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Editorial on the Research Topic

Modeling of COVID-19 and other infectious diseases: Mathematical,

statistical and biophysical analysis of spread patterns

Viral pandemics and infectious diseases have always constituted an imminent threat to

humanity. Throughout history, humanity has struggled with viral outbreaks and pandemics.

Some of the most significant examples include the Spanish Flu in 1918-1919, which infected

an estimated 500 million people worldwide and caused 50 million deaths. Efforts to control

the spread of infectious diseases have led to the development of vaccines, antibiotics, and

public health measures, but these diseases continue to pose a significant threat to global

health and wellbeing. Scientific advancements in science, public health, medications, and

vaccines are pivotal in the containment and even the elimination of many of those threats.

However, these efforts can be challenged by factors such as limited resources, anti-vaccine

sentiment, and difficulty in controlling the spread in communities with limited access

to healthcare.

The coronavirus disease 2019 (COVID-19) continues as the main cause of

hospitalization and death and as a main public health risk since the first case was registered

in December 2019 in China. It was declared a global pandemic by the World Health

Organization (WHO) on March 11, 2020. The recent emergence of variants creates a major

cause of concern since they can lead to an epidemic rebound especially with the possibility

of the emergence of vaccine resisting, deadlier or more transmissible future variants. The

COVID-19 infection reached at least 680 million people globally and caused over 6.80

million deaths [1]. Mathematical models and simulations were used to describe the spread of

infectious diseases by using mathematical equations to represent the spread of an infectious

agent in a population. The models consider factors such as the infectiousness of the disease,

the number of susceptible and infected individuals, and the rate at which people recover

or die. The output of these models can provide important insights into the dynamics of

disease spread, and can be used to predict the potential spread of an outbreak, inform

public health policy, and evaluate the efficacy of interventions. Simulations of these models

can also be used to visualize the spread of the disease over time, and to test the impact

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org4

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1178479
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1178479&domain=pdf&date_stamp=2023-03-27
mailto:omar.eldeeb@lau.edu.lb
https://doi.org/10.3389/fams.2023.1178479
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1178479/full
https://www.frontiersin.org/research-topics/30798/modeling-of-covid-19-and-other-infectious-diseases-mathematical-statistical-and-biophysical-analysis-of-spread-patterns
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


El Deeb et al. 10.3389/fams.2023.1178479

of different control measures. Such studies include: Non-

linear dynamics, non-equilibrium processes, and self-organization

modeling of infectious diseases, statistical, spatiotemporal and big

data analytics of COVID-19, applications from the social sciences,

public health, economics, engineering in relation to COVID-19

pandemics, and modeling, simulations and forecasting of spread

patterns, vaccine efficiency, treatment, behavioral aspects and

public policies [2–10].

Another import field of study is that of vaccines, their efficacies

and their implementation schemes. Studies on the efficacy of

vaccines in the fight against infectious diseases like COVID-19

involve evaluating the effectiveness of the vaccine in reducing

the incidence of the disease, severity of symptoms, and the

transmission of the virus. These studies typically use randomized

controlled trials (RCTs), where individuals are randomly assigned

to receive either the vaccine or a placebo, and are followed over

time to determine the incidence of the disease in each group.

The efficacy of the vaccine is then determined by comparing the

incidence of the disease in the vaccinated group to that of the

unvaccinated group. It is important to note that vaccine efficacy

can vary based on various factors such as the population being

studied, the duration of follow-up, and the level of circulating

virus in the population [11, 12]. Ongoing monitoring and

analysis of vaccine efficacy is crucial to ensure the continued

safety and effectiveness of vaccines as the pandemic continues

to evolve.

This Research Topic includes articles that study spread patterns

of infectious diseases using several mathematical, statistical,

computational, and biophysical methods covering compartmental

models, agent-based models (ABM), spatiotemporal analysis,

data-driven analysis, artificial intelligence, and analytic methods.

Sherwani et al. analyzed the seroprevalence of anti-S1-RBD

antibodies in pre-pandemic and pandemic subjects from Saudi

Arabia and found out that antibody levels increased in samples

collected during the pandemic, even though these subjects were

not clinically COVID-19 positive. Zhao and Liu reviewed the

distribution characteristics of COVID-19 in America based

on space-time scan statistic. Their empirical results reveal the

relative risk of the first-level and the second-level clustering

area of the epidemic across several states. The influence of

co-morbidities during SARS-CoV-2 infection in the Indian

Population was analyzed by Matysek et al.. They found out

that the highest correlation coefficient were age, random

serum glucose, serum urea, gender and serum cholesterol,

whereas the highest inverse correlation coefficient was assessed

for alanine transaminase, red blood cells count and serum

creatinine. Wu et al. worked on modeling the small scale

outbreak of COVID-19, especially in China and proposed

a new version of cellular automata with a time matrix, to

simulate outbreaks.

The policy choices for Shanghai in response to challenges

of Omicron were inspected by Qian et al. who showed that

effective policies for Omicron include high level of testing capacity

to identify and quarantine the infected cases, especially the

asymptomatic cases in addition to immediate home-isolation and

fast transfer to centralized quarantine location. Harris showed

how controls on access alone through concentric regulatory zones,

without restrictions on movement, were inadequate to halt an

advancing COVID-19 outbreak in the highly populous area of

South Brooklyn, New York. Kim et al. introduced a mathematical

modeling approach to study the economic impact of COVID-19

interventions and their study asserts the importance of the rapidity

of vaccine rollout to the cost effective control of the number of

infections and deaths. Yu et al. employed machine learning models

based on blood inflammatory cytokines to identify the hospitalized

mortality of patients with COVID-19. Their study constructs

predictive models to assess patients who may have poor prognoses

early and accurately. Liu et al. modeled the effects of vaccination,

nucleic acid testing, and face mask wearing interventions against

COVID-19 in large sports events using an SEIR model and found

out that the combined use of these measures could largely decrease

the number of infections. Future possible studies in mathematical

modeling of infectious diseases include the incorporation of spatial

dynamics, social dynamics, genomic data, more accurate models

of transmission, impact of vaccination and developing real-time

models for outbreak responses.
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Background: Two years into the pandemic, yet the threat of new SARS-CoV-2 variants

continues to loom large. Sustained efforts are required to fully understand the infection in

asymptomatic individuals and thosewith complications. Identification, containment, care,

and preventative strategies rely on understanding the varied humoral immune responses.

Methods: An in-house ELISA was developed and standardized to screen for serum

IgG antibodies against the SARS-CoV-2 S1-RBD protein as an antigen. This study

aims to investigate the seroprevalence of serum antibodies against S1-RBD antigen in

pre-pandemic (n = 120) and during the early pandemic period (n= 120) in subjects from

the Hail region, KSA and to correlate it with clinical and demographic factors.

Results: Samples collected from both male (n = 60) and female (n = 60) subjects

during the pandemic in the age groups of 20–40 (0.31 ± 0.029 and 0.29 ± 0.024,

respectively) and 41–60 years (0.35 ± 0.026 and 0.30 ± 0.025, respectively) showed

significantly higher levels of serum antibodies against S-RBD antigen than the age-

matched pre-pandemic samples [male (n= 60) and female (n= 60)]. Pandemic subjects

exhibited significantly (p < 0.01) higher inhibition (80–88%) than age-matched pre-

pandemic subjects (32–39%). Antibodies against S1-RBD antigen were detected in

approximately 10% of the total pre-pandemic population (males and females). However,

subjects > 60 years did not show antibodies.

Conclusion: Antibody levels increased in samples collected during the pandemic,

even though these subjects were not clinically COVID-19 positive. A small number of

pre-pandemic subjects showed serum antibodies, suggesting prior exposure to other

coronaviruses in the region. With dwindling neutralizing antibody levels and reduced

vaccine efficacy against newer variants, it remains crucial to develop better assays for

surveillance, management, and future research.

Keywords: SARS-CoV-2, S1-RBD, COVID-19, ELISA, antibodies, seroprevalence
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INTRODUCTION

The end of 2019 witnessed the emergence, rise, and rapid
spread of a highly contagious novel coronavirus known as
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-
2), the causative pathogen of the highly contagious Corona
Virus Disease 2019 or COVID-19, to almost every corner of the
world (1). COVID-19 continues to be a threat, with the possible
emergence of new variants with the ability to spread more rapidly
and target children. Factors such as gender, age, and comorbid
conditions contribute to disease severity and complications (2).
The repercussions of this health crisis will be felt for many years
to come.

The phylogenetically similar coronaviruses—SARS-CoV-2,
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV),
and the Middle East Respiratory Syndrome Coronavirus (MERS-
CoV)—are beta coronaviruses, emergent from animal reservoirs,
capable of rapid transmission and serious infectious outcomes
in humans (3). The primary mode of COVID-19 virus
transmission responsible for the pandemic is human-to-human,
via aerosols and droplets, from infected individuals through
talking, coughing, or sneezing (4). COVID-19 has a probable
asymptomatic incubation period between 2 and 14 days, with
newer variants displaying even lower incubation periods (5).

Those infected with the virus can broadly be classified
according to their level of infection and the severity of the
disease. Some infected individuals remain asymptomatic,
whereas others experience mild, transient symptoms. A
substantial number of infected individuals with advanced age
and medical comorbidities such as diabetes, hypertension,
or immunocompromised states are hospitalized due to
complications (2). Depending on their immunological
condition, individuals infected with COVID-19 experience
mild, moderate, or severe symptoms. Common symptoms
include dry cough, fever, fatigue, loss of taste or smell, and
diarrhea. Severe symptoms include dyspnea and chest pains
(6). Severe pathological manifestations of the disease in the
infected population with comorbidities include acute respiratory
distress syndrome (ARDS) and respiratory failure (7). Thus, age,
pre-comorbidities, an increased viral load, low SARS-CoV-2
antibody response, or an excessive systemic inflammatory
response known as a cytokine storm are contributory risk factors
to adverse patient outcomes (2, 8).

SARS-CoV-2 is an enveloped virus with a linear, unsegmented
positive-sense RNA genome. The nucleocapsid of the virion
consists of N-phosphoprotein (NP) and RNA, surrounded
by lipid bilayers (9). The (S1) spike glycoprotein peplomer
mediates viral attachment, followed by membrane fusion. This
glycoprotein is immunogenic and hence the target of IgM
and IgG humoral circulating antibodies (Abs) (10, 11). SARS-
CoV-2 infected patients produce antibodies 4–8 days post-
onset (12). Recent studies suggest the role of serum antibodies,
memory B cells, and cross-reactive T-cells in conferring immune
protection against the virus (13). However, more region-specific
studies are needed to ascertain host vulnerability, the nature of
immune responses in individuals, and the extent and duration
of protection.

In spite of a plethora of primary studies conducted during
the pandemic about serum immunoglobulin G (IgG) generated
against S1-RBD in COVID-19, details about the prevalence,
durability, response, and degree of the conference of immunity
from previous infections remain understudied. In a study
investigating anti-S1RBD IgG in COVID-19 hospital patients
during the early pandemic with a commercial ELISA, it was
found that median OD values were to be higher in patients with
the severe disease than those with the mild, moderate and critical
disease. However, the same pattern was not observed with respect
to anti-NP IgG (14). Also, the same study found that anti-S1RBD
IgG levels remained stably above positive threshold values in
patients with severe infections but were lower in patients with
mild or moderate infections (14). In a separate cross-sectional
study of unvaccinated U.S. adults, anti-S1RBD antibodies were
detected in 99% of individuals who reported a positive COVID-
19 test, 55% of individuals who believed they had COVID-19
but were not tested, and 11% of individuals who believed that
they never had a COVID-19 infection. Also, in individuals with
a positive COVID-19 result, anti-RBD levels were detectable for
up to 20 months (15).

The current study aims to investigate the seroprevalence of
serum antibodies against SARS-CoV-2 in the general population
before the emergence of the virus and during the early phase
of the COVID-19 pandemic, using an ELISA designed to
screen IgG antibodies directed against viral S1-glycoprotein
receptor-binding domain (S1-RBD) protein antigen. It is a
crucial first step in determining the humoral immune response
of asymptomatic and subclinical infections in individuals and
their associated implications. Such information is vital for
both researchers and policymakers in developing successful
surveillance and management strategies for vaccine delivery, care
of unvaccinated and vaccinated infected individuals, and effective
age-related outcomes.

MATERIALS AND METHODS

Study Subjects–Sera Collection
Pre-pandemic and During COVID-19
Pandemic
A total of 240 sera samples were collected from healthy
individuals before and during the early months of the COVID-
19 pandemic from the Hail region, Saudi Arabia, with their
prior consent. The research study was carried out per the
Declaration of Helsinki (1964). Of the samples collected, 120
sera samples were from individuals who were not diagnosed with
any disease. Furthermore, individuals with immune disorders,
immunodeficiencies, allergies, cancer, pregnant women, and
those with serious lung, heart, kidney, or liver disease were
excluded from the study. An equal number of sera samples
were collected from individuals during the COVID-19 pandemic
with no history of COVID-19 infection and no administration
of any COVID-19 vaccine. Samples were collected under the
Research Ethics Committee; the University of Hail approved
the study protocol H-2021-122. Subjects with any previous
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TABLE 1 | Group characteristics of study population.

Groups (Age in Years)

n = subjects

Fasting blood

glucose (mg/dl)

HbA1c (%) BMR

(cal/sq.m/hr)

Number of smokers

(duration; years ± SD)

Number of subjects with

Fever Fatigue Cough Myalgia

M-Pre-P (20-40)

n = 20

85.2 ± 5.4 5.5 ± 0.3 37.6 ± 2.3 8 (9.4 ± 5.1) 1 2 — —

M-Pan (20-40)

n = 20

83.0 ± 7.1 5.4 ± 0.3 38.7 ± 2.1 7 (8.2 ± 4.2) 4 3 3 2

F-Pre-P (20-40)

n = 20

84.3 ± 8.3 5.5 ± 0.3 33.6 ± 3.3 −3 (4.1 ± 4.2) 1 2 1 —

F-Pan (20-40)

n = 20

84.6 ± 5.3 5.6 ± 0.4 35.0 ± 2.9 −3 (6.3 ± 2.1) 1 2 2 —

M-Pre-P (41-60)

n = 20

89.1 ± 7.1 5.5 ± 0.4 35.7 ± 2.6 −9 (12.6 ± 6.3) 1 2 1 —

M-Pan (41-60)

n = 20

89.6 ± 8.5 5.6 ± 0.4 41.8 ± 3.2 −7 (15.4 ± 6.4) 4 3 4 2

F-Pre-P (41-60)

n = 20

88.9 ± 7.3 5.4 ± 0.3 31.2 ± 3.1 −3 (11.7 ± 3.4) — 2 1 —

F-Pan (41-60)

n = 20

90.1 ± 7.9 5.6 ± 0.3 33.0 ± 2.7 −4 (7.4 ± 2.6) 2 2 2 —

M-Pre-P (>60)

n = 20

97.0 ± 11.3 5.8 ± 0.5 33.9 ± 2.4 7 (22.3 ± 5.8) — 2 2 —

M-Pan (>60)

n = 20

98.3 ± 9.5 5.7 ± 0.3 39.9 ± 2.8 7 (26.4 ± 4.8) 6 6 6 3

F-Pre-P (>60)

n = 20

96.8 ± 8.8 5.7 ± 0.4 31.0 ± 2.6 4 (13.1 ± 3.9) 1 2 1 —

F-Pan (>60)

n = 20

97.2 ± 8.8 5.8 ± 0.5 36.7 ± 3.4 4 (16.1 ± 3.9) 3 3 2 1

M-Pre-P, M-Pan, F-Pre-P and F-Pan represents Male subjects’ pre-pandemic, Male subjects during pandemic, Female subjects’ pre-pandemic and female subjects during pandemic,

respectively. Normal ranges for FBG are 70-99 mg/dl. Normal ranges for BMR adult men and women are 35–38 and 32–35 cal/sq.m/hr, respectively.

history of disease or associated complications, including COVID-
19, were excluded from this study. Serum samples were
kept in temperature-controlled environments (-20 to−80◦C).
Demographic data collected for the sera samples included age,
gender, fasting blood glucose (FBG), basal metabolic rate (BMR),
and smoking history. FBG, HbA1c, and BMR were assessed
using well-known methods prescribed regularly in the clinics.
Participants were asked to report symptoms such as fever, fatigue,
cough, or myalgia in the 14 days prior to sample collection, as
these may assist in the interpretation of antibody results.

The participants in this study were divided into groups, each
comprising 20 volunteers (n = 20), assorted in both gender and
age. The demographic data of the groups are represented in
Table 1. The distribution is as follows: serum samples collected
from men pre-pandemic and aged 20–40 years old (M-Pre-P,
20–40 years); serum samples collected from men during the
pandemic, aged 20–40 years old (M-Pan, 20–40 years); serum
samples collected from women pre-pandemic aged 20–40 years
old (F-Pre-P, 20–40 years); serum samples collected from women
during the pandemic aged 20–40 years old (F-Pan, 20–40 years);
serum samples collected from men pre-pandemic who were 41–
60 years old (M-Pre, 41–60 years); serum samples collected from
men during the pandemic whowere 41–60 years old (M-Pan (41–
60 years); serum samples collected from women pre-pandemic
who were 41–60 years old (F-Pre-P, 41–60 years); serum samples
collected from women during the pandemic who were aged

41–60 years (F-Pan, 41–60 years); serum samples collected from
men pre-pandemic who were more than 60 years old (M-Pre-
P, >61 years); serum samples collected from men during the
pandemic who were more than 60 years old (M-Pan, >61 years);
serum samples collected from women pre-pandemic who were
more than 60 years old (F-Pre-P > 61 years) and serum samples
collected from women during the pandemic who were more than
60 years old (F-Pan, > 61 years).

Estimation of Inflammatory Cytokines IL-6
and TNF-α
Cytokines IL-6 and TNF-α levels were analyzed in serum samples
from all the cohorts using commercially available quantitative
sandwich immunoassay kits (R&D System, Minneapolis, MN,
USA). The sensitivities of the ELISA kits were <0.5 pg/mL.
Samples were assayed in triplicate.

Optimization of Antigen Concentration for
Indirect Binding ELISA
The recombinant S1-RBD-protein antigen (MyBioSource, USA)
coating concentration was optimized as described previously
with slight modifications (16, 17); varying concentrations 0.1, 1,
2, 4, 8, and 10µg/ml) of S1-RBD protein in coating buffer (0.05M
carbonate-bicarbonate buffer, pH 9.6) was coated on the ELISA
plate. The plate was incubated for 2 h, and unbound antigens
were removed by washing using phosphate buffer saline (PBS).
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Unbound spaces were blocked with 2.5% BSA and incubated for
1 h at 37◦C. The ELISA plate was washed three to five times with
PBS-Tween20 (PBS-T). Test samples [anti-R-C19-S1-RBD IgG
(MyBioSource, California, USA)] and serum samples from three
COVID-19 convalescent patients were diluted (1:100) in dilution
buffer [phosphate buffer saline (PBS)] and were added to each
well (100 µl/well). The plates were incubated at 37◦C for 2 h, and
after incubation, the ELISA plate was washed three to five times
with PBS-T. The secondary antibody against anti-R-C19-S1-RBD
IgG (MyBioSource, California, USA) was diluted as per the
manufacturer’s instruction to 1:50,000 and added to the ELISA
plate (100 µl/well). For serum samples, secondary anti-human
IgG diluted 1:2,000 in dilution buffer was added to each well (100
µl/well). Secondary antibodies were conjugated to horseradish
peroxidase (GE Healthcare). After incubation at 37◦C for 2 h,
the plate was washed three to five times with PBS-T. 3,3’,5,5’-
Tetramethylbenzidine (TMB). Stabilized substrate (Promega)
was added to each well (100 µl) for 20min. One molar of H2SO4

(100 µl) was used to stop the enzyme reaction after 20min
incubation at room temperature. The results were expressed as
optical density (OD) (OD=mean of triplicate wells minus mean
of the blank wells). The OD of the reaction product was read at
450 nm on an ELISA plate reader.

Optimization of Serum Dilution for Indirect
Binding ELISA
Serum dilution from three COVID-19 convalescent patients was
optimized for the ELISA assay. The ELISA plate was coated

with 2µg/ml of S1-RBD antigen in coating buffer and incubated
for 2 h. Unbound antigens were removed by washing with PBS.
Unbound spaces in the ELISA plate were blocked with 2.5% BSA
and incubated for 1 h at 37◦C. The plate was washed three to
five times with PBS-T. Serum samples (n = 3) diluted serially
(1:50, 1:100, 1:200, 1:400, 1:800, and 1:1,600) in PBS were added
to each well (100 µl/well). The plates were incubated at 37◦C for
2 h and, after incubation, washed three to five times with PBS-T.
Secondary anti-human IgG conjugated to horseradish peroxidase
was diluted at 1:2,000 in a dilution buffer and added to each
well (100 µl/well). The remaining steps were the same as those
given above.

Determination of the Threshold Value by
Indirect ELISA
The OD450 nm value of 20 sera samples of normal individuals
from our laboratory, obtained before the COVID-19 outbreak,
was detected with the optimum concentration of protein
and antibody by indirect ELISA. The results were statistically
analyzed to determine the cut-off value. The mean (X) and
standard deviation (SD) of the 20 samples were calculated. The
cut-off value was X + 3 SD, which was positive when the IgG
OD450 nm value of the samples to be tested was ≥X + 3 SD and
negative when the IgG OD450 nm value was <X+ 3 SD.

ELISA Plate Description
To test the sera samples, the following design of a 96-well ELISA
plate was used: twenty serum samples from each group were
tested in triplicate on each plate along with antibody specific

FIGURE 1 | Optimization of antigen (S1-RBD) concentration for ELISA. Serum samples from COVID-19 convalescent individuals (n = 3) were used in the assay.

Anti-R-C19-S1-RBD IgG was used a positive control. Each sample was run in triplicate under similar conditions.
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(anti-R-C19-S1-RBD IgG) for S1-RBD antigen, which served as
a positive control (three wells). Six wells included two different
pre-pandemic serum samples that showed <0.1 OD in indirect
binding ELISA and were considered negative controls. Blanks
were also included in three wells. The results were expressed
as OD (OD = mean of triplicate wells minus the mean of the
blank wells).

Isolation of Serum IgG
Affinity chromatography was applied to isolate IgG from serum
samples using a Protein A-Agarose column (Sigma-Aldrich,
USA). The Protein A-Agarose column was washed 2–3 times
using PBS buffer (pH 7.4) prior to the addition of the sample.
A volume of 0.5ml of serum sample was diluted with an equal
volume of PBS (pH 7.4) and run through the column. Samples
were re-eluted 2–3 times for efficient binding of IgG. Unbound
IgG was removed by extensive washing with the same washing
buffer. Serum IgG, which was bound to the column, was eluted
with elution buffer (acetic acid (0.58%) in sodium chloride
(0.85%) and neutralized with 1M Tris-HCl (pH 8.5). About 2–
3ml of fractions were collected in serum tubes, and each tube was
read at 251 and 278 nm. The concentration of IgG was estimated
as 1 mg/ml at 1.4 OD.

Specificity and Reproducibility of Indirect
ELISA
The specificity of the indirect binding ELISA was assessed by
evaluating the presence of SARS-CoV-2 specific IgG against S1-
RBD in the sera samples of COVID-19 convalescent patients
(n = 3), hepatitis C virus (HCV) (n = 3), tuberculosis
(TB) (n = 3), and rheumatoid arthritis (RA) (n = 3)
patients. The ELISA plates were coated with 2 g/ml of S1RBD
antigen, and the specificity of the method was evaluated with
the established indirect ELISA method (15, 16). Anti-R-C19-
S1-RBD IgG served as a positive control, and IgG from
pre-pandemic subjects who showed <0.2 OD served as a
negative control.

Plate-to-plate variation was monitored by comparing the
control panel results between the different wells of the same plate;
the same sera samples were run on different plates on the same
day as well as on different days.

Indirect Binding ELISA
The binding activity of serum antibodies to S1-RBD antigen was
detected by indirect binding ELISA as described above with slight
modifications (16–19).

FIGURE 2 | Optimization of serum dilution for ELISA. Serum samples from COVID-19 convalescent individuals (n = 3) were used in the assay. Each sample was run in

triplicate under similar conditions.
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Inhibition ELISA
The specificities of S1-RBD antigen and serum IgG were
estimated by competition ELISA (18–20). Increasing
concentrations of S1-RBD antigen (0–10µg/ml) were allowed to
interact with a constant amount of serum autoantibodies from
individuals of different groups for 2 h at room temperature and
overnight at 4◦C. After incubation, the immune complex formed
was incubated in the microplate wells (instead of the serum taken
in indirect binding ELISA), and the bound antibody levels were
detected as in indirect binding ELISA. The percent inhibition
was calculated using the formula:

Percent inhibition =[1− (Ainhibited/Auninhibited)]×100,

where Ainhibited is the absorbance at 10µg/mL of inhibitor
concentration and Auninhibited is the absorbance at zero
inhibitor concentration.

Statistical Analysis
Statistical analyses were carried out using OriginPro v6.1. One-
way or two-way analysis of variance (ANOVA) was applied to

test for statistical significance. Only p-values of 0.05 or lower were
considered statistically significant [p > 0.05 (ns, not significant),
p ≤ 0.05 (∗), p ≤ 0.01 (∗∗), p ≤ 0.001 (∗∗∗)].

RESULTS

Optimization of Antigen for ELISA
Multiple steps were included in the ELISA method. To develop
an efficient ELISA assay, it is essential to standardize all steps.
The concentration of S1-RBD protein antigen used to coat the
microplate was optimized, which effectively covered the bottom
of the microplate wells. Figure 1 shows that at a concentration
of 2µg/ml, recombinant S1-RBD protein antigen exhibited
maximum absorbance, which was recorded for both anti-R-C19-
S1-RBD IgG and serum samples. Hence, 2µg/ml of recombinant
S1-RBD protein antigen was used for all further ELISA assays.

Optimization of Serum Dilution for ELISA
For optimization of serum dilution used in indirect binding
ELISA, serum samples from three COVID-19 convalescent
patients were diluted with varying ratios. Maximum absorbance

FIGURE 3 | Estimation of cut-off value for indirect binding ELISA. Pre-pandemic serum samples (n = 20) were used in the ELISA (1:100 dilution) assay against the

S1-RBD antigen (2µg/ml). Each sample was run in triplicate.
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FIGURE 4 | Titration curves for the optimization of serum IgG (COVID-19 patients; n = 3). Commercially available anti-R-C19-S1-RBD IgG was used as a positive

control. Three nonreactive serum samples from pre-pandemic subjects served as a negative control. ELISA plates were coated with an antigen (S1-RBD)

concentration of 2µg/ml. Each sample was run in triplicate under similar conditions.

against commercially available S1-RBD protein antigen was
observed at neat as well as at 1:50 and 1:100 dilutions (Figure 2).
Therefore, for further ELISA assays, a serum dilution of 1:100
was used.

Determination of the Threshold Value by
Indirect ELISA
The calculated cut-off value, using the given method for the 20
randomly selected pre-pandemic normal sera samples, was found
to be 0.2 (OD) (Figure 3). An in-house threshold or cut-off ratio
value, which best distinguished elevated anti-S1-RBD antibody
levels from healthy control individuals, was established to be 0.2.

Specificity and Reproducibility of Indirect
ELISA
Specificity of the assay was investigated using a titration assay of
R-C19-S1-RBD IgG, purified IgGs from COVID-19 convalescent
patients (n= 3), and pre-pandemic serum (n= 3) (Figure 4). At
a concentration of 2,000 ng/ml, COVID-19 convalescent patients’
IgG exhibited higher specificity (1.84 ± 0.09; p < 0.0001) than
pre-pandemic subjects’ IgG (0.12 ± 0.10). R-C19-S1-RBD IgG
served as a positive control (2.20± 0.09).

Furthermore, the cross-reactivity of serum IgG was
investigated using isolated serum IgGs (n = 3) from patients
with HCV, TB, and RA, showing negligible binding (0.12 ±

0.054, 0.10 ± 0.05 and 0.11 ± 0.045, respectively) (Figure 5).
However, serum IgG from COVID-19 convalescent patients
(OD: 1.87 ± 0.18) exhibited significantly higher (p < 0.0001)
binding compared to HCV, TB, RA, and blank (Figure 5).
Anti-R-C19-S1-RBD IgG (2.18 ± 0.07) and IgG from pre-
pandemic subjects (0.13 ± 0.05) served as positive and negative
controls, respectively.

Inflammatory Cytokine Levels
Inflammatory cytokines such as IL-6 and TNF-α were estimated
in serum samples of all the subjects from different groups
(Figure 6). Post-pandemic subjects exhibited slightly elevated
levels of IL-6. However, these differences were non-significant.
No remarkable changes were observed in TNF levels in all groups.

Clinical and Epidemiological
Characterizations
Clinical and epidemiological data for 240 sera samples from
different groups assorted by age and gender are presented in
Table 1. Volunteers included equal numbers of men and women
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FIGURE 5 | The specificity of the indirect binding ELISA was established by screening three serum samples each from COVID-19 convalescent, HCV, TB and RA

patients. Anti-S1-RBD-IgG and pre-pandemic subjects (n = 3) were used as positive and negative controls, respectively.

in each group. FBG levels were within the normal range (70–
98 mg/dl) for all groups. However, increased FBG levels were
observed in older age groups (>60 years) as compared to other
age groups (<60 years). HbA1c was found to be within the
normal range; however, slightly elevated levels (non-significant)
were observed in subjects aged more than 60 years. BMR for
pandemic groups showed slightly increased values compared to
pre-pandemic groups. In women, the BMR was lower than in
men of corresponding age groups. Significantly high BMR was
found in groups [M-Pan (20–40, p < 0.05), M-Pan (41–60, p <

0.01), M-Pan (>60, p < 0.01), and F-Pan (>60, p < 0.05)] in
which subject(s) showed symptoms of fever, cough, and myalgia
altogether (Table 1). Additionally, this trend was observed only
in groups with a higher number of smokers and with an increased
smoking duration.

Indirect Binding ELISA
The binding efficiency of serum antibodies and S1-RBD protein
antigen was evaluated for all age and gender assorted groups.
Serum samples were tested at a dilution of 1:100 in an indirect
binding ELISA against the S1-RBD antigen (2 µg/ml).

The binding specificities of serum antibodies against the
S1-RBD antigen in samples collected before and during the

COVID-19 pandemic were found to vary among the 20–40-year-
old age group subjects. Samples collected from both male and
female subjects pre-COVID showed low binding toward antigen,
i.e., 0.17 ± 0.016 and 0.16 ± 0.018, respectively. However,
significantly (p < 0.05) higher binding was observed in sera
samples collected during the pandemic from subjects of both
genders (male and female) corresponding to the same age groups,
0.31 ± 0.029 and 0.29 ± 0.024, respectively (Figure 7). Only two
pre-pandemic serum samples, each from men and women aged
20–40 years, were found to be positive (average values; 0.33 ±

0.024 and 0.34 ± 0.027, respectively). However, for the same
age and gender-matched samples collected during the pandemic,
seven samples were found to be positive for men and women
(average values; 0.59± 0.039 and 0.55± 0.035, respectively) each
(Figure 7).

Serum antibody binding patterns against the S1-RBD antigen

were evaluated for both male and female subjects aged 41–
60 years (Figure 8). Low levels of binding were observed in

both male (0.19 ± 0.018) and female (0.18 ± 0.017) subjects

from serum samples collected before the start of the pandemic.
Samples collected during the pandemic from both male and
female individuals exhibited significantly (p < 0.05) higher
binding (0.35 ± 0.026 and 0.30 ± 0.025, respectively) against the
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FIGURE 6 | Serum inflammatory cytokines TNF-α and IL-6 levels (pg/ml) were estimated from all the studied groups. All samples were in triplicates, and values are

given as mean ± SD.

antigen as compared to the age-matched pre-pandemic subjects.
From samples collected during the pandemic in the age group
of 41–60 years, eight samples from men (0.63 ± 0.041) and six
samples from women (0.59 ± 0.043) showed positive binding
with high reactivity (Figure 8). Comparatively, a much smaller
number of pre-pandemic samples showed positive binding and
reactivity; two samples were from men (0.41 ± 0.033) and one
sample (0.43± 0.032) from women.

In the sample group > 60 years of age, no binding activity
was detected among both male (0.17 ± 0.017) and female (0.16
± 0.017) subjects in samples collected prior to the pandemic
(Figure 9). Samples for both men (0.20 ± 0.022) and women
(0.23 ± 0.021) collected during the pandemic showed less
reactivity toward the antigen. However, in the same age group,
seropositivity was detected in four men (0.285 ± 0.027) and six
women (0.38 ± 0.039) samples collected during the pandemic.
Moreover, the positive samples from > 60 years olds showed
a low level of reactivity when compared to positive samples
from other groups (20–40 and 41–60 years) collected during
the pandemic.

Correlation Analysis
Correlation analysis was performed for all pre-pandemic samples
as well as samples collected during the pandemic for antibodies
against S1-RBD in different age groups and various parameters
(FBG, BMR, smoking, fever, fatigue, cough, and myalgia) (see
Table 2). This analysis showed that the data for fever, fatigue,
cough, and myalgia significantly correlated with antibodies

against S1-RBD in samples collected during the pandemic
in higher age groups (41–60 and >60) for both male and
female subjects. However, for the age group 41–60 years, more
parameters showed a correlation for male subjects [M-Pan (41–
60)] as compared to female subjects [F-Pan (41–60)]. Parameters
such as fever, fatigue, and cough consistently correlated with
samples collected during the pandemic for all groups. FBG
levels did not exhibit a correlation with any of the groups.
Correlation analysis showed that myalgia could be strongly
correlated with circulating IgG against COVID-19 infection, even
though subjects had not been diagnosed with the disease.

Inhibition ELISA of Serum Antibodies
Against S1-RBD
The binding specificity of the circulating antibodies to the S1-
RBD antigen was further ascertained by inhibition ELISA using
S1-RBD as an inhibitor, as given in Table 3. As shown in
indirect binding ELISA results, inhibition ELISA of subjects from
samples collected during the pandemic showed a significantly
(p < 0.001) higher maximum percent inhibition than the age-
matched subjects from the pre-pandemic group. The highest
mean percent inhibition was detected in subjects from groups
M-Pan (41–60), followed by M-Pan (20-40), F-Pan (20-40), M-
Pan (41-60), F-Pan (>60), and M-Pan (>60) (see Table 3).
In contrast, very low mean percent inhibitions (39 ± 3.4 –
32 ± 3.0) were observed in most of the groups of the pre-
pandemic subjects. M-Pre (>60) and F-Pre (>60) did not have
any positive samples. However, two samples were randomly
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FIGURE 7 | Indirect binding ELISA of pre-pandemic samples and samples collected during the pandemic from men and women aged 20–40 years. ELISA plates

were coated with an antigen concentration of 2µg/ml. Each sample was run in triplicate under similar conditions.

selected from these groups and tested for inhibition ELISA (see
Table 3).

This data showed that pre-pandemic subjects older than 60
years did not have antibodies when compared to subjects aged
40 years or less. This may contribute to the higher death rate
in older age groups (>60 years) in COVID-19 patients. Even
circulating antibodies in positive subjects belonging to older
age groups (>60 years) collected during the pandemic showed
less specificity for the S1-RBD antigen than in subjects aged
<40 years.

DISCUSSION

This study highlights the potential contribution of serology in
understanding the difference in the immune status of individuals
before the onset of and during the early phase of the COVID-
19 pandemic. We report an in-house ELISA assay, developed
and optimized to detect antibodies against the S1 domain of
SARS-CoV-2 spike protein characteristics of SARS-CoV2 anti-
S1-RBD IgG antibodies in sera samples of individuals collected
pre-pandemic and during the COVID-19 pandemic.
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FIGURE 8 | Indirect binding ELISA from samples collected pre-pandemic and during the pandemic from men and women aged 41–60 years. ELISA plates were

coated with an antigen concentration of 2µg/ml. Each sample was run in triplicate under similar conditions.

The preferred method for diagnosing SARS-CoV-2 infection
has been through viral nucleic acid or RT-qPCR tests, which
require pharynx swab samples. This method, although highly
sensitive, is subject to sampling techniques. The ELISA assay
is an alternate assay that is both highly specific, sensitive,
and cost-effective. Not only is this method suitable for large-
scale sample testing and diagnosis but it also provides valuable
information about the humoral state of the subject (21, 22). This
study focuses on the development of an easy-to-use and high-
throughput serological ELISAmethodwith a low threshold value,
which is specific, sensitive, and reproducible. This detection
method can potentially identify asymptomatic, subclinical, or

prior infections. Our optimized protocol can be implemented
to accommodate large-scale automated testing of COVID-19
antibodies against the S1-RBD protein antigen.

The study aimed to investigate differences in anti-S1-RBD
antibody profiles in sera samples collected from equal numbers
of gender and age-matched individuals pre-pandemic and during
the pandemic in 2020 to discern differences in trends. Along
with demographic data, it is essential to study various clinical
characteristics such as fever, cough, myalgia, fatigue, FBG, and
BMR levels that may affect disease prognosis (23–26). High FBG
and HbA1c levels were detected in older age groups (>60 years),
which is a normal pattern in the elderly (17). BMR was also
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FIGURE 9 | Indirect binding ELISA from samples collected pre-pandemic and during the pandemic from men and women aged > 60 years. ELISA plates were

coated with an antigen concentration of 2µg/ml. Each sample was run in triplicate under similar conditions.

found to decrease linearly with age.Women exhibited lower BMR
than men of corresponding age groups. However, participants
reporting symptoms of moderate fever, fatigue, cough, and
myalgia had a significantly (p< 0.05) higher BMR, with the trend
most apparent in men with a history of smoking. They increased
smoking duration (23, 24).

The binding specificity profiles of serum antibodies against
the S1-RBD antigen were ascertained by indirect binding ELISA
for all age and gender assorted groups, collected pre-pandemic

and during the pandemic. A smaller number of subjects (10%)
with low levels of circulating antibodies against S1-RBD were
identified in pre-pandemic groups (>60 years). The prior
exposure of these subjects to other coronaviruses like MERS-
CoV cannot be ruled out. However, a higher number of non-
positive pre-pandemic subjects might not have been exposed to
any coronaviruses and thus did not display antibodies, which
appear to be rare (27). No positive sera samples were detected
in pre-pandemic samples of both men and women aged > 60
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. TABLE 3 | Pre- and intra-pandemic comparison of serum IgG inhibition in various

age group.

Subject groups

(years)

Mean maximum percent inhibition

Pre-pandemic Pandemic

Male (20–40) 37 ± 3.1

(2)*

83 ± 4.8

(7)*

Female (20–40) 39 ± 3.4

(2)*

82 ± 4.3

(7)*

Male (41–60) 34 ± 3.8

(2)*

88 ± 5.5

(8)*

Female (41–60) 32 ± 3.0

(2)*

80 ± 5.1

(7)*

Male (≥61) 4.2 ± 1.6

(2)♯
43 ± 4.9

(4)*

Female (≥61) 3.9 ± 1.4

(2)♯
48 ± 4.6

(6)*

*Values in parenthesis showed positive sera samples against S1-RBD antigen. ♯Randomly

selected non-positive samples against S1-RBD antigen. The ELISA plates were coated

with antigen (2µg/ml). Antigen was used as an inhibitor.

years. Age is a significant risk factor for COVID-19 infection
that has been explored in many studies (28–30). Our study
is in agreement with the findings of another age-structured
study which showed that in individuals aged younger than 20
years of age, susceptibility to COVID infection was found to
be approximately half that of adults aged over 20 years (31).
Also, the incidence of clinical symptoms exhibited in infected
individuals increased with increasing age. The implications of
age-related susceptibility to infection and immune outcomes are
essential factors in consideration of the burden of disease. These
can further be used for age-structured correlation studies for a
population and projections of subclinical and clinal infections.

A recent report suggested the presence of pre-existing
cross-reactive antibodies to the SARSCoV2 spike in young
people, including children, mainly against the S2 domain
(31, 32). However, the complete etiology of the presence of
these antibodies is unknown, and hence, further investigations
would be necessary for protection against future SARS-
related infections.

The binding specificities were significantly higher for sera
collected during the pandemic from age and gender-matched
subjects, indicating higher chances of exposure to the S1-RBD
antigen of SARS-CoV2. A total of 38 sera samples were strongly
positive, with more male sera samples found to be positive in
the age groups of 20–40 and 41–60 years, perhaps due to the
higher probability of exposure, the role of sex hormones in
immune activation and increased age (33). These findings can
also be explained by previous studies highlighting inadequate
compliance with recommended hygiene measures and contact
restrictions in younger age groups and men (34).

Conversely, fewer female samples showed strong positivity in
the 20–40 and 41–60-year age groups compared to male samples.
This finding is in agreement with previous studies, which indicate
sexual dimorphism in immune response and lower neutralizing
antibody titers are significantly associated with the female sex
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(33, 35). However, a slightly higher number of female samples
were found to be positive in the age group of >60 years,
indicating a more robust immune response than men. However,
the reason behind this difference is not apparent and warrants
further investigation. This shows that gender is an essential factor
in subjects of older age groups for the presence of antibodies
against the S1-RBD antigen.

Antibodies with neutralizing activity are considered necessary
for protection against SARS-CoV-2 infection. Many studies
have demonstrated a close correlation between anti-SARS-CoV-
2 spike IgG antibody levels and neutralizing activity (27, 36),
which was also shown in this study, suggesting a critical role
of anti-spike antibodies in virus neutralization. The duration of
persistence of these antibodies is key to devising strategies to
combat newly emergent highly transmissible variants.

Strong correlations were observed for fever, fatigue, cough,
and myalgia with antibodies against S1-RBD in samples collected
during the pandemic (30). However, FBG, HbA1c, and BMR
either did not correlate or inconsistently correlated with a few
groups. Inflammatory cytokines IL-6 and TNF-α also did not
show any correlation with serum IgGs against the S1-RBD
antigen. Hence, these factors cannot be ignored when assessing
the disease diagnosis and the level of infection. To the best
of our knowledge, this is the first seroprevalence study of IgG
specific for the COVID-19 virus antigen “S1-RBD” from the
Hail region in KSA, providing valuable information about IgG
levels in different age groups as well as genders. Interestingly,
approximately <10% of subjects exhibited the presence of
these IgGs in serum samples obtained prior to the COVID-19
pandemic. The reason for this remains uninvestigated, although
prior exposure of the population to another SARS virus may be
a possibility. The limitations of our study include the limited
numbers of samples and clinical data collected for this cross-
sectional study conducted during the early phase of the pandemic
due to the strict health and safety policies and restrictions. Future
longitudinal studies with a larger sample size would be valuable
for a comprehensive comparison of data for such samples. They
may provide a better understanding of social determinants and
the overall humoral immune response.

RBD-specific antibodies detected in the plasma of infected
patients showed potent antiviral activity in all infected
individuals, suggesting a broader role of neutralizing antibodies
in COVID-19 infection, which may contribute to overall vaccine
design and efficacy (37). Inhibition ELISA performed for all
groups exhibited low antigen-antibody binding specificities
in older age group subjects than younger individuals.
Seroprevalence and surveillance studies can help identify
asymptomatic or subclinical infections in a population. Such
studies can offer insight into the subtle differences/variations
in the underlying immunological mechanisms. Knowledge
of the contribution of any pre-existing immunity to SARS-
CoV-2 and the role of the humoral immune response in
asymptomatic and subclinical infections is vital in devising
strategies for surveillance and containment. Even with the
increased availability of a range of vaccines against SARS-CoV-2,
the possibility of reinfection still looms large with the threat of
newer and more transmissible variants and dual viral infections,
partially vaccinated or unvaccinated populations, and waning

immunity levels. Understanding the extent and duration of
protective immunity in individuals of a population is essential
for the protection of vulnerable groups and facilitating the return
of society to a state of normalcy.

CONCLUSION

The current study encompasses a seroepidemiological study of
anti-S1-RBD antibodies in a population in the Hail region,
KSA, before the start of and during the early phase of
the COVID-19 pandemic. Pre-pandemic subjects >60 years
exhibited about 10 percent circulating antibodies against S1-
RBD antigen, which is indicative of earlier exposure to other
coronaviruses. In early pandemic subjects, the percentage of
anti-S1-RBD antibodies significantly increased to 35 percent.
These serum antibodies showed a strong correlation with
symptoms of fever, fatigue, cough, and myalgia. Higher
antibody titers are significantly associated with the male sex.
However, these antibodies decreased in the elderly. This
ELISA assay is an important and valuable tool for screening
large numbers of samples from different age groups and
assessing immune status. Age-specific antibody profiles indicate
the need for targeted monitoring strategies for prevention,
disease management, and vaccine effectiveness. The rise of
newer variants, waning antibody levels, and reduced vaccine
efficacy raise concerns about the durability of responses in
clinical protection.
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With the improvement of treatment and prevention methods, many countries have the

pandemic under control. Different from the globally large-scale outbreak of COVID-19 in

2020, now the outbreak in these countries shows new characteristics, which calls for

an effective epidemic model to describe the transmission dynamics. Meeting this need,

first, we extensively investigate the small-scale outbreaks in different provinces of China

and use classic compartmental models, which have been widely used in predictions,

to forecast the outbreaks. Additionally, we further propose a new version of cellular

automata with a time matrix, to simulate outbreaks. Finally, the experimental results show

that the proposed cellular automata could effectively simulate the small-scale outbreak of

COVID-19, which provides insights into the transmission dynamics of COVID-19 in China

and help countries with small-scale outbreaks to determine and implement effective

intervention measures. The countries with relatively small populations will also get useful

information about the epidemic from our research.

Keywords: COVID-19, small-scale outbreak, cellular automata, time matrix, simulation

1. INTRODUCTION

In December 2019, the high-speed expansion of COVID-19 managed itself into a global pandemic
in a minute, which ended up as a global crisis. China launches a resolute battle to prevent
and control the spread of COVID-19, within 4 months the transmission of the virus has been
successfully cut off. The daily confirmed cases in China mainland dropped below 100 and further
declined to a single digit. Hard work of China had gained remarkable achievement. Unfortunately,
the virus has mutated in a way that might spread easier, which poses a great challenge to epidemic
prevention.

According to the data from the National Health Commission of China, we can obtain some
general principles underlying the spread of the virus, as shown in Figure 1. During outbreaks, the
daily confirmed cases are less than one hundred. The outbreaks will last for around 30 days. It is
noticeable that the trend of daily confirmed cases reached its peak around 15 days after the outbreak
and the daily new recovered cases peak at 20 days later.

With the experience of fighting against COVID-19 in Wuhan, the Chinese government has had
science-based measures for COVID-19 prevention and control. In this article, we set our attention
on the small-scale outbreak and transmission of COVID-19 in various provinces of China, and try
to reveal the general principles underlying the spread of the virus to provide theoretical support
for epidemic prevention. With appropriate parameter setting and transmission rules, this study can
also be used for epidemic analysis in many other countries. The stability of the proposed model
is tested with COVID-19 data in Potter County, Texas US. This study can provide important
information for making appropriate decisions in countries that lack medical resources.
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FIGURE 1 | The daily confirmed cases and recovered cases of COVID-19 in Hebei province on January 2021.

Many models can be applied to simulate the spread of the
epidemic. The traditional SIR model has already been widely
used to simulate the epidemic at a country level, generally with
numerous infected cases a huge population (1–4). Nowadays,
many countries already have the COVID-19 under control, and
the infected cases in a city or county with a relatively small
population, are marginal compared with the total infected cases
at the country level. Most of the previous studies focused their
attention on outbreaks with sufficient infected cases, like the
outbreak in Wuhan (4, 5). We believe that COVID-19 will
show a trend of small outbreaks within a certain range. It is
significant to explore the regularity of small-scale outbreaks of
COVID-19. In this study, we focus our attention on small-scale
outbreaks with a limited number of cases. First, we applied
traditional SIR model and SEIU IDRURD model simplified from
SEIDIUQHRD (6). Then a new version of CA is proposed to carry
out the experiment. In the improved CA model, the parameters
and transmission rules are set according to the data from the
local health department. During the experiment, we simulate
the outbreaks in two provinces of China, Heilongjiang and
Hebei, and Potter County, Texas US. The results show that our
improved CA has a better performance compared with the two
compartments models mentioned above.

The contribution of this study can be summarized as follows.
To the best of our knowledge, this is the first study that tries to
simulate the small-scale outbreak of COVID-19. Additionally, a
new version of CA has been proposed with a time matrix that can
simulate the outbreak well by setting transmission rules. Utilizing
this model, epidemic trends in small-scale outbreaks can be used
to help health officials make decisions on public health policies.

2. RELATED STUDY

In 2002, the SARS (Severe Acute Respiratory Syndrome) virus
was first found in Guangdong China. Classical compartmental

models SIR have been used in simulation and prediction (7–
9). In their studies, the number of susceptible, infected, and
recovered from Beijing have been calculated using the SIRmodel,
and all parameters with epidemiological meaning including
transmission rate, removal rate, and basic reproduction number
have been estimated. The same methods have been used in
investigating the transmission rules of SARS in Guangdong
province (10). The studies showed that transmission dynamic
models, in the form of differential equations, could simulate the
process of SARS transmission with reasonable parameters and
reflect the dynamic of SARS transmission.

Since December 2019, the COVID-19 started its transmission,
and classical compartmental models have been widely used
in predictions. But the rate of transmission and many other
parameters in classical models are constants. For better
simulation, numerous researchers have proposed many methods
of predicting the parameters dynamically (7, 11, 12). The
improved SEIR model has been used in forecasting the outbreak
and combined with a series of interventions formulated by
the government. With the development of machine learning, a
dynamic prediction method of the infection rate was derived
based on long short-term memory (LSTM) and has a better
performance compared with that of the traditional SEIR model
(13, 14). These models assumed that populations are completely
mixed and ignore spatial effects of spread epidemics; also
interaction between individuals is neglected since they model
populations as continuous entities (15).

Cellular automata are dynamic systems with discrete time,
space, and state. It discusses the overall properties on the premise
of synchronous updating based on local principles, which is
expected to simulate the real epidemic situation through the set of
local principles (16). It has been applied in the field of infectious
disease control (17–19). Classical epidemic models based on
differential equations may be unsuitable for simulating small-
scale outbreaks of COVID-19, given the lack of flexibility when
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simulating local characteristics of infectious diseases. Cellular
automata may have better performance in the simulation of
small-scale virus outbreaks.

In previous studies (13, 20), most of the methods have
been directed at the large-scale outbreak of SARS or COVID-
19. Most predictive studies based on cellular automata focused
on H1N1 and the small spread of chickenpox (19, 21). At
present, the epidemic situation in China is generally stable,
with rebounds in some provinces. In this contribution, we used
classic compartmental models (SIR and SEIU IDRURD) and CA
to simulate the small-scale outbreaks of COVID-19 in different
provinces of China, a time matrix is set to optimize the cellular
automata.

Alongside CA, many researchers have implemented an agent-
based model (ABM) in simulating the pandemic (22, 23). ABM
to some extent evolved from CA, they are a class of agents,
and each of them contains variable information. Each agent can
interact with their neighbors and transform their state. Themajor
difference between ABM and CA is that each agent within ABM
can move their position as well as change state and interact with
neighbors. However, the cell in the class of CA will not be able
to transform their physic position. ABM is more intuitive than
mathematical or statistical models because it represents objects as
individual things in the world. In previous studies, ABM models
have been used in searching for cost-effective proactive testing
strategies and simulating the effects of health policy (24, 25).

3. METHODS

3.1. SIR Model
In the SIRmodel, individuals are assigned to three compartments
or categories: susceptible(S), infectious(I), and recovered(R). S
compartment represents the susceptible individuals that are not
immune to the virus and might get infected when exposed to
it. I compartment stands for those individuals who are carrying
the virus and can spread it. R compartment indicates those
infected with the virus and have successfully recovered after
treatment or died. Suppose that the recovered individuals will not
be re-infected or spread the virus.

As a result of the China’s public health emergency system and
strict traffic controls, the number of deaths is close to zero and
population migration with neighboring provinces is negligible.
It is reasonable to suppose that the population remains constant
during the outbreak, and the birth, death, and migration rates
are zero. SIR model can be described by the following set of
differential equations.

dS

dt
= −β

S

N
I

dI

dt
= β

S

N
I − γ I

dR

dt
= γ I

N = S(t)+ I(t)+ R(t)

(1)

where N is the total population of an area and it remains
a constant during the spread of the virus and S(t), I(t),R(t)

FIGURE 2 | The framework of SIR model.

represent the number of individuals in a different compartment
at the time t. β is the infection rate, which means the transition
probability from S to I. Similarly, γ is the removal rate, which
represents the transition probability from I to R. They are

often regarded as constants for simplicity of calculation. dS
dt

is
the changing rate of susceptible individuals. The number of
susceptible individuals decreases with the increment of infected
individuals. dI

dt
is the changing rate of infected individuals. dR

dt
is

the changing rate of recovered individuals. The framework of SIR
is shown in Figure 2.

3.2. SEIUIDRURD Model
Based on the SIR model, we further analyzed China’s epidemics
prevention and set up the SEIR model. Due to the characteristic
of COVID-19, there will be a latency when individuals are
exposed to the virus (9). During the latency, exposed individuals
are incapable of transmitting the virus and the illness did
not deteriorate to the infected stage. Susceptible individuals
may become exposed. Exposed individuals (E) will eventually
evolve into the infected. Therefore, after being exposed to the
virus, patients usually turn into I after latency. However, in
SIR the exposed individual is not modeled. In addition, there
are two types of infectious diseases: symptomatic infectious
(ID) and asymptomatic infectious (IU) (6). Due to the strict
prevention and control measures, a newly detected ID will get a
strict quarantine, and the transmission of the virus will be cut
off. Consequently, the original SEIR model is extended to the
SEIU IDRURD model. The SEIU IDRURD model can be described
as follow.

dS

dt
= −β

S (IU + σ ID)

N
dE

dt
= β

S (IU + σ ID)

N
− ηE

dIU

dt
= φηE− γ IU

dID

dt
= (1− φ) ηE− γ ID

dRU

dt
= γ IU

dRD

dt
= γ ID

(2)

Compartments definition (Figure 3):

• Susceptible (S) is the part of the population that could be
potentially subjected to the infection.

• Exposed (E) is the fraction of the population that has
been infected but does not show symptoms yet: it can be
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FIGURE 3 | The framework of SEIU IDRURD model.

FIGURE 4 | The framework of CA.

called a latent phase. and at this stage, we define it to be
not infectious.

• Asymptomatic Infectious (IU) is people infected with a
novel coronavirus that does not exhibit symptoms at any
time during the course of infection, and are capable
of spreading the virus. They are a potential source of
substantial spread within the community (6). Due to the
undetectable character of IU , we assume all the infected
cases collected by the health department are symptomatic
infectious (ID).

• Symptomatic Infectious (ID) stands for population infected

with the virus and exhibit a verity of symptoms: fever or chills,

cough, shortness of breath, or difficulty breathing. Isolation

is needed to cut off the spread of the virus according to the

local health policies. In the later experiment, we assume that

confirmed cases collected by the public health department
represent ID only.

• Undetected Recovered (RU) are the people healed from IU ,

they have become immune to the virus and will no be

reintroduced into the susceptible category.

• Detected Recovered (RD) are the people healed from

ID, similar to RU they are immune to the virus,

but stand for recovered cases that are in the health
department record.

The framework of the SEIU IDRURD model is shown in Figure 3.
Parameters value definition:

(a) β infection rate. It is the number of people that a patient can
infect each day, which transports people from the S category
to the E category.We define it as a constant and the estimation
is in the setting of a later parameter.

(b) η transform rate from E to ID or IU , which represents the
incubation and is defined as a constant.

(c) φ percentage of infections that are asymptomatic stands for
the proportion of asymptomatic infectious individual (IU)
in all infections. For example, a parameter value of 0.5
represents that half of the exposed population will transform
into IU .

(d) σ the non-isolation rate of the symptomatic infectious
individual (ID). In some countries, the σ is set to 0, which

Frontiers in Public Health | www.frontiersin.org 4 July 2022 | Volume 10 | Article 90781426

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Wu et al. COVID-19 Small-Scale Outbreak Modeling

TABLE 1 | Daily confirmed and recovered cases of Heilongjiang during the

outbreak in January 2021.

Time

(day)

Daily

confirmed

cases

Recovered

cases

Time

(day)

Daily

confirmed

cases

Recovered

cases

7-Jan 1 0 21-Jan 47 6

8-Jan 0 0 22-Jan 56 8

9-Jan 0 0 23-Jan 29 8

10-Jan 0 0 24-Jan 35 8

11-Jan 1 0 25-Jan 53 9

12-Jan 16 1 26-Jan 29 16

13-Jan 43 1 27-Jan 28 34

14-Jan 43 2 28-Jan 21 56

15-Jan 23 3 29-Jan 27 79

16-Jan 12 3 30-Jan 9 87

17-Jan 7 4 31-Jan 22 99

18-Jan 27 4 1-Feb 8 100

19-Jan 16 5 2-Feb 6 127

20-Jan 68 6 3-Feb 4 170

means that all symptomatic infectious are isolated and
incapable of transmitting the virus.

(e) γ stands for recovery rate. It gives information about how fast
people may recover from the disease or pass away during the
treatment (1/γ is the average recovery time).

3.3. Cellular Automata
During the transmission, the relationships between data of
infectious diseases are extremely complex. However, cellular
automata can predict the epidemic through multi-step iteration
and parallel evolution only by determining relatively simple
evolution rules (18). In the case of traditional dynamics models
that are unsuitable for modeling the spread of COVID-19 in
China nowadays, we try to use cellular automata to carry out the
experiment. Cellular automata are a dynamic system discrete
in time, space, and state, different kinds of cells represent
different groups of people: S-cell represents susceptible, E-
cell represents exposed, IU-cell is asymptomatic infectious,
ID-cell is symptomatic infectious, RU-cell is Undetected
recovered, RD-cell the detected recovered. The transmission
rules of COVID-19 in cellular automata are the same
as SEIU IDRURD.

When cellular automata are used to simulate the
transformation from the Infected (IU and ID) to Recovered
(

RU and RD
)

, previous studies often generate a random number
and make a comparison with the removal rate, γ . If the random
number is less than γ , the infected cell will turn into recovered
(1). However, it is not satisfactory for the real scene. Therefore,
we introduce a time matrix to record the time of virus infection
of each cell as defined in Equation (3).

TABLE 2 | Daily confirmed and recovered cases of Hebei during the outbreak in

January 2021.

Time

(day)

Daily

confirmed

cases

Recovered

cases

Time

(day)

Daily

confirmed

cases

Recovered

cases

2-Jan 1 0 16-Jan 72 13

3-Jan 4 0 17-Jan 54 13

4-Jan 14 0 18-Jan 35 17

5-Jan 20 0 19-Jan 19 18

6-Jan 53 0 20-Jan 20 26

7-Jan 33 0 21-Jan 18 39

8-Jan 14 0 22-Jan 15 56

9-Jan 46 0 23-Jan 19 73

10-Jan 82 0 24-Jan 11 115

11-Jan 40 0 25-Jan 5 148

12-Jan 90 0 26-Jan 7 218

13-Jan 81 13 27-Jan 3 275

14-Jan 90 13 28-Jan 1 310

15-Jan 90 13 29-Jan 1 404

TABLE 3 | The daily successful infection rate of Hebei province during the

outbreak in January 2021.

Time (day) F(t) Time (day) F(t)

5-Jan 0.60938 13-Jan 0.20057

6-Jan 0.58974 14-Jan 0.19598

7-Jan 0.44484 15-Jan 0.17769

8-Jan 0.32936 16-Jan 0.14816

9-Jan 0.30050 17-Jan 0.13243

10-Jan 0.29280 18-Jan 0.10498

11-Jan 0.24036 19-Jan 0.08197

12-Jan 0.21479 20-Jan 0.06205

Tn×n =











t11 t12 . . . t1n
t21 t22 . . . t2n
...

...
. . .

...
tn1 tn2 . . . tnn











(3)

At first, all elements in the time matrix, Tn×n, are set to 0. The
state of the cell is 0 and there is a 0.5% probability of a cell
turning into 1, which represents exposure at the beginning of the
outbreak. The structure of CA will be defined as follows:

• The two dimensional lattice of square cells in an orthogonal
grid. The size of the orthogonal grid is n × n, a vector (i, j)
represents the position of the cell in the grid.

• The size of the grid is theoretical infinity, but in the
experiment, we set it as n2 = 3002. Each cell’s neighborhood
is composed of all its eight neighboring cells (the Moore
neighborhood).

• Each cell has six states, we can picture 0 as the state of being
susceptible to a given cell, 1 as the state of being exposed,
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FIGURE 5 | Trend chart of daily confirmed cases of the models in Heilongjiang province.

FIGURE 6 | Trend chart of recovered cases of the models in Heilongjiang province.
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2 as being asymptomatic infectious (IU), 3 as symptomatic
infectious individuals (ID) that are not being isolated, 4
as symptomatic infectious individuals (ID) that are being
isolated, last 5 and 6 as RU and RD, respectively.

• The time matrix T as defined in the previous section will
record the time when cells turn into the Exposed. COVID-19’s
transition rule goes as follows. At each time step t exactly one
of five things can happen to a cell.

The structure of CA is shown in Figure 4.

(a) Expose: If the cell state at t−1 was 0 (susceptible), the cell state
has a possibility to become 1 (exposed) if any neighbors were
2 or 3 at t − 1;

(b) Infect into IU : If the cell state at t − 1 was 1 (exposed),
the cell has a chance of φ to become 2 if the corresponding
number in time matrix, Ti,j is greater than the average
confirmed time;

(c) Infect into ID: If the cell state at t − 1 was 1 (exposed), the
cell has a chance of (1− φ) σ to become 3 (ID not under
isolation) meantime a probability of (1 − φ) (1 − σ) turn into
4 (ID under isolation), if the corresponding number in time
matrix, Ti,j is greater than average confirmed time;

TABLE 4 | MAE of the models on the outbreak data of Heilongjiang.

Model MAE

SIR 122.00

SEIR 95.38

SEIU IDRURD 37.05

CA without Ti,j 99.72

CA 30.37

(d) Recover: If the cell state at t − 1 was 2, 3, or 4, the cell state
becomes 5 (recovered) if the corresponding element in the
time matrix, Ti,j is greater than the duration of treatment.

(e) Stay: If the cell state and its corresponding number in Ti,j can
not meet any of the transmission rules that were previously
defined, the cell state remains the same, and the number in the
time matrix, Ti,j will plus a random number from a normal
distribution with mean 1 and variance 1.

4. EXPERIMENTAL RESULTS AND
ANALYSIS

4.1. Data and Parameters Setting
Similar to previous studies (1, 26, 27), we obtained the COVID-
19 epidemic data from the COVID-19 Data Repository managed
by the local public health agency. The number of confirmed and
recovered cases is updated once a day and includes all provinces
of China. In this article, we use the data on COVID-19 in the
Heilongjiang and Hebei provinces of China in January 2021 to
conduct experiments. These data are shown in Tables 1, 2.

According to the previous study (28), the value of the infection
rate β in Equations (1) and (2) can be computed as follows:

β = k× F (4)

where F represents the number of people that a patient has close
contact with. According to the data from the National Health
Commission, during the first 15 days of the outbreak, the average
number of people a patient has close contact with is 12 per
day. Then with the implementation of restrictive measures, k
drops to 5. The parameter F is the median of the time-dependent
successful infection rate, F(t). It can be described as follows:

F(t) =
Mn(t)

Ms(t)
(5)

FIGURE 7 | Simulation results of CA: (A) is the results of 19th day; (B) is the results of 32th day.
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FIGURE 8 | Trend chart of daily confirmed cases of the models in Hebei province.

There is an incubation period between getting infected with the
virus and being confirmed as infected. Some previous studies
have performed a simulation of the incubation period of COVID-
19 (28), and the result shows that the median incubation period
of COVID-19 is 6 days. So, in this study, the parameters Mn(t)
and Ms(t) represent the sum of daily confirmed cases and the
sum of confirmed cases in 6 days preceding time t respectively.
We calculate the F(t) of each day during the outbreak using
Equation (5) The parameter k is the median of F(t).

According to the data collected by the National Health
Commission of China, the daily successful infection rate, F(t)
is calculated by the data of the COVID-19 outbreak in Hebei
Province in January 2021. The results are shown in Table 3.

The median of F(t) is 0.054, so as the value of F. Finally, we
can calculate the infection rate β :

β = k× F =

{

0.648 (t ≤ 15)
0.270 (t > 15)

(6)

According to the law of the PRC on the Prevention and
Treatment of Infectious Diseases, the isolation will be
immediately implemented once the individual is showing
the symptoms of COVID-19, thus the non-isolation rate (σ ) is
set to 0 in outbreaks that take place in China. The percentage
of the asymptomatic individual in all infections (φ) is a
strongly debated aspect, the value of this parameter shows a
great difference in outbreaks of COVID-19 that take place in
different areas. This phenomenon may due to the definition
of asymptomatic infectious has not reached an international
agreement and obstacles to fully understanding the virus (29, 30).
In this experiment, we choose 0.59 as the value of φ according to

the prediction of a China medical team. Based on the recovery
data of 364 patients in Mobile cabin hospital (13), the average
treatment time G is 28.1 days. Thus, we take removal rate γ as
a constant during the spread of disease and can be defined as
γ =

1
G =

1
28.1 . Now the value of parameters in SIR has all been

set. As mentioned above, the virus has an incubation period of 6
days. In the SEIR model, the transmission rate from exposed to
infected η is regarded as a constant and can be defined as η =

1
6 .

According to the previous study carried out by (31), the
infection rate of close contacts is 0.04. During the outbreak,
nucleic acid tests will be carried out every 4 days, therefore, the
confirmed time of COVID-19 is set to 4 (9, 16).

In this experiment, we use Matlab to develop these models.
Additionally, mean absolute error (MAE) is used to evaluate the
performance of these models.

4.2. Results and Analysis
4.2.1. Small-Scale Outbreaks in China
We predict the outbreaks of COVID-19 in Heilongjiang and
Hebei provinces in January 2021. First, Figures 5, 6 show the
predicted numbers of the confirmed and recovered cases for
Heilongjiang province. These results indicate that CA has a
better performance in simulating the outbreak of COVID-19 in
China nowadays. Classical compartmental models may no longer
be suitable for modeling small-scale outbreaks in China. The
MAE values of these methods are shown in Table 4. From these
compared results, it can be observed that the proposed CA has
the smallest errors. In addition, compared with the traditional
CA, the MAE value of the CA model with time matrix is 30.37,
which is reduced by 66.35.
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FIGURE 9 | Trend chart of recovered cases of the models in Hebei province.

We further visualize the simulation results of CA on the 19th
day and the 32th day of Heilongjiang province. The red spots
represent ID-cell, and the blue is RD-cell. In Figure 7A, there
is only a marginal amount of RD-cell and some red spots. In
Figure 7B, one can also see that most red spots have turned
blue which means that the outbreak is coming to an end.
This is consistent with the actual situation of the outbreak in
China. The transmission of COVID-19 can get under control
within a month. More results about CA can be found in the
Supplementary Materials.

Once again, we analyzed the data of outbreaks in Hebei
province in January 2021 and evacuated these models. The
experimental results are shown in Figures 8, 9. In Figure 8,
the daily confirmed cases of the SIR model grew rapidly
and reached 350 on the 100th day, which makes it deviate
from official data. Compared with SIR, the SEIR model has a
significant improvement in the fitting, the daily confirmed cases
of SEIU IDRURD slowly rose to 10 person at 35th day and climbed
steadily to 60 at the end of outbreak. Compared with the first
two models, the cellular automata can fit in the data with high
accuracy. The difference between the maximum time of cellular
automata and real data is about 5 days, and the trends of the two
curves are roughly the same.

In Figure 9, the recovered cases of SIR keep increasing
and reach about 270 on the 65th day. The recovered cases of
SEIU IDRURD remained at a low value during the former part of
outbreak, and grow from around 70 person at 35th day to 500
person at 65th day. We can see that recovered cases of CA are
close to 0 from 0 to 18 days then grow dramatically to 800 in the
45th day and slowly climb to around 1,000 in the remaining time.
The predicted results of CA are close to the official data.

TABLE 5 | MAE of the models on the outbreak data of Hebei.

Model MAE

SIR 47.98

SEIR 44.34

SEIU IDRURD 30.35

CA without Ti,j 40.93

CA 9.43

The MAE values of these methods of the outbreak in
Hebei province are shown in Table 5. The MAE of SIR, SEIR,
SEIU IDRURD, CA without Ti,j and CA are 47.98, 44.34, 30.35,
40.93, and 9.43, respectively. It is clear that the MAE of SIR and
SEIU IDRURD is more than 4 times CA, they performed poorly in
both long-term and short-term fitting. These differential models
based on compartments may not be suitable for fitting the small-
scale outbreaks.

4.2.2. The Outbreak in Potter County Texas US
Furthermore, we performed our CA in the simulation of the
small-scale outbreak in Potter County, to test its reliability in a
different country. Unfortunately, the databases of Potter County
health department just maintained confirmed cases and death
cases, and the collection of recovered cases has been stopped
since April 2021, which means that the,Ms (t), sum of confirmed
cases in 6 days preceding time t are unknown. Because daily
recovered cases are not in the record, which makes the existing
confirmed cases of each day stay unclear. As a consequence,
Equation (4), which defined to calculate the infection rate β , is
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FIGURE 10 | Trend chart of daily confirmed cases of CA in Potter County.

TABLE 6 | MAE for models in Potter County.

Model MAE

SIR 201.36

SEIR 92.23

SEIU IDRURD 96.87

CA 79.25

out of work. In that case, we refer to the previous study and
determine the value of infection rate, β , is 0.4428. According
to the Centers for Disease Control and Prevention (CDC), the
current best estimated average time from exposure to symptom
onset is 6 days. Therefore, parameter η = 1/6. The percentage of
asymptomatic infections in the US is 30% (φ = 0.3). The non-
isolation rate of the symptomatic infectious individual (σ ) is
0.5. The estimation of the average treatment time is 24.7 (32)
(

γ =
1
G =

1
24.7

)

.
The result of daily new cases can be seen in Figure 10. Table 6

shows the MAE for each model in Potter County. The Figure 10
gives a breakdown of the trend of CA and real data. The real
data of daily cases rise dramatically during the former part of
the outbreak and reach the beak in around 92 days with 350
new cases. CA performs well in the former part; it also reaches
a peak of 250 new cases at around the same time as real data.
However, the daily new cases decrease severely to around 100
shortly after the peak, and slowly down to 0 during the later
part of the outbreak. The result of CA in the later part of the
outbreak is relatively unsatisfactory. It falls to simulate the sharp
decrease and there are still around 100 new cases at the end of
the outbreak. But on the bright side of our model, it simulates
the former part of the outbreak in Potter County with relatively
high accuracy, which means that our CA can roughly simulate
the trend in small-scale outbreaks outside China.

5. DISCUSSION

With appropriate parameters and rules, compared with SIR,
SEIR, and SEIU IDRURD, our CA can simulate the small-scale
outbreaks of COVID-19 in nowadays China more effectively.
The MAE of CA in the outbreak that took place in Hebei
reached a value of 9.43, it provides valuable information
about the decision on medical policy. Classic compartmental
models have been widely used in modeling the transmission
dynamics with numerous infected cases, and have gained great
success (7, 33). One major drawback of those compartmental
models is the hiking of the number and complexity of
parameters (6). The parameters of these models had to be
more precise and complex to achieve better performance
(26). Although many researchers hold the belief that non-
linearities in CA alongside ABM destroyed any attempt to
use the predicatively, they are oversimplified from realistic
words (34, 35). However, this study has proved that small-
scale outbreaks can be modeled through a relatively simple
abstract model.

5.1. Strengths and Weaknesses
In this contribution, we proposed an improved CA to carry out
experiments that introduced a time matrix to have a precise
simulation of the outbreak. As the results shown, CA simulated
the outbreak accurately which suggests that researchers can
consider using it to study the current epidemics in China.
However, our rules and parameters of CA are far from perfect.
There have been numerous methods to estimate the value of
parameters (9, 11, 14). It is true that all parameters are set
according to the best simulation rest from the local health
department or CDC in the real world situation. But they may not
be the perfect values we need according to the structure of our
model. During the experiments, we use a time matrix to record
the time of virus infection of each cell. Only if the t(i,j) is greater
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than the average treatment time G shall the cell state turn into
3, which means that a patient can only recover from COVID-
19 after 28 days of treatment. However, this assumption is an
oversimplification, as young patients may get recovered before 28
days of treatment, while the aged typically needmore time during
treatment (9).

5.2. Further Study
In further study, the recovered rate γ will no longer be regarded
as a constant in CA. At different times of treatment, the recovery
rate will be different. Combined with the time matrix, the
transition rules of COVID-19 in CA will be updated. In addition,
the structure of CA is a 300 square static orthogonal matrix. Each
cell is adjacent to 8 others. In further study, the best adjacent
number is needed to be determined, since each cell may have
interactions with 4, 6, or more neighbors. In the real world, the
number of people an individual have contact with is different
from each day, as a result, the cell in the CA may intricate with a
different number of neighbor each day at further study. Another
major improvement in the future is that we will change our CA
into an ABM model. Because ABM is developed from CA, they
share many similar characters (36, 37). The existing platforms for
ABM are fundamentally helpful when setting up transform rules
(38–40).
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Background: Since the outbreak of COVID-19 pandemic the interindividual variability
in the course of the disease has been reported, indicating a wide range of factors
influencing it. Factors which were the most often associated with increased COVID-
19 severity include higher age, obesity and diabetes. The influence of cytokine storm is
complex, reflecting the complexity of the immunological processes triggered by SARS-
CoV-2 infection. A modern challenge such as a worldwide pandemic requires modern
solutions, which in this case is harnessing the machine learning for the purpose of
analysing the differences in the clinical properties of the populations affected by the
disease, followed by grading its significance, consequently leading to creation of tool
applicable for assessing the individual risk of SARS-CoV-2 infection.

Methods: Biochemical and morphological parameters values of 5,000 patients (Curisin
Healthcare (India) were gathered and used for calculation of eGFR, SII index and N/L
ratio. Spearman’s rank correlation coefficient formula was used for assessment of
correlations between each of the features in the population and the presence of the
SARS-CoV-2 infection. Feature importance was evaluated by fitting a Random Forest
machine learning model to the data and examining their predictive value. Its accuracy
was measured as the F1 Score.

Results: The parameters which showed the highest correlation coefficient were age,
random serum glucose, serum urea, gender and serum cholesterol, whereas the highest
inverse correlation coefficient was assessed for alanine transaminase, red blood cells
count and serum creatinine. The accuracy of created model for differentiating positive
from negative SARS-CoV-2 cases was 97%. Features of highest importance were age,
alanine transaminase, random serum glucose and red blood cells count.
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Conclusion: The current analysis indicates a number of parameters available for a
routine screening in clinical setting. It also presents a tool created on the basis of these
parameters, useful for assessing the individual risk of developing COVID-19 in patients.
The limitation of the study is the demographic specificity of the studied population, which
might restrict its general applicability.

Keywords: SARS-CoV-2, blood biomarkers, COVID-19, machine learning, vitamin D

INTRODUCTION

The severe acute respiratory syndrome coronavirus type 2 (SARS-
CoV-2) that causes the coronavirus disease 2019 (COVID-19)
is a serious threat to human health and life. Due to the ease of
spread and mutation of the virus, the World Health Organization
(WHO) has declared COVID-19 a pandemic. Viral infection
may be asymptomatic or symptomatic with varying degrees of
severity. In some cases, SARS-CoV-2 infection leads to death of
the patient (1).

The course of the SARS-CoV-2 infection may be influenced
by several factors, including the presence of comorbidities in
patients. Comorbidities, such as type 2 diabetes, affect the host
immune response, which may be associated with a severe course
of SARS-CoV-2 infection. In the context of type 2 diabetes, there
is an increased release of pro-inflammatory cytokines, which
can lead to cytokine storms in SARS-CoV-2 (+) patients. The
occurrence of a cytokine storm correlates with a worse course
of infection (1–4). Moreover, some changes in blood parameters
have been observed in patients with SARS-CoV-2 (+), which
may additionally affect the severity of the infection. Changes for
example in the values of liver and kidney parameters, morphology
and inflammatory markers in SARS-CoV-2 (+) patients may
indicate a complex mechanism of infection and its long-term
consequences (5).

Considering the wide disparity in the course of SARS-CoV-2
infection in patients and the need to define an effective therapy,
the primary aim of our study was to define the physiological
characteristics in patients infected with the SARS-CoV-2 virus,
while presenting with concomitant diseases. The secondary aim
of our study was to elucidate the underlying mechanisms that
influence multiorgan dysfunction in COVD-19 infection. The
contributing physiological parameters were ranked in terms
of their relevance to the power of predictive model using
machine learning.

MATERIALS AND METHODS

Dataset
The analysed dataset consisted of blood test results from 5,000
patients from a digital healthcare system Curisin Healthcare
(India). Two thousand five hundred of them were from patients
(female, n = 1667; 67% and male, n = 833; 33%, age 25 – 78 years,
mean = 51.6 years, median = 51.0 years) hospitalised due to
infection with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2); the other two thousand and five hundred blood
test results belonged to the control group (female, n = 755;

30%, male, n = 1,745; 70%; age 20 – 55, mean = 30.5 years,
median = 30.0 years) and were collected before the coronavirus
pandemic outbreak (2016-2018).

In blood biomarkers and parameters were excluded ones that
are known to correlate with inflammatory responses such as
C-reactive protein (CRP). Biomarkers that were not present in
both datasets were also ruled out. The resulting set of data
features enrolled in this study consisted of anthropometric
parameters: age, gender; biochemical serum parameters: random
glucose (RG), urea, alanine transaminase (ALT), cholesterol,
creatinine, vitamin D; morphological parameters: red blood
cell count (RBC Count); and functional parameters: estimated
glomerular filtration rate (eGFR).

Glomerular filtration rate was not directly measured in the
blood samples, instead the eGFR score was estimated using
patient’s age, gender and serum creatinine level according to
the simplified modification of diet in renal disease (MDRD)
formula, described by the National Kidney Foundation (6), listed
in Equation 1. below.

Equation 1. GFR definition.

GFR =
{

C−1.154 x 186.3 x A−0.203 x 0.742, G = Female
C−1.154 x 186.3 x A−0.203, G = Male

C, creatinine; A, age; G, gender.
The reference ranges for the analysed parameters are listed

below in Table 1.

Correlations
The correlations between each of the features in the population
and the presence of the SARS-CoV-2 infection were calculated
using Spearman’s method (see Equation 3).

TABLE 1 | Reference ranges of the analysed parameters.

Property Reference Range

RG 74 – 100 mg/dl

Serum Urea 13 – 40 mg/dl

RBC Count 3.8 – 4.8 million/cumm

ALT ≤ 34 U/L

Cholesterol ≤ 200 mg/dl

Creatinine 0.6 – 1.1 mg/dl

Vitamin D 30 – 100 ng/dl

ALT, alanine transaminase; RBC Count, red blood cells count; RG,
random serum glucose.
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Equation 2. Pearson’s correlation.

for x ∈ X, y ∈ Y

ρ
(
x, y

)
=

∑
[(xi − x̄)(yi − ȳ)]

σx ∗ σy

x, mean of X; y, mean of Y; σx, standard deviation of X; σy,
standard deviation of Y.

Equation 3. Spearman’s correlation.

for x ∈ X, y ∈ Y

rs
(
x, y

)
= ρR(X),R(Y) =

cov (R (X) , R (Y))

σR(X)σR(Y)

ρ, Pearson’s correlation (Equation 2) applied to rank variables;
cov (R(X), R(Y)), covariance of rank variables; σR(X), standard
deviation of rank variable of X; σ(R(Y), standard deviation of
rank variable of Y.

Feature Importance
To discover how each feature affects the possibility of severe
SARS-CoV-2 infection, the importance of each feature was
evaluated by fitting a Random Forest (7) machine learning
model to the data and examining which features had the highest
predictive value. The accuracy measure of the predictive model
was the F1 Score as defined by Equation 4. Results of this analysis
were presented graphically in section “Results” in Figure 2.

Equation 4. F1 Score measuring the accuracy of the predictive
model.

F1 =
tp

tp+ 1
2
(
fp+ fn

)
tp, number of true positives; fp, number of false positives; fn,

number of false negatives.

Vitamin D in Relation to NL Ratio and SII
Additional analysis of the possible correlation between the
concentration of vitamin D in SARS-CoV-2 (+) patients and
the values of parameters such as Neutrophil-Lymphocyte Ratio
(NL Ratio) and Systemic immune-inflammation index (SII) was
conducted in our study. For the purpose of the analysis the

patients were divided into tertiles in terms of Vitamin D level: I
tertial (I T): Vit D (1.11 - 9.40], II tertial (II T): Vit D (9.40 - 17.69],
III tertial (III T): Vit D (17.69 - 25.97]; followed by assessment of
the NL Ratio values and of the systemic immune inflammation
index, which was calculated as defined in Equation 5.

Equation 5. Calculation of systemic immune inflammation
index.

SII =
P x N

L

P, N, and L represent platelet, neutrophil and lymphocyte
counts in cells/L.

RESULTS

Results of biochemical examinations performed on the material
collected from both SARS-CoV-2 (+) and SARS-CoV-2 (−)
groups are presented below in Table 2. as the number of patients
with results falling into the respective groups created in relation
to the reference range (below, above or in reference range).

The percentage of patients in each reference-range-related
group in terms of serum vitamin D levels is presented in form
of a circle chart for both infection-related groups of patients in
Figure 1.

To allow a more profound insight into the distribution of
parameters values, the number of patients in relation to the
exact values of parameters are presented as the histograms for
each respective parameter in the Supplementary Materials in
Supplementary Figure 1.

The correlations between the studied parameters and SARS-
CoV-2 infection in patients were calculated as described in
Section “Materials and Methods.” It must be noted that due to
simultaneous influences of each parameter, none of them may
offer sufficient reliability in terms of prediction of SARS-CoV-
2 infection. Results of correlations analysis are listed below in
Table 3.

To further examine the influence of respective features on
infection severity in relation to the complexity of simultaneous
influences of studied features, the predictive model was created as
described in Section “Feature Importance” and presented below
in Figure 2. The model itself was a successful one, with an

TABLE 2 | Patients’ outcomes in SARS-CoV-2 (–) (n = 2,500) and SARS-CoV-2 (+) group (n = 2,500).

Property Below reference range
N;%

Above reference range
N;%

Within reference range
N;%

(–) (+) (–) (+) (–) (+)

Random Glucose 286; 11 5; ∼0 780; 31 2162; 86 1434; 57 333; 13

Blood Urea 995; 40 0; 0 0; 0 88; 4 1505; 60 2412; 96

RBC Count 34; 1 651; 26 1707; 68 560; 22 759; 30 1289; 52

ALT – – 1384; 55 0; 0 1116; 45 2500; 100

Cholesterol – – 799; 32 1414; 57 1701; 68 1086; 43

Creatinine 123; 5 0; 0 541; 21 0; 0 1836; 74 2500; 100

Vitamin D 2324; 93 2500; 100 3; ∼0 0; 0 173; 7 0; 0

ALT, alanine transaminase; RBC Count, red blood cells count.
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FIGURE 1 | Patients’ vitamin D status in: (A) SARS-CoV-2 (–) group;
(B) SARS-CoV-2 (+) group.

TABLE 3 | Correlations between features and SARS-CoV-2 features.

Property Correlation with SARS-CoV-2

Age 0.671854

Gender 0.364978

RG 0.652085

Serum Urea 0.551667

RBC Count −0.591819

ALT −0.662445

Serum Cholesterol 0.255992

Serum Creatinine −0.368583

Vitamin D −0.148394

eGFR −0.067112

Neutrophils 0.229344

Lymphocytes −0.087234

NL Ratio 0.138331

Platelet Count 0.020377

SII 0.103531

ALT, alanine transaminase; eGFR, estimated glomerular filtration rate; NL Ratio,
Neutrophil-lymphocyte ratio; RBC Count, red blood cells count; RG, random serum
glucose; SII, Systemic immune-inflammation index.

accuracy of 97% in differentiating positive from negative cases of
SARS-CoV-2 infection.

The results of analysis of NL Ratio values structure in relation
to the vitamin D levels are presented, respectively, below in
Table 4 and Figure 3, whereas relation between SII and vitamin
D levels in patients is summarised in Table 5.

DISCUSSION

The collected data indicate that the course of SARS-CoV-2
infection may depend on numerous factors. In the present study,
the influence of gender, age and changes in blood parameters
values of Indian patients were addressed and examined.

Age
A strong correlation between age and severe course of SARS-
CoV-2 (0.671007) was observed, which suggests that the risk
of developing severe SARS-CoV-2 increases with age. This
observation was already reported in the early meta-analyses
concerning risk factors for mortality in the course of COVID-
19 infection (8). A similar association was also found in study
(9) conducted on a group of patients from the New York City
metropolitan area and in another study involving data from
two Wuhan hospitals – results of these studies showed that
age correlates with the need for hospitalization and severity
of SARS-CoV-2 infection (10). This dependence is determined
by several factors that characterize the ageing process - the
percentage of diagnosed comorbidities in those patients, i.e.,
diabetes and cardiovascular diseases, increases with age. Ageing
is also naturally associated with the decreasing functioning of the
immune system, which in turn leads to changes in adaptive and
innate immunity (11, 12).

Gender
In the presented analysis of the influence of the patient’s gender
during SARS-CoV-2, a significant correlation between adverse
prognosis and female gender was observed, contrary to the
results of a previous report (13) that reported higher mortality
among men (8). The differences in the course of SARS-CoV-2
infection among women and men may result from the influence
of social and biological factors in the latter, e.g., higher expression
of angiotensin-converting enzyme 2 (ACE2) found in male
patients, which may facilitate entry of the virus into the host
cell (14, 15). Due to the global spread of the COVID-19, the
differences in societies-specific characteristics in terms of gender
may additionally hinder the analysis of this factor. As case fatality
ratio for males is higher in COVID-19 than for females in global
data analysis, it is worthy further research (16).

The distribution of NL Ratio values in patients grouped
according to their SII index (high: SII < 410/low: SII ≥ 410) is
presented below in Figure 4.

Biochemical Parameters
Random Blood Glucose
The results of RG examination in recruited patients indicate that
hyperglycaemia correlates with a severe course of SARS-CoV-2.
This finding was already reported in an Italian study (17). The
random blood sugar level was elevated in over 30% of patients
in the control group and over 86% of patients in the SARS-
CoV-2 (+) group. Another study also reported that 51.5 and
57.4% of severely and critically ill patients were diagnosed with
diabetes (18). High glucose concentration directly impacts the
course of the infection, and also through the development of
further complications, such as diabetic ketoacidosis and vascular
comorbidities (atherosclerosis, peripheral arteriosclerosis) it
influences this process indirectly (19).

Vitamin D
The association of vitamin D concentrations and the course of
SARS-CoV-2 was assessed due to the high importance of Vitamin
D in the activation of immune defence. Vitamin D status was
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FIGURE 2 | Feature importance of each parameter assessed for the predictive model.

below the reference range threshold in almost all patients in
the control group and all SARS-CoV-2 (+) group patients (see
Figure 1). This could be a possible explanation for a relatively
low correlation parameter between SARS-CoV-2 infection and
Vitamin D in the presented results. Other studies have shown that
groups of patients with severe course of SARS-CoV-2, requiring
hospitalization in the ICU and showing higher mortality, have
decreased serum concentrations of Vitamin D (20, 21).

There is a significant influence of changes in both blood
sugar and Vitamin D status in the immune system (22,
23). Insulin resistance and type 2 diabetes mellitus are
two conditions associated with a pro-inflammatory status.
Consequently, elevated systemic concentrations of inflammatory
markers, including cytokines, are observed in the blood, which

TABLE 4 | Quantities of patients divided according to the Vitamin D levels in terms
of NL Ratio.

NL Ratio Patients Count

I T
(1.11 – 9.40]

II T
(9.40 – 17.69]

III T
(17.69 – 25.97]

0.0 - 0.5 0 0 0

0.5 - 1.0 0 0 0

1.0 - 1.5 387 389 381

1.5 - 2.0 206 206 233

2.0 - 2.5 105 131 123

2.5 - 3.0 78 79 93

3.0 - 3.5 20 20 13

3.5 - 4.0 0 0 2

NL Ratio; neutrophil-lymphocyte ratio.

in turn correlates with a higher probability of a cytokine storm
(2, 4). Also, normal concentrations of vitamin D reduce the
risk of a cytokine storm by reducing the systemic concentration
of pro-inflammatory cytokines such as IL-6 and TNF-α. The
significantly higher concentration of pro-inflammatory cytokines
in circulation correlates with the severe course of SARS-CoV-
2 (24, 25). Nonetheless, results similar to the presented data
in terms of differences in vitamin D status between COVID-19
patients and population-based controls were reported, suggesting
that despite the proven potential causality in interactions of
vitamin D levels and COVID-19 pathogenesis, the alterations of
vitamin D status do not influence the severity of disease course
(26). On the other hand, there are some meta-analyses showing
that vitamin D supplementation in SARS-CoV-2 positive patients
has the potential to positive impact their outcomes (27).

NL Ratio is regarded as a prognostic marker of systemic
inflammation. It is an important element in the diagnosis of
SARS-CoV-2(+) patients. Some studies indicate that its value
correlates with the severe course of the disease and mortality
(28). Apart from the assessment of inflammation, the NL Ratio
is also used to analyse the course of other diseases, including
cardiovascular diseases and cancer. Due to its numerous
benefits, this parameter is assessed more frequently during
SARS-CoV-2, compared to other inflammatory parameters. Its
value can be assessed on the basis of one of the basic tests,
i.e., morphology, taking into account the values of relative
neutrophils and lymphocytes count. NL Ratio is characterized by
a higher specificity and sensitivity compared to blood cell count.
Moreover, its value increases faster, which is useful in the early
assessment of the patient’s condition. Other studies shows that
a higher value of NL Ratio correlates with a more severe course
of SARS-CoV-2. It has been shown that higher NL Ratio values
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FIGURE 3 | Quantities of patients in buckets of NL Ratio values, grouped
according to their Vitamin D status: (A) I T (1.11 – 9.40]; (B) II T (9.40 – 17.69];
(C) III T (17.69 – 25.97].

occur in people with a significant amount of comorbidities (29–
31). In this study it was shown that among the tertiles of Vitamin
D values, the biggest number of patients with SARS-CoV-2 (+)
had an NL Ratio value of 1.0-1.5.

SII is another important predictive marker in SARS-CoV-2
(+) patients. It is used to assess the prognosis in people diagnosed
with pulmonary embolism, obesity, sepsis, cancer and diseases
accompanied by inflammation (32–36)., SII has been used as an
indicator of severe course of SARS-CoV-2 (37, 38). In our study,

TABLE 5 | The number of patients divided according to the Vitamin D levels in
terms of SII.

SII Patients Count

I T
(1.11 – 9.40]

II T
(9.40 – 17.69]

III T
(17.69 – 25.97]

Low 315 315 321

High 493 519 535

SII, systemic immune inflammation index.

FIGURE 4 | NL Ratio values structure in the studied population. The patients
were grouped according to the SII index: (A) Low SII; (B) High SII.

each of the tertiles of vitamin D was correlated with SII high value
(SII High:≥ 410). In each of the tertiles of vitamin D, we included
the division into low and high SII values. Our results showed that
patients with high SII values predominated in each tertiles (SII
High: ≥ 410).

Another analysis concerned the correlation between the SII
and NL Ratio values. The highest percentage of patients (n = 675)
in the SII-Low value group had an NL Ratio of 1.0 - 1.5. However,
in the SII High group, the distribution of patients according to the
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NL Ratio value was as follows: the largest number of patients are
in the NL Ratio ranges: 1.0 - 1.5 (n = 483) and 1.5 - 2.0 (n = 451).
In SII-High values, the distribution of patients on NL Ratio values
was more diverse.

Our results indicate that SII can be a reliable biomarker that is
easily tested than those based on cytokines or coagulation system
markers (39, 40).

Cholesterol
Our data confirmed the association between elevated cholesterol
levels and the severity of course of SARS-CoV-2 infection.
A study of a cohort of 3,988 critically ill Italian patients
demonstrated that hypercholesterolaemia may be classified as a
risk factor for increased mortality in patients SARS-CoV-2(+)
admitted to the ICU (41). This observation may be associated
with an increased risk of developing cardiovascular diseases in
patients with hypercholesterolaemia, as well as with its influence
on one of the components of lung surfactant, which is an
important protection in the respiratory system (42–45).

Morphologic Parameters
In an examination of blood morphology, a focus was put on
the basic parameters, such as the number of RBC count, due
to their accessibility in common clinical practice. The present
results show that a low RBC count correlates in studied groups
with a higher percentage of hospitalized patients and with a more
severe course of infection. This observation may be related to
the numerous important functions performed by RBC in the
human body. Similar results were presented in a study performed
in hospitals in Dhaka, Bangladesh, which indicated the likely
impact of a reduction in red blood cell counts on the severity
of SARS-CoV-2. The patients in the quoted study, who had
a worse prognosis, were found to be present with decreased
RBC count. This report also suggests a relationship between the
number of RBCs and the concentration of haemoglobin (46).
Nonetheless, the impact of changes in RBC Count over the course
of SARS-CoV-2 infection requires more research.

Renal and Hepatic Parameters
In the population of the present study, the patients hospitalized
for SARS-CoV-2 were presented with changes in renal parameters
such as serum urea, creatinine and GFR. The analysis discovered
an increase in the level of serum urea and a decrease in the
concentration of creatinine, which consequently influenced the
GFR values. The strongest correlation among these parameters
was observed for serum urea (0.555459). A study by Hachim
et al. (47) showed that elevated urea levels correlated with a
higher probability of patient admission to the ICU and a more
severe course of the infection. Increased creatinine levels were
also observed in this group of patients. The results presented
by Chen et al. (13) agree with the assumption that patients
developing kidney disorders during SARS-CoV-2 (+) are more
likely to develop more severe complications in the course of the
disease. Higher levels of both blood urea nitrogen and creatinine
were described in patients who died of SARS-CoV-2 than in
the recovered ones.

The impact of liver disease on the course of SARS-CoV-2
infection was also a scope of the presented study. The liver
is an important organ for maintaining the homeostasis of the
organism, therefore the disturbance of its function correlates with
the occurrence of complications (48, 49). For this purpose, the
changes in the level of standard liver marker ALT were examined
among the studied groups. The analysis of the collected data
shows that a decreased level of ALT is observed among the SARS-
CoV-2 (+), contrary to results of a study performed by Chen
et al. (13), which showed an increased concentration of this liver
parameter in the deceased. The median (IQR) value in this study
was for dead patients: ≤ 41 U/L: 23.0 (15.0-38.0); and for the
recovered: > 41 U/L: 60.

Two crucial results differentiating the present study from
others relate to our findings on the concentrations of ALT
and creatinine. To reconcile those contradictory findings, the
percentage of patients in study groups, both present and previous,
with co-existing liver disease before developing SARS-CoV-2
needs to be determined. Another possible reason for such results
could be the characteristic of the groups in terms of SARS-
CoV-2 severity at the moment of taking blood tests. Patients
enrolled in the Chen et al. (13) study were described as moderate
to critically ill. 41.2% of the laboratory results presented in
their study came from patients who eventually died, which
could strongly influence the results. The present study recruited
hospitalized patients, though the more detailed information on
their clinical condition, exact severity of the disease and medical
history concerning chronic diseases are lacking. Further research
is required to assess the influence of liver and kidneys’ function
on the severity of the COVID19. Therefore, whether acute liver
disease and acute kidney injury during the course of SARS-CoV-
2 could be developed at the more advanced and severe stadium
as well as whether the potential distinction in ALT and creatinine
outcomes in both studies could be influenced by the presence of
chronic liver diseases before the studies remain unknown.

Predictive Model
Mathematical models are valuable tools for the prevention and
control of infectious diseases, including SARS-CoV-2. Thanks
to them, it is possible to determine the relationship between
various processes and to assess the dynamics of the disease
spread. It also helps to establish a vaccination strategy. For this
reason, during the SARS-CoV-2 pandemic, many researchers
have proposed numerous mathematical models based on various
correlations. The mathematical models took into account, inter
alia, the method of transmission, the impact of quarantine and
isolation, pharmaceutical and non-pharmaceutical interventions
(50, 51). Most of the models developed during the SARS-CoV-
2 pandemic were based on the Susceptible-infected-recovered
(SIR) model and the Susceptible-Exposed-Infected-Removed
(SEIR) model. These models are used to assess the spread of
the virus (52). Researchers introduced numerous modifications
to the classic SIR model due to the dynamics of SARS-CoV-
2 spreading. Cooper et al. (53) adapted the SIR model to
the increasing over time number of susceptible individuals. In
the Susceptible-Exposed-Infected-Removed model, each person
can be assigned to the following category susceptible (S),
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exposed (E), infected (I) and recovered/removed (R) at any time
during the epidemic. The researchers also made modifications
to the SEIR model. One of them concerns the impact of
human migration on the spread of the virus (54). Other
modifications include assessing the impact of using face
masks (55).

The biochemical parameters were studied in terms of disease
prediction and triage already in previous coronavirus outbreak –
Middle East respiratory syndrome coronavirus (MERS-CoV).
The results showed that the routine parameters may turn out to
be useful in clinical decision making (56). Similarly, the basic
blood biomarkers were a focus of research in early stages of
COVID-19 pandemic, though the reports indicated a rather
moderate efficiency of these parameters in differentiating infected
patients from healthy ones (57, 58). More optimistic results
concerned the estimation of mortality risk (59).

The recent advances in bioinformatics enable creation of
complex models, which based on the patient’s data assess the
risk of infection or severity of potentially acquired disease.
By harnessing the power of machine learning and artificial
intelligence, it is possible to offer an alternative to standard
biochemical diagnostic tools, such as reverse transcription-
polymerase chain reaction (RT-PCR) assays, which in some parts
of the world remain expensive and difficult to obtain (60). It
may also be useful in analysing a dynamic of current clinical
state of patients, and on this basis nowcasting the further disease
development (61).

Analysis of feature importance in the current study returned
a valuable insight into the potential of studied parameters in
terms of assessing the patient’s risk of SARS-CoV-2 infection
severity, providing a satisfying prediction accuracy of 97%. The
main features of the predictive model created in this study were
basic parameters obtained during the regular blood test – RBC
count, serum glucose, serum urea, as well as the anthropometric
measure – age. These results expand the spectrum of features
useful in the COVID-19 prediction, as the previous study
harnessed the methods of deep learning and the Random
Forest machine learning model reported the efficacy of other
parameters: lactate, the absolute level of immature granulocytes,
respiratory rate, haemoglobin, procalcitonin, hematocrite (62).
The only matching parameter between this and previous studies
was serum urea, which in both studies was recognized as an
important factor. A model presented in mentioned above study
showed lower precision (current study: 0.98 vs. Aktar et al.:
0.90) and recall (0.97 vs. 0.90), F1 score (0.98 vs. 0.90) accuracy
(0.97 vs. 0.89) and AUC (0.99 vs. 0.89). Another earlier report
also differed in terms of included biomarkers, as despite the
similarities concerning included blood count parameters, the
biochemical parameters set was different for previous and current
study. Interestingly, in the cited study the blood count parameters
such as neutrophil, basophil and eosinophil count had similar
feature importance as age, which in the current study showed
the highest importance. The most important features were lactate
dehydrogenase and C-reactive protein, which were not included
in the current study (63). It must be noted, however, that this
study was conducted on smaller population (2,500 patients in
current study vs. 1,455 cases in Goodman-Meza et al.) and

led to creation of model characterised by lower AUC value
(0.99 vs. 0.91) and area under precision recall curve (1.00 vs.
0.76). The above studies were all based on the biochemical
parameters, nonetheless the created models could be enhanced
by including an analysis X-ray or computer tomography images,
as suggested by the previous reports (64, 65). Further research in
this matter is necessary.

As shown with above results, the machine learning may be
a key for assessing the SARS-CoV-2 infection risk without the
necessity of applying the standard diagnostic measures. Other
studies explored also the possibilities of estimating a mortality
risk (66–68), as well as the severity of the COVID-19 course (69)
based on the simple biochemical parameters. The cardiovascular
component of COVID-19 may also be evaluated using machine
learning models (70).

LIMITATIONS

The difference in our analysis compared to other studies
may be associated with a disproportionate number of women
compared with men with SARS-CoV-2 who were enrolled
in this study. The higher number of women may influence
the observation that the female gender correlates with a
more severe course of infection. The demographic variables
of the studied population may also be a factor causing
differences in the results regarding some of the parameters.
Moreover, the analysed data is limited to the residents of
India, which may also affect the obtained results. The influence
of additional factors on the obtained results should also be
taken into account.

The differences in presented ALT and creatinine levels
compared to other studies may stem from the analysis of
the different demographic groups included in the study. The
influence of inter-individual variability, the treatment regimens
used and the stage of the disease at which patients were admitted
should also be taken into consideration.

Further research is necessary to adequately respond to the
influence of limitations on the results and to evaluate the
observations of the present study.

CONCLUSION

Assessment of the impact of pre-existing comorbidities and
changes in the biochemical and morphological parameters
observed in SARS-CoV-2 patients in the course of the disease
may contribute to a better understanding of the influence of each
of these individual factors on the pathology. Therefore, it could
consequently affect the selection of appropriate therapy and the
reduction of possible complications. Presented results indicate
the importance of adequate vitamin D supplementation and
maintaining the physiological functions of the liver and kidneys
for reducing the risk of severe COVID-19 course. Standard serum
parameters, such as red blood cell count, serum glucose, urea,
ALT, cholesterol and creatinine, are efficient in predicting the
patient’s condition in terms of SARS-CoV-2 infection.
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Background: A new wave of Coronavirus disease 2019 (COVID-19) infection

driven by Omicron BA.2 subvariant hit Shanghai end of February 2020. With

higher transmissibility and milder symptoms, the daily new confirmed cases

have soared to more than 20K within one and a half months. The greatest

challenge of Omicron spreading is that the rapidly surging number of infected

populations overwhelming the healthcare system. What policy is e�ective for

huge cities to fight against fast-spreading COVID-19 new variant remains

a question.

Methods: A system dynamics model of the Shanghai Omicron

epidemic was developed as an extension of the traditional

susceptible-exposed-infected-susceptible recovered (SEIR) model to

incorporate the policies, such as contact tracing and quarantine, COVID-19

testing, isolation of areas concerned, and vaccination. Epidemic data from

Shanghai Municipal Health Commission were collected for model validation.

Results: Three policies were tested with the model: COVID-19 testing,

isolation of areas concerned, and vaccination. Maintaining a high level of

COVID-19 testing and transfer rate of the infected population can prevent the

number of daily new confirmed cases from recurring growth. In the scenario

that 50% of the infected population could be transferred for quarantine on

daily bases, the daily confirmed asymptomatic cases and symptomatic cases

remained at a low level under 100. For isolation of areas concerned, in the

scenario with most isolation scope, the peak of daily confirmed asymptomatic

and symptomatic cases dropped 18 and 16%, respectively, compared with

that in the scenario with least isolation. Regarding vaccination, increasing the

vaccination rate from75 to 95%only slightly reduced the peak of the confirmed

cases, but it can reduce the severe cases and death by 170%.

Conclusions: The e�ective policies for Omicron include high level

of testing capacity with a combination of RAT and PCR testing to

identify and quarantine the infected cases, especially the asymptomatic

cases. Immediate home-isolation and fast transfer to centralized

quarantine location could help control the spread of the virus.
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Moreover, to promote the vaccination in vulnerable population could

significantly reduce the severe cases and death. These policies could be

applicable to all metropolises with huge population facing high transmissible

low severity epidemic.

KEYWORDS

COVID-19, Omicron, system dynamics modeling, intervention policies, simulation

Introduction

A new wave of Coronavirus disease 2019 (COVID-19)

infection driven by the new variant, Omicron, started in

January 2020. Global countries are now facing new challenges

brought by Omicron. Current studies consistently showed that

this new variant is substantially more transmissible than the

Delta variant, capable of significant immune evasion, and with

milder or even without symptoms (1–3). The effectiveness of

vaccination against infection dropped dramatically suggested

by current studies (3, 4), even to 33% reported by one study

(5). WHO reported this February that 130 million cases and

500,000 deaths had been recorded globally since Omicron was

declared a variant of concern in late November, calling the

count “beyond tragic.” Latest data showed that the WHO’s

Europe region accounted for 58% of new confirmed cases, and

35% of new deaths, and the Americas made up 23% of new

cases and 44% of new deaths (6). The huge challenge with

the steep rise of infections of Omicron is the overwhelmed

and understaffed healthcare system. Specialists warned that a

considerable overload of the hospitals is to be expected (7). Based

on a mathematical model of SARS-CoV-2 transmission tailored

to the unique immunization and epidemiological situation of

China, Yu concluded that the level of immunity induced by the

current vaccination campaign would be insufficient to prevent

overwhelming the healthcare system and major losses of human

lives (8). Take the UK as an example, in England, more than

650,000 people have probably been infected twice; most of them

were re-infected in the past 2months, according to data collected

by the UK Health Security Agency (9, 10). The British Medical

Association reported that the facts, figures, and the living reality

for thousands of patients and the National Health Service (NHS)

staff daily demonstrate undoubtedly that the NHS is currently

already overwhelmed (11). Alderwick pointed out that millions

of people are already feeling the unbearable strain in the UK

health system (12).

Before Omicron, strict intervention protection controls

(IPCs) were adopted by China after the outbreak of COVID-19,

such as active case surveillance at fever clinics, immediate

isolation of cases, quarantine of close contacts and high-

risk groups, polymerase chain reaction (PCR) testing, and

compulsory use of masks in the general population (13).

China’s strict policy preference, called zero-COVID strategy, was

corroborated by WHO of the outbreak dynamic and case count

reported by the Chinese government (14), demonstrating that

a strict and rapid response to an emerging epidemic can halt

the spread of a new virus (15). The previous study reported

that the zero-COVID strategy was estimated to have saved one

million lives, compared with the global average mortality of

COVID-19 (as of 16 February 2022) (16). This zero-COVID

policy is undoubtedly successful containing the pandemic prior

to the current outbreak caused byOmicron. However, this policy

is being challenged as a new wave of Omicron hits. Recently,

China’s National Health Commission changed its rules so that

mild cases could be isolated in centralized locations, rather

than treated in hospitals, and the criteria for a patient to be

discharged from isolation have also been lowered, which has

aroused extensive attention and discussion. There have been

arguments that it is time to prepare for relaxing the policy. Chen

and Chen believed that this change will happen sooner or later,

as SARS-CoV-2 will probably become a seasonal infection in

2022 and circulate in humans indefinitely (17).

In Shanghai, the timely and precise strategies taken to

prevent the spread of COVID-19 had been successful in the past

2 years (18). Active monitoring, precise and fast contact tracing,

and timely PCR testing for related population helped interrupt

the transmission of virus with minimal social economic impact.

However, in this wave of Omicron BA.2 subvariant infection,

which started from February 24th 2022 with one asymptomatic

case, the number of daily new confirmed cases soared to more

than 20K within one and a half months. From March 12th,

all primary and secondary schools stopped offline classes and

switched to online learning. On March 27th, extending the IPC

policy of isolating high-risk areas, the Shanghai government

announced a two-stage home isolation of the whole city, while

PRC testing was carried out city-wide. About 9 million residents

of Pudong, the eastern half of Shanghai, have been home isolated

since March 28th. On the other side of the bund, roughly 15

million people in the west of the city, initiated a home isolation

policy since April 1st 2021. After almost 2-week home isolation,

on April 9th, the authority announced that the city’s residential

compounds. Villages and business locations will be classified

into three types of zones: isolation, control, and precaution.

Shanghai, as a metropolis with huge population, faced extreme
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challenges in this wave of Omicron BA.2 subvariant. A series

of questions remained unanswered, for example, under current

regulation, how will the epidemic develop? More importantly,

what is the effective policy for huge cities to fight against

fast-spreading COVID-19 new variant? Responding to these

questions, we constructed a system dynamicmodel to predict the

COVID-19 trend in Shanghai and tested different policy tools to

figure out effective measures for future policy decision-making.

Materials and methods

Data collection

Two kinds of data were used in this research. First, we

tracked the policies implemented, such as contact tracing and

quarantine, isolation of areas concerned, and PCR testing, of

which the implementation time schedule and the scope were

collected in order to set model parameters accordingly. Second,

the epidemic data of COVID-19 for this wave (Mar 24th to Apr

10th) were collected from the website of the Shanghai Municipal

Health Commission, which was publicly published (19). The

data included the following items: (1) daily counts of new

confirmed cases, such as asymptomatic cases and symptomatic

cases; (2) cumulative counts of confirmed cases; and (3) the

number of people in hospital for symptomatic cases and the

number of people under observation for asymmetrical cases.

These data were required for model validation.

Model structure

Susceptible-infected-recovered (SIR), and the related

susceptible-infected-susceptible (SIS), susceptible-exposed-

infected-susceptible-recovered (SEIR), models are typical

mathematical models investigating the evolution of a disease

over time. These models are based on a set of ordinary

differential equations (ODEs), which presume a well-mixed

population (20). The features of the epidemic determine which

model to use. If the recovered populations do not become

immune to the disease, the SIS model should be considered. If

the epidemic has a significant incubation period, the exposed

population should be added. Extensions of these classic

models have been developed to incorporate human behavior,

government policies, or other specific conditions (21). For

example, the SVMBIR model includes an individual’s decision

on vaccination (V), intermediate-defense-measure (M), and

both of them (B) (22). The SVEIR model has been used to study

quarantine or isolation (23). The SVnIR2n model is used to

study the impact of waning effect of vaccination on the spread

of the disease (24).

To incorporate Shanghai’s policy of central quarantine of

close contacts and isolation of areas concerned such as residence

building or working place, we extended the SEIR model to

disaggregate the total population into three layers, people who

are in normal condition, people who are isolated with certain

areas and people who are in central quarantine. Moreover,

considering the enormous asymmetric cases caused byOmicron,

in this model, we also differentiated two types of infected

populationA (asymptomatic cases) and I (cases with COVID-19

symptoms). Therefore, in each layer of population, there were S

(the susceptible), E (the exposed), A (the asymptomatic cases),

and I (the infected), as illustrated in Figure 1.

Model equations

The Omicron spread process was represented by VE and

VEi where the S or Si contact with E and A or Ei and Ai. We

noticed that people under isolation still contacted other persons

within the isolation area, such as getting deliveries, taking part

in PCR testing, and other necessary living or working activities.

This made it possible for the virus to spread within the isolation

area even though the contact rate was lower than that in outside

the isolation areas. People under quarantine did not spread the

virus anymore.

VE = c ∗ β ∗ S ∗ (A+ I)/N ∗ θ ∗ (1− ηi)

+c ∗ β ∗ S ∗ (A+ I)/N ∗ (1− θ) (1)

VEi = ci ∗ β ∗ Si ∗ Ai/N ∗ θ ∗ (1− ηi)

+ci ∗ β ∗ Si ∗ Ai/N ∗ (1− θ) (2)

where c and ci represent the contact rate of the people outside

isolation and under isolation, respectively; β represents the

probability of transmission; N presents the total population;

θ represents the vaccination rate; and ηi represents the

effectiveness of vaccination against infection.

The E, will developed into asymptomatic cases, A, and

symptomatic cases, I, and similarly for Ei and Eq expect that

Ei, as already in isolation, when develop into symptomatic cases,

will be immediately quarantined, which transferred into Iq.

VA = E*α/Tin VI = E*(1-α)/Tin (3)

VAi = Ei*α/Tin VIq1 = Ei*(1-α)/Tin (4)

VAq = Eq*α/Tin VIq2 = Eq*(1-α)/Tin (5)

where α represents the percentage of asymptomatic cases;

therefore (1-α), was the percentage of cases with symptom, and

Tin represents the incubation period.

The infected people without symptoms, A and Ai, could

only be identified with COVID-19 testing. When confirmed to

be infected, they would be transferred to cabin hospitals for

quarantine and when they recover, they will be released from the

cabin hospitals. VAq1 and VAq2 represent the flow of ① and ③,
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FIGURE 1

The structure of Shanghai Omicron epidemic model.

respectively, in Figure 1.

VAq1 = A ∗ τ1 VAq2 = Ai ∗ τ2 (6)

VRAq = Aq1 ∗ γAq (7)

where τ1 and τ2 represents the transfer rate of A and Ai,

respectively, which are related to the testing capacity and time

for other related transfer process; and γAq represents recover

fraction of asymptomatic cases.

The people with symptom would be received in hospital.

Overtime, some would recover and some would deliver into

severe cases, who would get recover or die. VIH and VIqH

represent the flow of ② and ④, respectively, in Figure 1.

VIH = I*κ VIqH = Iq*κ (8)

VSC = H ∗ υ ∗ θ ∗ (1− ηs)+ H ∗ υ ∗ (1− θ) (9)

VRH = H1 ∗ γH VRSC = SC ∗ γSC (10)

VD = SC ∗ φ (11)

where κ represents the hospital acceptance rate, which is

related to the hospital capacity; ν represents severe case fraction

and ηs represents the effectiveness of vaccination against severe

case; γH represents recover fraction of hospital patients; γSC

represents recover fraction of severe cases; φ represents death

fraction. Details of the model equations are listed in Appendix

section model structure and parameter settings are listed in

Appendix section parameter setting, Tables 2, 3 in Appendix.

Model validation

The SEIR model and its extension have been widely used

for the studying the spread of epidemic (25), especially for

COVID-19 (26–29). This extension of the model and the

parameter setting are based on the policies implemented

in Shanghai, with details in Appendix. Finally, the model

simulation results are compared with the epidemic data, as

shown in Figure 2. Fitting the real data adds confidence to

model validity.

Results

Based on the Shanghai Omicron epidemic model, we

performed simulation to investigate the effect of three policies,

COVID-19 testing, isolation, and vaccination.

Policy 1 COVID-19 testing

Four scenarios were tested with identification rate set

at 10, 20, 30, and 50% after May 22nd. Results showed

that if the identification rate dropped to 10%, within a

month, the new infected asymptomatic cases would surge

again and approach 8,000, as shown in Figure 3. With

higher identification rate, the new infected asymptomatic cases

would not reach that high. For the identification rate at 20

or 30%, the asymptomatic cases would increase to around
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FIGURE 2

(A–D) Model simulation result and historical data.

2,600 and 770, respectively. When the identification rate

remained at 50%, the asymptomatic cases would be <100.

Similar simulation results were identified for symptomatic

cases. This simulation result illustrated that the possible

way of sustainable control of the COVID-19 was high

identification rate.

Policy 2 isolation of areas concerned

In this model, we used the average number of people

isolated for each confirmed case or close contact as an index of

the scope of the isolation policy. Three scenarios were tested,

with the average number of people isolated at 250, 200, and

150, respectively. Simulation results showed that the patterns

of the spread of the Omicron remained the same for three

scenarios, with a slow increase at the beginning, following a

fast increase, and then a decrease, as shown in Figure 4. Yet

the higher the average number of people isolated, the lower

the peak of the daily confirmed cases. In the scenario with

the least isolation scope that is on average only 150 people

isolated per each risky source, the numbers of daily confirmed

asymptomatic and symptomatic cases reached more than 30

and 3.7 K, respectively. While in the scenario with the most

isolation scope, the number of daily confirmed asymptomatic

and symptomatic cases reduced to 25.5 and 3.2 K, representing

a drop of 18 and 16%, respectively, compared with the scenario

with least isolation.

FIGURE 3

Simulation results for asymptomatic cases under di�erent

testing policies.

Policy 3 vaccination rate

Vaccination has been widely implemented in Shanghai and

we investigate the impact of various vaccination rates on this

wave of Omicron variant. Three scenarios were simulated with

vaccination rate at 75, 85, and 95%. The simulation results are

shown in Figure 5.

Due to the fact that the effectiveness of vaccination against

infection for this new variant Omicron is not high, increasing

the vaccination rate from 75 to 95% only slightly reduced

the peak of the confirmed cases, with around 19% drop,

as shown in Figures 5A,B. However, because of the high

effectiveness of vaccination against severe cases, the peak of

severe cases reduced significantly, from around 700 cases when

the vaccination rate was 75% to around 260 cases when the
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FIGURE 4

(A,B) Model scenarios with di�erent isolation policy.

FIGURE 5

(A–D) Model scenarios with di�erent vaccination rate.

vaccination rate was 95%, representing almost 170% drop.

And the death population reduced from around 1,000 to 370

when the vaccination rate increased from 75 to 95%, as shown

in Figure 5C.

Discussion

Faced with the Omicron new variant, especially with BA. 2

subvariant, the most effective policy is testing. As the Omicron

BA.2 is more transmissible and milder in symptoms, the former

COVID-19 control essentials “early detection, early reporting,

early isolation, early treatment” become harder to achieve. Fever

clinics become less effective in identifying infected populations

as increasing number of people do not have fever or only

have a little bit fever without the need to visit clinics. The

main method for identifying the infected population is now

COVID-19 testing (30). In Shanghai, PCR used to be the only

method for COVID-19 testing. PCR testing provides relatively

accurate results but is time- and people-consuming. For a

metropolis like Shanghai with 24 million residents, even with

the support of medical staffs from other provinces, it took 2

days to conduct COVID-19 testing for the entire population and

at least another day to get all the results. As the serial interval

of Omicron might be <3 days (31), during the time period of

PCR, the infected population would have already been doubled,

with new exposed population remained in the population to

further develop into infected population and spread the virus

around. RAT has recently been applied for identifying infected

people as it is fast, inexpensive, and laboratory-independent

(30). However, the sensitivity of RAT to detect the COVID-

19 variants has been questionable. Independent laboratory
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evaluations showed variable results (32–34). Caution should

be taken when using RAT as a virus detection strategy. A

combination of RAT with PCR test should be considered. On

one hand, those who are tested positive with RAT should

be re-examined using PCR. On the other hand, populations

with high contagious risks should use PCR tests. In this way,

early detection of the people infected by Omicron could be

better achieved.

Isolation of the areas concerned has helped to reduce the

peak of the daily confirmed cases, but the effectiveness of this

policy is limited. Several reasons exist: (1) the isolation of the

involved areas cannot fully cut the contact with the outside, for

example, delivery of living necessities might bring the virus to

the receiver; (2) internal movement still occurs, for instance,

community workers or volunteers might get into contact with

community residents when providing living support, such as

maintenance or delivering services; (3) It takes one-or-two-

day’s time to re-confirm the COVID-19 testing result if one’s

test turns out to be positive, during which in the infection

people might spread the virus to their family members or

nearby neighbors. Besides, in the early stage, the healthcare

system could not provide for enough hospital beds for the daily

new confirmed cases, which might delay the transfer process

as well. Our model implicated that immediate isolation of the

infected people, either by transferring to a centralized quarantine

location or by home isolation, can cut the infection chain

more effectively.

Simulation results illustrated that increasing vaccination

will not affect the new confirmed cases much, but has a

significant impact on reducing the severe cases and death. The

antigenic changes of Omicron reduced the sensitivity of this

virus to antibody neutralization, which is responsible for the

breakthrough cases (30). In this case, even though Shanghai has

a high vaccination rate, the spread of the virus was still fast.

In Shanghai, currently, more than 95% of the residents have

completed 2 doses of vaccination and more than 10 million

people have taken the booster shot (25). It is the similar case

in Hong Kong, where more than 80% of the population has

completed the second dose and more than one-third had taken

the booster shot. The fifth wave of Omicron hit Hong Kong

badly. Moreover, the death rate in Hong Kong was extraordinary

high due to the low vaccination rate of the elderly population.

Approximately, 95.8% of deaths were from ages above 60, a

large portion of whom has not completed the second dose (35).

Vaccination has proved to be effective against severe cases. It

is important to improve the vaccination rate, especially for the

vulnerable population group, such as the elderly.

Conclusions

Currently, many countries have gradually ceased their

restrictive policies, considering the enormous impact on

the national economy and daily life. Facing the future,

China also needs to look for policies that better balance

COVID-19 and other economic and social issues, especially

when SARS-CoV-2 new variants become less severe. The

major challenge is the rapidly surging infected patients

overwhelming the healthcare system. This study showed that

high level of testing capacity with a combination of RAT

and PCR testing to identify the asymptomatic cases. A

combination of immediate home-isolation and fast transfer

of confirmed cases is the key to cut the infection chain

and reduced the daily infection. Moreover, to promote the

vaccination in vulnerable populations could significantly reduce

the severe case. These policies could be applicable to all

metropolises with huge populations facing high transmissible

low severity epidemic.
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Analysis of distribution
characteristics of COVID-19 in
America based on space-time
scan statistic

Yuexu Zhao and Qiwei Liu*

College of Economics, Hangzhou Dianzi University, Hangzhou, China

Based on the epidemic data of COVID-19 in 50 states of the United States (the

US) from December 2021 to January 2022, the spatial and temporal clustering

characteristics of COVID-19 in the US are explored and analyzed. First, the

retrospective spatiotemporal analysis is performed by using SaTScan 9.5, and

17 incidence areas are obtained. Second, the reliability of the results is tested by

the circular distribution method in the time latitude and the clustering method

in the spatial latitude, and it is confirmed that the retrospective spatiotemporal

analysis accurately measures in time and reasonably divides regions according

to the characteristics in space. Empirical results show that the first-level

clustering area of the epidemic has six states with an average relative risk of

1.28 and the second-level clustering area includes 18 states with an average

relative risk of 0.86. At present, the epidemic situation in the US continues to

expand. It is necessary to do constructive work in epidemic prevention, reduce

the impact of epidemic, and e�ectively control the spread of the epidemic.

KEYWORDS

the spatiotemporal analysis, COVID-19, scan statistic, spatial aggregation, Omicron

Introduction

Coronavirus disease 2019 (COVID-19) refers to the new coronavirus infection

in 2019 caused by acute respiratory infectious diseases in the majority of patients;

some of them will develop as severe cases and even results in death. Since the

large-scale outbreak of new corona pneumonia in 21 January 2020, the economy

in the US has been gradually affected. Besides, the epidemic is a public emergency

that all countries in the world have to face. As one of the most serious epidemic

countries, the US has accumulated 74,741,586 new coronavirus cases as on 31

January 2022, and there is a certain aggregation tendency in time and space.

Scan statistic is a method to test whether there is an aggregation of diseases, and

detect whether the abnormal increase of diseases in time and space is caused by

random variation. It has been widely used in infectious diseases, cardiovascular

diseases, and other fields as a spatial statistical method in epidemic statistics.
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FIGURE 1

The number of COVID-19 cases.

In 1965, Joseph (1) proposed the concept of scan statistic.

Kulldorff et al. (2–5) proposed the spatial scan statistic, and

applied scan statistic to analyze the breast cancer mortality

in the US. For example, they utilized the dynamic variable

scanning window to detect the leukemia data in northern

New York, and used the log-likelihood ratio to determine

the cluster with the highest degree of aggregation. They also

proposed many statistical models of spatiotemporal scanning,

such as retrospective space-time scan statistic in Bernoulli

model or Poisson model, prospective space-time scan statistic,

space-time rearrangement scan statistic, and elliptical spatial

scan statistic in periodic geographic disease monitoring. As

the research goes further, Jung et al. (6, 7) proposed ordinal

model scan statistic in 2007, which had excellent performance

compared with Bernoulli scan statistic for binary classification

of prostate cancer data. Huang et al. (8, 9) proposed the spatial

scan statistic based on the exponential model for the male

survival data with prostate cancer in the US in 2007; this

method could be applied to the survival data and pure spatial

data. In order to study the spatial heterogeneity continuously

measured in the population data, the weighted normal spatial

scan statistic was proposed and applied to the two-stage lung

cancer survival research in 2009. Barbara (10) found that

Cutl’s method was more effective than Kulldorff ’s scan statistic

for irregular shape spatiotemporal clusters, and for cylindrical

spatiotemporal clusters; these two methods had similar results.

Li et al. (11) analyzed the fund sustainability. Yin (12) carried

out the research on application in early warning of infectious

diseases, and graded the data of provinces and cities. Ma et

al. (13) selected the optimal spatial scale through the number

of signals in the monitoring of infectious diseases. So far,

scan statistic has been widely used in disease prevention,

including tuberculosis, schistosomiasis, and hand, foot, and

mouth disease.

The majority of the abovementioned studies explore the

spatial aggregation of various infectious diseases. COVID-19

is a highly contagious disease, which has seriously affected

people’s lives since its outbreak, and has a great threat to

people’s health. Hohl et al. (14) used the daily new coronavirus

case data provided by the John Hopkins University at the

county level, and applied SaTScan to conduct a prospective

space-time analysis, and detected the active clusters in various

provinces and cities in the US. To avoid using prospective space-

time scan statistic to identify emergence of COVID-19 disease
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TABLE 1 Retrospective spatiotemporal analysis.

Cluster Start date The number of states The actual value Value of expectation R̃ LLR p

1 Dec 1 6 4,157,904 3,363,765.04 1.28 101,152.5 0.0000

2 Dec 1 18 5,817,663 6,526,216.68 0.86 52,598.68 0.0000

3 Dec 1 1 1,891,720 2,301,321.62 0.81 42,332.33 0.0000

4 Dec 1 5 1,114,238 1,418,944.71 0.78 37,219.81 0.0000

5 Dec 1 4 1,965,177 2,274,140.59 0.85 24,001.90 0.0000

6 Dec 1 2 945,695 1,169,284.65 0.80 23,886.30 0.0000

7 Dec 1 1 672,175 845,809.54 0.79 19,780.36 0.0000

8 Dec 1 6 882,793 1,034,449.98 0.85 12,161.49 0.0000

9 Dec 1 2 3,455,831 3,236,835.98 1.08 8,298.06 0.0000

10 Dec 1 1 1,844,383 1,700,649.87 1.09 6,333.58 0.0000

11 Dec 1 2 1,351,620 1,228,440.97 1.11 6,284.42 0.0000

12 Dec 1 1 535,773 465,366.48 1.15 5,172.76 0.0000

13 Dec 1 1 1,110,569 1,011,672.39 1.10 4,878.70 0.0000

14 Dec 1 1 423,426 485,990.37 0.87 4,288.31 0.0000

15 Dec 1 3 1,056,440 990,205.76 1.07 2,254.76 0.0000

16 Dec 1 3 2,193,108 2,263,168.50 0.97 1,198.58 0.0000

17 Dec 1 1 381,903 355,779.67 1.07 949.66 0.0000

groups, Beard et al. (15) proposed the COVID-19 monitoring

method, which was based on spatiotemporal event sequence

similarity. Hohl et al. (16) used prospective Poisson space-time

scan statistic to detect daily clusters of COVID-19 at successive

county levels in 48 states and Washington DC, which was

helpful to facilitate decision-making and public health resource

allocation. Pei et al. (17) found that the epidemic distribution

had obvious space-time heterogeneity, and the spatial-temporal

transmission had typical network characteristics.

In this paper, we will study the spatial aggregation of

COVID-19 in the US from the following aspects. First, we

construct a dynamic scanning window, calculate the relative

risk to measure the intensity of aggregation, and utilize the

scan statistical analysis through SaTScan9.5 based on the

retrospective spatiotemporal analysis method. Second, we

analyze the rational treatment of SaTScan9.5, and innovatively

use circular distribution method (time latitude) and cluster

analysis method (spatial latitude) to test the reliability

of spatiotemporal scanning results. Through horizontal

comparison, it is found that spatiotemporal scan analysis not

only accurately measures in time but also reasonably divides

regions according to characteristics in space. Finally, we take

into account the data and how the COVID-19 pandemic

changes on the ground, locating the gathering area and span

period on time. At the same time, according to the scanning

results, it not only provides an important theoretical basis for

the relevant epidemic prevention work, but also has crucial

importance for the establishment of an early warning system

for the corresponding disease, ultimately playing a positive role

in strengthening prevention and resolving the risk of major

diseases in the world.

Methodology

Retrospective spatiotemporal analysis needs to build a

scanning window to judge the number of diseases inside and

outside the window. Since the scanning statistics involve time

and space, the scanning window is in the form of a cylinder; the

height of the cylinder represents the time, and the bottom area

of the cylinder represents the area. The location and size of the

scan window are dynamic, as it is unknown when and where the

COVID-19 outbreak will occur.

In the analysis process, a position is randomly selected as

the scanning center, and then, the cylindrical scanning window

changes continuously. The cluster of geographic size of the

scanning window ranges between zero and a predefined upper

limit. There are several ways to determine the value of upper

bound, for example, one can take the percentage of number of

people at risk of disease or radius value of circle as the upper

bound. In this article, we use the formermethod. The time length

of the scan window specifies themaximum time frame according

to the percentage of the entire study cycle or the specific number

of days.

To determine the possibility of aggregation, the actual

number of patients and the number of regional populations

are calculated to obtain the theoretical number of patients,

and the log-likelihood ratio (LLR) is constructed by using the

actual and theoretical number of patients inside and outside

the window; the relative risk (R̃) is calculated to evaluate the

strength of aggregation. Since the scanning window undergoes a

dynamic change, numerous scanning windows will be generated

during the scanning process. For controlling the false-positive

rate at a certain level, the window with the largest LLR is
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TABLE 2 Numbers of cases and morbidities in the top 20 states.

State Population Case Morbidity Rank

Rhode Island 1,097,379 152,016 0.138526434 1

New York 20,201,249 2,060,920 0.102019435 2

Massachusetts 7,029,917 692,497 0.098507137 3

Delaware 989,948 94,921 0.095884834 4

New Jersey 9,288,994 859,151 0.092491286 5

South Carolina 5,118,425 466,698 0.091180002 6

Wisconsin 5,893,718 535,773 0.090905775 7

Kansas 2,937,880 264,696 0.090097621 8

Alaska 733,391 65,639 0.089500689 9

Hawaii 1,455,271 129,489 0.088979304 10

Utah 3,271,616 289,753 0.088565712 11

Illinois 12,812,508 1,110,569 0.086678502 12

Louisiana 4,657,757 399,318 0.085731823 13

Florida 21,538,187 1,844,383 0.085633159 14

North Carolina 10,439,388 884,922 0.084767613 15

Kentucky 4,505,836 381,903 0.084757412 16

West Virginia 1,793,716 151,977 0.08472746 17

Vermont 643,077 54,458 0.084683483 18

California 39,538,223 3,326,342 0.08412978 19

Arizona 7,151,502 600,864 0.084019273 20

TABLE 3 Results of circular distribution analysis.

Cluster r r0 p

1 0.4392 0.0013 0.001

2 0.4769 0.0011 0.000

3 0.5398 0.0019 0.001

selected as the clustering area among all scanning windows. The

statistical significance of LLR is tested by Monte Carlo stochastic

simulation method.

We then give hypothesis test as follows:

Null Hypothesis (H0): The spatial and temporal

distribution of newly confirmed cases of COVID-19 in the

US is completely random;

Alternative Hypothesis (H1): The spatial and temporal

distribution of newly confirmed cases of COVID-19 in the US is

not completely random.

Assuming that the number of cases in window A is nA, the

population is mA, E(A) is the expected number of cases in the

scanning window based on the original assumption and adjusted

by covariates, the total number of cases in the total region is nT ,

the total population is mT , and the expected number of cases is

E(T), then

E(A) =
nI

mI
×mA (1)

E(T) =
∑

E(A) (2)

The probability density function of specific points observed

at region x is as follows:

f (x) =







pE(x)
pE(A)+q[E(T)−E(A)]

, x ∈ A

qE(x)
pE(A)+q[E(T)−E(A)]

, x /∈ A
(3)

where p is the ratio of actual incidence to expected incidence in

windowA, q is the ratio of actual incidence to expected incidence

outside window A, and the probability of any specific point is

independent of all other points, one can also refer to Tang et al.

(18) and Yang (19).

If p > q, the likelihood function LR(A, p, q) is denoted by:

LR(A, p, q) =

e−nT

nT !

(

nA

E(A)

)nA(

nT − nA

E(T)− E(A)

)nT−nA
∏

xi∈A

E(xi) (4)
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Otherwise, the likelihood function LR0(based on invalid

hypothesis) is

LR0 =
e−nT

nT !

(

nT
E(T)

)nA
∏

xi∈A

E(xi) (5)

Test statistic for spatiotemporal scan λ is defined as follows:

λ : =

Sup
A,p>q

LR(A, p, q)

Sup
A,p=q

LR(A, p, q)
(6)

According to Equations (4) and (5), we have

λ=Sup
A

(

nA

E(A)

)nA (

nT − nA

E(T)− E(A)

)nT−nA(

nT
E(T)

)−nT
I(B) (7)

B : =

{

nA

E(A)
>

nT − nA

E(T)− E(A)

}

(8)

In formula (7), I(·) is a characteristic function. The ratio of

the actual incidence to the expected incidence in window A is

greater than the ratio of the actual incidence to the expected

incidence outside windowA. The is a measure of how risk within

a cylinder differs from risk outside.

Next, we use Monte Carlo randommethod to simulate the p

value of LLR to determine whether the aggregation is statistically

significant. First, we simulate c random datasets, calculate the

maximum LLR for each dataset, and rank it with the real LLR

from big to small. If the real value rank is R, then we have

p = R(c+ 1)−1 (9)

If p < 0.05, we reject the original assumption. The relative

risk of each aggregation is as follows:

R̃ =

(

nA

E(A)

) (

nT − nA

E(T)− E(A)

)−1

(10)

Empirical analysis

Source of the data

This paper selects 50 states from the US for research. The

data of the COVID-19 mainly came from the data of the

New York Times, including the date of diagnosis, the current

area, and the source of infection of patients with COVID-19.

Demographic data mainly came from the US 2020 census data,

the basic geographic information data of each state were derived

from Google satellite map data, and the latitude and longitude

coordinates mainly chose the state capital as the center position.

The variant data are derived from the Centers for Disease

Control and Prevention (CDC) study that tracks the proportion

of variants estimated from weekly random sampling in the

Department of Health and Human Services region followed by

gene sequencing tests across the region, which we use to estimate

the number of variant infections in the state over a week with

new cases per day.

Parameter setting

We use the retrospective spatiotemporal analysis method,

and choose the discrete Poisson model. The scanning time

is set to be from 1 December 2021 to 31 January 2022,

and the time interval is 1 day. As COVID-19 is highly

contagious, the population with a ceiling of 50% in the space

window is at risk, and the maximum circle size file is set

at 30% of the population, rather than 30% of the regular

population, and the regional overlap is set at zero. Referring

to a large number of relevant literatures, combined with the

actual situation, it is known that the outbreak of COVID-19 is

fast, and the incubation period is short. Besides, the inaction

of the US government to manage the outbreak makes the

cycle longer. The daily pattern of COVID-19 changes rapidly,

so the minimum time cluster is set to 1 day. In the test

window, the number of Monte Carlo random simulation is set

to 999.

Description analysis

In the population distribution, the US COVID-19 has

nothing to do with gender, and included patients mainly in the

age group of 44 to 59 years. In terms of time distribution, the

US had the largest number of new cases on 10th January, with

1,420,374 cases. On 3rd, 18th, and 24th January, more than 1

million new cases were added daily with 1,003,751, 1,173,885,

and 1,025,999 cases, respectively. In terms of the overall trend,

the outbreak in the early stages of each state is relatively serious,

and the number of confirmed cases has experienced a short lag

and rapid growth. From Figure 1, we can see that the overall

epidemic situation has not been effectively controlled, so the

number of confirmed cases has increased cumulatively, having

a certain increasing tendency. In the regional distribution, cases

were mainly concentrated in the east and west of the US, and

California has the largest number of confirmed cases, followed

by New York.

Space-time analysis

A retrospective spatiotemporal analysis is carried out in the

US. After SaTScan 9.5 is run, 17 clustering areas are obtained

and arranged from large to small according to the log-likelihood
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ratio, and we obtain p < 0.01. The clustering areas are tested

by the aboriginality test. The specific data are summarized in

Table 1.

The cluster areas are mainly concentrated in Connecticut,

Rhode Island, New York, Massachusetts, New Hampshire, and

New Jersey from 1 December 2021 to 31 January 2022. The log-

likelihood ratio is 101,152.56, and the aggregation is the highest,

with a relative risk of 1.28. It also shows that the aggregation of

COVID-19 in the six places during this period is strong. From 1

December 2021 to 31 January 2022, 18 states, such as Colorado,

become the second agglomeration, with a log-likelihood ratio of

52,598.68 and a relative risk of 0.86. Texas from 1 December

2021 to 31 January 2022 is one of the three types of gathering

areas, with a log-likelihood ratio of 42,332.33 and a relative risk

of 0.81.

Combined with the daily incidence of each state, it can be

observed that the starting time of the gathering area is just the

time for the sudden increase of the confirmed cases of COVID-

19 in the region, and the end time is the time for the growth

rate of the confirmed cases to begin to decline. Combined with

Table 2, the incidence of the four states involved, Rhode Island,

New York, Massachusetts, and New Jersey, accounts for the top

five regions of the incidence of COVID-19 in the US, and New

York is the city with the second largest number of confirmed

cases. Although Massachusetts and New Hampshire have fewer

confirmed cases than New York, they are geographically close to

New York, where the epidemic is relatively serious.

Circular distribution analysis

Since the research time is 62 days, we divide 360◦ evenly over

each day, then 1 day is equivalent to 5.81◦, and 1 h is equivalent

to 0.21◦. To avoid the infinite calculation, the calculation time of

TABLE 4 Peak day and peak period of incidence of COVID-19 in each cluster area.

Cluster α s Peak incidence Epidemic peak period Peak period span (Day)

1 32.7887 73.5005 Dec 6 Dec 6–Dec19 14

2 87.1093 69.7240 Dec 16 Dec 4–Dec28 25

3 77.1640 63.6210 Dec 14 Dec 3–Dec24 12

FIGURE 2

Coordinated hierarchical cluster analysis.
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TABLE 5 Correspondence tables of states.

Code State Code State

US-01 Alabama US-30 Montana

US-02 Alaska US-31 Nebraska

US-04 Arizona US-32 Nevada

US-05 Arkansas US-33 New Hampshire

US-06 California US-34 New Jersey

US-08 Colorado US-35 New Mexico

US-09 Connecticut US-36 New York

US-10 Delaware US-37 North Carolina

US-12 Florida US-38 North Dakota

US-13 Georgia US-39 Ohio

US-15 Hawaii US-40 Oklahoma

US-16 Idaho US-41 Oregon

US-17 Illinois US-42 Pennsylvania

US-18 Indiana US-44 Rhode Island

US-19 Iowa US-45 South Carolina

US-20 Kansas US-46 South Dakota

US-21 Kentucky US-47 Tennessee

US-22 Louisiana US-48 Texas

US-23 Maine US-49 Utah

US-24 Maryland US-50 Vermont

US-25 Massachusetts US-51 Virginia

US-26 Michigan US-53 Washington

US-27 Minnesota US-54 West Virginia

US-28 Mississippi US-55 Wisconsin

US-29 Missouri US-56 Wyoming

each day is 8:00 a.m., that is, the one-third corresponding degree

of 1 day is taken as the degree of the day. By the spatiotemporal

scanning analysis, we obtain 17 clustering areas, and take the

first three clustering areas as example. In order to compare the

following analysis results to previous ones, we combine the daily

newly confirmed cases according to the clusters. The r, r0, and

p-values of Rayleigh test are obtained through calculation, as

summarized in Table 3.

The peak day and peaks of each cluster are summarized in

Table 4.

Clustering analysis

Hierarchical cluster analysis method is commonly used

in classification research. This method can overcome the

shortcomings of qualitative classification. According to the

index characteristics of the classification object, the total feature

similarity is divided into a class. In this case, the cumulative

confirmed cases, the regional population, and the incidence

rate are used as the indicators of each region, and imported

into R software for standardization. The deviation square and

clustering analysis are used to divide them into four categories.

Since the latitude and longitude coordinates are involved in the

spatiotemporal scanning analysis, the central coordinates of the

capital are added to the index, as shown in Figure 2. Due to

the mess up of text and pictures as displayed in the diagram, it

should be replaced with a geographical code (US-01), as shown

in Table 5.

From Figure 2, we can see that there are highly correlated

with geographical location. The same category of states are

adjacent states, and the case information is not reflected.

Therefore, the clustering method cannot well-balance

the relationship between the number of cases and their

geographical locations.

Results comparison

The peak periods calculated by spatial-temporal scanning

analysis are compared with those calculated by circular

distribution method, as shown in Table 6. Combined with the

actual situation, the peak period of the disease obtained by the

circular distribution method is similar to the epidemic situation

of COVID-19 in the region. The peak period of the disease

obtained by the spatial-temporal scanning method is longer

than that of the circular distribution method, and the time

is generally advanced. Spatiotemporal scanning analysis can

send early warning signals for COVID-19, which is a kind of

fulminant and fast infectious disease, and has a higher practical

value for disease prevention and control.

The clustering areas obtained by spatiotemporal scanning

analysis are compared with the classification results obtained

by the system clustering method, as shown in Table 7. In the

Spatiotemporal Scanning Analysis (STSA), Hierarchical Cluster

Analysis (HCA), and Coordinated Hierarchical Cluster Analysis

(CHCA), US-44 (Rhode Island), US-25 (Massachusetts), US-

09 (Connecticut), US-34 (New Jersey), and US-33 (New

Hampshire) are classified into the first category, while US-36

(New York) is classified into the first category by spatiotemporal

scanning. Combined with the actual situation, it can be seen

that the results have a great relationship with the cumulative

confirmed cases. After adding the coordinate index, the results

are highly correlated with the geographical location, and the

case information is weakened. The spatiotemporal scanning

method makes good use of the information of regional

population, case information, geographical location, and other

information to give a reasonable clustering area. In terms

of disease prevention and control, spatiotemporal scanning

method can better provide theoretical basis for its adaptation to

local conditions.

Through the abovementioned comparative analysis, it can

be seen that the circular distribution method and the space-time

scan method have a certain overlap interval in the peak
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TABLE 6 Comparison of STSA and CDA.

Cluster Fastigium (STSA) Span (Day) Fastigium (CDA) Span (Day)

1 Dec 1–Jan 31 62 Dec 6–Dec 19 14

2 Dec 1–Jan 31 62 Dec 4–Dec 28 25

3 Dec 1–Jan 31 62 Dec 3–Dec 24 12

TABLE 7 Comparison of STSA and (C)HCA.

Cluster State (STSA) State (HCA) State (CHCA)

1 US-09 US-44 US-36 US-25 US-33 US-34 US-15 US-02 US-10 US-54 US-33 US-50

US-38 US-35 US-28 US-40 US-09 US-05

US-21 US-22 US-55 US-20 US-45 US-49

US-04 US-34 US-25 US-44

US-09 US-10 US-13 US-17 US-18 US-20

US-21 US-24 US-25 US-26 US-29 US-33

US-34 US-37 US-39 US-42 US-44 US-47

US-50 US-51 US-54 US-55

2 US-08 US-56 US-35 US-49 US-46 US-31

US-20 US-40 US-38 US-04 US-30 US-19

US-16 US-29 US-27 US-48 US-05 US-32

US-08 US-01 US-27 US-29 US-47 US-18

US-53 US-51 US-13 US-37 US-26 US-17

US-42 US-39

US-01 US-04 US-05 US-08 US-15 US-22

US-28 US-35 US-40 US-45 US-49

3 US-48 US-36 US-12 US-48 US-06 US-12 US-36 US-06 US-48

4 US-53 US-41 US-16 US-30 US-32 US-32 US-19 US-41 US-24 US-46 US-31

US-56 US-23 US-16 US-30

US-02 US-16 US-19 US-23 US-27 US-30

US-31 US-32 US-38 US-41 US-46 US-53

US-56

FIGURE 3

Proportion of COVID-19 variants.
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FIGURE 4

Distribution of Omicron cases from Jan 25 to Jan 31, 2022.

period of disease onset, and the clustering analysis method is

certainly similar with its regional aggregation. However, the

spatiotemporal scanning method can provide early warning and

make better use of geographical factors to determine disease

outbreak areas in detail, which is more instructive for the early

warning and prevention and control of COVID-19.

The spatiotemporal scanning method can provide more

objective grouping basis for the further model establishment

of related research. According to the epidemic law of different

regions, different groups can be included in different covariate

modeling. The qualitative and quantitative research on the

influencing factors of COVID-19 will provide an important basis

for the development of effective epidemic prevention measures

by health institutions such as disease control centers in the

region by analyzing the incidence characteristics of patients

with COVID-19 in different regions and at different times,

and combining the economic level, population flow, medical

conditions, and other factors in the region.

Omicron variation

In the study of infectious diseases, we cannot ignore the

situation of some variants. Based on the time node selected in

this paper, the first Omicron case was reported in the US on 1

December, so we are paying attention to Omicron at this stage.

Next, we need to know more about Omicron. In fact, Omicron

has a significant growth advantage over Delta, leading to rapid

spread in the community with higher levels of incidence than

previously seen in this pandemic. With the sharp increase of

cases and the scarcity of medical resources, we should also give

importance to its dissemination.

From Figure 3, we can see that the B.167.2 (Delta) accounted

for 99.25% on 4 December, while B.1.1.529 (Omicron)

accounted for a low proportion. After 2 weeks, the proportion

of Omicron increased rapidly, reaching 40.64%, while the

corresponding Delta decreased to 58.08%. After another week,

the proportion of Omicron exceeded Delta, becoming the largest
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variant of infection. After the following 5 weeks, the proportion

reached 95.31%. Within 2 months, Omicron became the mutant

with the largest proportion of infection, and its propagation

speed was very fast.

Based on the CDC’s tracking data of variants and the

prediction of the proportion of variants, we calculate the number

of variants per week in different regions according to the new

cases per day and the proportion of variants per week in the

corresponding region. The following figure clearly shows the

cumulative number of Omicron cases in the last week. In order

to show the map integrally, US-02 and US-15 have changed the

actual location in the map. According to the number clustering,

the map is divided into four categories. We can find the features

in Figure 4.

The numbers of items in clusters 1–4 are 18, 29, 2, 1,

respectively, and the cluster centers are 89,703, 24,703, 217,010,

507,330 respectively, in Figure 4. The number of Omicron cases

increases rapidly in 2 months, with the largest number of cases

in one state, US-06, accumulating to 507,330 per week, and also

with the largest number in neighboring states.

To summarize, it can be clearly seen that the rate of infection

of Omicron increased rapidly, and there is a trend of diffusion

from the middle to the surrounding. Population flow is one of

the reasons for the rapid spread of virus. The reality of the spread

from densely populated cities to other cities can also be observed

from the distribution map of Omicron cases.

Conclusion

In this paper, a retrospective spatiotemporal analysis of

confirmed cases of COVID-19 in 50 states of the US is carried

out. The first cluster is Connecticut, Rhode Island, New York,

Massachusetts, New Hampshire, and New Jersey. The second

cluster comprises 18 states, and the three types of gathering

area is Texas. Through observation, it can be seen that the

geographical location of the capital belonging to the same

type of gathering area is relatively close. There is minimal

difference between the gathering time and the peak time of

newly confirmed cases daily, and the incidence of prominent

gathering areas is higher. The reliability test of space-time

scan results show that space-time scan has the advantages

of accurate measurement in time and reasonable division of

regions according to characteristics in space. On the basis of

making full use of the existing time and spatial information,

a spatiotemporal scanning analysis accurately locates the

clustering area, timing and quantifying the corresponding

clustering area, and evaluating the risk degree of the region,

as we know that a high level of economic development and

perfect medical conditions have played a positive role in

the recovery of patients. From the analysis of this paper,

spatiotemporal scanning analysis has greatly improved the

timeliness and effectiveness of early warning of diseases, and

can provide scientific basis for early prevention and control

of diseases.
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Prior to vaccination or drug treatment, non-pharmaceutical interventionswere

almost the only way to control the coronavirus disease 2019 (COVID-19)

epidemic. After vaccines were developed, e�ective vaccination strategies

became important. The prolongedCOVID-19 pandemic has caused enormous

economic losses worldwide. As such, it is necessary to estimate the economic

e�ects of control policies, including non-pharmaceutical interventions and

vaccination strategies. We estimated the costs associated with COVID-19

according to di�erent vaccination rollout speeds and social distancing

levels and investigated e�ective control strategies for cost minimization.

Age-structured mathematical models were developed and used to study

disease transmission epidemiology. Using these models, we estimated the

actual costs due to COVID-19, considering costs associated with medical

care, lost wages, death, vaccination, and gross domestic product (GDP) losses

due to social distancing. The lower the social distancing (SD) level, the more

important the vaccination rollout speed. SD level 1 was cost-e�ective under

fast rollout speeds, but SD level 2 was more e�ective for slow rollout speeds.

If the vaccine rollout rate is fast enough, even implementing SD level 1 will be

cost e�ective and can control the number of critically ill patients and deaths. If

social distancing is maintained at level 2 at the beginning and then relaxed

when su�cient vaccinations have been administered, economic costs can

be reduced while maintaining the number of patients with severe symptoms

below the intensive care unit (ICU) capacity. Korea has wellequipped medical

facilities and infrastructure for rapid vaccination, and the public’s desire for

vaccination is high. In this case, the speed of vaccine supply is an important

factor in controlling the COVID-19 epidemic. If the speed of vaccination

is fast, it is possible to maintain a low level of social distancing without a

significant increase in the number of deaths and hospitalized patients with

severe symptoms, and the corresponding costs can be reduced.
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COVID-19, mathematical model, cost estimation, vaccination, social distancing
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Introduction

The outbreak of coronavirus disease 2019 (COVID-19)

occurred in 2019, and it is still affecting the world in 2022. When

there was no effective vaccine or treatment in the early stage of

COVID-19, the only control strategy against the disease involved

non-pharmaceutical interventions, such as social distancing

and lockdowns.

The method of implementing these non-pharmaceutical

interventions varied from country to country, but most such

strategies have had a significant effect in reducing the number of

confirmed cases, severe cases, and deaths. However, as the spread

of COVID-19 became prolonged, the economic damage caused

by the non-pharmaceutical interventions increased significantly.

Thus, when implementing an effective control policy, it is very

important to estimate not only the effect on the reduction

of confirmed cases, severe cases, and deaths, but also the

economic damage.

In Korea, the vaccination rate has steadily increased since

vaccination began on 26 February 2021 and, as of June 2022, 86%

of the total population had completed their second vaccination,

while the number with a third vaccination has reached 65%

of the total population (1). However, when the vaccines were

being introduced, vaccination was not implemented quickly due

to supply restrictions, and the number of vaccinations only

increased rapidly after June 2021. Koreans have a favorable

attitude toward vaccination and possess the infrastructure for

large-scale vaccination. This study investigates the effect of the

vaccination rollout speed at the beginning of vaccination, based

on various scenarios.

Estimation of the time-dependent dynamics of the number

of confirmed cases, severe cases, and deaths due to COVID-

19, as well as economic damage, can be conducted using

mathematical modeling, which has been previously used

to describe the transmission of COVID-19. Based on an

age-structured compartmental model, the effects of non-

pharmaceutical interventions (NPIs) and vaccination policies

have been studied (2–4). Estimation of the number of confirmed

cases has been investigated through simulation of various

scenarios based on the vaccination plan and social distancing

(5–7). In some studies (8, 9), the cost-effectiveness of control

strategies against COVID-19 has been studied through the use of

mathematical models. As the vaccines against COVID-19 were

developed at the end of 2020, cost-effective control including

vaccination has become important and cost-effective control

strategies based on different vaccine allocation policies have

been studied (10, 11). There have been studies (12–14) using

mathematical models that considered mild, hospitalized, and

critical symptom cases without an age structure. However, since

the important parameters of COVID-19 such as transmission

rate, severity and death rate are closely related to age (1, 7, 15), it

is necessary to apply an age-structured model for analyzing the

effect of the transmission and control of the disease. In order

to study the economic effect of COVID-19, we constructed a

mathematical model considering both the age-specific structure

and the subdivided severity.

In this paper, we use age-specific mathematical models to

estimate the cost of COVID-19 in terms of medical expenses,

wage loss, cost due to deaths, vaccination cost, and gross

domestic product (GDP) loss. Efficient policies, according to

vaccination rollout speed and social distancing levels, are

investigated by considering both cost reduction and the control

of the number of patients with severe symptoms. We also

investigate the mitigation effect of social distancing policies on

the total cost due to COVID-19 and the number of critically

ill patients.

Methods

Epidemiological data

Since the first confirmed case was reported on 19 January

2020, Korea has steadily reported cases of COVID-19. Figure 1A

shows the daily number of confirmed cases, by age group,

from 1 February 2020 to 31 December 2021. In November

2021, the vaccination coverage rate approached 80% of the total

population, and the social distancing phase-easing policy was

implemented on 1 November 2021. However, this resulted in

a significant increase in the daily number of confirmed cases.

In particular, the number of confirmed cases in patients under

the age of 18 who were not vaccinated increased significantly. In

addition, the number of confirmed cases has increased rapidly

due to the prevalence of the Omicron variant and waning

vaccine-based immunity. As of 17 March 2022, the number of

daily confirmed cases exceeded 600,000 (1). Figure 1B shows

the first, second, and third vaccination doses per day from 26

February 2021, when the vaccination program was started in

Korea. It shows that, until May 2021, the daily dose was relatively

small, due to the limited vaccine supply. A significant increase

in the number of vaccinations was observed after July 2021,

which can be seen as indicating the favorable reception of the

Korean public for vaccination and the sufficient vaccination

infrastructure. The third vaccination was also actively promoted

and, as of May 2022, more than 65% of the population received

booster shots (1).

In this work, we investigated the importance of the

vaccination rollout speed for disease outbreak control. The

horizontal dashed lines in the figure indicate the daily dose

(ν = 100000, 200000, . . . , 500000) used for model simulation.

The maximum daily dose (ν = 500,000) was set based on

the average weekly second vaccination doses in Korea. We

also considered the social distancing levels implemented in

Korea in order to determine the effect of non-pharmaceutical

intervention policies. Details of the social distancing polices used

in Korea are given in Supplementary material section 1.
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FIGURE 1

(A) Number of weekly confirmed cases for age groups (0–9,10–19,20–29,30–39,40–49,50–59,60–69, 70+) and (B) Daily first, second and third

vaccination doses. The solid curve indicates average second doses per week. The horizontal dashed lines represent daily vaccination doses

(ν=100000, 200000, . . ., 500000) used in the model simulation.

Mathematical model

We developed an age-structured mathematical model

to describe the transmission dynamics of COVID-19 with

vaccination. In the model, the population was separated into

compartments, based on their characteristics, for each age

group i: Si (t) denotes susceptible, Vi (t) denotes completely

vaccinated, Ei (t) denotes exposed, Ai (t) denotes asymptomatic,

Ii (t) denotes infectious,H
M
i (t) denotes having mild symptoms,

HH
i (t) denotes hospitalized without intensive care, HI

i (t)

denotes hospitalized with intensive care, Ri (t) denotes

recovered, and Di (t) denotes deceased. The HM ,HH , and HI

groups correspond to the highest severity level of an individual

during the quarantine period. The age classes i = 1, 2, · · · , 8

represent individuals aged 0 − 9, 10 − 19, 20 − 29, 30 − 39,

40− 49, 50− 59, 60− 69, and older than 70 years, respectively.

A schematic diagram of the model is shown in Figure 2.

The system of differential equations that describes the model

dynamics is as follows:

Ṡi = −3iSi − φiν

V̇i = φiν − (1− τ)3iVi

Ėi = 3iSi + (1− τ) 3iVi − αEi

Ȧi = ραEi − γAAi

İi = (1− ρ) αEi − qIi
˙HM
i = qδMi Ii − γM

i HM
i

˙HH
i = qδHi Ii − γH

i HH
i

˙HI
i = qδIi Ii −

(

1− κIi

)

γ I
i H

I
i − κIi γ

I
i H

I
i

Ṙi = γAAi + γM
i HM

i + γH
i HH

i +

(

1− κIi

)

γ I
i H

I
i

Ḋi = κIi γ
I
i H

I
i

Where the force of infection for age group i is obtained by

3i =
∑

j

[

βij
(

Ij + θAAj
)

/Nj
]

with the disease transmission

rates βij, for Nj = Sj + Vj + Ej + Aj + Ij + Rj.

The disease transmission rates (βij) of a person in age

group i per contact for each age group j are estimated as

8 × 8 matrices, determined by minimizing the difference

between confirmed case data and the simulated results from the

model (in the least-squares sense) for social distancing levels

(LV) 0, 1, 2, and 3 in Korea. The transmission rate matrices

and the data-fitting results for all ages are provided in the

Supplementary material section 2. Other parameters used in the

model and the baseline values are given in Table 1.

The effective reproduction number (Rt) measures

the average number of secondary cases per infectious
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FIGURE 2

Schematic diagram for the proposed model.

TABLE 1 Parameter definitions and baseline values used in numerical simulations.

Parameter Description Value Reference

3i The force of infection for age group i Estimated

βik Transmission rate from age group k to i Given in

Supplementary material section 2

Estimated

φi Vaccination allocation vector Vary

ν Daily vaccination doses Vary

τ Vaccine efficacy 0.79, vary (7)

ρ Probability of unconfirmed asymptomatic cases 0.16 (7)

1/α Latent period 5.2 (16)

δi
M Probability of cases having mild symptoms 1, 0.996, 0.991, 0.984, 0.971, 0.924,

0.854, 0.694

(15)

δi
H Probability of hospitalization without intensive care 0, 0.002, 0.007, 0.012, 0.027, 0.068,

0.123, 0.275

(15)

δi
I Probability of hospitalization with intensive care 1− δi

M− δi
H

1/q Mean duration of the case confirmation 3 (6)

1/γ A Recovery period of asymptomatic cases 3.5 (7)

1/γM Recovery (or quarantine) period of mild symptom cases 14 (treatment center)

7 (home treatment)

(1)

1/γ H
i Recovery period of hospitalized without intensive care cases 15.32, 15.99, 18.66, 17.70, 17.84,

18.44, 19.77, 23.79

(1)

1/γi
I Recovery period of hospitalized with intensive care cases 15.32, 15.99, 18.66, 17.70, 17.84,

18.44, 19.77, 23.79

(1)

µi Death rate of groups in confirmed cases 0, 0, 0.0001, 0.0004,0.0007, 0.0027,

0.0108, 0.0513

(17)

rH Probability of death from hospitalization without intensive care 0.4216 Estimated

rI Probability of death from hospitalization with intensive care 0.5786 Estimated

κ I Mortality rate of hospitalization with intensive care cases µ/δI

θA Relative infectiousness of asymptomatic infections 0.51 (18)
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individual at time t, which is obtained by calculating

the spectral radius of the next-generation matrix. The

details of the derivation of Rt of the model are given in

Supplementary material section 3.

Cost estimation

The total cost due to COVID-19 was estimated in terms of

medical expenses, wage loss, cost due to deaths, vaccination cost,

TABLE 2 Formulae for the cost estimation.

Cost factor Formula

Medical expenses

Mild symptom case (HM)
∑8

i=1[ Average daily cost of treatment for mild patients (CM) × Recovery period of mild symptom

cases
(

1/γM
i

)

× Number of mild patients
(

HM
i

)

]

Hospitalized case without intensive care (HH)
∑8

i=1[ Average daily cost of treatment for hospitalized patients without intensive care (CH) ×

Recovery period of hospitalized patients without intensive care
(

1/γ H
i

)

× Number of hospitalized

patients without intensive care
(

HH
i

)

]

Hospitalized case with intensive care (HI)
∑8

i=1[ Average daily cost of treatment for hospitalized patients with intensive care (CI) × Recovery

period of hospitalized patients with intensive care
(

1/γ I
i

)

× Number of hospitalized patients with

intensive care
(

HI
i

)

]

Wage loss

Older than 20 years
∑

x=M,H,I[
∑8

i=1[ Average daily income in age group i (W i) × Employment rate in age group

i (E i) × Recovery period of cases
(

1/γ x
i

)

× Number of patients
(

Hx
i

)

]]

Younger than 19 years Average daily income of women in their 30s and 40s
(

W f

)

× Female employment rate of children

younger than 19 years
(

E f

)

× Average recovery period× Number of patients younger than 19 years

Death Average funeral cost (FC)+Present value of the predicted future income

(PV)

(

PV =
∑Ni

j=1
Wj(1+g)

j

(1+r)j

)

Vaccination cost [Vaccination cost per person (VC)+ Vaccination procedure cost (PC)+ Logistics cost (LC)]×

Population× Vaccination rate (VR)

GDP loss GDP loss rate for social distancing level j (GDPlossj )× GDP in 2019× Simulation period (year)

TABLE 3 Descriptions and values of parameters for cost estimation.

Description Value Reference

CM Medical cost for mild patients per day $160.8 (treatment center)

$5 (home treatment)

(20, 21)

CH Medical cost for number of hospitalized patients without intensive per day $432.5 (20, 21)

CI Medical cost for hospitalized patients with intensive per day $1,129.5 (20, 21)

Ei Employment rate in age group i 0, 04, 0.557, 0.753, 0.771, 0.743,

0.566, 0.23

(22)

Ef Female employment rate with children younger than 19 years 0.555 (22)

Wi Average daily income in age group i 0, 55.47, 76.63, 109.40, 129.33,

127.14, 82.14, 68.08

(23)

Wf Average daily income of women in 30s and 40s 99.3500 (23)

g Average annual salary increase rate 0.02 (24)

r Social discount rate 0.04 (24)

Ni Average working period in age group i 50, 50, 45, 35, 25, 15, 5, 0 Assumed

FC Average funeral cost $9,405.38 (25)

VC Vaccination cost per person $17.89 (26)

PC Vaccination procedure cost $16.87 (27)

LC Logistics cost $1 Assumed

VR Vaccination rate 0.8 Assumed

GDP GDP per capita in 2019 $31,929 (28)

GDPlossj GDP loss rate for social distancing level j = 1, 2, 3 0.002, 0.018, 0.064 (29)
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and the GDP loss due to implementing the social distancing

polices. The cost of medical expenses was computed considering

the average daily cost of treatment and the recovery period

with respect to the status of patients (i.e., mild symptom

cases, hospitalized cases without intensive care, or hospitalized

cases with intensive care). In Korea, before 10 February

2022, even patients with mild symptoms were admitted to

community treatment centers and quarantined; however, after

that, the policy was changed to give priority to home treatment.

As a result, the quarantine period and cost decreased. The

costs according to these two policies were calculated and

compared. The cost of wage loss for patients older than 20

years was computed considering the average daily income, the

employment rate, and the recovery period for each age group.

The cost of wage loss for patients younger than 19 years was

computed as the income decrease for females with infected

children younger than 19 years. The cost due to death was

calculated by summing the average funeral cost per capita

and the present value of the predicted future income for the

potential economic production loss using the forgone labor

output equation (19). The vaccination cost included the average

vaccine price, the procedure cost, and the logistics cost. The

GDP loss was estimated by multiplying the GDP reduction rate

according to the SD level with the 2019 GDP. The formulae for

the estimation of each factor of the total cost are given in Table 2,

and the parameters used for cost estimation are given in Table 3.

Results

The e�ect of rollout speed of vaccination
on disease transmission

The effects of the daily vaccination doses on the number of

confirmed cases, cumulative deaths, and hospitalized population

with intensive care unit (ICU) care were investigated through

numerical simulation using the mathematical model. As the

COVID-19 vaccination program began on 26 February 2021,

we set the initial date of the simulation as 1 April 2021, and

the duration of the simulation was set as 365 days. The initial

conditions were determined with respect to the confirmed

case data in Korea at the start date of the simulation (1).

At the beginning of vaccination in Korea, vaccination was

implemented for those aged 19 years and older; however, in

October 2021, the vaccine target was expanded to those aged 12

years and older.

In this work, it was assumed that vaccination was

administered to those aged 10 years or older, and vaccination

was terminated when 80% of the total population of Korea

FIGURE 3

The e�ects of vaccination on: (A) Confirmed cases, (B) cumulative confirmed cases, (C) death, and (D) hospitalized population in the ICU for

Cν=1,2,· · ·, 5 and the SD level 0, 1, 2, 3. The dashed line in the bottom panels represents the capacity of ICU bed for COVID-19 patients in Korea.

The circle on each curve represents the time at which the vaccination coverage rate reaches 80%.
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FIGURE 4

Ratio of cost to GDP for Cν=1,2,· · ·, 5 for (A) admission to the treatment center for mild patients (B) home treatment for mild patients.

was vaccinated. It was assumed that inoculation was evenly

distributed according to the number of people in each age

group. We used ν0 = 100, 000 as the baseline value for the

daily vaccination dose, based on the average daily completed

vaccinations in Korea (see Figure 1B). The daily vaccination

dose varied as ν = Cννo for Cν = 1, 2, · · · , 5. Figure 3

shows the time-series of daily new confirmed cases, cumulative

confirmed cases, cumulative deaths, and the hospitalized

population in intensive care, with respect to the rollout speed

(Cν = 1, 2, · · · , 5) under SD levels 0, 1, 2, and 3. It can

be seen that, under SD levels 1 and 2, the rollout speed

significantly affected the reduction in the number of confirmed

cases. Therefore, when a moderate level of social distancing is

implemented, the speed of vaccine release becomes even more

important. It has been reported that the number of available

ICU beds for COVID-19 patients in Korea is about 2800, as

indicated by the dashed lines in Figure 3D (17). Figure 3D shows

that, under SD LV0 and LV1 with slow vaccination speed (Cν =

1, 2), the maximum number of ICU patients exceeds 2800, thus

posing a burden on the Korean medical system. The numbers of

cumulative confirmed cases, cumulative death, and maximum

hospitalized population in ICU for various social distancing

level, rollout speed (Cν = 1, 2, · · · , 5), and vaccine efficacy

(τ = 0.79, 0.6) are given in Supplementary material section 4.

Cost estimation due to COVID-19

The cost due to COVID-19 was estimated based on medical

costs, wage losses, deaths costs, immunization costs, and GDP

losses under various social distancing policies considering

different rollout speeds and SD levels. Figure 4 shows the cost

of each factor calculated over a one-year period with rollout

speed Cν = 1, 2, · · · , 5 and SD level 0, 1, 2, 3 under (A)

treatment center admission and (B) home treatment for patients

with mild symptoms. When the rollout rate was low (Cν =

1), implementing SD LV 2 was the least costly; otherwise, SD

LV 1 was more cost effective. The medical expenses accounted

for the largest proportion of the total cost at SD level 0 or 1,

while the GDP loss accounted for the largest proportion at SD

level 2 or 3. Home treatment, instead of being admitted to a

treatment center, for the patients having mild symptoms reduces

medical costs by about 40%. The cost values for each factor

are given in the Supplementary material section 5. If the rollout

speed is fast, the number of fatalities and hospitalizations with

severe symptoms is not significantly different under SD levels

1 and 2. Therefore, increasing the vaccine supply rate can bring

economic cost savings while maintaining a low SD level, without

a significant increase in the number of fatalities and patients with

severe symptoms.

The e�ects of social distancing level
mitigation

As the vaccination rate in Korea increased and the economic

and psychological damage to people caused by the long-

term implementation of social distancing strengthened, the

necessity for mitigating the social distancing level emerged.

However, the number of confirmed cases surged as social

distancing was eased in accordance with the “Reorganization
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for the Step-by-step Daily Recovery” implemented in November

2021 in Korea.

In this section, the economic effects of social distancing

mitigation policies are investigated. Social distancing mitigation

scenarios were assumed as a relaxation from SD LV 2 to LV 1, SD

LV 2 to LV0, or SD LV 1 to LV 0 when the vaccination rate of the

total population reached 60, 70, or 80%. Figure 5 shows the cost

of each factor for each social distancing mitigation scenario in

the case of admission to a treatment center for patients withmild

symptoms in the top panel for Cν = 3 , and the total cost for

Cν = 1, 2, ..., 5 in the bottom panel. In addition, cases with (A)

high vaccine efficiency (τ = 0.79) and (B) low vaccine efficiency

(τ = 0.6) were compared.

It can be seen that the most cost-effective scenario was to

implement SDmitigation from LV2 to LV1when the vaccination

rate reached 60%. At this time, there was no significant increase

in the number of deaths and the number of patients with severe

symptoms. However, with SD LV2 to LV0 mitigation in the

early stage, the cost increased significantly. In particular, the

lower the vaccine efficiency, the greater the cost due to early

mitigation. Figure 5 shows that, in the SD LV2 to LV0 and

LV2 to LV1 cases, the faster the rollout speed, the higher the

total cost under the same vaccine coverage. Therefore, it can

be seen that a certain level of social distancing is necessary

even if vaccination has sufficiently progressed. A time-series of

the number of confirmed cases under each SD level mitigation

scenario is provided in the Supplementary material section 6.

The vaccination e�ects on SARS-CoV-2
variants

It has been shown that vaccine efficacy may decrease due

to COVID-19 variants, such as Omicron, and waning vaccine-

based immunity (30–32). In addition, the disease trans-mission

rate can change depending on the characteristics of the variant

and non-pharmaceutical intervention policies. In this section,

we investigate the effects on the total cost due to COVID-19 and

number of hospitalized patients in the ICU due to changes in

vaccine efficacy and the disease transmission rate.

In Figure 6, the total costs are computed for the vaccine

efficacy varying from τ = 0.3− 0.8 and for theRt corresponding

to the transmission rate matrix β , which changes as β × Cβ for

Cβ = 0.7 − 1.3 under SD LV 0, 1, 2, and 3, and the rollout

speed Cν = 1, 2, . . . , 5. The figure also represents the cases

where themaximumnumber of hospitalized patients with severe

symptoms is greater than the capacity of the intensive care unit

for COVID-19 patients in Korea, shown as red curves.

It was found that, under SD LV 1 and 2, the total cost

changed more sensitively with changes in τ and Rt . In these

cases, the total cost and the number of hospitalized patients with

severe symptoms were also greatly affected by changes in the

rollout speed. The number of hospitalized patients with severe

symptoms depended more on the change in Rt than on the

change in τ . If the vaccine efficiency is high and the rollout

speed is sufficiently fast, the number of hospitalized patients

with severe symptoms can be kept below the ICU bed capacity,

even under SD LV 1. When the vaccine efficacy τ is low, the

effect of a change in β on the total cost is greater. Therefore,

the less effective the vaccine, the more effort is needed to reduce

the transmission rate of the disease. The cumulative number

of confirmed cases and the maximum number of hospitalized

patients with severe symptoms in each case are included in the

Supplementary material section 7.

Sensitivity analysis

Sensitivity analyses were conducted to determine the relative

importance of the parameters related to cost—that is β , τ ,

ρ, ν, the vaccine cost, and GDP loss rate—with respect to

the disease transmission dynamics. We performed further

sensitivity analyses on the model parameters described in

Table 1. We used the normalized forward sensitivity index

of the total cost (TC) on parameter p, defined as TCp =

∂(TC)
∂p ×

p
TC (33). The TC for one year was computed by

varying one parameter by 5% from the baseline value while

the rest of the parameters were fixed at their baseline values.

For the transmission rate matrix β , all components were

increased simultaneously. Figure 7 shows that increases in β ,

VC, and GDPloss affected the total cost positively, meaning that

when those parameters increased, the total cost also increased;

however, an increase in ν0 and τ negatively affected the total

cost for all cases. TCρ for the probability of unconfirmed

asymptomatic cases ρ was either positive or negative, depending

on the SD level and rollout speedCν . If the number of confirmed

cases was high, such as in the case of SD LV 0, a negative

value was displayed. This can be understood as, when the

number of un-confirmed cases increases, a relatively decreased

effect on confirmed cases is seen. However, when the number

of confirmed cases is small, an increase in the number of

unconfirmed asymptomatic patients leads to an increase in

the infection rate in the susceptible population, such that the

sensitivity index becomes positive. The change in total cost,

according to the change in the transmission rate and vaccine

efficacy, was greatest under SD level 1. When the SD level was

higher, the change in total cost according to the GDP loss rate

was greater.

Discussion

In this study, we developed an age-structured mathematical

model to describe the transmission dynamics of COVID-

19 considering vaccination. In the model, we divided the
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FIGURE 5

Ratio of cost to GDP for each SD level mitigation scenario when the vaccination coverage rate reaches 60, 70, or 80% in case of admission to

the treatment center for mild patients for (A) τ = 0.79 and (B) τ = 0.6 for (Top) Cν = 3. (Bottom) Cν = 1, 2, ..., 5. (N/A indicates that social

distancing easing was not implemented).

FIGURE 6

The ratio of total costs to GDP for τ=0.3 − 0.8 and for Rt corresponding to β that is varied as β×Cβ for Cβ=0.7 − 1.3 under SD LV 0, 1, 2, and 3,

and the rollout speed Cν=1, 2, 3, 4, 5. Red lines indicate the case when the maximum number of hospitalized patients with severe symptoms is

the capacity of the intensive care unit, 2,800, for COVID-19 patients in Korea. It means that the maximum number hospitalized patients with

severe symptoms is lower than capacity on the left side of the red curves.
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FIGURE 7

Sensitivity index of β, τ , ρ, ν, the vaccine cost, and GDP loss rate for Cν=1,2,..., 5 and each SD level.

population into eight distinct age groups and estimated the

transmission rate for each age group under different levels of

social distancing, formulated as an 8×8matrix. Using themodel,

we investigated the time-dependent dynamics of the number of

infected, severe cases, and deaths under varying social distancing

levels, vaccine efficiencies, and vaccination rates.

Furthermore, we estimated the total cost of COVID-19,

including medical expenses, wage loss, cost due to death,

vaccination cost, GDP loss under various vaccine rollout speeds,

and vaccine efficiencies under different levels of SD. We found

that a faster vaccination rollout speed and higher efficiency

resulted in a lower overall cost.

We also investigated the change in the total cost under

variation of the rollout speed and disease transmission rate.

Figure 4 shows that, when the rollout speed was slow (Cν =1),

SD LV 2 minimized the total cost; otherwise, the total cost was

minimized in the case of SD LV1.

Moreover, if the vaccination rate was fast enough (Cν ≥ 3),

when a sufficient number of vaccines was available, maintaining

SD LV1 was the best strategy in terms of both cost minimization

and proper medical care of seriously ill patients.

Figure 5 demonstrates that, in order to mitigate the social

distancing level, the vaccination coverage rate must be as

high as 80%, and the total cost will decrease according

to the coverage rate. In particular, when the SD level

is alleviated from LV 2 to LV 1, the total cost can

be sufficiently reduced even when the coverage rate is

about 60%; however, it can be seen that some degree of

social distancing must be maintained to prevent further

outbreaks.

As it is very important to prevent the collapse of the

medical system by reducing the number of seriously ill

patients and the number of deaths, it is necessary to devise a

control strategy that minimizes damage from a comprehensive

perspective, rather than simply planning a strategy from a cost-

effective perspective. Figure 3 shows that the rollout speed is

important in reducing the number of confirmed cases and

serious cases. In the case of SD LV 1, the rollout speed must

be as high as Cν ≥ 3 in order to sufficiently care for

critically ill patients. In case of SD LV 2, even if the rollout

speed is Cν = 1, severe patients can still receive sufficient

medical support.
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Omicron variations were not taken into account in the

model. Concerning the vaccine efficacy, we assumed two values

(0.79 and 0.6) based on the actual efficacy for COVID-19 before

Omicron emerged. The results presented in this paper may differ

for other efficiency values, but the overall conclusion will not

be different.

We assumed the vaccine rollout speed values based on the

actual data regarding vaccinations conducted in Korea. In other

countries, the vaccination rollout speed may vary more than our

hypothesized values.

In this paper, we demonstrated that the vaccination

rollout speed is important for both controlling the

spread of COVID-19 and reducing costs. In the case

of Korea, as the medical infrastructure is solid and the

voluntary vaccination rate of the people is high, if the

rollout speed of a high-efficiency vaccine is fast enough,

economic costs can be reduced by lowering the social

distancing level.
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Xinhua Su1, Hong Ren2, Xiao Hou2,3, Wei Zhang5 and
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University, Beijing, China, 4School of Government, Wellington School of Business and Government,

Victoria University of Wellington, Wellington, New Zealand, 5Department of Chemical Drug Control,

China National Institute for Food and Drug Control, Beijing, China

The transmission of SARS-CoV-2 leads to devastating COVID-19 infections

around theworld, which has a�ected both human health and the development

of industries dependent on social gatherings. Sports events are one of the

subgroups facing great challenges. The uncertainty of COVID-19 transmission

in large-scale sports events is a great barrier to decision-making with regard

to reopening auditoriums. Policymakers and health experts are trying to figure

out better policies to balance audience experiences and COVID-19 infection

control. In this study, we employed the generalized SEIR model in conjunction

with the Wells–Riley model to estimate the e�ects of vaccination, nucleic

acid testing, and face mask wearing on audience infection control during the

2021 Chinese Football Association Super League from 20 April to 5 August.

The generalized SEIR modeling showed that if the general population were

vaccinated by inactive vaccines at an e�ciency of 0.78, the total number of

infectious people during this time periodwould decrease from 43,455 to 6,417.

We assumed that the general population had the same odds ratio of entering

the sports stadiums and becoming the audience. Their infection probabilities

in the stadium were further estimated by the Wells–Riley model. The results

showed that if all of the 30,000 seats in the stadiumwere filled by the audience,

371 audience members would have become infected during the 116 football

games in the 2021 season. The independent use of vaccination and nucleic

acid testing would have decreased this number to 79 and 118, respectively.

The combined use of nucleic acid testing and vaccination or facemaskwearing

would have decreased this number to 14 and 34, respectively. The combined

use of all three strategies could have further decreased this number to 0.
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According to the modeling results, policymakers can consider the combined

use of vaccination, nucleic acid testing, and face mask wearing to protect

audiences from infection when holding sports events, which could create a

balance between audience experiences and COVID-19 infection control.
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Wells–Riley model

Introduction

The outbreak of COVID-19 has affected 222 countries and

regions worldwide and has led to 102 million cases and 2.2

million deaths (1). Its pathogen, SARS-CoV-2, has a higher

transmissibility than H1N1 and SARS-CoV (2). The pathogen

mainly transmits via respiratory droplets and contact. Social

gathering and migration are the primary reasons for the spread

of SARS-CoV-2. To prevent the transmission of COVID-19,

the governments of some countries have implemented a series

of emergency measures, such as travel restrictions and the

cessation of social gathering events, which successfully contain

the transmission of COVID-19 while inevitably limiting the

development of some of the industries relying on social

gathering and casting a pall over participants (3).

Sports events are one of the subgroups facing great

challenges in the post-pandemic era. Some games were played in

an empty stadium, while other stadiums opened a small part of

their auditorium to maintain safe social distancing. Home-and-

away games were prohibited. These measures have had some

negative effects on the development of sports economics and

have impaired audience experiences. For example, the Chinese

Football Association Super League (hereinafter referred to as

CSL), one of the most prosperous professional sports events

in China, attracted a total of 5.6 million audience members

(25,000–30,000 audience members for each game) in the 2019

game season (4). However, the CSL has been played in an

empty stadium since the outbreak of COVID-19.Without match

day revenue, 16 professional football teams announced their

intention to disband, and Jiangsu Suning F.C., the champion

team of 2020 CSL, announced its closing down due to financial

crisis in 2021. The experience of millions of fans has been

impaired at the same time. Therefore, it is an urgent task

for policymakers to establish some policies other than social

distancing to control COVID-19 infection and reopen sports

events to the audience.

Vaccination against COVID-19 and nucleic acid testing

provide the potential to resume attending sports events. The

Chinese residents aged 3 years or more have been encouraged

to receive a two-dose inoculation by inactivated vaccines since

September 2020, based on a high vaccine supply and the safety

reported by a series of clinical trials (5–8). The CSL tried to

reopen a couple of games to the audience in 2021. The allowed

admission was decreased from 30,000 in the pre-pandemic era

to 2,000. The audiences were required to show a negative record

of nucleic acid testing within 7 days prior to the games (7) and to

wear face masks when watching them. Meanwhile, to avoid the

transmission of COVID-19 in the transportation of audiences

and football teams, games were held in two cities instead of being

home-and-away games. As a result, the income associated with

the CSL and the audience experiences were not substantially

enhanced toward the pre-pandemic levels. The uncertainty of

COVID-19 transmission among audiences is a great barrier for

policymakers to make a decision with regard to resuming sports

events with large crowds.

Dynamic models of infection can be utilized to predict

the effects of preventive strategies against transmission (9–12).

Compared to the Susceptible, Exposed, Infectious (SIR) model

and the classic Susceptible, Exposed, Infectious, Recovered

(SEIR) model, the generalized SEIR model (13) is more

appropriate to reflect the transmission dynamics of COVID-19

(14), which accounts for some important characteristics of

the disease, such as the latency period, death, quarantine

for confirmed cases, and the protection rate of susceptible

populations. Some efforts have been devoted to predict the

effectiveness of various preventive strategies against COVID-19

transmission in the general population by the generalized

SEIR model (15–20). By adjusting the protection rate of the

SEIR model, the impact of vaccination (15–20) and non-

pharmaceutical interventions (NPIs) (15, 16, 18, 20) have

been simulated. The results of some studies suggest that the

effectiveness of vaccination depends on the efficacy of the

vaccines used and the coverage of vaccination (15, 17–19); if

the population cannot be fully covered by effective vaccination,

combining vaccination and NPIs is an ideal measure to reduce

the number of confirmed cases and deaths of COVID-19 (15,

16, 20). These studies have indicated that the generalized SEIR

model is useful for simulating COVID-19 dynamics in the

general population during a long period of time, and the herd

immunity effect of vaccination can be predicted. However,

to predict the transmission probability in audiences during a

sports event, we need to further simulate a scenario in which

susceptible people could be infected through air droplets in a

confined space.
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TheWells–Riley model is based on the concept of “quantum

of infection,” which is defined as the dose of pathogens required

to infect a susceptible person when he or she inhales in a

ventilated room during a time of exposure (21). TheWells–Riley

model and its deviations have been extensively employed in

studies on the transmission of airborne infectious diseases,

including COVID-19 (22). For instance, Wang et al. estimated

the infection probability of COVID-19 for a 2-h fight (23)

and for Chinese long-distance trains (24) under scenarios at

various face mask efficiency levels. Che et al. (25) and Sha et al.

(26) predicted the impact of ventilation systems on COVID-19

control and prevention in high-rise buildings.

Hence, in this study, we used the generalized SEIR model

in conjunction with the Wells–Riley model to simulate the

transmission of COVID-19 in sports stadiums under the

scenarios of various preventive strategies, including vaccination,

face mask wearing, and nucleic acid testing. We first used

the generalized SEIR model developed by Cheynet (13) to

simulate the impact of full vaccination delivery in the general

population in China. We assumed that a part of the general

population would become audience members of the CSL and

that vaccination would decrease the number of infectious

audience members entering the sports stadiums. Next, we used

the Wells–Riley model, involving face mask efficiency (22) and

nucleic acid testing, to simulate the transmission of COVID-19

among the audience members under scenarios including (1)

without any preventive strategy, (2) with vaccination against

COVID-19, (3) with a negative nucleic acid testing result within

7 days before admission, (4) with combined vaccination and

nucleic acid testing, (5) with combined nucleic acid testing

and face mask wearing, and (6) with combined vaccination,

nucleic acid testing, and face mask wearing. By combining

those two mathematic models, this study involved the effect of

vaccination policy on the general population in a sports stadium

and visualized the effects of face mask wearing and nucleic acid

testing on COVID-19 transmission in CLS audiences. The study

findings indicate the potential infection risk in sports stadium,

suggest some effective measures for infection control in the

post-pandemic era, and provide some evidence for policymakers

to reopen large sports events.

Methods

Generalized SEIR model and fitting

To characterize the epidemic of COVID-19 during the

2021 CSL game season, we used the generalized SEIR

model with seven different states, namely, susceptible (S),

insusceptible (P), exposed (E, in a latent period, infected but

not showing infectiousness), infectious (I, infectious and not

yet quarantined), quarantined (Q, confirmed), recovered (R),

and death (D). S(t), P(t), E(t), I(t), Q(t), R(t), and D(t) denote,

at time t, the number of susceptible, insusceptible, exposed,

infectious, quarantined, recovered, and death cases, respectively.

Their relations are governed by a serial of equations, which can

be formulated through ordinary differential equations (ODEs)

as follows (13):

dS(t)/dt = −β(t)I(t)S(t)/N − α S(t),

dP(t)/dt = αS(t),

dE(t)/dt = β(t)I(t)S(t)/N − γ (t)E(t), (1)

dI(t)/dt = γ (t)E(t)− δ(t)I(t),

dQ(t)/dt = δ (t) I (t) − λ (t)Q (t) − κ(t)Q(t),

dR(t)/dt = λ (t)Q (t ),

dD(t)/dt = κ(t)Q(t),

where N is the total population and the coefficients α, β , γ−1,

δ−1, λ(t), and κ(t) are the protection rate, infection rate, average

latent time, average quarantine time, cure rate, and mortality

rate, respectively. We assumed that N = S+P+E+I+Q+R+D

is constant and the model ignores immigration, emigration,

birth, and death unrelated to COVID-19; that the infectious

population is evenly mixed with the susceptible population; that

the people in the model have the same odds of making a decision

about watching a game in a stadium.

The seven states {S(t), P(t), E(t), I(t), R(t), D(t)}2 with fitted

parameters {α, β, γ−1, δ−1, λ(t), κ(t)} were calculated by a non-

linear least-square function based on Chinese data from 20 April

to 10 September. The ODEs were written in a matrix form and

solved using the classic fourth-order Runge–Kutta method to

find the time evolution of the seven states. The matrix form is

shown as follows:

dY/dt=G×Y+F (2)

where

Y = [S,E, I,Q,R,D, P]T (3)

G =

























α 0 0 0 0 0 0

0 −α 0 0 0 0 0

0 α −δ 0 0 0 0

0 0 δ −κ(t)− λ(t) 0 0 0

0 0 0 λ(t) 0 0 0

0 0 0 κ(t) 0 0 0

0 0 0 0 0 0 0
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The simulation time period was set from 20 April (the

beginning of the 2021 game season, also the stationary phase

of the COVID-19 pandemic in China) to 10 September (the

endpoint of an outbreak in this time period). The 2021 game

season finished on 5 August, which was included in this

simulation time period. The initial numbers of the coefficientsN,

R0, D0, and Q0 were determined according to the daily briefing

of the National Health Commission (NHC) of China (27), and

E0 and I0 were inferred according to prior studies based on

Chinese data (13). The values and sources of the coefficients

can be seen in Table 1. For the optimization parameter, the

“fit_SEIQRDP” function was used, which was available in the

generalized SEIR model package developed by Cheynet in

MATLAB (13).

The fitting is shown using the daily number of current

quarantined cases Q(t) and cumulative recovered cases R(t),

which can be observed in the real world and was reported in the

daily briefing from the NHC. Susceptible S(t), insusceptible P(t),

exposed E(t), and infectious I(t) cases and the parameters α, β ,

γ−1, δ−1, λ(t), and κ(t) could also be computed by this package,

while I(t) and α were used as targets.

The boundedness and non-negativity of the model variables

can be seen in Supplementary materials.

Integrating vaccination into the
generalized SEIR model

We simulated the effectiveness of vaccination on Iv (t)

by adding the efficacy of inactivated vaccines to α. In the

vaccination scenario, people were assumed to have received two

doses of inoculation and thus have completed the immunogenic

process when entering the model, and the effect of vaccination

was to increase the protection rate α and thereby decrease

the susceptible population; although the vaccine may offer

less protection due to the emergency of new variants and the

immunity might wane over long timescales, we assumed that

the efficacy of vaccination did not change in the simulation of

the 4-month game season. The WHO report on the inactive

Sinopharm/BBIBP COVID-19 vaccine showed that the overall

efficacy of two doses of the vaccine is 0.78 (28). By definition,

vaccine efficacy is the proportional reduction in infection rates.

Therefore, we assumed in this study that vaccination would

increase α by 0.78. The equation can be written as:

αv = α + 0.78 (6)

I(t) and Iv (t) are the numbers of infectious people without

and with vaccination in the general population, respectively,

which were used as parameters in the next step of the infection

simulation in the stadium.

Wells–Riley model and infection
probability in the stadium

According to the Wells–Riley equation, the risk of infection

by pathogens of a susceptible person through the air in a

ventilated room is related to the quanta she or he inhales,

the amount of pulmonary ventilation, the concentration of

pathogen-bearing particles in the inhaled air, and the time of

exposure. Based on these assumptions, the equation can be

written as (21, 29):

p = 1− exp(−
Aqvt

Q
) (7) (7)

where p is the infection probability,A is the number of infectious

people entering the room, q is the quanta produced by an

infected individual (quanta/h), v is the pulmonary ventilation

rate of a person (m3/h), t is the exposure time (h), and Q

is the outdoor air supply rate (m3/h). This equation is based

on the assumptions that infectious particles are well-mixed in

airspace, exposure to one quantum of infection provides an

average probability of 63.2% based on a Poisson distribution,

and the outdoor air supply rate Q remains constant.

Rudnick and Milton proposed a modified Wells–Riley

model using the exhaled air volume fraction, which does not

require the second assumption (30). Q could be a function of

the exhaled air volume fraction, the number of people, and the

pulmonary ventilation rate v; the equation can be written as:

Q = nv/f (8)

where f is the exhaled air volume fraction and n is the number

of people in the ventilated room (30). Sheng (31) considered that

the volume of a sports stadium would affect the transmission

of pathogens, and the audience could use personal respiratory

protection to decrease the probability of infection. Therefore,

Sheng combined the modified Wells–Riley model by Fennelly

andNardell (32), which included personal respiratory protection

in the equation, and wrote the equation as (31):

B= 1− exp{(−
f Aqtθ

n
)[1− exp

(

−
nvt

Vf

)

]} (9)

where θ is the penetration ratio of the protective respirator,

which reflects the amount of leakage through and around the

respirator (32). For instance, θ is 0.25 for an ordinary surgical

mask (26), and θ is 1 without any respirator (32);V is the volume

of the stadium.

The value of quantum varies significantly in different studies,

as it depends on the types of pathogens and the estimation

methods used (26). Sheng asserted that the quantum in a sports

stadium is influenced by A, the number of infectious people

entering the stadium, and assumed that the quantum has a
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TABLE 1 Parameters in the SEIR model.

Parameter Value Description and source

N 26,418,000 Total population of cities where pandemic outbroke during the 2021 game season (41).

R0 85,612 Number of cumulative recovered cases on 20 April, 2021 reported by NHC (27).

D0 4,636 Number of cumulative dead cases on 20 April, 2021 reported by NHC (27).

Q0 616 Number of quarantined cases on 20 April, 2021 reported by NHC, including confirmed

patients and asymptomatic infectors under medical observation (27).

E0 616 Equal to Q0 (13).

I0 123 1/5 of Q0 (13).

linear relationship with A (31). According to Sheng’s method,

the equation can be written as:

q = 0.16A+ 36 (10)

where A is estimated based on I(t) on each match day according

to the results of the SEIR model and the false negative rate of

nucleic acid testing. For instance, A is equal to 0.3nI(t)/N when

the audience are required to show a negative nucleic acid testing

result with a 30% false negative rate.

The parameters of the six scenarios used in the Wells–Riley

model are shown in Table 2.

Results

Simulation of infection in the general
population with and without vaccination

We applied the above-described SEIR model to fit the public

data of the daily current quarantined and cumulative recovered

cases from 20 April to 10 September (Figure 1). The epidemic

curve during this period was divided into two phases. In the first

phase from 20 April to 24 July, the number of quarantined cases

was initially low and slowly increased. In the second phase from

25 July to 10 September, there was an outbreak of the pandemic,

reaching a peak of over 2,000 quarantined cases in early August.

Through extensive simulations, the values for the unknown

model parameters α, β , γ−1, δ−1, λ(t), and κ(t) were calculated

and can be seen in Table 3. The protection rate α in the first

phase was 0.04, lower than that in the second phase (0.37), which

indicates that before the outbreak, people might have paid less

attention to self-protection, and most of the general population

were susceptible to SARS-CoV-2. The higher infection rate β

and longer latent time γ−1 in the first phase showed that people

were more likely to be infected by the virus and that it was more

difficult to detect in the first phase, which afterward led to the

surge of confirmed cases in the second phase. The accessibility of

medical treatment for COVID-19 cases in China has maintained

a high level since the initial outbreak of the pandemic in early

2020. As a result, the quarantine time δ−1 was maintained at 9

days in both phases. In addition to the constant parameters α,

β , γ−1, and δ−1, this study showed the function of the cure rate

λ(t) and the mortality rate κ(t), which are the choices of best

approximation determined by the generalized SEIR model. The

values of these parameters best interpreted the data by showing

a perfect fit of the curves for quarantined and recovered cases,

which can be observed in the real world.

To understand the impact of vaccination, I(t), the number

of infectious people without vaccination was calculated. After

adding the vaccine efficacy (0.78) to the initial protection rate,

Iv (t), the number of infectious people under vaccination was

also calculated. I(t) and Iv (t) are shown in Figure 2, and the

daily data from 20 April to 10 September can be seen in

Supplementary Table S1. Without vaccination, the daily number

of infectious people would have increased from 123 on 20 April

to a peak of 1,018 on 7 August, and then decreased to 96 on

10 September. The total number of infectious cases would have

been 43,455 during this time period. Under the assumption that

the population were vaccinated, the number of infectious people

would have constantly decreased from 123 on 20 April to 18 on

10 September. The outbreak of the pandemic in August, which

has led to thousands of people becoming infected, could have

been constantly controlled at a lower level. The total number of

infectious cases during this time period would have been 6,417,

which is 85.2% < the number without vaccination.

Simulation of infection in the stadium
audiences during the CSL game season

Based on the number of infectious people calculated by

the generalized SEIR model, parameter A in the Wells–Riley

model with and without vaccination could be identified, and

the daily infection probability of the stadium audiences during

the 2021 CSL game season under six scenarios was calculated

(Figure 3). The infection probabilities of Scenario 1 (p1), p3,

and p5 reflect those scenarios without vaccination, and their

curves were similar to that of I(t). Meanwhile, the infection

probabilities of Scenario 2 (p2), p4, and p6 reflect those scenarios
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TABLE 2 Parameters in the Wells–Riley model.

Parameter Description S1 S2 S3 S4 S5 S6

A Number of infectious people entering the stadium nI(t)/N nIv(t)/N 0.3nI(t)/N 0.3nIv (t)/N 0.3nI (t)/N 0.3nIv (t)/N

θ Penetration ratio of face mask 1 (32) 1 (32) 1 (32) 1 (32) 0.25 (26) 0.25 (26)

v Pulmonary ventilation rate of a person 3m3 h (31)

n Number of people in the stadium 30000 (4)

V Volume of the stadium 30000 m3 (31)

t Exposure time 2 h

f Exhaled air volume fraction 1.1 m3 h (42)

q Quanta produced by infectious people 0.16A+36 (31)

S1, Scenario 1, without any preventive strategy; S2, Scenario 2, with vaccination against COVID-19; S3, Scenario 3, with a negative nucleic acid testing result within 7 days before admission;

S4, Scenario 4, with combined vaccination and nucleic acid testing; S5, Scenario 5, with combined nucleic acid testing and face mask wearing; S6, Scenario 6, with combined vaccination,

nucleic acid testing, and face mask wearing.

FIGURE 1

The reported and fitted current quarantined cases and cumulative recovered cases of COVID-19, China, 20 April to 10 September.

with vaccination, which decreased progressively from 20April to

10 September in accordance with the curve of Iv (t).

According to the game schedule, there were 116 games

held on 58 game days in the 2021 season. The daily and

the total number of infected people for the game season are

shown in Table 4. If all of the 30,000 seats in the stadium

were taken by audience members, just as it was before the

COVID-19 pandemic, 3–25 audience members would have
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TABLE 3 Values for unknown parameters in the fitted SEIR model.

Parameter Description 20 April to 24 July 25 July to 10 September

α Protection rate 0.04 0.37

β Infection rate 0.81 0.29

γ−1 Average latent time (day) 87.0 6.9

δ−1 Average quarantine time (day) 9.3 9.3

λ(t) Cure rate 0.02/{1+exp[−0.46*(t−0.78)]} 0.07/{1+exp[−0.09*(t−26.11)]}

κ(t) Mortality rate [10( − 4)]*{exp[−0.06*(t-69350)]2} [10( − 3)]/{exp[0.69*(t−4.49)]+exp[−0.69*(t−4.49)]}

αv Protection rate with vaccination 0.82 (28)a

a
αv= α+0.78, 0.78 is the efficacy of Sinopharm/BBIBP COVID−19 vaccine reported by WHO.

FIGURE 2

Number of infectious people with vaccination Iv (t) and without vaccination I(t), China, 20 April to 10 September.

been infected with COVID-19 for each game day without any

preventive strategies, and a total of 371 audiences would have

been infected during this game season (Scenario 1). With the

requirement of a negative nucleic acid test of SARS-CoV-2

within 7 days before admission, the daily number of infected

audience members would have ranged from one to seven,

and the total number of infected people during this game

season would have been 118 (Scenario 3). The combination

of nucleic acid testing and face mask wearing would have

further decreased this number to 34, meaning 27 game days

would be “completely safe” for the audiences and one or two

audience members would have been infected for each of the

other 31 game days (Scenario 5). If the general population were

vaccinated before the game season began, the number of infected

audiences would have been 79 during this season, with one

to three audience members would have been infected on each

game day (Scenario 2). The combination of vaccination and

nucleic acid testing would have decreased the number of infected

audience members to 14, with 42 safe game days (Scenario

4). The number of infected people would have been zero after

rounding off when combining all three preventive strategies

(Scenario 6).

The daily infection probability and the number of infected

audiences can be seen in Supplementary Table S1.
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FIGURE 3

Infection probability (p) in stadium, 20 April to 10 September. p1, without any preventive strategy; p2, with vaccination against COVID-19; p3,

with a negative nucleic acid testing result within 7 days before admission; p4, with combined vaccination and nucleic acid testing; p5, with

combined nucleic acid testing and face mask wearing; p6, with combined vaccination, nucleic acid testing, and face mask wearing.

Discussion

We conducted mathematic modeling analyses to assess the

effect of vaccination, nucleic acid testing, and face mask wearing

on the transmission of COVID-19 in stadium audiences during

the 2021 CSL game season. By using these modeling approaches,

this study incorporated the natural history of COVID-19

infection and predicted the exact number of infected audience

members upon using various preventive strategies, which may

guide the resumption of large-scale sports events with audiences.

The generalized SEIR model interpreted the dynamics of

COVID-19 transmission over 5 months, from a relatively

stationary phase to an outbreak of cases. The values of the

parameters in this study share some similarities with those in

previous studies. The protection rate was 0.04 in the first phase,

which is close to Cheynet’s estimate of 0.06 (13), and a little bit

less than the estimate of 0.17 by Peng et al. (33). These two

studies used the generalized SEIR model to simulate Chinese

data from January 2020 onward. The scatter outbreak in the first

phase may have alerted people and the government to conduct

some preventive interventions (33), and led to an increase in

the protection rate to 0.37 in the later outbreak from 25 July

to 10 September. The infection rate was 0.81 in the first phase,

which is equal to the estimate in Cheynet’s study (13) and close

to the estimate of 1.0 in Peng et al.’s study (33), which indicates

that most people were susceptible to the virus at the outbreak of

COVID-19. As the protection rate increased, the infection rate

decreased to 0.29 in the second phase. According to the clinical

study of Jiang et al. on the characteristics of COVID-19 cases,

the average latent time is 5.2 days, and 95% of cases develop

clinical symptoms in 12.5 days (2), which is similar to the latent

time of 6.9 days in the later phase in our study. The latent time

of 6.9 days in the second phase and the quarantine time of

9.3 days estimated in this study are also close to the estimates

of 5 and 10 days in Cheynet’s study, and of 2 and 6.6 days

in Peng et al.’s study, respectively. Simulating the COVID-19

pandemic in different time periods may lead to minor variants

in parameter estimation. However, the latent time of 87 days

for the first phase was much longer than the latent time shown

in previous studies (2, 13, 33). This extensive simulation tried

to fit the real-world data in a stationary stage by extending the

latent time and, therefore, showed a flat curve of quarantined

cases. This indicates that less outbreaks scattered across the

country may be difficult to predict using the SEIR model. This

mathematical model is more useful for interpreting a typical

pandemic with a high peak value.

As the SARS-CoV-2 variants becomemore transmissible, the

introduction of SARS-CoV-2 in audiences in sports stadiums

is almost inevitable (34). The resumption of sports events with

audiences, which is undoubtedly important for the audience

experience and the development of the sports industry, can

greatly increase the risk of infection due to mass gathering and

transportation (35). In this study, we showed that without any

preventive strategies, over 300 audience members would have
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TABLE 4 Number of infected audiences during 2021 CLS game season.

Date Number of infected spectators

S1 S2 S3 S4 S5 S6

20 April 3 3 1 1 0 0

21 April 3 3 1 1 0 0

22 April 3 3 1 1 0 0

23 April 3 3 1 1 0 0

26 April 3 2 1 1 0 0

27 April 3 2 1 1 0 0

28 April 3 2 1 1 0 0

29 April 3 2 1 1 0 0

2 May 3 2 1 1 0 0

3 May 3 2 1 1 0 0

4 May 3 2 1 1 0 0

5 May 3 2 1 1 0 0

8 May 3 2 1 1 0 0

9 May 4 2 1 1 0 0

10 May 4 2 1 0 0 0

11 May 4 2 1 0 0 0

14 May 4 2 1 0 0 0

15 May 4 2 1 0 0 0

16 May 4 2 1 0 0 0

17 May 4 1 1 0 0 0

21 June 6 1 2 0 1 0

22 June 6 1 2 0 1 0

23 June 6 1 2 0 1 0

24 June 6 1 2 0 1 0

26 June 6 1 2 0 1 0

27 June 6 1 2 0 1 0

28 June 6 1 2 0 1 0

29 June 6 1 2 0 1 0

2 July 6 1 2 0 1 0

3 July 6 1 2 0 1 0

4 July 6 1 2 0 1 0

5 July 6 1 2 0 1 0

7 July 6 1 2 0 1 0

8 July 6 1 2 0 1 0

9 July 6 1 2 0 1 0

10 July 6 1 2 0 1 0

12 July 6 1 2 0 1 0

13 July 6 1 2 0 1 0

14 July 6 1 2 0 1 0

15 July 6 1 2 0 1 0

17 July 6 1 2 0 1 0

18 July 6 1 2 0 1 0

19 July 6 1 2 0 0 0

20 July 5 1 2 0 0 0

23 July 5 1 2 0 0 0

(Continued)

TABLE 4 (Continued)

Date Number of infected spectators

S1 S2 S3 S4 S5 S6

24 July 5 1 2 0 0 0

25 July 5 1 2 0 0 0

26 July 5 1 2 0 0 0

28 July 5 1 2 0 0 0

29 July 10 1 3 0 1 0

30 July 14 1 4 0 1 0

31 July 17 1 5 0 2 0

2 August 22 1 7 0 2 0

3 August 24 1 7 0 2 0

4 August 24 1 7 0 2 0

5 August 25 1 7 0 2 0

Total 371 79 118 14 34 0

S1, Scenario 1, without any preventive strategy; S2, Scenario 2, with vaccination against

COVID−19; S3, Scenario 3, with a negative nucleic acid testing result within 7 days

before admission; S4, Scenario 4, with combined vaccination and nucleic acid testing;

S5, Scenario 5, with combined nucleic acid testing and face mask wearing; S6, Scenario 6,

with combined vaccination, nucleic acid testing, and face mask wearing.

been infected in the 2021 game season. For the sake of the

COVID-19 pandemic, the 2021 game schedule was simplified by

cutting 50% of games, and this season ended with a premature

closing before the major outbreak in August. It can be inferred

that more audience members would have been infected if home-

and-away games were played all over the country.

The combined use of all three strategies, namely,

vaccination, nucleic acid testing, and face mask wearing,

was the most effective measure in this study, which would have

completely protected audiences from infection. Vaccination

can effectively control the transmission of SARS-CoV-2 in the

general population and audiences. By simulating a scenario with

vaccination, this study showed that high levels of population

immunity would be generated if all members of the general

population received vaccination with 78% efficiency. As a

result, the number of infectious people entering stadiums

could be decreased, further leading to a lower infection

probability of audience members. Moreover, vaccination was

shown to be more effective than nucleic acid testing when

independently using either strategies. Given that watching

a game while wearing a face mask impairs the audience

experience, vaccination and nucleic acid testing may work as a

compromise between safety and the audience experience when

designing preventive strategies for a sports event.

However, the effectiveness of vaccination against COVID-19

is challenged by some uncertainties. First, the vaccine efficacy

has been shown to range from 22% (36) to 100% (37) in clinical

trials of different types of vaccines. Second, the Omicron variant

significantly increased the transmissibility and immune evasion

of the virus. Its influence on vaccine efficacy still holds a great
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degree of ambiguity (38), and booster doses may be needed

consistently to resist the waning of vaccine efficacy over time

(39). Moreover, the vaccinemistrust and anti-vaccinemovement

in some places are a threat to the coverage of vaccination

(40). Given the uncertainties around vaccination strategy, this

study also simulated some scenarios in which there was no

vaccination. The results showed that the independent use of

nucleic acid testing would have decreased the number of infected

audience members by two-third, and the combined use of

nucleic acid testing and face mask wearing would have further

decreased the number of infected audience members. Although

nucleic acid testing and face mask wearing are less effective

than strategies combined with vaccination, policymakers can

consider these strategies to control the infection probability to

some degree.

There are several limitations related to modeling

assumptions, data limitations, and uncertainty. First, modeling

is a process to simplify a real situation. During the 2021 CSL

game season, the extensive COVID-19 pandemic that broke

out in late 2019 had been controlled and limited to scattered

outbreaks in a couple of cities. Home-and-away games were

also limited in two cities. Therefore, some assumptions of

the SEIR model, including an even mix of the infectious and

susceptible populations and people having the same odds ratio

of entering the stadium, may not be well fitted to a real-world

situation. However, most of the parameter estimates in our

study were reasonable and in accordance with those of previous

studies based on Chinese data (2, 13, 33). It was indicated that

the generalized SEIR model and the initial conditions used

in this study are efficient for the prediction of COVID-19

transmission in China. Second, the simulation results based on

the Wells–Riley model cannot be validated by real-world data,

because most of the 2021 CLS games were played in an empty

stadium. Third, there is uncertainty around some of the model

parameters, such as the vaccine efficacy, penetration ratio of

face mask, and false negative ratio of nucleic acid testing, which

were extracted according to previous studies. Future modeling

studies could build on this effort when updated data become

available for model parameter estimation and calibration

targets. The results of the Wells–Riley model could be tested

when the auditorium reopening policy was implemented for

large sports events in China.

In conclusion, the combined use of the SEIR and

Wells–Riley models offers a tool to benchmark the effects of

preventive strategies against COVID-19 in activities involving

mass gatherings such as large sports events, which include

transportation and confined-space gathering. Our findings

showed that the reopening of the auditorium would have

a potential infection risk without any preventive strategies.

The combined use of vaccination, nucleic acid testing, and

face mask wearing could effectively protect audience members

against infection. The use of any two of these strategies could

significantly lower the infection rates. Accordingly, the public

can understand the risk of game watching, and policymakers can

consider the combined use of preventive strategies when holding

sports events, which could create a balance between audience

experiences and COVID-19 infection control.
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Coronavirus disease 2019 (COVID-19) spread worldwide and presented a

significant threat to people’s health. Inappropriate disease assessment and

treatment strategies bring a heavy burden on healthcare systems. Our study

aimed to construct predictive models to assess patients with COVID-19 who

may have poor prognoses early and accurately. This research performed a

retrospective analysis on two cohorts of patientswith COVID-19. Data from the

Barcelona cohort were used as the training set, and data from the Rotterdam

cohort were used as the validation set. Cox regression, logistic regression,

and di�erent machine learning methods including random forest (RF), support

vector machine (SVM), and decision tree (DT) were performed to construct

COVID-19 death prognostic models. Based on multiple clinical characteristics

and blood inflammatory cytokines during the first day of hospitalization for

the 138 patients with COVID-19, we constructed various models to predict

the in-hospital mortality of patients with COVID-19. All the models showed

outstanding performance in identifying high-risk patients with COVID-19. The

accuracy of the logistic regression, RF, and DT models is 86.96, 80.43, and

85.51%, respectively. Advanced age and the abnormal expression of some

inflammatory cytokines including IFN-α, IL-8, and IL-6 have been proven to

be closely associated with the prognosis of patients with COVID-19. The

models we developed can assist doctors in developing appropriate COVID-19

treatment strategies, including allocating limited medical resources more

rationally and early intervention in high-risk groups.
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Introduction

Syndrome coronavirus-2 (SARS-CoV-2) is the causative

agent of coronavirus disease 2019 (COVID-19), which infected

more than 180 million people. Compared with a similar

acute respiratory syndrome caused by the severe acute

respiratory syndrome coronavirus, COVID-19 seems milder

but more infectious (1). After being infected with COVID-19,

patients’ characteristics vary. Some patients became clinically

asymptomatic or had mild cases of fever, cough, fatigue,

and other symptoms. However, some people became patients

with severe COVID-19 and even lost their lives (2–4). Due

to inappropriate assessments and treatment, strategies were

detrimental to the patient’s health and promoted SARS-CoV-2

to become a global societal problem, which has caused over 4

million deaths to date (5). Therefore, identifying patients with

poor prognoses as early as possible for necessary interventions

is an essential direction for the treatment of COVID-19, which

will significantly improve the prognosis of patients and release a

tremendous burden on the medical care system.

The immune system and inflammatory syndrome have

been proven to play a crucial role in COVID-19 infection

(6). Inflammatory cytokines are critical mediators that oversee

and regulate immune and inflammatory responses via complex

networks and serve as biomarkers for many diseases (7).

According to previous studies (8–10), inflammatory cytokines

were closely related to the progression, complications, and

mortality of COVID-19. Universally, these studies paid attention

to the relationship between cytokines and disease severity.

However, few researchers specifically employed cytokines to

construct a model for predicting the prognosis of patients

with COVID-19.

Machine learning (ML) algorithms have been widely applied

in the medical field, including diagnosing and predicting

prognosis. ML models are also used in every aspect of the

diagnosis and treatment of COVID-19 due to their fantastic

data processing capabilities. Previous ML studies have used

multiple indicators, including clinical and blood text indicators,

to determine the prognosis of patients with COVID-19. Due

to cytokine tests’ simplicity, high efficiency, and accuracy, they

gradually became an alternative plan for the early prediction of

COVID-19 prognosis. Abers et al. (11) fit a Cox proportional

hazard to screen the mortality-related inflammatory cytokines.

Patterson et al. (12) applied ML methods for the early

identification of patients with severe COVID-19 based on

cytokines. Mueller et al. (13) classified patients with COVID-19

into different subgroups according to inflammatory cytokines

and applied the immunotypes to predict long-term post-

COVID-19 complications. However, there are no available

models for early prediction of the death of patients with COVID-

19 based on blood inflammatory cytokines for clinical work.

Constructing a predictive model that can be applied in the clinic

seemed urgent. Therefore, in this research, we made use of data

collected by Mueller et al. (13), containing 138 inpatients with

COVID-19, to construct multiple models based on different

algorithms, including logistic regression, random forest (RF),

and decision tree (DT) to predict patient deaths.

Methods

Data acquisition

In this research, we obtained COVID-19 data from a dataset

of Mueller et al. (13) after obtaining author approval. The data

were from a finished cohort study, which has been approved by

the Ethics Committee for Research with Medicines of Hospital

Universitari Vall d’Hebron and Erasmus University Medical

Center (13). Therefore, we do not require reapproval from

the ethics committee for this study. The dataset contained

138 patients with COVID-19 from two independent cohorts

(Rotterdam cohort n = 50 and Barcelona cohort n = 88).

Clinical parameters and laboratory data for each patient during

the first 24 h of hospitalization were included in the dataset.

Final clinical outcomes were classified into discharge from the

hospital and in-hospital death. All inpatients in the study cohort

were older than 18 and SARS-CoV-2 positive diagnosed by

reverse transcription-polymerase chain reaction (RT-PCR) test

and were sampled at hospital entry. Dataset included cytokines

measured through the ELLA Simple Plex system and ELISA kits.

The COVID-19 antibody concentration in serum was measured

through ELISA, and other clinical indicators were obtained by

routine tests. Data acquisition is presented in the study by

Mueller et al. (13).

Data preprocessing

First, we binarized the outcome variables into Booleans.

We used mean value interpolation to substitute missing values,

which was widely used and proved effective for missing values

in datasets. Thankfully, no missing values in the COVID-19

patients’ cytokines values ensured the model’s reliability. We

used the Barcelona cohort to construct the model and applied

the Rotterdam cohort as an independent external validation set.

Patients’ inflammatory cytokine values from the training and

validation datasets were loaded into R software (version 4.1.0).

R packages “vegan” and “stats” were applied to perform the

principal component analysis (PCA) and draw the PCA figure.

Besides, we used “ggplot2” for the figure drawing.

Our research selected the following five algorithms: Cox

regression, logistic regression, RF, support vector machine

(SVM), and decision tree (DT). COVID-19 cases located in

different areas were conducted to verify the accuracy of each

model to ensure the model’s reliability. In the logistic regression
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FIGURE 1

The flowchart of our research. LR, logistic regression; RF, random forest; DT, decision tree.

model, we input all the inflammatory cytokine values, age, and

sex into the logistic regression in the training set. Then, the

variables with p < 0.1 in the single logistic regression were

filtered for the following research. We applied multiple logistic

regression (backward: likelihood ratio method) multivariate

analysis for the hub variables, and the coefficients derived

were used to generate a prognostic model. A prognostic model

was constructed based on the logistic regression coefficients.

For verification, we generated ROC and calibration curves to

calculate the model results for the training set and validation set.

The area under the curve (AUC) and 95% confidence interval

(CI) were used to verify the model efficiency. Moreover, to

obtain amore comprehensive evaluation of the application value

of the signature, decision curve analysis (DCA) was performed,

demonstrating the net benefit to the patients with COVID-19

after applying the model for prognosis. These steps above were

finished using SPSS (version 26.0) and Stata software (version

16). The Cox regression was performed using STATA (version

16), too. The Cox prognostic model was based on the Cox

regression coefficients. The ROC and DCA were both drawn to

evaluate the model.

In supervised ML, we evaluated the residuals of both

methods for the model’s accuracy and compared the residuals

in our research. After confirming that the RF model is a better

method with fewer residuals, we created an RF model to obtain

the variables’ significance. Artificial neural network (ANN)
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TABLE 1 Characteristics of patients with COVID-19.

Variables Training cohort and testing cohort P value

All patients

(n = 138)

Barcelona cohort

(n = 88)

Rotterdam

cohort (n = 50)

Age 62 (54–70) 61 (50–70) 63 (57.25–69) 0.072

Male (n, %) 91 (65.9%) 58 (65.9%) 33 (66.0%) 0.991

WHO score (Entry) 0.000

3 38 (27.5%) 34 (38.6%) 4 (8.0%)

4 60 (43.5%) 31 (35.2%) 29 (58.0%)

5 20 (14.5%) 12 (13.6%) 8 (16.0%)

6 12 (8.7%) 10 (11.4%) 2 (4.0%)

7 8 (5.8%) 1 (1.1%) 7 (14.0%)

Laboratory test

CRP (mg/L) 113 (70, 117.4) 129.5 (76.7,186.8) 97.5 (57.8, 151.4) 0.126

Ferritin (µg/L) 757 (406.7,

1,031.5)

712 (375.8, 954) 882.5 (494.5, 1,131) 0.122

Leukocytes (x109/L) 7.6 (6.1, 9.9) 7.0 (5.1, 10.0) 7.5 (5.9,9,8) 0.338

Neutrophils (x109/L) 6.1 (4.6, 8.0) 5.5 (3.7, 7.7) 5.9 (4.2, 8.0) 0.223

Lymphocytes (x109/L) 1.1 (0.8, 1.4) 1.1 (0.8, 1.5) 1.1 (0.8, 1.4) 0.506

Monocytes (x109/L) 0.5 (0.3, 0.7) 0.4 (0.3, 0.6) 0.5 (0.3, 0.6) 0.164

Thrombocytes (x109/L) 211 (165.5,

288.8)

234 (150.8, 299) 223 (163.5, 292) 0.978

Outcomes

LOS 13.5 (4, 30.3) 7 (2, 33.25) 14.5 (7.75, 24.75) 0.108

ICU LOS 0 (0, 16.3) 0 (0, 17) 0 (0, 15) 0.759

Mortality 27 18 9 0.825

BRI, balanced response immunotype; EXI, excessive inflammation immunotype; LAI, low antibody immunotype; CRP, C-reactive protein; LDH, lactate dehydrogenase.

model training was performed, and the ROCs were used to

verify the model efficiency. What is more, we constructed a DT

based on all inflammatory cytokines, sex, and age through the

R package “rpart” and calculated the accuracy of the DT in the

training set and validation set. The RF model was constructed

using R packages “randomForest” and “neuralnet.” DT was

finished through R package “rpart.” Additionally, the R package

“pROC” was applied to perform ROC.

A flowchart is shown in the Figure 1 to help readers better

understand the complete analysis steps.

Results

Characteristics of the patients

There are 138 patients with COVID-19 participating

in our study cohort. There were 27 (19.6%) deceased

cases, containing 18 (13.0%) dead cases in the Barcelona

cohort and 9 (7.0%) dead cases in the Rotterdam cohort.

In Table 1, we listed the characteristics of each variable

in both cohorts. We found no significant differences

between the two cohorts, which ensures the feasibility

and rationality of applying both datasets to model

and validate.

Building a logistic regression model to
classify patients and evaluate the model

We compared the patients with COVID-19 with different

outcomes. There existed a significant difference between survival

and death cases in age, some antibodies, and cytokines,

indicating that these characteristics might play a key role in

promoting death (Table 2).

All the inflammatory cytokines, sex, and age of the training

set were used as input variables to perform single logistic

regression. Five variables, including IL8, IL6, IFN-α, and IL17-

α, and age with p < 0.1 might play a vital role in the COVID-19

patients’ classification (Table 3). Multivariate analysis revealed

that there were four variables with p < 0.05. The logistic

regression model was constructed based on these four hub

variables (Table 3).

The AUC of the model in the training set was 0.919

and in the validation set was 0.7236 (Figures 2A,B). Both
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TABLE 2 Characteristics of two cohorts.

Variables Barcelona cohort (n = 88) Rotterdam cohort (n = 50)

Survival (n = 70) Mortality (n = 18) P value Survival (n = 41) Mortality (n = 9) P value

Age 57.16± 13.8 70.4± 10.5 0.000 63.4± 10.1 71.8± 15.0 0.047

Male (n, %) 49 (70%) 9 (50%) 0.095 27 (65.9%) 6 (66.7%) 1.000

Laboratory data

CRP (mg/L) 125.8 (72.7, 183.7) 129.5 (102.0, 249.7) 0.2 101 (69.3, 148) 108 (43.8, 220.8) 0.97

Ferritin (µg/L) 649.5 (324,958.3) 954 (601.8, 954.0) 0.221 882.5 (539.3, 1,108) 856.5 (485.5, 1,177.5) 0.82

Leukocytes (109/L) 7.5 (6.2, 9.6) 8.5 (5.9, 12.4) 0.277 7.2 (5.2, 10.3) 6.4 (4.1, 10.4) 0.419

Neutrophils (109/L) 5.9 (4.7, 7.8) 6.6 (4.4, 9.8) 0.238 6.1 (3.8, 8.3) 4.7 (3.3, 5.6) 0.289

Lymphocytes (109/L) 1.1 (0.9, 1.4) 0.9 (0.8, 1.3) 0.333 1.1 (0.8, 1.5) 0.9 (0.7, 1.3) 0.254

Monocytes (109/L) 0.5 (0.4, 0.7) 0.4 (0.3, 0.8) 0.63 0.4 (0.3, 0.6) 0.3 (0.2, 1.1) 0.361

Thrombocytes (109/L) 211 (166.5, 282) 219 (154.5, 300.5) 0.926 244.8 (178.0, 332.8) 126.5 (85.3, 184.8) 0.005

Cytokines and anti-body

anti-N IgM 11 (11, 13.9) 11 (11, 15.4) 0.911 11 (11.0, 23.7) 11 (11.0, 11.0) 0.045

anti-N IgG 11.6 (11, 27.5) 11 (11, 39.8) 0.819 18.6 (11.0, 33.1) 11.0 (11.0, 11.9) 0.014

anti-N IgA 20.7 (11, 61.7) 11 (11,64.1) 0.415 21.0 (11.0, 49.1) 11.0 (11.0, 12.8) 0.011

TGFb1 32,599.5 (23,850, 40,977.8) 31,597.5 (20,318, 44,350) 0.664 35,709 (26,997.5, 48,028.5) 18,182.5 (10,165.3, 30,744.0) 0.003

IL5 0.3 (0.1, 0.5) 0.4 (0.1, 1.4) 0.259 0.7 (0.4, 1.7) 0.9 (0.1, 4.0) 0.544

IFNg 7.2 (2.6, 18.6) 2.3 (1.1, 7.6) 0.014 7.4 (2.8, 19.3) 14.8 (3.4, 35.1) 0.456

IFNa 7.8 (1.5, 27.0) 13.6 (1.5, 75.9) 0.47 5.1 (1.5, 15.5) 22.7 (2.0, 78.8) 0.038

CCL2 541.5 (381, 804.3) 766.5 (552, 1,024.3) 0.019 671.0 (520.5, 1,198.3) 1,285.0 (839.3, 1,971.3) 0.086

IL6 44.8 (25.2, 87.4) 106 (47.6, 148.5) 0.007 38.3 (20.8,62.8) 375.3 (51.3, 1,495.3) 0.003

TNFa 18.8 (14.8, 23.6) 24.0 (14.7, 28.3) 0.289 18.6 (14.4, 22.0) 23.6 (17.8, 28.7) 0.029

IL1b 0.6 (0.2, 1.1) 0.5 (0.3, 1.0) 0.692 0.4 (0.2, 0.6) 0.5 (0.4, 1.0) 0.087

IL8 71.1 (40.7, 136.3) 90.1 (62.2, 316.5) 0.053 44.6 (27.2,80.4) 76.9 (32.8, 160.3) 0.093

IL18 385 (314.5, 512) 495.5 (343.3, 851.5) 0.044 493.5 (411.3, 673.0) 590.5 (396.8, 711.0) 0.544

IL10 13.6 (6.7, 22.1) 21 (15.7, 27.9) 0.02 10.4 (7.0, 17.9) 24.1 (16.0, 32.9) 0.003

IL4 0.3 (0.3, 0.3) 0.3 (0.3, 0.3) 0.576 0.3 (0.3, 0.3) 0.3 (0.3, 0.3) 1

IL2 0.5 (0.5, 0.5) 0.5 (0.5, 0.5) 0.785 0.6 (0.6, 0.6) 1.2 (0.6, 1.9) 0.005

IL12p70 0.5 (0.5, 0.5) 0.5 (0.5, 0.5) 0.83 0.5 (0.5, 0.5) 0.5 (0.5, 0.5) 1

IL17A 1.1 (1.1, 1.1) 1.1 (1.1, 1.1) 0.246 1.1 (1.1, 1.1) 4.1 (2.7, 9.5) 0

were >0.7, which means that the model possessed good

diagnosability. Besides, we found that the different groups

were separated based on the hub variables (Figures 2C,D) in

the PCA, indicating that these four variables might represent

essential differences between different groups (Figure 2E). We

drew a nomogram to apply our model in clinical work

better. For evaluation, we performed calibration curve plots

that fit well with the diagonal reference line (Figure 2F),

indicating our model’s great performance. DCA is a powerful

method for assessing the degree of patient benefits. This

research applied the DCA for the model in training and

validation sets (Figures 2G,H). The DCA curves revealed that

patients with COVID-19 could obtain net benefits through the

logistic regression model. To establish a more comprehensive

prognosis evaluation system, we applied Cox regression

in Supplementary material 1.

Establishing an ML model to classify
patients and evaluate the model

To improve the diagnostic performance of the model,

we applied ML algorithms, including RF and SVM, to

construct a new model. To reduce the subsequent unnecessary

workload, first, we evaluated the residuals of the SVM and RF

(Figures 3A,B). The results indicated that RF performed better

with fewer residuals. Therefore, we decided to choose RF as the

main ML algorithm to construct a model.

In the next step, all the variables (including cytokines, sex,

and age) were entered into the RF classifier. We set the optimal

parameter mtry to 2 as a default setting. The optimal number

of trees in the classifier was set as 500, maintaining a low

error for the classifier (Figure 4A). We used the perspective of

reducing mean square error to measure the variable importance
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TABLE 3 Logistic regression analysis for mortality of patients in the training set.

Characteristics Univariate logistic regression Multivariate logistic regression

OR (95%CI) P value OR (95%CI) P value

Sex 0.739 (0.259, 2.108) 0.571 - -

Age 1.107 (1.046, 1.173) 0.000 1.140 (1.051, 1.236) 0.002

TGFb1 1.000(1.000, 1.000) 0.153 - -

Il5 1.194 (0.908, 1.569) 0.204 - -

IFNg 0.959 (0.892, 1.032) 0.261 - -

IFNa 1.016 (1.002, 1.030) 0.029 1.023 (1.033, 1.044) 0.026

CCL2 1.000 (1.000, 1.000) 0.854 - -

Il6 1.001 (1.000, 1.002) 0.057 1.002 (0.999, 1.004) 0.179

TNFa 1.037 (0.985, 1.092) 0.167 - -

IL1b 1.484 (0.741, 2.971) 0.265 - -

IL8 1.004 (1.001, 1.007) 0.022 1.004 (1.001, 1.008) 0.015

IL18 1.001 (0.999, 1.002) 0.458 - -

IL10 1.008 (0.992, 1.024) 0.337 - -

IL4 1.941 (0.694, 5.429) 0.206 - -

IL2 4.727 (0.587, 38.075) 0.145 - -

IL12p70 0.954 (0.57, 1.595) 0.857 - -

IL17A 1.689 (1.072, 2.662) 0.024 1.989 (1.140, 3.467) 0.015

The bold values mean that the P-value < 0.05.

of the results (Gini coefficient). To keep our model succinct,

we identified hub variables using a cutoff of importance >2

(Figure 4B). After obtaining the hub variables, we constructed

an ANNmodel through the R package “neuralnet”. Two parallel

training processes were used to construct a scoring model based

on the training set. The ANN topology of the training set

contained eight input layers, five hidden layers, and two output

layers (Figure 4C).

The PCA of hub cytokines from RF and age shows

that patients with COVID-19 with different outcomes

are separate in both training and validation sets,

revealing that the model possesses good discrimination

(Figures 4D,E). In the training set, the AUC of the model

was 0.99 (Figure 4F). Additionally, in the validation

set, the AUC came to 0.783 (Figure 4G). The results

indicated that the model we built possessed advantages in

some situations.

Constructing a DT to classify patients and
evaluate the model

To simplify the model and improve the feasibility of models

for clinical application, we performed DT for all the variables

previously mentioned. DT showed the interrelationship among

the selected variables screened by the DT algorithm. The DT

became the most straightforward tree when the complexity

parameter (CP) was 0.1944444 (Figure 5). The first filtration

age was (≥68 years), and the mortality was 48.27%. The

second combination was IFN-α≥47 pg/ml. The mortality for

patients with COVID-19 within the double combination was

100%. In the training set and validation set, the accuracy of

the DT model was 0.875 and 0.86, respectively. The results

revealed that the DT model considered both effectiveness and

concise usability.

Models’ performance evaluation

We listed the results of the three models’ performance

in overall patients with COVID-19 in our cohort (the data

from the training set and the validation set are merged, 138

patients). According to Figure 6, the models developed by

logistic regression happened to be the highest in accuracy with

86.96% when compared with other models developed by the

RF model and the DT model have 80.43 and 85.51%. While

for sensitivity that shows the mortality rate of patients with

COVID-19 correctly by the models, the logistic regression

model seems to be the beat one with 96.3%, followed by

the RF model with 70.37% and the DT model with 25.93%.

Additionally, for specificity showing the survival rate of patients

with COVID-19 correctly by the models, the DT model

emerged to be the best one with 100%, followed by the

RF model with 81.98% and the logistic regression model

with 63.06%.

Frontiers in PublicHealth 06 frontiersin.org

94

https://doi.org/10.3389/fpubh.2022.1001340
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2022.1001340

FIGURE 2

The characteristics of logistic regression (LR) signature. (A) The receiver operating characteristic curve (ROC) of signature in the training set. The

area under the curve (AUC) is 0.919, indicating that the signature works well in the training set. (B) The ROC of signature in the validation set.

AUC is 0.7236, indicating that the signature is valuable in the validation set. (C) The principal component analysis (PCA) of hub cytokines and age

shows that patients with COVID-19 with di�erent outcomes are separate in the training set. (D) The PCA of hub cytokines and age shows that

patients with COVID-19 with di�erent outcomes are separate in the validation set. (E) The nomogram of the signature. (F) Calibration curve

plots of the signature. The lowess fits the reference line well, showing that the signature is e�ective. (G) The decision curve analysis (DCA) of the

signature in the training set. (H) The DCA of the signature in the validation set. Both decision curve analyses revealed that patients with

COVID-19 can benefit from applying the LR signature.
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FIGURE 3

The comparison of random forest (RF) and support vector machine (SVM) methods in constructing models. (A) Boxplots of |residual|. The red

dot stands for the root mean square of residuals. (B) Reverse cumulative distribution of |residual|. These results indicate that RF might be more

suitable than SVM to construct a model in our research.

Discussion

This research found that old age and several inflammatory

cytokines played a crucial role in promoting severe COVID-19.

We constructed multiple predictive prognostic models based on

these factors to identify patients with COVID-19 at high risk of

death at hospital entry. Themodels were validated using external

datasets, and all models’ performance is satisfactory. What we

did may provide a novel insight into evaluating COVID-19

patients’ conditions.

SARS-CoV-2, caused by COVID-19, spread worldwide at

an unpredicted speed and brought profound and unfolding

impacts on every aspect of human life. Previous studies revealed

that patients with COVID-19 expressed huge heterogeneous

characteristics, ranging from asymptomatic to losing lives (14,

15). COVID-19 infection affects various systems in the human

body, including the immune system, leading to changes in the

patient’s internal environment and inflammation. Gao et al.

(16) reported that pro-inflammatory cytokines were highly

associated with severe disease. Previous studies had found

that several cytokines were closely related to the development

of COVID-19 but simply considered individual cytokines

as predictive indicators (17, 18). COVID-19 causes immune

dysregulation accompanied by multiple cytokine disturbances,

which is hard to evaluate scientifically with one variable.

Therefore, an effective inflammatory cytokines signature to

comprehensively evaluate the COVID-19 patient’s immune

status must contain multiple variables. Inflammatory cytokines

are texted in serum, which is easy to obtain from inpatients.

The 12 inflammatory cytokines, the most essential and common

series of cytokines, are sufficient to evaluate the patient’s

immune status.

In the research, we filtered out some prominent

inflammatory cytokines in predicting the prognosis of

COVID-19. IFN-α also has immunoregulatory effects,

which might activate inflammatory responses and cause

uncontrolled pathogenic damage (19). Krämer et al. (20)

indicated preferential IFN-α responses in severe COVID-19 and

declared that IFN-α was associated with a poorer COVID-19

infection outcome. Our research found that early high IFN-α

signatures were hazardous features of poor prognoses for

patients with COVID-19. Patients with COVID-19 with old

age and elevated IFN-α levels suffered a very extreme risk

of death. Systemic and autocrine IL-8 loops were essential

neutrophil activation factors for immunopathology, triggering

multiple cell dysfunctions (21). A previous study indicated

that in patients with severe COVID-19, IL-8 might be a

prognostic indicator for in-hospital death and a target for an

effective treatment strategy (22). IL-8 was included in both

the logistic regression and RF models in our research, which

declared a crucial clinical value for this inflammatory cytokine.

IL-6 is one of the most prominent inflammatory cytokines.

According to Mojtabavi et al. (23), the elevated IL-6 level was

an independent risk factor for adverse COVID-19 outcomes.

There had already been several treatment strategies based

on IL-6. Some results of them were reported as encouraging

(24, 25). In our study, IL-6 significantly differed between death

and survival cases in training and verification sets. This result
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FIGURE 4

The RF modeling processes. (A) The influence of the number of decision trees on the error rate. After multiple repetitive operations, the error

becomes stable gradually. (B) Results of the Gini coe�cient method in the random forest classifier. We set importance=2 as a cuto�. (C) Neural

network topology of the microarray with 8 input layers, 5 hidden layers, and 2 output layers. (D) The PCA of hub cytokines and age shows that

patients with COVID-19 with di�erent outcomes are separate in the training set. (E) The PCA of hub cytokines and age shows that patients with

COVID-19 with di�erent outcomes are separate in the validation set. (F) The ROC of signature in the training set. AUC is 0.99, indicating that the

signature is perfect in the training set. (G) The ROC of signature in the validation set. AUC is 0.783, indicating that the signature is good in the

validation set.
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FIGURE 5

The characteristics of decision tree (DT). (A) The relative errors of the DT model and tree size when the complexity parameter comes to an ideal

value. (B) The inter-relationship among selected clinical indicators.

FIGURE 6

LR, RF, and DT models’ performance evaluation results in the whole dataset.

revealed that IL-6 was a stable prognostic factor that could be

applied on a large scale. Maione et al. (26) indicated IL-17A as

a silent amplifier of cytokine storm in patients with COVID-19,

activating several inflammatory pathways. In the clinical work,

researchers identified IL-17A as a target to develop therapeutic

strategies and made some progress (27). In this study, we

screened out a possible link between elevated IL-17A levels and

COVID-19 mortality.

Due to our work, we found that age was a key factor for

all models and scored the highest in the RF model. There

exist significant differences in age between survival and death

cases. O’Driscoll et al. (28) declared that patients with COVID-

19 aged older than 65 years suffered from higher mortality.

Chen et al. (29) stated that age was related to declining

and dysregulation of immune function, which heightened

vulnerability to COVID-19 in elders. Previous researchers set
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the age>65 years as a high risk for severe COVID-19 outcomes

(28, 30). Our DT sets age>68 years as a cutoff of the first

combination, similar to those in previous reports. These results

indicated that age played a major role in contributing to

COVID-19 mortality.

Considering all models involved in this study

comprehensively, the models developed with RF and

logistic regression happened to be two well-rounded

models, with considerable AUC in the training set and

AUC = 0.783 in the validation set and high accuracy.

However, the complexity of these models might bring

some inconvenience in clinical applications. The model

constructed by DT had good accuracy, specificity, and

convenience. As for areas with underdeveloped medical

conditions, it is an excellent choice to apply the DT

model we constructed which was a simple model with

good accuracy.

Building COVID-19 prognostic models through

blood inflammatory cytokines levels is a novel thought.

Thus, our research suggests that more extensive

cohort studies should be conducted to reveal the role

of inflammatory cytokines in predicting long-term

post-COVID-19 complications.

Conclusion

In this research, we identified that advanced age, IFN-α,

IL-8, and IL-6 have been identified as potential prognostic

predictors of COVID-19 outcomes by multiple models in our

research, which indicated that these cytokines might play a vital

role in the progression of SARS-CoV-2. Therefore, we advised

that accurate and quantitative detection of the inflammatory

cytokines could be performed when necessary. The RF, logistic

regression, and DT models based on blood inflammatory

cytokines performed well in identifying patients with COVID-

19 at risk of death. We strongly suggest that the models

developed with RF and logistic regression should be applied

in the regions with more abundant medical resources, and the

model developed by DT could be used in the regions with less

abundant medical. The models we developed can assist doctors

in applying individual strategies to different risk cohorts to

perform early intervention and treatment to benefit patients

with COVID-19.
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Methods:We relied on reports of confirmed case incidence and test positivity,

along with data on the movements of devices with location-tracking software,

to evaluate a novel scheme of three concentric regulatory zones introduced

by then New York Governor Cuomo to address an outbreak of COVID-

19 in South Brooklyn in the fall of 2020. The regulatory scheme imposed

di�erential controls on access to eating places, schools, houses of worship,

large gatherings and other businesses within the three zones, but without

restrictions on mobility.

Results: Within the central red zone, COVID-19 incidence temporarily

declined from 131.2 per 100,000 population during the week ending October

3 to 62.5 per 100,000 by the week ending October 31, but then rebounded to

153.6 per 100,000 by the week ending November 28. Within the intermediate

orange and peripheral yellow zones combined, incidence steadily rose from

28.8 per 100,000 during the week ending October 3 to 109.9 per 100,000

by the week ending November 28. Data on device visits to pairs of eating

establishments straddling the red-orange boundary confirmed compliance

with access controls. More general analysis of device movements showed

stable patterns of movement between and beyond zones una�ected by the

Governor’s orders. A geospatial regression model of COVID-19 incidence in

relation to device movements across zip code tabulation areas identified a

cluster of five high-movement ZCTAs with estimated reproduction number

1.91 (95% confidence interval, 1.27–2.55).

Discussion: In the highly populous area of South Brooklyn, controls on

access alone, without restrictions on movement, were inadequate to halt an

advancing COVID-19 outbreak.

KEYWORDS

SARS-CoV-2, mobility, mobile device tracking, geospatial regression, paired point-of-

interest analysis

Introduction

The idea of drawing a series of concentric containment circles around an

outbreak is well-established in the control of communicable diseases. The U.S.

Department of Agriculture, for example, has adopted the model of three concentric

containment zones – the infected zone, the buffer zone, and the surveillance

zone – as its standard practice to contain highly contagious animal diseases

(1). During the coronavirus disease 2019 (COVID-19) pandemic, the National
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Task Force in the Philippines established a four-circle scheme to

enforce graded degrees of quarantine: a critical zone subject to

complete lockdown, where a cluster of cases had been identified;

a surrounding 500-meter-radius containment zone where a

modified lockdown prevailed; a surrounding buffer zone subject

to community-level quarantine; and surrounding outside area

with further relaxation of mobility controls (2, 3).

In their classic form, concentric regulatory zones have served

as quarantine boundaries (4). Their use has been especially

appealing when attack rates are directly related to the duration of

contact and inversely related to the distance from an identifiable

source, as they were in the Toronto-area severe acute respiratory

syndrome (SARS) outbreak of 2003 (5). It is well-understood,

however, that zone boundaries cannot simply be drawn around

the areas of highest infection density, but need to takemovement

patterns into account (6).

On October 6, 2020, then New York Governor Cuomo

issued a series of executive orders establishing a novel variation

on the classic concentric control scheme (7). Rather than serving

as mass quarantine boundaries, the concentric areas would

define the extent of access control to restaurants, schools, gyms,

houses of worship, and large gatherings generally. While several

areas of concern were identified throughout the state of New

York, far and away the principal challenge was the surge of new

COVID-19 cases in the South Brooklyn area of New York City.

Our task here is to combine data on COVID-19 incidence

and testing outcomes with data on the movements of devices

equipped with location-tracking software to evaluate what

happened over the ensuing months. Relying on geospatial

regression analysis and spatial visualization tools (8), we find

that the Governor’s novel regulatory scheme failed to halt the

surge of COVID-19. Our findings appear to go against the well-

documented relationship between a reduction in mobility and a

subsequent decline in COVID-19 incidence (9–14). To resolve

the apparent contradiction, we distinguish between two types

of mobility controls: regulations concerning access (15–17) and

restrictions on movement (18–20).

Materials and methods

Regulatory background

By mid-September 2020, it had becoming increasingly

evident that the recent surge of COVID-19 cases in certain

hotspots of New York City was threatening the city’s reopening

plans. By September 29, then New York City Mayor de Blasio

had signaled his intention to close non-essential businesses and

all public and private schools in nine zip codes in the boroughs

of Queens and Brooklyn for 14–28 days (21). The target

zip codes included five in Brooklyn: Borough Park (11219),

Gravesend (11223), Midwood (11230), Bensonhurst (11204),

Flatlands (11210), and Gerritsen Beach/Homecrest/Sheepshead

Bay (11229). Test positivity rates had increased beyond the

acceptable threshold of 3% in these areas, exceeding 7% in

Gravesend (11223) (22).

On October 6, however, then New York State Governor

Cuomo intervened with his own regulatory control strategy,

which he termed a “cluster action initiative” (7). Developed in

consultation with public health experts, the initiative imposed

new local restrictions on activity within “red zones” where

clusters of new cases had been identified (23, 24). Recognizing

that individuals within these high-risk areas tended to “interface

with the surrounding communities,” the initiative established

two concentric rings – an intermediate orange zone and a

peripheral yellow zone – surrounding the high-risk red zone.

Zone boundaries were drawn based on the test positivity

rate, that is, confirmed COVID-19 cases as a percentage of all

persons presenting for testing. Among highly populated areas,

which included the borough of Brooklyn, a red zone was defined

as having a sustained test positivity rate above 4 percent, while

an orange zone had a rate from 3 to 4 percent, and a yellow zone

had a rate from 2.5 to 3 percent (23).

Among the restrictions on activity, a red zone prohibited

mass gatherings, allowed only essential businesses to open,

closed in-person schooling, and restricted restaurants and other

food providers to takeout/delivery only. An orange zone allowed

gatherings up to 10 people, closed only high-risk businesses

such as gyms and personal care, closed in-person schooling, and

allowed outdoor dining with up to 4 persons per table. A yellow

allowed gatherings up to 25 people, permitted all businesses to

open, permitted indoor as well as outdoor dining up to four

persons per table, and opened schools to in-person instruction

subject to mandatory testing of students, teachers and staff (23).

Restrictions on access to houses of worship were also initially

imposed, with limits of 25% capacity in a red zone, 33% capacity

in an orange zone, and 50% capacity in a yellow zone, but were

subsequently blocked by the United States Supreme Court (25).

The sanctions for failure to comply included withholding of

funds to localities and schools (26).

Revisions of zone boundaries and changes in zone

classification were based principally on the test positivity rate.

On October 21, the Governor, citing the early success of the

strategy in Brooklyn, reclassified the borough’s original orange

zone as a yellow zone, while the red zone remained unchanged

(24). OnNovember 3, citing further gains, the Governor reduced

the size of the red zone by half (27). A few days later, on

November 9, the red zone was reclassified as an orange zone (27),

and subsequently as a yellow zone on November 18 (28). The

zones were eventually dissolved without fanfare in January 2021.

Data sources: Regulatory zone
boundaries

We determined regulatory zone boundaries from

detailed maps issued by the office of the Governor of New
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FIGURE 1

(A) Red, orange, and yellow zones e�ective October 9, 2020 (29), Overlaid on Annotated Map of South Brooklyn. On October 21, the orange

zone was re-designated as a yellow zone, while the red zone remained unchanged (30). (B) Revised boundaries of red and yellow zones as of

November 3 (32). On November 9, the red zone was re-designated as an orange zone (27), and subsequently as a yellow zone on

November 18 (28).

York (29–31), along with accompanying announcements

of updates (27, 28). Supplementary Figure A1 shows

the boundaries of the original concentric red, orange,

and yellow zones, effective October 9, 2020, overlaid

on a street map of the larger New York City area (29).

Figures 1A,B below depict the evolution of the regulatory

zone boundaries, overlaid on more detailed street maps of

South Brooklyn.

Figure 1A identifies the original red, orange and yellow

zones (29). On October 21, the orange zone was incorporated

into the existing yellow zone, while the original red zone

boundaries remained unchanged (30). Figure 1B shows the

contracted red and yellow zones as of November 3 (31). On

November 9, the red zone was re-designated as an orange zone

(27), and subsequently as a yellow zone on November 18 (28).

Data sources: Zip code tabulation area
boundaries

Figures 2A,B superimpose the respective regulatory

boundaries of Figures 1A,B on a map of zip code tabulation

areas (ZCTAs) in South Brooklyn. The lack of complete

congruence between the ZCTA and regulatory boundaries is

evident. As discussed below, geographically detailed data on

confirmed COVID-19 incidence over time was available only

at the ZCTA level. Accordingly, for the purposes of analyzing

COVID-19 incidence, we classified any of the nine ZCTAs

that even partially overlapped the original red zone as an

original red-zone ZCTA. These ZCTAs, indicated in boldface in

Figure 2A, included 11204, 11210, 11218, 11219, 11223, 11229,

11230, 11234, and 11235. The remaining 12 ZCTAs, indicated

in italics, were classified as original orange-yellow zone ZCTAs.

In Figure 2B, the same classification of ZCTAs is shown in the

map of the contracted regulatory zones effective November 3.

Data sources: Census block groups

As discussed below, we relied on the Safegraph Social

Distancing database (34) to gauge the movements of devices

equipped with location-tracking software throughout the greater

New York City area. The origin and destination of each device

movement in the Social Distancing database are keyed to census

block groups (CBGs). Accordingly, we developed a separate

correspondence between CBGs and regulatory zones, as shown

in Figure 3A. Relying on Quantum Open Source Geographic

Information System (QGIS) software (35), we determined the

geocoordinates the centroids of all CBGs in South Brooklyn

based upon their U.S. Census-defined shape files (36). Using

the Stata Statistical Software (Stata) routine geoinpoly (37), we

then assigned each CBG to the regulatory zone polygon in which

its centroid was situated. While not explicitly shown in the

figure, we used the same procedure to map CBGs into the ZCTA

polygons shown in Figures 2A,B.

Data sources: Points of interest

We relied upon the SafeGraph Patterns database (38) – a

source distinct from the Social Distancing database (34) – to

analyze visits of devices to points of interest (POIs) within
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FIGURE 2

(A) Boundaries of the original October 9 zones overlaid on map of zip code tabulation areas (ZCTAs). In our calculations of confirmed COVID-19

incidence rates and test positivity rates, we assigned the nine ZCTAs in black boldface to the original red zone, while the remaining 12 ZCTAs in

gray italic were assigned to the combined orange and yellow zones. (B) Updated boundaries of the redrawn November 3 zones overlaid on the

same ZCTA Map. For base map of New York City ZCTAs, see Ref. (33).

FIGURE 3

(A) Boundaries of the original October 9 zones overlaid on map of census block groups (CBGs). In our calculations of within- and between-zone

device movements, we assigned each CBG to the zone containing its geographic centroid. (B) Boundaries of the original October 9 zones

overlaid on map of Safegraph points of interest (POIs) (38). Each point corresponds to a POI. Points have di�erent colors depending on the

regulatory zone in which they were located. For base map of New York City census block groups, see Ref. (39).

the regulated area in South Brooklyn. At the broadest level,

Safegraph classifies POIs according to the variable top_category,

which includes such categories as “Automotive Repair and

Maintenance,” “Child Day Care Services,” “Clothing Stores,”

“Elementary and Seconday Schools,” “Gasoline Stations,” and

“Health and Personal Care Stores.” One of the largest such

categories is “Restaurants and Other Eating Places.” Taking

advantage of the Safegraph-supplied geocoordinates of each

POI, and again relying on the Stata geoinpoly routine (37), we

classified each POI as being located in one of the original three

regulatory zones. Based upon this classification, we constructed

Figure 3B, which plots the location of every POI as a color-coded

point within the original October 9 regulated area.

Data sources: COVID-19 incidence and
test positivity

We relied upon data published by the New York City

Department of Health on COVID-19 incidence, measured as

the number of confirmed cases per 100,000 population, and

COVID-19 test positivity, measured as the percentage of positive
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tests, broken down by ZCTA and week (40, 41). Both data

sources covered the weeks ending August 8 through November

28, 2020.

Statistical methods: Paired
point-of-interest analysis

We developed a paired point-of-interest (POI) analysis to

test whether the regulations imposed by the Governor were

in fact enforced and effective. To that end, we focused on

device movements into restaurants and other eating places

located in the original red zone, where establishments were

restricted to takeout/delivery only, and in the original orange

zone, where establishments could also offer outdoor dining

with up to four persons per table (23). To avoid potentially

biased comparisons between local dining patterns in distinct

neighborhoods (such as Borough Park in the original red

zone and Brighton Beach in the original orange zone, as

shown in Figure 1A), we restricted our comparisons to pairs

of nearby eating establishments that straddled the original red-

orange border.

We identified all POIs in the SafeGraph Patterns database

(38) with a top_category designated as “Restaurants and Other

Eating Places.” Within this restricted dataset, there were 395

POIs in the original red zone and 507 POIs in the original

orange zone. (There were also 1,045 POIs in the original yellow

zone, but they were not included in our paired POI analysis).

Relying on the Stata program geonear (42), we isolated 219 pairs

of red-zone and orange-zone POIs that were nearest neighbors

of each other, where the maximum distance between POIs

within each pair was 300 meters. The median distance between

paired POIs was 130.9 meters, with 25th and 75th percentiles

equal to 70.7 and 218.6 meters, respectively. Because a POI

on one side of the red-orange boundary could be the nearest

neighbor of multiple POIs on the other side, the resulting dataset

contained 145 unique red-zone POIs and 114 unique orange-

zone POIs. Supplementary Figure A2 maps two such pairs

straddling the red-orange boundary running along Avenue U

in Brooklyn.

Let I denote the set of all red-zone POIs, with typical element

i ∈ I, and let J denote the set of all orange-zone POIs, with typical

element j ∈ J. Then our database consists of a subset of 219

unique pairs
(

i, j
)

contained within the larger set I × J. For each

POI, we relied on the Safegraph Patterns variable visits_by_day

to compute the number of visits during each week, starting with

the week ending October 1 (designated t = 0) and continuing

through the week ending December 3 (t = 9). We thus had

219 paired observations
(

yRit , yOjt
)

, where yRit represents the

number of visits during week t to red-zone POI i, and where yOjt

represents the number of visits during week t to orange-zone

POI j.

Given these data, we ran the following fixed-effects

regression model:

log

(

yRit

yOjt

)

= µ + βt + θi + φj + ǫijt (1)

In equation (1), the parameter µ is an overall constant

term, βt , θi. and φj are fixed-effect parameters corresponding

to each week t, red-zone POI i, and orange-zone POI j, and ǫijt

are independently distributed spherical error terms. Within this

fixed-effects framework, only the contrasts βt − β0 (t = 1,. . . ,9)

can be identified. If the regulations imposed by the Governor

were in fact enforced and effective, then we would expect the

estimated parameters βt to be negative.

Statistical methods: Geospatial analysis

Movements to specific points of interest such as restaurants,

auto repair shops and daycare centers are part of a larger set

of movements to destinations that include private residences

and workplaces. We sought to determine how these more

general movement patterns related to the evolution of COVID-

19 incidence, particularly during the period from the second

half of October to the end of November, when cases of the

disease were increasing throughout the regulated area in South

Brooklyn. To that end, we developed a geospatial model relating

COVID-19 incidence to general device movements. The central

feature of this model was that the incidence of the disease

in a particular ZCTA during a particular week was related to

the incidence in all ZCTAs during the prior week. Moreover,

the influence of one ZCTA on another was determined by the

volume of device traffic between the two. The details of our

model and its implementation are given in Appendix B.

Our model relied on two types of data: COVID-19

incidence and device movements. Because our data on COVID-

19 incidence were based upon ZCTAs, we classified device

movements between ZCTAs as well. Relying on data published

by the New York City Department of Health (40), we

constructed a data series
{

ykt
}

of the incidence of confirmed

COVID-19 cases per 100,000 population in ZCTA k during

week t, where k = 1,. . .,21 indexes the 21 ZCTAs within

the regulated area in Figure 2, and where t = 1,. . .,7 indexes

the 7-week period running from the week ending October

17 through the week ending November 28. Relying upon the

variables origin_census_block_group and destination_cbgs in the

Safegraph Social Distancing database (34), we constructed a data

series
{

nklt
}

of counts of device movements from ZCTA k into

ZCTA lduring week t. The counts nkkt , which represented the

number of device movements staying within ZCTA k during

week t, included those devices homed the ZCTA that made no

movements. While we also observed device movements beyond

the 21-ZCTA regulated area, as well as movements into the
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regulated area from outside, we focused sharply on the regulated

area in order to ascertain how the traffic between local ZCTAs

influenced the dynamics of COVID-19 transmission.

Based upon our underlying data on device movements, we

let Vt be a 21×21 square matrix with typical element vklt
measuring the proportion of all devices originating in ZCTA k

that moved into ZCTA lduring week t. The elements of each

row of Vt sum to 1. Likewise referring to week t, we let Wt

be a 21×21 square matrix with typical element wklt measuring

the fraction of all devices with a destination in ZCTA l that

originated in ZCTA k. The elements of each column of Wt sum

to 1. Let Yt denote a 21×1 column vector with elements ykt . We

let Yt+1 represent the corresponding vector of incidence rates

1 week later, while ηt+1 is a contemporaneous vector of error

terms. Under the strong assumption of homogeneous mixing, our

geospatial model yields:

Yt+1 = α Vt W
′
t Yt + ηt+1 (2)

The model of equation (2) is an adaptation of the

conventional law of mass action implicit in SIR-type

compartmental models of the dynamics of contagious

disease transmission (43). It allows for a susceptible individual

homed in ZCTA k to be infected not only through contact

with another resident of the same ZCTA k, but also through

contact with a resident of another ZCTA l. The inclusion

of both vectors Vt and Wt , moreover, allows for two loci of

transmission from an infected individual residing in ZCTA

l to a susceptible individual homed in ZCTA k. Either the

susceptible individual homed in k had temporarily moved to

l, or the infected individual in lhad temporarily moved to k.

The unknown parameter α in equation (2), to be estimated

from the data, represents the uniform reproductive number for

COVID-19 transmission throughout the entire regulated area

for the 7-week time period under study.

Inhomogeneous mixing

The assumption of homogeneous mixing, with a uniform

reproductive number α, is strong. Accordingly, we considered

two alternative specifications involving inhomogeneous mixing.

First, we assumed instead that movements by individuals who

remained within their home ZCTA could have a different

influence on COVID incidence. To capture the effect of these

within-ZCTA device movements, we defined Dt = diag
(

VtW
′
t

)

as the K × K square matrix with the same diagonal elements as

VtW
′
t but zero off-diagonal elements, and then introduced the

additional regressor DtYt into our model. Defining the K × K

square matrix Xt = VtW
′
t − Dt , we have:

Yt+1 = α0 Dt Yt + α1XtYL + ηt+1 (3)

We refer to this alternative as inhomogeneous mixing model

A. In equation (3), the parameter α0 reflects the reproductive

number for within-ZCTA movements, while the parameter α1

reflects the corresponding reproductive number for between-

ZCTA movements. We estimated the models of equation (2)

with weighted least squares, where the weights were the ZCTA

populations derived from the New York City Department of

Health data (40).

Second, we relaxed the assumption that all between-ZCTA

movements had the same reproductive number α1. Instead,

movements to and from certain high-risk ZCTAswere permitted

to exert more influence than movements to and from the

remaining lower-risk ZCTAs. To capture such differences in

transmission efficiency, we partitioned the set of ZCTAs into

two mutually exclusive subsets, L and H, representing the

low- and high-transmission ZCTAs, respectively. Conformally

partitioning Xt vertically into two matrices, XtL and XtH , and

the column vector Yt horizontally into two vectors: YtL and YtH ,

our equation (3) becomes:

Yt+1 = α0 Dt Yt + α1XtLYtL + α2XtHYtH + ηt+1 (4)

The unknown parameters α0, α1, and α2, respectively,

represent the reproductive numbers for movements within-

ZCTAs, movements to and from low-risk ZCTAs, and

movements to and from high-risk ZCTAs. We refer to this

alternative as inhomogeneous mixing model B.

We performed two tests of inhomogeneous mixing model

B, based upon two different partitions of the set of 21 ZCTAs

delineated in Figure 2. First, on the basis of our examination

of the trends in inter-ZCTA movements, as detailed in the

Results section, we identified five high-movement ZCTAs along

the southern boundary of the 21-ZCTA area as the most likely

elements of the high-risk set H. The estimates based upon this

high-low partitioning of ZCTAs were identified as B1. Second,

we relied on the original classification of regulatory zones

specified in the Governor’s order of October 6, with the red-

zone ZCTAs specified as high risk (H) and the remaining orange

and yellow zones specified as low risk (L). These estimates were

identified as B2. We similarly estimated the inhomogeneous

geospatial models of Equations (3) and (4) with population-

weighted least squares.

The model of equations (1) through (4) does not account

for potential confounding factors. In Appendix B, we show

how the model can be extended to incorporate such potential

confounders, and we test the effects of including three

demographic characteristics as covariates: the proportion of

persons of Hispanic-Latino origin; the proportion of black

non-Hispanics; and the proportion of persons receiving public

assistance. While mobile device use has become pervasive in

the U.S., the lower rates of smartphone use among the poorest

individuals (44), as well as racial and ethnic differences in the

patterns of smartphone use (45), could have biased our results.
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FIGURE 4

Confirmed COVID-19 cases per 100,000 population in the

original red zone, original combined orange-yellow zones, and

the rest of New York City, weeks ending 8/8 through

11/28/2020. The data points represent population-weighted

rates, derived from ZCTA-specific weekly COVID-19 incidence

as reported by the NYC Department of Health (40), and

aggregated according to the scheme in Figure 2A.

Superimposed on the graphic are the dates of five successive

regulatory actions: (i) establishment of the original three zones

on October 9 (7, 29); (ii) re-designation of the original orange

zone as yellow on October 21 (24); (iii) reduction in the size of

the red and orange zones on November 3 (27, 32); (iv)

re-designation of the reduced red zone as orange on November

9 (27); and (v) re-designation of the reduced orange zone as

yellow on November 18 (28).

Results

COVID-19 incidence and test positivity

Figure 4 below plots the incidence of confirmed cases

of COVID-19 per 100,000 population in the original red

zone, the original combined orange and yellow zones,

and in the rest of New York City during the weeks

ending August 8 through November 28. Also noted

in the plot are the dates of Governor’s five successive

regulatory actions, starting with the imposition of the

original three concentric zones, effective October 9. While

the regulatory zones underwent revisions, the geographic

areas used to compute case incidence in Figure 4 remained

unchanged.

After rising during August and September, COVID-19

incidence in the ZCTAs comprising the original red zone

started to decline during the week ending October 10, a time

period that included 5 days before the regulatory scheme

took effective. COVID-19 incidence in the red zone continued

to decline through the week ending October 31, but then

began to rebound. By contrast, COVID-19 incidence in the

original orange and yellow zones, as well as the rest of New

York City, had been increasing since at least mid-September,

and reached approximately the same level as the original red

FIGURE 5

Confirmed COVID-19 cases per 100,000 population (Left Axis)

and Test Positivity rate (Right Axis) in the Original Red Zone,

weeks ending 8/8 through 11/28/2020. As in Figure 4, the data

points represent population-weighted rates, derived from

ZCTA-specific weekly COVID-19 incidence (40) and test

positivity (41) among the ZCTAs identified as covering the red

zone in Figure 2A. As in Figure 4, the blue arrows show the dates

on which the five successive regulatory actions went into e�ect,

while the accompanying maps show the corresponding zone

changes.

zone by November. By November 21, all three series had

exceeded the threshold of 100 cases per 100,000 population

per week.

Figure 5 focuses sharply on the original red zone. The

incidence of confirmed COVID-19 cases per 100,000

population, measured on the left-hand vertical scale, is

reproduced from Figure 4. Superimposed on this time series

is the test positivity rate, measured on the right-hand vertical

scale. As in Figure 4, the dates when each of the five successive

regulatory actions went into effect are noted. Again, while the

regulatory zones underwent successive revisions, the geographic

area used to compute the positivity rate – namely the original

red zone – remained unchanged.

The variable vertical gap between the two time series in

Figure 5 corresponds to the changing testing rate for COVID-

19. Thus, the testing rate per 1,000 population progressively

increased from 11.33 during the week ending August 8 to

17.15 during the week ending September 12, and then further

increased to 24.61 by the week ending October 10. By the weeks

ending November 7, 14 and 21, respectively, the testing rates had

reached 33.99, 27.88, and 28.20 per 1,000 population.

Because the red-zone ZCTAs in Figure 2A only approximate

the precise boundaries of the original red zone, the estimated

test positivity rates plotted in Figure 5 represent only

approximations to the positivity rates that were relied upon by

state regulators. Still, during the week ending November 7, there

is a striking divergence between the declining test positivity rate

and the concurrently rising incidence rate. This finding suggests

that regulators, relying on the trend in a test positivity rate that
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was biased downward by enhanced testing, relaxed restrictions

when in fact the incidence of the disease was rising.

Figure 6 below tracks the detailed evolution of COVID-19

incidence in each of the 21 ZCTAs identified in Figure 2 during

the weeks ending September 12 through November 28. The first

row, covering the weeks ending September 12 through October

3, shows increasing disease incidence in the central ZCTAs

covering what would ultimately be designated as the red zone.

In the second row, covering the weeks ending October 10 – 31,

the incidence of COVID-19 was declining in the central ZCTAs

but increasing in the peripheral ZCTAs, particularly along the

southern and western borders of the South Brooklyn region.

In the third row, covering the weeks ending November 7 –

28, COVID-19 incidence continued to rise in these peripheral

ZCTAs, while resuming its upward trend in the central ZCTAs.

By November 28, the original central zone of high-incidence

ZCTAs is no longer distinguishable.

Visits to restaurants: Paired POI analysis

Figure 7 below shows the results of our paired POI analysis

of visits to restaurants and other eating places. The estimate

of β1 = −0.075 for the week ending October 8 is negative

and significantly different from zero in a two-sided test (p =

0.0497). That is, visits to restaurants in the red zone had already

declined by 7.5% relative to those in the orange zone during

the week before the regulatory scheme went into effect. While

the individual estimates of β2 = −0.059 and β3 = −0.067

are not significantly different from zero, the overall downward

trend is evident by the weeks ending October 29 and November

5, where β4 = −0.114 (p = 0.003) and β5 = −0.172 (p <

0.001). Thereafter, as the red zone is reduced by half (effective

November 3), then reclassified as orange (effective November

9), and then reclassified as yellow (November 18), the estimates

of βt begin to rebound. By the week ending December 3, the

FIGURE 6

Evolution of weekly case rate per 100,000 population among 21 ZCTAs in South Brooklyn, weeks ending 9/12 through 11/28/2020. For base

map of New York City ZCTAs, see Ref. (33).
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FIGURE 7

Estimated time-specific fixed e�ects derived from the paired

point-of-interest analysis. Each point represents an estimate of

the contrast βt − β0 for t = 1,…, 9, where t = 0 represents the

week ending 10/1/20 as a reference category. The error bars

surrounding each point represent 95% confidence intervals.

estimate β9 = −0.006 is no longer significantly different from

zero (p= 0.87).

Movements within and between
regulatory zones

The results of our paired analysis of restaurants and other

eating places, as shown in Figure 7, narrowly reflect trips to a

specific category of establishments that were subject to specific

regulatory controls. They do not necessarily capture broader

trends in unregulated movements of individuals within and

between zones.

Supplementary Table A1 delineates movements of devices

within and between zones, as well as movements outside the

regulated area, during the 3 weeks before and the subsequent

3 weeks after the regulations went into effect on October 9.

Comparison of the movement matrices during the two time

periods (September 18 through October 8, October 9 through

October 29) indicates that overall movement patterns remained

stable. Among devices homed in the original red zone, only 57–

58% of movements were confined to the red zone, while 23–

24% of movements were to destinations outside the regulated

area entirely. The same pattern is evident in the movements

of devices homed in the original orange and yellow zones as

well.

The overall stability of within-zone movements seen in

Supplementary Table A1 could still obscure significant changes

in mobility, particularly in the proportion of devices that made

few if any movements. Supplementary Figure A2, however,

shows that the percentage of devices that made no movements

at all rose only by 1 to 2 percentage points.

FIGURE 8

Most frequent transits between ZCTAs during 10/25 through

11/28/2020. The width of each blue arrow is proportional to the

number of device movements in the Safegraph cohort. The

longer arrows with dashed lines represent transits between

non-contiguous ZCTAs. The number of device movements

ranged from 21139 (corresponding to the transit 11229 →

11235) to 5002 (corresponding to 11214 → 11224). Transits

between ZCTAs with fewer than 5,000 movements are not

shown. The transits captured by the arrows comprised 44.5% of

all device movements between ZCTAs. For base map of New

York City ZCTAs, see ref. (33).

Figure 8 tracks more detailed movements between ZCTAs,

rather than between regulatory zones, during October 25

through November 28. This time period corresponds to the final

5 weekly maps in Figure 6, when COVID-19 was increasing

both in the central ZCTAs and the peripheral ZCTAs along

the southern and western edges of the regulated area. The

width of each arrow corresponds to the magnitude of the flow

between ZCTAs. The figure demonstrates that dominant inter-

ZCTA movements were between four red-zone ZCTAs (11229,

11223, 11230, 11204) and three orange- and yellow-zone ZCTAs

(11235, 11224, 11214). Moreover, there was significant device

traffic between these southern ZCTAs and other peripheral

ZCTAs to the west of the regulated area.

Influence of high-risk ZCTAs: Geospatial
analysis

Based upon our findings in Figure 8, we identified five

high-mobility ZCTAs as potential candidates for high-risk

transmission to other surrounding ZCTAs in the area: 11223,

11229, 11235, 11224, and 11214. As seen in Figure 2A, two of

the areas, 11224 and 11214, were not in the original red zone,
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FIGURE 9

Estimates of the reproductive number α from a series of

geospatial analyses. (Left) Estimate of a uniform parameter α =

1.157 with 95% confidence interval [1.106, 1.208] for the entire

regulated region, based upon the assumption of homogeneous

mixing. The estimate of α is significantly di�erent from 1.0

(2-sided F-test, p < 0.001). (Middle) Estimates of the parameters

α0 for the e�ect of movements within ZCTAs and α1for

between-ZCTA movements, based upon a two-parameter

model of inhomogeneous mixing A. (Right) Estimates of the

parameters α0 for the e�ect of movements within ZCTAs, α1for

the e�ect of movements from and to low-risk ZCTAs, and α2for

the e�ect of movements from and to high-risk ZCTAs 11223,

11229, 11235, 11224, and 11214, based upon a three-parameter

model of inhomogeneous mixing B1. The estimated parameter

α2 = 1.910 with 95% confidence interval [1.268, 2.552] was

significantly di�erent from 1.0 (2-sided F-test, p = 0.012). Full

details are given in Supplementary Table C1.

while another area, 11235, was excluded from the red zone when

the zones were contracted on November 3.

Figure 9 shows the principal results of our geospatial

analysis. At the left end of the graphic, in a model of

homogeneous mixing with a single, uniform parameter for

the entire regulated area (equation 2 in the Methods section),

the estimated reproductive number was α = 1.157 with 95%

confidence interval [1.106, 1.208]. The middle panel shows the

results of a two-parameter model of inhomogeneous mixing

A, which allowed for movements within ZCTAs to have a

different effect on COVID-19 transmission (equation 3). Both

parameters α0 for within-ZCTAmovements and α1for between-

ZCTA movements were in the range of 1.1-−1.2, though they

were too imprecise to be distinguishable from each other or from

1.0.

The right-hand panel of Figure 9 shows the estimates of

the three-parameter model with inhomogeneous mixing B1

(equation 4), which further distinguished the five high-risk

ZCTAs 11223, 11229, 11235, 11224, and 11214 from the

remaining sixteen low-risk ZCTAs. The estimate of α0 was

imprecise but consistent with the findings in the two-parameter

model A in the middle panel. The estimate of α1 for low-risk

ZCTAs was likewise imprecise, but pointed to a reproductive

number <1.0. By contrast, the estimate of α2 for the effect

of device traffic to and from the five high-risk ZCTAs gave

a reproductive number of 1.910 with 95% confidence interval

[1.268, 2.552]. Moreover, the estimate of α2 was significantly

different from α0 (p = 0.045) and α1(p = 0.012) based upon

2-sided F-tests.

The alternative test of the three-parameter model with

inhomogeneous mixing B2 (equation 4), based upon the

classification of all the original red-zone ZCTAs as high risk, did

not yield such precise results. The estimate of α2 for the effect

of device traffic to and from these original red-zone ZCTAs gave

a reproductive number of 1.485 with 95% confidence interval

[0.992, 1.978]. This estimate was not significantly different from

α0 (p = 0.284) or from α1 (p = 0.124). The complete results of

the geospatial analysis are shown in Supplementary Table C1.

Supplementary Table C2 displays the effects of incorporating

three demographic characteristics as covariates in our model:

the proportion Hispanic-Latino, the proportion black non-

Hispanic, and the proportion receiving public assistance. None

of the coefficients of these covariates achieved statistically

significance at the 5-percent level. The results were consistent

with those reported in Figure 9.

Discussion

Non-identifiability of the e�ect of the
governor’s regulatory scheme

Our analysis of paired eating places straddling the red-

orange border suggests that the Governor’s October 6 regulatory

scheme did indeed have some effect. The red-zone rules allowed

for only takeout and delivery, while the less stringent orange-

zone rules allowed for outdoor dining as well (23). By the

week ending November 5, as seen in Figure 7, device visits

to establishments on the red side of the red-orange border

were down 17.2 percent more than their counterparts on the

orange side. Attributing the entire decline to the regulatory

scheme is problematic, however, inasmuch as device visits to

establishments on the red side of border were already dropping

more rapidly during the week ending October 8. Aside from

voluntary action on the part of the red zone’s residents, the

Mayor’s threats to impose controls in five key zip codes in

South Brooklyn, voiced as early as September 29 (21), may have

contributed to a preexisting downward trend.

What’s more, a demonstrated narrow effect on a specific

endpoint such as restaurant visits does not necessarily imply

that the regulatory scheme had an overall deterrent effect on

SARS-CoV-2 transmission in South Brooklyn. The COVID-

19 incidence data in Figure 4 do show a temporary decline

during the weeks ending October 17, 24, and 31, after the

regulatory scheme had entered into force. However, as in our

interpretation of the restaurant visitation data in Figure 7,

COVID-19 incidence was declining during the week before

any controls went into effect. And in view of the ∼5-day
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incubation period between initial infection and the subsequent

development of symptoms warranting testing (46), the incidence

of the disease was likely to have been declining even earlier.

These considerations reinforce the conclusion that the actual

effect of the Governor’s regulatory scheme is, strictly speaking,

not identifiable from the available data.

Even if the Governor’s regulatory scheme was at least partly

responsible for retarding the surge of COVID-19 in the central

red zone during the last 3 weeks of October, it is evident that

the program’s success was short-lived. As Figures 4, 6 show, the

decline in COVID-19 incidence during October was ultimately

reversed by a wave of increasing disease incidence that had

similarly overtaken the surrounding orange and yellow zones by

the end of November. These observations beg the question:Why

did the Governor’s scheme ultimately fail?

Overreliance on test positivity

One clue is offered by the striking discordance between the

upward surge of disease incidence and the continuing downward

trend in test positivity during the week ending November

9, as shown in Figure 5. The underlying explanation for the

discordance of these two trends was the continuing expansion of

testing, which diluted the rising incidence with an abundance of

negative test results. It was just at this juncture that regulators,

overly fixated on the test positivity rate, cut the size of the red

zone in half and then converted the red zone to orange. Under

this interpretation of the evidence, the Governor’s regulatory

scheme did have an initial retardant effect on COVID-19

incidence, but subsequent premature withdrawal of regulatory

controls neutralized the effect of the initial policy.

Access controls vs. restrictions on
population movement

The regulations imposed in the Governor’s concentric

regulatory zones were fundamentally controls on access –

to eating places, to school buildings, to houses of worship,

and to large meetings. They differ from the classic remedy

of containment, which entails restrictions not just on access,

but also on overall population movement (47–49). Although

restricting access to some critical locations is indeed likely to

reduce disease propagation (15–17, 50, 51), the question here

is whether focused controls on access alone were sufficient to

alter the underlying population movement patterns that served

as the template for a surge in COVID-19 cases. While some have

cited increasing indoor activity with the arrival of colder fall

weather (52) or a trend toward large family gatherings as the

Thanksgiving holiday approached (53), we have in mind more

fundamental, well-established contact networks.

The hypothesis that the underlying population movement

patterns within the regulated area in South Brooklyn were

insufficiently altered by the Governor’s regulatory controls

on access was supported by the stability of the interzone

movement matrices before and after the promulgation of the

regulatory scheme (Supplementary Table A1) as well as absence

of any significant change in the proportion of devices with no

movements (Supplementary Figure A3).

High-movement ZCTAs as drivers of the
local COVID-19 surge

One interpretation of the trends in Figure 4 is that the surge

in COVID-19 cases that ultimately overran South Brooklyn was

a citywide phenomenon, and that the incidence of the disease

was simply increasingly uniformly across all ZCTAs. However,

the patterns of declining and rising COVID-19 incidence seen

in Figure 6 go against this interpretation. Once the incidence

reached a low point around the week ending October 17,

the subsequent increase was driven by ZCTAs along the

southern and western borders of the area. During the resurgence

of COVID-19 incidence, movement patterns were hardly

uniform, as shown in Figure 8. In fact, the geospatial analysis

demonstrates that five high-movement ZCTAs – of which only

two were part of the original red zone – were the main drivers

of the resurgence in COVID-19, with a reproductive number

close to 2, as shown in the panel labeled Inhomogeneous Mixing

B1 in Figure 9. That population movement was the critical

determinant is further supported by the finding of the inferior

performance of Model B2, based upon the Governor’s original

partitioning of regulatory zones (Supplementary Table C1).

A natural experiment

Our study is fundamentally observational. We did not

analyze a macro-experiment in which various communities

were randomly assigned to different regulatory controls or no

intervention at all (54). Still, our setup has many of the features

of a natural experiment. The Governor’s announcement of a new

regulatory regime on October 6, to become effective by October

9, could reasonably be characterized as an abrupt shock (7). In

view of the Mayor’s earlier threats to impose controls on certain

zip codes in South Brooklyn (21), however, it could hardly

be considered an unanticipated shock. The implementation of

distinct regulations within each of three concentric regulatory

zones provided natural intervention and control groups, and the

results of our paired restaurant analysis (Figure 7) suggest that

the regulations on access were effective and enforced. While the

restaurants stayed put, however, Supplementary Table A1 and

Figure 8 show that the experimental participants crossed over

from one zone to another. Midway through the intervention, on
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November 9, the Governor cut the regulatory zones in half (27),

thereby contaminating the original experimental assignments.

Questions of generalizability

Our study has focused on a narrowly defined geographic

location during a specific wave of the COVID-19 epidemic.

Generalization of the current findings to other settings or other

phases of the epidemic needs to proceed with caution. Still,

the evidence reported here is broadly consistent with findings

reported in Hong Kong (8), in Shenzhen, China (18), in Dublin,

Ireland (13), in Cataluña, Spain (16), in various Latin American

cities (9), and in other sites in Asia Pacific and Europe (20).

The critical role of mobility has also been demonstrated in the

most populous counties of the United States during the Omicron

variant wave of the COVID-19 epidemic during December 2021

–February 2022 (14).

Conclusions

Combining data on COVID-19 incidence and testing

outcomes with data on the movements of devices equipped with

location-tracking software, we found that a regulatory scheme of

concentric geographic zones imposing graduated restrictions on

access did not halt the surge of COVID-19 in South Brooklyn,

New York, during October-November 2020.

Beyond this principal conclusion, we can reasonably draw

some additional inferences from the accumulated evidence.

First, test positivity as a real-time indicator of regulatory

effectiveness is fraught with potential biases (55, 56). Here, the

Governor and his advisors may have been led astray by a test

positivity rate that was kept misleadingly close to three percent

by an endogenous increase in testing among COVID-negative

persons (Figure 5).

Second, while restrictions on access to eating establishments

and other high-risk venues may be narrowly effective

(Figure 7), they do not prevent people from moving around

(Supplementary Table A1 and Figure 8). In highly populous

areas such as South Brooklyn, a halfway strategy of concentric

regulatory zones based solely on access restrictions may

be no substitute for the classic approach of concentric

containment/quarantine areas (6, 49).

Third, overreliance on static rather than dynamic

measures of disease burden to draw the boundaries of

regulatory zones can prove to be highly misleading. Our

geospatial analysis of COVID-19 incidence, entailing a

dynamic model of COVID-19 incidence across 21 zip code

tabulation areas (Figure 9), identified five high-movement

ZCTAs where the reproductive number approached

2. Two of the five were not in the original red zone.

Concentric zones may appear to be an effective regulatory

approach in principle, but only if the boundaries are

drawn correctly.

Fourth, policies restricting movement can take many

forms, including controls on transportation networks.

There is substantial evidence pointing to the initial

widespread dissemination of SARS-CoV-2 via New York

City’s subway-based network during February-March 2020,

followed by percolation of new infections within local

community hotspots (57). A policy of running express

lines with limited density might have been an alternative

to the complete shutdown of subway lines adopted in

Wuhan (58).

Finally, in extreme cases, it may be necessary to impose

stay-at-home restrictions. During an outbreak in September

2020 on the campus of the University of Wisconsin-Madison,

the university administration barred students from leaving two

highly infected residence halls. By the end of the month,

COVID-19 incidence on campus had fallen below that of the

surrounding county (51). Even so, such stay-at-home orders

may prove incompletely effective when disease propagation is

dominated by intrahousehold transmission, as it was during

the winter COVID-19 surge in Los Angeles County, a region

with a high prevalence of multi-generational households (59).

Whether such a stay-at-home order would have been effective

or even feasible in the case of South Brooklyn remains an

open question.
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