
was observed, in addition to alterations or dampened rhythms in
liver clock andmetabolic gene expression (Salgado-Delgado et al.,
2013).

A couple of other groups used comparable food availability
approaches in mice on normal chow diet, however, shorter food
restriction periods were used than 12 h during the light period.
Yoon et al. enforced a 6-h advance (ZT6-11) or delay (ZT18-23)
in food availability for 9 weeks and observed that body tem-
perature, locomotor activity and triglyceride secretion strongly
depend on food timing. Cholesterol and HDL levels were moder-
ately increased in both advance and delay groups when compared
to ad libitum fed animals, and food intake was reduced in the food
time advanced group compared to food time delay group and ad-
lib controls. Fasting glucose levels increased and poor responses
to insulin tolerance test intensified over time in daytime fed ani-
mals (advance group) (Yoon et al., 2012). Sherman and colleagues
restricted food intake to the light phase, ZT4-8 without caloric
restriction, for 18 weeks and performed this with both high- and
low-fat (chow) diets. In both diets, time restriction was protec-
tive for bodyweight gain, high plasma leptin, insulin, HDL and
cholesterol levels. Also the increased epididymal fat observed in
ad libitum fed animals was diminished in the food time-restricted
groups. In low fat diet fed animals triglyceride levels were reduced
but corticosterone and adiponectin were increased, as compared
to the ad libitum low and high-fat and restricted high-fat ani-
mals. High-fat diet fed animals also showed improved TNF-alpha
and HOMA-IR levels and increased activity levels when food was
restricted to the light period, as compared to ad libitum fed ani-
mals, but were less active than animals on a low-fat diet (Sherman
et al., 2012). Schroder et al. focused on the effects on heart rhythm
and observed that when food was provided from ZT2-9 only, this
negatively affected several aspects of heart rhythm aspects in both
wild type and genetically sensitive mice (Schroder et al., 2014).

Most studies mentioned above were performed with normal
chow diet which is low on fat derived content. However, many
diet-induced obesity studies use high-fat diet ad libitum feeding
on which animals will develop obesity, diabetes and metabolic
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syndrome (Zaragoza and Felber, 1970). For circadian studies
it is important to know that feeding rodents a high-fat diet
induces a dampening of the amplitude of daily activity and feed-
ing rhythms, and also metabolic markers, hypothalamic neu-
ropeptides and peripherally expressed factors involved in lipid
metabolism are affected (Kohsaka et al., 2007). This suggests an
interaction between energy metabolism and circadian rhythm
control. Some groups, however, combined the restricted-feeding
paradigm with a high-fat diet. Restriction of food to one phase of
the day may re-induce the entrainment lost on high-fat ad libi-
tum feeding. Arble and colleagues made an early attempt and fed
mice a high-fat diet solely during the light-phase and observed
a significant increase in bodyweight compared to animals fed
during the dark phase (Arble et al., 2009). Bray et al. used four
different feeding schedules to study in more detail which phase
of the L/D-cycle is most detrimental when ingesting a high-
fat diet for 12 weeks. They observed higher bodyweight gain
and adiposity, decreased glucose tolerance next to high insulin,
leptin and triglyceride levels in mice consuming their high-fat
meal at the end of the active phase instead of at the beginning.
Interestingly, when fat was only available in the light phase no
metabolic changes were observed with the exception of slightly
decreased energy expenditure and oxygen consumption when
compared to animals with fat available in the dark phase (Bray
et al., 2010). Several studies experimented with restriction of a
nutrient component to a certain phase of the day for the effects
on obesity. For instance, providing the fat component or sugar
component of a free-choice high-fat-high-sugar diet only during
the light phase affects RER, energy expenditure and bodyweight
(La Fleur et al., 2014; Oosterman et al., 2014). A slightly dif-
ferent approach was taken by Senador et al. by offering mice
a 10% fructose solution additional to their normal chow and
water diet. Fructose was either available for 24 h, available for
12 h during light phase, available for 12 h during dark phase or
not available. Increased bodyweight, higher fasting glucose levels
but decreased plasma triglycerides were observed in both groups
with 12 h fructose availability. Fructose restriction to light phase
additionally caused glucose intolerance and an attenuated ampli-
tude of blood pressure rhythms.Ad libitum availability of fructose
only caused glucose intolerance when compared to control ani-
mals without fructose (Senador et al., 2012). Another type of
timed food restriction is done by dividing food intake into 4 or
6 meals equally divided over the L/D-cycle. For instance, Yama-
juku et al. delivered a high cholesterol diet to rats in a 4-meal
schedule (every 6 h) without reduction of caloric intake. Those
animals developed hypercholesterolemia after 7 days on the pro-
tocol and furthermore showed disruption in liver gene expression
(Yamajuku et al., 2009). These studies are probably highly rele-
vant as shiftwork models. However, until now it is unclear how
shift workers exactly change their dietary habits in timing, com-
position, frequency and size of meals, making it hard to decide at
present what are the best models.

In contrast to studies that restrict food availability to the
light phase, Hatori et al. showed that restricting a high-fat diet
to the natural main feeding phase (ZT13-21) improved glucose
tolerance, insulin sensitivity, adiposity, serum cholesterol levels
and leptin levels after fasting or glucose administration, next to

prevention of increased liver size and unsaturated fatty acids
levels, compared to animals fed ad libitum (Hatori et al., 2012).

Summary “Timing of Food Intake” Models
Animal models using a restriction of the timing of food intake
affect bodyweight in 64% of the studies, but effects went in dif-
ferent directions with 3 out of 7 studies showing an increase
of bodyweight whereas the four other studies found a decrease
in bodyweight after timed food intake. Restricting food to the
light phase resulted in increased bodyweight compared to ani-
mals with food restricted to the dark phase (Arble et al., 2009;
Bray et al., 2013) and when compared to ad libitum fed (Salgado-
Delgado et al., 2010a). However, others observed reduced body-
weight after food restriction to the light phase compared to dark
fed animals (Yoon et al., 2012; Oyama et al., 2014) or ad libitum
fed animals (Sherman et al., 2012; Yoon et al., 2012). Interest-
ingly, in many of these studies food intake was reduced as well.
Furthermore, some differences betweenmouse and rat studies are
observed. For example, for bodyweight, mice studies show a sig-
nificant effect in 6 out of 8 studies (75%), whereas in rats only
in 1 out of the 3 studies (33%) a significant effect was observed.
Total food intake and glucose metabolism parameters were mea-
sured frequently and were affected in 45 and 67% of the stud-
ies, respectively. For a complete overview of all parameters see
Table 1. Together, these results indicate that changing the timing
of food intake is effective at influencing several metabolic param-
eters, although for some parameters results are not consistent.
Considering the great variety in types of modulations used it is
not possible to pinpoint this to one aspect of the models used.

Category 2: Models Using “Timing of Activity”
“Work” is a difficult concept to model in animal studies and
therefore only a very limited number of studies are available
using an actual physical shiftwork protocol. Obviously shiftwork
requires shifting of phases of sleep and arousal leading, at least
partly, to awakening during the usual sleep period and sleep dur-
ing the usual active period of the day. The few available phys-
ical shiftwork models used forced activity by housing animals
in slowly rotating wheels. These housing conditions force the
animals to be active and prevent them to fall asleep, although
the animals can lie down and eat. Salgado-Delgado et al. mim-
icked human shiftwork protocols by enforcing the working con-
ditions for 8 h per day, either during the active phase or the
sleeping phase, 5 days a week for 5 weeks. In addition, they var-
ied the availability of food but always used normal chow diets.
A general observation in the groups of animals working dur-
ing their resting phase was that the animals lost their nocturnal
urge to eat and voluntarily consumed their food mostly dur-
ing their working hours and thereby during their normal rest-
ing (i.e., light) phase. Forced activity during the resting phase
induced increased bodyweight and abdominal fat, impaired glu-
cose tolerance, altered plasma triglyceride diurnal variation,
dampened daily glucose variation and introduced a secondary
peak in the corticosterone rhythm. These effects could be pre-
vented when food availability was restricted to the normal active
(i.e., dark) phase (Salgado-Delgado et al., 2008, 2010a,b, 2011,
2013).
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An early study by Tsai et al., used an extensive design with rats
exposed to changes of light schedules (twice a week), forced activ-
ity paradigms and combinations of those. They observed higher
bodyweight in the first 2 months, but not in the third month, in
animals that were subjected to a “shiftwork” schedule of forced
activity (i.e., Tue-Thu work from ZT0-ZT12, Fri-Sun work from
ZT12-ZT24,Monday free) combined with changes in light sched-
ule which was in synch (i.e., 12 h shift of L:D cycle twice a
week) with the work schedule. Animals exposed to forced activity
schedules had lower bodyweight and lower levels of cholesterol
than animals that only underwent shift of light/dark cycle, indi-
cating that forced activity can reverse some effects onmetabolism
induced by the regular L/D shifts. Some early effects on body-
weight and food intake disappeared after 2 months on the proto-
col, whereas other effects were only found after a few months on
this protocol (Tsai and Tsai, 2007).

A study by Leenaars et al. using forced activity in rats did
not focus on metabolic parameters, but did observe a decrease
in total activity levels in animals that had to work either during
their active or during their resting phase compared to freely active
animals. Animals working shiftwork (i.e., work during the nor-
mal resting phase) showed reduced bodyweight gain compared
to non-working controls (Leenaars et al., 2012).

A study by Hsieh et al. used 5-week forced activity in rats and
closely studied alterations in activity patterns. The animals in this
study are from the same study as Salgado-Delgado et al. (2008)
but reported more specifically on locomotor activity. A decrease
in mean activity levels was observed in shiftwork animals (i.e.,
working ZT2-10) during weekdays from week 3 onwards and
during weekend days from week 1 onwards, but not in animals
working during their active phase (i.e., working from ZT14-22).
Shiftwork animals showed decreased amplitude of the activity
rhythm on weekend days and a differently shaped rhythm of
24-h activity on weekdays. Shiftwork animals showed different
activity responses to lights on and off when compared to non-
shiftworking rats (Hsieh et al., 2014). The observed disruption of
normal activity patterns was reported as an indication for circa-
dian disruption as similar changes have been observed in SCN
lesioned animals.

Summary “Timing of Activity” Models
Models using an altered timing of activity have only been car-
ried out with rats and therefore no numbers on mouse studies
are available. The limited number of studies and contributing
research groups with this paradigm resulted in high numbers
of affected studies on all parameters. As shown in Table 2, all
parameters showed a 100% effectiveness of the different studies,
except for bodyweight, total food and total activity levels intake
which were affected in 5, 2, and 4 out of 6 studies, respectively.
These results suggest that “timing of activity” has metabolic
effects, although considering the limited number of studies and
research groups these results should be interpreted with some
caution.

Category 3: Models Using “Timing of Sleep”
Alterations in timing of activity are directly related to alter-
ations in timing and duration of sleep. However, changes in the

timing of sleep are also separately used as a model for shift-
work. These studies are different from the previously described
activity models as their first target is to disturb or shorten sleep
and affect the timing of sleep, but not necessarily alter activity
levels or food intake. However, undoubtedly changes in sleep
behavior will also affect activity and feeding patterns. Interest-
ingly, (chronic) sleep restriction is associated with metabolic dis-
orders in both animals and humans (Gangwisch, 2009; Killick
et al., 2012). We came across a diversity of methods used to dis-
rupt the normal sleep/wake pattern, including sleep disruption,
sleep restriction, sleep fragmentation, sleep perturbation or sleep
deprivation. Some of those might be other designations of the
same intentions, such as sleep fragmentation and perturbation.
These models either use shifting the timing of the normal sleep
phase along the light-dark cycle, perturbing sleep in the normal
phase, reducing the total number of sleep hours or completely
withholding sleep. Most of these sleep studies focused on the
effects of sleep perturbation on sleep parameters (such as percent-
age REM and NREM sleep, EEG recordings), behavioral changes
or other non-metabolic factors. In this review only studies using
a shift in the timing of sleep to the dark phase and studies using
total sleep deprivation for a few hours were included as those
were considered most relevant for shiftwork models.

Methods to perturb sleep are diverse and forced activity, as
mentioned before, is one of them. Another method involves gen-
tle handling for a few hours, by touching the animal every time
it tries to fall asleep. Short term effects of sleep restriction during
the first 6 h of the normal sleep phase (ZT0-ZT6) were described
in two studies. Barclay et al. observed moderate alterations in the
timing of food intake (in the direction of light phase feeding) and
locomotor activity (increased levels during light and decreased
levels during dark phase), next to major disruptions in liver tran-
scriptome rhythms enriched for lipid and glucose metabolism
pathways after 2 weeks of sleep restriction. A decreased response
in the pyruvate test, a dampening of the daily rhythms in plasma
glycerol, plasma triglyceride, plasma corticosterone and hepatic
glycogen levels, and disrupted expression of several clock genes
were all rescued by restricting food intake to the dark phase in
the sleep restricted groups (Barclay et al., 2012).

Another study (Husse et al., 2012) used the same method but
subjected the animals to sleep restriction for only five consecutive
days followed by a recovery week during which several parame-
ters were measured. Sleep restriction led to increased food intake
despite increased leptin levels, together these changes are indica-
tive for leptin resistance. Blood metabolites such as glucose and
triglycerides were increased, but levels improved again during
the recovery week. However, a trend toward higher bodyweight
gain was observed during the recovery week suggesting long
term effects even when the period of sleep restriction has termi-
nated. Analysis of white adipose tissue transcriptome showed that
sleep restriction affects many genes involved in lipid metabolism,
including increased fatty acid synthesis and triglyceride produc-
tion and storage.

A series of sleep restriction studies (Barf et al., 2010, 2012a,b)
have been done using sleep restriction protocols of different
severities: sleep restriction for 20 h each day (sleep ZT0-4; awake
ZT4-24) or sleep disruption (14 h sleep—10 h awake in four 2–3 h
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episodes). Sleep disturbance and sleep restriction both led to
decreased bodyweight when compared to home cage control ani-
mals, although food intake was equal and the slight increase in
locomotor activity is unlikely to explain the bodyweight differ-
ences. Animals exposed to sleep disruption or sleep restriction
showed decreased baseline plasma glucose and insulin levels,
decreased glucose tolerance and an attenuated insulin response
to the glucose infusion within 8 days. A five day recovery period
attenuated the sleep restriction-induced decrease of plasma lep-
tin, insulin and glucose levels although bodyweight gain did not
recover. Corticosterone levels and food intake were not affected
(Barf et al., 2012b). When the same protocol was performed for 4
weeks, but with a work-weekend-schedule (5 work days, 2 non-
work days) to resemble human shiftwork conditions, the same
authors observed an increase of food intake after the first week-
end, possibly to compensate for increased energy expenditure.
Bodyweight gain increased during weekends in sleep restricted
animals and plasma leptin and insulin levels were decreased when
measured during working weeks 1 and 4. Rest during weekend
days induced recovery of plasma leptin and insulin levels (Barf
et al., 2012a).

Summary “Timing of Sleep” Models
The number of studies using perturbation of sleep as a model
for shiftwork with focus on metabolic parameters is limited and
therefore it is not yet completely clear if this type of manip-
ulation influences metabolic functioning. Glucose metabolism
appears to be affected often (in 5 out of 5 studies), whereas body-
weight (3/5) and food intake (2/4) were not always affected by
sleep perturbation. For a complete overview of all parameters see
Table 3.

Category 4: Models Using “Timing of Light
Exposure”
In literature, several “timing of light exposure” models have been
reported. These models all use timing of light as a means to dis-
turb the circadian system and as such their main influence is
on the SCN, in contrast to the previous 3 categories of mod-
els described. One type of these models uses continuous light
exposure, i.e., light is present 24 h per day. The continuous light
models can be further subdivided in models using constant light
(similar amounts of light exposure during 24 h of the day) and
models using dim light at night (together with bright light during
the day). In addition to models using continuous light, mod-
els using changes in light/dark schedules have been used. These
models can be further subdivided intomodels using alterations in
period length (e.g., light-dark periods shorter or longer than 24 h)
andmodels using repeated shifts of the light/dark schedule. Stud-
ies investigating these types of exposure in relation to metabolic
health effects are discussed below per type of model. For overview
purposes, models using continuous light are presented together
in Table 4 and models using changes in light/dark schedules are
presented together in Table 5.

Continuous Light Exposure
Exposure to constant bright light conditions (LL) has been shown
to abolish/diminish the circadian rhythmicity of many laboratory

animals. This has, for example, been shown for locomotor activ-
ity (Depres-Brummer et al., 1995; Gale et al., 2011), melatonin
(Wideman and Murphy, 2009; Gale et al., 2011), food intake
(Coomans et al., 2013b), and SCN neurons (Coomans et al.,
2013b). Hence, constant bright light conditions may be used to
severely disrupt circadian rhythms. Since shiftworkers will be
exposed to light during most of the day these models might be
relevant for shiftwork modeling, although the intensity of all-day
light may differ from real-life light exposures.

Disruption of circadian rhythms by constant bright light expo-
sure has also been reported to affect metabolic function. Exposure
to continuous light (150–180 lux; 4–8 weeks) led to increased
bodyweight gain in two studies in mice (Fonken et al., 2010;
Coomans et al., 2013a). This phenotype was apparent in mice
fed normal chow (Fonken et al., 2010; Coomans et al., 2013a)
as well as a high-fat diet (Coomans et al., 2013a). In addition, a
third study reported increased fat mass after exposure to contin-
uous light (Shi et al., 2013). Total food intake was unaltered in
these studies, but more food was consumed during the subjec-
tive day, indicating changes in the timing of food intake (Fonken
et al., 2010; Coomans et al., 2013a). The effect of continuous light
exposure on total activity levels is less clear: unaltered activity lev-
els (Fonken et al., 2010), reduced energy expenditure (Coomans
et al., 2013a) and a non-significant trend toward a decrease in
activity levels (Shi et al., 2013) have been reported. Apart from
changes in bodyweight and fat mass, continuous light affected
other metabolic parameters, such as increased RER, reduced
glucose tolerance and altered rhythmicity of insulin sensitivity
(Fonken et al., 2010; Coomans et al., 2013a). However, two stud-
ies using relative short-term exposure (6–10 weeks) to continu-
ous bright light in Sprague Dawley rats reported no changes in
bodyweight (Dauchy et al., 2010; Gale et al., 2011), indicating a
possible difference between rats and mice in this model. Interest-
ingly, long term exposure to bright light for 35 weeks did enhance
bodyweight in Rapp-Dahl rats (model for hypertension). In addi-
tion, increased systolic blood pressure was observed (Natelson
et al., 1993). Short-term exposure to continuous bright light did
increase glucose levels and alter the rhythmicity of lipids in the
study by Dauchy et al. (2010). In contrast, in the study by Gale
et al. changes in glucose metabolism (increased glucose levels
and decreased glucose- and arginine- stimulated insulin secre-
tion) were only observed in diabetes-prone HIP rats, but not
in wild-type Sprague Dawley rats (Gale et al., 2011). Consider-
ing these contradicting results, the differences in duration and
strains of rats used, as well as the limited number of studies no
firm conclusions can be drawn regarding the effects of continu-
ous bright light exposure on metabolic function in rats. On the
other hand, in mice results are more consistent and indicate that
disruption of circadian rhythms by continuous bright light expo-
sure increases bodyweight and alters glucose metabolism. This
is associated with an altered timing of food intake, but not with
change in total amount of food consumed over 24 h (Table 4).

Dim Light at Night
Dim light at night (LDim) also affects circadian rhythmicity, but
seems less disruptive for circadian rhythms compared to constant
bright light. In respect to human circadian disruptions caused
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by shiftwork, models using dim light might be more relevant,
since human shiftworkers will also experience alterations in the
level of light exposure during a day, i.e., dim light at work in
the office and bright light when commuting. In addition, mod-
els using dim light at night are relevant for studying the possible
health consequences of light contamination at home, i.e., evening
and nocturnal light is present in an increasing amount in our
western society.

In contrast to constant bright light exposure, with dim light
exposure at night circadian rhythms remain largely intact. This
has for example been observed in rhythms of locomotor activ-
ity (Fonken et al., 2010) and corticosterone (Dauchy et al., 2010).
Metabolic parameters including plasma levels of glucose and fatty
acids also remain intact. Interestingly, dim light at night did affect
the circadian pattern of food intake with relatively more food
being consumed during the rest phase (Fonken et al., 2010). How-
ever, when the brightness of dim light exceeds a certain limit
circadian rhythmicity of melatonin and corticosterone will be
affected (Dauchy et al., 2010).

In three mice studies, exposure to dim light at night (for 2 and
6 weeks) increased bodyweight (Fonken et al., 2010; Aubrecht
et al., 2014; Borniger et al., 2014). This was observed in male
(Fonken et al., 2010; Borniger et al., 2014) and female mice
(Aubrecht et al., 2014). In female mice, dim light at night resulted
in decreased food intake after 4 weeks (Aubrecht et al., 2014). In
addition, in dim light exposed animals increases in fat mass and
reduced glucose tolerance were observed (Fonken et al., 2010), as
well as changes in energy expenditure and RER (reduced whole
body expenditure and increased carbohydrate over fat oxidation)
(Borniger et al., 2014). In contrast, bodyweight was not affected
in a rat study using exposure to dim light at night for 6 weeks
(Dauchy et al., 2010). In this study, different intensities of dim
light at night were used (0.02–0.08µW/cm2 dim light). The high-
est intensity of dim light at night disrupted circadian rhythms
of plasma corticosterone, melatonin and glucose, but bodyweight
was not affected during the 6 weeks of exposure.

Considering the still limited number of studies using dim
light, firm conclusions are not possible yet. However, it appears
that similar to continuous bright light exposure dim light at night
affects bodyweight in mice, but not in rats. The currently avail-
able studies suggest that glucose metabolism is affected in mice
as well as in rats by dim light at night. Interestingly, the study
by Fonken et al., reported that the increases in bodyweight gain
and fat mass by dim light at night can be prevented by restricting
food access to the dark phase (Fonken et al., 2010). These results
suggest an important role for altered timing of food intake in the
effects of continuous light on bodyweight, although none of these
three dimlight studies clearly quantified the circadian changes in
food intake.

Summary “Constant Light” Models
Models using constant light seem to affect bodyweight in 55%
of the studies (Table 4), all increases in bodyweight. However,
there is a clear difference between rat and mice studies, with 1
out of 5 rat studies reporting effects on bodyweight and 5 out of
6 mice studies. Total food intake is not affected in most studies
(only affected in 2 out of 9 studies), whereas glucose metabolism

is affected in a majority of studies (6/7, 86%). Interestingly, the
clear difference observed between rats and mice in the effects of
constant light on bodyweight is not that pronounced for glucose
metabolism. Thus, these results indicate that models using con-
stant light exposure influence glucosemetabolism in both species,
while bodyweight is mainly affected inmice. For the other param-
eters only a limited number of studies are available making firm
conclusions difficult. For a complete overview of all parameters
see Table 4.

Changes in Light/Dark Schedules—Period Length
Under normal conditions, one cycle of light and darkness on
the planet earth matches exactly 24 h. Exposure to altered period
lengths (<23 h or > than 25 h) usually requires a constant re-
entrainment of the circadian system and experiments using such
protocols have therefore been used to investigate the effects of
circadian disruption. On the other hand, when very short period
lengths are used entrainment is not possible, which will result
in either free-running rhythms or an abolishment of circadian
rhythms. Shorter period lengths have been reported to cause
alterations in several circadian parameters, such as locomotor
activity (Oishi, 2009; Oishi and Itoh, 2013), drinking pattern
(Oishi, 2009) and body temperature (Karatsoreos et al., 2011).

Altered circadian rhythms due to an aberrant period length
have been implicated in metabolic disturbances as well. For
example, increases in bodyweight have been observed in mice
and rats exposed to short period lengths of 6–23 h for 9–10
weeks (Vilaplana et al., 1995; Oishi, 2009; Karatsoreos et al., 2011;
Oishi and Itoh, 2013). In addition, changes in glucose home-
ostasis (increased glucose levels and glucose intolerance), lipid
homeostasis (increased cholesterol levels) and expression of liver
genes related to glucose metabolism have been reported in one
of these models (Oishi and Itoh, 2013). However, human rele-
vancy of these models is poor since period length remains unal-
tered during shiftwork. Of course, partial shifts in light exposure
might occur during shiftwork where light is present during work-
ing hours and is avoided during subsequent sleeping hours, but
therefore models using shifts in light exposure are more relevant
to the human situation than changes in period length.

Changes in Light/Dark Schedules—Shifts
Shifts in light exposure require re-entrainment of the circadian
system causing (temporary) disturbance of circadian rhythms.
Repeated phase shifts have been investigated using numerous
schedules which differ in shift size (1–12 h), frequency (every
day—once a week), duration (acute effects—chronic effects), and
direction (forwards or backwards), resulting in very heteroge-
neous study results. For example, a 6 h forward shift every 3
days for 10 weeks abolished locomotor and melatonin rhythmic-
ity (Gale et al., 2011), whereas rhythmicity in locomotor activity
and body temperature remained but was disturbed (lengthened
period and reduced amplitude) after an 8 h forward shift every 2
days for 10 days (Filipski et al., 2004).

Circadian disruption by shifts in light exposure has also been
investigated in relation to metabolic function. To our knowledge,
four studies using this type ofmodel have been published. A study
by Tsai et al. in rats, observed an increase in bodyweight gain
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during exposure to 12 h shifts twice a week (Tsai et al., 2005). This
increase was only observed during the first 2 months of exposure,
during the third month and a subsequent 10 day recovery period
bodyweight gain was unaltered. Interestingly, in this model food
intake was increased and locomotor activity was reduced which
could both be linked to the observed increase in bodyweight gain.
However, in contrast to the bodyweight gain, these changes were
present at all time-points of the experiment.

A study by Gale et al. did not observe effects on bodyweight
in rats exposed to a 6 h shift every 3 days for 10 weeks. Similar to
continuous light exposure, effects of this light shift model on glu-
cose metabolism were only observed in diabetes-prone HIP rats
but not in wild type rats (increased glucose levels and decreased
glucose- and arginine- stimulated insulin secretion) (Gale et al.,
2011). The model used in a third study, by Bartol-Munier et al.,
was exposure to 10 h shifts twice a week and restriction of food to
the dark phase for 5 months. In this study no effects on body-
weight were observed whether animals were on normal chow
or on a high-fat diet, but changes in glucose metabolism (lower
insulin levels) were present in animals fed normal chow and
exposed to the shifts (Bartol-Munier et al., 2006). In the most
recent study, mice were exposed to a 12 h shift once a week for
12 weeks on a normal chow diet and an additional 10 weeks
on a high-fat and high-sugar diet to investigate effects on the
gut microbiome. In this study a small but significant increase in
bodyweight was observed in the shifted mice on a normal chow
diet. When the diet was changed to a high-fat and high-sugar diet
no additional effects by lighting schedule on bodyweight were
observed (Voigt et al., 2014).

Summary Models Changes in Light/Dark Schedules
Models using changes in light/dark schedules affect bodyweight
in 56% (5 out of 9) of the studies, with studies using mice find-
ing effects more often (3 out of 4) compared to studies using rats
(2 out of 5). The total amount of food intake is affected in half
of the studies (50%; 3 out of 6). Glucose metabolism is affected
in 83% of studies (5 out of 6) with almost an equal number of
studies showing an effect when using mouse or rat. These results
suggest that changes in the light/dark cycle affect some of the
metabolic parameters (bodyweight and glucose metabolism). For
other parameters the number of studies is very low making inter-
pretations difficult. For a complete overview of all parameters see
Table 5.

Discussion

With this review we aim to provide an overview of the available
animal studies investigating the relationship between shiftwork
and metabolic risk factors. Shiftwork in humans consists of a
multi-aspects exposure (Figure 1). We focused on the four most
relevantmanipulations that are being used tomimic human shift-
work conditions in animals: altered timing of food intake, altered
timing and/or duration of activity, altered timing and/or duration
of sleep, and irregular lighting conditions. The overview pro-
vided in this review shows that these types of models are very
useful in modeling one aspect of shiftwork and investigating the
role of these separate aspects. However, the interaction between

the different aspects of shiftwork is an important component of
shiftwork as well, which would be beneficial to model in animals.
Unfortunately, the heterogeneity of shiftwork in humans as an
exposure (i.e., number of subsequent shifts, duration of recovery
periods, direction of rotation, etc.) and the variability in behav-
ioral coping responses to shiftwork amongst human individuals
(for instance in sleeping and eating strategies) makes modeling
shiftwork in animals a very challenging exercise. To develop an
animal model that incorporates the interaction between multiple
shiftwork aspects requires complete knowledge of human shift-
work behavior (i.e., light exposure, sleep behavior and dietary
habits). Although in recent years first attempts have been made
to achieve the latter, a complete knowledge has not been reached
yet. Clearly, an animal model incorporating multiple shiftwork
aspects would have advantages. Firstly, whereas human studies
require over 20 years to observe long term health effects of shift-
work, such as development of metabolic disease or cancer, in
an animal experiment “long-term” health effects can be studied
much faster (∼1 year). Hence, animal studies could accelerate
the unraveling of the underlying mechanisms explaining the rela-
tionship between shiftwork and health. Secondly, animal mod-
els provide opportunities to study parameters and processes that
would be impossible or extremely invasive to study in humans.
In this discussion we summarize the main findings of this review,
differences between models and species and touch upon possible
underlying mechanisms.

Main Findings of This Review
All Categories of Models
While selecting articles for this review, we came across a very
diverse collection of food, activity, sleep and light manipulations
which were all rather different from each other. Although we
grouped the studies into four main categories, nearly none of the
experimental setups was copied by another research group or was
it used in a different species or strain. Furthermore, metabolic
parameters were not equally frequent or extensively measured in
the different models, which is another factor making it difficult to
compare results between models. Five of our selected metabolic
parameters (bodyweight, total food intake, total activity, glucose
metabolism and lipid metabolism) were described in all four cat-
egories, but only three of them were described in both mouse
and rat studies in each category. First, we will summarize the
main results of all studies, followed by a discussion of the main
differences between categories of models and species.

Table 6 represents the percentage of studies reporting effects
of the manipulation for the listed parameters in exposed groups
compared to the control group. Numerous different parame-
ters were described in the included studies but we concen-
trated on a few that were measured in most studies. Bodyweight
was described in most studies and 62% (26/42) of the stud-
ies reported an effect provoked by the manipulated shiftwork
aspect. Total food intake and total activity levels were less often
affected, in 39% (14/36) and 39% (9/23) of the studies respec-
tively. Other metabolic parameters including energy expenditure
[80% (5/6)] glucose metabolism [83% (25/30)], lipid metabolism
[69% (11/16)] and adiposity [80% (8/10)] were affected frequently
by shiftwork. Inmost studies, circadian parameters were included
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TABLE 6 | A summary of 7 most frequently measured parameters in the 5 categories of shiftwork models (food, activity, sleep, L/D shifts and LL/LDim).

Model type Food Activity Sleep L/D shift LL/Dim All

Rat + Mouse Rat + Mouse Rat + Mouse Rat + Mouse Rat + Mouse Rat Mouse Total

Bodyweight 7/11 (63,6%) 5/6 (83,3%) 3/5 (60%) 5/9 (55,5%) 6/11 (54,5%) 12/22 (54, 5%) 14/20 (70%) 26/42 (61, 9%)

Total food intake 5/11 (45,4%) 2/6 (33,3%) 2/4 (50%) 3/6 (50%) 2/9 (22, 2%) 6/16 (37, 5%) 8/20 (40%) 14/36 (38, 9%)

Total Activity 3/7 (42,9%) 4/6 (66,7%) 0/3 (0%) 2/2 (100%) 0/5 (0%) 7/11 (63, 6%) 2/12 (16, 7%) 9/23 (39, 1%)

Total EE 3/3 (100%) 0/1 (0%) 2/2 (100%) 1/2 (50%) 4/4 (100%) 5/6 (80%)

Adiposity 5/7 (71,4%) 2/2 (100%) 1/1 (100%) 4/5 (80%) 4/5 (80%) 8/10 (80%)

Glucose metabolism 6/9 (66,7%) 3/3 (100%) 5/5 (100%) 5/6 (83,3%) 6/7 (85,7%) 13/16 (81, 2%) 12/14 (85, 7%) 25/30 (83, 3%)

Lipid metabolism 5/7 (71,4%) 2/2 (100%) 2/2 (100%) 1/3 (33,3%) 1/2 (50%) 5/7 (71, 4%) 6/9 (66, 7%) 11/16 (68, 8%)

The most right columns represent the results of all studies together. All results are presented as the number of studies in which an effect of the manipulation was found (when compared

to the control condition)/the number of studies in which the parameter was measured. Between brackets the number of studies showing an effect is depicted as a percentage. EE,

energy expenditure; L/D, light/dark; LL, continuous light; LDim, dimlight at night.

as well and often showed alterations (mainly in rhythm, includ-
ing changes in amplitude and phase). For example, the circadian
rhythm of corticosterone was altered in 54% (7/13) of the studies.

In summary, effects on metabolism are observed in a substan-
tial number of studies, however, results are not completely con-
sistent. Moreover, changes inmetabolism did not always translate
in changes in bodyweight (gain) or adiposity. Indeed, we have
to take into account that there might be a publication bias as
perhaps mainly parameters that were affected are described and
therefore the actual percentages of studies finding an effect might
be lower.

Are There Differences between Categories?
Bodyweight is one of the parameters that was measured in all
categories of models and was affected in 64% (7/11) of the food
studies, in 83% (5/6) of the activity studies, in 60% (3/5) of the
sleep studies, in 56% (5/9) L/D shift-studies and in 55% (6/11)
of the continuous light studies. Total food intake showed to be
affected in about 45% of the food studies (5/11), in 50% of sleep
studies (2/4) and L/D-shift studies (3/6), whereas only 33% (2/6)
of the activity-studies and 22% (2/9) of the LL-studies demon-
strated an effect. Factors involved in glucose and lipidmetabolism
were affected in all categories of models, although light mod-
els showed low percentages for lipid metabolism (33% (1/3) in
L/D shift studies; 50% (1/2) in continuous light studies). The sin-
gle other parameter which was measured in all five models was
total activity levels and this was affected in 43% of food studies
(3/7), 67% of activity studies (4/6), 0% of sleep studies (0/3), 100%
of L/D studies (2/2) and 0% of LL studies (0/5). These results
show that large differences exist between the effects of different
categories, however, caution is required when interpreting these
results since often only a limited number of studies was available.
Another important limitation to draw firm conclusions is the
low number of reproducible results for many parameters. On the
other hand, remarkable to notice is the 100% score for nearly each
parameter measured in the studies that manipulated activity. One
possible reason for this might be that 5 out of 8 of these studies
came from the same research group and thereby the experimental
setup was exactly the same each time, i.e., these authors produced
very reproducible results. In conclusion, it is most likely that the

variability between the studies (species, type of manipulation,
duration of exposure etc.) is important for whether a parameter
is affected by the manipulation. This is another representation
of the heterogeneity of shiftwork and increases the complexity
to model shiftwork. When comparing parameters and categories
of models for which multiple studies are available differences are
not large. As a consequence, a category with the largest metabolic
consequences cannot be appointed. However, when considering
human relevance of the models, the use of models using constant
light and alterations in period length is least informative.

Are There Differences between Rat and Mouse

Studies?
In the articles included for this review we observed that rats
and mice are used interchangeably for shiftwork models. Inter-
estingly, however, thus far the observed effects are not identical
between species even when exactly the same procedure is carried
out (Arble et al., 2009; Reznick et al., 2013). In general, in most
categories eithermouse (e.g., 0 out of 9 studies in activity-models)
or rat studies (e.g., only 3 out of 13 studies in food-models)
were underrepresented, thereby making it difficult to compare
between the species. When focusing on parameters reported in
at least 8 experiments in both species, neglecting the exact model
category, total activity [63% (7/11)], and lipid metabolism [71%
(5/7)] were more often affected in rat than in mice studies [17%
(2/12), 67% (6/9) respectively]. On the other hand, effects were
more often observed in mice for bodyweight [70% (14/20)], total
food intake [40% (8/20)], glucose metabolism [86% (12/14)] and
total energy expenditure [100% (4/4)] than in rats [55% (12/22),
38% (6/16), 81% (13/16), and 50% (1/2) respectively], however,
these differences are relatively small. The only parameter showing
similar percentages in both species, is adiposity with 80% (4/5)
of studies showing an effect of the condition. Generally, choos-
ing a certain type of rodent for an experiment is based on the
genetic background of an animal, the similarities between the
human situation/disease and the features the animal model dis-
plays, the surgical techniques that need to be carried out, the
type of behavioral tests that have to be performed or other spe-
cific reasons. To this point, shiftwork models have been per-
formed with both species and it is important to keep in mind
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that when creating a shiftwork model, behavioral conditions are
manipulated. Often we tend to think that behavioral manipula-
tions have similar effects in different species, but we should be
aware that mice and rats may respond very differently. Causality
of the dissimilar effects between mouse and rat studies is as yet
unknown. Hypothetically, the difference in body size and associ-
ated metabolic rate could play a role in these differences, but this
remains to be investigated.

In our opinion, an important, but lacking, model is exposure
of a diurnal species to shiftwork conditions. Day-active animals
are considered more similar to human when it comes to circa-
dian research and therefore in principle would be a better model
to study the metabolic consequences of shiftwork. Moreover, if
similar effects on metabolism are found between nocturnal and
diurnal species, this would support the translatability of animal
models for human shiftwork simulations.

Possible Mechanism of Health Consequences of

Shiftwork
Mimicking human shiftwork conditions in an animal model ulti-
mately aims to study and understand the underlying mechanism
of shiftwork leading to health problems. The predominant cur-
rent theory stresses the process of desynchronization. In general,
it is thought that desynchronization leads to a suboptimal func-
tioning of many bodily processes. Observed effects range from
shifts in gene expression and altered hormone secretion (i.e., lep-
tin, insulin, melatonin and corticosterone) to modified behav-
ioral output (i.e., food intake rhythm, activity levels and rhythm)
and changes in whole body physiology (i.e., bodyweight, food
intake, RER, energy expenditure, glucose and lipid metabolism).
Metabolic processes within and between important metabolic
tissues such as liver and muscle should cooperate in a proper
timely manner to control optimally, for instance, glucose and
lipid metabolism. If not, this may lead to metabolic problems.

In principal, shiftwork can cause desynchronization at
different levels, which in general all result from desynchroniza-
tion between the environment and the (complete circadian sys-
tem within an) organism. Within the organism we distinguish 4
separate levels. The first level (1) concerns the desynchroniza-
tion between the central clock and the peripheral clocks. It is
well known that light is the most important Zeitgeber for the
SCN, while food and activity are such for the peripheral clocks.
During shiftwork these two Zeitgebers present conflicting infor-
mation resulting in an opposite phase for the central and periph-
eral oscillators. Question is if and how these disturbances affect
downstream processes.

Besides this possible top-down desynchronization between
central and peripheral clocks, desynchronization may also occur
between anatomically separated organs, the second level (2).
Shifting the timing of food intake has been shown to differentially
affect liver and muscle clocks (Bray et al., 2013; Reznick et al.,
2013). Desynchronization between peripheral clocks supposedly
originates from tissue-specific sensitivity to entrainment signals
such as activity, energy levels (e.g., periods of fasting/feeding),
responses to hormone secretion, input from autonomic ner-
vous system etc. An additional type of desynchronization at
level 2 occurs between anatomical parts of the SCN. Clock

gene expression and electrical activity resynchronize differently
between the dorsal and ventral part of the SCN after 6 h phase
shifting (Nagano et al., 2003; Albus et al., 2005). Hypotheti-
cally, temporal desynchronization and thereby suboptimal func-
tioning of (parts of) the SCN may lead to a malfunctioning of
SCN-mediated downstream mechanisms.

The third level (3) encompasses desynchronization between
the molecular clock mechanism and the clock-induced genes.
Many genes involved in metabolism display a circadian rhythm
in their expression. Several studies have described that a manip-
ulation of SCN output signals, by for instance adrenalectomy or
denervation of autonomic inputs, induces a loss of rhythmicity
in the expression of clock-induced genes in white adipose tis-
sue, liver and bone, while clock genes remain rhythmic (Cailotto
et al., 2005, 2008; Oishi et al., 2005; Fujihara et al., 2014; Su et al.,
2014). This suggests that although the molecular clock machin-
ery is still intact, the rhythmic expression of clock-induced genes
is disturbed. It is likely that this level of desynchronization indeed
also takes place during shiftwork and a first suggestion was made
by Salgado-Delgado et al. (2013). They showed that in their
forced-activity shiftwork model the effect on the rhythmicity of
metabolic genes (NAD+, Nampt, Pparα, Pparγ and Pgc1α) did
not resemble the effects on clock genes rhythmicity.

The fourth level (4) of desynchronization concerns desyn-
chronization within the molecular clock itself, i.e., different parts
of the molecular clockwork are affected to a different degree
within one tissue. Studies in which animals are exposed to phase
shifts of the light dark cycle to induce experimental jet lag,
a proper method to induce temporal circadian desynchrony,
report dissimilar resynchronization speeds of different parts of
the molecular clock. For instance, expression of the clock gene
Cry1 appeared to resynchronize slower than mPer expression in
the SCN after a 6 h phase advance (Reddy et al., 2002). Although
this level of desynchronization has not yet been shown in stud-
ies using a shiftwork model, the aforementioned jetlag studies
resemble studies in category 4 (i.e., shifts in timing of light expo-
sure). Despite the body’s ability to adapt to challenging condi-
tions, this obviously becomes metabolically problematic if this
occurs every few days or weeks as is the case in most working
schedules of employees who are shiftworkers.

However, up to now desynchronization is mostly studied
at the level of communication between central and peripheral
clocks (level 1). The other three levels of desynchronization were
not or only marginally studied in the aforementioned models
but potentially may contribute significantly to the causal link
between circadian desynchronization and negative health out-
comes. Therefore, we encourage future studies to also focus on
possible desynchronization at levels 2, 3, and 4.

Interaction of Shiftwork Aspects
Most studies discussed in this review used either one of four
manipulations (food, activity, sleep, and light) as a model for
shiftwork. Tackling shiftwork conditions by manipulating one
aspect is a good approach when studying the effects of that
particular aspect of shiftwork. This gives insight in how food,
activity, sleep and light manipulations contribute to the associ-
ated negative health effects. However, the mentioned aspects of
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shiftwork are strongly intertwined and cannot easily be separated.
For example, forcing an animal to consume its daily food at an
unusual time inevitably also disturbs its activity and sleep pat-
tern, which in itself also affects metabolism. Effects found of a
manipulation are rapidly assigned to the main manipulation but
it is often not very well considered whether and if so, how the
main manipulation affects other aspects and its consequences.
For instance, sleep behavior is hardly ever monitored by EEG
recordings or high resolution actimetry, thus information about
sleep duration and sleep quality is usually missing. In addition,
in order to translate results obtained in animal studies properly
to humans, also more knowledge regarding these parameters in
human shiftwork is required. Thus, we propose more elaborate
measurements on the main aspects of shiftwork (Figure 1) in
animal as well as in human studies.

Conclusion

This review provides an overview of animal models for shiftwork
to investigate metabolic health effects. This overview indicates
the large variety present in models used as well as a substan-
tial amount of indecisive results. Ideally we would have con-
cluded this review with suggestions for a more standardized
model including a number of factors to manipulate and differ-
ent possible outcome measures. Standardization would reduce
the heterogeneity between studies for bothmethods and outcome
parameters. Unfortunately, at this point our mechanistic knowl-
edge on the effects of shiftwork is not sufficient yet to draw firm
conclusions and thereby put a certain model forward or elimi-
nate others. Furthermore, human shiftwork conditions are highly
variable and not outlined well enough to propose an ideal animal
model. For now, we plead for more awareness of the interactions
between the aspects of shiftwork which are intentionally and
unintentionally manipulated. Shiftwork and the type of manip-
ulations used in animal models are multi-aspects exposures

(Figure 1). Therefore, it is important to measure additional
parameters apart from the ones directly related to the manip-
ulation. For example, measuring sleep behavior when using a
model with light shifts. Other examples are circadian parame-
ters, such as gene expression in several organs, hormones, activ-
ity, body temperature, sleep behavior and metabolic parameters.
More insights into these parameters will be beneficial for com-
paring different outcomes when different types of manipulations
are used.

Where possible these parameters should be measured in
human shiftwork studies as well to allow for more insight
into translatability of findings. Furthermore, experiments ideally
should cover both short- and long-term effects, ranging from
days to years, to study details of underlying mechanisms in the
development of the unfavorable health outcomes caused by shift-
work. The perfect model is as yet non-existent but ideally com-
bines several aspects of shiftwork to mimic the human situation
best (e.g., when manipulating activity and light, changes in food
intake will follow and this should be monitored).

Only by properly studying the effects of shiftwork conditions
solely and combined, this research eventually will help the gen-
eral community to learn how to deal with shiftwork conditions

best, prevent shiftworkers from becoming disturbed and possibly
prevent and treat negative health outcomes.
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Growing evidence shows that intrinsic circadian clocks are tightly related to

cardiovascular functions. The diurnal changes in blood pressure and heart rate are

well known circadian rhythms. Endothelial function, platelet aggregation and thrombus

formation exhibit circadian changes as well. The onset of many cardiovascular diseases

(CVDs) or events, such as myocardial infarction, stroke, arrhythmia, and sudden

cardiac death, also exhibits temporal trends. Furthermore, there is strong evidence

from animal models and epidemiological studies showing that disruption of circadian

rhythms is a significant risk factor for many CVDs, and the intervention of CVDs may

have a time dependent effect. In this mini review, we summarized recent advances

in our understanding of the relationship between circadian rhythm and cardiovascular

physiology and diseases including blood pressure regulation and myocardial infarction.

Keywords: circadian rhythm, circadian clock, CVDs, blood pressure, myocardial infarction

Introduction

Circadian rhythms are biological processes displaying endogenous oscillations of about 24-h. These
rhythms are widely observed in animals, plants, bacteria, and even cultured cells (Harmer et al.,
2001). They are driven by a group of genes called clock genes. In mammals, the core clock
genes consist of Bmal1 (Brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1),
CLOCK (Circadian LocomotorOutput Cycles Kaput), Per (Period), andCry (Cryptochrome). They
form a tightly regulated systemwith interlocking feedback and feed-forward loops (Figure 1) (Yang
et al., 2013). BMAL1 and CLOCK proteins, or its paralog NPAS2 (neuronal PAS domain protein
2), form a heterodimer, bind to E-box elements in Per and Cry promoter regions and activate
their transcription. Upon accumulation in the cytoplasm, PER and CRY proteins translocate to
the nucleus where they repress the BMAL1:CLOCK/NPAS2 regulatory complex, thereby shutting
down their own transcription. This core loop is interconnected with additional positive and neg-
ative regulatory loops involving nuclear receptors, such as RORα (RAR-related orphan receptor
alpha), REV-ERBα (NR1D1, nuclear receptor subfamily 1, group D, member 1), and PPARs (Per-
oxisome proliferator-activated receptors). Additionally, these clock genes control numerous target
genes (termed clock controlled genes, CCGs), thus regulating the circadian rhythms of various
biochemical and physiological processes (Chen and Yang, 2014).

The circadian clock exists as the central clock in the suprachiasmatic nucleus (SCN) in the
hypothalamus, and its peripheral tissues serve as the peripheral clock. The SCN receives light
input from the retina, and then conveys the photic information into neural and/or humoral
signals that orchestrate multifarious behavioral and biological rhythms, such as sleep-wake,
hunger, body temperature, and hormone secretion cycles (Kohsaka et al., 2012). Although
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FIGURE 1 | Transcriptional feedback loops of the mammalian

circadian clock. In the core loop (purple background),

BMAL1/CLOCK heterodimer activates transcription of the Per and

Cry genes via binding to the E-box elements in their promoter

regions. The resulting PER and CRY proteins heterodimerize,

translocate to the nucleus and interact with the BMAL1/CLOCK

complex to inhibit their own transcription. In addition, ROR activates

and REV-ERB represses RORE-mediated transcription, forming the

secondary autoregulatory feedback loops. This clock mechanism also

controls rhythmic expression of numerous genes, called clock

controlled genes (CCG), to perform biochemical or physiological

roles in a circadian manner.

the SCN synchronizes internal time in various tissues, growing
evidence from in vitro and ex vivo experiments has proved that
the peripheral clock can function autonomously without cen-
tral or systemic cues (Kowalska and Brown, 2007; Takeda and
Maemura, 2011).

Circadian Clock in Cardiovascular System

Circadian expression of clock genes in mouse heart (Young et al.,
2001) and aorta (McNamara et al., 2001) were first described in
2001. Recently, Zhang et al. (2014) used a high temporal resolu-
tion of RNA-seq data and found that 6 and 4% of protein cod-
ing genes showed circadian rhythms in transcription in mouse
heart and aorta, respectively. Ex vivo experiments displayed var-
ied functions of mouse heart (Durgan et al., 2007) and aorta
(Keskil et al., 1996; Prasai et al., 2013) that depended on the
time the tissues were collected. In addition, human hearts were
found to express clock genes in a time sensitive manner as well
(Leibetseder et al., 2009). Furthermore, the observations of gene
cycling were extended to cultured cells. In rat cardiomyocytes,
the presence of 2.5% of fetal calf serum in culture medium is
sufficient to maintain rhythmic expression of core clock genes
Bmal1, Rev-erbα, and Per2 and energy metabolic genes pyru-
vate dehydrogenase kinase 4 and uncoupling protein 3 (Durgan
et al., 2005). Functional clocks are also expressed in cultured
endothelial cells (Takeda et al., 2007) and vascular smoothmuscle

cells (Nonaka et al., 2001). To study the role of circadian clocks in
cardiovascular system, several tissue specific clock gene deletion
mouse models were recently generated. For instance, cardiomy-
ocyte deletion of Bmal1 results in abnormal electrocardiography

with prolonged RR and QRS intervals (Schroder et al., 2013). The
hearts from knockout mice were more susceptible to arrhyth-

mia. Bmal1 deletion in endothelial cells (Westgate et al., 2008)

or vascular smooth muscle cells (Xie et al., 2015) compromised
the diurnal variation of blood pressure. These findings are con-

sistent with the presence and importance of intrinsic clocks in

cardiovascular system.
On the other hand, although all cell types in the cardiovascular

system have intact molecular clocks, these peripheral clocks need
to coordinate with the central clock to synchronize responsive-

ness of the heart and blood vessels to diurnal variations in their

environment. The disruption of normal day-night cycles, such as
jet lag, leads to desynchronization between central and peripheral

clocks, heterogeneity of entrainment kinetics between different

organs, and dysregulation of clock genes (Kiessling et al., 2010).
Because circadian clocks control a large number of tissue spe-

cific CCGs (Zhang et al., 2014), the disruption of this mechanism

will initiate a chain reaction to result in perturbation of a wide
range of biochemical and physiological outputs, potentially con-
tributing to the incidence of cardiovascular diseases (CVDs). For
example, using a mouse model of pressure overload–induced car-
diac hypertrophy, Martino et al. found that rhythm disturbance

Frontiers in Pharmacology | www.frontiersin.org April 2015 | Volume 6 | Article 71 55|

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Chen and Yang Circadian rhythms in cardiovascular system

by housing mice under 10-h light: 10-h dark conditions adversely
affected cardiac structure and function as well as altered expres-
sion of clock genes and cardiac remodeling genes (Martino et al.,
2007). Interestingly and importantly, restoration of a normal
24-h diurnal rhythm could rescue these changes, suggesting that
maintaining a normal rhythm is crucial to cardiovascular health.

Circadian Regulation of Blood Pressure

Day-night variations in blood pressure (BP) and heart rate (HR)
are among the best known circadian rhythms of physiology. In
humans, there is a 24-h variation in BP with a sharp rise before
awakening, the highest BP value is around midmorning (Millar-
Craig et al., 1978). Concomitantly, many cardiovascular events,
such as sudden cardiac death, myocardial infarction and stroke,
display diurnal variations with an increased incidence in the
morning (Muller et al., 1985, 1987; Elliott, 1998; Reavey et al.,
2013). These events, as well as kidney albuminuria and progres-
sion to end-stage renal diseases, are relatively common in patients
whose blood pressure fails to decline during the night, so-called
non-dippers (Takeda and Maemura, 2010). Inverse dippers—BP
rises instead of decreases at night—showed even higher cardio-
vascular mortality (Kario et al., 2001). These time-dependent
effects are not just consequences of the sleep/wakefulness cycle
or the rhythms in neuroendocrine constituents, but are also
believed to be attributed to the intrinsic properties of the hearts
and blood vessels whose functions show significant fluctuations
during the course of the day (Durgan and Young, 2010; Paschos
and Fitzgerald, 2010).

Studies in genetic manipulated mice have suggested the
involvement of intrinsic circadian clock in BP rhythm regulation.
One of the most interesting findings is the dissociation between
behavior and BP regulation (Figure 2). As the closest phyloge-
netic neighbor of ROR and REV-ERB, nuclear receptor PPARγ

regulates the circadian rhythms of BP and heart rate via direct
interaction with Bmal1 gene (Wang et al., 2008b; Yang et al.,
2012). Although both vascular and global PPARγ knockout mice
responded to light well and displayed rhythmic behavior pattern
under regular light/dark conditions, the diurnal variations of BP
was dampened or even abolished in these knockout mice. This
striking dissociation between physiology and behavior strongly
suggests that intrinsic clocks inside the blood vessels contribute
to their functions that fluctuate in a 24-h cycle. Several other core
clock genes were also reported to regulate BP in various ways.
Global deletion of Bmal1 in mice abolishes the circadian rhythm
of BP, which is accompanied by hypotension likely due to the
reduced production of catecholamines (Curtis et al., 2007) or the
lack of Bmal1 in vascular smooth muscle cells (Xie et al., 2015).
By contrast, double deletion of Cry1/2 genes in mice give rise to
salt-sensitive hypertension (Masuki et al., 2005).

It is worthwhile to note that the intrinsic circadian regula-
tion of BP in humans remains to be determined. Kerkhof et al.
failed to detect a significant 24-h variation of blood pressure in
human when individuals were subjected to a 26-h constant light
condition, while the heart rate exhibited a significant circadian
pattern (Kerkhof et al., 1998). On the contrary, Scheer et al. found
that, independent of environmental and behavioral changes, the
endogenous circadian system modulates diurnal BP variation in

FIGURE 2 | Dissociation between behavior and BP regulation in

circadian-disrupted mice (Yang et al., 2012). PPARγ knockout mice (KO)

and their littermate controls (Ctrl) were kept under regular light/dark cycles.

Locomotor activity (A), mean arterial pressure (B) and heart rate (C) were

recorded using radiotelemetry. Both KO (blue box) and control mice display

obvious day/night variation in locomotor activity. However, KO mice cannot

maintain normal variations in BP and heart rate (red boxes) as control mice.

*p < 0.05; ns, not significant.
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humans (Scheer et al., 2010), while circadian misalignment by
scheduling a recurring 28-h “day” for 8 days will induce hyper-
tension and other adverse cardio-metabolic implications (Scheer
et al., 2009).

Conventionally, most of the hypertensive patients were treated
with anti-hypertensive medications in the mornings. Based on
the consideration of the day-night variation of BP and the pre-
vious studies showing BP lowering effect of low dose of aspirin
at bedtime (Hermida et al., 2003, 2009), Hermida et al., com-
pared the potential differential reduction of CVD morbidity and
mortality risk by a bedtime vs. upon-awakening hypertension
treatment schedule in a large-scale (2156 untreated hyperten-
sive subjects) and long-term (median follow-up of 5.6 years)
study. They found that the patients who took at least one
regular antihypertensive medication at bedtime gained better
BP control and exhibited a significant reduction in CVD risk
(Hermida et al., 2010). Although their results were impressive,
independent antihypertension studies and intensive studies on
hypertension-related complications are required to confirm the
time-dependent effects of antihypertensive drugs and to establish
chronotherapy to manage in hypertension.

Circadian Rhythms and Myocardial
Infarction

Circadian rhythms in timing of onset and tolerance tomyocardial
infarction (MI) have been well established. It has been reported
that the occurrence of MI is two to three times more frequent in
the morning than at night (Muller et al., 1985; Culic, 2014). In
the early morning, the increased systolic BP and HR results in
an increased energy and oxygen demand by the heart, while the
vascular tone of the coronary artery rises in the morning, result-
ing in a decreased coronary blood flow and oxygen supply. This
mismatch between supply and demand elicits the high frequency
of the onset of MI. In addition, plasminogen activator inhibitor-1
(Kurnik, 1995) andmany platelet surface activationmarkers such
as GPIb and P-selectin (Scheer et al., 2011) displayed a circadian
pattern with high levels in the morning, which is coincident with
the morning peak of thrombus formation and platelet aggrega-
tion (Tofler et al., 1987; Scheer and Shea, 2014). The resulting
hypercoagulability partially underlies the morning onset of MI.
Disruption of circadian rhythm like shiftwork and jetlag has been
well established to be a risk factor for many CVDs, including
MI (Knutsson et al., 1999). Even a 1 h shift, such as the transi-
tion from regular time to daylight saving time, can significantly
increase the chances of MI occurring (Janszky and Ljung, 2008).

A series of cardiac functions related to the heart remodeling
after MI are also known to have circadian variation. The early
healing after MI relies on coordinated removal of necrotic tis-
sues through an early inflammatory phase (Frangogiannis, 2012),
followed by replacement and remodeling of the myocardium
and extracellular matrix deposition (Liehn et al., 2011). As
remodeling progresses toward the maturation phase, the heart
undergoes size, shape and structure changes, which lead to
ventricular dilation, dysfunction, and ultimately failure (Liehn
et al., 2011). Most recently, Alibhai et al. (2014) demonstrated
that short-term disruption of diurnal rhythms after myocardial

infarction adversely affected the early inflammatory phase of left
ventricular remodeling, altered the innate immune infiltration
and scar formation, and eventually led to exacerbated maladap-
tive cardiac remodeling in mice. In contrast, maintaining normal
rhythms throughout the course of the disease better preserved
cardiac structure and function. Although no animal model can
completely reflect patient experience, maintenance of normal
diurnal rhythm during the recovery phase after MI should still
aid in a coordinated and effective infarct healing response and
improve patient outcome.

Moreover, clock genes may also exert non-clock roles in the
cardiovascular system, which should be taken into account when
interpreting the effect of circadian disruption. For instance, acti-
vation of an adenosine receptor Adora2b acts via Per2, but not
other clock genes, to induce an energy utilization switch from
fatty acid to glucose in cardiomyocytes, which promotes glycoly-
sis and protects against cardiac ischemic injury (Eckle et al., 2012;
Yang and Fitzgerald, 2012).

Circadian Rhythms and other
Cardiovascular Diseases

Numerous animal models and human epidemiological stud-
ies also proved the adverse effects of circadian disruption in
other CVDs. Mouse hearts in rhythm-disruptive environments
are prone to malfunctions with altered clock gene cycling and
reduced contractility (Martino et al., 2007). Clock gene dele-
tion or mutation in mice dampened cardiovascular circadian
rhythms accompanied by dilated cardiomyopathy (Lefta et al.,
2012), arterial stiffness (Anea et al., 2010), or endothelial dysfunc-
tion (Viswambharan et al., 2007; Wang et al., 2008a; Anea et al.,
2009). Impaired cholesterol metabolism and increased develop-
ment of atherosclerosis was also verified in CLOCK mutant mice
on a western as well as a normal diet (Pan et al., 2013). Aor-
tic grafts from Bmal1 knockout mice transplanted into wild type
mice developed robust arteriosclerosis without affecting systemic
hemodynamics (Cheng et al., 2011). This data suggests that the
intrinsic circadian clocks in blood vessels exert significant roles
as an autonomous influence in arteriosclerotic diseases.

On the other hand, CVDs affect clock gene expression as well.
For example, in salt sensitive rats, high salt diet induced cardiac
hypertrophy is associated with attenuated rhythmic expression of
core clock genes (Mohri et al., 2003). Aortic constriction induced
pressure overload, which decreased the amplitude of circadian
expression of clock genes in the rat heart (Young et al., 2001;
Durgan et al., 2005). In a type 2 diabetic rat model, cardiac clock
genes exhibited a phase shift with a 3 h delay, suggesting a loss
of normal synchronization in diabetic hearts (Young et al., 2002).
However, in high fat diet induced obese mice, vascular tissues are
less sensitive to pathological disruption of circadian clocks than
adipose tissue (Prasai et al., 2013). This evidence raises the pos-
sibility that although all cardiovascular cell types possess func-
tional circadian clocks, this mechanism may be regulated in a
cell-type specific manner. Desynchronization between different
organs (e.g., heart and aorta) or cell types (e.g., VSMCs and ECs)
could occur during specific physiological/pathological situations
and may give an increased chance of CVDs.
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Moreover, the day-night variations of blood pressure, heart
rate and baroreflex sensitivity (a homeostatic mechanism for
maintaining blood pressure) also coincide with diurnal variabil-
ity in many other CVDs or events, such as cardiac arrhythmias,
atherosclerosis and sudden death (Portaluppi et al., 2012; Yang
et al., 2013). The timing of sudden cardiac death displayed circa-
dian variability. It has a circadian pattern prominent in the early
morning similar to that described in patients with coronary artery
disease (Muller et al., 1987). Both atrial and ventricular arrhyth-
mias appear to exhibit circadian patterning as well, with a higher
frequency during the day than at night (Portaluppi et al., 2012). In
hospital, many arrhythmias are observed as a consequence of MI.
More complicatedly, circadian disruption not only impairs car-
diovascular functions, but has also been linked to other diseases
such as obesity, diabetes, immune disorders, mental illness that
may affect each other (Harrington, 2010). Therefore, controlling
or prevent the diseases that are related both to circadian rhythm
and to cardiovascular functions becomes very important.

Conclusion

Cardiovascular disease is the leading cause of death in many
industrialized countries. Intensive effort has been made to

understand the basic mechanisms. One field of investigation in
recent years is the study of circadian rhythms. Increasing evi-
dence has shown adverse effects of circadian disruption in the
cardiovascular system. It becomes more and more evident and
important in themodern age, particularly in developed countries,
due to frequent disruptions to normal rhythms caused by shift
work, artificial light, transmeridian air flight, and social activities
(Boggild and Knutsson, 1999; Knutsson and Boggild, 2000).

The circadian rhythms not only affect health, but also drug
efficiency. It’s not surprising that some drugs for treating CVDs
have been reported to exhibit time dependent effects since there’s
eminent circadian function of heart and blood vessels driven by
both systemic and intrinsic clocks. Although several other mech-
anisms outside the cardiovascular system, such as chronophar-
macokinetics (Musiek and Fitzgerald, 2013), have been sug-
gested, the circadian clock within the heart and blood vessels
should not be overlooked. Time dependent effects should be
investigated when developing new drugs for CVDs.
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Therapeutic applications of circadian
rhythms for the cardiovascular
system
Elena V. Tsimakouridze, Faisal J. Alibhai and Tami A. Martino*

Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada

The cardiovascular system exhibits dramatic time-of-day dependent rhythms, for
example the diurnal variation of heart rate, blood pressure, and timing of onset
of adverse cardiovascular events such as heart attack and sudden cardiac death.
Over the past decade, the circadian clock mechanism has emerged as a crucial
factor regulating these daily fluctuations. Most recently, these studies have led to a
growing clinical appreciation that targeting circadian biology offers a novel therapeutic
approach toward cardiovascular (and other) diseases. Here we describe leading-edge
therapeutic applications of circadian biology including (1) timing of therapy to maximize
efficacy in treating heart disease (chronotherapy); (2) novel biomarkers discovered
by testing for genomic, proteomic, metabolomic, or other factors at different times
of day and night (chronobiomarkers); and (3) novel pharmacologic compounds that
target the circadian mechanism with potential clinical applications (new chronobiology
drugs). Cardiovascular disease remains a leading cause of death worldwide and new
approaches in the management and treatment of heart disease are clearly warranted
and can benefit patients clinically.
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Introduction

Cardiovascular disease is the leading cause of death worldwide (Public Health Agency of Canada,
2009; World Health Organization [WHO], 2011; Mozaffarian et al., 2014; Townsend et al., 2014).
Available therapies have had only limited success improving long-term survival of patients. In
recent years there have been a flurry of studies demonstrating time-of-day variations in drug
toxicity and efficacy (reviewed in Smolensky and D’Alonzo, 1988; Smolensky and Peppas, 2007),
daily cardiovascular gene and protein expression (reviewed in Martino and Sole, 2009; Durgan
and Young, 2010; Paschos and FitzGerald, 2010), and there are reports of new pharmacologi-
cal compounds targeting the circadian mechanism (reviewed in Chen et al., 2013; Kojetin and
Burris, 2014). These have led to novel opportunities to investigate and apply the important field
of chronobiology on clinical cardiology, and medicine in general.

The underlying foundation for cardiovascular chronotherapy stems from observations that bio-
logical processes in humans (and other mammals) exhibit 24-h daily rhythms, and these are con-
trolled bymolecular circadian clocks in the brain, heart, and other organs (Figures 1A,B). There are
many excellent reviews on the circadian system (reviewed in Hastings et al., 2003; Roenneberg and
Merrow, 2005; Dardente and Cermakian, 2007; Mohawk et al., 2012). Cardiovascular physiology
appears to follow a rhythm as well; heart rate (HR), blood pressure (BP), and cardiac contractility

Frontiers in Pharmacology | www.frontiersin.org April 2015 | Volume 6 | Article 77 61|

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://dx.doi.org/10.3389/fphar.2015.00077
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fphar.2015.00077
http://www.frontiersin.org/Journal/10.3389/fphar.2015.00077/abstract
http://community.frontiersin.org/people/u/181304
http://community.frontiersin.org/people/u/213643
http://community.frontiersin.org/people/u/206700
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Tsimakouridze et al. Translational chronocardiology

FIGURE 1 | The circadian timing system. (A) Light stimulus is relayed by
the eye to the suprachiasmatic nucleus in the brain, which in turn
synchronizes the heart and other organ clocks to the day and night
environment. (B) These signals entrain the molecular clock mechanism,
which keeps 24-h time in tissues and cells via transcription-translation
feedback loops. BMAL1 and CLOCK are transcribed and translated. BMAL1
and CLOCK heterodimers bind to E-box enhancer elements to promote
transcription of cryptochrome (CRY), period (PER), nuclear receptor
subfamily 1, group D, member 1/2 (rev-erbα/β; nr1d1/2), and other clock
controlled genes (ccg). Proteins CRY and PER are phosphorylated by casein

kinase 1δ/ε (CK1δ/ε) in the cytoplasm, which translocate to the nucleus to
repress CLOCK and BMAL1 mediated transcription. Additional loops exist
whereby REV-ERBα/β negatively regulates bmal1 transcription by binding to
RRE (REV-ERB/retinoic acid receptor-related orphan receptor (ROR) response
element). This mechanism regulates 24-h transcription of clock controlled
genes which in play a crucial role in diurnal cardiovascular physiology.
(C) Therapeutic applications of circadian rhythms include chronotherapy by
timing treatment to daily rhythmic processes, chronobiomarkers of differing
rhythmic profiles between health and disease, and new chronobiology drugs
targeting the circadian clock mechanism.

all peak in the wake hours and reach a nadir during sleep
(reviewed in Martino and Sole, 2009; Durgan and Young, 2010;
Paschos and FitzGerald, 2010). Indeed, many cardiovascular
functions that oscillate over the 24-h period are influenced by
the circadian clock mechanism as well as daily fluctuations
in the neurohormonal milieu (reviewed in Bray and Young,
2008; Sole and Martino, 2009; Gamble et al., 2014). Timing
of onset of cardiac pathologies also follows a rhythm (e.g.,
onset of myocardial infarction [MI, or heart attack; Muller
et al., 1985), and sudden cardiac death (Muller et al., 1987)].
These time-of-day variations in cardiovascular physiology and
pathophysiology have led to a growing clinical appreciation
that endogenous circadian rhythms may be an important fac-
tor to consider in treating disease. Here, we review the cur-
rent knowledge regarding therapeutic applications of circadian
rhythms for the cardiovascular system (Figure 1C), specifically
(1) timing of therapy (chronotherapy), (2) circadian biomark-
ers (chronobiomarkers), and (3) how modifiers of the circa-
dian clock mechanism may be useful in the treatment of heart
disease.

Chronotherapy

Rationale
Chronotherapy is an important therapeutic application of cir-
cadian rhythms for the cardiovascular system. The rationale for

chronotherapy is that it offers translational benefit by consid-
ering factors such as the underlying circadian rhythms in drug
pharmacology, specifically pharmacokinetics (i.e., drug absorp-
tion, distribution, metabolism, and excretion) and pharmaco-
dynamics (i.e., affinity and specificity for target receptor bind-
ing, downstream intracellular signaling). Chronotherapy also
takes into account the patients’ underlying physiology and dis-
ease pathology (reviewed in Labrecque and Belanger, 1991;
Reinberg, 1991; Paschos et al., 2010; Musiek and Fitzgerald,
2013). That the majority of the best-selling drugs and World
Health Organization essential medicines target the products of
circadian genes provides a mechanistic basis for understanding
chronotherapy (Zhang et al., 2014), and provides further support
for the clinical application of chronotherapy. Specific examples
applied to the treatment of cardiovascular disease are discussed in
further detail below. We also created a blog featuring published
chronotherapy studies for cardiovascular and other diseases1.

Chronotherapy Decreases Adverse
Cardiovascular Remodeling
In our recent pre-clinical study in mice, we showed that
chronotherapy can have direct benefits on the heart in car-
diovascular disease models (Martino et al., 2011). Mice with
pressure-overload induced cardiac hypertrophy were adminis-
tered the short-acting angiotensin converting enzyme inhibitor

1http://chronobioapp.blogspot.ca/
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(ACEi) captopril at either sleep-time or wake-time. We found
that only sleep-time administration improves cardiac function,
and reduces cardiac remodeling, as compared to wake-time cap-
topril and placebo-treated animals. Mechanistically, captopril
given at sleep-time appears to target the peak in the renin-
angiotensin-system gene profiles in the heart (Martino et al.,
2011). Thus this study demonstrates the direct beneficial effects
of chronotherapy for cardiac hypertrophy in the murine model.
The important clinical implications are that ACEis given at bed-
time can benefit myocardial remodeling in hypertensive patients,
or after MI, or in congestive heart failure. Indeed, clinically,
ACEis are one of the most commonly prescribed drugs given to
hypertensive patients and also for ischemic heart disease (Pfeffer
et al., 1992; AIRE, 1993; Ambrosioni et al., 1995; Kober et al.,
1995; Yusuf et al., 2000; Fox and EURopean trial On reduction of
cardiac events with Perindopril in stable coronary Artery disease
Investigators, 2003; Nissen et al., 2004).

Chronotherapy Benefits Daily BP and HR
Rhythms
Diurnal BP rhythms are an important part of healthy cardiovas-
cular physiology, and thus are also a key target for chronother-
apeutic strategies. Indeed, it is well-known that daily BP profiles
are characterized by a dramatic BP surge that occurs around the
time of wakening, followed by a progressive fall (∼10%) to reach
a nadir during sleep (Floras et al., 1978; Millar-Craig et al., 1978).
Conversely, loss of the nocturnal BP fall (non-dipper profile)
adversely affects the heart (Verdecchia et al., 1990; Ohkubo et al.,
2002; Dolan et al., 2005; Fagard et al., 2009), and chronotherapy
to improve the nocturnal BP profile is beneficial. There are many
studies that take a chronotherapeutic approach to regulate 24-
h BP profiles in hypertensive patients. This includes treatment
with ACEis, angiotensin receptor blockers (ARBs), β-blockers,
acetylsalicylic acid (aspirin), and combination therapies at spe-
cific times of day or night. These studies are summarized in
Table 1.

Intriguingly, HR also exhibits a rhythm that peaks in the
day and is lowest at night (Clarke et al., 1976). The effects of
chronotherapy on HR are not as well investigated as with BP
profiles, however, several studies have indicated a time-of-day
influence of β-blockers on HR. (1) In healthy subjects, the β-
blocker propanolol exhibits a significantly faster time to peak
effect on HR if taken in the morning (8 A.M.) as compared
to late at night (2 A.M; Langner and Lemmer, 1988). (2) The
suppressive effect of propranolol on the rise in HR during exer-
cise is significantly greater if the drug is taken in the morning
versus at night (Fujimura et al., 1990). (3) In patients with sta-
ble coronary disease, myocardial ischemic episodes associated
with HR increases are more likely to occur during the day time
than at night; propranolol reduces the proportion of these daily
HR-related episodes (Andrews et al., 1993). (4) In hypertensive
patients, the β-blocker bisoprolol reduces the 24-h ambulatory
HR if the drug is taken in the morning (Mengden et al., 1992).
(5) Lastly, experimental studies in rodents help confirm that
HR is differentially influenced by some β-blockers depending
on the time of drug application; propanolol causes a near max-
imum decrease in HR when given in the light period (rodent

sleep time) as compared to the dark period (rodent wake time;
Lemmer et al., 1985). Collectively these findings illustrate the
importance of maintaining daily BP and HR profiles, and the
clinical applicability of chronotherapy to benefit cardiovascular
physiology.

Aspirin Chronotherapy and Timing of Acute
Cardiovascular Events
In an exciting recent chronotherapy study, it was found that
evening administration of low-dose aspirin reduces morning
platelet reactivity, via COX-1 dependent pathways, as compared
with taking aspirin upon awakening (Bonten et al., 2014). This
finding is consistent with earlier reports of a circadian rhythm
in platelet surface markers (Scheer et al., 2011), and in platelet
aggregability (Andrews et al., 1996). Collectively these studies
are clinically important because acute cardiovascular events (e.g.,
MI) are most likely to occur in the early morning hours vs. other
times of day or night (Muller et al., 1985), and platelet reactivity
likely contributes to this early morning peak. Thus it is postu-
lated that aspirin chronotherapy taken at bedtime instead of on
awakening, as a preventative measure in healthy subjects and by
patients with cardiovascular disease, can reduce the incidence
of adverse cardiac events during the high-risk morning hours
(Bonten et al., 2014). That daily low-dose aspirin reduces the peak
frequency of MIs in the morning and overall risk across the 24-
h cycle (Ridker et al., 1990), provides further support for this
notion.

It is worth noting that several factors important for thrombo-
sis and fibrinolysis in MI, in addition to platelet reactivity and
cycling, also exhibit daily rhythms and could provide additional
targets for chronotherapy for treatment of acute cardiovascular
events. These factors include plasminogen activator inhibitor-
1 (PAI-1 a key inhibitor of fibrinolysis; Angleton et al., 1989;
Scheer and Shea, 2013), tissue factor pathway inhibitor and factor
VII (Pinotti et al., 2005), and plasma fibrinogen (Bremner et al.,
2000). Moreover, several experimental rodent studies mechanis-
tically link these coagulation pathways directly to the circadian
clock mechanism. That is, transcription of the anti-coagulant
factor thrombomodulin is regulated by the mechanism factors
CLOCK and BMAL2 heterodimers (Takeda et al., 2007), and
PAI-1 transcription is regulated by CLOCK and BMAL pro-
teins (Schoenhard et al., 2003). Endothelial responses to vascu-
lar injury also appear to be regulated by the clock mechanism
(Westgate et al., 2008). In terms of clinical translation, time-
of-day variation in the efficacy of thrombolytic therapy in MI
has been reported, which shows a marked early morning resis-
tance and significantly better results later in the day (Reisin et al.,
2004). Taken together, these and earlier studies provide support
for cardiovascular chronotherapy to limit the pathogenesis and
improve treatment following the onset of acute cardiovascular
events.

Nocturnal Hemodialysis (NHD) Benefits
Cardiovascular Disease
Cardiovascular disease is a significant cause of death in patients
with end-stage renal disease (Harnett et al., 1995; Collins et al.,
2007), and left ventricular hypertrophy contributes to the high
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mortality rates in patients given conventional daytime hemodial-
ysis (CHD) treatment (Harnett et al., 1994). Intriguingly, NHD,
renal replacement therapy during sleep) offers better BP con-
trol (Pierratos et al., 1998; Raj et al., 1999), and is accompanied
by regression of left ventricular hypertrophy (Chan et al., 2002),
as compared to patients given conventional daytime therapy. In
addition to decreasing the nighttime BP, NHD also decreases
24-h mean arterial BP compared to CHD (Chan et al., 2003).
These findings of a chronotherapeutic benefit are further cor-
roborated by a randomized controlled clinical trial demonstrat-
ing that frequent NHD improves systemic BP and reduces left
ventricular mass compared with CHD (Culleton et al., 2007).
Mechanistically, the beneficial effects of NHD are associated with
changes in myocardial mechanics in patients, and experimen-
tally correlated with unique cardiac gene expression signatures
in rodent studies in vivo (Chan et al., 2012). These studies
demonstrate chronotherapeutic benefit for the heart, in patients
with end-stage renal disease, by chronotherapeutically converting
from CHD to NHD treatment.

Nocturnal Therapy for Obstructive Sleep
Apnea Benefits the Heart
Obstructive sleep apnea (OSA) is a common sleep disorder,
with cardiovascular consequences (e.g., through increased sym-
pathetic activation, etc. as has been well reviewed in Bradley
and Floras, 2003; Somers et al., 2008; Bradley and Floras, 2009;
Kasai and Bradley, 2011; Ayas et al., 2014; Floras, 2014). OSA
is a target for chronotherapy, as several studies have revealed
that sleep time treatment with continuous positive airway pres-
sure (CPAP) attenuates some of the adverse effects on the
cardiovascular system. For example, CPAP therapy decreases
the risk of non-fatal and fatal adverse cardiovascular events in
severe OSA patients (apnea-hypopnea index >30 h) as com-
pared to untreated patients, as demonstrated in a 10 years
long term follow-up study (Marin et al., 2005). In another
study, it was shown that CPAP therapy improves ejection
fraction, lowers systolic BP, and reduces HR in heart failure
patients with OSA (Kaneko et al., 2003). Also, CPAP treat-
ment decreases cardiovascular-related deaths in OSA patients,
as compared to an untreated OSA group, as was demon-
strated over a follow-up period of 7.5 years (Doherty et al.,
2005). Thus these studies underscore the notion that time-of-day
therapies, such as nocturnal CPAP treatment, benefits cardio-
vascular physiology, and reduces pathophysiology in patients
with OSA.

Chronobiomarkers

Definition
A second area for therapeutic application of circadian rhythms
is in the development of time-of-day biomarkers for heart
disease. The National Institutes of Health defines biomark-
ers as “a characteristic that is objectively measured and evalu-
ated as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic interven-
tion” (Biomarker Definitions Working Group, 2001). Classic

biomarkers of cardiovascular disease relate to patient state (e.g.,
lifestyle risk factor profiles such as diet, exercise, and smok-
ing) or biological processes (e.g., molecular gene and pro-
tein levels; reviewed in Jaffe et al., 2006; Maisel et al., 2006;
Pletcher and Pignone, 2011). However, in contrast to these
classic biomarkers which are measured during the daytime,
chronobiomarkers provide a novel approach because clinical
sampling is done at different times of day or night. Thus chrono-
biomarkers (unlike classic biomarkers) take into consideration
the time-of-day rhythms important for body physiology and
molecular processes. It is worth noting that timing of sam-
pling is also relevant to translational research, since experiments
on rodents are routinely performed during the working day
when the animals are in their sleep period (rodents are noc-
turnal) with the intent of comparison to the human daytime.
Sampling tissues and detecting biomarkers at different times
across the day and night cycle can allow for better correlation
with humans. New frontiers investigating molecular chrono-
biomarkers, with application to the clinical setting, are described
below.

Genomic Chronobiomarkers
Genomic chronobiomarkers are the most identifiable type of
biomarker because the circadian clock mechanism is transcrip-
tional in nature. That is, many labs have shown that the circadian
mechanism underlies gene expression in the heart (and other)
organs, and thus investigating how these gene patterns change in
heart disease could lead to de novo chronobiomarker discoveries.
The first large scale study examining rhythmic gene expression
in the heart was by Storch et al. (2002), and revealed that ∼8%
of genes (mRNA) in the murine heart exhibit circadian varia-
tions by microarray and bioinformatics analyses. Of note, this
study was done under circadian (constant dark) conditions to
elucidate clock controlled genes. However, since humans (and
clinical medicine) exist in a 24-h light and dark and not circadian
environment, we also demonstrated that ∼13% of murine car-
diac genes (mRNA) exhibit rhythmic expression under normal
day and night cycles, by microarray and COSOPT bioinfor-
matics analyses (Martino et al., 2004). Most recently rhythmic
mRNA profiles have also been shown in human heart tissue for
the core clock genes (per1, per2, and bmal1; Leibetseder et al.,
2009).

Interestingly, chromatin remodelers play a role in orches-
trating time-of-day gene expression, by regulating rhythms in
the epigenome (reviewed in Aguilar-Arnal and Sassone-Corsi,
2014), such as the histone deactylases termed silent infor-
mation regulator 1 (SIRT1; Nakahata et al., 2008), and his-
tone deacetylase 3 (HDAC3; Alenghat et al., 2008), and the
histone methyltransferase termed mixed lineage leukemia 1
(MLL1; Katada and Sassone-Corsi, 2010). These are recruited
to the promoters of clock controlled genes in a circa-
dian manner, and rhythmic expression of clock controlled
genes is altered in the absence of these chromatin modi-
fiers (Alenghat et al., 2008; Nakahata et al., 2008; Katada
and Sassone-Corsi, 2010). Moreover, the epigenetic markers
of histone acetylation and methylation also exhibit rhyth-
mic oscillations over 24 h (Etchegaray et al., 2003; Vollmers
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et al., 2012). In terms of therapeutic potential, pharmacological
modulation with SIRT1 activators reduces histone acetylation
and decreases the amplitude of circadian gene expression in mice
(Bellet et al., 2013).

Since rhythmic gene expression underlies the vital car-
diac processes, we also investigated whether time-of-day
gene expression signatures could be utilized as de novo
biomarkers of heart disease (i.e., chronobiomarkers). In a
proof-of-concept study, we identified 300 mRNA chrono-
biomarkers, using a murine model of cardiac hypertrophy
(transaortic constriction, TAC), microarrays, and a novel
bioinformatics algorithm termed Delta Gene (Tsimakouridze
et al., 2012). For example, the mitochondrial metabolism genes
uncoupling protein 3 (Ucp3) and pyruvate dehydrogenase
kinase 4 (Pdk4) exhibit significantly increased expression in
TAC hearts in the light period (animals asleep) but not dark
period (animals awake). Conversely, the apoptosis pathway
gene BCL2/adenovirus E1B interacting protein 3 (Bnip3)
exhibits increased expression in the dark. Moreover, we fur-
ther demonstrated that day/night gene rhythms change over
the course of the disease, and that later profiles can be pre-
dictive of heart failure. For example, decreased sleep-time
expression of Ucp3 and increased wake-time expression of
Bnip3 are simultaneously observed with progression to heart
failure. (Tsimakouridze et al., 2012). Further optimization
for clinical translation in heart disease would of course need
to be considered, such as blood sampling instead of tissue,
and the development of gene chips targeting specific dis-
ease profiles. Nevertheless, these early studies demonstrate
the novelty and feasibility of such an approach, for genomic
chronobiomarkers with application to clinical molecular
diagnostics.

Proteomic Chronobiomarkers
A second approach is to characterize the proteomic chrono-
biomarkers instead of the genetic markers. This is important
because it is the proteins, and not the mRNA, that underlie many
crucial biological processes in health and disease. In support of
this approach, we demonstrated that ∼8% of the murine car-
diac proteome exhibits significant changes in abundance over
the 24-h day and night cycle, by using 2-dimensional differ-
ence in gel electrophoresis and liquid chromatography mass
spectrometry (Podobed et al., 2012, 2014). Moreover, a role
for the circadian clock mechanism is indicated in regulating
time-of-day protein abundance, as differences in protein pro-
files are observed in the hearts of cardiomyocyte-specific clock
mutant mice (Podobed et al., 2014). This includes many rate
limiting enzymes important for key metabolic pathways in the
heart (Podobed et al., 2014). As a proof-of-concept for appli-
cation to heart disease, we demonstrated that protein chrono-
biomarkers have characteristic disease signatures in our murine
model of TAC-induced cardiac hypertrophy (Podobed et al.,
2012, 2014; Tsimakouridze et al., 2012). It is worth noting
that although our studies report day/night protein signatures
of heart disease, these studies rely on sampling directly from
the heart tissue. For routine biomarker testing a more min-
imally invasive technique would need to be developed, such

as detecting time-of-day protein biomarker signatures in the
blood. To demonstrate the feasibility of less invasive testing,
we showed time-of-day de novo chronobiomarkers in murine
blood plasma samples, using surface-enhanced laser desorp-
tion/ionization mass spectrometry (Martino et al., 2007). In terms
of translation, one interesting example illustrating the clinical
potential of time-of-day biomarkers in heart disease comes from
studies by Dominguez-Rodriguez et al. (2006), who show that
nighttime serum melatonin levels are predictive of a subse-
quent adverse cardiovascular event in patients with ST-segment
elevation MI. Thus taken together, these studies demonstrate
significant clinical potential for protein chronobiomarkers for
the diagnosis, prognosis, and personalized treatment of heart
disease.

Metabolomic Chronobiomarkers
The circadian clock regulates metabolism in the body (Turek
et al., 2005; Paschos et al., 2012) and in the heart (reviewed
in Young, 2006; Durgan and Young, 2010) and thus there is
significant opportunity to investigate the circadian metabolome
for chronobiomarkers of health and disease. For example, the
liver metabolome exhibits rhythmic oscillations and disrupt-
ing the circadian clock mechanism alters these profiles (Eckel-
Mahan et al., 2012). In another study in humans, it was
demonstrated that ∼15% of metabolites in plasma and saliva
samples are rhythmic and under circadian control (Dallmann
et al., 2012). One clinical application is in the measurement
of internal body time-of-day, which may be exploited to max-
imize efficacy and minimize toxicity of drugs therapies (e.g.,
for chronotherapy; Ueda et al., 2004). In this regard, the
Ueda group designed a molecular-timetable of the murine
blood metabolome, quantifying hundreds of clock controlled
metabolites, using a liquid chromatography mass spectrome-
try approach (Minami et al., 2009). This same group sub-
sequently applied their molecular metabolite timetable con-
cept to successfully estimate internal body time in humans
(Kasukawa et al., 2012). The CircadiOmics website provides
a consolidated model that integrates these metabolomic data
with genomics and proteomics, to better understand time-of-
day coordination of physiology/pathophysiology (Patel et al.,
2012). Indeed, taken together these data reveal the conve-
nience and feasibility of adopting time-of-day testing for clin-
ical use. It is tempting to speculate that additional “-omics”
approaches, such as lipidomics or breathomics, could also be
developed in the future as valuable clinical tools for personalized
medicine.

New Frontiers for Chronobiology
Drugs

Recently, there has been a new focus on the creation of phar-
macological compounds designed to target the REV-ERB and
ROR nuclear receptors in the circadian mechanism, with clin-
ical applications (reviewed in Kojetin and Burris, 2014). For
example, administering REV-ERB agonists to mice alters their
circadian behavior and hypothalamic gene expression, leading to
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the notion that these drugs may be useful in the treatment of
metabolic disorders (Solt et al., 2012). Since REV-ERB also plays
a key role in regulating mitochondrial content and the oxidative
capacity of skeletal muscle, it is postulated that pharmacologic
activation of REV-ERB may also be used to treat skeletal mus-
cle diseases (Woldt et al., 2013). Moreover, it was recently shown
that REV-ERB agonists can regulate sleep architecture and emo-
tion in mice, and thus they may be useful in the treatment of
sleep disorders and anxiety (Banerjee et al., 2014). There are new
pharmacological agents that modulate other components of the
circadian clock mechanism as well (e.g., reviewed in Chen et al.,
2013); some of these hold considerable promise for offsetting the
adverse effects of shift work (e.g., Walton et al., 2009; Meng et al.,
2010; Pilorz et al., 2014). Most recently it was demonstrated that
human peripheral blood mononuclear cell clocks are entrained
by glucocorticoids, and that pharmacologic treatment directed at
these peripheral targets could also help counteract the deleteri-
ous effects of shift work (Cuesta et al., 2014). Although the new
chronobiology drugs have not yet been examined in heart disease,
it is tempting to speculate that they may be useful, especially in
light of their influences on muscle metabolism, on sleep, and on
circadian phase, that they may benefit cardiovascular physiology
and pathophysiology.

Conclusions and future directions

In terms of future directions in basic science, use of murine
transgenic models and pharmacologic approaches will undoubt-
edly provide new pre-clinical insights into how targeting the
circadian mechanism can contribute to the diagnosis and man-
agement of heart disease. In terms of clinical chronotherapy,
the US public clinical trials database (ClinicalTrials.gov., 2015)
already lists seven studies when the search term “cardiovascu-
lar chronotherapy” is used, and 18 studies for “chronotherapy”
in general, attesting to the clinical promise that chronothera-
peutic treatments may hold. There are also significant oppor-
tunities to discover de novo chronobiomarker tests, for prod-
uct development by biotechnology sectors, and for establishing
routine applications in chronobiology, and sleep clinics. Thus
therapeutic consideration of circadian rhythms for the cardio-
vascular system is an exciting new area with significant clinical
potential.
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Circadian clocks, feeding time, and
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Metabolic processes exhibit diurnal variation from cyanobacteria to humans. The

circadian clock is thought to have evolved as a time keeping system for the cell

to optimize the timing of metabolic events according to physiological needs and

environmental conditions. Circadian rhythms temporally separate incompatible cellular

processes and optimize cellular and organismal fitness. A modern 24 h lifestyle can run at

odds with the circadian rhythm dictated by our molecular clocks and create desynchrony

between internal and external timing. It has been suggested that this desynchrony

compromises metabolic homeostasis and may promote the development of obesity

(Morris et al., 2012). Here we review the evidence supporting the association between

circadian misalignment and metabolic homeostasis and discuss the role of feeding time.

Keywords: circadian clock, metabolic homeostasis, circadian misalignment, feeding time, circadian rhythms

Life on earth has adapted to our world of days and nights by evolving molecular mechanisms
anticipating the most advantageous time of day for biological processes. In mammals, these
daily rhythms are maintained by autoregulatory transcriptional and translational feedback
loops involving the basic helix loop helix PER-ARNT-SIM (bHLH/PAS) transcription factors
BMAL1, CLOCK, and NPAS2. BMAL1 heterodimerizes with either CLOCK or NPAS2 and drive
transcription through E-boxes located within the promoters of numerous target genes. Among
the target genes are Period homolog (Per1-3), Cryptochrome (Cry1-2) and Rev-erbα that encode
repressors of the BMAL1: CLOCK/NPAS2 transcriptional activity. After a delay, the translated PER
and CRY proteins heterodimerize, translocate to the nucleus, and repress BMAL1: CLOCK/NPAS2
heterodimers. The PER and CRY heterodimers are progressively degraded, allowing the circuit to
start again. This negative feedback leads to a cycle in gene expression that takes approximately
24 h to complete (Ukai and Ueda, 2010). Post-translational modifications of the proteins of the
circuit generate the essential time delay that maintains the period of the cycle at approximately
24 h (Crane and Young, 2014). As a result, BMAL1: CLOCK/NPAS2 bind to DNA in a rhythmic
manner leading to rhythmic expression of target genes (Koike et al., 2012). Additional feedback
pathways by nuclear receptors retinoid-related orphan receptor alpha (RORα) (Sato et al., 2004),
peroxisome proliferator–activated receptor gamma (PPARγ) (Yang et al., 2012) and peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) (Liu et al., 2007) provide
further robustness to the circuit. The circadian system is organized in a hierarchical manner with a
master clock located at the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN receives
photic input through direct retinal innervation that initiates gene expression in the SCN (Hastings
and Herzog, 2004). In this way, light exposure entrains the SCN clock to solar time, adjusting the
oscillator to a precise 24 h cycle (Khalsa et al., 2003). The master clock of the SCN communicates
day-night information to the rest of the body. Through neuronal and humoral signals, the SCN
sends this information to peripheral circadian clocks that exist in almost all cells of the rest of the
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body and synchronize them to the same phase (Mohawk et al.,
2012). Whereas light is the dominant timing cue for the
SCN oscillator, the clocks of the periphery respond to other
environmental cues such as temperature (Glaser and Stanewsky,
2007) and food intake (Damiola et al., 2000) and alter their phase
accordingly.

The notion that running at odds with the timing imposed by
the master pacemaker (the term “circadian clock” will be used
for the rest of the manuscript) results in inefficiency in energy
expenditure and obesity has been supported by epidemiological
studies. Circadian misalignment has been associated with an
increased prevalence of obesity and diabetes. The prevalence
of obesity is higher among night-shift workers compared to
day workers, and chronic shift work is positively associated
with body mass index (BMI) (Karlsson et al., 2001; Parkes,
2002; Di Lorenzo et al., 2003; Ostry et al., 2006; Pan et al.,
2011). Prospective studies of healthy volunteers undergoing a
6-day simulated shiftwork protocol show a reduction of energy
expenditure in response to the shiftwork (Mchill et al., 2014).
Certain sleep disorders also generate misalignment between the
rhythms imposed by the circadian clock and behavioral rhythms.
Patients with sleep disorders have a higher risk for developing
obesity (Phillips et al., 2000; Liu et al., 2013), and the duration
of sleep is inversely correlated with body weight in healthy men
and women (Patel et al., 2006, 2008; Cappuccio et al., 2008; Chen
et al., 2008; Mozaffarian et al., 2011). Prospective study of sleep
deprivation shows an increase in body weight after 5 days of
insufficient sleep, characterized by an increase in food intake at
night (Markwald et al., 2013). A 12-h shift of the sleep/wake and
fasting/feeding cycle compared with the central circadian system,
while maintaining an isocaloric diet, reduces glucose tolerance,
increases blood pressure, and decreases the satiety hormone
leptin (Scheer et al., 2009). Exposure of human volunteers to a
28 h day as a mean for circadian disruption in combination with
sleep deprivation results in reduced resting metabolic rate and
increased post-prandial glycemia as a result of reduced pancreatic
insulin secretion (Buxton et al., 2012).

The metabolic impact of circadian misalignment has been
studied in animals. The link between the circadian clock and
metabolism first emerged from transcriptome analysis of mouse
suprachiasmatic nuclei and liver (Panda et al., 2002). Panda
et al. showed rhythmically expressed genes encoding regulators
and enzymes from multiple metabolic pathways, especially
cholesterol synthesis and gluconeogenesis, and suggested that the
expression of these genes is under the control of the circadian
clock (Panda et al., 2002). Since that study, amino acids and
fatty acids were found to oscillate in both mouse liver (Eckel-
Mahan et al., 2012) and human plasma (Dallmann et al., 2012).
Studies in animal models of circadian clock disruption provide
evidence for the requirement of circadian rhythms for metabolic
fitness. Early studies showed that gluconeogenesis is impaired
in Bmal1 knockout mice and Clock 119 mutants, resulting in
loss of the circadian variation in the recovery of blood glucose
in response to insulin (Rudic et al., 2004). Zhang et al. showed
that Cry1 inhibits hepatic gluconeogenesis by blocking adenyl
cyclase signaling in response to glucagon (Zhang et al., 2010).
Hepatic overexpression of Cry1 improves sensitivity to insulin in

db/db pro-diabetic mice (Zhang et al., 2010). On the other hand,
deletion of Cry1 and Cry2 results in impaired glucocorticoid-
receptor-mediated repression of glucocorticoid synthesis (Lamia
et al., 2011). This in turn results in increased gluconeogenesis in
the Cry1, Cry2 double knockout animals and increased levels of
blood glucose in response to both feeding and fasting (Lamia
et al., 2011). Deletion of Bmal1 in the liver results in reduced
blood glucose levels during the rest period of the daily cycle
and increased glucose clearance from the circulation (Lamia
et al., 2008). Pancreas-specific deletion of Bmal1 leads to reduced
ability of the pancreas to secrete insulin in response to glucose
during the active period of the daily cycle (Marcheva et al., 2010).
As a result, mice with a dysfunctional pancreatic clock showed
impaired glucose tolerance and increased ad libitum plasma
glucose levels (Marcheva et al., 2010).

The circadian clock has a profound effect on overall energy
homeostasis. Exposure of mice to constant light disrupts their
rhythms in locomotor activity and leads to obesity without
an increase in total food intake (Shi et al., 2013). Clock119
mutant mice on the C57BL/6J background are obese due to
hyperphagia and an attenuation of the regular diurnal feeding
rhythm (Turek et al., 2005). Mice deficient in Per2 have no
glucocorticoid rhythm, lose diurnal feeding rhythm and develop
obesity when fed a high fat diet (Yang et al., 2009). Mutation
of the core clock gene Per1 that alters the phosphorylation site
of PER1 results in a phase advance of food intake by several
hours into the rest/sleep period and in obesity (Liu et al., 2014).
Further to support the findings in mice with mutations of clock
genes, SCN lesions in mice leads to increased body weight and
hepatic insulin resistance (Coomans et al., 2013). This suggests
that the increased body weight found in mice carrying mutations
of clock genes is due to the disruption of the circadian clock
and not because of developmental defects. However, the possible
developmental effects of mutations/deletions of clock genes have
to be formally tested experimentally with the use of post-natal
genetic manipulations. A common parameter in all the above
animal models of clock disruption that develop obesity is the
increase in food intake during the rest/sleep phase, a phase of
the daily cycle when mice normally consume little food. Adding
further support to the role of food intake timing, disruption of
the circadian clock specifically in adipocytes results in obesity
also due to attenuation of the normal feeding rhythm (Paschos
et al., 2012). Mice with no functional adipocyte clocks eat more
than normal during the rest period of the 24 h cycle, without
an increase in total daily food intake. Adipocyte clock controls
de novo fatty acid synthesis and release to the circulation,
which serves as a signal to the hypothalamus to regulate feeding
activity (Paschos et al., 2012). Taken together, the studies in clock
deficient mice suggest involvement of the circadian clock in the
regulation of feeding. Several studies provide support for the role
of the time of food intake in body weight homeostasis (Masaki
et al., 2004; Fonken et al., 2010; Salgado-Delgado et al., 2010;
Hatori et al., 2012; Stucchi et al., 2012; Chaix et al., 2014). Rats
forced to eat opposite to their normal eating time develop obesity
(Salgado-Delgado et al., 2010). Similarly, a shift of feeding time
to the rest phase in a genetic model of irregular feeding behavior
(Masaki et al., 2004) or by exposure to light during nighttime
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increases body weight (Fonken et al., 2010). An increase in the
amount of calories consumed during the rest/sleep phase of the
daily cycle is causal for the development of obesity during high fat
diet feeding (Stucchi et al., 2012; Hatori et al., 2012; Chaix et al.,
2014).

Time of day of food consumption appears to be important
for energy homeostasis however the mechanisms under which
feeding at inappropriate time leads to obesity are not yet
understood. Feeding rhythms drive rhythms in liver triglycerides
and proteins independent of the circadian clock (Adamovich
et al., 2014; Mauvoisin et al., 2014). Feeding at “inappropriate”
time entrains those rhythms into a phase opposite to the phase
of other physiological rhythms dictated by the master clock.
This circadian misalignment may result to inefficiency in energy
expenditure and obesity (Mattson et al., 2014). In support of this
hypothesis, correction of the feeding time in mice fed a high
fat diet rescues the onset of obesity and restores the phase of
rhythms in serum metabolites (Chaix et al., 2014). The clinical

relevance of the findings in animal studies is highlighted by
the increased prevalence of obesity in the human Night Eating
Syndrome (Gallant et al., 2012), characterized by a delayed
pattern of food intake such that more than 25% of the total
daily intake takes place after dinner and into the rest/sleep period
(Allison et al., 2010). Some first evidence in humans show that
volunteers on a weight loss diet lost 25 percent more weight when
they consumed their largest meal earlier in the day (Garaulet
et al., 2013). In another study, consuming half of the total daily
calories during breakfast as part of a weight loss diet led to
greater weight loss compared to high caloric intake during dinner
time (Jakubowicz et al., 2013). Further studies are required to
elucidate the therapeutic implications of feeding time on energy
homeostasis and body weight regulation.
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Accumulating evidence indicates that the molecular circadian clock underlies the
mating behavior of Drosophila melanogaster. However, information about which
food components affect circadian mating behavior is scant. The ice plant,
Mesembryanthemum crystallinum has recently become a popular functional food.
Here, we showed that the close-proximity (CP) rhythm of D. melanogaster courtship
behavior was damped under low-nutrient conditions, but significantly enhanced by
feeding the flies with powdered ice plant. Among various components of ice plants,
we found that myo-inositol increased the amplitude and slightly shortened the period
of the CP rhythm. Real-time reporter assays showed that myo-inositol and D-pinitol
shortened the period of the circadian reporter gene Per2-luc in NIH 3T3 cells.
These data suggest that the ice plant is a useful functional food and that the
ability of inositols to shorten rhythms is a general phenomenon in insects as well as
mammals.

Keywords: Drosophila melanogaster, circadian rhythm, ice plant, myo-inositol, mating succession

Introduction

The physiology and behavior of many organisms can adapt to daily and seasonal environmental
changes via circadian clocks that comprise an endogenous self-sustained timekeeping system
(Dunlap, 1999). Furthermore, the molecular mechanisms of circadian clock genes that consist
of transcriptional–translational feedback loops are conserved from flies to humans (Kako and
Ishida, 1998). A core oscillator mechanism of circadian rhythm and feedback loops involving
several clock genes such as including period (per) control locomotor activity and eclosion of the
fruit fly, Drosophila melanogaster (Dunlap, 1999). The relationships between behavioral rhythms
and circadian clock genes have been studied in mutants of this fly with defective feedback
loops.

Accumulating evidence indicates that the circadian clock underlies the reproductive behavior
of D. melanogaster (Beaver and Giebultowicz, 2004; Kadener et al., 2006). The circadian rhythm
of mating succession is controlled by the clock genes, per and tim in Drosophila (Sakai and
Ishida, 2001). Heterosexual fly couples exhibit significantly different circadian activity from
individual flies, having a brief rest phase around dusk followed by activity throughout the
night and early morning (Fujii et al., 2007); this is referred to as the close-proximity (CP)
rhythm. Analyses of CP rhythms have shown that circadian clocks regulate male courtship
behavior in a circadian manner and that a core component of circadian clock, per, is
regulated to generate CP rhythms. We previously identified the brain clock neurons that
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are responsible for the circadian rhythms of the CP behavior
that reflects male courtship motivation under normal nutrient
conditions (Hamasaka et al., 2010). However, how low-nutrient
foods (LNFs) affect Drosophila circadian CP behavioral rhythms
remains unknown.

A recent study found that inositol synthesis is involved in
maintaining the period of circadian behavior in mice (Ohnishi
et al., 2014), suggesting that dietary inositol affects the circadian
rhythm of CP behavior. Furthermore, inositol is useful against
depression (Mukai et al., 2014; Zhao et al., 2015). The African ice
plant, Mesembryanthemum crystallinum, is abundant in inositols
that are known to promote health (Lee et al., 2014). Here,
we found that powdered ice plant gradually increased the CP
behavior of D. melanogaster under low-nutrient conditions.
Furthermore, adding inositol to the diet slightly shortened the
period of the Drosophila CP rhythm. We also found that inositols
concentration-dependently shortened the circadian rhythms of
clock gene expression in mammalian NIH3T3 cells. These
findings when taken together indicate that the ability of inositols
to shorten these rhythms is a general phenomenon in animals
regardless of species.

Materials and Methods

Food Composition
Boiled standard medium consisting of 8% corn meal, 5% glucose,
5% dry yeast extract, 0.64% agar was supplemented with 0.5%
propionic acid and 0.5% butyl p-hydroxybenzoate (standard
food, SF). Designated LNF comprising 5% glucose, 1.5% agar,
0.5% butyl p-hydroxybenzoate was supplemented without (LNF)
or with (LNFI) 0.5% ice plant powder (Nihon Advanced Agri
Corporation, Nagahama, Shiga, Japan).

Separation of Inositols in Ice Plant
Myo-inositol and pinitol that have similar structures were
separated from ice plant powder by high-performance anion
exchange chromatography (HPAE-PAD) using a column
containing Dinox CarboPac MA1 (Negishi et al., 2015).

Fly Strains
The wild-type strain, Oregon-R and the clock mutant per0 were
raised under a 12-h light/12-h dark cycle at 25◦C on SF.

FIGURE 1 | Close-proximity (CP) rhythms of wild-type Drosophila
melanogaster strain, Oregon-R on three types of medium. (A) Proximity
index shows obvious circadian rhythms in Oregon-R. Flies were paired at
dusk during LD 12:12 cycle. Data were obtained under constant darkness
(DD) after 24 h under LD 12:12. Pairs of Oregon-R flies exhibited daily CP
behavior under LD 12:12. Rhythmic CP behavior persisted under DD on
(A) Standard food (SF; n = 7), (B) LNF (n = 27), and (C) LNF containing

0.5% ice plant powder (LNFI; n = 21). All CP rhythms were statistically
tested by autocorrelation (CORREL function) analysis (right panels), resulting
in significant circadian rhythmicity (95% significance indicated by dotted line).
The amplitude of CP rhythm decreased on flies fed with low-nutrient food
(LNF). White area on graph indicates day; black and gray bars indicate
subjective night and subjective day, respectively. Data from 7 to 27 pairs
were averaged for each panel. Black error bars indicate SEM.
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FIGURE 2 | Close-proximity rhythms of D. melanogaster mutant, per0,
on three types of medium. Proximity index shows arrhythmia in mutant
strain per0 under constant darkness (DD). Data were obtained under DD
after 24 h under LD 12:12. Pairs of per0 flies exhibited daily CP behavior
under LD 12:12. Arrhythmic CP behavior persisted under DD on (A) SF
(n = 8), (B) low nutrient food (LNF; n = 10), and (C) LNF containing 0.5%

ice plant powder (LNFI; n = 10). All CP findings were statistically tested by
autocorrelation (CORREL function) analysis (right panels), resulting in
non-circadian rhythmicity (95% significance indicated by dotted line). White
area on graph indicates day; black and gray bars indicate subjective night
and subjective day, respectively. Data from 8 to 10 pairs are averaged for
each panel. Black error bars indicate SEM.

Close-Proximity Assays
About 40 male and female flies were maintained in vials with
SF for 3 days starting from the third day after eclosion. One
male and one female from the same genotype were lightly
anesthetized with CO2 and rapidly placed in 35-mm-diameter
dishes containing SF or LNF. The dishes were then mounted
under a CCD camera, (Watec Co. Ltd., Yamagata, Japan) which
is sensitive to light at the near infra-red range and a recording
system was established as described (Fujii et al., 2007; Hamasaka
et al., 2010). A fluorescent lamp provided illumination at 100 lux
and a red LED provided constant dim light <1 lux. Time-lapse
images (one frame per 10 s) were sent to a personal computer.
The locations of the flies on the X and Y-axes of the images were
determined using ImageJ Plugin (http://rsb.info.nih.gov/ij/). The
CP index of each pair was calculated from the X–Y value with
a threshold (<5 mm) between them. Male flies moving to
within 5 mm of a female and those remaining >5 mm from
a female were scored as 1 or 0, respectively, in the algorithm
of the CP index program. All CP assays proceeded with flies
of the same genotypes and the data were averaged for each
genotype. The circadian rhythmicity of CP was determined
using autocorrelation (CORREL function) analysis (Levine et al.,

2002). The free-running period and the power of rhythmicity
in each genotype were calculated as the average of the free-
running period and the maximum correlation between each
pair evaluated by autocorrelation as being rhythmic (CORREL
function; Hamasaka et al., 2010).

Statistical Analysis
All data are expressed as means ± SEM and were statistically
evaluated using Student’s t-test for single comparisons and one-
way ANOVA. P < 0.05 was considered to indicate a statistically
significant difference.

Cell Culture
NIH3T3 cells were incubated in Dulbecco’s modified Eagle’s
medium (D-MEM) supplemented with 10% fetal bovine serum
and a mixture of penicillin and streptomycin at 37◦C under a
humidified 5% CO2 atmosphere.

Real-Time Luciferase Assays
The Per2 promoter regions were cloned into pGL3-dLuc (Ohno
et al., 2007), and then reporter plasmids (2 µg) were transfected
into NIH3T3 cells (35-mm collagen type I-coated dishes)
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FIGURE 3 | Close-proximity rhythms of wild-type D. melanogaster
strain, Oregon-R on (A) LNF and LNF including (B) 0.001%, (C) 0.01%,
and (D) 0.1% myo-inositol and (E) 0.001%, (F) 0.01 (G) and 0.1% D-pinitol.
(H) Period of CP rhythms at different myo-inositol concentrations in LNF.
Proximity index shows obvious circadian rhythms on myo-inositol mixed low
nutrient food. Flies were paired at dusk during LD 12:12 cycle. Data were
obtained under constant darkness (DD) after 24 h under LD 12:12. Pairs of
Oregon-R flies exhibited daily CP behavior under LD 12:12. Rhythmic CP
behavior persisted under DD on (A) LNF, (B) LNF-0.001% M, (C) LNF-0.01%
M, (D) LNF-0.1% M (all n = 5). Arrhythmic CP behavior persisted under DD on

(E) LNF including D-pinitol 0.001% (n = 4), (F) 0.01% (n = 5), and (G) 0.1%
(n = 5). All CP data were statistically tested using autocorrelation (CORREL
function) analysis (right panels), resulting in significant circadian rhythmicity (95%
significance indicated by dotted line). White area on graphs indicates day; black
and gray bars indicate subjective night and subjective day, respectively. Data
from five pairs were averaged for each panel. Black error bars indicate SEM.
(H) Period length of CP rhythms of wild-type D. melanogaster strain, Oregon-R
on (A) LNF (23.75 h), LNF containing (B) 0.001% (23.33 h), (C) 0.01% (23 h),
and (D) 0.1% (22.25 h) myo-inositol. Differences among these period lengths
were not significant (Student’s t-test). LNF, low-nutrient food; M, myo-inositol.
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FIGURE 4 | Inositols at various concentrations shorten period of
Per2-luc reporter gene oscillation in mammalian cultured cells.
Expression of Per2-luc reporter gene introduced into NIH 3T3 cells
determined using real-time reporter assays. Mean estimated expression
period was 24.2 h (Control). Adding lithium chloride (LiCl; positive control)
lengthened period of Per2-luc expression. Data are shown as mean ± SEM.
Significant difference between control and treated cells (∗p < 0.05, t-test).

using HilyMax (Dojindo Laboratories, Kumamoto, Japan). The
cells were stimulated with 100 nM dexamethasone (Sigma–
Aldrich) for 2 h in serum-free Dulbecco’s MEM and then the
medium was replaced with fresh Dulbecco’s MEM containing
100 µM luciferin (Wako Pure Chemical Industries), 25 mM
HEPES (pH 7.2), and 10% fetal bovine serum. Bioluminescence
was measured and integrated for 1 min at intervals of
10 min using an LM-2400 photon detection unit (Hamamatsu
Photonics, Hamamatsu, Japan). The cells were cultured in a
luminometer for 3 days to evaluate bioluminescence. Reporter
gene expression was detrended by subtracting an average of
12 h from the raw data. Peaks and troughs were measured
on detrended charts using a scale to calculate the phase of
reporter-gene expression. The average period (hours) between
peaks was calculated from detrended data accumulated for
>5 days.

Results

Feeding with Ice Plant Powder Enhanced CP
Rhythm of Drosophila Courtship Behavior
The CP rhythms of heterosexual pairs of Oregon-R flies
dipped at dusk under LD12:12 as described (Fujii et al.,
2007; Hamasaka et al., 2010) and persisted under DD with
a dip at subjective lights-off (CT12; Hamasaka et al., 2010).
The circadian CP rhythm of Oregon-R fed with SF was
obvious (Figure 1A) and the amplitude and period were
very similar to those previously reported (Hamasaka et al.,
2010). To understand the effect of LNF on CP rhythms, we
examined the CP rhythms of Oregon-R flies on LNF without
cornmeal and yeast extract (Figure 1B). The amplitude of
the CP rhythm declined under DD after a light and dark

(LD12:12) cycle. Among several compounds that we screened
for the ability to recover the amplitude of the CP rhythm
under LNF, that LNFI sequentially promoted the activity of the
rhythm (Figure 1C). Thus, ice plant powder contains candidate
substances that might recover the amplitude of the CP rhythm
under LNF.

Rhythmicity of Drosophila Courtship Behavior
Requires the Clock Gene Period
Since ice plant powder promoted the activity and amplitude
of CP rhythms in wild-type flies, we investigated the effects
of LNFI on period mutant, per0 flies. Figures 2A–C shows
the CP rhythms of per0 mutants fed with SF, LNF, and
LNFI, respectively. The CP rhythms of per0 heterosexual pairs
of flies dipped at dusk under LD, but became arrhythmic
under DD for 2 days (Figure 2A) and in flies fed with
LNF (Figure 2B). However, LNFI significantly enhanced the
activity of the CP rhythm (Figure 2C). These data indicate
that rhythmicity of CP behavior requires the period gene and
that ice plant powder includes a promoter of CP rhythmic
activity.

Myo-Inositol Shortens Circadian Period of CP
Rhythms and Activates the Amplitude of CP
Behavior
Figure 1 indicates that ice plant powder contains substances that
promote the activity of CP rhythm. We therefore separated low-
molecular weight substances in ice plant powder using HPLC
and found 4.5 and 51.4 mg of myo-inositol and D-pinitol/g
of fresh weight, respectively. We examined the effects of LNF
containing either myo-inositol (Figures 3B–D) or D-pinitol
(Figures 3E–G) at concentrations of 0.001, 0.01, and 0.1% each
on the wild-type strain, Oregon-R to determine whether they are
involved in promoting the activity of CP rhythms. Figure 3A
shows the CP rhythms of heterosexual pairs of flies fed with
LNF and Figures 3B–D shows that 0.001, 0.01, and 0.1% myo-
inositol slightly promoted the amplitude of the CP rhythm,
whereas the effects of the respective tested concentrations of D-
pinitol did not significantly differ (Figures 3E–G). Myo-inositol
seemed to dose-dependently shorten the period of CP rhythms
(Figure 3H). These data suggest that myo-inositol not only
increases the amplitude, but also shortens the phase of CP
rhythms.

Myo-Inositol Shortened Per2-luc Oscillation
Period in Mammalian Cultured Cells
We investigated the effects of myo-inositol on the period of
reporter gene expression driven by Per2 in NIH 3T3 cells
to determine whether it affects the phase of CP rhythms in
mammals (Figure 4). Increasing myo-inositol concentrations
tended to shorten the period of the CP rhythm, and 1% myo-
inositol significantly shortened the period. D-pinitol (0.2%)
also shortened the period of Per2-luc oscillation in cultured
NIH 3T3 cells. Thus, inositols not only shortened the period
of Drosophila behavior but also the period of mammalian
cells.
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Discussion

We showed that the amplitude of CP rhythms was significantly
reduced in wild-type flies fed with LNF. In contrast, LNF
containing 0.5% ice plant powder (LNFI) recovered the
amplitude of CP rhythm in these flies and the rhythm gradually
became robust and high at tough. These findings suggested that
ice plant powder contains substances that promote CP activity.

We analyzed inositol contents in ice plants using HPLC. The
ice plants (100 g) grown in plant factory contained 51.4 mg of D-
pinitol and 4.5 mg of myo-inositol and we analyzed the effects of
these inositols upon the amplitude of CP rhythm. Myo-inositol
increased the amplitude of CP rhythm in Drosophila, whereas D-
pinitol did not. Therefore, we postulated that nutrients missing
from LNF such as yeast extract and cornmealmight containmyo-
inositol. In fact, 5% dry yeast extract in the SF contained 1.07-mM
myo-inositol and 758-nM D-pinitol, and 0.5% ice plant powder
contained 991-µM myo-inositol and 14.2-µM D-pinitol. Thus,
yeast extract in SF contains a sufficient amount of myo-inositol
to promote the CP rhythm.

Myo-inositol slightly reduced the period of the CP rhythm,
but it did not affect either the amplitude or the period of the
locomotor rhythm (Supplementary Figure S1). This suggests
that the CP rhythm might be one output for the circadian clock
or that myo-inositol is involved in mating biochemistry (Papaleo
et al., 2009; Colone et al., 2010).

The CP behavior under DD in per0 circadian clock mutant
was arrhythmic, indicating that this rhythm required the
molecular circadian clock. However, ice plant powder constantly
enhanced the CP rhythm in this mutant, suggesting that it
contains unknown factors that promote the CP behavior without
affecting circadian rhythms in both per0 mutant and wild-type
Oregon-R flies.

We studied the CP rhythms of Oregon-R flies in LNF
containing 0.001, 0.01, and 0.1%myo-inositol (55.5µM, 555µM,
and 5.55 mM, respectively) or D-pinitol (51.5 µM, 515 µM,
and 5.15 mM, respectively). Myo-inositol at 0.01 and 0.1%
promoted the amplitude, and dose-dependently shortened the
period of the CP rhythm. Considering the recent suggestion
that myo-inositol is required to maintain the period of circadian
behavior in mice (Ohnishi et al., 2014), it appears to be common
circadian regulator among various species. Otherwise, promoting
the amplitude and the period of CP rhythms did not significantly
differ among flies fed with LNF containing different ratios of
D-pinitol. Although myo-inositol increased the amplitude of the

CP rhythm, D-pinitol had no effect despite having a similar
chemical structure to that of myo-inositol. However, both myo-
inositol and D-pinitol shortened the period of mammalian cells,
indicating that D-pinitol exerts different effects upon Drosophila
and mammals. Myo-inositol shortened the male CP rhythm
and increased the amplitude of the rhythm. Considering with
that inositols are used to treat depression(Mukai et al., 2014;
Zhao et al., 2015), the CP rhythm assay of Drosophila might
be useful for screening drugs to treat depressive disorders in
future.

Conclusion

The CP behavior under DD in the per0 mutant was arrhythmic,
indicating a requirement for the molecular circadian clock
gene period. Ice plant powder enhanced the CP activity of
the per0 mutant without recovering rhythmicity. These data
suggest that ice plant powder has unknown factors that
promote the activity of CP behavior without affecting the
circadian rhythm in Drosophila. The ice plant component
myo-inositol increased the proximity index but also slightly
shortened the period of CP rhythm in Drosophila. Exogenous
inositols concentration-dependently shortened the period of
the circadian oscillation rhythm of the mPer2-luc reporter in
cultured mammalian NIH3T3 cells. The ability of inositols to
shorten rhythms might be a general feature of insects as well as
mammals.
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The recent approval of a therapeutic for a circadian disorder has increased interest

in developing additional medicines for disorders characterized by circadian disruption.

However, previous experience demonstrates that drug development for central nervous

system (CNS) disorders has a high failure rate. Personalized medicine, or the approach to

identifying the right treatment for the right patient, has recently become the standard for

drug development in the oncology field. In addition to utilizing Companion Diagnostics

(CDx) that identify specific genetic biomarkers to prescribe certain targeted therapies,

patient profiling is regularly used to enrich for a responsive patient population during

clinical trials, resulting in fewer patients required for statistical significance and a higher

rate of success for demonstrating efficacy and hence receiving approval for the drug.

This personalized medicine approach may be one mechanism that could reduce the high

clinical trial failure rate in the development of CNS drugs. This review will discuss current

circadian trials, the history of personalized medicine in oncology, lessons learned from a

recently approved circadian therapeutic, and how personalized medicine can be tailored

for use in future clinical trials for circadian disorders to ultimately lead to the approval of

more therapeutics for patients suffering from circadian abnormalities.

Keywords: personalized medicine, circadian disorders, circadian therapeutics, patient enrollment, companion

diagnostics, targeted therapeutics

Introduction

The approval of HETLIOZ R© (tasimelteon) for Non-24 disorder has reignited an interest in
developing therapeutics for circadian abnormalities. However, as the history of tasimelteon
demonstrates, the path to approval of a drug for a circadian dysfunction is not an easy one. One
component of the challenge is the ability to match the therapeutic approach to the patient most
likely to benefit from the intervention, a model often called personalizedmedicine. Patient selection
or optimization of therapy is guided in some indications by genetic or biochemical markers which
point to the underlying molecular mechanisms causing disease. In central nervous system (CNS)
disorders, genetic markers have been difficult to pinpoint, possibly because the clinical symptoms
actually represent multiple diseases with different molecular drivers. However, treating circadian
dysfunction has an advantage over other CNS disorders, in that the phenotype of the disorder is
relatively easy to measure, is highly translatable from animal models to humans, and modulation of
the phenotype can be quantified, providing an accessible proof of mechanism biomarker. Here
we review the recent history of clinical trials for circadian disorders; conduct a comparison to
oncology, where personalized approaches have greatly improved success for therapeutics; and
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discuss the challenges that remain in circadian medicine to
incorporate personalized approaches to improve the approval
rate of medicines for circadian disorders.

Background

Circadian clocks regulate a plethora of biological processes.
Cellular processes such as gene expression and physiological
processes such as body temperature, hormone and
neurotransmitter release, as well as behaviors including
activity, sleep, learning and memory are under circadian control.
Recent advances in understanding the molecular components
of the clock, together with global transcriptome approaches,
provided insight into the vast extent of the genetic landscape
regulated by the clock, helping to explain at the molecular
level how such a variety of physiological systems are circadian-
regulated. The cycling clock proteins (BMAL1, CLOCK, PER-1
and -2, CRY-1 and -2) directly bind to gene regulatory elements
and regulate thousands of transcripts in multiple tissues in a
temporally coordinated manner (Koike et al., 2012). Recent
genome-wide studies have shown that an astonishing 43%
of genes are transcribed with a rhythmic pattern in a largely
tissue-specific manner (Zhang et al., 2014). Finally, epigenetic
mechanisms of gene regulation are also clock-controlled; a
large number of non-coding RNAs are rhythmically expressed.
Among these cycling mRNAs, only about half are regulated by
de novo transcription; post-transcriptional regulation is also
modulated by circadian input.

This recent understanding of the enormous impact of the
clock on the human organism and the elucidation of the
molecular components of the clock provide the pharmaceutical
industry with potential targets that should prove fruitful for the
discovery and development of new therapeutics. As of late 2014,
there were 34 open clinical trials listed at https://clinicaltrials.gov/
that included the keyword “circadian.” The purpose of several of
these trials is to phenotype circadian rhythms in specific patient
populations, for example the NIAAA study on the circadian
dopamine rhythm in cocaine addicts (Table 1, NCT02233829)
and the UCSF study on sleep disruption and delirium
(Table 1, NCT01280097). Other trials are studying behavioral
interventions to alter circadian rhythms, for example a study at
Rhode Island Hospital using chronobiological interventions to
treat post-partum depression (Table 1, NCT02053649). Several
studies are testing the efficacy of melatonin in various patient
populations or the efficacy of the approved drugs Modafinil,
Circadin, and tasimelteon for new indications. Disappointingly,
no trials listed novel agents for primary circadian disorders,
such as advanced- or delayed-phase syndromes, or for circadian
disorders secondary to other diseases, such as sundowning in
Alzheimer’s disease patients, despite the prevalence of these
disorders. Sundowning, for instance, has been reported in 2.4–
25% patients diagnosed with Alzheimer’s disease (AD). Thus, it
appears that drug development for circadian dysfunction remains
an under-invested area, although the growing understanding
of the profound impact of circadian patterns of expression
of the majority of human genes in both healthy and sick
individuals may stimulate research into potential therapies for

circadian disorders. Several major pharmaceutical companies
appear to be invested in programs aimed at molecular targets
associated with circadian biology. These including programs
on inhibitors of casein kinase 1 (CK1, Pfizer, and Amgen)
(Sprouse et al., 2010; Long et al., 2012), which is also a target
of interest in oncology. In addition, the growing appreciation
of the intimate role of clock proteins in metabolism is reflected
in research programs in major pharmaceutical and several
biotech companies, including projects examining Cry1 [(Griebel
et al., 2014); Reset Therapeutics (http://resettherapeutics.com/
programs/)] and REV-ERB (Kojetin and Burris, 2014).

This review will discuss why trials for circadian disorders risk
a high failure rate, what has been learned from the more recent
success with the approval of tasimelteon (HETLIOZ R©), and what
can be done in the future to reduce the risk of clinical trial failures
and improve the chances of delivering medications to patients
suffering from circadian disorders.

Human Circadian Clocks
Humans, in common with most (if not all) living organisms,
have biological clocks that organize the timing of physiological
events and keep them synchronized with the external 24-h
day. This coordination with the 24-h day led to the term
“circadian.” The master circadian clock in mammals resides in
the suprachiasmatic nucleus (SCN) of the hypothalamus (Meijer
and Rietveld, 1989). Rhythms generated by the SCN clock are
autonomous (i.e., they do not depend upon environmental cues),
but under normal conditions and in healthy individuals the
timing of the internal oscillator is synchronized with the external
24-h day by environmental stimuli, principally light. In addition
to the master SCN pacemaker, other tissues and organs also
possess cellular clocks that are synchronized by signals from the
SCN. These peripheral circadian clocks regulate the timing of
many metabolic and cellular processes that are specific to the
function of the particular cell type and tissue (Mohawk et al.,
2012).

The human clock cycles with a period (tau) of nearly,
but not exactly, 24 h. When an individual is placed into
an environment removed from any time cues (free-running
conditions), the inherent period of the internal clock is revealed;
tau has been measured at 24 h 11 ± 16min (Czeisler et al.,
1999). Environmental light normally keeps the internal clock
synchronized or entrained to the external day-night cycle. This
synchronization is accomplished by an adjustment in the phase of
the oscillation, or phase shift, whenever a disparity exists between
the internal “time of day” and external lighting conditions. For
example, if the internal clock is slow, or delayed, morning light
occurring before the internal clock “anticipates” it will advance
the phase of the clock; whereas, in a clock running fast, light in
the evening will delay the phase of the clock. Light occurring
coincident with the internal “daytime” will not shift the clock.
The differential effects of light at different times relative to the
internal phase can be measured and plotted as a phase-response
curve (PRC). The PRCs of humans and other diurnal mammals
compared to nocturnal mammals are generally similar—light
in the early subjective night lead to a phase delay, while light
in the late subjective night lead to an advance, keeping the
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TABLE 1 | Open drug intervention clinical trials in clinicaltrials.gov that include “circadian,” “clock,” or “chronobiology” as a keyword.

Sponsor/Collaborators Interventions Conditions Phase NCT Number

University of Chicago Drug: exenatide and Placebo Type 2 diabetes; sleep disordered breathing NP NCT01136798

Xinhua Hospital; Shanghai Jiao Tong

University School of Medicine

Drug: etomidate; midazolam; propofol Congenital hydronephrosis; congenital

choledochal cyst; fracture

Phase 4 NCT02013986

Universitätsklinikum Hamburg-Eppendorf Drug: Melatonin 2mg and Placebo Healthy night shift workers, sleep disorders Phase 3 NCT02108353

Mount Sinai School of Medicine; National

Institute of Mental Health (NIMH)

Drug: Modafinil and Placebo Bipolar disorder Phase 4 NCT01965925

Stanford University; Patient Centered

Outcome Research Institute

Other: CONV care for the diagnosis

and treatment of sleep disorders

Other: PCCM for the diagnosis and

treatment of sleep disorders

Obstructive sleep apnea of adult; insomnia;

circadian rhythm sleep disorder,

unspecified type; restless legs syndrome;

narcolepsy and hypersomnia

NP NCT02037438

National Institute on Alcohol Abuse and

Alcoholism (NIAAA); National Institutes of

Health Clinical Center (CC)

Drug: brain dopamine reactivity

methylphenidate; brain dopamine

receptor C-11 raclopride

Cocaine abuse Phase 0 NCT02233829

Rhode Island Hospital; The Depressive

and Bipolar Disorder Alternative

Treatment Foundation

Behavioral: triple chronotherapy;

usual care

Depression; major depressive disorder;

post-partum depression

NP NCT02053649

Hopital Foch Drug: propofol; remifentanil Anesthesia, general Phase 3 NCT00896714

University of California, San Francisco;

Masimo Labs

NP Delirium; sleep disorders, circadian rhythm NP NCT01280097

National Human Genome Research

Institute (NHGRI); National Institutes of

Health Clinical Center (CC)

Drug: dTR Melatonin (NIH CC PDS);

melatonin CR

Device: phototherapy (bright light)

Developmental delay disorders;

chromosome deletion; mental retardation;

sleep disorders, circadian rhythm;

self-injurious behavior

Phase 1 NCT00506259

Oregon Health and Science University Drug: melatonin

Behavioral: regular sleep schedule;

light

Insomnia; blindness; daytime sleepiness NP NCT00911053

Hospital de Clinicas de Porto Alegre Drug: melatonin and Placebo;

amitriptyline and Placebo; melatonin

and amitriptylin

Fibromyalgia Phase 2

Phase 3

NCT02041455

Paracelsus Medical University;

Technische Universität München

Drug: testosterone supplementation Circadian; exercise; testosterone NP NCT02134470

Sogo Rinsho Médéfi Co., Ltd.; Takeda Drug: azilsartan; amlodipine Hypertension NP NCT01762501

Ann & Robert H Lurie Children’s Hospital

of Chicago; Children’s Research Institute

Drug: prednisone and Placebo Duchenne Muscular Dystrophy (DMD) Phase 2 NCT02036463

Brigham and Women’s Hospital Biological: melatonin and Placebo Delayed sleep phase disorder; jet-lag;

shift-work disorder

NP NCT00950885

Oregon Health and Science University;

Eunice Kennedy Shriver National Institute

of Child Health and Human Development

(NICHD)

Dietary supplement: melatonin

Biological: melatonin

Blindness NP NCT00691444

Prince of Songkla University Device: selective laser trabeculoplasty

Drug: travoprost

Intraocular pressure Phase 4 NCT02105311

Neurim Pharmaceuticals Ltd. Drug: circadin 2/5/10mg and

Placebo

Sleep disorders Phase 3 NCT01906866

(Continued)
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TABLE 1 | Continued

Sponsor/Collaborators Interventions Conditions Phase NCT Number

Hospices Civils de Lyon Drug: melatonin and Placebo Sleep disorders Phase 2 NCT01993251

University of Vigo Drug: aspirin Type 2 diabetes Phase 4 NCT00725127

University of Bergen Drug: paracetamol and

buprenorphine; paracetamol and

Placebo; buprenorphine and Placebo

Depression; pain; dementia Phase 4 NCT02267057

University of Pittsburgh; National Heart,

Lung, and Blood Institute (NHLBI)

Behavioral: modified ME intervention;

education only

Sleep apnea, obstructive Phase 1 NCT01377584

Herlev Hospital Drug: melatonin,

N-acetyl-5-methoxytryptamine;

isotonic saline, natrium chloride

Acute myocardial infarction;

ischemia-reperfusion injury

Phase 2 NCT01172171

Vanda Pharmaceuticals Drug: tasimelteon Smith-Magenis syndrome; circadian Phase 2 NCT02231008

University of British Columbia Drug: melatonin and Placebo Delirium Phase 4 NCT02282241

University of Michigan; University of

Pennsylvania; Washington University

Early Recognition Center

Drug: ISOFLURANE- experimental

arm

Other: control group: cognitive testing

Post-operative cognitive dysfunction NP NCT01911195

Haukeland University Hospital Drug: Solu-Cortef; Cortef Addison disease Phase 1

Phase 2

NCT02096510

Charite University; Technische Universität

München; University of

Erlangen-Nürnberg Medical School;

Praxis für Neurologie und Psychiatrie am

Prinzregentenplatz, München; Technische

Universität Berlin

Behavioral: patient centered

structured support program

Mini-stroke NP NCT01586702

Teva Pharmaceutical Industries; United

BioSource Corporation

Drug: modafinil; armodafinil Narcolepsy; obstructive sleep apnea; shift

work sleep disorder

NP NCT01792583

Vanda Pharmaceuticals Drug: tasimelteon Non-24-H sleep-wake disorder Phase 3 NCT01429116

Vanda Pharmaceuticals Drug: tasimelteon Non 24 H sleep wake disorder Phase 3 NCT01218789

Aretaieion University Hospital; Baxter

Healthcare Corporation

Procedure: maintenance with

desflurane

Procedure: maintenance with

propofol

Anesthesia; surgery; sleep disorders NP NCT02061514

Endo Pharmaceuticals Drug: morphine Sulfate 30 mg;

Oxycodone 20 mg; Morphine 45 mg;

Oxycodone 30 mg; Morphine sulfate

15 mg; Oxycodone 10 mg; morphine

Sulfate 30 mg; Oxycodone 15mg

Chronic around the clock opioid users Phase 2 NCT01871285

Mundipharma Research GmbH & Co KG Drug: Oxycodone/Naloxone

prolonged release (OXN PR) tablets;

oxycodone prolonged release

(OxyPR) tablets

Pain|Constipation Phase 3 NCT01438567

Brigham and Women’s Hospital|National

Center for Complementary and

Integrative Health (NCCIH)

Drug: vitamin B12 Sleep disorders, circadian rhythm NCT00120484

Endo Pharmaceuticals|BioDelivery

Sciences International

Drug: EN3409 Low back pain|Osteoarthritis|Neuropathic

pain

Phase 3 NCT01755546

(Continued)
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TABLE 1 | Continued

Sponsor/Collaborators Interventions Conditions Phase NCT Number

Mundipharma Research GmbH & Co KG Drug: Oxycodone; Naloxone Malignant pain|Non-malignant pain Phase

2|Phase 3

NCT02321397

Purdue Pharma LP Drug: Oxycodone/Naloxone

controlled-release; Placebo

Low back pain Phase 3 NCT01358526

Janssen Pharmaceutical K.K. Drug: tapentadol ER; morphine SR Neoplasms Phase 3 NCT01309386

Purdue Pharma LP Drug: Oxycodone/Naloxone

controlled-release; Oxycodone HCl

controlled-release; Placebo

Low back pain Phase 3 NCT01427270

Purdue Pharma LP Drug: oxycodone/naloxone

controlled-release; oxycodone HCl

controlled-release; Placebo

Low back pain Phase 3 NCT01427283

Oregon Health and Science

University|Forest Laboratories

Drug: Placebo/escitalopram Depression NCT01214044

Technische Universität

München|Cephalon

Drug: modafinil (Vigil); Placebo Depression Phase 2 NCT00670813

University of Copenhagen|

Rigshospitalet, Denmark

Drug: erythropoietin (Epoetin-beta,

NeoRecormon); erythropoietin

(Epoetin-beta, NeoRecormon);

Placebo

Renal effects Phase 1 NCT01584921

Norwegian University of Science and

Technology|St. Olavs

Hospital|Fondazione IRCCS Istituto

Nazionale dei Tumori, Milano|L’Hospitalet

de Llobregat|University Hospital,

Bonn|Cantonal Hospital of St.

Gallen|Maastricht University Medical

Center|Flinders University

Drug: intranasal fentanyl spray; slow

release morphine

Cancer|Pain Phase 3 NCT01906073

Endo Pharmaceuticals Drug: oxymorphone IR Chronic pain Phase 3 NCT01206907

Mundipharma Research GmbH & Co KG Drug: laxative Opioid induced constipation Phase 4 NCT01957046

Instituto Nacional de Ciencias Medicas y

Nutricion Salvador Zubiran

Drug: haloperidol; Placebo;

non-pharmacologic measures

Hypoactive delirium Phase 3 NCT02345902

University of Oklahoma Drug: memory XL; Placebo Mild cognitive impairment Phase 2 NCT00903695

University of Illinois at

Chicago|Genentech, Inc.

Drug: ranibizumab (lucentis) Glaucoma|New onset

Glaucoma|Neovascular Glaucoma|New

onset neovascular glaucoma

Phase

1|Phase 2

NCT00727038

Universitätsklinikum Hamburg-Eppendorf Drug: melatonin 2 mg; Placebo Healthy night shift workers, sleep disorders Phase 3 NCT02108353

Eunice Kennedy Shriver National Institute

of Child Health and Human Development

(NICHD)|National Institutes of Health

Clinical Center (CC)

Drug: hydrocortisone; Placebo;

hydrocortisone and melatonin;

melatonin

Jet lag syndrome Phase 2 NCT00097474

University of California, San

Diego|California Breast Cancer Research

Program

Device: light box (litebook) Breast cancer NCT00478257

St. Olavs Hospital Drug: fentanyl Chronic pain|Cancer Phase

1|Phase 2

NCT01248611

(Continued)
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TABLE 1 | Continued

Sponsor/Collaborators Interventions Conditions Phase NCT Number

National Heart, Lung, and Blood Institute

(NHLBI)

Drug: melatonin; methylxanthine

Device: light therapy

Sleep disorders, circadian rhythm NCT00387179

Takeda Drug: ramelteon; Placebo Circadian dysregulation Phase 4 NCT00492011

AstraZeneca Drug: AZD1386; Placebo Pain|Esophageal sensitivity Phase 1 NCT00711048

Delray Medical Center Drug: IV Ibuprofen Pain Phase 4 NCT02152163

Attikon Hospital Drug: sugammadex;

neostigmine/atropine

Post-operative cognitive dysfunction NCT02419352

Mundipharma Research GmbH & Co KG Drug: OXN PR followed by OxyPR

tablets; OxyPR followed by OXN PR

tablets

Severe chronic pain Phase 2 NCT01915147

Greater Houston Retina Research Drug: ranibizumab (lucentis) Ischemic central retinal vein occlusion Phase 1 NCT00406471

Pfizer Drug: donepezil Dementia, vascular|Dementia, mixed Phase 3 NCT00174382

Pfizer Drug: morphine sulfate extended

release capsules

Pain Phase 4 NCT00640042

Meander Medical Center|Dutch Kidney

Foundation

Drug: melatonin tablet 3mg once

daily; Placebo comparator

Sleep Problems|Haemodialysis Phase 3 NCT00388661

Meander Medical Center|Dutch Kidney

Foundation

Drug: melatonin Hemodialysis|Peritoneal dialysis|Sleep

problems

Phase 3 NCT00404456

Ever Neuro Pharma GmbH|acromion

GmbH|Geny Research Corp.

Drug: cerebrolysin; 0.9% saline

solution

Vascular dementia Phase 4 NCT00947531

Neovii Biotech Drug: catumaxomab; prednisolone Cancer|Neoplasms|Carcinoma|Malignant

ascites

Phase 3 NCT00822809

Singapore General

Hospital|Novartis|National Neuroscience

Institute

Drug: exelon (rivastigmine); placebo Cognitive impairment Phase 4 NCT00669344

University of Toledo Health Science

Campus

Drug: continuous release dopamine

agonists

Parkinson disease Phase 3 NCT00465452

Novartis Drug: rivastigmine capsule;

rivastigmine transdermal patch

Parkinson’s disease dementia Phase 3 NCT00623103

University of Rochester|Forest

Laboratories

Drug: namenda Delirium|Post-operative states Phase 4 NCT00303433

INSYS Therapeutics Inc Drug: fentanyl sublingual spray Cancer|Pain Phase 3 NCT00538863

Endo Pharmaceuticals|BioDelivery

Sciences International

Drug: EN3409; Placebo Low back pain Phase 3 NCT01633944

Endo Pharmaceuticals|BioDelivery

Sciences International

Drug: EN3409 Low back pain Phase 3 NCT01675167

Memorial Sloan Kettering Cancer Center Drug: d-Methadone; Placebo Pain|Bladder Cancer|Breast Cancer|CNS

Cancer|Colon Cancer|Esophageal

Cancer|Pancreatic Cancer|Prostate

Cancer|Uterine Cancer|Head and neck

Cancer|Eye Cancer|Otorhinolaryngologic

neoplasms

Phase

1|Phase 2

NCT00588640

(Continued)
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TABLE 1 | Continued

Sponsor/Collaborators Interventions Conditions Phase NCT Number

Neurim Pharmaceuticals Ltd. Drug: melatonin (circadin); Placebo Non-24 H sleep-wake disorder|Blindness Phase 2 NCT00972075

National Eye Institute (NEI) Drug: melatonin Blindness NCT00686907

Collegium Pharmaceutical, Inc. Drug: oxycodone DETERx; Placebo Chronic low back pain Phase 3 NCT01685684

Cephalon|Teva Pharmaceutical Industries Drug: ACTIQ (Oral Transmucosal

Fentanyl Citrate [OTFC])

Pain|Cancer|Sickle cell Anemia|Severe

burns

Phase 2 NCT00236093

Shaare Zedek Medical Center Drug: extended-release tramadol;

paracetamol

Post-operative pain NCT01024348

Cephalon|Teva Pharmaceutical Industries Drug: ACTIQ Cancer|Breakthrough pain Phase 2 NCT00236041

Accera, Inc. Drug: AC-1204; Placebo Alzheimer’s disease Phase

2|Phase 3

NCT01741194

Mundipharma Pharmaceuticals B.V. Drug: oxycodone hydrochloride and

naloxone hydrochloride combination,

prolonged release

Pain Phase 3 NCT01167127

Melissa Voigt Hansen|University of

Copenhagen|Rigshospitalet,

Denmark|Pharma Nord|Herlev Hospital

Drug: melatonin

(N-acetyl-5-methoxytryptamine);

Placebo

Breast cancer|Depression Phase

2|Phase 3

NCT01355523

Mundipharma Pharmaceuticals B.V. Drug: oxycodone and naloxone Pain Phase 3 NCT01167699

James Graham Brown Cancer

Center|University of Louisville

Drug: Fentanyl Citrate Nasal Spray

(FCNS)

Pain Phase 4 NCT01839552

Kaplan Medical Center Drug: oxycodone 10mg Elective laproscopic bilateral inguinal

Hernia|Elective laproscopic

cholecystectomy

Phase 4 NCT00480142

Brigham and Women’s Hospital|Takeda Drug: ramelteon; Placebo Healthy NCT00595075

Loma Linda University Drug: morphine PCA started at the

end of surgery, 1 Percocet 1/325mg

every 4 h; may receive a second

Percocet if needed. For the 30ml

ropivacaine the intervention would be

the subject can request extra pain

medication which would be Percocet

and/or morphine PCA

Post-op pain NCT01939379

Vanda Pharmaceuticals Drug: tasimelteon 20mg capsule;

tasimelteon 2mg I.V.

Non-24-H-sleep-wake disorder Phase 4 NCT02130999

Oregon Health and Science University Drug: melatonin Insomnia|Blindness|Daytime sleepiness NCT00911053

Erasmus Medical Center|ZonMw: The

Netherlands Organization for Health

Research and Development

Drug: enalapril/hydrochlorothiazide;

Placebo

Essential hypertension Phase 4 NCT02214498

National Institute on Alcohol Abuse and

Alcoholism (NIAAA)|National Institutes of

Health Clinical Center (CC)

Drug: brain dopamine reactivity; brain

dopamine receptor

Cocaine abuse Phase 0 NCT02233829

Boehringer Ingelheim Drug: telmisartan; ramipril Hypertension Phase 4 NCT00274612

Ottawa Heart Institute Research

Corporation|Schering-Plow|Medtronic

Drug: eptifibatide facilitated PCI Myocardial infarction Phase 3 NCT00251823

(Continued)
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TABLE 1 | Continued

Sponsor/Collaborators Interventions Conditions Phase NCT Number

Boehringer Ingelheim Drug: telmisartan combined with

hydrochlorothiazide (80/12.5 mg);

valsartan combined with

hydrochlorothiazide (160/12.5 mg)

Hypertension|Diabetes mellitus, Type 2 Phase 4 NCT00239538

US WorldMeds LLC|National Institute on

Drug Abuse (NIDA)

Drug: lofexidine HCl Renally impaired subjects Phase 1 NCT02313103

University of Washington|Paul G. Allen

Family Foundation

Drug: botox; normal saline Painful bladder syndrome|Interstitial cystitis Phase 4 NCT00194610

Children’s Hospital of

Philadelphia|Bayer|University of

Pennsylvania

Drug: paracervical nerve block; sham

paracervical block

Pain Phase 4 NCT02352714

University of Alabama at

Birmingham|National Heart, Lung, and

Blood Institute (NHLBI)

Drug: losartan Anemia, sickle cell|Sickle cell

disease|Kidney disease|Hypertension|

Proteinuria

Phase 2 NCT02373241

University of Alberta|Vancouver Coastal

Health Research Institute

Drug: warfarin Atrial fibrillation|Thrombus due to heart

valve prosthesis|Deep venous

thrombosis|Thromboembolism|DVT

Phase 4 NCT02376803

National Heart, Lung, and Blood Institute

(NHLBI)

Drug: melatonin; methylxanthine|

Procedure: light therapy

Sleep disorders, circadian rhythm NCT00387179

Orphan Medical Drug: sodium oxybate Narcolepsy Phase 3 NCT00049803

National Institute of Mental Health (NIMH) Drug: low-dose sodium oxybate;

high-dose sodium oxybate; low-dose

zolpidem; high-dose zolpidem;

Placebo

Sleep NCT00777829

Massachusetts General Hospital Drug: ramelteon; Placebo Huntington’s disease|Parkinson’s

disease|Dementia with lewy bodies|Sleep

disorders|Circadian dysregulation

NCT00907595

Takeda Drug: ramelteon; Placebo Circadian dysregulation Phase 4 NCT00492011

Massachusetts General Hospital Drug: zolpidem CR; Placebo Dementia|Alzheimer disease|Dementia,

vascular|Sleep disorders|Circadian

dysregulation

NCT00814502

Vanda Pharmaceuticals Drug: tasimelteon; Placebo Non-24-H sleep-wake disorder Phase 3 NCT01163032

Vanda Pharmaceuticals Drug: tasimelteon; Placebo Non-24-H sleep-wake disorder Phase 3 NCT01430754

Cephalon|Teva Pharmaceutical Industries Drug: PROVIGIL 200 mg; armodafinil

250 mg; armodafinil 200 mg;

armodafinil 150 mg; Placebo

Chronic shift work sleep disorder Phase 3 NCT00236080

Child Psychopharmacology Institute Drug: risperidone Sleep disorders, circadian

rhythm|Insomnia|psychomotor agitation

NCT00723580

Cephalon|Teva Pharmaceutical Industries Drug: CEP-10953 (Armodafinil) Narcolepsy|Sleep apnea, Obstructive|Sleep

apnea Syndromes|Shift-work sleep disorder

Phase 3 NCT00078312

Vanda Pharmaceuticals Drug: tasimelteon Smith-Magenis syndrome|Circadian Phase 2 NCT02231008

Vanda Pharmaceuticals Drug: tasimelteon Non-24-H sleep-wake disorder Phase 3 NCT01429116

Takeda Drug: ramelteon; Placebo Sleep disorders, circadian rhythm Phase 2 NCT00593736

(Continued)
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TABLE 1 | Continued

Sponsor/Collaborators Interventions Conditions Phase NCT Number

Boehringer Ingelheim Drug: pharmaton caplets; Placebo Sleep disorders, circadian rhythm Phase 2 NCT02199847

Sheba Medical Center Drug: melatonin Delayed sleep phase syndrome Phase 1 NCT00282061

Cephalon|Teva Pharmaceutical Industries Drug: armodafinil 150 mg/day;

Placebo

Excessive sleepiness|Shift work sleep

disorder

Phase 3 NCT00080288

National Human Genome Research

Institute (NHGRI)|National Institutes of

Health Clinical Center (CC)

Drug: dTR melatonin (NIH CC PDS);

melatonin CR

Device: phototherapy (bright light)

Developmental delay

disorders|Chromosome deletion|Mental

retardation|Sleep disorders, circadian

rhythm|Self injurious behavior

Phase 1 NCT00506259

Brigham and Women’s

Hospital|Sunovion|Massachusetts

General Hospital

Drug: eszopiclone; matching Placebo Shift-work sleep disorder NCT00900159

Vanda Pharmaceuticals Drug: tasimelteon 20mg capsule;

tasimelteon 2mg I.V.

Non-24-H-sleep-wake disorder Phase 4 NCT02130999

Neurim Pharmaceuticals Ltd. Drug: melatonin (circadin); Placebo Non-24 H sleep-wake disorder|blindness Phase 2 NCT00972075

Eunice Kennedy Shriver National Institute

of Child Health and Human Development

(NICHD)|National Institutes of Health

Clinical Center (CC)

Drug: hydrocortisone; Placebo;

hydrocortisone and melatonin;

melatonin

Jet lag syndrome Phase 2 NCT00097474

Teva Pharmaceutical Industries|United

BioSource Corporation

Drug: modafinil/armodafinil Narcolepsy|Obstructive sleep apnea|Shift

work sleep disorder

NCT01792583

Vanda Pharmaceuticals Drug: VEC-162 Circadian rhythm sleep disorders Phase 2 NCT00490945

Vanda Pharmaceuticals Drug: tasimelteon Non 24 H sleep wake disorder Phase 3 NCT01218789

Cephalon|Teva Pharmaceutical Industries Drug: armodafinil 100–250 mg/day Excessive daytime

sleepiness|Narcolepsy|Obstructive sleep

apnea/hypopnea syndrome|Chronic shift

work sleep disorder

Phase 3 NCT00228553

Brigham and Women’s Hospital|National

Center for Complementary and

Integrative Health (NCCIH)

Drug: vitamin B12 Sleep disorders, circadian rhythm NCT00120484

internal clock synchronized to sunrise and sunset (Johnson,
1990).

While light is the predominant stimulus that entrains the
phase of the clock, a variety of other stimuli also affect
entrainment. Of particular relevance in terms of human health
and disease, inputs including food consumption, exercise, and
social interactions can shift clock phase. These non-photic stimuli
generally shift the clock when they occur during the circadian
inactive phase (i.e., during the night in humans) (Rosenwasser
and Dwyer, 2001).

In recent years, the molecular “gears” of the circadian clock
have been elucidated. A series of interlocking negative feedback
loops involving transcription, translation, and post-translational
phosphorylation form the molecular clockwork. At its core, the
transcriptional activators BMAL1, CLOCK and NPAS2 activate
the Period (Per1 and Per2) and Cryptochrome (Cry1 and Cry2)
genes (Mohawk et al., 2012). PER and CRY transcripts and

proteins gradually accumulate during the daytime, associate
with one another and translocate into the nucleus during the
evening, and interact with the CLOCK/NPAS2:BMAL1 complex
to repress their own transcription. The PER and CRY proteins
are progressively phosphorylated by a CK1 kinase during the
night, targeting them for ubiquitylation and eventual degradation
by the proteasome, relieving their transcriptional autorepression
and beginning the cycle again. The timing of this feedback loop
takes about 24 h to complete. Because CK1 phosphorylation of
PER and CRY regulates the timing of degradation of these protein
and the link to a specific human circadian phenotype, CK1 is
a target under investigation for its therapeutic potential. Other
clock components represent potential drug targets, although little
is available in the public domain confirming pharmaceutical
investment in these targets.

A secondary or modulatory protein loop modifies the
core clock loop. REV-ERBα transcription is also activated by

Frontiers in Pharmacology | www.frontiersin.org June 2015 | Volume 6 | Article 125 90|

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Skelton et al. Personalized medicine for pathological circadian dysfunctions

the BMAL1/CLOCK and repressed by CRY/PER, resulting
in circadian oscillations of REV-ERBα. In turn, REV-ERBα

represses BMAL1 and CLOCK transcription. This REV-
ERBα/RORα feedback loop modulates the core circadian clock
(Bugge et al., 2012). REV-ERBα has also generated interested as a
drug target.

Circadian Rhythms and Disease
Underlying genetic mutations have been discovered which lead
to abnormal circadian rhythms. In this review we refer to these
genetic-driven circadian abnormalities as Primary Circadian
Disorders. For example, some cases of advanced sleep phase
disorder (ASPD) and delayed sleep phase disorder (DSPD),
characterized by a circadian phase that is either “fast” or “slow,”
respectively, are due to mutant forms of key clock proteins.
Familial forms of ASPD arise from mutations in either CK1 delta
or in a phosphorylation site in the PER2 protein targeted by CK1.
Specific CK1 variants are also associated with DSPD, and 75%
of DSPD patients are homozygous for a shorter allele of PER3
that affects phosphorylation by CK1. These human circadian
phenotypes are predicted by the spontaneous mutations in CK1
that result in the circadian period mutants found in hamster,
Tau, and in Drosophila, double-time. In general, it appears that
increasing CK1 activity leads to a shortened circadian period.
Thus, CK1 activity is an important regulator of circadian timing
and a potential target for therapeutic intervention. Clearly, it is
critical to take into account the circadian phenotype and phase
of an individual to predict clinical outcome in trials of drugs
that modulate CK1. As in clinical trials for oncology treatments,
companion diagnostic (CDx) tests that genotype for specific
clock gene mutations would allow selection of the target patient
population. Therefore, as in oncology, these genetic disorders
provide the opportunity to demonstrate, as a proof of principle,
the efficacy of the drug mechanism in a targeted population,
with the goal of expanding therapeutics into Secondary Circadian
Disorders (see below).

In addition tomutations in core clock genes, genetic variations
that affect the timing of the circadian cycle of humans may
also exist. For example, polymorphisms in Clock are associated
with morning vs. evening preference in humans (Katzenberg
et al., 1998). A recent paper describes an association of a Per3
polymorphism with bipolar disorder (Karthikeyan et al., 2014).
Diagnostics that detect these kinds of genetic markers would
provide a mechanism to enrich enrollment in clinical trials with
patients most likely to benefit from specific circadian therapies.

Beyond the genetic disorders discussed above that are the
direct result ofmutations in clock genes or disrupted entrainment
of the circadian system, there is a growing appreciation
that circadian abnormalities may be a key core symptom
of a variety of diseases including metabolic disorders, mood
disorders, and dementia. In this review we refer to circadian
abnormalities that are closely associated with another disease
as Secondary Circadian Disorders. In Secondary Circadian
Disorders, circadian disorganization may present both as a
symptom of the disease, and as a potential risk factor contributing
to disease pathogenesis (Golombek et al., 2013; Smolensky et al.,
2014a,b; Zelinski et al., 2014). An instructive example is the

occurrence of circadian abnormalities in patients with metabolic
disorder. The growing appreciation of the role of clock proteins
in metabolism suggests several potential molecular targets for
therapeutics aimed at treating obesity. A feedback between
the central circadian clock and peripheral oscillators in liver,
skeletal muscle and other tissues helps to coordinate the complex
processes of food intake, activity, and lipid homeostasis (Feng
and Lazar, 2012). Disruption of these highly regulated interacting
rhythms by rotational shift work, for example, is a risk factor for
developing metabolic syndrome, obesity, and diabetes mellitus
(Feng and Lazar, 2012; Bailey et al., 2014; Maury et al., 2014).
While not all obese patients may suffer from circadian disruption,
phenotyping, and appropriately regulating the sleep-wake cycles
of patients in therapeutic trials for obesity may be critical to
uncovering the full potential of a drug. Indeed, individualizing
the timing of drug administrationmay be an unappreciated factor
to improve efficacy, especially in a population where sleep-wake
disruption is overrepresented.

Abnormal circadian rhythms are also common in patients
with mood disorders. Bipolar disorder patients have been
reported to have unstable and lower amplitude circadian rhythms
(McCarthy and Welsh, 2012; Seleem et al., 2014) while those
suffering from major depressive disorder appear to be phase
delayed. It has been shown that circadian programs of gene
expression are distinctly altered in depressive patients (McCarthy
and Welsh, 2012; Karatsoreos, 2014). While the long-standing
hypothesis has been that circadian disruption may be a causal
factor in these disorders, circadian-based treatments have not
always shown pronounced efficacy. There is an ongoing debate
regarding the efficacy of agomelatine, an approved treatment
of major depressive disorder in Europe and Australia although
the drug is not approved for this indication in the US (Gahr,
2014). A recent prospective study suggested that treatment
responsiveness was related to circadian phenotype. Patients with
major depressive disorder that scored as a morning type were
more likely to respond to agomelatine treatment than those that
scored as an evening type (Corruble et al., 2013). Thus, treatment
regimes informed by an individual patient’s circadian phenotype
and/or administered at a specific circadian phase might enhance
the therapeutic benefit for this chronobiotic.

Seasonal affective disorder (SAD) represents a sub-type of
mood disorder closely linked to the circadian system. SAD affects
individuals who become depressed during the short daylight
periods of winter. One leading hypothesis of the cause of SAD
suggests it a results from circadian misalignment (Lewy et al.,
2007), or difficulty entraining due to the absence of bright
light in morning or evening. Therapy with bright light and
melatonin is effective for some SAD patients, and is thought to
act by advancing or delaying phase to re-synchronize the clock.
Especially in this disorder, treatment aligned with the individual
patient’s circadian phase is likely to improve outcomes.

In dementia patients, especially those suffering from AD,
up to 25% experience sundowning, a disturbing syndrome
characterized by agitation, worsening cognitive function, pacing
and wandering in the evening/night, and daytime sleepiness.
A patient’s reduced internal distinction between night and day,
caused by the low amplitude oscillation of their circadian
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clock, appears to contribute to sundowning (Khachiyants et al.,
2011). Therapeutics that enhance the amplitude of the circadian
oscillator could benefit this patient population.

Finally, the recently approved drug, tasimelteon, is prescribed
for patients with Non-24-h sleep-wake disorder (Non-24). Non-
24 is a consequence of the failure of the circadian system to
entrain to the external 24-h day. A majority of Non-24 patients
are blind; and up to 70% of totally blind individuals may suffer
from Non-24. The absence of light perception leads to the lack
of clock entrainment, and as a result the sleep-wake cycle is
free-running. Non-24 is the first circadian disorder for which
a pharmaceutical intervention, tasimelteon, has been approved.
Because Non-24 patients express a range of free-running tau
(from 23.7 to 25.3 h) (Dressman et al., 2012), consideration of
their circadian phenotypes proved to be key to successful clinical
trials (see further discussion of the clinical trial, below).

Considering that circadian rhythmicity is ubiquitous and
closely intertwined with both normal physiological processes
and disease states, any therapeutic approach targeting a disease
(either a “circadian” disorder, or one with rhythmic components)
must take into account the timing of the intervention relative
to the circadian system of the individual. The experience in
drug development for oncology demonstrates the value of
a personalized medicine approach to discovering and testing
therapeutics.

Definition of Personalized Medicine

Personalized medicine can be defined as a targeted prevention
and treatment regimen that is developed for an individual using
data gathered from medical records and diagnostic analysis of
“biomarkers,” or specific biological markers that distinguish one
individual from another. Most often, biomarkers are genetic;
however, biomarkers can also be phenotypic, such as circadian
subtypes (e.g., advance phase or delayed phase syndrome).
Ultimately, the goal of personalized medicine is to give the right
patient the right treatment at the right time.

Following the completion of the Human Genome Project over
10 years ago, the cost and time for genomic sequencing has
decreased exponentially. On average, sequencing of a human
genome decreased from $1 billion in 2003 to between $3–
5000 today (Personalized Medicine Coalition, 2014), with a
time to result from ∼7 years decreased to ∼2 days. In
addition to influencing all of biological research, mapping of
the genome has also translated to clinical chemistry, with many
therapeutics now designed to target specific proteins, protein
classes, or even mutated forms of a protein. In contrast to
traditional chemotherapies, which function against any actively
dividing cells, targeted therapeutics act on a molecule in the
signaling pathway driving a specific tumor (http://www.cancer.
gov/cancertopics/factsheet/Therapy/targeted).

The following section will examine the growing field of
personalized medicine in oncology, which has focused on
targeting the genetic abnormalities driving cancer with targeted
therapies. As patients with circadian disorders continue to be
profiled both at the phenotypic and molecular levels, the ability
to subtype patient populations in order to identify the predicted

responsive cohort is critical in ensuring more efficient and more
successful circadian clinical trials.

Personalized Medicine in Oncology
The oncology field has led to the use of personalized medicine
in healthcare, mainly due to the effectiveness of targeted
therapeutics specifically developed to inhibit oncogenic driver
proteins. Currently, targeted therapeutics are available for
patients with melanoma, chronic myeloid leukemia, colon,
breast, and lung cancer. In non-small cell lung cancer (NSCLC),
mutations in two oncogenic driver genes, EGFR and ALK,
make up ∼25–40% of all NSCLC cases (Kwak et al., 2010;
Melosky, 2014). Two FDA-approved EGFR inhibitors and
two FDA-approved ALK inhibitors are commercially available
(EGFR: Gilotrif™, Boehringer Ingelheim and Tarceva R©, Roche;
ALK: Xalkori R©, Pfizer and Zykadia™, Novartis). Each of these
inhibitors requires testing of patients with a unique FDA-
approved diagnostic test (aka CDx) prior to prescription. CDx
assays are FDA regulated as Class III Medical Devices (Olsen and
Jorgensen, 2014) that were demonstrated during the pivotal trial
to show clinical utility in selecting for the responding patient
population, were contemporaneously FDA-approved alongside
the corresponding therapeutic, and are specified in the drug
labeling to be required for use in identifying the target patient
population. Therefore, a CDx is the mechanism to identify the
right patient for the right drug.

Personalized Medicine Growing Pains

Use of CDx in the oncology space was initially met with
resistance; the thought of narrowing the market to a select
patient population does not inherently make financial sense.
However, as drugs in development functioned through a more
selective mechanism of action, it was clear that identification
of responders carrying the genetic target was paramount, as
dictated by the FDA. For example, the small molecule Iressa™
(gefitinib, AstraZeneca) was initially approved in Japan in July
2002 and in May 2003 through the FDA Accelerated Approval
path for NSCLC. Under the Accelerated Approval guidelines,
approved therapeutics are required to complete a post-approval
Phase III study. Completion of the obligatory Phase III Iressa
Survival Evaluation in Lung Cancer (ISEL) trial in 2004 revealed
no improvement in overall survival in patients taking Iressa
vs. placebo (Thatcher et al., 2005). However, an academic
study published that same year suggested that the subset of
Iressa responders correlated to mutations in the tyrosine kinase
Epidermal Growth Factor Receptor (EGFR) gene. Retrospective
analysis of the ISEL data with genetic testing for mutations in
EGFR clearly indicated that patients with mutations in EGFR
responded significantly better to Iressa than patients without
EGFR mutations; interestingly, the patient cohorts carrying the
EGFR mutations were predominantly Asian women with no
smoking history (Lynch et al., 2004). In 2005 FDA responded
to the Iressa-EGFR findings by allowing for use of Iressa only
in patients currently taking the drug and showing a response
or via new clinical trials. The increased control required over
distribution of the drug resulted in a near-complete drop in
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revenue generated in the US. With a much more limited patient
population [EGFR mutations contribute to roughly 20% of
NSCLC (Agarwal, 2012)], AstraZeneca forged ahead to change
their commercialization strategy in countries outside the US.
Interestingly, despite the clear link between EGFR mutation
status and response, restrictions for use were not altered in Japan
and Iressa was approved for use in China, mostly likely based
on its efficacy in Asian populations. To expand to approval
in Western countries, AstraZeneca positioned Iressa as both a
second-line therapy to Taxotere (docetaxel) and partnered with
the diagnostics company, DxS (which was subsequently bought
by QIAGEN), to develop a molecular based assay for genotyping
of EGFR. In 2009, Iressa was approved by the European Union
with the CDx therascreen EGFR RGQ RT-PCR Kit. As of 2011,
Iressa sales in Europe were ∼$150 million, with a total of ∼$520
million globally (Agarwal, 2012).

The “sea change” toward the utilization of CDx for FDA
submission that resulted from the Iressa story, and others not
discussed in this review, was ultimately driven by risk mitigation
- mainly mitigation of the possibility of FDA rejecting approval
of a therapeutic due to the lack of use of a CDx. FDA took
a formal stance on CDx with the release of a draft guidance
in 2011, which was subsequently finalized in August 2014
(http://www.fda.gov/downloads/MedicalDevices/DeviceRegulati
onandGuidance/GuidanceDocuments/UCM262327.pdf). This
guidance defines an In Vitro CDx (IVD), indicates that in
most instances a drug and the CDx should be FDA approved
contemporaneously, outlines the FDA’s regulatory enforcement
policy and regulatory approval pathways for CDx, and discusses
the implementation of labeling requirements upon co-approval
of a drug and IVD assay. It goes without saying that the
FDA oversight is not uniquely positioned to regulate only
oncology therapeutics. Therefore, as part of each and every drug
development program, from oncology to CNS, there could be
questions about whether the drug can be shown to be safe and
effective without enrichment of a particular patient population.

Study Outcomes as a Result of Personalized
Medicine Approaches
There are significant financial benefits to utilizing a CDx strategy
throughout drug development. Following the discovery of ALK-
driven NSCLC in ∼5–10% of the patient population (Soda
et al., 2007), Pfizer proceeded with utilizing a fluorescence in
situ hybridization (FISH) assay to detect the ALK chromosomal
translocation as an eligibility requirement for patient enrollment.
What would have taken years, hundreds millions of dollars, and
thousands of patients to complete, took less than 3 years and
less than 350 patients to achieve statistical power for regulatory
submission and approval (Kwak et al., 2010). The short timeline
and small patient enrollment is not unique to the ALK story. As
shown in Table 2 multiple therapeutics have rapidly progressed
from Phase I to market in less than 5 years through the use of
patient enrichment with CDx.

Although there are less than 20 FDA Approved (Pre-Market
Approval) CDx on the market to date (http://www.fda.gov/Med
icalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/
ucm301431.htm), there are over 100 drugs with

TABLE 2 | Examples of rapidly-progressing therapeutics.

Company Therapeutic Phase I Approval

Roche/Genentech Vemurafenib

(Zelboraf™)

November 2006 August 2011

Pfizer Crizotinib (Xalkori®) December 2007 August 2011

GSK Trametinib (Mekinist™) May 2008 May 2013

Roche/Genentech Ado-trastuzumab

emtansine (Kadcyla®)

June 2009 February 2013

GSK Dabrafenib (Tafinlar®) April 2009 May 2013

pharmacogenomics information within the label (Personalized
Medicine Coalition, 2014) and a projected 30% of drugs in late
clinical development rely on biomarkers for patient enrollment
(http://www.personalizedmedicinecoalition.org/Userfiles/PMC-
Corporate/file/pmc_personalized_medicine_by_the_numbers.p
df). One group has examined the effectiveness of utilizing a
CDx during 676 clinical trials with 199 compounds. Utilizing a
biomarker-driven approach to Phase III trials, the success rate
increased from 28% (no biomarker) to 62% (Falconi et al., 2014;
Olsen and Jorgensen, 2014). Therefore, utilizing a biomarker-
driven clinical trial increased the success rate of Phase III trials,
and subsequent approval, almost 2.5-fold.

Reimbursement Pressure
As discussed earlier, initially the narrowing of oncology patient
populations appeared to translate to a loss in revenue potential
for the therapeutic. However, with the evolution of regulatory
agencies requiring patient enrichment to show safety and
efficacy, and the increasing amount of data supporting faster
and more successful routes to drug approval using CDx, the
thinking has changed from assays being “burdensome” to
assays being “useful” toward successful drug development. In
addition, pressure is increasingly being put on pharmaceutical
companies by insurance providers. Generally, targeted therapies
are significantly more costly to a patient than generalized
therapies; one report approximates the average cost per month
for a branded oncology drug has doubled in the U.S. from $5000
to $10,000 in the past decade (http://www.imshealth.com/deploy
edfiles/imshealth/Global/Content/Corporate/IMS%20Health%2
0Institute/Reports/Secure/IMSH_Oncology_Trend_Report.pdf).
In order to justify reimbursement of such expensive targeted
therapies, insurance companies are requiring diagnostic tests be
performed prior to prescription of a therapeutic. In European
countries, a high level of scrutiny has been placed on newly
developed therapeutics in comparison to existing treatments.
For example, the UK National Institute for Health and Care
Excellence (NICE) does not recommend the ALK inhibitor,
Xalkori R© for use in ALK-driven NSCLC, based on the ruling
that the drug does not offer value for money.

In order to align with the fast-paced personalized medicine
trend in healthcare and to ensure that each patient receives
the most appropriate treatment for their disease, payers
should support the use of CDx. Promotion of standardization
of coverage and value-based reimbursements; reimbursement
strategies that cover research-based innovations, such as Next
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Generation Sequencing; and flexibility in medical coding and
billing facilitate the use of personalized medicine approaches to
ensure the right patient receives the right treatment at the right
time.

Personalizing Therapeutic Approaches for
Circadian Disorders

As discussed above, several genetic mutations have been
identified that lead to a primary circadian disorder. Many more
diseases have concomitant circadian abnormalities, which we
refer to as secondary circadian disorders. For both types of
disorders, phenotyping of the circadian disruption prior to
initiation of therapy is critical to success—timing is everything
when it comes to treatment of circadian dysfunction. In fact,
measuring multiple rhythms within an individual is essential,
as some disorders result from a misalignment of endogenous
rhythms (Lewy et al., 2007). Traditional methods for monitoring
the circadian phase and period in ambulatory humans include
activity and body position monitoring via wearable devices
(Bonmati-Carrion et al., 2015) and body temperature via wrist
skin temperature (Kolodyazhniy et al., 2012). In a laboratory
setting, multiple blood or saliva sampling to assess melatonin or
other hormone patterns has been employed (Keijzer et al., 2014).
In addition, the recent description of the rhythmic expression
pattern of nearly half of the genome (Zhang et al., 2014)
provides the opportunity to develop more and potentially better
biomarkers for assessing the phase and period of individuals.
Finally, mobile smartphones provide a unique and potentially
highly effective method to collect robust data on circadian
rhythms from an individual (Roenneberg, 2013). Thus, collecting
robust data on a patient’s circadian phenotype is both technically
feasible and critical to the successful treatment of a circadian
abnormality.

Tasimelteon, a Circadian Success Story

Approved on January 31st, 2014, HETLIOZ R© (tasimelteon) is the
first FDA approved treatment for adults with Non-24-H Sleep-
Wake Disorder (Non-24), which is a rare circadian disorder
occurring mostly in the totally blind. Vanda reports HETLIOZ R©

U.S. sales grew to $5.2 million in the first full quarter after launch.
However, the road to approval was winding, with several failed
clinical trials in other indications before the drug successfully
demonstrated efficacy in Non-24.

Tasimelteon is a melatonin receptor MT1/2 agonist that
was originally discovered by BMS (previously known as BMS-
214,778) and licensed to Vanda Pharmaceuticals. Vanda opened
an IND in 2004 for Shift Work Disorder, Jet Lag Disorder (due
to eastward travel) and DSPD, however to date Vanda has not
sought approval for any of these indications. Following on the
success of another melatonin agonist, ramelteon (Rozerem R©),
which is approved in the US for treatment of insomnia,
tasimelteon was tested in clinical trials for sleep disorders,
including a Phase II trial on circadian rhythm sleep disorders

and several phase III primary insomnia trials. However, the
drug failed to show significant efficacy in these clinical trials.
Additionally, the drug was also considered as a treatment for
depression.

After several years of frustratingly weak results in other
indications, Vanda demonstrated that tasimelteon produced
phase shifts in healthy adults (Neubauer, 2015). Vanda then
began Phase III clinical trials of the drug in a population with
Non-24. There are ∼1,300,000 blind people in the United States
and∼10% of these individuals have no light perception. Without
light input these totally blind individuals free run, drifting in
and out of phase with the environment, impairing their ability
to work, disrupting family life and impacting their overall health.
Tasimelteon treatment entrained a higher number of totally blind
to a 24-h cycle vs. placebo and the drug was approved in the
US and available to appropriate patients via specialty pharmacy
(Neubauer, 2015).

Vanda faced several significant challenges in the clinical trials
testing the efficacy of tasimelteon for Non-24. The first task
was setting the appropriate enrollment criteria and developing a
screening protocol to capture the desired subjects. The number
of enrollment failures in the SET trial was high; 391 subjects
were screened; yet only 84 were enrolled in the randomized trial
(Lockley et al., 2013). Vanda did not study subjects with a tau
shorter than 24 h even though it is reasonable to expect that
subjects with a short tau would eventually respond to treatment
once the timing of dosing coincided with a sensitive phase in
the circadian rhythm. Subjects with tau shorter than 24 h were
excluded from the study because the dosing regime was fixed to
administer the drug at 1 h prior to bedtime, based on concerns
about drug-induced somnolence. Even though Vanda has not
done a PRC for the drug, they were concerned that they would
be unable to show efficacy in patients with a short tau if the drug
was always to be taken at 1 h prior to bedtime.

Timing of treatment was not always aligned to the sensitive
circadian phase of the treated subject’s rhythm. The drug was
always taken at 1 h prior to bedtime and althoughVanda had tried
to initiate dosing when subjects were in phase, 16% of subjects
were out of phase when dosing was started. Subjects that were out
of phase at the start of trial took a longer time on treatment to see
efficacy, which contributed to the length of trial (Lockley et al.,
2013). Circadian tau at was measured at 1 month and 7 months
of treatment in the RESET trial (Lockley et al., 2013). RESET took
almost 2 years to complete.

A final challenge in the tasimelteon trial was the use of
entrainment as an outcome measure; an endpoint that is more
correctly considered a proof of mechanism for the drug, not
a proof that the drug is a treatment for the disorder. Only
clinical benefit, defined by an improvement in how patients feel,
function or survive, constitutes an acceptable primary endpoint
for registration of a drug. An improvement in sleep did constitute
a positive clinical outcome. The tasimelteon-treated group had
significant improvement in the duration and timing of nighttime
sleep and a significant decrease in daytime napping. Thus,
tasimelteon is now available to provide treatment for blind
patients suffering from Non-24.

Frontiers in Pharmacology | www.frontiersin.org June 2015 | Volume 6 | Article 125 94|

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Skelton et al. Personalized medicine for pathological circadian dysfunctions

Final Perspective

Circadian biologists have been collecting human subject
circadian data in the research setting for decades, but few
circadian drug treatment trials have been attempted. The
general population has a growing familiarity with circadian
biology in general and with their own unique rhythms,
thanks to smart phone apps and wearable personal activity
trackers. Nevertheless, drug developers have not yet linked
the profound impact of circadian dysfunction on health to an
influx of circadian drugs into pharma pipelines. The growing
awareness of the link between disrupted circadian rhythms
and obesity necessitates developing clinical trial strategies to
effectively demonstrate the therapeutic benefit of drugs that
alter circadian rhythms (chronotherapies). Better education of
clinical researchers in the science of circadian biology is essential
to developing enrollment criteria that will effectively capture
the appropriate patient population. It should be apparent that
circadian therapies must also be appropriately timed; treatment
must be adjusted to be consistent with the patient’s circadian

phenotype, requiring a high degree of physician expertise
and skill in interpreting circadian rhythms and possibly even
daily input on scheduling dosing. Technological advances in
remote data collection and the growing acceptance of sharing
personal data will aid in personalizing circadian therapies
to the appropriate patient. As data collection is improved,
it may become obvious that not all patients will benefit
from a specific therapy, as occurred in oncology. Biomarker
strategies must be incorporated early in development to reduce
screening failures and improve the potential to see efficacy,
thus reducing the number of failed clinical trials. Biomarkers
in this sense do not have to be genetic markers, but could
be a clear circadian phenotype based on activity or other
rhythm data.

Finally, circadian biologists have a deep appreciation of the
negative impact on overall health of misaligned and disrupted
rhythms, but simply demonstrating correction of the rhythm will
not be sufficient for approval of a drug. Circadian drugs must also
demonstrate that clinically relevant endpoints are improved by
circadian adjustments.
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