Advanced Motion Control and Navigation of Robots in Extreme Environments

  • 4,904

    Total downloads

  • 37k

    Total views and downloads

About this Research Topic

Submission closed

Background

Advances in robotics and autonomous systems have opened new horizons for the scientists by creating new opportunities to explore extreme environments that would previously not have been possible. For example, robots that are deployed to study environmental processes such remote volcanos, monitor the climate variables under the adverse weather conditions, understand underground mines, and explore deep oceans which are all inaccessible or hazardous for the human. Industrial applications can also often be situated in extreme environments such as offshore oil and gas and nuclear industries. In such applications the autonomous robot is expected to complete tasks such as repair and maintenance, exploration, reconnaissance, inspection, and transportation which is either done in isolation or as a team of cooperative robots. Due to the harsh and severe conditions of such environments, designing an advanced robotic system that can endure them is a challenging task. The robot needs to cope with the time-varying, restricted, uncertain, and unstructured nature of the environment to achieve the planning and execution of the tasks. This in turn demands development of advanced, robust and adaptive motion control and navigation algorithms along with machine learning and deep learning algorithms with high cognitive capability for the robot to perceive the surrounding environment effectively. The use of both single and multi-robot platforms can be advantageous depending on the specific application and environment.

This Research Topic aims to address the most recent advances within the development of motion control and navigation systems for the autonomous operation of robots in extreme environments. The main research challenges for the robots operating in such harsh environments includes, but is not limited to the uncertain and time-varying nature of the robot dynamic, lack of a prior knowledge or map within the environment to aid navigation, the interaction of each robot with the environment and other robots in the presence of the environmental constraints and disturbances, kinematic and dynamic constraints of the robot, hardware and software insufficiencies such as limited payload and limited power for an extended period of robot operation in the environment.

The main topics of interest include but are not limited to:

• Design and development of both hardware and software platforms for ground, submersible and aerial robotic systems for exploration, inspection, repair and maintenance in extreme environments. This includes for example, redundant or radiation hardened processors and fault tolerant algorithms.

• Design of Human–Robot Interaction (HRI) algorithms and systems for supervised and safe operation of the robots in the hazardous environment. For example, using advances in virtual reality and development of digital twins will reduce the cognition load or the operator and enhance the level of autonomy.

• Trajectory tracking of robots using nonlinear robust and adaptive control, and model predictive control (MPC) in the presence of constraints and sever uncertainties such as collision with obstacles and degradation of sensors, actuators, and dynamic of the system.

• Formation control of multi robot systems in the presence of uncertainty, including, leader-follower, behavioural based methods, virtual structure methods, and consensus-based methods.

• Navigation algorithms for autonomous operation of a single or multiple robotic system in cluttered hazardous environments. For example, development of navigation algorithms in GPS denied environments for autonomous exploration and mapping.

• Reducing the dependency of the robots in the extreme environment to the remote human operator by development of motion planning and trajectory generation algorithms, including sampling-based techniques (RRT, PRM, ... ), Voronoi diagram (VD), and kino-dynamic approaches.

• Development of sensory subsystem for hazardous environment by including features such as sensor self-calibration and sensor fault detection to address bias, drift, scaling factor and other noises arising from the application and their compensations in the robotic system

Keywords: linear/nonlinear robust control, adaptive control, robust control, reinforcement learning, simultaneous localization and mapping, multi-sensor data fusion, robotic calibration, multi-robot SLAM, formation control, leader/follower control, aerial robotic

Important note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Frequently asked questions

  • Frontiers' Research Topics are collaborative hubs built around an emerging theme.Defined, managed, and led by renowned researchers, they bring communities together around a shared area of interest to stimulate collaboration and innovation.

    Unlike section journals, which serve established specialty communities, Research Topics are pioneer hubs, responding to the evolving scientific landscape and catering to new communities.

  • The goal of Frontiers' publishing program is to empower research communities to actively steer the course of scientific publishing. Our program was implemented as a three-part unit with fixed field journals, flexible specialty sections, and dynamically emerging Research Topics, connecting communities of different sizes and maturity.

    Research Topics originate from the scientific community. Many of our Research Topics are suggested by existing editorial board members who have identified critical challenges or areas of interest in their field.

  • As an editor, Research Topics will help you build your journal, as well as your community, around emerging, cutting-edge research. As research trailblazers, Research Topics attract high-quality submissions from leading experts all over the world.

    A thriving Research Topic can potentially evolve into a new specialty section if there is sustained interest and a growing community around it.

  • Each Research Topic must be approved by the specialty chief editor, and it falls under the editorial oversight of our editorial boards, supported by our in-house research integrity team. The same standards and rigorous peer review processes apply to articles published as part of a Research Topic as for any other article we publish.

    In 2023, 80% of the Research Topics we published were edited or co-edited by our editorial board members, who are already familiar with their journal's scope, ethos, and publishing model. All other topics are guest edited by leaders in their field, each vetted and formally approved by the specialty chief editor.

  • Publishing your article within a Research Topic with other related articles increases its discoverability and visibility, which can lead to more views, downloads, and citations. Research Topics grow dynamically as more published articles are added, causing frequent revisiting, and further visibility.

    As Research Topics are multidisciplinary, they are cross-listed in several fields and section journals – increasing your reach even more and giving you the chance to expand your network and collaborate with researchers in different fields, all focusing on expanding knowledge around the same important topic.

    Our larger Research Topics are also converted into ebooks and receive social media promotion from our digital marketing team.

  • Frontiers offers multiple article types, but it will depend on the field and section journals in which the Research Topic will be featured. The available article types for a Research Topic will appear in the drop-down menu during the submission process.

    Check available article types here 

  • Yes, we would love to hear your ideas for a topic. Most of our Research Topics are community-led and suggested by researchers in the field. Our in-house editorial team will contact you to talk about your idea and whether you’d like to edit the topic. If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. 

    Suggest your topic here 

  • A team of guest editors (called topic editors) lead their Research Topic. This editorial team oversees the entire process, from the initial topic proposal to calls for participation, the peer review, and final publications.

    The team may also include topic coordinators, who help the topic editors send calls for participation, liaise with topic editors on abstracts, and support contributing authors. In some cases, they can also be assigned as reviewers.

  • As a topic editor (TE), you will take the lead on all editorial decisions for the Research Topic, starting with defining its scope. This allows you to curate research around a topic that interests you, bring together different perspectives from leading researchers across different fields and shape the future of your field. 

    You will choose your team of co-editors, curate a list of potential authors, send calls for participation and oversee the peer review process, accepting or recommending rejection for each manuscript submitted.

  • As a topic editor, you're supported at every stage by our in-house team. You will be assigned a single point of contact to help you on both editorial and technical matters. Your topic is managed through our user-friendly online platform, and the peer review process is supported by our industry-first AI review assistant (AIRA).

  • If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. This provides you with valuable editorial experience, improving your ability to critically evaluate research articles and enhancing your understanding of the quality standards and requirements for scientific publishing, as well as the opportunity to discover new research in your field, and expand your professional network.

  • Yes, certificates can be issued on request. We are happy to provide a certificate for your contribution to editing a successful Research Topic.

  • Research Topics thrive on collaboration and their multi-disciplinary approach around emerging, cutting-edge themes, attract leading researchers from all over the world.

  • As a topic editor, you can set the timeline for your Research Topic, and we will work with you at your pace. Typically, Research Topics are online and open for submissions within a few weeks and remain open for participation for 6 – 12 months. Individual articles within a Research Topic are published as soon as they are ready.

    Find out more about our Research Topics

  • Our fee support program ensures that all articles that pass peer review, including those published in Research Topics, can benefit from open access – regardless of the author's field or funding situation.

    Authors and institutions with insufficient funding can apply for a discount on their publishing fees. A fee support application form is available on our website.

  • In line with our mission to promote healthy lives on a healthy planet, we do not provide printed materials. All our articles and ebooks are available under a CC-BY license, so you can share and print copies.