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Editorial on the Research Topic

Advanced motion control and navigation of robots in extreme
environments
s

The use of robotics and artificial intelligence in environments which are dangerous,
demanding, and dull is one of the key research areas developed recently to address the
industrial need on reducing the human burden in hazardous workplace and create a
safer environment for humans by taking them out of extreme environments. This may
span various unstructured and cluttered environments that are difficult or dangerous for
humans to access, including monitoring and sampling of deep sea, glaciers, and frozen
ocean, volcanology, underground mining, space exploration, and nuclear production
and decommissioning. Robotics research into challenging and cluttered environment
covers Research Topic such as advanced mobility, navigation, and mapping as well as
advancedmotion control, manipulation, and teleoperation. Environmental characterization
includes research into machine vision, remote sensing, and deep reinforcement
learning.

This research need is covered in this Research Topic through nine contributions
co-authored by researchers from three continents (Asia, Europe and North
America). This confirms the importance of the research and development
in this area across various countries and an ongoing demand for more
investment.

The content of this Research Topic has been organized as follows. The first paper
Mansfield and Montazeri is a review paper discusses the application of reinforcement
learning (RL) in active environmental monitoring (EM) systems. The need for
reliable and intelligent monitoring solutions to address environmental pollution
and climate change is highlighted, with a focus on the use of RL to train agents
for adaptive and robust sensing in dynamic and extreme environments. The paper
proposes a framework that formulates active sensing as an RL problem, unifying
various EM tasks such as coverage, patrolling, source seeking, and exploration.
Despite the potential of RL for EM applications, practical implementation and
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research in multi-agent systems are lacking, with most work
remaining in the simulation phase.

The next five papers address the navigation problems
in unstructured and extreme environments. Sadeghzadeh-
Nokhodbderiz et al. study the problem of attitude estimation of
a quad-copter system when the quad is equipped with camera
and gyroscope sensors in which cameras, usually suffer from a
slow sampling rate and processing time delay compared to inertial
sensors, such as gyroscopes. Toward this, a sampling importance re-
sampling (SIR) particle filter (PF) is extended using a discretized
attitude kinematics in Euler angles and the processing images
captured by the camera using the ORB feature extraction method
and the homography method in Python-OpenCV. Experimental
results are provided for a DJI Tello type quadcopter to demonstrate
the performance of the proposed method.

Malakouti-Khah et al. solves the problem of simultaneously
localization and mapping (SLAM) for a multi-robot system in a
dynamic environment. The use of several robots in large, complex,
and dynamic environments can significantly improve performance
on the localization and mapping task, which has attracted many
researchers to this problem more recently. Toward this, a modified
Fast-SLAM method is proposed by implementing SLAM in a
decentralized manner by considering moving landmarks in the
environment. Due to the unknown initial correspondence of the
robots, a geographical approach is embedded in the proposed
algorithm to align and merge their maps. Data association is
also embedded in the algorithm; this is performed using the
measurement predictions in the SLAM process of each robot.

The study conducted by Lim and Jo introduces WA∗DH+, an
improved version of WA∗DH for path planning and navigation
of robots in the extreme environments. WA∗DH struggles to find
suboptimal nodes due to its filtering method, so the study inflated
the suboptimality of the initial solution. WA∗DH + uses the GBFS
algorithm with an infinitely bounded suboptimal solution, resulting
in faster solution returns than WA∗DH.

The work in Sadeghzadeh-Nokhodberiz et al., however,
addresses the inter-agent collision avoidance problem for a group of
quadcopters cooperate each other for a totally distributed collision-
free formation tracking control using Barrier Lyapunov function
(BLF). The problem is formulated in a backstepping setting where
both tracking and inter-agent collision avoidance are obtained
through a predefined accuracy due to the use of BLFs.Virtual control
inputs are considered for the translational (x and y-axes) subsystems
that are then used to generate the desired values for the roll and pitch
angles for the attitude control subsystem to solve the underactuated
nature of the system leading to a hierarchical controller structure
for each quadcopter. Finally, the attitude controller is designed for
each quadcopter locally by taking into account a predetermined
error limit by another BLF. Simulation results demonstrate the
performance of the proposed approach.

Nevertheless, the fifth paper on navigation published by
Sands has incorporated optimality criteria in problem formulation.
Optimization techniques are useful for autonomous navigation
but face challenges like noisy multi-sensor technologies and
computational burdens. This study aims to highlight the efficacy
and limitations of common methods and proposes more, applying
them to full, nonlinear, coupled equations of motion. Five different
types of optimum guidance and control algorithms are presented

and compared to a classical benchmark. Real-time optimizationwith
singular switching and nonlinear transport theorem decoupling is
introduced, showing superior performance in tracking errors, fuel
usage, and computational burden.

The investigation by Hathaway et al. addresses the need of
teleoperation in challenging environments. The use of telerobotics
for semi-autonomous robotic disassembly of electric vehicle
batteries is studies in this work. It compares a traditional haptic-
cobot framework with identical cobots, revealing a time reduction
of 22%–57%. However, this improvement is mainly due to expanded
workspace and 1:1 positionalmapping, and a 10%–30% reduction in
first attempt success rate.The study also highlights the importance of
realism in directional information for unbolting and grasping tasks.

The last paper is dealing with designing advanced motion
controllers for robotics applications in front of external disturbances
and uncertainties. Nguyet and Ba introduces the task-space
position-tracking control of robotic manipulators using an
adaptive robust Jacobian-based controller. The controller’s structure
is based on the conventional Proportional-Integral-Derivative
(PID) paradigm. To compensate for both internal and external
disturbances in the robot dynamics, an additional neural control
signal is then synthesized under a non-linear learning law. Then,
a novel gain learning feature is included to automatically change
the PID gains for different operating situations, providing the high
robustness of such a controller. Lyapunov constraints ensure the
closed-loop system’s stability. Results from extensive simulations are
used to rigorously verify the suggested controller’s effectiveness.
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Path planning with the derivative
of heuristic angle based on the
GBFS algorithm

Daehee Lim* and Jungwook Jo

R&D 2 Team, Vessel Aerospace Co., Ltd., Suwon-si, South Korea

Robots used in extreme environments need a high reactivity on their scene. For

fast response, they need the ability to find the optimal path in a short time. In

order to achieve this goal, this study introduces WA*DH+, an improved version

of WA*DH (weighted A* with the derivative of heuristic angle). In some path

planning scenes, WA*DH cannot find suboptimal nodes with the small inflation

factor called the critical value due to its filtering method. It is hard to develop a

new filtering method, so this study inflated the suboptimality of the initial

solution instead. Critical values vary in every path planning scene, so

increasing the inflation factor for the initial solution will not be the solution

to our problem. Thus, WA*DH + uses the GBFS algorithm with the infinitely

bounded suboptimal solution for its initial solution. Simulation results

demonstrate that WA*DH + can return a better solution faster than WA*DH

by finding suboptimal nodes in the given environment.

KEYWORDS

greedy best first search, heuristic angle, heuristic search, node-based algorithm, path
planning, trajectory planning

Introduction

Path planning is an essential part of self-moving machines such as self-driving cars,

unmanned aerial vehicles, or other robotics systems (De Momi, Elena et al., 2016;

Boulares and Barnawi, 2021; Mac, Thi Thoa et al., 2016; Fu, Bing et al., 2018; Duan, Chao,

et al., 2020; Liu, Zhiyuan et al., 2020; Hou, Mengxue et al., 2021). Path planning aims to

find the path that has the lowest path cost in the shortest time because self-moving

machines need fast reactions on their scene. Here, the path cost means the distance from

the start to the target. Many path planning algorithms were developed to achieve this goal.

Bioinspired algorithms such as genetic algorithm (GA), particle swarm optimization

(PSO) (Das et al., 2016; Song et al., 2016), sampling-based algorithms such as rapidly

exploring random tree (RRT), Voronoi, and artificial potential field (APF) algorithms are

the examples (Yang, Liang et al., 2014; Yang, Liang et al., 2016). However, these

algorithms sometimes show poor performances due to some limitations, such as the

local minimum situation.

In order to avoid these threats, the A* algorithm (Hart et al., 1968) motivated by

Dijkstra’s algorithm and other node-based algorithms were developed. The main

characteristic of A* and all variations of A* is the heuristic. The heuristic means the
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estimated distance from the current node to the target. The

heuristic is the most important factor in A* and all variations of

A* because the heuristic can change the performance of

algorithms (Jing and Yang, 2018). The concept of the

heuristic is used not only for node-based algorithms but also

for other algorithms, such as the ACO algorithm (Dai, Xiaolin

et al., 2019).

The heuristic is a powerful method for finding the optimal

path. However, algorithms using the heuristic have a time-

consuming problem. This problem made A* hard to use in

real-time systems, so many researchers developed various

methods to get a result of heuristic-using algorithms in a

short time. With these trials, weighted A*(WA*), the bounded

suboptimal search algorithm, was developed (Pohl, 1970). WA*

uses the heuristic multiplied by the inflation factor (ϵ> 1). The
concept of inflating the heuristic solved a time-consuming

problem. However, the inflated heuristic cannot guarantee the

optimality of the result anymore.

Many researchers focused on this side effect, and as a result,

many variations of WA* were developed. For example,

dynamically weighted A*(DWA*) uses the d(root) as a depth

bound (Pohl, 1973) and A*
ϵ uses the desired suboptimality bound

to build the focal list from a node selected to expand (Pearl and

Kim, 1982; Thayer and Ruml, 2008; Thayer and Ruml, 2009).

Also, Aine Sandip et al. (2016) suggested two versions of multi-

heuristic A*(MHA*), which uses multiple heuristic functions to

find the path; independent MHA*(IMHA*), which uses

independent g and h values for each search, and shared

MHA*(SMHA*), which uses different g but a single g value

for all the searches. Ying et al. (2018) suggested the evolutionary

heuristic A*(EHA*), which uses GA to automatically design,

calibrate, and optimize multi-weighted heuristic functions to

maximize the performance of the algorithm (Yiu et al, 2018).

Anytime algorithms were also used in various path planning

environments. Anytime algorithms have a flexible time cost and

can return a sub-optimal solution in a short time and

progressively optimize it till the time limit expires. The naïve

anytime A*(ATA*) returns its result by iteratively reducing the

inflation factor; however, it repeats previous works (Zhou and

Hansen, 2002). To address this inefficient work, anytime

repairing A*(ARA*) reuses the previous work to optimize the

path efficiently (Likhachev et al., 2003; Li et al., 2012). The

concept of reusing the previous work was adapted to D*.

Thus, anytime dynamic A* was developed (Likhachev, Maxim

et al., 2005). However, they need an understanding of complex

mathematical logic, which can make users reluctant to use these

algorithms.

Recently, weighted A* with the derivative of the heuristic

angle (WA*DH), motivated by the concept of anytime

algorithms, was suggested (Lim et al., 2020). WA*DH returns

its path by getting an initial solution with a certain inflation factor

and partially replans the path with the same inflation factor used

in the initial solution. Because WA*DH improves the initial

solution only with the direction of the path, it does not require

complicated mathematical logic. Thus, WA*DH has the

advantage that users can easily understand how WA*DH can

improve its initial solution. However, we found that the

performance of WA*DH at a certain range of inflation factors

is worse than that of the larger inflation factor. We supposed that

this is because of the quality of the initial solution ofWA*DH and

this problem makes WA*DH hard to use in the self-moving

vehicles used in extreme environments.

In order to address this problem, this study introduces

WA*DH+. WA*DH+ is motivated by WA*DH, so the overall

procedures of WA*DH+ are the same as those of WA*DH.

The difference between WA*DH and WA*DH+ is that

WA*DH+ uses the GBFS algorithm to get the initial

solution, whereas WA*DH uses the WA* to get the initial

solution. We confirmed from the simulations that the

suggested method not only reduces the elapsed times but

also removes the probability of the degradation of the

performance of the algorithm. From the simulation results,

we believe that WA*DH+ will make self-moving vehicles used

in extreme environments more responsive.

Weighted A*with the derivative of the
heuristic angle

As stated in the introduction, WA*DH uses the derivative of

the heuristic angle (hereinafter referred to as DH) to refine the

initial solution. The heuristic angle can be defined as (1), and its

schematic diagram is stated in Figure 1. In Eq. 1, {T, n1, n2} ∈ P
denotes the target node, a current node, and the parent node of a

current node, respectively.P denotes the set of nodes that consist

of the path. T denotes the target, and subscripts {target, n, n − 1}
are subscripts of {T, n1, n2}, respectively:

θha �
∣∣∣∣∣∣∣∣tan−1(ytarget − yn

xtarget − xn
) − tan−1(yn − yn−1

xn − xn−1
)
∣∣∣∣∣∣∣∣ (1)

FIGURE 1
Schematic diagram for the heuristic angle.
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The first step of WA*DH is getting an initial solution from

WA*. Once the procedures of WA* are executed, coordinates of

nodes that consist of the initial solution will be listed. With this

list, WA*DH calculates heuristic angles and their derivatives. The

shape of the initial solution and the derivatives of heuristic angles

are stated in Figures 2A,B.

From Figure 2B, there are some noise-shaped patterns

near 0. These elements can be considered suboptimal nodes

by the definition of suboptimal nodes, so they must be

eliminated. To do so, WA*DH filters them with a

threshold defined as (2). With these methods, Figure 2B

will be changed to Figure 3. In Eq. 2, θ′ha(n) denotes the

derivative of the heuristic angle of nth node of the initial

solution andm denotes the total number of nodes that consist

of the initial solution:

Threshold � ∑m
n�1

(θ′ha(n)) ÷ m (2)

The next step of WA*DH is searching suboptimal nodes. The

suboptimal node contains two nodes: occurrence and escape. The

occurrence node is defined as a node with a positive DH, and the

escape node is defined as a node with negative DH. Also, the

escape node must satisfy one more condition; there must be at

least one occurrence node between the start and a node with

negative DH. By the definition of suboptimal nodes, we can find

two occurrence nodes near the 110th and 200th nodes and three

escape nodes near the 120th, 150th, and 280th nodes from

Figure 3.

The purpose of searching suboptimal nodes is to make the

node-set. The node-set contains the start and the target nodes

for local replanning. Local replanning needs to be executed

for the number of occurrence nodes. In the example

environment, there are two occurrence nodes, so local

replanning needs to be executed twice. The start and the

FIGURE 2
Initial solution and their derivatives of heuristic angles. (A) Initial solution from WA*. (B) The derivatives of heuristic angles.

FIGURE 3
Filtered DH with a threshold.
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target for local replanning can be determined as follows and

Figure 4 shows the start and the target for local replanning of

the example environment:

1) The start of the first local replanning is the start of the initial

solution, and the target of the first local replanning is the first

escape node. However, if there are two or more escape nodes

between two occurrence nodes (or target of the initial

solution), the last escape node will be chosen for the target

of the local replanning.

2) The start and the target of the second and the subsequence

local replanning are targets of the previous local replanning

and nth escape node. If there are two or more escape nodes

between two occurrence nodes (or target of the initial

solution), the last escape node will be chosen for the target

of the local replanning.

Next, WA*DH executes WA* multiple times based on the

node-set. The number of executions is the same as the number of

occurrence nodes, and the inflation factor in each execution is

equal to the initial solution. After that, WA*DH replaces the

initial solution with the locally replanned paths. The procedure of

the replacement contains not only replacing nodes but also

updating g(n) and h(n). As a result, WA*DH returns its

result. Figure 5 states the initial solution and final solution of

WA*DH in a dotted line and a full line, respectively.

WA*DH+: Locally replans paths based
on the infinitely bounded suboptimal
solution

Critical values on WA*DH

Theoretically, the path cost of WA*DH decreases with the

decreasing inflation factor. However, we found that the path cost

of WA*DH with a certain inflation factor is higher than that with

a larger inflation factor. This is stated in Figure 6 and Table 1. In

Figures 6B,D,F, θ′haf denotes the filtered DH with a threshold; a

dotted line and a full line in Figures 6A,C,E denote the initial and

final solution of WA*DH, respectively. Table 1 states the elapsed

times and path costs of each simulation.

From the initial solution in Figures 6A,C,E, it is intuitively

clear that there are two detouring sections, so we can expect that

there will be two escape nodes. When ϵ � 2, WA*DH detected

two escape nodes correctly, so the quality of the path cost is equal

to A*. However, when ϵ � 1.8, WA*DH detected only one escape

node near the 300th node and the path cost of WA*DH is higher

than the path cost of WA*DH when ϵ � 2. We first supposed this

is becauseWA*DH cannot detect all suboptimal nodes. However,

as stated in Figure 6D, WA*DH with ϵ � 1.5 found only one

escape node at the same location in Figure 6D, but its path cost is

equal to A*. From these results, we concluded that the fault

detection of suboptimal nodes is not the cause of the poor

performance. Also, we defined inflation factors that make

performance degradation critical value.

Get an initial solution from the greedy GFS
algorithm

It is hard to avoid the threat of critical values because

they are unpredictable. We thought that using a large

inflation factor would avoid the threat of the critical

value. However, it is hard to decide on a large inflation

FIGURE 4
The start and the target for local replanning of the example.

FIGURE 5
Initial and final solution of WA*DH.
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FIGURE 6
Results ofWA*DHon the different inflation factors. (A)Result ofWA*DHon ϵ � 2.2. (B) θ′haf ofWA*DHon ϵ � 2.2. (C) Result ofWA*DHon ϵ � 1.8.
(D) θ′haf of WA*DH on ϵ � 1.8. (E) Result of WA*DH on ϵ � 1.5. (F) θ′haf of WA*DH on ϵ � 1.5.
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factor because the criteria for big and small are different for

each person. From this, we hypothesized that an extremely

high inflation factor, such as an infinite inflation factor, will

be enough to call a large inflation factor. Therefore, we

suggest the greedy best-first search (GBFS) algorithm as

the algorithm for the initial solution. GBFS is an

algorithm that searches nodes with only heuristic, so we

thought that using the GBFS algorithm is equal to using WA*

with the infinite inflation factor. The cost function of GBFS is

stated in Eq. 3, where f(n) denotes the cost function of a node

of the GBFS algorithm and h(n) denotes the heuristic of a

node:

f (n) � h(n) (3)

Theorem. If the inflation factor is extremely high (or infinite),

then the effect of the g term will be disappeared. Here, g is the cost

of the path from the start node to the nth node.

Proof.

Let the cost function of an algorithm be

f () � g +  × h (4)

We can change Eq. 4 to

f ()


� g

+ h (5)

Taking the limit on both sides of Eq. 5,

lim
→∞(

f ()
ϵ ) � lim

→∞(g

) + lim

→∞(h) (6)

f ()


≈ h (7)
∴ f () ≈  × h (8)

The role of the inflation factor on the cost function, such as

Eq. 4, is deciding the influence of the heuristics compared to the

cost of the path, g(n). However, there is no need for the inflation

factor because Eq. 8 does not contain g(n) anymore. so we can

remove ϵ from Eq. 8 With these procedures, we can derive Eq. 3

as a result.

Using the GBFS algorithm gives us some advantages, as

stated in Figure 7. Figure 7 states escape nodes found from the

result of WA* with ϵ � 1.8, ϵ � 2.2, and the GBFS algorithm,

and circles in Figures 7A,C,E state the locations of occurrence

nodes.

WA*DH in Figure 7B detected two occurrence nodes,

so we can expect there would be two escape nodes.

However, WA*DH in Figure 7 detected only one escape

node. Also, in Figure 7D, WA*DH detected two occurrence

nodes and two escape nodes. Moreover, WA*DH in

Figure 7F found three occurrence nodes and escape

nodes. In fact, considering the placement of obstacles in

the simulation environment of Figure 7, there must be

three occurrence nodes and escape nodes. However,

Figures 7B,D could not detect all suboptimal nodes due

to the relatively high optimality of WA*. From these

results, we can prove that the high inflation factor can

detect suboptimal nodes clearly.

The path planning with the GBFS algorithm is also very

useful in terms of elapsed time. The elapsed time of WA* gets

shorter as the inflation factor increases. This means that an

infinite inflation factor can theoretically get a result of WA* in

the fastest time. Thus, we can expect that the GBFS algorithm

can reduce the elapsed time of our algorithm, WA*DH+. This

will be simulated in Section 4.

Procedures of WA*DH+

This section introduces our algorithm, WA*DH+, and

how WA*DH + gets its result. Procedures of WA*DH + are

similar to those of WA*DH: getting an initial solution,

finding escape nodes, locally replanning the paths, and

connecting them. The details of procedures of WA*DH +

are stated below.

First of all, WA*DH + gets an initial solution from the GBFS

algorithm. Unlike WA*DH, WA*DH + does not need to decide

the inflation factor for the initial solution. After getting an initial

solution, then WA*DH+ calculates θ′haf with the moving

median filter and the threshold.

The next step of WA*DH+ is finding the suboptimal

nodes to decide the start and the targets for local

replanning. Next, WA*DH+ executes the local

replanning. In this procedure, WA*DH+ needs to decide

on an inflation factor.

The final step of WA*DH+ is path-connecting. In this

procedure, WA*DH + needs to update only heuristics,

whereas WA*DH needs to update the actual costs, g(n),

and heuristics. Also, WA*DH+ needs an additional

procedure to calculate the path cost, whereas WA*DH can

get its path cost from g(n) of the target. After calculating the

path cost, WA*DH+ can finally get its result. The pseudocode

and the flowchart of WA*DH+ are stated in Figures 8, 9. In the

flowchart, when i � 1 , the (i − 1)th node is equal to the

original start node.

TABLE 1 Elapsed times and costs Figure 4.

Inflation factor Time (s) Cost (node)

2.2 2.04 404.84

1.8 2.49 408.15

1.5 4.08 404.84

1 (= A*) 15.40 404.84
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FIGURE 7
Escape nodes of WA* on different inflation factors. (A) Result of WA*DH on ϵ � 1.8. (B) Filtered θ′haf of WA* on ϵ � 1.8. (C) Result of WA*DH on
ϵ � 2.2. (D) Filtered θ′haf of WA* on ϵ � 2.2. (E) Result of the GBFS algorithm. (F) Filtered θ′haf of the GBFS algorithm.
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Simulation results

Simulation environments

In order to compare the performances withWA*DH, obstacles

were placed the same as in the simulation environments of

WA*DH, and the sizes of all simulation environments are also

the same as those of the simulation environments of WA*DH

(270 x 27 nodes) as stated in Figure 10. All simulations were

conducted in MATLAB with Windows 10, i7-9700 CPU with

32 GB RAM, and there are no acceleration methods or parallel

processes such as Graphics Processing Unit (GPU) and parallel

processing with CPU cores.

Performances of WA*DH+

To validate the performance of WA*DH+, we simulated

WA*DH+, WA*DH, and WA* in terms of the path cost and

elapsed time in each environment. Simulations were conducted

by reducing the inflation factor from 3 to 1 by 0.2 to compare

performances near critical values. Results of simulations are

stated in Figures 11–14, and quantitative comparisons are

stated in Tables 2–5.

From Table 2, the path cost of WA*DHwith a relatively large

inflation factor (> 2.2) is the same path cost of A*’s. However,

when ϵ is in the range from 2.2 to 1.6, the path cost of WA*DH is

about 0.81% larger than that with larger inflation factors. In

contrast, the path cost of WA*DH + does not change with

varying inflation factors, and its quality keeps the same as the

path cost of A*.

Table 3 shows that path costs ofWA*DH andWA*DH+with

relatively high inflation factors (> 2.0) are the same as the path

cost of A*. However, when the inflation factor is lower than 2, the

path cost ofWA*DH is the same asWA* until the inflation factor

decreases to 1, whereas the path cost of WA*DH + does not

change with varying inflation factors.

In the case of simulation case 3, the path cost of WA*DH+ is

about 5.04% lower than that of WA*DH. Thus, we can see that

WA*DH + not only removes the risk of a critical value but also

returns a lower path cost at a relatively high inflation factor.

Moreover, we also confirmed that the path cost of WA*DH +

keeps the same quality as the path cost of A* regardless of the

inflation factor.

Unlike other results of simulation cases, when ϵ � 3 in case

of simulation case 4, the path cost of WA*DH+ is about 0.5%

higher than that of WA*DH, and this difference rises to about

1.47% when ϵ � 1.6. However, it is hard to say that the quality

of WA*DH+ is bad because the purpose of using WA*DH+ is

to avoid the threat of the critical value.

Besides being free from the threat of the critical value, we

also found that WA*DH + has an advantage in terms of the

FIGURE 8
Flowchart of WA*DH+.
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FIGURE 9
Pseudocode of WA*DH+.
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FIGURE 10
Environments for simulations. (A) Simulation environment 1. (B) Simulation environment 2. (C) Simulation environment 3. (D) Simulation
environment 4.

FIGURE 11
Result of simulation case 1. (A) Path costs of simulation case 1. (B) Elapsed times of simulation case 1.
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FIGURE 12
Result of simulation case 2. (A) Path costs of simulation case 2. (B) Elapsed times of simulation case 2.

FIGURE 13
Results of simulation case 3. (A) Path costs of simulation case 3. (B) Elapsed times of simulation case 3.

FIGURE 14
Result of simulation case 4. (A) Path costs of simulation case 4. (B) Elapsed times of simulation case 4.
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TABLE 2 Quantitative comparison of the performances of algorithms on simulation 1.

€ WA*DH+ WA*DH WA*

Cost (node) Time (s) Cost (node) Time (s) Cost (node) Time (s)

3 404.84 1.08 404.84 1.54 440.46 1.08

2.8 404.84 0.88 404.84 1.33 439.63 1.07

2.6 404.84 0.88 404.84 1.41 437.97 1.15

2.4 404.84 0.88 404.84 1.57 436.32 1.28

2.2 404.84 0.88 404.84 1.71 431.35 1.42

2.0 404.84 0.91 408.15 1.90 425.55 1.60

1.8 404.84 0.94 408.15 2.43 423.06 1.94

1.6 404.84 0.99 404.84 2.96 415.61 2.46

1.4 404.84 0.90 404.84 4.13 409.81 4.14

1.2 404.84 0.89 404.84 8.52 404.84 7.95

1.0 404.84 1.24 404.84 14.65 404.84 14.65

TABLE 3 Quantitative comparison of the performances of algorithms on simulation 2.

€ WA*DH+ WA*DH WA*

Cost (node) Time (s) Cost (node) Time (s) Cost (node) Time (s)

3 345.14 0.85 345.14 1.27 394.13 1.25

2.8 345.14 0.68 345.14 1.18 390.62 1.15

2.6 345.14 0.67 345.14 1.16 385.44 1.15

2.4 345.14 0.68 345.14 1.18 379.1 1.17

2.2 345.14 0.69 345.14 1.22 375.79 1.21

2.0 345.14 0.74 345.14 1.23 370.82 1.22

1.8 345.14 0.72 365.85 1.23 365.85 1.23

1.6 345.14 0.72 361.71 1.27 361.71 1.27

1.4 345.14 0.67 352.59 1.29 352.59 1.29

1.2 345.14 0.69 346.79 1.83 346.79 1.83

1.0 345.14 0.85 345.14 4.43 345.14 4.43

TABLE 4 Quantitative comparison of the performances of algorithms on simulation 3.

€ WA*DH+ WA*DH WA*

Cost (node) Time (s) Cost (node) Time (s) Cost (node) Time (s)

3 264.79 0.03 278.85 0.08 296.43 0.05

2.8 264.79 0.03 277.68 0.08 297.01 0.05

2.6 264.79 0.03 274.17 0.06 297.01 0.05

2.4 264.79 0.03 273.00 0.06 295.84 0.06

2.2 264.79 0.04 270.65 0.08 292.91 0.07

2.0 264.79 0.03 268.31 0.08 285.3 0.07

1.8 264.79 0.03 264.79 0.08 277.68 0.07

1.6 264.79 0.03 264.79 0.12 271.24 0.08

1.4 264.79 0.03 264.79 0.16 265.97 0.10

1.2 264.79 0.03 264.79 0.29 264.79 0.23

1.0 264.79 0.40 264.79 3.56 264.79 3.56
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elapsed time. In all simulation cases, elapsed times of WA*DH

increase exponentially near ϵ � 1. However, the elapsed time

of WA*DH + does not significantly increase with decreasing

inflation factor, and elapsed times of WA*DH + are much

lower than WA*DH. In fact, considering that using the GBFS

algorithm has the same meaning as using the infinite inflation

factor at WA*, it is a natural result because the higher the

inflation factor is, the faster the result can be returned.

Discussion

This study aims to evade the threat of the critical values on

WA*DH. We found that the critical value comes from the fault

detection of suboptimal nodes from the initial solution with relatively

high optimality. We hypothesized that high suboptimality could find

suboptimal nodes clearly, so we suggested our algorithm,WA*DH+,

which uses the GBFS algorithm for the initial solution. From

simulations, it can be proven that WA*DH + can avoid the

threat of the critical value successfully by detecting suboptimal

nodes more clearly than WA*DH. In terms of the elapsed time,

we also confirmed that the elapsed time does not change significantly

with varying inflation factors; however, the elapsed time of WA*DH

increases exponentially when the inflation factor is near 1.

Although WA*DH + shows powerful performances in

terms of the path cost and the elapsed time, WA*DH + still

cannot guarantee admissibility because WA*DH + refines the

initial solution based on the GBFS algorithm that has the

infinitely bounded suboptimality. It will remain a limitation of

algorithms using the concept of WA*DH. Also, WA*DH+

cannot refine the initial solution if there are circular obstacles

in the path planning scene. However, we expect this will be

removed in future works using new filtering methods of DH or

additional procedures to the result of WA*DH+.
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TABLE 5 Quantitative comparison of the performances of algorithms on simulation 4.

€ WA*DH+ WA*DH WA*

Cost (node) Time (s) Cost (node) Time (s) Cost (node) Time (s)

3 350.33 0.40 348.58 1.12 437.97 1.11

2.8 350.33 0.39 348.58 1.23 436.32 1.23

2.6 350.33 0.40 347.75 1.37 431.34 1.36

2.4 349.50 0.38 382.23 1.59 426.37 1.57

2.2 348.68 0.39 382.23 1.73 418.09 1.71

2.0 346.09 0.39 393.24 1.99 409.00 1.98

1.8 345.26 0.39 346.09 2.41 403.18 2.40

1.6 342.78 0.39 337.81 3.03 337.81 3.02

1.4 338.63 0.41 336.15 2.72 336.15 2.69

1.2 336.15 0.41 336.15 3.27 336.15 3.27

1.0 336.15 0.49 336.15 9.13 336.15 9.13
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Treatise on Analytic Nonlinear Optimal
Guidance and Control Amplification of
Strictly Analytic (Non-Numerical)
Methods
Timothy Sands*

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States

Optimal control is seen by researchers from a different perspective than that from which
the industry practitioners see it. Either type of user can easily become confounded when
deciding which manner of optimal control should be used for guidance and control of
mechanics. Such optimization methods are useful for autonomous navigation, guidance,
and control, but their performance is hampered by noisy multi-sensor technologies and
poorly modeled system equations, and real-time on-board utilization is generally
computationally burdensome. Some methods proposed here use noisy sensor data to
learn the optimal guidance and control solutions in real-time (online), where non-iterative
instantiations are preferred to reduce computational burdens. This study aimed to highlight
the efficacy and limitations of several common methods for optimizing guidance and
control while proposing a few more, where all methods are applied to the full, nonlinear,
coupled equations of motion including cross-products of motion from the transport
theorem. While the reviewed literature introduces quantitative studies that include
parametric uncertainty in nonlinear terms, this article proposes accommodating such
uncertainty with time-varying solutions to Hamiltonian systems of equations solved in real-
time. Five disparate types of optimum guidance and control algorithms are presented and
compared to a classical benchmark. Comparative analysis is based on tracking errors
(both states and rates), fuel usage, and computational burden. Real-time optimization with
singular switching plus nonlinear transport theorem decoupling is newly introduced and
proves superior by matching open-loop solutions to the constrained optimization problem
(in terms of state and rate errors and fuel usage), while robustness is validated in the
utilization of mixed, noisy state and rate sensors and uniformly varying mass and mass
moments of inertia. Compared to benchmark, state-of-the-art methods state tracking
errors are reduced one-hundred ten percent. Rate tracking errors are reduced one-
hundred thirteen percent. Control utilization (fuel) is reduced eighty-four percent, while
computational burden is reduced ten percent, simultaneously, where the proposed
methods have no control gains and no linearization.
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1 INTRODUCTION

Considering intermittent coverage and communication
delays with typical stellar satellites like those illustrated in
Figure 1, autonomous guidance and control necessitates
real-time on-board computation with demanding accuracy
and robustness requirements, despite potentially coarsely
known system characteristics, varying environmental
conditions, and mission-related constraints. Many
solutions have been developed, including optimal analytic
methods for simple cases (Chai et al., 2019), while optimal
methods for guiding and controlling realistic nonlinear
systems ubiquitously necessitate either computational
solutions or linearization to achieve analytical solutions.
This manuscript proposes new techniques for utilizing
optimization techniques applied to the full, nonlinear,
coupled equations of mechanical motion, and the
techniques are analytic as opposed to numeric. Rao
proposed numerical trajectory optimization applied to
orbital transfer problems (Rao et al., 2002) and also
produced a survey of numerical methods for optimal
control (Rao, 2009). Numerical methods are very quickly
resorted to as researchers grapple with six nonlinear, coupled
equations of mechanical motion (both translation and
rotation). A generalized treatment method (again numerical)
for optimization problems was proposed by Ross and Karpenko
(2012) for such orbital transfer problems, spacecraft rendezvous
and docking (Gao et al., 2009; Pontani and Conway, 2013; Bonnans
and Festa, 2017), and planetary entry and hypersonic space planes
(Windhorst et al., 1997; Arora, 2002; Chen et al., 2005; Ivanov et al.,
2007; Zhang and Chen, 2011). Arguably, following the publication
of Ross (2015), numerical optimization in general form realized the
current dominance of numerical methods: for example, Tian et al.
(2015) and Sagliano et al. (2017) for real-time (numerical)
trajectory optimization and Chai et al. (2018a) and Chai et al.
(2018b) for aero-assisted optimal tracking guidance.

Lacking ubiquitous analytic methods to treat the nonlinear,
coupled systems of equations, linearization followed by least-
squares optimization leads to the so-called Ricatti equations
(NASA, 2021a) to produce optimal control gains (Kwakernaak

and Sivan, 1972) with presumed error feedback (Kelly, 2005) in
both continuous and discrete form (Flugge-Lotz, 1953).
Optimization is sometimes sought after first implementing
adaptive (Sands et al., 2009) methods to use feedback
achieving predictability (Sands, 2019). Duprez et al. (2017)
sought to tackle the nonlinear transport theorem terms by
proposing control being a Lipschitz vector field on a fixed
control set angular velocity, ω. This manuscript seeks to
extend the notion of tacking nonlinear transport theorem
to include time-varying angular velocities. Arguchintsev and
Poplevko (2021) proposed an optimal control for linear
hyperbolic systems of ordinary differential equations by
estimating the residuals in terms of the value that
characterizes the smallness of the measure of the domain
of the needle variation of control. Emphasis was placed on
problem formulation by Srochko et al. (2021), but the focus
was parameterizing the cost functional rather than the
nonlinear constraint function as done in this work.

Championed by Lorenz, physics-based methods (Sands and
Ghadawala, 2011) were proposed to instantiate “self-sensing
machines methods”, where the sensing functions are fully
integrated on a drive to detect key operating characteristics
including rotor position, torque, speed, temperature, and
motor/load diagnostics” (Malecek, 2021). The physics-based
methods codified optimal feedforward forms, which were later
augmented with optimal feedback (Smeresky et al., 2020),
instantiating the relatively new method referred to as
deterministic artificial intelligence (D.A.I.). D.A.I. necessitates
analytic forms of desired state trajectories (Baker et al., 2018) for
the feedforward control and state observers (Heidlauf and
Cooper, 2017; Willems, 1971) for the feedback control. In
2021, the utilization of Pontryagin’s approach (Pontryagin
et al., 1962; Boltyanskii, 1971) to impose necessary conditions
of optimality as a first step led to boundary-value problems that
produce optimal controls, but also optimal trajectories (Sands,
2021) as alternatives to the sinusoidal trajectories recommended
by Baker et al. (2018). These optimal trajectories are utilized in
this manuscript as prescriptions for the coupled motion cross-
products resulting from the inclusion of the transport theorem of
motion.

FIGURE 1 | (A) NASA’s FASTSAT microsatellite readied to share ride to space (NASA, 2021a). (B) NASA ejects nanosatellite from microsatellite in space. Image
used consistent with NASA policy, “NASA content (images, videos, and audios) are generally not copyrighted andmay be used for educational or informational purposes
without needing explicit permissions” (NASA, 2021b).
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Thus, the reader may consider the use of classical control
methods (proportional plus velocity will be evaluated here) and
seek to optimize control gains or use the Ricatti equation to seek
linear-quadratic optimal classical control gains. Alternatively,
time-optimal control may be considered a feedback form or
control-minimizing control in an open-loop feedforward
topology. Furthermore, real-time optimal controls could be
derived that utilize feedback of state and rate in a matrix-
inverse to enforce optimality in a closed-loop. Several different
options for matrix inversion are available, generating subsets of
the broader category of real-time optimal control. A key
limitation of all the methods described so far is the inability to
deal with nonlinear, coupled equations generated by the transport
theorem in both translational and rotational mechanics.

Parametric uncertainty is another challenging aspect of
nonlinear systems. Hu, et al. (2015) investigated nonlinear
regression including parameter uncertainty estimates using the
Monte Carlo and bootstrap methods to estimate nonlinear
parameter uncertainties with a Microsoft Excel spreadsheet.
Similarly, Monte Carlo statistical analysis is utilized here in
MATLAB/SIMULINK and presented in section 3 Results. A
modified James–Stein State Estimator (JSSE), named Modified
James–Stein State Estimator (JSSE-M) was proposed by Meda-
Campana (2018) as an alternative to filtering the states of
nonlinear systems within a control scheme. Ferreres and
Fromion (2010) studied the existence of limit-cycles in a
closed-loop, which simultaneously contains nonlinearities and
parametric uncertainties, addressed using three methods: 1) using
a necessary condition of oscillation embodies in a graphical
method, 2) checking the absence of limit-cycles despite
parametric uncertainties using a sufficient condition of non-
oscillation, and 3) using the necessary condition of oscillation
to synthesize a controller which modifies the characteristics
(magnitude and frequency) of the limit-cycle. A generically
similar approach is used here, where necessary conditions of
optimality are used to yield a nonlinear controller that can
accommodate uncertainties in nonlinear systems. Arguably, a
much more common approach to stability robustness of
uncertain nonlinear multivariable systems under input-output
feedback linearization is to allow plant uncertainty to be
propagated through the control design, yielding an uncertainty
description of the closed-loop in polytopic form, as presented by
Botto et al. (2001).

Recently, Taghieh and Shafiei (2021a) proposed an observer-
based robust model predictive control scheme to control a class of
switched nonlinear systems in the presence of time delay and
parametric uncertainties under arbitrary switching in addition to
proposing a static output feedback controller (Taghieh and
Shafiei, 2021b) for a class of switched nonlinear systems
subject to time-varying delay and uncertainties under
asynchronous switching. Zhang et al. (2022) addressed
nonlinear systems with mismatched uncertainties under input/
output quantization proposing adaptive output feedback control.
Fractional parametric uncertainties and distributed delays in
nonlinear systems together with time delay, parametric
uncertainties and actuator faults were just addressed by
Sweetha et al. using a non-fragile fault-tolerant controller,

which makes the system asymptotically stable with the
specified mixed H∞ and passive performance index (Sweetha
et al., 2022). Wei et al. (2022) sought to control uncertain
nonlinear processes using neural networks incorporating into
the control loop an adaptive neural network embedded
contraction-based controller (to ensure convergence to time-
varying references) and an online parameter identification
module coupled with reference generation (to ensure modeled
parameters converge those of the physical system). Wang et al.
(2009) investigated quasi-Hamiltonian systems with parametric
uncertainty using the stochastic averaging method and stochastic
dynamical programming principle. A particular strength of the
work lies in two examples given to illustrate the proposed control
procedure and its robustness. Mahmoodabadi and Andalib
Sahnehsaraei (2021) introduced a new online optimal control
based on the input–output feedback linearization and a multi-
crossover genetic algorithm for under-actuated nonlinear systems
having parametric uncertainties. Optimal control problems with
bounded uncertainties on parameters were addressed using
interval arithmetics by Etienne et al. where an interval method
based on Pontryagin’s Minimum Principle (as proposed here) is
proposed in Bertin et al. (2021) to enclose the solutions of an
optimal control problem with embedded bounded uncertainties.
This method is used to compute an enclosure of all optimal
trajectories of the problem and open-loop and closed-loop
enclosures meant to validate an optimal guidance algorithm
on a concrete system with inaccurate knowledge of the
parameters.

Next-generation methods are required that apply
mathematically optimal results yet retain the simplicity of
analytics solutions obfuscating numerical (or otherwise
more complicated) methods and providing further
advancements in autonomous navigation. The current
movement toward the utilization of very small vehicles is
accompanied by very limited computational resources while
maintaining autonomy, robustness, and accuracy. Newly
proposed methods and algorithms for autonomous guidance
and control are presented in direct, critical comparison to the
recent research trends of both academia and industry,
presuming utilization of noisy sensors, for example, star
trackers, rate gyroscopes, inertial measurement units, and
global navigation systems, amongst other sensors in multi-
sensor-based architectures for vehicle navigation. Intelligence
methods permitting systems to learn real-time optimal
solutions (analytically) are preferred.

Proposed novelties:

1. A brief methodological recitation of five disparate incarnations
of optimal control and their direct comparison to classical
feedback control as a benchmark (the P + V proportional plus
velocity controller): 1) control-minimizing open-loop optimal,
2) linear-quadratic optimal regulator, 3) time-optimal, 4) real-
time optimal, and 5) real-time optimal with singular
switching. Methods 3, 4, and 5 involve no feedback control
gains tuning.

2. Direct comparison of the efficacy of each of the five methods
listed in item #1 controlling linear double-integrator plants,
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where comparison is made using state accuracy, rate accuracy,
control (fuel) usage, and computational runtime (as a
manifestation of computational burden).

3. Direct comparison of the efficacy of each of the five methods
listed in item #1 controlling double-integrator plants,
including nonlinear transport theorem cross-products of
motion induced by measurement in rotating reference
frames, where comparison is made using state accuracy,
rate accuracy, control (fuel) usage, and computational
runtime (as a manifestation of computational burden). In
item #3, the linear control designs are used on the nonlinear
plants to evaluate the error resulting from using linear control
designs in the real-world on nonlinear systems.

4. Direct comparison of the efficacy of each of the five methods
listed in item #1 controlling double-integrator plants, including
nonlinear transport theorem cross-products of motion induced by
measurement in rotating reference frames, where comparison is
made using state accuracy, rate accuracy, control (fuel) usage, and
computational runtime (as a manifestation of computational
burden). Unlike item #3 above, nonlinear decoupling control
stemming from the solution to the minimum-control
optimization problem is introduced to each control
methodology by utilizing the optimal rate trajectories that
result from the original open-loop optimization problem that
minimizes control effort. This nonlinear control utilizing the
constrained optimization problem results (linear control and
nonlinear combinations of the optimal trajectories) may be
considered the largest contribution to the article.

5. Items #3 and #4 are both repeated to evaluate the deleterious
effects on each method of noisy sensors and random uniformly
varying system mass and mass moments of inertia.

Motivated to develop simplemethods that flow from the solution
of constrained optimization problems yet do not necessitate
numerical solutions leads to arguably, the most interesting
proposal: Utilization of analytic solutions to the constrained
optimization problem in either a feedforward or feedback sense
applied to full nonlinear, coupled guidance and control problems,
specifically including the transport theorem coupling cross-products
for rotation and translation, respectively. This method is
mathematically developed in section 2, resulting in proposals for
both feedforward and feedback methods.

Section 2 includes brief derivations of each respective approach
as briefly as practicable, while section 3 provides the results of
implementing each disparate methodology. Tables of variable
definitions and nomenclature have been placed throughout the
manuscript: Tables 1-6, while Table 5 articulates necessary
methods for repeating the presented work. Table 7 summarizes
Monte Carlos analysis of parameter variations from Figure 2, while
Table 8 summarizes percent performance improvements for each
of the six evaluated techniques.

2 MATERIALS AND METHODS

Motion (both translational and rotational) is governed by so-
called double-integrator dynamics where the integral of the

applied forces vector (inversely scaled by the mass or mass
moments, respectively) is the velocity vector and the integral of
the velocity vector (translational or rotational) is the displacement
vector. Each vector is relative to an inertial (non-rotating) reference
frame, while the expression of the vectors in the coordinates of the
basis vectors of rotating reference frames necessitates the inclusion
of the transport theorem, which articulates the induced motion of
the rotating reference frame in cross-products that make the results
nonlinear and coupled. The three degrees of rotational motion are
coupled to each other by the transport theorem, and the three
degrees of translational motion are coupled to each other as well.
Furthermore, the three degrees of translation are coupled
nonlinearly to the three degrees of rotation, particularly through
the angular velocity vector. Especially since this nonlinear coupling
is a foremost challenge that is often deemed insurmountable by
analytic methods, the foremost subsections of this part of the
manuscript begin so. The Materials and Methods section of the
manuscript is described with sufficient details to allow readers to
replicate and build on the published results.

2.1 Double-Integrator Based Plant
Equations
Eq. 1 illustrates the fundamental relationships of both
translational and rotational motion may be expressed as so-
called double-integrators, meant to mean the twice integration
of the applied force or torques produces the respective
translational or rotational displacement.

�F � �m�a � �m€�x � �m
d2�x

dt2
↔ �T � �J�α � �J _�ω � �J€�θ � �J

d2�θ

dt2
, (1)

Eq. 1 comprises two sets of three equations each for
translation and rotation combining for six equations of
mechanical motion. For simplicity of expression, states
referred to generically as x can represent rotations (θ) with
regards to the basic, shared motion described by the double-
integrator. The transport theorem described next will generate
differences in the governing equations for translation and
rotation.

2.2 Transport Theorem Cross-Product
Coupled Motion Expressed in Rotating
Reference Frames
Attach three mutually perpendicular unit vectors to each frame:
the non-rotating inertial frame and body-fixed frame. The
meaning of differentiation of vectors when specification is
made of differentiation with respect to a specific frame. Both
rotational and translational motion relative to the non-rotating
reference frame may be represented by double-integrators in
accordance with Eq. 2.

�m�a|relative � �m€x|relative� �m
d2x

dt2

∣∣∣∣∣∣∣∣relative, (2)

Theorem 1. Transport Theorem. The derivative of any vector
expressed in the coordinates of a rotating reference frame equals
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the sum of the derivative relative to a non-rotating reference frame
plus the cross-product of the angular velocity and the vector.

Proof of Theorem 1. The proof of this well-known theorem
is provided by Kinematics Handout - MIT OpenCourseWare,
2021. The tedious process may be summarized as follows: 1)
express the position vector with respect to the non-rotating
inertial reference frame; 2) differentiate to find the expression
for velocity remembering to differentiate both the component
measurements and the unit vectors; 3) simplify and substitute
the defined unit vectors, define the angular velocity in the
direction perpendicular to the two-dimensional space of
rotation; and 4) substitute the newly defined angular
velocity to arrive at the transport theorem as expressed in
Eq. 3. □

�J
d�ω

dt
� �J

d�ω

dt

∣∣∣∣∣∣∣relative + �ω × J�ω, (3)

The inclusion of theorem 1, despite being very well-known, is
purposely performed to emphasize the most novel proposals
presented. In particular, Eqs. 2 and 3 are ubiquitously
approximated first by Eq. 1 and also often by linearization of
Taylor’s Series of each equation, respectively.

2.2.1 Euler’sMoment Equations of Rotation Expressed
in a Rotating Reference Frame
Externally applied torques, �T change angular momentum �J d �ω

dt
permitting the substitution into Eq. 3, resulting in Euler’s
nonlinear moment equation in Eq. 4. A system is called linear
if it has two mathematical properties: homogeneity and
additivity in accordance with the principle of superposition.
If two or more solutions to an equation or set of equations can
be added together so that their sum is also a solution, linearity
may be asserted. In other words, two or more states of the
system must be added together to create an additional state.
Adding two single-channel angles cannot also be a solution
without accounting for the presence of the other two channels’
states.

An easy way to understand the nonlinear nature of each
motion channel induced by the linear cross-product
transformation is to recall the mathematical definition:
a × b � ab|sinθ|, while f (x + y) = f(x) + f(y) is a simple
counterexample showing that this function f is not linear:
sin(θ1 + θ2) ≠ sin(θ1) + sin(θ2). An often-confused notion is
the fact that the cross-product is a linear transformation, but

nonetheless, each motion channel is evidently nonlinear in the
states (evidenced by the presence of multiplicative state pairs and
cross-coupled states in each channel. From the perspective of
linear algebra, the matrix representation of the cross-product is
skew-symmetric and has determinant zero, so it will not always
have a solution.

�T � �J _�ω + �ω × �J�ω

⎡⎢⎢⎢⎢⎢⎣ τxτy
τz

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Jxx _ωx + Jxy _ωy + Jxz _ωz − Jxyωxωz − Jyyωyωz − Jyzω

2
z + Jxzωxωy + Jzzωzωy + Jyzω

2
y

Jyx _ωx + Jyy _ωy + Jyz _ωz − Jyzωxωy − Jzzωxωz − Jxzω
2
x + Jxxωxωz + Jxyωzωy + Jxzω

2
z

Jzx _ωx + Jzy _ωy + Jzz _ωz − Jxxωxωy − Jxzωyωz − Jxyω
2
y + Jyyωxωy + Jyzωzωx + Jxyω

2
x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (4)

It should be noted the dominant double-integrator
dynamics are embodied in J _ω in Eq. 4, while the
additional accelerations due to the transport theorem are
embodied in the coupling cross-product term �ω × �J�ω.
Control designs based on the double-integrator dynamics
alone are hypothesized to have less efficacy than proposed
techniques that utilize optimization and the transport
theorem terms.

2.2.2 Newton’s Equations of Translation Expressed in
a Rotating Reference Frame
Performing similar expression of translational motion in non-
rotating inertial frames as just performed in section 2.2.1 for
rotational motion leads to Eq. 5 for Newton’s equations of
translational motion.

�F � �m�a︸
︷︷
︸
Relative

+ �m
d�ω

dt︸

︷︷

︸
Euler

× �r + 2 �m�ω × �v︸


︷︷


︸
Coriolis

+ �m�ω × �ω × �r︸




︷︷




︸
Centrifigual

, (5)

Notice the dominant double-integrator dynamics relative to the
rotating reference frame in Eq. 5 are embodied in ma, while the
additional accelerations due to the transport theorem are embodied
in the coupling cross-product terms: Euler ( �md�ω

dt × �r), Coriolis
(2 �m�ω × �v), and centrifugal ( �m�ω × �ω × �r). Control designs based
on the double-integrator dynamics alone are hypothesized to have
less efficacy than proposed techniques that utilize optimization and
the transport theorem terms.

2.2.3 Impacts on Control Design
Neglecting the cross-products of acceleration resulting from the
transport theorem reduces both Eqs. 4 and 5 to the double-
integrators of Eqs. 1 and 2. The goal of this research is to
develop controls (for applied forces �F and applied torques �T)
that account for the nonlinear, coupling cross-products produced
by the application of the transport theorem. Typically,
nonlinearities like those presented in Eqs. 4 and 5 caused by
transport theorem are simplified by assumption, neglected
altogether, or linearized to permit linear control design.
Subsequently, the linear controllers are applied to the
nonlinear systems and augmented as necessary to improve
performance. Instead, the optimal trajectories that result
from the solution of constrained optimization problems (for
translation and rotation, respectively) are combined to form
new nonlinear controls. The exact form of the nonlinear
equation is used to form the new nonlinear control
components where the motion states are taken from the
solution to the constrained optimization problem.

TABLE 1 | Double-integrator plant ten-run mini-Monte Carlo analysis (faults
occurred after first simulation run) executed in MATLAB

®
/SIMULINK

®
R2021b

(9.11.0.1769968) whose machine precision eps � 2.2204 × 10−16.

Methoda State error Rate error Cost Runtime

[T]−1 Fault Fault Fault Fault

1\[T] 0.000052 −0.0048598 4.0281 1.6221
inv[T] Fault Fault Fault Fault
pinv[T] 0.001169 −0.003941 4.0281 1.5589
LU Inverse [T] Fault Fault Fault Fault

aReal-time optimal control (with singular switching).
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2.3 Classical Position Plus Velocity (P + V)
Feedback Control
Proportional plus velocity control (Chai et al., 2019) utilizes
proportional control by forming a state error scaled by a
proportional gain adding a negative gained value of velocity
(translational or rotational), as elaborated in Eq. 5. The
velocity channel is not a differentiated version of the position
or angle channel, as is the case with classical cascaded control
topologies of PD, PI, and PID types (proportional plus derivative,
proportional plus integral, and proportional plus integral plus
derivative, respectively).

�J€�x + �KV _�x + �KP �x � �KP�xd ↔ �u � �Kp(�xd − �x)
− �Kv _�x

�x(s)
�xd(s) �

�Kp

�Js2 + �Kvs + �Kp

→ C.E.: s2 + �Kvs + �Kp

∣∣∣∣∣I�1
� s2 + 2ξωns + ω2

n.

(6)
Gains were tuned for performance specification by equating

the ubiquitous closed-loop system Eq. 5 to the performance
specified, where C.E. annotates the characteristic equation. The
desired rise time established the system natural frequency per
tr � 1.8

�ωn
, where �ωn ≈ �ωb is the desired control bandwidth;

therefore, �ωn � 1.8
tr
→ �Kp � �ω2

n. Settling time: oscillation
stabilize within 2–5% percent of steady state ts � 4.6

�ξ �ωn

→ �ξ �
4.6
ts �ωn

→ �Kv � 2�ξ �ωn.
Elimination of differentiation in the derivative channel often

bestows relative advantage in tracking desired velocity
trajectories. Another approach is the optimize gain selection,
and this alternative approach is called the linear quadratic
regulator.

2.4 Linear-Quadratic Optimal Regulator of
Proportional Derivative Type (Murray, 2010)
Eqs. 3 and 4, representing the full, nonlinear, coupled equations
of motion in six degrees, may be linearized and be expressed in
the form displayed in Eq. 6. This linearization is the basis for the
word “linear” in the LQR title. The word “quadratic” refers to
selecting gains K that minimize a quadratic cost function
displayed in Eq. 7. The LQR solution (Kwakernaak and Sivan,
1972; NASA, 2021a) only bestows optimal solutions for control
gains of the form Eq. 8 that minimizes the quadratic cost
simultaneously satisfying the (linearized) dynamic constraints
displayed in Eq. 5.

_�x � �A�x + �B�u, (7)

J � ∫
∞

0

(�xT �Q�x + �uT �R�u)dt, (8)

�u � − �K�x. (9)
The control designer may select the state weighting matrix

�Q and the control weighting matrix �R to penalize the state
errors and the control effort, respectively. In section 3,
equally weighted identity matrices were chosen for both �Q
and �R. This choice facilitates a multi-faceted comparison in
section 3 that does not solely focus on tracking errors or costs.
The gains �K are found using Eq. 9, where the matrix �P is first
found by solving the algebraic relation in Eq. 10, often
referred to as a Riccati equation which is most often solved
iteratively by a computer (the MATLAB®/SIMULINK® lqr
command).

�K � �R
−1(�BT

�P) (10)
�A
T
�P + �P �A − �P�B�R

−1
�B
T
�P + �Q � 0 (11)

2.5 Time-Optimal Control (Murray, 2010)
Minimizing a non-quadratic cost function comprised of only
the final time (as displayed in Eqs. 11 and 12) constrained
with the linearized dynamics of Eq. 6 with costate parameters
p(t) used in the Hamiltonian problem formulation leads to
time-optimal control (Flugge-Lotz, 1953; Pontryagin et al.,
1962; Boltyanskii, 1971; Sands et al., 2009; Sands and
Ghadawala, 2011; Duprez et al., 2017; Heidlauf and
Cooper, 2017; Baker et al., 2018; Sands, 2019; Smeresky
et al., 2020; Arguchintsev and Poplevko, 2021; Malecek,
2021; Srochko et al., 2021).

J � ∫
∞

0

tfdt, (12)

�u � sgn(<p(t), bi > ) � ⎧⎪⎨⎪⎩
1
−1
0

if
if
if

<p(t), bi > > 0
<p(t), bi > < 0
<p(t), bi > � 0

. (13)

Simulation subsystems depicted in the appendix execute a
bang-bang control where maximal application of control is
normalized to unity such that desired unity state and unity

TABLE 2 | Proximal variable definitions.

Variable Definition Variable Definition

�xd Desired state trajectory �ξ Critical damping ratio

�KP
Proportional gain �ωn Natural frequency

�Kv
Velocity gain ts Settling time

Such tables are distributed throughout the manuscript to increase the ease of reading,
while a combined master table of definitions is included in the Supplementary
Appendix.

TABLE 3 | Proximal variable definitions.

Variable Definition Variable Definition

�A State transition matrix J Cost function

�B Control matrix tf Final time

�K Gain matrix ∞ Infinity

�Q State weighting matrix sgn Signum function

�R Control weighting matrix p (t) Parameters (co-states)

�P Covariance matrix bi Control coefficients
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time is achieved to aid comparison to the other optimization
approaches. One key feature of bang-bang control is the
neglecting of the rate end condition leading to a so-called
bang-off-bang control, which is not treated here.

2.6 Open Loop Minimum-Control
Optimization (Pontryagin et al., 1962; Ross,
2015)
Minimizing only the control effort alone (not the state errors)
(Sands, 2019) in accordance with Eq. 13 constrained by the
double-integrator dynamics of Eq. 2 for specified initial and
final conditions permits the solution of a two-point boundary
value problem producing optimal control, acceleration, rate,
and state profiles displayed in Eq. 14, respectively.
Normalization for unity masses or mass moments is
included, thus, control and acceleration equations are
identical, where non-normalized control may be expressed
by scaling the control equation by the masses or mass
moments, respectively.

By specifying quiescent initial conditions and using variable
scaling and balancing to normalize the final position
coordinate to unity, the constants in Eq. 14 may be
solved, resulting in Eq. 15, where a = −12, b = 6, and c =
d = 0. It should be noted that states are not penalized in the
cost function, instead only solution forms that satisfy the
boundary values are produced by the two-point boundary
value problem from the initial point (x(0),v(0)) = (0,0) to
the final point (x(1), v(1)) = (1,0), thus, there is no need to solve
an algebraic Riccati equation to produce the optimal control,
where an additional benefit of this optimization approach
includes the production of optimal state trajectories that
will prove useful to decouple the nonlinear coupling effects
of the transport theorem described in section 2.2. Scaling and
balancing must be performed to normalize the initial and final
conditions to zero and unity, and the operations are explained
in section 2.11. The solution to the constrained optimization
problem listed in Eqs. 2 and 13 was solved analytically and
presented recently by Sands (2021) for virtual sensoring, and
that solution is presented here in Eqs. 14 and 15. The
mathematical development is intentional since 1) the
development is well-articulated by Sands (2021) and 2)
increased focus on the utilization of these results toward
nonlinear equations of motion (presented in Section 2.9).

J � 1
2
∫
∞

0

(�uT�u)dt, (14)

�up � �at + �b, _�v
p � �at + �b, �vp � 1

2
�at2 + �bt + �c, �xp

� 1
6
�at3 + 1

2
�bt2 + �ct + �d, (15)

�up � −12t + 6, _vp � −12t + 6, �vp � −6t2 + 6t, �xp � −2t3 + 3t2.

(16)
The open-loop optimal solution embodied in Eqs. 14 and 15

may be updated in real-time using state feedback resulting in real-
time optimal control presented in Section 2.7. These optimal
states in Eq. 15 are used to form nonlinear controls in
Section 2.9.

2.7 Real-Time Optimal Control
A corollary is to the open-loop minimum-control optimization in
section 2.6 augments the approach with feedback while
maintaining the remaining portions of the problem approach.
The solution for the constants in between Eqs. 14 and 15 may
be accomplished in real-time using feedback but asserting the
current position and velocities (translational and rotational) are
the initialization points of a new two-point boundary value problem.
Eq. (16) may be written in a matrix-vector form as Eq. 17,
permitting real-time solution for the integration constants in
the vector by inverting the matrix and pre-multiplying both
sides of the equation as depicted in (17). Notice the form of the
control derived in Eq. 17 is the same as Eq. 14 in section 2.6, where
the constants in the optimal solutions are solved in real-time.

vp � 1
2
at2 + bt + c, xp � 1

6
at3 + 1

2
bt2&vp(tf) � 1

2
a + b

� 0, xp(tf) � 1
6
a + 1

2
b � 1, (17)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t20
6

t20
2 t0 1

t20
2 t0 1 0

1
6

1
2 1 1

1
2 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸






︷︷






︸

[T]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a

b

c

d

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭︸

︷︷

︸
{p}

�
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�x0

�v0

1

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭︸


︷︷


︸
{b}

→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

â

b̂

ĉ

d̂

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t20
6

t20
2 t0 1

t20
2 t0 1 0

1
6

1
2 1 1

1
2 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�x(t)
�v(t)
1

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
and �up ≡ ât + b̂.

(18)

TABLE 4 | Proximal variable definitions.

Variable Definition Variable Definition

J Cost function �up Optimal control
dt Differential time _�v

p Optimal (angular) acceleration

t Time �vp Optimal (angular) velocity
�u Control �xp Optimal (angular) position
�x(t) Current position �a, �b, �c, �d Integration constants
�v(t) Current velocity â, b̂, ĉ, d̂ Integration constant estimates
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One key feature of the open-loop solution method using a two-
point boundary-value problem is the enforcement of end conditions
producing optimal trajectories for state (�x*), rate (�v*), acceleration
(_�v

p
), and jerk (€�v

p
), in addition to the formulation of an optimal

control, u*. These signals yield the opportunity to formulate
decoupling control components to mitigate the transport theorem
(illustrated in section 2.9).

2.8 Real-TimeOptimal ControlWith Singular
Switching
Highlighting the matrix inverse in Eq. 17, the possibility of
issues inverting a poorly conditioned or rank-deficient matrix
may be addressed by monitoring matrix conditioning or
determinant and switching away from the feedback solution
when encountering rank-deficient instances in favor of the
optimal solution in Eq. 15.

2.8.1 Matrix Inverse Formulas
Five disparate methods to invert the [T] matrix were
investigated, as listed in Eq. 18. Matrix inversion methods
already coded in MATLAB/SIMULINK: [T]−1, 1\[T], inv[T],
pinv[T], LU Inverse [T]. Each method has specific strengths
and weaknesses expressed in state error, rate error, control
effort (quadratic cost), and runtime, as displayed in Table 1. In
several instances, the simulation would fault as a result of
encountering matrix singularity.

2.9 Nonlinear Transport Theorem
Decoupling (Recall Transport Theorem in
Section 2.2)
As mentioned in Section 2.6, the desire is to use the results of
Sections 2.7 , 2.8 applied to nonlinear dynamics coupled by
transport theorem. Section 2.2 describes the nonlinear coupling
effects of measuring motion in coordinates of rotating reference
frames extracted for highlighting in Eq. 18 for translation and
rotation, respectively. These effects were neglected when
optimizing the double-integrator–based systems of equations or
simplified by linearization in other instantiations. Taking
advantage of the results in Sections 2.6, 2.7, nonlinear
decoupling control components may be formulated using the
optimal trajectories as displayed in Eq. 18, where each component
(translation and rotation, respectively) should be added to augment
the control in Eq. 17.

Rotation: unonlinear � �ω × �J�ω

Translation: unonlinear � �m
d�ω

dt
× �r + 2 �m�ω × �v + �m�ω × �ω × �r

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Feedback

Rotation: unonlinear � �ωp × �J�ωp

Translation: unonlinear � �m
d�ωp

dt
× �rp + 2 �m�ωp × �vp + �m�ωp × �ωp × �rp

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Feedforward

,

(19)

It is proposed to take the nonlinear control components in Eq.
18 formulated using the optimal trajectories from Eq. 18 and

TABLE 6 | Proximal variable definitions.

Variable Definition Variable Definition

[T]−1 MATLAB inverse m Mass

1\[T] MATLAB inverse J Mass moments
inv[T] MATLAB inverse ω Angular velocity
pinv[T] MATLAB pseudo-inverse r Position vector
lu([T]) MATLAB LU-inverse v Translational velocity
utransport Feedback decoupler ω* Optimal angular velocity

uptransport Feedforward (decoupler) r* Optimal position vector

v* Optimal Translational velocity

u Control, the sum of Eq. 18 or Eq. 19 with Eqs 5, 8, 12, 14, or Eq. 15

TABLE 5 | Proximal variable definitions.

Variable Definition Variable Definition

�F Externally applied forces �T Externally applied torques

�m Mass �J Mass moment of inertia

�a � €�x Translational acceleration �α � €�θ Rotational acceleration

d2 �x
dt2 � _v Translational acceleration d2 �θ

dt2 � _�ω Rotational acceleration

�r Radius vector relative to rotating frame �ω � _�θ Rotational velocity

�v Velocity vector relative to rotating frame �θ Displacement angle

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined master table of definitions is included in the Supplementary Appendix.
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augment them with Eq. 17’s optimal control solutions to
comprise the total control for rotation and translation,
respectively, displayed in Eq. 19.

Rotation: up
total � ât + b̂ + �ω × �J�ω

Translation: up
total � ât + b̂ + �m

d�ω

dt
× �r + 2 �m�ω × �v + �m�ω × �ω × �r

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Feedback

Rotation: up
total � ât + b̂ + �ωp × �J�ωp

Translation: up
total � ât + b̂ + �m

d�ωp

dt
× �rp + 2 �m�ωp × �vp + �m�ωp × �ωp × �rp

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Feedforward

,

(20)

The distinction between feedforward and feedback is
determined by the chosen manner of decoupling the nonlinear
transport theorem. One option is feedback decoupling, where
feedback states are combined (for example, for rotation) as
�ω × �J�ω and added to the optimal control to form a new
nonlinear control. On the other hand, feedforward decoupling
(used in section 3) combines the optimal equations of state from
Eqs. 15 and 16, respectively, combined as �ωp × �J�ωp and augments
the optimal controls with this new nonlinear control. The efficacy
of this latter suggestion is evaluated in section 3.

Section 3 validates the proposed developments culminating in
the combination of real-time optimal control (Eq. 17) together
with transport theorem decoupling in Eq. 19, specifically for
rotation using feedforward: u*total � ât + b̂ + ωp × Jωp. After
evaluating initial efficacy, effectiveness against realistically
varying systems with noise is investigated.

2.10 Noisy Mixed Sensors and Parameter
Variations
With the inclusion of feedback, noise must be accounted for in
the feedback signals (state and rate only here) in the form of
random numbers with a standard deviation of 0.01 (1% of the
final state value when states are scaled and balanced to unity).
In addition, mass and mass moments are assumed to be
unknown or not precisely known; therefore, mass and
moments were allowed to vary randomly (uniformly) ten
percent heavier and lighter. The resulting scatterplots are
presented in section 3.

2.11 Scaling and Balancing
Poorly conditioned problems are those requiring
simultaneous mathematical operations on very large and
small numbers. A common mitigation strategy is to scale
and balance the variables transforming equations to
nominally remain of the same order. Scaling problems by
common, well-known values permits single developments to
be broadly applied to a wide range of state spaces not initially
intended. Normalizing time per Eq. 20 restricts simulation
time to vary between zero and unity. Scaling mass and mass
moments of inertia matrices by their nominal values per Eqs.
21 and 22, respectively, keep their values roughly on the
order of unity. Generic displacements (translation or
rotation) are normalized in accordance with Eq. 23, where
{r} could indicate either general translational or rotational
displacement.

t ≡
�t

tf
, (21)

�m ≡
[m]

[m]nominal

, (22)

�J ≡
J

Jnominal
, (23)

�r ≡
{r}
{r}f for translatoin and

�θ ≡
{θ}
{θ}f for rotation. (24)

3 RESULTS

Following the brief introduction to each control technique
presented earlier in section 2, section 3 displays the results of
individual simulations in addition to the Monte Carlo
investigation of ten-thousand simulations. Section
3.1 begins with commonly simplifying assumptions of
control design using dominant, double-integrator dynamics
with no transport theorem, where the control �up ≡ ât + b̂ is
applied to the same idealized system equations. The use of
idealized results provides interesting measures of
performance under ideal circumstances subject to
mathematical optimization. Another interesting artifact is
the immediately obvious differences in the responses to
disparate control techniques.

Next, in section 3.2, the performance of controllers designed
using simplified double-integrators �up ≡ ât + b̂ was applied to
more realistic plant equations with transport theorem. Then, in
section 3.3, nonlinear control designs u*total � ât + b̂ + �ωp × �J�ωp

are introduced, and comparisons are made applied to nonlinear
plants, including transport theorem. Lastly, in section 3.4,
random uniformly varying inertia was studied with random
noise added to sensor data for both state and rate, and the
comparisons were repeated in ten-thousand simulations. These
final simulations all utilized nonlinear control designs based on
various optimization methods, and the results were applied to
nonlinear, coupled system equations, including the transport
theorem, where controls were tailored specifically for the
transport theorem in the recommended application of
optimization (real-time optimal control with singular
switching and transport theorem decoupling). All simulations
were executed in MATLAB®/SIMULINK® R2021b
(9.11.0.1769968), whose machine precision was eps �
2.2204 × 10−16.

A new presentation style is offered to increase the ease of
reading and contemplation of the results. Quantitative figures of
merit are presented in tables inserted as sub-figures immediately
proximal to corresponding data plots presenting qualitative
results.

3.1 Ideal, Linear Double Integrator System
Equations
Double-integrator equations expressing relationships between
displacement, displacement rate, and acceleration are canonical
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relationships used to describe the movement of mass. The
relationships are linear, allowing easy control design using
classical methods, which predominantly use linear systems
methods to design controllers for any equations (including
linearizing any nonlinear equations). Each control design
technique introduced in section 2 was sequentially used to
control the linear, double-integrator system equations, and the
results are presented in Figure 3, where Table 9 contains
quantitative results corresponding to the qualitative results
presented in the multi-plots.

The baseline approach (classical proportional plus
velocity, or so-called “P + V” control) tuned to
performance specification exhibits better accuracy and
lower costs than linear-quadratic optimal regulators of the
proportional, derivative (PD) type, but the P + V controller
has the highest computational burden as indicated by
computational runtime. The embedded differentiation of
the noisy feedback signal in the rate channel would
logically explain the relatively lower performance of the
LQR tracking. Time-optimal (bang-bang) control achieved
machine precision state tracking accuracy with the largest

rate tracking error of the controllers investigated. Such
performance is validated by the instinct that time-optimal
control is mathematically designed to achieve the desired
state in the shortest time but is not structured to
simultaneously achieve rate tracking in minimal time. The
cost was the lowest of the controllers investigated, indicating
the benefits of not requiring simultaneous rate tracking.
Computational runtime was the second largest.

Open-loop optimization calculates the minimum control
effort that simultaneously meets state and rate endpoint
conditions, and accordingly, both state and rate endpoints
are achieved to machine precision, while the computational
burden is modest compared to low and high cases. Real-time
optimization solves the open-loop optimal control problem in
real-time using ideal sensor feedback of state and rate but
involves a matrix inverse. Rate and state errors (particularly)
are quite small, but machine precision tracking is not
achieved. Part of the cause of tracking errors is the
inversion of the rank-deficient matrix as the final time is
approached. Seeking to ameliorate the issue, switched real-
time optimal control is presented where the matrix condition

TABLE 7 | One-thousand-run (respectively) Monte Carlo analysis.

Method State error Rate error Cost Runtime

Classical p + V −0.0065157 0.038442 25.3181 1.2342
LQR Optimal PD −0.0050504 0.56851 75.5278 1.23
Time-optimal control 0.16381 1.2703 1.3643 1.3055
Open loop optimala 0.00069197 −0.0052251 4.0281 1.2335
Real-time optimal (RTOC)a 0.062551 −165.1258 40,959.5421 1.2818
Switched RTOCa 0.00066117 −0.0051746 4.0281 1.1068

aReal-time optimal control (with and without switching) and open-loop optimal control are visually indistinguishable from one another in the graphic depiction.

FIGURE 2 | Scatter plots displaying the results of 1,000 simulation runs (per case) with randomly (uniformly) varied mass and mass moments ± 10%. (A) classical
P + V, (B) LQR optimal PD, (C) time-optimal control, (D) open-loop optimal, (E) real-time optimal (RTOC), and (F) switched RTOC.
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is used to switch away from real-time optimal control to
open-loop optimal control during timesteps when matrix
inversion becomes poorly conditioned. Machine precision
tracking is attained, open-loop optimally low costs are re-
achieved, and the computational burden is slightly elevated
compared to the best case investigated.

Summarizing the results so far, real-time optimal control
(designed only to minimize control effort) with singular
switching to counter the deleterious effects of poor matrix
conditioning achieves the best simultaneous state and rate
error (machine precision) with costs matching the open-loop
minimal and average computational burden. Unfortunately,
these results are achievable only in idealized circumstances
of double-integrators. Expressing motion in coordinates of
rotating reference frames introduced nonlinear coupling
described in the next section (3.2).

3.2 Nonlinear Plants With Cross-Product
Coupled Transport Theorem With Linear
Control Designs
Expressing motion in coordinates of rotating reference frames
is referred to as the “transport theorem,” which introduces
nonlinear coupling between the six channels of motion that
would otherwise have been well-described by simple, linear
double-integrators. Very often, linearized system equations or
linear assumptions (the double-integrators) are used to design
linear controllers. Accordingly, each instance investigated in
section 3.1 was applied to nonlinear coupled system equations,
including the transport theorem. Increased errors and reduced
robustness is generally anticipated since the controllers are not
designed to accommodate system nonlinearities specifically. Each
control technique introduced in Section 2 was sequentially

TABLE 8 | Percentage change in performance in one-thousand-run (respectively) Monte Carlo analysis: double-integrator plant (with transport theorem) with control design
based off double-integrator with transport theorem and noisy, mixed sensors (state and rate).

Method State error Rate error Cost Runtime

Classical p + V — — — —

LQR Optimal PD −22% 1,379% 198% 0%
Time-optimal control 2,614% 3,204% −95% 6%
Open loop optimal a −111% −114% −84% 0%
Real-time optimal (RTOC) a 1,060% 429,645% 161,680% 4%
Switched RTOC a −111% −114% −84% −10%

aReal-time optimal control u*total � ât + b̂ + �ωp × �J�ωp (with and without switching) and open-loop optimal control are visually indistinguishable from one another in the graphic depiction.

FIGURE 3 | Double-integrator plant (no transport theorem) with control design based on double-integrator. (A)Motion states (translation or rotational) normalized
to propagate from zero and unity in one normalized second. (B)Motion rates (translation or rotational) intended to propagate from zero initial velocity to zero velocity at the
endpoint in one normalized second.

TABLE 9 | Double-integrator plant (no transport theorem) with control design based off double-integrator (no transport theorem): quantitative comparative data
corresponding to the qualitative display in Figures 3A,B.

Method State error Rate error Cost Runtime

Classical p + V 0.010115 0.066169 28.1671 3.1012
LQR Optimal PD 0.015015 0.43861 76.3418 2.4597
Time-optimal control eps 2 2 2.9038
Open loop optimala eps Eps 6 2.6086
Real-time optimal (RTOC)a −9.1882 × 10−6 0.019289 6.7656 2.7497
Switched RTOCa eps Eps 6 2.7281

aReal-time optimal control �up ≡ ât + b̂ (with and without switching) and open-loop optimal control are visually indistinguishable from one another in the graphic depiction.

Frontiers in Robotics and AI | www.frontiersin.org October 2022 | Volume 9 | Article 88466911

Sands Analytic Nonlinear Optimal Guidance and Control

31

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


simulated, and the results are presented in Figure 4, where
Table 10 contains quantitative results corresponding to the
qualitative results presented in the multi-plots.

It should be noted that all approaches designed to control double-
integrators illustrate degraded performance compared to the
idealized case investigated in Section 3.1. All methods compared
achieved similar costs. The baseline approach (classical proportional
plus velocity, or P + V) tuned to performance specification exhibits
second-best state accuracy and second-best rate accuracy, while real-
time optimal control achieved the lowest state and rate errors but
used nearly double the amount of control. No technique achieved
machine precision tracking.

Summarizing the results so far, all control techniques are
degraded from the idealized case. Real-time optimal control
(designed only to minimize control effort) and classical
control methods were the most robust, but all three methods
utilized substantially more control effort.

3.3 Nonlinear Plants With Cross-Product
Coupled Transport Theorem and Nonlinear
Control Designs
Double-integrator relationships (implemented identically as done in
sections 3.1 and 3.2) are next augmented with feedback decoupling
of the transport theorem using state feedback in Eq. 19. Each control
design technique introduced in section 2 was sequentially used to
control the nonlinear, double-integrator system equations including
transport theorem, and the results are presented in Figure 5, where

Table 11 contains quantitative results corresponding to the
qualitative results presented in the multi-plots.

All methods are improved by addition of the nonlinear
decoupling control designed for the transport theorem. Time-
optimal control performs worst regarding state and rate errors,
while cost figures are generally increased for methods that
effectively track state and rate. Near machine-precision is
achieved by open-loop optimal control and switched, real-time
optimal control where both are designed to minimize control
effort alone (with no state error representation in the minimized
cost function). Computational burdens of all approaches are
roughly comparable.

Having initially analyzed idealized systems (the double-
integrators), nonlinear coupling was induced by the transport
theorem with significantly degraded performance using the
controllers designed for linear systems. Adding nonlinear control
components designed specifically to decouple the transport theorem
in feedback roughly restores nominal performances, but feedback
remains ideal (without noise). Section 3.4 adds zero-mean Gaussian
noise to both sensor types (state and rate)

3.4 Nonlinear Plants With Cross-Product
Coupled Transport Theorem and Nonlinear
Control Designs Utilizing Noisy,
Mixed-Sensors
Double-integrator equations with nonlinearities induced by
transport theorem were controlled by linear control designs

FIGURE 4 | Double-integrator plant (no transport theorem) with control design based on double-integrator. (A)Motion states (translation or rotational) normalized
to propagate from zero and unity in one normalized second. (B)Motion rates (translation or rotational) intended to propagate from zero initial velocity to zero velocity at the
endpoint in one normalized second.

TABLE 10 | Double-integrator plant (with transport theorem) with control design based off double-integrator (without transport theorem): displays the quantitative
comparative data corresponding to the qualitative display in Figure 4.

Method State error Rate error Cost Runtime

Classical p + V 0.024582 0.12803 26.6076 3.4291
LQR Optimal PD 0.26241 0.31372 75.8051 3.4593
Time-optimal control 0.56622 0.76159 0.5 3.4437
Open loop optimala 0.3606 −0.63176 6 3.5315
Real-time optimal (RTOC)a −1.9654 × 10−5 0.041323 11.2002 3.4579
Switched RTOCa 0.3606 −0.63176 6 3.5097

aReal-time optimal control u*total � ât + b̂ (with and without switching) and open-loop optimal control are visually indistinguishable from one another in the graphic depiction. Notice the
control design did not account for nonlinear transport theorem with unonlinear � �ωp × �J�ωp, the resulting open-loop optimal costs were unchanged, but the state and rate errors increased
substantially due to the nonlinear plant not being included in control design. Figure 5 displays the results of including nonlinear control design unonlinear � �ωp × �J�ωp.
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augmented with nonlinear feedback decoupling designed specifically
for transport theorem. Feedback was provided by simulated mixed
state and rate sensors, and Gaussian noise was added. Each control
design technique introduced in section 2 was sequentially used to
control the linear, double-integrator system equations, and the results
are presented in Figure 6, where Table 12 contains quantitative
results corresponding to the qualitative results presented in the multi-
plots.

The baseline approach (classical proportional plus velocity, or P +
V) tuned to performance specification exhibits better rate accuracy
and lower costs than linear-quadratic optimal regulators of the
proportional, derivative (PD) type, but the P + V controller has
relatively inferior state errors compared to LQR. Time-optimal
control performs poorly in the face of transport theorem and
noisy sensors. Real-time optimal control is severely degraded by
noise, particularly with respect to rate errors and control effort.

Open-loop optimization and real-time optimal control with
singular switching simultaneously achieve the lowest state and
rate endpoint errors, with the lowest costs (that may be claimed to
meet endpoint conditions), while the computational burden is
modest compared to low and high cases.

3.4.1 Monte Carlos Analysis (6,000 Simulation Runs)
Summarizing the results so far, real-time optimal control
(designed only to minimize control effort) with singular
switching to counter the deleterious effects of poor matrix
conditioning achieves the best simultaneous state and rate

error with costs matching the open-loop minimal and
average computational burden in cases where nonlinear
feedback decoupling of transport theorem is incorporated
and where feedback is provided by noisy state and rate
sensors.

4 DISCUSSION

The results are multi-variate, but some general comments are
evident regarding the proposed real-time optimal control with
singular switching and transport theorem decoupling and its
performance compared to a classical benchmark and four other
instantiations of optimal control. In the most realistic situations
revealed by Monte Carlo analysis with random variations of
inertia and state and rate sensor noise, time-optimal bang-bang
control achieved respectable rate accuracy with the lowest cost
but highest runtime and modest rate tracking errors.
Meanwhile, optimal (control minimizing constrained to meet
endpoint conditions) open-loop control and its companion real-
time optimal control with singular switching achieved the
lowest state errors (three orders of magnitude better than
time-optimal control) and control effort, while real-time
optimal control with singular switching and transport
theorem decoupling achieved the lowest rate tracking error.
Real-time optimal control without singular switching displayed
vulnerability in rate errors and high costs.

FIGURE 5 | Double-integrator plant (no transport theorem) with control design based on double-integrator. (A)Motion states (translation or rotational) normalized
to propagate from zero and unity in one normalized second. (B)Motion rates (translation or rotational) intended to propagate from zero initial velocity to zero velocity at the
endpoint in one normalized second.

TABLE 11 | Double-integrator plant (with transport theorem) with control design based off double-integrator with transport theorem: displays the quantitative comparative
data corresponding to the qualitative display in Figures 5A, B.

Method State error Rate error Cost Runtime

Classical p + V 0.0078728 0.038016 27.0064 3.5535
LQR Optimal PD −0.0063144 0.57121 75.7706 3.5738
Time-optimal control 0.16359 1.2712 2.7286 3.629
Open loop optimala 3.0287 × 10−13 −1.0092 × 10−12 7.0286 3.4504
Real-time optimal (RTOC)a −9.1882 × 10−6 0.019288 7.7942 3.6725

Switched RTOCa 3.0287 × 10−13 −1.0092 × 10−12 7.0286 3.5765

aUnlike the results of Figure 4where only linear, time-varying control designs u*total � ât + b̂ were used, in Figure 5 nonlinear designs for real-time optimal control u*total � ât + b̂ + �ωp × �J�ωp

(with and without switching) were used. Notice the open-loop optimal control is visually indistinguishable from nonlinear, time-varying control designs in the graphic depiction.

Frontiers in Robotics and AI | www.frontiersin.org October 2022 | Volume 9 | Article 88466913

Sands Analytic Nonlinear Optimal Guidance and Control

33

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Other general conclusions apply to all techniques: designing
controls based on simplified plants and then applying them to
realistic plants is particularly weak compared to the relatively
modern approaches. Arguably, milli-degree accuracy with
“low” costs is admirable performance, but the modern
methods of control design, including optimality and
nonlinear coupling effects (with feedback), achieved, in
general, three orders of magnitude superior performance,
with the admission that real-time optimal control
performed particularly poorly.

Furthermore, well-known lessons from classical control are re-
validated in this study. Linear-quadratic regulators are very
robust and useful, but suffer from cascaded topologies,
particularly in the differentiation of the state feedback to
achieve rate feedback, thus the utilization of velocity control
was established as the classical baseline (with a requisite demand
to purchase and utilize rate sensors).

The proposed instantiation of real-time optimal control
with singular switching and nonlinear transport theorem
decoupling u*total � ât + b̂ + �ωp × �J�ωp was the overall top-
performing option with the lowest state errors, lowest rate
errors, lowest computational burden, and second-lowest
control effort (fuel usage).

Lastly, it should be noted that all the control techniques
performed very well (naturally, since most of the techniques
were formulated to satisfy optimization problems). The

indication of superior performance should not be judged
as mandating the proposed technique, especially in
instances where operators would be more comfortable with
classical techniques and the order of milli-degree accuracy is
sufficient.

4.1 Performance Improvement Percentages
The claim was just immediately earlier, validating that real-time
optimal control with singular switching and transport theorem
decoupling was the overall top-performing option, and this section
describes the results validating the claim in generally understandable
terms (percent performance improvement comparison). Open-loop
(control minimizing optimal control constrained to meet end state
and rate) performed very well, while real-time optimal control with
singular switchingmatched the performance andwas slightly better in
terms of computational burden.

4.2 Future Research
The derivation of optimal trajectories (state, rate, acceleration,
and jerk) should prove useful in the implementation of
deterministic artificial intelligence (Smeresky et al., 2020),
which requires some scheme of autonomous trajectory
generation. The current state of the art utilizes sinusoidal
trajectory generation schemes, and the optimal trajectories
illustrated here should have improved efficacy when used to
augment deterministic artificial intelligence.

TABLE 12 | Double-integrator plant (with transport theorem) with control design based off double-integrator with transport theorem and noisy, mixed sensors (state and
rate): sub-displays the quantitative comparative data corresponding to the qualitative display in sub-Figure 6.

Method State error Rate error Cost Runtime

Classical p + V −0.0066807 0.03828 27.0755 2.3988
LQR Optimal PD −0.0047636 0.56965 76.8806 2.4667
Time-optimal control 0.16546 1.2693 2.7286 2.4837
Open loop optimala 0.0018665 −0.0018665 7.0286 2.5816
Real-time optimal (RTOC)a 0.06463 −171.6553 41,436,948 2.469
Switched RTOCa 0.0018665 −0.0018665 7.0286 2.6125

aReal-time optimal control u*total � ât + b̂ + �ωp × �J�ωp (with and without switching) and open-loop optimal control are visually indistinguishable from one another in the graphic depiction.

FIGURE 6 | Double-integrator plant (with transport theorem) with control design based on double-integrator (with transport theorem). (A)Motion states (translation
or rotational) normalized to propagate from zero and unity in one normalized second. (B) Motion rates (translation or rotational) intended to propagate from zero initial
velocity to zero velocity at the endpoint in one normalized second. Notice that the open-loop optimal (minimum) control effort is increased from 6.0 (controlling double-
integrators without transport theorem) to just over 7.0 (controlling double-integrators with transport theorem), manifesting as a 17% increase to account for
transport theorem over idealized cases of double-integrators alone.
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5 CONCLUSION

Real-time optimal control is proposed to deal with nonlinear
mechanics, including transport theorem coupling nonlinearities,
where noisy (random) sensors are assumed, and random
parameter variation is countered with time-varying solutions
to Pontryagin’s necessary conditions of optimality. Specifically,
the Hamiltonian minimization condition and the adjoint
equations produce the form of the control parameterized in
terms of time and mass or mass moment of inertia,
respectively. Singularity-based switching is proposed to
address divergence of the adjoints approaching the final
state. Ubiquitous figures of merit are used to compare the
proposed methods to benchmark classical and modern optimal
control methods: mean state and rate errors, quadratic costs
embodying necessary fuel usage, and computational runtime as
an avatar of the computational burden. Open-loop optimal control
established an intermediate baseline over the benchmark classical
control, while the proposed method yielded identical performance
improvements in terms of state and rate accuracy and quadratic
cost while experimentally illustrating an unexpected ten percent
improvement in computational burden.
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A neural flexible PID controller
for task-space control of robotic
manipulators
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This paper proposes an adaptive robust Jacobian-based controller for task-

space position-tracking control of robotic manipulators. Structure of the

controller is built up on a traditional Proportional-Integral-Derivative (PID)

framework. An additional neural control signal is next synthesized under a

non-linear learning law to compensate for internal and external disturbances in

the robot dynamics. To provide the strong robustness of such the controller, a

new gain learning feature is then integrated to automatically adjust the PID gains

for various working conditions. Stability of the closed-loop system is

guaranteed by Lyapunov constraints. Effectiveness of the proposed

controller is carefully verified by intensive simulation results.

KEYWORDS

intelligent controller, robotic, manipulators, PID controller, neural network

1 Introduction

Today, the great development of science and technology has created a premise for

scientific research to develop to a new level in which the field of robotics has being chosen

to be the leading industry by many countries. To promote science and technology

backgrounds, intelligent robots in the industrial application are starting to prosper

strongly, attracting many research experts. To control robot moving safely to desired

positions with obstacles, collision avoidance and path planning were matters of concern.

In recent years, various strategies have been studied for collision avoidance control

purpose. The basic idea behind the collision avoidance algorithms is to design a proper

controller which can result in a conflict-free trajectory. Path selection methods are the one

of several techniques to avoid obstacles. It uses off-line/on-line algorithms to produce a

curve that connects the starting and target points with a predefined initial position,

velocity and acceleration. For example, an online trajectory generation algorithm called

Ruckig considered third-order constraints (for velocity, acceleration, and jerk), so the

complete kinematic state could be specified for waypoint-based trajectories (Berscheid

and Kroeger, 2021). The smooth trajectory based on method combining of fourth and

fifth order polynomial functions was presented in (Boscario et al., 2012) in which, the

outcome of the method was the optimal time distribution of the via points, with respect to

predefined objective function. After that, the joint based controller might use the inverse

kinematic to solve the desired joint angular. Early collision avoidance approaches
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concentrated on the static obstacles handling by the sensor-based

motion planning methods (Borenstein and Koren, 1991), using

nearness diagram navigation to successfully navigate in

troublesome scenarios (Minguez and Montano, 2004) and

using trajectory planning algorithms to avoid obstacles

(Shiller, 2015). In reality, many techniques have been

proposed to cope with moving obstacles. For instance, a

reactive avoidance method incorporating with a non-linear

differential geometric guidance was presented in (Mujumdar

and Padhi, 2011) and a collision avoidance algorithm based

on the potential fields was proposed in (Huang et al., 2019). It

can be seen that in normal applications of robotic manipulators,

the controllers were designed in the joint space in which it

requires exact inverse kinematic computation as well. Non-

etheless, complex internal dynamics and external disturbances

coming from divergent working conditions are main obstacles

hindering development of excellent controllers.

To realize control objectives of the robots in real-life

missions, simple proportional-integral-derivative (PID)

controllers are priority options (Bledt et al., 2018), (Wensing

et al., 2017) due to simple design. If the proper control gains were

found, the high control outcomes could be obtained (Park et al.,

2015), (Ba and Bae, 2020). A lot of research have been then

studied to improve the performance of the PID controllers using

intelligent approaches such as evolutionary optimization and

fuzzy logic (Astrom and Hagglund, 1995). The methods

exhibited promising control results thanks to using both

online and offline sections (Tan et al., 2004). The off-line

control one could flexibly select the proper PID parameters

based on the system overshoot, settling time and steady-state

error, while the on-line one would adopt the operating control

errors to adjust fuzzy logic parameters to re-optimize the system,

improving the system quality significantly. However, the tuning

methodology of fuzzy logic controllers is mostly based on

experiences of operators (Juang and Chang, 2011). Another

series of the intelligent control category was based on the

biological properties of animals in which a genetic algorithm

was combined with a bacterial foraging method to simulate

natural optimization processes such as hybridization,

reproduction, mutation, natural selection, etc., (Cucientes

et al., 2007). This evolution could deliver the most optimal

solution. That the solving process requires a large number of

samples and takes a long-running time limits its application.

Recently, tuning PID control parameters using neural networks

has become an effective approach with many contributions (Kim

and Cho, 2006), (Neath et al., 2014). The conventional PID one

itself is a robust controller (Thanh and Ahn, 2006). The learning

ability integrated to the controllers makes it flexible to the

working environment (Ye, 2008). Lack of an intensive

consideration of learning rules in steady-state time could

make the system unstable in a long time used (Ba et al.,

2019), (Ye, 2008), (Rocco, 1996).

To further improve the control performance, internal and

external dynamics of robots need to be compensated during

working processes. To this end, classical methods could be

employed based on accurate mathematical models of the

robots (Craig, 2018), (Zhu, 2010). Good control results were

exhibited using such the conventional approaches, but it is not

easy to extend the control outcome to complicated robot

structures. Intelligent modeling methods could be adopted to

increase applicability of the controllers to various robots in

different working environments (Karayiannidis et al., 2016),

(Gao et al., 2022). Excellent control performances were

accomplished with the intelligent control approaches.

However, convergence of the learning process is still not

explicitly proven (He et al., 2020), (Wang et al., 2020). To

support this kind of theoretical drawback, linear leakage

functions were integrated the estimation phases of the

network operation. However, this term could be slowdown the

overall learning performance. Hence, advanced learning

behaviors for the network need to be extensionally studied.

In this paper, an intelligent direct PID controller is

proposed for position-tracking control in task space of

robotic manipulators. Without using inverse kinematics, the

operator just needs to input the desired position value, the

controller will calculate and give the desired control position to

the robot by itself (Craig, 2005; Ba and Bae, 2021; Ba et al.,

2021). This process will be of great help since, in practice, there

are quite few robots with quite complex hardware structures

that make the inverse kinematics calculation difficult. The more

degrees of freedom a robot has, the more difficult the

calculation process, requiring more time and effort. The

proposed controller is built based on a conventional PID

framework. A non-linear neural network is then employed

to eliminate internal/external disturbances during the

working process. To increase the adaptive robustness of the

controller, a new gain learning rule is integrated to flexible tune

the PID gain for different working conditions.

Outline of the paper is structured as follows. Section

2 discusses system modeling and problem statements. Section

3 presents design of the proposed controller. Section 4 analyzes

verification results. The paper is then concluded in Section 5.

2 System modelling and problem
statements

Behaviors of a general robotic manipulator can be presented

in the following form (Craig, 2018), (He et al., 2020):

M q( )€q + C q, _q( ) + G q( ) + τf + τd � τ, (1)

where q, _q, €q are respectively vectors of joint position, velocity,

and acceleration, M(q) is the mass matrix, C(q, _q) is the

centrifugal-Coriolis moment, G(q) is the gravitational
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moment, τf is the frictional moment, τd stands for external

disturbances, and τ is the actuator moment or control signals.

Remark 1: the control objective of this paper is to find out a

proper control signal (τ) to control position of the end-

effector of the robot following a desired profile. To

accomplish this task, we can use inverse kinematics (IK) to

compute desired joint positions from the end-effector

reference signals. However, it is not trivial to find solutions

of complicated robots. To avoid this shortcoming, we can

apply direct control algorithms without caring of the IK

problem. Hence, one needs consider dynamic model (1) in

the task space as follows (Craig, 2018):

€x � J q( ) �M−1
q( )τ + d, (2)

where x is the end-effector position of the robot, J(q) is the

Jacobian matrix, and �M(q) is the nominal value of the mass

matrix M(q), and d is the lumped disturbance as presented as

follows:

d � J q( ) �M
−1

q( )τ + J−1 q( ) _J q( ) _q( )
−J q( )M−1 q( ) C q, _q( ) + G q( ) + τf + τd( ), (3)

where �M(q) � �M(q) − �M(q) is the deviation mass matrix.

Remark 2: It is very difficult to determine accurate parameters of

model (1), (2) or (3). Furthermore, the parameters sometimes vary

during the working processes. To treat this drawback, the proposed

controller is required to be model-free, robust and flexible.

3 Neural flexible PID controller

In this section, the proposed controller is designed with new

features to realize the control mission stated. Theoretical

effectiveness of the closed-loop system is then analyzed using

Lyapunov constraints.

3.1 A flexible PID control framework

The controller is developed based on a conventional PID

(Tan et al., 2004) structure as in Eq. 4.

τ � − �MJ+ Kpe +Kde
. + Ki ∫ edt( ) (4)

where e � x − xd is the control objective, xd is the desired

trajectory, J+ is pseudo-inverse of the Jacobian J and

Kp,Kd, Ki are control gains.

FIGURE 1
The testing robot. (A) Control scheme of the robotic system. (B) Configuration of the testing robot.
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We assume that the desired trajectory xd is inside of the

workspace of the robot and the end-effector x of the robot can

reach to the desired position selected. Advanced path-

planning and obstacle-avoidance algorithms (Mujumdar

and Padhi, 2011; Shiller, 2015; Huang et al., 2019) could be

employed to generate appropriate desired profiles for the

robot.

In real-time control, one can tune the control gains

(Kp,Kd, Ki) for acceptable control performances. However,

the fixed gains might not ensure good control errors for

various working conditions (Thanh and Ahn, 2006), (Rocco,

1996). To cope with this problem, we propose an automatic

tuning law for PID gains, as follows:

KP � K2K2 + K1 + K2
�k0

KD � 2K2 + �k0
KI � K2K1 + �k0K1

_�k0 � −α0diag e| |( )diag 1 + e| |( )−1�k0 + β0 _e + K2e + K1∫edt( )2

.

.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(5)

whereK1, K2 are positive core gains, α0, β0 are learning rates and
�k0 � diag(�k0) is the activation gain.

FIGURE 2
Simulation data of the controllers in the first simulation. (A) Reference inputs and system outputs of the verifying controllers. (B) Comparative
control errors. (C) The process disturbances of the joints. (D) Control signals generated by the controllers. (E) The gain behaviors of the proposed
controller. (F) Estimation results of the proposed neural network.
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Remark 3: As seen in Eq. 5, the PID gains are structured from

static and dynamic gains which respectively yield robustness and

adaptation of the closed-loop system. The control gains are

varied in non-linear manners to drive the control error to go

into the desired region regardless of unknown environments. For

faster control results, the disturbance term d needs to be

effectively compensated by a proper control signal.

3.2 Additional neural network control
signal

First of all, the disturbance d is modeled using the following

Radial Basis Function (RBF) network:

d � Wξ q( ) + δ, (6)

where W is the optimal weight vector, ξ(q, _q) is the regression
vector, and δ is the modeling error.

Based on the neural network model (6), the control signal (4)

is modified by adding an additional intelligent control term, as

follows:

τ � − �MJ+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Kpe + Kde +Ki ∫ edt

︸���������︷︷���������︸
uPID

+ Ŵξ q, _q( )︸���︷︷���︸
uNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (7)

where uPID and uNN stand control terms generated by PID and

neural network structure, respectively, and Ŵ is estimate of the

weight vector W. The estimation Ŵ is updated by the following

non-linear mechanism:

_̂wi|i�1..n � −αw ei| | 1 + ei| |( )−1ŵi + βw _ei +K2ei + K1 ∫ eidt( )ξ,
(8)

where αw and βw are learning rates.

Remark 4: The system (8) uses rich information including time-

derivative, linear, and integral function of the control error to

activate the learning process. The weight matrix of the neural

network is automatically updated to ensure the minimum control

error.

3.3 Stability analysis

In this section, we discuss the stability of the closed-loop

system to ensure reliability of the proposed controller for the

robotic system (3). From the above design, we have the following

statements.

Theorem 1: Give a task-space model (3) of robotic

manipulators, if employing a conventional neural PID control

signal (7) supported by adaptive rules (5) and (8), the following

properties hold:

1) The control error e, activation gain �k0 and the neural weight

vectors are bounded.

2) In the stationary phase, the control error e converges to zero.

Proof:

We first synthesize a virtual control error (ev) as follows:

ev � _e + K2e + K1 ∫ edt (9)

The time derivative of the new error (ev) under dynamics (3)

and the model (6) is described

_ev � J q( ) �M−1
q( )τ +Wξ q( ) + δ − €xd +K2 _e +K 1e (10)

By substituting the control signal Eq. 7 and the gain structure

Eq. 5 into the dynamics Eq. 10, we have a simpler form:

_ev � −J q( ) �M−1
q( ) �MJ+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Kpe +Kd _e +Ki ∫ edt

︸���������︷︷���������︸
uPID

+ Ŵξ q, _q( )︸���︷︷���︸
uNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+Wξ q, _q( ) + δ − €xd +K2 _e +K1e

� −K2 _e +K2e +K1 ∫ edt( ) − �k0 _e +K2e +K1 ∫ edt( ) − ~Wξ q, _q( )
+ δ − €xd

� −K2ev − �k0ev − ~Wξ q, _q( ) + δ − €xd

(11)

where ~W � Ŵ −W is estimation error of the neural weight

matrix W.

We now consider a new Lyapunov function:

L � 0.5eTv ev + 0.5�k
T

0
�k0 + 0.5∑n

i�1
~wT
i β

−1
wi ~wi. (12)

Differentiating the function Eq. 12 with respect to time and

noting the dynamics Eq. 11 lead to

_L � eTv _ev + �k
T

0 β
−1
0
_�k0 +∑n

i�1
~wT
i β

−1
wi
_~wi � −eTv K2ev + �k0ev − δ + €xd( )

−∑n
i�1
evi ~w

T
i ξ + �k

T

0 β
−1
0 −α0diag 1 + e| |( )−1�k0 + β0e

2
v( )

+∑n
i�1

~wT
i β

−1
wi −αw ei| | 1 + ei| |( )−1ŵi + βw _ei +K2ei + K 1 ∫ eidt( )ξ( )

� −eTv K2ev − δ + €xd( ) − �k
T

0 α0diag e| |( )diag 1 + e| |( )−1�k0
+∑n

i�1
~wT
i β

−1
wi −αw ei| | 1 + ei| |( )−1 wi + ~wT

i( )( )≤ − 0.5eTv K2ev

− �k
T

0 β
−1
0 α0diag e| |( )diag 1 + e| |( )−1�k0 + 0.5λ max K−1

2( ) δ + €xd‖ ‖2

−∑n
i�1

~wT
i β

−1
wiαw ei| | 1 + ei| |( )−1 ~wi +∑n

i�1
β−1wiαw ei| | 1 + ei| |( )−1 wi‖ ‖2 (13)

Applying Cauchy-Schwarz inequality, we obtain the

following result:
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_L≤ − 0.5eTv K2ev − �k
T

0 β
−1
0 α0diag e| |( )diag 1 + e| |( )−1�k0

−∑n
i�1

~wT
i β

−1
wiαw ei| | 1 + ei| |( )−1 ~wi + Δ (14)

where Δ is a lumped term defined as

Δ � 0.5λ max K−1
2( ) δ + €xd‖ ‖ 2

max +∑n
i�1
β−1wiαw wi‖ ‖ 2

max (15)

Since wi and δ are bounded, hence Δ is bounded as well.

This discussion leads to the proof of the first statement of

Theorem 1.

In the stationary phase, the time derivative of the virtual

control error ev converges zeros. By differentiating Eq. 9 with

respect to time and applying Hurwitz criterion on the results, we

can achieve the second proof of Theorem 1.

Remark 5: As carefully observing on the definition (15), one

could selectK2 and βwi to large enough to reduce the disturbance

bound Δ. However, these are still fixed values. From Eq. 14, it can

be seen that the control performance could be enhanced by the

learning gain k0 for various working cases. The control idea is

graphically summarized in Figure 1A. The following

implementation procedure could be referred for deploying the

proposed control algorithm on simulation or real-time testing. 1)

In the first step, all of the learning rates (α0, β0, αw and βw) are set

to be zeros. The positive core gains (K1, K2) are manually tuned

for acceptable control performances. The gain K2 are

recommended to be greater than the gain K1. 2) In the

second step, the learning rates (α0 and β0) of the activation

gain (K0) are adjusted to further enhance the control

performance. In this step, the core gains (K1, K2) could be

retuned in some cases for higher control precision. 3) In the

third step, the regression vector ξ(q, _q) is built and the learning

rates (αw and βw) of the neural network are manually selected

bring the control accuracy to a higher level. The whole tuning

procedure could be applied several times for seeking an excellent

control outcome. Note that, from the second turn, it does not

need to reset the learning rates (α0, β0, αw and βw) to be zeros

anymore.

4 Validation results

This section presents validation results of the proposed

controller in simulations. The control algorithm was applied

to a 2-degree-of-freedom (DOF) robot, as sketched in

Figure 1B. The manipulator was modeled as two rigid links

with lengths of l1 and l2. The mass was distributed at the end of

each link (m1, m2). The robot would work in a vertical plane

with downward gravitational acceleration. Viscous friction

was modeled at the joints (a1, a2). Although this robot is quite

simple, it contains all the necessary components of a general

multi-degree of freedom manipulator including moment of

inertia, centrifugal terms, Coriolis terms, gravity terms and

friction effects.

The detailed dynamic equations of the robot are as follows:

τ1 � m2l
2
2 €q1 + €q2( ) + l1l2m2 cos q2( ) 2€q1 + €q2( )

+ m1 +m2( )l21€q1
−m2l1l2 sin q2( ) _q2 _q2 + 2 _q1( ) +m2l2g cos q1 + q2( )
+ m1 +m2( )l1g cos q1( ) + a1 _q1
τ2 � m2l

2
2 €q1 + €q2( ) + l1l2m2 cos q2( )€q1 +m2l1l2 sin q2( ) _q21+m2l2g cos q1 + q2( ) + a2 _q2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(16)

To estimate the disturbances d, we used an RBF neural

network with 4 input neurons, 256 hidden neurons and

2 output neurons.

FIGURE 3
Simulation data of the controllers in the second simulation.
(A) The desired profile of the manipulator. (B) Comparative control
errors.
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The actual values of the length of links, mass and viscous

friction coefficients were chosen as

follows: l1 � 0.2; l2 � 0.3;m1 � 7;m2 � 3.5; a1 � 3;m2 � 10

To evaluate the adaptability and robustness of the controller

under divergent working conditions, we compared the proposed

controller (called anPID) with a conventional PID controller

(referred to as cPID) and an adaptive PID controller with using

only automatic tuning law for PID gains (referred to as aPID).

The parameters of the controller were chosen as: K1 �
diag([5; 5])K2 � diag([50; 50]) �M � diag([0.1; 0.1]) while

learning coefficients were α0 � 0.01, β0 � 40 and

αw � 0.01, βw � 50

To carefully express the performance of the proposed

controller, the robotic manipulators were simulated in three

cases. In the first simulation, the robot was controlled to track

the desired trajectories of smooth multi-step signals.

Furthermore, process disturbances in the form of white

noises, as shown in Figure 2C, were added to the output

torques of the actuators. Simulation results of the

conventional and intelligent PID controllers for the tracking

control mission are also shown in Figure 2.

Figures 2A,B shows that the proposed controller maintained

good control errors even though the end-effector of the

manipulator worked throughout a singularity point of (0.1; 0)

(m). Figure 2D exhibits the control signals of the smart PID

controller which had large values at the initial and singularity

points in order to decrease the control errors as fast and much as

possible. This superior property was the achievement of the

learning laws (5) and (8) that are demonstrated by the gain

and weight variations as depicted in Figures 2E, F, respectively.

These terms were first started from the zero value, then their

values had a large overshoot to bring the system to the steady

state rapidly. It can be seen that the system adapted to the

reasonable approximation of the disturbances to bring the

control error to the smallest possible value. Therefore, the

learning ability of the system has been confirmed with

FIGURE 4
Simulation data of the controllers in the third simulation. (A) Trajectory in a straight line. (B) Comparative control errors. (C)Obstacle avoidance
trajectory. (D) Comparative control errors.
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uncertain non-linearities and perturbations through this

simulation validation.

The manipulator was employed to draw a circle whose radius

was 0.15 m and origin was at a point of (0.3; 0) (m) with a

frequency of 1 Hz in the second simulation. The reference input

used is shown in Figure 3A.

With the application of the neural flexible PID controller for

unknown environments but using the adaptive rule (7), the

control results obtained are presented in Figure 3B. From the

data in this figure, although disturbances were not known in

advance, the control qualities of the joints were good at both the

transient and steady-state phases. The results were achieved

thanks to the learning characteristics of the PID gains and the

designed RBF neural network. There was a little overshoot in the

y-direction error due to the large learning rate selected, but this

overshoot might cause the system to quickly reach steady state.

From the comparison of the control data in Figure 3B, it can be

seen that the quality of proposed controller (anPID) was better

than that of the aPID controller which was employed only one

learning law (5). This is possible because the more adaptive terms

the controller had, the more approximation with disturbances it

gained.

In the third simulation, the end effector of robot manipulator

was controlled to move from a point of (0.35; 0.25) (m) to

another point of (0.15; 0.05) (m). After applying the three

controllers for this mission in a free condition in which the

desired trajectory was planned as a straight line, their control

outcomes including the actual outputs and the control errors

were illustrated in Figures 4A, B, respectively. In these figures,

although the proposed controller (anPID) had more oscillation

in the transient state to find adaptive term quickly, it had smallest

overshoot and steady state error when compared with cPID and

aPID controllers.

To further challenge the controllers with a more difficult

working condition, an obstacle was set on the moving trajectory

of the robot in the task space. By applying the trajectory planning

method and the referred avoidance collision method (Borenstein

and Koren, 1991), (Craig, 2005), the desired trajectory was

generated as a curve by using two third-order-segment

polynomials for the position, velocity and acceleration of the

end-effector. The control data in this case are shown in Figures

4C, D. From the comparison of the data in these figures, it can be

seen that the control quality of proposed controller (anPID) was

better than that of the others (aPID and cPID) even though with

the non-linear trajectory generated.

Table 1 described themaximum absolute (MA) and root-mean-

square (RMS) values of the control performances for a specified

manipulated time (20 s–25 s). The proposed controller always

provided the best MA and RMS error in all cases. These results

show that the proposed control technology compensated efficiently

for the non-linear uncertainties and unknown disturbances. Here,

the advantages of the proposed controller have been confirmed.

Therefore, the simulation results have proved that the studied

control method outperform over the previous ones.

5 Conclusion

In this paper, an intelligent controller is proposed to

optimize the position control performance of a 2DOF

TABLE 1 Statistical computation of the controllers from the validation results.

Control error X position Y Position

MA RMS MA RMS

The 1st case cPID 0.0045 0.0023 0.0036 0.0021

aPID 0.0019 9.36 × 10−04 0.0016 7.66 × 10−4

anPID 7.28 × 10−4 2.45 × 10−4 7.16 × 10−4 2.27 × 10−4

The 2nd case cPID 0.0423 0.0189 0.059 0.0362

aPID 0.0089 0.0046 0.0088 0.0059

anPID 7.33 × 10−4 3.14 × 10−4 0.0016 4.91 × 10−4

The 3rd case (no obstacle) cPID 0.0055 0.0044 0.0089 0.0077

aPID 0.0029 0.0021 0.0033 0.0027

anPID 0.0013 5.24 × 10−4 0.0012 5 × 10−4

The 3rd case (obstacle) cPID 0.0048 0.0037 0.0072 0.0057

aPID 0.0026 0.0018 0.0029 0.0022

anPID 8.37 × 10−4 3.14 × 10−4 0.0016 6.9 × 10−04
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robotic manipulator. The controller is developed based on a

conventional PID structure. New advanced features designed

for disturbance learning and gain adaptation are then

integrated into the ordinary control signal to improve its

robustness and result in high control accuracies. The

control efficiency of the proposed approach was then

successfully verified by theoretic proof and comparative

simulations. It can confirm that the controller is model-

free, simple, robust and flexible. In the near future, the

proposed control algorithm will be integrated with an

additional control term that could result in asymptotic

control performances for dynamical trajectories.

Furthermore, advanced path-planning and obstacle-

avoidance algorithms will be considered to combine with

the controller to increase the flexibility when the system

works in complex environments.
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Robots that work in unstructured scenarios are often subjected to

collisions with the environment or external agents. Accordingly, recently,

researchers focused on designing robust and resilient systems. This

work presents a framework that quantitatively assesses the balancing

resilience of self-stabilizing robots subjected to external perturbations. Our

proposed framework consists of a set of novel Performance Indicators (PIs),

experimental protocols for the reliable and repeatablemeasurement of the PIs,

and a novel testbed to execute the protocols. The design of the testbed, the

control structure, the post-processing software, and all the documentation

related to the performance indicators and protocols are provided as open-

source material so that other institutions can replicate the system. As an

example of the application of our method, we report a set of experimental

tests on a two-wheeled humanoid robot, with an experimental campaign of

more than 1100 tests. The investigation demonstrates high repeatability and

efficacy in executing reliable and precise perturbations.

KEYWORDS

benchmarking method, self-stabilizing robots, robots balance, performance
assessment, robustness

1 Introduction

The growing employment of robots in real-world applications, e.g., exploration
of hazardous environments (Negrello et al., 2018) and household assistance
(Parmiggiani et al., 2017), emphasizes the necessity of robots safe and resilient against
disturbances. In engineering, Hollnagel et al. (2006) defined resilience as “the ability
of an organization (system) to keep or recover quickly to a stable state, allowing it to
continue operations during and after a major mishap or in the presence of continuous
significant stresses”. Zhang brought the concept of resilience into the robotic field (Zhang
and Lin, 2010), while Zhang et al., 2017 proposes a set of principles for the design of soft
and resilient robots.

Following Hollnagel and Zhang’s interpretations, we investigate the definition of
resilience for self-stabilizing robots. Self-stabilizing robots are a group of robotic systems
with the common trait of possessing an unstable equilibrium stabilized continuously
through control. Their increment of control and design complexity is accepted in the face
of the augmented dexterity and agility that they show when compared to stable robots,
such as mobile base robots (Fuchs et al., 2009). In the face of this augmented dexterity,
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the possibility of facing unexpected falls, which may cause
damage to the robot, the surroundings, or persons, arises and
become the major issue for a self-stabilizing robot to cease
operations. As a result, for these robots, the concept of resilience
expressed by Zhang and Lin, 2010 should be re-defined as the
ability of a system to maintain a stable state, allowing it to
continue operating in the presence of continuous and significant
perturbations. In this sense, studying the resilience of robots
becomes closely connected to looking into balancing abilities.

However, nowadays, the measurement of robots’ balancing
resilience is a novel research field and still mostly relies on
qualitative methods. To this aim, one of the most advanced fields
is the legged locomotion research community. Nevertheless,
in the related literature, it is possible to find just heuristic
tests: Pushes) (Barasuol et al., 2013) (Feng et al., 2016), tilting
the support surface (Li et al., 2013), balancing over a soft
ground (Henze et al., 2016), or impacting with heavy masses
(Kanzaki et al., 2005). These assessment methods are qualitative
or hardly repeatable and do not allow comparisons between
different robots. Benchmarking the performance of robotic
systems offers many advantages. It allows for quantifying
the performance of various systems, making comparisons
possible, and fostering improvements. In industry, performance
quantification makes possible standardization of technologies
and regulation of the processes for manufacturing and
commercialization of certified robots (Torricelli et al., 2015).
Hence, a growing interest in the field of benchmarking
has arisen during recent years in the research community
(Negrello et al. (2020)) (Stasse et al. (2018)), especially for
legged systems (Torricelli et al., 2015). Torricelli et al., 2015 and
Torricelli and Pons, 2018 paved the way for benchmarking
platforms for self-stabilizing robots and exoskeletons with the
European Project EUROBENCH 20201. Seventeen sub-projects
work under the Eurobench consortium, each accounting for a
different aspect of robot performance. To give some valuable
examples, in Taborri et al., 2020, the authors present B.E.A.T.,
a benchmark for evaluating the static and dynamic balance
of wearable human-assisting devices. In Lippi et al., 2019,
Lippi et al., 2020, the authors proposed COMTEST , a similar
framework for testing the performance of humanoids, as well
as a set of Performance Indicators that aim to standardize the
capabilities of robots on a universal level. In Vicario et al., 2021,
the authors present FORECAST , a benchmarking method able
to “define an objective score for a given force-controlled system
accounting for its sensitivity to environmental uncertainties and
variations.” Lastly, in Bayón et al., 2021, the authors proposed
BenchBalance, a.“ Benchmarking solution proposed to conduct
reproducible assessments of balance in various conditions,

1 https://eurobench2020.eu/.

mainly focused on wearable robots but also applicable to
humanoids.”

We propose an evaluation framework for characterizing
the resilience of self-stabilizing robots subjected to
external disturbances (Monteleone et al., 2020). In
Monteleone et al., 2020, we introduced the early conceptual
definition of the testbed, with experimental validation on a
two-wheeled robot solely on impulsive conditions, enforced
via a non-actuated prototype of the testbed. In this work, we
developed further the conceptual definition of the testbed,
designing a framework composed of seven novel PIs to evaluate
the resilience of a robot, five original experimental protocols for
assessing the PIs, and a new testbed for reproducible issuing of
both dynamic and static perturbations. The novel framework
comprises an actuated structure equipped with a brake and
clutch to perform various disturbances and protect the robot and
operators against accidental impacts. The PIs, the experimental
protocols, and the actuated and adjustable structure design are
novelties in the state of the art. The proposed system draws
inspiration from classical resilience testingmachines used for the
characterization of materials samples (as the Charpy test stand
(ISO, 2010), realizing a system that can apply a desired impulsive,
repetitive, or static disturbance in the most straightforward and
easily reproducible way. As a previous work, we designed a non-
actuated benchmark structure to test the resilience of the soft
hand grasping under impulsive loads (Negrello et al., 2020). The
novel system integrates position and force sensors to characterize
the disturbance we are applying to the robot. It is actuated
to control the application of perturbations under static and
dynamic conditions. As a specific use case of applying our
method, we report a set of experimental tests on a particolar two-
wheeled base humanoid robot (Lentini et al., 2019). The main
contributions of this work are the definition of the performance
indicators, the testing protocols, and the mechanical design
and control of the testbed. Additionally, all the materials are
presented as open source and can be found on the external link
in Section “Data Availability Statement”.

The resilience characterization framework we propose
will pave the way for a rigorous benchmarking process of
robot performance. The impact of our framework could go far
beyond the balancing resilience characterization of wheeled
robots (such as Alter-Ego from IIT/Research Center “E.
Piaggio” or Golem Krang from Georgia Institute of Technology
(Stilman et al., 2010) and could include the assessment of the
balancing of autonomous legged robots. Today autonomous
legged robotics is one of the most vibrant and hot research
topics and is also significantly changing the industrial landscape.
The population of humanoid (see, e.g., COMAN from “Istituto
Italiano di Tecnologia (IIT)” (Tsagarakis et al., 2013) or Valkyrie
from NASA (Radford et al., 2015) and quadrupedal (see,
e.g., HyQ from IIT (Semini et al., 2011) or Anymal from
ANYbotics (Hutter et al., 2016) prototypes has dramatically
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increased in the last decades, as well as the related scientific
publications. Moreover, today there exist several companies that
develop and commercialize legged robots (e.g., agilityrobotics2,
unitree3, ANYbotics4, SoftBank5), with the remarkable recent
acquisition of Boston Dynamics6 by a large automotive
corporation, promising to be the core of a novel industrial
segment. Finally, a strong impact of our work is expected
in the field of assistive robotics (e.g., wearable robots
(Kazerooni, 2005) (Khazoom et al., 2020) and personal robots
(Parmiggiani et al., 2017), that is experiencing a growing trend
similar to one of the autonomous legged robots.

The paper is organized as follows: Section 2 briefly recalls the
requirements necessary to define a robotic system performance.
Section 3 describes the performance indicators that we propose
to define the resilience and performance of systems subjected
to external perturbations. Section 4 and Section 5 present the
design of the testbed, which we use to test the systems and
the experimental protocols to execute reliable and repeatable
experiments with different perturbation conditions. Section 6
shows the results of applying this testing strategy to Alter-Ego,
a two-wheeled humanoid robot. Section 7 discusses the results
based on the acquired data, exposing the quality and the possible
future improvements of the benchmarking method. Section 8
concludes the paper.

2 Methodology and concept

Given the youth of robotics (about 60 years), benchmarking
the performance of robots is a novel study area. Other fields,
such as biomechanics, have extensively researched this problem
to assess, for example, humans’ balance and locomotion
capabilities. The literature proposes several methods and
structures to characterize the performance of human balancing
(e.g., Berg et al., 1992; Zemková, 2011; Molnar et al., 2018).
They typically rely on the application of perturbations to
the subject, e.g., asymmetric (Vashista et al., 2013), impulsive
(Ellis et al., 2014), or active (Vashista et al., 2014) disturbances
at the Center of Mass (CoM), or on the distal arts, e.g.,
Barasuol et al., 2013. From the literature, the importance of
employing different forms of disturbances to measure the
performance of a system is evident. To characterize the balancing
performance of a robot, we require a system capable of providing

2 Agility Robotics, https://www.agilityrobotics.com.

3 Unitree robotics, https://www.unitree.com.

4 ANYbotics, https://www.anybotics.com.

5 Soft Bank Robotics, https://www.softbankrobotics.com.

6 Boston Dynamics, https://www.bostondynamics.com.

a variety of perturbations on robotic structures and collecting a
meaningful set of data.

When applied to robotic applications, these stimuli can be
helpful in evaluating performance in typical stress situations.
Impacts are disturbances that naturally occur in unstructured
environments and collaborationwith humans. Single impacts are
the most common perturbations in robotics, but various types of
pushes occur periodically or that last over time. Repetitive and
quasi-static perturbations are sustained during Human-Robot
Interactions (HRI). This kind of stimulus helps people perceive
robots as human-like entities rather than mechanical systems
(Hyon et al., 2007).

By analyzing the response of systems subjected to various
types of disturbances (see Section 3), we point out the necessity
to define some indices that can easily show the limits and
capability of systems. In this way, we can determine the
experiments necessary to obtain the desired performance
indicators (Figure 1C) that will constitute the core of our
protocols and structure. In the case of repetitive or quasi-
static perturbation, we believe it is worth dividing the stimuli
between position-driven and force-driven ones. Indeed, despite
their superficial similarities, robots react to CoM position
perturbations and force perturbations in distinct ways. Repetitive
perturbations are the finest example (see Section 6).

Perturbations can be applied to robots they are while
moving or standing still. Balancing in a standing position may
appear a trivial task, but it is the primary condition for any
self-stabilizing robot to work. Balancing in the presence of
perturbations is a crucial topic in the literature. As examples,
in Stephens, 2007, Ott et al., 2011, and Liu and Atkeson, 2009,
the authors present strategies and controllers to recover from
significant disturbances and maintain an upright posture.
Understanding the limits of performance in robot balancing is
the basis for fostering self-stabilizing system technologies.

During data acquisition, we must rely on measurements
resulting from the testbed sensors. The test bench would
be used to assess multiple robots, and we can not know a
priori which measurements are accessible from the robot side.
Accordingly, the measured values of the test bench sensors
should be consistent, simple, and repeatable, allowing more
reliable performance computations. Measures coming from
robots are not sufficient, and therefore, we must rely only on
commercial sensors integrated into the test bench. We want
to investigate robotic structures that may have very different
dimensions. Due to that, the test platform should adapt to the size
of the robot under evaluation (Figure 1D).The test bench should
be fully modular, allowing different disturbance conditions and
locations. Complete system modularity guarantees the highest
flexibility during tests. The use of the proposed device could
be extended to other benchmarking scenarios, especially those
involving stability against disturbances on different terrains, such
as walking on slopes or irregular terrain.
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FIGURE 1
Conceptual design of the structure. (A) Represents the impulsive, highly dynamic experiments, while (B) represents the quasi-static experiments.
(C) Definition of the required experiments for Performance Characterization. (D) Basic features of the testbed, to perform test on different robots.
Panel (A) and (B) are taken from Monteleone et al. (2020), a previous work of the authors.

During the development of the conceptual structure, we
design a pendulum-like system, aiming to make its main
dimensions (such as the height of the pendulum shaft, the length
of the pendulum, and inertia) adjustable to match one of the
different robots. In the design phase, we focus on the key features
the benchmark must possess (Figure 1D). The primary purpose
of this structure is to collect data from the robotic systems
to define a set of Performance Indicators. These indicators are
detailed in the next section.

3 Performance indicators

PIs describe the resilience of a self-stabilizing robot and
allow comparisons among different robotics systems. The
resilience of robots, in particular self-stabilizing systems,
is influenced by structural robustness, but their balancing
capabilities also cover a significant role. We divided PIs into
two categories. The first contains those indices that show the
limits at which the robot loses its balancing capability (see
Section 3.1). The second is composed of those indices that
describe the properties of systems subjected to perturbations (see
Section 3.2).

3.1 Resilience limits

3.1.1 Impulsive resilience
Impulsive Resilience (IR) defines the maximum impulsive

perturbation a robot can withstand without breaking or falling.
Impacts are described by the impulse (I) and energy involved
(E). Therefore, the IRis a diagram in which I lies on the x-
axis and E on the y-axis. The resulting “resilience regions”
(Figure 2B) are areas of the graph that describe the conditions
at which the robot withstands the shock (light blue) or falls
(red).

3.1.2 Excited resilience
The Excited Resilience (ER) defines the maximum

perturbation a robot subjected to repetitive shocks can tolerate
without breaking or falling. A repetitive disturbance is described
by its amplitude (A) and the frequency ( f) at which it is
repeated. More in detail, the load can be a displacement or force
perturbation. Hence, the ERare two plots in which f lies on the
x-axis and A on the y-axis. The first shows the resilience regions
of the robot subjected to repetitive displacement oscillations
(Figure 2C), while the second displays the resilience regions
related to force oscillations (Figure 2D).

3.1.3 Quasi-static resilience
The Quasi-Static Resilience (QSR) defines the maximum

perturbation a robot subjected to constant loads tolerates
without breaking or falling. A constant load is described by its
value in terms of force or displacement. The QSRcomprehends
the minimum unstabilizing constant force and displacement
measures. Hence, QSRresults in two scalar values. Note that in
the case of a robot that can perform balancing actions, such as
backward steps, these values are converted to theminimum force
and displacement that induces the system to perform a complex
balancing routine.

3.2 Robot properties

3.2.1 Absorbed energy
The Absorbed Energy during Impulsive perturbations (AEI)

defines the capability of a robot to absorb energy during impacts.
The AEIindicates the capability of the robot to oppose an impact
and is expressed by the percentage of energy absorbed. Being a
PI related to impulsive shocks, the parameters that describe the
AEIare I and E. The result is a three-dimensional plot in which I
lies on the x-axis, E is on the y-axis, and the percentage of energy
absorbed by the robot is on the z-axis (Figure 2E).
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FIGURE 2
(A) Schematized Model used to visualize the Performance Indicators results. Example of: (B) Impulsive resilience chart. (C,D) Excited Resilience
charts, where (B) is the ERrelated to a displacement perturbation, while (C) is the ERrelated to an oscillating force. (E) Absorbed Energy chart
during Impacts. (F) Excited Equivalent Impedance chart. All picture refers to the model in (A). The region of conditions at which the robot shows
unstable behavior is reported in red.

3.2.2 Excited equivalent impedance
The Excited Equivalent Impedance (EEI) evaluates the

dynamic behavior of a robot when subjected to repetitive
disturbances. The EEIconsiders a simplified standard model and
computes the dynamic coefficients of inertia (J), elasticity (K),
and damping (B), varying f. The estimations of these parameters
rely on the measurements from repetitive force perturbations.
Using a dynamic regressor, we compare the robot to a second-
order inertia-spring-damper system and evaluate the coefficients
[J,B,K]. The EEIis a plot with f on the x-axis and the impedance
coefficients on the y-axis (Figure 2F).

3.2.3 Normalization factor
Performance Indicators describe the balancing skills of

systems under different loads. PIs are expressed by extensive
measures (such as forces and displacements); therefore, these
indices are highly dependent on the robot’s size. As a result,
to compare different systems, it is necessary to scale all
measurements to a common reference model. Any tested robot
could be used as a standard for all other systems. However, we
believe it is better to refer to a more general model.

Since robots are designed to mimic human behaviors,
we compare their performance to a medium-sized human.

Dimensions for the human model are retrieved from
Armstrong, 1988. Using these values as standard dimensions, we
designed some normalization factors that weigh all the previous
indicators on the common model.

We define a total of six Normalization Factors: two are
related to force scaling (i.e., frontal and lateral directions),
two are related to the energy scaling (as before, frontal and
lateral), and the last two are related to the CoM displacement.
Normalization factors for energy (NEJ) and force (NFJ) have been
calculated considering the systems rigid and approximable to
parallelepipeds (Figure 3A).The force and energy normalization
factors are computed as the minimum force and kinetic energy
required to unstabilize the system by pivoting around one of its
edges (see Figure 3A). Hereafter, we compare these values to the
ones of our reference system. The normalization factors related
to the force are

NFJ =
mrobot

mhuman

dCoMrobot

dCoMhuman

hCoMhuman

hCoMrobot

, (1)

while the normalization factors related to the energy are

NEJ =
mrobot

mhuman

√h2
CoMrobot
− d2

CoMrobot
− hCoMrobot

√h2
CoMhuman
− d2

CoMhuman
− hCoMhuman

. (2)
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FIGURE 3
Schematic visualization of the model for (A) the force and energy normalization factor computation and (B) the displacement normalization factor.
(C) Model of the structure reporting the main dimensions of the system. (D,E) Definition of the impact position for (B) frontal perturbations and (C)
sagittal perturbations.

For both equations, mi are the masses of the robot and
human, hCoMi

are the height of the Center of Mass from the
ground, and dCoMi

are the width of the bearing surface. The dCoMi

dimension is different if the normalization factor is computed
frontally or laterally. Subscript J indicates that the same equation
holds both directions. Normalization factors are calculated by
the minimum impulsive force and energy (respectively) that
unstabilizes the model by pivoting it on its edge. Lastly, the
normalization factor related to the displacement (ND) compares
the angular movement of the contact point relative to the robot
ground, scaling it to the movement the system would have with
the dimensions of a medium-sized person (Figure 3B).

ND =
hCoMrobot

hCoMhuman

(3)

3.3 Performance indicators illustration

In this paragraph, we aim to illustrate the PIs behavior
when applied to a generic robotic system. Functional to the
visualization of the PIs is a dynamical examination of an
actuated inverted pendulum subjected to external perturbations
(Figure 2A). This example model is chosen because it resembles
the dynamics of a humanoid-legged robotic system subjected to
pushes when no steps are performed, allowing us to consider
the feet/base of the robot fixed on the ground. Therefore, this
model is similar to a basic self-balancing robot performing “ankle
strategy” (Stephens, 2007; Rogers and Mille, 2018). Different
models can be applied if we aim to resemble two-wheeled
humanoid robots, which typically act as cart poles. The reader
should note that the choice of the model does not influence the
effectiveness of the PIs, but it may vary the behavior shown.

The model dynamics for the inverted pendulum is

Jθ̈+Mg l
2
sin (θ) = τ− Fh, with τ = −Klqr [θ; θ̇] , (4)

where J,M and l are the inertia, the mass, and the length of the
inverse pendulum, respectively. τ is the commanded torque used
to apply an LQR optimal control Klqr . Lastly, F is the external
force, and h is the height at which we apply the perturbation.
During simulations, we adjust the input function F(t) to match
the different types of desired loads. Hence, the conditions under
which a robot falls indicate the system’s resilience. In our model,
we define the falling condition as the angle θ exceeding the limit
θmax. Saturation of themaximum torquemakes the systemsmore
similar to real robotic systems.

3.4 Robot resilience datasheet

Table 1 presents a datasheet that we propose to summarize
the balancing performance of a robot. We hope that a datasheet
can be a helpful add-on to foster system comparisons and
regulation of processes.

The datasheet is organized as follows. The first and second
lines contain the name and the type of the robot (e.g.,
legged humanoids, quadrupeds, exoskeletons) under testing.The
successive 2 cells show a photo of the system and a scheme of its
kinematics. The cell “Actuation” defines which types of actuators
the system is built with (actuation units can be rigid, SEA,
VIA, etcetera (Vanderborght et al., 2013). “Robot Parameters”
provides the main dimensions of the robot used to define the
normalization Factors reported in the related cells. “Impact
Position” and “Orientation” define the experimental conditions
at which the experiments are executed. Impact Position describes
the contact point location, while Orientation indicates if the PIs
are related to the frontal or lateral perturbation on the robot.
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TABLE 1 Example of datasheet containing the resilience benchmark results.
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Controller means which control is applied to the robot, and a
reference on the related paper is strongly recommended. The
other cells (QSR, IR, AEI, ER-Displacement, ER-Force, and EEI)
report the PIs of the robot under the described conditions.

4 Test-bench design and
characterization

The definition of the PIs and testing conditions
provides a set of characteristics the system must possess.
In Monteleone et al., 2020, we introduce the early concept
definition, focusing on five design features: flexibility,
reproducibility, adjustability, indipendency as a system, and
operator safety.

4.1 Mechatronic design

Figure 4A shows the structure. The testbed is composed
of two parts. The first is the central span, consisting of the
actuation group and the pendulum. The second part is the
external structure, mainly composed of aluminum extrusions
and safety nets.

Figure 4B shows the cross-section of the actuation unit and
its main components. From left to right, there is a servomotor
(1), a torque sensor (2), an electromagnetic clutch (3), the
pendulum connector (4), an electromagnetic brake (5), and two
absolute position sensors (6–7). In component 4, we mounted
the pendulum bar. We placed a piezoelectric sensor on its tip to
measure the contact force between the actuation group and the
robot under test. To prevent misalignments of the torque sensor,
we connect it to the actuator through an Oldham joint and to the
clutch through an elastic component. The compliant joint also
absorbs accidental shocks transmitted to the torque sensors.

During impulsive tests, the clutch safeguards the servomotor
and torque sensors. It disengages the pendulum shaft from such
delicate parts, preventing the transmission of shocks. After an
impact, the brake permits the system to attenuate oscillations. It
also improves testbed safety by halting the pendulum in the case
of emergencies.

The external structure protects the operators during test
execution. We enclosed the test platform in an area accessible
by two doors and surrounded by safety panels. Doors equip
two electromagnetic locks. As a result, the control system can
detect the status of gates (open or closed) and lock them, limiting
access to the experimental area when the pendulum is moving.
If the doors are unexpectedly released, the system activates the
brake while simultaneously disengaging the clutch, preventing
the pendulum from moving while safeguarding the motor.

Moreover, we provide an emergency button, which
stops the pendulum movement in the same way as if the
door opened. Figure 4C shows a picture of the physical
structure, also displaying the placement of the control system
(Figure 4D).

To enhance tunability, the system is equipped with
components that can vary its structural dimensions. The testbed
is provided with an electrical crane and four guides to change
the position of the central span. Hence, it is possible to modify
the height at which the pendulum impacts the robot (H).
Furthermore, a two-part connector links the pendulum bar to
the shaft, making it simple to vary the pendulum length (L).
Lastly, we ensure that additional masses (M) can be mounted on
the pendulum to increase its inertia. Table 2 reports the tunable
parameters and their range of variation.We equipped the testbed
with a modular floor with a series of holes equidistant from each
other. This design improves the structure compatibility with
other testing devices, such as treadmills or inclined planes. It
also allows for the placement of obstacles to test robotic systems
on uneven terrains.

Table 2 reports the main characteristic values of the testbed.
Friction torque has been computed experimentally.

4.2 Control architecture

The framework is equipped with an industrial PC that is
ROS compatible and three drivers for the servomotor, clutch, and
brake, respectively. The IPC supervises the structure framework,
generating the control inputs that are communicated to drivers.
Moreover, it also acquires data through an integrated DAQ
system from National Instruments (NI) (Figure 4D).

Figure 4E describes the control architecture scheme,
showing each block and its physical connections. For the
actuation unit components, each number corresponds to the
ones shown in Figure 4B. Blue arrows indicate the power
connections, black arrows show the control communication
network, and purple and green arrows depict the sensor
connections for the control loop and the data record, respectively.

The actuation unit can be controlled both in position or
torque loop. The position control loop uses the measurements of
the Renishaw absolute encoder (6) located at the output shaft.
However, if the clutch is disengaged, the system relies on the
servomotor encoder to move the actuator and reset the zero
position of the motor control. The torque control loop relies
on the measurement of the FUTEK torque sensor (2). These
measurements are corrected by gravity compensation, so if we
command a force trajectory, the torque measures reject the
pendulumweight, providing the correctmovement at the contact
point.
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FIGURE 4
Photo of (A) Test-Bench dimensions and components: 1) Actuation group, 2) electrical crane, 3) sensorized safety doors, 4) safety panels, 5) agent
positions during tests, 6) external structure, and 7) handrails. (B) Cross section of the actuation unit: From left to right, 1) servomotor, 2) torque
sensor, 3) electro-magnetic clutch, 4) pendulum connector, 5) electro-magnetic brake, 6) first position sensor (absolute), 7) second position
sensor (relative). (C) Testbed, and (D) industrial PC and controllers. (E) Electronic Connection of the Test-Bench. Blue arrows indicate the power
connections, black arrows are the control communication network, and purple and green arrows describe sensor connections for the control
loop and the data record. In red, we indicate the safety systems.

4.3 Data recording

The IPC saves data from experiments through a National
Instrument data acquisition device. We acquire data from
three sensors. The first is the pendulum encoder (number 7

in Figures 4B, E), which is an AMS absolute encoder with
a resolution of about .1°. The second is the force sensor.
It is a DYTRAN 1051V6, a piezoelectric sensor capable of
precisely measuring impacts and impulsive forces. However,
when subjected to constant or slowly varying forces, it does not
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TABLE 2 Test-bench characterization.

Tuning parameters Range Steps

Pendulum bar length .5÷ 1.5m 0.5m

Pendulum axis height 1÷ 2m 1cm

Additional masses 0÷ 15kg 0.5kg

pendulum position −90° ÷ 0° .5°

Friction Experimental Estimation

Pendulum length

0.5 m 1.0 m 1.4 m

 Friction torque (τf ) 2.3Nm

Impulsive tests (Protocol 1)

 Maximum force 1200 N

sinusoidal tests (Protocol 2/3)

 Maximum force 700N 350N 250Nm

 Maximum torque 350Nm

 Maximum angular speed 100rpm

 Maximum oscillation frequency 7Hz 5Hz 3Hz

quasi-static tests (Protocol 4/5)

 Maximum force 700N 350N 250Nm

 Maximum torque 350Nm

 Maximum angular speed 100rpm

sensors resolutions

 torque sensor force resolution 1N 0.5N 0.4N

 force sensor resolution 0.8N

 angular encoder resolution .09o

perform correctly due to drift. It has a resolution of 0.3 N and
a saturating value of 2224 N. The third one is the torque sensor.
It is a FUTEK FSH02060, an analog sensor that measures non-
impulsive forces using strain gauge technologies. The resolution
of the torque sensor is 1 Nm, and its maximum measurable value
is 500 Nm. We use the force sensor during impulsive tests to
compute performance indicators. In contrast, during the other
tests, we estimate the force exerted on the pendulum, knowing
the distance of the pendulum tip to the torque sensor axis, and
correcting the measure with a gravity compensation in post-
processing.

The testbed acquires all data at a frequency of 10 kHz.
Position and torque measurements are filtered by excluding
outliers and using a symmetric moving average filter. The data
from the piezoelectric sensor is not filtered because filtering
would result in a loss of accuracy on the force peaks. From
the force data, it is possible to identify the exact moment of
an impact. However, to measure the value of the impulse, there

exist two methods. The first technique estimates the duration of
the contact between the robot and the pendulum and integrates
the force value. The second method relies on measuring the
pendulum velocities before and after the moment of touch. It
evaluates the impulse as the variation of the momentum. We
saw experimentally that the second one resulted in being more
reliable, as the definition of the contact duration is not trivial.

5 Experimental protocols

To measure the PIs, we developed a series of testing methods
that allow the reproduction of the necessary perturbations. In
the following, we define each protocol and report the detailed
procedure to perform the experiments. This work focused on
the definition of resilience against pushes on regular, obstacle-
free terrains. The possibility of studying the effects of different
terrains on the performance is left to future works.

During a protocol execution, we repeat each experiment (we
call “experiment” tests with the same set of conditions) 10 times
(we call each one a “run”).With this, we aim to provide the results
with a certain degree of statistical validity. Indeed, we performed
a high number of experiments to provide a more reliable view
of how the system reacts to perturbation with a given entity.
Since the system is physical, borderline values of perturbation
can lead to a robot falling or not depending on other robot
conditions (e.g., if the robot is impacted while the pitch angle is
positive or negative). Therefore, the high number of experiments
considers the fall’s statistical validity, reducing the effect of outlier
situations.

We measure the pendulum angle, the torque at the motor
axis, and the force at the contact point with the robot. These
measures are used to obtain all the performance indicators in
Section 3. The force sensor employs piezo-electric technologies,
allowing one to appreciate the quick variation of forces, such as
peaks. On the contrary, since the torque sensor is resistive, it is
more suitable to evaluate constant or slow-vary forces.

At the beginning of each protocol execution, we must adjust
the structure to impact the system at the desired contact point.
For frontal collisions, the designated point should be placed at
the center of the chest, on the robot axis, the closest to theCoMas
possible (Figure 3D).The height of the contact point ismeasured
and saved by the platform. For side impacts, the contact point
should be located on the shoulder or hip, typical contact
points during accidental collisions (Figure 3E). Aside from
the contact point, lateral experiments execution uses the same
experimental protocols as the frontal experiment. Therefore, the
following section will not further distinguish between frontal
or lateral protocols. The control sets the end of the experiment
when it detects that the pendulum has reached the maximum
height and there has been a speed inversion or when it is
motionless.
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5.1 Protocol I: Impulsive disturbance
protocol

The first protocol aims to assess the balancing performance
of systems subjected to impacts. Impulsive loads are obtained
by raising the pendulum at the desired height and successively
letting it free to fall.

In theCharpy test, impacts are defined by the energy involved
in the experiment (François and Pineau, 2002). Moreover,
impacts can always be described by the value of forces or
impulses exchanged between objects (Stronge, 2018). Hence, we
decided to define impulsive tests based on the value of both
impulse (I) and the initial energy (E). We discovered that these
parameters could be treated as two independent values through
analytical computations and experiments. To obtain the desired
values during experiments, we tune the pendulum length (L), the
initial position (θ), and pendulum inertia (M) (see Figure 3C).
We related the pendulum parameters with potential energy and
the impulse exerted on the system during an impact. Parameters
of impulsive tests are defined by

{{{{{{{
{{{{{{{
{

E = (M+ δL2 )gL (1− cos θ)

I = 1
L√2(ML2 + δL

3

3 )αE

α = 1−
τ fθ
E ;

. (5)

Among them, α indicates the percentage of energy not lost
due to friction and is computed experimentally by estimating
the energy loss between initial height and impact height. τf
represents the friction torque, which is assumed to be constant.
δ expresses the linear density of the pendulum bar, and g is the
gravity coefficient. These equations consider that the pendulum
stops after the impact and that the impact occurs between
rigid bodies, so there is a slight difference between theoretical
and experimental values. The experimental procedure for the
protocol I is reported in Table 3. It is worth noticing that H, L,
and M change in response to the values of [E, I], whereas the
others have a fixed value for each robot under test.

The medium execution time for each run is 2/3 s. The
data collected during the experiments are used to compute the
Performance Indicators described in Section 3. In particular, this
protocol aims to find the IRand the AEI.

Defining the parameters that describe an impact requires a
preliminary testing phase on a mock model. The mock model
comprises an inverted pendulum structure and a small base to
stabilize it. Following an impact, we let the system fall to reduce
the residual noise on the force sensor.

As a preliminary couple of parameters, we selected the
energy and the maximum exerted force ([E,Fmax]), assuming
an impact lasted for a constant time. However, the assumptions
resulted in being incorrect. Indeed, we experimentally observed
that E influenced the impact duration (Figure 5D) and,
consequently, Fmax (Figure 5C). Conversely, the experiments

show no correlation between E and the impulse (I) applied to
the robot. Figure 5A, B show the theoretical values of I and E
computed using Eq. 5 and the one resulting from experiments.
We appreciate how assumptions about shocks (rigid impulse and
stationary pendulum after impacts) generate a plot in which I
values are scaled by a medium scale factor of .59.

Figure 5A highlights in black the physical constraints of the
system. Points outside the demarcated area are not feasible due
to the range of possible pendulum inertia.

Moreover, values below the straight line are not
recommended because the friction action consumes most of
the energy during the pendulum swing.

5.2 Protocols II & III: Sinusoidal protocols

The purpose of the second and third protocols is to
assess the balancing performance of systems subjected to
periodic perturbations. Repetitive perturbation are given with
a controllable position amplitude (AD for displacements, AF for
forces), frequency ( f), and number of cycles (nC) in the form

D (t) = Ac +AD +AD sin (2π ft− π/2) ,

F (t) = Fc +AF +AF sin (2π ft− π/2)
(6)

where Ac is the position in which the pendulum starts to contact
the robot, and t is the time. AF is the force amplitude, and Fc is
a small force to ensure that the robot will keep contact during
the execution of the experiment. The first equation is related to
protocol II, while the second one is to Protocol III. A position
perturbation does not ensure that the contact lasts during all
the experiment execution since we command the position of the
pendulum to follow a specified path.

Table 3 reports the experimental procedure for protocol II
& III. For Protocol II, the operator must stop the experiment
if the robot falls. In contrast, for protocol III, if the robot falls,
the framework will detect that contact with the robot is lost
and consider the experiment finished. Experimental conditions
([AD, f] for protocol II, [AF , f] for protocol III) are gradually
increased until the robot falls. The execution time heavily
depends on the f at which the experiment is executed. The
result of sinusoidal protocols is the ERof the system. Moreover,
sinusoidal force protocol aims to define also the EEI, since the
contact lasts along all the run execution. The main limitations
are the maximum allowable frequency and amplitude during test
execution. The maximum force and frequency depend on the
characteristic of the actuation unit. The maximum displacement
is a function of f (as it is related to the maximum allowable speed
at the servomotor side) but also depends on the dimension of
the robot. Indeed, since a displacement along the perpendicular
direction corresponds to a height variation, the contact point
should never exceed a safe height variation to avoid the system
impacting sensitive parts of the robot, such as the head.
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TABLE 3 The table shows the procedures for the testing protocols. If the steps are different, we divided it for each protocol.

Protocols procedure

Steps Protocol I Protocol II & III Protocol IV & V

1 Set up H, L, and M Set up H and L

2 Place the agent at the desired experiment position

3 Activate the protocol

4 Pendulum raises at
desired position

Pendulum reaches contact point with the robot

5 Data acquisition is started

6 Pendulum performs the desired perturbation

7 When experiment finishes, data acquisition stops and the pendulum moves to a resting position

8 Operator reports if the robot is fallen, so that data can be saved

FIGURE 5
Experimental condition of the mock model tests. (A) Expected values of impulse and energy for the impacts on mock model, (B) real values of
impulse and energy during test. (C) Forces resulting from the experiments. (D) Medium impulse time of the experiments depending on the test
conditions.

5.3 Protocol IV & V: Quasi-static
protocols

The fourth and fifth protocols aim to assess the resilience of
systems subjected to constant or quasi-static perturbations. We
provide slow varying perturbationD(t) and F(t), with a dynamics
of

D (t) = Ac +Vdt,

F (t) = Fc +V ft
(7)

where Vd and Vf are the small velocity at which we execute the
experiments. Tests are defined based on the value ofVd andVf at
which experiments are executed. However, the slopes of ramps
provided are fixed to avoid testing the robot under non-quasi-
static conditions.

Table 3 reports the experimental procedure for protocol IV
& V. The falling detection algorithm is also applied in the case of
quasi-static protocols. The falling detection algorithm explained
in protocol III is also applied for protocols IV and V since the

slow slopes ensure that contact is always present. Forth and
fifth protocols are designed to measure the QSR. The major
constraint is the maximum allowable displacement the system
can do. The variation of height must be limited so that sensitive
parts of the robot are kept safe. The possibility of studying the
effects of different terrains on performance is left for future
works.

6 Application example

To demonstrate the strength of our framework, we
benchmark the performance of Alter-Ego, a robust and versatile
mobile two-wheeled system with a functional anthropomorphic
upper body (Lentini et al., 2019). The robot is equipped with an
LQR optimal controller for lower body stability, while the upper
body is controlled to stay in the rest position with a low level of
stiffness. The robot is equipped with an integrated safety system
(Zambella et al., 2020) that avoids breakages in case of falls. In
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TABLE 4 Datasheet resulting from the experiments on AlterEgo.
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the paper, we also report conditions at which the robot becomes
unstable.

Tests are made on the frontal plane of the robot. Every test
has the same contact point in the center of Alter-Ego chest, at
the height of 80 cm from the ground. As stated in Section 5,
experiments stop if the displacement of the pendulum exceeds
themaximumallowable for the robot.Themaximumpermissible
displacement of Alter-Ego was experimentally selected as 40 cm
with a pendulum of 1 m length, corresponding to a height
displacement of the contact point of around 8 cm. If necessary,
the height displacement can be reduced using the 1.5 m
pendulum bar.

Lateral experiments are not reported. The reason lies in
the kinematics of AlterEgo that does not allow it to move
laterally. No control can be applied in that direction. As a
result, while performing Impulsive perturbations, the system
acted rigidly until the impact was powerful enough to break the
system. The robot resisted the external perturbation in the other
protocols until the forcewas sufficient to lift the system.However,
because we can easily calculate that force value analytically, we
believed that a physical evaluation was unnecessary and would
be detrimental to the robot integrity. Therefore, we decided to
interrupt the lateral performance evaluation since continuously
damaging the robot would have been too expensive.

We collect a number of 410 runs (41 different conditions) for
protocol 1, 260 runs (26 different conditions) for protocol 2, 430
runs (43 different conditions) for protocol 3, and 10 runs each for
protocols 4 and 5 for a total of 1120 experiments. A full testing
procedure required around 4 days for frontal experiments. In
all the figures related to performance indicators, we indicated
with blue dots the conditions at which the robot does not fall,
with green points conditions at which the robot falls beneath
30% of times, and with red dots conditions at which the robot
falls with a statistical percentage above 30%. Table 4 reports the
results of the experiment in the form of datasheet, as presented in
Section 3.

In the attachment to the paper, we present a video showing
examples of the execution of tests.

6.1 Protocol I: Impulsive protocol

Figure 6 displays the photo-sequences of two experiments
performed on Alter-Ego. The first one shows the system resisting
an impact (Figure 6A), while the second shows the system
failing to balance itself (Figure 6B). Impacts on the systems
result in a variation in the pitch of the robot. If the pitch
variation is too fast or too extended, the system cannot balance
itself, failing. Tests on Alter-Ego have been executed with the
conditions shown in Figure 7A. Each set of conditions ([E, I])
corresponds to a specific value of [L,M,θi] for the experiment.
To test the system, we performed the protocol described in
Section 5.

Figure 8 shows an example of angular position and force
measurement during an impulsive test. Blue data indicates the
raw data coming directly from the DAQ system, while we
highlighted the filtered data in orange.

Figures 7C, F shows the IRand the AEIof Alter-Ego,
respectively. AEIshows the capability of the robot to return
energy to the pendulum in case of impacts with low [E, I]. In
unstabilizing impacts, however, the robots absorb most of the
energy, which becomes kinetic energy and plastic deformation of
the covers.Figure 7C shows that it is possible to describe a region
of conditions at which the robot cannot absorb and withstand
the shock, validating our theory. In this graph, each set of data
collected have amedium standard deviation from themean value
shown of around .37Ns, and therefore possess a certain degree
of repeatability. Figure 7D reports the relation between E and
Fmax during impact. The graph shows an almost linear relation
between those parameters, confirming the same results achieved
with the mock model. Figure 7E shows the relation between
impact conditions and impulse duration. This picture also
confirmed the behavior exhibited by the mock model. Although
itmay seemobvious, this behavior is worth reporting. Indeed, the
fact that Alter-Ego possesses more complex internal dynamics
than the mock model does not change the considerations made
about force and impulse time. Then, we can assume that this
behavior holds for other robots, validating the choice of [E, I] as
describing parameters for the experiment.

6.2 Protocol II: Sinusoidal displacement
protocol

We began the experiments with the set of conditions
[AD, f] = [4 cm,0.1 Hz], gradually increasing them in ranges that
goes from 4 cm to 17 cm within 7 steps for AD, and from 0.1 Hz
to 0.6 Hz within 6 steps for f.

Figure 9 shows an example of measurements for
sinusoidal displacement perturbations. Both position and
force measurements required filtering noise and outliers. The
reason behind the raw data drift lies in the absence of gravity
compensation, which is adjusted during filtering. Figure 9C
shows the ERrelated to displacement perturbations of the robots.
The mean standard deviation that those data possess from their
related medium value is 0.2 mm.

ERdepicts the relationship between the system capability
to resist recurrent disturbances to their oscillation frequency.
Higher frequencies in the position perturbation domain
correspond to faster movements of the systems. Rapid
perturbations result in being more unstabilizing than large
displacements.

Analysis of the measurements deriving from this protocol
shows a high degree of repeatability on the experimental
conditions. Moreover, the procedure defined in Section 5
resulted in being simple and straightforward.
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FIGURE 6
Photosequence of impulsive tests for (A) robot withstanding the impact, and (B) robot falling due to the impulse.

FIGURE 7
(A) Set of desired conditions at which we perform the experiments on Alter-Ego. Each point represents a set of [E, I] related to 10 runs. (B)
Standardization on the selection of the impulsive experiments.

6.3 Protocol III: Sinusoidal force protocol

We began the tests with the set of conditions
[AF , f] = [2N,0.1Hz], gradually increasing them with steps
of 1N for AF , and with a span of f = [.1, .2, .3, .5,1.0,1.5,2.0].
Experiments are performed with a nC = 5.

Figure 10 shows a set of measurements for sinusoidal
force perturbation. During filtering of data, we took
into account the effect of gravity on the torque

measurements, and we compensated it to obtain
the force exchanged between the structure and the
robot.

Figure 10E shows the ERof Alter-Ego, while Figure 10C
describes the EEI. For this set of data, the mean standard
deviation is around 0.4N from their meadium value. The system
is approximated to a second-order system (mass-spring-damper,
see Section 3), and the equivalent coefficients are computed for
each frequency.
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FIGURE 8
Measurement of (A) angular position and (B) force sensor data for the impulsive experiments. (C) Chart of the IRfor the Humanoid robot Alter-Ego.
(D) Forces resulting from the impulsive tests applied Alter-Ego. (E) Impulse Time of the experiments varying the initial conditions. (F) Chart of the
AEIfor the Humanoid robot Alter-Ego.

FIGURE 9
Measurement of (A) angular position and (B) force estimation for a sinusoidal displacement disturbance experiment. The used condition for the
test are f = 0.1 Hz and AD = 4 cm. (C) Chart of the ERrelated to displacement perturbations for Alter-Ego.

ERreveals a low-frequency force range which is more
destabilizing for Alter-Ego. Its dynamics act as a low pass
filter, better rejecting high-frequency perturbations. In case of
repetitive displacement perturbations, the pendulum provides
faster and stronger pushes at higher frequencies, resulting in
the robot that eventually falls when the frequency exceeds

a definite value. Conversely, in the case of repetitive force
perturbations, pushes actmore like vibrations than perturbations
at increasing frequencies, resulting in the robot rejecting these
disturbances better than at lower frequencies. EEIshows a system
with almost constant inertia and elasticity while the damping
lowers at higher frequencies. Being the impedance an extrinsic
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FIGURE 10
Measurement of (A) angular position and (B) force estimation for the sinusoidal force disturbance experiments. The used condition for the test are
f = 0.1Hz and AF = 3N. (C) EEIand (D) Equivalent damping ratio (ϵ) and natural frequency (ωn) related to sinusoidal force protocols. (E) Chart of the
ERrelated to repetitive forces for Alter-Ego.

FIGURE 11
(A) angular position and (B) force estimation for the quasi-static displacement disturbance experiments, and (C) angular position and (D) force
estimation for the quasi-static force disturbance experiments.

property, we also computed the damping ratio and the natural
frequency, which are intrinsic properties instead (Figure 10D).
Interestingly, a reduction in the damping ratio and natural
frequency occurs in frequencies that are more destabilizing for
the ER.

Experiments demonstrate the repeatability of testing
conditions and point out how the force Fc (see Section 5.2)
ensures the system maintains contact during the run duration.
The protocol is straightforward, ensuring no training is necessary
before performing these tests.

Frontiers in Robotics and AI 17 frontiersin.org

63

https://doi.org/10.3389/frobt.2022.817870
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Monteleone et al. 10.3389/frobt.2022.817870

6.4 Protocol IV: Quasi-static
displacement protocol

Tests are executed by providing a slow-varying ramp in the
contact point position, with a slope of 1.5 cm/s. Experiments
start after the pendulum contact algorithm and stop if the robot
falls or exceeds the maximum allowable displacement. Figure 11
shows an example of themeasurements for protocol IV.The force
measurements also show the gravity rejection from raw to filtered
data.

During the experiments, the robot did not show any unstable
behavior, so it was not possible to define the QSR. Alter-Ego acts
like an inverted pendulum mounted on a Segway. The system is
regulated by an LQR controller, with high weights on the pitch
dynamics and low authority on the position.This design choice is
because we want the system not to fall, regardless of the position.
This behavior reflects on the QSR, since the robot moves away
from the desired position under the action of external frontal
pushes, as the main task is to maintain stability.

6.5 Protocol V: Quasi-static force
protocol

Tests are executed by providing a slow varying ramp of 1N/s.
Experiments start right after the pendulum contact algorithm
and stop if the contact is not preserved or the position exceeds
the maximum allowable displacement.

Figure 11 shows examples of measurements for quasi-static
force perturbation. As in the previous cases, we estimate the
force through the torque sensor and correct the bias due to the
pendulum weight. Oscillations of force are due to the friction
created by sliding the pendulum tip on the robot covers. The
robot did not show unstable behaviors, and, for this reason, it
was not possible to define the QSR.

Regarding the discussion of the performance of Alter-Ego
under quasi-static forces, the same considerations made on
Section 6.4 hold.

7 Discussion

We verified the efficacy of the benchmarking method by
quantifying the balancing performance of Alter-Ego. Results
reported in Section 6 are promising in assessing systems
resilience for many reasons. The experimental campaign exhibits
a high degree of repeatability. Indeed, it was possible to perform
a large number of experiments under the same conditions.
Moreover, the standard deviation of each data set from the mean
value shown in the PIs graphs is adequate to have a certain
degree of statistical validity. As a result, we tested and thoroughly
characterized the robot within a few days.The benchmark allows

for easily switching testbed conditions and control techniques
during the experimental campaign. Efforts done by operators
during the protocol selection and execution are minimal since
the control routine and parameters can be chosen by software
at the beginning of each test. Protocol I routine is the lone
exception, requiring the operator to change the pendulum’s
inertia to obtain the appropriate conditions. To facilitate the
procedure, we designed the system so that adding and removing
masses is a simple process. The first calibration of the structure
parameters (see Section 4.1) to match the dimensions of robots
under testing requires a relatively low effort. H is adjusted by
moving the structure using an electrical crane,making it a simple
procedure. L and M are modified by changing the pendulum bar
and addingmasses.Moreover, tuning parameters is a preliminary
procedure, and it is required to be performed once for a testing
campaign (twice if experiments are performed both on the
frontal and lateral planes) since the contact point is the same
for all protocols. Lastly, the performance evaluation relies solely
on the sensors integrated into the framework. Therefore, all the
results are consistent, allowing us to compare different systems
with a meaningful metric.

To improve the efficiency of tests, we define a method
for selecting the optimal experimental conditions for the first
protocol, allowing us to identify the experiments a priori. We
used a mock model and Alter-Ego to validate the concept behind
the experiment conditions. The reason behind this choice is that
at least two systems must be used to ensure that this definition is
reliable formost of the robots that will be tested.Figure 7B shows
an example of conditions under which we should test the robot.
The testbench automatically generates the required experiments
that the operators must execute, indicating the necessary mass,
pendulum length, and starting position in a matrix. By using
normalization factors, the matrix is constructed by scaling a
given set of initial values [E, I] to the robot size. Protocols II and
III, on the other hand, already have a straightforward procedure.
The starting values of the amplitude are determined by the robot
dimensions, especially for force ranges.

The perturbations considered in this work do not describe
the totality of disturbances that can be applied to a self-stabilizing
robot but the ones that are the most common to the best of
our knowledge. In future works, we are planning to define
more testing protocols to account for more perturbations. Some
examples can be found in sudden forces and displacements
that last over time, occurring when a robot impacts heavy
external objects, or pseudo-random force signals, possible while
interacting with external operators.

8 Conclusion

In our work, we investigated the stability characterization of
robotic systems subjected to external perturbations. We propose
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a benchmarkingmethod for testing systems of different sizeswith
reliable and repeatable experiment conditions. To characterize
robots performance quantitatively, we provide a set of protocols
and performance indicators. The aim is to allow comparisons
between different mechatronics solutions or the same system
with distinct controllers. Finally, we propose a datasheet to
summarize the balancing performance of robots resulting from
experiments in our framework. We used the framework to
characterize Alter-Ego, a two-wheeled robust humanoid robot,
to evaluate the effectiveness of our benchmarking method. In
this regard, we ran a campaign with 1120 tests. Quantitative
evaluation of robot performance will promote the improvement
of robots and push forward the standardization and regulation of
these technologies.
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In this paper, the problem of attitude estimation of a quad-copter system
equipped with a multi-rate camera and gyroscope sensors is addressed through
extension of a sampling importance re-sampling (SIR) particle filter (PF). Attitude
measurement sensors, such as cameras, usually suffer from a slow sampling rate
and processing time delay compared to inertial sensors, such as gyroscopes. A
discretized attitude kinematics in Euler angles is employed where the gyroscope
noisy measurements are considered the model input, leading to a stochastic
uncertain systemmodel. Then, a multi-rate delayed PF is proposed so that when
no camera measurement is available, the sampling part is performed only. In
this case, the delayed camera measurements are used for weight computation
and re-sampling. Finally, the efficiency of the proposed method is demonstrated
through both numerical simulation and experimental work on theDJI Tello quad-
copter system. The images captured by the camera are processed using the ORB
feature extraction method and the homography method in Python-OpenCV,
which is used to calculate the rotation matrix from the Tello’s image frames.

KEYWORDS

UAV, quad-copter, particle filtering, multi-rate sensor fusion, attitude estimation,
camera, gyroscope (gyro)

1 Introduction

Autonomous quad-copter UAVs are increasingly employed in various industries,
especially in applications with extreme environments where humans cannot access narrow,
high altitude, far reaching, and confined spaces for further operation and inspection
(Montazeri et al., 2021). Of particular importance is the ability of quad-copters to accurately
maneuver in hazardous and unstructured environments such as those existing in the nuclear
decommissioning applications. One of the challenging tasks for navigation of drones in
such GPS-denied environments is finding the exact position and orientation of the quad-
copters for feedback control and characterization of the environment (Burrell et al., 2018).
Nowadays, the inertial navigation system (INS) including inertial measurement units (IMU)
is widely used for navigation of UAVs. Toward this, first of all, a robust and reliable attitude
estimator is required which should be able to execute on low-cost computational hardware
and using measurements from light-weight sensors (Bassolillo et al., 2022).

Attitude estimation is the procedure of estimating orientation of the vehicle with
respect to a reference frame using sensory measurements such as inertial and attitude
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sensors. Although least square error (LSE) andmaximum likelihood
(ML) approaches can be classified as early attitude estimation
methods, model-based Bayesian approaches are most common and
precise approaches can be found in Dhahbane et al. (2021). Model-
based approaches normally employ vehicle kinematics and/or
dynamics to provide a prediction from the orientation, and the
predicted attitude is updated through the sensory measurements
(Sadeghzadeh-Nokhodberiz and Poshtan, 2016; Ozaki and Kuroda,
2021).There are an increasing number of research studies devoted to
attitude estimation (Moutinho et al., 2015; Nokhodberiz et al., 2019;
Liang, 2017). The commonly used stochastic approaches are the
Kalman filter (KF) and extended Kalman filter (EKF) (Nemati and
Montazeri, 2019). However, in KF-based methods (KF, EKF, and
UKF), only Gaussian noise processes are considered and EKF suffers
from the linearization issue. Therefore, in some research studies,
particle filters (PF) are used to overcome the problem in attitude
estimation of UAVs (Cheng and Crassidis, 2004; Sadeghzadeh-
Nokhodberiz et al., 2014b). The gyroscope measurements in the
body frame are normally incorporated in the attitude kinematics to
obtain the orientation in the inertial frame.Thegyroscope noises can
be modeled through a probability distribution function, making the
kinematics a stochastic model as it is employed as an input vector
in it. Therefore, it is necessary to employ a stochastic approach such
as PF that works directly with the non-linear dynamic model of the
system. PFs are appropriate for attitude estimation of quad-copters
due to non-linear and non-stochastic nature of the system model.
PF is an optimal non-linear filtering method in which the posterior
probability density function (pdf) is approximated through sample
point (particles) generation as it is not possible to be computed
analytically for non-Gaussian systems.This posterior pdf is required
for Bayesian minimum mean square error (MMSE) estimation, and
it is themain advantage of PF over other non-linear BayesianMMSE
estimators such as EKF (Sadeghzadeh-Nokhodberiz and Meskin,
2020).

Additional sensors such as cameras are commonly employed
together with the low-cost inertial sensors. This greatly helps
mitigate the effect of errors and noises in the gyroscope
measurement and facilitates designing a vision-based navigation
technique (Sadeghzadeh-Nokhodberiz et al., 2014a; Sadeghzadeh-
Nokhodberiz et al., 2014c). Although cameras can provide highly
accurate measurements from the quad-copter orientation compared
to low-cost gyroscopes, they suffer from a slow sampling rate and
delay problems with respect to the gyroscope measurements due to
heavy computation load required. In the vision-based navigation,
feature points extracted from the camera images are tracked and the
camera motion, mounted on the UAV, is related to the locations
of tracked planar feature points in the image plane using the
homography relationship (Wang et al., 2013; White and Beard,
2019). Homography-based state estimation of a quad-copter system
using EKF is presented in Chavez et al. (2017). The images captured
by cameras should be highly processed for feature extraction
including detection, description, and matching (Csurka et al.,
2018). Although a recently developed ORB (Rublee et al., 2011)
method can significantly reduce the processing time compared
to the popular SIFT (Lowe, 2004) and SURF (Bay et al., 2006)
approaches, it still needs almost 33 m for feature extraction per
image (Mur-Artal et al., 2015). This processing time not only leads

to a much slower sampling rate but also the measured values
are received with a significant delay for the attitude estimation
procedure.

The problem of multi-rate delayed state estimation has been
studied in Lin and Sun (2021), Comellini et al. (2020), Fatehi and
Huang (2017), and Khosravian et al. (2015). Lin and Sun (2021)
and Khosravian et al. (2015) proposed a cascaded output predictor
and an attitude observer where the effect of sampling and delays
are compensated in the predictor. The delayed measurements are
extrapolated to present time using past and present estimates of
the KF in Larsen et al. (1998), where an optimal gain is derived for
this extrapolated measurement. In Lin and Sun (2021), the system
with delayed and multi-rate measurements is transformed into a
delay-free and single-rate system using a state iterating method, and
a non-augmented recursive optimal linear state filter is presented
for the system by utilizing projection theory. In Fatehi and Huang
(2017), different KFs are employed for each type of measurement
and the estimates are fused considering the correlation between
them in the next step. The cross-covariance matrix between the
estimation errors of KFs is obtained iteratively to be employed
in the fusion process. Due to the non-linear attitude kinematics
with respect to the Euler angles and its stochastic nature due to
the incorporation of the gyroscope noise in the model, the PF
is an appropriate choice for the attitude estimation. It is worth
mentioning that as long as staying away from singularity points
(±90 deg rotations of pitch angle), the Euler angle representation
of the attitude is preferred to the quaternion representation as
the quaternion must obey its normalization constraint, which can
cause issues in the filtering (Markley and Crassidis, 2014). In
Bassolillo et al. (2022), a KF-based sensor fusion algorithm, using a
low-cost navigation platform that contains an inertial measurement
unit (IMU), five ultrasonic ranging sensors, and an optical flow
camera is proposed to improve navigation of a UAV system in
indoor GPS-denied environments. A multi-rate version of the EKF
is employed to deal with the use of heterogeneous sensors with
different sampling rates and the presence of non-linearity in the
model.

To the best of the authors’ knowledge, the problem of PF-based
attitude estimation using PF with multi-rate delayed sensors has
not yet been studied in the literature. Accordingly, in this paper, a
multi-rate delayed PF is proposed to estimate the orientation with a
discretized attitude kinematics in Euler angles. It is shown that the
corresponding weights of the generated particles are the likelihood
of generally non-Gaussian delayed camerameasurements.The result
is then validated through simulation and experiments on a UAV
quad-copter system. For the experimental work, a DJI Tello quad-
copter system is employed where the images are processes using the
ORB feature extraction method and Python-OpenCV is employed
to calculate the rotation matrix using the homography approach.

The organization of the paper proceeds as follows. The system
and measurement models including the attitude kinematic model,
and gyroscope and camera measurement models are presented in
Section 2. Section 3 provides with the PF with multi-rate delayed
measurements. Simulation results are presented in Section 4 to
demonstrate the accuracy of the presented PF. The experimental
data gathered from DJI Tello quad-copter systems are analyzed in
Section 5. Finally, conclusion is provided in Section 6.
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2 System and measurement models

2.1 System model

The quad-copter attitude kinematics which represents the
relationship between angular velocities in the body and inertial
frames are described as follows Sadeghzadeh-Nokhodberiz et al.
(2021):

ϕ̇ (t) = p (t) + sin (ϕ (t)) tan (θ (t))q (t) + cos (ϕ (t)) tan (θ (t)) r (t) ,

θ̇ (t) = cos (θ (t))q (t) − sin (ϕ (t)) r (t) ,

ψ̇ (t) =
sin (ϕ (t))
cos (θ (t))

q (t) +
cos (ϕ (t))
cos (θ (t))

r (t) ,

(1)

where x(t) = [ϕ(t)θ(t)ψ(t)]T is the attitude vector of quad-copter
which is defined in the inertial frame where roll angle ϕ(t), pitch
angle θ(t), and yaw angle ψ(t) determine rotations around x-axis,
y-axis, and z-axis, respectively. In addition, p(t), q(t), and r(t) are
angular velocities rotating around x-axis, y-axis, and z-axis in the
body frame, respectively, and t refers to time.

2.2 Measurement models

2.2.1 The gyroscope measurement model
The gyroscope measurement model can be written as follows:

ωm (k) = ωb (k) + νω (k) , (2)

where ωm(k) ∈ ℝ
3 and ωb(k) ∈ ℝ

3 are the vectors of measured and
true angular velocities in the body frame at sample time k and
ωb = [p q r]

T (see Eq. 1).Moreover, νω ∈ ℝ
3 is a zero-mean generally

non-Gaussian measurement noise with a known probability density
function (pdf) with the covariance matrix of Rω.

2.2.2 The camera measurement model
Homography is used to obtain the measurement model

of camera by providing the transformation (including scale,
rotation, and translation) between two images. Toward this,
two consecutive frames from a camera mounted on a moving
body viewing a fixed point P are considered. The fixed point
is considered a feature extracted from the images using some
feature extraction approaches such as ORB (Rublee et al.,
2011).

singular value decomposition (SVD) is then performed with the
feature pairs that pass the RANSAC test to calculate the homography
matrix H. Let m1 and m2 be the two projections of point P in the
camera coordinates with R12 and t12 as the corresponding rotation
matrix and translation vector, respectively, in the camera frame
transformingm1 tom2 (see Figure 1). In Figure 1, d is the Euclidean
distance between the plane π, with the unit normal vector n, and
position 1. The relationships between the homography matrix and
the transformation between two images can be found in Wang et al.
(2013). Finally, through the SVD of the homographymatrix, R12 and
t12 can be obtained which can be transformed to the direction cosine
matrix (DCM),R, iteratively.The Euler angles can be then computed
using the DCM.

Therefore, the camera measurement model without delay
consideration can be represented as

ye (k) = x (k) + νe (k) , (3)

where νe is a zero-mean generally non-Gaussianmeasurement noise
with the covariance matrix of Re. It is worth mentioning that the
index e refers to the Euler angles.

FIGURE 1
Same fixed point, P, viewed from two different positions of a moving quad-copter for the homography purpose Wang et al. (2013).
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3 The proposed multirate particle filter

In this section, a PF for the system and measurement models
introduced in the previous section is presented when the sensors
collect data using a multi-rate sampling frequency procedure.

3.1 The general model

Toward this, let the gyroscope and camera sampling times in
seconds be represented with T and sT, respectively, with s ∈ ℕ.
Moreover, we consider the camera processing delay time as dT with
d ∈ ℕ and d < s, as depicted in Figure 2.

Moreover, a discretized form of the kinematic model presented
in Eq. 1 is also considered with the general non-linear discrete state
space model as follows:

xk = f (xk−1,uk) +ϖk−1, (4)

where uk = [p(k)q(k)r(k)]
T and xk is defined in Equation 1 and

ϖk−1 is the additive process noise resulting from the gyroscope
measurement noise νω(k) with the same distribution but a scaled
covariance matrix Qx. The index k refers to the sampling instant.

In other words, the components of the discretized model of (4)
are as follows:

f (xk−1,uk) = xk−1 +TAk−1uk,

ϖk−1 = TAk−1νω (k) ,
(5)

where Ak−1 =
[[[[

[

1 sin(ϕk−1)tan(θk−1) sin(ϕk−1)tan(θk−1)

0 cos(θk−1) cos(θk−1)

0 sin(ϕk−1)
cos(θk−1)

cos(ϕk−1)
cos(θk−1).

]]]]

]

.

3.2 The modified particle filter

The general approach in the PF is to compute the posterior
pdf using the Monte Carlo (MC) method used in the Bayesian
estimation of the stochastic process xk by having the measurement
history y1:k = {y1,… ,yk} and the current sample of input at time
k. The goal in standard PF is to approximate the posterior pdf
p (xk|y1:k) by generating particles from a known distribution and
estimating the target pdf through attribution of the normalized
weights for each particle.

However, in case of this study as explained earlier, the
measurements are delayed and a slower sampling rate is considered

FIGURE 2
Camera sampling and delay scenario.

TABLE 1 Pseudo code corresponding to the proposed PF for attitude estimation.

Step 0: Initialization: Sample initial particles, that is, {xi0}
N
i=1, using a known initial distributions of states (p (x0)), where x0 ∼ p (x0)

At the time instant k

Step 1: Prior estimate: Generate the prior state particles {xi−k }
N
i=1 using the system model, that is, xi−k ∼ p(xk|x

i+
k−1), for i = 1:N

In other words for the attitude system of (4) and 5: xi−k = x
i+
k−1 +TA

i+
k−1ωm (k) −ϖ

i
k−1, where xi−k is the prior estimate at the time sample k and xi+k−1 is the re-sampled posterior

estimate at the time sample k− 1 and Ai+
k−1 = Ak−1|xi+k−1 and ϖi

k−1 is the particle generated using a known pdf of ϖk−1 which is zero mean generally non-Gaussian noise with the
covariance of Qx = T

2Ai+
k−1Rω(A

i+
k−1)

T

Step 2: Posterior estimate: Compute {xi+k }
N
i=1 as follows.

IF the camera measurement, ye,k−d, is available, the weights are computed using (10) and the particles are re-sampled to generate posterior estimates with equal weights of 1
N
,

that is, {xi+k ,
1
N
}N
i=1

ELSE let xi+k = x
i−
k , i = 1, .,N with the corresponding weights of 1

N
for each sample

END

Step 3: State estimation: Estimate the system states as x̂k = ∑
N
i=1

1
N
xi+k
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FIGURE 3
(Conitnued).
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FIGURE 3
(Conitnued). Comparing attitude estimation of a drone for a different delay d and sampling time s, using measurement by a camera (dots), estimation
by the proposed particle filter (blue dot-line), and the kinematic model (red dot-line). (A) No delay and sampling rate for both gyro and camera (B)
Sampling rate of the camera is 10 times slower than the gyro and the delay in the camera measurements is 5 samples (C) Sampling rate of the camera
is 100 times slower than the gyro and the delay in the camera measurements is 50 samples.

for the camera compared with the data measured from the
gyroscope. Therefore, two different cases may happen at each
sampling step. The delayed camera measurements are arrived or
there are no camera measurements. In this section, the PF for these
two cases are derived.

3.2.1 Case I: camera measurement available
In this case, as depicted in Figure 2, the delayed camera

measurement is available at sample time k. Therefore, the posterior
distribution p (x1:k|ye,1:s:k−d) should be approximated using the MC
method such that ye,1:s:k−d refers to the historical data collected by
camera every s sampling instant and with the initial time delay of
d. Here, the proposal distribution p (xk|xk−1) is employed for the
particle generation. By applying the Bayes’ rule and the Markov
property, it can be concluded that

p(x1:k|ye,1:s:k−d) = p(xk|xk−1) ×…× p(xk−d+1|xk−d)

× p(x1:k−d|ye,1:s:k−d) .
(6)

Here, p (x1:k−d|ye,1:s:k−d) using the Bayes’ rule and statistical
independencies can be rewritten as follows:

p(x1:k−d|ye,1:s:k−d) ∝ p(ye,k−d|xk−d) × p(x1:k−d|ye,1:s:k−d−s) . (7)

The term p (x1:k−d|ye,1:s:k−d−s) is also extended as follows:

p(x1:k−d|ye,1:s:k−d−s) = p(xk−d|xk−d−1) ×…× p(xk−s+1|xk−s)

× p(x1:k−s|ye,1:s:k−d−s) .
(8)

Using Eqs 6–8, the weight function is computed as follows:

w(xk) = p(ye,k−d|xk−d)w(xk−s) . (9)

The weight functions are evaluated for the particles generated
using the proposal distribution p (xk|xk−1) and using the system
probabilistic model represented by the kinematics model in Eq. 1.
So the particles xi−k |

N
i=1 are generated where N refers to the

number of particles. Since re-sampling should be carried out as
the next step, the weights of the particles at sample time k− s are
transformed to 1

N
after re-sampling with re-sampled particles of

xi+k−s|
N
i=1.
Therefore, the normalized weights for re-sampling for each

particle are computed as follows:

wi*
k =

p(ye,k−d|x
i+
k−d)

N

∑
j=1

p(ye,k−d|x
j+
k−d)

. (10)

3.2.2 No camera measurement available
In this case, no camera data are available at sample time k.

Therefore, p (x1:k|ye,1:s:k−d−s) should be approximated. Therefore, the
weight function is w (xk) = w (xk−s) as it is proved in the following.
Since the last receivedmeasurement from the camera at the sampling
instant k is yk−d−s and received at k− s sampling instant, therefore

p(x1:k|ye,1:s:k−d−s) = p(xk|xk−1) ×…× p(xk−d+1|xk−d)

× p(x1:k−d|ye,1:s:k−d−s) ,
(11)
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TABLE 2 RMSE for different scenarios.

Scenario s = 1,d = 0 s = 10,d = 5 s = 100,d = 50

RMSE 9.7001× 10−6 3.2284× 10−5 8.2284× 10−5

where the term p (x1:k−d|ye,1:s:k−d−s) is computed in Eq. 8which states
that the corresponding weight of the ith particle xi−k−1 is w(xi+k−s) and
after normalization and re-sampling the corresponding weight of
each particle would become 1

N
.

In order to clarify the proposedmethod, it is presented in Pseudo
code in Table 1.

4 Simulation results

In this section, simulation results are provided in the
MATLAB/SIMULINK environment to show the efficiency of the
proposed method. The simulated AR Drone Parrot 2.0 quad-
copter is stabilized using a non-linear robust sliding mode control
technique presented in Nemati and Montazeri (2018a) and Nemati
and Montazeri (2018b).The physical parameters of the quad-copter
are listed as follows:

Ixx = 7.72× 10
−2kg m2, Iyy = 7.64× 10

−2kg m2,

Izz = 0.1031kg m
2, Ir = 1.8× 10

−5kg m2, m = 2.5kg.

In order to evaluate the performance of the proposed PF,
different scenarios for delay and sampling rate values are considered.
Figure 3A depicts the attitude estimation result using the gyro and
camera measurements, and the results are compared with those
obtained from the kinematics model when camera has no delay and
the sampling rates are equal, that is, s = 1 and d = 1.Figures 3B,C are
related to the cases with s = 10,d = 5 and s = 100,d = 50, respectively.
It is obvious from the figures that although the camera slows the
sampling rate and processing delay, and deteriorates the estimation
accuracy, the proposed method is still successful to provide an
accurate estimation.The root mean square error (RMSE) criterion
is also employed to provide a numerical measure for a comparative
study of the results. The results are summarized in Table 2, which
also confirms the aforementioned discussion.

5 Experimental results

The experimental results are provided using the DJI Tello drone
illustrated in Figure 4. It is a small (99mm× 92.5mm× 41 mm) and
lightweight (80g) drone with a maximum speed of 8 m/s which uses
the 2.4 GHz Wi-Fi communication channel to be connected to a PC
or laptop for sending and receiving telemetry data and commands,
respectively. The drone is equipped with an IMU and a 720p camera
and an SDK is provided to help developers for implementation of
their algorithms. Although the camera information is available, the
SDK cannot read the IMU data and instead the results of internal
positioning data can be read Steenbeek (2020).

To perform the homography, first, the ORB feature matching
method is applied on the frames captured by the DJI Tello
camera. Toward this, the ORB algorithm uses the improved FAST

FIGURE 4
Image of the DJI Tello mini-drone.

algorithm, used in image feature point detection, the feature point
screening, image pyramid building, and the feature point direction
determination. After that, the ORB algorithm uses the improved
BRIEF algorithm to generate binary feature point descriptors, and
then, the descriptors are corrected using the steer BRIEF method to
include the direction information. Finally, in the process of feature
point matching, the points are matched based on their descriptor
similarities. Toward this, the Brute-Force matcher method applied
in Hamming distance is used to measure the distance between the
binary descriptors and to choose the nearest ones as the matched
points. Finally, by employing the PROSAC algorithm, the matched
points with larger matching errors are rejected, which significantly
improves the accuracy of matching Luo et al. (2019).

For this purpose, in Python-OpenCV, we have employed the
following command for the feature point detection and generation
of descriptors:

[keypoints,descriptors] = orb.detectAndCompute (img)

The result of this command for a sample frame is depicted
in Figure 5A. In addition, for feature matching, the following
command is employed:

matches = b f.match (des1,des2)

where des1 and des2 are descriptor vectors of two successive frames.
Finally, the matched points are sorted to find the best matches. The
result of feature matching is depicted in Figure 5B for the same
sample frames.

To compute the homography matrix, the following command is
employed:

H = cv. findHomography (srcPoints,dstPoints) ,

where srcPoints are coordinates of the points in the original plane,
which is a cell array of 2-element vectors {[x,y],…} with single
floating-point precision and dstPoints are coordinates of the points
in the target plane, of the same size and type as srcPoints. Now, in
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FIGURE 5
ORB feature extraction results achieved by the drone camera in a hover position. (A) Feature extraction (B) Feature matching.

order to compute theDCM from the computed homographymatrix,
the following command is employed:

[n,Rs,Ts,Ns] = cv2.decomposeHomographyMat (H,K) .

Here,H is the input homography matrix between two images, K
is the input camera intrinsicmatrix,Rs are array of rotationmatrices,
Ts are array of translationmatrices, andNs are array of plane normal
matrices. In addition, n is the number of possible solutions and
returned as the function output.The set of four solutions is returned
using this command which can be reduced to two or one using the
method explained inMalis andVargas (2007). Reducing the number
of solutions to two can be achieved by using additional constraints.
For this purpose, a set of reference image points p* is selected and by

using the camera intrinsic matrix K, the points are projected using
the relation as follows:

m* = K−1p*.

In this case, the valid solutions are those satisfying the projection
inequality as follows for all points in the plane determined by the
normal vector m* and n* is the normal vector of the corresponding
plane

m*Tn* > 0.

The frame rate of the camera is 30 frames per sec, and we
have processed the frames on an 11th Gen Intel(R) Core(TM) i7-
1165G7 @ 2.8 GHz processor. The results of the attitude estimation
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FIGURE 6
Attitude estimation versus the experimental data from the DJI Tello with varying d and s.

using the proposed PF compared to the camera homography
(measurement results) and the positioning results, recorded by DJI
Tello, are depicted in Figure 6. It is worth mentioning that due
to experimental limitations the sampling time and delay in the
recorded experimental data have not been constant, but they are
known. However, the delay caused by the camera processing time
has always been less than these varying sampling periods.Therefore,
the proposed approach is applicable to the problem at hand. In
other words, the camera frames are sampled after the results of the
ORB and homography procedures of the last sampled frames are
available. It took on average 0.03 s for processing of each frame
for our processor and 0.02 s for the ORB feature extraction and
matching, and the homography procedure only needs 4× 10−4 s.The
sampling rate of the positioning procedure on average is 17× 10−4 s.
Therefore, on average d = 30 and s = 40. In otherwords, the sampling
rate of the camera is 0.068 s, and thus, only one frame is missed due
to the frame rate of 30 frames per sec. Accordingly, the processing
delay of the camera information is less than the sampling time
of the camera. Although we have processed the gathered data
from the camera offline, it is also possible to be processed online.
In other words, sampling two successive frames is fast enough
such that still there exists features to be matched between two
sample frames (only one frame is missed). Moreover, in practical
implementation of the particle filter estimation algorithm, since the
IMU data are not directly available for measurement, the gathered
positioning data by camera are used for the particle generation.

This is replaced by the kinematic model used in the simulation
results.

6 Conclusion

An extension of the sampling importance re-sampling (SIR)
particle filter (PF) was proposed in this paper to solve the problem
of attitude estimation of a quad-copter system equipped with a
multi-rate camera and gyroscope sensors. In the proposed PF, the
delayed camera measurements are used for weight computation
and re-sampling and when no camera measurement is available,
only the sampling is performed. It was shown through simulation
and experimental data that the method is successful to estimate
the attitude truly in the presence of delayed multi-rate camera
measurements. In the experimental part, the ORB feature matching
methodwas employed for image processing in Python-OpenCv, and
after that, the DCM was computed using homography.As our future
research topic, we intend to solve the problem of attitude estimation
using particle filtering, in the presence of gyroscope faults and errors
such as sensory biases anddrifts, aswell as delayedmulti-rate camera
measurements.
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tele-robotics for disassembly of
electric vehicle batteries
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Ali Aflakian1,2, Rustam Stolkin1,2 and Alireza Rastegarpanah1,2*
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Disassembly of electric vehicle batteries is a critical stage in recovery, recycling
and re-use of high-value battery materials, but is complicated by limited
standardisation, design complexity, compounded by uncertainty and safety
issues from varying end-of-life condition. Telerobotics presents an avenue
for semi-autonomous robotic disassembly that addresses these challenges.
However, it is suggested that quality and realism of the user’s haptic interactions
with the environment is important for precise, contact-rich and safety-
critical tasks. To investigate this proposition, we demonstrate the disassembly
of a Nissan Leaf 2011 module stack as a basis for a comparative study
between a traditional asymmetric haptic-“cobot” master-slave framework and
identical master and slave cobots based on task completion time and success
rate metrics. We demonstrate across a range of disassembly tasks a time
reduction of 22%–57% is achieved using identical cobots, yet this improvement
arises chiefly from an expanded workspace and 1:1 positional mapping, and
suffers a 10%–30% reduction in first attempt success rate. For unbolting and
grasping, the realism of force feedback was comparatively less important than
directional information encoded in the interaction, however, 1:1 force mapping
strengthened environmental tactile cues for vacuumpick-and-place and contact
cutting tasks.

KEYWORDS

robotic disassembly, telerobotics, lithium-ion batteries, EV batteries, haptic,
teleoperation

1 Introduction

As a result of the increasing demand for electric vehicles (EVs) (Rietmann et al., 2020),
a large number of EV batteries are expected to reach end of life. Owing to a combination of
contained high-value materials such as lithium, nickel and cobalt (Thies et al., 2018), and
a limited lifespan of 10–15 years (Ai et al., 2019), there is an increasing research interest
towards EV battery disposal. Battery disassembly is a critical step to enable gateway testing
and sorting of end-of-life (EoL) battery components for re-use, and recovery of high-purity
materials for recycling. This remains a predominantly manual process for trained personnel,
requiring a high degree of precision and attention (Tang and Zhou, 2004; Tan et al., 2021).
While previous studies such as Lander et al. (2023) have emphasised the importance of
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autonomous disassembly for reducing disassembly cost, limitations
are presented due to the high degree of variability in EV
battery models (Pehlken et al., 2017), as well as the lack of
dexterity alongside the highly dynamic, unstructured work
environments—chiefly due to variety of models and manufacturers
and lack of design standardisation. Consequently, hybrid
frameworks for EV battery disassembly have been proposed in
which robot and human work closely and collaboratively (Tan et al.,
2021). However, EV batteries have numerous associated thermal
and chemical hazards due to residual charge held within the battery
and risk of thermal runaway. The associated risks are further
compounded for damaged batteries, which are challenging to
disassemble autonomously due to further uncertainty in component
end-of-life condition.

Telerobotics aims to mitigate the hazards of disassembly by
enabling a human operator to carry out disassembly tasks remotely
through a local interface while imparting some of the human
operator’s dexterity and fine motor control to the robot. Haptic
devices are commonly employed in telemanipulation studies due
to their ability to deliver force feedback to the operator while
carrying out tasks. Nevertheless, one key challenge in haptic devices
can be the master-slave asymmetry in regards of the kinematics
(Li et al., 2020); hence, there exist a range of mapping schemes
by which the motion of the master device can be mapped to
that of the slave. Previously, it has been emphasised the nature
of this interface is important for carrying out dangerous/sensitive
tasks (Bernold, 2007). Furthermore, for disassembly in hazardous
settings, it is suggested that the quality and realism of the feedback,
and interface provided to the operator can greatly impact the
level of task performance (Bolarinwa, 2022). Nonetheless, the effect
of the user interface on such tasks has not been evaluated, and
limited comparative studies exist for telerobotics in non-hazardous
settings (Gliesche et al., 2020; Singh et al., 2020). Specifically, using
telerobotics for the application of EV battery disassembly is not
well explored, particularly, where damaged batteries present further
critical challenges to the process of disassembly.

The main contribution of this work is a comparative study of
the effect of differing haptic master devices on the level of task
performance for sensitive disassembly tasks. This study further
demonstrates potential application areas for telerobotics for battery
disassembly, which thus far has been sparsely explored. The results
provide insights into the feasibility of telerobotic disassembly of
EV batteries, as well as areas of improvement for specific tasks. We
establish a battery disassembly case study encompassing a range of
disassembly tasks, such as unbolting, sorting and cutting, based on
the sequence of pack-to-cell disassembly operations for a Nissan
Leaf 2011. A series of tools were custom-designed in order to
complete the tasks. We evaluate and compare the success rate and
task execution time between a high-cost platformusing two identical
collaborative robots (“cobots”) and a relatively low-cost platform
using a haptic device paired with a single cobot. We examine
causative factors for differences in performance between these two
platforms for each task.

The remainder of the paper is structured accordingly: Section 2
provides a survey of related studies in disassembly and telerobotics.
Section 3 introduces the experimental methodologies, including the
experimental setup for carrying out disassembly tasks (Section 3.1),
the control architecture for bilateral telemanipulation for both

platforms (Section 3.2), and the experimental case studies for
different EV battery disassembly tasks (Section 3.3). Evaluation
of each telemanipulation platform on the basis of objective
performance measures is carried out in Section 4, and finally
Section 5 concludes the paper.

2 Related work

Methods of battery disassembly can be broadly categorised into
fully-manual, fully-autonomous, and semi-autonomous approaches.
Given the hazards that EV battery disassembly environments
pose against human operators, the literature has been more
oriented towards developing autonomous and semi-autonomous
approaches on the basis of potential improvements in efficiency
and safety. Autonomous approaches aim to increase the efficiency
of disassembly by allowing robots to plan and carry out repetitive
tasks in unstructured environments through the use of visual and
tactile feedback. Examples of such works can be found in Zorn et al.
(2022); Zhang et al. (2023); Choux et al. (2021); Farhan et al. (2021).
A common factor in these approaches is the use of labelling
and detection methods to autonomously identify components and
fasteners and construction of plans accordingly. However, this
suffers from dependency on data and prior knowledge, and the
risk of misidentification of battery components. For damaged
batteries, existing prior knowledge datasets may not be suitable,
or autonomous disassembly processes may fail; e.g., a fastener
must be dislodged manually, or autonomous grasping fails due to
structural deformation of components, requiringmanual alignment.
Furthermore, for sorting and lifting applications, the complexity of
planning and collision avoidance remains an outstanding problem
Zhou et al. (2019); Tang et al. (2022). Other approaches have aimed
to reduce complexity of disassembly in various settings through
tool design, such as gripper extensions Borràs et al. (2018) or
flexible grippers Schmitt et al. (2011), to assist with unscrewing,
grasping and other contact-rich manipulation tasks. However,
even with such adaptations, autonomous approaches suffer from
difficulties with generalisation to a range of tasks and across differing
battery designs. Other studies such as Baazouzi et al. (2021) have
examined optimisation of the EV battery disassembly process,
emphasising the importance of battery design considerations for
disassembly. As these are currently lacking for EVs, this introduces
a high degree of variability and uncertainty into the disassembly
process.

Recently, human-robot collaboration (HRC) has garnered
attention for disassembly of end-of-life products, integrating both
the robot’s high efficiency in repetitive tasks and the human
flexibility with higher cognition. However, there are few studies on
this subject in the literature. In (Kay et al., 2022), a high-speed rotary
cutting wheel was adapted to perform robotic cutting at various
points of the battery module casing. The proposed framework
allowed a robot to efficiently carry out semi-destructive disassembly
processes while allowing human operators to rapidly sort the
battery components and remove connectors. Frameworks have
further been proposed to semi-automate the process of extracting
and sorting different objects from an EV battery pack using a
mobilemanipulator (Rastegarpanah et al., 2021).This study uses the
behaviour tree model, which connects different robot capabilities,
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including navigation, object tracking and motion planning, for
cognitive task execution and tracking in a modular format. Another
study looked into human-/multi-robot-collaborations (Gil et al.,
2007) in a disassembly scenario, where a technician and a
number of robots coexist in the same environment interacting
with each other to complete disassembly tasks. These presented
articles demonstrate that HRC scenarios can offer both safety
and time improvements over manual and autonomous disassembly
strategies for EV LIBs. Nonetheless, issues such as coordination and
allocation of tasks between robot and human and handling camera
occlusion (Fan et al., 2022) remain outstanding topics of research.
Furthermore, in some cases, it is not possible for robots to be in
the same environment as humans, as the environment is considered
hazardous for humans.

Telemanipulation has been commonly employed in the nuclear
industry for delicate handling of wastes that present a radiation
hazard for human personnel. For example, the use of gloveboxes
is examined in Tokatli et al. (2021) in the context of telerobotics
as a means of reducing radiation exposure risks to human
personnel. Another study conducted real world experiments of
a user performing nuclear decommissioning task via a unilateral
teleoperated robotic system (Mizuno et al., 2023). The study
conducted a comparison analysis between three teleoperation
scenarios: fully manual, teaching-based, and planning-based, in
terms of safety, cognitive demand, and preparation time. Findings
showed that planning-based is the most time efficient, yet lacks
safety. Although these articles presented successful use cases of
teleoperation in hazardous environments, bilateral systems were
not investigated to show the importance of force feedback to the
user on performance. Haptic devices have been extensively used in
many studies developing bilateral teleoperation systems for various
applications (Giri et al., 2021). Haptic devices allow the operator
to feel external force/torque, and further haptic cues that can be
obtained in complex virtual environments. One study employed
haptic devices as master devices to control dual 7-DOF serial arm
manipulators to perform maintenance and repair tasks in nuclear
power plants (Ju and Son, 2022). They developed a shared bilateral
teleoperation system including three elementary technologies:
egocentric teleoperation, virtual fixture, and vibration suppression
control to assist the human operator in performing shaft-and
clutch-based peg-in-hole tasks. Furthermore, they conducted
human-centric evaluations to measure the performance in terms
of completion time, trajectory length, and human effort. The
results of this study showed that haptic cues improved task
performance significantly. Additionally, in Shen et al. (2021), the
authors propose a framework for a single-master-multiple-slave
manipulator system that enables remote regulation of cooperative
tasks. They utilize an adaptive non-singular terminal sliding-mode
(ANTSM) method to address challenges such as time-varying
delays, external disturbances, and modeling uncertainties. Other
approaches have aimed to examine the effect of virtual constraints
and force feedback guidance on task performance. Such approaches
have been proposed in He and Chen (2008), based on imposition
of rotational constraints on a component when axially aligned with
its target. A related concept is proposed in Abi-Farraj et al. (2016),
based on a shared control approach to remote object manipulation
using visual information, and extended to a real environment in
(Abi-Farraj et al., 2018). In this way, the user is assisted during

a grasping task by constraining the gripper orientation to the
surface normal of a virtual sphere, centred on the object centre of
mass. While performance improvements for these tasks have been
documented, these approaches limit the flexibility provided to the
operator; such constraints are often task-specific and susceptible to
failure in edge cases, for example, if the autonomously identified
grasp point is not suitable. Alternative approaches for sorting and
separation of objects in an unstructured environment have been
proposed based on haptic guidance cues Abi-Farraj et al. (2020). In
this way, a visual inspection of the object is used to generate suitable
grasp points, and the user is guided towards the suggested grasp
point through tactile cues and vibration without constraining the
free manipulation of the robot.

The majority of considered studies have focused on telerobotics
for assembly tasks, nuclear decommissioning and waste handling
applications. However, there is a paucity of research surrounding
the use of telerobotics in an EV disassembly context. The authors
in Meng et al. (2022) highlight the potential of teleoperation in
handling hazardous manufacturing environments and discusses
various autonomy levels of intelligent teleoperation for disassembly.
They have also provided a forward-looking overview on how
to use telerobotics for the application of disassembly of electric
vehicle lithium-ion batteries. Furthermore, while many studies have
explored the effect of shared autonomy and control system design
on task performance, a limited number of works have investigated
the nature of the interface exposed to the operator and its effects
on task performance. Such a comparison has been explored in
Gliesche et al. (2020) between a keyboard-mouse setup, XBOX
controller and a bilateral setup using a haptic device. For a range
of patient care tasks, involving grasping and moving a remote and
adjusting a camera view, a haptic device was found to improve the
speed at which operators carried out tasks, however no subjective
differences in mental load were identified. In Singh et al. (2020),
a framework was presented using a pair of identical cobots, and
explores human-centric performance metrics between methods of
rendering guidance and environmental forces to the user on the
performance of a peg-in-hole task. However, the range of tasks
remains limited and the effects of the interface remain unclear for
the wider range of tasks featuring in a disassembly environment.

3 Methodology

3.1 Experimental setup

This study focuses on the Nissan Leaf 2011 battery pack as
a case study to demonstrate a range of disassembly tasks using
telemanipulation. The Nissan Leaf 2011 pack comprises 192 cells
enclosed within 48 modules, arranged with two forward vertical
stacks of 12 modules and a single rear horizontal stack of 24
modules. An overview of the main disassembly stages for pack-to-
cell disassembly is given in Table 1; for brevity, this is provided for
only the forward module stacks. The level of autonomy presented
in Table 1 was inferred from understanding of the current manual
disassembly process and use of design features, such as types of
fasteners and accessibility of components. In general, the range of
semi-/fully autonomous tasks will vary between battery designs and
manufacturers, however, overall, there is a motivation to increase
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TABLE 1 Sequence of disassembly operations for pack-to-cell disassembly of Nissan Leaf 2011. For brevity, only disassembly of the front module stack is
considered. The type of task can be classified as fully manual (M), requiring specialised tools or dexterous hand-manipulation, semi-autonomous (S-At), where a
robot can accomplish the task with the assistance of a human operator, and fully autonomous (At) tasks accomplishable without human intervention. A
contiguous sequence of semi-autonomous processes can be observed for disassembly and sorting of themodule stack; tasks considered in this study are
emphasised.

Step # Disassembly task Type

1 Top case Remove service plug retainer M

2 Remove upper case bolts and lift top case At

3 Battery controller Remove mounting bolts S-At

4 Disconnect harness connectors and remove battery controller M

5 Junction box and harnesses Disconnect interlock circuit harness and heater harness connectors M

6 Remove mounting nuts and front stack connecting bus-bar S-At

7 Remove battery member pipe S-At

8 Remove junction box cover M

9 Remove central bus bar bolts and remove central bus bar S-At

10 Remove current sensor bus bar mounting bolt S-At

11 Remove switch bracket mounting bolts S-At

12 Invert switch bracket, disconnect harnesses and remove switch bracket M

13 Remove high voltage (HV) harness bolts and remove HV harnesses S-At

14 Disconnect voltage and temperature sensor harnesses M

15 Remove junction box mounting nuts and junction box M

16 Heaters Disconnect harness connectors from heater and heater relay unit M

17 Remove heater and heater relay mounting nuts S-At

18 Remove heater controller unit and heaters M

19 Front module stack(s) Remove stack mounting nuts At

20 Extract module stack At

21 Remove bus bar cover M

22 Remove bus bar terminal mounting bolts and mounting screws S-At

23 Remove end plate bolts At

24 Remove end plate S-At

25 Electrical test and sort modules S-At

26 Module Separate module cover S-At

27 Glue separation At

28 Separate cell tabs from terminal assembly S-At

the level of autonomy to decrease disassembly costs (Lander et al.,
2023). We formulate a basic battery disassembly workstation design
consisting of 2 Franka Emika Panda cobots and a Phantom Omni
haptic device. The Franka Emika Panda is a 7 degree of freedom
(DoF) robot with a 3 kg payload. A combination of torque control
and onboard torque sensing capabilities and low payload makes this
robot suitable for accomplishing precise assembly and disassembly
tasks in a shared human-robot workspace. The Phantom Omni
comprises a 6 DoF handheld articulated arm with independent
control of force feedback along 3 axes, with a maximum force
capability of 3.3N. All devices were connected in a ROS network to
a desktop with Intel(R) Core(TM) i7-8086K 8-core processor with

4 GHz base clock and 32 GBRAM.An overview of the experimental
setup is shown in Figure 1.

Based on the disassembly sequence in Table 1, we consider a
selection of repetitive tasks identified in related studies (Tan et al.,
2021) where robots provide an advantage over manual disassembly.
These consist of unbolting, such as of fasteners connecting a
stack of modules; removal and sorting (pick and place) of
disassembled waste components, and cutting to mechanically
separate components where fasteners cannot be removed non-
destructively. To deal with the range of tasks presented in the
case of battery disassembly, a range of commercially available and
custom designed tools were employed, shown in Figure 2. For this
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FIGURE 1
Overview diagram representing the experimental setup adopted in this work, alongside a brief breakdown for an EV battery disassembly process, from
the battery pack to the battery cell.

FIGURE 2
Tool attachments considered for the tasks of unbolting, cutting and sorting. (A) Socket Wrench tool, (B) Motorised cutter tool, (C) Two-finger gripper,
(D) Vacuum gripper.

study, we design a custom socket wrench tool that can be employed
with a range of fastener sizes. For cutting, a motorised slitting saw
tool was designed specifically for the low-payload cobots presented
to accomplish low-power cutting tasks. For pick and place, the
Franka Hand two-finger gripper was employed for grasping thin,
light wastes such as bolts and plates, while the Robotiq EPick
suction gripper is applied for larger, heaviermaterials such as battery
modules.

3.1.1 Master-slave telemanipulation using a
haptic device as master and a cobot as slave

A common framework to accomplish telemanipulation tasks
is to use a lower-cost, handheld platform such as a haptic device
in combination with a robot in a master-slave configuration. In
this case, we consider the case of a Phantom Omni haptic device

and a Panda cobot (Figure 3). Due to a mismatch in the DoFs of
the Omni and Panda robot - more generally, any over-actuated
robot—there is a limitation that not all degrees of freedom of the
robot can be controlled independently, reducing the amount of
control provided to the user. Typically, this requires a definition
of a mapping function that maps the joint positions of the haptic
device to that of the slave arm. Such a mapping can be achieved by
mirroring the Cartesian pose or twist of the haptic end-effector to
that of the slave robot. This provides a more intuitive framework
for the user to position the robot to accomplish tasks. However,
this typically renders the control vulnerable to singularities and
joint limits, due to the solution of inverse kinematics/dynamics to
compute the required joint-space motion. Furthermore, the smaller
scale of motion afforded by the Omni in both joint and task space
implies a compromise between speed of coarse motion, where the
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FIGURE 3
Outline of telemanipulation framework consisting of Phantom Omni haptic device and Franka Emika Panda cobot. FK refers to the forward kinematic
mapping of follower joint configuration qf to end-effector pose xf. Note the transformation matrices relating the base frames of the haptic and cobot
are omitted for simplicity.

motion of the haptic device is scaled to achieve largermotions on the
robot; or precision of fine positional alignment, where the motion
of the haptic device is mapped directly to the robot or even reduced.
Moreover, due to the limited force capabilities of the haptic device,
the force feedback cannot be mapped from the robot to the haptic
1:1. Therefore, the feedback can potentially feel unnatural or deliver
insufficient cues for the operator, such as when exceeding safety
limits imposed on force.

3.1.2 Master-slave telemanipulation using two
identical cobots

Alternatively, in this work we consider a platform consisting
of two identical Franka Emika Panda cobots operating in a
master-slave configuration. With this approach, the user directly
manipulates the master Franka arm, whose motions are directly
mirrored to that of the slave arm. Owing to the identical
configuration of both robots, both joint position and torques can be
mapped between the robots 1:1. This 1:1 mapping results in natural
and responsive feedback being delivered to the user. However, this
also poses hazards as the user will be potentially exposed to the full
forces involved in a specific task. The joint space control of both
arms furthermore has advantages in the problem of singularities
and joint limits, which are present in mapping the Cartesian end-
effector pose of the master to the task space pose of the slave robot.
However, the lack of task-space control has potential drawbacks
when accomplishing tasks along specific task directions, such as
removing bolts or cutting, more difficult and less intuitive for the
user.

3.2 Control strategy

To achieve a virtual coupling between master and slave devices,
we first consider the dynamic equation of a rigidN-linkmanipulator
in joint space

M (q) q̈+C (q, q̇) + g (q) = τext + τ (1)

where M ∈ ℝN×N, C(q, q̇) ∈ ℝN×N, g(q) ∈ ℝ1×N are the joint-space
inertia matrix, Coriolis and centrifugal matrix and gravitational
torques respectively, and τext ∈ ℝ

1×N, τ ∈ ℝ1×N are the vectors of

external and control torques acting on each link respectively. We
denote the joint configurations q and command torques τ by
subscripts l, f for master and slave respectively.

For the haptic device, 1:1 mapping between ql, qf cannot be
achieved in practice due to a mismatch in the number of kinematic
degrees of freedom and joint ranges compared with the Franka arm.
Hence, it is required to either map the joint space onto a reduced
subset of the full joint space of the robot, or operate in a mutual
task space. In this work, 6DoF Cartesian mapping is employed for
motion control of the slave Franka arm with the Phantom Omni
master arm. As the human operator moves the master arm in its
workspace, delta Cartesian pose PTΔ is computed and then mapped
to the end-effector delta pose FTΔ via the workspace transformation
(Figure 4):

(2)

where P
FT is the homogeneous transformation matrix from

Franka arm base frame to Phantom Omni base frame, FTΔ, and
PTΔ represent the delta transformation matrices for Franka and
Phantom respectively. Position and orientation components of PTΔ
are assigned to the desired velocity ẋt to compute the task space pose
error ex = xf − xt for the slave arm. Thus, the slave arm control law is:

τ f = J
T (−Kpex −KdJq̇f ) +C(qf ) + g (qf ) (3)

where J ∈ ℝN×6 is the slave manipulator Jacobian mapping joint
to end-effector velocities and Kp, Kd are controller stiffness
and damping matrices respectively. This results in the desired
closed-loop dynamic behaviour from Eq. 1 (where Λ ∈ ℝ6×6 is the
operational space inertia matrix):

Λẍf +Kdẋf +Kpex = Fext (4)

Force feedback is an essential part of a bilateral teleoperation
system in which a force feedback is maintained at control frequency.
This helps the user to have a tactile perception of the slave robot’s
environment. In a similar way to (2), the external force vector Fext
experienced at the Franka end-effector is transformed with respect
to the Phantom so the user is able to perceive it as force Fl as follows:

F l = G⋅
P
FT
−1 ⋅ Fext (5)
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FIGURE 4
Cartesian mapping for the master-slave telemanipulation setup between the Phantom Omni haptic device and Franka Panda robot arm.

Due to the mismatch in force capabilities between master and
slave devices, the feedback is scaled by a factor G = 0.1. This factor
was determined experimentally by comparing the maximimum
expected force across all tasks from preliminary data and scaling
to the maximum force capabilities of the haptic device (3.3N). To
distort the force feedback to a minimal extent, and to maintain
consistency with the constant 1:1 feedback of the identical cobot
setup, this factor was held constant across all trials. A necessity of
the task space control scheme is the remediation of singularities
and joint limits. In this case, a null space position regulation term
is added to (3) to avoid joint limits. Unlike pseudoinverse control
where large solution values can be obtained, with the controller
design inEq. 3, singularitieswill be observed as the torque command
τf tending to zero along the singular directions.

For the Franka arm, a joint impedance control scheme is used
that directly maps the joint configuration of the master arm to the
slave arm (Figure 5). The control law is defined as follows:

τ f = −Kpeq −Kd ̇eq +C(q f) + g (q f) (6)

where eq = qf − ql is the joint space error. This results in the closed-
loop dynamics in joint space for the slave arm

Mq̈f +Kd ̇eq +Kpeq = τext (7)

To provide force feedback to the user, the master control torques are
calculated as:

τ l = τext −Kd,lq̇l (8)

where the force feedback is computed directly as the estimated
external torque applied to the slave arm. Note in general the model
parameters C, g are subject to uncertainty, which results in reduced
tracking performance of both controllers and the presence of steady-
state error. Tuning of the control gains Kp, Kd was accomplished
similarly to G via preliminary experiments, similarly to other
comparative studies such as Nakanishi et al. (2008). In this case, the

value of Kp was increased for each of the control strategies on the
slave arm in isolation before instability occurred, whileKd was set to
obtain a critically damped behaviour.This provides the best tracking
performance in free space and reduces the influence of uncertainties
in the model parameters C and g. For the joint control strategy, the
gains were scaled down according to the torque capabilities of each
joint. Due to the combination of higher forces applied to the master
with the low stiffness of the human operator, an additional damping
term Kd,l is added to the response of the master. The value of Kd,l
was selected by identifying the minimal damping value assigned to
all joints to suppress oscillations arising from feedback effects from
the bilateral master-slave coupling.

3.3 Disassembly case studies

A contiguous sequence of tasks relating to the disassembly and
extraction of a stack of modules from the Nissan Leaf 2011 battery
pack were identified as feasible targets for robotic disassembly,
presented in Figure 6. The considered case study encapsulates a
range of contact-rich tasks required to disassemble and recover the
battery modules from an individual stack. The modules contain
the active material within the battery and hence are considered a
safety-critical aspect of the disassembly process due to the associated
handling risks, such as risk of shorting the terminals and risk of
mechanical shock from mishandling. Each task was attempted five
times (trials). We evaluate the task completion time and success
rate for each task for both platforms. Additionally, to evaluate the
difference in task completion times in a timescale-invariant manner,
the standardised mean difference (SMD) effect size metric was used.
Given the mean and standard deviation ( ̄th,σth), ( ̄t f ,σtf) for each
platform respectively, the SMD can be defined as:

SMD =
̄th − ̄t f

√σ2
th
+ σ2

tf

(9)
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FIGURE 5
Outline of telemanipulation framework consisting of two identical Franka Emika Panda cobots.

FIGURE 6
Part of an EV battery disassembly process showing the case studies experimented on through this work in order: 1) Unbolting fasteners. 2) Removing
fasteners 3) Removing module cover plate. 4) Sorting modules. 5) Surface contact cutting.

and provides an evaluation of the effect of each platform on
completion time relative to the amount trial-to-trial variation.
During each trial, the robot tool tip pose and estimated external
wrench were recorded to examine the operator behaviour during
each trial and semantically identify key stages of the task.

For each task, the operator is provided with two fixed camera
views of the module stack, and otherwise does not have a direct
view of the scene. These views are held constant for all tasks with
the exception of cutting, where the operator is instead provided
two camera views of a material holder containing the cutting
workpiece. Prior to commencing each task, both master and slave
robots are initialised to a home position in joint space held constant
for all tasks. As the focus of this work is not on human factor
analysis and subjective measures of performance based on end-
user evaluations, but on objective measures of task performance,
the operator is assumed to have familiarity and prior experience
with both teleoperation platforms. In addition, each operator was
given 10 min of training with each task with both telemanipulation
systems before first attempting each task. Four expert operators
participated in the study. For each trial, a single operatorwas selected

randomly to perform the task. A more detailed description of each
task is provided as follows.

3.3.1 Unbolting
This task considers the unbolting of a set of 4 fasteners

constraining an individual stack ofmodules.The operator has access
to a motorised universal socket wrench tool mounted at the robot’s
wrist.Theoperator is responsible for aligning the socketwrenchwith
the bolt and operating the tool to unscrew the fastener. The task is
considered successful if the bolt is removable by hand without any
further unscrewing action. If the success condition is not met after
the first attempt, or the configured force thresholds (40N) of the
robot are exceeded, the task is considered a failure.

3.3.2 Removing the fasteners
This case study follows from the previous unbolting stage by

removing each fastener from the stack before removal of the cover.
For this task, the Franka hand was used with a configured grasping
force of 50N.The operator was required to remove a set of 8 fasteners
bymaneuvering the hand towards each of the fasteners, grasping and
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removing the bolt from the stack and depositing into a container.
Due to the limitation of the camera views of the object, the operator
must use a mixture of tactile and visual exploration to successfully
remove the fasteners. For each bolt, the failure condition ismet if the
bolt is not grasped after the first grasp attempt, or if the grasp is lost
outside of the target container.

3.3.3 Removing the module cover plate
After the removal of the fasteners, the operator must then

remove the module cover plate to access the underlying module
stack. Due to the weight and geometry of the cover plate, it is
essential for the operator to find and manoeuvre towards a good
grasp point to ensure safe transportation of the cover during
removal. The configured grasping force was increased to 60N for
all experiments. The failure condition is met if the first grasp is
unsuccessful or the grasp is lost during the transportation of the
cover.

3.3.4 Sorting modules
This case study considers unstacking and sorting of the EV

battery modules using a vacuum suction gripper. The operator must
remove a pair of modules from a stack and deposit them into a
container. This task requires visual positioning of the gripper onto a
suitable surface for grasping, while furthermoremaintaining contact
to engage the suction cups with the material without exceeding the
force limits of the robot. Similarly to the cover removal case study,
the failure condition is met if the first grasp is unsuccessful, or if the
grasp is lost during transportation.

3.3.5 Contact cutting
Additional semi-destructive disassembly tasks may be carried

out to further disassemble the individual modules to access the Li-
ion cells or to separate and remove fasteners or connectors that
are not amenable to non-destructive disassembly. We consider the
case study of contact cutting of a planar material along a predefined
visually marked desired path using a slitting saw tool. Due to the
limited availability of battery materials and the power limitations of
the spindle, we consider cutting a cardboard sheet as a benchmark
for the more general process of cutting different planar materials.
The operator must use tactile feedback to control the cutting force
while also using visual feedback to achieve precise positioning
along the path. The desired cutting path consists of a window of
±2.5 mm measured from the centroid of the marked path. If the cut
deviates from the path greater than this threshold, or if the cut is
incomplete along parts of the desired path, the failure condition is
met.

4 Results and discussion

4.1 Success rate and completion time

For each case study, the overall success rate and average task
completion time over all trials are summarised in Table 2. For all
tasks, the success rate is observed to exceed or equal 50% with
both platforms, with the lowest success rate of 50% observed for
the task of bolt removal with an identical cobot. For the majority of
the tasks, a success rate of over 75% is achieved, demonstrating the

feasibility of the module stack disassembly process with both cobot
and haptic device telerobotics platforms. Between each platform,
the success rate is broadly comparable for unbolting and bolt
removal, where the operator success rate is 10%–15% higher than
the identical cobot case. Of the total bolt removal trials, failure
to grasp the bolt due to misalignment contributed to 17% of the
failures, increasing to 30% with identical cobots. Other causes of
failure were due to loss of grasp during bolt extraction (15% for
both platforms) and releasing the bolt outside of the box (5%, 2.5%
for haptic and cobot respectively). Cover removal is notably the
most simple task due to the near-planar approach trajectory; given
that the operator managed to reach a firm grasp point on the cover
plate, which was achieved 100% in all operators’ trials with both
platforms. On the other hand, the largest differences are observed
with unstacking and cutting, where in the former case the identical
cobot is outperformed by the haptic device by 30%, whereas in
the latter case, the inverse is true, with a 20% improvement in
success rate. Unstacking findings can be justified due to the design
mechanism of the vacuum suction gripper, where the gripper has
to be in a direct contact and, more importantly, perpendicular
orientationwith respect to themodule surface to achieve a successful
grip. Hence, manipulating the suction gripper’s position/orientation
to achieve this in Cartesian space with the haptic platform showed
higher success rate than in joint space with the identical cobot
platform, where gripping failure cases occurred due to orientation
misalignment. Furthermore, the findings of cutting trials emphasize
the significance of force feedback. Identical cobot platform showed
higher success rate because the force feedback is maintained at a
1:1 scale, whilst in haptic platform, it is scaled down due to limited
force capabilities as (5). Therefore, the user did not experience the
full scaled forces exerted on the end-effector while cutting. This is
corroborated by the causes of failure; which were due to deviations
from the desired path for the Franka, while the haptic platform
failures were due to shallow, incomplete cutting of the material or
exceeding the force limits of the robot.

In Figure 7, a detailed breakdown of task completion times by
trial is presented, indicating the time spent in each stage of the
trials. Depending on the task, these stages subdivide each task
consecutively, from start to completion, into categories: a “Coarse”
stage where the operator telemanipulates the robot through rough
visual alignment of the tool, followed by a “Fine” stage utilising
tactile and visual feedback for precise positioning of the tool towards
the interaction point. In the “Action” stage, the operator interacts
with the component to perform a task after successful alignment
of the tool. These actions correspond to unbolting, gripping and
engagement of the cutter for nut/bolt removal, sorting and cutting
respectively. Finally, the “Place” stage is encountered for grasping
tasks after a successful grasp of the target object, during which
the operator moves the grasped object and releases at a target
position. The coarse and fine stages were annotated according to
the proximity of the tool to the task-dependent target; a distance
of the tool within 5 cm of the target—for example, bolts and cover
grasp points—indicates the fine alignment stage.The place stage was
specified for coarsemotions performed after grasping, which reverts
to the coarse phase of motion after release of the grasped object.
The action phase was annotated based on task-specific position and
force thresholds. For example, for the sorting task, the task-relevant
action is engagement and evacuation of the suction cups to grasp the
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TABLE 2 Comparison of performancemetrics for disassembly tasks for telemanipulation with PhantomOmni haptic device and identical cobot (Franka)
platforms.

Haptic Franka

Success rate [%] Avg. Task time [s] Success rate [%] Avg. Task time [s]

Unbolting (4×) 95 188 ± 23 85 124 ± 13

Nut/bolt removal (8×) 63 713 ± 89 50 410 ± 63

Cover removal 100 101 ± 15 100 70 ± 6

Sorting modules (2×) 90 179 ± 19 60 77 ± 5

Cutting 60 122 ± 26 80 95 ± 18

FIGURE 7
Breakdown by task trial of task completion times between Haptic and Franka telemanipulation masters. Data are omitted when the failure condition is
met before completion of the task, such as by violation of configured force limits. Tasks are broadly split into four categories: an initial “Coarse” phase
of approximate visual tool alignment, a “Fine” phase of precise visual and tactile alignment, an “Action” phase consisting of the task-relevant action, e.g.,
unbolting, cutting, and “Place” phase where the user deposits grasped objects. (A) Unbolting, (B) Bolt removal, (C) Cover removal, (D) Sorting modules,
(E) Cutting.

module. From the 4 stages breakdown presented in Figure 7, one can
have a clear interpretation of what stages the operators spent most of
the task time at, indicating their exerted efforts in completing each
of the stages with respect to the two comparable platforms.

From an overview of Figure 7, the identical cobot platform
achieved shorter completion times on average across all tasks,
compared to the haptic platform.Additionally, the highest difference
in average time between the two platforms is observed for the
bolt removal and sorting tasks, on average requiring ∼1.7–2.3×
longer to complete with the haptic device respectively. Absolute
task completion times were more consistent between trials with the
identical cobot platform for all tasks. For a comparative overview of
the effect on completion time across tasks, we employ the SMDeffect
size metric. Values of |SMD| ≥ 0.8 implies a significant effect, and
the converse indicates a small or marginal effect. For the considered
module stack disassembly case study, the highest proportion of time
was spent unbolting and removing the retaining fasteners. This is
observed from Figures 7A,B, where the “fine” stage occupies 60%,
63%, and 47%, 50%of the average task completion time, respectively,
in both platforms; therefore, the fine alignment stage was the
primary contributor to the reduction in overall task completion
speed. This indicates that regardless of the platform used, these
two tasks, among the other disassembly tasks, were the most effort

demanding; requiring a combination of precise visual and tactile
alignment of the tool to successfully unbolt/remove the fasteners.
However, the SMD for unbolting and bolt removal respectively were
1.09 and 1.24, which indicates large improvements afforded by the
identical cobot setup.

4.2 Case studies

Figures 8–11 present the position graphs of the Franka slave’s
end-effector in Cartesian space, as well as the external forces
experienced during a sampled trial from each task in the case study
with both platforms. The figures also display the 4 categorised stages
(“Coarse”, “Fine”, “Action”, “Place”) color-shaded in each graph’s
background corresponding to each stage, as introduced in Figure 7,
throughout the time span of the presented trial. In Figure 8, spikes
in the force z plot enclosed in the yellow region (“action” stage)
correspond to the action of unbolting of the fasteners using the
wrench tool. Similarly, Figure 9 represents the bolt removal task in
which fasteners are grasped, lifted up from their holes, and placed
in a container; thus, the position z spikes in the red region (“place”
stage). Interestingly, despite the differing scale of force feedback
between the two platforms, themagnitude of external force observed
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FIGURE 8
Overlay of position and estimated external forces at the end-effector for the unbolting task (trial 2) using a motorised universal socket wrench tool.
Increases in force (∼10–15 N) in the surface normal direction (Z) indicate establishment of contact with the bolt and tactile exploration to identify
correct alignment of the tool. Execution of unbolting is marked by rapid force fluctuations around these peaks. (A) Haptic master, (B) Franka master.

FIGURE 9
Overlay of position and estimated external forces at the end-effector for the bolt removal task (trial 2) using a 2-finger gripper. The position alignment
can be categorised broadly into rapid visual alignment (indicated by a rapid decrease in Z position), followed by a slower phase of precise visual and
tactile alignment (plateau in Z position). Variations in force along the X-Y plane are indicative of tactile exploration to find suitable grasp points for the
bolt. (A) Haptic master, (B) Franka master.

over time for the bolt removal task is similar for both platforms.This
suggests that the realism and scaling of the force feedback is less
important for accomplishing precise grasping tasks for disassembly
than the directional guidance provided by the force feedback during
contact.

Some tasks involved placing components after disassembly into
a waste/recycle bin, like in the cover removal task, where most of
the time was spent on post-grasp manipulation, i.e., the “place”
stage. Operators spent on average 39, and 37 s placing the objects
which averaged 56%, and 35% of the task completion time with
cobot and haptic platform, respectively. Around 30% of the time
was spent in the “place” stage for the cobot platform; due to the
lack of Cartesian control, the operator reached joint configurations
where large reconfigurations were required between tasks to access

the workspace. This is evident in Figure 9 around 150 s. Comparing
trial 4 in Figure 10, for which a smaller difference in task time was
observed (SMD0.85) suggests that coarse alignmentwith the correct
grasp point is achieved on a similar timescale of∼20 s. For the haptic,
a greater proportion of time is spent on fine alignment with the
correct grasp point, while for the Franka, this time is predominantly
spent on post-grasp manipulation.

For the module sorting task, significant improvements in the
task completion time were observed, with an SMD of 2.31. Similarly
to other tasks, improvements in coarse and fine alignment speed
are observed, although the reduction in completion time is driven
by time reductions over all stages of the task, including the “action”
stage. Examining in Figure 11 shows that after positional alignment,
an increase in the force (up to ∼25N) occurs indicating the attempt
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FIGURE 10
Overlay of position and estimated external forces at the end-effector for the cover removal task (trial 4) using a 2-finger gripper. An initial coarse
alignment stage is marked by a rapid decrease in Z position, followed by a fine alignment guided by tactile feedback. Grasping and releasing of the
cover is observed as application and release of a ∼14 N force in the-Z direction. (A) Haptic master, (B) Franka master.

FIGURE 11
Overlay of position and estimated external forces at the end-effector for the sorting modules task (trial 5) using a vacuum suction gripper. An initial
coarse alignment stage is marked by a rapid decrease in Z position, followed by a fine alignment guided by tactile feedback. Grasping and releasing of
the module is observed as application and release of a ∼8 N force in the-Z direction. (A) Haptic master, (B) Franka master.

to reach a successful suction grip at the module surface. As with the
previous tasks, the magnitude of force feedback is largely consistent
between both platforms; however, for the action phase, the operator
exhibited a more slow and conservative approach with the haptic
device, characterised by a slow ramp in the normal (+Z) force.
Intuitively, the operator uses a mix of visual and tactile cues to
identify engagement of the suction cups with the surface. This
implies a combination of factors can be attributed to this behaviour;
in the first instance, from similar factors contributing to faster
positional alignment with the Franka, such as 1:1 position mapping,
while in the second instance, the operator can identify the correct
force threshold more intuitively, as with direct manipulation of
the slave arm, through 1:1 force mapping. Next, the “action” stage
is followed by the “place” stage (red region) where the module
is removed from the scene. Contrasting the cover removal task,

a much shorter period of time is spent both proportionally and
in absolute terms on post-grasp manipulation with the Franka.
Comparison of the trial breakdown in Figures 10, 11 for these
stages implies an effort-related component to the task performance,
due to the higher load exerted by the cover (notable in the Z
direction). Furthermore, the cover exhibits a more dispersed mass
distribution in contrast with the module, where a majority of the
weight is concentrated about the grasp point. Hence, positioning
of the cover imposes a greater demand due to higher torque
required to rotate the joints, which is largely abstracted for the
Cartesian controlled haptic-Franka platform. This is corroborated
by the more gradual and tortuous path seen in Figure 10.
Therefore, realism of force feedback may be considered beneficial
for the contact-rich stages of the task, but a telemanipulation
framework incorporating 1:1 feedback of external torque should
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FIGURE 12
Comparison of cutting forces between each telerobotics platform for single trial, and overall paths adopted by each operator for all trials. (A) Cutting
forces for trial 3, (B) Cutting paths, all trials.

be aware of detrimental effects on manipulations in free
space.

For cutting, a small SMD of 0.41 suggests the effect on task
completion time for the Franka platform is marginal relative to the
trial-to-trial variation. Cutting is a complex task dependent on a
wide range of material and tool-specific parameters, and a wide
variation in completion times is observed between task trials. For
the Franka, a greater proportion of time is spent performing the
cutting task proper.This is on average achieved faster with the haptic
device, however, a much greater proportion of time (55% vs. 32%) is
required for initial alignment of the tool with the desired path. The
fine alignment stage in particular is unique for the cutting task in that
the operator must rely purely on visual alignment with the desired
path; this further suggests the reduction in completion time for the
presented tasks is in large part related to the expanded workspace
and 1:1 positional mapping afforded with the Franka, rather than
improvements in realism of the tactile feedback. However, during
the cutting task, the realism of feedback is comparatively more
important. This can be examined in Figure 12A, showing the force
profile for the contact cutting task for both platforms. Notably,
the force for the haptic trial steadily increases towards the end
of the cutting operation, which can be attributed to drift of the
operator setpoint away from the path in the transverse (Y) direction
and an increase in the depth of cut (-Z). A similar effect can be
observed in the transverse direction for the Franka, however, these
are rapidly corrected during the course of the cutting task. This
force feedback provides important cues to the operator that were
otherwise ignored, or insufficient to prompt a response in the haptic
case; similar force profiles were observed over the majority of the
haptic trials.

The increased feedback capability of a setupwith identical cobots
has some notable disadvantages. From Figure 12B, it is clear that
the cutting path adopted by the user in the Franka case study is
subject to small variations along the length of the desired path.
This is posited to be due to the lack of task space control, the

larger motions achievable with the Franka, and low stiffness of the
human arm.Owing to these factors, themaster arm responds readily
to the force feedback created by the executed motions during the
cutting process, causing small deflections from the operator’s desired
path. This can be observed from the comparatively more variable
and discontinuous force profile opposing the feed direction (+X)
in Figure 12A. For higher strength materials, this effect is expected
to increase in significance due to an increase in the feed-rate
dependent cutting forces. In the absence of remediating strategies,
this consequently reduces the quality of cut and increases physical
demand on the user. However, remediating strategies such as scaling
the force feedback provided to the user, or applying a Cartesian
impedance behaviour to the master arm to guide the user along the
path would have the effect of distorting the feedback, thus reducing
the realism of the interaction.

For the module stack disassembly case study comprising
4 modules, total disassembly times averaged 25.8 min and
14.7 min for the haptic and Franka platforms respectively,
representing a 43% reduction in overall completion time when
using two identical cobots. Considering module cover separation
consisting of 4 linear cutting operations, it is estimated to require
8 min per module to expose the battery cells, reducing by 25% for
the identical cobot case. Overall disassembly times demonstrate
that while disassembly via telemanipulation is feasible, several
efficiency improvements and assistive strategies are required to
improve disassembly speed. However, there is large variation in
disassembly time estimates across battery models and techno-
economic analyses in literature. For example, an estimate of
12 s for manual unscrewing and 6 s for manual removal of free
components across multiple battery designs (Lander et al., 2023)
implies large reductions in efficiency versus manual disassembly.
Another technoeconomic analysis by Alfaro-Algaba and Ramirez
(2020) for the Audi e-Tron hybrid estimates a total disassembly
time of 30 min for pack-to-module disassembly. However, in
Baazouzi et al. (2021), extraction of the battery modules from the
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Smart ForFourwas estimated at 10 min permodule, and 135 min for
disassembly of individualmodules with 2 human personnel. Beyond
module level, disassembly is hampered significantly by expensive
cutting operations required to expose the individual battery cells.
Broadly, this is corroborated across battery designs, chiefly due to
the high level of design compartmentalisation and use of welds,
glue and interference fit fasteners that are difficult to remove non-
destructively (Baazouzi et al., 2021; Lander et al., 2023).

Limitations of the present work are that only objective measures
of task performance are considered under the assumption of
familiarity with the necessary tasks and teleoperation platforms
(expert operators). However, to obtain a holistic comparison it is
necessary to consider operators of different experience levels, as
well as consideration of subjective performance measures, such
those established in NASA TLX that establish measures of cognitive
load and effort for the sequence of disassembly tasks. Furthermore,
while the semantic breakdown of the demonstrated tasks can
provide insights into the most challenging parts of each task, the
effect of variable autonomy on task performance with respect to
each platform could still be explored. For example, differences in
success rate for tasks such as bolt removal could be addressed by
guiding the user towards suitable grasp points. Therefore, future
works will consider the effect of shared control strategies on the
completion time and success rate of the presented disassembly
tasks.

5 Conclusion

This study demonstrates the telerobotic disassembly of a stack
of modules from the Nissan Leaf 2011 battery pack. A comparative
study between a master-slave setup consisting of a haptic device
paired with a cobot, and two identical cobots examined the success
rate and completion time for accomplishing unbolting, extraction
of bolts, grasping and removal of the cover plate, sorting of
modules with a suction gripper and contact cutting. While overall
success rate was higher with the haptic device, a setup with
identical paired cobots was found to significantly improve task
completion times and time consistency across the entire set of
disassembly tasks. This suggests that quality and realism of force
feedback is comparatively less important for accomplishing precise
manipulation tasks, but instead the 1:1 position mapping between
master interface and slave and expanded workspace were main
contributors to the efficiency improvements. While 1:1 mapping
of torques between identical cobots was beneficial for grasping
with a vacuum gripper and cutting, chiefly due to the enhanced
realism of the interaction, providing strengthened tactile cues to the
operator, this further had detrimental effects on operator physical
effort and quality of cut. While a semantic breakdown of the
presented disassembly tasks and objective performance measures
provides insights into the key stages, feasibility and difficulty of each
disassembly task with each platform, the effect of differing levels
of operator expertise, subjective task load measures and variable
autonomy on task performance was not considered. Further work
will focus on evaluating the effect of variable autonomy on task

completion performance in the context of the presented disassembly
case studies.
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Simultaneous localization and
mapping in a multi-robot system
in a dynamic environment with
unknown initial correspondence

Hadiseh Malakouti-Khah1,
Nargess Sadeghzadeh-Nokhodberiz1* and Allahyar Montazeri2*
1Department of Control Engineering, Qom University of Technology, Qom, Iran, 2School of
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A basic assumption in most approaches to simultaneous localization and
mapping (SLAM) is the static nature of the environment. In recent years, some
research has been devoted to the field of SLAM in dynamic environments.
However, most of the studies conducted in this field have implemented SLAM
by removing and filtering the moving landmarks. Moreover, the use of several
robots in large, complex, and dynamic environments can significantly improve
performance on the localization and mapping task, which has attracted many
researchers to this problem more recently. In multi-robot SLAM, the robots can
cooperate in a decentralized manner without the need for a central processing
center to obtain their positions and a more precise map of the environment.
In this article, a new decentralized approach is presented for multi-robot SLAM
problems in dynamic environments with unknown initial correspondence. The
proposed method applies a modified Fast-SLAM method, which implements
SLAM in a decentralized manner by considering moving landmarks in the
environment. Due to the unknown initial correspondence of the robots, a
geographical approach is embedded in the proposed algorithm to align and
merge their maps. Data association is also embedded in the algorithm; this is
performed using the measurement predictions in the SLAM process of each
robot. Finally, simulation results are provided to demonstrate the performance
of the proposed method.

KEYWORDS

SLAM, multi-robot SLAM, Fast-SLAM, dynamic environments, moving landmarks, map
merging

1 Introduction

Simultaneous localization and mapping (SLAM) is one of the most important
developments in the field of robotics, enabling robots operating inGPS-denied environments
to perceive their surroundings and localize themselves within the identified map. This is
especially useful for industries such as underground mining and nuclear decommissioning,
where mobile robots are required to explore and complete various tasks, such as
maintenance, inspection, and transportation, in environments that are inaccessible and
hazardous for humans. These missions are accomplished either using a single robot in
isolation (Montazeri et al., 2021) or using a team of cooperative robots (Burrell et al.,
2018). The robot or robots need to cope with the time-varying, restricted, uncertain, and
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unstructured nature of the environment to achieve planning and
execution of the necessary tasks. This in turn requires the design
and development of advanced motion control and navigation
algorithms, along with strong cognitive capabilities in order for the
robot to perceive the surrounding environment effectively. The use
of both single- and multi-robot platforms can be advantageous,
depending on the specific application and environment.

SLAM-based navigation refers to the techniques by which
the robots simultaneously localize themselves in an unknown
environment where a map is required. This technique can be
applied to single-robot (Debeunne and Vivet, 2020) or multi-
robot (Almadhoun et al., 2019) systems, as well as in either
static (Kretzschmar et al., 2010) or dynamic (Saputra et al., 2018)
environments.

In a static environment, landmarks are fixed, which means that
all objects in the environment are stationary and none are moving
(Stachniss et al., 2016). A dynamic environment is an environment
in which objects are moving, such as an environment that includes
humans, robots, and other means of transportation. In a dynamic
environment, the SLAM process becomes more complex due to
continuous changes in the environment (such as moving objects,
changing colors, and combinations of shadows), and this makes
the problem more challenging, for example, by creating a mismatch
between previous and new data (Li et al., 2021).

Several successful solutions have been presented for the single-
robot and multi-robot SLAM problem in static environments
(Saeedi et al., 2016; Lluvia et al., 2021).However, the SLAMproblem
in a dynamic environment is more complicated due to the
requirements for simultaneous detection, classification, and tracking
of moving landmarks. In recent years, single-robot and multi-
robot SLAM problems in dynamic environments have attracted the
attention of many researchers. In (Vidal et al., 2015; Badalkhani and
Havangi, 2021), solutions for solving the single-robot and multi-
robot SLAM problems in dynamic environments are presented. In
(Vidal et al., 2015), a method is presented for SLAM in which only
static (fixed) landmarks are considered andmoving ones are omitted
from themap.The paper uses an outlier filter and separates fixed and
moving landmarks, which are included in a set of negligible signs;
the authors only use fixed landmarks to implement their solution to
the SLAM problem and do not consider moving landmarks.

In (Badalkhani and Havangi, 2021), a solution for the multi-
robot SLAM problem in a dynamic environment is presented.
The proposed SLAM-based method is developed using a Kalman
filter (KF); it detects moving landmarks based on possible location
constraints and expected landmark area, which enables detection
and filtering of moving landmarks. The main goal of (Badalkhani
and Havangi, 2021) is the development of a new method to identify
the moving parts of the environment and remove them from the
map.

There are also some pieces of research implementing the SLAM
problem in a dynamic environment through object recognition
or using image processing techniques. However, some of these
methods, such as those presented in (Liu et al., 2019; Pancham et al.,
2020; Chen et al., 2021; Theodorou et al., 2022; Guan et al., 2023),
also aim to remove moving landmarks found in the dynamic
environment.

As mentioned, researchers who have investigated the problem
of SLAM in a dynamic environment using one or more robots have

mostly attempted to implement SLAM through the elimination of
the moving landmarks, with only fixed ones being retained for the
mapping procedure, which leads to the failure of the method when
the environment is complex, with many moving objects, or in the
absence of fixed objects.

In this paper, in contrast with previous work, a decentralized
multi-robot modified Fast-SLAM-based algorithm is designed for
use in a dynamic environment where all the landmarks are moving.
It is worth mentioning that, in Fast-SLAM (Montemerlo et al.,
2002), particle filtering (PF) (Godsill, 2019) is used to handle
the non-linear kinematics of the robots via the Monte Carlo
technique. Fast-SLAM is a filtering-based approach to SLAM
decomposed into a robot localization problem, and a collection
of landmark estimation problems conditioned on the robot pose
estimate. This can be obtained using Bayes’ rule combined with
the statistical independence of landmark positions which leads to
Rao Blackwellized particle filtering (RBPF) SLAM (Sadeghzadeh-
Nokhodberiz et al., 2021).

In this study, we have simplified the multi-robot Fast-SLAM
problem by considering two wheel-based robots in a dynamic
environment with two moving landmarks with a known kinematic
model. The proposed method can easily be extended to cases with
more robots and landmarks. Each robot searches the environment
and observes it with its onboard lidar sensor. Here, it is assumed
that the kinematic models of the robots and landmarks are known,
which makes the use of a modified Fast-SLAM method meaningful.
This method is based on observer use of a particle filter and
extended Kalman filter (EKF). However, several modifications of
the normal Fast-SLAM method are required. The first modification
is adding a prediction step to the EKF used for mapping using
the kinematic model of the landmarks. Adding this step to the
algorithm does not obviate the need for initialization, as the initial
values of the landmarks’ positions are assumed to be unknown. This
prediction step is performed using the landmark’s kinematic model
at every sample time after the first visit to the landmark, even if the
landmark has not been visited again by the lidar sensor. The second
modification is that, in contrast with the normal approaches to data
association with static landmarks, data association is performed
based on the predicted measurement obtained from the predicted
map. When data association is performed based on the predicted
position of a landmark, it is less likely that a previously visited
landmark will be wrongly diagnosed as a new one due to its
movement. As the third modification, and due to the unknown
initial correspondence, coordinate alignment and map-merging are
added to the algorithm. In this step, the relative transformation
matrix of the robots’ inertial frames is computed when the robots
meet each other, using a geographical approach as presented in
(Zhou and Roumeliotis, 2006; Romero and Costa, 2010) to compute
this transformationmatrix, and themaps obtained in the coordinate
system of each robot are then fused and merged.

In summary, the novelty of this paper can be considered to be the
extension of the Fast-SLAM algorithm in several aspects, as follows:

1. Addition of a prediction step to the EKF used for mapping, based
on the kinematic model of the landmarks after the first visit to
each landmark and at every sample time.

2. Data association based on the predicted measurements obtained
from the predicted map.
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FIGURE 1
The robots and their corresponding coordinates.

3. Addition of coordinate alignment and map-merging to the
algorithm when the robots meet each other.

The paper is organized as follows. In Section 2, a system
overview is presented, including a kinematicmodel of the robots and
landmarks as well as the lidar measurement model. The modified
Fast-SLAM algorithm for the dynamic environment is proposed in
Section 3. Section 4 describes the coordinate alignment and map-
merging problem. Simulation results are presented in Section 5, and
conclusions are provided in Section 6.

2 System overview

In this paper, for the sake of simplicity, two mobile robots
and two dynamic landmarks have been considered. As an example,
differential drive mobile robots such as the Pioneer P3-DX
(Zaman et al., 2011) moving in a dynamic environment were
selected for the study. The robots are equipped with lidar and IMU
sensors. In this section, the kinematic models of the robots and
landmarks and the measurement model of the lidar are assumed to
be known.

It is worth mentioning that IMUs can provide information
on linear acceleration and angular velocity. However, linear
speed can be obtained through the integration of linear
acceleration.

2.1 Kinematic model of the robots

The kinematic model for the two differential drive Pioneer P3-
DX mobile robots can be written as follows:

[[[

[

xri(k+ 1)
yri(k+ 1)

φri(k+ 1)

]]]

]

=
[[[

[

xri(k) + v(k)cos(φri(k) +ω(k)Δt)

yri(k) + v(k) sin(φri(k) +ω(k)Δt)

φri(k) +ω(k)Δt

]]]

]

+ υri(k), (1)

where xri and yri are the ith positions of the robot on the x and y axes
and φri is its corresponding direction relative to the x-axis for i = 1,2.
The coordinate system of the first robot is G1 and that of the second
robot is G2, as depicted in Figure 1. In (1), υri(k) is zero-mean non-
Gaussian process noise with a known probability density function
(PDF). Additionally, Δt is the sampling time of the process and the
variables v(k) and ω(k) are the linear and the angular velocities of
the robot, which are assumed to be known.

Eq. 1 can be rewritten in the general non-linear state space form
as follows:

xri(k+ 1) = fri(xri(k),uri(k)) + υri(k), (2)

where xri(k) = [xri(k) yri(k) φri(k)]
T, uri(k) = [ω(k) v(k)]T,

and fri(xri(k),uri(k)) is the kinematic model presented in (1).

2.2 Kinematic model of the landmarks

In this study, both landmarks are considered to be moving, with
the following kinematic model:

[[[

[

xLj,ri(k+ 1)

yLj,ri(k+ 1)

φLj,ri(k+ 1)

]]]

]

=
[[[[

[

xLj,ri(k) + vLj(k)cos(φLj,ri(k) +ωLj(k)Δt)

yLj,ri(k) + vLj(k) sin(φLj,ri(k) +ωLj(k)Δt)

φLj,ri(k) +ωLj(k)Δt

]]]]

]
+ υLj,ri(k), (3)

where xLj,ri and yLj,ri are the jth positions of the landmark on the
x and y axes, respectively, and φLj,ri is its corresponding direction
with respect to the x-axis for j = 1,2, presented in Gi for i = 1,2.
Variables vLj(k) andωLj(k) are the linear velocity and angular velocity
of landmark Lj, respectively; Δt is the sampling time of the process,
and k refers to the sample number. It is assumed that vLj(k) andωLj(k)
are known parameters. Moreover, υLj,ri(k) is a zero-mean Gaussian

noise vector: that is, υLj,ri(k) ∼ N(0,RLj,ri), where N(., .) refers to the
Gaussian PDF.

By writing (3) in the general non-linear state space model, we
obtain

xLj,ri(k+ 1) = fLj,ri(xLj,ri(k),uLj(k)) + υLj,ri(k), (4)

where xLj,ri(k) = [xLj,ri(k) yLj,ri(k) φLj,ri(k)]
T
,

uLj(k) = [ωLj(k) vLj(k)]
T, and fLj,ri(xLj,ri(k),uLj(k)) is the kinematic

model presented in (4).

2.3 Lidar measurement model

Lidar sensor output includes the distance and angle of each robot
relative to the observed landmarks. Each observation by each robot
of the landmarks that are present can be expressed by the following
observation model:

zLj,ri(k) =
[

[

rLj,ri(k)

φLj,ri(k)
]

]
+ υij,

rLj,ri(k) = √(xri(k) − xLj(k))
2
+ (yri(k) − yLj(k))

2
,

φLj,ri(k) = arctan 2(
yri(k) − yLj(k)

(xri(k) − xLj(k)
), (5)

where zLj,ri represents the ith robot observation vector of the jth

landmark in the environment, rij represents the distance of the robot
from the observed landmark, and φij is the corresponding angle of
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FIGURE 2
The relationships between different coordinates.

FIGURE 3
Real and estimated position of robot R1 in the frame G1.

the robot relative to the landmark. Additionally, υij is a zero-mean
Gaussian measurement noise vector with the covariance matrix
of Rzij . Moreover, (5) can be rewritten in the general non-linear
measurement model as follows:

zLj,ri(k) = h(xri(k),xLj(k)) + υij. (6)

3 Modified Fast-SLAM with dynamic
landmarks

Robots R1 and R2 explore the environment, with each of them
performing the SLAM process from the corresponding frames
of G1 and G2, respectively; and an independent map of the
environment is thereby created by each of them. Information on
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FIGURE 4
Real and estimated position of robot R2 in the frame G1.

FIGURE 5
Real and estimated position of robot R2 in the frame G2.
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FIGURE 6
Real and estimated values of xr1, yr1, and φr1 in G1.

the distances and angles of the robots relative to the observed
landmarks is provided by the lidar sensor in each robot. Each
robot then uses a modified Fast-SLAM algorithm. In the proposed
modified Fast-SLAM, Rao Blackwellized particle filtering (RBPF)
is employed to estimate both vehicle trajectories and landmark
positions, inwhich each landmark is estimatedwith EKF andPFs are
employed to generate particles only used for trajectory estimation.
In the remainder of this section, this process is explained, with
the application of a modification in EKF due to the presence of
moving landmarks with known kinematics. The general steps of
Fast-SLAM consist of particle filtering with embedded extended
Kalman filtering for the mapping; the data association process;
and the map-merging procedure. These steps, with the necessary
modifications, are explained for our problem in the following
subsections.

3.1 Particle generation

An important and initial step in the PF is particle generation.
To this end, particles are generated using the known PDF
of υri(k) through Monte Carlo simulation, where particles
of υlri(k− 1) for l = 1, ...,N are generated and replaced in the

motion model of the ith robot (1), and therefore xlri(k), ylri(k),
and φlri(k) for l = 1, ...,N and i = 1,2 are generated. It is worth
mentioning that N refers to the number of particles. This
process can be formulated in the following general form
according to (2):

xlri(k) = fri(x
l
ri(k− 1),uri(k− 1)) + υ

l
ri(k− 1). (7)

3.2 Mapping

Each robot separately performs mapping after the particle
generation process using EKF, as explained in the below subsections.
After the first meeting of the robots and coordinate transformation,
the maps are merged, as explained in detail in subsequent
subsections.

3.2.1 EKF for mapping
• Initialization

After the particle generation process as explained in the previous
subsection, when the jth landmark is visited for the first time,
initialization is performed using the inverse sensor model for
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FIGURE 7
Real and estimated values of xr2, yr2, and φr2 in G1.

each particle, as follows, if it has been visited at sample instant k
(neglecting the measurement noise):

x̂l+Lj,ri(k) = x
l
ri(k) + rLj,ri(k)cos(φLj,ri(k) +φ

l
ri
(k)),

ŷl+Lj,ri(k) = y
l
ri
(k) + rLj,ri(k) sin(φLj,ri(k) +φ

l
ri
(k)),

φ̂l+Lj,ri(k) = φLj,ri(k) +φ
l
ri
(k),

(8)

Where x̂l+Lj,ri(k) , ŷl+Lj,ri(k), and φ̂l+Lj,ri(k) generally refer to the
posterior estimates. Although the posterior estimates are obtained
in the update step of the Bayesian filtering procedure, as the initial
values will be used for prior estimates in the prediction step, a
similar notation has been used. (8) can be rewritten in the following
general form using (6):

x̂l+Lj,ri(k) = h
−1(zLj,ri(k),x

l
ri(k)). (9)

Moreover, let predicted covariance matrix Pl+
Lj,ri
= KI3, where K

is a small real number and I3 is an identity matrix.

• Prediction step

After the first visit to the jth landmark, prior estimates
(predicted estimates) x̂l−Lj,ri(k), ŷ

l−
Lj,ri
(k), and φ̂l−Lj,ri(k) are computed

based on the landmark kinematics (3) at each time step for
each particle l. Additionally, it is necessary to compute the
predicted covariance matrix. This step is the first modification
of our method compared with normal Fast-SLAM with static
landmarks, in which no kinematics exist for the landmarks. In
other words:

x̂l−Lj,ri(k) = fLj,ri(x̂
l+
Lj,ri
(k− 1),uLj(k− 1)). (10)

Pl−
Lj,ri
(k) = Al+

Lj,ri
Pl+
Lj,ri
(k− 1)(Al+

Lj,ri
)
T
+RLj,ri , (11)

where in (11) Pl−
Lj,ri

is the predicted covariance matrix and Pl+
Lj,ri

is the
updated one. Moreover:

Al+
Lj,ri
=
∂fLj,ri(xLj,ri(k− 1),uLj,ri(k− 1))

∂xLj,ri(k− 1)
||

|x̂l+Lj,ri(k−1),uLj(k−1)

. (12)

• Data association

Data association is one of the important issues for SLAM
in dynamic environments. For this purpose, in this paper, the
measurement prediction is simply computed as follows:
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FIGURE 8
Estimation errors exr1

, eyr1
, and eφr1

in G1.

FIGURE 9
Estimation errors exr2

, eyr2
, and eφr2

in G1.
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FIGURE 10
Real position of landmark L1 and position estimated by robot R1 in the frame G1.

FIGURE 11
Real position of landmark L2 and position estimated by robot R1 in the frame G1.
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FIGURE 12
Real position of landmark L1 and position estimated by robot R2 in the frame G1.

FIGURE 13
Real position of landmark L2 and position estimated by robot R2 in the frame G1.
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FIGURE 14
Real and estimated position of robot R1 in the frame G1 (with different initial conditions).

FIGURE 15
Real and estimated position of robot R2 in the frame G1 (with different initial conditions).
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ẑi−Lj,ri(k) =
[

[

̂rl−Lj,ri(k)

φ̂l−Lj,ri(k)
]

]
, j = 1,2

̂rl−Lj,ri(k) = √(x
l
ri(k) − x̂

l−
Lj,ri
(k))

2
+ (ylri(k) − ŷ

l−
Lj,ri
(k))

2
,

φ̂l−Lj,ri(k) = arctan 2(
ylri(k) − ŷ

l−
Lj,ri
(k)

(xlri(k) − x̂
l−
Lj,ri
(k)
),

(13)

where ̂ri−Lj,ri(k) represents the estimated distance of the ith robot from
the jth landmark, and φ̂l−Lj,ri(k) represents the estimated angle of the ith

robot relative to jth landmark. Next, the Euclidean distance between
the real observations, zLj,ri(k), and the estimated ones is simply
calculated:

rldij = ‖zLj,ri(k) − ẑ
l−
Lj,ri
(k)‖. (14)

For data association, the condition rldij < μ for j = 1,2 is first
checked, where μ is a predefined threshold. Subsequently, if this
condition is established for both observed landmarks, the smaller
value is selected.

• Update step

If the landmark j is observed, this step is performed in a similar
way to normal Fast-SLAM,which consists of gain computation, state
update, and covariance update, as follows:

SlLj,ri(k) =H
l−
Lj,ri
(k)Pl−

Lj,ri
(k)(Hl−

Lj,ri
(k))

T
+Rzij ,

Kl
Lj,ri
(k) = Pl−

Lj,ri
(k)(Hl−

Lj,ri
(k))

T
(SlLj,ri(k))

−1
,

x̂l+Lj,ri(k) = x̂
l−
Lj,ri
(k) +Kl

Lj,ri
(k)(zLj,ri(k) − ẑ

l
Lj,ri
(k)),

Pl+
Lj,ri
(k) = (I−Kl

Lj,ri
(k)Hl−

Lj,ri
(k))Pl−

Lj,ri
(k),

(15)

where SlLj,ri is the residual covariance, Kl
Lj,ri

is the Kalman gain, x̂l+Lj,ri
is the updated map of the jth landmark, and Pl+

Lj,ri
is the updated

covariance matrix. Additionally, Hl−
Lj,ri

is computed as:

Hl−
Lj,ri
=
∂h(xri(k),xLj,ri(k))

∂xLj,ri(k− 1)
||

|x̂l−Lj,ri(k),x
l
ri(k)

. (16)

For unobserved landmarks, the predicted values are replaced
with the posterior ones; in other words, Pl+

Lj,ri
(k) = Pl−

Lj,ri
(k) and

x̂l+Lj,ri(k) = x̂
l−
Lj,ri
(k).

3.3 Localization (weight computation and
resampling)

In this step, the final localization process is performed through
computation of the particles’ weights and a resampling process. To
this end, the normalized weights are computed as follows:

wl
Lj,ri
(k) =

p(zLj,ri(k)|x̂
l+
Lj,ri
(k),xlri(k))

N

∑
i=1

p(zLj,ri(k)|x̂
l+
Lj,ri
(k),xlri(k))

, (17)

where wl
Lj,ri
(k) is the computed weight for the lth particle

corresponding to the jth landmark and the ith robot, and
p(zLj,ri(k)|x̂

l+
Lj,ri
(k),xlri(k)) refers to the conditional PDF. It is worth

a reminder that, in this paper, the measurement noise vector is a
Gaussian one, and therefore:

p(zLj,ri(k)|x̂
l+
Lj,ri
(k),xlri(k)) = N(ẑ

l+
Lj,ri
(k),Rzij), (18)

where ẑl+Lj,ri(k) is computed in a similar way to Eq. 13, but replacing
x̂l−Lj,ri(k) and ŷl−Lj,ri(k) with x̂l+Lj,ri(k) and ŷl+Lj,ri(k), obtained from the
update step, respectively. Next, the resampling process is performed
using wl

Lj,ri
(k), and finally a set of N equally weighted particles is

generated; these are averaged to produce the final estimate at each
sample time k, x̂Lj,ri(k) and x̂ri(k).

It is worth mentioning that if no measurement is available, the
predicted particles in (7) will be used for particle generation in
the next step; additionally, they are weighted equally for the final
mapping and localization, x̂Lj,ri(k) and x̂ri(k).

4 Coordinate alignment and
map-merging in multi-robot SLAM

As mentioned earlier, two robots, R1 and R2, explore the
environment and perform modified Fast-SLAM as explained in the
previous section. However, localization and mapping are performed
in their corresponding coordinate frames, G1 and G2 respectively,
and each robot is only aware of its own coordinate frame. In order
to merge and fuse the separately provided maps, it is necessary
for the robots to meet each other. Although there exist many
rendezvous approaches to force the robots to meet each other, such
as the one presented in (Roy and Dudek, 2001; De Hoog et al.,
2010; Zaman et al., 2011; Meghjani and Dudek, 2012; Meghjani and
Dudek, 2011), for the sake of simplicity, in this paper it is assumed
that the robots travel in such a way that they can meet each other
at least once during the mission. When the robots meet each other,
it is possible to transform the coordinates. For this purpose, the
proposed method of (Zhou and Roumeliotis, 2006) is employed in
this paper.

To this end, when robots R1 and R2 meet using the
measurements from the installed lidar sensors, the relative angles
between the robots (2θ1;

1θ2) and the distance between the robots (ρ)
aremeasured, where 2θ1 is the angle of the first robot asmeasured by
the second one and 1θ2 is the angle of the second robot measured as
by the first. Using the geometrical method presented in (Zhou and
Roumeliotis, 2006), the rotation matrix, G1PG2

, and the translation
vector, G1PG2

, for transforming a vector in frame G2 to frame G1 are
computed. Readers are referred to (Zhou and Roumeliotis, 2006) for
details of the proposed method. Figure 2 clarifies the geometrical
relationships between the coordinates and the measurements.
Following this, themap created by the second robot can be presented
in G1 as follows, and the two maps are merged.

[x̂lLj,r2(k)]G1

= G1CG2
x̂lLj,r2(k) +

G1PG2
, (19)

where [x̂lLj,r2(k)]G1

refers to the coordinate of a vector in frame G1.
Finally, all the landmarks are presented in frame G1. If a

landmark Lj has been visited by both robots, its corresponding
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map is fused with x̂lLj,r1(k) through simple averaging, and it is
updated to achieve a more precise map. Moreover, similarly, the
trajectory of the second robot can be expressed in G1 as a global
inertial frame.

Similarly, the map created by the first robot is presented in
frame G2 using G2CG1

and G2PG1
, where [x̂lLj,r1(k)]G2

is obtained
as follows:

[x̂lLj,r1(k)]G2

= G2CG1
x̂lLj,r1(k) +

G2PG1
. (20)

Next, [x̂lLj,r1(k)]G2

is fused with x̂lLj,r2(k) to provide more precise
mapping through averaging.

To clarify the proposedmethod, the general proposed algorithm
for multi-robot Fast-SLAM in a dynamic environment is presented
and summarized in Algorithm 1.

5 Simulation results

To evaluate the performance of the proposedmulti-robot SLAM
algorithm in a dynamic environment, a series of simulation studies
were conducted using MATLAB m-file codes; these are reported on
in this section. Two Pioneer P3-DX mobile robots, each equipped
with a lidar sensor, are simulated. Asmentioned earlier in the article,
two moving landmarks are considered and are modeled via their
kinematic models.

As mentioned earlier, robots R1 and R2 explore the environment
and observe the landmarks within it; each of them implements
the SLAM process from its corresponding frame of G1 or G2,
respectively, and makes an independent map of the environment.
The parameters in our simulation are considered as follows:

ωL1
= 0.2rad/ sec ,ωL2

= 0.2rad/ sec ,vL1
= 0.4m/ sec ,

vL2
= 0.6m/ sec ,ω = 0.2rad/ sec ,v = 1m/ sec

All of the sources of noise are considered to be zero-mean
Gaussian noise; the covariance matrices of the process (kinematics)
noise, for both landmarks and robots, are specified as 0.001I3, and
the covariance matrices of the lidar noise are specified as 0.001I2.

Additionally: G2TG1
=
[[[[[

[

0.8142 −0.5806 0 1
0.5806 0.8142 0 −2

0 0 1 0
0 0 0 1

]]]]]

]

,Δt = 0.65 sec

[xR1
(0)]

G1
= [−0.2 −0.5 1.23]T, [xR2

(0)]
G1
= [0 0 2.09]T

[xL1
(0)]

G1
= [−1.5 −1 1.22]T, [xL2

(0)]
G1
= [2.5 −1.5 2.09]T

Once the robots meet one another, the transformation matrix
between the two frames G1 and G2 is obtained and the maps can
be fused to obtain a more precise map of the environment and
achieve more precise localization performance. In the case of our
simulation, the robots meet each other at 9.35 s and the estimated
transformation matrix is as follows:

Step 0: Initialization

at each sample time k:

 for each robot ri,i = 1,2:

 for each particle l = 1, ...,N:

 Receive: xlri(k−1)

  Step 1: particle generation: generate particles

according to (7).

   Step 2: Mapping:

   Receive: Pl+
Lj,ri
(k−1), x̂l+

Lj,ri
(k−1).

   for each Lj,j = 1,2:

    • if no measurement is available but the

landmark has been visited do:

     1. predict according to (10), (11) and (12)

     2. let Pl+
Lj,ri
(k) = Pl−

Lj,ri
(k) and x̂l+

Lj,ri
(k) = x̂l−

Lj,ri
(k).

    •endif

    • if measurement zLj,ri(k) is available then:

     • do data association according to (14):

     • if the landmark Lj is visited for the first

time do

      1. initialization according to (8) and (9).

     • elseif the landmark has been visited

previously do

      1. predict according to (10), (11) and (12).

      2. update according (15) and (16).

     •endif

    •endif

  Step 3: Localization:

   • if measurement zLj,ri(k) is available do:

    1. generate particle weights according to (17)

and (18).

    2. perform resampling and generate equally

weighted estimates, resulting in:

      { 1
N
, x̂l+

Lj,ri
(k),xlri(k)}

N

l=1
,

   •endif

   • if no measurement is available do

      { 1
N
, x̂l+

Lj,ri
(k),xlri(k)}

N

l=1
,

   •endif

  Step 4: Coordinate alignment and map merging:

   • if the robot visits another robot do:

    1. compute the rotation matrix, G1C
G2

, and the

translation vector, G1P
G2
.

    2. transform maps in G2 to G1 according to

(19).

    3. transform maps in G1 to G2 according to

(20).

    4. fuse maps as explained in Section 4.

   •endif

Return: x̂Lj,ri(k) and x̂ri(k) through averaging.

Algorithm 1. The general multi-robot Fast-SLAM-based algorithm with moving
landmarks.
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FIGURE 16
Real position of landmark L1 and position estimated by robot R2 in the frame G1 (with different initial conditions).

FIGURE 17
Real position of landmark L2 and position estimated by robot R2 in the frame G1 (with different initial conditions).

Frontiers in Robotics and AI 14 frontiersin.org106

https://doi.org/10.3389/frobt.2023.1291672
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Malakouti-Khah et al. 10.3389/frobt.2023.1291672

FIGURE 18
Real position of landmark L1 and position estimated by robot R1 in the frame G1 (with different initial conditions).

FIGURE 19
Real position of landmark L2 and position estimated by robot R1 in the frame G1 (with different initial conditions).
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G2TG1
(estimated) =

[[[[[

[

0.8048 −0.5935 0 1.0985
0.5935 0.8048 0 −1.7098

0 0 1 0
0 0 0 1

]]]]]

]

Figures 3, 4 depict the results of the localization of robots R1 and
R2, respectively, in 2D space, expressed in the G1 coordinate frame,
which is selected as the global frame for this paper. Figure 5 depicts
the estimated and real paths of robot R2 in frame G2 to provide a
better illustration of how robot R2 is performing localization in its
own frame G2.

The real and estimated values of xri , yri , and φri , expressed in
frame G1 with respect to time, are depicted in Figures 6, 7 for i = 1
(robot R1) and i = 2 (robot R2), respectively. To show the precision
of the estimation, Figures 8, 9 depict the corresponding errors: that
is, the error between the real and estimated values (exri , eyri , and eφri)
in G1 for i = 1,2.

The results of the mapping in 2D space are shown in Figures 10,
11 for landmarks L1 and L2 obtained fromR1, respectively, expressed
in frame G1; the results obtained from R2 in frame G1 are shown in
Figures 12, 13. It is worth mentioning again that when the robots
meet each other, the maps obtained from R1 and R2 are merged. It is
clear from the figures that the localization and mapping results are
significantly improved after the map-merging process.

To examine the efficiency of the method for the case in which
some of the conditions are altered, the initial conditions were
selected as follows:

[xR1
(0)]

G1
= [0 0 1.23]T, [xR2

(0)]
G1
= [1 0 2.09]T

[xL1
(0)]

G1
= [−2.5 −2.2 1.22]T, [xL2

(0)]
G1
= [3 −1 2.09]T

The results of localization of the robots in frame G1 are depicted
in Figures 14, 15, and the results of the mapping are depicted
in Figures 16–19. It is clear from the figures that the algorithm
is successful in simultaneous localization and mapping under
changing initial conditions.

6 Conclusion

In this paper, an efficient algorithm has been presented for a
multi-robot SLAM problem with unknown initial correspondence
in a dynamic environment, using amodified Fast-SLAM method. In
our scenario, each robot independently searches the environment,
observes the moving landmarks in the environment using a lidar
sensor, and implements the SLAMalgorithm. In order to distinguish
the moving landmarks, kinematic models are considered for the
landmarks, which led to a modification of the normal Fast-SLAM
method in the form of the addition of a prediction phase to the
method; additionally, data association was performed according to
the predicted measurements obtained from this prediction step.
Although the kinematic models of the landmarks are known within
each robot’s coordinate system, after the first meeting of the
robots, an initialization is embedded in the algorithm to obtain
the current positions of the landmarks, as they are unknown to
the robots.

Since the initial correspondence of the robots is unknown
(or, in other words, each robot performs the mapping from the
perspective of its own coordinate frame), a map-merging procedure
was embedded in the proposed algorithm to fuse the independent
maps of the robots when the robots meet each other. This map-
merging is only possible when the relative transformation matrix
of the robots’ inertial frames is computed, which occurs when the
robotsmeet each other. For this purpose, a geographical approach to
compute this transformation matrix was embedded in the proposed
algorithm.

The performance of the proposed method was evaluated
through simulations in MATLAB. It can be concluded from
the simulation results that although each robot was able
to solve the SLAM problem with an acceptable level of
performance, the accuracy of SLAM was significantly improved
when the robots met each other and map-merging was
performed.

Although the proposed method showed very good performance
in simulations in the MATLAB environment, it will perhaps
encounter some difficulties in a real environment, such as model
mismatches in relation to both the landmarks and the robots due to
noise, and the occurrence of drift, for example, in the inertial sensor
measurements. Additionally, designing a rendezvousmethod for the
robots to force them to visit each other can represent another issue
in a real environment.

Generalization of the proposed method for the general case of a
multi-robot and multi-landmark system, with more than two robots
and twomoving landmarks, is proposed for futurework. Embedding
some approach to object detection, instead of using the kinematic
models of the landmarks, would also add significant value to this
research.
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A survey on autonomous
environmental monitoring
approaches: towards unifying
active sensing and reinforcement
learning

David Mansfield and Allahyar Montazeri*

Lancaster University, School of Engineering, Lancaster, United Kingdom

The environmental pollution caused by various sources has escalated the
climate crisis making the need to establish reliable, intelligent, and persistent
environmental monitoring solutions more crucial than ever. Mobile sensing
systems are a popular platform due to their cost-effectiveness and adaptability.
However, in practice, operation environments demand highly intelligent and
robust systems that can cope with an environment’s changing dynamics. To
achieve this reinforcement learning has become a popular tool as it facilitates
the training of intelligent and robust sensing agents that can handle unknown
and extreme conditions. In this paper, a framework that formulates active
sensing as a reinforcement learning problem is proposed. This framework
allows unification with multiple essential environmental monitoring tasks and
algorithms such as coverage, patrolling, source seeking, exploration and search
and rescue. The unified framework represents a step towards bridging the divide
between theoretical advancements in reinforcement learning and real-world
applications in environmental monitoring. A critical review of the literature in
this field is carried out and it is found that despite the potential of reinforcement
learning for environmental active sensing applications there is still a lack of
practical implementation and most work remains in the simulation phase. It
is also noted that despite the consensus that, multi-agent systems are crucial
to fully realize the potential of active sensing there is a lack of research in this
area.

KEYWORDS

reinforcement learning, environmental monitoring, active sensing, deep learning,
robotics, multi-agent

1 Introduction

The fields of Artificial Intelligence (AI) and robotics are accelerating the world
toward its next technological revolution. Advances in both of these fields bring about
new and exciting technologies that can be used to help tackle many of the challenges
we face in life on planet Earth. One of the most pressing issues is climate change for
which environmental monitoring (EM) plays a vital role in understanding and mitigating
the impact of both natural and human activity that contribute to this growing issue.
Before we can implement in situ solutions, we first need a deep understanding of each
specific issue which in many cases requires scientists to collect much more empirical
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data at each site of interest, as in reality, no two sites are exactly the
same. For many natural processes, over which we do not have direct
control, forecasting is an invaluable practice. However, each case is
unique and atmany of the siteswhere forecastingwould be beneficial
researchers do not have enough consistent knowledge or data to
make accurate predictions. A persistent EM system is paramount to
the development of accurate foresight in these situations. However,
traditionalmonitoringmethods are often expensive, slow, dangerous
or inefficient when compared to the full potential of an intelligent
autonomous system.

Simply, EM is the task of making observations of an
environmental phenomenon. In the literature EM is a blanket
term which refers to many different applications such as pollution
monitoring Alvear et al. (2017), boundary tracking Jin and Bertozzi
(2007), search and rescue Waharte and Trigoni (2010), volcanology
James et al. (2020), subterranean mapping Neumann et al. (2014)
and many more similar applications. This paper also touches on
other fields such as agriculture Duckett et al. (2018) and nuclear
decommissioning Martin et al. (2016), wherein EM technology
plays a vital role in various aspects of their operation. In all of
these applications environmental phenomena often occur over large
physical spaces, vary on massive scales and are largely unpredictable
meaning they require persistent or periodic monitoring. Due to
these complex and changing environments, it is necessary to design
robots that can adapt their behaviour in real-time to fit the evolving
environment according to their sensed data; this process is called
active sensing Yang et al. (2016). In this paper, we discuss the
emerging sub-category of active sensing concerned withmonitoring
environmental phenomena which will be referred to henceforth as
active environmental monitoring (active EM).

Active EM entails complex agent behaviours to achieve diverse
goals, necessitating real-time adaptability and decision-making
capabilities. This behaviour requirement lends itself naturally to
machine learning since hard-coding these required behaviours
can be complex Kober et al. (2013). Reinforcement Learning (RL)
and Deep Reinforcement Learning (DRL) is a branch of machine
learning that involves training agents to make optimal decisions by
interacting with the environment. This process includes trial-and-
error interactions aimed atmaximizing rewards or achieving specific
goals, leading to the development of an optimal policy for decision-
making across various scenarios Mnih et al. (2015). For example, a
system that has to operate in outdoor environments may be subject
to multiple lighting levels, extreme weather conditions, and large
areas of operation. RL has been demonstrated as an effective solution
to allow robots to navigate under such varying conditions Maciel-
Pearson et al. (2019). The increasing popularity of both RL and EM
are demonstrated in Figure 1, evidencing the growing importance
of research and development in both fields. However, not all the
literature that involves EM systems is released under the term
‘environmentalmonitoring’ and standardizing this will help research
accelerate.

In this review paper, a comprehensive overview of the
application of RL to EM problems is provided. Upon reviewing
the literature it was found that there are numerous trends in RL
state representation across different EM applications. For example,
it is common to represent the environment as a grid of coloured
“tiles” that encode information about a spatial area Padrao et al.
(2022); Luis et al. (2020). Accordingly, an alternative classification

of RL algorithms in terms of continuous or discrete state and action
spaces is included. This allows one to pick an algorithm based
on the constraints of common EM problems. It is also shown by
means of a unified formulation that the nature of RL and active
sensing problems are complementary. In the proposed framework,
both problems are described by aDecentralized PartiallyObservable
Markov Decision Process (Dec-POMDP) which facilitates both
single and multi-agent systems. Despite the synergy between these
two problems and the growing body of research in both fields, it is
found that there is a lack of practical implementation, environment-
realistic simulation environments and research into multi-agent
reinforcement learning (MARL) approaches. This paper provides
researchers with a condensed view of common approaches to
the application of RL for active EM and unifies them under a
suitable framework.

2 Reinforcement learning for active
environmental monitoring

2.1 Previous surveys

There are a number of previous surveys covering the application
of RL to robotics throughwhich their compatibility is well discussed.
Kober et al. (2013) is a 2014 survey on the application of RL to
robotic platforms. It gives a comprehensive explanation of how
RL can be used in robotic research and highlights the challenges
in the field. Azar et al. (2021) looks at the application of DRL to
Unmanned Aerial Vehicles (UAVs). The authors note some open
EM applications and their associated problems where RL and DRL
can be Utilized. Lapeyrolerie et al. (2022) discusses how RL is suited
to conservation applications and provides a good background that
helps justify further research and the joining of these two fields.
Canese et al. (2021) reviews the current challenges and applications
of Multi-Agent Reinforcement Learning (MARL), again noting
how developments in these systems would be well suited to EM
problems. Also in the domain of MARL, Zhu et al. (2022) discusses
communication in MARL systems and Oroojlooy and Hajinezhad
(2023) reviews cooperative MARL, offering a novel classification
system for how these systems are designed and trained. While much
of the previous work highlights the potential of robotic platforms
trained with RL for application to EM, they do not discuss the
topic in great detail or highlight the current specific challenges that
EM brings.

Complementary to the previous surveys, this paper brings the
following contributions: RL for robotic platforms is framed as an
active EMproblem, allowing for a clear picture of howRL can benefit
such systems. This is done with a classification of RL by mission
requirements rather than by algorithmic properties which is more
suited for the research into active EM. It is also shown that active
EM problems can be framed as a general active sensing problem
and they are unified with RL problems under a single framework.
In fact, the idea of active environmental monitoring generalizes the
current approaches under a single framework by which state-of-the-
art implementations are presented. A general RL-based active EM
system is visualized in Figure 2. Finally, the challenges of practical
implementation and open questions in the context of active EM
problems are discussed.
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FIGURE 1
Number of publications with ‘RL’ and ‘EM’ in the title. Scraped from Google Scholar Strobel, (2018).

FIGURE 2
A general environmental monitoring problem, showing a model-based deep reinforcement learning trained UAV system.
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FIGURE 3
Deep RL visualized. In standard RL the policy is represented by other
means than a deep neural network.

2.2 Reinforcement learning terminologies

Reinforcement Learning (RL) is the process of training an agent
to learn a policy that picks actions based on an observation of the
environment. Sequences of individual actions should accumulate to
a desired overall behaviour. The environment is represented and
described by a state. Effective state-actions pairs are reinforced
by a reward. The goal of the agent is to maximize the long-term
(collective) reward by updating its policy. The goal of the policy
is essentially to map state-action pairs to rewards, allowing us to
choose the most effective action for a given state. RL can use
various function approximates to represent the policy, including
linear models or decision trees. This paper is also concerned with
DRL. The defining difference between RL and DRL is that the
policy in DRL is represented by a neural network. This is illustrated
in Figure 3.

Different environments and different learning agents permit
different actions. All of the actions that are valid for a given
environment make up the action space. In a given state, the agent
can choose any action in the action space. Actions are chosen either
according to a policy or an exploration strategy. Action spaces can
be continuous or discrete. Continuous action spaces can be used for
tasks such as sending commands directly to robot actuators, whereas
discrete action spaces are generally more abstract and involve more
high-level commands such as, ‘move forward’ or ‘turn around’.
Having an overly complex action space can lead to difficulties in
training and the learning algorithm may not converge to an optimal
policy. On the other hand, action spaces that are too simple may
result in sub-optimal and limited behaviour.

In general RL and DRL algorithms are divided into model-
based and model-free approaches. Model-based approaches have
direct access to a learned or given model of the environment
whereas model-free agents do not. Model-based techniques give
an agent more information on the next optimal action to take,
meaning that agents can quickly learn policies andmake projections
of future rewards. However, this is only true if the model of
the environment is accurate. In lots of cases, the environments
are complex and predicting them accurately is a difficult task in

and of itself. That being said, model-based algorithms that have
access to a strong environmental model can give state-of-the-art
results and show a substantial improvement in sample efficiency
Silver et al. (2017); Kaiser et al. (2020). However, model mismatch
can have some detrimental consequences. For instance, the agent
may learn to exploit the bias or inaccuracies in the model causing
poor performance in the real-world environment. In cases where a
reliable model is not present then model-free algorithms perform
better Lapeyrolerie et al. (2022). RL algorithms can also be classified
as on-policy where actions are chosen from the same policy used
during evaluation Schulman et al. (2017) or off-policy algorithms
where agents sample their actions from a separate policy Jang et al.
(2019); Lillicrap et al. (2019). Algorithms can also be value-based or
policy gradient-based. Value-based algorithms use a value function
to quantify the ‘goodness’ or value of taking a certain action in a
certain state.Themost well-known family of value-based algorithms
is the Q-learning approach Watkins and Dayan (1992). Instead, in
policy-gradient methods, the agents perform gradient ascent on
the expected reward function to find the optimal policy. There is
a class of RL algorithms called Actor-Critic methods that combine
different aspects of both value-based and policy-gradient-based RL
algorithms.This class of algorithms consist of twomain components:
the actor, which is responsible for taking actions and learning a
policy thatmaximizes reward, and the critic, which is responsible for
estimating the value of taking an action in a given state. This helps
the actor to make more informed decisions. Actor-critic methods
have been used to produce some very promising results Mnih et al.
(2016); Haarnoja et al. (2018).

Generally speaking, various RL and DRL algorithms are
reviewed and discussed in depth in the literature and an
interested reader is referred to these papers for further discussions
Lapeyrolerie et al. (2022); Kober et al. (2013); AlMahamid and
Grolinger (2021). However, in the context of EM, the active sensing
objectives are different for each application and are usually partially
constrained according to the operating environment. Therefore,
it would be more beneficial to classify the algorithms for EM
applications based on their environment and action spaces. For
example, we may need to train an agent to scan a given area.
Depending on the mission objectives, we can decide to either
abstract this area into smaller sub-areas allowing us to use a limited
and discrete state and action space, or we can choose to predict
a continuous model of the region of interest for which we need a
continuous learning environment. A classification of standard and
state-of-the-art RL algorithms used for EM applications is illustrated
in Figure 4.

2.3 Reinforcement learning for
single-agent environmental monitoring
systems

Hard-coding complex and adaptive behaviours for robotic
systems can often be a very difficult task, this is compounded by
the fact that robots also often have non-linear dynamics and operate
in complex environments whilst under considerable amounts of
uncertainties and constraints. Unlike traditional programming
techniques, RL allows engineers to take a more end-to-end
approach when developing control and navigation algorithms. In

Frontiers in Robotics and AI 04 frontiersin.org113

https://doi.org/10.3389/frobt.2024.1336612
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mansfield and Montazeri 10.3389/frobt.2024.1336612

FIGURE 4
RL Classification by environment type AlMahamid and Grolinger (2021).

this approach, the desired behaviour of a learning agent is described
by designing a suitable reward function. The design of this reward
function, a process which is called reward shaping, is much more
high-level than programming the behaviours directly.

Reward functions should describe the goals of a system rather
than specific behaviour. Under a well-designed reward function and
a suitable RL algorithm, an agent can learn to behave optimally. A
general reward function might take the form:

R = Rgoal +Rpenalty, (1)

where Rgoal is a positive scalar that is given to an agent for actions
that are productive to the overall goal of the system and Rpenalty is a
negative scalar that penalizes the robot for undesirable actions that
are counterproductive to the goal. For example, Consider designing
a reward function to teach a robot to follow a line on the x-axis to
reach a goal.

Rgoal =
1
D
+ αvx, (2)

whereD is the distance to the goal, vx is the agent’s velocity in the x-
direction and α is a constant controlling the contribution of velocity
to the reward. HereRgoal rewards the robot for moving towards the
goal at a higher velocity. To accompany this we might have:

Rpenalty = −|y|
2 (3)

where y is the robot’s y coordinate. Here, Rpenalty increases with the
square of the distance from the line, and thus encourages the robot
to stay on the x-axis by administering a negative reward (penalty).
Since the overall goal is for the agent to maximize the cumulative
rewards we can incorporate the concept of returnGwhich is the sum
of the discounted rewards from the current time step

G =
∞

∑
k=0

γkRt+k+1. (4)

The discount factor γ influences the agent’s behaviour by balancing
immediate rewards with long-term objectives. As the agent takes
actions it receives rewards; the value of these rewards is responsible
for shaping the policy or value function. It is possible for agents to
find a way to exploit the reward function, where the policy may
converge to undesirable behaviour that never the less returns high
rewards. Furthermore, reward shaping should pay close attention to
both environmental and system-specific constraints such as actuator
saturation or limited power supplies. For instance, small rewards or
penalties might be given to encourage the agent to also minimize
actuator effort. Rgoal also poses a divide by zero error when the agent
has reached the goal. It is common in this case to give the agent a
large conditional reward for completing the mission.

In EM applications not only the complexities of the robot itself,
but also the operating environments are intrinsically challenging.
Furthermore, the missions that the robots are trying to accomplish
can be complex. For instance, if the robot is expected to find the
shortest path, to cover an entire target area, or detect a specific
target in a search and rescue (SAR) operation. While some robots
may be expected to operate in the same region for every mission,
observing the same lake on a daily basis, for example In such
scenarios, while the area may remain the same and known to
the robot, the conditions can vary dramatically across multiple
different time scales. In other applications, such as fire-fighting or
emergency SAR the agents may have to adapt to completely new and
a priori unpredictable environments in every mission. This means
that effective active EM systems should be able to adapt online to a
wide range of conditions and environments. Using RL techniques is
one way bywhichwe can generalise the performance of an agent and
extend the functionality to multiple different environments.

It should also be noted that any real active EM system, that
is put into a real use case scenario, should be designed with great
care towards the energy constraints. This is because the time scale
of these missions can be long undefined prior to the mission start
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and safe refueling locations may be few and far between. For EM
systems to be effective and worthwhile they need to bring long-
term autonomous persistent monitoring to the region of interest
Egerstedt et al. (2018). With current battery technology, the vast
majority of systems will have to stop and recharge. This is a
much bigger issue for some platforms than others, for example,
small autonomous multi-rotor UAVs have a very limited flight
time Azar et al. (2021). This constraint adds additional layers of
complexity for traditional optimization that can be quite simply
added to a reward function in RL, making it easier to consider from
the beginning of the design process, perhaps at the cost of additional
training time.

One EM example where RL and DRL have proved to be
effective is the patrolling problem Luis et al. (2020). In this problem,
the agent must cover an area effectively under time and energy
constraints. Furthermore, this problem can be inhomogeneous
(when some areas of the region of interest may be of more
importance than others). Here the agent must learn to cover the
target area completely while more regularly visiting some areas than
others. In real situations, these areas of high importance will also
change themselves meaning that no area can remain forgotten for
too long as it may have become important as time passes. One can
see the complexity of the problems that active EM can pose and how
RL offers a high-level and intuitive design that leads to the desired
behaviour through trial and error.

One final note on the application of RL to EM is that in
environmental sciences it is standard practice to use simulations for
predictions and research. As a result, there are many sophisticated
and standard simulations which can generate data and model
environmental processes. These simulations could be used to train
RL andDRL agents for active EM.This potentiallymeans developers
of RL systems do not have to build their own simulations which,
due to time and budget restrictions, could potentially over-simplify
the environmental dynamics negatively impacting the performance
of the RL agent. And so there is a potential area of technical
contribution that can be made by porting these simulations to
popular development platforms in robotics like Gazebo which
is used commonly in conjunction with the Robot Operating
System (ROS).

2.4 Reinforcement learning for multi-agent
environmental monitoring systems

So far we have discussed RL in the context of single-agent
systems. However, multi-agent robotic systems or robotic swarms
are ideal solutions to many of the challenges imposed by active
EM. Multi-agent systems are teams of autonomous agents that can
cooperate on theirmovements, sensing and computations to achieve
a common goal. Using multiple agents for active EM improves
performance, time and energy efficiency and allows the system to
cover wider areas. It also can add redundancy as there are multiple
robots performing the same task. Designing multi-agent systems,
with traditional methods, can be challenging as not only does
each individual robot have to be able to perform in a challenging
environment, but also the collective behaviour must also be able to

adapt in real-time to a priori unknown disturbances and avoid inter-
agent collisions and ultimately adaptive behaviour is preferable in
changing environments Busoniu et al. (2008).

In the same way that RL and DRL can be used to encode
complex behaviour onto single agents, multi-agent reinforcement
learning (MARL) can be used to encode the behaviours at the
level of the swarm Kouzeghar et al. (2023). In MARL, the agents
coexist and interact with the same shared environment. In such
scenarios, they must consider how to maximize not only their
individual reward but also a collective reward. When you have
multiple agents in a shared environment their goals might be shared
or opposed. In systems where agents share common goals the
system is known as cooperative while in systems where agents have
opposing interests, the system is called competitive. In systems with
multiple optimization objectives, there may be a mix of competitive
and cooperative behaviours and the reward function should reflect
these goals. Consider the example of a team of factory robots tasked
with cooperatively lifting a block towards a goal. Each agent will
receive an individual reward for its own actions such as approaching
and touching the block. However, we must now also consider the
joint reward, which is a reward that all agents receive for actions that
accomplish the overall system goal: to lift the block. In this case,
the joint reward will be given when the block moves towards the
goal location. While agents may learn to cooperate organically, joint
rewards can also be given to directly encourage cooperation and
shorten training time. In this example, this might be a joint reward
for synchronized lifting actions.

Like the systems themselves, MARL training can either be
centralized or decentralized. In centralized training approaches
agents share experience from previous training episodes. This gives
agents the opportunity to learn fromdata theywould not have access
to during execution Lin et al. (2023). In this case, the agents will
have a richer idea of the operation environment and can learn from
other agent’s policies while in a fully decentralized training, agents
still only learn from their own experience. It is worth noting that
some MARL systems are simply composed of multiple single agents
learning in the same environment but not sharing any training data.

2.5 Limitations of reinforcement learning

As discussed RL and DRL can be used to train robust and
intelligent agents for a variety of important applications. However,
these algorithms are not without their limitations. One of the biggest
limiting factors for RL is that it is very sample-inefficient. Training
agents to operate, even in the simplest system, can take hundreds
of thousands of iterations Li et al. (2023). This is especially limiting
in the field of robotics where agents will be deployed on physical
systems. In many cases, it is near impossible to train agents in
the practical domain. To avoid this issue it is common practice to
develop simulations that mimic the real operation environment and
train the agent there. But here lies another limitation of RL, model
mismatch. This is the difference between the simulation and the
true environment, these differences are always present and since
one cannot simplify the real world, simulations must capture all of
its most important elements. It is conceivable that agents trained
in simulation will converge to an optimal policy but not behave
optimally on the physical system due to this mismatch. This is
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especially important for EM and in much of the literature addressed
in this, paper simulation environments are not comprehensive.
More dynamic solutions are available for robots, for example, in
Feiyu et al. (2024) gazebo is used to train agents or in Liu and
Bai (2021) where a Geographic Information System was used to
generate terrain data. An important step for EM is to bridge the
gap between existing engineering and environmental simulations
and tools allowing researchers to utilize the advantages of both
platforms. Despite these limitations practical results have still been
achieved with constrained simulations but more accurate training
environments often mean better and more reliable results.

The increasing complexity of simulation naturally brings an
increase in training timewith each iteration taking longer to process.
A common critique is that development of RL can be slow since some
agents require days to train. Complex systems also require powerful
computational resources. RL algorithms are also known to be very
sensitive to training parameter values such as learning rate and
discount factor and attempts at training may lead to no solutions.
Tuning these parameters relate to the balance of exploration and
exploitation. This refers to whether an agent should choose to try
a new action in a given state (explore) or take an action which
it knows will bring some reward (exploit). Exploring may shed
light on new, more desirable behaviour, but too much, may lead
to intractable convergence times or no convergence at all. How to
handle this trade-off is still an open question in RL. An incorrect
balance of exploration and exploitation can lead to the singularity
problem which is when the agent’s policy or value function becomes
unbounded or diverges during training.

For some applications of RL, one may encounter the issue of
sparse rewards. The sparse reward problem refers to systems in
which an agentmay only receive rewards in certain scenarios. Like in
collision avoidance, for example, if the agent does notmeet obstacles
often then it may not learn how to avoid them Hu et al. (2023).
Sparse rewards might also be inherent problems of the operation
environment themselves, such as in an underwater environment.
Despite these limitations, RL and DRL are still promising solutions
to real and complex problems, but researchers should be informed
of these issues during development.

2.6 A general framework for active
environmental monitoring problems

The active EM problem can be formulated as a Partially
Observable Markov Decision Process (POMDP). A POMDP is a
mathematical framework used tomodel decision-making problems,
though unlike a normal Markov decision process (MDP) a POMDP
does not assume the agent has access to the true underlying states.
This is a useful practical assumption for real systems as EM robots
have limited information about the underlying target phenomena
and even their own states in practice. Since agents cannot be certain
of the state of the underlying function, they maintain what is called,
a belief state. The agent takes actions based on the current belief
state. Each action moves the agent to a new state and the agent
receives a reward based on this outcome. The goal of an active
sensing agent solving a POMDP is to take actions that provide
the most information and maximize the cumulative reward over
time. One can change how much an agent prioritizes immediate

reward vs. cumulative reward by leveraging a discount factor. It is
common for RL problems to be modelled as an MDP or POMDP
in the literature. Nevertheless, in this work, we propose a more
general framework that also includes active sensing techniques as
a special case. Table 1 shows how the components of a POMDP
are comparable in RL and active sensing. To generalize further, we
formulate a decentralized POMDP (Dec-POMDP) to includemulti-
agent systems reviewed in Section 2.4 as they become more and
more popular. It is also common to formulate multi-agent systems
as a Markov game as discussed in Littman (1994). The Dec-POMDP
is a tuple that consists of:

• N is the number of agents (for a single agent system N = 1).
• S is the set of possible states st of the environment.
• A is the set of joint actions such thatAm = {am1 ,…,a

m
t } is the set

of actions of agent m.
• Z is the set of joint observations such that Zm = {zm1 ,…,z

m
t } is

the set of observations of agent m.
• T :S ×A×S → [0,1] is the transition probability function.
• R:S ×A→ℝ is the joint reward function.
• γt ∈ (0,1] is a discount factor at time t.

Since it is assumed that an agent does not have access to ground
truths about its state in a Dec-POMDP problem, a joint belief state
is maintained which is the probability of being in a state given the
history of all joint actions and observations:

Bt (st) = P(st|z1:t,a1:t) , (5)

The joint action space A is described by all the actions an
agent can take, the observation space Z is made up of all the
possible observations an agent canmake, and the transition function
describes the probability of transitioning from the state st to state
st+1 when joint action at is taken. The reward function is a type
of information that measures the ‘goodness’ of performing a joint
action at in a given state st , the discount factor is used to decide how
much to consider future rewards compared to immediate reward
when taking the next action. It is worth noting that in model-based
active sensing and RL, the agent can make a prediction of a future
state based on its current belief and predicted observation ̂zt+1

Bt+1 (st+1) = P(st+1| ̂zt+1,at+1,Bt (st)) . (6)

The goal of solving the Dec-POMDP is to find an optimal joint
policyπ∗ thatmaximizes the total reward.A single jointmulti-agent
policy could be given as:

π∗ = argmax
π
𝔼[

H

∑
t=0

γtR(st,at)] , (7)

whereH is the time horizon and the expectation is takenwith respect
to the probability of making a joint observation given the current
belief state and joint action P(zt+1|(Bt(st),at)).

3 Methodologies in active
environmental monitoring

In EM there are a number of common methodologies used
to achieve specific outcomes or incorporate essential required
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TABLE 1 Table summarizing the how components of the POMDP compare between active sensing formulations and RL formulations.

POMDP Reinforcement learning Active sensing Summary

State
S

Represents the environment’s true
information which cannot be directly
observed by the agent

Represents the underlying
characteristic of the environment or
phenomena that the agent is observing

Both maintain a beleif state Bt(st). RL
focuses on representing unobservable
true state, while active sensing aims to
understand observed characteristics to
reduce uncertainty

Action
A

Actions are taken by the agent to
influence the environment based on the
current belief state Bt(st)

Actions are the agent’s decisions on
where to sample and collect data.
Actions are typically selected to
maximize information gained and/or
reduce uncertainty in the belief state
Bt(st)

RL actions influence environment
directly, while active sensing actions
aim to maximize information gain
through data collection

Observation
Z

Observations in RL provide partial
information about the hidden state

Observations represent the data or
measurements collected by the sensors

Typically directly comparable used to
infer the underlying state S

Transition Function
T :S ×A×S

This is an internal model of the
environment describing the probability
of how the environmental states evolve
from the current state to the next state
under the influence of a specific action
at

A model of the environment describing
how it’s characteristics change when
agents take a specific action at .
Typically models the dynamics of what
is being sensed

In RL, transition function models state
evolution; in active sensing, it models
environmental characteristics change

Reward Function
R:S ×A

A single scalar feedback value that
determines how effective a given action
was at the current time step. It is a
high-level description of the agent’s
desired outcomes

The value of information gain.
Assigned based on how well the latest
sensing action reduces uncertainty in
the belief state

RL reward is more literal, it is intrinsic
to learning and can incorporate the
active sensing reward

Discount Factor
γt

A scalar factor that determines how
much weight the agent is giving to the
future long-term rewards compared to
the immediate reward

A factor that balances between
exploration of new unobserved regions
and exploitation of data in the
previously sensed regions with high
level of information

RL balances future rewards against
immediate, active sensing balances
exploration against exploitation of
existing information

behaviour for an autonomous system which are addressed in
this section. Specifically, we look at coverage, patrolling, path
planning, collision avoidance, exploration, search and rescue, source
seeking, source estimation and boundary tracking. In practice, these
behaviours are often closely linked and may be used together on a
single system. For example, a search and rescue system may need
to use a coverage protocol to ensure no targets are missed within
a search area. Thanks to the flexibility of RL it has been widely
applied to each of these behaviours and the literature in this section
is organized according to which methodology it is applied to.

The application of RL to these systems requires many design
considerations. The learning agent needs to have access to
information that allows it to learn how its actions influence the
environment and how it can take subsequent actions to maximize
reward. This requires careful design of a state-space and training
environment that provides the needed information and is a reliable
model of the true environment representing its features and
constraints alike. The state space is often used as the input for the RL
agent and thus the policy should be designed accordingly.This is also
true of the action space which should reflect the environment and
the demands of the physical system, a ground robot cannot change
its altitude, for example. The state space is often used as the input

for the RL agent and the action space is the output. This means that
a compatible RL algorithm and policy should be chosen. There is a
significant body of research in RL that combines different learning
algorithms with different policies. In a recent example, the authors
replaced the standard Q-table in Q-learning with a neural network
that used a radial basis function to represent the policyWang Y. et al.
(2024). While the state space may contain information not directly
accessible in the real environment, the observation space should
only contain information that is feasible for the agent to access.
For instance, in source estimation, the agent would not be able to
observe the true state of the field, only discrete sensor readings, but
in simulation training this ground truth is known. For some ground
truths, that are only available in the simulation environment, can be
strategically used to reward the agent during training. The reward
function itself is designed in a way that reflects the overall goal of the
system and considers the constraints of the operating environment.
It is common to use different rewards under different conditions like
using one reward to encourage exploration of new areas when the
local proximity of the robot is free of obstacles but in the presence
of obstacles reward the agent for successfully avoiding them. This
strategy can also help elevate the problem of sparse rewards present
in some applications and environments.
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3.1 State representation in active
environmental monitoring

A large portion of the literature in RL is based on model-free
approaches as they do not have the issue of model mismatch and are
generally quicker to train. However, it is often the case in EM that
the goal of the system is to produce amodel of the environment, and
hence, there is a higher proportion of model-based RL approaches
in EM literature. The model state S can include the environmental
phenomena we are observing, the dynamics of the environment, the
dynamic state of the robot and other agents in the team. The way
that the model is represented depends on the specific nature of the
system, the monitoring task and the RL algorithm.

In reality, environmental phenomena are continuous but
attempting to model them exactly can make training difficult and
slow. As a result, it is often the case that the state space is discreteized.
In EM, this is often done via tile coding Padrao et al. (2022) in
which the state space or environment is split into a 2D grid of tiles.
In systems where there is a need to highlight specific information
or features of the environment, one can use a relevance map. A
relevance map is made by encoding these tiles with information that
helps an agent make decisions. Tile encoding and image inputs are
also viable for 3D state representations in active EM. For example,
Liu and Bai (2021) uses DRL for coverage path planning and
represents the 3D path of the agent as a 2D grey-scale image. This
is achieved by what they term ‘the elevation compression method’
where the grey-scale value of each cell represents the altitude. Using
feature extraction the CNN can successfully extract a 3D path from
the grey-scale values. These types of state space representations are
abstractions of the environment and are sometimes represented as
an image, which is a concise way of presenting such information.
Abstracting the environment to these discrete representations is
good for reducing complexity but can limit performance to be
optimal with respect to the abstracted environmental representation
rather than the actual real-world environment.

As mentioned before, some research in RL has been applied to
the patrolling problem. The patrolling problem in EM involves the
agent revisiting the same locations periodically. Furthermore, in the
real world, the application of patrolling is often inhomogeneous,
meaning that some areas with a higher importance must be visited
more frequently than others and the importance of the areas itself
may also be variable over time. The environment in such problems
can be represented as a relevance map. Luis et al. (2020) studied the
case of monitoring the Ypacaraí Lake which is an essential source of
drinking water and a popular tourist destination in Paraguay. The
Ypacaraí Lake is a commonplace case study for the conservation of
water resources. The Ypacaraí Lake is unfortunately suffering from
an abnormal eutrophication process due to increased agriculture
in the surrounding areas. Autonomous surface vehicles (ASVs)
have been deployed and multiple different representations of the
environment were considered. First, a model-free approach is used
where the environment state S is just the position of the agents,
then a binary relevance map that splits the lake into cells and
colours visited cells as black and un-visited as white, which models
a homogeneous patrol. Finally, a relevance map that colours cells a
shade of grey which depends on the time since the last visit and their
level of importance. The latter relevance map-based method leads to

the best results.The state is passed to a convolutional neural network
for DRL.

Relevance maps have also been used for patrolling with UAVs
Piciarelli and Foresti (2019). In this work, the relevance map is
also used to solve an inhomogeneous patrolling problem and the
colouring grid represents the importance of areas. The relevance
map is combined with a binary mask, which tells us which states
have been visited, before being passed to a Convolutional Neural
Network (CNN), which is used to extract features from images.
UAVs that utilize tile-coded maps have also been useful in SAR
applications Lu et al. (2022). The target area is represented as a grid
of sub-areas. Each sub-area or ‘pixel’ can have 1 of 3 values: imaged,
being imaged or un-imaged. The goal is to train a policy to image
all areas. It is also worth noting that in many UAV applications, the
navigation module of an autonomous system will have to consider
no-fly zones. These are areas where it may not be legal or safe to
fly a small UAV. Theile et al. (2020) develop a state representation
as a 3-channel map where the channels describe no-fly zones, target
zones and take-off and landing zones. RL has also been discussed
for use in agricultural applications Binas et al. (2019). A similar
environmental representation is used for agricultural applications in
MARL Faryadi andMohammadpour Velni (2021). Here the world is
split into a ‘grid world’ where each grid point is a possible state. The
goal of the study is to find free states, target states and states blocked
with obstacles.

Not all model-based approaches use relevance maps. For
example, Chen J. et al. (2020); Rückin et al. (2022); Viseras
and Garcia (2019) use Gaussian Processes to represent the
environmental phenomena. A Gaussian process (GP) is a
probabilistic model often used in EM to represent spatial and spatio-
temporal fields. GP regression allows agents to develop continuous
predictions of a field and give variance values at each prediction
point based on a set of discrete observations. Learning a GP as
a model of the environment is different from a GP being used
as a function approximate for the RL policy (in place of a neural
network in DRL, for instance) and the reader should take care not
to confuse the two applications Gadd et al. (2020). GPs have also
been implemented in RL to improve exploration during training
Zhao et al. (2024).

It should be clarified that not all systems in the literature that use
some kind of representation of the environment are model-based.
The classification depends strictly on how the RL algorithm learns.
For example, in Placed and Castellanos (2020) DRL is used to make
decisions in active Simultaneous Localization andMapping (SLAM).
Thedistinction here is that even thoughwehave aDRL agent guiding
the robot’s position for the SLAM process the inputs to the DNN
are limited to the most recent laser scans, not the map produced by
SLAM. Here the RL agent does not have any information retention
about the model and cannot predict future observations based on
previous ones.

3.2 Actions, observations and rewards in
active environmental monitoring

As already discussed, it can be very difficult to hard code
complex behaviour onto robotic systems and RL provides us with
strategies for doing so. In EM and robotics, the nuances of the
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desired behaviour depend on the specifics of each problem but
there are overall mission goals common across the literature. This
section reviews the different methodologies used to achieve those
mission goals. As seen in the previous section, there are multiple
ways to represent the environment/agent state S , nonetheless, how
a system can act to achieve its goals depends on its observations
{Z}, action space {A} and reward function R. The main factor,
driving the resultant behaviour of a system is the reward function.
Ultimately, the principal aimof reward shaping is to guide training to
be efficient and effective in producing the desired performance and
optimal policy. Typically, rewards can be sparse or dense. A sparse
reward functionmeans the agent receives a reward only occasionally
which can lead to long training times because agents need more
experience to understand the implications of specific actions. Sparse
rewards can be the result of an intentional design choice or of a
sparse environment, like in deep-sea applications. Dense rewards are
given more frequently and can produce more informative feedback
on each action. While a well-designed dense reward function can
speed up the training convergence and lead to good performance, it
is worth noting that they can also impose the designer’s preconceived
notions of optimal behaviour on the agent rather than allowing the
agent to learn for itself. It is also important to find a good balance
between an action spacewhich is simple enough to allow the training
to converge in a reasonable time frame and also complex enough to
allow optimal behaviour.

3.2.1 Coverage and patrolling
It is often the case in EM where agents will need to perform

full area coverage. This is where a single agent or a team of m
agents are tasked with covering an area completely under time or
energy constraints. The coverage problem appears in a plethora
of EM applications and is often implemented as a search step
prior to other mission goals like source seeking or SAR which
are described later. For example, in Wu et al. (2024) a coverage
algorithm for multi-agent maritime SAR is proposed in which
DRL is used to train agents to navigate to a grid location that has
the highest probability of containing a target. This probability is
based on novel drift simulations at a given time which predicts
target trajectories and search boundaries that allow an agent to
find targets thus facilitating their rescue. In real-world scenarios,
the desired area to cover may not be defined a priori, like in
the case of monitoring a wildfire, which can spread rapidly over
time. Coverage also encapsulates patrolling which has been partly
discussed in Section 3.1. A summary of RL-based coverage and
the relevant literature is provided in Table 2. A large proportion of
the areas we want to study with EM are boundless or undefined
meaning that complete and exact coverage becomes difficult. Most
readers are probably familiar with the travelling salesman problem
where an agent, the salesman, must find the shortest path that
visits every node once and then returns to the origin. Once the
salesman has visited every node it can be said that the salesman has
achieved coverage. The travelling salesman and coverage problems
are generally NP-hard. That means as the problem scales up,
the time needed to find an exact solution becomes infeasible
Ai et al. (2021). This does not even account for the complex,
dynamic, and partially observable nature of the environmental
phenomenon aimed formonitoring.This is where RL is employed to
learn the optimal coverage behaviour through interaction with the

TABLE 2 Characteristics of reinforcement learning based coverage
and patrol.

Characteristic Description

Objective Maximize area coverage and importance
(patrolling)

State Representation Environment states as grid cells,
importance information

Action Space Movement actions and sensing actions

Reward Function Rewards for total coverage, visiting new
areas, patrolling importance

Observation Environmental sensing target

Challenges Sparse rewards, large spaces and
inhomogeneous patrolling

Citations Pham et al. (2018); Faryadi and
Mohammadpour Velni. (2021);
Theile et al. (2020); Luis et al. (2020);
Lu et al. (2022); Kouzehgar et al. (2020);
Luis et al. (2021); Ai et al. (2021)

environment. Luis et al. (2021) compared the use of DRL techniques
to evolutionary algorithms for the application of patrolling the
Ypacaraí lake. It was found that DRL performs better when there is
a higher number of solutions which is expected in EM applications.
Evolutionary algorithms are also well suited to active EM for similar
reasons to RL and the combination of both is trending research
Zhang et al. (2023).

In Lu et al. (2022), they point out the limitation of the field of
view for visual sensors used in SARUAVs. In the case of a camera, at
lower altitudes less of the target area will be in the frame and there is
a need for an efficient coverage algorithm tomake sure every section
of the target area is scanned. In this work, the scanning mechanism
is included in the discrete action space {A} (scan left or scan right)
along with the movement actions (fly straight, turn left, turn right).
A DRL agent is trained using Deep Q Learning (DQN) to fully
cover the target area while minimizing the number of actions taken.
To this end, movement actions are given a small penalty (negative
reward) R as they only assist in the scanning of the target area but
do not achieve it directly. There is also a penalty for when the UAV
is not inside the target area. A reward is given proportional to the
number of cells in a relevance map that have been scanned or are
currently being scanned.A large reward is given if complete coverage
occurs. Although this method was shown to improve the efficiency
of UAV SAR coverage the system is too simplified to allow for true
optimal behavior.

The coverage problem is also directly suited to multi-agent
systems and it is easy to see how multiple agents with the possibility
to collaborate can cover a given area more efficiently than a single-
acting agent. Pham et al. (2018) proposed using MARL to design
a distributed algorithm for coverage of an unknown field while
minimizing overlapping scanned areaswith other agents.The system
is formulated as a Markov game, which is an extension of an MDP
that includes a joint state space S and action space for multiple
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agents interacting with the same environment to optimize a joint
policy. In this work, individual agents have a discrete action spaceA
that allows them to pick one of 6 actions: north, east, south, west, up
or down.The set of actions agents take is called the joint action {Am}.
Agents must reach a consensus on the next joint action. To ensure
coverage while minimizing overlapping, agents get an individual
reward Rm proportional to the number of cells they covered minus
the number of overlapping cells.There is also a global reward applied
to all agents, equally used to help train the converge problem faster.

Kouzehgar et al. (2020) proposed MARL for a structured
approach to area coverage for a team of ocean buoys. They modify
the Multi-Agent Deep Deterministic policy-gradient (MADDPG)
reward function to intrinsically bring about the collective behaviour
of the swarm. The reward Rm depends on the state S of the swarm
and thus, the reward itself has a collective behaviour. A positive
reward is given based on the overlap between an ‘agent coverage
polygon’ (a circle around the agent) and the ‘region polygon’ (the
target area) and the total overlap which represents the total area
covered. While the agents still receive some independent reward
based on their actions the nature of this design is to reward the
swarm as a whole for desirable collective behaviour rather than to
encourage individual behaviour within the swarm.

3.2.2 Path planning and collision avoidance
Path planning and collision avoidance are often solved under

the same problem framework. This is because, in practical
situations, obstacles are often the reason that advanced path-
planning techniques are required. In EM, especially SAR or indoor
applications, a robust method for detecting obstacles and planning
trajectories that allow the robot to navigate around them safely is
crucial. However, many standard methods of collision avoidance
are designed specifically for static obstacles Choi et al. (2021). RL
provides a good option as it can be trained on many different
environments without having to hard code behaviour for each one
making it easy to generalize to unseen environments. A summary of
RL-based path planning and collision avoidance algorithms and the
relevant literature is provided in Table 3.

On the other hand, for UAVs that operate at a high altitude,
such as for terrain mapping or pollution monitoring, there are not
likely to be many obstacles that an agent will encounter, especially
in single robot systems where there are no inter-agent collisions.
It is, however, especially important for UAVs to have efficient and
reliable path-planning capabilities due to their restricted flight times.
Due to the nature of environmental processes, autonomous UAVs
need to be able to adapt in real time to the information they
collect. This is known as informative path planning (IPP) and is a
crucial step in active EM. Rückin et al. (2022) combined DRL with
a Monte Carlo tree search to reduce the computational burden of
the predictive planning. This is also useful in development during
the simulation stage as comprehensive active sensing simulations
can be expensive. They also address the issue that, in the current
literature, the action space is typically 2DA ⊆ ℝ2.This is because 3D
action spaces A ⊆ ℝ3 are very large, making it difficult for training
to converge. Nevertheless, this simplification does not make use of
an aerial vehicle’s principal virtue which is their ability to move
in three dimensions. To fully unlock the potential of autonomous
aerial systems for EM, more work like this must be done to include
3D action spaces. The action space A ⊆ ℝ3 considered is a discrete

TABLE 3 Characteristics of reinforcement learning based path planning
and collision avoidance.

Characteristic Description

Objective Find safe, efficient paths and avoid
collisions

State Representation Environment states, possibly occupancy
grid

Action Space Movement actions or possible trajectories,
sensing actions

Reward Function Penalty for collisions, rewards for
avoidance and goal reaching

Observation Sensor data for obstacle detection (e.g.,
vision or LiDAR)

Challenges High-dimensional states, real-time
constraints and dynamic obstacles

Citations Larsen et al. (2021); Popovic et al. (2020);
Rückin et al. (2022); Chen et al. (2017);
Yanes Luis et al. (2022); Choi et al. (2021);
Woo and Kim. (2020)

set of possible measurement positions. The reward received by the
RL agent depends on the reduction in predictive uncertainty of the
environmental model and the cost of the action taken. The cost of
the action is the flight time between measurement locations. The
environmental model is a Gaussian Process which is updated using
a Kalman filter Popovic et al. (2020). A Monte Carlo tree search is
used to traverse the policy, which is represented as a convolutional
neural network to decide the most information-rich actions. This is
stoppedwhen a budget ormaximal search depth is reached.This tree
search speeds up training and performance by removing the need
to predict the informativeness of every possible action allowing for
3D action spaces. The authors showed their method performs better
than multiple benchmarks.

Larsen et al. (2021) compared some state-of-the-art RL
algorithms for navigating unknown environments on an ASV.
The desired behaviour was efficient path planning and collision
avoidance to reach a position goal. The algorithms tested were
Proximal Policy Optimization PPO, Deep Deterministic Policy
Gradient (DDPG), Twin Delayed DDPG (TD3) and Soft Actor-
Critic (SAC). The performance for each algorithm was measured
not only by the total reward but also by mission progress,
collisions, time taken and cross-track error. The algorithms were all
implemented using Python and StableBaselines which are discussed
in Supplementary Material. The simulated operation environments
were randomly generated in calm ocean settings with moving
obstacles being introduced later, in more challenging environments.
Agents were tasked with reaching the goal without colliding along
the way. The reward function R punishes agents for colliding or
being too close to obstacles and rewards them for progress towards
the goal. After training, each agent was tested in environments of
growing complexity. It was found that PPO produced agents that
performed consistently across all environments in cases where the
other agents did not. A repeat of these tests was run on agents
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trained with a simplified reward function that was more sparse.
In this case, it was found that a sparse reward function stunted
the performance in every case. While PPO still shows superior
performance its generalisation capability is not nearly as good as
the case under a denser reward. This work sets a good example
for comparing RL algorithms in EM and demonstrates that more
standardization across the literature would afford a more empirical
consensus on the performance of state-of-the-art algorithms in
different applications.

AsmentionedUAVs are an ideal choice for EM since they can fly,
butmuch of the research for autonomousUAVnavigation focuses on
2D space since 3D spaces are more complex. In Wang J. et al. (2024)
a 3D path-planning algorithm with collision avoidance is proposed.
Collision avoidance is inspired by the International Regulations
for Preventing Collisions at Sea (COLREGS). It uses four distinct
collision avoidance behaviours, which are part of the discrete action
space, to avoid collisions with an obstacle. The UAV will undergo
collision avoidance behaviour when an obstacle is within a certain
distance of the UAV. Using a spherical Artificial Potential Field
(APF) that has 3 zones: safety zone, collision avoidance zone and
mandatory collision avoidance zone, the UAV can choose what
action to take. The authors, note that RL can be difficult to apply
to collision avoidance due to sparse rewards, and solves this by
using the different zones of the APF to design a dynamic and
conditional reward that rewards an agent for approaching its 3D
goal way-point when no obstacles are present in the collision zone.
When an obstacle is detected the agent is rewarded for avoiding
collisions by using the correct collision avoidance behaviours
derived from COLREGS.

COLREGS is designed for maritime missions and applying
it to robotic applications in bridges the gap to real-world
implementation. COLREGS is also leveraged in Li et al. (2021) with
DRL to perform collision avoidance for an ASV. The APF is also
used to generate a dynamic reward function that eliminates the
problem of sparse rewards. In this solution, DQN is implemented
with a continuous action space that represents the heading for the
agent. This system, which is designed to adhere to the mandatory
COLREGS results, is only tested in numerical simulations and
so does not take into account the complexity of the real world
and the highly dynamic and variable ocean environment. Another
example of using RL to train agents to follow COLREGS is given
in Wen et al. (2023). Here, a multi-agent team of ASVs are trained
to avoid collisions with other agents in the system, environmental
obstacles and other ships. An action evaluation network is pre-
trained using a large data set of real, pre-recorded COLREGS
avoidance trajectories. This is combined with an action selection
network for cooperative path planning.The action selection network
is trained on individual agents using DRL. The reward function
rewards agents for successfully avoiding obstacles in such a way that
aligns with COLREGS.

As mentioned, multi-agent systems hold massive potential and
are the key to the future success of autonomous active sensing in
EM. Cooperation for multiple agents adds complexity to both path
planning and collision avoidance. Onemay choose to use RL in such
systems as it allows agents to learn coordinated policies that may
be complicated and time-consuming to hard code. Yanes Luis et al.
(2022) uses DQN with prioritised experience replay to develop a
multi-agent framework for IPP. The proposed method is tested and

TABLE 4 Characteristics of reinforcement learning based exploration.

Characteristic Description

Objective Discover unknown environment

State Representation Environmental features, grid cells or
frontiers

Action Space Movement actions, sensing actions

Reward Function Rewards for successful exploration,
penalty for revisiting areas

Observation Sensor data for map building or data
collection

Challenges Balancing exploration and exploitation,
stopping conditions

Citations Niroui et al. (2019); Hu et al. (2020); Chen
et al. (Chen et al., 2020a; Chen et al.,
2020b); Maciel-Pearson et al. (2019)

applied to the Peralta et al. (2020). They also use their framework
to address the credit assignment problem Mao et al. (2020). This is
a critical challenge in RL and refers to the difficulty of determining
which actions or decisions taken by an agent in the past, contributes
to a particular reward or outcome.

3.2.3 Autonomous exploration and SAR
Exploration is different to the coverage problem as it is

concerned with autonomously gathering information about its
environment to discover unknown areas often with the aim of
achieving other tasks. Coverage on the other hand aims to visit
every point of a given area. These two are often combined if the
aim is to cover an unknown area Chen et al. (2021) but sometimes
other goals are also combined with exploration. Autonomous
environment exploration is required for applications like SAR
Zuluaga et al. (2018). SAR is one of the most popular applications
of RL in environmental monitoring. Providing effective solutions
has great value in reducing human fatalities following disasters
where traditional resources can become stretched. Research has
been conducted into both indoor GPS-denied SAR and outdoor
SAR with and without GPS localization. Most of these applications
note the need for sophisticated intelligence in these agents as they
often need to navigate previously unknown, dynamic, and cluttered
environments and identify victims within them. A summary of RL-
based exploration and SAR along with the relevant literature is
provided in Tables 4 and 5 respectively.

It can be argued that due to the unpredictability of SAR
environments, such systems should not solely rely on a good GPS
signal and redundancy is required in their localization system.
GPS-denied localization is often achieved through SLAM, especially
in indoor environments. This uses a vision sensor like a camera
or LiDAR to iteratively map the surroundings and localize the
robot within them. Active SLAM refers to systems that use SLAM
data to autonomously navigate their environment to facilitate more
accurate measurements of the environment Placed et al. (2023).
Active SLAM can also fit under the umbrella of active sensing
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TABLE 5 Characteristics of reinforcement learning based search
and rescue.

Characteristic Description

Objective Locate and assist or recover targets

State Representation Environmental features, grid cells, target
locations

Action Space Movement actions, alarm/communicate,
sensing actions

Reward Function Rewards for finding targets, exploration,
safe navigation

Observation Sensor data for navigation or target
detection (e.g., vision or LiDAR)

Challenges Handling dynamic environments, long
horizons, target detection

Citations Zuluaga et al. (2018);
Sampedro Pérez et al. (2019); Peake et al.
(2020); Kulkarni et al. (2020); Ai et al.
(2021)

and the Dec-POMDP discussed in section 2.6. SLAM can be
combined with RL agents to achieve active SLAM in cluttered
environments useful for SAR applications. Placed and Castellanos
(2020) use a trained DDQN and Dueling double deep Q Learning
(D3QN)policy as the decision-makingmodule in active SLAM. SAR
missions would also typically involve some methods for detecting
victims. In Sampedro Pérez et al. (2019) 2D LiDAR SLAM is used
for localization while a DDPG agent is used to perform image-
based visual servoing. This is where image features are used as
control signals to direct the sensing agent towards a target. Both
high-quality simulation and experimental results demonstrate that
RL can be used in this system to produce effective solutions
for image-based visual servoing in cluttered environments. This
paper also demonstrates that RL systems can be robust to model
mismatch between simulation and reality. The agents were trained
largely through simulations but still performed well in real-world
environments.

During SAR exploration it is important to make sure that
all of the region of interest is searched. One popular companion
of SLAM for indoor exploration is called ‘frontier exploration’. A
frontier is defined as the border between mapped and unmapped
areas that are not known to be an obstacle wall or boundary.
The hypothesis is that agents can achieve complete exploration by
visiting frontiers until there are none left. The standard method
of choosing which frontiers to visit is either breadth-first (nearest
frontiers) or depth-first (most distant frontiers). Niroui et al. (2019)
proposes using an Asynchronous Advantageous Actor-Critic (A3C)
DRL agent as an alternative method of frontier selection to improve
the operation time of a frontier exploration-based system. The
agent aims to maximize the information gained along a robot’s
path of exploration. Compared with several traditional exploration
techniques implemented on a physical robot, the authors prove the
superiority of their method in exploring the target area in a smaller
total distance.

Cluttered environments also exist in outdoor applications and
agents must also deal with potentially difficult weather conditions.
An important consideration for the actual deployment of these
algorithms is that different environments may demand different
physical UAVswith varying payload capacities and different sensors.
Robustness to such potential hardware changes is one of the key
requirements in developing these algorithms. Maciel-Pearson et al.
(2019) proposed an algorithm that can be used on any UAV with
any camera for autonomous exploration of outdoor environments.
They tested their algorithm in a simulated forest under different
conditions. The DRL agent is trained directly to explore a region
of interest and is penalized for collisions, revisiting areas, and
leaving the search area. A double state input S is utilized to
learn collision avoidance from raw sensor data Z , and complete
exploration from navigational history and an environmental model.
Outdoor environments are often difficult to deal with due to size.
Peake et al. (2020) developed a SAR UAV to search a large area in a
wilderness by splitting the area into unique regions on a quadrant
tree. Each quadrant is assigned a probability distribution indicating
that it currently contains a victim. A DDQN-trained policy is then
used to select which of these quadrants should be visited next
and generate an optimal flight trajectory across segments A that
maximizes information gain along the way. A second DRL agent
trained using Advantageous Actor-Critic (A2C) is used to allow the
agent to explore the target quadrant more freely to find a potential
victim via a continuous action space Acont. This combination of
discrete and continuous action spaces is a clever way of negating
the drawbacks of each option. The DDQN agent interacts with a
large area. A common and effective strategy for exploring large areas
while saving resources and ensuring convergence of the training is
to discretize the area. This can lead to a loss of optimally for the true
continuous environment. However, within the quadrant, which is a
small cell of the full environment, a continuous action space is used
which allowsmore dynamicmovement and better exploration of the
original continuous environment, thus reducing somedisadvantages
of a discretized environment.

Like all applications in EM, using multiple cooperative agents
can improve exploration performance. The benefits of cooperation
are especially true for SAR as these applications are time-critical.
A common technique for allocating search areas is to split the
target region into Voronoi partitions which can be either dynamic
or static. Hu et al. (2020) combines dynamic Voronoi partitions
for exploration with a DRL collision avoidance algorithm to allow
agents to safely explore their partitions. The assignment of Voronoi
partitions is an effective way to stop agents from colliding with each
other, however, navigating in a cluttered environment with obstacles
demands full online collision avoidance. DRL has proved to be an
effective solution for using raw sensor data for collision avoidance
Long et al. (2018); Chen et al. (2017).

As described in Section 2.6, active sensing tasks mostly follow
a generalized design philosophy of adaptive information gathering.
Sensing decisions are made based on collected data and/or a belief
model of the environment or target phenomenon Chen F. et al.
(2020). Viseras and Garcia (2019) proposed an algorithm based
on multi-agent DRL to make an algorithmic framework that
can be applied to different information-gathering tasks without
changing the underlying algorithm. To incorporate the needs of
different applications both free and model-based approaches are
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TABLE 6 Characteristics of reinforcement learning based source seeking
and estimation.

Characteristic Description

Objective Locate the source of phenomenon

State Representation Environmental features, source model grid
cells

Action Space Movement actions, sensing actions

Reward Function Rewards for locating source

Observation Intensity/Concentration values of
environmental target

Challenges Noisy and sparse information, dynamic
sources, initial search phase

Citations Duisterhof et al. (2021); Li et al. (2023);
Viseras and Garcia. (2019)

proposed. The base algorithm, named Deep-IG, is a multi-agent
extension of the A3C algorithm. The shared reward function is
dual objective, simultaneously minimizing both the total mission
time and the normalized root mean squared error in predicting
the time-invariant physical process. Agents are also penalized for
inter-agent collisions. The action space A, is made up of discrete
high-level robot movement commands. Deep-IG is shown to work
across different physical platforms without changing algorithmic
parameters. Experimental data is collected with 4 quadrotors for
a terrain mapping application and ground robots are used for
magnetic fieldmapping.Generalized reliable algorithms are valuable
for EM applications as every deployment situation is different.
Efforts such as this pave the way for widespread deployment as the
bespoke algorithms and hardware designs for an intractable amount
of potential monitoring applications are unrealistic, especially
nowadays that climate change demands a quick answer.

3.2.4 Source seeking and boundary tracking
Source seeking is useful in many areas of EM, whether it is

finding the location of a gas or radiation source, finding a wildfire
in a forest, or finding a victim in a SAR scenario. In practice, the
source concentrations can be very low and the data collected can be
highly noisy, especially when far away from the source. In such cases,
RL agents can become robust to high-noise environments with a
sufficient number of training episodes. In general, concentration can
be considered to be exponentially decaying as the distance from the
sources increases. This means it is common for reward functions R
in source-seeking applications to be directly related to the observed
concentration values Z . Some systems are also concerned with
estimating the properties of the target phenomenon whose source is
being located, this is termed source term estimation (STE). Table 6
contains a summary of RL-based source-seeking algorithms and the
relevant literature.

Source seeking via DRL has been demonstrated on a nano
quadrotor with very highly constrained computational resources.
Using a cheap commercially available and common processor,
Duisterhof et al. (2021) demonstrated a source-seeking DRL agent

that is robust to high noise and shows consistent performance
across several real and simulated environments. A neural network
with only two hidden layers was trained to locate a source from
concentration measurements. Systems such as these demonstrate a
true potential for RL in EM. The main contribution of this work is
how affordable and disposable the nano quadrotors are and their
ability to operate in environments that may pose a risk to human
life.This systemuses a discrete action spaceA, made up of high-level
commands and a decoupled flight controller capable of translating
these into actuator commands.

Li et al. (2023) propose an active RL algorithm. Active RL
means there is information from the current state of the sensing
process guiding the decisions and hence training of the agent.
Here, the information metric is based on the maximum entropy
sampling principle. This method combines both model-free and
model-based approaches in RL into one algorithm based on recent
promising results from similar approaches Nagabandi et al. (2018);
Ostrovski et al. (2021). A logarithmic reward function is used to
account for the exponential nature of concentration decay over
physical space. In this system, they used an RL agent to optimize
the dual objectives of the source seeking and source estimation;
the agent must locate the source and maintain knowledge of the
spatial concentration distribution. To achieve this, keeping a balance
between the exploration of new areas and the exploitation of the
previously collected information is necessary. The trade-off between
exploration and exploitation is intrinsic to RL and active sensing
alike. In RL specifically, this is manipulated by changing between
future and immediate rewards using a discount factor γ defined
for each agent. This trade-off is itself also a common optimization
objective in time-constraint systems, where the agent becomesmore
exploitative as the mission progresses. The contribution of this work
is the use of active exploration within RL which is shown to increase
sample efficiency.

Gas source localization applications are often time sensitive
as dangerous gasses have the potential to do harm quickly and
good STE is required to coordinate an appropriate response. RL
approaches for source seeking and estimation tend to direct agents
by means of a discrete grid which can be limiting when applied
to practical scenarios. Park et al. (2022) leverages DRL to find the
optimal search path using a continuous action space. While the
proposed action space does contain a continuous heading allowing
for more diverse movement the limitations of a discrete action
space are not totally elevated since the robot moves a fixed distance
per step. For instance Zhang et al. (2023) combines a continuous
heading with a continuous speed command. To allow for quick
estimation of the gas distribution a particle filter is used and a
Gaussian mixture model is used to extract features that make for
suitable inputs to an instance of DDPG. They implement a gated
recurrent unit (GRU) into their DNN that allows for memory of
previous states and better STE. They verify the effectiveness of this
choice by comparing the learning performance with and without
the GRU.

Another area of research in which active EM can be applied is
concerned with controlling environmental conditions in sensitive
environments like artificial habitats or laboratories. While much
of this research is concerned with novel control algorithms some
have proposed using mobile sensors to complement this process
don (Bing et al., 2019); Jin et al. (2018); Xiang et al. (2013). Another
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example of where environmental conditions must be closely
monitored is in a space habitat like that of the International
Space Station. In Guo et al. (2021) they propose using moving
sensors for temperature monitoring and fire detection in a space
habitat called the Active Environmental Monitoring and Anomaly
Search System. They implement a dynamic value iteration policy
(DVI) to solve the problem which is modelled as a MDP. The
performance of the DVI policy is measured against numerous
other benchmarks. The DVI policy approaches the “jump policy”
in anomaly detection time. This is a promising result since the
implemented jump policy is not physically viable as it does not
consider the continuous space a sensor would have tomove through
and assumes that it can “jump” to the next measurement position.
The system is also extended to a distributed multi-agent system by
implementing multiple signally trained agents. The authors point
out that in confined and sensitive atmospheres it is important
to consider how much benefit can be extracted by adding more
sensors so that the optimal trade-off between anomaly detection
time and number of sensors can be found. However, this has limited
implications as MARL and cooperatively trained agents are not
considered.

An interesting idea for using source seeking in an SAR
application is presented in Kulkarni et al. (2020). A Q-learning RL
agent is trained to locate victims via radio frequency signals of
a device possessed by the victim. This, for example, could be a
smartphone or a smartwatch. Using a discrete action space A, the
objective is to find the source or the victim, in the shortest possible
time.The reward functionR, is based on the received signal strength
(RSS) Z , which has also been demonstrated for localisation in
GPS-denied environments. The system is tested using ray tracing
software to provide a better and more realistic simulation than
simple numerical models. This helps the RL agent to perform upon
deployment as it was trained in an environment more similar to the
true environment.

In wildfire monitoring systems, manned aerial missions are
often used to track the boundary and spread of the fire. This helps
make decisions on where to use fire suppressants and where to
remove fuel for fire containment. It can also be used to motivate
and prepare evacuations if the fire is heading towards settlements.
Viseras et al. (2021) proposed single and multi-agent DRL systems
to locate and track the boundary of a wildfire for both multi-
rotor and fixed-wing type UAVs. Two MARL approaches, i.e.,
multiple single-trained agents (MSTA) and a value decomposition
network VDN, are proposed. In both cases, the agents are trained
by a joint reward function R. They found that both proposed
algorithms outperform the benchmarks. More specifically, VDN
tends to perform better towards the end of an episode when the fire
behaviour is more complex and coordination betweenUAVs ismore
important, whereas MSTA provides a better performance early on
when the main goal is finding the fire. They also found MSTA to
be more stable and scales better when there are more than three
agents. Table 7 contains a summary of how RL boundary tracking
algorithms are posed.

Boundary tracking can also be applied to UAV systems that are
equipped with fire fighting capabilities, with the aim of containing
the spread of a fire by applying suppressants at the boundary of
the fire. This is the goal of the work in Ostrovski et al. (2021).

TABLE 7 Characteristics of reinforcement learning based
boundary tracking.

Characteristic Description

Objective Track boundaries of phenomenon

State Representation Environmental features, object
boundaries

Action Space Movement actions, sensing actions

Reward Function Rewards for accurate boundary tracking,
penalties for errors

Observation Sensor data for measuring phenomenon
(e.g., vision sensor or
intensity/concentration measurements)

Challenges Noisy or ambiguous boundaries, initial
search phase

Citations Julian and Kochenderfer, (2019);
Viseras et al. (2021)

Here, a multi-agent fire-containing system of UAVs is trained
using multi-agent DQN (MADQN) in which each agent acts
independently but can learn from a pool of shared agent experience
which helps to accelerate training. The authors encourage the
cooperation of agents by removing any extra effect if agents apply
fire suppressants to the same location. This research includes both
sensing and communication constraints and a bespoke forest fire
simulation. Since agents are limited to communicating with only
their neighbours the system is decentralized and scalable which is
very valuable for EM applications.

In the mentioned works that discuss boundary tracking,
however, the simulations are entirely numerical and thus make a
large number of assumptions about the operation environment.
While the results in these papers are promising and further
demonstrate the benefit of applying RL to active EM systems
there is a large step between simulations like this and practical
implementation. This is a trend across all the EM applications
discussed but boundary tracking has a significant lack of practical
results in the RL sphere.

3.3 Open challenges

Many of the system behaviours covered in this work are
themselves well explored in the literature and the consensus is that
autonomous systems are a big part of the future of EM. However,
there is a shortage of research applying these behaviours to specific
environmental domains, especially within the field of RL. Most
of the existing efforts are simulation-based. These simulations are
often greatly simplified versions of the true environments or focus
on one specific element like a temperature field or wind model.
There is potential for a large body of interesting research where
robotic and RL-based EM systems are developed by making use
of existing ecological simulations. Simulation is a large part of
ecological research and collaboration between the two disciplines
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can help accelerate the implementation of the important systems
discussed in this paper. Simulations that utilize these advanced
environmental models would be much closer to the true operation
environment reducing model mismatch and accelerating work
towards the practical domain. RL offers an easy first step to this
unification as training is done offline and data can be collected
beforehand. One example of early efforts in this space is given in
Liu and Bai (2021) where a geographic information system (GIS) is
used as the DRL training environment to provide the terrain data
for a simulated UAV. This allows them to consider areas that may be
obstructed from certain perspectives which are not considered in 2D
terrain-based simulations. Besides, in EM there is a lack of practical
testing and much more effort is required in the practical domain to
start to build the road to actual implementations of these systems.
Practical results are crucial for development and at the current stage,
any practical testing offers immense value.

One of the biggest criticisms of RL is its sample inefficiency. As
RL is better understood and solutions improve sample-efficiencywill
get better but effort is needed to address this directly. One promising
area is the combination of model-based and model-free approaches
Pong et al. (2020); Chebotar et al. (2017). This has been applied to
EMapplications in Li et al. (2023) to improve STE.These approaches
aim to extract the benefits of both model-free RL that does not
suffer from model mismatch and the learning efficiency of model-
based approaches. Anotherway to improve sample efficiency is using
long-term prediction Tutsoy (2022); Doerr et al. (2017). Long-term
prediction involves estimating the future states of the environment,
the rewards associated with those states, and how the agent’s actions
will influence the system over multiple time steps. Accurate long-
term prediction allows agents to take more optimal actions earlier
in the training process. It is especially useful when the consequences
of actions are not immediately apparent.

Another open research area is the use of multi-agent
reinforcement learning scenarios. The benefits of multi-agent
systems are clear, especially for tasks like EM which can have
such a large and diverse scope. It is apparent from the literature
covered in this paper that most research in the RL for EM work is
focused on single-agent implementations and the existing MARL
approaches are rudimentary compared to the demands for a full
operational system. There is an extreme lack of practical results for
MARL despite promising simulation results and the clear potential
of these systems. In light of these challenges, we offer a summary of
some of the potential research areas that would help accelerate the
development of systems capable of full-time deployment.

• Simulations that include more complete environmental models
for specific environmental domains.
• MARL-based EM system research.
• Both single and multi-agent practical implementations at real

sites of interest.

4 Real-world deployment challenges

There is a lack of practical application of these methodologies
in the field of active EM. It is crucial that more practical testing is
carried out and documented in the literature for fully autonomous

EM systems to be realized. As stated, the environments are often
difficult to operate in and each specific environment will bring its
own challenges. Furthermore, some of these systems will have to
operate in multiple different environments. Thus the characteristics
of these environments must be closely studied. In the literature,
it is common to refer to environments as being either indoor or
outdoor. Indoor environments are generally smaller, more cluttered
and GPS-denied making navigation and localization challenging.
On the other hand, outdoor environments are often much bigger,
less sparsely populated, GPS enabled and have large variations due
to changing light and weather conditions. That being said this
does not hold for all outdoor environments, for example, active
EM systems designed for operation in a forest will have to deal
with unreliable GPS and a high density of potential obstacles
which is more consistent with indoor environments. A simplified
comparison of some environments of interest is given in Table 8.
One benefit of RL is that it can be trained under these considerations
by utilizing multiple training environments and iterations of similar
environments. It can learn to perform well under large variations
and respond well under unknown conditions.

Another limiting factor for the practical application of active
EM systems is the energy constraints of the platform. For example,
UAVs have a very short flight time. Active EM systemswill inevitably
have to stop and refuel regularly. This requires safe and accessible
locations to install charging points or places for the system to remain
idle and charge passively via a utility such as on-board solar panels.
In some environments, safe charging locations may be hard to find.
For example, it is the case in volcanicmonitoring that these charging
stations will often have to be far away from the survey region as the
areas close to the volcano are usually inaccessible and dangerous.
This again highlights the need for such systems to have an optimal
energyperformancebut also sheds light on the infrastructureneeded
for long-termpractical applicationEgerstedt et al. (2018);Notomista
and Egerstedt (2021). These environments may also pose challenges
formaintenanceandretrieval. In someenvironments, suchasnuclear
decommissioning, where the robot is in an environment that is
potentially lethal to humans, retrieving the robotmay be impossible.
This means that the robots need to be very reliable and robust to
the challenges of their environment. It also demands that they can
communicate their findings without physical collection. For certain
extreme environments like deep-sea or subterranean environments,
wireless communication is a big challenge.

It is often the case that AUVs often periodically resurface to both
recharge, communicate their data and connect with other agents.
In underwater multi-agent systems like this, RL could be used to
predict the position of other agents. This is a valuable corrective
action as When the team is submerged it is unable to communicate
and apply corrections until the communication is available again. Or
RL has been used for processing acoustic signals which are amethod
of underwater communication Rahmati et al. (2019). MARL can
also be used to teach agents how to cooperate without or with
very limited communication Zhang and Lesser (2013). Since in
RL, the training is done before deployment, MARL systems can
take advantage of training agents based on other agents’ training
data that would not be available during run time. Having a good
simulation environment can teach agents to cooperate without any
communication when they are deployed.
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TABLE 8 Comparison of environments where active EMmay be applied.

Rural Urban Lake/River Deep-sea Sub-terranean Nuclear Farming Forest

GPS Good Medium Good None None None Good Bad

Scale Large Large Predefined Large Medium Small Large Large

Pre-defined Area No Maybe Yes No Maybe Yes Yes No

Weather Sensitivity High Medium Medium Medium Low None High Medium

Robot-Type UAV, AGV UAV UAV, ASV, AUV AUV UAV, AGV UAV, AGV UAV, AGV UAV, AGV

Commu-nication Good Good Good Bad Bad Good Good Medium

Obstacles Few Lots Few Few Medium Lots Medium Lots

Light Variable Variable Variable Dark Dark Light Variable Varible (Darker)

Charging Potential Medium Good Good Medium Bad Bad Good Bad

Underwater environments pose lots of unique challenges that
may have simple solutions in other domains Shruthi and Kavitha
(2022). Further to communication restrictions, the environment is
also GPS-denied and non-variant, making localization extremely
challenging. The uniform nature of the underwater environment
also makes rewards very sparse and thus the learning efficiency
and rates are often unfavourable. One option is to use a human
trainer.This can either be using human-based examples to produce a
reward or to have a human providing a reward based on good or bad
behaviour. Zhang et al. (2020) proposed a DQN-based system that
learns a path following control policy from a human-given reward
and a pre-defined environmental reward. The use of human reward
is helpful here as the underwater operation environment means that
the environmental rewards can be highly sparse. This can ultimately
lead to the system not converging to an optimal policy.

Certain survey areas of interest may be predefined before the
mission starts, the size and shape of a lake, for example, while others
may change constantly. For example, if we consider the problem
of monitoring the plume of a volcano, the position of the plume
with respect to the source, will change largely based on the strength
and direction of the wind on a given day. It is a waste of time and
energy resources to survey areas where the plume does not exist.
This changing area of interest is common to many EM problems.
The extreme case of this is when the survey area is completely
unknown like in an urban SAR response to a natural disaster. Some
environments where active EM is required are very isotropic and
lack any clear landmarks, appearing very uniform to the agent. This
is especially true for underwater, deep-sea applications. This is a
big challenge for successful localization and navigation especially
when GPS is also not an option. It is also a challenge for RL agents
as the nature of the environment means that the rewards will be
very sparse.

It is also the case that applying these systems in certain
environments can be potentially dangerous to humans. For example,
using UAVs in urban areas runs the risk of a malfunction causing
injury to pedestrians or property damage. To remove or minimize

this risk in busy cities there should be no-fly zones. It may also
be the case that these will change, based on the time of the
day or current events. Some social challenges come along with
some environments, especially highly populated, urban areas. For
example, if autonomous ground vehicles were deployed for air-
quality monitoring in cities, there is a potential for theft and
vandalism. Thus, not only do they have to be safe for operation
around the general public but they must have strong security
features and be physically robust. Citizens may also dislike the
idea of autonomous systems being used due to a lack of trust
in the technology. Finding ways to introduce these systems in
ways that are least offensive to the public is a real concern
Çetin et al. (2022).

5 Conclusion

In this work, we have reviewed the application of RL and
DRL to robotic active sensing in EM. The escalating climate
crisis has highlighted the need for comprehensive EM solutions.
Challenging, unknown and dynamic environments are ubiquitous
to EM applications and intelligent and adaptive solutions are needed
for autonomous and persistent monitoring that we can rely on. We
have discussed RL as a method of encoding complex behaviours
onto single and multiple agents for active EM. To provide a unifying
framework we have utilized Dec-POMDPs to frame these systems
as an active sensing pursuit and to unify them with traditional
active sensing approaches. We discuss methods of representing
environments as in EM there is more of a demand for model
learning than in other areas of RL. The main body of this review
is separated into common mission goals and agent behaviours
that are useful in EM. We conclude this review by discussing
and comparing the spectrum of the most widely used technical
development platforms available for researchers in the hopes of
streamlining further development and collaborating on a framework
for standardization.
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Coordinating the movements of a robotic fleet using consensus-based
techniques is an important problem in achieving the desired goal of a
specific task. Although most available techniques developed for consensus-
based control ignore the collision of robots in the transient phase, they are
either computationally expensive or cannot be applied in environments with
dynamic obstacles. Therefore, we propose a new distributed collision-free
formation tracking control scheme for multiquadcopter systems by exploiting
the properties of the barrier Lyapunov function (BLF). Accordingly, the problem
is formulated in a backstepping setting, and a distributed control law that
guarantees collision-free formation tracking of the quads is derived. In other
words, the problems of both tracking and interagent collision avoidance with
a predefined accuracy are formulated using the proposed BLF for position
subsystems, and the controllers are designed through augmentation of a
quadratic Lyapunov function. Owing to the underactuated nature of the
quadcopter system, virtual control inputs are considered for the translational
(x and y axes) subsystems that are then used to generate the desired values
for the roll and pitch angles for the attitude control subsystem. This provides
a hierarchical controller structure for each quadcopter. The attitude controller
is designed for each quadcopter locally by taking into account a predetermined
error limit by another BLF. Finally, simulation results from the MATLAB-Simulink
environment are provided to show the accuracy of the proposed method. A
numerical comparison with an optimization-based technique is also provided
to prove the superiority of the proposed method in terms of the computational
cost, steady-state error, and response time.

KEYWORDS

multiagent systems, formation control, intervehicle collision avoidance, barrier
Lyapunov function (BLF), formation tracking control, backstepping controller

1 Introduction

Quadcopters are one of the most important categories of multirotor drones and
consist of four arms, four motors, and four propellers. The control and navigation
of quadcopters in a single or cooperative form have been the subject of various
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studies to enhance their capabilities for various applications
(Montazeri et al., 2021; Sadeghzadeh-Nokhodberiz et al., 2023,
2021). A multiquadcopter system is a form of multiagent
system that is used in various extreme environment applications,
including nuclear decommissioning (Martin et al., 2016; Allahyar
and Koubaa, 2023), volcanology (James et al., 2020), wildfire
monitoring (Julian and Kochenderfer, 2019), and underground
mining (Neumann et al., 2014). A multiagent system consists
of several interacting intelligent agents that can cooperate their
movements, sensing, and computations to achieve a common
goal. Multiquadcopter systems are ideal solutions for different
challenges imposed by humans working in extreme environments
(Burrell et al., 2018); for example, using multiple quadcopters
improves the performances, time and energy efficiencies, coverage
areas, and redundancies of multiple robots performing the same
task (Mansfield and Montazeri, 2024).

One of the most important issues in controlling a multiagent
system is formation control to achieve consensus. Formation control
is an important consideration in coordinating the control of a
group of unmanned robots or quadcopters in the present study.
It is assumed that each drone can fly and share information with
the other robots in its neighborhood. Formation control is used
in many applications relevant to environmental monitoring, such
as coverage, patrolling, autonomous exploration, search and rescue,
source seeking, and boundary tracking (Mansfield and Montazeri,
2024). In Liu and Bucknall (2018), the problem of formation control
and cooperative motion planning of multiple unmanned vehicles
was investigated and various approaches were reviewed; this work
provides good insights into the challenges and techniques available
for cooperative path planning and formation control.

One of the most investigated techniques to address the
formation control problem is consensus-based formation control
(Peng et al., 2020; Patil and Shah, 2021). Consensus is a
displacement-based control mechanism, meaning that the agents
simply need to know the relative locations (displacements) of their
neighbors in a local reference system linked to a global system
to achieve the desired formation. Displacement-based formation
control is typically divided into three primary strategies: virtual
structure (VS), behavior based (BB), and leader-follower (LF). The
basic idea of consensus is that each vehicle updates its information
state based on the information states of its local (time-varying)
neighbors such that the final information state of each vehicle
converges to a common value. The main purpose of a distributed
formation control technique is to derive appropriate control
commands for each agent based on the information provided by
the agents that are only in the neighborhood of that agent. Here, the
aim is that the team of robots should maintain a specific geometric
shape while closely tracking the desired trajectory defined for the
leader in the LF configuration or virtual leader in the formation
control setting (Can et al., 2022; Imran and Montazeri, 2022). In
such scenarios, the desired trajectory of each robot in a robotic fleet
is not defined separately; instead, the trajectory should be defined,
for example, for the center of the quad formation shape, under the
connectivity assumption of the system graph that all agents can
coordinate with the leader. Although this is a fully decentralized
configuration, less centralized scenarios have also been reported in
literature (Lizzio et al., 2022), in which the navigation was carried
out at the ground control station and the desired trajectory was then

transmitted to each drone that communicates with the neighboring
agents to share their position and run the distributed on-board
control algorithm to attain the desired trajectories. We adopted one
such configuration in our investigation in this work.

The basic form of a formation control algorithm does not
take into account the possibility of agent collisions while the
agents attempt to reach their intended positions. For this reason,
formation approaches considering interagent collision and/or
obstacle avoidance have been the subject of investigations by some
researchers. A comprehensive review comparing various collision
avoidance strategies for unmanned aerial vehicle (UAV) applications
can be found in Yasin et al. (2020). In the context of consensus-
based formation control, similar collision avoidance strategies were
surveyed and discussed by Sadeghzadeh-Nokhodberiz et al. (2023).
When two drones generate a formation, they may collide with
each other and obstacles in the transient phase as well as when
reaching their desired positions and orientations. The consensus-
based collision-free methods reviewed in both Lizzio et al. (2022)
and Sadeghzadeh-Nokhodberiz et al. (2023) can be grouped under
four main categories: (i) optimization-based techniques, (ii) force-
field or artificial potential field (APF) techniques, (iii) geometric
approaches, and (iv) sense-and-avoid approaches. As reviewed
in Sadeghzadeh-Nokhodberiz et al. (2023), each of these approaches
has its advantages/disadvantages for application to real life.
Operationally speaking, static situations wherein obstacles are
known ahead of time or are picked up on by the entire formation
are more suited for optimization-based techniques. Although the
force-field and geometric approaches aremore effective for handling
dynamic settings, the former may result in local minima due
to cancellation of several APFs. Furthermore, the computational
burden of a geometric technique in a busy dynamic environment
may be very high when computing the collision-free trajectories.
In terms of the operational requirements, optimization-based
techniques are typically utilized in situations when the swarm must
adhere to a predetermined reference trajectory. Depending on the
algorithm chosen, each drone in the swarm either has a preloaded
path or is aware of all the other reference trajectories. Nonetheless,
the force-field and geometric techniques typically depend more on
relative sensing or interagent communications.

Among the APF approaches reported for collision-free
formation control, the method proposed by Yan et al. (2017) is
notable because it causes the control signal to be limited and
affected by the type of the potential field. Liang et al. (2020) studied
a network of swarm drones, in which they followed a collision-
free path by considering the system uncertainty in the presence of
network constraints; the APF method was adopted here to address
possible collisions between the UAVs, leading to a limited control
signal. An example of an optimization-based technique used to
design a collision-free formation control was reported by Kuriki
and Namerikawa (2015); here, the problem was studied through the
design of a consensus-based model predictive controller (MPC) by
assuming that each UAV was located in a safe space and that the
control input was updated as needed. The asymptotic stability of the
proposed control method was also studied in detail. However, this
method relied on the linear model of the system where the control
system fails if the communication with the leader fails. Moreover,
the collision avoidance strategy was considered only in the vertical
direction. Jin et al. (2021) proposed a new framework to address the
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formation control of multiple robots; here, two types of problems
were studied, namely the performance issues as well as feasibility of
implementing the constraints when their requirements were in the
tracking errors and distances between the paths.

Recently, reinforcement learning (RL) and deep reinforcement
learning (DRL) techniques have been proven to be effective for
decision-making and operation of cooperative robots in complex
environments under time-varying and uncertain conditions. For
example, Mansfield and Montazeri (2024) reviewed different
multiagent RL (MARL) techniques used as advanced tools in the
design of optimal cooperative trajectories for multirobot systems
in environmental monitoring applications by optimizing not only
the individual rewards of each of the robots but also their collective
reward; although the focus of this was control and not desired
trajectory design for quads operating in uncertain and complex
environments, it was assumed that the target trajectory of each robot
was designed and made available using the techniques of Liu and
Bucknall (2018) or Mansfield and Montazeri (2024). Further, as
mentioned inMansfield andMontazeri (2024), the RL technique can
be used to avoid interagent collisions and obstacles.

The above works do not use the barrier Lyapunov function
(BLF) as an effective tool for collision-free formation tracking
of quadcopters. More recently, Sadeghzadeh-Nokhodberiz and
Meskin (2023) presented the problem of consensus-based formation
tracking of multiquadcopter systems using logarithmic BLFs;
however, the problem of collision avoidance was not considered.
Instead, the method involved the use of a centralized approach
that was then transformed to distributed control using highpass
consensus filters. Although the performance of the proposed
distributed method asymptotically converged to that of the
centralized one, the convergence time was rather large. Therefore,
the problem of collision-free formation tracking control of
multiquadcopter systems is derived from scratch in a distributed
manner in the present work.

Generally, the BLF is used to prevent the states from violating
the constraints. Therefore, the BLF can be used to ensure safety
and collision avoidance while guaranteeing convergence with a
predefined accuracy. The BLF is a positive-definite function that
grows to infinity when its arguments approach certain limits. Kumar
and Kumar (2022) discussed the three-dimensional trajectory
tracking problem of an unmanned vehicle with restrictions on
the flight path during operations; to ensure that the quadrotor
followed the desired trajectory while satisfying the imposed motion
constraints, a BLF approach was proposed. Moreover, a six-degrees-
of-freedom dynamic model of the system was considered to achieve
high-accuracy tracking performance; this controller could avoid
singularities in the attitude subsystem. Tang et al. (2013) proposed
a single-input single-output non-linear control system using the
BLF to avoid deviating from the safety range. Tee and Ge (2011)
presented a feedback control system design with constraints on
the states. Chen et al. (2020) studied the problem of obstacle
avoidance for a system with multiple agents avoiding obstacles in
the environment; in this method, a hybrid decentralized monitoring
controller that guarantees collision avoidance was proposed. The
method is scalable and can be applied to general non-linear robot
dynamics. Recently, advanced model-based and uncertain optimal
control laws have been developed and implemented in real time
for impaired UAVs (Ahmadi et al., 2023). Ganguly (2022) used the

BLF technique to design a controller for an N-degrees-of-freedom
Euler–Lagrange system and numerically evaluated its effectiveness;
this method was recently used for multirobot applications for
interagent collision avoidance and tracking using second-order
kinematics in two-dimensional cases (Jin et al., 2021). It is worth
mentioning that Khadhraoui et al. (2023) and Mughees and Ahmad
(2023) used BLFs for single quadcopter systems, in addition
to Sadeghzadeh-Nokhodberiz and Meskin (2023), who recently
employed BLFs for formation tracking of multiquadcopter systems
without considering the collision avoidance problem.

Based on the above literature, a decentralized (distributed)
collision-free formation tracking control method is proposed in
this work for cooperative control of quadcopter systems. The
proposed method is used for interagent collision avoidance and
trajectory tracking with a predefined accuracy. Compared to
the aforementioned works, the proposed method has a lower
computational burden, is easily scalable, and can be used in
dynamic environments. Further, contrary to the APF approaches,
the proposed method does not limit the control signal for collision
avoidance. The major contribution of the present study is that the
barrier Lyapunov method is used to derive a distributed collision-
free formation tracking control in which both formation tracking
and interagent collision avoidance are considered simultaneously.
Accordingly, BLFs are first proposed for the position subsystems
(x, y, and z axes) and controllers are designed by augmenting a
quadratic Lyapunov function, leading to a backstepping procedure.
Owing to the underactuated nature of the quadcopter system,
virtual inputs are considered for the translational (x and y
axes) subsystems that are then used to generate the desired
values for the roll and pitch angles for the attitude control
subsystem. This provides a hierarchical controller structure for each
quadcopter.

The distributed formation tracking controller derived herein not
only guarantees convergence of the formation tracking error with a
predefined accuracy but also avoids interagent collisions during the
transient responses of the formation. Thus, both collision avoidance
and trajectory tracking with a predefined bound on the tracking
error are achieved in a distributed manner. The novelty of this work
is briefly summarized as follows:

• Formulating multiple problems, including trajectory tracking,
formation tracking control, and interagent collision avoidance,
of a multiquadcopter system using the proposed BLF.

• Deriving decentralized (distributed) hierarchical control laws
for collision-free formation tracking control of the altitude as
well as translational x and y axes subsystems using virtual inputs
in a backstepping framework.

• Designing attitude control laws separately for each agent
using desired signals generated via BLFs while considering a
predefined accuracy.

The remainder of this article is organized as follows. Section 2
details the problem formulation and preliminaries. Section 3
presents a decentralized collision-free formation tracking controller
design for a multiquadcopter system using BLFs. Section 4 presents
the simulation results, and Section 5 contains a summary of the
conclusions.
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2 Preliminaries and problem
formulation

This section presents some preliminaries on the required
theoretical materials.

2.1 Graph theory

Consider the graphG = {V,ξ,W} containingN nodes, whereV =
{1,2,…,N} is the set of nodes and ξ is the set of all the edges of the
graph. It is assumed that the edge (i, j) between nodes i and j exists,
where i and j are adjacent to each other, such that ξ = (i, j) ∈ V×
V. If (i, j) ∈ ξ⇔ (j, i) ∈ ξ, then the graph is undirected. Matrix A =
[aij] is the adjacency matrix such that if there is a path from i
to j in the system graph, then aij = aji = 1. A path from i to j is a
sequence of distinct nodes starting at i and ending at j, such that
each pair of consecutive nodes is adjacent. If there is a path from
i to j, then the nodes are connected. If all the paths of a graph are
connected, then the graph is connected.Thedegreematrix of a graph
D is a diagonal matrix with elements di that are equal to the set
of neighboring nodes. Ni = {j ∈ V:(i, j) ∈ ξ}, where Ni is the set of
neighbors surrounding i. The matrix L is the Laplacian matrix of the
graph that is equal to L = D−A, and the sum of it rows is equal to
zero (Hu et al., 2021).

2.2 Barrier Lyapunov theory

Consider the non-linear system given by Eq. (1) as follows:

ẋ1(t) = f1(x1(t)) + g1(x1(t))x2(t),

ẋ2(t) = f2(x1(t),x2(t)) + g1(x1(t),x2(t))u(t),
(1)

where x1(t) ∈ ℝ
n1 andx2(t) ∈ ℝ

n2 are system states, u(t) ∈ ℝn2 is
the system input, and vector functions f1, f2,g1, and g2 are assumed
to be smooth.The goal here is to design the control law u(t) such that
x1(t) follows the desired trajectory x1d(t)with a predefined accuracy.
In other words, if e1(t): = x1(t) − x1d(t), the control objective is
to ensure that the tracking error remains within a compact set
defined by D1 = { e1(t) ∈ ℝ

n1|d1(t) = ‖e1(t)‖ <Ω1, t ≥ 0}, where Ω1 is
a predefined positive scalar. Next, the idea of using the BLF in a
backstepping procedure (Tee et al., 2009; Ngo et al., 2005; Tee et al.,
2008) is extended to the vector form case. Therefore, assuming
that the BLF V1(t) is defined as in Eq. (2), the Lyapunov candidate
function V(t) is defined by augmenting V2(t) to V1(t) as follows:

V1(t) =
1
2
η2
1(t),

V(t) = V1(t) +V2(t),
(2)

where η1(t) =
Ω1d1(t)
Ω1−d1(t)

andV2 =
1
2
z2

Tz2 with z2(t) = x2(t) − α(t) is
defined as an auxiliary tracking error for the virtual control input;
α(t) is a stabilizing vector function thatmust be designed. According
to Tee et al. (2009) and Lemma 1 therein, if the inequality V̇(t) ≤ 0
holds ∀t ≥ 0, it can be concluded that e1(t) ∈ D1 if e1(0) ∈ D1.

2.3 Quadcopter model

Assume we have a group of quadcopters consisting of N agents
communicating with each other. The dynamic of the attitude
subsystem of the ith quadcopter (assuming a small Euler angle) for
i = 1, ...,N can be written as follows:

ϕ̈i(t) =
Iyyi − Izzi

Ixxi
θ̇i(t)ψ̇i(t) − IriΩri

θ̇i(t)
Ixxi
+
u2i(t)
Ixxi
,

̈θi(t) =
Izzi − Ixxi

Iyyi
ϕ̇i(t)ψ̇i(t) + IriΩri

ϕ̇i(t)
Iyyi
+
u3i(t)
Iyyi
,

ψ̈i(t) =
Izzi − Ixxi

Iyyi
ϕ̇i(t)θ̇i(t) +

u4i(t)
Izzi
.

(3)

where the roll angle ϕi(t), pitch angle θi(t), and yaw angle ψi(t)
represent the rotations about the x, y, and z axes in the inertial frame,
respectively. The input signals u2i(t), u3i(t), and u4i(t) represent
torques in the corresponding directions for the ith quadcopter in
the body frame. Ixxi , Iyyi , and Izzi are the inertia tensors, and Iri is the
inertia of the propellers. Further, Ωri describes the relative speed of
the propeller.

The translational dynamics of the ith quadcopter can be
presented as follows:

̈xi(t) =
u1i(t)
mi
(cos(ψi(t)) sin(θi(t))cos(ϕi(t)) + sin(ψi(t)) sin(ϕi(t))),

̈yi(t) =
u1i(t)
mi
(sin(ψi(t)) sin(θi(t))cos(ϕi(t)) − cos(ψi(t)) sin(ϕi(t))),

̈zi(t) = −g+
u1i(t)
mi

cos(ϕi(t))cos(θi(t)),

(4)

where [xi(t) yi(t) zi(t)]T represents the position of ith
quadcopter in the inertial frame, u1i(t) defines the main thrust
created by the combined forces of the rotors, g is the gravitational
constant, and mi refers to the mass of the ith quadcopter
(Sadeghzadeh-Nokhodberiz et al., 2021).

The above dynamic system can be represented in the state-space
form, and the system is divided into three subsystems for simplicity
as altitude, translational, and attitude subsystems (Sadeghzadeh-
Nokhodberiz et al., 2021).

The altitude subsystem can be decomposed as follows:

ẋ1i(t) = x2i(t),

ẋ2i(t) = −g+ g2i(t)u1i(t),
(5)

where x1i(t) ≡ zi(t) and x2i(t) ≡ ̇zi(t) refer to the altitude and
velocity of the ith quadcopter in the z direction, respectively; u1i(t)
is the control input indicating the thrust force applied to the ith
quadcopter in the z direction; g2i(t) =

1
mi

cos(θi(t))cos(ϕi(t)) is an
auxiliary variable defined to convert the last expression in Eq. (4) to
a more compact form.

The translational subsystem is defined as follows:

ẋ3i(t) = x4i(t),

ẋ4i(t) = g4i(t)uiv3(t),

ẋ5i(t) = x6i(t),

ẋ6i(t) = g6i(t)uiv5(t),

(6)
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where x3i(t) ≡ xi(t) and x4i(t) ≡ ẋi(t) refer to the position and
velocity of the ith quadcopter in the x direction, and x5i(t) ≡ yi(t) and
x6i(t) ≡ ẏi(t) refer to the position and velocity of the ith quadcopter
in the y direction, respectively; g4i(t) = g6i(t) =

u1i(t)
mi

are auxiliary
variables defined to convert the last expression in Eq. (4) to a more
compact form. Moreover, uiv3(t) and uiv5(t) are virtual controller
inputs to enable control of the underactuated position subsystem
and are defined as follows:

uiv3(t) = cos(ψi(t)) sin(θi(t))cos(ϕi(t)) + sin(ψi(t))cos(ϕi(t)) (7)

uiv5(t) = sin(ψi(t)) sin(θi(t))cos(ϕi(t)) − cos(ψi(t)) sin(ϕi(t)) (8)

Finally, the attitude subsystem can be defined using Eq. (3) by
assuming that Iri is very small:

ẋ7i(t) = x8i(t),

ẋ8i(t) = f2i(t) +G8iui(t),
(9)

where x7i(t) ≡ [ϕi(t) θi(t) ψi(t)]
T and x8i(t) ≡

[ϕ̇i(t) θ̇i(t) ψ̇i(t)]
T are the respective attitude and

angular velocity vectors in the inertial frame; ui(t) =
[u2i(t) u3i(t) u4i(t)]T is the control input vector including the
torques in the corresponding directions for the ith quadcopter in
the body frame; f2i(t) = [a1iθ̇i(t)ψ̇i(t) a3iϕ̇i(t)ψ̇i(t) a5iϕ̇i(t)θ̇i(t)]

T

is an auxiliary vector with auxiliary variables defined by a1i =
Iyyi−Izzi
Ixxi

,

a3i =
Izzi−Ixxi
Iyyi

, and a5i =
Izzi−Ixxi
Iyyi

; G8i =
[[[[

[

b1i 0 0

0 b3i 0

0 0 b5i

]]]]

]

is an auxiliary

matrix with auxiliary variables b1i =
1
Ixxi

, b3i =
1
Iyyi

, and b5i =
1
Izzi

defined to ensure that the attitude dynamics defined in Eq. (3) are
in a compact form.

Now, the following problems are considered in this work:
Problem 1: Formulating multiple problems, including trajectory
tracking, formation tracking control, and interagent collision
avoidance, for a multiquadcopter system such that the proposed
barrier Lyapunov theory can be applied.
Problem 2: Deriving the decentralized (distributed) hierarchical
control laws for collision-free formation tracking control for the
altitude subsystem as well as translational x and y subsystems with
virtual inputs in a backstepping framework.
Problem 3: Designing the attitude control laws separately for each
agent using the desired signals generated via BLFs while considering
a predefined accuracy.

3 Control objectives

Problem 1 is considered in this section. In this work, the goal is
to design controllers u1i(t), ...,u4i(t) such that the control objectives
are achieved.The control objective in this study is formation tracking
control, which consists of two parts. First, each quadcopter should
follow its specified desired trajectory with a predefined accuracy
for position and orientation. Second, interagent collisions should
be avoided based on specified bounds regarding how close the
quadcopters can be.

3.1 Trajectory tracking error

Let x1id(t), i = 1,2,…,N (where N indicates the number of
quadcopters) be the desired altitude trajectory for the ith quadcopter
that is continuous in time and has finite first- and second-order
derivatives. Further, we define the altitude tracking error for the ith
quadcopter as e1i(t) = x1i(t) − x1id(t). The first control objective here
is to ensure that the altitude of the ith quadcopter tracks the desired
trajectory x1id(t) with a predefined accuracy; this can be formulated
by ensuring that the altitude tracking error for the ith quadcopter
remains with a compact set defined as follows:

D1ie = { e1i(t) ∈ ℝ|d1ie(t) = |e1i(t)| <Ω1idH, t ≥ 0}, (10)

where Ω1idH is a positive scalar defined for the ith quadcopter
with an upper bound for the tracking error.

Similar to the altitude, x3id(t) and x5id(t) are the desired
translational trajectories for the ith quadcopter in the x and y
directions, respectively. It is assumed that these desired trajectories
are continuous in time and have limited first- and second-order
derivatives. Further, e3i(t) = x3i(t) − x3id(t) and e5i(t) = x5i(t) − x5id(t)
represent the tracking errors in the x and y directions for the
ith quadcopter, respectively. The control objective here is to track
the desired translational trajectories x3id(t) and x5id(t) with a
predetermined accuracy; this can be formulated by ensuring that the
translational tracking error for the ith quadcopter remains within a
compact set defined as follows:

D3ie = { e3i(t) ∈ ℝ|d3ie(t) = |e3i(t)| <Ω3idH, t ≥ 0},

D5ie = { e5i(t) ∈ ℝ|d5ie(t) = |e5i(t)| <Ω5idH, t ≥ 0},
(11)

where Ω3idH and Ω5idH are two separate positive scalars defined
for the ith quadcopter in the x and y directions, respectively, with
upper bounds for the tracking errors.

Finally, for the attitude subsystem, x7id(t) is considered as the
desired trajectory vector for the ith quadcopter and assumed to be
continuous in time with limited first- and second-order derivatives.
Further, e7i(t) = x7i(t) − x7id(t) represents the attitude tracking error
vector. The control objective here is to track the desired trajectory
vector x7id(t) with a predefined accuracy; this can be formulated
by ensuring that the attitude tracking error for the ith quadcopter
remains within the compact set defined as follows:

D7ie = { e7i(t) ∈ ℝ
3|d7ie(t) = ‖e7i(t)‖ <Ω7idH, t ≥ 0}, (12)

where Ω7idH is a predefined positive scalar with an upper bound
for the tracking error, and ‖.‖ is the 2-norm of the vector.

3.2 Collision avoidance and formation
control

As introduced earlier, x1i(t) is the altitude of the ith quadcopter
with x1j(t), j ∈ Ni being the altitudes of its neighboring agents. The
goal here is that the distances of the real altitudes of each of the agents
with their neighbors, i.e., d1ij(t) ≜ |x1i(t) − x1j(t)|, j ∈ Ni, will track
the desired distances, i.e., L1ij(t) ≜ |x1id(t) − x1jd(t)|, j ∈ Ni, which
are expressed by d′1ije(t) ≜ |d1ij(t) − L1ij(t)|, j ∈ Ni with a predefined
accuracy.Thus, formation control and interagent collision avoidance
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FIGURE 1
General framework of the proposed controller for the ith agent.

FIGURE 2
Interconnections between the agents in the simulation.

in the z direction are both guaranteed. This is achieved by ensuring
that the error d′1ije(t) for the ith quadcopter remains within the
compact set defined as follows:

D1ijH = {x1i(t) ∈ ℝ|d
′
1ije(t) <Ω1ijH, j ∈ Ni, t ≥ 0}, (13)

where Ω1ijH is a positive predefined scalar with an upper bound
for formation tracking and a collision avoidance bound.

The real distance of the ith quadcopter from its neighboring
agents in the x direction is given by d3ij(t) ≜ |x3i(t) − x3j(t)|, j ∈
Ni, while the desired distance is represented by L3ij(t) ≜
|x3id(t) − x3jd(t)|, j ∈ Ni. Then, the goals of formation control and
interagent collision avoidance in the x direction for the ith
quadcopter are guaranteed with a predefined accuracy if d′3ije(t) ≜
|d3ij(t) − L3ij(t)|, j ∈ Ni remains within the compact set defined as
follows:

D3ijH = {x3i(t) ∈ ℝ|d
′
3ije(t) <Ω3ijH, j ∈ Ni, t ≥ 0}, (14)

where Ω3ijH is a positive predefined scalar with an upper bound
for formation tracking and a collision avoidance bound.

Similarly, the real distance of the ith quadcopter from its
neighboring agents in the y direction is given by d5ij(t) ≜
|x5i(t) − x5j(t)|, j ∈ Ni, while the desired distance is represented
by L5ij(t) ≜ |x5id(t) − x5jd(t)|, j ∈ Ni. Then, the goals of formation
control and interagent collision avoidance in the y direction for ith
quadcopter are guaranteed with a predefined accuracy if d′5ije(t) ≜
|d5ij(t) − L5ij(t)|, j ∈ Ni remains within the compact set defined as
follows:

D5ijH = {x5i(t) ∈ ℝ|d
′
5ije(t) <Ω5ijH, j ∈ Ni, t ≥ 0}, (15)
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FIGURE 3
Distances between the agents in the simulation.

where Ω5ijH is a positive predefined scalar with an upper bound
for formation tracking and a collision avoidance bound.

Remark 1: It is worth noting that the problem considered here is
neither LF control nor formation producing with/without a virtual
leader. However, the shape of the formation is imposed on the
method by appropriate design of the desired trajectory for each
quadcopter.

4 Proposed distributed collision-free
formation tracking control

Problem 2 is considered in this section, and the decentralized
(distributed) hierarchical control laws for collision-free formation
tracking control for the altitude and translational x and y subsystems
with virtual inputs are designed in a backstepping framework
for the multiquadcopter system. As mentioned earlier, because of
the underactuated nature of the quadcopter system, a hierarchical
procedure is employed. As the first step, the altitude controller is
designed, and its result is used to design the controller for the
translational subsystems along with virtual control inputs.

4.1 Altitude subsystem

Theorem 1: Assume that the altitude subsystem of the ith
quadcopter in a fleet of N quadcopters is described by Eq. (5).

Then, the altitude control input for the ith quadcopter u1i(t) can be
designed as

u1i(t) = g
−1
2i (t)[g+ α̇1i(t) −A1i(t) − k2iz2i(t)]; (16)

where

α1i(t) = ẋ1id(t) +
−k1ie

2
1i(t)

D1i(t)e1i(t) − 2∑
j∈Ni

B1ij(t)e1j(t)
,

A1i(t) = D1i(t)e1i(t) − 2∑
j∈Ni

B1ij(t)e1j(t),

D1i(t) = B1i(t) + 2∑
j∈Ni

B1ij(t), (17)

withB1i =
Ω3

1idH

(Ω1idH−d1ie(t))
3 ,B1ij =

Ω3
1ijH

(Ω1ijH−d′1ije(t))
3 , Ω1ijH > 0,Ω1idH > 0,

and k1i,k2i > 0. Then, the altitude tracking error and interagent
collision avoidance conditions are guaranteed by remaining within
the sets defined by Eqs. (10) and (13) if the quadcopter starts
with the initial conditions such that the tracking errors remain
within the same sets, i.e., d1ie(0) <Ω1idH and d′1ije(0) <Ω1ijH,
respectively.

Proof: We choose the following BLF candidate that contains the
BLFs for each of the agents (V1ie(t)) as well as those related to the
interagents (V1ij(t)):

V1i(t) =
N

∑
i=1
(V1ie(t) +

N

∑
j=1,j≠i

aijV1ij(t)), (18)
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FIGURE 4
Comparison of the reference and actual trajectory states for the attitude subsystem.

where V1ie(t) =
1
2
η2
1ie(t) and V1ij(t) =

1
2
η2
1ij(t), with η1ie(t) =

Ω1idHd1ie(t)
Ω1idH−d1ie(t)

and η1ij(t) =
Ω1ijHd

′
1ije(t)

Ω1ijH−d
′
1ije(t)

according to Eq. (2).
It is obvious fromEq. (18) thatV1i is a positive-definite function.

Therefore,

V̇1i(t) =
N
∑
i=1
(V̇1ie(t) +

N
∑

j=1,j≠i
aijV̇1ij(t))

=
N
∑
i=1
(η1ie(t)η̇1ie(t) +

N
∑

j=1,j≠i
aijη1ij(t)η̇1ij(t)),

(19)

where V̇1ie(t) = η1ie(t)η̇1ie(t) =
Ω3

1idH

(Ω1idH−d1ie(t))
3 d1ie(t)ḋ1ie(t); further, by

letting B1i(t) =
Ω3

1idH

(Ω1idH−d1ie(t))
3 , it can be concluded that V̇1ie(t) =

B1i(t)d1ie(t)ḋ1ie(t). Since d1ie = |e1i|, we have

V̇1ie(t) = B1i(t)|e1i(t)|
d
dt |e1i(t)|

= B1i(t)|e1i(t)|sgn(e1i(t)) ̇e1i(t)

= B1i(t)e1i(t) ̇e1i(t).

(20)

Moreover, V̇1ij(t) = η1ij(t)η̇1ij(t) =
Ω3

1ijH

(Ω1ijH−d′1ije(t))
3 d′1ije(t)ḋ

′
1ije(t). Now,

by letting B1ij(t) =
Ω3

1ijH

(Ω1ijH−d′1ije(t))
3 , it is concluded that

V̇ij(t) = B1ij(t)d
′
ije(t)ḋ
′
ije(t)

= B1ij(t)(e1i(t) − e1j(t))( ̇e1i(t) − ̇e1j(t)).
(21)

Finally, by replacing Eqs. (20) and (21) in Eq. (19), we obtain

V̇1i(t) =
N

∑
i=1
(B1i(t)e1i(t) ̇e1i(t) +

N

∑
j=1,j≠i

aijB1ij(t)(e1i(t) − e1j(t))( ̇e1i(t) − ̇e1j(t))).

(22)

By rearranging Eq. (22), we have

V̇1i(t) =
N
∑
i=1

B1i(t)e1i(t) ̇e1i(t) +
N
∑
i=1

N
∑
j=1

aijB1ij(t)(e1i(t) − e1j(t)) ̇e1i(t)

−
N
∑
i=1

N
∑
j=1

aijB1ij(t)(e1i(t) − e1j(t)) ̇e1j(t).

(23)

Using the summation properties and the fact that aij = aji and

B1ij(t) = B1ji(t), it is concluded that −
N
∑
i=1

N
∑
j=1

aijB1ij(t)(e1i(t) − e1j(t)) ̇e1j
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FIGURE 5
Position tracking errors of the agents in the x, y, and z axes.

(t) =
N
∑
i=1

N
∑
j=1

aijB1ij(t)(e1i(t) − e1j(t)) ̇e1i(t); hence, Eq. (23) can be

rewritten as

V̇1i(t) =
N

∑
i=1
(B1i(t)e1i(t) + 2

N

∑
j=1

aijB1ij(t)(e1i(t) − e1j(t))) ̇e1i(t). (24)

Assuming that z2i(t) = x2i(t) − α1i(t), we have x2i(t) = z2i(t) +
α1i(t). Since ̇e1i(t) = x2i(t) − ẋ1id(t), the expression can be rewritten
as ̇e1i(t) = z2i(t) + α1i(t) − ẋ1id(t). Now, substituting this into Eq. (24),
the stabilizing function α1i is derived as in Eq. (17). Therefore,

Eq. (24) can be rewritten as V̇1i(t) =
N
∑
i=1
[A1i(t)z2i − k1ie

2
1i(t)]. By

defining a backstepping-type Lyapunov function candidate and
adding a quadratic function to V1i(t), we have V2i(t) = V1i(t) +
1
2

N
∑
i=1

z22i(t). Taking the derivative of the Lyapunov function gives

V̇2i(t) = V̇1i(t) +
N
∑
i=1

z2i(t) ̇z2i(t)

= V̇1i(t) +
N
∑
i=1

z2i(t)(−g+ g4i(t)u1i(t) − α̇1i(t)).
(25)

Replacing u1i(t) from Eq. 16 into 25 gives

V̇2i(t) = −
N
∑
i=1

k1ie
2
1i(t) +

N
∑
i=1

A1i(t)z2i(t)

+
N
∑
i=1

z2i(t)(−g− α̇1i(t) + g+ α̇1i(t) −A1i(t) − k2iz2i(t))

= −
N
∑
i=1

k1iz
2
1i(t) −

N
∑
i=1

k2iz
2
2i(t).

(26)

Therefore, one can conclude from Eq. (26) that V̇2i(t) < 0, which
completes the proof.

4.2 Translational subsystems

Herein, the virtual controllers for the translational subsystems
presented in Eq. (6) for the x and y coordinates are formulated in
accordance with Theorem 2.

Theorem 2: Assume that the translational subsystems of the
ith quadcopter in a fleet of N quadcopters can be described
by Eq. (6) in the x and y directions using the virtual control
inputs defined in Eqs. (7) and (8). Then, the virtual control
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FIGURE 6
Control signals of the attitude subsystem.

inputs uiv3(t) and uiv5(t) for the ith quadcopter can be
designed as

uiv3(t) = g
−1
4i (t)[α̇3i(t) −A3i(t) − k4iz4i(t)],

uiv5(t) = g
−1
6i [α̇5i(t) −A5i(t) − k6iz6i(t)],

(27)

where

α3i(t) = ẋ3id(t) +
−k3ie

2
3i(t)

D3i(t)e3i(t) − 2
N

∑
j∈Ni

B3ij(t)e3j(t)

,

A3i(t) = D3i(t)e3i(t) − 2
N

∑
j∈Ni

B3ij(t)e3j(t),

D3i(t) = B3i(t) + 2
N

∑
j∈Ni

B3ij(t),

(28)

α5i(t) = ẋ5id(t) +
−k5ie

2
5i(t)

D5i(t)e5i(t) − 2
N

∑
j∈Ni

B5ij(t)e5j(t)

,

A5i(t) = D5i(t)e5i(t) − 2
N

∑
j∈Ni

B5ij(t)e5j(t),

D5i(t) = B5i(t) + 2
N

∑
j∈Ni

B5ij(t),

with B3i(t) =
Ω3

3idH

(Ω3idH−d3ie(t))
3 , B3ij(t) =

Ω3
3ijH

(Ω3ijH−d′3ije(t))
3 , B5i(t) =

Ω3
5idH

(Ω5idH−d5ie(t))
3 , B5ij(t) =

Ω3
5ijH

(Ω5ijH−d′5ije(t))
3 , z4i(t) = x4i(t) − α3i(t), z6i(t) =

x6i(t) − α5i(t), k3i > 0,k4i > 0, k5i > 0, k6i > 0, Ω1ijH > 0, and
Ω1idH > 0.

Then, the translational tracking error and interagent
collision avoidance conditions are guaranteed by remaining
within the sets defined by Eqs. (11), (14), and (15) if the
quadcopter starts with the initial conditions such that the
tracking errors remain within the same sets, i.e., d3ie(0) <
Ω3idH, d5ie(0) <Ω5idH, d′3ije(0) <Ω3ijH, and d′5ije(0) <Ω5ijH,
respectively.

Proof: A proof similar to that of Theorem 1 can be considered
here and has been omitted for brevity.

5 Proposed attitude control system

Problem 3 is considered in this section, and a BLF-based
controller is designed for the attitude subsystem with the dynamics
presented in Eq. (9). First, according to Eqs. (7) and (8) as well as
the virtual controllers designed for the translational subsystems in
Eqs (27) and (28) the desired angles for the roll (ϕid(t)) and pitch
(θdi(t)) are computed in Eq. (29) as follows:
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FIGURE 7
Actual and desired 3D positions of the quadcopters.

sin(ϕid(t)) = uiv3(t) sin(ψi(t)) − uiv5(t)cos(ψi(t))

sin(θdi(t)) =
uiv3(t)cos(ψi(t)) + uiv5(t) sin(ψi(t))

cos(ϕid(t))

(29)

The desired yaw angle (ψid(t)) can be set freely.

Theorem 3: Assume that the attitude subsystem of the ith
quadcopter in a fleet of N quadcopters can be described by Eq. (9);
then, the control input vector ui(t) for the ith quadcopter can be
designed as

ui(t) = G
−1
8i (− f2i(t) + α̇7i(t) −B7i(t)e7i(t) − k8iz8i(t)), (30)

where z8i(t) = x8i(t) − α8i(t) and α8i(t) = ẋ7id − (k7ie7i(t)/B7i(t)),
with B7i =

Ω3
7idH

(Ω7idH−d7ie)
3 and k7i, k8i, and Ω7idH being scalar positive

constants.
Then, the attitude tracking error is guaranteed by remaining

within the set defined in Eq. (12) if the quad starts from the initial

conditions such that the tracking errors remain within the same sets,
i.e., d7ie(0) = ‖e7i(0)‖ <Ω7idH .

Proof: We consider the BLF V7i(t) =
1
2
η2
7ie(t) with η7ie(t) =

Ω7idHd7ie(t)
Ω7idH−d7ie(t)

; therefore,

V̇7i(t) =
Ω3

7idH
(Ω7idH − d7i(t))

3 e
T
7i(t) ̇e7i(t)

= B7i(t)e
T
7i(t) ̇e7i(t).

(31)

Since ̇e7i(t) = x8(t) − ẋ7id(t) = z8i(t) + α8i(t) − ẋ7id(t), if we
select α8i(t) = ẋ7id − (k7ie7i(t)/B7i(t)),we obtain V̇7i(t) =
B7i(t)e

T
7i(t)z8i(t) − k7ie

T
7i(t)e7i(t). Now, a Lyapunov function

is chosen by adding a quadratic function to V7i
as follows:

V8i(t) = V7i(t) +
1
2
zT8i(t)z8i(t). (32)

Therefore, using Eq. (32) one can conclude Eq. (33) as follows:
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V̇8i(t) = V̇7i(t) + z
T
8i(t) ̇z8i(t)

= B7i(t)e
T
7i(t)z8i(t) − k7ie

T
7i(t)e7i(t)

+zT8i(t)(ẋ8i(t) − α̇8i(t)).

(33)

Now, according to Eq. (9), by selecting ui(t) as Eq. (30) and using
Eq. (31) it is concluded that V̇8i(t) = − k7ie

T
7i(t)e7i(t) − k8iz

T
8i(t)z8i(t) <

0. Therefore, the attitude tracking objective in Eq. (12) is satisfied if
d7ie(0) = ‖e7i(0)‖ <Ω7idH, hence completing the proof.

Figure 1 depicts the general structure of the proposed controller
for the ith agent. The overall quadcopter system has three
subsystems. The design of u1i(t) starts from the altitude subsystem.
Then, this controller is used to design the virtual controllers
in the translational subsystems. Finally, the control inputs of
the attitude subsystem are designed to meet the desired control
objectives. Owing to the fact that the graph topology of the
quadcopter system is connected, the neighboring information
is used to achieve safety, collision avoidance, and stability.

6 Simulation results

In this section, simulation results are provided to demonstrate
the efficiency of the proposed method. Figure 2 depicts the
interconnection of three quadcopters considered for the simulation.

The initial conditions are considered as follows: x11(0) =
0,x12(0) = 0.5,x13(0) = 1, x21(0) = x22(0) = x23(0) = − 0.08, x31(0) =
x32(0) = x33(0) = 0, x41(0) = x42(0) = x43(0) = 1.5, x51(0) = x52(0) =
x53(0) = 3.9, x61(0) = x62(0) = x63(0) = 0, x7i(0) = [0 0 0], i =
1,2,3, and x8i(0) = [0 0 0], i = 1,2,3. The physical parameters
of the quadcopters are as follows: mi = 1.47kg, Ixxi = Iyyi =
0.01152kgm2, Izzi = 0.0218kgm

2, and Li = 0.28, i = 1,2,3. The
reference trajectory for the movement of the quadcopters is given in
Eq. (34) as follows:

z1d(t) = −0.1t,z2d(t) = −0.1t+ 0.5,z3d(t) = −0.1t+ 1

x1d(t) = x2d(t) = x3d(t) = 4 sin (0.5t)

y1d(t) = y2d(t) = y3d(t) = 4 cos (0.5t).

(34)

As mentioned previously, the values Ω1idH > 0 to Ω1=7idH > 0 are
theupper limits fordistance trackingerrorsd1ie tod7ie,whileΩ1ijH > 0 ,
Ω3ijH > 0, andΩ5ijH > 0 are the respective upper limits for the distance
tracking errors d′1ije, d

′
3ije, and d′5ije. These two sets of parameters

determine the safe sets for the movements of the quadcopters. If
these values are selected to be large, although the safety set will be
larger, it may cause problems for the system in terms of safety as
a wider range of errors would be considered acceptable. If these
values are too small, then the safe set will be too small and forces
the selection of the initial values to be very close to the real ones,
which is unrealistic and may force the algorithm to be very sensitive
to small deviations of the errors. Therefore, the selection of these
two sets of parameters is very important. In the simulations, they are
selected as follows: Ω7idH = 1.5, Ω1idH =Ω1ijH = 0.1, Ω3idH =Ω3ijH =
0.49,and Ω5idH =Ω5ijH = 0.25. The simulation results are as follows.

Figure 3 shows the distances between the agents, indicating that
the agents are collision-free and maintain distances specified by the
reference trajectories between the quadcopters during movement.

FIGURE 8
Three-dimensional formation tracking control and formation shape.

According to Figure 4, it is clear that the attitude control subsystem
is well designed as the states (ϕ,θ,ψ) follow the desired trajectories.
The position tracking errors of the agents in the x, y, and z axes are
depicted in Figure 5, according towhich the error is less than 0.03; this
shows that the controller is well designed and that the tracking error is
acceptable. It is clear from Figure 6 that the value of the control signal
u1i, i = 1,2,3 converges approximately to 14.48 N and that the values
of the control signals for the attitude subsystem converge to 0 N∙m.

Figure 7 depicts that each quadcopter follows its desired path;
thus, each quadcopter tracks its desired trajectory successfully
during flight. The results of formation tracking as well as the
formation shape are depicted in Figure 8; it is obvious from the
figure that the quadcopters follow their trajectories in formation
without any collisions and that the desired distances between them
are maintained. Figure 9 shows that the error value converges to a
constant equal to 0.0083, with a settling time of 50 s.

The method proposed in this work is compared with that of
Kuriki and Namerikawa (2015) in Table 1, from which it is obvious
that the proposedmethod is significantly superior based on different
aspects.The root mean-squared error (RMSE) as well as steady-state
error values for the proposed method are considerably lower, and
our method is significantly faster. Although the settling time in our
method is a bit large, it still outperforms the oscillating behavior of
the method proposed by Kuriki and Namerikawa (2015).

7 Conclusion

The purpose of this work was to design a distributed collision-
free formation tracking control scheme formultiquadcopter systems
using the BLF in a backstepping procedure. The controllers were
designed in a hierarchical structure to tackle the underactuated
nature of the quadcopter system. Accordingly, the altitude controller
was designed first, followed by the translational controller with
virtual inputs. The desired Euler angles were then obtained using
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FIGURE 9
Root mean-squared error (RMSE) between the desired and actual positions of the agents.

TABLE 1 Comparison of the proposed method with the system of Kuriki and Namerikawa (2015).

Settling time (s) RMSE (m) Average calculation time (s) Steady-state error (m)

Proposed method 50 0.0083 0.000053741 0.0083

Kuriki and Namerikawa (2015) Fluctuating behavior 0.2374 0.005 0.2288

the virtual control signals and were finally employed to derive
the proposed BLF-based attitude control subsystem. Simulations
were performed to demonstrate the control objectives designed and
achieved herein, including safety (staying in a safe set) and collision
avoidance as well as formation tracking control. By adding the
uncertainty terms and noise to the dynamics of the system, the
controller can be designed such that it meets the control goals when
the specified cases occur; this can be considered as a suggestion for
future work. Formulating the problem of obstacle avoidance using
the BLF is also suggested as a future work.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/Supplementarymaterial, and any further inquiriesmay be
directed to the corresponding authors.

Author contributions

MS: Investigation, Software, Visualization, Writing–original
draft. NS-N: Methodology, Project administration, Supervision,
Writing–review and editing. RB: Project administration,
Writing–review and editing, Investigation, Validation. AM:
Validation, Writing–review and editing, Funding acquisition,
Methodology, Resources, Supervision.

Funding

The author(s) declare that no financial support was
received for the research, authorship, and/or publication of
this article.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships
that could be construed as a potential conflict
of interest.

The author(s) declare that they were an editorial board member
of Frontiers at the time of submission. This had no impact on the
peer review process or the final decision.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations or those of the publisher, editors, and reviewers. Any
product that may be evaluated in this article or claim that may be
made by its manufacturer is not guaranteed or endorsed by the
publisher.

Frontiers in Robotics and AI 13 frontiersin.org142

https://doi.org/10.3389/frobt.2024.1370104
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Sadeghzadeh-Nokhodberiz et al. 10.3389/frobt.2024.1370104

References

Ahmadi, K., Asadi, D., Nabavi-Chashmi, S.-Y., and Tutsoy, O. (2023). Modified
adaptive discrete-time incremental nonlinear dynamic inversion control for quad-
rotors in the presence of motor faults. Mech. Syst. Signal Process. 188, 109989.
doi:10.1016/j.ymssp.2022.109989

Allahyar, S. D. W. Z. M. (2023). “Robotics and artificial intelligence in the nuclear
industry: from teleoperation to cyber physical systems,” in Artificial intelligence for
robotics and autonomous systems applications A. Editor T. A. A. Koubaa (Berlin,
Germany: Springer), 123–166.

Burrell, T., West, C., Monk, S. D., Montezeri, A., and Taylor, C. J. (2018). “Towards a
cooperative robotic system for autonomous pipe cutting in nuclear decommissioning,”
in 2018UKACC12th International Conference onControl (CONTROL), Sheffield,UK,
September, 2018. doi:10.1109/control.2018.8516841

Can, A., Imran, I. H., Price, J., and Montazeri, A. (2022). Robust formation
control and trajectory tracking of multiple quadrotors using a discrete-time
sliding mode control technique. IFAC-PapersOnLine 55 (10), 2974–2979.
doi:10.1016/j.ifacol.2022.10.184

Chen, Y., Singletary, A., and Ames, A. D. (2020). Guaranteed obstacle avoidance
for multi-robot operations with limited actuation: a control barrier function approach.
IEEE Control Syst. Lett. 5 (1), 127–132. doi:10.1109/lcsys.2020.3000748

Ganguly, S. (2022). Robust trajectory tracking and payload delivery of a quadrotor
under multiple state constraints. Available at: https://arxiv.org/abs/2201.03711.

Hu, J., Bhowmick, P., Jang, I., Arvin, F., and Lanzon, A. (2021). A decentralized cluster
formation containment framework for multirobot systems. IEEE Trans. Robotics 37 (6),
1936–1955. doi:10.1109/tro.2021.3071615

Imran, I. H., andMontazeri, A. (2022). Distributed robust synchronization control of
multiple heterogeneous quadcopters with an active virtual leader. IFAC-PapersOnLine
55 (10), 2659–2664. doi:10.1016/j.ifacol.2022.10.111

James, M., Carr, B., D’Arcy, F., Diefenbach, A., Dietterich, H., Fornaciai,
A., et al. (2020). Volcanological applications of unoccupied aircraft systems
(UAS): developments, strategies, and future challenges. Volcanica 3, 67–114.
doi:10.30909/vol.03.01.67114

Jin, X., Dai, S.-L., Liang, J., and Guo, D. (2021). Multirobot system formation control
withmultiple performance and feasibility constraints. IEEE Trans. Control Syst. Technol.
30 (4), 1766–1773. doi:10.1109/tcst.2021.3117487

Julian, K. D. K.M. J., andKochenderfer,M. J. (2019). Distributedwildfire surveillance
with autonomous aircraft using Deep reinforcement learning. J. Guid. Control, Dyn. 48
(2), 1768–1778. doi:10.2514/1.g004106

Khadhraoui, A., Zouaoui, A., and Saad, M. (2023). Barrier Lyapunov function and
adaptive backstepping-based control of a quadrotor UAV. Robotica 41 (10), 2941–2963.
doi:10.1017/s0263574723000735

Kumar, S., and Kumar, S. R. (2022). “Barrier lyapunov-based nonlinear trajectory
following for unmanned aerial vehicles with constrainedmotion,” in 2022 International
Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, June, 2022.
doi:10.1109/icuas54217.2022.9836037

Kuriki, Y., and Namerikawa, T. (2015). Formation control with collision avoidance
for a multi-UAV system using decentralized MPC and consensus-based control. SICE
J. Control, Meas. Syst. Integration 8 (4), 285–294. doi:10.9746/jcmsi.8.285

Liang, Y., Qi, D., and Yanjie, Z. (2020). Adaptive leader–follower formation control
for swarms of unmanned aerial vehicles with motion constraints and unknown
disturbances. Chin. J. Aeronautics 33 (11), 2972–2988. doi:10.1016/j.cja.2020.03.020

Liu, Y., and Bucknall, R. (2018). A survey of formation control and
motion planning of multiple unmanned vehicles. Robotica 36 (7), 1019–1047.
doi:10.1017/s0263574718000218

Lizzio, F. F., Capello, E., and Guglieri, G. (2022). A review of consensus-based multi-
agent UAV implementations. J. Intelligent Robotic Syst. 106 (2), 43. doi:10.1007/s10846-
022-01743-9

Mansfield, D., and Montazeri, A. (2024). A survey on autonomous environmental
monitoring approaches: towards unifying active sensing and reinforcement learning.
Front. Robotics AI 11, 1336612. doi:10.3389/frobt.2024.1336612

Martin, P. G., Kwong, S., Smith, N., Yamashiki, Y., Payton, O., Russell-Pavier, F.,
et al. (2016). 3D unmanned aerial vehicle radiation mapping for assessing contaminant
distribution and mobility. Int. J. Appl. Earth Observation Geoinformation 52, 12–19.
doi:10.1016/j.jag.2016.05.007

Montazeri, A., Can, A., and Imran, I. H. (2021). “Chapter 3 - unmanned aerial
systems: autonomy, cognition, and control,” in Unmanned aerial systems. Editors A.
Koubaa, and A. T. Azar (Cambridge, Massachusetts, United States: Academic Press),
47–80.

Mughees, A., and Ahmad, I. (2023). Multi-optimization of novel conditioned
adaptive barrier function integral terminal SMC for trajectory tracking of
a quadcopter System. IEEE Access 11, 88359–88377. doi:10.1109/access.
2023.3304760

Neumann, T. F. A., Kallweit, S., and Scholl, I., Towards a mobile mapping robot for
undergroundmines. November 2014; pp. In Proceedings of the 2014 PRASA, RobMech
and AfLaT International Joint Symposium Cape Town, South Africa, 2014: p. 27–28.

Ngo, K. B.,Mahony, R., and Jiang, Z.-P. (2005). “Integrator backstepping using barrier
functions for systems with multiple state constraints,” in Proceedings of the 44th IEEE
Conference on Decision and Control, Seville, Spain, December, 2005.

Patil, A., and Shah, G. (2021). “Discrete time consensus algorithm in multi-agent
system,” in 2021 Seventh Indian Control Conference (ICC), Mumbai, India, December,
2021. doi:10.1109/icc54714.2021.9702911

Peng, X., Wang, Q., and Xiong, S. (2020). Distributed leader-follower consensus
tracking control for fixed-wind uavs with positive linear speeds under directed graphs.
IFAC-PapersOnLine 53 (5), 487–490. doi:10.1016/j.ifacol.2021.04.134

Sadeghzadeh-Nokhodberiz, N., Can, A., Stolkin, R., and Montazeri, A. (2021).
Dynamics-based modified fast simultaneous localization and mapping for unmanned
aerial vehicles with joint inertial sensor bias and drift estimation. IEEE Access 9,
120247–120260. doi:10.1109/access.2021.3106864

Sadeghzadeh-Nokhodberiz, N., Iranshahi, M., and Montazeri, A. (2023). Vision-
based particle filtering for quad-copter attitude estimation using multirate delayed
measurements. Front. Robotics AI 10, 1090174. doi:10.3389/frobt.2023.1090174

Sadeghzadeh-Nokhodberiz, N., andMeskin, N. (2023). Consensus-based distributed
Formation Control of multi-quadcopter systems: barrier lyapunov function approach.
IEEE Access 11, 142916–142930. doi:10.1109/access.2023.3340417

Tang, Z.-L., Tee, K. P., and He, W. (2013). Tangent barrier Lyapunov functions for
the control of output-constrained nonlinear systems. IFAC Proc. Vol. 46 (20), 449–455.
doi:10.3182/20130902-3-cn-3020.00122

Tee, K. P., and Ge, S. S. (2011). Control of nonlinear systems with partial state
constraints using a barrier Lyapunov function. Int. J. Control 84 (12), 2008–2023.
doi:10.1080/00207179.2011.631192

Tee, K. P., Ge, S. S., and Tay, E. H. (2009). Barrier Lyapunov functions for
the control of output-constrained nonlinear systems. Automatica 45 (4), 918–927.
doi:10.1016/j.automatica.2008.11.017

Tee, K. P., Ge, S. S., and Tay, F. E. H. (2008). Adaptive control of electrostatic
microactuators with bidirectional drive. IEEE Trans. control Syst. Technol. 17 (2),
340–352. doi:10.1109/TCST.2008.2000981

Yan, J., Guan, X., Luo, X., and Chen, C. (2017). Formation control and obstacle
avoidance for multi-agent systems based on virtual leader-follower strategy. Int. J. Inf.
Technol. Decis. Mak. 16 (03), 865–880. doi:10.1142/s0219622014500151

Yasin, J. N., Mohamed, S. A. S., Haghbayan, M. H., Heikkonen, J., Tenhunen,
H., and Plosila, J. (2020). Unmanned aerial vehicles (uavs): collision avoidance
systems and approaches. IEEE access 8, 105139–105155. doi:10.1109/access.
2020.3000064

Frontiers in Robotics and AI 14 frontiersin.org143

https://doi.org/10.3389/frobt.2024.1370104
https://doi.org/10.1016/j.ymssp.2022.109989
https://doi.org/10.1109/control.2018.8516841
https://doi.org/10.1016/j.ifacol.2022.10.184
https://doi.org/10.1109/lcsys.2020.3000748
https://arxiv.org/abs/2201.03711
https://doi.org/10.1109/tro.2021.3071615
https://doi.org/10.1016/j.ifacol.2022.10.111
https://doi.org/10.30909/vol.03.01.67114
https://doi.org/10.1109/tcst.2021.3117487
https://doi.org/10.2514/1.g004106
https://doi.org/10.1017/s0263574723000735
https://doi.org/10.1109/icuas54217.2022.9836037
https://doi.org/10.9746/jcmsi.8.285
https://doi.org/10.1016/j.cja.2020.03.020
https://doi.org/10.1017/s0263574718000218
https://doi.org/10.1007/s10846-022-01743-9
https://doi.org/10.1007/s10846-022-01743-9
https://doi.org/10.3389/frobt.2024.1336612
https://doi.org/10.1016/j.jag.2016.05.007
https://doi.org/10.1109/access.2023.3304760
https://doi.org/10.1109/access.2023.3304760
https://doi.org/10.1109/icc54714.2021.9702911
https://doi.org/10.1016/j.ifacol.2021.04.134
https://doi.org/10.1109/access.2021.3106864
https://doi.org/10.3389/frobt.2023.1090174
https://doi.org/10.1109/access.2023.3340417
https://doi.org/10.3182/20130902-3-cn-3020.00122
https://doi.org/10.1080/00207179.2011.631192
https://doi.org/10.1016/j.automatica.2008.11.017
https://doi.org/10.1109/TCST.2008.2000981
https://doi.org/10.1142/s0219622014500151
https://doi.org/10.1109/access.2020.3000064
https://doi.org/10.1109/access.2020.3000064
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores the applications of robotics technology 

for modern society

A multidisciplinary journal focusing on the theory 

of robotics, technology, and artificial intelligence, 

and their applications - from biomedical to space 

robotics.

Discover the latest 
Research Topics

See more 

Frontiers in
Robotics and AI

https://www.frontiersin.org/journals/Robotics-and-Ai/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Advanced motion control and navigation of robots in extreme environments
	Table of contents
	Editorial: Advanced motion control and navigation of robots in extreme environments
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note

	Path planning with the derivative of heuristic angle based on the GBFS algorithm
	Introduction
	Weighted A* with the derivative of the heuristic angle
	WA*DH+: Locally replans paths based on the infinitely bounded suboptimal solution
	Critical values on WA*DH
	Get an initial solution from the greedy GFS algorithm
	Procedures of WA*DH+

	Simulation results
	Simulation environments
	Performances of WA*DH+

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Treatise on Analytic Nonlinear Optimal Guidance and Control Amplification of Strictly Analytic (Non-Numerical) Methods
	1 Introduction
	2 Materials and Methods
	2.1 Double-Integrator Based Plant Equations
	2.2 Transport Theorem Cross-Product Coupled Motion Expressed in Rotating Reference Frames
	2.2.1 Euler’s Moment Equations of Rotation Expressed in a Rotating Reference Frame
	2.2.2 Newton’s Equations of Translation Expressed in a Rotating Reference Frame
	2.2.3 Impacts on Control Design

	2.3 Classical Position Plus Velocity (P + V) Feedback Control
	2.4 Linear-Quadratic Optimal Regulator of Proportional Derivative Type (Murray, 2010)
	2.5 Time-Optimal Control (Murray, 2010)
	2.6 Open Loop Minimum-Control Optimization (Pontryagin et al., 1962; Ross, 2015)
	2.7 Real-Time Optimal Control
	2.8 Real-Time Optimal Control With Singular Switching
	2.8.1 Matrix Inverse Formulas

	2.9 Nonlinear Transport Theorem Decoupling (Recall Transport Theorem in Section 2.2)
	2.10 Noisy Mixed Sensors and Parameter Variations
	2.11 Scaling and Balancing

	3 Results
	3.1 Ideal, Linear Double Integrator System Equations
	3.2 Nonlinear Plants With Cross-Product Coupled Transport Theorem With Linear Control Designs
	3.3 Nonlinear Plants With Cross-Product Coupled Transport Theorem and Nonlinear Control Designs
	3.4 Nonlinear Plants With Cross-Product Coupled Transport Theorem and Nonlinear Control Designs Utilizing Noisy, Mixed-Sensors
	3.4.1 Monte Carlos Analysis (6,000 Simulation Runs)


	4 Discussion
	4.1 Performance Improvement Percentages
	4.2 Future Research

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	A neural flexible PID controller for task-space control of robotic manipulators
	1 Introduction
	2 System modelling and problem statements
	3 Neural flexible PID controller
	3.1 A flexible PID control framework
	3.2 Additional neural network control signal
	3.3 Stability analysis

	4 Validation results
	5 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References

	A method to benchmark the balance resilience of robots
	Vision-based particle filtering for quad-copter attitude estimation using multirate  delayed measurements
	Towards reuse and recycling of lithium-ion batteries: tele-robotics for disassembly of electric vehicle batteries
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Experimental setup
	3.1.1 Master-slave telemanipulation using a haptic device as master and a cobot as slave
	3.1.2 Master-slave telemanipulation using two identical cobots

	3.2 Control strategy
	3.3 Disassembly case studies
	3.3.1 Unbolting
	3.3.2 Removing the fasteners
	3.3.3 Removing the module cover plate
	3.3.4 Sorting modules
	3.3.5 Contact cutting


	4 Results and discussion
	4.1 Success rate and completion time
	4.2 Case studies

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Simultaneous localization and mapping in a multi-robot system in a dynamic environment with unknown initial correspondence
	1 Introduction
	2 System overview
	2.1 Kinematic model of the robots
	2.2 Kinematic model of the landmarks
	2.3 Lidar measurement model

	3 Modified Fast-SLAM with dynamic landmarks
	3.1 Particle generation
	3.2 Mapping
	3.2.1 EKF for mapping

	3.3 Localization (weight computation and resampling)

	4 Coordinate alignment and map-merging in multi-robot SLAM
	5 Simulation results
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	A survey on autonomous environmental monitoring approaches: towards unifying active sensing and reinforcement learning
	1 Introduction
	2 Reinforcement learning for active environmental monitoring
	2.1 Previous surveys
	2.2 Reinforcement learning terminologies
	2.3 Reinforcement learning for single-agent environmental monitoring systems
	2.4 Reinforcement learning for multi-agent environmental monitoring systems
	2.5 Limitations of reinforcement learning
	2.6 A general framework for active environmental monitoring problems

	3 Methodologies in active environmental monitoring
	3.1 State representation in active environmental monitoring
	3.2 Actions, observations and rewards in active environmental monitoring
	3.2.1 Coverage and patrolling
	3.2.2 Path planning and collision avoidance
	3.2.3 Autonomous exploration and SAR
	3.2.4 Source seeking and boundary tracking

	3.3 Open challenges

	4 Real-world deployment challenges
	5 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Distributed safe formation tracking control of multiquadcopter systems using barrier Lyapunov function
	1 Introduction
	2 Preliminaries and problem formulation
	2.1 Graph theory
	2.2 Barrier Lyapunov theory
	2.3 Quadcopter model

	3 Control objectives
	3.1 Trajectory tracking error
	3.2 Collision avoidance and formation control

	4 Proposed distributed collision-free formation tracking control
	4.1 Altitude subsystem
	4.2 Translational subsystems

	5 Proposed attitude control system
	6 Simulation results
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Back Cover



