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Editorial on the Research Topic

Modulation of the immune system by bacteria: From evasion to therapy
This Research Topic examines how bacterial pathogens avoid or inactivate host

defenses in order to survive within a host. Numerous tactics are employed by bacteria,

such as modulating cell surfaces, secreting proteins that inhibit or degrade host immune

factors, and even mimicking host molecules to mediate pathogenesis. Knowledge of the

mechanisms utilized by pathogens to mediate disease may be advantageous for

developing medical treatments aimed at eliminating infection-causing bacteria from

humans. Furthermore, understanding how some bacterial factors tune the immune

system may facilitate the development of targeted therapies. In this editorial we provide

an overview of the exciting and diverse contents of this research topic, spanning multiple

aspects of microbiology and immunology.

One-half of the world’s population is colonized by Helicobacter pylori, a Gram-

negative bacterial pathogen that is able to persist and establish chronic infection (1). The

tight association of H. pylori with gastric cancer is established (2). Deng et al., elegantly

review the effects of H. pylori on the microenvironment of gastric cancer, which may

impair cancer immune surveillance or change the stroma of the tumor, thus promoting

carcinogenesis both locally and systemically. The role of the immunomodulatory activity

ofH. pylori in favoring the onset and progression of gastric cancer (3) represents only one

side of the coin. The other side is the potential application of some bacterial factors

produced by the pathogen, such as theH. pylori neutrophil activating protein (HP-NAP),

as adjuvants. This topic is extensively discussed by Codolo et al. in a review fully devoted

to HP-NAP, a miniferritin with immune modulatory properties, that is becoming a

promising biological therapeutic tool for the treatment of allergies and solid tumors.

The possibility that immune synapse formation between an antigen-presenting cell

and a T lymphocyte might be a direct target of bacterial virulence factors is emerging as a
frontiersin.org01
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novel means of immune evasion. Capitani and Baldari offer an

overview of the evidence that has recently accumulated to

support this notion.

It is established that pathogens that cause chronic

inflammation promote tumorigenesis (4), but it is also true

that bacteria may display tumor-targeting properties and can

activate the immune system to exert anti-tumor effects (5).

Decades have passed since Bacille Calmette-Gueŕin (BCG), an

attenuated strain of Mycobacterium bovis, has been approved by

the FDA as a treatment for bladder cancer. However, recently,

there has been a substantial increase in the number of studies

focusing on the application of bacteria as cancer therapeutics.

Tang et al. present an up-to-date review of the role of bacteria in

anti-cancer immunity and their use in immunotherapy as

carriers of therapeutic agents. The advantages of using

unmodified bacteria in comparison to engineered bacteria in

immunotherapy are also discussed.

Mycobacterium tuberculosis , the etiologic agent of

tuberculosis, remains a significant global public health burden

(6). Despite being developed nearly a century ago, BCG remains

the only licensed vaccine against tuberculosis (7). Opportunities

to leverage knowledge regarding the immunology of M.

tuberculosis infection to improve treatments and vaccines are

growing as our understanding of host responses to M.

tuberculosis infection increases. The findings that the

mycobacterial acyl carrier protein (AcpM), a key protein

involved in mycolic acid production (8), is a mycobacterial

effector capable of modulating macrophage functions broaden

our understanding of this pathogen. AcpM upregulates miR-155-

5p to prevent the activation of the transcription factor EB

(TFEB), which regulates the expression of the autophagy and

lysosomal genes in macrophages, and it enhances the survival of

intracellular mycobacteria by preventing phagosome-lysosome

fusion (Paik et al.).

The pathophysiology of brucellosis and M. tuberculosis

infection share several characteristics. Despite the possibility of

its occurrence during the treatment of M. tuberculosis infection,

immune reconstitution inflammatory syndrome (IRIS) has never

been documented in brucellosis patients. According to a case

study described by Qu et al., IRIS can happen when treating

Brucella. A persistent parasitic infection is brought on by the

pathogen’s infection of macrophages and ability to elude clearance

mechanism. Mitroulis et al., taking advantage of in vitro and ex

vivo approaches, describe the expression pattern of genes in the

immune cell population, when they first encounter Brucella,

throughout the sickness, and following a successful cure.

Comparatively examining immune responses to nine

uropathogens in bladder infection, Li et al. list the similarities

and differences between them. The findings lead the authors to

suggest that various microbial bladder infections should adopt

matching immunomodulatory therapies, and that distinct

microbial illnesses may also make use of the same
Frontiers in Immunology 02
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immunomodulatory intervention if they share the same potent

therapeutic targets.

A crucial element of innate immunity is represented by

NOD-like receptors (NLR) which act as intracellular sensors for

bacteria. In their discussion of the many strategies employed by

bacterial pathogens to elude detection by NLRs and eventually

interfere with the development of host defense, Kienes et al.

highlight how bacterial infections and their products activate

NLRs to induce inflammation and illness. The possibility that

NLRs, which operate by recruiting and activating caspases into

inflammasomes, might be subverted by bacterial factors to

alleviate inflammasome-driven diseases is also discussed.

Despite the fact many Gram-negative pathogens produce

outer-membrane vesicles (OMVs) that contain immunogenic

cargo, the presence of immunostimulatory molecules in OMVs

produced by commensal organisms has only recently been

recognized. In the study of Gilmore et al., it is reported that

the cargo associated with OMVs produced by the intestinal

commensal Bacteroides fragilis can activate host innate immune

receptors such as Toll-like receptors (TLR)-2, TLR4, TLR7, and

nucleotide oligomerization domain (NOD)-like receptor NOD1,

whereas B. fragilis bacteria could only activate TLR2, suggesting

that B. fragilis OMVs may facilitate immune crosstalk at the

gastrointestinal epithelial surface.

A technique called fecal microbiota transplantation (FMT) is

utilized to directly modify the recipient’s gut microbiota. FDA

authorized the use of FMT in 2013 for the treatment of recurrent

and resistant Clostridium difficile infection and FMT therapy

has been applied beyond gastrointestinal disorders to also

include extra-gastrointestinal diseases ever since (9).

According to the notion that the microbiota is crucial for

intestinal homeostasis in all vertebrates, intestinal bacteria-free

birds (IBF) exhibit lower body weights and inferior

immunological, metabolic, antioxidant, and intestinal

absorption capacities than bacteria-bearing birds. The

transplantation of fecal bacteria of birds from the control

group into the intestines of IBF birds reshapes the intestinal

immune function and metabolism (Li et al.).

Immune checkpoint inhibitors (ICIs) have been used to treat

a variety of malignancies, and the results have been astounding

(10). The most popular ICIs are antibodies that target the

programmed cell death protein 1 (PD-1). These ICIs operate

by preventing the interaction between the PD-1 receptor on T

cells and the PD-L1 ligand on tumor cells, which allows T cells to

detect and destroy tumor cells (11). Most colorectal cancer

(CRC) patients do not react to anti-PD-1 therapy because the

tumor microenvironment lacks sufficient tumor-infiltrating

lymphocytes (Bai et al.). Using a mouse model of CRC, it was

demonstrated that treatment with FMT plus anti-PD-1

antibodies improved survival and tumor control in mice

compared to treatment with anti-PD-1 therapy or FMT alone

(Huang et al.).
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An updated viewpoint on autotransporter (AT) proteins, the

central part of a molecular nano-machine that transports cargo

proteins through the outer membrane of Gram-negative bacteria, is

provided by Clarke et al. By expanding the knowledge of the

connections between structure and function of ATs, the study gives

insights into the variety of ATs that may direct future research aimed

at addressing several open questions about autotransporters.

In order to shed light on the protective mechanism

underpinning vibriosis resistance in fish, Zhou et al. employed

genomic, transcriptomic, and experimental methods. This work

provides essential genetic resources for breeding and controlling

infectious diseases in fish culture.

Hormones may modulate host responses to pathogens and

dysmetabolic conditions. It has been recently reported that in

obese patients chronic low-grade inflammation is driven by the

CD300e antigen (12). Brettle et al. elegantly review the

interactions between sex hormones, gut microbiome, and

intestinal inflammation in obesity. The epidemiology, etiology,

and outcomes of obesity and its associated metabolic problems

clearly exhibit sexual dimorphisms, with females frequently

experiencing more protection than males. This defense has

mostly been credited to variations in fat distribution and the

female sex hormone estrogen. More recently, changes in gut

microbiota and intestinal immune system have also been linked

to the sexual dimorphisms of obesity.

Males were generally more susceptible to Nocardia infection

and disease than females. However, Han et al. by investigating the

interplay between estradiol and immune response to Nocardia,

demonstrated increased severity in Nocardia-infected female mice

compared to male mice with increased mortality, elevated lung

bacterial loads, and an exaggerated pulmonary inflammatory

response that was mimicked in ovariectomized female mice

supplemented with 17b-estradiol. Authors underlines the

importance to include and separately evaluate both sexes in the

future research on Nocardia immune responses.
Frontiers in Immunology 03
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Collectively, the wide-ranging studies and reviews presented

in this research topic highlight the multiple mechanisms

whereby bacterial pathogens promote disease and reveal novel

insights and targets to combat bacterial infections and bacterial-

mediated pathologies. On the other hand, the amount of

evidence supporting the use of bacterial-derived bioactive

materials for therapeutic purposes has been steadily increasing.

Accordingly, the present collection includes critical findings on

the great potential of bacterial organisms and their active

components in the biomedical field, especially in cancer therapy.
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Males are generally more susceptible to Nocardia infection than females, with a male-to-
female ratio of 2 and higher clinical disease. 17b-Estradiol has been implicated in affecting
the sex-based gap by inhibiting the growth of N. brasiliensis in experiments, but the
underlying mechanisms have not yet been fully clarified. In the present study, however, we
report increased severity in N. farcinica IFM 10152-infected female mice compared with
male mice with increased mortality, elevated lung bacterial loads and an exaggerated
pulmonary inflammatory response, which was mimicked in ovariectomized female mice
supplemented with E2. Similarly, the overwhelming increase in bacterial loads was also
evident in E2-treated host cells, which were associated with downregulating the
phosphorylation level of the MAPK pathway by binding the estrogen receptor. We
conclude that although there are more clinical cases of Nocardia infection in males,
estrogen promotes the survival of the bacteria, which leads to aggravated inflammation in
females. Our data emphasize the need to include and separately analyze both sexes in
future studies of Nocardia to understand the sex differences in immune responses and
disease pathogenesis.

Keywords: Nocardia farcinica, sex difference, 17b-estradiol, estrogen receptor, MAPK
INTRODUCTION

Nocardia is a saprophytic gram-positive bacillus that usually manifests as an opportunistic infection
in both immunocompetent and immunocompromised hosts. It is mainly transmitted through the
respiratory tract to cause lung abscesses but also through wound or blood transmission to cause skin
and central nervous system infections (1, 2).

The genus Nocardia currently contains more than 100 species, and clinically, the primary
recognized human pathogens include N. farcinica, N. cyriacigeorgica, N. brasiliensis and N.
asteroides. Nocardiosis has been reported at all ages, and the incidence of males with isolated
nocardiosis is significantly higher than that of females worldwide (3, 4), such as in Mexico (5), the
United States (6, 7), Canada (8), France (9), Spain (10), Australia (11, 12) and China (13).

However, there is no clear explanation for this sex predominance. One of the most common
explanations is that men’s distinct lifestyle- and agriculture-related professions lead to increased
org March 2022 | Volume 13 | Article 85860918
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exposure to Nocardia (14, 15), considering the widespread
distribution of this organism, especially in soil, decaying
vegetation, fresh water and salt water (1). In addition, the
presence of estrogen might also contribute to the sex difference
observed (16). As a sex steroid hormone, estrogen exerts a broad
spectrum of biological effects by binding to estrogen receptor
alpha (ERa) or ERb (17). Estrogen, primarily 17b-estradiol (E2),
regulates cellular function in diverse cell types, including
macrophages, dendritic cells (DCs), granulocytes, and
lymphocytes. It is important to mention here that E2 has
divergent effects on inflammation controls. It diminishes the
severity of infections by some pathogens, whereas it enhances
susceptibility to other pathogens (18, 19). This aroused our
interest in further investigating the role and mechanism of E2
in Nocardia infection.

Given the sex hormone and genetic and physiological
differences between the sexes, males and females differ in their
immune responses to infection with many respiratory pathogens.
Often overlooked in animal experiments is the fact that the sex
and hormonal status of an individual can regulate inflammatory
responses and the development of immunopathology during
Nocardia infection. In the present study, we sought to use sex-
based and E2-manipulated mouse models of N. farcinica IFM
10152 infection to clarify the efficiency of E2 in inflammation
and bacterial clearance. The underlying mechanisms by which
E2 affects Nocardia infection were then initially elucidated at the
cellular level. The ultimate goal of this study was to improve the
understanding of the mechanism of sex differences in
inflammatory lung diseases associated with Nocardia infection
and provide evidence for optimizing clinical preventive measures
and treatments for each sex.
MATERIALS AND METHODS

Mice and Ethics Statement
Female and male C57BL/6 mice (6–8 weeks of age) were
purchased from SPF Biotechnology Co., Ltd. (Beijing, China)
and bred under specific pathogen-free conditions according to
the guidelines. All procedures were approved by the Ethics
Review Committee of the National Institute for Communicable
Disease Control and Prevention at the Chinese Center for
Disease Control and Prevention.

Bacteria and Infection of Mice
N. farcinica IFM 10152 was purchased from the German
Resource Centre for Biological Materials. Bacteria were grown
in BHI broth (Oxoid Ltd, Hants, UK) at 37°C to exponential
phase before experiments. Female and male C57BL/6 WT mice
were injected intraperitoneally with a uniform bacterial
suspension (100 µl) containing approximately 2×108 colony-
forming units (CFU), and mortality was assessed for 14
consecutive days. For inflammatory studies, 1×107 CFU of
N. farcinica IFM 10152 (50 µl) or 50 µl PBS was intranasally
infected under anesthesia.
Frontiers in Immunology | www.frontiersin.org 29
Weight and Body Temperature
Mouse weight and body temperature were quantified
immediately prior to N. farcinica IFM 10152 infection and 1
day post-infection. Mice were weighed to hundredth of a gram
accuracy, and body temperature was monitored with an Animal
Thermometer (KEW, Nanjing, China), which steadily assesses
rectal temperature to the nearest 0.1°C in 3–5 seconds.

Bronchoalveolar Lavage Fluid and Lung
Homogenates Sample Collection
After the mice were sacrificed by cervical dislocation, pulmonary
bronchoalveolar lavage fluid (BALF) was obtained through 3
successive lavages of the bronchi with 1 mL of ice-cold PBS
under a sterile environment, and the protein content was
assessed using Bradford reagent (TIANGEN, Beijing, China)
following the manufacturer’s instructions. Whole lung and
spleen tissue was collected and homogenized in 1 ml of PBS.
For enumerating bacterial counts, serial dilutions of homogenate
were plated on BHI agar plates, and the number of N. farcinica
IFM 10152 CFUs was counted after 48 hours of incubation at
37°C.

Lung Histopathology
Lungs were fixed in 4% paraformaldehyde overnight, embedded
in paraffin and cut into 5-mm sections. Slides were stained using
hematoxylin and eosin and then viewed using a biological
microscope (Nikon, Eclipse Ci-L, Japan) according to the
manufacturers’ instructions.

Cytokine Measurements
For time course experiments, animals were randomly assigned to
be euthanized at 1, 7, or 14 days. Supernatants from lung
homogenates were used to measure IL-4, IL-6, IL-10, IL-12,
TNF-a and IFN-g by quantitative ELISA (BD OptEIA™, San
Diego, CA, USA). The assays were conducted as recommended
by the manufacturer, and all cultures were processed in triplicate.

Growth Curve
To examine the direct effect of E2 on N. farcinica IFM 10152
growth, E2 at different concentrations (10 nM, 50 nM, 250 nM)
was added to the growth curve plate at 37°C. The OD600 value
was tested half an hour for 48 hours using an automatic growth
curve analyzer (Bioscreen, Finland).

Ovariectomy and Estrogen Treatment
Ovaries of 6-week-old female mice were removed through
bilateral incisions over the dorsum under anesthesia. For the
sham operation, the ovaries were identified, and an equal volume
of paraovarian adipose tissue was removed. Ten days after
incisions were sutured, mice were injected subcutaneously with
100 mL of sesame seed oil with or without 100 ng of E2 (Sigma,
St. Louis, MO) at 10:00 am for ten consecutive days before N.
farcinica IFM 10152 infection. Then, E2 concentrations in serum
were measured at 1 day postinfection using a Mouse E2 ELISA
kit (MEIMIAN, Wuhan, China). Bacterial burden and protein
content were determined as described above.
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Cell Isolation and Culture
Primary alveolar macrophages were obtained by centrifuging
BALF and were resuspended in phenol-free DMEM (BBI,
Shanghai, China) supplemented with 10% fetal bovine serum
(FBS; Gibco, USA). After 2 hours of incubation in the cell culture
dishes at 37°C, the supernatant was discarded, and the adherent
cells obtained were cultured with new medium. The mouse and
human cell lines RAW264.7 and A549 (National Infrastructure
of Cell Line Resource, Beijing, China) were cultured in phenol-
free DMEM with 10% FBS at 37°C. In each experiment, wells
were washed three times with PBS and seeded with or without 50
nM E2 at 37°C for 16–18 h in a CO2 incubator before infection,
and the cell suspension containing N. farcinica IFM 10152 was
treated at an MOI of 10:1.

Adhesion and Invasion
For the adhesion assay, A549 and RAW264.7 cells were seeded
into 24-well microplates with or without round glass coverslips
at a density of 3×105 cells per well. After 1 h postinfection at
37°C, for electron microscopic observation, cells were washed
three times with PBS and then fixed with methanol for 8 min at
room temperature. After methanol was removed, cells were
stained with Giemsa stain solution and left for 30 min at room
temperature. Coverslips were then washed and removed from
the petri plate and examined using an Echo Revolve Generation 2
(ECHO, USA). For bacterial adhesive determination, cells were
washed twice with PBS to eliminate extracellular bacteria and
lysed with 1 ml of H2O to disrupt the cells and release the
intracellular bacteria. Finally, cell lysates were serially diluted 10-
fold for CFU determination and plated on BHI agar plates.

For the invasion assay, A549 and RAW264.7 cells were
incubated in a 24-well microplate at a density of 3×105 cells
per well, and primary alveolar macrophages were incubated at a
density of 3×104 cells per well. After 1 h of infection, cells were
washed twice with PBS to eliminate extracellular bacteria and
incubated in DMEM containing 50 mg/ml amikacin (20) and 2%
FBS. For bacterial survival determination, cell lysates were plated
on BHI agar plates after serially diluted. After 48 h of incubation,
the colonies were counted.

Cytotoxicity Assay
Cytotoxicity assays of the E2-treated group and control group at
8 h postinfection were conducted using a CytoTox 96® Non-
Radioactive Cytotoxicity Assay (Promega, Madison, USA) as
previously described (21). The absorbance data at 490 nm were
collected using a microplate reader (BioTek, USA) according to
the manufacturer’s instructions.

Estrogen Receptor Antagonist
To block estrogen receptors, RAW264.7 cells were pretreated for
1 h at 37°C with the ER antagonist ICI 182780 (which blocks both
nuclear and nonnuclear ERs, APEBixo, USA), the ERa-specific
antagonist MPP (APEBixo, USA) or the ERb-specific antagonist
PHTPP (APEBixo, USA) prior to E2 exposure. CFU determination
in RAW 264.7 cells was counted as described before.
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Western Blot Analysis
For Western blot analysis, whole-cell extracts were harvested
using RIPA lysis buffer (strong) (CWBIO, Beijing, China)
containing protease inhibitor cocktail (CWBIO, Beijing, China)
and phosphatase inhibitor cocktail (CWBIO, Beijing, China) at
30 min, 60 min, and 120 min postinfection, separated by SDS–
PAGE and transferred onto PVDF membranes (Millipore,
Darmstadt, Germany). Subsequently, the membranes were
incubated with primary antibodies against monoclonal mouse
anti-b-actin (1:4000, TransGen, China), rabbit anti-p-p44/42
MAPK (1:1000, CST, USA), rabbit anti-p-SAPK/JNK (1:1000,
CST, USA) or rabbit anti-p-p38 (1:1000, CST, USA) overnight,
followed by incubation with HRP-conjugated goat anti-rabbit
IgG (1:1000, Beyotime, China) or HRP-conjugated goat anti-
mouse IgG (1:4000, ZSGB-BIO, China). Finally, the bands were
visualized using Amersham® Hyperfilm® ECL™ and MP
Autoradiography Films (GE Healthcare).

MAPK Inhibitor
To block MAPK signaling, RAW264.7 cells were pretreated for 1
h at 37°C with inhibitors of 20 mM p38 (SB 203580, Sigma, USA),
20 mM ERK (PD 98059, Sigma, USA) or 20 mM JNK (SP 600125,
Sigma, USA) prior to E2 exposure. CFU determination was
counted as described before.

Statistical Analysis
Survival and growth curves were analyzed using GraphPad Prism
9.0.0. Group means and standard deviations (SDs) were analyzed
by Student’s t test. Grayscale values of protein bands were
analyzed by Image J. For all tests, difference was considered
statistically significant if the p value is less than 0.05.
RESULTS

Female Mice Show Higher Mortality From
N. farcinica Infection Than Male Mice
Following N. farcinica IFM10152 inoculation, female mice died
significantly earlier than male mice, with survival differences
noted as early as 24 h post-infection (Figure 1A). While 90% of
male mice were able to survive, only 50% of female mice survived
for 14 consecutive days.

Female Mice Show Increased Disease
Severity Upon N. farcinica Infection
To determine potential differences in lung infection and
inflammation between sexes, we further established a nonlethal
acute pneumonia model in age-matched C57BL/6 female and
male mice with 1 ×107 CFU N. farcinica IFM 10152 by intranasal
infection. At 24 h postinfection, we observed that female mice
had decreased body weight (4.04% decrease vs. 2.32%,
Figure 1B) and increased body temperature (0.7°C increase vs.
0.1°C, Figure 1C) compared with male mice. Except for the
dramatic physical changes, female mice had more abundant
protein content than male mice in their airways (P < 0.05), as
a sign of lung injury (Figure 1D). Consistent with the poor
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prognosis, female mice displayed a higher bacterial burden in
lung tissue (P < 0.001) than male mice (Figure 1E), but no
bacteria were found in the spleen tissue in either male or female
mice (data not shown).

Examination of lung histopathology revealed exacerbated
pathology in the N. farcinica IFM 10152-infected female mice
compared with male mice (Figure 1F). The lungs of infected
female mice showed marked thickening of the alveolar wall with
large amounts of lymphocyte, neutrophil and macrophage
infiltration, and some necrotic cell debris and hemorrhaging
were also observed in the bronchial lumen. In addition, there was
also evidence of inflammatory cells infiltrating into a ring around
the vessel, forming a vascular sleeve (Figure 1F; black arrow).
Frontiers in Immunology | www.frontiersin.org 411
Male mouse-infected lungs showed evidence of lymphocyte and
neutrophil infiltration, as well as slight thickening of the alveolar
wall. And no obvious necrotic cell debris and vascular sleeves
were observed in the bronchial lumen.

Female Mice Display Higher Cytokine
Production in Response to Respiratory
N. farcinica IFM 10152 Infection
The production of cytokines by innate immune cells can also
differ between the sexes in response to different stimuli, including
bacterial infections. Analysis of the cytokine levels in the lung
supernatant showed that at 1, 7 and 14 days postinfection,
female mice had significantly elevated cytokine production
A B

D E

F

C

FIGURE 1 | Female mice are more susceptible to N. farcinica infection. (A) Female mice (n = 10) and male mice (n = 10) were injected intraperitoneally with 2×108

CFU (100 µl) of N. farcinica IFM 10152, and mortality was assessed for 14 days until no additional deaths were observed. (B–F) Female mice (n = 12) and male mice
(n = 12) were infected intranasally with 1×107 CFU (50 µl) for 24 hours, and control groups were infected with 50 µl of PBS. (B) Change in body weight of mice. (C)
Change in body temperature. (D) Protein content in BALF. (E) Bacterial burden in lung homogenates. (F) Representative H&E-stained lung sections of mice. Scale
bars: 100 µm. Each point represents a mouse. Lines display means with SEM. Data are from 3 independent experiments. *P < 0.05, **P < 0.01, and ***P < 0.001.
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levels (IL-4, IL-6, IL-10, IL-12, TNF-a and IFN-g) in response to
N. farcinica IFM 10152 compared with male mice, although all
cytokines showed a decreasing trend during the days(Figure 2).
These massive cytokine levels, which persisted for more than two
weeks, are likely a consequence of the poor prognosis in the
female mice.

E2 Cannot Alter the Growth Curve of
N. farcinica IFM 10152
Sex steroid hormones have been described to directly influence
bacterial growth and metabolism. To test whether E2 could exert
a direct effect on N. farcinica IFM 10152 growth, bacteria were
grown in brain-heart infusion agar (BHI), with and without E2.
Under the conditions tested, we found no quantitative change in
the growth of N. farcinica IFM 10152, regardless of E2
concentration (Figure 3A).
Frontiers in Immunology | www.frontiersin.org 512
Treatment With E2 Increases
Ovariectomized Female Mouse
Susceptibility to N. farcinica IFM 10152
Lung Infection
Having identified no direct effect of E2 onN. farcinica IFM 10152
growth, we sought to determine whether E2 impacted the host
inflammatory response. Female mice were sham ovariectomized
(supplemented with sesame seed oil) or ovariectomized
(supplemented with sesame seed oil or E2 at physiological
doses) prior to challenge with N. farcinica IFM 10152. The
results showed that serum E2 levels in female mice decreased
significantly after ovariectomization but increased after
exogenous E2 supplementation (Figure 3B). The E2 effect was
confirmed by measuring the protein content in BALF and
counting the bacterial burden in lung tissues. Concordant
with the changes in E2 levels, E2-treated ovariectomized
FIGURE 2 | Female mice display higher cytokine production following N. farcinica IFM 10152 infection. Female mice (n = 32) and male mice (n = 32) were infected
intranasally with 1×107 CFU (50 µl) for 1, 7, and 14 days, or 50 µl PBS for 1 day, and cytokine levels (IL-4, IL-6, IL-10, IL-12, TNF-a and IFN-g) in the lung
supernatant were measured by ELISA. Lines display means with SEM. Data are from 2 independent experiments. *P < 0.05, **P < 0.01, and ***P < 0.001.
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mice had a significant increase in protein content compared
with oil-treated ovariectomized mice, which was essentially
the same as that of oil-treated sham ovariectomized
mice (Figure 3C). Furthermore, the lung bacterial burden
of ovariectomized mice was significantly higher after
supplementation with E2, although it was still significantly lower
than that of sham ovariectomized mice (Figure 3D). These data
demonstrated that ovariectomized mice supplemented with E2
exhibited impaired bacterial clearance compared to oil-treated
ovariectomized mice.

E2 Contributes to the Growth of
N. farcinica IFM 10152 in
Alveolar Macrophages
Previous studies established that Nocardia grew as a
facultative intracellular parasite in cultured alveolar
macrophages (21, 22). We next determined the direct effects of
E2 on N. farcinica IFM 10152 growth in alveolar macrophages by
seeding N. farcinica IFM 10152 into phenol-free DMEM
containing FBS with 50 nM E2 for 6 hours. The results showed
that E2-treated cells had more N. farcinica CFUs in plates than
controls (Figure 3E).
Frontiers in Immunology | www.frontiersin.org 613
E2 Facilitates Adhesion and Invasion of
N. farcinica IFM 10152 Into Host
Cells Dependent on Nuclear
Estrogen Receptors
To further evaluate the effect of E2 on N. farcinica IFM 10152
growth in cells, A549 and RAW 264.7 cells were imaged by
electron microscopy after 1 h of infection. The results showed
that N. farcinica IFM 10152 adhered and proliferated better in
the E2-treated group than in the control group (Figures 4A, B).
As such, the bacterial burden of N. farcinica IFM 10152 in the
E2-treated groups was higher than that in the control group at 6,
12 and 24 h postinfection (Figure 4C). In addition, we observed
that the cytotoxicity of N. farcinica IFM 10152 was significantly
higher in the E2-treated group than in the control group in both
A549 and RAW264.7 cells (Figure 4D). To determine whether
the difference in cells treated with E2 versus vehicle was ER-
specific, RAW 264.7 cells were seeded and supplemented with
three ER antagonists. The increased bacterial burden in E2-
supplemented RAW 264.7 cells was attenuated in the presence of
ICI 182,780, MPP and PHTPP (Figure 4E). Taken together,
these findings support a specific role for nuclear ERs in the
impact of E2 on promoting N. farcinica IFM 10152 infection.
A B

D EC

FIGURE 3 | E2 supplementation increases ovariectomized female mouse susceptibility to N. farcinica IFM 10152 lung infection. (A) Growth curve of N. farcinica IFM
10152 in BHI with 10 nM, 50 nM, and 250 nM for 48 hours. (B–D) Female mice were treated with sham ovariectomy with sesame seed oil (n=8), ovariectomy with
sesame seed oil (n = 12), or ovariectomy with E2 (n = 12) prior to challenge with N. farcinica IFM 10152. (B) E2 levels in serum. (C) Protein content in BALF.
(D) Bacterial burden in lung homogenates. (E) Bacterial survival in alveolar macrophages treated with or without E2. Lines display means with SEM. Data are from 2
independent experiments. **P < 0.01, and ***P < 0.001.
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E2 Promotes Bacterial Survival by
Downregulating the Phosphorylation Level
of the MAPK Pathway
To elucidate the mechanisms by which E2 promotes Nocardia
survival in host cells, we examined mitogen-activated protein
kinase (MAPK) activation in response to N. farcinica IFM 10152
infection. The results showed that the E2-treated group
downregulated the phosphorylation levels of ERK (p-ERK),
JNK (p-JNK), and p38 (p-p38) compared to the control group
in both A549 and RAW 264.7 cells (Figures 5A–D). Then, we
detected the relationship between bacterial survival in cells and
the MAPK signaling pathway with MAPK inhibitors. The results
showed increased bacterial survival in the SB 203580- and SP
600125-treated groups, although there was no detectable
Frontiers in Immunology | www.frontiersin.org 714
difference between the PD 98059-treated and control groups
(Figure 5E). These results indicate that E2 promotes bacterial
survival by inhibiting activation of the MAPK-mediated
inflammatory response.
DISCUSSION

Sex differences in immunity to respiratory pathogens are evident
in humans and experimental rodent models (23). The roles of sex
differences and sex hormones have been investigated in
experimental models of infection and inflammation with
varied results. For many inflammatory-mediated pulmonary
diseases, including Mycobacterium tuberculosis (24) and
A

B

D E

C

FIGURE 4 | E2 facilitates adhesion and invasion of N. farcinica IFM 10152 into host cells through ERa and ERb signaling. (A–E) A549 and RAW 264.7 cells were
treated with or without 50 nM E2 for 16–18 h prior to Nocardia infection. Electron microscopic observation (A) and adhesion rate (B) of bacterial strains to A549 (left)
and RAW 264.7 (right) cells after 1 h of infection. (C) Invasion of bacterial strains into A549 (left) and RAW 264.7 (right) cells after 6, 12, and 24 h of infection. (D) The
cytotoxicity of N. farcinica IFM 10152 to A549 and RAW 264.7 cells after 8 h of infection. (E) Bacterial survival in RAW 264.7 cells treated with ICI 182780, MPP or
PHTPP. Lines display means with SEM. Data are from 3 independent experiments. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Streptococcus pneumoniae (25), male mice are more susceptible
than female mice. However, female mice are more likely to be
hospitalized and/or die following infection with other respiratory
pathogens, including Pseudomonas aeruginosa (26, 27) and
Acinetobacter baumannii (28).

Given the current importance now placed on utilizing both
males and females in research, we designed an innate immune
response model of N. farcinica IFM 10152 respiratory tract
infection in male and female mice. The results showed
significantly higher mortality in female mice infected with a
lethal dose of N. farcinica. Similarly, infection with a nonlethal
dose resulted in worse outcomes in female mice than in male
mice. The data from the present study illustrate that female mice
displayed unstable physical changes, severe lung damage,
elevated inflammatory cytokine responses and overall lower
Frontiers in Immunology | www.frontiersin.org 815
bacterial clearance in the lungs after 24 h of infection. In
addition, we observed that cytokines in the lung supernatant of
female mice were higher than those of male mice for 2 weeks
after infection. These massive cytokine levels increase body
temperature and excessive inflammatory response, which may
be associated with poor prognosis in female mice. These data
support and extend the hypothesis that although there is a higher
prevalence of Nocardia infection in males, females tend to suffer
a poor outcome.

Previous studies have focused mostly on sex differences in the
incidence of Nocardia infection, but little attention has been
given to sex differences in prognosis. We observed higher
mortality for females than males in some well-documented
reports. Rafiei N et al. (29) studied 10 males and 10 females
with Nocardia infection in Queensland from 1997 to 2015. After
A B

D

E

C

FIGURE 5 | E2 promotes bacterial survival by downregulating the MAPK signaling pathway. A549 (A) and RAW 264.7 (B) cells were treated with or without 50 nM
E2 for 16–18 h prior to Nocardia infection. Western blot analysis of the phosphorylation levels of ERK (p-ERK), JNK (p-JNK), and p38 (p-p38) after 30, 60, and 120
minutes of infection. The relative expression of each protein in A549 (C) and RAW 264.7 (D) cells was analyzed by Image J. (E) Bacterial survival in RAW 264.7 cells
treated with 20 mM PD 98059, 20 mM SP 600125, or 20 mM SB 203580. Lines display means with SEM. Data are from 3 independent experiments. *P < 0.05, **P <
0.01, and ***P < 0.001.
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years of follow-up, it was found that the death toll of females was
six, which was higher than that of males (two). Sex differences in
disease outcome are likely mediated by multiple factors,
including sex hormones, glucocorticoids and sex chromosomal
genes (30). E2 has been shown to have both proinflammatory
and anti-inflammatory roles in host resistance to pathogen
infections (18, 19). In the present study, ovariectomized female
mice shared a lower bacterial burden in the lungs than sham
ovariectomized female mice, and exogenous administration of E2
increased the bacterial burden in ovariectomized female mice,
which indicates that E2 can directly or indirectly impair the
ability of Nocardia clearance in mice. Moreover, although the E2
level in E2-treated ovariectomized female mice essentially
reached normal levels, the bacterial burden in the lungs was
still significantly lower than that in sham ovariectomized female
mice, which indicates the difficulty in reproducing natural E2
function viamanipulation in vivo. Similarly, we observed that E2
can bind nuclear ER-a and ER-b to promote the invasion of
Nocardia into host cells, resulting in severe cellular damage.
However, a previous study showed that E2-treated mice can
effectively inhibit the growth of bacterial grains after plantar pad
infection with N. brasiliensis, demonstrating the protective effect
of E2 in mice (16). These different results could be due to the
differences in the experimental subjects and experimental
approaches, such as the Nocardia strains used and/or
stimuli employed.

In most respiratory diseases, in general, the severity of
symptoms was related to the innate immune response triggered
during the early period of infection (31). MAPKs are key factors
mediating cellular activities such as cell differentiation, stress
responses, apoptosis, and immune defenses to many external
stimuli (32). Our observations indicate that E2 can significantly
downregulate the phosphorylation level of the MAPK pathway.
Further research also showed that downregulation of the MAPK
signaling pathway was conducive to bacterial survival in host cells.
These data provide evidence that downregulation of the MAPK
signaling pathway is one of the mechanisms by which E2
promotes the survival of N. farcinica.

In the present study, we demonstrated that the differential
susceptibility to Nocardia–induced pneumonia between sexes is
partly based on E2. Our data provide evidence for determining the
specific therapeutic target for sex hormone manipulation. Sex-
based differences need to be taken into account in subsequent
research and in the understanding of nocardiosis. Ongoing work
in our laboratory is further elucidating the difference in antibody
production between male and female mice following Nocardia
infection and then delineating the underlying mechanism from
the perspective of humoral immunity.
Frontiers in Immunology | www.frontiersin.org 916
CONCLUSION

Despite the higher prevalence of Nocardia infection in males,
females tend to suffer a poor outcome with increased mortality,
elevated lung bacterial loads and an exaggerated pulmonary
inflammatory response. 17b-Estradiol can promote bacterial
survival by downregulating the host MAPK signaling pathway,
which is one of the mechanisms responsible for this sex difference.
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With the in-depth understanding of the anti-cancer immunity, immunotherapy has
become a promising cancer treatment after surgery, radiotherapy, and chemotherapy.
As natural immunogenicity substances, some bacteria can preferentially colonize and
proliferate inside tumor tissues to interact with the host and exert anti-tumor effect.
However, further research is hampered by the infection-associated toxicity and their
unpredictable behaviors in vivo. Due to modern advances in genetic engineering, synthetic
biology, and material science, modifying bacteria to minimize the toxicity and constructing
a bacteria-based immunotherapy platform has become a hotspot in recent research. This
review will cover the inherent advantages of unedited bacteria, highlight how bacteria can
be engineered to provide greater tumor-targeting properties, enhanced immune-
modulation effect, and improved safety. Successful applications of engineered bacteria
in cancer immunotherapy or as part of the combination therapy are discussed as well as
the bacteria based immunotherapy in different cancer types. In the end, we highlight the
future directions and potential opportunities of this emerging field.

Keywords: immunotherapy, bacterial therapy, engineered bacteria, synthetic biology, microbiology.
1 INTRODUCTION

In recent decades, the comprehensive cancer treatment including surgery, radiotherapy, and
chemotherapy has improved the overall survival rate and quality of life for numerous cancer
patients; however, intractable problems such as unforeseen side effects, inaccurate curative
efficiency, and high recurrence tendency still exist, necessitating the development of better
intervention strategies (1).

Immunotherapy which utilizes agents to reactivate or boost immune surveillance appeals to be a
novel and promising strategy for cancer treatment in recent years (2). Some of the therapeutic drugs
such as interferon-a (IFN-a) for hairy cell leukemia (3), interleukin-2 (IL-2) for metastatic renal
cancer and metastatic melanoma (4) have been approved by the US Food and Drug Administration
(FDA), and has achieved certain remission in some patients. However, the short therapeutic
duration of IFN-a (5) and the high toxicity and relatively low response rate of IL-2 (6) were
reported. In 2011, ipilimumab, a monoclonal antibody that bind to cytotoxic T lymphocyte antigen
4 (CTLA4), was approved for advanced melanoma (7), which introduced the significant immune
checkpoint inhibitor and ushered in a new age of immunotherapy. A series of other checkpoints
org June 2022 | Volume 13 | Article 911783118
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such as programmed cell death protein-1 (PD-1), programmed
cell death-ligand 1 (PD-L1) and lymphocyte activation gene-3
(LAG-3) have also been identified to promote tumor immune
escape and tumorigenesis. Therefore, inhibitors against these
targets have been extensively developed and approved by the
FDA for various cancer therapies, which significantly improved
the survival rate of the advanced cancer patients in some clinical
practices (8). However, the “cold” tumor microenvironment
(TME) (9, 10) which is characterized by lacking of infiltrating
immune cells or with exhausted immune cells compromises
immune checkpoint blockade therapy and accounts for the
non-responsiveness of some cancer patients, necessitating the
development of improved immunotherapeutic strategies.

Tracing back to the origin of the modern immunotherapy,
bacteria have been utilized as medication to treat incurable
cancers. William Coley injected heat-inactivated Streptococcus
and Serratia marcescens (known as Coley’s toxins) into malignant
tissues and observed the ablation of sarcomas in the nineteenth
century (11). Following further investigation, the researchers
discovered that the toxins could trigger the activity of the
immune system against tumors (12), thus William Coley was
honored as the father of immunotherapy (13). Progressively, the
interactionsbetweenbacteria and the immune systemin the context
of cancer has extensively developed the field of immunotherapy
around the globe. A successful example, Bacillus Calmette–Guérin
(BCG), which is a live attenuated strain of Mycobacterium
tuberculosis variant bovis originally designed as a vaccine for
tuberculosis (14), has been approved by the FDA for the
treatment of bladder cancer (15). But further development of this
biological therapy was stalled due to the infection-associated
toxicity and the insufficient comprehension of tumor immunity at
the time (16).

During the recent years, studies have also demonstrated the
existence of intratumoral bacteria and the immune modulation
roles of microbiota, indicating that the tumor tissue is a complex of
bacteria interacting with tumor cells and the host (17). Bacteria
involve into almost all biological aspects of cancer, though the effect
is two-sided. Pathogens including Helicobacter pylori,
Fusobacterium nucleatum, and Staphylococcus aureus can cause
the chronic inflammation and contribute to the tumorigenesis (18–
20). Probiotics and some certain species of bacteria can induce
direct cell apoptosis which show promising characteristic to serve as
anti-cancer preparations (21, 22). The recent study demonstrated
the intracellular bacteria in breast cancer contributed the lung
metastasis via the cytoskeleton remodeling which indicating that
targeting the intracellular bacteria might be a therapeutic choice
(23). Bacteria also involved into the anti-cancer drug metabolism,
like chemotherapeutic drug gemcitabine was disintegrated by
intratumoral bacteria in pancreatic ductal adenocarcinoma (24).
Bacteria derived HLA-bound peptides showed immunogenic
properties which could be further studied (25). These days, with
the in-depth understanding of TME and the rapid advancement of
microbiology, nanotechnology and recombinant DNA technology,
reprograming bacteria and building genetic circuits that can control
their behavior are now becoming conceivable, making bacterial
therapy a new hotspot in current cancer research and treatment
Frontiers in Immunology | www.frontiersin.org 219
development (26–28). As the genome information of a large
number of bacteria has been successfully deciphered, Escherichia
coli and Salmonella typhimurium (29), have evolved into highly
editable engineered microorganisms that can be artificially endowed
with diverse traits to facilitate them become sophisticated weapons
against cancer.

This review will focus on the role of bacteria in anti-cancer
immunity, as well as the present practice of employing bacteria as
carriers or therapeutic agents in immunotherapy. The benefits of
unmodified bacteria in immunotherapy will be discussed first,
followed by engineered bacteria as enhanced treatment
strategies. And the application of engineered bacteria in
combined immunotherapy as well as the roles of bacteria-
based immunotherapy in specific tumors are also discussed.
2 THE NATURAL ADVANTAGES
OF BACTERIA

Bacteria show tumor-targeting properties, and their surface
structure or metabolites can also activate the immune system to
exert anti-tumor effects. Therefore, bacteria are blessed with
inherent advantages to function as therapeutic agent or carriers in
tumor immunotherapy. This section will highlight the chemotaxis
of bacteria to tumors and the immune activation effect.

2.1 Tumor-Targeting Properties
of Bacteria
The vasculature in tumor tissue is generally chaotic and irregular,
leading to insufficient diffusion of oxygen and nutrients (30). As a
result, the central region of tumors is often presented as a hypoxic
environment with necrotic tissues, where the oxygen pressure is as
low as 7-28mmHg, while it is 40-60mmHg for normal tissues (31).
Studies have found that this central area could provide a safe
haven for some obligate and facultative anaerobes to colonize and
proliferate after systemic administration (32). Zheng et al.
reported that the number of S. typhimurium in the tumor site
reached 1×1010CFU/g after intravenous administration for 3 days,
and the ratio of tumor to normal organ bacteria exceeds 10000:1
(33). Shi et al. also found that Bifidobacterium could be detected
inside the tumor sites one week after systemic administration,
while remained undetectable in the lung (34). On the contrast,
traditional chemotherapeutic drugs that solely rely on the passive
distribution and limited permeability, are poorly accessible to
these necrotic areas with sparse blood vessels through systemic
administration, which leads to the relapse of tumors since the
dormant but viable cancer cells still reside in the center zone (35).
Therefore, bacteria are capable of colonizing the tumor core, the
deepest and most difficult region to target for other types of agents.

The mechanism by which bacteria migrate to tumor sites
remains to be fully elucidated. Some studies suggest that the
disorganized vasculature in malignant tissues, preferential
colonization and reproduction of bacteria in TME are the main
factors endowing bacteria with tumor chemotaxis (36). When
attenuated bacteria were injected intravenously, most of the
June 2022 | Volume 13 | Article 911783
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bacteria were cleared by the oxygen-rich environment and immune
cells in the physiological tissues, however, the motility of bacteria
prompts them to cross the vascular system and disperse themselves
to the hypoxic area in the center of the tumor, where the hypoxic
environment and the nutrients released by the necrotic cancer cells
promote the massive proliferation of the anaerobic bacteria.
Meanwhile, the local immunosuppressive microenvironment also
prevents them from being cleared in the early colonization stage
(37), during which process, TNF-a and its induced hemorrhagic
necrosis play an important role. Leschner et al. found that injection
of S. typhimurium into tumor tissue increased TNF-a levels in
circulatory system and induced increased local hemorrhage. As the
bacteria flowed out of the blood vessels, they were trapped in the
irregular vasculature, resulting in its colonization in tumors. When
the researchers neutralized TNF-a in the blood, the blockage of
blood flow and the reduction of bacterial colonization were
observed (38), further verifying the role of TNF-a.
2.2 Immune Activation Properties
of Bacteria
Hypoxia, as a hallmark for TME, also leads to the suppressive
function of local immune cells (39, 40). With the tumor
development, the uncontrolled proliferation of cancerous cells
deprives the oxygen and nutrients from immune cells (41). The
immune cells therefore tend to be exhausted, present a suppressive
phenotype by secreting pro-cancer cytokines and chemokines and
fail to respond the anti-cancer signals. However, bacteria derived
molecules such as peptidoglycan, lipopolysaccharide (LPS), and
lipoteichoic acid can provide strong immune stimuli signals. They
mainly bind to pattern recognition receptors (PRRs) expressed by
innate immune cells such as dendritic cells (DCs) and macrophages
to induce significant migration of immune cells, stimulate the
immune system to recognize and kill tumor cells (42). For
instance, Salmonella LPS can increase the expression of IL-1b and
exert the anti-tumor effect through the inflammasome and the Toll-
like receptor 4 (TLR4)-mediated signaling pathway (43). As a
structure of some Gram-negative bacteria, flagella can promote
the expression of various pro-inflammatory cytokines, NO, H2O2,
and chemokines by binding to Toll-like receptor 5 (TLR5) on
dendritic cells (44), enhance the tumoricidal effect mediated by
CD8+ T cells and down-regulate the suppressive function of Treg
cells (45). Studies have shown that Bifidobacterium could stimulate
stimulator of interferon genes (STING) and increases cross-priming
of DCs (34). In addition to enhancing anti-tumor immunity by
promoting the secretion of immune active factors, studies have
shown that Salmonella can lead to up-regulation of connexin 43
(Cx43) expression in melanoma cells, mediating the formation of
gap junctions between tumor cells and adjacent dendritic cells.
Through this structure, tumor cells can present antigenic peptides to
dendritic cells to activate the killing effect of cytotoxic T cells (46,
47). Si et al. also reported that oral administration of Lactobacillus
rhamnosus GG increased tumor infiltrating DCs and promoted
recruitment of CD8+ T cells through the type I IFN signaling.

Various cells such as macrophages and myeloid-derived
suppressor cells (MDSCs) play important roles in the formation
Frontiers in Immunology | www.frontiersin.org 320
of the immunosuppressive microenvironment, which represents a
therapeutic regimen for manipulating these cells to reverse the
suppressive TME (48, 49). Certain components of bacteria can
mediate the phenotypic transformation of immune cells. For
example, macrophages make up a considerable percentage of
immune cells and play an important role in immune regulation.
According to their surface chemicals and functionalities, they are
split into two subtypes. Anti-tumor macrophages mediate
phagocytosis, release pro-inflammatory cytokines, whereas pro-
tumor macrophages secrete anti-inflammatory cytokines, mediate
tumor angiogenesis (50). Studies have found that flagellin can
mediate the transformation of pro-tumor macrophages to anti-
tumor macrophages, transforming the immunosuppressive
microenvironment into an immunocompetent environment (33).
Researchers has also reported that a variety of Lactobacillusi species
promoted anti-tumor M1-like polarization through the TLR2
signaling pathway (51, 52). In addition, MDSCs exist in the blood
of cancer patients and have a strong inhibitory effect on T cells and
NK cells. Studies have found that Listeria can infect MDSCs, reduce
the content of MDSCs in the blood, and promote the remaining
MDSCs to secrete IL-12, switching to an immunocompetent
phenotype (53). In addition, a reduction in tumor growth was
observed in animal models treated with Listeria, suggesting that
Listeria can inhibit tumors by acting on MDSCs.
3 ENGINEERING BACTERIA FOR
THERAPEUTIC IMPROVEMENT

The chemotactic colonization of bacteria at tumor sites, as well as
their immunogenicity, makes them ideal candidates for
immunotherapy. It has been reported that several bacteria were
detected inside the tumor tissues and intratumoral delivery of
probiotics can promote the anti-tumor immunity (34, 54),
providing a theoretical foundation for the use of microbes in tumor
treatment. In recent years,with the development of synthetic biology,
material science and gene editing tools, bacteria engineering has
become possible. The tumor targeting properties, therapeutic effects,
and safety performance can be further improved by different ways of
modifying and transforming. Following studies listed inTable 1 and
also shown inFigure1, summarizes excellentprospectsof engineered
bacteria with 3 aspects of improved properties.

3.1 Engineered Bacteria Improve
Tumor Tropism
It is critical to take the tumor-targeting abilities into consideration
when designing therapeutic agents, which accounts for not only the
healing effect but also the elimination of off-target damage.When it
comes to the improvement of tumor tropismof engineeredbacteria,
itmaybe just as crucial tohinder their survival innormal tissues as it
is to boost their accumulation in tumor sites.

3.1.1 Construction of Auxotrophic Strain
and Inducible Promoter
The construction of auxotrophic mutants is a strategy to
improve bacteria targeting property. Based on the difference
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TABLE 1 | Engineered bacteria for the enhanced therapeutic outcome.

Improvement Strain Mechanism Cancer model Ref

Enhanced tumor
tropism

S. typhimurium A1 Leu/Arg-dependent auxotrophy PC-3 human prostate cancer
(55)

S. typhimurium SF104 Mutant of aroA gene CT26 mouse colon cancer
RenCa mouse renal cancer (56)

E. coli Nissle 1917 Thymidine and diaminopimelic acid auxotrophy B16-F10 mouse melanoma
EL4 mouse T-cell lymphoma
A20 mouse B-cell lymphoma
4T1 mouse breast cancer
CT26 mouse colon cancer

(57)

S. typhimurium YB1 Place asd gene under a hypoxia conditioned promoter MDA-MB-231 human breast cancer
(58)

S. typhimurium VNP20009 Express CEA-specific antibody MC38 mouse colon cancer
(59)

S. typhimurium SL3261 Express CD20-targeting antibody B16-F10 mouse melanoma
MCA203 mouse fibrosarcoma
CT26 mouse colon cancer
Namalwa or Karpas299 human
lymphoma

(60)

S. typhimurium DppGpp Display peptides that bind to avb3 integrin MCF7, MDA-MB-231 human breast
cancer
MDA-MB-435, M21, M21L human
melanoma
U87MG human glioblastoma
ASPC-1 human pancreatic cancer
CT26 mouse colon cancer
4T1 mouse breast cancer
MC38 mouse colon cancer

(61)

L. lactis NZ9000 Display the binding protain of EpCAM and HER2 /
(62)

S. typhimurium VNP20009 Bind aptamers to the bacterial surface 4T1 mouse breast cancer
H22 mouse hepatocellular carcinoma (63)

Immune modulation S. typhimurium VNP20009 Production of IL-18 CT26 mouse colon cancer
D2F2 mouse breast cancer (64)

S. typhimurium BRD509 Production of IFN-g B16-F10 mouse melanoma
(65)

L. lactis NZ9000 Production of anti-CTLA-4 single chain fragment variable /
(66)

E. coli Nissle 1917 Production of STING-agonist cyclic di-AMP B16-F10 mouse melanoma
EL4 mouse T-cell lymphoma
A20 mouse B-cell lymphoma
4T1 mouse breast cancer
CT26 mouse colon cancer

(57)

E. coli Nissle 1917 Production of PD-L1 and CTLA-4 nanobodies CT26 mouse colon cancer
A20 mouse B-cell lymphoma (67)

E. coli Nissle 1917 Production of PD-L1 and CTLA-4 nanobodies in a thermal
sensitive manner

A20 mouse B-cell lymphoma
(68)

E. coli Production of nanobody antagonist of CD47 A20 mouse B-cell lymphoma
4T1 mouse breast cancer
B16-F10 mouse melanoma

(69)

E. coli Nissle 1917 Increase intratumoural concentrations of L-arginine MC38 mouse colon cancer
(70)

S. oneidensis MR-1 Reduce intratumoural concentrations of lactate CT26 mouse colon cancer
(71)

Improved safety S. typhimurium VNP20009 Deletion in the msbB and purI gene B16-F10 mouse melanoma
LOX human melanoma
DLD-1 human colon cancer

(72)

S. typhimurium DppGpp Deletion in the relA and spoT gene /
(73)

L. monocytogenes 10403S Mutant of PrfA gene /
(74)

L. monocytogenes DactA/
DinlB

Deletion in the actA and inlB gene CT26 mouse colon cancer
(75)

E. coli Nissle 1917 Dynamic and tunable regulation of the bacterial surface

(Continued)
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of nutrients contained in normal tissues and tumor sites,
mutants can be designed to be only able to colonize and
survive in tumor tissues. Among them, Salmonella A1 and
SF104 are examples of successful application. Salmonella A1 is
an auxotrophic strain of leucine and arginine (55), while
Salmonella SF104 shows the need for aromatic amino acids
with the mutation of the gene aroA (56), both of which can
make the bacteria unable to enrich in normal tissues, but can
specifically accumulate in tumor sites. E. coli Nissle was also
designed by Leventhal et al. to include two auxotrophies (thyA
and dapA) which result in its inability to survive outside the
TME and in its inability to reproduce within the TME,
respectively (57).

The essential gene asd of Salmonella, which mediates the
synthesis of diaminoacrylic acid (DAP), an important
Frontiers in Immunology | www.frontiersin.org 522
component of the cell wall of Gram-negative bacteria, is placed
under a hypoxia-inducible promoter by Yu et al. In normal
tissues, the synthesis of DAP is blocked, without the supply of
exogenous DAP, the bacteria will be lysed. However, the gene asd
can be expressed in tumor sites with hypoxic environment,
which enables Salmonella to colonize and survive in tumors.
To further reduce off-target effects, they also placed the
expression of inhibitory antisense RNA against asd under an
aerobic-inducible promoter, and finally the strain showed 1000-
fold enrichment in tumor sites compared to other organs (58). In
addition, exogenous substances or stimuli, such as L-arabinose
(78), acetylsalicylic acid (79), radiation stimulation (80), etc., can
also regulate the expression of essential bacterial genes under the
corresponding inducible promoters, which is beneficial to ensure
specific proliferation at the tumor sites.
TABLE 1 | Continued

Improvement Strain Mechanism Cancer model Ref

CT26 mouse colon cancer
4T1 mouse breast cancer (76)

S. typhimurium SL1344 Incorporation of synchronized lysis circuit MC26 mouse colon cancer
(77)

E. coli Nissle 1917 Integrate synchronized lysis circuit into genome CT26 mouse colon cancer
A20 mouse B-cell lymphoma (67)
June 2022 | Volume 13 | Article 911
FIGURE 1 | Engineering bacteria for therapeutic improvement. Under modern microbiology, nanotechnology and recombinant DNA technology, bacteria can be
engineered with enhanced tumor tropism, significant immunomodulation and improved safety profile, leading to reformed therapeutic outcome.
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3.1.2 Modification Tumor-Related Recognition
Molecules
Engineering synthetic adhesins tailored to bind specified cancer-
expressed molecules such as neoantigens or other molecules
abundant in cancer cells can improve some bacteria’s natural
affinity for tumors. Bereta et al. observed increased bacterial
aggregation at tumor sites by expressing a specific single-chain
antibody fragment for carcinoembryonic antigen (CEA) on S.
typhimurium VNP20009 (59); Massa et al. increased bacteria’s
invasiveness against CD20+ lymphoma, while reducing non-
specific aggregation by binding anti-CD20 antibody to the
surface of Salmonella (60). avb3 integrin is overexpressed in a
variety of malignant tumors. By fusing arginine-glycine-
aspartate peptides to bacterial outer membrane protein A, Park
et al. enabled the bacteria to specifically bind to avb3 integrins
and observed significant antitumor effects in xenogeneic
melanoma and breast cancer transplant models (61). Epithelial
cell adhesion molecule (EpCAM) and human epidermal growth
factor receptor 2 (HER2) are transmembrane glycoprotein
receptors associated with colorectal cancer. Plavec et al.
successfully observed the co-localization of bacteria and tumor
cells by displaying the binding protein of EpCAM and HER2 on
the surface of Lactococcus lactis and making the bacteria express
the infrared fluorescent protein for imaging, while on cells that
did not express the corresponding molecule, no bacterial binding
was observed (62). In addition, an aptamer is an oligomeric
nucleic acid that can specifically bind to a certain molecule and
has similar ligand-receptor binding characteristics with the target
molecule. By binding the aptamer AS1411 to the surface of S.
typhimurium VNP20009, Geng et al. observed nearly 2-fold and
4-fold enrichment after 12 and 60 hours in 4T1 and H22 tumor-
bearing mouse models compared to unmodified bacteria,
showing the enhanced targeting performance of this
bacterium (63).

3.2 Engineered Bacteria Regulate the
Immune Microenvironment
It has been stated that several fundamental components of
bacteria are able to alter the immune system of the human
body. However, to obtain greater immune regulatory effects, the
engineered bacteria can be designed to load or express exogenous
immunotherapeutic medications for enhanced anti-
tumor efficacy.

3.2.1 Delivery of Immune-Activating Agents
Given that bacteria preferentially colonize malignant regions and
naturally stimulate innate immune cells, bacteria-based therapy
can provide a baseline level of immune activation in tumor
tissues. Immune activators can effectively reform the
immunosuppressive microenvironment of tumors and are one
of the commonly used therapeutic agents for immunotherapy,
which mainly include cytokines, tumor antigens and other
substances. Cytokines own the ability to promote the activation
and proliferation of immune cells, and the delivery of cytokines
through engineered bacteria are blessed with the characteristics
of high specificity and low side effects. Loeffler et al. used
attenuated S. typhimurium to synthesize IL-18. By increasing
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the infiltration of CD3+/CD4+ T cells and DX5+ NK cells in the
tumor area, the expression of cytokines such as IL-1b, TNF-a,
IFN-g, GM-CSF were increased, and the anti-tumor effect was
also observed (64). Yoon et al. also genetically modified
Salmonella to express and secrete IFN-g, thereby activating NK
cells and mediating direct killing of cancer cells (65). Stimulator
of interferon genes (STING) is another immune activating agent
that can initiate tumor-specific T cell responses by activating
antigen-presenting cells, producing type I interferons, and
mediating antigen cross-presentation to cytotoxic T cells (81).
Leventhal et al. expressed the STING agonist cyclic adenosine
diphosphate through non-pathogenic E. coliNissle, and observed
the expression of type I interferon and various proinflammatory
cytokines such as TNF-aIL-6IL-1bGM-CSF were up-regulated
after intratumorally injection (57). The strain caused robust
tumor eradication and long-term immunological memory in
mice with tumors that were sparsely infiltrated by T cells,
making treated mice resistant to tumor relapses. Tumor
antigens are often used to make tumor vaccines to enhance
immunity and activate immune cells to kill cancer cells. Tumor
vaccines using bacteria as carriers have also been vigorously
developed, exhibiting promising application prospects (82, 83).
The human papillomavirus type 16 oncoprotein E7 (HPV-16 E7)
plays a key role in the pathogenesis of cervical cancer and is
required for host cell immunization. It is reported that oral
administration of L. lactis expressing HPV-16 E7 protein could
lead to significant delay of E7-expressing tumor growth, with
significant increase in the numbers of E7-specific CD4+T helper
and CD8+T cell, indicating that this bacteria-based vaccine
provided profound protective effects against tumor cell
challenge (84). A phase I clinical trial of this oral vaccine is
also underwent to verify its safety and immunogenicity (85).

3.2.2 Delivery of Immune Checkpoint Inhibitors
Immune checkpoint therapy has been approved by FDA for the
treatment of clinical cancer patients, and has achieved certain
clinical results in the treatment of melanoma (7), non-small cell
lung cancer (86), etc. The main mechanism of these drugs is to
block the immunosuppressive state mediated by cancer cells and
relieve the immune tolerance state (87). Monoclonal antibodies
against PD-1, PD-L1 and CTLA4 have been widely used. Namai
et al. successfully expressed human anti-CTLA4 antibody in L.
lactis by genetic modification, and confirmed its recognition and
binding to human CTLA4 by ELISA (66). Gurbatri et al. also
used a combination of anti-PD-L1 and anti-CTLA4 therapy. The
team transformed high-copy plasmids carrying anti-PD-L1
antibodies and anti-CTLA4 antibodies into engineered E. coli
to achieve controllable expression of PD-L1 and CTLA4
antagonists in tumor sites. And the decrease in the number of
Treg cells and the increase in the number of CD4+ and CD8+ T
cells have been observed through immunophenotyping studies,
indicating that the immunosuppressive microenvironment at
this site has been reversed (67). To achieve the selective release
of therapeutic agents at the tumor regions, Shapiro et al. further
manufactured strains that produced tumor-suppressing anti-
PD-L1 and anti-CTLA4 antibodies only when heated to a
trigger temperature of 42-43°C by introducing a temperature-
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actuated genetic state switch. Since the normal human body
temperature is 37°C, these strains do not express anti-tumor
nanobodies after systemic administration. Instead, they grow
inside tumors until a triggering temperature is reached by the
utilization of focused ultrasound (68).

CD47 is an anti-phagocytic receptor that overexpressed in
multiple cancer types. Chowdhury et al. delivered anti-CD47
antibodies by engineering E. coli to activate dendritic cells in the
TME and increase the phagocytosis of cancer cells, which also
promoted the cross-presentation of tumor antigens, activated
infiltrating T cells, and achieved rapid tumor regression (69).

3.2.3 Regulation of Metabolic Pathways of
Tumor Immune Cells
L-arginine is critical for anti-tumor T cell responses (88), yet low
availability of L-arginine in malignant tissues contributes to low
T cell responses and the poor efficacy of immune checkpoint
inhibition therapy. The Canale team found that the local
concentration of L-arginine could not be maintained by
injecting a saturated solution of L-arginine into the tumor, so
the team leveraged engineered E. coliNissle 1917 to continuously
convert the metabolic waste ammonia into L-arginine in the
tumor sites, which effectively increased the intratumoral L-
arginine concentration and enhanced the T cell response. And
a synergistic effect with anti-PD-L1 therapy was also observed,
exerting a stronger antitumor effect (70). As studies has revealed
that lactate could be responsible for tumor invasion (89),
targeting lactate metabolism is a feasible therapeutic strategy.
Chen et al. fabricated a biohybrid material with significant lactate
exhaustion property, in which manganese dioxide nanoflowers
as electron receptor was modified onto the surface of Shewanella
oneidensis. Therefore, the extracellular lactate serves as electron
donor to ensure a sustained effect of downregulating the lactate
level by the coupling of bacterial respiration with tumor
metabolism, which result in inhibited tumor progression (71).

3.3 Engineered Bacteria Improve Safety
Although bacteria exhibit excellent anti-tumor characteristics,
their potential toxicity is a major stumbling block to their
application. The safety profile of living bacteria preparations,
on the other hand, represents a crucial need for their clinical
translation. To make full use of bacteria to fight against cancer,
researchers have made tremendous efforts to construct a large
number of attenuated engineered strains to improve their
safety performance.

3.3.1 Virulence-Related Gene Knockout
The immunogenic bacterial surface molecule contribute as main
virulence of bacteria, which indicates that modification (such as
genetic knockout) of these surface antigens represent a major
approach to circumvent toxicity of living pathogen. For instance,
ppGpp (guanosine 5’-diphosphate-3’-diphosphate) is a signaling
molecule involved in the expression of virulence genes. By
knocking out the relA and spoT genes, the synthesis of ppGpp
was blocked, resulting in a 105-106-fold increase in its LD50
compared to wild strains (73). The bacteria with disordered
ppGpp synthesis also showed good antitumor activity due to its
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ability to induce the secretion of pro-inflammatory factors IL-1b,
IL-18, and TNF-a (37). In addition, LPS of Gram-negative
bacteria is a potent stimulator for inducing TNF expression
and is one of the main causes of sepsis. On the other hand, as the
outermost structure of the cell envelop, LPS is also an important
barrier and defense agent and is essential for their survival and
efficient tumor colonization. VNP20009 is a safe strain of
Salmonella with deletion of msbB and purI genes (72), in
which msbB knockout leads to myristoylation of lipid A in
LPS, reducing the ability to induce TNF secretion and greatly
reducing its virulence (90). However, the structural changes of
lipid A also reduced its therapeutic effect. In clinical trials, the
tumor colonization and antitumor activity in human patients
were not effectively exhibited (91), suggesting the apparent trade-
off between bacterial virulence and antitumor activity. To
maintain the balance between safety and anti-tumor efficacy,
Frahm et al. observed that the attenuated bacteria exerted good
therapeutic effects by integrating the LPS biosynthesis gene into
the araBAD locus of the bacterial chromosome with the
regulation of arabinose-inducible promoter (92). To step
further, Harimoto et al. realized a dynamic and tunable
regulation of the bacterial surface by constructing an inducible
synthetic gene circuit that modulates the programmed
expression of bacterial surface capsular polysaccharide. In this
way, the bacterial surface virulence molecular is hided and
shielded from the immune system, which turn out to show
enhanced bacterial survival and colonization and a ten-fold
increase in systemically injectable tolerated dose in vivo,
showing an improved safety profile (76).

In addition to modifying virulence molecules, aiming at the
escape ability and invasiveness of bacteria is also a major
measure for attenuation. Listeria is a vaccine strain mainly
used to express tumor antigens, whose virulence factor can be
deleted by knocking out the prfA gene (74). Unfortunately, in
this way, Listeria cannot escape from the phagosome, which
prevents the carried tumor antigens from entering the cytoplasm
for processing. To address this issue, the strain was designed to
express low levels of PrfA and Listeria hemolysin O to improve
its immunogenicity, which showed that the reformed strain is
endowed with great potential in expressing tumor antigens as
well as delivering other therapeutic drugs (93). CRS-207, a
Listeria strain with two virulence genes actA and internalin B
knocked out, exhibited reduced spreading and invasive abilities.
And its colonization level decreased by 1000 times compared to
common strains (75), thus the application security is guaranteed.

3.3.2 Suicide Gene
To avoid the infinite proliferation of bacteria in the body,
strategies must be adopted to programmatically limit the
proliferation level to maintain the stability of the microecology.
Din et al. designed a synchronized lysis circuit (SLC) into which
a phage jX174 cleavage gene E was integrated. This method
takes advantage of the colony effect of natural bacteria. When the
bacterial proliferation reaches a threshold density, the
bacteriophage-derived lysis factor is produced, diffuses to
neighboring cells and triggers lysis. This releases the
intracellular therapeutic drugs, while a small number of
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surviving bacteria continue to reproduce to maintain the
dynamic balance of local bacterial populations (77). Still, a
major disadvantage of this approach is its dependence on
plasmids, which may lead to recombination, mutation and loss
during the growth cycle. As to make the circuit more stable,
Gurbatri et al. integrated the gene circuit into the genome of E.
coli. Although a certain number of copies of quorum sensing
genes was lost, the results showed that this method has better
effect than the original system (67).
4 APPLICATION OF ENGINEERED
BACTERIA IN COMBINED
IMMUNOTHERAPY

It has been shown that bacteria can function as immunotherapeutic
agents to enhance the anti-tumor immunity. As combination
therapy is a widely used strategy to improve the overall effect,
bacteria-based immunotherapy has also been served as a part of
combination with chemotherapy, radiotherapy, photodynamic
therapy and photothermal therapy. In this section, we summarize
the latest practices of bacteria being recruited as part of the
combined therapy, where bacteria exhibited synergistic effect of
activating the immune system, synthesizing or protecting the anti-
cancer drugs to enhance anti-tumor effect.

4.1 Combined With Chemotherapy
Traditional chemotherapy suffers from a lack of specific delivery to
malignant tissue and significant drug systemic exposure, which
commonly results in dose-limiting toxicity. Applying engineered
bacteria to act as drug delivery system for controlled drug release, as
well as utilize their immunogenicity for immune modulation has
gained much research attention. Ektate et al. attached low-
temperature sensitive liposomes onto the membrane of Salmonella,
which mediated the triggered release of doxorubicin inside colon
cancer cellswith thehelpofhigh intensity focusedultrasound (HIFU)
heating, resulting in efficient drug delivery in both the cytoplasm and
the nucleus of cancer cells. Moreover, the strain also polarized
macrophages to anti-tumor M1 phenotype, enriched Th1 cells
population with high production of TNF-a, and decreased
expression of IL-10, thus exhibiting enhanced therapeutic effects in
a combined chemo-immunotherapy manner (94). For some highly
malignant tumor types, chemotherapeutic drugs alone show limited
enhanced survival benefits, such as gemcitabine for the treatment of
pancreatic ductal adenocarcinoma, thus calling for additional
approaches. To reform the poorly immunogenic TME of
pancreatic ductal adenocarcinoma, Gravekamp et al. delivered
tetanus toxoid protein, which act as a neoantigen reactivating
preexisting memory T cells that were generated during childhood
vaccinations, into tumor cells by attenuated Listeria, which could
selectively delivered to tumor regions with the help of MDSCs (53).
The tetanus toxoid induced attraction of CD4 T cells, with increased
production of IFNg, perforin, and granzyme B in the TME, while
gemcitabine was used to reduce immune suppression in the TME,
which resulted in reduced tumor burden by 80% compared to
untreated mice (95).
Frontiers in Immunology | www.frontiersin.org 825
Besides leveraging living bacteria, bacterial outer membrane
vesicles (OMVs), which are naturally produced from Gram-
negative bacterial membranes during growth process, have
recently emerged as immunotherapeutic agents for a variety of
biomedical applications. Chen et al. encapsulated drug-loaded
polymeric micelles into bacterial outer membrane vesicles, where
the bacterial component could activate the immune response
while the loaded tegafur exert both chemotherapeutic and
immunomodulatory effect to ablate cancer cells. As a result,
this strategy showed substantial improvement in tumor
regression, survival extension and remarkable inhibition of
pulmonary metastasis (96).

4.2 Combined With Radiotherapy
Bacterial-assisted radiotherapy represent as a new approach for
tumor treatment. Although few studies has applied bacteria to
improve radiotherapy, this field might be developed as a new
viable method in clinical radiation oncology. In a study by Jiang
et al., the therapeutic effect of combining E. coli with
radiotherapy was investigated, which revealed significant
tumor shrinkage in a colon tumor model under 21 Gy of
radiation and E. coli with the production of cytolysin A (97).
Similarly, engineered S. typhimurium carrying imaging probes
and therapeutic agents for tumor imaging and treatment in a
combination of radiotherapy demonstrated greater remission. As
a result, the bacteria carrying cytolysin A combined with
radiotherapy cause more tumor remission as compared to
bacterial therapy alone (98). In a recent study, an integrated
nanosystem for sensitizing radiation was established using
modified E. coli and Bi2S3 nanoparticles. The bacteria might
invade tumor locations and overexpress the cytolysin A protein
to switch the cell cycle from a radioresistant to a radiosensitive
state. At the same time, Bi2S3 nanoparticles may improve
radiation sensitivity by causing intracellular production of
reactive oxygen species (ROS) and DNA damage (99).

After radiotherapy, tumors release a considerable number of
tumor antigens, which can be taken up and presented by DCs,
leading to specific adaptive immune responses. However, in the
immunosuppressive TME, the number of DCs is typically low
and they are usually remaining in a state of dysfunction, which
indicate that intratumoral antigens are often poorly recognized
and presented. As a result, increasing the number of DCs and
boosting their function in tumors are major study topics. Wang
et al. injected Salmonella coated with antigen-adsorbing cationic
polymer nanoparticles into tumor tissues, which can capture the
antigen released after radiotherapy and transport them out of the
tumor core to activate the surrounding DCs in tumor marginal
tissues owing to the bacteria’s mobility. As a result, large
increases in activated DCs in vitro and extended survival in
multiple tumor mice models in vivo were observed, showing the
enhanced systemic antitumor effects (100).

4.3 Combined With Photodynamic Therapy
and Photothermal Therapy
As standard tumor therapies suffer from unspecific killing effect
and complicated surgery, photodynamic therapy and
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photothermal therapy have emerged as new therapeutic options
due to their non-invasiveness, high specifity and excellent spatial
and temporal control. Recently, numerous studies have
attempted to employ bacteria as carrier to load the therapeutic
agents of PDT and PTT, in order to leverage the tumor-targeting
and immunoactivating properties of bacteria.

PDT relies on the conversion of local oxygen molecules into
ROS to mediate the killing effect on cancer cells. But the local
hypoxic environment of the tumor causes insufficient production
of ROS, thus compromising the therapeutic effect of PDT. Liu et
al. integrated photosensitizer-coated nanoparticles onto the
surface of photosynthetic bacteria Synechococcus. Under
660nm laser irradiation, photosynthetic bacteria continued to
produce oxygen, which ensured the production of ROS and
enhanced the effect of photodynamic therapy. Synechococcus, as
immunogenic bacteria, also activate local immunity by
upregulating the expression of MHC class II molecules and IL-
12. At the same time, this treatment method induces
immunogenic apoptosis by up-regulating calreticulin on the
cell surface, and has shown a good therapeutic effect in triple-
negative breast cancer model (101).

Other researchers have also tried to combine bacteria with PTT.
Indocyanine green (ICG) was bound to the surface of S.
typhimurium strain YB1 by Liu et al. This stratery resulted in a
14-fold increase of the enrichment of the modified strain within
tumors, as well as perfect photothermal conversion. In addition to
significantly killing the tumor in the central hypoxic area, this
method also effectively kills tumor cells in the peripheral area with
normal oxygen perfusion, showing better anti-tumor efficacy (102).
Chen et al. integrated the photothermal agent polydopamine on the
surface of Salmonella and observed that the engineered bacteria
exhibited unaffected tumor-targeting ability and activated local
immunity by promoting the production of TNF-a and IL-4
(103). The research team further improved the strategy and
realized an innovative triple therapy by combining the immune
checkpoint inhibitor AUNP-12 (an anti-PD-1 peptide). Through
the application of phospholipid phase separation gel, the team
improved the short retention time of the peptide antagonist
AUNP-12, and achieved a sustained release effect of the
therapeutic drug at the tumor site for up to 42 days. This triple
therapy showed a more pronounced antitumor effect than bacterial
therapy alone and showed potent inhibition of advanced melanoma
(104). However, these studies require the multistep synthesis of
nanoparticles and complicated genetic manipulations of bacteria.
Reghu et al. established a simple modification method by designing
nanoparticle-functionalized nonpathogenic natural bacteria. To be
more specific, they engineered Bifidobacterium bifidum with ICG-
encapsulating Cremophor EL nanoparticles by simple incubation
and washing processes while maintaining the bacterial natural
properties. Under near infrared light induction, the functionalized
bacteria showed superior antitumor effect by laser-driven
photothermal conversion and the excess TNF-a expression with
the assistance of macrophages (105). Similarly, Yang et al. apply
non-pathogenic natural purplep synthet ic bacter ia
Rhodopseudomonas palustris in cancer theranostics without
complicated chemical functionalization and genetic manipulation,
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which are blessed with tumor-targeting abilities, excellent heat and
ROS production, resulting in drastic tumor elimination (106).
5 THE ROLE OF BACTERIA-BASED
IMMUNOTHERAPY IN DIFFERENT
CANCER TYPES

Different types of cancer have their unique biological behaviors,
their response to the immune modulation also varies. Here, we
summarized the immune related bacteria therapies according to
their application in different cancer types. The therapeutic agents
and the effect on tumor and the microenvironment were
discussed in details, which were also summarized in Table 2.

5.1 Colon Cancer
The colon cancer is considered to be highly associated with the
gut microbiota (120). Nowadays, emerging studies have
demonstrated that the dysbiosis of gut microbiome poses
adverse effects on the epithelial cells and eventually lead to the
induction of colon cancer. Therefore, probiotics, which
specifically suppress the colonization of certain pathogenic
bacteria and reverse the dysbiosis of gut microbiome caused by
antibiotic usage, have been reported to maintain the balance of
intestinal microbiota and exert preventive effects against colon
cancers (121). Sun et al. reported that oral administration of L.
rhamnosus Probio-M9 could modulate the gut microbiota in
which the relative abundance of beneficial bacteria was increased,
and contributed to the recovery of antibiotic-disrupted gut
microbiota. Moreover, synergistic effect of this probiotic
therapy was discovered when coupled with the anti-PD-1
treatment, in which significant tumor inhibition was observed
as compared to the anti-PD-1 treatment alone (107). Similarly,
Fu et al. also found that intratumoral accumulation of
Bifidobacterium facilitated anti-CD47 therapy via STING
signaling (34). These studies pose valid evidence to support
that the outcome of immune checkpoint blockade therapy
relies on the host’s gut microbiota (122). Probiotics are also
blessed with protective effects against the tumorigenesis. In an
orthotopic colon cancer model induced by azoxymethane, oral
intake of L. acidophilus, and B. bifidum probiotics were reported
to inhibit the colon lesions by about 57% and 27% respectively.
Moreover, L. acidophilus treated mice exhibited improved serum
levels of IFN-g, IL-10, CD4+ and CD8+ cells, manifesting a better
protective effects (108).

As a growing number of therapeutic targets have been identified,
the idea of genetically engineering bacteria to combat a specific
pathogenic process is gaining much attention. Indoleamine 2,3-
dioxygenase (IDO), which is an immune check point protein
contributing to the immunosuppressive TME, is related to the
poor prognosis of colon cancer patients. Melstrom et al.
successfully reduced the IDO levels by employing S. typhimurium
which delivers inhibitory small hairpin (sh)RNA targeting IDO. The
treatment resulted in significant delayed tumor progression in CT26
and MC38 colon cancer models, where enhanced neutrophils
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infiltration was observed, indicating the innate immune response
was efficiently elicited (109). The overwhelming activation of signal
transduction and transcription activator 3 (Stat3) is reported to
promote tumorigenesis via various mechanisms. By combining the
inhibitor of Stat3 (nifuroxazide) with S. typhimurium carrying small
interfering RNA against PD-1, Feng et al. discovered a synergistic
antitumor effect on colon cancer, where potent anti-tumor
immunity was strongly elicited (110).

5.2 Lung Cancer
It has been shown that a number of probiotics are blessed with
anti-tumor efficacy through immunological regulation. To
investigate the underlying mechanism, Ghaemi et al.
demonstrated that intravenous injection of B. bifidum led to
increased secretion of IFN-g and IL-12, enhanced lymphocyte
proliferation and CD8+ T cell responses as compared to oral
administration in a HPV-induced TC-1 mouse lung cancer
model (112). Similarly, by using the same cancer model, L.
casei BL23 was discovered to exert anti-tumor effect by IL-2
signaling pathway, with the involvement of T cells and NK cells
(113). Moreover, recombinant strain of L. lactis that secreted
biologically active IL-17A cytokine was also established, which
made 26% of treated mice tumor-free in the TC-1 tumor
challenge (114).

To obtain vigorous anti-tumor immunity, simultaneously
targeting both the costimulatory and inhibitory receptor-
ligands of the immune system can be a promising strategy. In
support of this idea, agonist antibody to glucocorticoid-induced
tumor necrosis factor receptor-related protein (GITR) which acts
as a costimulatory target that promotes effector function has
been combined with a L. monocytogenes-based vaccine which
significantly regulates the suppressive cells including Treg cells
and MDSCs. In a mouse model bearing subcutaneous TC-1 lung
tumor, this combined therapy resulted in tumor eradication in
60% of treated mice, which could be attributed to the enhanced
function of CD8+ T cell, reduced ratio of Treg/CD4+ cell and the
regulation to MDSCs (111).
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5.3 Melanoma
Melanoma represents as themost aggressive type of skin cancerwith
a high tendency to progress into the metastatic stage, which may
attribute to the notable competency to evade the immune
recognition. Therefore, potentiating the immune attack against
melanoma is a viable strategy. Poliseno et al. has reported that
attenuated L. monocytogenes could kill various melanoma cells in
vitro, regardless of their stage and genetic status, which may
overcome therapeutic challenge caused by the high degree of
heterogeneity. By establishing genetically engineered mice
susceptible to primary and metastatic melanoma, the team further
assessed the anti-tumor activity of this strain in vivo, which resulted
in impaired growth of the primary tumor as well as reduction of the
metastatic burden. Moreover, increased infiltration of CD4+ and
CD8+ T cells was detected, suggesting that the immune responses
were effectively augmented (115). To step further, L. monocytogenes
expressing tumor-associated antigen was successfully constructed,
which elicited profound CD8+ T cells responses and subsequently
protected about 70% mice from B16F10 melanoma. When
combined with immune checkpoint blockade therapy (anti-PD-1,
anti-PD-L1, and anti-CTLA-4), significant tumor remission was
observed, indicating that anti-tumor immunity induced by L.
monocytogenes vaccination could be further enhanced with
immune checkpoint blockade therapy (116). To better safeguard
the application of live strains used in immunocompromised cancer
patients, listeriolysin O, which is responsible for the biological
activities of L. monocytogenes related to the anti-tumor effect, was
encapsulated into gold nanoparticles to generate a safer preparation.
Similarly, the ability of inducing CD8+ T cells responses was
successfully maintained, and a synergism coupled with anti-PD-1
or anti-CTLA-4 was also detected (117).

5.4 Breast cancer
Only a few studies have reported the bacteria-based
immunotherapeutic platforms targeting the unique
characteristics in breast cancer. Min et al. has shown that S.
typhimurium displaying the RGD peptide could specifically bind
TABLE 2 | The role of bacteria-based immunotherapy in different cancer types.

Cancer type Bacterium Immune modulation effects Ref

Colon cancer L. rhamnosus Restore the antibiotic-disrupted gut microbiota and synergize with anti-PD-1 therapy (107)
Bifidobacterium Facilitate anti-CD47 therapy via STING signaling (34)
L. acidophilus Improved serum levels of IFN-g, IL-10, CD4+ and CD8+ cells (108)
S. typhimurium Reduce intratumoral levels of IDO, increase tumor infiltration of neutrophils (109)
S. typhimuriumS Inhibition of Stat3 combined with siRNA against PD-1 (110)

Lung cancer L. monocytogenes Enhanced function of CD8+ T cell and regulation effcets on Treg cells and MDSCs (111)
B. bifidum Increased secretion of IFN-g and IL-12, enhanced lymphocyte proliferation and CD8+ T cell responses (112)
L. casei Increased production of IL-2 (113)
L. lactis Recombinant strain with IL-17A cytokine secretion (114)

Melanoma L. monocytogenes Increased infiltration of CD4+ and CD8+ T cells (115)
L. monocytogenes Elicit profound CD8+ T cells responses and synergize with immune checkpoint blockade (116, 117)

Breast cancer S. typhimurium Elevated percentage of CD3+CD4+ T cells and increased production of IFN- g and TNF-a (63)
E. coli Local delivery of CD47 antagonist and activation of tumor-infiltrating T cells (69)

Lymphoma E. coli Local delivery of PD-L1 and CTLA-4 nanobodies (67)
E. coli Local delivery of CD47 antagonist and activation of tumor-infiltrating T cells (69)

Prostate cancer S. typhimurium Induce Th1 immune responses and tumor protective immunity (118)
Cervical cancer L. monocytogenes Induction of Th1 immunity, enhanced lymphocyte proliferation and specific CTL activity (119)
Pancreatic cancer L. monocytogenes Reactivate the preexisting memory T cells by delivery of tetanus toxoid (95)
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to cancer cells overexpressing avb3 integrin, including breast
cancer cells. In a mouse model of human breast cancer (MDA-
MB-231 cell line), significant tumor regression and prolonged
survival of mice receiving intravenous injection of the modified
strain were detected, in which the therapeutic effect relied largely
on the tumor-specific accumulation following administration
(61). Similarly, aptamers which promoted the colonization of
bacteria inside tumor areas were also conjugated to S.
typhimurium VNP20009 by Tan et al, which manifested
excellent anti-tumor efficacy in 4T1 tumor-bearing mouse
models. Moreover, the percentage of CD3+CD4+ T cells and
the production of IFN- g and TNF-a ware significantly elevated,
suggesting strong immune response triggered by this bacterial
agent (63). In another mouse model of triple negative breast
cancer, impaired tumor growth and notable reduction in lung
metastasis were reported in mice treated with E. coli encoding
nanobody antagonist of CD47 (69).

5.5 Other Types of Cancers
Recently, immunotherapy, especially the immune checkpoint
blockade therapy, has gained encouraging achievements in the
treatment of lymphoma (123), and utilizing bacteria to delivery
therapeutic antibody also attracts research attention. Danino et al.
has investigated the anti-tumor activity of E. coli expressing both
anti-PD-L1 and anti-CTLA-4 antibodies against advanced
Frontiers in Immunology | www.frontiersin.org 1128
lymphoma in a mouse model with a larger initial volume (about
200 to 700 mm3), in which impaired growth or complete clearance
was observed (67). Similarly, E. coli expressing CD47 antagonist was
reported to exert durable anti-tumor efficacy of the established A20
tumors. Moreover, the treated mice obtained resistance when
tumors cells were reinjected subcutaneously (69).

Inducing systemic immune responses by certain antigens
overexpressed by cancer cells is a potent therapeutic method for
metastatic cancer treatment. For instance, S. typhimurium carrying
a plasmid encoding prostate stem cell antigen was successfully
established, which induced Th1 immune responses and resulted
in 50% of treated mice tumor-free over the challenge of TRAMPC1
mouse prostate cancer cells (118). Recombinant L. monocytogenes
expressing HPV16-E7 was also demonstrated to generate protective
effect in immunizedmice against cervical cancer, where induction of
Th1 immunity, enhanced lymphocyte proliferation and specific
CTL activity were observed as compared to control group (119).
Therefore, more therapeutic modalities targeting certain antigens
displayed by specific tumors are yet to be further developed. For
certain cancer type with low immunogenicity and low expression of
neoantigen such as pancreatic ductal adenocarcinoma, Gravekamp
et al. has designed a platform to deliver the immunogenic tetanus
toxoid protein by L. monocytogenes. In this method, the tetanus
toxoid acted as an alternative neoantigen to awaken the preexisting
memory T cells generated in childhood vaccination, thus turning
FIGURE 2 | Directions for future engineering. (A) Engineering the commensal bacteria at their original ecology with enhanced anti-tumor prospects to provide
precise treatment strategy. (B) For irAE, probiotics could be developed with anti-inflammation characteristic and serve as local mediators. (C) Integration gene
circuits could manipulate the bacteria to sense different input information and provide different outputs, tuning the treatment intensity and controlling the bacteria fate.
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the cold TME into a highly immunological environment, which
eventually resulted in over 80% reduction of tumor growth and
metastasis when coupled with the treatment of gemcitabine (95).
6 PERSPECTIVES AND PROSPECTS

Different human body niches reside distinct microbiota communities
and bacteria often perform different roles in different ecological sites.
It is aware that bacteria being in the wrong place within the body can
be quite hazardous. For example, E. coli, as a typical resident in the
intestine, can cause infection once entering the urethra (124),
abdominal cavity (125), and other regions of the body (126). Due
to the in-depth understanding of the interaction between
microorganisms and tumors, utilizing specialized bacteria for
distinct tumor types can not only avoid infection, but also exert a
regulatory influence on the local microecology. Shisssss et al. found
that oral administration of Akkermansia marcescens can produce a
synergistic effect with IL-2 therapy, and a good therapeutic effect was
observed in a mouse model of colorectal cancer (127). Similarly,
Zheng et al. reported that oral squamous cell carcinoma patients with
higher levels of bacteria of the genus Peptostreptococcus presented
higher probability of long-term survival. To upregulate the levels of
Peptostreptococcus, subcutaneous injection of an adhesive hydrogel
incorporating silver nanoparticles alongside the intratumoral delivery
of the bacterium P. anaerobius was adopted, which manifested
enhanced anti-tumor responses and synergized with the anti-PD-1
therapy. Therefore, In the future, commensal bacteria at different
body sites can be specifically developed to exert therapeutic effects for
the tumors at their according locus.

Currently, immune therapy exhibited immune-related adverse
events (irAEs) such as colitis, fatigue, rash, endocrine disturbance,
and hepatotoxicity (128, 129), which can be attributed to off-target
effects of therapeutic drugs as well as dose-dependent toxicity.
Relying on the precise regulation of the targeting properties of
engineeredbacteria, specific release of drugs at the tumor site can be
achieved, which is beneficial to reduce the occurrence of adverse
reactions related to immunotherapy. Besides, plenty of commensal
probiotics such as Lactic acid bacteria, has exhibited benefits for the
preventionof colitis andmoderationofdiarrhea, indicating that it is
a promising choice to employ engineered probiotics to alleviate
some adverse reactions (130).
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Decades have passed since the first trial of utilizing BCG as
medication for bladder cancer, and relentless practices have also
been undergoing to investigate its involvement in cancer therapy
beyond bladder cancer (131). Besides BCG, other bacterial
preparations such as modifed S. typhimurium stains are also in
the preclinical or clinical trial stage to better verify their safety
and therapeutic effects (132). As bacteria are complex and viable
therapeutic agents, some uncontrollable mutations during their
proliferation may bring potential toxicity. And their inherent
virulence can also lead to complex infections in immuno
compromised cancer patients. However, the rapid advances in
synthetic biology are making it possible to program a desired
bacterial behavior through the introduction of synthetic gene
circuits, which are composed of an input module detecting biotic
signals, an operation module computing transmitted signal and
an output module generating the desired cellular response,
resulting in a safer application profile and enhanced anti-
tumor efficacy (27). Directions for future engineering are
illustrated in Figure 2.
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J, Cárdenas-Rodrı ́guez N, Centeno-Leija S, et al. Evaluation of
June 2022 | Volume 13 | Article 911783

https://doi.org/10.1016/j.ctrv.2021.102227
https://doi.org/10.1158/1078-0432.CCR-12-1116
https://doi.org/10.3389/fimmu.2019.02965
https://doi.org/10.1001/jama.1931.02720270060030
https://doi.org/10.1016/S0022-5347(17)55282-9
https://doi.org/10.1093/femsle/fnz136
https://doi.org/10.1126/science.abc4552
https://doi.org/10.1053/j.gastro.2022.01.046
https://doi.org/10.1128/mbio.02991-21
https://doi.org/10.1016/j.semcancer.2021.12.013
https://doi.org/10.1039/D1FO01531A
https://doi.org/10.1016/j.cell.2022.02.027
https://doi.org/10.1126/science.aah5043
https://doi.org/10.1038/s41586-021-03368-8
https://doi.org/10.1002/smll.202104643
https://doi.org/10.1038/s41573-021-00285-3
https://doi.org/10.1038/s41578-021-00350-8
https://doi.org/10.1016/j.canlet.2019.10.033
https://doi.org/10.1200/JCO.2012.46.3653
https://doi.org/10.1200/JCO.2012.46.3653
https://doi.org/10.1016/j.clon.2019.06.008
https://doi.org/10.1111/j.1349-7006.2010.01628.x
https://doi.org/10.1126/scitranslmed.aak9537
https://doi.org/10.1084/jem.20192282
https://doi.org/10.1038/ncb3465
https://doi.org/10.7150/thno.11432
https://doi.org/10.1371/journal.pone.0006692
https://doi.org/10.1038/onc.2016.225
https://doi.org/10.1038/nrc2468
https://doi.org/10.1016/j.molmed.2017.11.005
https://doi.org/10.1016/j.molmed.2017.11.005
https://doi.org/10.1016/j.cell.2016.03.001
https://doi.org/10.1111/1348-0421.12333
https://doi.org/10.1128/IAI.01491-07
https://doi.org/10.4049/jimmunol.176.11.6624
https://doi.org/10.1002/ijc.28155
https://doi.org/10.1126/scitranslmed.3000739
https://doi.org/10.1126/scitranslmed.3000739
https://doi.org/10.1038/nrclinonc.2016.217
https://doi.org/10.1038/s41467-022-29000-5
https://doi.org/10.1038/nrd.2018.169
https://doi.org/10.1111/asj.13439
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tang et al. Bacteria-Based Immunotherapy
Immunomodulatory Activities of the Heat-Killed Probiotic Strain
Lactobacillus Casei Imau60214 on Macrophages in Vitro. Microorganisms
(2020) 8(1):79. doi: 10.3390/microorganisms8010079

53. Chandra D, Jahangir A, Quispe-Tintaya W, Einstein M, Gravekamp C.
Myeloid-Derived Suppressor Cells Have a Central Role in Attenuated
Listeria Monocytogenes-Based Immunotherapy Against Metastatic Breast
Cancer in Young and Old Mice. Br J Cancer (2013) 108(11):2281–90. doi:
10.1038/bjc.2013.206

54. Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al.
Analysis of Fusobacterium Persistence and Antibiotic Response in
Colorectal Cancer. Science (2017) 358(6369):1443–8. doi: 10.1126/
science.aal5240

55. Zhao M, Yang M, Li X-M, Jiang P, Baranov E, Li S, et al. Tumor-Targeting
Bacterial Therapy With Amino Acid Auxotrophs of Gfp-Expressing
Salmonella Typhimurium. Proc Natl Acad Sci (2005) 102(3):755–60. doi:
10.1073/pnas.0408422102

56. Felgner S, Frahm M, Kocijancic D, Rohde M, Eckweiler D, Bielecka A, et al.
Aroa-Deficient Salmonella Enterica Serovar Typhimurium Is More Than a
Metabolically Attenuated Mutant. MBio (2016) 7(5):e01220–16. doi:
10.1128/mBio.01220-16

57. Leventhal DS, Sokolovska A, Li N, Plescia C, Kolodziej SA, Gallant CW, et al.
Immunotherapy With Engineered Bacteria by Targeting the Sting Pathway
for Anti-Tumor Immunity. Nat Commun (2020) 11(1):1–15. doi: 10.1038/
s41467-020-16602-0

58. Yu B, Yang M, Shi L, Yao Y, Jiang Q, Li X, et al. Explicit Hypoxia Targeting
With Tumor Suppression by Creating an “Obligate” Anaerobic Salmonella
Typhimurium Strain. Sci Rep (2012) 2(1):1–10. doi: 10.1038/srep00436

59. Bereta M, Hayhurst A, Gajda M, Chorobik P, Targosz M, Marcinkiewicz J,
et al. Improving Tumor Targeting and Therapeutic Potential of Salmonella
Vnp20009 by Displaying Cell Surface Cea-Specific Antibodies. Vaccine
(2007) 25(21):4183–92. doi: 10.1016/j.vaccine.2007.03.008

60. Massa PE, Paniccia A, Monegal A, De Marco A, Rescigno M. Salmonella
Engineered to Express Cd20-Targeting Antibodies and a Drug-Converting
Enzyme Can Eradicate Human Lymphomas. Blood J Am Soc Hematol (2013)
122(5):705–14. doi: 10.1182/blood-2012-12-474098

61. Park S-H, Zheng JH, Nguyen VH, Jiang S-N, Kim D-Y, Szardenings M, et al.
Rgd Peptide Cell-Surface Display Enhances the Targeting and Therapeutic
Efficacy of Attenuated Salmonella-Mediated Cancer Therapy. Theranostics
(2016) 6(10):1672. doi: 10.7150/thno.16135
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Fecal Microbiota Transplantation
Reshapes the Physiological Function
of the Intestine in Antibiotic-Treated
Specific Pathogen-Free Birds
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Guang Li , Tahir Mahmood, Zengpeng Lv, Yongfei Hu and Yuming Guo*

State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China

The topic about the interactions between host and intestinal microbiota has already
caught the attention of many scholars. However, there is still a lack of systematic reports
on the relationship between the intestinal flora and intestinal physiology of birds. Thus, this
study was designed to investigate it. Antibiotic-treated specific pathogen-free (SPF) bird
were used to construct an intestinal bacteria-free bird (IBF) model, and then, the
differences in intestinal absorption, barrier, immune, antioxidant and metabolic functions
between IBF and bacteria-bearing birds were studied. To gain further insight, the whole
intestinal flora of bacteria-bearing birds was transplanted into the intestines of IBF birds to
study the remodeling effect of fecal microbiota transplantation (FMT) on the intestinal
physiology of IBF birds. The results showed that compared with bacteria-bearing birds,
IBF birds had a lighter body weight and weaker intestinal absorption, antioxidant, barrier,
immune and metabolic functions. Interestingly, FMT contributed to reshaping the
abovementioned physiological functions of the intestines of IBF birds. In conclusion, the
intestinal flora plays an important role in regulating the physiological functions of
the intestine.
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INTRODUCTION

The intestine is not only involved in absorbing nutrients in the
diet, but also protects the host from infection by pathogenic
microorganisms. In addition, the intestine is considered to be the
largest immune organ (1). A healthy intestine is one that is
equipped with a complete barrier structure, powerful absorption
and immune functions, and a healthy microbial population (2).
The intestinal flora plays an extremely important role in
maintaining intestinal health. Some scholars believe that by
regulating the physiological functions of the intestine, such as
the absorption and transport of nutrients, immunity, and the
secretion of hormones, the intestinal flora establishes a
connection circuit with the brain, which regulates the emotions
and behaviors of the host (3, 4). The influence of the intestinal
flora on the immune function is particularly important. A study
suggested that 80% of the immune response in the intestine was
induced by the intestinal flora (5). Simultaneously, the genetic
factors and health status of the host also affect the composition of
the intestinal flora (6). The cross-talk between the intestinal
bacteria and the intestine is closely related to the health of the
host. The mechanism is extremely complex, and that complexity
is precisely what has caught the attention of scholars.

Specific pathogen-free (SPF) and germ-free animal models are
considered to be effective tools for studying the relationship
between the intestinal flora and host. A study suggested that
cecal swelling, intestinal wall atrophy, and decreased intestinal
macrophage counts were typical characteristics of sterile mice (7).
Based on the SPF bird model, studies found the critical time period
for the maturation and establishment of the intestinal flora was 14-
28 days of age (8), and Lactobacillus plantarum contributed to
alleviating necrotizing enteritis induced by Clostridium perfringens
(9). Additionally, allicin has been shown to play a potential role
against avian reticuloendothelial virus (REV) by blocking the
ERK/MAPK pathway (10). The breeding of germ-free animals is
difficult, and the breeding conditions are harsh. Therefore, some
Frontiers in Immunology | www.frontiersin.org 235
scholars have used antibiotics to treat SPF mice in the early stages
of life, and found that the intestines of the mice were almost sterile
(11). Many scholars hypothesized that antibiotic-treated SPF
animals could be used for germ-free animal models (12). Fecal
microbiota transplantation (FMT) technology is an effective
method to study the effects of specific intestinal floras on the
host. Studies suggested that FMT was useful for the intestinal
development of newborn birds (13), the egg-laying performance of
law-laying hens (14), and reducing the difference in the structure
of the intestinal flora in the newborn birds (15). In addition, FMT
could prevent birds from the developing infection with Salmonella
(16), and relieve the intestinal inflammation in mice (17).
Although some studies about FMT conducted on SPF birds
provide useful information, the work is very scarce. Moreover,
there remains a lack of systematic reports on the difference in
intestinal physiology between germ-free and bacteria-
bearing birds.

In the present study, an intestinal bacteria-free bird (IBF)
model was constructed by using a combination of antibiotics to
treat the intestinal flora of SPF birds in the early stages of life.
Then, the differences in intestinal absorption, barrier,
antioxidant, immune and metabolic functions between IBF and
bacteria-bearing birds were systematically evaluated. In addition,
based on the IBF model, the whole intestinal fecal bacteria of
bacteria-bearing birds were transplanted into IBF birds, and the
effect of FMT on the intestinal physiology of IBF birds was
studied. This study aimed to reveal the relationship between the
resident bacteria in the intestine and the intestinal physiological
function of birds.
MATERIALS AND METHODS

Animal and Diet
The animal experiment was carried out at the Poultry Experiment
Base of China Agricultural University (Hebei, China). 410 SPF
GRAPHICAL ABSTRACT |
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fertilized AA+ eggs were placed in a SPF hatching room for 21
days of incubation. After the newborn birds were sexed, sixty
healthy male birds with uniform weight were selected for follow-
up tests. The birds were equally divided into three groups, with 20
birds in each. One group of birds was fed in a normal breeding
environment with bacteria (Control), and birds in the other two
groups were reared in two isolation barrier systems (Tianjin
Jinghang Purification Air Conditioning Company, China) to
construct the intestinal bacteria-free bird (IBF) model. The
ration formula was formulated based on the nutritional
requirements standard of Chinese broilers (NY/T33-2004)
(Table 1). After the feed was prepared, it was sterilized by
radiation (cobalt source, 25K, China Institute of Atomic Energy,
Beijing). The drinking water of IBF birds was sterilized (121°C,
103.4 kPa, 15 min), and an antibiotic combination (1 g/L
ampicillin, 1 g/L metronidazole, 1 g/L neomycin, and 0.5 g/L
vancomycin) was added to the water. The birds in the control
group received drinking water without antibiotics. Additionally, all
birds had free access to feed, and the cage size, temperature, and
lighting conditions were controlled uniformly. At the end of 21
days, 10 birds with uniform body weight from the control group
and one group of IBF birds were selected to fast for 8 hours, and
then, a 10% D-xylose solution (1 mL/kg BW) was administered
orally. One hour later, blood was collected from the underwing
vein, and then, these birds were injected intravenously with 50 mg/
kg BW sodium pentobarbital, and quickly slaughtered after
anesthesia to harvest samples for analysis.

Fecal Microbiota Transplantation
At the end of 21 days, the remaining 10 birds in the control group
were slaughtered to obtain whole intestinal chyme to prepare a fecal
Frontiers in Immunology | www.frontiersin.org 336
bacterial suspension. Briefly, the whole intestinal chyme was
collected and placed into a 500 mL beaker, and 2 times the
volume of normal saline was added and mixed. The mixed liquid
was passed through 10-, 18-, 35-, and 60- mesh sieves, and the last
filtrate was passed through a 60- mesh sieve three times. The filtrate
was centrifuged at 6,000×g for 15 min at 4°C, the pellet was
resuspended in sterile normal saline containing 20% glycerol. The
prepared bacterial suspension was placed in a refrigerator at 4°C.
Sixteen birds with uniform body weight from the remaining IBF
birds described above were selected and randomly divided into two
treatment groups, with eight birds each. The birds in the FMT
group (IBF-FMT) were treated by fecal bacterial transplantation for
one week (1 mL/day per bird, the bacterial solution concentration
was 1×108 CFU/mL), and the birds in the IBF group (IBF-CTR)
were given an equal volume of normal saline. Two weeks after the
end of FMT, all birds were selected to fasted for 8 hours, and then,
the blood and samples were collected according to the method
described above. The animal testing procedure was described in the
Work Roadmap (Graphical Abstract).

Serum D-Xylose, DAO, and
Cytokine Levels
The blood was centrifuged at 3000 ×g and 4°C for 15 min to
separate the serum for later use. The Kits purchased from
Nanjing Jiancheng Institute of Biological Engineering (Jiangsu,
China) were used to determine the levels of D-xylose and DAO
in serum. ELISA kits (IDEXX Laboratories Inc., Weatbrook,
Maine, USA) were used to analyze the serum levels of TNF-a, IL-
10, IL-1b, IL-4 and IFN-g.

Intestinal Morphology, sIgA and
Antioxidant Related Enzymes Levels
Sections of the jejunum and ileum approximately 1 cm in length
were collected and suspended in a 4% paraformaldehyde
solution, and then, the intestinal tissues were stained with
periodic acid-Schiff to prepare sections. The method of
Wagner et al. (1999) (18) was used to measure the height of
intestinal villi (VH) and the depth of crypts (CD), and the ratio of
the VH to CD was calculated. At the same time, the number of
goblet cells on 100 mm of villi was counted. A tissue homogenate
was prepared at a ratio of the weight of the ileal mucosa sample
to the volume of physiological saline = 1:9, and then centrifuged
at 3000 ×g and 4°C for 15 min to separate the supernatant for
later use. A chicken sIgA ELISA kit (Bethyl Laboratories Inc.,
Montgomery, TX, USA) was used to detect the level of ileal sIgA.
Kits purchased from Nanjing Jiancheng Institute of Biological
Engineering were used to determine the contents of superoxide
dismutase (SOD), total antioxidant capacity (T-AOC), and
malondialdehyde (MDA) in the ileum.

Lymphocyte Analysis of the Ileum
An approximately 3 cm segment of the ileum was taken 1 cm
behind the yolk antrum, after the chyme was washed out the
intestine was cut into a muddy rough shape in a prechilled
calcium and magnesium-free D-Hank’s solution. The treated
intestine was moved into a 50 mL centrifuge tube, and five
milliliters of separation solution (D-Hank’s solution with 5%
TABLE 1 | Test diet composition and nutrition level (air-dry basis).

Ingredients Contents(%) Nutritional
parameters

Levelsc

Corn (7.8% pro) 62.644 ME MC/kg 3.016
Dephenolized cottonseed
protein (50% pro)

16.200 Crude protein % 21.621

corn gluten meal (51.3% pro) 13.800 Lysine% 1.268
Corn oil 2.000 Methionine% 0.634
CaHPO4 1.980 Calcium % 1.160
Limestone powder 1.100 Total phosphorus % 0.822
L-Lysine HCl (78%) 0.790 Available phosphorus % 0.463
NaCl 0.350 Methionine+Cystine % 0.954
Trace mineralsb 0.300 Threonine % 0.844
Choline chloride (50%) 0.300 Tryptophan % 0.246
DL-Methionine 0.250
Threonine 0.140
Tryptophan 0.080
Sandaquin 0.030
multi-vitaminsa 0.020
Phytase-5000 0.016
Total 100 　 　
aVitamin premix (provided per kilogramof feed) the followingsubstances: vitaminA, 12,500 IU;
vitamin D3, 2,500 IU; vitamin K3, 2.65 mg; vitamin B1, 2 mg; vitamin B2, 6 mg; vitamin B12,
0.025 mg; vitamin E, 30 IU; biotin, 0.0325 mg; folic acid, 1.25 mg; pantothenic acid, 12 mg;
niacin, 50mg. bTraceelementpremix (providedper kilogramoffeed) the followingsubstances:
copper, 8mg; zinc, 75mg; iron, 80mg;manganese, 100mg; selenium, 0.15mg; iodine, 0.35
mg. cCalculated value based on the analysis of experimental diets.
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FCS, 1 mmol/L DTT, 10 mmol/L HEPES, and 2 mmol/L EDTA)
was added into it and shaken for 15 min at 250 r/min and 37°C.
After that, the mixture was passed through a 200-mesh cell sieve,
the cells on the sieve were collected in a new 50 mL centrifuge
tube. Five milliliters of digestion solution (D-Hank’s without
calcium and magnesium supplemented with 5% FCS, 0.15%
collagenase VIII, and 100 KU/L DNase I) was added to the
centrifuge tube and shaken for 45 min at 250 r/min and 37°C.
The mixture was passed through a 300-mesh cell sieve, and the
filtrate was collected in a 7 mL centrifuge tube. The mixture was
centrifuged at 4°C and 400 × g for 10 min to harvest cells and
resuspend it into 2 mL of RPMI-1640. Next, 3.3 mL of separation
solution was added to a clean 10 mL centrifuge tube, and the cell
suspension was carefully transferred to the surface of the
separation liquid. The mixture was centrifuged at 4°C and
3000 × g for 30 min, and the white blood cell layer was
carefully transferred into a clean 10 mL centrifuge tube. 2 mL
of red blood cell lysate was added to the tube and incubated for 5
min. The mixture was centrifuged at 4°C and 3000 × g for 10
min, and 3 mL of D-Hank’s solution was added to the tube to
resuspend the cells. After repeating the above centrifugation step,
the supernatant was discarded, the cells were resuspended in 2
mL of RPMI-1640, and then, the cell concentration was adjusted
to 1×107 cells/mL. According to the method of Li, et al. (19), the
percentages of Bu-1+, macrophage, CD3+, CD4+, CD8+

lymphocytes were detected and subsequently calculated. The
result is expressed as a percentage.

Gene Expression Level
The jejunum and ileum were collected in RNase-free cryotubes,
quickly put into liquid nitrogen, and then stored at -80°C. A 100
mg sample was added to a 1.5 mL centrifuge tube with 1 mL of
TRIzol (Invitrogen Life Technologies, Carlsbad, USA) extraction
solution, and then, the total RNA was extracted according to the
kit instructions (Takara, Dalian, China). After the purity of the
total RNA was determined, reverse transcription was performed
using an M-MLV cDNA kit (Invitrogen Life Technologies). The
reverse transcription product was diluted 1:1 and then subjected
to real-time polymerase chain reaction (RT-PCR). Briefly, RT-
PCR analysis of gene expression was performed using the
primers listed in Supplementary Table 2, and SYBR® Premix
Ex Taq™ (Takara, Dalian, China) on an Applied Biosystems
7500 Fast Real-Time PCR System (Foster City, CA, USA). The
PCR conditions were as follows: 5°C for 2 min, 95°C for 10 min,
and 40 cycles of denaturation at 95°C for 15 sec and renaturation
at 60°C for 1 min. Finally, the reaction was terminated at 72°C
for 10 min. Amplification products were verified by melting
curves, agarose gel electrophoresis, and direct sequencing. The
results were analyzed by the cycle threshold (CT) method from
Fu et al. (2010) (20).

Microbial Sequencing and Analysis
The ileal and cecal chyme of the control and the IBF-FMT group
were collected and then sequenced and analyzed according to the
method described by Zhang et al. (2018) (21). Briefly, a fecal
bacterial DNA extraction kit (QIAamp Fast DNA Stool Mini Kit,
Qiagen Company, Germany) was used to harvest microbial DNA
Frontiers in Immunology | www.frontiersin.org 437
from ileal and cecal chyme. A NanoDrop 2000 (Thermo
Scientific, Waltham, MA, USA) was used to determine the
concentration of DNA, and 1% agarose gel electrophoresis was
used to assess the purity of DNA in the samples. The common
primers 338 F (5’-ACTCCTACGGGAGGCAGCA-3’) and 806 R
(5’-GGACTACHVGGGTWTCTAAT-3’) targeting the V3-V4
region of the 16S rDNA gene were used to amplify bacterial
DNA, and then, the PCR products were purified, quantified and
homogenized to construct a sequencing library. A TruSeq®DNA
PCR-free sample preparation kit was used for library
construction, and the constructed library was quantified by a
Qubit and Q-PCR. After the library was qualified, it was
sequenced on a system using a HiSeq2500 PE250. The 16S
rRNA gene amplicon sequencing results were submitted to the
Sequence Read Archive of the NCBI (accession number:
PRJNA810526). Sequencing analysis was completed by Beijing
Nuohe Zhiyuan Bio-Information Technology Co., Ltd. QIIME
software (Qiime2-2019.7, Nature Biotechnology) was used to
generate species abundance tables for different taxonomic levels.
Based on OTU analysis, the relative abundances of bacteria at the
phylum and genus levels were analyzed, and a column chart of
the relative abundances of bacteria was drawn.

Non-Targeted Metabolomics Research
The ileal chyme was collected and stored at -80°C. The metabolites
in chyme were used for metabolome sequencing and analysis
according to the method of Lu et al. (2019) (22). Briefly, 0.1 g of
sample was added to precooled 80% formaldehyde, mixed, and
then incubated at -20°C for 60 min. The mixture was centrifuged
at 4°C and 14,000 × g for 20 min, and the supernatant was
vacuum-dried. Sixty percent formaldehyde buffer was used to
dissolve the dried metabolite particles, and then, LC–MS/MS
analysis was performed. A 16-min linear gradient was used to
inject the sample into a Hypersil Gold column (100 × 2.1 mm, 1.9
µm; Thermo Fisher Scientific) at a flow rate of 0.3 mL/min. The
eluents for positive polarity mode were eluent A (0.1% formic acid
in water) and eluent B (methanol). The eluents for negative
polarity mode were eluent A (5 mmol/L ammonium acetate, pH
9.0) and eluent B (methanol). The solvent gradient settings were as
follows: 2% B for 1.5 min, 2-100% B to 12.0 min, 100% B to 14.0
min, 100-2% B to 14.1 min, and 2% B to 16.0 min. The AQ
Exactive HF-X mass spectrometer (Thermo Fisher Scientific) was
operated in positive/negative polarity mode, with a spray voltage
of 3.2 kV, a capillary temperature of 320°C, a sheath gas flow rate
of 35 arb, and an auxiliary gas flow rate of 10 arb.

The original files obtained by mass spectrometry were
imported into Compound Discoverer 3.1 (Thermo Fisher
Scientific) software for analysis. The sequencing analysis was
commissioned by Beijing Nuohe Zhiyuan Biological Information
Technology Co., Ltd. After the qualitative and quantitative
results for metabolites were obtained, the data were subjected
to quality control to ensure the accuracy and reliability of the
results. Metabolites were analyzed by the multivariate statistical
analysis partial least squares discriminant analysis (PLS-DA)
method to reveal the differences in the metabolic patterns of
different groups. Hierarchical clustering analysis (HCA) and
metabolite correlation analysis were used to reveal the
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relationships between metabolites. Finally, functional analysis
was used to explain the biological significance of metabolites.

Data Analysis
The independent sample T test in SPSS 23.0 software (SPSS Inc.,
Chicago, IL) was used to analyze the data. The results were
shown as the mean ± standard deviation. P < 0.05 was considered
a significant difference between groups. GraphPad Prism 8.0
software was used to draw figures.
RESULTS

FMT Reshaped the Intestinal Bacteria
Structure of IBF Chickens
The fecal PCR electrophoresis bands of the control and IBF-FMT
group at 1500 bp were bright, and there were no bands in the IBF
and the IBF-CTR group (Supplementary Figure 1). Additionally,
the results of gram staining of the fecal bacterial suspension were
consistent with the PCR results. Although we could not determine
whether the intestinal tract of the IBF chickens was absolutely
sterile, the number of bacteria was at least extremely low. The
results also showed that FMT was successful. The weekly test for
environmental bacteria showed that there were no bacteria in the
growth environment of the birds during the trial. However, due to
improper access management of the staff, there was a white mold
on the bacterial culture plate used for the detection of
environmental bacteria on the day of sampling at the end of the
trial (Supplementary Figure 2). We believed that it had no effect
on the analysis of the study results.

The ileal and cecal bacterial composition of the control and the
IBF-FMT group were compared and analyzed. In the control
group, the ileal bacteria were mainly related to Firmicutes,
Bacteroides, Proteobacteria, Lactobacillus, and Staphylococcus
(Figures 1A, C). The cecal was dominated by Firmicutes,
Bacteroides, Proteobacteria, Alistipes, and Staphylococcus
(Figures 1E, G). Previous results showed that there were almost
no bacteria in the intestines of IBF birds. Whole intestinal fecal
bacteria of the birds in the control group were transplanted into
the intestines of IBF birds, and the composition and structure of
the main bacteria in the ileum and cecum of the birds in the IBF-
FMT group were similar to the control group (Figures 1B, D, F,
H). The results showed that FMT could reshape a complete
intestinal bacteria structure in the intestine of IBF birds.

FMT Reshaped the Intestinal
Absorption, Barrier and Antioxidant
Functions of IBF Chickens
Compared with the control group, the IBF chickens had smaller
body weight, bursa of fabric and thymus mass index
(Supplementary Figure 3). The villus height (VH), the ratio of
villus height to crypt depth (VH/CD), the number of villus goblet
cells, and the mRNA levels of Mucin-2 and ZO-1 in the jejunum
and ileum of IBF birds were lower than those of the control
group (Figures 2A–C) (Supplementary Figure 4). The gene
transcription levels in the jejunum, such as those of aquaporin-8
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(AQP-8), potassium inwardly rectifying channel subfamily J
member 13 (KCNJ13), transient receptor potential cation
channel subfamily V member 6 (TRPV6), and solute carrier
family 7 member 7 (SLC7A7), of IBF birds were lower than those
of birds in the control group, as were the catalase (CAT) and
superoxide dismutase (SOD) contents and total antioxidant
capacity (T-AOC) in the ileum. In addition, the level of
diamine oxidase (DAO) in the serum of IBF birds was higher,
and the level of D-xylose was lower than that of the control birds
(Figures 2D–F). The above evidence showed that the intestinal
absorption, barrier and antioxidant functions of IBF birds were
weaker than those of the control birds.

To gain more insight, we conducted the FMT on IBF birds,
and found FMT elevated the thymus mass index, the VH, VH/
CD, number of villus goblet cells, and mRNA level ofMucin-2 in
the jejunum and ileum compared with the IBF-CTR group
(Figures 2G–I) (Supplementary Figure 4). Additionally, the
transcription levels of genes in the jejunum, such as AQP-8,
KCNJ13, TRPV6, and SLC7A7, and the levels of SOD and T-AOC
in the ileum were up-regulated by FMT, as was the serum D-
xylose level (Figures 2J–L). These findings indicated that FMT
contributed to improving the intestinal absorption, barrier and
antioxidant functions of IBF chickens. This ability might be the
reason why we found that the body weight of the birds in
the IBF-FMT group was 130 g higher than that of the birds in
the IBF-CTR group (Supplementary Figure 3).

FMT Reshaped the Intestinal Immune
Function of IBF Chickens
The proportion of CD3+ and CD4+ T cells in the ileum of IBF
birds were lower, while the proportion of CD8+ T cells was higher
than control group (Figure 3A) (Supplementary Figure 5). It
seemed that CD8+ T cells played a key role in immune defense
with the removal of intestinal bacteria. Additionally, the levels of
serum IL-1b and IL-10, the level of secreted immunoglobulin A
(sIgA), and the gene transcription levels in the ileum, such as
lysozyme (LYZ), IL-4, IL-8, IL-10, interferon-g (IFN-g), and
transforming growth factor b (TGF-b) were lower (Figures 3B–
D). These evidences suggested that the intestinal flora was closely
related to the immune function of the intestinal mucosa of host.
To gain further insight, the whole intestinal fecal bacteria from
chickens in control group was transplanted into the intestine of
IBF birds, and found FMT raised the ratio of CD3+, CD4+ T cells,
and B lymphocytes. In addition, the transcription levels of IL-4, IL-
8, IL-10, and IFN-g in the ileum, and the levels of serum IL-4, IL-
10, and IFN-g were also increased by FMT (Figures 3E–H)
(Supplementary Figure 6). These evidences illuminated us that
FMTwas helpful for improving the poor development of intestinal
immune function in IBF birds. In fact, this further confirmed the
importance of intestinal flora for the immune function of intestine.

FMT Reshaped the Intestinal Metabolic
Function of IBF Chickens
The compositions of metabolites in the intestinal chyme of IBF
birds and control were different. Specifically, there were 214
metabolites were downregulated, and 94 metabolites were
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upregulated (Figure 4). KEGG analysis showed that these
differentially abundant metabolites were mainly enriched in the
global and overview maps, the amino acid, vitamin and cofactor,
nucleotide, and lipid metabolism pathways. At the same time,
differentially abundant metabolites were mainly enriched in the
cell membrane transport and protein translation pathways
(Supplementary Figure 7). With intestinal bacteria cleared, the
intestinal metabolic function was severely affected, and these
changes involved the metabolism of almost all nutrients.
Interestingly, we transplanted the fecal bacteria of the birds in the
control group into the intestines of IBF birds and found that the
levels of 51 metabolites that were downregulated in the IBF group
versus the control group were upregulated by FMT treatment, and
that the levels of 18 of the upregulated metabolites were
Frontiers in Immunology | www.frontiersin.org 639
downregulated (Figure 5) (Supplementary Figures 9, 10).
Additionally, FMT reversed the abovementioned changes in the
metabolic pathways in the intestines of IBF birds (Supplementary
Figure 8). The results demonstrated that bacteria in the intestine
participated in the entire process of dietary nutrientmetabolism, and
that FMT helped reshape the intestinal metabolic function of IBF
birds. A schematic representation of the relationship between the
intestinal flora and the function of the intestinal physiology was
described in Figure 6.

DISCUSSION

The nutrients in the diet are metabolized by intestinal bacteria to
produce short-chain fatty acids (SCFAs), functional amino acids,
A B

D

E F

G H

C

FIGURE 1 | The comparative analysis of intestinal flora structure in control and IBF-FMT group. The main bacteria structure at the phylum and genus level in the
ileum (n= 9) and cecum (n= 9) of control group were shown in panels (A, C) and panels (E, G), respectively. Based on the IBF bird model, the whole intestinal flora
of chickens in the control group were transplanted into the intestine of the chickens of IBF-FMT group, and the main bacteria structure at the phylum and genus level
in the ileum (n= 7) and cecum (n= 8) of IBF-FMT group were shown in panels (B, D) and panels (F, H), respectively.
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vitamins and other functional substances, which improve the
digestion and absorption of nutrients by intestinal epithelial cells
and promote intestinal development (23–25). Intestinal bacteria
can also directly regulate the absorption of nutrients by intestinal
epithelial cells. A study found that intestinal bacteria regulated
the transport and absorption of lipids in intestinal epithelial cells
by regulating the expression of a circadian transcription factor
(NFIL3) (26). In the present study, the mRNA levels of intestinal
nutrient transporters in the intestine of IBF birds were lower
than those of birds with bacteria in the intestine. The results were
similar to the findings of previous studies on mice (7). Some
scholars have evaluated the absorption function of the intestine
by measuring the absorption capacity of D-xylose in piglets
under fasting conditions (27). In our study, the level of serum
Frontiers in Immunology | www.frontiersin.org 740
D-xylose in IBF birds was lower than that in control birds. This
evidence indicated that the intestinal absorption function of IBF
birds was weak and served as a reason that the body weight of the
birds was lighter. Intestinal bacteria are involved in the secretion
of mucin and contribute to intestinal barrier function (28), and a
high level of DAO in serum is regarded as one of the markers of
intestinal barrier damage (7). In the present study, the number
of goblet cells and the mRNA level ofMucin-2 in the intestine of
IBF birds were less than those of control birds, and the serum
DAO level was higher. As a result, we found that the intestinal
morphology of IBF birds was worse than that of the control
birds. A study suggested that when the fecal bacteria of birds with
high feed conversion efficiency (FCR) were transplanted into the
intestines of birds with low FCR, the feed intake and body weight
A B

D E F

G IH

J K
L

C

FIGURE 2 | Effects of FMT on intestinal barrier, absorption and antioxidant function in IBF chickens. The results of the comparative study of control and IBF chickens
were shown in panels (A–F) [as to panels (A–C), n= 8. Additionally, panels (D–F), n= 10], and the comparison results between IBF-CTR and IBF-FMT chickens were
shown in panels (G–L) (n= 8). Among them, VH= villi height, CD= crypt depth, VH/CD= the ratio of VH to CD, DAO= diamine oxidase, D-xy= D-xylose, CAT= catalase,
SOD= superoxide dismutase, MDA= malondialdehyde, and T-AOC= total antioxidant capacity. Additionally, *means that the data tends to be different (0.05< P< 0.1),
**represents a significant difference (0.001< P< 0.05), and ***represents an extremely significant difference (P< 0.001), the same below.
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of the birds were increased (29). A study also suggested that FMT
was beneficial to the intestinal absorption and barrier functions
of birds (30). In this study, we found that FMT improved the
intestinal morphology and the mRNA levels of intestinal nutrient
transporter genes of IBF birds. Our findings lead us to conclude
that FMT could reshape the intestinal absorption and barrier
functions of IBF birds.

With antibiotic treatment in early life, the intestines become
highly sensitive to stress, and a large number of inflammatory
factors and oxygen free radicals are produced accordingly (31).
We found that the levels of SOD, CAT and the T-AOC in the
intestines of IBF birds were lower than those in the intestines of
control birds. This finding demonstrated that intestinal bacteria
might play a significant role in improving antioxidant function.
Studies have found that FMT could improve the antioxidant
function of newborn and weaned piglets (32, 33) and relieve
oxidative stress caused by acute lung injury in mice (34). To gain
further insight, IBF birds were transplanted with the whole
intestinal fecal bacteria of the birds in the control group in this
study. Interestingly, FMT raised the level of SOD and the T-AOC
in the intestine of IBF birds, and decreased the level of MDA. On
the basis of these results, we concluded that intestinal bacteria
were essential for the antioxidant capacity of the host.

Intestinal bacteria and their metabolites are necessary not only
for immune homeostasis but also for determining the host’s
Frontiers in Immunology | www.frontiersin.org 841
susceptibility to many diseases. The stable structure of the
intestinal bacterial community participates in shaping the
immune function of the intestinal mucosa. Once the structure of
the intestinal flora is destroyed, immune homeostasis becomes
unbalanced (2, 35). A study suggested that intestinal bacteria were
involved in regulating the maturation and differentiation of CD4+

and Treg T cells, and maintaining intestinal immune homeostasis
(36). In the present study, the number of T and B lymphocytes in
the ileum of IBF birds was lower than that of control birds. Notably,
the proportion of CD4+ T cells in the ileum of IBF birds was lower
than that of the control birds, while the proportion of CD8+ T cells
was higher. CD4+ T cells are regarded as important “helpers” of the
immune system and are involved in maintaining the body’s
immune homeostasis. The decrease in the proportion of CD4+ T
cells indicated that the body was in a state of immunosuppression.
CD8+ T cells directly participate in killing infected cells, and an
increase in their proportion is common in immunosuppression
(37). Our findings led us to conclude that IBF birds were in an
immunosuppressed state and that CD8+ T cells might play an
important role in the process of immune defense. Cytokines are
involved in regulating the body’s immune homeostasis, and the
proper expression of proinflammatory factors such as IL-1b, TNF-
a, and IL-6 activates the immune system. Once overexpressed, this
cytokine expression causes inflammation (38). Anti-inflammatory
factors such as IL-4 and IL-10 participate in immune tolerance and
A
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C

FIGURE 3 | Effects of FMT on intestinal immune function in IBF chickens. The results of the comparative study of control and IBF chickens were shown in panels (A–D) (n=
10), and the comparison results between IBF-CTR and IBF-FMT chickens were shown in panels (E–H) (n= 8). Among them, * means that the data tends to be different (0.05<
P< 0.1), ** represents a significant difference (0.001< P< 0.05), and *** represents an extremely significant difference (P< 0.001), the same below.
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antibody synthesis (39). In the present study, the levels of serum IL-
1b, IL-10 and the mRNA levels of ileal cytokines were lower in IBF
birds than in control birds. The decrease in the levels of these
cytokines seemed to be related to the decrease in the number of
intestinal immune cells. A study suggested that intestinal bacteria
stimulated the secretion of sIgA by promoting the proliferation of
intestinal dendritic cells (40). sIgA helps prevent pathogen
colonization of the intestinal mucosa, and sIgA is considered to
be the main immune barrier that maintains the homeostasis of the
symbiotic flora (41). In the present study, the level of ileal sIgA and
the weight index of immune organs in IBF birds were lower than
those in control birds. These findings further proved that intestinal
bacteria played a critical role in regulating the immune function of
the host. This finding was consistent with previous study (1, 5, 42).

Studies have suggested that FMT reshaped local and systemic
immune development in sterile mice (43), and relieved intestinal
flora disorder and immune stress caused by antibiotic abuse (44,
45). In this study, the fecal bacteria of bacteria-bearing birds were
transplanted into IBF birds, and found FMT increased the weight
of immune organs and the levels of intestinal immune cells and
cytokines in IBF birds. This result indicated that FMT reshaped
the immune function of IBF birds. A study suggested that
transplantation of the whole intestinal flora helped bacteria from
Frontiers in Immunology | www.frontiersin.org 942
different intestinal segments colonize the corresponding locations
(46). The commensal bacteria in the intestine provide colonization
resistance against pathogenic bacteria by competing for niches and
nutrients and metabolizing bacteriocins, SCFAs and other
bactericidal substances. This activity contributes to maintaining
the homeostasis of the intestinal environment (47). In the present
study, the fecal bacteria from birds with bacteria in the control
group were transplanted into the intestines of IBF birds, and it was
found that the intestinal bacteria of IBF birds could be shaped into
a flora structure that was similar to that of the control birds. This
evidence indicated that FMT shaped the structure of the intestinal
bacteria of IBF birds. This finding was consistent with a previous
study in sterile mice (48). On the basis of our findings, it could be
concluded that FMT shaped the immune function of the intestine
by reshaping the structure of the intestinal bacterial community.

The genes encoding metabolic enzymes carried by the gut
microbiota are far more abundant than those of the host, so the
gut microbiota is equipped with powerful metabolic capabilities.
Diets and host-derived substrates, such as polysaccharides, bile
acids and choline, are independently metabolized by intestinal
bacteria on the one hand as well as jointly metabolized by the
host in coordination (49, 50). Studies have suggested that
intestinal bacteria help maintain the metabolic homeostasis of
A B

DC

FIGURE 4 | Comparison of ileal chyme metabolome between the birds in IBF and control group. The analysis of panel (A) and panel (B) were based on the
discriminant analysis of partial least squares (PLS-DA). The results in anion mode were showed in panel (A) and panel (C), and the results of cation mode were
arranged in panel (B) and panel (D), n= 5.
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A B
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FIGURE 5 | Comparison of ileal chyme metabolome between the birds in IBF-CTR and IBF-FMT group. The analysis of panel (A) and panel (B) were based on the
discriminant analysis of partial least squares (PLS-DA). The results in anion mode were showed in panel (A) and panel (C), and the results of cation mode were
arranged in panel (B) and panel (D), n=6.
FIGURE 6 | The relationship between the intestinal flora and the function of the intestinal physiology in the present study. The intestinal physiology of the chicken with
bacteria in the intestine was described on the left and the IBF on the right. FMT reshaped the physiological function of the intestine in IBF chicken. SOD, superoxide
dismutase; CAT, catalase; MDA, malondialdehyde.
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the host. The imbalance of intestinal bacteria leads to abnormal
metabolism of metabolites such as branched-chain amino acids,
hormones, vitamins, and SCFAs, which gives rise to the
development of host diseases (51). To clarify the specific
metabolic pathways that involve intestinal bacteria, the ileum
chyme of IBF and bacteria-containing birds was analyzed by
metabolomics. The metabolic pathways of almost all nutrients
changed as the intestinal bacteria were cleared. Among them,
amino acid, vitamin and cofactor, nucleotide, lipid and other
metabolic pathways were most enriched. Some scholars believe
that carbohydrates in diets fermented by intestinal bacteria
mainly produce SCFAs such as butyric acid, acetic acid and
propionic acid, which could be used as energy sources by the
intestinal epithelial cells of the host and contribute to intestinal
immune function (52). SCFAs, long-chain polyunsaturated fatty
acids (PUFAs), bile acids and some methylamine-containing
substances, such as choline, lecithin and L-carnitine, are
considered to be products of intestinal bacteria metabolizing
dietary lipids. These substances play an important role in
regulating intestinal absorption, barrier, and immune functions
(53). Additionally, intestinal bacteria participate in regulating the
energy metabolism of the host by regulating the metabolism of
vitamins, especially B and K vitamins (54). A study suggested
that intestinal bacteria also regulate intestinal physiology by
improving the metabolism of amino acids such as aromatic
amino acids and branched-chain amino acids (55). In the
present study, the abovementioned differentially enriched
metabolic pathways were reshaped by FMT. This evidence led
us to conclude that intestinal bacteria were involved in the
metabolic process of almost all nutrients in the host, helping
maintain normal intestinal physiology. Our findings also
illuminated us that FMT might reshape the physiology of the
host’s intestine by reshaping the structure of the intestinal
bacterial community and metabolic pathways.
CONCLUSION

Antibiotic treatment of SPF birds in the early stages of life could
be used to construct an intestinal bacteria-free bird model.
Intestinal bacteria participated in the regulation of intestinal
absorption, barrier, antioxidant, immune and metabolic
functions. FMT reshaped the physiology of the host’s intestine
by reshaping the structure of the intestinal bacterial community
and metabolic pathways.
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Supplementary Figure 1 | The results of PCR and gram staining about the whole
intestinal chyme mixture. According to the standard of China’s sterile animal living
environment and fecal specimen testing standards (GB/T14926.41-2001), six samplesof
each treatmentwere randomly selected for PCRanalysis. The primer sequencewas 27F:
5’-AGAGTTTGATCCTGGCTCAG-3’, 1492R: 5’- TACGGYTACCTTGTTACGACTT-3’.
The result was shown above (A, B), and theNC represented thePCR results of RNA-free
water. Then, the intestinal chymeof all birds in each treatmentweremixed separately, and
three samples from the mixture were randomly selected for gram stain observation. The
resultswereshown in (C–F), among them, thegram-positivebacteriawerestainedpurple,
and the red ones represented the gram-negative bacteria.

Supplementary Figure 2 | The results of sedimentation bacteria in SPF
environment. According to the standard of China’s sterile animal living environment
and fecal specimen testing standards (GB/T 14926.41-2001), Different corners of
the SPF environment were selected for sedimentation bacteria detection every
week, and feeding management staff wear isolation equipment for work every day.

Supplementary Figure 3 | Effects of FMT on the body weight, organ mass index.
The comparison results of control and IBF group were shown in (A, B). The
comparison results of IBF-CTR and IBF-FMT group were arranged in (C, D). Among
them, * means that the data tends to be different (0.05< P< 0.1), ** represents a
significant difference (0.001< P< 0.05).

Supplementary Figure 4 | Effects of FMT on intestinal morphology and the
number of goblet cells. The purple dots attached to the intestinal villi represents
goblet cells, the picture magnification was 400 times, n= 8.

Supplementary Figure 5 | The flow cytometry analysis results of intestinal
immune cells between IBF birds and control. Our analysis steps for flow cytometry
results were as follows. At first, we use the CD45 ring gate to eliminate the
interference of red blood cells. In the gate of CD45+, T lymphocytes were labeled
with CD3+ and their ratios were obtained, and then B lymphocytes and monocytes
were labeled with Bu1+ and Mon+, and their ratios were obtained. In the gate of
CD3+, the ratios of CD4+ and CD8+ T cell were obtained, the same below.

Supplementary Figure 6 | The flow cytometry analysis results of intestinal
immune cells between the birds in IBF-control and IBF-FMT group. The flow
cytometry analysis process was the same as Supplementary Figure 5.
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Supplementary Figure 7 | The pathway enrichment of differential metabolites
based on KEGG between IBF birds and control. The results in the negative ion
mode were arranged on the left, and the results in the positive ion mode were
displayed on the other side, n=5.

Supplementary Figure 8 | The pathway enrichment of differential metabolites
based on KEGG between IBF-CTR birds and IBF-FMT. The results in the negative
ion mode were arranged on the left, and the results in the positive ion mode were
displayed on the other side, n=6.
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Supplementary Figure 9 | The differential metabolites of ileal chyme in anion
mode between the birds in IBF-CTR and IBF-FMT group. Substances that were up-
or down-regulated by IBF compared with the control group were reshaped by FMT,
and these substances were marked by red arrows.

Supplementary Figure 10 | The differential metabolites of ileal chyme in cation
mode between the birds in IBF-CTR and IBF-FMT group. Substances that were up-
or down-regulated by IBF compared with the control group were reshaped by FMT,
and these substances were marked by red arrows.
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The miniferritin HP-NAP of Helicobacter pylori was originally described as a neutrophil-
activating protein because of the capacity to activate neutrophils to generate oxygen
radicals and adhere to endothelia. Currently, the main feature for which HP-NAP is known
is the ability to promote Th1 responses and revert the immune suppressive profile of
macrophages. In this review, we discuss the immune modulating properties of the protein
regarding the H. pylori infection and the evidence that support the potential clinical
application of HP-NAP in allergy and cancer immunotherapy.

Keywords: HP-NAP, Helicobacter pylori, inflammation, allergy, cancer, therapy
INTRODUCTION

Bacteria have two types of ferritin-like molecules, the heme binding bacterioferritins (Bfr) and the
non-heme binding bacterial ferritins (Ftn) (1, 2). Both are composed of 24 identical or similar
subunits that form a roughly spherical protein containing a large hollow centre that acts as an iron-
storage cavity with the capacity to accommodate up to 4000 iron atoms.

In 1992, Almirón and colleagues discovered a starvation-inducible protein that was strongly
bound to chromosomal DNA in starved cultures of Escherichia coli. The protein was called Dps, as
in DNA-binding protein from starved cells (3). Later, in vivo, and in vitro assays showed that Dps
protected DNA during oxidative stress, by sequestering iron and by physically binding the DNA (4),
although the latter activity was not demonstrated for all Dps, subsequently identified (5). Dps
proteins are ubiquitous in bacteria and, to date, 76 members have been discovered in 57 organisms
(6). Their sequence closeness to members of the bacterial ferritin family (7) suggested that Dps
represent a new type of ferritin that takes part in a general prokaryotic approach for tackling
oxidative stress. In 1998 the first crystal structure of a Dps protein was published (8). The structure
proved that Dps is an analogue of ferritins. Dps monomers have essentially the same protein fold
(four helix bundle) as the ferritin monomer, and they pack in a dodecameric hollow sphere which
closely resembles the packing of ferritin monomers. According to their size which is smaller than
that of Bfr and Ftn, Dps can store 500 atoms of iron (9).

Several names and abbreviations have been used to describe miniferritins, depending on the
biochemical feature that was being studied: the most common are Dps, for their DNA-binding
properties, which is often used interchangeably with miniferritin, and NAP (from neutrophil-
activating protein), a term used for the first time referring to the miniferritin of Helicobacter pylori
because of its capacity to activate neutrophils to produce oxygen radicals and adhere to
endothelia (10).
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The discovery that miniferritins had an impact on the
function of host immune cells besides their role in protecting
bacterial DNA from oxidizing radicals, has given the impetus to
numerous studies on Dps proteins produced by pathogenic
bacteria, such as Borrelia burgdorferi (NapA), Treponema
pallidum (TpF1), Helicobacter cinaedi (CAIP). What emerged
is that Dps proteins are major determinants in the pathogenesis
of chronic inflammatory diseases because of a robust immune
modulatory activity (11–14). Among the miniferritins produced
by pathogenic bacteria, the most studied is certainly NAP, also
called HP-NAP, produced by H. pylori.

This minireview summarizes the current state of knowledge
on HP-NAP. We address the biological features of this Dps,
highlighting the ability of promoting inflammation and dictating
the profile of the adaptive immune response, as crucial in the
pathogenesis of H. pylori-associated diseases. On the other hand,
we also emphasize that it is because of its powerful and specific
action on the immune system that HP-NAP has a significant
potential utility in clinical practice.
HP-NAP IN H. PYLORI INFECTION

H. pylori infection is mostly acquired during childhood and often
persists for life in the infected host. Depending on geographical
region and economic development, the prevalence of H. pylori
infection in adults has been found to range from 24% to 73%
among populations, with a global prevalence estimate of around
50% (15). Although most infected individuals remain
asymptomatic, bacteria colonization of the gastric mucosa may
cause the development of various clinical conditions such as
peptic ulcers, chronic gastritis and gastric adenocarcinomas, and
mucosa-associated lymphoid tissue lymphomas (16). The
common feature that underlies H. pylori-associated disorders is
the generation of an inflammatory milieu that the bacterial
infection elicits in the gastric mucosa. The strong recruitment
of neutrophils, monocytes/macrophages, but most of all, T
helper 1 (Th1) lymphocytes whose homing in the inflamed
tissue is needed to potentiate the killing potential of
macrophages, one would expect to be the best arsenal to fight
the bacterium. On the contrary, if left untreated, the infection
persists and the inflammatory status that becomes chronic lays
the foundation for the development of severe diseases.

Among several virulence factors which cooperate in promoting
and maintaining inflammation, HP-NAP is probably the most
active. Released by the bacterium in proximity to the gastric
epithelial monolayer, HP-NAP can cross the epithelium and
activate monocytes/macrophages and mast cells which represent
the first line of defense, to release pro-inflammatory cytokines, i.e.
TNF-a, IL-6, IL-12 and IL-23 (17, 18). HP-NAP also increases the
synthesis of tissue factor (TF) and the secretion of the inhibitor-2 of
the plasminogen activator in mononuclear cells (19). The
coordinate expression of pro-coagulant and antifibrinolytic
activities is expected to favor fibrin deposition and contribute to
the inflammatory reaction elicited by H. pylori in the gastric
mucosa. Once in the stomach wall, HP-NAP directly promotes
Frontiers in Immunology | www.frontiersin.org 248
the recruitment of leukocytes with a path resembling that adopted
by the chemokine CXCL8 (20): following transcytosis through
endothelial cells, a sizable amount of HP-NAP remains bound to
the luminal face of the endothelium (Figure 1). How the luminal
surface presentation of the protein occurs remains an open issue,
but in this form HP-NAP encounters rolling leukocytes, up-
regulates the expression of b2 integrins and induces a
conformational change of these adhesion receptors, resulting in
an increased affinity of them for the endothelial partner (21). This
event, which is crucial for the tight adhesion of leukocytes to the
endothelium, precedes extravasation. Under HP-NAP stimulation,
recruited cells release pro-inflammatory cytokines and chemokines
that contribute to the maintenance of inflammation by further
recruiting additional neutrophils,monocytes, and lymphocytes (18,
22, 23). Several studies suggest that HP-NAP may interact with at
least two receptors on the plasma membrane of leukocytes. The
engagement of Toll-like receptor (TLR)-2 (18) is crucial for the
production of cytokines, whereas the interaction with a G protein-
coupled receptor ismainly linked to burst activation, adhesion, and
chemotaxis of leukocytes (22).The evidence that the latter effects are
abrogated by inhibiting p38-MAPK, suggested a role for the kinase
in the signaling cascade (21, 24).

Despite the pro-inflammatory role of HP-NAP is established,
the deletion of the napA gene does not abrogate the capacity of
H. pylori to stimulate the production of TNF-a, IL-6, and CXCL8
by mononuclear cells, suggesting that other factors than HP-
NAP are involved. On the contrary, bacteria which do not
produce HP-NAP are unable to elicit the release of the Th1-
polarizing cytokine IL-12 by the same cells, an event that occurs
following the engagement of TLR-2 by the miniferritin (18).

In vivo in the antrum H. pylori infection causes a predominant
activation of Th1 cells with production of IFN-g and elevated
expression of IL-12, IL-18, IL-17 and TNF-a (25–28). A
considerable number of Th cells in the stomach mucosa of H.
pylori-infected individuals display significant proliferation in
response to HP-NAP (18, 25). According to the evidence that HP-
NAP can create an IL-12-rich environment, antigen-specific gastric
Th cells produce large amounts of IFN- g and TNF-a and have a
powerful cytotoxic activity in response to HP-NAP stimulation,
indicatingapolarizedTh1/Tcytotoxic1 (Tc1)effectorphenotype(18).

Collectively, these findings show that the in vitro and in vivo
actions of HP-NAP are highly correlated and identify the
bacterial protein as responsible for driving the Th response in
the gastric antrum of patients affected by H. pylori. The skewing
of the gastric T-cell response towards a Th1 profile, characterized
by huge IFN-g production and activation of a cytolytic program,
is expected to lead to gastric damage (Figure 1). Moreover, the
high levels of TF, IFN-g, and TNF-amight result in procoagulant
activity and in gastric functional alteration, such as increased
gastrin secretion and pepsinogen release, respectively (25).
HP-NAP AS THERAPEUTIC TOOL

In view of the evidence that HP-NAP possesses a unique capacity
to modulate the immune response, numerous researchers have
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been motivated to verify the application potential of the
miniferritin as therapeutic agent. In vivo studies using a
recombinant form of HP-NAP has been carried out in mouse
model of diseases where a Th2 response is detrimental or where
the induction of a Th1 and Tc1 cytotoxic immune response is
beneficial, such as allergy and cancer.

Th2 Responses
Allergic disorders, (i.e., allergic rhinitis, asthma and atopic
dermatitis-AD) are Th2-mediated inflammatory diseases
characterized by local infiltration of eosinophils and elevated
allergen-specific IgE serum level (29, 30).

The administration of HP-NAP in a mouse model of
ovalbumin (OVA)-induced allergic asthma, revealed the potent
inhibitory effect of the protein on the airway eosinophil
infiltration and on the Th2 bronchial inflammation, resulting
in a great reduction of total serum IgE paralleled by the increase
of IL-12 plasma levels (31). A similar effect was achieved in the
same mouse model by injecting a plasmid encoding a protein
chimera formed by HP-NAP and a soluble form of IL-4 receptor
a chain, working as decoy receptor to block the IL-4 released by
eosinophils and Th2 cells (32), and after orally administrating
spores of Bacillus subtilis as a vehicle to deliver HP-NAP fused to
the cholera toxin B subunit, widely used to induce peripheral
immunological tolerance to co-administered antigens (33).

The capability of HP-NAP to counteract the Th2 immune
responses was confirmed in a mouse model of AD (34). AD is
characterized by an imbalance between Th1 and Th2 cells which
results in increased production of IL-4 and IgE, and local
recruitment of eosinophils (35). Intra peritoneal injection of
HP-NAP significantly attenuated the secretion of IgE and IL-4
and alleviated the AD symptoms, such as erythema and
swelling (Figure 2A).

Th2 cells not only regulate allergic disorders but are also
involved in the immune response to helminth infections (36).
Treatment of mice infected with the intestinal parasite
Trichinella spiralis with HP-NAP resulted in a consistent
reduction of the type 2 immune response, as revealed by the
reduced eosinophil infiltration and the drop of IgE serum
levels (37).

Cancer
Cancer immunotherapy has revolutionized the field of oncology by
prolonging survival of patients with rapidly fatal cancers (38).
Among the variety of strategies that have become routine in the
clinical practice there is the inductionofTh1/Tc1 immune response
with massive IFN-g production (39). Based on the capacity to
generate an IL-12-enriched environment promoting the
differentiation of Th1 cells, the possibility that HP-NAP might be
able to elicit an anti-tumor response, was worth investigating.

The first study, carried out in an orthotopic model of bladder
cancer, revealed that the local administration of HP-NAP, by
eliciting a potent Th1/Tc1 response, counteracted tumor growth
and reduced vascularization of the mass due to the anti-angiogenic
activity of IFN-g (40). Notably, while the administration of Bacillus
Calmette-Guérin (BCG), gold standard treatment for non-muscle-
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invasive bladder cancer, resulted in a strong hematuria, a condition
often associated with the therapy, none of the HP-NAP-treated
animals showed a macroscopic alteration of the urine aspect.
Similar results were obtained in mouse models of hepatoma and
sarcoma in which the protein was administered as chimera, fused
with the maltose binding protein (rMBP-NAP) (41). The evidence
that IFN-g+ T cells were not produced, and tumor growth was not
inhibited in TLR-2-knock-out mice following administration of
HP-NAP (40) or by co-administrating rMBP-NAP and a TLR-2
blocking antibody (41), confirmed the in vitro finding suggesting
the essential role of the immune receptor for the HP-NAP
activity (18).

In a work by Mohabati Mobarez et al. (42), HP-NAP was
loaded in chitosan nanoparticles (Chi-rNAP) and applied in a
mouse model of breast cancer. The Chi-rNAP formulation
strongly affected tumor growth, with an efficacy superior to
that of the recombinant protein alone, in accordance to the
fact that chitosan nanoparticles, by activating the antigen
presenting cells, act as adjuvants (43).

Due to the ability to link the innate with the adaptive immune
response, TLR agonists are highly promising as adjuvants in
vaccines against life-threatening and complex diseases such as
cancer. The possibility of using HP-NAP as adjuvant for cancer
treatment was explored by some studies in which the protein was
expressed in oncolytic viruses (OVs). The capacity of OVs to
selectively replicate in tumor cells leading to cell death makes
OVs promising agents for cancer therapy (44). In a
neuroendocrine cancer mouse model, the intratumoral
injection of OVs expressing HP-NAP improved the animal
survival and increased the plasma level of the p40 subunit of
IL-12 (45). Using an adenoviral vector encoding HP-NAP, it was
demonstrated that the protein promotes the maturation of
dendritic cells, both in vitro and in vivo. Dendritic cells
matured by vector-encoded HP-NAP secrete high level of IL-
12, and in accordance have the capacity to induce antigen-
specific T cell expansion with a predominant Th1 profile. In
the same line of evidence it was shown that HP-NAP per se
promotes the maturation of dendritic cells and the activation and
proliferation of cytotoxic T cells towards melanoma cells (46, 47).

An attenuated measles virus strain and vaccinia virus were
engineered to express HP-NAP and both were effective in
counteracting tumor growth and in improving the survival of
animals with breast cancer and neuroblastoma, respectively
(48, 49). CAR T cells engineering to produce HP-NAP turned
out to be a very promising approach for treating solid tumors
that are difficult to completely eradicate with conventional CAR
T cells, due to heterogeneity in antigen expression. In mouse
models of cancer, injection of CAR(NAP) T cells slowed tumor
growth and increased survival rates compared to standard mice
CAR T cells, regardless of target antigen or tumor type. The
evidence on the safety of this approach in mice bode well for its
clinical application (50).

All these studies have converged on the notion that the anti-
tumor potential of HP-NAP relies on the activation and shaping
of the adaptive immune response, but the possibility that HP-
NAP might counteract tumor growth due to the modulation of
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mononuclear cells, regardless of the participation of the adaptive
immunity, remained unexplored. Codolo and colleagues, taking
advantage of the zebrafish model, examined the therapeutic
efficacy of HP-NAP against metastatic human melanoma,
limiting the observational window to 9 days post-fertilization,
well before the maturation of the adaptive immunity. The study
disclosed a new property of the miniferritin, namely the capacity
of reverting the immune suppressive profile of macrophages, so
Frontiers in Immunology | www.frontiersin.org 450
as to counteract the tumor growth even in the absence of the
acquired immune system (51).
CONCLUDING REMARKS

Since its discovery in 1995, HP-NAP, the miniferritin produced
by H. pylori has been under intense focus because of its
FIGURE 2 | Immune modulating activities of HP-NAP applied to the treatment of allergy and cancer. (A) The delivery of pollen allergens to sub-epithelial APC that
initiates the priming of T helper 2 (Th2) cells is a key step in the immunopathology of allergy. Treatment with HP-NAP stimulates APC to secrete IL-12 which mediate
the skewing of Th2 lymphocytes towards a Th1 profile. This impacts on the allergic cascade and ameliorates the subsequent symptoms. (B) HP-NAP can potentiate
weak natural Th1 responses, that per se are unable to exert protection against tumors (left) and shift the profile of macrophages from pro-oncogenic to pro-
inflammatory and anti-tumoral (right). This results in a regression of tumor mass. Figure created with BioRender.com.
FIGURE 1 | HP-NAP activity in the context of H. pylori infection. Once released by H. pylori in the stomach lumen, HP-NAP crosses the gastric epithelial cell layer
and the endothelium. Bound to the luminal face of the latter, it directly stimulates leukocytes to adhere and extravasate. In addition, HP-NAP activates recruited
neutrophils and monocytes to secrete cytokines that further promote inflammation, and stimulates monocytes/macrophages and dendritic cells (antigen presenting
cells, APC) to release of IL-12 which drives the differentiation of T helper cells towards the IFN-g producing Th1 phenotype. Figure created with BioRender.com.
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remarkable ability to modulate the human immune response. H.
pylori infection leads to an intense inflammatory response in the
gastric mucosa, characterized by the infi l tration of
polymorphonuclear and mononuclear cells. It is assumed that
HP-NAP, by cooperating to the recruitment of inflammatory
cells but especially by generating a pro-inflammatory Th1
skewing environment (Figure 1) can make a substantial
contribution to the gastric damage caused by H. pylori
infection. In accordance, HP-NAP is one of the antigens
included in the vaccine formulations currently under
investigation (52).

On the other hand, the immune modulating activity of HP-
NAP makes it an excellent candidate for developing new
therapeutic strategies aimed at preventing and treating allergic
disorders, such as bronchial asthma, rhinitis, conjunctivitis and,
most importantly, at fighting malignant tumors (Figures 2A, B).

Whether the iron-binding ability of HP-NAP is related to the
pathogenesis of H. pylori infection or to the immune modulating
properties of the miniferritin is not clear. The bacterial protein is
constitutively expressed under iron-depletion, and its expression
is not regulated by the presence or absence of iron and it has no
part in the metal resistance of H. pylori (53). Probably HP-NAP
protects the bacterium from the oxidative stress produced in
ferrous ion-mediated Fenton reactions, since the degree of DNA
damage is much higher in the napA knock-out mutant strain
than that in the wild-type strain (54). Moreover, iron plays an
Frontiers in Immunology | www.frontiersin.org 551
important role in generation of the quaternary structure of HP-
NAP by promoting stable dimers that are crucial for the ensuing
dodecamer structure (55), that is likely to be essential for the
immune modulatory properties.

Although more pre-clinical studies are mandatory, the
evidence of the clinical potential of HP-NAP are promising
and strongly support the possibility of adopting HP-NAP as
immunomodulatory agent. The immunostimulatory activity of
the bacterial protein could also enhance the immunogenicity of
poor immunogens, thus HP-NAP could be used as an adjuvant
to be included in vaccines formulations.
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Autotransporters are the core component of a molecular nano-machine that delivers
cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V
secretion system, this large family of proteins play a central role in controlling bacterial
interactions with their environment by promoting adhesion to surfaces, biofilm formation,
host colonization and invasion as well as cytotoxicity and immunomodulation. As such,
autotransporters are key facilitators of fitness and pathogenesis and enable co-operation
or competition with other bacteria. Recent years have witnessed a dramatic increase in
the number of autotransporter sequences reported and a steady rise in functional studies,
which further link these proteins to multiple virulence phenotypes. In this review we provide
an overview of our current knowledge on classical autotransporter proteins, the archetype
of this protein superfamily. We also carry out a phylogenetic analysis of their functional
domains and present a new classification system for this exquisitely diverse group of
bacterial proteins. The sixteen phylogenetic divisions identified establish sensible
relationships between well characterized autotransporters and inform structural and
functional predictions of uncharacterized proteins, which may guide future research
aimed at addressing multiple unanswered aspects in this group of therapeutically
important bacterial factors.

Keywords: type V secretion system, virulence, bacterial pathogenesis, toxins, adhesins, secreted proteins
1 INTRODUCTION

Many processes essential for bacterial survival require proteins located extracellularly or at the
bacterial surface (1, 2). To facilitate their transport across the cell envelope, bacteria have evolved a
diverse range of secretion systems. This includes the secretion of virulence factors that promote
bacterial pathogenesis via functions such as invasion, adherence, dissemination, and immune evasion
(3, 4). Accordingly, these secretion systems are fundamental for bacterial pathogenesis. The most
ubiquitous are the Sec and Tat systems, which transport a large variety of proteins across the
phospholipid biolayer of the inner membrane (IM) (5). In Gram-negative bacteria, the outer
membrane (OM), with phospholipid and lipopolysaccharide leaflets, presents a second barrier to
secretion. To overcome the multilayered cell envelope, Gram-negative bacteria possess additional
org July 2022 | Volume 13 | Article 921272154
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secretion machineries including the chaperone usher system and
those classified as type 1 to type 9 secretion systems (T1SS to
T9SS) (1, 6). In addition to these established secretion systems,
other secretory systems are likely present in Gram-negative
bacteria and this list is expected to grow to include further
members (7, 8). These systems may directly secrete proteins
outside the cell (T1SS and T7SS), traverse multiple membranes
and deliver them into the cytoplasm of recipient cells (T3SS, T4SS,
T6SS), or transport them across the OM in two steps assisted by
the Sec or Tat IM transportation systems (T2SS, T5SS, T8SS,
T9SS) (9). Because the periplasm lacks ATP, most of these
machineries are large complexes including IM components to
access cytoplasmic ATP (10). By comparison, the T5SS does not
require ATP and is remarkably simple, typically involving a single
dedicated protein (2, 11, 12). This review focuses on the T5SS,
alternatively called the autotransporter system reflecting its
uniquely simple and energy-efficient transport mechanism.

1.1 The T5SS: Autotransporters (ATs)
The type 5 secretion system (T5SS) is the largest group of secreted
proteins in Gram-negative bacteria (13–15). While it encompasses
functionally diverse proteins, their journey from cytoplasm to OM
is similar (Figure 1A) (16, 17). T5SS proteins are termed
autotransporters (ATs) because each contains both, secretion
machinery (translocator) and functional cargo (passenger) (17).
In the cytoplasm, ATs carry an N-terminal signal peptide (SP) for
Sec-mediated transport across the IM where the SP is cleaved (23,
24). Periplasmic chaperones keep ATs unfolded until reaching the
OM (25–28). The translocator forms a pore in the OM to facilitate
the transport of the passenger to the cell surface (29). The
passengers are frequently comprised of repetitive secondary
structure elements, the sequential folding of which on the
bacterial surface may provide a driving force for AT
translocation (30–33). The first model of an autotransport
mechanism was proposed in 1987 (29) and this has remained
an active area of research with several recent reviews on the topic
(19, 34, 35). While these basic transport steps are largely consistent
with the initial model, later studies revealed the process is not
entirely autonomous. Most notably, the barrel assembly
machinery (BAM) complex, which catalyzes folding of many
OM proteins, is required for insertion of the translocator into
the OM and may also facilitate passenger translocation directly
(25, 36–39). Significant advances have also been made in our
understanding of passenger functions, and these are reviewed in
the current work.

While all T5SS members contain both a passenger and
translocator, there are variations in their domain arrangement
dividing them into subtypes Va to Vf (Figure 1B). The Va ATs
include, from the N- to C-terminus, a signal peptide, passenger
and translocator. The Vc ATs, that include YadA from Yersinia
ssp. are similar except that their passenger and translocator form
trimers, with three ATs forming a single passenger-translocator
in the bacterial outer membrane (40, 41). By comparison the Ve
ATs represented by intimin from enteropathogenic and
enterohaemorrhagic Escherichia coli are similar to that of the
Va subtype except that their passenger and translocator are
switched in position (42). In contrast, the passenger and
Frontiers in Immunology | www.frontiersin.org 255
translocator of Vb ATs such as Bordetella pertussis FHA, are
expressed as separate proteins. Their translocators include two
periplasmic polypeptide-transport-associated (POTRA)
domains (20, 43). Similarly, the Vd ATs such as PlpD from
Pseudomonas aeruginosa and FplA from Fusobacterium
nucleatum also include a POTRA domain, but only a single
POTRA domain exists between the passenger and translocator
which are expressed as a single protein (44, 45). Lastly, the type
Vf ATs represented by BapA from Helicobacter pylori are the
most distant subtype, whereby its inclusion into the T5SS is still
unclear (18). The likely passenger of the Vf ATs derives from a
loop that is part of its putative b-barrel translocator. The Va ATs
are the focus of this study, where for clarity, the term ‘AT’ will
hereafter refer to this group.

1.2 Type Va ATs
ATs are highly diverse outer membrane proteins that are
distributed widely throughout Gram-negative bacteria,
including the phylum Fusobacteria, the order Chlamydiales
and all classes of Proteobacteria (14). However, each AT
exhibits a similar domain organization consisting of an N-
terminal SP followed by a passenger, linker, and C-terminal
translocator (Figure 1A) (29, 46, 47).

1.2.1 Translocator: Conserved Sequence, Structure,
and Function
Translocators exhibit sequence conservation corresponding to
the Pfam entry PF03797 (48) and form b-barrel structures that
span the OM and facilitate passenger translocation (14, 47, 49–
53). The first translocator crystal structure, NalP from Neisseria
meningitidis, revealed a monomeric, 12-stranded b-barrel
forming a 10 Å by 12.5 Å pore (47). Homologous structures
have since been determined for distantly related ATs AIDA-I,
Hbp/Tsh, EspP, EstA, NalP, and BrkA (50–54). Along with the
observation that chaperones are required for proper secretion,
the narrow pore size suggests passengers are unfolded during
translocation (19, 27, 36, 47). However, folded passengers may be
secreted through a larger pore formed by the translocator
together with the BamA insertase (19, 25, 55). Despite this,
there are limitations on the complexity of folded regions
tolerated (31, 56, 57).

1.2.2 The Linker Domain, Cleavage, and Release
The linker connects the passenger and translocator, where after
transport of the passenger to the bacterial surface, the linker
forms an a-helix spanning the translocator pore (54). In many
cases, the passenger is cleaved from the translocator either within
the linker or at a nearby site. Cleavage is catalyzed by separate
proteases or by the AT itself via its own protease subdomain
contained within the passenger, or through an autoproteolytic
mechanism within the b-barrel (58–64). Many ATs remain at the
bacterial surface, either covalently attached to the translocator or
through non-covalent interactions after cleavage (65–68). These
ATs influence the surface properties of bacteria such as AIDA-I
promoting bacterial aggregation through self-adhesion (65).
Other ATs are released into the external milieu to act on
targets away from the bacterial surface, for example the
July 2022 | Volume 13 | Article 921272
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passenger of IgA1 protease is proteolytically released and moves
away to cleave host immunoglobulins (29). ATs can also be
released via outer membrane vesicles (OMVs) that pinch off
from the OM, for example Vag8 released in OMVs activates and
depletes host immune factors away from the bacterial surface
(68, 69).

1.2.3 Passenger: Common Structural Themes
Passengers execute the specific function of each AT, and thus
show more sequence variation compared to the translocators
(49). Despite their sequence and functional diversity, passenger
structures are strikingly similar. Most are predicted to include b-
solenoid content, with over 90% of published passenger
structures comprising a right-handed three-stranded b-helix
(70–81). Although the b-helix structure predominates,
variations include b-helices with curved or extended sections
and the addition of subdomains and loops that protrude out
from the b-helix (70–78, 80, 81). The passenger b-helix facilitates
multifunctionality as it may directly function as a binding
domain specialized to interact with specific host or bacterial
factors (70, 71) and can act as a scaffold for catalytic subdomains
Frontiers in Immunology | www.frontiersin.org 356
(72–75, 77, 81). Notably, some ATs lack b-helical structure
entirely, for instance, EstA from P. aeruginosa is the only
published passenger structure comprised of a globular catalytic
domain attached directly to the linker (54). Taken together,
published AT passenger structures can be divided into three
broad types: Type 1, b-helix only; Type 2, globular enzymatic
domain supported by a b-helix stalk; Type 3, enzymatic
domain without a b-helix (Figure 1B). However, given
the small proportion of AT structures available the full extent
of structural variation within this family remains to be
fully uncovered.

1.3 Functional Properties of AT Proteins
ATs are multifunctional proteins that contribute to supporting
bacterial survival and growth in different environments. Of
significance is that many of these functions are virulence traits
that enhance bacterial pathogenic potential (14, 82–87). AT
passengers exhibit highly varied sequences, consistent with the
variety of functions they perform (88). Some examples of the
roles executed by ATs include host adhesion, auto-aggregation,
biofilm formation, hemagglutination, invasion, intracellular
BA

FIGURE 1 | Biogenesis and domain architecture of the type 5 secretion system (T5SS). (A) AT secretion mechanism modelled on classical ATs with the following
domain organization: The N-terminal signal peptide (SP) is followed by the passenger, linker, and translocator. The SP targets the ATs for inner membrane (IM) secretion
via the SecYEG translocon which is subsequently cleaved by a periplasmic peptidase. The translocator inserts into the outer membrane (OM), forming a b-barrel with the
a-helical linker spanning its pore. The passenger is translocated to the OM surface where it folds into its tertiary structure. In some ATs, the passenger is cleaved and
secreted into the external milieu. Release can also occur through outer membrane vesicles (OMVs). (B) T5SS subtypes Va-Vf. Three basic domains (the passenger, linker,
and translocator) are present in all T5SS subtypes with variations in topology, domain order, and oligomeric states producing six different subtypes (16–18). These AT
classes include: the classical ATs (Va), where the translocator that forms a 12-stranded b-barrel in the outer membrane, and a mostly b-helical passenger, are part of one
polypeptide; the two-partner secretion systems (Vb), which are unique because the b-helical passenger is encoded by a separate gene from the translocator, which forms
a 16-stranded b-barrel that harbors two polypeptide-transport-associated (POTRA) domains that facilitate the interaction of the passenger and translocators; trimeric ATs
(Vc), which require three polypeptides to constitute a full 12-stranded b-barrel translocator to secrete the passengers which includes a coiled-coil stalk and b-helical head
regions; patatin-like ATs (Vd), with similar domain architecture to Va but where the translocator is a 16-stranded b-barrel that contains a POTRA domain; inverse ATs (Ve),
which comprise an inverted domain organization with an N-terminal signal sequence followed by the translocator, then the linker and a C-terminal passenger; and Hop-
family ATs (Vf) possessing an interrupted b-barrel translocator where the passenger is inserted in the loop joining the 1st and second b-strands, and therefore resembling
a prolonged loop protruding from the 8-stranded b-barrel. Outer membrane (OM) is indicated. Within classical Va ATs, passengers can adopt various structural
configurations: Type 1 passenger structures consist of a b-helix, which may be decorated with functional loops and are connected to the translocator via the a-helical
linker; in Type 2 structures a catalytic domain is present at the b-helix N-terminus; Type 3 structures lack a b-helix, instead a catalytic domain is directly connected to the
translocator via the linker. This visual representation of T5SS subtype domain organization is consistent with other reviews (16, 17, 19–22).
July 2022 | Volume 13 | Article 921272
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motility, toxicity, and immune evasion, along with enzymatic
functions such as protease, lipase, and sialidase activities (16). In
many cases, these ATs are expressed by bacterial pathogens
where these activities promote disease.

Based on functional properties, some classical AT proteins are
classified into four broad groups. These are the serine protease
ATs of Enterobacteriaceae (SPATEs) (87), subtilisin-like ATs
(17), self-associating ATs (SAATs) (89), and GDSL-lipases (90).

SPATEs are a family of secreted AT toxins that cleave a
variety of host substrates including fodrin, hemoglobin, mucin
and Factor V, among others (91). SPATEs are probably the best-
studied group of ATs where several reviews have covered current
knowledge about SPATE functions (87, 91–94). The passenger of
these ATs incorporates a b-helical scaffold with an N-terminal
chymotrypsin-like subdomain corresponding to the S6 serine
protease family in the MEROPS database (49, 95). Detailed
phylogenetic analysis performed on SPATEs have divided these
proteins into Class-1 cytotoxins that degrade intracellular
substrates and Class-2 immunomodulators that degrade
extracellular substrates (87).

AnothergroupofATproteases are the subtilisin-likeATs,which
may be anchored to the bacterial surface or released into the
extracellular environment (96–98). These ATs are predicted to
contain a b-helical stalk with an N-terminal subtilisin-like
subdomain corresponding to the S8A serine protease family in
theMEROPSdatabase (17, 95).Overall, subtilisin-likeAT functions
are poorly understood, but have been associated with surface
maturation of other virulence factors to promote virulence
functions like cytotoxicity, aggregation, and hemagglutination (17).

Self-associating ATs (SAATs) are a prominent functional
subgroup in the AT superfamily (89). These diverse OM-
anchored adhesins are predicted to share b-helix architecture
in their passenger, as shown for two canonical SAATs, Ag43 and
TibA (71, 80). Although ATs in this group can have different
functions, all promote bacterial aggregation and biofilm
formation through self-association between passengers on
neighboring bacteria (71, 89).

Another class of ATs with catalytic activity are the GDSL-
lipase ATs. These ATs lack the archetypal b-helix scaffold found
in the majority of ATs (54, 90) and are primarily membrane
anchored where they hydrolyze ester bonds in host or bacterial
lipids (90). Although their natural substrates are unknown, it is
assumed they hydrolyze membrane lipids, where they have been
shown to affect host cell lysis, lipid and phosphate metabolism,
adhesion, and motility (90).

While the identification and definition of these functional
groups has provided an important framework for understanding
AT proteins, many ATs have been characterized that do not
belong to these established functional group.
2 PHYLOGENETIC CLASSIFICATION OF
AT PROTEINS

Over the past decades, different groups have devoted
considerable effort to the phylogenetic characterization of AT
Frontiers in Immunology | www.frontiersin.org 457
proteins. Henderson, et al. (17) published a landmark
phylogenetic analysis of ATs with described phenotypes. This
analysis used the sequences of the more conserved AT
translocator resulting in the division into 11 subgroups. This
enabled comparison and description of the functions within each
phylogenetic group and has provided a guiding principle for AT
research for the last 18 years. Since this time Celik, et al. (14)
using a bioinformatics strategy, presented a large-scale
phylogenetic analysis with hundreds of predicted AT passenger
sequences, which highlighted the anticipated diversity and
widespread distribution of these proteins. Additionally, other
phylogenetic analyses have been reported focused on specific AT
subgroups (21, 87, 88, 99). With the advent of genome
sequencing techniques, the past years have seen a substantial
increase in the number of AT sequences reported in public
databases along with a steady rise in AT functional
characterization, to the point where there is now sufficient data
for functional phylogenetic classification studies.

2.1 Sequence Alignment of Characterized
ATs
In this work we sought to carry out a comprehensive analysis of
functionally characterized ATs. Given the passenger of ATs is the
region primarily responsible for facilitating the associated
bacterial phenotype through its interactions with the host and/
or environment, our analysis concentrated on AT passengers
alone to gain insights into the functional relationships
between ATs.

Functionally characterized ATs were identified from the
literature, particularly focusing on previous reviews (16, 17, 19,
94) and by searching published databases (PubMed and Web of
Science) using the keywords “autotransporter” and “T5SS”. After
eliminating those lacking experimental characterization, 112 ATs
were identified from 32 species across 24 genera of Gram-
negative bacteria. Proteobacteria accounted for 97 ATs
including classes a-proteobacteria (8 ATs), b-proteobacteria
(16 ATs), ϵ-proteobacteria (7 ATs), and g-proteobacteria (66
ATs, including 31 from E. coli). Twelve ATs from Chlamydiae
and 3 ATs from Fusobacteria are also represented. Full-length
amino acid sequences were retrieved from the National Centre of
Biotechnology (NCBI) for prediction of the SP, a-helical linker,
and translocators using SignalP 4.1 (100), PSIPRED (101), and
InterPro (102), respectively. Table S1 details the accession
numbers for all 112 ATs analyzed. Passenger sequences were
identified and recorded as the region flanked by the SP and a-
helical linker. PSIPRED secondary structure predictions were
also used to predict the secondary structure of the passengers.
Clustal Omega (103) was used to generate a multiple sequence
alignment of the passengers, which demonstrated high diversity
within the AT family. Consistent with previous reports (14), we
found that passenger lengths were highly varied, ranging from
193 to 3,374 aa with an average of 945 aa (Supplementary Figure
S1). This diversity of sequence lengths between ATs may have
skewed some of the phylogenetic relationships, particularly for
very short and very long sequences. A heatmap of pairwise
identities (Supplementary Figure S2) from the alignment
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identified 15 high-identity groups, with low identities between
the groups, indicating that each group is highly unique.

2.2 Functional Phylogenetic Classification
of ATs
To obtain a phylogenetic classification that reflects AT function,
following sequence alignment of the 112 curated passengers, an
unrooted consensus tree was generated using PhyML (104) with
100 bootstrap iterations and visualized using the interactive tree
of life (iTOL) (105). The consensus PhyML tree found the 112
AT passengers formed 16 homologous groupings (Figure 2) with
Frontiers in Immunology | www.frontiersin.org 558
15 of these corresponding to the high-identity groups seen in the
multiple sequence alignment pairwise identity heatmap
(Supplementary Figure S2). The rationale for grouping
ATs together took into consideration strong phylogenetic
relationships on the tree (cladding together, short branch
lengths, and strong bootstrapping support values) as well as
similar reported functions and structural features. More distant
similarities between nearby groups that share functional themes
are considered together as larger clusters. The 16 phylogenetic
groups are organized into broad AT functional themes, and
importantly show that previously established functional groups
FIGURE 2 | Phylogenetic tree of AT passengers. Unrooted maximum-likelihood phylogenetic tree using Clustal Omega MSA and PhyML with 100 bootstrap iterations
and visualized using the interactive tree of life (iTOL). Branch color (red to green) indicates branch support values of 0–90%. Phylogenetic groups are numbered 1─16
with major functional categories indicated by colored shading. 14 published passenger structures are mapped onto the consensus tree, highlighting gaps in structural
knowledge. AT structures (54, 70–77, 79–81, 106, 107) were visualized with PyMOL Molecular Graphics System (Schrödinger, LLC) (108). Red cross (+) indicates
incomplete passenger structure. Red double brackets indicate ungrouped ATs.
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form distinct clades: SPATEs (Group 1-2), SAATs (Group 4),
GDSL-lipases (Group 6), and subtilisin-like ATs (Group 15).
Furthermore, several of these individual clades form part of
larger functionally related clusters (Clusters A-C).

Successful identification of these established groups validates
the ability of this phylogenetics strategy to distinguish AT groups
that share functional and structural similarities. This in turn
supports the interpretation of novel groups identified here as
functionally related AT classes. The groupings are discussed
below, with overall functional themes assigned to each group.
Table S1 provides a comprehensive list of the ATs and their
experimentally defined functions.

2.2.1 Cluster A (Groups 1–3): Chymotrypsin-Like
Serine Proteases
Cluster A contains Groups 1–3 totaling 26 ATs belonging to the
chymotrypsin-like serine protease family (95). This includes
Frontiers in Immunology | www.frontiersin.org 659
Class-1 SPATEs (Group 1) and Class-2 SPATEs (Group 2) as
defined by Ruiz–Perez and Nataro (87). These are now brought
together with SPATE-like ATs (SLATs) from outside of the
Enterobacteriaceae (Group 3). This is the first time to our
knowledge that the close relationship between the SPATEs and
SLATs has been shown. This relationship can be interpreted with
confidence considering the high branch support values
connecting Groups 1–3 (88–95%) and the conservation of
well-defined structures among all Cluster A proteases. These
are probably the best characterized ATs including six passenger
structures (Pet, EspP, IgA1, Hap, SepA, and Hbp) exhibiting
similar Type 2 architecture (Figure 1B) with a b-helix
supporting an N-terminal serine protease subdomain (d1) (72–
75, 77, 81). Extended loops arising from the b-helical stalk give
rise to further smaller subdomains d2–d4 where d2 resembles a
chitin-binding domain, d3 forms an a-helix, and d4 forms a b-
hairpin (Figure 3B) (87). Recent work revealed that subdomain
B C

A

FIGURE 3 | Virulence functions of ATs from Groups 1-4. (A) Cluster A chymotrypsin-like protease AT mechanisms. Cluster A protease ATs (Groups 1–3) are
released into the extracellular space and move away from the bacterial surface to degrade host proteins. Group 1 proteases then enter host cells and degrade
intracellular cytoskeletal components, triggering cytotoxicity. Group 2 proteases remain in the extracellular space where they degrade large host glycoproteins. Group
3 proteases degrade extracellular immunoglobulins or enter host nuclei to degrade nuclear proteins, triggering cell death. Some Cluster A proteases can execute
additional functions if they remain at the bacterial surface where they contribute to adhesion to host and bacterial molecules. This includes some members of Group
2 and Group 3, which can promote bacteria-bacteria or bacteria-host adhesion interactions. (B) Subdomain organization of a representative Cluster A protease AT.
Structure of the Hbp (Group 2) passenger showing the structural elements that are conserved across Cluster A proteases including the b-helical stalk (grey) which
acts as a scaffold supporting the globular d1 protease subdomain (orange), the d2 subdomain which resembles a chitin-binding domain (pink), the a-helical loop of
the d3 subdomain (green), and the b-hairpin loop of the d4 subdomain (blue). These subdomains are highly conserved, except d2, which is absent from Group 1
proteases. (C) Group 4 Self-associating ATs (SAATs) adhesion mechanism. The SAAT Ag43 on adjacent bacterial surfaces self-associate in a molecular Velcro-like
manner. This bacteria-bacteria contact contributes to aggregation and biofilm formation. The structures of Hbp (PDB: 1WXR) (75) and Ag43 (PDB: 4KH3) (71) were
visualized with PyMOL Molecular Graphics System (Schrödinger, LLC) (108).
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d3 mediates host cell internalization of Pet from Group 1 by
binding cytokeratin-8 to initiate receptor-mediated endocytosis,
an essential step in Pet-mediated virulence (109). Currently, no
functions have been associated with d2 and d4 subdomains. The
finding that the b-helix extended loop that forms d3 is involved
in cell binding interactions is consistent with research on the AT
adhesins, where their b-helices directly participate in binding
interactions (70, 71, 106).

While their clustering together reflects structural conservation,
the division of Cluster A proteases into Groups 1–3 reflects
their differences.

Group 1 contains sixATs (SigA, EspP, EspC, Pet, Sat, TagC) and
encompasses the Class-1 SPATEs described by Ruiz–Perez and
Nataro (87). These ATs enter host cells and degrade a vast range of
large intracellular host proteins, includingcytoskeletal components,
which causes cytotoxicity and tissue damage at the site of infection
(Figure 3A) (110–115). Most originate from diarrheagenic
pathogens of the Enterobacteriaceae family where cytotoxicity
contributes to cell exfoliation that is characteristic of diarrheal
disease. This includes SigA from Shigella flexneri (112) alongside
EspP, EspC, and Pet from enterohemorrhagic E. coli (EHEC),
enteropathogenic E. coli (EPEC), and enteroaggregative E. coli
(EAEC) strains, respectively (115–117). Meanwhile, Sat and TagC
are expressed by E. coli strains associated with urinary tract
infections (Sat is also expressed in other pathogens such as
enteroaggregative E. coli (EAEC) and Shigella flexneri) (114, 118).

Group 2 contains 14 ATs (TagB, AdcA, RpeA, Sha, Vat, Hbp/
Tsh, TleA, PicC, Pic, PicU, EspI, EpeA, SepA, EatA) and
encompasses the Class-2 SPATEs described by Ruiz–Perez and
Nataro (87). These ATs primarily cleave extracellular targets
including mucin and immune glycoproteins (Figure 3A) (91,
119–123). Most originate from enteric pathogens responsible for
intestinal infections where mucin degradation increases
penetration into the protective mucous layer covering
intestinal tissue. This includes PicC and AdcA from
Citrobacter rodentium (119, 124), SepA from Shigella flexneri
(125), alongside ATs from E. coli strains including EpeA from
EHEC (122), TleA and EatA from enterotoxigenic E. coli (ETEC)
(120, 126), EspI from Shiga toxin-producing E. coli (STEC)
(127), Pic from Shigella flexneri and EAEC (128), and RpeA
from rabbit-specific EPEC (REPEC) (129). Meanwhile, ATs such
as Sha, TagB, PicC, Hbp, and Vat derive from extraintestinal
pathogenic E. coli strains (114, 124, 130, 131), that cause urinary
tract infections and wound formation (132). Hbp (haemoglobin
protease), first found in a human E. coli pathogen (EB1) isolated
from a peritoneal would infection, shares 99.8% identity with
Tsh (temperature-sensitive hemagglutinin), which originates
from the avian pathogenic E. coli which causes severe
respiratory disease in avian populations (75, 130).

Group 3 contains five ATs and encompasses the SPATE-like
ATs (SLATs) (MspA, Hap, App, IgA1 proteases). SLATs have
properties found in both Class-1 and Class-2 SPATEs
(Figure 3A). These ATs are expressed by pathogens that infect
mucosal epithelia and may become invasive to cause severe
disease. For example, App and MspA derive from Neisseria
meningitidis, while IgA protease and Hap derive from
Frontiers in Immunology | www.frontiersin.org 760
Haemophilus influenzae (133–135). These are respiratory
pathogens that can disseminate to cause meningitis (136–138).
IgA protease is also expressed by Neisseria gonorrhoeae, a
urogenital pathogen that can spread to cause septic arthritis
and endocarditis (139, 140). SLAT functions are well-suited to
such pathogens including immune evasion and adhesion to host
and bacterial surfaces, which promotes mucosal colonization, as
well as tissue damage, which is often required for dissemination.

Specifically, Hap has been shown to adhere to host surfaces
and increase aggregation, while App andMspA bind to and enter
host cells, degrade histone proteins in the nucleus, and trigger
cell death which likely causes tissue damage (81, 141–145).
Meanwhile, the IgA1 proteases degrade IgA, which is the most
abundant immunoglobulin and an important line of defense at
mucosal surfaces (141, 146, 147).

2.2.2 Group 4: Biofilm Forming AT Adhesins
Perhaps the most striking feature of AT adhesins is their
sequence diversity despite overall conservation of Type 1 b-
helical passenger architecture (Figure 1B) in all published
structures (Figure 2) (70, 71, 76, 79, 80, 106). This diversity
underlies their dispersal into 11 phylogenetic groups. Of these,
the best studied adhesins are the SAATs encompassed by
Group 4. SAATs Ag43, Cah, TibA, and AIDA-I are expressed
by E. coli where they self-associate with other SAATs on adjacent
bacterial surfaces to promote aggregation and biofilm formation
(Figure 3C) (65, 89, 148–150). These prototypical SAATs are
close together within Group 4, which reflects their functional and
structural similarities (71, 80, 150–153). Group 4 includes four
additional ATs YapC, YpjA, YcgV, YapA, and RadD, all of which
are associated with biofilm formation except YapA for which no
biofilm studies have been published (154–158). These proteins
may be novel members of the SAAT class given their proximity
to prototypical SAATs and functional role in biofilm formation.
However, the mechanism used to promote biofilm formation
remains unknown and structural studies have not been published
for YpjA, YcgV, YapA, or RadD. Using PSIPRED (101) we
predict a b-helix structure along the full length of the
passenger for each of these proteins, which is consistent with
the Type 1 AT structure observed in SAATs.

Most Group 4 ATs derive from pathogenic E. coli including
diarrheagenic strains. This includes YpjA from EHEC (155),
TibA from ETEC (159), and AIDA-I from EPEC (160).
Meanwhile, Ag43 is one of the most prevalent AT adhesins
across many E. coli subtypes (21) and YcgV was first identified in
the E. coli K-12 laboratory strain (156). Conversely, YapC and
YapA are expressed by Yersinia pestis, the causative agent of
pneumonic, septicemic, and bubonic plague (154, 157). Finally,
RadD is the only member of Group 4 originating outside the
Proteobacteria phylum, being expressed by Fusobacterium
nucleatum, which contributes to periodontal disease (158).
Notably, the SAAT mechanism has only been characterized for
ATs from E. coli (71, 161, 162). Future studies should determine
if YapC, YapA, and RadD use an Ag43-like dimerization
mechanism to expand our understanding of ATs adhesins in
important pathogens other than E. coli (70, 76, 106).
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Ag43 is possibly one of the best studied AT in Group 4 and
the AT family more broadly. A high-resolution structure of the
Ag43a passenger from uropathogenic E. coli revealed an L-
shaped b-helix forming head-to-tail homodimers through
‘Velcro-like’ non-covalent interactions along the b-helix (71).
Ag43 homologues from other E. coli pathogens are now known
to follow a similar mechanism of interaction to that of Ag43a
(161, 162). It is expected that similar modes of action exist for the
other ATs in this group such as TibA and AIDA-1 (89). Apart
from self-interactions, some of the ATs in this group can also
promote binding to host surfaces (152, 153, 159). How the self-
interaction binding is coordinated with binding to host surfaces
is unknown. Nevertheless, the Ag43a self-interaction mechanism
was one of the first clear indications that the b-helix can directly
participate in AT function, and since this time AT b-helices from
other groups have been shown to participate in diverse binding
interactions (70, 106).

2.2.3 Group 5 VacA and Homologs
The best characterized protein in Group 5 is VacA, owing to its
important role as a pore-forming toxin during Helicobacter
pylori gastric infection (163–165). The VacA mechanism of
action has been reviewed extensively elsewhere (166). Briefly,
after being released from the OM, VacA enters host cells to form
oligomeric pores in intracellular host membranes, thereby
causing vacuolating cytotoxicity (166). A crystal structure of a
VacA fragment (residues 388–844), revealed a b-helical
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passenger structure (78). This was validated by a cryo-EM
structure of full-length VacA, which showed that the
remainder of the passenger continued into a right-handed b-
helix. Importantly, cryo-EM showed that the VacA membrane
pore is formed by homo-hexameric rings through interactions
between the N-terminal region of each b-helix, with this region
also responsible for making contact with the host membrane
(107, 167) (Figure 4). Other Group 5 ATs include, ScaA from
Orientia tsutsugamushi, which causes scrub typhus, and rOmpA
from Rickettsia rickettsii, which causes rocky mountain spotted
fever (169, 170). Although less is known about these proteins,
both mediate adhesion to host epithelial cells (169–171) and
PSIPRED (101) predictions indicate b-helix structure along both
passengers, suggesting structural similarity to the b-helical VacA.

2.2.4 Group 6 GDSL-Lipases
Group 6 encompasses the GDSL-lipases EstA, ApeE, PLB, and
McaP, all of which exhibit esterase activity catalyzing the
hydrolysis of generic lipid substrates (172–175). Although their
biological substrates remain unknown, Group 6 ATs may have a
broad role in damaging the phospholipids of host cell
membranes (90). Given their small size (<300 aa) and that
they largely remain tethered to the outer membrane, the
activities of these lipases are likely restricted to the immediate
bacterial surface (172–176). The lipolytic activity of EstA has
been associated with lipid biosynthesis, bacterial motility, and
biofilm regulation (172). Meanwhile, McaP in addition to
FIGURE 4 | Virulence functions of ATs from Groups 5–12. VacA forms oligomeric pores in intracellular host membranes. VacA (Group 5) forms oligomeric pores in
host intracellular membranes including endosomes through horizontal interactions in the lipid bilayer. PmpD is an oligomeric host adhesin. PmpD (Group 7) forms
oligomeric rings within the bacterial OM and facilitates host cell invasion. Oligomeric ring structures based on electron microscopy images published by Swanson,
et al. (168). Vag8 displays dual immunomodulation and adhesion activities. Vag8 (Group 9) binds to and inhibits the host immune regulator C1-inhibitor (C1-INH),
which perturbs the host immune response. Vag8 also promotes adhesion to host cells through an unknown binding interaction. UpaB allows uropathogenic E. coli to
bind directly to the urogenital epithelia. UpaB (Group 12) binds to ECM proteins on the surface of epithelial cells, which allows bacteria to bind directly to host
surfaces within the urogenital tract, thus promoting disease (70). The structures of VacA (PDB: 6NYF) (107), Vag8 (PDB: 7AKV) (106), and UpaB (PDB: 7AKV) (70)
were visualized with PyMOL Molecular Graphics System (Schrödinger, LLC) (108).
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lipolytic activity also promotes bacterial adhesion to host cells
(175, 176). The EstA crystal structure revealed the first non-b-
helical AT passenger, whereby the protein is predominantly a-
helical due to the GDSL-lipase domain which is directly
connected to the a-helical AT linker domain (54). Among
published structures, EstA is the only example of Type 3
passenger architecture comprising a catalytic domain without a
b-helical stalk (Figure 1B). InterPro (102) predicted the lipase
domain occupies the entire length of the passenger for ApeE,
PLB, and McaP while PSIPRED (101) did not predict b-solenoid
structure in this region, suggesting a non-b-helix structure
similar to that of EstA. Although this is the only structural
evidence of classical ATs lacking a b-helix, this is not uncommon
in the wider T5SS. However, outside of the Va group, a-helical
ATs tend to form much larger overall structures (17). All Group
6 ATs derive from g-proteobacteria including EstA from
Pseudomonas aeruginosa, an opportunistic pathogen associated
with nosocomial infections (172), ApeE from Salmonella enterica
Typhimurium, which causes the diarrheal disease salmonellosis
(173), PLB fromMoraxella bovis, which causes infectious bovine
conjunctivitis (174), and McaP from Moraxella catarrhalis,
which causes otitis media and upper respiratory tract
infections (175, 176).

Notably, the clades for Groups 5 and 6 are close together,
linked with strong branch supports in the phylogenetic tree
(Figure 2) and can share up to 20% local amino acid identity.
However, they are not known to share structural or functional
similarities. The proximity of these distinct groups is therefore
striking, and their sequence similarities are not confined to local
regions or motifs, but rather spread throughout the sequences,
possibly inferring a distant evolutionary relationship (data
not shown).

Not shown within the tree but included within this group is
the GDSL-lipase BatA from Burkholderia (177). BatA with only
up to 28% sequence identity to members of this group, positions
at its margins. Notably, BatA also shares significant sequence
identity to the Group 13 adhesins.

2.2.5 Cluster B (Groups 7–8): Adhesins
Cluster B encompasses Groups 7 and 8 containing ATs that
function as adhesins. Host binding is common to all Cluster B
ATs while many Group 8 ATs also contribute to bacterial
aggregation and/or biofilm formation (155, 156, 178–195).
Furthermore, PSIPRED (101) predicted b-helix structure for all
Cluster B passengers, which is consistent with the b-helical
structure observed in the partial structure of IcsA (79).

Group 7 contains nine ATs designated ‘polymorphic
membrane proteins’ (Pmps) including Pmp6 and Pmp21 from
Chlamydia pneumoniae along with PmpA, PmpD, PmpE, PmpF,
PmpG, PmpH, and PmpI from Chlamydia trachomatis. These
are typically OM-anchored ATs that promote host cell adhesion
and invasion, consistent with the intracellular lifestyle of the
Chlamydia spp. from which they are derived (178, 179, 181, 196).
Beyond this broad function, most Pmps are poorly characterized
with no published structures. However, PmpD and Pmp21 have
been observed to form higher-order oligomers (168, 197, 198).
For PmpD, these oligomers appear as flower-like rings in the
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bacterial OM (168) (Figure 4). Notably, VacA, which is placed
nearby in Group 5, is also known to form flower-like oligomers
within lipid bilayers (199). This oligomerization may be
important in the Pmp binding mechanism, however, the
functional significance of PmpD and Pmp21 oligomerization
has not been well established. Pmp21 is the only Group 7 AT
where the binding partner required for host cell entry is known
as it has been shown to promote invasion of host cells by binding
to epidermal growth factor receptor (EGFR) (180).

Group 8 consists of ten proteins, YapE, MisL, YapG, Yfal,
ShdA, EhaJ, UpaE, EhaA, IcsA and AatA, most of which derive
from Enterobacteriaceae that cause diarrheal disease. This
includes EhaA and EhaJ from diarrheagenic E. coli (155, 194),
ShdA and MisL from Salmonella enterica Typhimurium (184,
193), and IcsA from Shigella flexneri (200). Others including
AatA, YfaL, and UpaE derive from extraintestinal E. coli (156,
183, 195). Group 8 ATs that are found outside the
Enterobacteriaceae family, include YapE from Yersinia pestis
and YapG from Yersinia pseudotuberculosis, the latter causing
Far East scarlet-like fever (157, 188).

Group 8 proteins are outer membrane anchored and
primarily act as adhesins, with many having dual binding
abilities to both host and bacterial targets. Specifically, most,
including YapE, MisL, ShdA, EhaJ, UpaE, EhaA, IcsA and AatA
mediate host adhesion (155, 183, 184, 186–189, 191–195, 201).
For ShdA, MisL, EhaJ, and UpaE, this involves binding to
extracellular matrix (ECM) proteins (184, 186, 187, 193–195).
Whether ECM binding is a common host binding mechanism
across Group 8 remains unknown as binding partners on host
epithelial surfaces have not been published for YapE, EhaA, IcsA,
and AatA. However, a host intracellular target of IcsA is known,
Neural Wiskott–Aldrich syndrome protein (N-WASP), which
contributes to the regulation of actin polymerisation as part of
the cell cytoskeleton (202). IcsA activates N-WASP to promote
intracellular actin-based spread of S. flexneri through the colonic
epithelial layer. Regarding bacterial aggregation and/or biofilm
formation, all but ShdA are associated with this phenotype (155,
156, 182, 188, 190, 192, 194, 195). However, the mechanism by
which these ATs promote bacterial aggregation/biofilm
formation has not been determined. IcsA promotes both
biofilm formation and forms homodimers, which has raised
the possibility of self-association similar to that of Ag43a (190,
203). However, a link between IcsA dimerisation and biofilm
formation has not been established and dimerisation has not
been demonstrated for other group members. Furthermore, the
only passenger structure for Group 8 is a small IcsA fragment
(residues 419–758) in the monomeric form, providing no insight
into self-association (79).

2.2.6 Cluster C (Groups 9–13): Adhesins
Cluster C (Groups 9–13) contain a separate cluster of adhesin ATs
that are primarily anchored to the outer membrane where their
predominant function is adhesion to host cells and/or surfaces.
Currently, Groups 10, 11, and 13 lack published structures.

Group 9 contains four ATs (Vag8, BrkA, Prn, and BapC), all
of which derive from Bordetella spp. and exhibit high
conservation in sequence, structure, and function. The
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reported crystal structure of Prn (76) and the cryo-EM structure
of Vag8 (106) both reveal Type 1 AT b-helices. Meanwhile,
PSIPRED (101) predicts b-helical passengers for BrkA and BapC,
which is also consistent with Type 1 AT b-helices.

Group 9 ATs exhibit dual host adhesion and immune evasion
activities (69, 204–206). For Prn, host binding involves its RGD
integrin-binding motif (205). BrkA, BapC, and Vag8 also contain
RGD motifs, suggesting a possible common host binding
mechanism (206–208). To date, the host factors recognized by
Group 9 ATs to promote cell adhesion are unknown.
Furthermore, while evasion of the innate immune response is
also common among Group 9 ATs, each is unique in its
approach. Prn affords protection from the inflammatory
response and neutrophil-mediated clearance (209, 210).
Meanwhile, BapC, Vag8, and BrkA promote serum resistance
by reducing complement-mediated killing (68, 208, 211, 212).
The Vag8 immune evasion mechanism is the best understood.
Vag8 enhances serum resistance by inhibiting the serpin C1-
inhibitor (C1-INH) (106, 212), which regulates the complement
system (68, 212). Structural studies have shown that Vag8 binds
C1-INH using extended loops lining one face of its b-helix (106),
thus providing further evidence that b-helix structures can
directly participate in AT functions.

Although Group 9 ATs are present at the outer membrane,
growing evidence suggests Bordetella may deploy ATs (i.e., Prn,
BrkA, and Vag8) in OMVs, disseminating AT function away
from the bacterial surface (68, 213, 214). This finding has been
crucial for understanding Vag8 function. Hovingh, et al. (68)
proposed that OMVs coated with Vag8 block C1-INH and
enable unregulated complement activation away from the
bacterial surface, thus protecting bacteria by depleting
complement factors before they can be deposited on the
bacterial surface (Figure 4).

Group 10 contains two ATs derived from pathogenic E. coli,
UpaC and EhaB, both of which promote biofilm formation (215,
216). In addition, EhaB also mediates host adhesion by binding to
ECM proteins (155). Group 11 contains three ATs (FaaA, VlpC,
ImaA) that increase murine gastric colonization byH. pylori (217).
Their placement in Cluster C suggests their contribution to
colonization may involve host adhesion, aggregation, or biofilm
formation. Unfortunately, to date, little is known about the
mechanism of action of Group 10 and 11 ATs.

Group 12 comprises five ATs that promote host adhesion, UpaB,
UpaH, PmpB, PmpC and Pmp20 (178, 179, 215, 218, 219). For UpaB
and UpaH, both of which derive from uropathogenic E. coli, this
involves binding to host ECM proteins (215, 218, 219). Meanwhile, the
less-defined members PmpB, PmpC, and Pmp20 promote adhesion
and entry of Chlamydia into host cells (178, 179). However, ECM
binding or biofilm formation studies have not been conducted for the
Pmps. The best-studiedmember of Group 12 is UpaB, which promotes
bladder colonization through direct adhesion to urogenital epithelia
(215). The crystal structure of the UpaB passenger is consistent with a
Type 1 AT b-helix (70). However, its structure reveals unique features,
in particular long loops and b-strand extensions projecting out from
the b-helix, which form a long hydrophilic groove (70). UpaB was
found to bind polysaccharides at this site, and in silico modelling and
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the resemblance of this groove to the active site of glycosaminoglycan
(GAG) lyases, suggests that UpaB binds GAGs lining the human
uroepithelium using this binding groove (70). In addition, on the
opposite side of UpaB’s b-helix is a second binding site which was
shown to bind human fibronectin. Altogether, this demonstrates that
residues within the UpaB b-helix contribute to two host binding sites
that promote urinary tract colonization. UpaB is therefore an excellent
example of an AT b-helix exhibiting multiple direct contributions to
the virulence phenotype.

Group 13 contains 11 ATs (CapA, YapJ, YapK, YapV, rOmpB,
BatB, BmaC, XatA, BapF, AoaA, AlpA), most of which are
anchored to the bacterial surface and function as adhesins.
Notably, this is the largest adhesin group in the present study
and the most diverse in sequence identity (ranging from 0–81%),
passenger length (ranging from 280–3333 aa), and taxonomically
with ATs deriving from ten Genera: Yersinia, Campylobacter,
Pseudomonas, Brucella, Bordetella, Rickettsia, Helicobacter,
Azorhizobium, Burkholderia, and Xylella (83, 177, 220–227).
This covers a wide range of bacteria, from H. pylori, among the
most widespread and oldest human pathogens and a major cause
of stomach cancer worldwide (227), toXylella fastidiosa, a genus of
plant pathogens that is rapidly spreading across the globe and
destroying important agricultural crops with huge economic
impacts (225). This diversity is reflected by the bootstrapping
values with Group 13 showing the lowest within-group
bootstrapping among the Cluster C adhesins (Figure 2).

Consistentwith the rest ofCluster C, PSIPRED (101) predictions
indicate b-helical passenger structure for the majority of Group 13
ATs. However, notable exceptions include AlpA which has been
predicted to be a-helical. Another unusual feature only shared by
AlpA and CapA in this group includes the lipidation at the N-
terminusof theirmaturepassengers (220, 227). Lipidation is thought
to allow the passengers to remain associated with the bacterial
surface (98), a characteristic which would be favorable for
an adhesin.

Overall, the reported functions for Group 13 ATs broadly
resemble those of other Cluster C adhesins. Specifically, BapF
and XatA promote bacterial aggregation and/or biofilm
formation (225, 226). Meanwhile, YapJ, YapK, YapV, CapA,
BmaC, rOmpA, and AlpA promote host adhesion, including
ECM binding for the Yaps and BmaC (220–222, 224, 226–228).
Additionally, BatB binds immunoglobulins to perturb the
human immune response (223), while AoaA promotes the
symbiotic relationship between legume root nodules and
rhizobia by dampening plant defenses (83). While these
immunomodulatory activities are somewhat reminiscent of the
dual action adhesins and immunomodulators of Group 10, the
adhesive properties of BatB and AoaA have not been reported.

Collectively, although Group 13 ATs display related
functional properties, these proteins are very diverse and their
phylogenetic relationships with well characterized ATs are
uncertain, which warrants further studies on this AT grouping.

2.2.7 Group 14: a-Helical Adhesins
Our phylogenetic analysis identified a separate clade containing
four surface-bound ATs that contribute to host adhesion
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including Aae from Acintobacillus actinomycetemcomitans (96)
alongside Sca1, Sca2, and ScaC from Rickettsiaceae (229–231).
Other functions associated with Group 14 include biofilm
formation for Aae and intracellular invasion and motility for
Sca2 (232, 233). Mechanistically, ATs in this group are poorly
characterized and no structures are currently available in the
PDB. Interestingly, PSIPRED (101) analysis predicts a-helical
passenger structures for all Group 14 ATs, distinguishing this
group as a type Va AT subfamily composed only of a-
helical adhesins.

2.2.8 Group 15: Subtilisin-Like Serine Proteases
Group 15 contains 13 subtilisin-like protease ATs with remarkably
diverse taxonomic backgrounds primarily deriving from b- and g-
proteobacteria. This includes PspB_F, Pfa, BcaA, EprS, and PspA
from Pseudomonas spp. (234–238), SSP and PrtT from Serratia
marcescens (239, 240), NalP fromN.meningitidis (59), SphB1 from
B. pertussis (241), AasP from Actinobacillus pleuropneumoniae
(242), PspB_X from X. fastidiosa (243), along with Pta from P.
mirabilis (97). These subtilisin-like ATs are also present in bacteria
outside the Proteobacteria phylum as evidenced by the presence of
Fusolisin from Fusobacterium nucleatum (61). In stark contrast to
theClusterAproteases, the subtilisin-like proteases ofGroup 15 are
among the least understoodATs. Based on secondary structure and
conserved domains predicted with PSIPRED (101) and InterPro
(102), these ATs are thought to comprise of an ~400 aa N-terminal
protease domain followed by an ~200 aa b-helix structure, thus
following a Type 2 AT organization similar to the Cluster A
proteases. Subtilisin-like ATs are known to have dual roles in
bacteria, both at the bacterial surface and when released into the
host environment. At the bacterial surface, protease activities of
Pfa1, EprS, SphB1, AasP, and NalP are used to process other extra-
cytoplasmic proteins including virulence factors (59, 235, 241, 242,
244–246). For example, NalP is responsible for proteolytic
maturation of Cluster A protease ATs App, MspA, and IgA1
protease (59, 246). Meanwhile, SphB1 indirectly modifies host
adhesion by modifying filamentous hemagglutinin adhesion
molecules (241, 245). The capacity of NalP and SphB1 to process
these virulence factors, is thought to rely on their abilities to remain
temporarily associated with the bacterial surface via their lipidation
at theirN-terminus similar tomembers ofGroup13 (98, 245).After
their release from the bacterial surface, subtilisin-like protease
activity appears responsible altering host processes. For example,
Pta and Pfa promote host cell cytotoxicity (97, 235) and Fusolisin,
EprS, PspB_F, Pfa, and NalP contribute to immunomodulation
(234, 235, 237, 247, 248).This likely results fromdegradationofhost
proteins as Fusolisin degrades IgA whereas NalP cleaves C3 of the
complement system (247, 248). Meanwhile, NalP can also enter a
range of host cell types where it alters cellular metabolism
(249). Notably, cytotoxicity, host cell internalization, and
immunomodulation are also features of the Cluster A
chymotrypsin-like proteases.

2.2.9 Group 16: Adhesins and a Sialidase
Group 16 contains three bacterial surface associated ATs
including CapC from Campylobacter jejuni and Fap2 from
Fusobacterium nucleatum, which promote host adhesion and
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mediate bacterial aggregation (250, 251). This group also
includes NanB from Pasteurella multocida, the only AT with
defined sialidase activity, thought to benefit in nutrient
acquisition (252). PSIPRED (101) analysis predicted b-helix
passenger structure for all members, however, this group is
poorly characterized in terms of both structure and function.
Accordingly, future research may further define the functional
classification of the Group 16 ATs. Importantly, unlike all other
phylogenetic groups reviewed here, Group 16 did not form a
high-identity cluster on the multiple sequence alignment
heatmap (Supplementary Figure S2). This suggests that
Group 16 may be an outgroup of proteins lacking strong
homologs in the current pool of functionally investigated ATs.

2.2.10 Ungrouped ATs
Our phylogenetic analysis also uncovered several ATs without
strong relationships to any clade, as evidenced by low sequence
identity across the AT pool in the sequence alignment heatmap
(Supplementary Figure S2) and low bootstrap values within the
phylogenetic tree (Figure 2). For example, the passenger of TcfA,
an adhesin from B. pertussis, does not share significant identity
with any other passenger included in this study. PSIPRED (101)
analysis predicted a predominantly unstructured passenger for
TcfA, which is consistent with its unusually high proline content
(17%). TcfA has been shown to promote B. pertussis adhesion to
the respiratory tract (69).

The adhesins AutA and AutB share homology with one
another but showed no similarity to other AT adhesin groups
in either the sequence alignment heatmap (Supplementary
Figure S2) or the phylogenetic tree (Figure 2). These proteins
are positioned within the subtilisin-like protease clade (Group
15) but with extremely low branch support values (13%). As
such, AutA and AutB remain ungrouped. Functionally, AutA
and AutB promote aggregation and biofilm formation in N.
meningitidis (84, 253, 254). PSIPRED (101) analysis of both
AutA and AutB predicts substantial b-helical passenger
structure. This is typical of AT adhesins, however their
distinction from other adhesins at the sequence level suggests
unique structural and functional features.

In addition to the ungrouped adhesins, we found three enzyme
classes on the tree with a single AT representative that did not
therefore form a large functional group. This includes two
enzymes that remain ungrouped: AaaA, a surface-bound
arginine-specific aminopeptidase (255), and MapA, an acid
phosphatase (256). These enzymes encompass two of the five
enzyme classes observed in the phylogenetic analysis with the
others being proteases, esterases, and the lone sialidase, NanB
(252). NanB is part of Group 16, a probable outgroup of
mostly unrelated proteins. Catalytic domain and secondary
structure predictions using InterPro (102) and PSIPRED (101),
respectively, indicate MapA may adopt a Type 2 AT architecture
encompassing an N-terminal catalytic domain with a b-helix C-
terminus, while AaaA appears to take on Type 3 AT architecture
wherein the catalytic domain spans the full length of the passenger
(Supplementary Figure S3).

Future structure-function studies on additional proteins in
the Type Va AT family may shed some light as to whether these
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to date unrelated ATs proteins form part of other functional
phylogenetic groups yet to be identified.
3 DISCUSSION

The T5SS, which involves self-mediated transport of
autotransporter (AT) proteins outside the cell, is the simplest
system for extracellular secretion in Gram-negative bacteria (13–
15). Transport relies on a modular architecture wherein each AT
contains a signal peptide, translocator module and a functional
passenger. Passenger functions vary widely, conferring
functional diversity to this large family of bacterial secreted
proteins. Comparatively, translocators are highly conserved
where each promotes translocation of a passenger that may
possess various structural elements and catalytic domains. This
combination of variation and uniformity underlies the
robustness of this secretion system: by leveraging both the
passenger’s functional flexibility and the translocator’s simple
and energetically economical secretion capacity, ATs have
evolved into highly specialized molecular tools that promote
many aspects of bacterial fitness and pathogenesis.

Steadily increasing numbers of publicly available ATs sequences
andpublicationsdescribing their functional propertiespromptedus
to re-evaluate the classification of this protein family, focusing on
their diverse passengers. In this studywe show that 112 functionally
characterized ATs can be divided into 16 phylogenetic groups. By
using the passenger sequences alone, the divisions best reflect
common passenger functions, many of which contribute to
bacterial virulence. Overall, we found AT enzymes form three
main divisions: chymotrypsin-like proteases (Cluster A),
subtilisin-like proteases (Group 15), and GDSL-lipase esterases
(Group 6). In addition to different enymatic actions, these AT
enzymes also exhibited diverse structural compositions. Protease
ATs adopt Type 2 passenger structures (Figure 1B) wherein an N-
terminal protease subdomain responsible for cleaving target
proteins sits atop a b-helix for which the functional role is less
clear (94). Meanwhile, GDSL-lipases represent Type 3 structure
(Figure 1B) which includes an esterase domain responsible for
hydrolyzing target lipidswithout anyb-helical content (54). Beyond
these three main divisions, we observed a further three enzyme
classes with a single representative in the pool of characterizedATs,
including the aminopeptidase AaaA (ungrouped), the acid
phosphatase MapA (ungrouped), and the sialidase NanB (Group
16). Future phylogenetic studies may reveal additional groups that
capture these enzyme functions. Most of the remaining ATs are
adhesins distributed into 11 groups reflecting a wide range of
specialized functions. Based on limited published structural
studies, AT adhesins typically exhibit Type 1 structure
(Figure 1B) with long b-helical passengers (70, 71, 76, 79, 80,
106). Where adhesion mechanisms have been studied at the
molecular level, the long b-helix forms an extended binding
interface with specific host or bacterial targets, achieving high
affinity through the additive effect of many non-covalent
interactions (70, 71, 106). In some cases, the b-helix forms a
groove along the binding interface to further facilitate specific
Frontiers in Immunology | www.frontiersin.org 1265
binding (70, 106). Furthermore, ATs may bind multiple targets
using different faces of the b-helix (70). Through these interactions
adhesins promote adherence to host surfaces, biofilm formation, or
bacterial aggregation. Biofilm formation ismost strongly associated
with the Group 4 SAATs but is also observed in some Group 8 and
Group 10 ATs. Meanwhile, most Cluster B adhesins (Groups 7–8)
promote adhesion to host surfaces yet some, including the Group 7
Pmps and IcsA from Group 8, also self-associate to form homo-
oligomers. Furthermore, Cluster C adhesins (Groups 9–13) that are
not known to oligomerize, include an array of ATs that promote
adhesion to host surfaces and less frequently bacterial surfaces. A
handful of poorly characterized adhesins are also present inGroups
5 and 16.Meanwhile, Group 14 is predicted to encompass adhesins
witha-helical passengers, which has not been described previously
for Type Va ATs and requires experimental verification.
Importantly, Group 1 and 2 (SPATEs), Group 4 (SAATs), Group
15 (subtilisin-like proteases) andGroup 6 (GDSL-lipases) represent
previously established classes, which authenticated the phylogeny
along with the 11 new groups.
4 CONCLUSION AND FUTURE
PERSPECTIVES

Our work through providing a better understanding into the
relationships of AT structure and function has revealed insights
into the mechanisms and diversity of ATs, that, importantly,
sheds light on the lesser-known ATs. We anticipate that this will
aid in the characterization of further ATs and has also identified
groups of ATs that require further research attention. This is
particularly true of the six functional groups that entirely lack
published structures and detailed mechanisms of action (Groups
7, 11, 13, 14, 15, and 16). Following the trend observed for other
groups, we would expect these six groups to reveal new types of
AT structures and modes of action. Although our pool of 112
sequences only represents a fraction of the >1500 ATs that have
already been identified (14), our use of only ATs with some
functional characterization performed should increase the
reliability of our findings. This in itself also highlights the
overall lack of knowledge regarding ATs, with most still
uncharacterized especially outside of E. coli. Unfortunately, this
may have also created some bias in our study and also
contributed to the findings such as the lack of characterized
homologs for functional outliers such as NanB (sialidase), MapA
(acid phosphatase) and AaaA (aminopeptidase), which are likely
representatives of separate functional groups. Apart from an
increased awareness surrounding ATs, our work has also shed
further light on bacterial pathogenesis and could be used to develop
new technologies including antimicrobials and vaccines. Currently,
the classical AT Prn is used in pertussis vaccines including
Boostrix®, Infantrix®, and Adacel® (257–259), and the trimeric
ATNadA is included in themeningococcal vaccineBexsero® (260).
ATs have also been identified as useful targets for anti-virulence
antimicrobials (261). However, efforts to target ATs have been
perhaps hampered by the scarcity of molecular-level knowledge.
This can be observed in the biotechnological applications of ATs,
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which primarily exploit the relatively well-defined translocation
mechanism for secretion or surface display of recombinantproteins
such as b-lactamase (262) and DNA polymerase (263) amongst
others (264–266). Further, the ATs have been used to engineer live
bacteria that secrete a peptide therapeutic (267). The detailed
protein structure for Hbp also allowed engineering of the
passenger for multivalent antigen display on OMV-based
vaccines (268–270). Overall, this work has provided an updated
perspective of AT classification, that informs on AT functional
relationships, which could benefit antimicrobial and vaccine
research, but above all hopefully inspire further research into this
area of widespread and abundant bacterial proteins.
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Similar to other pathogens, bacteria have developed during their evolution a variety of
mechanisms to overcome both innate and acquired immunity, accounting for their ability
to cause disease or chronic infections. The mechanisms exploited for this critical function
act by targeting conserved structures or pathways that regulate the host immune
response. A strategic potential target is the immunological synapse (IS), a highly
specialized structure that forms at the interface between antigen presenting cells (APC)
and T lymphocytes and is required for the establishment of an effective T cell response to
the infectious agent and for the development of long-lasting T cell memory. While a variety
of bacterial pathogens are known to impair or subvert cellular processes essential for
antigen processing and presentation, on which IS assembly depends, it is only recently
that the possibility that IS may be a direct target of bacterial virulence factors has been
considered. Emerging evidence strongly supports this notion, highlighting IS targeting as a
powerful, novel means of immune evasion by bacterial pathogens. In this review we will
present a brief overview of the mechanisms used by bacteria to affect IS assembly by
targeting APCs. We will then summarize what has emerged from the current handful of
studies that have addressed the direct impact of bacterial virulence factors on IS assembly
in T cells and, based on the strategic cellular processes targeted by these factors in other
cell types, highlight potential IS-related vulnerabilities that could be exploited by these
pathogens to evade T cell mediated immunity.

Keywords: pathogens, immunological synapse, Antigen Presenting Cell (APC), major histocompatibility complex
class II (MHCII), T cell receptor (TCR), actin cytoskeleton
1 INTRODUCTION

Successful microbial pathogens, such as bacteria, have evolved complex and efficient strategies
to evade the host immune response. To establish chronic infection bacteria have to overcome
the two powerful arms of the host immune defenses, innate and adaptive immunity. Innate
immunity is evolutionarily conserved among higher eukaryotes and represents the first line of
defense against infections, with the key role to recognize pathogen components and start the
process of microbial clearance. Additionally, innate immune cells are central for the
development of adaptive immunity. Hence, not surprisingly, pathogens have evolved a
org July 2022 | Volume 13 | Article 943344174
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variety of mechanisms to elude this first line of the host
immune defenses, from building a protective capsule (e.g.
Streptococcus pneumoniae , Haemophilus influenzae ,
Escherichia coli, Neisseria meningitidis) (1), to interfering
with recognition of Pathogen-Associated Molecular Patterns
(PAMPs) by host Pattern Recognition Receptors (PRRs) such
as Toll-like receptors (TLRs) and C-type lectin receptors (e.g.
Helicobacter pylori) (2), to inhibiting phagocytic activity (e.g.
H. pylori, Yersinia pestis) (3). Remarkably, evasion of innate
immunity is often accompanied by the exploitation of innate
immune cells such as macrophages, which have been
incapacitated to kill internalized bacteria by specific
virulence factors, as a protected niche for replication.

Another strategy deployed by several bacterial pathogens to
escape the host immune system is to prevent the development of
the exquisitely specific and highly effective adaptive response.
Adaptive immunity involves a tightly regulated interplay among
B lymphocytes, T lymphocytes and antigen presenting cells
(APCs) to act ivate pathogen-spec ific and l i fe long
immunological effector pathways. The development of T cell
mediated immunity relies on the assembly of a highly specialized
signaling and secretory platform formed by T cells at the
interface with cognate APCs, known as the immunological
synapse (IS). In this minireview we will briefly review the
strategies evolved by bacterial pathogens to suppress T cell
activation and discuss emerging evidence that highlights the IS
as a key target for pathogens to evade the T cell-mediated host
immune response.
2 THE IMMUNOLOGICAL SYNAPSE

T cell activation is initiated in response to the interaction of the T
cell antigen receptor (TCR) with antigenic peptides bound to
major histocompatibility complex (MHC) molecules (pMHC)
expressed on the surface of APCs, which participate in the
cellular immune response by processing and presenting
antigens for recognition by T lymphocytes. Antigen
presentation is a complex multistep process, involving the
processing of endogenous or exogenous pathogen-associated
antigens, peptide loading on MHC, and localization at the cell
surface of pMHC complexes which can interact with T cells
expressing a cognate TCR. Bacterial antigen presentation is
mainly mediated by MHC class II (MHCII) molecules found
on the surface of professional APCs that present antigen-derived
peptides to be recognized by CD4+ T cells.

Following TCR interaction with cognate pMHC, a
spec i a l i z ed supramo l e cu l a r s t ruc tu r e , defined as
immunological synapse (IS), forms at the T cell interface with
the APC. IS formation requires not only TCR:pMHC interaction
but also the accumulation of coreceptors, adhesion molecules,
and signaling and cytoskeletal components at the T cell-APC
contact area (4). In its mature configuration the IS features a
peculiar “bull’s eye” architecture characterized by concentric
domains, known as supramolecular activation clusters (SMAC),
that differ in molecular composition and function (5). The
Frontiers in Immunology | www.frontiersin.org 275
central SMAC (cSMAC), mainly enriched in TCRs and TCR-
associated proteins, is surrounded by the peripheral (pSMAC),
enriched in integrins, such as lymphocyte function-associated
antigen (LFA-1), and cytoskeleton-associated proteins. The
pSMAC is in turn surrounded by the distal SMAC (dSMAC),
which is enriched in F-actin as well as in molecules that are
excluded from the IS centre due either to steric hindrance (e.g.
CD43) or to their ability to negatively regulate signaling (e.g.
CD45) (4). The dSMAC is also the IS domain where signaling
starts with the assembly of TCR-CD28 microclusters that move
centripetally towards the IS to eventually segregate to the
cSMAC (6), where exhausted TCR are internalized to make
room to new TCRs microclusters that continuously form at
the periphery.

TCRs are associated not only with the plasma membrane, but
also with recycling endosomes (7). Delivery to the synaptic
membrane of this intracellular TCR pool is essential to
replenish the plasma membrane pool as TCRs are internalized
at the cSMAC, allowing for the steady inward flow of actively
signaling TCRmicroclusters to sustain signaling for the extended
timeframe required for T cell activation (7). This process is
dependent on the polarization of the centrosome together with
the secretory apparatus to the region beneath the T cell-APC
contact (8), which sets the stage for polarized exocytosis.
Polarized recycling from an intracellular vesicular pool is a
strategy co-opted by a number of molecules that participate in
IS architecture and function. These include surface receptors,
such as the co-inhibitory receptor cytotoxic T lymphocyte
antigen-4 (CTLA-4) (9), and intracellular signaling molecules,
such as the lymphocyte-specific protein tyrosine kinase (Lck), the
adaptor molecule LAT (10–12), and the small GTPase Rac1 (13).

IS assembly is coordinated by the cytoskeleton (14–16), which
plays a key role at different step of IS assembly, from integrin
activation (16), to TCR microcluster movement from the
periphery to the center of the IS (6), to centrosome
translocation toward the IS (14), to the directional vesicular
trafficking that ensures the continuous availability of receptors
and signaling molecules at the IS (17–19) (Figure 1).

TCR interaction with pMHC at the IS triggers an intracellular
tyrosine phosphorylation cascade, resulting in the activation of
multiple signaling pathways. Briefly, the activated TCR recruits
the initiating kinases Lck and z-associated kinase of 70 kDa
(ZAP-70) which phosphorylates LAT, a multifunctional
transmembrane adaptor that orchestrates the activation of
phospholipase Cg (PLCg). By producing key second
messengers, PLCg promotes the activation of the PKC, Ras and
Ca2+ pathways which couple TCR triggering to gene expression
through the activation of transcription factors such as nuclear
factor of activated T cells (NF-AT), nuclear factor-kB (NF-kB)
and activating protein 1 (AP-1) (20).

As IS assembly is a key event for the development of T cell-
mediated immunity, it is not surprising that many pathogens
have developed virulence mechanisms to target IS formation,
either indirectly by impairing the ability of APCs to present
antigen to the T cell, or, as supported by emerging evidence, by
directly inhibiting IS assembly within the T cell.
July 2022 | Volume 13 | Article 943344
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3 HOW BACTERIAL INFECTION
AFFECTS IS ASSEMBLY

3.1 Indirect Modulation of IS Assembly
by Bacterial Pathogens Through
APC Targeting
To initiate adaptive immunity to pathogens, T cells must interact
with cognate APCs that have previously taken up antigen at the site
of infection and have migrated to the draining lymph node. This
role is subserved by dendritic cells (DCs) which are specialized for
antigen presentation to naïve T cells, but in the context of bacterial
infections it can also be taken over by macrophages. Several steps
are required before an APC can acquire the appropriate functional
status and be in the appropriate location to form an IS with a
cognate T cell. These steps are orchestrated by innate immune
receptors, which on recognition of bacterial PAMPs trigger the
maturation of DCs, the phagocytic uptake and destruction of the
pathogen, and the migration of the phagocyte to the closest lymph
node station. As largely documented for viruses (1), also bacterial
pathogens have evolved a variety of strategies to interfere with each
of these steps, including camouflaging as host components (e.g.
GAG proteins of Streptococcus), modifying PAMPs to decrease their
potency in innate immune receptor activation (e.g. modified LPS
core component lipid A of Salmonella) (21), inhibiting PRR
signaling (e.g. Salmonella TIR domain-like TIpA to disrupt TLR4
signaling (22); Yersinia acetyltransferase YopJ to inhibit NF-kB
signaling (23); Mycobacterium tuberculosis (M. tubercolosis)
ubiquitin ligase PnkG to degrade components of the NF-kB-
activating signalosome (24), or exploiting mimicry to activate
inhibitory circuits (e.g. sialylated capsular polysaccharides of
group B Streptococcus) (25, 26). For details on these upstream
steps we refer the reader to excellent reviews (1, 27). Here we will
Frontiers in Immunology | www.frontiersin.org 376
focus on the process that is directly implicated in IS assembly
-antigen presentation-, limiting the discussion to MHCII.

Antigen presentation to T cells by APCs plays an essential
role in the initiation of adaptive immunity. As such, disruption of
the process of antigen presentation is a mechanism co-opted by a
number of bacterial pathogens to prevent the generation of
specific effector T cells. Bacteria can modulate the MHCII
pathway acting at different levels: by inhibiting MHCII gene
transcription, by interfering with MHCII loading and trafficking,
or by impairing antigen processing. The resulting defects in IS
assembly translate into defects in T cell activation and
differentiation to pathogen-specific helper T cell effectors. The
intracellular pathogenM. tubercolosis is a remarkable example of
how an individual pathogen can target the process of antigen
presentation at every single level and we will use it as paradigm in
the following sections.

3.1.1 Inhibition of MHCII Expression
M. tubercolosis has the ability to potently downregulate MHCII
expression, which occurs as part of the APC activation program
triggered by PRR engagement. A well characterized M. tubercolosis
factor implicated in this function is the 19-kDa lipoprotein (LpqH)
which acts a potent TLR2 agonist. The resulting excessive or
prolonged TLR2 activation leads to the expression of isoforms of
the transcriptional transactivator C/EBP that inhibit the IFNg-
dependent induction of class II transactivator (CIITA), on which
MHCII gene expression crucially depends (28, 29). Preventing
MHCII upregulation to disrupt antigen presentation is shared by
other M. tubercolosis virulence factors such as the cell envelope-
associated serine protease Hip1 (30), and co-opted by a number of
pathogenic bacteria (e.g. 31). One such example is H. pylori, which
uses ADP183 heptose, an intermediate metabolite in LPS
FIGURE 1 | Immunological synapse assembly. The canonical IS shows a well-organized bull’s eye architecture that features the central supramolecular activation
cluster (cSMAC) characterized by the presence of TCRs and TCR-associated proteins such as the co-stimulatory receptor CD28, the peripheral SMAC (pSMAC)
enriched in the integrin LFA-1 and the distal SMAC (dSMAC) enriched in TCR-CD28 microclusters (TCR MCs) that move centripetally towards the cSMAC driven by
F-actin. IS assembly is also coordinated by cytoskeletal dynamics that allow for centrosome translocation toward the IS as well as for the directional vesicular
trafficking of receptors and signaling mediators to sustain signaling at the IS.
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biosynthesis, to promote miR146b expression in macrophages,
leading to downmodulation of CIITA expression (32).

Whether the protease activity of Hip1 influences directly
CIITA expression is not known. However, this mechanism has
been documented for Chlamydia trachomatis, which secretes
proteases that promote the degradation of the transcription
factor USF-1 that regulates IFN-g induction of CIITA
expression (33). A different mechanism to lower MHCII
expression is exploited by Salmonella, which induces surface
MHCII internalization by promoting the expression of the E3
ubiquit in l igase MARCH1 and K63-l inked MHCII
ubiquitination. Internalized ubiquitylated MHCII molecules are
subsequently degraded following routing to the endolysosomal
system (34) (Figure 2, Table 1).

3.1.2 Inhibition of Antigen Processing
Pathogenic bacteria can modulate the MHCII pathway by
inhibiting the fusion of the phagosome containing internalized
bacteria with the lysosome, which not only allows escape from
killing but leads to impaired antigen processing. Again, usingM.
tubercolosis as paradigm, inhibition of phagolysosomal fusion
has been shown to involve retention of the early endosome
marker Rab5 at the phagosomal membrane, with concomitant
exclusion of the lysosome marker Rab7 (83), which results in a
delay in phagosome maturation and defective antigen
processing. M. tubercolosis targets this process by using its
lipid phosphatase SapM to hydrolyze the phospholipid PI3P,
which is essential for phagosome-late endosome fusion (35).
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Similarly, Salmonella blocks phagosome maturation by
modulating the phosphoinositide composition of the
Salmonella-containing vacuole through its lipid phosphatase
SopB (45). Hence inhibition of phagosome maturation is co-
opted by many pathogenic bacteria to prevent antigen processing
while escaping killing.

An alternative strategy used byM. tubercolosis for disrupting
antigen processing is inhibition of phagosome function. One of
the underlying mechanisms involves a M. tubercolosis-derived
lipid, the mannose-capped form of lipoarabinomannan
(manLAM). manLAM blocks phagosome acidification by
reducing the local recruitment of the tethering molecule EEA1,
which is essential for delivery of lysosomal hydrolases to the
phagosome (36). The failure of EEA1 to associate with the
phagosome in M. tubercolosis-infected cells is caused by
defective production of PI3P at the phagosome membrane due
to defective Ca2+-dependent activation of the PI3K component
VPS34 (35, 37, 84). Additionally, the transport of vacuolar
ATPase (v-ATPase), which is essential for phagosome
acidification and activation of lysosomal hydrolases, is
impaired in M. tuberco los i s - infected ce l l s due to
dephosphorylation of the VPS33B component of the v-ATPase
sorting complex by the M. tubercolosis phosphatase PtpA (38)
(Figure 2, Table 1).

3.1.3 Inhibition of MHCII Loading and Trafficking
An alternative strategy exploited by a variety of pathogens to
inhibit antigen presentation is to interfere with MHCII loading
FIGURE 2 | Bacterial targeting of the immunological synapse. Model for suppression of IS assembly by bacterial pathogens. Bacterial pathogens exploit a variety of
virulence factors to interfere with IS assembly at different steps, both at the APC side and at the T cell side. Bacteria target APCs and hence indirectly IS assembly by
interfering with different mechanisms: i) MHCII inhibition through modulation of transcription factors responsible for its expression (e.g. CIITA regulation by
M. tuberculosis, Helicobacter pylori and Chlamydia trachomatis); ii) inhibition of antigen processing through suppression of phagolysosomal fusion (e.g. M.
tuberculosis and Salmonella); iii) defective antigen processing and loading onto MHCII in the MHCII compartment (e.g. inhibition of the Ii-dependent pathway by
Helicobacter pylori or targeting CatS and HLA-DM by M. tuberculosis and Coxiella burnetii, respectively); iv) degradation of MHCII and T cell co-stimulatory ligands
such as CD80/CD86 and CD97 (e.g. Salmonella). Bacteria interfere directly with IS assembly at the T lymphocyte side by i) targeting expression and function of the
TCR and co-stimulatory molecules (e.g. CD3z degradation by M. tuberculosis, CEACAM1 disabling by Neisseria gonorrhoeae or impairment of TCR signaling by
Yersinia pestis, Bordetella pertussis and Bacillus anthracis); ii) subverting the actin cytoskeleton (e.g. Shigella flexneri, Yersinia pestis and Salmonella enterica serovar
Typhimurium); and iii) interfering with vesicular trafficking by modulating Rab GTPases (e.g. Salmonella enterica, Legionella pneumophila, Shigella, M. tuberculosis) or
by targeting receptor trafficking (e.g the TCR by Shigella or LFA-1 by Bordetella pertussis).
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and trafficking. Macrophage infection with M. bovis leads to the
inhibition of both activity and expression of the cystein protease
cathepsin S (Cat S) (44), which mediates the late cleavage steps of
the invariant chain (Ii) cleavage (85) required for the generation
of MHCII molecules that can be efficiently loaded with peptide
Frontiers in Immunology | www.frontiersin.org 578
antigens and delivered to the cell surface. The defect in CatS
expression has been ascribed to the M. bovis-dependent
induction of the suppressive cytokine IL-10 which blocks Cat S
gene expression (44) as well as of M. tubercolosis microRNA
miR-106b-5p which downregulates its transcript (39).
TABLE 1 | Bacterial virulence factors that target directly or indirectly IS as.

Pathogens IS targeting
site

Vitulence factors IS inhibition mechanisms Ref.

Mycobacterium
tuberculosis

APC
T cell

LpqH, Hip1
SapM
manLAM
miR-106b-5p
manLAM
mycolactone
SerB2
SapM
NdK

MHCII expression (C/EBP, CIITA)
Antigen processing (inhibition of phagolysosomal fusion)
Antigen processing (inhibition of phagosome acidification)
MHCII loading and trafficking (inhibition of CatS activity and expression)
TCR and co-stimulatory molecules (CD3z degradation)
Signaling at the IS (degradation of Lck, ZAP-70, LAT)
Signaling at the IS (inhibition of TCR signaling)
Actin cytoskeleton (modulation of F-actin filament assembly)
Actin cytoskeleton (modulation of phosphoinositide signaling)
Vesicular trafficking (recruitment of Rab proteins)
Vesicular trafficking (Rab GAP)

28–
30
35
35–
38
39
40
41
42
35
43

Mycobacterium bovis APC IL-10 MHCII loading and trafficking (inhibition of CatS activity and expression) 44
Chlamydia
trachomatis

APC proteases MHCII expression (INF-g, USF1, CIITA) 33

Salmonella enterica APC
T cell

pH regulation
SopB
SteD
SopB, SopE, SptP
SopB
SopD2
GtgE

MHCII surface expression (E3 ubiquitin ligase, MARCH1, K63-linked MHCII ubiquitination)
Antigen processing (inhibition of phagosome maturation)
Degradation of MHCII (ubiquitylation)
Inhibition of T cell co-stimulatory ligands (CD86/B7-2, CD97)
Actin cytoskeleton (Rho GEF mimics, GAP mimics)
Vesicular trafficking (SopB recruitment of Rab proteins)
Vesicular trafficking (Rab GAP)
Vesicular trafficking (inhibition of polarized TCR recycling)

34
45
46
47,
48
49–
51
52
53
54

Helicobacter pylori APC
T cell

ADP-heptose
VacA
VacA

MHCII expression (miR146b, CIITA)
MHCII loading and trafficking (inhibition of the Ii-dependent pathway)
TCR and co-stimulatory molecules (suppression of TCR signaling, Ca2+-calcineurin pathway,
dysfunctional MAP kinase network)
Actin cytoskeleton perturbation

32
55,
56
57,
58
57,
59

Coxiella burnetii APC MHCII loading and trafficking (alteration of MHCII/HLA-DM interaction) 60
Pneumococcus
pneumonia

T cell TCR and co-stimulatory molecules (downregulation of CD28, ICOS, CD40L) 61

Staphylococcus
aureus

T cell SEA, SEB, SEE
toxins

TCR and co-stimulatory molecules (massive T cell activation) 62

Neisseria
gonorrhoeae

T cell Opa52 TCR and co-stimulatory molecules (CEACAM1 suppression by phosphatases) 63

Yersinia pestis T cell YopH
YopE, YopT

TCR and co-stimulatory molecules (dephosphorylation of TCR signalosome)
Actin cytoskeleton (GAP mimics, modulation of GTP- GDP-bound forms of Rho GTPases)

64–
67
68,
69

Bordetella pertussis T cell CyaA TCR and co-stimulatory molecules (suppression of TCR signaling, cAMP) 70–
72

Bacillus anthracis T cell edema toxin TCR and co-stimulatory molecules (suppression of TCR signaling, cAMP) 73
Clostridium
botulinum

T cell C3 toxin Actin cytoskeleton (modulation of GTP- GDP-bound forms of Rho GTPases) 74

Shigella flexneri T cell IcsA
IpgD
unidentified T3SS
effector
VirA, IpaJ

Actin cytoskeleton (modulation of F-actin filament assembly)
Actin cytoskeleton (inhibition of cell chemotaxis)
Actin cytoskeleton (inhibition of IS assembly)
Vesicular trafficking (Rab GAP, inhibition of the polarized recycling of TCR-containing endosomes)

75
76
77
77,
78

Listeria T cell ActA Actin cytoskeleton (modulation of F-actin filament assembly) 79
Legionella
pneumophila

T cell LepB
Lgp0393, DrrA/
SidM

Vesicular trafficking (Rab GAP)
Vesicular trafficking (Rab GEF)

80
81,
82
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Other bacterial pathogens target the key steps of MHC
loading and trafficking to suppress the initiation of T cell
response. This is the case of H. pylori which, through its major
virulence factor Vacuolating cytotoxin A (VacA), interferes with
the proteolytic generation of T cell epitopes that are loaded onto
newly synthesized MHCII molecules, specifically inhibiting the
Ii-dependent pathway (55). In addition, MHCII molecules are
retained in the H. pylori-containing vacuoles in H. pylori-
infected DCs, such that their trafficking to the cell surface is
prevented (56). Coxiella burnetii impairs antigen presentation at
a different step -loading of peptide antigen- by altering the
interaction of MHCII with HLA-DM, a key step required for
displacing from MHCII the Ii CLIP peptide to allow for loading
of pathogen-derived peptides and transport to the plasma
membrane of functional pMHC complexes. In C. burnetii-
infected cells MHCII molecules fail to dissociate form HLA-
DM and accumulate in enlarged intracellular compartments (60)
(Figure 2, Table 1).

3.1.4 Degradation of MHCII and T Cell Co-
Stimulatory Ligands
An alternative mechanism for reducing the levels of pMHC
complexes at the APC surface has been reported for Salmonella.
This function is mediated by the type 3 secretion system effector
SteD. This transmembrane protein forms a complex with mature
endosome-associated MHCII molecules and the transmembrane
host tumor suppressor TMEM127, a Nedd4 family E3 ubiquitin
ligase adaptor. TMEM127 recruits the E3 ligase Wwp2 to the
complex, inducing ubiquitylation of MHCII for subsequent
lysosomal degradation (46). Interestingly, SteD exploits this
degradation-promoting activity to reduce the expression of
important T cell activating ligands expressed on APCs,
including CD86/B7-2 which activated the key co-stimulatory
receptor CD28 (47), and the plasma membrane protein CD97
that is required to stabilize the IS formed with T cells (48)
(Figure 2, Table 1).

3.2 Direct Targeting of the T Cell IS by
Bacterial Pathogens
Since the seminal discovery that lymphotropic viruses such as
HIV-1 and HTLV-1 not only exploit the IS to evade the T cell
response but apply the same building principles to form the
virological synapse, a platform for cell-to-cell transmission, the
IS has attracted major interest as a target for immune evasion by
viral pathogens (86, 87). Whether and how bacterial pathogens
can subvert IS assembly to avoid T cell immunity not indirectly
by modulating DC activation and function, but directly, are
questions that are only beginning to be formulated. DCs are
present at the sites of infection where they can readily recognize
pathogens through their wide array of PRRs, orchestrating a
sophisticated response that not only optimizes their antigen
presentation capacity but also provides all the signals that T
cells require to differentiate to the most appropriate type of
effector. At variance, T cells continuously cycle between blood
and lymph and are activated in secondary lymphoid organs,
where DCs migrate following pathogen recognition. However, a
Frontiers in Immunology | www.frontiersin.org 679
number of bacterial virulence factors are released as soluble
factors that can be transported through the lymph to the closest
lymph node station, where they can interact with naïve T cells
and even enter them while not establishing a productive
infection, as exemplified by the T cell delivery of Shigella T3SS
effectors (88). Importantly, following their differentiation,
effector T cells, whether CTLs or Th cells, are recruited to the
site of infection to coordinate a combined attack with innate
immune cells against the invading pathogen. There, effector T
cells become a very relevant target for immune evasion.

Examples of IS targeting by bacterial pathogens are as yet very
few. However, the substantial body of information acquired on
how bacteria subvert pivotal cellular processes in host cells, such
as cytoskeletal dynamics and vesicular trafficking, which are
essential for IS assembly, suggests that we are looking at the tip
of the iceberg. In this section we will present arguments to
support this notion, discussing specific instances that provide
experimental evidence that the IS is exploited not only by viruses,
but also by bacteria, to evade T cell-mediated immunity.

3.2.1 Targeting the TCR and Co-
Stimulatory Molecules
A strategy that mirrors at the T cell side what we described above
on the APC side is downregulation of TCR expression, as
exemplified in Pneumococcus-related sepsis. Of note, T cells
from these patients also coordinately downregulated the
expression of the major co-stimulatory receptors CD28,
essential for T cell activation, and ICOS and CD40L, required
for T cell-dependent B cell maturation (61). A different
mechanism to modulate CD3 expression is exploited by M.
tubercolosis, involving degradation of its key component CD3z.
This is achieved through upregulation of the E3 ubiquitin ligase
Grail by manLAM (40). Although not tested directly,
downregulation of surface TCR is expected to impact on IS
assembly and local signaling, as witnessed by primary
immunodeficiency disorders with CD3 deficiency (89).

Staphylococcus aureus uses the amply characterized
mechanism of forced, antigen-independent TCR binding to
MHCII mediated by its toxins SEA, SEB and SEE to promote
massive T cell activation and inflammatory cytokine production
associated with defective anti-bacterial T cell response. These
toxins are able to elicit IS assembly with high efficiency and are in
fact used as surrogate antigens to study IS assembly in polyclonal
T cells. Interestingly, a different mechanism involving the
Staphylococcus superantigens SEA, SEB and TSST-1, has been
recently reported, based on cross-linking the co-stimulatory
receptor CD28 with its ligand B7.2 on APCs (62). Since CD28
co-localizes with the TCR at the cSMAC, this double locking
action is expected to lead to the generation of hyperstable and
hyperactive immune synapses.

Another example of co-inhibitory receptor targeting for T cell
suppression is CEACAM1 disabling by Neisseria gonorrhoeae.
CEACAM1 is expressed as two isoforms differing in the length of
its intracellular domain, with the long isoform endowed of two
immunoreceptor tyrosine-based inhibitory motifs (ITIM). The
gonococcal protein Opa52 interacts with CEACAM1 on CD4+ T
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cells, leading to phosphorylation of its ITIM motifs and
recruitment of the tyrosine phosphatases SHP-1 and SHP-2,
which dampen TCR signaling (63). A similar strategy to suppress
CD4+ T cell activation is exploited by Fusobacterium nucleatum,
Neisseria meningitidis, Moraxella catarrhalis, and Haemophilus
influenzae, which also trigger CEACAM1 activation through
specific adhesins (90–92). At variance, CEACAM1 has been
recently reported to also act as a co-stimulatory receptor
essential for the activation and proliferation of CD8+ T cells,
preventing their exhaustion and promoting their antiviral
activity (93). Interestingly, CEACAM1 engagement leads to the
recruitment of Lck to the TCR and stabilizes this key initiating
kinase at the IS (93). This finding underscores the IS as a
potential important target of bacterial pathogens that produce
CEACAM1 ligands (Figure 2, Table 1).

3.2.2 Targeting Signaling at the IS
Major bacterial pathogens have the potential to target signaling
downstream of the TCR, thereby affecting IS assembly and stability.
M. tubercolosis exploits the manLAM-dependent upregulation of
Grail mentioned above for CD3z downregulation to coordinately
promote the degradation of essential mediators of the TCR
signaling cascade, including the initiating tyrosine kinases Lck
and ZAP-70, and the adaptor LAT required for signal
amplification and diversification (40). Again, deficiency of these
signaling mediators in experimental systems or primary
immunodeficiencies supports the potential negative impact of M.
tubercolosis in IS assembly. Another M. tubercolosis-derived
molecule, mycolactone, interferes with T cell activation by
inhibiting TCR signaling through an as yet unknown mechanism
(41), underscoring T cell activation -and by inference IS assembly-
as a relevant target for T cell disabling by M. tubercolosis.

Other pathogens have been reported to disrupt specific steps in
TCR signaling. One such example isYersinia pestis, which terminates
TCR signaling using one of its outer membrane proteins, the protein
tyrosine phosphatase YopH, that dephosphorylates key TCR
signalosome components, including Lck, LAT and SLP-76 (64–
67). Bordetella pertussis and Bacillus anthracis also suppress TCR
signaling from its earliest step -activation of Lck- by elevating the
cellular concentration of cAMP through their adenylate cyclase
toxins, CyaA and edema toxin, respectively (70, 71). At variance,
the H. pylori vacuolating cytotoxin (VacA) inhibits the Ca2
+-calcineurin pathway that is responsible for the activation of the
key transcription factor NF-AT by inducing plasma membrane
depolarization through its anion channel activity (57, 58).
Additionally, VacA perturbs TCR signaling through an
independent pathway triggered by its receptor-binding moiety,
which selectively enhances the activity of the MAP kinase p38 but
not Erk, leading to a dysfunctional MAP kinase network (57). That
these effects have the potential to target the IS is witnessed by the
ability of Bordetella pertussis CyaA to impair IS assembly through
local cAMP production (71, 72) (Figure 2, Table 1).

3.2.3 Targeting the Actin Cytoskeleton
IS assembly is coordinated by the interplay of the actin and
tubulin cytoskeletons. F-actin reorganization regulates multiple
Frontiers in Immunology | www.frontiersin.org 780
steps of IS formation, from integrin-mediated T cell adhesion to
its cognate APC, to the recruitment of TCR microclusters to the
cSMAC, to centrosome polarization beneath the synaptic
membrane, to the process of sorting of cargoes, including
TCRs, from early endosomes for their recycling to the IS to
sustain signaling (94). Bacterial pathogens are masters at
exploiting the host cell actin cytoskeleton for engulfment by
host cells and intercellular dissemination, as exemplified by
Shigella flexneri, Yersinia pestis and Salmonella enterica serovar
Typhimurium. This is achieved by a remarkable array of T3SS
effectors that promote actin remodeling by targeting directly or
indirectly the Rho GTPases. The strategies evolved to modulate
the activity of these small GTPases are multifarious, ranging
from Rho GEF mimics (e.g. Salmonella SopB and SopE), to
GAP mimics (e.g. Salmonella SptP, Yersinia YopE), to direct
modulators of the active (GTP-bound) or inactive (GDP-
bound) forms of Rho GTPases (e.g. the ADP-ribolysating
Clostridium C3 toxin; the Yersinia protease YopT), to the
process of F-actin filament assembly (e.g. Shigella IcsA and
Listeria ActA mimicking activators of the actin nucleator N-
WASP and of the actin adaptor Arp2/3, respectively; M.
tubercolosis MtSerB2-mediated dephosphorylation and
activation of cofi lin) (95, 96). By acting on F-actin
remodeling, these bacterial pathogens have the potential to
interfere with the highly regulated process of IS assembly.

Direct experimental evidence in support of this hypothesis
has been recently generated. Shigella had been previously shown
to directly impair T cell chemotaxis through its T3SS effector
IpgD, a lipid phosphatase that hydrolyses PI(4,5)P2, thus
preventing leading edge formation in which actin dynamics
plays a pivotal role (76). Recently Samassa and colleagues
demonstrated that Shigella promotes actin polymerization in
CD4+ T cell through an as yet unidentified T3SS effector which
leads to an increase in cell stiffness, thereby impairing the ability
of T cells to scan APCs for the presence of specific pMHC and
hence affecting the efficiency of T cell:APC conjugate formation,
which is sets the stage for IS assembly (77). Since other bacterial
pathogens may exploit their T3SS system to invade, albeit not
productively infect, T cells, they might exploit the actin-
subverting effectors to similarly affect IS formation. A similar
scenario can be hypothesized for the H. pylori vacuolating
cytotoxin VacA, which binds T cells by interacting with the
integrin LFA-1 (59) and triggers the activation of the Rho family
guanine nucleotide exchanger Vav1 and the downstream
activation of Rac1, leading to perturbations in the actin
cytoskeleton (57).

F-actin reorganization during IS assembly is critically controlled
by the dynamic redistribution of lipid kinases and phosphatases that
generate local pools of specific phosphoinositides. Actin clearance
from the IS center is required to generate the secretory domain
where exocytic and endocytic events occur. This is regulated by
depletion from the IS center of the lipid kinase PIP5K, which is
required to replenish PI(4,5)P2 at the synaptic membrane, thus
sustaining actin polymerization (97). Remarkably, modulation of
phosphoinositide signaling is a major target shared by a variety of
bacterial pathogens (98). An interesting example is the M.
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tubercolosis lipid phosphatase SapM, which dephosphorylates PI
(4,5)P2 and PI3P to regulate the early stages of microbial
phagocytosis and phagosome formation (35). Of note, while PI
(4,5)P2 is implicated in F-actin polymerization during IS assembly,
PI3P plays a crucial role in endosome trafficking, which is also
centrally implicated in IS assembly, as detailed in the following
section (Figure 2, Table 1).

3.2.4 Targeting Vesicular Trafficking
T cell activation requires TCR signaling to be sustained for
several hours (99). This is achieved through the sequential
mobilization of two TCR pools associated with the plasma
membrane and recycling endosomes, respectively (17–19).
Translocation of the centrosome towards the T cell:APC
contact sets the stage for the polarized delivery of
endosomal TCRs through their dynein-dependent transport
along the microtubules. This strategy is co-exploited by a
number of other receptors as well as membrane-associated
signaling mediators that modulate the TCR signaling cascade
(11, 12).

Vesicular trafficking is widely highjacked by bacterial
pathogens for infection as well as to disable the bactericidal
mechanisms of phagocytes. Major targets in this process are the
Rab GTPases, largely through the modulation of their activity by
a variety of virulence factors that act as GAPs or GEFs on specific
Rab family members (100). Examples of bacterial Rab GAPs are
M. tubercolosis Ndk (43), Salmonella enterica SopD2 (53),
Legionella pneumophila LepB (80) and Shigella VirA (78),
while examples of bacterial Rab GEFs are Legionella
pneumophila Lgp0393 (82) and DrrA/SidM (81). Additionally,
as mentioned in the previous paragraph, phosphoinositide
signaling, which is essential for endosome maturation through
recruitment of Rab proteins or their regulators or effectors, is
disrupted by phosphoinositide-specific virulence factors, such as
the phosphoinositide phosphatases M. tubercolosis SapM and
Salmonella enterica SopB (98). Hence, similar to phagocytes,
these factors may be expected to interfere with vesicular
trafficking in T cells, thereby impacting on IS assembly
and function.

Strong support to this hypothesis has been provided by the
finding that Shigella impairs IS assembly by disrupting the
polarized recycling of TCR-containing endosomes to the IS
through two T3SS effectors, the Rab1 GAP VirA and the Arf/
Arl targeting cysteine protease IpaJ (77). Additionally, we
have shown that forced expression of the Salmonella protease
GtgE, which cleaves and inactivates Rab29 and Rab8 (101,
102), similarly impairs IS assembly by inhibiting two
sequential steps in the vesicular transport pathway that
regulates polarized TCR recycling to the IS (54). Of note,
the activity of Rab32 is also modulated by Salmonella SopD2
acting as a GAP (53), highlighting a combined targeting of
Rab29 by distinct virulence factors of this pathogen. A
different strategy is exploited by Bordetella pertussis, which
uses its adenylate cyclase toxin CyaA to impair recycling of the
integrin LFA-1, leading to premature IS disassembly (71)
(Figure 2, Table 1).
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4 CONCLUSIONS AND OUTLOOK

Pathogens are masters in the art of spotting the vulnerabilities of
target cells and evolve strategies to either neutralize or subvert
these to their own advantage to infect target cells and evade
immune mediated destruction. As the platform where the T cell
response to antigen recognition is coordinated, the IS represents
one of such vulnerabilities. This is witnessed by evidence
accumulated over the past several years showing that the
processes that regulate IS assembly, from TCR signaling, to
cytoskeleton dynamics, to vesicular trafficking, are targeted by
lymphotropic viruses to thwart the antiviral T cell response and
infect neighboring cells while remaining undetectable (86, 87).
Interesting, IS targeting is exploited also by tumor cells to suppress
antitumor immunity through both contact-dependent and
-independent mechanisms, as amply documented in chronic
lymphocytic leukemia (103). Hence, it is not surprising that
bacterial pathogens have co-opted this strategy to evade T cell
mediated immunity. While the evidence supporting this notion is
as yet scant, it is likely to represent only the tip of the iceberg since
the cellular processes known to be disrupted or subverted by
bacterial virulence factors that coordinate infection of target cells,
such as cytoskeletal dynamics, membrane trafficking or
phosphoinositide signaling, are also centrally implicated in the
process of IS assembly. Hence studies focusing on the IS as target
of bacterial virulence factors are expected to provide major
insights into the mechanisms of immune evasion by bacterial
pathogens. Of note, bacterial pathogens that infect cells that are
transported to peripheral lymphoid tissues, such as DCs or
macrophages, can interfere with priming pathogen-specific T
cells. While pathogens that remain confined in infected tissues
may influence T cell priming through soluble factors that can be
transported by the lymph, their physical separation prevents them
from directly deploying the full array of virulence factors, targeting
rather APCs for targeting this process. However, naive T cells
differentiated to helper or cytotoxic effectors are recruited to the
site of infection to coordinate the fight against the pathogens in
concert with the innate immune cells. Since effector T cells
assemble immune synapses with target cells for the selective
delivery of cytokines and cytotoxic molecules, the potential IS-
modulating functions of bacterial virulence factors may be highly
effective to evade the effector mechanisms of these cells.
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Metagenomic and metabolomic
analyses reveal synergistic
effects of fecal microbiota
transplantation and anti-PD-1
therapy on treating
colorectal cancer

Jiayuan Huang1†, Xing Zheng2†, Wanying Kang1†, Huaijie Hao2,
Yudan Mao1, Hua Zhang3, Yuan Chen1, Yan Tan2, Yulong He1,3,
Wenjing Zhao1* and Yiming Yin2*

1School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China, 2Department
of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China, 3Guangdong
Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh
Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
Anti-PD-1 immunotherapy has saved numerous lives of cancer patients;

however, it only exerts efficacy in 10-15% of patients with colorectal cancer.

Fecal microbiota transplantation (FMT) is a potential approach to improving the

efficacy of anti-PD-1 therapy, whereas the detailed mechanisms and the

applicability of this combination therapy remain unclear. In this study, we

evaluated the synergistic effect of FMT with anti-PD-1 in curing colorectal

tumor-bearing mice using a multi-omics approach. Mice treated with the

combination therapy showed superior survival rate and tumor control,

compared to the mice received anti-PD-1 therapy or FMT alone.

Metagenomic analysis showed that composition of gut microbiota in tumor-

bearing mice treated with anti-PD-1 therapy was remarkably altered through

receiving FMT. Particularly, Bacteroides genus, including FMT-increased B.

thetaiotaomicron, B. fragilis, and FMT-decreased B. ovatus might contribute

to the enhanced efficacy of anti-PD-1 therapy. Furthermore, metabolomic

analysis upon mouse plasma revealed several potential metabolites that

upregulated after FMT, including punicic acid and aspirin, might promote the

response to anti-PD-1 therapy via their immunomodulatory functions. This

work broadens our understanding of the mechanism by which FMT improves

the efficacy of anti-PD-1 therapy, which may contribute to the development of

novel microbiota-based anti-cancer therapies.

KEYWORDS

fecal microbiota transplantation, anti-PD-1 therapy, immunotherapy, colorectal

cancer, Bacteroides
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Introduction

The application of immune checkpoint inhibitors (ICIs) has led

to remarkable advances in the treatment of a wide range of cancers,

including melanoma, non-small-cell lung cancer (NSCLC), gastric

cancer, and breast cancer (1). Antibodies targeting the programmed

cell death protein 1 (PD-1) are the most widely used ICIs, which

work by blocking the binding between PD-1 receptor of T cells and

PD-L1 ligand of tumor cells, and restoring the function of T cells

that recognizes and eliminates tumor cells (2). ICI therapy has

saved numerous lives since its approval in 2014 and couldmaintain

long-term disease control in ICI responders. However, in terms of

curing colorectal cancer (CRC), the majority of patients would

present non-response to anti-PD-1 treatment due to the insufficient

tumor-infi ltrating lymphocytes (TILs) in the tumor

microenvironment (TME) (3, 4). Only approximately 10% of

patients with CRC, which are mismatch repair deficient (dMMR)

or microsatellite instability high (MSI-H) subtypes, could benefit

from anti-PD-1 therapy (5, 6). Therefore, it is important to develop

novel strategies to optimize our current ICI therapy.

Human intestine harbors more than 1013 microorganisms,

which play a key role in mediating human health and disease via

shaping systemic and local immune functions (7). Since 2015,

multiple studies have elucidated that the composition of gut

microbiota was associated with the efficacy of anti-PD-1 therapy

(8, 9). Notably, three groups (10–12) reported their work in 2018

observing highly diversified bacterial features (i.e. high abundance of

Akkermansia, Ruminococcus, and Bifidobacterium) were

individually related to the favorable clinical outcomes. The

mechanisms by which gut microbiota improves anti-PD-1 efficacy

involve the increased abundance of beneficial bacteria, enhancement

of dendritic cell (DC) maturation, increased activity of anti-tumor

CD8+ T cells, and the promotion of T cell tumor infiltration (13).

Thesefindings suggest thepotential approach to enhancing the effect

of immunotherapy via regulating gut microbes (14).

Fecal microbiota transplantation (FMT) is a biomedical

technology of transplanting functional microbiota into patients, to

cure diseases via restoration of gut microbiota with normal

composition and functions (12). FMT has been employed

clinically as a main or adjunctive approach in treating a number

of diseases, including Clostridium difficile infection, inflammatory

bowel diseases, and irritable bowel syndrome (15). In 2021, two

independent clinical studies demonstrated that FMT could promote

the efficacy of anti-PD-1 therapy in 3/10 and 6/15 patients with PD-

1-refractory melanoma, respectively (16, 17). Genes associated with

peptides presentation by antigen-presenting cells (APCs) through

MHC class I and IL-1 mediated signal transduction were

upregulated in melanoma patients after FMT treatment (16).

Another study demonstrated that patients with epithelial tumors

who responded to the combinational treatment of FMT and ICI

exerted increased compositions of CD8+ T cells, T helper 1 (Th1)

cells, and APCs in the tumor microenvironment, while a reduction
Frontiers in Immunology 02
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of myeloid-derived suppressor cells infiltration was observed (10).

Animal experiments elucidated that fecal transplantation into

mouse models for lung cancer led to superior tumor suppression

(18). However, the detailed mechanism and the applicability of this

combination therapy in other cancer types require to be

further illustrated.

In this study, we evaluated the antitumor efficacy of FMT

from healthy human in combination with anti-PD-1

immunotherapy using CRC tumor-bearing mouse models and

investigated the underlying mechanisms through multi-omics

approaches. Our results provide a potential mechanistic basis of

the synergistic effects of FMT and anti-PD-1 therapy on treating

colorectal cancer, which will expand our knowledge on the

mechanism of immunotherapy and assist with the development

of novel anticancer therapy through modulating microbiota.
Methods

Animals

All animal experiments were conducted at Crown

Biosciences Co. Ltd. (Taicang, China) and approved by its

Institutional Animal Care and Use Committee (approval

number: E4756-B1901). Female BALB/c mice were purchased

from Shanghai Lingchang Biological Technology Co. Ltd.

(animal certificate number: 20180003003129). All mice were

housed under specific-pathogen-free conditions with ingested

pellet food (radio-sterilized with cobalt 60) and autoclaved water

provided ad libitum.
FMT production

Stool samples from healthy human donors with informed

consent (volunteer number: 20190382) were collected using

sterile boxes and processed within 2 h, as previously described

(19). In a sterile anaerobic environment, the samples were

thoroughly mixed with sterile normal saline (mass: volume =

1:5). Subsequently, filter bags with apertures of 1 mm, 0.25 mm,

and 0.05 mm were used to remove solid particles and impurities

in the stool samples. The filtered liquid was centrifuged at 5500 g

at 4°C for 5 min, and the precipitation was collected. Bacterial

viable counting was conducted via flow cytometry and anaerobic

plate counting. The bacterial solution was adjusted to 0.83×1011

colony forming units per mL (CFU/mL), and mixed with

autoclaved glycerol, frozen at −80°C until next use.
Cell culture

CT26 mouse colon carcinoma cells (one of the most

commonly used murine tumor models) were obtained from
frontiersin.org
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the Shanghai Institute of Life Sciences (CAT#: TCM37). Cells

were cultured in RPMI 1640 culture medium (Gibco)

supplemented with 10% fetal bovine serum (FBS) (Excell) and

were cultured in a humidified incubator at 37°C, 5% CO2. CT26

cells at the exponential growth stage were suspended in PBS for

subcutaneous tumor inoculation in mice.
Tumor-bearing mouse model

Mice (7-8 weeks old) were inoculated with 5×105 CT26 cells

per mouse by subcutaneous injection at Day 0 (Figure 1A). A

total of 40 mice were randomly divided into four groups: Saline

plus Rat IgG2a (designated as Control), FMT plus Rat IgG2a

(FMT), Saline plus PD-1 antibody (aPD-1), and FMT in

combination with PD-1 antibody (Combo). Sterile normal

saline (200 mL per dose) or FMT (5×109 CFU/mouse) was

administered by oral gavage on Days 9, 12, 15, and 18; Rat

IgG2a (200 mg/mouse, Lenico) and PD-1 antibody (200 mg/
mouse, RMP1-14, Lenico) was given by intraperitoneal injection

on Days 8, 11, 14, and 17. On Day 24, the endpoint of the

experiment, feces, blood, and tumors of tumor-bearing mice

were collected, and tumor volume was determined as length ×

width2 × 0.5. Survival rate was defined as the percentage of mice

with a tumor volume of less than 2,000 mm3 in each group.
Antibiotic treatment

From eight days before the tumor inoculation (Day -8) to

Day -4, antibiotics were added to the drinking water in
Frontiers in Immunology 03
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proportion, including ampicillin 1 (mg/mL), neomycin (1 mg/

mL), metronidazole (1 mg/mL), vancomycin (0.5 mg/mL). From

Day -3 to Day 7, ampicillin 1 mg/mL was added to the drinking

water, and the mixture of metronidazole 10 mg/mL, neomycin

10 mg/mL, vancomycin 5 mg/mL, and amphotericin B 0.1 mg/

mL was orally gavaged into each mouse twice a day, 200 mL
each time.
Fecal DNA extraction and metagenomic
analysis

Total genomic DNA of mouse fecal samples was extracted

using QIAamp PowerFecal Pro DNA Kit (Qiagen, CAT#:

51804), according to the manufacturer’s instructions. The

concentration was measured by Qubit and the integrity of

DNA bands was detected by agarose gel electrophoresis.

Library construction and sequencing (Illumina NovaSeq 6000

platform) were performed at Novogene. Following data analyses

were performed using KneadData, MetaPhlAn 2.0 and

HUMAnN 2.0 with default settings (20).
Untargeted metabolomic analysis

Mice blood samples were mixed with ice-cold methanol (3:1,

v:v), and centrifuged with 12,000 rpm at 4°C for 10 min. The

supernatant was collected and centrifuged at 12,000 pm at 4°C

for 5 min. The sample extractions were analyzed using an LC-

ESI-MS/MS system (UPLC, Shim-pack UFLC Shimadzu CBM A

system; MS, QTRAP® system). Chromatographic separation
A B C

FIGURE 1

FMT and PD-1 antibody exerted synergistic anti-tumor effect in the CT26 tumor-bearing mice. (A) Schematic diagram of this study. (B) Survival
curve of the CT26 tumor-bearing mice treated with FMT, aPD-1 or the combination. Statistical differences among four groups were examined
using log-rank (Mantel-Cox) tests. Post hoc pair-wise comparisons were performed; *, p-value < 0.05; **, p-value < 0.01. (C) Tumor growth
curves of the CT26 tumor-bearing mice treated with FMT, aPD-1 or the combination. Data are represented as mean ± SD (n = 10). Statistical
differences were examined using Dunnett’s test; *, p-value < 0.05.
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was carried out on a Waters ACQUITY UPLC HSS T3 C18 (1.8

µm, 2.1 mm*100 mm) column. Subsequently, the mass

spectrometry separation was carried out using electrospray

ionization (ESI) in the positive and negative mode (21).

Following untargeted metabolomic data analysis was

performed using MetaboAnalyst 4.0 with default settings (22).
Statistical analysis

Statistical analyses were performed using R programming

(version 4.0.3) and GraphPad Prism (version 8.0.2). Linear

discriminant analysis effect size (LEfSe) was applied to identify

differential species based on relative abundance using the Galaxy

platform (http://huttenhower.sph.harvard.edu/galaxy). One-way

analysis of variance (ANOVA) was performed to illustrate

differential bacterial species and blood metabolites among

multiple groups. False positive rate (FDR) method was employed

to adjust the p-values whenmultiple comparisonswere undertaken.

Spearman’s correlation analysis was used to illustrate the

relationship between bacterial species and metabolites.
Results

FMT improved the efficacy of aPD-1 in
tumor-bearing mouse model

We evaluated tumor volume and survival rate in CT26 tumor-

bearing mice treated with FMT or aPD-1 either alone or in

combination (Figure 1A). The Combo group showed the

highest animal survival rate (70% vs. 10%, 30%, and 30% in

control, FMT, and aPD-1 groups, respectively) on Day 24 after

tumor incubation (Figure 1B). Log-rank (Mantel-Cox) tests

showed a superior survival rate of mice treated with the

combination compared to those treated with FMT or aPD-1

alone (Figure 1B). Consistently, compared with the Control

group (tumor volume 1916.9 ± 193.0 on Day 21), the Combo

group exhibited a significant tumor suppression (tumor volume

1206. 6 ± 86.4, p-value = 0.045), while the FMT and aPD-1 groups

showed the tumor volumes of 1790.4 ± 176.3 (p-value = 0.945)

and 1402.6 ± 293.2 (p-value = 0.188), respectively (Figure 1C).

These results showed that the combinational therapy had a

superior effect than either monotherapy alone in treating CT26-

bearing mice in terms of both survival rate and tumor control.
FMT altered the composition of gut
microbiota in tumor-bearing mice
treated with aPD-1.

To investigate whether FMT improved the effects of aPD-1

by refining the gut microbiome, we next performedmetagenomic
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analysis to examine FMT-induced changes of gut microbial

composition and gene function. The PCA plot showed an

obvious group-based clustering pattern among groups with or

without FMT treatment, indicating that FMT significantly

changed the composition of gut microbiota (Adonis R2 = 0.58,

p-value=0.000167), while the change caused by aPD-1 was less

remarkable (Figure 2A). FMT were associated with, at the family

level, the decrease of the relative abundance of Bifidobacteriaceae,

Porphyromonadaceae, Verrucomicrobiaceae, and the increase of

Desulfovibrionaceae and Bacteroidaceae (Figure 2B).

Nineteen significantly differential abundant species between

the Combo group and aPD-1 group were identified using linear

discriminant analysis. The relative abundance of multiple

Bacteroides species (B. thetaiotaomicron, B. stercoris, B.

salyersiae, B. fragilis, B. cellulosilyticus, B. uniformis, and B.

massiliensis) and Parabacteroides species (P. distasonis and P.

unclassified) were significantly increased in the mice treated with

the combination of FMT and aPD-1, compared to those treated

with aPD-1 alone. We also observed the decreased abundance

of the abundance of Clostridium sp HGF2, Enterococcus

hirae, Dorea 52, Lactobacillus murinus, and Bacteroides ovatus

were observed (Figures 2C, E, S1A, B). In addition, we observed

the abundance of specific bacteria, including Alistipes

indistinctus, Faecalibacterium prausnitzii, Bacteroides vulgatus,

and Oscil l ibacter unclassified were enriched, while

Bifidobacterium pseudolongum were decreased by FMT

treatment(p<0.05), and opposite trends were observed in aPD-

1 group (Figure S1B).

The abundance of the aforementioned Bacteroides species

showed a strong positive correlation with each other (|coefficient

value|>0.6, p<0.05), as well as a negative correlation with

Enterococcus hirae, Dorea 52, and Lactobacillus murinus

(Figure 2D). Interestingly, the abundance of Bacteroides ovatus

correlated negatively with the abundance of most of the FMT-

upregulated species (Figure 2D). In a nutshell, our results

showed that FMT altered the composition of gut microbiota,

particularly Bacteroides (the increased B. thetaiotaomicron, B.

fragilis, and B. cellulosilyticus and the decreased B. ovatus).
FMT upregulated microbial biosynthetic
pathways of nucleotides and amino acids

Other than microbial composition, we also examined

microbial gene functional changes upon treatments, which

may influence gastrointestinal and systemic physiology.

Compared to those of aPD-1 group, 27 differently abundant

pathways out of 491 were identified in the combination group

(|log2FC|>1, p-adjusted<0.05), indicating the potential

microbial contribution towards better anti-PD-1 efficacy

induced by FMT (Figure 3A). We observed that the anabolic

pathways of several amino acids, including ornithine, histidine,

lysine, citrulline, and isoleucine were significantly enriched by
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FIGURE 2

FMT altered the composition of gut microbiota in CT-26 tumor-bearing mice receiving anti-PD-1 therapy. (A) Principal components analysis
(PCA) plot of the gut microbiota from mice. (B) Relative abundance of top 15 bacterial families in different groups. (C) LEfSe analysis showing
differentially abundant bacterial species between FMT and Combo groups. (D) Heatmap showing the correlations of species significantly different
between FMT and Combo groups. (E) Abundance of specific species in different groups. Data are represented as mean ± SD. *, p-value < 0.05;
**, p-value < 0.01; ***, p-value < 0.001.
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FMT treatment. And the pathways of nucleotides de novo

biosynthesis, including pyrimidine deoxyribonucleotides,

guanosine nucleotides, and adenosine nucleotides were

significantly up-regulated in FMT and Combo group.

Notably, the pathways of methionine and S-adenosyl-L-
Frontiers in Immunology 06
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methionine (SAM) biosynthesis were significantly decreased,

and pathways of S-adenosyl-L-methionine cycle I was

increased by FMT treatment. Moreover, the pathways of

coenzyme A biosynthesis I, O-antigen building blocks

biosynthesis, and heme biosynthesis II were enriched in the
A

B

FIGURE 3

The effect of FMT and PD-1 antibody administration on gut metagenomic gene pathways. (A) Volcano plot showing differentially expressed
microbial gene pathways between Combo and aPD-1 groups. (B) Abundance of specific gene pathways in different groups. Data are
represented as mean ± SD. *, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001.
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aPD-1 group, while down-regulated in the Combo group.

Furthermore, the pathway of biotin biosynthesis was

significantly up-regulated by FMT treatment (Figure 3B,

Figure S2).
FMT and aPD-1 synergistically remodeled
mouse plasma metabolome

Metabolomic analyses were performed to examine the systemic

change caused by FMT in tumor-bearing mice. Among a total

number of 369 metabolites detected, the abundance of 8, 9, 34

metabolites were altered (p-adjusted < 0.05) following aPD-1, FMT,

andCombo treatment, respectively, suggesting the synergistic effect

of the combinational treatment (Figure 4A, Table S1). Abundance

of 24 metabolites were altered upon the combinational treatment

but not upon the treatment of FMT or aPD-1 alone, including the

up-regulated kynurenic acid, estrone 3-sulfate and N -acetyl-D-

glucosamine, and down-regulated glycine, nicotinamide and

salicyluric acid (Table S1). The PCA plot also showed the distinct

mouse plasma metabolome after different treatments (Figure 4B)

(Adonis R2 = 0.29, p-value = 0.000167).

Top 30 most differentially abundant metabolites among the

four groupswere identified based on the FDR values fromone-way

ANOVA analysis (Figure 4C). Compared with the PD-1 group,

dethiobiotin, punicic acid, aspirin, L-arabitol, N-acetyl-D-

glucosamine, L-dihydroorotic acid, dimethyl fumarate, trans-

citridic acid, 1-Phenylethanol were significantly increased in the

Combo group (p<0.01). While lysoPE (16:0), triethylamine,

glycine, L-lysine, mandelic acid, L-glutamic acid, L-

phenylalanine were significantly decreased (p<0.01) (Figures 4C,

E, S3). The results indicated that combinational treatment of FMT

and aPD-1 significantly altered plasma metabolic profiles.

Furthermore, amino acids, including N-(2-Methylbenzoyl)

glycine, N-phenyl acetyl glycine, glycine, L-proline, L-cysteine,

L-serine and L-lysine were significantly down-regulated in the

Combo group (p<0.05). Notably, the abundance of dethiobiotin,

propyl hexanoate, and N-acetyl-D-glucosamine were significantly

up-regulated in the Combo group (Figures 4C, E, S3).

To better understand the involvement of specific bacteria

species in the alteration of host metabolism, correlation between

plasma metabolites and the abundance of specific bacteria species

were investigated. High abundance of Bacteroides species, such as

B. thetaiotaomicron, B. stercoris, B. salyersiae, B. cellulosilyticus,

was positively correlated with the low abundance of lysoPE (18:0),

lysoPE (18:1), N-phenyl acetyl glycine, N-(2-Methylbenzoyl)

glycine in plasma, and opposite trends were observed in B.

ovatus and Lactobacillus murinus (Figure 4D). This result

suggests a potential link among commensal microorganisms,

differentially abundant metabolites, and treatment outcomes of

anti-PD-1 therapeutic efficacy.
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Discussion

Fecal microbiota transplantation from patients who

responded to ICIs combined with ICIs exerts as a promising

approach to treating melanoma (17). However, the detailed

mechanisms and the applicability of this therapy are required to

be further evaluated in multiple cancer types, such as colorectal

cancer and lung cancer. Moreover, FMT using feces of cancer

patients might carry safety risks such as detrimental pathogens or

pathobionts; therefore, it’s necessary to examine the effect of FMT

using feces from healthy donors. In this study, our multi-omics

investigation shows the potential synergistic effects of FMT using

feces from healthy screened donors and anti-PD-1 therapy, in the

treatment of mice bearing colorectal tumor.

A wide range of commensal bacterial species have been

reported to be associated with the enhanced efficacy of ICIs,

including B. thetaiotaomicron (23), B. fragilis (24), B.

cellulosilyticus (25), Parabacteroides distasonis (26), B.

salyersiae (27), and B. uniformis (13). In this study, our

metagenomic analysis showed that FMT significantly

upregulated the abundance of those potentially beneficial

species, particularly those species from Bacteroides genus

(Figures 2C, E). The reshaped microbiota caused by FMT

might be associated with the refinement of tumor immune

microenvironment (TIME) (28). Previous literature shows that

B. thetaiotaomicron, which is most significantly upregulated by

FMT in our data, has been reported to induce immune responses

in dendritic cells (e.g. the expression of IL-10) and mediate

intestinal homeostasis (29). B. thetaiotaomicron is also able to

inhibit the growth of CRC cells via its metabolite propionate

(23). Another Bacteroides species B. fragilis is associated with the

favorable clinical outcome of CTLA-4 inhibitors (24) via

inducing regulatory T cells to secrete IL-10 through the

immunomodulatory molecule polysaccharide A (PSA) of B.

fragilis (30). Additional immunomodulatory function of B.

fragilis includes producing unique alpha-galactose ceramides

(BfaGC) and subsequently activating NKT cells (e.g.

upregulating IL-2 expression) (31). More recently, B.

cellulosilyticus has been reported to be enriched in humanized

microbiome mouse model of glioma and is a potential

contributor to the enhanced efficacy of anti-PD-1 therapy (25).

B. cellulosilyticus might modulate host immunity via its specific

zwitterionic capsular polysaccharides (ZPSs) which can activate

IL-10+ regulatory T cells to secrete IL-10 (25). Notably, the

abundance of upregulated Bacteroides species showed a strong

positive correlation with each other (Figure 2D), suggesting their

potential symbiotic link. Furthermore, several bacterial species

which showed an up-regulation in the Combo group, Bilophila

wadsworthia and Lachnospiraceae bacterium have not been

reported previously. Their roles in anti-PD-1 treatment would

be very interesting to investigate.
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FIGURE 4

FMT altered plasma metabolites in CT-26 tumor-bearing mice receiving anti-PD-1 therapy. (A) Venn diagrams showing number of significantly
changed metabolites in each group after treatment. (B) PCA plot of metabolomic results. (C) Heatmap of differentially abundant metabolites
using one-way analysis of variance. (D) The correlations between metabolites and microorganism. (E) Abundance of specific metabolites in
different groups. Data are represented as mean ± SD. *, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001.
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The abundance of two potentially detrimental species, B.

ovatus and Lactobacillus murinus, were significantly decreased

by FMT (Figures 2C, E). It was previously reported that the

abundance of B. ovatus was associated with shorter progression-

free survival (PFS) in melanoma patients receiving

immunotherapy (32). B. ovatus might affect host immunity via

inducing IgA and other approaches (33). In addition, the

outgrowth of L. murinus is considered to impair gut metabolic

function and exacerbate intestinal dysbiosis (34), therefore the

depletion of L. murinus led by FMT may attenuate the microbial

dysbiosis. Our metagenomic results are in line with the

previously published studies that FMT could reshape the

composition of both beneficial and harmful bacteria in the gut

microbiome upon the anti-PD-1 treatment, which might result

in the enhanced therapeutic efficacy.

Microbial gene functions and host metabolome were also

reshaped by FMT in this study, which might benefit the efficacy of

immunotherapy. Microbial gene pathways including nucleotides

and amino acid biosynthesis pathways (e.g., pyrimidine

deoxyribonucleotides, guanosine nucleotides, ornithine, isoleucine)

were enriched after FMT, whereas methionine and SAM

biosynthesis pathways were significantly downregulated

(Figure 3A, B). Methionine is involved in the pathogenesis of

cancer (35), and negatively related to the efficacy of radiotherapy

(36). SAM, a universal methyl donor, is formed from methionine

and has been reported to be associated with metastasis and

recurrence in colorectal cancer patients (37). Inhibition of the

production of methionine and SAM might contribute to the

tumor regression. Furthermore, our metabolomics analysis showed

higher abundance of aspirin which can inhibit the growth of

Fusobacterium nucleatum (a detrimental bacteria species which

aggravates colorectal cancer) after FMT treatment (38). Likewise,

punicic acid was regulated upon FMT. The potent anti-tumor effect

of punicic acidmight play a role in tumor control (39, 40). Lastly, the

abundance of several amino acids was also decreased in the plasma,

including glycine, serine, and cysteine (Figure 4C, E, Figure S3).

Previous research reported that the growth and proliferation of

cancer cells require serine and glycine, and limiting exogenous serine

and glycine could inhibit tumor growth in mouse models of colon

cancer (41, 42).Moreover, the combinational treatment up-regulated

the abundance of blood metabolite kynurenic acid, which has been

reported to inhibit proliferation of colon cancer and renal cancer

cells (43). To summarize, the enhanced efficacy of anti-PD-1 therapy

led by FMTmight be mediated by the altered microbial genome and

blood metabolome.

The limitations of this study include the lack of experimental

validation of the aforementioned bacterial species, metabolic

pathways and changes of immune cells. Also, the synergistic

effect exerted in mouse model may vary from that in the clinic.

Further clinical investigation is being conducted in our laboratory

and is anticipated to shed light on the detailed mechanisms of the

promising combined use of FMT and anti-PD-1 therapy.
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Conclusion

In summary, our study provides novel insight into the

synergetic effects of microbiota transplantation and anti-PD-1

therapy in treating colorectal cancer, including the remodeling of

gut microbiota and plasma metabolome. Our results suggest that

Bacteroides, including the FMT-increased B. thetaiotaomicron, B.

fragilis, and B. cellulosilyticus and decreased B. ovatus might

contribute to the improved the efficacy of anti-PD-1 therapy.

This work provides a potential mechanistic basis to further

understand the role of FMT combined with anti-PD-1 therapy

in treating various cancer types including colorectal cancer.
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Human brucellosis is one of the most prevalent zoonoses. There are many similarities
between the pathogenesis of Mycobacterium tuberculosis (MTB) infection and that of
brucellosis. Immune reconstitution inflammatory syndrome (IRIS) may occur during the
treatment of MTB infection, but it has not been reported in brucellosis cases thus far. We
report the case of a 40-year-old male whose condition initially improved after adequate
anti-Brucella therapy. However, 3 weeks later, the patient presented with exacerbation of
symptoms and development of a paravertebral abscess. After exclusion of other possible
causes of clinical deterioration, immune reconstitution inflammatory syndrome (IRIS) with
brucellosis was presumed. After supplementation with anti-Brucella treatment with
corticosteroids, the abscess disappeared, and the symptoms completely resolved. Our
case suggests that it is necessary to be aware of the possible occurrence of IRIS in
patients with brucellosis in clinical practice.

Keywords: human brucellosis, IRIS, immune reconstitution, infection, case report
CASE REPORT

A 40-year-old male farmer without any underlying condition was admitted to the hospital because
of fever, night sweats, and pain in the lower back. The patient had reportedly been well until 3 weeks
earlier, when back pain developed. He reported no associated trauma or injury, and no treatment
was administered. On the 10th day of illness, he began to have fever with a temperature as high as
38.3°C, along with night sweats, fatigue, and weakness. He took antipyretics, but the fever and back
pain persisted. The patient was sent to this hospital for further evaluation. The patient had
occupational exposure to livestock. He was married and lived with his wife and children, who were
well. There was no history of tuberculosis (TB), recent travel, transfusions, alcohol consumption,
smoking, or intravenous drug use. The patient took no medications and had no history of drug
allergy. There was no family history of disease.

Upon admission to the hospital, his core body temperature was 39°C, and he had severe pain in
the L4–L5 area. Other vital signs and the remainder of the physical examination were normal. The
erythrocyte sedimentation rate (ESR) was 70 mm/h. The levels of C-reactive protein (CRP) and
interleukin-6 (IL-6) were slightly elevated to 28.93 mg/L and 10.88 pg/ml, respectively (Figure 1A).
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A human immunodeficiency virus (HIV) test was negative, and
other blood parameters, including routine blood parameters,
liver enzyme concentrations, procalcitonin and creatinine
levels, and antinuclear antibody concentrations, were normal.
Blood culture was negative. Magnetic resonance imaging (MRI)
showed abnormalities suggesting inflammation in the L4 region
(Figure 1B). An enzyme-linked immunosorbent assay (ELISA)
for the detection of Brucella antibodies was performed on
plasma, and the results were positive, with an IgM
concentration of 12.88 U/ml and an IgG concentration of
89.15 U/ml. To confirm the diagnosis, vertebral tissue
aspiration was performed on the second day after admission.
The aspirate was sent for bacterial culture and molecular TB
detection. An automated blood culture system was used for
bacterial culture. Five days later, the bacterial culture result was
positive for Brucella, which is a very small, faintly stained Gram-
negative coccobacillus that microscopically looks like “fine sand”.
Polymerase chain reaction (PCR) was negative for
Mycobacterium tuberculosis (MTB) DNA. With a confirmed
diagnosis of Brucella-related complicated infection, triple
therapy including intravenous ceftriaxone (2.0 g qd) and oral
rifampin (0.6 g qd) and doxycycline (0.1 g q12 h) was
Frontiers in Immunology | www.frontiersin.org 297
administered. After 2 weeks of treatment, the patient’s body
temperature returned to normal. The pain in the lower back was
also relieved. However, 1 week later (3 weeks from the beginning
of anti-Brucella therapy), the patient’s symptoms recurred; he
had a moderate to low fever (top temperature up to 38.5°C)
accompanied by lower back pain. On physical examination, the
pain in the L4–L5 area was significantly worse than before. The
results of laboratory re-examination showed a normal white
blood cell count (8.11 × 109/L), with 62.1% neutrophils, and a
highly elevated ESR (86 mm/h) and CRP level (79.75 mg/L). The
level of IL-6 increased to 53.91 pg/ml. Liver enzymes, creatinine
levels, and antinuclear antibodies were within normal ranges.
The second MRI (Figure 1C) scan of the spinal cord showed
lesion expansion involving the lower posterior part of L4 and
focal abscess formation. Due to the recurrent clinical symptoms
and imaging findings, abscess puncture and drainage were
performed. Cytology showed inflammatory infiltration (of
which 65% were neutrophils) without neoplastic cells. Abscess
fluid culture results were negative. Despite drainage for 5 days,
the symptoms of fever and lower back pain persisted.

Because the patient had been hospitalized since the beginning
of treatment, poor treatment adherence could be excluded. Other
FIGURE 1 | Clinical data. (A) The hospitalization course, with the timeline of antibiotic treatment and the changes in body temperature and inflammatory markers.
(B1, B2) The first MRI scan of the patient showed a lesion on the lower 1/2 part of the fourth lumbar vertebra (white arrow), with low intensity on T1WI and high
intensity on T2WI. (C1, C2) The second MRI scan, which occurred on follow-up day 27, showed that the lesion had expanded (white arrow), involving the posterior
lower part of the fourth lumbar vertebra and with fusiform abscess formation behind the fourth vertebral body and lumbosacral soft tissue edema. (D1, D2) The last
MRI scan (white arrow) after 3 months showed that the lower edge endplate of the fourth lumbar vertebra was damaged, the L4/L5 intervertebral disc was turbid,
the retrovertebral abscess had disappeared, and the lumbosacral soft tissue edema was significantly improved. ESR, erythrocyte sedimentation rate; CRP,
C-reactive protein.
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infections and drug side effects were also ruled out. Accordingly,
brucellosis-associated IRIS was suspected. There is no clinical
consensus on the definition of infection-associated IRIS, and
there is no treatment standard. With reference to the regimen for
TB-IRIS treatment (1), the triple-agent anti-Brucella regimen
was continued, and 200 mg of celecoxib twice a day was initiated.
However, the patient’s symptoms remained after 1 week of
treatment. Anti-inflammatory treatment was changed to 0.5
mg of prednisone per kilogram bodyweight (35 mg). Within 3
days, the patient’s body temperature returned to normal, and the
back pain significantly improved. Both the ESR and CRP level
also gradually returned to within normal ranges. Steroid therapy
was tapered over a 2-month period. The triple-agent anti-
Brucella therapy was continued for 2 weeks, followed by
sequential treatment with oral doxycycline (0.1 g q12 h) and
rifampin (0.6 g qd). After the overall 14-week treatment course,
the third MRI scan (Figure 1D) showed that the lower edge
endplate of L4 had been damaged, the paravertebral abscess had
disappeared, and the lumbosacral soft tissue edema had
significantly improved. At the last follow-up visit 2 months
after completing the anti-Brucella therapy, the patient had no
complaints, and the physical examination was normal.
DISCUSSION

IRIS is an excessive inflammatory response to infectious or
noninfectious antigens after the reversal of underlying
immunosuppression (2). The most common presentation is
HIV-associated TB-IRIS (3), where patients’ symptoms worsen
following the initiation of anti-retroviral therapy. It also occurs
among HIV-uninfected patients (4–6). IRIS has also been
observed in infections by other pathogens, such as
Mycobacterium leprae (7), Mycobacterium ulcerans (8), the
Mycobacterium avium complex, and Cryptococcus (9). There
are two forms of IRIS: paradoxical and unmasking (1).

There are currently no definitive diagnostic criteria for IRIS,
especially in HIV-uninfected patients. IRIS is a diagnosis of
exclusion (1). In our case, this patient’s symptoms initially
improved after adequate anti-Brucella treatment, but he
subsequently presented with the paradoxical exacerbation of
brucellosis-related symptoms and abnormal radiologic findings
at the primary or new locations during treatment. Poor drug
compliance, drug side effects, and other infections were excluded.
ESR, IL-6, and CRP levels were markedly elevated. In
addition, this patient showed a rapid and remarkable response
to steroids. All of the above suggested a diagnosis of
brucellosis-IRIS.

There are many similarities between the pathogenesis of MTB
infection and that of brucellosis (10, 11). During MTB infection,
multiple MTB components interfere with host cellular functions,
inciting specific host immunodeficiency and helping the pathogen
evade host innate immunity (12). A similar phenomenon also
occurs in Brucella infection. For example, the outer membrane
Frontiers in Immunology | www.frontiersin.org 398
protein of Brucella can inhibit the production of TNF (13), IL-12
(14), and IFN-b (15); depress T-cell responses; and compromise
monocyte/macrophage funct ion , caus ing tempora l
immunosuppression (16). Therefore, it can invade multiple
organs and often induce chronic infection (17). It is speculated
that the mechanism of brucellosis-related IRIS is similar to that of
TB-IRIS in HIV-uninfected individuals.

On the basis of previous studies, paradoxical reactions to TB-
IRIS in immunocompetent patients have been attributed to
immunological causes (6, 18). Antibiotic therapy leads to an
apparent reversal of the immunosuppressive state, with
phagocytosis of mycobacteria and a rapid onset of local cellular
immune responses (5). An overwhelming and exaggerated
immune recovery may lead to excessive immunopathological
damage at the tissue level.

It is believed that patients with a high bacterial load have a
high degree of immunosuppression at the foci of infection. We
feel that, in the patient with effective antimicrobial therapy, the
bacterial load is reduced, and host immunosuppression is
restored, leading to an excessive inflammatory response. In
addition, this patient was a young male, and according to TB-
IRIS data, young age and male sex are high-risk factors for
IRIS (19).

There is no standard treatment for IRIS; some patients
experience spontaneous resolution, whereas others require the
use of anti-inflammatory drugs, depending on the site and
severity (20).

There are no previously reported cases of Brucella-related
IRIS. This may be because IRIS might be misdiagnosed as
superimposed infections, inadequate anti-Brucella treatment, or
relapse. It is necessary to be aware of the possible occurrence of
IRIS in brucellosis patients in clinical practice. Clinical
deterioration during antibiotic treatment may be interpreted as
treatment failure, leading to the change of antibiotic regimens or
the prolongation of their use.

However, our study has some limitations. First, the high level
of bacteriological hazard of live Brucella did not allow us to
perform a drug susceptibility test for isolated Brucella.
Additionally, we did not further screen the patient for
potential immunodeficiency.

In summary, this is the first suspected case report describing
paradoxical reactions during the treatment of Brucella. The case
that we report here demonstrates that IRIS may occur during the
treatment of Brucella infection. It is urgent to develop a
definition of Brucella-associated IRIS for accurate diagnosis.
The epidemiology, pathophysiology, and risk factors for
Brucella-associated IRIS need further study.
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Members of the mammalian Nod-like receptor (NLR) protein family are

important intracellular sensors for bacteria. Bacteria have evolved under the

pressure of detection by host immune sensing systems, leading to adaptive

subversion strategies to dampen immune responses for their benefits. These

include modification of microbe-associated molecular patterns (MAMPs),

interception of innate immune pathways by secreted effector proteins and

sophisticated instruction of anti-inflammatory adaptive immune responses.

Here, we summarise our current understanding of subversion strategies used

by bacterial pathogens to manipulate NLR-mediated responses, focusing on

the well-studied members NOD1/2, and the inflammasome forming NLRs

NLRC4, and NLRP3. We discuss how bacterial pathogens and their products

activate these NLRs to promote inflammation and disease and the range of

mechanisms used by bacterial pathogens to evade detection by NLRs and to

block or dampen NLR activation to ultimately interfere with the generation of

host immunity. Moreover, we discuss how bacteria utilise NLRs to facilitate

immunotolerance and persistence in the host and outline how various

mechanisms used to attenuate innate immune responses towards bacterial

pathogens can also aid the host by reducing immunopathologies. Finally, we

describe the therapeutic potential of harnessing immune subversion strategies

used by bacteria to treat chronic inflammatory conditions.

KEYWORDS

PAMP, DAMP, infection, tolerance, pathogens, NLRs, inflammation, inflammasome
1 Introduction

Bacteria have evolved complex interactions with mammals, resulting in both

beneficial and detrimental effects for the host. On the host side, molecular sensing

systems of the innate immune system detect non-host components and products,

typically conserved structural components of microbes, such as peptidoglycan (PGN),

lipopolysaccharides, and lipoteichoic acids. These microbe-associated molecular patterns

(MAMPs) activate receptors on and within host cells, referred to as pattern-recognition
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receptors (PRRs), to trigger signal transduction events ultimately

leading to the production of immune mediators and anti-

microbial peptides (reviewed in (1)).

While overwhelming colonisation of the host with bacteria

must be avoided and most organs are regarded as sterile, the host

also depends on bacteria, their MAMPs and metabolites for

proper function of its immune system and the development

and homeostasis of its protective barrier surfaces. This is

probably best exemplified by the well-studied intestinal barrier,

where a wealth of recent studies show that the gut microbiota

provides essential signals that also affect the regulation of systemic

immune responses (2). Besides providing such beneficial effects,

overwhelming replication of bacteria in the host would impair its

survival. Moreover, some pathogenic bacteria can actively invade

the host via the expression and use of virulence factors that enable

them to overcome physical and immunological barriers (3). In

addition, some pathogenic bacteria can also promote their uptake

by host cells and live and replicate in cellular compartments such

as endosomes, or in some cases replicate and move freely in the

cytosol of the host cell. As such, these organisms present a threat

to the host and their replication needs to be timely and tightly

controlled by the host’s immune response.

On the other side, pathogens try to subvert immune

responses for their replicative benefit. This system is highly

dynamic and driven by the rapid evolution of pathogens and the

adaptation of the host. This can be illustrated by the paradigm of

the “Red-Queen” from Lewis Carrol’s fairy tale that is often used

to describe the arms race between pathogens and their hosts (4).

However, such an immuno-centric view lacks consideration of

the fact that an uncontrolled, and overwhelming immune

response focused on completely eradicating pathogens could

come at the cost of significant collateral damage of host tissue,

eventually leading to severe pathologies. Thus, this arms-race

between host and pathogens needs to be controlled and

tightly regulated.

Indeed, the host and its surrounding microbes have evolved

for fine-tuning of the immune response, in order to guarantee

sufficient restriction of the invading pathogen and assure

integrity and functionality of the host, while at the same time

limiting harmful tissue damage and immunopathology. This is

described by the concept of resistance and tolerance, where

resistance refers to the capacity of elimination of the pathogen by

the immune response, and tolerance to a state of acceptance of

some colonisation and increased tissue homeostasis to avoid

immunopathology (5).

Historically, the field of infection biology research has

focussed on examining the beneficial roles of the immune

system to defend against microbes and to understand how

pathogens can use subversion strategies to overcome host

immune responses. However, within the past decade, our

understanding of immunomodulation of innate immune

responses and its importance in promoting tolerance to

infection and host fitness is emerging. Recent data suggests
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that during the evolution of humans, attenuation of cytokine

responses towards intracellular pathogens might have been a key

event to guarantee survival and fitness of the host (6).

Charles Janeway’s idea that the host detects pathogens using

germline encoded receptors of the innate immune system to

trigger inflammation and to introduce adaptive immunity (7)

paved the way for the identification of a wealth of PRRs and

deciphering their cellular signalling pathways (8). In humans we

have several classes of PRRs that represent both membrane

anchored receptors, such as the Toll-like receptors (TLRs) (9) or

C-type lectin receptors (CLRs) (10) and intracellular receptors

such as the NOD-like receptors (NLRs) (11), RIG-I like

receptors (RLRs), and cyclic GMP-AMP synthase (cGAS) (12).

All these PRRs have different specificities that collectively cover

the detection of a broad range of MAMPs derived from bacterial,

fungal and metazoan pathogens. Activation of PRRs leads to the

induction of cellular signalling events that ultimately triggers the

release of anti-microbial substances such as antibacterial

peptides, the production of cytokines, recruitment of immune

cells and the induction of adaptive immune responses.

Amongst the PRR families, Nod-like receptor (NLR) proteins

gained interest due to the fact that this family of 22 proteins in

humans serve diverse functions in innate immunity (13). NLRs

show a typical tripartite structure hallmarked by a central

oligomerization domain with nucleotide binding capacity, a C-

terminal leucine rich repeat (LRRs) domain that is also found in

other PRRs such as TLRs, and different N-terminal domains that

define their signalling function. NOD1 and NOD2 were the first

NLRs to be described as PRRs and to serve as intercellular

receptors for invasive bacteria (14). They induce transcriptional

reprogramming by their CARD domains that interact with the

Receptor Interacting Serine/Threonine Kinase 2 (RIP2) to induce

Mitogen-activated protein kinase (MAPK) and I kappa-B Kinase

(IKK) activation (14). In contrast, many PYD domain containing

NLRs form inflammasomes that act as a scaffold for the activation

of caspase-1, which subsequently can process pro-IL-1b, pro-IL-
18 and gasdermin D to induce release of the potent pro-

inflammatory mediators IL-1b and IL-18 (15). Of note,

inflammasomes not only respond to MAMPs but are also

activated by perturbance of cellular membrane integrity and

danger-associated molecular patterns (DAMPs) which are

factors that are released upon tissue and cell disintegration. The

innate immune system thus can detect pathogen-induced damage

of tissues and cells, and also the perturbation of cellular pathways

(16, 17). This indirect recognition of pathogens as a result of

changes in cellular signalling and induction of cellular stress is also

referred to as effector-triggered-immunity (ETI) in relation to the

immune response triggered by pathogen effector proteins in plants

(18, 19).

Here we focus on well-studied members of the NLR-family,

a class of host PRRs that are expressed in the cytosol. We will

discuss our current understanding of their roles as PRRs for

bacteria, but also take a closer look at the mechanisms used by
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bacterial pathogens to overcome NLR-mediated responses. In

view of the need of a well-adapted immune response towards

pathogens to avoid immunopathologies, we hypothesise that

such adaptations of bacteria did not evolve solely to assure better

colonisation and survival in the host, but also to support fitness

of the host for the benefit of the bacteria.
2 Non inflammasome NLRs

2.1 NOD1 and NOD2 detect bacterial
peptidoglycan resulting in a
proinflammatory immune response

Among the non-inflammasome forming NLRs that regulate

inflammation, NOD1 and NOD2 are the most well characterised

receptors. NOD1 and NOD2 detect bacterial PGN, specifically the

synthetic minimal PGN moieties g-D-Glu-meso diaminopimelic

acid (iE-DAP) and muramyl dipeptide (MDP) respectively (20,

21). Although NOD1 and NOD2 are closely related receptors that

both detect specific components of bacterial PGN, NOD1 is

typically expressed broadly throughout tissues at varying levels,

however NOD2 expression is mostly restricted to monocytes (22–

24). NOD1 and NOD2 are expressed by non-vertebrate and

vertebrate species, and several amino acids are conserved in

NOD1 and NOD2 which are especially notable in the LRR

domains, which may be indicative of evolutionarily conserved

ligand binding or recognition regions (25). Murine and human

NOD1 differ in their ability to detect some PGNmoieties, whereby

human NOD1 requires a tripeptide for activation, and murine

NOD1 requires a tetrapeptide (26). Interestingly, some bacteria

such as commensal Enterococcus species have been shown to

modify their release of PGN fragments which resulted in increased

activation of murine NOD2 (27). Delivery of NOD1 and NOD2

PGN ligands into the host cell cytosol is required for their

activation. As such, PGN ligands have been shown to enter host

cells using a variety of mechanisms, either via endosomal peptide

transporters of the SLC15 family (28, 29), by injection of PGN by

bacterial type 4 secretion systems (T4SS) (20, 30), and by the entry

of bacterial membrane vesicles (BMVs) into host cells (Figure 1)

(31, 32). After PGN detection, NOD1 and NOD2 have been

shown to associate with endosomal membranes (33, 34), which

are hypothesised to be the site for NOD complex formation,

coined the “nodosome” (35, 36). Before activation, NOD1 and

NOD2 are thought to exist as monomers in an autoinhibited state

when inactive in the cytosol, however upon ligand recognition,

NOD1 and NOD2 self-oligomerise via their central NACHT

domain (23, 37). Once activated, NOD1 and NOD2 recruit the

kinase RIP2, that acts as a scaffolding protein for downstream

signalling mediators and the formation of the nodosome (37).

This results in downstream activation of NF-kB and MAPK

signalling pathways, which ultimately leads to the production of
Frontiers in Immunology 03
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inflammatory cytokines and chemokines (Figure 1) (23, 37–39).

RIP2-mediated signalling is dependent on the recruitment of

inhibitor of apoptosis protein (IAP) E3-ligase family members

including X-linked IAP (XIAP), cellular IAP-1 (cIAP1) and

cIAP2, and tumour necrosis factor (TNF) receptor associated

factors such as TRAF2, TRAF5 and TRAF6 (40, 41).

NOD1 and NOD2 specifically require the action of the

ubiquitin ligase XIAP for RIP2-induced activation of

downstream kinases, which was confirmed in several

independent studies (40, 42–44). XIAP itself is inhibited by the

mitochondrial effector SMAC to control apoptosis and

inflammation (45, 46). However, the enteroinvasive pathogen

Shigella flexneri, for which NOD1 is a critical sensor, uses a

sophisticated system to target XIAP by inducing a selective

permeability of the mitochondria that leads to the release of

SMAC but not of the apoptosis inducing cytochrome c in a

BID-dependent manner (Figure 1) (47). It remains to be seen if

this strategy to dampen NOD1 signalling is also used by other

pathogens. Of note, targeting of the RIP2-XIAP interaction to

block NOD1/2 induced inflammatory signals is emerging as a

therapeutical option, as small compound XIAP- and RIP2-

inhibitors limit inflammation by blocking XIAP-RIP2

interactions (48). Such drugs could be useful to dampen

excessive or chronic inflammation resulting from inflammatory

and infectious diseases. Overall, the most efficient strategy to

subvert NOD1/2 detection is the targeting of signalling

downstream of NOD1/2. Inhibition of NF-kB and MAPK

signalling for example are a common theme of many bacterial

pathogens that evolved secreted effectors to target these pathways.

In this review, we will focus our discussion on bacterial

mechanisms of NOD1/2 specific subversion. For further details

summarising the general inhibition of inflammatory pathways by

bacteria, we refer the reader to the following detailed reviews

(49, 50).
2.2 Stress sensing, disruption of the actin
cytoskeleton and S1P sensing affect
NOD1 and NOD2 signalling

In addition to the detection of bacterial PGN by NODs,

NOD1 and NOD2 have also been shown to be important for the

clearance of bacteria by autophagy in several studies (51, 52).

Furthermore, NOD1 and NOD2 activation is also linked to

endoplasmic reticulum (ER) stress and inflammatory diseases,

and therefore NOD1 and NOD2 are thought to have complex

roles in inflammatory signalling (38, 53–58). Specifically,

bacterial induction of ER stress and cytoskeletal perturbations

are linked to modulation of NOD1 and NOD2 signalling and are

also the target of bacterial subversion mechanisms of NOD1/2

activation. NOD2 was initially discovered due to its involvement

in Crohn’s disease (CD) through genetic linkage studies (59),
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with a loss-of-function mutation being the most common

mutation associated with CD (60). More recently, further

evidence has demonstrated that NOD1 and NOD2 are also

linked to several inflammatory diseases in addition to CD,

including Type 2 Diabetes (T2D), and asthma (20, 21, 38, 53–

55). ER stress has more recently been identified as a major

contributor to the pathology of inflammatory diseases including

CD and T2D (56, 61–63), with NOD1 and NOD2 activation also
Frontiers in Immunology 04
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being shown to be linked to ER stress (56). Thus, NOD1 and

NOD2 not only act as sensors for PGN but are also activated

indirectly by cellular stress responses that can be induced by

pathogens. Cells respond to cellular stress with a complex

program that involves the generation of the lipid sphingosine-

1-phosphate (S1P) (57). S1P is a bioactive metabolite that has

been shown to target TRAF2 and cIAP (64) but can also interact

directly with NOD1 and NOD2 to induce IL-6 and IL-8
FIGURE 1

Bacterial evasion of NOD1 and NOD2 detection. Bacteria can modify their morphology and metabolism to evade detection by NODs by a range
of mechanisms. This includes H. pylori transitioning from spiral to coccoid morphology, which results in decreased GM-tripeptide accumulation,
and deletion of penA by N. meningitidis which results in decreased TCT tetrapeptide peptidoglycan (PGN) moieties, ultimately reducing the
availability of NOD ligands to prevent NOD1 activation. Some bacteria express proteins that can block the enzymatic release of specific NOD-
activating PGN moieties (L. pneumophila) or can sequester NOD ligands to the bacterial surface (L. interrogans), thus preventing NOD1 and
NOD2 activation. Several bacterial strains, such as S. aureus, M. tuberculosis, M. smegmatis and L. monocytogenes, have processes to modify
their PGN in order to evade NOD1/2 detection and activation, resulting in an attenuated proinflammatory response. Bacteria also release
bacterial membrane vesicles (BMVs) containing PGN that can activate NODs, and bacterial expression of proteins such as HapR (V. cholerae)
can alter the PGN content of BMVs and therefore modulate NOD1 and NOD2 activation. Bacteria such as S. flexneri can induce BID-dependent
selective permeability of the mitochondria, resulting in the release of SMAC, which blocks XIAP ubiquitination of RIP2 downstream of NOD1 and
NOD2 activation.
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expression in a NOD1/2-dependent manner (57). Additionally,

ER stress induced by thapsigargin and dithiothreitol were found

to trigger the production of IL-6 in a NOD1/2 dependent

manner (56). This suggests that S1P might be a common

factor that links cellular stress to NOD1/2-induced

inflammation. Furthermore, different signalling components

downstream of the unfolded protein response (UPR) during

ER stress might also contribute to NOD1 activation. For

example, treatment of HeLa cells that expressed an NF-kB
reporter with tunicamycin, a chemical that interferes with N-

linked glycosylation to induce ER stress, did not affect the ability

of NOD1 to induce NF-kB activation (58). However, treatment

of HeLa cells with thapsigargin, which depletes ER calcium

stores to induce ER stress, resulted in NOD1 activation when

cells were stimulated with the NOD1 agonist C12-iE-DAP in

combination with the Salmonella enterica serovar Typhimurium

effector protein SopE (58). It should be noted that this sensing

mechanism can also lead to adverse effects, as it was shown that

ER stress can increase the susceptibility of HeLa cells to infection

with S. Typhimurium, likely due to NOD1 hyperresponsiveness

(58). Therefore, the indirect activation of NOD1 and NOD2 by

cellular stress signalling may be another potential target for

bacterial subversion mechanisms.

In addition to the direct activation of NOD1 and NOD2

during stress signalling, NOD1 and NOD2 have also been shown

to be activated as a result of actin cytoskeleton perturbations (44,

65, 66). For example, it was demonstrated that NOD1 is recruited

to the cell membrane at the site of bacterial entry, and that NOD1

and NOD2 recruit the autophagy protein ATG16L1 to direct

autophagy of invading bacteria (52, 66). NOD1 also interacts with

the cofilin phosphatase SSH1, that regulates the actin severing

activity of cofilin, which contributes to NOD1 activation upon

infection with S. flexneri (44). NOD1 was also found to be linked

to activation of the small GTPases Rac1 and CDC42 by bacterial

virulence factors, such as SopE from the enteric pathogen

S. Typhimurium (67). In monocytes treated with MDP, NOD2

was shown to be recruited to the plasma membrane by a

mechanism which required the RhoGTPase Rac1 and Rho

guanine nucleotide exchange factor 7 (Rho GEF7) (68).

Additionally, NOD2 was also reported to interact with a

cytoskeletal protein, vimentin, to regulate NF-kB activation and

autophagy (69). In this study, it was demonstrated that some

NOD2 variants with mutations in the LRR domain, responsible

for detection of PGN (20), were unable to bind vimentin which

correlated with the inability of NOD2 to localise to the plasma

membrane and initiate the cellular degradation pathway of

autophagy (69). Furthermore, a recent study demonstrated that

NOD2-MDP binding is enhanced the action of the small GTPase

ADP-ribosylation factor 6 (Arf6) which contributes to membrane

anchoring during activation of NOD2 (70). These indirect

pathogen sensing mechanisms of NOD1/2, by monitoring actin

and small GTPase activity in host cells, might also be subject for
Frontiers in Immunology
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bacterial subversion and adaption to the host. Klebsiella

pneumoniae, for example, has been found to dampen the

inflammatory immune response in an indirect NOD1-

dependent manner, by inhibiting Rac1 activation. This triggers

NOD1-mediated upregulation of CYLD and mitogen-activated

protein kinase 1 (MKP-1) expression, in turn attenuating IL-1b
induced IL-8 production (71). In this way, K. pneumoniae utilises

NOD1 to reduce the production of proinflammatory cytokines

and chemokines to prevent bacterial clearance (71). Bacteria may

also use several direct mechanisms tomodulate NOD1 and NOD2

signalling, such as the release of PGN-containing bacterial

membrane vesicles (BMVs).
2.3 Bacterial membrane vesicles affect
NOD1 and NOD2 signalling

BMVs have been shown to package PGN cargo and can

enter host cells to modulate NOD1 and NOD2 signalling (31–33,

72–75). Specifically, deletion of the quorum sensing regulator

HapR, involved in Vibrio cholerae virulence, can reduce the

packaging of PGN cargo within BMVs (72). Furthermore,

stimulation of host cells using BMVs produced by HapR

deletion mutants resulted in attenuated NOD1 and NOD2

responses compared to stimulation with wild-type V. cholerae

BMVs, further pinpointing the effects of PGN packaging within

BMVs and their ability to activate NOD1 and NOD2 (Figure 1)

(72). Interestingly, HapR deletion did not affect the bacterial

membrane of V. cholerae, despite the influence of HapR deletion

on the PGN content of BMVs, which may indicate selective PGN

packaging within V. cholerae BMVs as a mechanism to modulate

NOD1/2 activation (72). Porphyromonas gingivalis , a

periodontal pathogen, was also shown to produce BMVs that

induce NOD1 and NOD2 activation (75). However, BMVs

produced by other periodontal pathogens, Tannerella forsythia

and Treponema denticola, induced a weak or no NOD1/2

response respectively, highlighting the different abilities of

BMVs to activate NOD1 and NOD2 in the context of

periodontitis (75). In contrast to pathogen derived BMVs,

commensal derived BMVs produced by the commensal gut

bacterium Bacteroides fragilis, downregulated the production

of the anti-inflammatory cytokine IL-10 by NOD2 knockout

murine bone marrow-derived dendritic cells (BMDCs) (76).

This indicated that commensal BMVs may be involved in the

regulation of anti-inflammatory immune responses in a NOD-

dependent manner. Overall, in addition to PGN-containing

BMVs entering host cells to initiate NOD1 or NOD2

dependent pro- or anti-inflammatory immune responses

(reviewed by 77, 78), several studies have also demonstrated

that bacteria can modify their PGN to subvert detection by

NOD1 and NOD2, in order to increase bacterial survival and

persistence in the host.
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2.4 Subversion of NOD1 and NOD2
detection by PGN adaption

To establish an infection within the host and to limit

inflammation, several bacteria have adapted mechanisms to

subvert detection by NOD1 and NOD2. For example, Listeria

monocytogenes undergoes PGN N-deacetylation to prevent NOD

agonist presentation during intracellular infection to limit

inflammation and clearance from the host (Figure 1) (79).

Deletion of the N-deacetylase gene pgdA in L. monocytogenes

resulted in loss of infectivity of such mutants in mice, and

L. monocytogenes pgdA mutants were efficiently killed by

murine macrophages resulting in the generation of a TLR2 and

NOD1-dependent IFN-b response (79). This indicates that PGN

modification by N-deacetylation is an effective mechanism used

by L. monocytogenes to evade NOD detection and clearance from

the host (79). Other bacterial species including Mycobacterium

tuberculosis, Mycobacterium smegmatis, Staphylococcus aureus

and Neisseria meningitidis have also developed mechanisms of

PGN modification, including N-glycosylation, O-acetylation and

amidation of muramic acid residues resulting in resistance to host

lysozyme (Figure 1) (80–83). For example,M. tuberculosis reduces

NOD1 activation by peptide-amidation of PGN fragments, which

may be a mechanism to reduce the host inflammatory response in

a NOD1-dependent manner in order to establish an effective

infection in the host (83).

In addition to post-translational modifications such as O-

acetylation which may contribute to NOD1 and NOD2 immune

evasion (82),N. meningitidis penicillin-binding protein 2 (PBP2)

is also thought to contribute to evasion of NOD1 activation (84).

PBP2 is involved in PGN biosynthesis, cell elongation and

increased resistance to penicillin G, and N. meningitidis strains

with alterations to penA had decreased tetrapeptide-containing

muropeptides, resulting in reduced NOD1 activation compared

to wild-type N. meningitidis (Figure 1) (84). These strains also

contained a decreased amount of the monomeric muropeptide

anhydrous disaccharide-tetrapeptide, known as tracheal

cytotoxin (TCT), which is known to have cytopathologic and

proinflammatory properties (84) and is the key ligand of the

murine NOD1 protein (26). Interestingly, N. meningitidis with

penA mutations were less virulent despite their resistance to

penicillin G (84). Therefore, it has been proposed that reduced

TCT production, and reduced NOD1 and NOD2 activation by

N. meningitidis strains is a disadvantage during infection,

whereby cytotoxicity and inflammation are associated with the

effective establishment of infection (84). Other bacteria also have

inherent differences in their PGN composition which can

differentially affect the activation of NOD1 and NOD2, for

example the periodontal pathogen P. gingivalis demonstrated

weaker activation of NOD1 and NOD2 compared to Escherichia

coli and Fusobacterium nucleatum (85), despite P. gingivalis

BMVs being shown to activate NOD1 and NOD2 (75).

Similarly to N. meningitidis, it is thought that different
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P. gingivalis strains are variable in their dipeptide and

tripeptide PGN content, and therefore their ability to activate

NOD1 and NOD2 (85). The weak activation of NOD1 and

NOD2 by P. gingivalis bacteria may be a mechanism to modulate

host inflammatory immune responses, and therefore promote

survival of pathogenic bacteria in the periodontal environment

(85, 86).

Helicobacter pylori has also been shown to evade detection

by NOD1 and NOD2, which occurs during its transition from

spiral to coccoid forms (87). Spiral H. pylori expresses a T4SS

that can inject PGN into host cells and initiate a NOD1-

dependent inflammatory response but are sensitive to

antibiotics and host inflammatory molecules (Figure 1) (30).

However, coccoid forms of H. pylori are more resistant to

antibiotics and host inflammatory assaults (reviewed by 88).

The putative PGN hydrolase encoded by the amiA gene in

H. pylori is thought to contribute to the accumulation of GM-

dipeptide, a NOD2 agonist, during the transformation from

spiral to coccoid forms (Figure 1) (87). Conversely, as GM-

dipeptide accumulates in coccoid H. pylori, the NOD1 agonist

GM-tripeptide is decreased (87). This suggests that switching of

H. pylori from the spiral form to coccoid results in evasion from

detection by NOD1 in human epithelial cells and escape from

the host proinflammatory immune response (Figure 1) (87). The

invasive bacterium Legionella pneumophila has also been shown

to have mechanisms to subvert NOD1 activation (89).

L. pneumophila infects macrophages intracellularly and has

been shown to subvert NOD1 detection by expressing the

protein EnhC which interferes with the bacterial protein SltL,

a PGN degradative enzyme responsible for the generation of

NOD1 ligand (89). By blocking the generation of NOD1 ligand,

L. pneumophila prevents its detection by NOD1 and the

generation of a proinflammatory immune response, thus

contributing to bacterial viability (Figure 1) (89).

In addition to inherent PGN modifications that result in

evasion of NOD1 and NOD2 detection, the Gram-negative

pathogen Leptospira interrogans has been shown to express a

protein that enables evasion of NOD1 and NOD2 activation

(90). L. interrogans escapes recognition by NOD1 and NOD2 by

producing a lipoprotein, LipL21, that binds to L. interrogans

PGN and prevents the action of PGN hydrolases, resulting in

sequestration of NOD agonists on the bacterial surface

(Figure 1) (90). As NOD1 and NOD2 agonists are not released

from the surface of L. interrogans due to the action of LipL21,

L. interrogans is able to also escape recognition by NOD1 and

NOD2 to establish an infection in the host (90). Further

molecular mechanisms of NOD1 and NOD2 modulation and

specific PGN biochemical modifications that affect NOD1/2

signalling are reviewed in detail elsewhere (91).

Taken together, recent advances show that NOD1 and

NOD2 are much more complex than being exclusively MAMP

sensors. Both NLRs can be activated by cellular stress,

modulation of cellular small GTPase activity and F-actin
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perturbations. Bacterial pathogens have evolved multiple

measures to counteract NOD activation and to adopt the

inflammatory response in the host for their benefit. This

includes the modification of PGN, PGN packaging by BMVs,

interception of NOD1/2 signalling and targeting of small

GTPases by effector proteins. It is clear that NLRs have several

roles not only in the detection of bacterial PGN, but also in

regulation of immunity in concert with other NLR proteins (92).

In particular, bacteria can indirectly affect NLR signalling in

several ways, including the inactivation of GTPases which have

been shown to be important for both NOD1/2 and pyrin

inflammasome signalling (92, 93). In this way, bacteria may

modify their PGN in order to alter their activation of several

NLRs to ultimately activate or subvert host immunity.
3 Inflammasome forming NLRs

The formation of multiprotein signalling complexes termed

inflammasomes that consists of an NLR protein, the adaptor

protein apoptosis-associated speck-like protein containing a

CARD (ASC) and caspase-1, was first described by the group

of Jürg Tschopp for NLRP1 (94). Inflammasome oligomerisation

induces the production of active caspase-1, triggering the

processing of pro-IL-1b, pro-IL-18 (95, 96) and gasdermin D,

leading to pore formation, release of IL-1b and IL-18 and

eventually pyroptosis (97–100).

Inflammasome formation of NLRP1, NLRP3 and NLRC4

(101–103) as well as for the non-NLR proteins AIM2 (104–106)

and Pyrin (107) has been well characterised. The formation of

inflammasomes was further reported for NLRP6, NLRP7,

NLRP12 and NLRC5 (108–111). Recruitment of ASC by

NLRP proteins is mediated through homotypic PYD-PYD

interactions. ASC then recruits pro-Caspase-1 via homotypic

CARD-CARD interactions. In this section we will focus on two

of the best described inflammasome-forming NLRs: NLRP3 and

NLRC4 and describe how different bacterial pathogens evade

their activation.
3.1 The NLRC4/NAIP inflammasome

A unique NLR-NLR interaction exists between the

intracellular receptor neuronal apoptosis inhibitory proteins

(NAIP) and inflammasome adaptor protein NOD-LRR-and

CARD-containing 4 (NLRC4) that form the NLRC4/NAIP

inflammasome (112, 113). The NAIP thereby serve as sensors

to detect specific bacterial-derived MAMPs, namely the inner

rod proteins of the bacterial type III secretion system (T3SS), and

flagellin [reviewed in (102)]. NAIP/NLRC4 activation occurs in

response to the delivery of their specific ligands via the bacterial

T3SS or T4SS (114), flagella-containing bacterial membrane
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vesicles (115), or the presence of intracellular pathogens (116).

NAIP receptors were first observed as being critical in the

defence against infection by the intracellular pathogen

L. pneumophila, whereby it was observed that murine

macrophages harbouring a mutation in the Lgn1 locus, which

encodes the Naip5 gene, were susceptible to L. pneumophila

infection (117–119). Furthermore, expression of NLRC4 has

been shown to be critical in defence against enteric pathogens

including S. Typhimurium (120), E. coli (121) and S. flexneri

(122), as well as systemic pathogens such as L. pneumophila

(123), Pseudomonas aeruginosa and K. pneumoniae (124, 125).

Mice express four NAIP receptors, namely NAIP1 and NAIP2

that detect T3SS inner rod proteins, and NAIP5 and NAIP6 that

detect flagellin; while humans express a single NAIP with splice

variants that detect both T3SS proteins and flagellin [reviewed in

(126)]. The NLRC4 inflammasome is especially important

during infection of intestinal epithelial cells (127), and its

expression can be upregulated by pro-inflammatory stimuli,

such as TNFa (128). Following an initial priming signal

generally involving the activation of TLRs, the ligand-triggered

activation of NAIP initiates co-oligomerization with the NLRC4

adaptor to form a multiprotein inflammasome complex,

culminating in a potent inflammasome response hallmarked

by production of active caspase-1, IL-1b and IL-18, as well as

pyroptosis [reviewed in (102)]. NLRC4 is different to other

NLRPs as it can recruit caspase-1 independently of ASC

through CARD-CARD interaction, however ASC is nucleated

by NLRC4 and can greatly enhance caspase-1 activation (15).

Pathogenic bacteria have co-evolved counter mechanisms to

either avoid detection by NAIP, prevent NLRC4 signalling,

exploit the NLRC4 pathway to the benefit of the pathogen, or

dampen the inflammasome response (Figures 2A, C). In

addition, dampening of NAIP-NLRC4 activation is thought to

be critical for promoting immunotolerance to enteric

commensal bacteria.

3.1.1 Evasion of detection by NAIP
Several pathogens evade NAIP detection by reducing the

accessibility of ligands. When intracellular, S. Typhimurium

represses expression of the flagellin protein FliC through the

expression of the protease ClpXP, allowing the pathogen to

transverse the epithelial barrier undetected (129). S. Typhimurium

also impedes clearance from macrophages by reducing expression

of the immunogenic T3SS rod protein PrgJ, in favour of the poorly

immunogenic SsaI rod proteins (Figure 2A) (130). In addition,

L. monocytogenes evades detection by expressing flagellin that is a

poor activator of NLRC4 (Figure 2A) (131), while P. aeruginosa

secretes proteases that degrade extracellular flagellin (Figure 2A) to

limit TLR5 activation, however whether this mechanism also leads

to evasion of NLRC4 inflammasome sensing is unknown. These

evasion mechanisms enable pathogens to remain undetected by the

NAIP, and thereby facilitate host colonisation.
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3.1.2 Blocking NLRC4 signalling
Several pathogens block NLRC4 signalling to prevent

inflammasome-mediated cytokine production or pyroptosis.

S. Typhimurium can directly modulate the host response by

downregulating NLRC4 expression in infected B-cells (132).
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This i s mediated by phosphorylat ion of the host

transcriptional activator Yap, thereby preventing its nuclear

translocation and transcriptional activation of NLRC4

(Figure 2A) in a process depended on the Salmonella

pathogenicity island 1 (SPI1) T3SS (132). Furthermore, a
FIGURE 2

Mechanism of bacterial evasion of inflammasome activation and signalling. (A) Bacterial evasion of the NLRC4 inflammasome. Evasion of NAIP
detection is one of the major subversion strategies for bacteria recognised by the NLRC4 inflammasome. This can be performed by the
expression of poorly immunogenic S. Typhimurium T3SS rod proteins, or L. monocytogenes flagellin, as well as by proteasomal degradation of
P. aeruginosa flagellin. Furthermore, expression of NLRC4 can be suppressed by S. Typhimurium through inhibition of host transcription factors,
and by A. phagocytophilum by exploitation of vector-mediated release of anti-inflammatory compounds. (B) Bacterial evasion of the NLRP3
inflammasome. Subversion of the NLRP3 inflammasome can be conferred by several different mechanisms (shown in clockwise order). First,
several pathogens can prevent transcription of inflammasome components by inhibiting NF-kB signalling. Second, pathogenic bacteria can
inhibit activation of the NLRP3 inflammasome by DAMPs, such as via the degradation of extracellular ATP by AdsA from S. aureus, inhibition of
the ATP-receptor P2X7 signalling by P. gingivalis NDK, or accumulation of cytosolic spermine by E. piscicida. Third, pathogens can evade
recognition by preventing the detection of their ligands such as masking of Yersinia spp. T3SS effector YopK, suppression of endocytosis by
P. gingivalis, modification of S. aureus PGN by O-acetylation, or expression of mutant virulence factors that lack NLRP3-activating properties,
such as S. pneumoniae PLY. Finally, NLRP3 inflammasome formation can be targeted directly by bacterial effector proteins such as E. tarda EvpP
or UPEC TcpC, and by EPEC NleA-mediated deubiquitylation as well as by P. aeruginosa pyocyanin or B. abortus-derived nitric oxide (NO).
(C) Targeting mechanisms common to NLRP3 and NLRC4 inflammasome formation allow pathogens to efficiently prevent secretion of IL-1b
and IL-18. ASC-speck formation can be prevented by induction of autophagy by V. parahaemolyticus VopQ. Caspase-1 can be directly targeted
by bacterial effector proteins such as Yersinia spp. YopM, or P. aeruginosa ExoU, to prevent proteolytic processing of pro-IL-1b, pro-IL-18 and
gasdermin D (GSDMD). GSDMD is further targeted by S. flexneri IpaH7.8 for degradation, preventing NLRC4-mediated pore-formation.
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unique subversion mechanism is utilised by the tick-borne

pathogen Anaplasma phagocytophilum which profits from the

anti-inflammatory tick salivary protein sialostatin L2. Sialostatin

L2 blocks NLRC4 oligomerisation and prevents caspase-1

activation, thereby preventing an inflammasome response to

A. phagocytophilum (Figure 2A) (133). This represents a unique

cross-kingdom mechanism that allows the bacterial pathogen to

establish colonisation of the human host (133). Collectively,

these studies reveal the sophisticated mechanisms employed by

pathogens to block NLRC4 signalling at different points in the

inflammasome pathway.

3.1.3 Exploitation of NLRC4 activation
An alternative method of subverting the host response is to

exploit it for the benefit of the pathogen. The gastric pathogen

H. pylori induces NLRC4 activation in gastric epithelial cells

mediated by its type IV secretion system, which results in the

inhibition of the Th17/IL-17 response and downregulation of

beta defensin-1 (BD-1), leading to reduced killing of H. pylori

(134). NLRC4-deficient mice were found to be more adept at

clearing H. pylori infection, highlighting the importance of this

subversion mechanism in H. pylori colonisation and persistence

(134). Similarly, activation of NLRC4 by S. aureus in murine

lung epithelial cells was shown to impair IL-17A-dependent

neutrophil recruitment (135), preventing bacterial clearance

from the lungs. In contrast, NLRC4-deficient mice displayed

increased bacterial clearance and improved host survival,

highlighting the vital role this subversion mechanism plays in

S. aureus colonisation (135).

During S. Typhimurium infection in mice, NLRC4 is

activated by flagellin of the bacteria (136). An elegant study

showed that NLRC4 activation can affect adaptive immunity by

reducing CD4+ T-cell-mediated immune memory (136). In

NLRC4-deficient animals as well as in animals infected with

an S. Typhimurium strain that expressed a form of flagellin that

cannot activate NLRC4, higher levels of IFN-g secreting Th1

cells and memory CD4+ T-cells were observed (136). The exact

mechanism remains elusive but involves activation of

NLRP3 (136).

These studies illustrate that PRR activation can have

consequences beyond the direct innate response that can be

detrimental to the host. Understanding of these complex

interactions between the innate and adaptive immune system will

be essential to gaining insight into their role in immunopathology

and infectious disease towards specific pathogens.

3.1.4 Dampening of the NLRC4 response to
facilitate immunotolerance

Dampening of the NLRC4 response has also been linked to

facilitating immunotolerance to commensal bacteria (137).

Studies have shown that the uptake of free flagellin by

intestinal phagocytes leads to an adaptive immune response
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that inhibits the NLRC4 response, which is thought to promote

immunotolerance to commensals. Similarly, a study showed that

uptake of commensal bacteria by intestinal phagocytes did not

lead to activation of NLRC4, yet uptake of the pathogens

S. Typhimurium or P. aeruginosa triggered NLRC4-mediated

production of mature IL-1b, suggesting the NAIP-NLRC4

system can discriminate between pathogenic and non-

pathogenic bacteria (137). More studies are required to

determine the mechanisms involved in regulating NAIP-

NLRC4 activation and signalling that tailors the host response

to commensals or pathogens and the bacterial factors involved.
3.2 The NLRP3 inflammasome

Canonical formation of the NLRP3 inflammasome requires

two distinct signals. First, a priming signal leads to NF-kB-
induced transcription of the inflammasome components, as well

as pro-IL-1b and pro-IL-18. A second activation step then

induces the formation of the inflammasome and activation of

caspase-1. The second signal can be conferred by a broad range

of stimuli which induce extensive changes in cellular

homeostasis. These stimuli include extracellular ATP,

lysosomal rupture by crystalline structures, mitochondrial

ROS, pore formation and changes in the K+ or Ca2+

homeostasis, (reviewed in (101)). Interestingly, flagellin can

also activate the NLRP3 inflammasome indirectly in a ROS-

and cathepsin-dependent manner (138), suggesting that ROS is a

central activator linking NLRP3 to bacterial detection.

NLRP3 is found predominantly in myeloid cells and its

activation is a tightly regulated mechanism (reviewed in (101)).

Excessive inflammasome activity is associated with systemic

auto-inflammatory syndromes, termed cryopyrin-associated

periodic-syndromes (CAPS) (139). Regulation of NLRP3 is

orchestrated by several post translational modifications

including deubiquitylation, selective phosphorylation and

dephosphorylation as well as degradation of small ubiquitin-

related modifier (SUMO) known as deSUMOylation (101).

Furthermore, interaction partners that are critical for NLRP3

inflammasome activation have been identified, such as the

kinase NEK7 (140, 141) and the RNA-helicase DDX3X (142).

The NLRP3 inflammasome can additionally be activated by

non-canonical mechanisms involving caspase-11 in mice and

caspase-4/5 in humans (143–146). Direct sensing of LPS by

those caspases (147, 148) results in caspase activation and

subsequent cleavage of gasdermin D, releasing its N-terminal

fragment which forms pores in the cell membrane and induces a

form of lytic cell death, termed pyroptosis (98). The cleaved p30

gasdermin D fragment then leads to cell-intrinsic activation of

NLRP3 (143).

Gasdermin D is also cleaved upon caspase-1 activation by

classical NLRP3 activation to allow for the release of IL-1b and
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IL-18. This also leads to induction of pyroptosis, a highly pro-

inflammatory form of cell death, as the cellular contents of

pyroptotic are released and can act as DAMPs. Additionally, IL-

1b and IL-18 are among the most potent pro-inflammatory

cytokines with multiple functions, including the induction of

fever, and available data suggests that in most cells the NLRP3

inflammasome is the main platform for caspase-1 activation. It is

hence not surprising that several pathogens have evolved

subversion mechanisms to evade NLRP3-induced immune

responses. As bacterial subversion mechanisms of NLR- and

TLR-induced NF-kB signalling have been extensively reviewed

in the literature (49, 50), we will focus on strategies directly

targeting the activation and function of the NLRP3

inflammasome (Figures 2B, C).
3.3 Evasion of NLRP3-mediated
recognition

Although NLRP3 is activated by a broad range of DAMPs,

several bacterial pathogens have evolved mechanisms to evade

detection by reducing the generation of NLRP3 activating

stimuli. Phagocytic internalisation and lysozymal degradation

of particulate S. aureus PGN is known to induce NLRP3-

dependent IL-1b secretion from murine bone marrow-derived

macrophages (BMDMs) independently of NOD2, yet the cell

wall of pathogenic S. aureus strains has been shown to be highly

resistant to lysozyme (149), due to O-acetylation of PGN. This

modification prevents NLRP3 activation, IL-1b secretion and

ultimately reduces macrophage-mediated killing of S. aureus

(81) (Figure 2B). Additionally, S. aureus surface enzyme

adenosine synthase A (AdsA) degrades ATP, ADP, and AMP

to adenosine, thereby preventing NLRP3 activation by

extracellular ATP (150) (Figure 2B). These subversion

strategies allow S. aureus to remain undetected by the NLRP3

inflammasome, facilitating colonisation of the host and

preventing bacterial killing.

Similarly, the emerging S. pneumoniae serotype 1 MLST306

and serotype 8 MLST53 strains have been described to evade

NLRP3 inflammasome detection (151) by expression of an

altered version of the endotoxin pneumolysin (PLY) (152). While

retaining other virulence-related functions (153–157), this PLY

lacks pore-forming ability (158) which strongly reduces IL-1b
induction, thereby reducing bacterial killing (159) (Figure 2B).

Furthermore, while the Y. pseudotuberculosis T3SS effectors YopB

and YopD induce NLRP3 inflammasome activation by a poorly

understood mechanism, translocation of these bacterial proteins is

tightly controlled by YopK during infection, which inhibits exessive

translocation of these effectors (160, 161) and therefore limits

NLRP3 activation (162) (Figure 2B). This exemplifies the co-

evolution of pathogen and host, resulting in elegant mechanisms

of the pathogen to fine-tune inflammasome regulation for the

benefit of host fitness and bacterial replication.
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3.4 Metabolic interference with NLRP3
inflammasome formation

Recently, the role of several metabolites and secondary

messenger molecules in modulation of innate immune

receptors has been identified. For example, nitric oxide (NO)

(163) and the Krebs cycle derived metabolite itaconate (164)

have been described as inhibitors of the NLRP3 inflammasome.

It is hence not surprising that several bacterial pathogens alter

cellular metabolism for their benefit.

Nitrate reduction to di-nitrogen by Brucella abortus has been

demonstrated to result in the presence of intermediate NO in iNOS-

deficient cells and thus inhibition of the NLRP3 inflammasome

(165) (Figure 2B). Furthermore, upon macrophage engulfment, the

fish pathogen Edwardsiella piscicida delivers spermine to the cytosol

in a T3SS-dependent manner, mediated by recruitment of arginine

importer cationic acid transporter 1 (mCAT-1) and putrescin

exporter organic cation transporter 2 (Oct-2) to the bacteria-

containing vacuole (166). Cytosolic accumulation of spermine

then inhibits the K+ efflux-dependent activation of the NLRP3

inflammasome (166, 167) (Figure 2B). These studies demonstrate

how the interplay between bacterial and host metabolism can

regulate innate immune responses.
3.5 Direct targeting of NLRP3 by
bacterial effector proteins

Suppression of NLRP3 activation is a common subversion

strategy among several pathogens. This occurs by either the

interference with the second signal of NLRP3 inflammasome

activation, or by direct targeting of NLRP3 itself. Inhibition of

the second signal is often conferred by preventing alterations of

cellular homeostasis that are necessary for NLRP3 activation.

This is seen for example in P. gingivalis infection where secreted

nucleoside diphosphate kinase homologue (NDK) supresses

NLRP3 inflammasome formation upon recognition of ATP

through the P2X purinoceptor 7 (P2X7). Here, NDK seems to

establish an anti-oxidative environment, limiting ATP-induced

mitochondrial ROS production (168) (Figure 2B). Similarly, the

Edwardsiella tarda T6SS effector protein EvpP inhibits activation

of the NLRP3 inflammasome by counteracting the cytoplasmic

Ca2+ increase, necessary for c-Jun NH2-terminal protein kinase

(Jnk) activation, however the exact mechanism by which EvpP

confers its effect is still unclear (169) (Figure 2B).

Direct interaction with NLRP3, or alteration of its post

transcriptional modification (PTM) have also been described

as subversion mechanisms for several pathogens. The

enteropathogenic E. coli (EPEC) effector protein NleA

interacts with NLRP3 and prevents its de-ubiquitination,

resulting in reduced caspase-1 recruitment to the NLRP3 foci

(170) (Figure 2B). Similarly, direct interaction of Toll/IL-1
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receptor containing protein C (TcpC) from uropathogenic E. coli

(UPEC) with NLRP3 and caspase-1 in BMDMs inhibits NLRP3-

inflammasome induced IL-1b secretion (171) (Figure 2B).

Furthermore, the pigment phenazine pyocyanin (PCN)

produced by P. aeruginosa acts as a virulence factor that

generates superoxide by the transfer of electrons from NADH

and NADPH to oxygen. It was shown that PCN-derived ROS

and RNS can lead to specific inhibition of the NLRP3

inflammasome by post-translationally blocking both ASC

speck formation in BMDMs (172) and subsequent IL-1b
secretion (169). In this manner, P. aeruginosa evades immune

recognition and escapes macrophage-mediated killing (172).

These studies highlight the broad yet highly effective range of

effector functions through which bacterial pathogens prevent

NLRP3 inflammasome formation.

Inhibition of the NLRP3 response is beneficial for bacterial

fitness, as mutant strains lacking NLRP3 subversion mechanisms,

in general show reduced survival in vivo (149, 173, 174). However,

while activation of the NLRP3 inflammasome benefits the host by

facilitating bacterial clearance, it can also lead to detrimental

effects for the host. It has been shown that the increased

clearance of S. aureus mutants, incapable of NLRP3 subversion,

can lead to the appearance of skin lesions at the site of

subcutaneous infection, indicating enhanced host-response-

mediated tissue damage (149). Furthermore, activation of the

NLRP3- inflammasome ha s been shown to d r i v e

immunopathology in Bacillus cereus infection, where NLRP3-

induced inflammation strongly enhances the mortality of infected

mice (175) and in pneumococcal meningitis, driven by IL-18 and

IFN-g (176, 177). Thus, while NLRP3-suppression generally is

beneficial for pathogen survival, it can also be beneficial to limit

tissue damage in the host. Overall, the importance of the NLRP3-

inflammasome in the antibacterial immune response is

highlighted by the broad range of pathogens which subvert its

activation and effects for better survival in the host. However,

although the general mechanisms of inflammasome activation

appear to be highly conserved between mice and humans, there

are differences in the relative importance of singular components

of the multifaceted immune response (178). Overall, the

translation from findings regarding NLR activation in mouse

models into the human setting must be evaluated critically.
3.6 Subversion of inflammasome effector
mechanisms

In the response against pathogens, co-operation of several

inflammasomes will happen in the host and is often necessary to

facilitate bacterial clearance (179). Yet to counter the host’s multi-

faceted response, many pathogens have evolved subversion

strategies to target general mechanisms that prevent the

assembly, activation, or signalling of several inflammasomes.
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Suppression of inflammasome assembly is utilised by several

pathogens. The P. aeruginosa quorum sensing-regulated

virulence factor PCN and autoinducer 3-oxo-C12-homoserine

lactone suppress the assembly and activation of both the NLRP3

and NLRC4 inflammasomes (180). Similarly, S. Typhimurium

can suppress the activation of the NLRP3 and NLRC4

inflammasomes in human macrophages by a hitherto

unknown SPI2 T3SS secreted effector to prevent IL-1b
production and cell death, allowing bacterial persistence in

macrophages (181).

Inhibition of the inflammatory caspases is another central

mechanism employed by several bacterial species for immune

evasion. For example, Yersinia pestis expresses a broad range of

effector proteins that can target caspase-1 activation through

different mechanisms, such as sequestration and inhibition of

auto-proteolytic processing by YopM (182) or through

inactivation of Rho GTPases by YopE and YopT (183, 184)

(Figure 2C). P. aeruginosa secretes a phospholipase enzyme

exoenzyme U (ExoU) that inhibits caspase-1 activity to block

NLRP3 and NLRC4 inflammasome signalling (124) (Figure 2C).

S. flexneri for example can block the non-canonical

inflammasome by posttranslational modification of caspase-4

by its T3SS effector OspC3 using the uncommon ADP

riboxanation to prevent cell death and inflammatory cytokine

production upon intracellular LPS sensing (185, 186).

Pathogens can also block cell death to allow them to persist

in host cells. For example, S. flexneri secretes the ubiquitin ligase

IpaH7.8 via its T3SS, which cleaves gasdermin D to prevent

NLRC4-mediated pyroptosis (Figure 2C). This allows the

bacteria to persist in human epithelial cells, while also

preventing the release of danger signals to limit the activation

and recruitment of immune molecules (187). While IpaH7.8 has

only been shown to block NLRC4-mediated pyroptosis, it

remains to be seen whether it can block broader activation

of pyroptosis.

To reduce inflammasome signalling, pathogens can also

exploit the host cellular degradation process of autophagy to

degrade effector molecules released upon inflammasome

activation, a mechanism recently termed “inflammophagy”

that is also used by the host cell to control innate immune

responses (188). The Vibrio parahaemolyticus T3SS effector

protein VopQ induces autophagy in infected macrophages,

which interferes with ASC speck formation to suppress

NLRC4 and partially suppress NLRP3 signalling (189)

(Figure 2C). Furthermore, the phosphothreonin lyase SpvC of

S. Typhimurium was suggested to dampen xenophagy and

induce autophagy-dependent degradation of NLRP3 and

NLRC4, albeit the exact mechanism remains elusive (190).

Furthermore, a given pathogen will likely activate multiple

PRRs in the host, and therefore, to facilitate host colonisation,

pathogens have evolved mechanisms to subvert a broad range of

PRRs in addition to inflammasomes. For example, infection of
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macrophages with B. abortus that are deficient in NO

production, which is known to inhibit NLRP3, resulted in

higher secretion of IL-1b, but no differences in bacterial load

were observed, indicating that B. abortus employs additional

mechanisms to ensure survival in macrophages (165). Similarly,

although recognition of Y. pestis T3SS by the NLRP3

inflammasome was important for the caspase-1 response

observed in cultured BMDMs, bacterial colonisation levels of

Y. pestis were unaltered between WT and Nlrp3-/- mice (162).

These studies suggest that although inflammasome activation is

central to the response against several pathogens, a multifaceted

response is required to successfully prevent host colonisation.

Taken together, pathogens have evolved multiple mechanisms to

avoid inflammasome detection and signalling, to facilitate

colonisation, and to promote persistence in the host.
3.7 Therapeutic exploitation of
inflammasome subversion

It is interesting to speculate whether bacterial subversion of

inflammasome activation and signalling could be harnessed for

the alleviation of inflammasome-driven diseases. Lactobacillus

paracasei, a strain of the lactic acid bacteria commonly used as a

probiotic, has been shown to dampen the activation of the

NLRP3, as well as the NLRC4 and AIM2 inflammasomes, by

induction of IL-10 viaNOD2 in BMDMs (191). In initial studies,

oral administration of L. paracasei strain KW3110 has been used

in vivo to reduce NLRP3-dependent neutrophil recruitment in

monosodium urate (MSU)-induced peritonitis of C56BL/6 mice

and improve insulin sensitivity in high fat diet (HFD) fed, obese

mice (191). Additionally, oral administration of KW3110

reduced T-cell infiltration of visceral adipose tissue in HFD

fed mice (191), an NLRP3-dependent mechanism which

contributes to insulin resistance (192). General evasion of

inflammasome activation by P. gingivalis through suppression

of endocytosis can also prevent inflammasome activation by

E. coli, F. nucleatum, or DAMPs and PAMPs delivered by

endocytosis (193), further indicating a potentially complex

regulatory network which has developed within the microbiota

that may be harnessed for therapeutic applications.
4 Conclusion

NLR proteins are host sensors for bacterial pathogens and

recent advances have shown that NOD1/2, NLRC4/NAIP and

NLRP3 are physiological relevant PRRs in mammals. Bacterial

pathogens co-evolved with these proteins in order to establish a

fruitful balance of the immune response to support both fitness

of the host and replication of the pathogen. Subversion strategies
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used by bacteria to avoid NLR activation include the use of

modification and reduced release of their PAMPs, targeting of

the receptors and their pathway components as well as

sophisticated use of the immune response of the host to

dampen adaptive immune functions. Here we discussed the

most prominent examples of bacterial subversion of the key

NLR protein pathways. Albeit most studies concentrated on

individual NLRs or bacterial components and effector proteins,

bacteria can activate a multitude of PRRs, produce several

MAMPs, and can release a large range of effector proteins that

can result in a much more complex scenario of immune

activation and inhibition in the host. Therefore, future studies

using novel holistic technological approaches to delineate the

molecular details of host-pathogen interactions both in complex

models and at the single cell level will allow us to gain insights

regarding systemic and adaptive immune responses and

metabolic alternations related to the activation of host PRRs

by bacterial pathogens. Ultimately, this will be helpful for

defining new therapeutic strategies and treatments for

infectious disease and their prevention by vaccination.
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Helicobacter pylori is closely associated with gastric cancer. During persistent

infection, Helicobacter pylori can form a microenvironment in gastric mucosa

which facilitates the survival and colony formation of Helicobacter pylori. Tumor

stromal cells are involved in this process, including tumor-associatedmacrophages,

mesenchymal stem cells, cancer-associated fibroblasts, and myeloid-derived

suppressor cells, and so on. The immune checkpoints are also regulated by

Helicobacter pylori infection. Helicobacter pylori virulence factors can also act as

immunogens or adjuvants to elicit or enhance immune responses, indicating their

potential applications in vaccine development and tumor immunotherapy. This

review highlights the effects of Helicobacter pylori on the immune

microenvironment and its potential roles in tumor immunotherapy responses.

KEYWORDS

Helicobacter pylori, immune evasion, gastric cancer, microenvironment, immunotherapy
Introduction

Helicobacter pylori is a gram-negative, helical, microaerophilic, and flagellated bacteria

that colonizes the gastric mucosa in approximately 50% of the world population (1, 2).

Helicobacter pylori infection is the main cause of gastric mucosal diseases such as gastric

cancer (GC), chronic non-atrophic gastritis, atrophic gastritis, intestinal metaplasia, and

dysplasia (3). GC is the fifth most common cancer and the fourth leading cause of cancer-

related deaths worldwide (4). H. pylori is classified by the WHO as a class I carcinogen

associated with the onset of GC, as chronicH. pylori infection leads to at least 75% of GC cases

(5–8). 2% of H. pylori infected patients will develop GC (7).

Tumor growth is supported by oncogene-driven metabolic activities as well as by the

microenvironment. Infection with H. pylori promotes gastric tumorigenesis, mainly by

influencing the microenvironment (9). Virulence factors such as cytotoxin-associated

gene A (CagA), vacuolating cytotoxin A (VacA), urease (Ure), arginase (Arg),
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lipopolysaccharide (LPS), and neutrophil-activating protein

(NAP), enable H. pylori to survive and colonize the gastric

mucosa, maintain chronic inflammation, and induce

malignant changes within the gastric mucosa (1, 10–12). The

immune system plays a pivotal role in eliminating H. pylori

infection and controlling inflammation. Throughout a long-

term co-existence with human hosts, H. pylori has developed

several strategies to maintain a balance between the immune

response and immune escape (13, 14). Through regulating

tumor stromal cells, immune checkpoints, and other

regulatory factors, H. pylori constructs a microenvironment

that favors persistent colonization and facilitates tumorigenesis.

However, the influence of H. pylori on responses to

immunotherapies and the prognosis of GC remains

controversial (15–18). Recent studies have presented that H.

pylori infection might affect the curative effect of tumor therapy

by the induced immuno-regulation (19, 20). Besides, H. pylori

virulence factors such as NAP, VacA, and Ure might elicit or

enhance immune responses, which indicates the potential

application in vaccine development and tumor immunotherapy

(21, 22). These virulence factors are immunodominant antigens of

H. pylori and might improve patient prognosis as immunogens or

adjuvants in immunotherapy (23). Here, this review describes the

mechanisms and effects of H. pylori on the immune

microenvironment of GC and tumor immunotherapy responses.
Effects of H. pylori on tumor
stromal cells in gastric tumor
immune microenvironment

The tumor microenvironment (TME) consists of a

continuously evolving complex of tumor cells and stroma. Stroma

comprises surrounding non-cancerous fibroblasts, epithelial,

immune and blood cells, and extracellular components such as

cytokines, growth factors, hormones, and extracellular matrix

(ECM) (24, 25). Stroma plays a key role during tumor initiation,

progression, and metastasis, meanwhile it significantly influences

therapeutic responses and clinical outcomes (26). Helicobacter

pylori and its virulence factors can form a microenvironment that

facilitates its survival and colony formation by regulating the

constituents and functions of the TME. This section summarizes

the interactions between H. pylori and tumor stromal cells during

GC initiation, progression, and metastasis and describes potential

strategies to improve the prognosis (Figure 1; Table 1).
Effects of H. pylori on tumor-associated
macrophages in gastric tumor
immune microenvironment

Changes in immune responses and the immune escape of H.

pylori are closely associated with tumor-associated macrophages
Frontiers in Immunology 02
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(TAMs), which are emerging key players in the TME.

Macrophages play crucial roles in host defense against

bacterial infections and in the regulation of immune responses

during H. pylori infection (68). However, macrophages can also

induce angiogenesis and suppress the host immune response

during cancer development (37, 69). Generally, TAMs comprise

M1 and M2 subtypes (27). Proinflammatory activated M1

macrophages promote the type I T helper (Th1) immune

response by producing type I proinflammatory cytokines such

as IL-1b, IL-1a, and IL-6 to clear pathogens and inhibit tumor

progression, while simultaneously suppressing Th2-type

responses (27, 70, 71). Activated M2 macrophages contribute

to production of ECM and anti-inflammatory effectors such as

IL-4 and IL-10 that are involved in the Th2 immune response,

promotion of wound healing, and suppression of Th1 responses

(72–75). Additionally, a third type called regulatory

macrophages (Mregs) secrete abundant IL-10 that limits

inflammation but do not secrete ECM (72). Helicobacter pylori

and other pathogens might impair M1 macrophage

differentiation while inducing M2 macrophage differentiation

or M1 transdifferentiation into M2 macrophages, which can

promote tumor progression and invasion by inducing

angiogenesis and mediating immunosuppressive signals in

solid tumors (27).

Furthermore, H. pylori infection might regulate specific

microRNAs (miRNAs) to control macrophage function and

affect the TME (28, 76). Infection with H. pylori leads to the

downregulated expression of miR-4270 by human monocyte-

derived macrophages. This favors upregulation of expression of

CD300E immune receptors that enhance the proinflammatory

potential of macrophages. However, the expression and

exposure of major histocompatibility complex class II (MHC-

II) molecules on the plasma membrane are simultaneously

compromised. Hence, antigen presentation ability is decreased,

leading to persistentH. pylori infection (28). The upregulation of

let-7i-5p, miR-146b-5p and miR-185-5p, and miR146b

expression in macrophages caused by H. pylori infection can

similarly decrease HLA-II expression on the plasma membrane,

which ultimately compromises bacterial antigen presentation to

Th lymphocytes and impairs immune responses against H.

pylori (29, 30). Collectively, H. pylori infection mainly

downregulates surface recognition factors at the transcriptional

level by rendering macrophages fail to degrade the bacteria.

Thus, macrophages become a protective niche for H. pylori.

Helicobacter pylori can induce the production of specific

enzymes that regulate macrophage function and affect TME. The

production of arginase II (Arg2) in macrophages induced by H.

pylori infection results in cell apoptosis and restrained

proinflammatory cytokine responses, thus promotes H. pylori

immune evasion (31, 32). Matrix metalloproteinase 7 (MMP7)

plays a pivotal role in H. pylori-mediated immune escape (33).

Heme oxygenase-1 (HO-1) expression in macrophages also be

induced, resulting in a polarization switch towards a reduction
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in the M1 population and an increase in the Mreg profile,

causing innate and adaptive immune responses failure (34).

Transfer exosomes expressing mesenchymal–epithelial

transition (MET) factor, a cell-surface receptor tyrosine kinase

from H. pylori‐infected GC cells, can elicit uncontrolled

macrophage activation and downstream inflammation and

might be associated with tumorigenesis and cancer

development (35). These findings shed light on how H. pylori

influences the gastric microenvironment by inducing the

expression of macrophage-associated enzymes in TAMs.

Moreover, H. pylori upregulates the expression of Jagged 1, a

ligand of Notch signaling that plays an important role in M1

macrophage activation and bactericidal activity to prevent H.

pylori infection. Upregulated Jagged 1 expression induces an

increase in the expression of proinflammatory mediators and

phagocytosis and a decrease in the bacterial load, which together

impart antibacterial activity in macrophages (36). The hedgehog

(HH) signaling pathway also plays an important role in the
Frontiers in Immunology 03
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gastric TME. Sonic hedgehog (SHH) induced by H. pylori

infection acts as a macrophage chemoattractant, which is a

prerequisite in the gastric immune response (37).

In conclusion, H. pylori infection at the early stage can induce

the infiltration of polymorphonuclear leukocytes and mononuclear

phagocytes in the gastric mucosa as an innate immune response

(77). During the advanced stages of GC, H. pylori can escape

immune surveillance by impairing the antigen presentation of

TAMs or by disrupting the M1/M2 (or Mreg) balance in favor of

an M2 (or Mreg) phenotype (34, 72). Immunosuppressive status

eventually promotes tumorigenesis and cancer development (78).

These mechanisms also provide the potential for investigating novel

targeted drugs (79). Specific miRNAs such as let-7i-5p, miR-146b-

5p, and miR-185-5p can be targeted to reduce adverse effects on

macrophage antigen presentation (29). Targeting specific enzymes

including MMP7 and HO-1 or signaling pathways, such as Notch

and HH, to regulate the M1/M2 (or Mreg) balance might also

warrant investigation (33, 34).
FIGURE 1

Effects of H. pylori on tumor stromal cells and tumor-related proteins in gastric tumor immune microenvironment. Arg, arginase; ASK1,
apoptosis signal-regulating kinase 1; BM-MSC, Bone marrow-derived mesenchymal stem cells; CAF, cancer-associated fibroblast; Cag A,
cytotoxin-associated gene A; CXCL8, chemokine (C-X-C motif) ligand 8; EMT, epithelial-mesenchymal transition; hA-MSC, human adipose-
derived mesenchymal stem cells; HH, Hedgehog; HO-1, heme oxygenase-1; H.pylori, Helicobacter pylori; IL-22, Interleukin-22; IRF, interferon
regulatory factor; IFN, interferon; KLF4, Krüppel-like factor 4; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinases; MDSCs,
myeloid-derived suppressor cells; MET, mesenchymal-epithelial transition; MHC-II, major histocompatibility complex class II; MMP, matrix
metalloproteinase; mTOR, mammalian target of rapamycin; Myh9, myosin heavy chain 9; NF-kB, nuclear factor kappa B; miR, microRNA; MSCs,
mesenchymal stem cells; PD-1, programmed death 1; PD-L1, programmed death-ligand 1; PI3K-AKT, phosphatidylinositol 3 kinase-protein
kinase B; ROS, reactive oxygen species; SDF, stromal-derived factor; Shh, Sonic hedgehog; SLFN4, Schlafen 4; STAT3, signal transducer and
activator of transcription 3; TAMs, tumor-associated macrophages; TGFb, transforming growth factor b; TLR, Toll-like receptor; Ure, urease; Vac
A, vacuolating cytotoxin A.
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TABLE 1 Effects of H. pylori on tumor cells in gastric tumor immune microenvironment.

Tumor cells
affected by H.
pylori

Roles of H. pylori Results

TAMs Simultaneous impairment and induction of M1 macrophage and M2 macrophage
differentiation, respectively, or transdifferentiation to M2 macrophages (27)

Promotes tumor progression and invasion by inducing
angiogenesis and mediating immunosuppressive signals in
solid tumors

Regulation of specific miRNAs Downregulates miR-4270 expression (28) Impairs MHC-II expression and exposure, decreases antigen
presentation ability, favors persistent H. pylori infection

Upregulates let-7i-5p, miR-146b-5p, miR-185-5p,
and miR146b expression (29, 30)

Inhibits HLA-II expression, compromises bacterial antigen
presentation to Th lymphocytes, impairs immune responses
to H. pylori

Induces production of specific
enzymes

Arg2 (31, 32) Promotes immune escape of H. pylori, mediates macrophage
apoptosis,
restrains inflammatory responses

MMP7 (33) Promotes immune escape of H. pylori

HO-1 (34) Reduces M1 population, increases the number of Mregs,
promotes immune escape of H. pylori

MET factor (35) Elicits uncontrolled activation of macrophages and
inflammation
involved in tumorigenesis and cancer development

Regulation of some signaling
pathway molecules

Upregulation of Jagged 1 expression (36) Increases secretion of proinflammatory mediators and
phagocytosis,
decreases bacterial load,
confers anti-bacterial activity on macrophages

Induces SHH release from the stomach (37) Induces macrophage migration during early H. pylori
infection, involved in gastric immune response

MSCs Upregulates CXCR4 expression and enhances MSCs migration toward SDF-1 (38) Enhances BM-MSC migration into gastric tissues

Recruits or induces BM-MSCs
and hA-MSCs

Promotes malignant transformation (39–42) Promotes H. pylori-mediated gastric tumorigenesis and
developmentMediates local and systemic immunosuppression

(43, 44)

Alters THBS expression (45, 46)

CAFs Induces MSC differentiation
into CAFs

Enhances expression of fibroblast markers, CAF
activation, and levels of aggression/invasion
markers (47, 48)

Promotes survival, proliferation, and migration of GC cell
lines, inhibits antitumor functions of T cells in GC TME

Stimulates BM-MSC
differentiation into CAF
myofibroblasts

Increases HDGF expression (49) Enhances tumor cell ability to proliferate, invade, and
metastasize (49, 50)

Induces fibroblast
transdifferentiation into
myofibroblasts

Upregulates and downregulates HIF-1a and Bax
expression, respectively (51)

Promotes gastric tumorigenesis

Propels EMT via signal
pathways and TGF‐b secretion

Induces activation or differentiation of rat gastric
fibroblasts by NF-kB and STAT3 signaling (52)

Induces Snail1 expression and propels EMT leading to GC
progression

Secretes TGFb1 and regulates TGFbR1/R2-
dependent signaling in H. pylori-activated gastric
fibroblasts (53–55)

Prompts reprogramming normal gastric epithelial cells
towards a precancerous phenotype and promotes EMT in
normal epithelial cells

MDSCs Induces differentiation of
SLFN4+ MDSCs

HH/Gli1 (56, 57) Inhibits gastric inflammatory response by H. pylori,
suppresses T cell function, immune dysregulation, and
tumor progression

TLR9-MyD88-IRF7- IFN-a pathway (58)

Interaction between H. pylori
and MDSCs is regulated by
several factors

MiR130b (59) Activates SLFN4+ MDSCs and promotes H. pylori-induced
metaplasia

ASK1 (25, 60) Suppresses inflammation induced by infiltrating immature
MDSCs

IL-22 (61) Induces expression of proinflammatory proteins, suppresses
Th1 cell responses, promotes development of H. pylori-
associated gastritis

PD-L1 (62–64) Promotes tumor infiltration of MDSCs, mediates resistance
to anti-PD-1/PD-L1 therapy

(Continued)
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Effects of H. pylori on recruiting and
inducing bone marrow-derived
mesenchymal stem cells in gastric tumor
immune microenvironment

Multipotent mesenchymal stem cells (MSCs) can self-renew

and differentiate into various cell types that play key roles in

tissue healing, regeneration, and immune regulation (80). Bone

marrow-derived mesenchymal stem cells (BM-MSCs) might

play important roles in H. pylori-associated gastric

tumorigenesis and immunosuppression. Upon sensing signals

indicating gastric mucosa damage, BM-MSCs migrate from

bone marrow to stomach via the peripheral circulation. BM-

MSCs heal damaged mucosa through a paracrine mechanism

and directed differentiation (81, 82).H. pylori-induced persistent

inflammation is required for BM-MSC migration and

tumorigenesis (43, 83). Upregulated C-X-C chemokine

receptor type 4 (CXCR4) interacts with its ligand, stromal-

derived factor (SDF-1) and then promote BM-MSC migration

to the gastric tissues (38).

Gastric epithelial glands become repopulated with BM-

MSCs in mice model one year after H. pylori infection (39).

After recruitment to stomach, BM-MSCs can become entrapped

in a microenvironment containing H. pylori and malignant cells,

25% of which originate from BM-MSCs. Fusion with epithelial

cells might render BM-MSCs more susceptible to malignant

transformation or lead to the promotion of cancerous processes

(40). BM-MSCs gradually acquire a clonal advantage and

undergo stepwise transformation to malignant cells (39).

During malignant progression, gastric epithelial glandular

units undergo monoclonal transformation, resulting in

emerging cancer stem cell (CSC) clones and adenocarcinomas

(39, 41). Human adipose-derived mesenchymal stem cells (hA-

MSCs) also participate in gastric tumorigenesis by increasing

tumor cells invasion and metastasis during H. pylori

infection (42).

In addition to malignant transformation, MSCs can promote

tumorigenesis locally and systemically by compromising cancer

immune surveillance or altering tumor stroma. When

transplanting BM-MSCs in H. pylori infected mice model, IL-

10 and transforming growth factor-b1 (TGF-b1) can be

increased, as well as T cells secreting IL-10 and CD4+ CD25+

Foxp3+ regulatory T (Treg) cells in splenic mononuclear cells

(43, 44). BM-MSCs can reduce the fraction of T cells that
Frontiers in Immunology 05
121
produce IFN-g, thus inhibiting CD4+ and CD8+ T cell

proliferation. Local and systemic immunosuppression

mediated by BM-MSCs contributes to GC development

induced by H. pylori (43).

MSCs can also promote tumorigenesis by altering tumor

stromal components. Thrombospondin (THBS) promotes

tumorigenesis through crosstalk with BM-MSCs. Infection

with H. pylori significantly upregulates the expression of

THBS4 in BM-MSCs. Overexpressed THBS4 then mediates

BM-MSC-induced angiogenesis in GC by activating the

THBS4/integrin a2/PI3K/AKT pathway (45). Moreover, BM-

MSCs can differentiate into pan-cytokeratin-positive (pan-CK+)

epithelial cells and alpha-smooth muscle actin (a-SMA+)

cancer-associated fibroblasts (CAFs) by secreting THBS2, thus

promoting the development of H. pylori-associated GC (46).

BM-MSCs play pivotal roles in H. pylori-associated GC. The

immune regulatory functions of MSCs remain obscure.

Shedding light on these functions and their mechanisms will

provide clues on therapeutic targets for preventing

GC development.
Effects of H. pylori on induction of
cancer-associated fibroblasts in gastric
tumor immune microenvironment

CAFs are activated myofibroblasts that accompany solid

tumors and are principal constituents of tumor stroma (84,

85). They play important roles in the TME. They can create a

niche for cancer cells and promote cancer progression by

stimulating cancer cell proliferation, migration, invasion, and

angiogenesis (85–87). Proinflammatory and tumor-associated

factors secreted by CAFs might induce persistent inflammation

or intervene in tumor immunity, thus mediate tumor immune

escape (52, 88). Mainly derived from MSCs, CAFs could induce

epithelial-mesenchymal transition (EMT), which enhances the

invasive properties of malignant cells (89, 90) that detach from

primary tumor site to surrounding tissues (91).

Helicobacter pylori infection can induce MSCs differentiating

into CAFs, and upregulate the expression of fibroblast markers,

fibroblast activation protein (FAP), CAF activation markers, and

aggressive/invasive markers (47). FAP-positive CAFs enhance

the survival, proliferation, and migration of GC cell lines and

inhibit T cells function (48).H. pylori infection also increases the
TABLE 1 Continued

Tumor cells
affected by H.
pylori

Roles of H. pylori Results

KLF-4 (65–67) Promotes recruitment of MDSCs to tumors, creates
immunosuppressive microenvironment, promotes tumor
growth
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expression of hepatoma-derived growth factor (HDGF) (49, 50).

Exposure to HDGF promotes the recruitment of BM-MSCs,

stimulates their differentiation into CAF-myofibroblasts, and

enhances tumor cell proliferation, invasiveness, and metastasis

(49). Moreover, H. pylori infection can induce fibroblasts

transdifferentiating into myofibroblasts, which upregulating

the early carcinogenic marker hypoxia-inducible factor 1-alpha

(HIF-1a) and downregulating proapoptotic bcl-2-like protein 4

(Bax) expression (51).

CAFs induced by H. pylori propel EMT by nuclear factor

kappa B (NF-kB), signal transducer and activator of

transcription 3 (STAT3), and TGF-b. Helicobacter pylori might

induce the activation or differentiation of rat gastric fibroblasts

in vitro, which then activate NF-kB and STAT3 signaling, and

upregulate Snail1. This is an EMT-inducing transcription factor

(EMT-TF) (52). As a major propeller of EMT in cancer

progression and metastasis (53, 54), TGF-b can initiate

tumorigenesis by activating EMT-type III initiation in

epithelial cell compartments at the early stage of cancer

development (55, 92). Gastric fibroblasts activated by H. pylori

promote normal gastric epithelial cells to precancerous

phenotype, and promote EMT by regulating TGFb R1/R2-

dependent signaling (55). The HH, Wnt, and Notch signaling

pathways can interact with TGF-b pathway and induce EMT

progression (93–97).

Collectively, persistent H. pylori infection increases the

differentiation of CAFs, which propel EMT through NF-kB,
STAT3, and TGF-b. As CAFs play key roles in the gastric

microenvironment, targeting CAFs might be a potential

strategy to improve the prognosis of patients (98, 99).
Effects of H. pylori on myeloid-derived
suppressor cells in gastric tumor
immune microenvironment

Immature myeloid (progenitor) cells (IMCs) do not mediate

immunosuppression in healthy individuals. However, chronic

inflammation, infections, and autoimmune diseases impair IMC

differentiation and decrease peripheral myeloid cells numbers,

resulting in more myelopoiesis (100–103). This eventually

results in myeloid-derived suppressor cells (MDSCs)

accumulation and immunosuppression (102, 104). MDSCs

mediate immune suppression by inducing immunosuppressive

cells (105), blocking lymphocyte homing (106), producing

reactive oxygen and nitrogen species (107, 108), exhausting

critical metabolites for T cell function (109), expressing

negative immune checkpoint molecules (110).

Interactions between H. pylori and MDSCs are important in

gastric immune microenvironment. On one hand, H. pylori can

induce the differentiation of myeloid cell differentiation factor

Schlafen 4 (SLFN4+) MDSCs (56, 58). This factor marks a subset
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of MDSCs in the stomach during H. pylori-induced spasmolytic

polypeptide-expressing metaplasia (SPEM) (57). During chronic

H. pylori infection in mice model, a subset of HH-Gli1-

dependent immune cells is recruited to the gastric epithelium,

and polarizes into SLFN4+ MDSCs. Overexpression of the SHH

ligand in infected WT mice accelerates SLFN4+ MDSCs

differentiataion in gastric corpus (57). Furthermore, H. pylori

can stimulate plasmacytoid dendritic cells to secrete IFN-a
through toll-like receptor 9-myeloid differentiation factor 88-

interferon regulatory factor 7 (TLR9-MyD88-IRF7 pathway)

(58). Differentiated SLFN4+ MDSCs inhibit gastric

inflammatory response induced by H. pylori and suppress T

cell function (56–59). Persistent immune dysregulation then

favors intestinal metaplasia and neoplastic transformation,

which leads to immune disorders and tumor progression.

Several markers, such as MiR130b, apoptosis signal-

regulating kinase 1 (ASK1), interleukin 22 (IL-22),

programmed death-ligand 1 (PD-L1), and Krüppel-like factor

4 (KLF4) play regulatory roles in the interactions between H.

pylori and MDSCs. MiR130b produced by SLFN4+ MDSCs

suppress T cells function and promote H. pylori-induced

metaplasia (59). ASK1 deficiency promotes a Th1-dependent

immune response and recruits immature Gr-1+Cd11b+ MDSCs

with H. pylori infection. This could lead to the development of

gastric atrophy and metaplasia (25, 60). Moreover, IL-22

secreted by polarized Th22 cells induced by H. pylori can

stimulate CXCL2 production from gastric epithelial cells. This

causes CXCR2+ MDSCs migration to gastric mucosa, where they

produce proinflammatory proteins and suppress Th1 cell

responses, contributing to the development of H. pylori-

associated gastritis (61). PD-L1 upregulation on the surface of

gastric epithelial cells at the early stage of H. pylori infection (62)

promotes tumor infiltration of MDSCs (63) and then lead to

anti-PD-1/PD-L1 treatment resistance (64). KLF4 is an

evolutionarily conserved zinc finger transcription factor and

key regulator of diverse cellular processes (111–113).

Helicobacter pylori and its virulence factor CagA can influence

KLF4 expression. The transduction of CagA or infection with H.

pylori downregulates KLF4 expression by inducing CXCL8

expression, and low KLF4 expression further upregulates

CXCL8 expression (65). Increased CXCL8 expression

promotes MDSCs recruitment to tumors as well as tumor

growth, and creates an immunosuppressive microenvironment

conducive to resistance against immune response (65–67).

A high abundance of MDSCs in patients correlate with more

advanced GC and a poor prognosis (114, 115). MDSCs

infiltration induced by H. pylori mediates immunosuppression,

immune dysfunction, gastric tumorigenesis, and reduces the

effect of chemotherapy and immunotherapy (63). The

possibility that combining immunotherapy or chemotherapy

with MDSC-targeting therapy might overcome drug resistance

and improve prognosis warrants investigation (116–118).
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Effects of H. pylori on PD-1/PD-L1 in
gastric tumor immune
microenvironment

In addition to cells in TME, immune checkpoints are

involved in regulating H. pylori-associated TME. (Table 2).

The 55 kDa transmembrane protein programmed death 1

(PD-1) is expressed in activated T cells, natural killer (NK) cells,

B lymphocytes, macrophages, dendritic cells (DCs), and

monocytes. It is abundantly expressed in tumor-specific T cells

(126–128). PD-L1 (also known as CD274 or B7-H1) is a 33 kDa

type 1 transmembrane glycoprotein that is widely expressed in

macrophages, activated T lymphocytes, B cells, DCs, and also

expressed in tumor cells (129). Binding of PD-1 and PD-L1

enhances T cell tolerance, inhibits T cell activation and

proliferation, increases Th cell transformation to Foxp3+ Treg

cell, and prevents T cell cytolysis in tumor cells (130). Thus,

interaction between PD-1 and PD-L1 is a double-edged sword. It

can inhibit immune responses and promote self-tolerance, while

it can also lead to immune escape and tumor progression.

Helicobacter pylori infection could upregulate PD-1/PD-L1

expression in gastric ulcers and GC patients (119), which might

be related with poor prognosis (131, 132). Chronic H. pylori

infection could cause excessive damage to gastric mucosa.

Upregulated PD-1/PD-L1 is launched to avoid such damage,

meanwhile this also reduces T cell-mediated cytotoxicity and

promotes GC progression (119–121). SHH pathway is involved

in PD-L1 upregulating (62). As an HH transcriptional effector,

zinc finger protein GL1, mediates mammalian target of

rapamycin (mTOR)-induced PD-L1 expression in GC

organoids (64). Kinds of H. pylori virulence factors are

reported in this process. H. pylori T4SS components activate

p38 MAPK pathway and upregulate PD-L1 expression, thus

inhibiting T cell proliferation and inducing Treg differentiation

from naïve T cells, which lead to immune escape (122, 123).
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Helicobacter pylori urease B subunit mediates PD-L1

upregulation via myosin heavy chain 9 (Myh9) or mTORC1

signaling in bone marrow-derived macrophages (BMDMs) and,

and regulates CD8+ T cells infiltration and activation (124).

Helicobacter pylori LPS induces PD-L1 expression via NF‐kB
pathway in GC cel ls and eventual ly promotes GC

progression (125).

Overall, PD-1/PD-L1 play vital roles in H. pylori-infected

GC, which presents an opportunity and challenge for treatment.

However, numerous unknown mechanisms of PD-1/PD-L1

expression might be the basis for overcoming drug resistance

and developing novel immunotherapies (133). The mechanisms

and functions of PD1/PD-L1 with H. pylori infection requires

further investigation (132, 134–136).
Effects of H. pylori on tumor
immunotherapy responses

Immunotherapy stimulates the immune system against

neoplasms and harnesses the specificity of innate immune to

fight cancer, particularly by activating T-cell mediated immunity

(137, 138). With the wide application of immune therapy, the

immune checkpoint inhibitors (ICIs) targeting immune

checkpoint molecules such as PD-1 and CTLA-4, and other

immune therapies such as cancer vaccine, the immune cells

input, antigen vaccine, oncolytic viruses, and recombinant

cytokines, have been receiving worldwide attention and have

made a certain progress (139–147). However, as lack of optimal

criteria selecting suitable patients until now, the objective

response rate of immunotherapy remains low (148, 149).

Hence, factors that influence the effectiveness of tumor

immunotherapy need to be identified. In this section, we

focused on the effects and potential applications of H. pylori

infection on tumor immunotherapies (Figure 2; Table 3).
TABLE 2 Effects of H. pylori on tumor-related proteins in gastric tumor immune microenvironment.

Tumor-related proteins
affected by H. pylori

Roles of H. pylori Results

PD-1/PD-L1 Upregulates PD-1/PD-L1 expression (119–121) Reduces excessive damage induced by H. pylori, reduces T cell-
mediated cytotoxicity, promotes GC progression

Upregulates PD-L1 expression by H. pylori CagA through
the SHH pathway (62)

Inhibits T cell proliferation and Treg cell induction from naïve T cells,
increases immune escape, promotes GC progression

Upregulates PD-L1 expression by mTOR-GLI signaling
(64)

Upregulates PD-L1 expression by the p38 MAPK pathway
(122, 123)

Upregulates PD-L1 expression by H. pylori urease subunit
through the Myh9/mTORC1 pathway (124)

Upregulates PD-L1 expression by H. pylori LPS through
the NF-kB pathway (125)
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Effects and applications of H. pylori and
its factors on GC immunotherapy

The 5-year survival rate of advanced GC patients is <30%.

Al though pla t inum-fluoropyr imid ine combinat ion

chemotherapy is the standard first-line treatment for advanced

GC, its low complete response rate and severe adverse reactions

have limited its application (63, 166). Novel effective therapies

are urgently required. For example, PD-1 inhibitor

pembrolizumab received accelerated approval from the US

Food and Drug Administration (FDA) in 2017 to treat

recurrent advanced or metastatic gastric or gastroesophageal

junction adenocarcinomas expressing PD-L1 (63, 167–169).

Helicobacter pylori is a class I carcinogen associated with GC

(170–172). The overall survival of GC diagnosis is reported to be

higher for patients with H. pylori infection (17). Helicobacter pylori

infection induces PD-L1 expression and MDSC infiltration that

mediate immune escape. HH signaling activated by H. pylori

infection induces PD-L1 expression and tumor cell proliferation

in GC, resulting in cancer cell resistance to immunotherapy (150).

In addition, Helicobacter pylori and its virulence factors can act as

antigens or adjuvants to enhance tumor immunity.

Helicobacter pylori virulence factors, such as CagA, VacA,

blood-group antigen-binding adhesin gene (BabA), and H.

pylori neutrophil-activating protein (HP-NAP), can act as
Frontiers in Immunology 08
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antigens or adjuvants to enhance tumor immunity. The

stimulation of autoantibodies during antigen processing and

presentation and subsequent T-cell activation and proliferation

improves the host immune status, which can kill cancer cells and

even suppress metastasis (151). Moreover, H. pylori DNA

vaccines encoding fragments of CagA, VacA, and BabA can

induce Th1 shift to Th2 response in immunized BALB/c mice,

which mimics the immune status of GC patients with chronic H.

pylori infection. Stimulated CD3+ T cells inhibit the proliferation

of human GC cells in vitro, and the adoptive infusion of CD3+ T

cells inhibits the growth of GC xenografts in vivo (152).

HP-NAP is a major virulence factor in H. pylori infection

and colony formation, and it can also act as a protective factor

(173, 174). As a Toll-like receptor-2 (TLR2) agonist, HP-NAP

can bind to TLR2 of neutrophils (161, 175). Furthermore, HP-

NAP promotes the maturation of DCs with Th1 polarization

and improves migration of mature DCs. Stimulating neutrophils

and monocytes by HP-NAP induces IL-12 and IL-23 expression,

thus shifting antigen-specific T cell responses from the Th2 to

the Th1 phenotype which characterized by abundant IFN-g and
TNF-a expression (153). Vaccination with HP-NAP A subunit

(NapA) promotes Th17 and Th1 polarization. Such vaccines

have potential effects as an anti-H. pylori oral vaccine candidate

and a mucosal immunomodulatory agent, which could be used

in antitumor strategies (154).
FIGURE 2

Effects and applications of H. pylori and its factors in tumor immunotherapies. Bab A, blood-group antigen-binding adhesin gene A; Cag A,
cytotoxin-associated gene A; Chi-rNap, rNAP coated chitosan nanoparticles; DCs, dendritic cells; DLBCL, diffuse large B-cell lymphoma; HP-
NAP, H. pylori neutrophil-activating protein; MDSCs, myeloid-derived suppressor cells; MV-NAP-uPAR, recombinant measles virus-NAP-
urokinase-type plasminogen activator receptor; NSCLC, non-small cell lung cancer; OVs, oncolytic viruses; PD-L1, programmed death-ligand 1;
rHP-NAP, recombinant H. pylori neutrophil-activating protein; rMBP-NAP, recombinant HP-NAP with the maltose-binding protein of
Escherichia coli; Th cells, T helper cells; TIL-T cells, tumor-infiltrating T lymphocytes; TME, tumor microenvironment; Vac A, vacuolating
cytotoxin A; VV-GD2m-NAP, vaccinia virus - neuroblastoma-associated antigen disialoganglioside mimotope.
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Effects and applications of H. pylori
and its factors in other
tumor immunotherapies

In addition to GC, the influence of H. pylori on other tumor

immunotherapies is also paid much attention recently.

Helicobacter pylori infection might disrupt the immune system

and exert detrimental effects on the outcomes of cancer

immunotherapies (19).

Helicobacter pylori seropositivity could reduce anti-PD-1

immunotherapy effect in non-small cell lung cancer (NSCLC)

patients. Helicobacter pylori infection partially blocks the
Frontiers in Immunology 09
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activities of ICIs and vaccine-based cancer immunotherapies.

Helicobacter pylori suppresses the innate and adaptive immune

responses of infected hosts and inhibits antitumor CD8+ T cell

responses by altering the cross-presentation activity of DCs (19).

In contrast, a significantly high proportion of tumor-infiltrating

T lymphocytes in H. pylori-positive de novo diffuse large B-cell

lymphoma (DLBCL) patients preliminarily indicates a benign

TME. Inflammation induced by H. pylori confers persistent

activation of autoimmune Th cells, which would explain the

benign TME (155). More researches are necessary to elucidate

how H. pylori infection status influences the effects of

tumor immunotherapies.
TABLE 3 Effects of H. pylori on tumor immunotherapy responses.

Cancer targeted by immu-
notherapy affected by H.
pylori

Roles of H. pylori Effects and applications

Gastric cancer Induces PD-L1 expression and
MDSC infiltration (62–64, 150)

Mediates immune escape by cancer cells, causing resistance to immunotherapy

Enhances tumor
immunity by virulence
factors

CagA,
VacA and
BabA

Increases levels of CagA, VacA, and BabA autoantibodies, enhances antigen processing and
presentation and T-cell activation and proliferation, and improves host immune status
(151)

DNA vaccine from CagA, VacA and BabA induces a shift from Th1 to Th2 response and
activates CD3+ T cells to inhibit GC xenograft growth in vivo (152)

HP-NAP HP-NAP promotes maturation of DCs and stimulates neutrophils and monocytes to
enhance antigen-specific T cell responses (153)

Oral NapA vaccination promotes Th17 and Th1 polarization, exerts anti-H. pylori and
antitumor effects, enhances immune responses (154)

Non-small cell lung carcinoma Decreases immune responses,
inhibits antitumoral CD8+ T cell
responses (19)

Partially blocks the activity of ICIs and vaccine-based cancer immunotherapy

DLBCL Causes increased numbers of tumor-
infiltrating T lymphocytes and
persistent activation of autoimmune
Th cells (155)

Results in a benign tumor immune microenvironment

Mouse subcutaneous hepatoma and
sarcoma

rMBP-NAP promotes Th1
differentiation and increases the
number of CD4+ IFN-g-secreting
cells (156)

rMBP-NAP has antitumor potential

Lung cancer rMBP-NAP increases the number of
IFN−g-secreting cells and CTL
activity of PBMCs (157)

Mouse metastatic lung cancer rMBP-NAP restricts tumor
progression by triggering antitumor
immunity (158)

Mouse breast
and bladder cancers

HP-NAP enhances immune
response and inhibits tumor growth
(137, 159)

HP-NAP has antitumor potential

Melanoma rHP-NAP promotes the maturation
of dendritic cells in dendritic cell-
based vaccines (160)

rHP-NAP has potential as an adjuvant

Mouse neuroendocrine tumor HP-NAP improves median survival
(161)

HP-NAP is a powerful source of immune-stimulatory agonists that can boost OV
immunogenicity and enhance ICI effects (162, 163)

Mouse subcutaneous neuroblastoma HP-NAP enhances antitumor
efficacy of oncolytic vaccinia virus
(164, 165)

Glioblastoma MVs-NAP-uPAR improves tumor
immunotherapy efficacy (163)
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The immunomodulatory activity and potential applications

of NAP in tumor immunotherapy have been investigated.

Recombinant HP-NAP with the maltose-binding protein of

Escherichia coli (rMBP-NAP) can mediate T helper

lymphocytes differentiation into the Th1 phenotype and

significantly increase the number of CD4+ IFN-g-secreting T

cells. This induces antitumor effects through a TLR-2-dependent

mechanism in subcutaneous hepatoma and sarcoma mice model

(156). rMBP-NAP can significantly increase peripheral blood

mononuclear cells (PBMCs) that secrete IFN-g, and prominently

increases the cytotoxic activity of PBMCs derived from lung

cancer patients (157). Treatment with rMBP-NAP restricts the

progression of metastatic lung cancer in mice model by

triggering antitumor immunity (158). A therapeutic

nanocomplex of HP-NAP altered the production rate of

cytokines and increase tumoricidal activities of the immune

system, leading to decreased breast tumor growth in mice

(137). Local administration of HP-NAP inhibits tumor growth

by triggering tumor cell necrosis in bladder cancer mice model

(159). Recombinant HP-NAP has potential effects as an adjuvant

in DC-based vaccines for treating melanoma (160).

Because of its ideal immunogenicity, NAP has recently been

applied as an immune adjuvant to enhance the antitumor

immune response. When combined with oncolytic viruses

(OVs), HP-NAP can activate the immune response. The

intratumoral administration of adenovirus armed with secretory

HP-NAP can improve the median survival rate of nude mice

xenografted with neuroendocrine tumors (161). A recombinant

vaccinia virus (VV) neuroblastoma-associated antigen

disialoganglioside mimotope (GD2m)-NAP significantly

improved therapeutic efficacy. Helicobacter pylori-NAP might

help to overcome virus-mediated suppressive immune

responses, resulting in improved anti-GD2 antibody production

and a better therapeutic outcome (164, 165). Moreover,

recombinant measles virus (MV)-NAP-urokinase-type

plasminogen activator receptor (uPAR) can improve

immunotherapeutic effects on glioblastoma with a better tumor

prognosis and increased susceptibility to CD8+ T cell-mediated

lysis. Overall, HP-NAP represents a potential immunostimulatory

agonists which can boost the immunogenicity of OVs and

enhance ICIs effects (162, 163).

In conclusion, H. pylori and its virulence factors could be

closely related with personalized treatment strategies during

tumor immunotherapies. The mechanisms of H. pylori

infection in tumor immunotherapies requires further

elucidation, and the translation of research findings to clinical

applications should be accelerated.
Summary

This review summarized current knowledge of the effects of

H. pylori on the immune microenvironment of GC and tumor
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immunotherapy responses. Helicobacter pylori elicits powerful

immune responses during surviving and colonizing gastric

mucosa. Helicobacter pylori has also developed several

strategies to evade recognition and disrupt immune function.

The constituents and functions of stroma are regulated by H.

pylori and its virulence factors to facilitate its survival and

colony. Persistent H. pylori infection can induce immune

evasion and tumorigenesis.

The stroma provides TME for tumor initiation and

development after H. pylori persistent infection. Immunotherapy

targeting tumor-associated immune cells is more mature and

improved, particularly immunotherapy targeting T cells, such as

ICIs. PD-1 inhibitor pembrolizumab has received approval from the

US FDA in 2017 to treat recurrent advanced or metastatic gastric or

gastroesophageal junction adenocarcinomas (167). While some

clinical trials targeting non-immune cells in TME such as CAFs,

MSCs, have failed to show promising efficacy in cancer patients

(176–178). The main reason might be a lack of deep understanding

of the fundamental mechanisms of stromal cells and elements as well

as a lack of reliable biomarkers to guide stroma-targeted therapies

(176). Of course, because of the important roles of regulating the

immune response in TME, targeting TAMs is getting more and

more attraction. For example, targeting colony-stimulating factor 1

receptor (CSF1R) signaling and the CCL2-CCR2 axis are developing

drugs (179, 180). And there are some developing drugs to reprogram

TAMs from a pro-tumor phenotype to an anti-tumor phenotype

and interrupt the bad cycle between TAMs and tumor cells (176,

177), such as agonistic anti-CD40 antibodies (181), PI3Kg inhibitors
(182). These ongoing researches show good prospects in

immunotherapy. Based on these, it seems that immunotherapy

intervening tumor-associated immune cells may be more

appropriate currently. However, we should also pay attention to

the study of non-immune cells in TME. Further research on these

cells may provide clues for developing new therapies in the future.

H. pylori infection might affect the tumor immunotherapy.

Although H. pylori infection has been reported as a protective

factor in GC immunotherapy while in NSCLC as a negative

factor, the mechanisms and effect of H. pylori on GC

immunotherapy still remains unclear (19, 183). Helicobacter

pylori virulence factors can act as immunogens or adjuvants to

elicit or enhance immune responses. Some H. pylori virulence

factors such as HP-NAP, have been applied as adjuvants or

combined with drugs in pan-tumor treatment to improve

immunotherapeutic efficiency. The effects of H. pylori in TME

should be further explored, and clinical applications should be

performed to select the proper features of population for better

immunotherapy benefits.
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Brucellosis is a common zoonotic disease caused by intracellular pathogens of

the genus Brucella. Brucella infects macrophages and evades clearance

mechanisms, thus resulting in chronic parasitism. Herein, we studied the

molecular changes that take place in human brucellosis both in vitro and ex

vivo. RNA sequencing was performed in primary humanmacrophages (Mj) and
polymorphonuclear neutrophils (PMNs) infected with a clinical strain of

Brucella spp. We observed a downregulation in the expression of genes

involved in host response, such as TNF signaling, IL-1b production, and

phagosome formation in Mj, and phosphatidylinositol signaling and TNF

signaling in PMNs, being in line with the ability of the pathogen to survive

within phagocytes. Further transcriptomic analysis of isolated peripheral blood

mononuclear cells (PBMCs) and PMNs from patients with acute brucellosis

before treatment initiation and after successful treatment revealed a positive

correlation of the molecular signature of active disease with pathways

associated with response to interferons (IFN). We identified 24 common

genes that were significantly altered in both PMNs and PBMCs, including

genes involved in IFN signaling that were downregulated after treatment in

both cell populations, and IL1R1 that was upregulated. The concentration of

several inflammatory mediators was measured in the serum of these patients,
frontiersin.org01
132

https://www.frontiersin.org/articles/10.3389/fimmu.2022.951232/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.951232/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.951232/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.951232&domain=pdf&date_stamp=2022-08-01
mailto:pskendro@med.duth.gr
https://doi.org/10.3389/fimmu.2022.951232
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.951232
https://www.frontiersin.org/journals/immunology


Mitroulis et al. 10.3389/fimmu.2022.951232

Frontiers in Immunology
and levels of IFN-g, IL-1b and IL-6 were found significantly increased before the

treatment of acute brucellosis. An independent cohort of patients with chronic

brucellosis also revealed increased levels of IFN-g during relapse compared to

remissions. Taken together, this study provides for the first time an in-depth

analysis of the transcriptomic alterations that take place in human phagocytes

upon infection, and in peripheral blood immune populations during

active disease.
KEYWORDS

brucellosis, immunity, transcriptomics, macrophages, polymorphonuclear
neutrophils, peripheral blood mononuclear cells
Introduction

Brucellosis is a common bacterial zoonotic disease

worldwide and an emerging zoonosis in several developed

countries (1, 2). Despite its importance in public health

brucellosis remains widespread and neglected in many areas,

including southeastern Europe, Asia, Central and Latin America,

and Africa (2, 3). It is caused by various species of the bacterial

genus Brucella, which mainly infect domestic animals, especially

goats, sheep, and cows, and use them as natural reservoirs. The

disease is transmitted to humans by consumption of

unpasteurized milk and dairy products or by occupational

contact with infected animals. Additionally, Brucella is highly

infectious through the aerosol route, thus is considered as one of

the most common laboratory-acquired pathogens and is also

classified as a category B agent on the biodefense list (4).

Human brucellosis causes high morbidity and protean

clinical manifestations, mimicking many infectious and non-

infectious diseases since it can affect multiple organs. Despite

early diagnosis and prolonged therapy with antibiotics is

associated with substantial residual disability (4). Up to 30% of

patients develop chronic disease, which is characterized by

atypical clinical manifestations, high frequency of focal

complications such as spondylitis, chronic fatigue syndrome,

and relapses (4, 5).

Host protection against Brucella and prevention of its

intracellular parasitism in macrophages depends on cell-

mediated immunity, involving adequate Th1 immune

response, with significant production of interferon-gamma

(IFN-g) (5). Previous data support also a key role of innate

immunity and neutrophils in early proinflammatory responses

against Brucella that may affect T-cell dynamics during infection

(5–7). On the other hand, Brucella has developed various

stealthy strategies to evade innate and adaptive immune

responses, in order to establish intracellular long-term survival

and replication (8, 9). Several studies have demonstrated that
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patients with chronic brucellosis display defective cell-mediated

immunity (brucellosis-acquired cellular anergy) probably due to

modulation of host cellular immunity by Brucella (5). However,

immunopathogenesis of human brucellosis remains

incompletely understood and integrated molecular data that

characterize complex interactions between Brucella and host

immunity are missing today.

Here, we shed light on the transcriptomic alterations that

macrophages (Mj) and polymorphonuclear neutrophils

(PMNs) undergo during the crucial early events of Brucella

infection. Moreover, we analyze the transcriptomic alterations

that take place concomitantly in peripheral blood mononuclear

cells (PBMCs) and PMNs of patients upon treatment,

uncovering candidate molecular targets and pathways that

may characterize active infection and disease eradication.
Materials and methods

Patients

Ten adult patients with acute brucellosis were recruited.

EDTA anticoagulated blood and serum were collected from

patients with active brucellosis before the initiation of

antibiotic treatment and three months after the completion of

treatment, when all patients were successfully treated. The

diagnosis was based on compatible clinical manifestations in

combination with high serum titers of anti-Brucella antibodies

(Wright’s agglutination test ≥160) or a four-fold increase of the

initial titers in two-paired samples drawn 2 weeks apart, or/and

Brucella isolation, according to Centers for Disease Control and

Prevention (CDC)/Council of State and Territorial

Epidemiologists (CSTE) Laboratory Criteria for Diagnosis

(10). None of these patients suffered any relapse during a six-

month post-treatment follow-up period. Patient characteristics

and treatment are described in Table 1. PBMCs and PMNs were
frontiersin.org
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simultaneously isolated from patients. PBMCs and PMNs were

also isolated from ten healthy, sex and age-matched, subjects

who served as controls (Table 2). Sera from a second cohort of 25

chronic relapsing brucellosis patients at clinical relapse and

remission, were also used. These patients had a disease

duration of ≥12 months in combination with positive serum

agglutination tests (SATs) or/and complement fixation test, or/

and Brucella isolation (Supplementary Table S1).

Exclusion criteria were co-existence of other infectious,

neoplastic or autoimmune disease, administration of

immunomodulating agents or vaccination for at least 4 weeks

before the entry to study, and pregnancy. The study was

approved by the Local Scientific and Ethics Committee of the

University Hospital of Alexandroupolis, Greece (Approval

Number #1195/19-12-2017). All subjects provided written

informed consent in accordance with the principles expressed

in the Declaration of Helsinki.
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TABLE 2 Demographic characteristics of healthy subjects (controls).

Control# Sex Age (years)

C1* F 38

C2* M 47

C3* M 35

C4* M 34

C5^ M 55

C6^ M 40

C7^ F 51

C8^ F 44

C9^ M 23

C10^ M 52

Age (years, mean ± SD) 41.9 ± 9.8
f

F, female; M, male; SD, standard deviation. All controls had no previous history of
brucellosis and yielded a negative Wright serum agglutination test (<1/80). *Isolation of
PBMCs that were used for macrophage differentiation and in vitro infection with Brucella
spp, ^isolation of PMNs that were used for in vitro infection with Brucella spp.
TABLE 1 Characteristics of patients with acute brucellosis (AB).

Patient# Sex Age
(years)

Symptoms/Findings Route of
transmission

Wright
SAT

Bloodculture Antibiotictreatment

AB1 F 40 Fatigue, malaise myalgias, arthralgias Consumption 1/640 N/A Rifampicin
Doxycycline

AB2 F 53 Fever, sweating, arthralgias, peripheral arthritis Consumption 1/320 Negative Rifampicin
Doxycycline
Amikacin

AB3 M 31 Fever, sweating, fatigue Consumption/
contact

1/320 Negative Rifampicin
Doxycycline
Amikacin

AB4 M 36 Fever, sweating, malaise, fatigue Consumption 1/5120 Negative Rifampicin
Doxycycline
Amikacin

AB5 M 55 Fever, sweating, lumbar spondylitis Contact 1/160 Brucella spp Rifampicin
Doxycycline
Amikacin

AB6 M 39 Fever, myalgia Contact 1/320 Brucella spp Rifampicin
Doxycycline
Amikacin

AB7 M 64 Sweating, fatigue, low back pain Consumption 1/320 Brucella spp Rifampicin
Doxycycline
Amikacin

AB8 F 45 Fatigue, lumbar spondylitis Consumption 1/640 N/A Rifampicin
Doxycycline
Amikacin

AB9 M 18 Fever, sweating, malaise, fatigue myalgias,
arthralgias

Consumption/
contact

1/160 Brucella spp Rifampicin
Doxycycline
Amikacin

AB10 M 52 Fatigue, myalgias, arthralgias, peripheral
arthritis

Contact/REV1
vaccine

1/160 Negative Rifampicin
Doxycycline

Age (years, mean
± SD)

43.3 ± 13.4
F, female; M, male; N/A, not available; SAT, serum agglutination test; SD, standard deviation.
Duration of antibiotic treatment was 8-12 weeks for rifampicin (600 mg/daily) and doxycycline (200 mg/daily), and 2-3 weeks for Amikacin (1 gr/daily).
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PBMCs and PMNs isolation

PBMCs and PMNs were isolated from EDTA blood by

Histopaque (Sigma-Aldrich, 1077 and 1119) double-gradient

density centrifugation (30 minutes, 700g, at 20°C-25°C)

according to the manufacturer’s recommendations. Then, cells

were washed once with phosphate buffered saline (PBS-1x,

ThermoFisher Scientific) and cultured. Cell purity was ≥ 98%

as assessed by microscopy (May Grunwald-Giemsa staining)

and/or flow cytometry.

For RNA experiments, cell pellet was resuspended in 1mL

TRIzol reagent (ThermoFisher Scientific) and the extraction

procedure was performed immediately after cell isolation,

according to the manufacturer’s instructions.
Mj differentiation

Human Mj were differentiated from isolated PBMCs from

four controls (Table 2). To promote Mj differentiation,

monocytes were isolated in RPMI-1640 (ThermoFisher

Scientific) using plastic adherence. Non-adherent cells were

removed after 6h (day 0). Adherent cells were cultured in

RPMI-1640 culture medium supplemented with 10%

autologous serum for 6 additional days (day 1-6) and

penicillin/streptomycin solution (ThermoFisher Scientific)

(11). Cell cultures were washed with prewarmed PBS-1x and

culture medium was changed every other day, to ensure the

removal of remaining contaminating lymphocytes. On day 7, cell

culture medium was removed and in vitro infection with

Brucella was performed.
Phenotypic characterization of Mj

To assess the differentiation status of human macrophages,

fixation and permeabilization were performed with 4%

paraformaldehyde and Triton-X (Sigma-Aldrich), respectively.

Then, cells were stained using a mouse monoclonal anti-CD68

antibody (Clone: KP1, ThermoFisher Scientific) for 1 hour. A

rabbit-anti mouse IgG Alexa Fluor 594 (ThermoFisher

Scientific) was used as secondary antibody. DAPI solution

(Ibidi) was used as nuclear counterstain. Samples were

visualized with a fluorescence microscope (OLYMPUS BX51)

with a fixed Nikon camera (model DS-Fi1, lens 100x)

(Supplementary Figure S1A).
In vitro infection

A clinical strain of Brucella spp., isolated from peripheral

blood from a patient with acute brucellosis, was used for in vitro

experiments. Isolate was presumptively identified as B. melitensis
Frontiers in Immunology 04
135
by automated system VITEK 2 (bioMérieux), based on the

biochemical characteristics of isolate. The isolate was aliquoted,

and stored at −70°C until used. Bacterial inoculum for cell

infection was cultured on blood agar for 3 days under aerobic

conditions, at 37°C and 5% CO2 according to the literature and

American Society for Microbiology (ASM) guidelines (12, 13).

Bacterial suspension with 0.5 McFarland was opsonized for 30

minutes using human serum and then diluted in RPMI and ~ 107

bacteria in 0.5 ml of RPMI were added to each well (20 MOI) of

PMNs orMj. Subsequently, cells were cultured for 0.5h for PMNs

and 2h and 24h for Mj. After a washing step with PBS, cells were

resuspended in TRIzol reagent (ThermoFisher Scientific) and the

RNA extraction procedure was performed immediately, according

to the manufacturer’s instructions. Untreated PMNs and

untreated Mj, cultured for 0.5h or 2h respectively, served as

control. The experimental procedure with Brucella spp. was

performed at biosafety level 3. The above time points and

concentrations were optimal for Mj or PMNs stimulation, and

established in preliminary experiments.
Assessment of phagocytosis in Mj
and PMNs

To evaluate phagocytosis in Mj and PMNs, cells were fixed

with 4% paraformaldehyde (Sigma-Aldrich), permed with

Triton-X (Sigma-Aldrich) and then stained using a mouse

monoclonal anti-Brucella antibody (LSBio) for 1 hour. After

thorough washes with PBS-1x, a rabbit-anti mouse IgG Alexa

Fluor 594 (ThermoFisher Scientific) was used as secondary

antibody. DAPI solution (Ibidi) was used as nuclear

counterstain. Samples were visualized with either a

fluorescence microscope (OLYMPUS BX51) with a fixed

Nikon camera (model DS-Fi1, lens 40x or 60x) or a confocal

microscope (Spinning Disk Andor Revolution Confocal System,

Ireland) with PLAPON 606O/TIRFM-SP, NA 1.45 and

UPLSAPO 100XO, NA 1 .4 ob j ec t i ves (Olympus)

(Supplementary Figures S1B, C).

To further evaluate phagocytosis in PMNs, cells were

analyzed by flow cytometry, using the neutrophil-specific

marker CD66b (PerCP-Cyanine5.5 conjugated CD66b,

Biolegend). Bacteria were stained using a mouse monoclonal

anti-Brucella antibody (LSBio), detected with a rabbit anti-

mouse Alexa Fluor 647 (ThermoFisher Scient ific)

(Supplementary Figure S1D).
RNA sequencing

RNA sequencing for Mj and PBMCs was performed as

previously described (14). To analyze RNA sequencing data,

fragments were aligned with GSNAP (2020–12–16) to the Homo

sapiens (human) genome assembly GRCh38 (hg38) from
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Genome Reference Consortium, and Ensembl annotation

version 98 was used for the splice site support. Uniquely

aligned fragments were counted with featureCounts (subread

v2.0.1), again with the support of the Ensembl annotation. The

exploratory analysis was performed with the DESeq 2 (v1.24.0)

package within R (v3.6.3). Bias for patients was assessed using an

exploratory correction with the variance stabil ized

transformation data of DESeq2 and the removeBatchEffect

function of edgeR (3.26.8). Differential expression between

before and after treatment was performed with a correction

for patient.

For PMNs, 1000 ng of total RNA were used for the

preparation of cDNA libraries, using the TruSeq RNA Library

Preparation Kit v2 (Illumina), according to the manufacturer’s

instructions. Library quality was evaluated using the Agilent

DNA 1000 Kit (Agilent) with an Agilent 2100 Bioanalyzer.

Quantification was performed by amplifying a set of six pre-

diluted DNA standards (KAPA Biosystems) and diluted cDNA

libraries by RT-qPCR. Isomolar quantities of up to 20 cDNA

libraries, barcoded with different adaptors, were multiplexed.

Sequencing was performed in a single-end manner at the Greek

Genome Center, using a NextSeq 500/550 75c kit (Illumina) for

the in vitro samples and a NovaSeq 6000 SP 100c kit (Illumina)

for the ex vivo samples, generating 75 bp and 100 bp long reads,

respectively, and an average of 25 million reads per library. Raw

sequence data in FastQ format were uploaded to the Galaxy web

platform, and standard tools of the public server “usegalaxy.org”

were used for subsequent analysis (15). Briefly, quality control of

raw reads was performed with FastQC (v072+galaxy1), followed

by the removal of adapter sequences and low-quality bases using

Trim Galore! (v0.6.3). Next, HISAT2 (v2.2.1+galaxy0) was

applied for the alignment of trimmed reads to the Homo

sapiens genome assembly GRCh37 (hg19) from Genome

Reference Consortium. Assessment of uniform read coverage

for exclusion of 5’/3’ bias and evaluation of RNA integrity at the

transcript level were performed using Gene Body Coverage

(v2.6.4.3) and Transcript Integrity Number (v2.6.4.1) tools,

respectively. Differential gene expression was determined with

DESeq2 (v2.11.40.6+galaxy1), using the count tables generated

from HTSeq-count (v0.9.1) as input. The variability within and

between individuals in this paired-data study was incorporated

in the analysis, considering the treatment as the primary factor

and the individual/patient as the secondary factor affecting gene

expression. RNA sequencing data are provided in

Supplementary File S1.

Pathway and biological processes analysis was performed

using the Enrichr analysis tool (14, 16). Heat maps were

generated using the Morpheus software, https://software.

broadinstitute.org/morpheus (Broad Institute). Gene set

enrichment (GSEA) pre-ranked analysis (1000 permutations,

minimum term size of 15, maximum term size of 500) was

performed using the GSEA software (Broad Institute). Gene sets

were ranked by taking the -log10 transform of the p-value and
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signed as positive or negative based on the direction of fold

change. Annotated gene sets from Molecular Signatures

Database (MSigDB) were used as input (16).
Cytokine measurement

The levels of cytokines were measured using the

LEGENDplex™ Multi-Analyte Flow Assay Kit (Biolegend) in

a CyFlow Cube 8 flow cytometer (Sysmex Partec, Germany),

according to the manufacturer’s instructions. For comparisons

between the groups the Wilcoxon signed-rank test for paired

samples was used. Statistical analysis was performed using

GraphPad Prism (version 9.0, GraphPad Inc., La Jolla, CA).

Significance was set at p < 0.05.
Results

Analysis of the molecular signature of
human macrophages infected in vitro
with Brucella spp.

To provide a time-course analysis of the molecular

alterations of human Mj during infection with Brucella spp.,

we performed in vitro infection of human Mj, derived from the

differentiation of peripheral blood monocytes from control

subjects, and compared the transcriptomic signature of

untreated Mj compared to that of infected cells at 2h and 24h

post-infection. Principal component analysis (PCA) revealed

that there was a prominent change in the transcriptomic

profile of Mj at 24h after infection compared to untreated

cells and cells at 2h after infection (Figure 1A). Pathway analysis,

using the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, of the significantly upregulated differentially expressed

genes (DEG) (False Discovery Rate/FDR <0.01) between

untreated Mj and Mj at 2h post-infection revealed an

overrepresentation of circadian rhythm and ribosome

biogenesis pathways, whereas downregulated DEGs were

enriched in pathways associated with viral infection and

infection from intracellular pathogens processes, including

herpes simplex virus 1 infection, hepatitis C, and Salmonella

infection and TNF signaling (Figures 1B, C). Interestingly, we

observed a decreased expression of genes encoding proteins

critical in pathogen recognition, such as NOD1, TLR5, TLR6

and NLRC4 (Figure 1C).

We next assessed the molecular changes that take place at

24h post-infection. Pathway analysis of the downregulated

DEGs with the highest variance (log2 fold change > 2 and <

-2, FDR<0.01) showed overrepresentation of pathways

associated with infection with S. aureus and infection with

intracellular pathogens, such as leishmaniasis and tuberculosis,

as well as the pathways associated with phagosome and lysosome
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(Figure 2A). No statistically significant pathway was observed in

the respective analysis of upregulated genes. Further, analysis of

the DEGs that were downregulated at 24h after infection

revealed that they are involved in biological processes

associated with inflammation, and more specifically with the

production of IL-1 and Mj function (Figure 2B). Regarding the

genes involved in the aforementioned pathways, there was a

downregulation of several genes involved in the phagosome

formation and function at 24h after infection, including those

encoding for several Fcg receptors (FCGR1A, FCGR2A, FCGR2B,
FCGR2C, FCGR3A, FCGR3B), toll-like receptors (TLR2, TLR4,

TLR6), other sensors of pathogen-associated molecular patterns

(CLEC7A, CD14), integrins and other receptors involved in

phagocytosis (ITGB3, ITGAM, ITGB2, CD36) (Figure 2C). We

also observed a downregulation in the expression of genes

encoding cytokines and cytokine receptors of the IL-1 family

(IL18, IL1RN, IL36RN), chemokines (CCL1, CCL2, CCL7, CCL8,

CCL13, CXCL9) and chemokine receptors (CCR1, CCR2, CCR3,

CCR5), formyl peptide receptors (FPR1, FPR2, FPR3), and

complement anaphylatoxin receptors (C3AR1, C5AR1, C5AR2)

(Figure 2C). Regarding the regulation of IL-1 production, we

observed the downregulation of several genes encoding

inflammasome sensors (NLRC4, NLRP12, MEFV, AIM2), the

adaptor PYCARD, and the gene that encodes the effector CASP1

(Figure 2C). Taken together, infection of Mj with Brucella spp.
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drives major changes in the transcriptomic profile of infected

Mj, downregulating a plethora of genes involved in the

formation of phagosomes and the recognition of pathogens, in

an effort to preserve pathogen survival within Mj.
Analysis of the molecular signature of
human PMNs infected in vitro with
Brucella spp.

Even though Mj are the major cell population infected by

Brucella spp, it has been previously shown that this pathogen can

also infect neutrophils (7, 17). To characterize the molecular

signature of infected PMNs with Brucella spp, we performed in

vitro infection of human PMNs for 0.5h, derived from control

subjects, and compared the transcriptomic signature of

untreated PMNs to that of infected cells. Pathway analysis of

the significantly overexpressed DEGs (FDR<0.01), using the

KEGG database, highlighted Ribosome as the top upregulated

pathway in Brucella-infected PMNs (Figure 3A). Notably,

almost all genes (75 out of the 79) encoding for structural

proteins of both small and large subunits of cytoplasmic

ribosomes were found significantly upregulated (Figure 3B).

Respective analysis of the downregulated DEGs demonstrated

modulation of several pathways, some of which were also
A B

C

FIGURE 1

Alterations in the transcriptomic profile of human Mj infected in vitro for 2h with Brucella spp.(A) Principal component analysis (PCA) of the
transcriptome of all 12 Mj samples. T1-T4 represent untreated control Mj, T11-T14 represent samples from Mj at 2h post-infection and T21-
T24 represent samples at the 24h time point. (B) Pathway analysis of the DEGs at 2h post-infection compared to control, using the KEGG
database as reference. Light blue color represents statistical significance (C) Heatmaps depicting the DEGs of the respective pathways.
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downregulated in Brucella-infected Mj at 2h post-infection,

such as TNF signaling and herpes simplex virus 1 infection

(Figures 1B, 3C). However, various inflammation-related

biological processes were significantly downregulated

selectively in PMNs, namely the phosphatidylinositol signaling,

NF-kappa B signaling, and cellular senescence pathways

(Figure 3C). Amongst the downregulated transcripts in

Brucella-infected PMNs, we identified several modulators of

apoptosis (BIRC3, FOXO3, DNM1L, ITPR1, TRAF1, TRAF5)

and inflammation, as exemplified by decreased mRNA

expression of cytokines and corresponding receptors of the IL-

1 family (IL1A, IL1B, IL18R1), chemokines (eg. CCL20), and

various signaling mediators, such as kinases (AKT3, ATM, ATR,

CDK6, DGKD, DGKE, IPMK, IPPK, MAPK13, MAPK14,

RPK1) (Figure 3C).
Transcriptomic profiling of active
human brucellosis

We further investigated the transcriptomic signature of

active human brucellosis. To do so, PMNs were isolated from

eight patients with active brucellosis before the initiation of

antibiotic treatment (active disease) and three months after

completion of the antibiotic treatment, when patients were

free of symptoms (remission). Transcriptomic analysis
Frontiers in Immunology 07
138
identified 318 DEGs (FDR<0.1). DEGs that were upregulated

after treatment are involved in RNA transport and autophagy

pathways, whereas downregulated DEGs after treatment are

involved in NOD-like receptor signaling pathway and

cytokine-cytokine receptor interaction pathways, as well as

several pathways associated with infectious diseases

(Figure 4A). The upregulated genes that encode proteins

involved in RNA transport were the members of the

eukaryotic initiator factors (EIF) family EIF1, EIF3I, EIF4A3,

EIF5, and the genes of the autophagy pathway were ATG2A,

GABARAPL1, TP53INP2, DDIT4 and IRS2 (Figure 4B). On the

other hand, we observed a downregulation of critical genes in

immune regulation, such as IL1B, CX3CR1, CCR2, CCR5,

CXCR6, STAT1, AIM2, and CD40, as well as genes associated

with interferon signaling, such as OAS1, OAS2, GBP1 and GPB3

(Figure 4B). We further performed gene set enrichment analysis

(GSEA) using the Hallmark Gene Set collection of the Molecular

Signatures Database. We observed a positive correlation of the

transcriptomic signature of PMNs during active brucellosis with

IFN-g and IFN-a response and with inflammatory response

(Figure 4C). Moreover, comparing the transcriptomic profiling

of ex vivo PMNs after successful completion of treatment versus

that of in vitro Brucella-infected PMNs, we found that 188 genes

(59% of the ex vivo identified DEGS) were commonly regulated

in both datasets (Supplementary Figure S2A). Furthermore, the

majority of commonly regulated genes (111 out of 188) followed
A

B

C

FIGURE 2

Transcriptomic profiling of human Mj infected in vitro with Brucella spp at 24h post-infection. (A) Pathway analysis of the DEGs with the
highest variance at 24h post infection compared to control, using the KEGG database as reference. (B) Enriched biological processes in which
the downregulated genes are involved. (C) Heatmaps depicting the DEGs of the phagosome pathway, the inflammatory response and positive
regulation of IL-1b production biological processes.
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a reverse pattern of differential expression (eg. upregulated upon

in vitro Brucella infection and downregulated ex vivo, upon

successful completion of treatment, Supplementary Figures

S2B, C).

In parallel, we performed transcriptomic analysis of PBMCs

isolated from six patients with active brucellosis before and after
Frontiers in Immunology 08
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antibiotic treatment. Transcriptomic analysis identified 62 genes

with significantly altered expression (FDR<0.1) after treatment

(Figure 5A). We observed that successful treatment resulted in the

increased expression of HIF1A, a critical regulator of

inflammation, and of the genes that encode IL-1 receptor IL1R1,

and its accessory protein IL1RAP, which form a complex that
A B

C

FIGURE 3

Alterations in the transcriptomic profile of human PMNs infected in vitro with Brucella spp. (A) Pathway analysis of the DEGs from PMNs at 0.5h
post infection with Brucella spp compared to control, using the KEGG database as reference. (B) Heatmap depicting the DEGs of the ribosome
pathway. (C) Heatmaps depicting the DEGs of the pathways enriched for downregulated genes.
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mediates IL-1 signal transduction (Figure 5A). On the other hand,

there was a downregulation in the expression of genes that play a

major role in immune function, such as CD274, which encodes

PD-L1, STAT1, CD3G, the intracellular immunoglobulin receptor

TRIM21, CXCR6, the lymphocytic activation molecules SLMF6,

SLAMF7 and genes that encode proteins important in effector cell

cytolytic processes, such as CD160, GZMA, GZMH (Figure 5A).

Moreover, several identified genes are involved in interferon-

related activation pathways, such as GPB3, GPB4, OAS1, OAS2,

OASL, IFI16, and XAF1 (Figure 5A). In the same line, GSEA

analysis revealed that the gene sets with the most significant

positive association with active disease were IFN signaling and

OXPHOS, whereas the one with the most significant negative

association was the hypoxia gene set (Figure 5B). Notably, we

further identified 24 genes that were differentially expressed both

in PMNs and PBMCs (Figure 5C). Among these common genes,

CXCR6, TRIM21, SLAM7, CD274 and the genes associated with

IFN signaling OASL, OAS1, OAS2, GBP3, and STAT1 were

downregulated in both datasets, whereas IL1R1 was commonly

upregulated (Figure 5D).
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Cytokine levels in acute brucellosis

To this point, we observed that the molecular signature that

characterizes acute brucellosis is positively correlated with those of

IFN-a and IFN-g responses. For this reason, we measured the

levels of several cytokines in the sera of patients during acute

brucellosis and after successful treatment. We observed a

significant downregulation in the levels of IFN-g, IL-1b and IL-6

post-treatment, whereas there was no statistically significant

difference in the levels of IFN-a, IL-18, TNF, MCP-1 and IL-

17A (Figures 6A–H).We further confirmed that the levels of IFN-

g are increased in active disease in a cohort of patients with

chronic relapsing brucellosis. In this cohort, the levels of IFN-g
were increased during relapse compared to remission (Figure 6I).
Discussion

The interaction between Brucella and the host immune system

is critical for the development of persistent infection or infection
A

B

C

FIGURE 4

Transcriptomic analysis of PMNs from patients with brucellosis before treatment initiation and after successful completion of treatment.
(A) Pathway analysis of the DEGs from PMNs after treatment compared to PMNs isolated from the same patients (paired-data analysis) during
active brucellosis, using the KEGG database as reference. Light blue color represents statistical significance (B) Heatmaps depicting the DEGs of
the respective pathways. P1-P8 refer to different patients. (C) GSEA for genes related to response to interferons, and inflammation.
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clearance (5, 9). To date, transcriptomic data were derived from

Brucella-infectedmousemacrophages ormouse cell lines, domestic

ruminants or Brucella-vaccinated animals (18–24). This study

analyses, for the first time, the transcriptome profile, both in

vitro, in Brucella-infected primary Mj and PMNs, and ex vivo, in

PBMCs and PMNs derived from patients with acute brucellosis

before and after treatment. This provides the molecular signature

that characterizes the main host cellular immune populations

during their initial interplay with invading Brucella, and the

molecular signature of different stages of the disease.

Macrophages differentiated in vitro from purified peripheral

bloodmonocytes arewidely used in the literature to simulate human

macrophages for in vitro studies (11). Different isolation strategies

may affect the purity and cell yield of resulting monocytes and/or

monocyte-derived macrophages, as well as the monocyte subtype

and the polarization status of subsequently differentiated cells. To

address the transcriptomic changes that take place during Mj
infection, we engaged cell cultures of monocytes isolated with

plastic adhesion, a setup that results in the generation of Mj with

inflammatory characteristics andM1skewing (11).Although, plastic
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adhesion is a straightforward, uncomplicated, and low-cost isolation

method, it results in lower monocyte yield compared to other

immune-based methods (11). Whilst all our samples were handled

similarly, we should always take into consideration the described

limitations of these in vitro systems when forming conclusions.

Early molecular events following phagocytosis of Brucella by

macrophages are crucial for the activation of innate immunity

leading to the induction of a favorable Th1 response (5, 8, 9).

Several lines of evidence indicated that Brucella manipulates

multiple effector mechanisms in macrophages to its benefit (5, 9).

In line with this, we identified that in Mj infected in vitro by a

clinical strain of Brucella spp, the expression of several genes

encoding key proteins involved in the recognition of Brucella and

in the proinflammatory response against the pathogen were

markedly suppressed. These alterations may initiate as soon as 2h

post-infection being more prominent at 24h post-infection.

Interestingly, most downregulated DEGs related to phagosome,

TNFa signaling and IL-1b production. Indeed, previous studies

reported that various Brucella virulence factors and pathogen-

associated molecular patterns (PAMPs), such as Type IV
A B
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FIGURE 5

Transcriptomic analysis of PBMCs from patients with brucellosis before treatment initiation and after successful completion of treatment.
(A) Heatmap depicting the DEGs from PBMCs from patients with acute brucellosis before treatment initiation and from the same patients
(paired analysis) after successful treatment. P1-P6 refer to different patients. (B) GSEA for genes related to response to interferons, oxidative
phosphorylation and hypoxia. (C) Venn diagram and (D) heatmap depicting the common genes that were significantly differentially expressed in
PMNs and PBMCs from patients with brucellosis after treatment.
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secretory system (T4SS), lipopolysaccharide (LPS) and outer

membrane lipoproteins (OMPs) modify phagosome biogenesis

and trafficking in macrophages to inhibit phagolysosome fusion,

and develop suitable vacuolar compartments to enable intracellular

replication of themicrobe (5, 9).Moreover, the current study comes

in agreement with previous data demonstrated that Brucella

Omp25 protein inhibits in vitro the production of TNF in human

Mj and dendritic cells preventing cell maturation and antigen

presentation (25–27). Furthermore, several genes encoding

members of the IL-1 family (IL18, IL1RN, IL36RN) and

inflammasome complexes (NLRC4, NLRP12, MEFV, AIM2,

PYCARD, CASP1) are significantly downregulated in Brucella-
Frontiers in Immunology 11
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infected Mj. Experimental studies indicated that inflammasomes

and their effectors are essential for an initial effective immune

response against Brucella infection (28–30). On the other hand,

Brucella can regulate canonical and non-canonical inflammasome

signaling and pyroptosis in macrophages by impairing caspase-1

and caspase-4/11 activation, and IL-1b secretion (31, 32). It is

intriguing that Brucella downregulates macrophage MEFV

expression, the gene responsible for familial Mediterranean fever,

the prototype IL-1b-mediated autoinflammatory disease (33).

Mutations in the MEFV gene are highly prevalent in the Middle

East and Mediterranean countries where brucellosis is endemic

(33). Our data further support the hypothesis thatMEFVmutations
A B D
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FIGURE 6

Levels of cytokines in the serum of patients with active brucellosis. (A–H) Levels of IFN-a, IFN-g, IL-1b, IL-18, TNF, IL-6, MCP-1 and IL-17A in the
serum of patients with acute brucellosis before treatment initiation and after successful treatment. (I) Levels of IFN-g in an independent cohort
of patients with chronic relapsing brucellosis during relapse and remission. *p<0.05, **p<0.01. Wilcoxon signed rank test. ns, non significant.
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may provide an evolutionary selective advantage to confer

protection against brucellosis (34).

Recently, PMNs emerge as novel players during the initial stages

of innate immune response against Brucella infection (7). Brucella

resists the killing mechanisms of human PMNs and induces the

early death of these cells promoting their phagocytosis by Mj,
which become vehicles for bacterial dispersion within the host (35).

Studies in murine brucellosis proposed that infected PMNs

attenuate cellular adaptive immunity, given that depletion of

PMNs favored bacterial elimination (36). Based on these, this

study examined the early transcriptome alterations of in vitro

Brucella-infected neutrophils, before their premature death.

Brucella spp-infected PMNs were characterized by increased

expression of genes associated with ribosome biogenesis, probably

in an effort to arm their bactericidal mechanisms and survive. Of

interest and in a similar way toMj, in vitro infection of PMNs with

Brucella led to downregulated gene expression in key molecular

pathways for PMNs physiology and function including

phosphatidylinositol signaling, TNF signaling, and cellular

senescence. Phosphatidylinositol signaling pathway plays an

important role in membrane dynamics and trafficking, including

proteins implicated in endosomal membranes and autophagosome

assembly and activity (37, 38). Autophagy is closely related to the

intracellular lifestyle of many pathogens, including Brucella (39).

We hypothesize that the downregulation of several autophagy

sensors and regulators belonging to phosphatidylinositol pathway

further modulates the autophagic capacity of PMNs against

Brucella. This may also explain the inability of Brucella-infected

PMNs to form neutrophil extracellular traps (NETs) (17), an

effector mechanism positively associated with the autophagy

machinery (40). Downregulation of the cellular senescence

pathway is in agreement with the reported premature death of

Brucella-infected PMNs (17). Additionally, senescence has been

associated with resistance to cell death (41). Moreover, it appears

that perturbation of TNF signaling represents a common stealth

strategy of Brucella to avoid both Mj- and PMNs-induced

inflammation further restricting cellular immunity (8).

Human brucellosis causes high clinical morbidity and protean

clinical manifestations, mimicking many infectious and non-

infectious diseases, as any organ can be affected. The definition and

diagnosisofdifferentdisease typesofhumanbrucellosis, suchasacute,

chronic/relapsing, asymptomatic/subclinical, and cured, continues to

bechallengingmakingthetherapeuticdecisiondifficult inmanycases.

This is due to various factors including the non-specific and atypical

clinical features, the slowgrowth rateofBrucella inbloodcultures and

the reduced sensitivity of the method for detecting chronic cases.

Furthermore, laboratory diagnosis in people living in endemic

regions, high-risk occupational groups and previously infected

individuals, as well as cross-reactivity in some serological assays

renders challenging the serodiagnosis of brucellosis (3, 4, 10, 12).

To investigate the impact of human brucellosis on host

immunity and identify possible candidate markers of active

disease and response to treatment, we next assessed the
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transcriptome profiling of PBMCs and PMNs isolated from newly

diagnosed patients with acute brucellosis, before and three months

after their successful treatment. We observed, both in PBMCs and

PMNs, transcriptomic alterations related to major pathways of

inflammation, supporting its role in infection overcome. PBMCs

from patients successfully treated were characterized by the

overexpression of genes critically involved in hypoxia (HIF1A)

and IL-1 signaling, and the downregulation of genes implicated in

oxidative phosphorylation, lymphocyte activation, and cytotoxicity.

In line with these data, a recent experimental study has

demonstrated that absence of HIF-1a renders mice susceptible to

Brucella infection, while HIF-1a reduces oxidative phosphorylation

and increases glycolysis leading to inflammasome activation and IL-

1b release in infected macrophages (42).

Treatment of brucellosis led to increased expression of

several genes related to autophagy machinery in PMNs,

including DDIT4/REDD1 encoding a key regulator of

autophagy-mediated NET formation (43). It seems that after

clearance of infection, PMNs restored critical functions impaired

by Brucella, such as autophagy. However, they did not acquire a

proinflammatory phenotype as indicated by the downregulated

expression in genes related NOD-like receptor signaling and

cytokine-cytokine interaction pathways.

Comparison of the transcriptomic profiling of ex vivo PMNs

after successful completion of treatment versus that of in vitro

Brucella-infected PMNs, showed a substantial overlap, as 59% of

the ex vivo identified DEGs were commonly regulated in both

datasets. However, data derived from in vitro infected cells under

“controlled” laboratory conditions cannot simulate completely

the complex cellular interactions that occur upon human

infection, or the possible differences in the kinetics by which

certain processes unfold in vitro versus ex vivo.

Of note, this study identified a common set of 24 genes that

were differentially expressed both in PMNs and PBMCs suggesting

candidate molecular diagnostic/prognostic targets for human

brucellosis. Among them, type II IFN pathway, which is the

major driver of Th1 immunity against Brucella (5), appears to be

induced in active disease and attenuated after treatment. Indeed,

using patients’ sera, we confirmed at the protein level, that IFN-g
and other Th1 cytokines, such as IL-1b and IL-6, were increased

during active disease and significantly diminished in cured, non-

relapsed patients, whereas the levels of IFN-a, which belongs to

type I IFN family, did not show significant changes. Collectively,

these results confirmed past studies highlighting the significant role

of a robust Th1 response to tackle acute infection and brucellosis-

acquired cellular anergy of chronic disease (44–46).

In conclusion, this study provides an integrated

transcriptome landscape of immune cells signature in human

brucellosis suggesting candidate molecular pathways and targets

for active disease and response to treatment. Based on these data,

future validation and mechanistic studies may further decipher

the pathogenesis of this ancient and continuously re-emerging

zoonotic disease (1, 2, 47).
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Urinary tract infection (UTI) caused by uropathogens is the most common

infectious disease and significantly affects all aspects of the quality of life of the

patients. However, uropathogens are increasingly becoming antibiotic-

resistant, which threatens the only effective treatment option available-

antibiotic, resulting in higher medical costs, prolonged hospital stays, and

increased mortality. Currently, people are turning their attention to the

immune responses, hoping to find effective immunotherapeutic interventions

which can be alternatives to the overuse of antibiotic drugs. Bladder infections

are caused by the main nine uropathogens and the bladder executes different

immune responses depending on the type of uropathogens. It is essential to

understand the immune responses to diverse uropathogens in bladder

infection for guiding the design and development of immunotherapeutic

interventions. This review firstly sorts out and comparatively analyzes the

immune responses to the main nine uropathogens in bladder infection, and

summarizes their similarities and differences. Based on these immune

responses, we innovatively propose that different microbial bladder infections

should adopt corresponding immunomodulatory interventions, and the same

immunomodulatory intervention can also be applied to diverse microbial

infections if they share the same effective therapeutic targets.
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Introduction

Urinary tract infection (UTI) is the most common infectious

disease of the urinary system caused by diverse uropathogens,

affecting females and males of all ages (1). In 2019, the overall

global incident cases of UTI were 4046.12 ✕ 105, with 871.90 ✕

105 for males and 3174.22 ✕ 105 for females (2). Notably, the

incident cases of UTI increased by 60.40% in the past thirty

decades. UTI results in dysuria, frequency, urgency, suprapubic

pain, hematuria, and serious sequelae including frequent

recurrences, pyelonephritis with sepsis, renal damage, and pre-

term birth and significantly affects all aspects of the quality of life

of the patients (3, 4). In addition, UTI ranges in severity from

mild self-limitation to severe sepsis, with 20-40% mortality (2).

UTI has been causing a huge burden on human health, medical

resources, and financial expenditure (2). In the United States

alone, UTI results in >10 million outpatient visits and $3.5

billion in societal costs per year (2, 5).

UTI is caused by main nine pathogens, epidemiologically

covering almost 100% of UTI confirmed cases (1). These

pathogens include uropathogen escherichia coli (UPEC), Klebsiella

pneumoniae (K. pneumoniae), Staphylococcus saprophyticus (S.

saprophyticus), Enterococcus faecalis (E. faecalis), Group B

Streptococcus (GBS), Proteus mirabilis (P. mirabilis), Pseudomonas

aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and

Candida spp. (Candida.) (1). Antibiotics are the first-line treatment

options for UTI but the effectiveness is being increasingly limited

due to the rise of bacterial resistance (6, 7) (Table 1). More than 80%

resistance of Escherichia coli (E. coli) isolated from UTI to

amoxicillin-clavulanic acid, ciprofloxacin, and trimethoprim-

sulfamethoxazole has been observed in developing countries (39).

In developed countries such as the United States, the resistance of

Enterobacteria to some antibiotics for UTI has exceeded 30% (39,

40). Both the World Health Organization (WHO) and the

Infectious Disease Society of America (IDSA) claimed the lack of

antibiotics for the main pathogens of UTI and urged countries

around the world to develop new drugs and therapies that can

replace the overuse of antibiotics (41, 42). Thus, people move their

sights on the immune responses hoping to find some effective

therapeutic targets to combat the infection (4, 43–45).

The bladder possesses a wide range of immune responses

against diverse uropathogens, including inhibitors of adhesion

and antimicrobial protein production (4, 43–45). The bladder

immune responses to invading uropathogens have some in

common but also show differences depending on the type of

uropathogens. For example, both UPEC and GBS stimulate

bladder epithelial cells (BECs) to produce the antimicrobial

peptide LL-37, and it is surprising that LL-37 has antibacterial

effects on UPEC, but promotes GBS infection in the bladder (46–

48). As such, individual immunomodulatory intervention

options for UTI should be taken based on immune responses

to the specific uropathogen in the bladder. Improved
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understanding of the bladder immune responses to diverse

uropathogens is cruc ia l for our abi l i ty to des ign

immunomodulatory interventions and target them properly.

In this Review, we comparatively analyzed the similar and

different immune responses triggered by the main nine

uropathogens in the bladder. Based on the immune responses,

we discussed the immune therapeutic targets with great

prospects in-depth and innovatively proposed that when the

bladder infection is treated through the modulation of immune

responses, different uropathogens should adopt corresponding

modulation options to improve the therapeutic effects.
The bladder immune responses to
the main nine uropathogens

Since the differences in virulence factors of the nine

uropathogens (Table 1), the immune responses against the

nine uropathogens are diverse in the bladder. In this section,

we summarize the characteristics and research status of immune

responses to the major nine uropathogens in bladder infection.
UPEC

UPEC is the most common uropathogen of bladder

infection (49). When UPEC ascends to the bladder along the

urinary tract, it adheres to the mannose receptors of BECs

through type I fimbriae (50). Tamm-Horsfall glycoprotein

(THP), the most abundant urine protein, plays a key role to

prevent the adhesion of UPEC to the BECs (51, 52). THP has a

high-mannose structure among its disaccharides, which binds to

the type I fimbriae and competes with the mannose receptors of

BECs, thereby reducing the adhesion and colonization of UPEC

to the bladder, and leading to the elimination of UPEC through

urination (53, 54). In addition, the THP can prevent excessive

inflammation in bladder infection via inhibition of the

chemotaxis and reactive oxygen species (ROS) production by

binding to sialic acid-binding Ig-like lectin-9 (Siglec-9) receptor

of the neutrophils (55). Once UPEC successfully adheres to

BECs, extracellular immune responses will be activated by

lipopolysaccharide (LPS) and type I fimbriae of UPEC via

binding to toll-like receptor 4 (TLR4) on BECs (56). The

activation of TLR4 stimulates BECs to secrete stromal-cell

derived factor 1 (SDF-1), and interleukin- 6 (IL-6) (57, 58).

SDF-1 can bind to the CXC-motif chemokine receptor 4

(CXCR4) on neutrophils and recruit them to accumulate to

the infection site (57). The aggregated neutrophils have the

ability to engulf UPEC and can be significantly enhanced by

BECs-secreted pentraxins (PTX3) (59). Cytokine IL-6 upon

activation of TLR4 promotes the expression of C-X3-C motif

chemokine 1 (CX3CL1) and recruits macrophages to the
frontiersin.org
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TABLE 1 Drug resistance and virulence factors of the main nine uropathogens.

Drug resistance Main virulence factors Refs

Adherence Toxin Immune
evasion

Iron
acquisition

Others

Type 1 pili
Type 2 pili
P pili
Dr adhesion
S pili
F1C pili

HlyA
Cnf1

Capsule Aerobactin
Enterobactin
Salmochelin
Yersiniabactin

Flagella (8–10)

Type 1 pili
Type 3 pili

Lps Capsule Aerobactin
Enterobactin

(8, 9,
11–13)

than Aas adhesin
Ssp adhesin
SdrI adhesin
Uaf adhesin

Aas Urease (9, 14–
17)

Ebp pili
Esp pili
Ace adhesin

Protease SigV (9, 18–
21)

es is bH/C Capsule (22–
24)

MR/P pili HpmA
HlyA
Pta

Capsule
ZapA

Proteobactin
Yersiniabactin

Flagella
Urease

(25–
31)

Extracellular DNA
Exopolysaccharides

ExoU
ExoT
Elastase
Phospholipase
Rhamnolipids

ExoS Pyochelin
Pyoverdi

QS (32–
35)

Als proteins Phospholipase
B

(36,
37)

ClfA and ClfB (18,
38)

tors A and B, Cnf1: cytotoxic necrotizing factor 1, Ebp: endocarditis- and biofilm-associated, E.f, Enterococcus
cus, HlyA: a-hemolysin, Lps: lipopolysaccharide, HpmA: haemolysin, K.p, Klebsiella pneumoniae, MR/P pili:
ed pili, QS: Quorum sensing, S.a, Staphylococcus aureus, SdrI: a surface-associated collagen-binding protein,
d lipase, UafB: a cell wall-anchored protein, ZapA: an extracellular metalloprotease.
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UPEC Penicillin, tetracycline, vancomycin resistance is 100%, ampicillin resistance is 90%, and cefazolin, ceftriaxone, cefepime,
levofloxacin, and ciprofloxacin resistance reaches 70% in China.

K.m Ampicillin penicillin, tetracycline, vancomycin resistance is close to 100%, nitrofurantoin resistance exceeds 90%, and
Cefpidoxime is close to 80% in China.

S.s Cefuroxime resistance is 81%, Ceftazidime resistance is 76%, Amoxicillin-Clavulanic Acid, Gentamicin resistance is more
65% in Nigeria.

E.f The resistance to amikacin, gentamicin, cefuroxime, ciprofloxacin, and cotrimoxazole is close to 100% in Poland.

GBS Tetracycline resistance is over 74%, erythromycin resistance is 63%, and the resistance to clindamycin and fluoroquinolon
over 40% in China.

P.m Amoxicillin-clavulanat resistance is 100%, ampicillin and nitrofurantoin resistances are 75% in Nepal.

P.a Topiperacillin-tazobactam and ceftazidime resistances are 100%, cefepime resistance is 75% in Saudi Arabia.

Candida. Posaconazole resistance is 92% in Iran.

S.s Nitrofurantoin resistance is 100% in Poland.

Aas: a hemagglutinin-autolysinadhesin, Als: agglutinin-like sequence, bH/C: b-hemolysin/cytolysin, Candida.: Candida spp, ClfA/B: Clumping Fac
faecalis, Esp: enterococcal surface protein, ExoU/T/S: exoenzyme U/T/S, F1C pili: type 1-like immunological group C pili, GBS, Group B streptoco
mannose-resistant Proteus-like, P.a, Pseudomonas aeruginosa, Pta: Proteus toxic agglutinin, P.m, Proteus mirabilis, P pili: pyelonephritis-associa
SigV: extracytoplasmic function sigma factor, S.s, Staphylococcus saprophyticus, SssF, S. saprophyticus surface protein F; Ssp: a surface-associate
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epithelium, which kill UPEC by phagocytosis and lipocalin-2

(LCN2) (60). LCN2 can restrict access of UPEC to iron, one of

the key nutrients for the growth of UPEC, and starve them to

death (61). Besides, IL-6 can enhance the expression of

antimicrobial peptides (AMPs), such as ribonuclease 7 (RNase

7) and LL-37, which exert antibacterial effects by disrupting the

microbial membrane (47, 58, 62–64). In the bladder of mice

lacking RNase 7 and LL-37, the UPEC communities are

significantly increased (47, 63). (Figure 1)

Some UPEC survives from the extracellular immune

responses and invades BECs, which then initiate the

intracellular efflux immune responses (65, 66). Once BECs are

invaded, two waves of UPEC expulsion in an innate immune

signaling-orchestrated process occur (67). The first wave is

mediated by the activation of TLR4 between 4 and 6h after

infection followed by the second mucolipin transient receptor

potential 3 (TRPML3)-activated wave occurring around 8h after

infection (67). In the first wave of UPEC expulsion, UPEC is

encapsulated within RAB27b+ vesicle and activates TLR4 by type

I fimbriae (67, 68). Activation of TLR4 signaling advances the

K33-linked polyubiquitination of TNF receptor associated

factors (TRAF3), which is then sensed by the RalGDS-

activating exocyst complex to locate and tether vesicles (68).

After that, Sec 6 and Sec 15, two submit of the activated exocyst

complex, stimulate collaboration between Rab11a/Rab11FIP3/

Dynein and Rab27b/MyRIP/MyosinVIIa to transport UPEC-

containing vesicles (67, 69). In addition, the activation of TLR4

can lead to the increase of cyclic adenosine monophosphate

(cAMP) which subsequently stimulates the caveolin-1/Rab27b/
Frontiers in Immunology 04
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PKA/MyRIP complex formation, and as a consequence, expels

UPEC from infected BECs (70). Once UPEC escapes the first

wave of efflux immune response by destroying the RAB27b+

vesicle, the second wave is initiated by lysosomal autophagy (71).

After the lysosome engulfed UPEC, the pH of the lysosome will

change from acid to neutral, and TRPML3 is able to sense the

UPEC-mediated lysosome neutralization of pH and release

calcium ions, which leads to the efflux of UPEC (71). (Figure 2)

BECs can adopt more intense immune responses against

UPEC by secretion of IL-6, IL-17, tumor necrosis factor-a
(TNF-a), C-X-C motif chemokine ligand 1 (CXCL1), CXCL2,

and CXCL5, which result in extensive neutrophil recruitment to

induction of BECs’ death and exfoliation (72–75). BECs’ death

and exfoliation carry a large amount of UPEC into the urine and

then excretes UPEC by urination (72–75). In addition, in

response to a-hemolysin, which is a virulence factor expressed

by UPEC, human BECs induce the production of IL-1b and IL-

18 through p38/ERK/ROS/NLRP3/caspase-1 signaling to recruit

mast cells, which can produce tryptase to promote the

exfoliation of BECs (76, 77). A point worthy of attention is

that ROS and inflammation associated with NOD-like receptor

thermal protein domain associated protein 3 (NLRP3) or

cyclooxygenase-2 (COX-2) also contribute to BECs’ exfoliation

(76–79). However, excessive ROS and inflammation are believed

to do more harm than good to the host, since the bladder

infection gradually intensifies with the increase of ROS and

inflammation (80, 81). Although the exfoliation of BECs

promotes the excretion of UPEC into the urine, it also exposes

deep immature epithelium, thus allowing UPEC to invade them
FIGURE 1

Extracellular immune responses to UPEC in the bladder. At the beginning of infection, THP reduces the adhesion of UPEC to the BECs. In
addition, the THP can prevent excessive inflammation and ROS production of neutrophils. Once adhesion, BECs secrete SDF-1, PTX3, and IL-6.
SDF-1 recruit neutrophils, T-cells, and NK cells to the site of infection. PTX3 promotes neutrophils to engulf UPEC, and IL-6 promotes the
expression of CX3CL1 to recruit macrophages which kill UPEC by phagocytosis and LCN2. IL-6 also enhances the release of AMPs through
phosphorylation of Stat3.AMPs, antimicrobial peptides; BEC, bladder epithelial cells; CXCR4, CXC-motif chemokine receptor 4; CX3CL1, C-X3-C
motif chemokine 1; LCN2, lipocalin-2; IL-6, interleukin 6; NK cells, natural killer cells; PTX3, Pentraxins; SDF-1, stromal cell-derived factor1;
Siglec-9, sialic acid-binding Ig-like lectin-9; Stat3, signal transducers and activators of transcription 3; THP, Tamm-Horsfall protein; UPEC,
Uropathogenic Escherichia coli.
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and form quiescent intracellular reservoirs (QIRs), which can

avoid immune responses and antibiotics (82). In order to

prevent the formation of QIRs caused by shedding, the

proliferation ability of the epithelial layer after shedding is

enhanced (83). This ability is mainly related to Th2 cells, as

Th2 cells have an ability to secret epidermal growth factor

(EGF), transforming growth factor-a (TGFa), and insulin-like

growth factors-1 (IGF-1), which contribute to epithelial

regeneration (84). The differentiation of Th2 cells in the

bladder mainly depends on dendritic cells (DCs) presenting

UPEC antigen to CD4+ T cells after infection (84). In addition,

sonic hedgehog (SHH) expressed by basal stem cells and

peroxisome proliferator-activated receptor-g (Pparg) expressed

by BECs also contribute to the regeneration and proliferation of

BECs (85–87). (Figure 3)
K.pneumoniae

K. pneumoniae, one of the most common pathogens of

intensive care unit infections, is the second leading cause of

UTI from community or hospital sources (1, 88–90). Similar to

the effects of THP on UPEC, THP exerts anti-adhesion and anti-

inflammation effects on K. pneumoniae (91). In the THP-

deficient mouse models, K. pneumoniae load in the urine and

bladder significantly increased, as well as the number of
Frontiers in Immunology 05
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inflammatory cells (91, 92). Once K.pneumoniae adheres to

and invades BECs, intracellular immune defense mechanisms

are initiated to inhibit the internalization of K.pneumoniae and

promote its efflux. The first mechanism is initiated by TLR4,

which down-regulates Rho through the expression of cAMP,

and ultimately achieves the goal of inhibiting the invasion of

K.pneumoniae (92). The second mechanism is mediated by

high-mobility group protein N2 (HMGN2), which plays a key

role in the inhibition of K.pneumoniae internalization by

reduction of bacteria-induced activation of extracellular signal-

regulated kinase (ERK1/2) and the polymerization of actin (93,

94). The last mechanism is that the invasion of K.pneumoniae

promotes the synthesis of dual oxidase 2, which has the ability to

inhibit bacterial internalization by the production of

intracellular ROS (95, 96). The proper concentration of ROS

has antibacterial against invading pathogenic bacteria (95, 97–

99). (Figure 4A)

The type I fimbriae of K.pneumoniae is involved in the

triggering of multiple immune responses in the bladder, which

are very similar to UPEC type I fimbriae-induced immune

responses (91, 92). Both UPEC and K.pneumoniae can be

inhibited by the effect of THP against type I fimbriae, and they

can both increase cAMP through type I fimbriae to regulate actin

and ultimately promote bacterial efflux (53, 70, 91, 92). In addition,

the UPEC and K. pneumoniae type I fimbriae play similar roles in

the pathogenic process of bladder infection, as both of them rely on
FIGURE 2

Intracellular immune responses to UPEC in the bladder. After invading BECs, TLR4 is activated by UPEC to promote the K33-linked
polyubiquitination of TRAF3, which is sensed by the RalGDS-activating exocyst complex to locate and tether vesicles. Then, the Sec 6 and Sec 15
of the exocyst complex stimulate collaboration between Rab11a/Rab11FIP3/Dynein and Rab27b/MyRIP/MyosinVIIa to transport UPEC-containing
vesicles. Once the lysosome engulfs UPEC, TRPML3 senses the pH neutralization and then releases calcium ions, leading to the efflux of UPEC.
BEC, bladder epithelial cells; TLR4, toll-like receptor 4; TRPML3, transient receptor potential 3; UPEC, uropathogenic Escherichia coli.
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type I fimbriae to attach, invade, and form intracellular bacterial

communities (1). By comparing the nucleic acid sequences of

UPEC and K.pneumoniae type I fimbriae, they are highly

homologous, which can explain why UPEC and K. pneumoniae

type I fimbriae play similar roles in the pathogenicity and stimulate

resembling immune responses of bladder infection (100, 101).

However, K.pneumoniae carries the gene fimK but lacks the gene

fimX, leading to reduce expression of type I fimbriae, which may

explain K. pneumoniae form fewer intracellular bacterial

communities (IBCs) and have lower titers in the bladder than

UPEC and are more easily cleared by host defense response during

infection (102).
S.saprophyticus

Bladder infection caused by S.saprophyticus is most likely to

occur in sexually active, non-pregnant women (103). Generally

speaking, when S.saprophyticus contaminates the vaginal area, it

ascends through the urinary tract (103). In the ascending process,

S.saprophyticus uses citrate in urine to synthesize carboxylate

siderophores and obtain iron ions in urine to supply its nutrition

and growth (104). In order to limit the growth of S.saprophyticus,

the bladder maintains a weakly acidic urine environment to reduce

the activity of citrate synthase and thereby reduce the synthesis of

citrate, ultimately achieving the goal of limiting S.saprophyticus

from obtaining iron and starving them to death (104, 105). In

addition, THP in urine has the ability to inhibit the adhesion of
Frontiers in Immunology 06
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S.saprophyticus to BECs, which is similar to the effects on UPEC

(53, 91). However, the antibacterial ability of urine is limited, as

some S.saprophyticus still survive from THP and the acidic

environment and adhere to BECs, stimulating BECs to increase

the expression of AMPs including regenerating islet-derived 3g
(RegIIIg) and RNase 7 (106, 107). RegIIIg is able to promote the

proliferation and repair of the injury epithelial cells (108, 109).

RNase 7 mainly binds to the negatively charged bacterial cell

membrane through cationic residues on its surface, destroys the

physical and physiological functions of the bacteria, and ultimately

kills the bacteria (62). In addition to AMPs, BECs mediate the

production of cytokines, such as TNF-a, macrophage inflammatory

protein-1 (MIP-1), IL-1, IL-6, and IL-12, to recruit themacrophages

(14). Macrophages depend on genes associated with retinoid-IFN-

induced mortality-19 (GRIM-19), a component of the

mitochondrial respiratory chain, to phagocytize S.saprophyticus

(110, 111). In GRIM-19-deficient macrophages, the expression of

IL-1, IL-6, IL-12, interferon-g (INF-g) cytokines, and phagocytic

ability are significantly reduced (110). (Figure 4B)

The immune responses to S.saprophyticus in bladder

infection have differences from these to other uropathogens, as

the urine pH and GRIM-19 have abilities to inhibit the growth of

S.saprophyticus (104, 110). Acidic urine reduces the synthesis of

citrate, consequently resulting in inhibition of S.saprophyticus

growth, and GRIM-19 molecule exerts immune defense effects

by regulating the phagocytic ability of macrophages in bladder

infection (104, 110). Therefore, modulating urine pH and

GRIM-19 is a promising target for S.saprophyticus UTI.
FIGURE 3

The exfoliation and regeneration of BECs in UPEC bladder infection. Cytokines from BECs are released to recruit neutrophils to induce cell
death and exfoliation. Besides, Type 1 fimbriated UPEC activates TLR4 and causes the expression of COX-2, which promotes inflammation and
exfoliation of BECs. Moreover, a-hemolysin produced by UPEC recruits mast cells through the ROS/NLRP3/caspase-1/IL-1b, which produces
tryptase to mediate the BECs exfoliation. To repair shed BECs, transitional BECs will regenerate under the influence of EGF, TGF-a, IGF-1, SHH,
and Pparg. BECs, bladder epithelial cells; EGF, epidermal growth factor; ERK, extracellular signal-related kinase; IGF-1, insulin-like growth
factors-1; IL-1b, interleukin 1b; JNK, c-Jun-NH2-terminal kinase; NLRP3, NOD-like receptor thermal protein domain associated protein 3; PAR2,
Protease-activated receptor 2; Pparg, peroxisome proliferator-activated receptor-g; ROS, reactive oxygen species; SHH, sonic hedgehog; TGF-
a, transforming growth factor-a; UPEC, uropathogenic Escherichia coli.
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E.faecalis

E.faecalis is one of the most resistant gram-positive bacteria

in UTI, which has caused great trouble for clinical treatment

(112). Current research on the immune responses to E.faecalis

bladder infection are more about the responses of macrophages,

DCs, and Natural killer (NK) cells (113, 114).

Under normal circumstances, activation of TLR2-Toll/

interleukin-1 receptor (TIR) on macrophages can trigger the

production of chemokines dependent on the NF-kB signaling

pathway, and recruit immune cells in the bladder (115, 116).

However, E.faecalis has a TIR domain-containing protein

structure, which is similar to the TIR domain of TLR2 on

macrophages (113, 117). Hence, the TIR domain-containing

protein of E.faecalis (TcpF) has an ability to compete with the

TIR domain of human TLR2 to form TLR dimers, thereby

further eliminating downstream signals and ultimately

inhibiting the immune responses of macrophages in the
Frontiers in Immunology 07
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bladder (113, 117). Therefore, immune responses of

macrophages to E.faecalis and UPEC co-infected in the

bladder are significantly inhibited compared to the infection of

UPEC alone, consequently promoting UPEC virulence during a

mixed-species bladder infection (113, 118).

Different from immunosuppressive effects on macrophages,

E.faecalis has the ability to intensify the proliferation and

activation of NK cells, which in turn promote the maturation

and differentiation of DCs (114). In addition, NK cells also can

be activated by E.faecalis-induced DC-derived effectors signals.

E. faecalis specific DC/NK interaction is necessary for the killing

of transformed or infected cells in E.faecalis bladder infection

(114). (Figure 5A) The adaptive immune responses in the

bladder are limited, widely assumed to the restricted ability of

mature DCs to capture and present antigens in the bladder (119,

120). Exogenously regulating the DC/NK interaction may be one

of the effective strategies to enhance bladder adaptive

immune responses.
FIGURE 4

Immune responses to K. pneumoniae and S.saprophyticus in the bladder. (A) In the urine, THP exerts anti-adhesion and anti-inflammation
effects on K. pneumoniae. Once adhered, K. pneumoniae lipopolysaccharide activates TLR4 to initiate AC-3/cAMP/PKA signaling pathway, then
down-regulates Rac-1 and abrogates the endocytic lipid raft. HMGN2 also can inhibit K. pneumoniae internalization by inhibiting the attachment
of bacteria and reducing bacterial-induced ERK1/2 activation and actin polymerization. In addition, the ROS promoted by oxidase 2 can inhibit
endocytosis. (B) Before adhesion, RegIIIg, RNase 7, and THP have anti-adhesion and sterilization abilities to S. saprophyticus. The acidic urine
environment suppresses S. saprophyticu uptake and utilization of iron thus limiting its growth. After the adhesion, BECs produce TNF-a, MIP-1,
IL-1, IL-6, and IL-12 to recruit macrophages. Upon the activation of TLR4 by PAMP, macrophages phagocytize S.saprophyticus depending on
genes associated with GRIM-19. AC-3, adenylyl cyclase-3; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular-regulated kinase 1/2;
GRIM-19, genes associated with retinoid-IFN-induced mortality-19; HMGN2, high-mobility group protein N2; IL-1, interleukin-1; INF-g,
interferon-g; K.pneumoniae, Klebsiella pneumoniae; MIP-1, macrophage inflammatory protein-1; PAMP, pathogen-associated molecular pattern;
PKA, protein kinase A; RegIIIg, regenerating islet-derived 3g; RNase 7, ribonuclease 7; ROS, reactive oxygen species; S.saprophyticus,
Staphylococcus saprophytes; THP, Tamm-Horsfall protein; TLR4, toll-like receptor 4; TNF-a, tumor necrosis factor-a.
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GBS

GBS is a common commensal of the human genitourinary

tract in healthy people (121). Nevertheless, this bacterium can

cause life-threatening hazards to pregnant women, the elderly,

and immunocompromised individuals (122–124).

When the immune function of the body is compromised,

GBS in the urethra will express a variety of virulence factors to

damage and adhere to the bladder tissue (122–124). AMPs in the

urine are the first line of defense, however, LL-37, one of the

AMPs, has no antibacterial effect on GBS (46). On the contrary,

the load of GBS increases with the rise of LL-37 (46). Under the

action of LL-37, GBS further adheres to the BECs, and this

adherence promotes the expression of many cytokines, including

IL-8, IL-1b, IL-1a, IL-6, TNF-a, granulocyte-macrophage

colony-stimulating factor (GM-CSF) to mediate the occurrence

of inflammation and recruit the immune cells including

neutrophils, macrophages, and DCs to the infected sites (22,

125, 126). Neutrophils reach the focal point of infection

producing anti-infective effects through various biological

effects such as phagocytosis and cytokine production (125–

128). Macrophages and DCs also make significant

contributions to host defenses by secretion of IL-1b and IL-18

through the activation of the NLRP3 inflammasome, deficiency

of which has GBS communities increased (129, 130). (Figure 5B)

However, immune responses of neutrophils and macrophages

can be inhibited by GBS virulence factors, as the cytokines

production of macrophages and neutrophils increased when

the bladder was infected by the virulence factor capsule sialic

acid-deficient GBS (23, 131).

Compared with the anti-bacterial effects of LL-37 on UPEC

infection, LL-37 plays an opposite role in GBS infection, which

promotes GBS growth and proliferation (46, 47, 132). The role of

NLRP3 may also differ between GBS and UPEC infection, as

NLRP3-deficient mice weremore susceptible to GBS infection and

have GBS load increased.Whereas UPEC burden was significantly

reduced in NLRP3-deficient BECs (76, 129). As these colonization

differences between GBS and UPEC were observed based on the

different NLRP3-deficient cells but have not been validated in the

same cells and in vivo yet, which needs to be further explored (76,

129). Due to the differences in immune responses of the bladder

between UPEC and GBS infection, when treating bladder

infection caused by GBS, we should adopt different

immunomodulation options from that of UPEC.
P.mirabilis

P.mirabilis, which showed high resistance rates to ampicillin,

nitrofurantoin, and amoxicillin-clavulanate, is the sixth most

common pathogen of uncomplicated UTI (1, 25). When the

P.mirabilis reaches the mouth of the urethra, it moves up the
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urethra through the swing of the flagella and reaches the bladder

(133). During the ascending process, many immune mediators

in the urine including complement (C1q and C3), LL-37, and

human b-defensin (hBD) are hydrolyzed by ZapA (Mirabilysin),

which is a 54-kDa extracellular proteolytic enzyme with broad-

spectrum degradation activity encoded by P.mirabilis (26).

Similar to the effects on UPEC and K.pneumoniae, THP and

RNase 7 in the urine resist the adhesion and invasion of

P.mirabilis to BECs (106, 134). Some P.mirabilis survive from

THP and RNase 7 and adhere to BECs through fimbriae (135).

Once the P.mirabilis successfully adhere, a number of leukocytes

migrate to the epithelium mediated by the production of c-c

chemokine ligand 20 (CCL20), CXCL2, and CCL2 under the

stimulation of flagella (136). However, the migration of

leukocytes is demonstrated ineffective in clearing P.mirabilis

(136). (Figure 6A)

There are very few reports on the immune responses to the

effective inhibition of P.mirabilis in bladder infection. Two

broad-spectrum antibacterial mediators, THP and RNase 7, in

the urine have been reported to inhibit the growth of P.mirabilis

(106, 134). However, many immune responses and immune

mediators in the urine are suppressed by ZapA (26). In addition,

it has been reported that the anti-MrpA (structural subunit of

MR/P fimbriae) antibodies in urine and serum can be

neutralized by P.mirabilis (137). Therefore, the antibacterial

immune responses to P.mirabilis in bladder infection remain

lacking and need more to be explored in the future.
P.aeruginosa

Of all uropathogens in bladder infection, P.aeruginosa is a

relatively small pathogenic bacterium in UTI, but it has caused

great trouble for clinical treatment, as many antibiotics such as

topiperacillin-tazobactam, ceftazidime, and cefepime, which are

effective against other uropathogens, hardly have effects on

P.aeruginosa (32). The current research on the immune

responses to P.aeruginosa in the bladder is extremely limited.

Before P.aeruginosa adhere to the bladder, the growth of

P.aeruginosa is firstly affected by iron restriction and THP (34,

138, 139). Surprisingly, the burden of P.aeruginosa and

histopathological conditions in the bladder and kidney

increase under iron-restricted conditions. Consistently, in vitro

experiments showed that iron-restricted media increases the

adhesion of P.aeruginosa to the BECs and inhibits macrophage

to phagocytose P.aeruginosa (138). The reason why iron

restriction can aggravate the P.aeruginosa bladder infection

may be attributed to the enhancement of quorum sensing

(QS) signaling molecules under iron deficiency conditions

(140, 141). Furthermore, when mice are infected with THP-

coated P.aeruginosa, the bacterial burden and pathological

changes in the kidney are significantly enhanced (139).

Therefore, THP and iron restriction have beneficial effects on
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P.aeruginosa colonization (34, 138, 139). Once the bladder is

colonized by P.aeruginosa, it will increase the expression of MIP-

1a to recruit neutrophils, which can effectively decrease the

burden of P.aeruginosa in the bladder (142). (Figure 6B)

Many immune responses that have spectral antibacterial

effects on other uropathogens have no effects on P.aeruginosa,

or may even aggravate the infection of P.aeruginosa. In addition,

many antibiotics, which are effective against other uropathogens,

do not affect P.aeruginosa bladder infection (32). Hence, it is

pretty urgent to continue to explore the effective immune

defenses for P.aeruginosa in bladder infection so that propose

some feasible immunomodulatory interventions.
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Candida.

Candida. is a common uropathogenic fungus in UTI,

especially in immunocompromised patients (143). Generally

speaking, Candida. mainly causes disease through its hyphae,

Candida. adheres to the BECs through the agglutin-like

sequence (Als3) glycoprotein structure on the hyphae in the

bladder (144, 145). To combat this adhesion process, the THP

already present in the bladder urine binds to Als3, thereby

inhibiting the adhesion of Candida. to the BECs (144). In

addition to THP, LL-37 binds to the Xog1p glycoprotein of

the Candida. cell wall to reduce adhesion to BECs (146, 147).

However, once Candida. adheres to the BECs, COX-2 will be

induced in BECs through the EGFR-ERK/p38-RSK-CREB-1

pathway, the upregulation of which leads to the synthesis of

prostaglandins, triggering inflammation (148, 149). (Figure 6C)

Candida. is the only fungus among the nine major

uropathogens and the bladder executes different mechanisms

of immune responses to Candida. from those to bacteria. For

example, THP and LL-37 exert an anti-adhesion effect on both

Candida. and other bacteria, THP targets the hyphae to inhibit

the adhesion of Candida (144–146).. In bacterial infection, THP

targets the fimbriae (52, 91, 134). LL-37 reduces adhesion of the

Candida. by binding to its glycoprotein, in bacterial infection,

LL-37 exerts anti-adhesion by disrupting the bacterial

membrane (47, 146).
S.aureus

S.aureus is the most common gram-positive bacteria in

hospital-acquired infections, which mainly occur in catheter-

induced UTI (150, 151). The immune responses of the

bladder to S.aureus are blank. However, there are many

patients with cystitis caused by S.aureus, which is highly

resistant to antibiotics (1, 18, 152). It is necessary to carry

out research work on the immune responses to S.aureus in

bladder infection.
Potential individual
immunomodulatory interventions

Based on the above summarized immune responses to

diverse uropathogens in bladder infection, we deemed that

maybe an immune target has antibacterial effects on a variety

of uropathogens in bladder infection, and on the other side,

some immune mediators play opposite roles in bladder infection

(Table 2) . In this section, we discuss the potential

immunomodulatory interventions for bladder infection caused

by different uropathogens.
FIGURE 5

Immune responses to E. faecalis and GBS in the bladder. (A)
Initially, RNase 7 in the urine binds to the E. faecalis and plays a
bactericidal effect. Once E. faecalis adheres to BECs, TcpF of
which binds to the TIR on macrophages, eliminating
downstream MyD88 and NF-kB signals and suppressing the
immune responses. However, the proliferation and activation of
NK cells are intensified, which promote the maturation and
differentiation of DCs. In turn, NK cells can be specifically
activated to kill E. faecalis through derived effectors signals from
infected DCs. (B) In the urine, LL-37 sticks to GBS and promotes
its growth and adhesion. After adhesion, GBS induces the
expression of IL-8, IL-1b, IL-1a, IL-6, TNF-a, GM-CSF to recruit
immune cells and mediate inflammation. Macrophages and DCs
secrete IL-1b and IL-18 against the GBS infection under the
activation of the NLRP3 inflammasome by b-hemolysin/cytolysin
of GBS. Neutrophils engulf GBS to play an antibacterial effect.
DCs, dendritic cells; E. faecalis, Enterococcus faecalis; GBS,
Group B Streptococcus; GM-CSF, granulocyte-macrophage
colony-stimulating factor; IL-8, interleukin-8; MyD88,
myeloiddifferentiationfactor88; NF-kB, Nuclear factor kappa
beta; NK cells, natural killer cells; NLRP3, NOD-like receptor
thermal protein domain associated protein 3; RNase 7,
ribonuclease 7; TcpF, TLR2-Toll/Interleukin-1 receptor domain-
containing protein of E. Faecalis.
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Inhibition of adhesion

THP, a broad-spectrum anti-infective protein in bladder

infection, has the ability to against many uropathogens, inclusive

of UPEC, K.pneumoniae, P.mirabilis, S.saprophyticus, and Candida

(91, 134, 144, 145, 153, 154). It plays the antibacterial effect mainly

by reducing the colonization of uropathogens on BECs, as THP can

occupy the binding sites of uropathogens to BECs (91, 134, 144, 145,

153, 154). Therefore, the upregulation of THP may be an excellent

intervention option for the bladder infection caused by UPEC,

K.pneumoniae, P.mirabilis, S.saprophyticus, and Candida. Clinical

experiments showed that the level of THP in patients who take

cranberry extract orally increases, and the urine from these patients

has a stronger inhibitory effect on the adhesion of UPEC (52, 155).

However, whether this intervention is effective for bladder infection

caused by P.aeruginosa is not determined, as the THP can lead to an

increase in P.aeruginosa load (139). In conclusion, the upregulation

of THP is an excellent way to combat the bladder infection of

UPEC, K.pneumoniae, S.saprophyticus, P.mirabilis, and Candida.
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Scavenging of ROS

Over accumulated ROS is involved in the induction of

BECs injury and death in bladder infection, but the proper

concentration of ROS has antibacterial effects (76, 77, 95, 97–

99). Uropathogens including UPEC, K.pneumoniae ,

S.saprophyticus, P.mirabilis, P.aeruginosa, and Candida.

induce an increase in ROS level in bladder infection (156).

Reducing the expression of ROS seems to have a therapeutic

effect on UTI (157, 158). The results of a systematic review

showed that vitamin C, a drug candidate with antioxidant

capacity, has the ability to prevent the occurrence of UTI, and

anthocyanins can inhibit ROS to treat UTI caused by

K.pneumoniae and P.aeruginosa (157, 158). Among the

anthocyanin extracts of all plants, blueberry is an excellent

candidate because of its very rich anthocyanin content (159,

160). We conclude that reducing the content of ROS through

the use of antioxidant drugs is a promising intervention for

bladder infection.
FIGURE 6

Immune responses to P. mirabilis, Paeruginosa and Candida spp. in the bladder. (A) Before adhesion, THP and RNase 7 resist the adhesion and
invasion of P.mirabilis to the bladder, and P.mirabilis has countermeasures by expressing extracellular metalloprotease ZapA, which has
hydrolytic activity. In addition, ZapA can hydrolyze complement (C1q and C3), LL-37, and human hBD in the urine. Notably, BECs can produce
CCL20, CXCL2, and CCL2, and then promote numbers of leukocytes migrate to the epithelium, the specific role of which is not determined.
(B) Under the iron restriction, P.aeruginosa has a stronger colonization ability on BECs. Once P.aeruginosa adheres to the BECs, the BECs
increase the expression of MIP-1a to recruit neutrophils, which against the bladder infection of P.aeruginosa. (C) In the urine, THP and LL-37
respectively bind to the Als3 and Xog1p glycoprotein of Candida to inhibit adhesion. After Candida adhesion, BECs express COX-2 through
EGFR-ERK/p38-RSK-CREB-1 pathway, leading to the synthesis of prostaglandins, which mediate the occurrence of inflammation. BECs, bladder
epithelial cells; Candida, Candida spp; CCL20, c-c chemokine ligand 20; COX-2, cyclooxygenase-2; CREB-1, cAMP-response element-binding
protein-1; CXCL2, C-X-C motif chemokine ligand 2; EGFR, epidermal growth factor receptor; ERK, extracellular regulated protein kinases; hBD,
b-defensin; MIP-1a, macrophage inflammatory protein-1a; P.aeruginosa, Pseudomonas aeruginosa; P. mirabilis, Proteus mirabilis; RNase 7,
ribonuclease 7; RSK, ribosomal s6 kinase; THP, tamm-horsfall protein.
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Iron restriction

Iron restriction, as another broad-spectrum antibacterial

method, inhibits the growth of a variety of uropathogens in

bladder infection, including UPEC, K.pneumoniae ,

S.saprophyticus, and P.mirabilis (61, 104, 161–163). Exogenous

regulation of iron content in urine is an excellent immune

regulation target for the treatment of bladder infection.

Animal experiments showed that the dietary restriction of iron

significantly reduces the iron content, followed by bacterial

burden, bacteriuria, as well as inflammatory responses

decreasing in UPEC bladder infection, and the exogenous

injection of lactoferrin, an iron-binding glycoprotein, also

significantly reduces the UPEC load and the infiltration of

neutrophils (164, 165). However, the intervention effects of

iron restriction on UTI caused by P.aeruginosa are not

verified, because iron restriction does not inhibit the growth of

P.aeruginosa, but increases the bacterial load in the bladder

(138). In conclusion, restricting access to iron is a promising

intervention for bladder infection caused by UPEC,

K.pneumoniae, S.saprophyticus, and P.mirabilis, which may not

apply to P.aeruginosa.
Increase of AMPs

AMPs are a large class of compounds that participate in a

variety of innate immune responses and are considered to be

promising compounds to deal with antimicrobial resistance

(166). RNase 7 has antibacterial effects on UPEC,

S.saprophyticus, and P.mirabilis, RegIIIg has antibacterial

effects on S.saprophyticus, LCN2 has antibacterial effects on

UPEC, and LL-37 has antibacterial effects on UPEC and

Candida (47, 58, 61, 106, 107, 147). Therefore, RNase 7,

RegIIIg, LCN2, and LL-37 may have therapeutic effects against

the above uropathogens in bladder infection. Notably, different

AMPs and even different segments of the same AMP have

different antimicrobial effects. Taking RNase 7 as an example,

fragments of RNase 7 have different antibacterial effects on

uropathogens, the F:1-97 fragment has the most antibacterial

activity against UPEC and S.saprophyticus, while all N-terminal

fragments except the F:1-45 fragment have the most

antibacterial activity against P.mirabilis (106). Notably, LL-37

does not have a killing effect on GBS, on the contrary, it will

promote GBS bladder infection (46).
Regulation of hormones

Among hormones, insulin has the ability to promote the

secretion of RNase 7, RNase4, and LCN2, which are proven to be

against bladder infection caused by a variety of uropathogens (167,

168). In addition, insulin reduces the risk factor of blood sugar,
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thereby reducing the susceptibility of diabetic patients to bladder

infection of UPEC, K.pneumoniae, E.faecalis, GBS, S.aureus, and

Candida (124, 169–173).. However, a prospective study showed that

diabetic patients who used insulin for a long time had a higher risk

of UTI than diabetic patients who did not use insulin. The reason

for the inconsistency may be that the blood and urine sugar of

patients taking insulin is higher than that of patients without taking

insulin (174). Insulin may not be suitable for people with low blood

sugar, because it can cause hypoglycemia and lead to undesirable

consequences such as coma (175). Except for insulin, estrogen also

changes the bacterial burden in bladder infection (176–178).

Female, compared with male, had lower bacterial burdens and

stronger immune responses (178). This may be because of the

increase of IL-17mediated by estrogen, as IL-17 initiates many anti-

bacterial pathways, including antimicrobial peptide and chemokine

expression and the direct killing effects on bacteria (178–181).

Differently, exogenous androgen can increase the burden of

UPEC and mediate the development of cystitis into

pyelonephritis (176, 177).
Enhancement of intracellular
efflux bacteria

cAMP plays an important role in the efflux of UPEC and

K.pneumoniae from BECs in bladder infection (70, 92). Many

drugs, that are proven by US-Food and Drug Administration

certification (like Liraglutide, Terbutaline, and so on) can increase

the production of cAMP. Liraglutide, a glucagon-like peptide-1

(GLP-1) receptor agonist, is shown to increase cAMP to inhibit

the replication of the hepatitis C virus (182). Terbutaline can

reduce LPS-induced human pulmonary microvascular endothelial

cell damage by increasing cAMP (183). cAMP is proven to be a

potential immunomodulatory target for bacterial bladder

infection, but there is a lack of research to prove their

therapeutic effects, further research is needed (70).
Urothelium repair

BECs play important roles as the first line of defense in bladder

infection, because it produces many immune factors to mediate the

immune responses, and meanwhile, it prevents the invasion of

bacteria into the deep immature epithelium to form QIRs (184).

Hyaluronic acid (HA), a highmolecular weight glycosaminoglycan,

not only induces the production of LCN2 and IL-8 in HA/flagellin-

challenged epithelial cells but is also involved in the enhancement

of the physical barrier of BECs (185). As clinical data showed that

intravesical injection of HA can indeed achieve the purpose of

treatment for infected humans (186–188). Similar to HA, clinical

trials showed that 25-hydroxyvitamin D3 also has the role of

protecting the bladder epithelial integrity in postmenopausal

women, as 25-hydroxyvitamin D3 induces expression of occludin
Frontiers in Immunology 12
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and claudin-14, which are the tight junction proteins in the urinary

tract (189). In addition to protecting mature epithelial integrity, the

measures to promote the regeneration of immature epithelium

should be taken into consideration. Briefly, HA, 25-

hydroxyvitamin D3 and so on which can repair urothelium are

excellent targets to combat the infection of UPEC.
Anti-inflammation

COX-2 and NLRP-3 were shown to favor infections by

exacerbating inflammation (76–79, 148, 149, 190). Inhibiting

the synthesis of COX-2 or NLRP-3 can protect mice from cystitis

induced by uropathogens, but except GBS-induced cystitis,

because GBS colonized more in NLRP-3-deficient mice

compared with wild type mice (76–79, 129, 148, 149, 190).

Therefore, inhibiting inflammation by targeting COX-2 or

NLRP-3 theoretically has a certain therapeutic value against

uropathogens except for GBS (129). However, a randomized

controlled trial with a sample size of 253 showed that targeting

COX-2 by using NSAIDs is less effective than antibiotics and

may even promote the progression of cystitis to pyelonephritis

(191). Another randomized controlled trial with a sample size of

383 also showed that NSAIDs are less effective than antibiotics in

the treatment of bladder infections, and may even lead to

pyelonephritis and serious adverse events (192). To sum up,

although the basic experiments confirmed the value of anti-

inflammatory in the intervention of bladder infection, it should

be cautious in clinical application for UTI.
Immunization with vaccines

Vaccination holds a promising approach against different

microbial bladder infections. Many vaccines designed against

individual-specific uropathogens are currently in the stage of

basic or clinical trials (193–195). For UPEC bladder infection,

there are vaccines targeting type 1 fimbriae, hemolysins,

siderophore receptors, cytotoxic necrotizing factor 1 (CNF1),

and LPS (194, 196–198). For P.mirabilis bladder infection, there

are vaccines targeting MR/P fimbriae and hemolysins (199, 200).

For E. faecalis bladder infection, there is endocarditis- and

biofilm-associated (Ebp) fimbriae vaccine (201). To make the

vaccines against the diversity of uropathogens, the vaccines can be

extracted from a range of uropathogens to form a multivalent

vaccine. For example, Urovac (Solco Basel Ltd, Basel, Switzerland)

consists of 10 heat-killed uropathogens, including 6 serotypes of

UPEC, P.vulgaris, K.pneumoniae, and E.faecalis (202). Although

most vaccines have been demonstrated highly efficacious in

reducing the incidence and severity of UTI in animal models,

there is a lack of large-scale clinical trials to prove their efficacy

and safety. As the purpose of vaccination is to induce immune

memory of the specific pathogens, the vaccines are effective on the
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corresponding uropathogens but not on others. If a broad anti-

infective effect is desired in the treatment of bladder infection,

then a multivalent vaccine is an option.
Probiotic interventions

Probiotics can inhibit the adherence, growth, and colonization

of uropathogens and reduce inflammation in the urinary tract by

producing antibacterial substances such as lactic acid and

hydrogen peroxide, or by directly competing for the adhesion

sites between UPEC and the BECs (203–205). The efficacy and

safety of probiotics in the treatment of bladder infection have been

confirmed by extensive clinical trials, which include Lactobacillus

rhamnosus, Lactobacillus acidophilus, Lactobacillus fermentum,

Lactobaci l lus reuteri , Bifidobacterium bifidum , and

Bifidobacterium lactis (206–209). However, different probiotics

were demonstrated to have diverse antibacterial effects.

Lactobacillus acidophilus has an average inhibition zone of

16 mm for UPEC but for E.faecalis was 12mm (210).

Lactobacillus salivarius UCM572 had anti-adhesion effects

against UPEC, however, the anti-adhesion effect on other

uropathogens was not demonstrated (211). Furthermore, the

anti-adhesion effects of different Lactobacillus strains against

Candida, K.pneumoniae, P.aeruginosa, and Proteus were

reported to be different (212). Therefore, when probiotics are

used to treat different microbial bladder infections, appropriate

probiotic strains should be selected according to the specific

uropathogens in bladder infection.

Further research

Because of the diverse effects of immunomodulatory

interventions on different uropathogens, corresponding

immunotherapies should be taken for different uropathogenic

bladder infections for better therapeutic effects. However,

compared with great advances in the understanding of bladder

immune responses trigged by UPEC, understanding of the

bladder immune responses caused by other uropathogens

remains relatively limited, which results in relatively few

individual immunomodulatory options for other uropathogens

which we came up with. Further research needs to pay more

attention to the immune responses to other uropathogens besides

UPEC. In addition, most of the immunomodulatory interventions

were proven efficacious in animal models, further clinical research

needs to demonstrate the consistency of the effects, and then

which will achieve better therapeutic effects in the future.
Conclusion

Antibiotic therapy is the only option for UTI treatment but in

recent years it is becoming more limited due to the increasing
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resistance of UTIs to routinely applied antibiotics.

Immunomodulatory interventions have been suggested to be

alternatives. However, the bladder executes different immune

responses depending on the type of uropathogens, thus one

immunomodulatory target has diverse effects on different

uropathogens. The similarities and differences in immune

responses to the main nine uropathogens in bladder infection were

sorted out and comparably analyzed in this Review. To improve the

effects of immunomodulatory interventions on different microbial

bladder infections, specific uropathogenic bladder infections should

adopt corresponding immunomodulatory targets to intervene, and

one immunomodulatory intervention can be applied to diverse

microbial infections, under the condition that they share the same

effective therapeutic targets. Only through individual treatments in

different uropathogenic bladder infection by immunomodulatory

interventions can achieve better therapeutic results as alternatives

for antibiotics in the future.
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203. Osset J, Bartolomé RM, Garcı ́a E, Andreu A. Assessment of the
capacity of lactobacillus to inhibit the growth of uropathogens and block
their adhesion to vaginal epithelial cells. J Infect Dis (2001) 183(3):485–91.
doi: 10.1086/318070

204. Mastromarino P, Brigidi P, Macchia S, Maggi L, Pirovano F, Trinchieri V,
et al. Characterization and selection of vaginal lactobacillus strains for the
preparation of vaginal tablets. J Appl Microbiol (2002) 93(5):884–93.
doi: 10.1046/j.1365-2672.2002.01759.x

205. Barrons R, Tassone D. Use of lactobacillus probiotics for bacterial
genitourinary infections in women: A review. Clin Ther (2008) 30(3):453–68.
doi: 10.1016/j.clinthera.2008.03.013
frontiersin.org

https://doi.org/10.1159/000499342
https://doi.org/10.1152/ajprenal.00133.2018
https://doi.org/10.1080/13543776.2020.1851679
https://doi.org/10.1080/13543776.2020.1851679
https://doi.org/10.1016/j.kint.2016.04.025
https://doi.org/10.1172/jci98595
https://doi.org/10.1016/j.jmii.2019.05.008
https://doi.org/10.1002/jcla.22343
https://doi.org/10.1111/dom.14064
https://doi.org/10.5152/tud.2018.32855
https://doi.org/10.1007/s00345-012-0934-x
https://doi.org/10.1007/s00125-020-05366-3
https://doi.org/10.1681/ASN.2015030327
https://doi.org/10.1016/j.kint.2018.04.023
https://doi.org/10.1016/j.kint.2018.04.023
https://doi.org/10.1172/jci.insight.122998
https://doi.org/10.1038/ni.3726
https://doi.org/10.1038/ni.3742
https://doi.org/10.1111/tbed.13328
https://doi.org/10.1111/tbed.13328
https://doi.org/10.3390/ijms20184569
https://doi.org/10.1002/ddr.21901
https://doi.org/10.21037/atm.2016.12.71
https://doi.org/10.1002/cti2.1021
https://doi.org/10.1016/j.eururo.2010.12.039
https://doi.org/10.5489/cuaj.1989
https://doi.org/10.5489/cuaj.1989
https://doi.org/10.1007/s00192-012-1794-z
https://doi.org/10.1007/s00441-019-03162-z
https://doi.org/10.1007/s00441-019-03162-z
https://doi.org/10.1371/journal.ppat.1005848
https://doi.org/10.1371/journal.ppat.1005848
https://doi.org/10.1136/bmj.j4784
https://doi.org/10.1371/journal.pmed.1002569
https://doi.org/10.1093/infdis/jiv429
https://doi.org/10.1128/microbiolspec.UTI-0013-2012
https://doi.org/10.1128/microbiolspec.UTI-0013-2012
https://doi.org/10.1111/bju.14606
https://doi.org/10.1111/bju.14606
https://doi.org/10.1021/acsbiomaterials.0c00736
https://doi.org/10.1128/mbio.01035-22
https://doi.org/10.1016/S1473-3099(17)30108-1
https://doi.org/10.1016/S1473-3099(17)30108-1
https://doi.org/10.1016/j.micpath.2018.02.023
https://doi.org/10.1016/j.micpath.2018.02.023
https://doi.org/10.1128/IAI.01050-08
https://doi.org/10.1126/scitranslmed.3009384
https://doi.org/10.1159/000281988
https://doi.org/10.1086/318070
https://doi.org/10.1046/j.1365-2672.2002.01759.x
https://doi.org/10.1016/j.clinthera.2008.03.013
https://doi.org/10.3389/fimmu.2022.953354
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.953354
206. Sadeghi-Bojd S, Naghshizadian R, Mazaheri M, Ghane Sharbaf F, Assadi F.
Efficacy of probiotic prophylaxis after the first febrile urinary tract infection in
children with normal urinary tracts. J Pediatr Infect Dis Soc (2020) 9(3):305–10.
doi: 10.1093/jpids/piz025

207. Stapleton AE, Au-Yeung M, Hooton TM, Fredricks DN, Roberts PL, Czaja
CA, et al. Randomized, placebo-controlled phase 2 trial of a lactobacillus crispatus
probiotic given intravaginally for prevention of recurrent urinary tract infection.
Clin Infect Dis (2011) 52(10):1212–7. doi: 10.1093/cid/cir183

208. Forster CS, Hsieh MH, Cabana MD. Perspectives from the society for
pediatric research: Probiotic use in urinary tract infections, atopic dermatitis, and
antibiotic-associated diarrhea: An overview. Pediatr Res (2021) 90(2):315–27.
doi: 10.1038/s41390-020-01298-1
Frontiers in Immunology 19
164
209. Aragón IM, Herrera-Imbroda B, Queipo-Ortuño MI, Castillo E, Del Moral
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Glossary

Aas a hemagglutinin-autolysinadhesin

AC-3 adenylyl cyclase-3

Als agglutinin-like sequence

AMPs antimicrobial peptides

anti-MrpA structural subunit of MR/P fimbriae

BECs bladder epithelial cells;

bH/C b-hemolysin/cytolysin

cAMP cyclic adenosine monophosphate;

Candida. Candida spp.

CCL20 C-C chemokine ligand 20

ClfA/B Clumping Factors A and B

CNF1 cytotoxic necrotizing factor 1

COX-2 cyclooxygenase-2

CREB-1 cAMP-response element-binding protein-1;

CXCL1 C-X-C motif chemokine ligand 1

CXCL2 C-X-C motif chemokine ligand 2

CXCL5 C-X-C otif chemokine ligand 5

CX3CL1 CX3-C motif chemokine 1

CXCR4 CXC-motif chemokine receptor 4

DCs dendritic cells

Ebp endocarditis- and biofilm-associated

E. coli Escherichia coli

E.f Enterococcus faecalis

E.faecalis Enterococcus faecalis

EGF epidermal growth factor

EGFR epidermal growth factor receptor

ERK extracellular regulated protein kinases

Esp enterococcal surface protein;

ExoU/T/S exoenzyme U/T/S

F1C pili type 1-like immunological group C pili

GBS Group B Streptococcus

GLP-1 glucagon-like peptide-1

GM-CSF granulocyte-macrophage colony-stimulating factor

GRIM-19 genes associated with retinoid-IFN-induced mortality-19

HA Hyaluronic acid;

hBD human b-defensin

HlyA a-hemolysin

HMGN2 high-mobility group protein N2

HpmA haemolysin

IBCs intracellular bacterial communities;

LCN2 lipocalin-2

IDSA Infectious Disease Society of America

IGF-1 insulin-like growth factors-1

IL-1 interleukin-1

IL-6 interleukin 6

IL-8 interleukin-8

INF-g interferon-g

JNK c-Jun-NH2-terminal kinase

(Continued)
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K.p Klebsiella pneumoniae

K.
pneumoniae

Klebsiella pneumoniae

INF-g interferon-g

LPS lipopolysaccharide

MIP-1 macrophage inflammatory protein-1

MIP-1a macrophage inflammatory protein-1a

MR/P pili mannose-resistant Proteus-like

MyD88 myeloiddifferentiationfactor88;

NF-kB Nuclear factor kappa beta

NK cells natural killer cells

NLRP3 NOD-like receptor thermal protein domain associated protein 3

P.a Pseudomonas aeruginosa

PAMP pathogen-associated molecular pattern;

PAR2 Protease-activated receptor 2

PKA protein kinase A

P.m Proteus mirabilis

Pparg peroxisome proliferator-activated receptor-g

P pili pyelonephritis-associated pili

Pta Proteus toxic agglutinin

PTX3 Pentraxins

QIRs quiescent intracellular reservoirs

QS quorum sensing;

RegIIIg regenerating islet-derived 3g

RNase 7 ribonuclease 7

ROS Reactive oxygen species

RSK ribosomal s6 kinase

S.a Staphylococcus aureus

SDF-1 stromal cell-derived factor1

SdrI a surface-associated collagen-binding protein

SHH sonic hedgehog

Siglec-9 sialic acid-binding Ig-like lectin-9;

SigV extracytoplasmic function sigma factor

S.s Staphylococcus saprophyticus

Ssp a surface-associated lipase

SssF S. saprophyticus surface protein F

Stat3 signal transducers and activators of transcription 3;

TcpF TLR2-Toll/Interleukin-1 receptor domain-containing protein of
E. Faecalis

TGF-a transforming growth factor-a

THP Tamm-Horsfall protein

TIR TLR2-Toll/interleukin-1 receptor

TLR4 toll-like receptor 4;

TNF-a tumor necrosis factor-a

TRPML3 transient receptor potential 3;

UafB a cell wall-anchored protein

UPEC Uropathogenic Escherichia coli;

UTI Urinary tract infection

WHO World Health Organization

ZapA an extracellular metalloprotease, Mirabilysin.
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Bacteroides fragilis outer
membrane vesicles
preferentially activate innate
immune receptors compared
to their parent bacteria

William J. Gilmore1,2, Ella L. Johnston1,2, Natalie J. Bitto1,2,
Lauren Zavan1,2, Neil O'Brien-Simpson3, Andrew F. Hill2,4,5

and Maria Kaparakis-Liaskos1,2*

1Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture,
Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia, 2Research Centre for
Extracellular Vesicles, School of Agriculture, Biomedicine and Environment, La Trobe University,
Melbourne, VIC, Australia, 3ACTV Research Group, Centre for Oral Health Research, Royal Dental
Hospital, Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia,
4Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment,
La Trobe University, Melbourne, VIC, Australia, 5Institute for Health and Sport, Victoria University,
Melbourne, VIC, Australia
The release of bacterial membrane vesicles (BMVs) has become recognized as a

key mechanism used by both pathogenic and commensal bacteria to activate

innate immune responses in the host and mediate immunity. Outer membrane

vesicles (OMVs) produced by Gram-negative bacteria can harbor various

immunogenic cargo that includes proteins, nucleic acids and peptidoglycan,

and the composition of OMVs strongly influences their ability to activate host

innate immune receptors. Although various Gram-negative pathogens can

produce OMVs that are enriched in immunogenic cargo compared to their

parent bacteria, the ability of OMVs produced by commensal organisms to be

enriched with immunostimulatory contents is only recently becoming known. In

this study, we investigated the cargo associated with OMVs produced by the

intestinal commensal Bacteroides fragilis and determined their ability to activate

host innate immune receptors. Analysis of B. fragilis OMVs revealed that they

packaged various biological cargo including proteins, DNA, RNA,

lipopolysaccharides (LPS) and peptidoglycan, and that this cargo could be

enriched in OMVs compared to their parent bacteria. We visualized the entry

of B. fragilis OMVs into intestinal epithelial cells, in addition to the ability of

B. fragilisOMVs to transport bacterial RNA and peptidoglycan cargo into Caco-2

epithelial cells. Using HEK-Blue reporter cell lines, we identified that B. fragilis

OMVs could activate host Toll-like receptors (TLR)-2, TLR4, TLR7 and

nucleotide-binding oligomerization domain-containing protein 1 (NOD1),

whereas B. fragilis bacteria could only induce the activation of TLR2. Overall,

our data demonstrates that B. fragilis OMVs activate a broader range of host

innate immune receptors compared to their parent bacteria due to their

enrichment of biological cargo and their ability to transport this cargo directly
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into host epithelial cells. These findings indicate that the secretion ofOMVs by B. fragilis

may facilitate immune crosstalk with host epithelial cells at the gastrointestinal surface

and suggests that OMVs produced by commensal bacteria may preferentially activate

host innate immune receptors at the mucosal gastrointestinal tract.
KEYWORDS

bacterial membrane vesicles, outer membrane vesicles (OMVs), Bacteroides fragilis, TLRs,
NOD1, innate immunity, epithelial cells, Commensals
Introduction

Bacterial membrane vesicles (BMVs) are nanoparticles

released by both pathogenic and non-pathogenic bacteria as

part of their normal growth. BMVs are referred to as outer

membrane vesicles (OMVs) or membrane vesicles (MVs), if

produced by Gram-negative or Gram-positive bacteria,

respectively. BMVs contain a range of biological and

immunogenic cargo originating from their parent bacteria

which includes proteins (1), DNA (2), RNA (3), lipids (4) and

peptidoglycan (5, 6), and also lipopolysaccharides (LPS) if

produced by Gram-negative bacteria (7). In addition to

containing a range of biological cargo, pathogen-derived BMVs

can also harbor virulence effectors and immunostimulatory

molecules derived from their parent bacteria, enabling them to

enhance pathogenesis in the host (8). Due to the diverse range of

biological cargo associated with BMVs, they can activate a wide

range of host pattern recognition receptors (PRRs) which include

Toll-like receptors (TLRs) at the host cell surface, or they can enter

host cells and deliver their cargo to intracellular TLRs or

nucleotide-binding oligomerisation domain-containing protein

(NOD) receptors to mediate inflammation in the host (8). More

recently, it has been demonstrated that BMVs produced by

pathogenic bacteria may also be enriched in specific cargo

compared to their parent bacteria which can include toxins (9),

proteins (7), LPS (7), peptidoglycan (6), lipids (4), DNA (10), and

RNA (11), and that the differential enrichment of cargo into

pathogen-derived BMVs can enhance their immunostimulatory

or immunomodulatory functions (12). Therefore, pathogen-

derived BMVs are immunogenic, and can be enriched in cargo

that facilitates pathogenesis independently of their parent bacteria.

In addition to pathogen-derived BMVs that can elicit

immune responses in the host (8), commensal bacteria and

their secreted BMVs can also be immunostimulatory or

immunomodulatory in the host (13). Recently, the gut

microbiota has emerged as a key player in regulating host

immune responses, and one mechanism by which they do this

is via the secretion of immunomodulatory BMVs (13). A large
02
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body of evidence now demonstrates that microbiota-derived

BMVs contain diverse bacterial cargo including proteins (14–

19), RNA (18, 20) and peptidoglycan (21), and that they can

deliver their cargo to host cells to activate PRRs and drive

immune responses (22–28). One important member of the gut

microbiota is Bacteroides fragilis, which constitutes 1-2% of the

normal intestinal microflora (29), and has the ability to

modulate host immunity by mediating IL-10 production as a

result of detection of its polysaccharide A (PSA) capsule by TLR2

(30–32). It also was identified that B. fragilis OMVs contain PSA

and can modulate host immunity, as a result of TLR2 activation

and the secretion of IL-10, to ultimately confer protection

against colitis in murine models of disease (22, 25). B. fragilis

OMVs can also contain proteins and lipid A (15), however, it is

unclear whether other immunostimulatory bacterial

components such as nucleic acids or peptidoglycan are also

present in B. fragilis OMVs, and their ability to activate innate

immune receptors remains unknown.

In this study, we examined the immunogenic cargo

associated with B. fragilis OMVs and investigated their ability

to enter host epithelial cells and activate PRRs. We showed that

B. fragilis OMVs contain proteins, DNA, RNA, LPS and

peptidoglycan. Additionally, we identified that B. fragilis

OMVs could enter host intestinal epithelial cells and transport

their peptidoglycan and RNA cargo intracellularly, rendering

this cargo accessible to intracellular PRRs. Moreover, due to the

cargo they packaged and their ability to enter host cells, we

identified that B. fragilis OMVs were able to activate cell-surface

receptors TLR2 and TLR4, as well as intracellular PRRs TLR7

and NOD1, in a dose-dependent manner. In comparison,

B. fragilis bacteria were only able to activate TLR2 and did not

activate any other PRRs examined. Collectively, our data

demonstrates that B. fragilis OMVs are laden with potentially

immunogenic cargo that enables them to activate a broader

range of PRRs compared to their parent bacteria. These findings

highlight the importance of OMV secretion by the commensal

B. fragilis in maintaining intercellular communication at the

mucosal epithelial cell surface.
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Materials and methods

Bacterial culturing conditions

Bacteroides fragilis strain NCTC 9343 was cultured as

previously described (33). Briefly, B. fragilis was cultured using

Horse Blood Agar medium consisting of Blood Agar Base No. 2

(Oxoid, USA) supplemented with 8% (v/v) horse blood

(Australian Ethical Biologicals, Australia), or using Brain

Heart Infusion (BHI) broth (BD Biosciences, USA)

supplemented with 5 mg/ml Hemin (Sigma-Aldrich, USA)

with shaking at 120 rpm. Cultures were grown at 37°C in

anaerobic conditions using an AnaeroGen 2.5L sachet (Oxoid,

USA) and an AnaeroJar 2.5L anaerobic jar (Oxoid, USA).
Isolation of B. fragilis OMVs

B. fragilis OMVs were isolated using our established

methods of OMV isolation (5, 6, 12, 34–36). Briefly, BHI

broth was inoculated using an overnight B. fragilis culture at a

starting optical density (O.D. 600 nm) of 0.05 and grown at 37°C

with shaking for 16 h to stationary phase of growth (O.D. 600 nm

of approximately 1.8-2.0) using anaerobic conditions. Bacteria

were pelleted by centrifugation at 3, 800 × g for 1 h at 4°C, and

the supernatant was subsequently filtered using a 0.22mm
polyethersulfone (PES) filter (Nalgene, USA) to remove any

remaining bacteria. OMVs contained within bacterial free

supernatants were concentrated by tangential flow filtration

using a VivaFlow 200 PES crossflow cassette with a 10 kDa

molecular weight cut-off filter (Sartorius, Australia), and then

pelleted by ultracentrifugation at 100, 000 × g for 2 h at 4°C

using a P28S rotor in a CP100NX ultracentrifuge (Hitachi,

Japan). The resulting OMV pellets were resuspended in

Dulbecco’s phosphate-buffered saline (DPBS; Gibco, USA) and

stored at -80°C until further purified.
Purification of B. fragilis OMVs

B. fragilis OMVs were purified by OptiPrep (60% iodixanol

(v/v); Sigma-Aldrich, USA) density gradient ultracentrifugation

as previously described (6, 12, 35, 36). In brief, OMV samples

were adjusted to 45% (v/v) OptiPrep in 2ml DPBS and were then

overlaid with a discontinuous OptiPrep gradient containing 2ml

each of 40%, 35%, 30%, 25% and 20% OptiPrep (v/v) in DPBS.

The OptiPrep gradient was subjected to ultracentrifugation at

100, 000 × g for 16 h at 4°C. Twelve fractions (1 ml each) were

collected, each fraction was washed with 10 volumes of DPBS by

ultracentrifugation at 100, 000 × g for 2 h at 4°C, and then

resuspended in DPBS. Fractions 3 to 9 containing purified

OMVs were pooled and washed using ultracentrifugation at
Frontiers in Immunology 03
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100,000 × g for 2 h at 4°C and the purity of OMV preparations

was confirmed using Transmission electron microscopy (TEM).

Purified OMVs were stored at -80°C until required.
Nanoparticle tracking analysis (NTA)

Quantification of purified OMVs was performed using

ZetaView™ Nanoparticle Tracking Analysis (NTA; Particle

Metrix, Germany) as previously described (6). Briefly, OMVs

were diluted in DPBS to a concentration of 50 - 200 particles per

field of view. NTA measurements of OMV samples were

performed using a 488 nm 40 mW laser and CMOS camera

by observing 11 cell positions at 25°C with 60 frames captured

per position. Analysis was then performed using ZetaView

software version 8.05.14 SP7 (minimum brightness: 30,

maximum brightness: 255, minimum area: 5, maximum area:

1000, minimum trace length: 15). The average of three biological

replicates was calculated and plotted as particle size versus

particles per ml using GraphPad Prism v9.3.1.
Transmission electron microscopy (TEM)

TEM sample preparation was performed as previously

described (5, 35). Briefly, OMVs were coated onto carbon‐

coated 400 mesh copper grids (ProSciTech, Australia) for

10 min, fixed in 1% (w/v) glutaraldehyde (Sigma-Aldrich,

USA) and negatively-stained with 2% (w/v) uranyl-acetate

(ProSciTech, Australia). OMV samples were then coated with

2% (w/v) methyl-cellulose (Sigma-Aldrich, USA) in 0.4% (w/v)

uranyl acetate. Samples were air dried and viewed using a JEM-

2100 transmission electron microscope (JEOL, Japan) operated

at 200 kV using a Valeta 4 MP CCD camera (Emsis, Germany).
Quantification of the cargo associated with
B. fragilis OMVs and B. fragilis bacteria

The protein cargo associated with B. fragilis OMVs was

quantified using Qubit protein assay (Invitrogen, USA) using a

Qubit 3.0 Fluorometer, according to the manufacturer’s

instructions.

OMV-associated DNA was quantified using Qubit broad-

range DNA assay. Briefly, OMVs were incubated with 4U Turbo

DNase (Invitrogen, USA) at 37°C for 1 h to degrade extra-

vesicular DNA, according to the manufacturer’s rigorous DNA

degradation protocol. Alternatively, OMVs were incubated at

37°C for 1 h with DPBS as a control. To confirm DNase activity,

B. fragilis genomic DNA was extracted using the Wizard

Genomic DNA Purification Kit (Promega, USA) and

incubated with DNase as a control. DNA associated with
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OMVs and controls was quantified using a Qubit 3.0

Fluorometer, according to the manufacturer’s instructions.

OMV associated RNA was quantified using the Qubit high-

sensitivity assay. Briefly, OMVs were incubated with 10 pg/ml
RNase A (Invitrogen, USA) at 37°C for 1 h as previously

described (37), or OMVs were incubated with DPBS as a

control. To confirm the efficiency of RNase, B. fragilis RNA

was extracted using the Isolate II RNA Mini Kit (Bioline, UK)

and incubated with RNase as a control. RNA in samples was

quantified using a Qubit 3.0 Fluorometer, according to the

manufacturer’s instructions.

OMV-associated peptidoglycan was quantified as described

previously (5, 6, 38). Briefly, OMV samples and L-18

muramyldipeptide (MDP) standards (Invivogen, USA) were

adjusted to a volume of 0.5 ml in 1M NaOH and incubated at

38°C for 30 min. Samples were then incubated with 0.5 ml of 0.5M

H2SO4 and 5 ml concentrated H2SO4 at 95°C for 5 min. Samples

were cooled immediately under running water, followed by the

addition of 50 ml CuSO4 (4% w/v) and 100 ml of 1.5% (w/v) 4-

phenylphenol (dissolved in 96% (v/v) ethanol) and incubated at 30°C

for 30 min. Absorbance was measured at 560 nm using a

spectrophotometer and the amount of peptidoglycan associated

with B. fragilis OMVs was determined using the MDP

standard curve.

LPS associated with OMVs was quantified using the Pierce

Chromogenic Endotoxin Quant kit, according to the

manufacturer’s instructions (Thermo Scientific, USA). Briefly,

OMV samples and LPS standards were adjusted to a volume of

50 ml and incubated with 50 ml limulus amoebocyte lysate for

9 min. Chromogenic substrate solution was added and samples

were incubated for 6 min at 37°C, then the reaction was stopped

by the addition of 25% (v/v) acetic acid. Absorbance was

measured at 405 nm using a CLARIOstar plate reader (BMG

Labtech, Germany) and the amount of LPS associated with 108

OMVs was quantified using the standard curve (0.1-1.0 EU/ml),

according to the manufacturer’s instructions. Each assay was

performed in technical triplicate.
Detection of protein, LPS and
peptidoglycan cargo associated with
B. fragilis OMVs and B. fragilis bacteria

To detect proteins associated with either B. fragilis OMVs or

B. fragilis bacteria, samples were boiled at 95°C for 5 min in 1x

NuPAGE LDS sample buffer (Invitrogen, USA) and 1x NuPAGE

Reducing Agent (Invitrogen, USA). Samples were normalized by

an equivalent amount of protein and were separated by SDS-

PAGE as previously described (6). Proteins associated with

B. fragilis OMVs and B. fragilis bacteria were detected by

staining SDS-PAGE gels using Sypro Ruby (Invitrogen, USA),

according to the manufacturer’s instructions, and visualized at
Frontiers in Immunology 04
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560 nm using a ChemiDoc image system (Bio-Rad

Laboratories, USA).

Peptidoglycan associated with B. fragilis OMVs and their

parent bacteria was detected by Western immunoblot, as

described previously (6). In brief, 10 mg of B. fragilis OMVs

and B. fragilis bacterial samples were separated by SDS-PAGE,

transferred to a 0.2 mm polyvinylidene difluoride membrane and

then blocked using 5% (w/v) bovine serum albumin (BSA;

Sigma-Aldrich, USA) in Tris-buffered saline containing 0.05%

(v/v) Tween (TBS-T). The membrane was then incubated with

an anti-peptidoglycan mouse monoclonal antibody (Bio-Rad

Laboratories, USA; clone number 3F6B3, 1:1,000 dilution),

washed and then incubated with goat anti-mouse IgG HRP

antibody (Invitrogen, USA, 1:5,000 dilution). The membranes

were then washed, developed using Clarity Western ECL

Substrate (Bio-Rad Laboratories, USA) and imaged using a GE

Amersham imager 600 (GE Life Sciences, UK).

To detect LPS associated with B. fragilis OMVs and their

parent bacteria, samples (10 mg protein) were first incubated

with proteinase K (10 mM; Invitrogen, USA), or DPBS as a

control, for 90 min at 37°C. Samples were then resuspended in

1x NuPAGE LDS sample buffer and 1x NuPAGE Reducing

Agent and separated by SDS-PAGE. Next, to visualize LPS, SDS-

PAGE gels were stained using ProQ Emerald 300 LPS stain kit

(Invitrogen, USA), according to the manufacturer’s instructions.

Briefly, samples were fixed [50% methanol (v/v), 5% acetic acid

(v/v)] for 90 min, oxidized using periodic acid containing 3%

acetic acid (v/v) for 30 min, and stained with ProQ Emerald stain

for 2 h. SDS-PAGE gels were then washed using 3% acetic acid

(v/v), and LPS was visualized at 300 nm using a ChemiDoc

image system (Bio-Rad Laboratories). To determine the amount

of protein associated with these samples, SDS-PAGE gels were

then counterstained using Sypro Ruby protein stain and

visualized at 560 nm.
Cell culture and stimulations

Human intestinal epithelial cells (Caco-2) were routinely

cultured as previously described (39). In brief, Caco-2 cells were

cultured in high-glucose Dulbecco’s modified eagle medium

(DMEM; Gibco, USA) supplemented with 10% (v/v) fetal calf

serum (FCS; Gibco, USA), 1% (v/v) L-glutamine (Gibco, USA),

1% (v/v) penicillin-streptomycin (Gibco, USA), 1% non-

essential amino acids (Gibco, USA) and 25mM HEPES (Gibco,

USA). HEK-Blue null cells and HEK-Blue hTLR2, hTLR4,

hTLR7, hTLR8, hTLR9, hNOD1 and hNOD2 cells (Invivogen,

USA) were maintained in DMEM supplemented with 10% (v/v)

FCS, 1% (v/v) L-glutamine, 1% (v/v) penicillin-streptomycin and

selective antibiotics required for each individual cell line as

described previously (6, 40). All cell lines were cultured at

37°C with 5% CO2.
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To perform HEK-Blue assays, HEK-Blue cells were seeded

in 96-well plates (Greiner, Germany) at a density of 1 × 105

cells per well in 200 ml culture media and cultured to

approximately 80-90% confluence. B. fragilis bacteria were

cultured for 16 h and washed with PBS, then added to HEK-

Blue cells at an increasing multiplicity of infection (MOI) for

18 h. Alternatively, B. fragilis bacteria were heat-killed at 95°C

for 45 min as previously described (41), before their addition to

HEK-Blue cells at an increasing MOI for 18 h. Viable counts

were performed on live and heat-killed B. fragilis bacteria by

enumerating serial dilutions spread on horse blood agar and

cultured overnight at 37°C using anaerobic conditions.

Additionally, HEK-Blue cells were either stimulated with an

increasing MOI of purified B. fragilis OMVs for 18 h, or not-

stimulated as negative controls. Positive controls for each cell

line included: 50 ng/ml Pam3CSK4 (Pam3CysSerLys4) for

TLR2 cells (Invivogen, USA), 6.25 ng/ml LPS for TLR4 cells

(Invivogen, USA), 1 pg/ml R848 (resiquimod) for TLR7 and

TLR8 cells (Invivogen, USA), 5 nM CpG ODN for TLR9 cells

(Invivogen, USA), 100ng/ml TriDap for NOD1 cells

(Invivogen, USA) and 0.001 pg/ml L18‐MDP for NOD2 cells

(Invivogen, USA). After 24 h, 20 ml of cell culture supernatant
was transferred to a fresh 96-well plate and incubated with 180

ml of QUANTI-Blue solution (Invivogen, USA) at 37°C. SEAP

activity was measured at 625 nm using a CLARIOstar plate

reader (BMG Labtech, Germany).
MTT cell viability assay

The viability of HEK-Blue cells following 18 h stimulation

with either live or heat-killed bacteria, or not-stimulated as

controls, was determined using the MTT Cell Proliferation Kit

(Abcam, UK), according to the manufacturer’s protocol. Briefly,

HEK-Blue cell lines (Null, hTLR2, hTLR4, hTLR7 and hNOD1)

were seeded at 1 × 105 cells per well in 96-well plates and

stimulated with either live or heat-killed B. fragilis bacteria at an

MOI of 1,000 for 18 h. Culture media was then replaced with

DMEM containing 100 mg/ml gentamicin for 2 h. The media was

then replaced with 50 ml MTT reagent in 50 ml DMEM for 3 h

followed by adding 150 ml MTT solvent for 15 minutes with

shaking. Absorbance was measured at 590 nm using a

CLARIOstar plate reader (BMG Labtech, Germany).
Fluorescent labelling of OMVs and OMV-
associated cargo

B. fragilis OMVs were labelled using Vybrant DiI (10 mM;

Invitrogen, USA) as described previously (6, 10, 42–44). Briefly,

OMVs were adjusted to 1.2 × 1012 OMVs per ml in 100 ml of
DPBS and stained with DiI for 30 min at 37°C with gentle
Frontiers in Immunology 05
170
agitation. The RNA content of OMVs was labelled by incubating

with Syto RNASelect (1mM; Invitrogen, USA) for 60 min with

gentle agitation, as previously described (43–45). The

peptidoglycan content of B. fragilis OMVs was labelled using

BODIPY-FL vancomycin (4 ng/ml; Invitrogen, USA) and non-

labelled vancomycin (4 ng/ml; Sigma-Aldrich, USA) for 20 min,

as previously described (42). An equivalent amount of each

fluorescent stain in DPBS (in the absence of OMVs) was used as

a negative control. Excess DiI, Syto RNASelect or BODIPY-FL

vancomycin dye were removed by washing OMVs and controls

four times with 4 ml DPBS using a 10 kDa centrifugal filtration

unit (Merck Millipore, Germany).
Examining OMV entry into host cells by
confocal microscopy

To visualise OMV entry into host cells, Caco-2 cells were

seeded on 18mm round coverslips (Marienfeld, Germany) in 12-

well plates at a density of 3 × 105 cells per well in 1ml of media

for 24 h. Caco-2 cells were stimulated with either DiI, BODIPY-

FL or Syto RNASelect-labelled B. fragilis OMVs for 4 h at an

MOI of 4 × 105 OMVs per cell, or each respective stain in DPBS

as a control. Following incubation, cells were washed three times

with DPBS, and extracellular fluorescence was quenched with

0.025% (v/v) Trypan blue as previously described (34). Cells

were fixed using 4% paraformaldehyde (Sigma-Aldrich, USA)

and blocked using 1% BSA (w/v) in DPBS. Cell nuclei and

cellular actin were stained with 4’,6‐diamidino‐2‐phenylindole

dilactate (DAPI; Merck, Germany) and Alexa Fluor 680

phalloidin (Invitrogen, USA), respectively. Samples were then

mounted using VectaShield mounting medium (Vector

Laboratories, USA) and imaged using a Zeiss 780 PicoQuant

confocal microscope (Zeiss, Germany) using a 63x/1.4NA oil

objective at 1024 × 1024 × 32 bit per channel. Image analysis was

performed using Imaris x64 v9.5.0 (Bitplane, Switzerland).

Three biological replicates of Caco-2 cells stimulated with

OMVs, labelled with each individual stain, were examined.

Three fields of view were imaged for each treatment

containing a minimum of 10 cells per field of view.
Statistical analysis

All statistical analyses were performed using GraphPad

Prism software v9.3.1. Qubit quantification experiments were

analysed using an unpaired t-test. HEK-Blue experiments were

analysed using an unpaired t-test or one-way ANOVA with

Dunnett’s multiple comparisons test, as indicated. Differences

were considered statistically significant when *p < 0.05, **p <

0.01, ***p < 0.001, ****p < 0.0001.
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Results

B. fragilis OMVs contain DNA, RNA,
protein, LPS, and peptidoglycan

B. fragilis OMVs contain a range of cargo including

polysaccharides (22), proteins (15, 16, 46) and LPS (15).

However, it remains unclear if B. fragilis OMVs also contain

other biological cargo including peptidoglycan and nucleic acids.

B. fragilis OMVs were isolated and purified to examine their

biological cargo composition, as well as their size andmorphology.

Examination of purified B. fragilis OMVs using transmission

electron microscopy (TEM) and Nanoparticle Tracking Analysis

(NTA) revealed that they were heterogeneous in size, with the

predominant population of OMVs being approximately 135 nm

in diameter (Figures 1A, B). Next, we quantified the amount of

protein, DNA, RNA, peptidoglycan and LPS cargo associated with

B. fragilis OMVs (Figures 1C–G). Having previously shown that
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there is variability in the quantification of OMV-associated cargo

based on the type of protein assay used and the method used to

normalise BMV number (35), we quantified the biological cargo

associated with OMVs and represented the quantity of cargo per

109 OMVs (Figures 1C–G). Quantification of the cargo associated

with 109 B. fragilis OMVs revealed that they contained protein,

DNA and RNA (Figures 1C–E). Furthermore, degradation of

extra-vesicular DNA using DNase, or RNA using RNase, revealed

that the majority of DNA and RNA was protected from

degradation and was therefore predominantly located within

OMVs (Figures 1D, E). We also identified that B. fragilis OMVs

contained peptidoglycan, with approximately 600 ng of

peptidoglycan associated with 109 OMVs (Figure 1F), in

addition to LPS with approximately 38 endotoxin units (EU) of

LPS per 109 OMVs (Figure 1G). Collectively, these findings

demonstrate that B. fragilis OMVs contain a diverse range of

biological cargo including protein, DNA, RNA, peptidoglycan

and LPS.
B C

D E F G

A

FIGURE 1

B fragilis OMVs are heterogenous in size and morphology, and harbour protein, DNA, RNA, peptidoglycan and LPS cargo. (A) Purified B. fragilis
OMVs were visualized using transmission electron microscopy (TEM). OMVs are indicated by black arrows. Images are representative of three
biological replicates (Scale bar = 100 nm). (B) The size distribution of B. fragilis OMVs was determined using ZetaView Nanoparticle Tracking
Analysis. Data shows the mean (black line) ± SEM (red error bars) of three biological replicates. (C) Quantification of OMV-associated protein,
per 109 B. fragilis OMVs, using Qubit fluorometric analysis. Data shows the mean ± SEM of three biological replicates. (D) Quantification of DNA
associated with DNase-treated (+) or non-treated (-) B. fragilis OMVs using Qubit fluorometric analysis. B. fragilis genomic DNA (Genomic DNA
control), either treated with DNase (+) or non-treated (-), was used as a control for DNase activity. Shown is the mean ± SEM of three biological
replicates. ns, not significant, ***p < 0.001 (unpaired t-test). (E) Quantification of RNA associated with RNase-treated (+) or non-treated (-)
B. fragilis OMVs using Qubit fluorometric analysis. B. fragilis bacterial RNA (Bacterial RNA control), either treated with RNase (+) or not-treated
(-), was used as a control for RNase activity. Shown is the mean ± SEM of three biological replicates. ns, not significant, ***p < 0.001 (unpaired
t-test). (F) Quantification of the peptidoglycan cargo associated with 109 B. fragilis OMVs. Shown is the mean ± SEM of three biological

replicates. (G) LPS associated with 109 B. fragilis OMVs was quantified using the Pierce™ Chromogenic Endotoxin Quant kit. Data represents the
mean ± SEM of three biological replicates.
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B. fragilis OMVs have an altered cargo
composition compared to their
parent bacteria

We have previously demonstrated that BMVs produced by

Gram-negative and Gram-positive bacteria contain cargo that

differs from their parent bacterium, suggesting that bacteria can

preferentially package or enrich biological cargo in their BMVs

(6, 12). Furthermore, we showed that enrichment of biological

cargo within BMVs can have a profound effect on their

subsequent biological functions, when compared to their

parent bacteria and to BMVs produced during different stages

of bacterial growth, indicating that selective cargo packaging into

BMVs regulates their functions (12). As B. fragilis OMVs

contain protein, DNA, RNA, LPS and peptidoglycan, we next

investigated if B. fragilis OMVs were enriched in biological cargo

compared to their parent bacteria. Examination of the overall

protein profiles of B. fragilis OMVs by SDS-PAGE revealed that
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a range of predominant protein bands, including those at

approximately 125 kDa, 75 kDa, 30 kDa and 17 kDa, were

enriched in B. fragilis OMVs compared to their parent bacteria

(Figure 2A, arrows). Similarly, some protein bands present in

B. fragilis bacteria, such as bands of approximately 60 and 45

kDa, were not equally prominent in OMVs (Figure 2A, stars),

suggesting that there is selective cargo packaging of protein into

B. fragilis OMVs.

We next detected the presence of peptidoglycan within OMVs

and bacterial samples byWestern immunoblot. Examination of an

equivalent amount of B. fragilis OMVs and bacteria, normalized

by protein amount, revealed that OMVs were enriched in

peptidoglycan, evidenced by a prominent band of approximately

10 kDa, compared to their parent bacteria (Figure 2B). These

differences in peptidoglycan profiles suggest differences in

peptidoglycan packaging into OMVs compared to their parent

bacteria, similar to what we have previously observed in MVs

produced by the Gram-positive pathogen S. aureus (6).
B

C D

A

FIGURE 2

B. fragilis OMVs are enriched in protein, peptidoglycan and LPS cargo compared to their parent bacteria. (A) B. fragilis OMVs (10 mg) and
B. fragilis bacteria (10 mg) were separated using SDS-PAGE and their protein cargo was stained using Sypro Ruby. Data is representative of three
biological replicates. (B) The presence of peptidoglycan cargo associated with B. fragilis OMVs (10 mg) and B. fragilis bacteria (10 mg) was
detected using Western immunoblot using an anti-peptidoglycan antibody. Peptidoglycan was used as a positive control (Pos control). Data
shows three biological samples of B. fragilis OMVs and B. fragilis bacteria and is representative of three experiments. (C) B. fragilis OMVs and
B. fragilis bacteria were treated with Proteinase K (P.K) (+) or not treated as controls (-), and their LPS cargo was detected by staining with ProQ
Emerald 300 LPS stain. (D) ProQ Emerald-stained SDS-PAGE gels were counterstained with the protein-specific stain Sypro Ruby. Data in panel
C and D represents three independent biological samples of B. fragilis OMVs and B. fragilis bacteria and is representative of three independent
experiments. In all panels (A–D), black arrows represent cargo that is enriched in OMVs compared to bacteria, stars represent cargo that is less
abundant in OMVs compared to bacteria.
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Although it was previously reported that there were no

structural differences between the lipid A LPS moiety of

B. fragilis and their OMVs (15), the relative abundance of LPS

cargo in B. fragilis OMVs compared to their parent bacteria

remains unknown. To address this, we examined the LPS

profiles of B. fragilis OMVs compared to their parent bacteria

using SDS-PAGE, loaded with equivalent protein amounts, and

visualized LPS using the ProQ Emerald stain (Figure 2C). LPS

moieties of approximately 100 kDa, 75 kDa and 10 kDa were

prominent in B. fragilis OMVs, however these moieties were less

evident in B. fragilis bacterial samples, suggesting that LPS was

enriched in OMVs compared to their parent bacteria

(Figure 2C). The higher molecular weight staining

(approximately 75 to 100 kDa) in the B. fragilis OMV samples

suggests the presence of LPS. In contrast, the low molecular

weight smear (10 kDa) may represent lipooligosaccharide (LOS)

or lipid A components (Figure 2C), as described previously (40).

Additionally, both high and low molecular weight smears were

resistant to proteinase K degradation (Figure 2C) and were not

visualized by Sypro Ruby staining (Figure 2D), validating that

these bands were representative of LPS. Taken together, these

data demonstrate that B. fragilis OMVs harbor a range of

biological cargo that includes proteins, peptidoglycan, and LPS

and that there are differences in the preferential packaging of

these immunostimulatory cargo into OMVs compared to their

parent bacteria, which may ultimately alter their ability to

activate host PRRs.
B. fragilis OMVs activate TLR2 and TLR4
responses compared to their parent
bacteria that can only activate TLR2

Having revealed that B. fragilis OMVs contain various

biological cargo with distinct differences in their cargo

composition compared to their parent bacteria (Figures 2A–

D), we sought to determine if there was a difference in the ability

of B. fragilis OMVs and their parent bacteria to activate host

PRRs. To address this, HEK-Blue reporter cells that express

either human TLR2 or TLR4, or control HEK-Blue null cells,

were stimulated with an increasing dose of either B. fragilis

OMVs, live B. fragilis bacteria, or heat killed B. fragilis bacteria as

a control. First, we identified that B. fragilis OMVs as well as live

or heat-killed bacteria were unable to induce the activation of

HEK-Blue null cells (Figures 3A–D; Supplementary Figure 1A).

However, both B. fragilis OMVs and their parent bacteria

activated TLR2 in a dose-dependent manner (Figures 3A, B),

consistent with previous reports (22, 32). OMV-mediated TLR2

activation occurred at an MOI as low as approximately 80

OMVs per cell (p < 0.01), suggesting that OMVs can readily

activate TLR2 (Figure 3A). Next, we investigated whether

B. fragilis and their OMVs could activate TLR4, and observed
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dose-dependent activation of TLR4 by B. fragilis OMVs, which

occurred at MOI as low as approximately 625 OMVs per cell

(p < 0.01) (Figure 3C). However, we did not observe any TLR4

activation in response to stimulation with live B. fragilis bacteria

at any of the concentrations examined, suggesting that there is a

difference in the TLR4 immunostimulatory abilities of B. fragilis

OMVs compared to their parent bacteria (Figure 3D). Similarly,

heat-killed B. fragilis bacteria also activated TLR2 but not TLR4-

expressing HEK-Blue cells (Supplementary Figures 1B, C),

identifying that the inability of B. fragilis to activate TLR4 was

independent of bacterial viability or potential cytotoxic effects

mediated by live bacteria on host cells. We also confirmed the

viability of HEK-Blue null cells and TLR2 and TLR4 expressing

HEK-Blue cells following stimulation with either live or heat

killed B. fragilis bacteria at maximal MOI (Supplementary

Figures 1D–F), validating that the lack of TLR4 activation in

response to stimulation with live B. fragilis bacteria was not due

to a decrease in HEK-Blue cell viability. Overall, these data

demonstrate that B. fragilis OMVs activate both TLR2 and

TLR4, whereas live and heat killed B. fragilis bacteria can only

activate TLR2, suggesting that the immunogenic cargo of

B. fragilis OMVs may enhance their ability to activate TLR4

compared to their parent bacteria.
B. fragilis OMVs can enter host intestinal
epithelial cells and deliver peptidoglycan
and RNA intracellularly

We next investigated the ability of B. fragilis OMVs to enter

and deliver their immunogenic cargo, including peptidoglycan

and RNA, to host epithelial cells. First, we confirmed the ability

of B. fragilis OMVs to enter human intestinal epithelial cells

(Caco-2). To do this, DiI-labelled B. fragilis OMVs were

incubated with Caco-2 cells for 4 hours, and the ability of

OMVs to enter epithelial cells was determined by confocal

microscopy (Figure 4A). Examination revealed that B. fragilis

OMVs were capable of entering Caco-2 epithelial cells, and

therefore able to deliver their immunogenic cargo intracellularly

to host cells (Figure 4A).

We have previously shown that Helicobacter pylori OMVs

contain peptidoglycan, and that they can deliver their

peptidoglycan cargo into host epithelial cells, resulting in the

activation of the cytoplasmic host innate immune receptor

NOD1 and the induction of an innate immune response (5,

42). As B. fragilis OMVs also contain peptidoglycan (Figures 1,

2), we next investigated the ability of B. fragilis OMVs to deliver

their peptidoglycan cargo intracellularly to host epithelial cells.

To do this, peptidoglycan associated with B. fragilis OMVs was

fluorescently labelled using BODIPY-FL vancomycin, and the

ability of fluorescently-labelled B. fragilis OMVs to enter Caco-2

cells was determined using confocal microscopy (Figure 4B). We
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found that BODIPY-FL-labelled B. fragilis OMVs entered Caco-

2 epithelial cells and were therefore capable of delivering their

fluorescently-labelled peptidoglycan intracellularly (Figure 4B).

Pathogen-derived BMVs can also mediate the intracellular

delivery of bacterial RNA to host cells, resulting in the induction

of innate immunity (6, 37, 44, 47, 48). However, the ability of

commensal-derived BMVs to deliver RNA cargo into host cells

remains to be elucidated. Therefore, we next examined the

ability of B. fragilis OMVs to deliver their RNA cargo

intracellularly to intestinal epithelial cells. To do this, RNA

associated with B. fragilis OMVs was labelled using Syto

RNASelect. B. fragilis OMVs containing fluorescently-labelled

RNA were incubated with Caco-2 cells and examined by

confocal microscopy, revealing that B. fragilis OMVs could

deliver RNA intracellularly to Caco-2 cells (Figure 4C). As a

control for the non-specific uptake of DiI, BODIPY-FL

vancomycin or Syto RNASelect, Caco-2 cells were incubated

with each respective stain resuspended in DPBS in the absence of
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OMVs and examined by confocal microscopy, revealing a lack of

each fluorescent stain intracellularly (Figure 4, controls). These

findings reveal that B. fragilis OMVs can enter host epithelial

cells to deliver their cargo, that includes peptidoglycan and RNA.
B. fragilis OMVs activate NOD1 and TLR7
responses, whereas their parent
bacteria cannot

We next investigated the ability of B. fragilis OMVs to

activate the intracellular receptors for peptidoglycan, NOD1

and NOD2, which detect unique components of bacterial

peptidoglycan. Specifically, NOD1 detects D-glutamyl-meso-

diaminopimelic acid found predominantly in Gram-negative

bacteria (49), whereas NOD2 detects muramyl dipeptide found

in peptidoglycan of both Gram-negative and Gram-positive

bacteria (50). To investigate the immune-stimulating potential
B

C D

A

FIGURE 3

B. fragilis OMVs activate TLR2 and TLR4 compared to their parent bacteria which only activate TLR2. (A, B) TLR2 and (C, D) TLR4 expressing
HEK-Blue cells were stimulated with either B. fragilis OMVs (A, C, squares) or B fragilis bacteria (B, D, circles) at an increasing multiplicity of
infection (MOI) for 18 hours. In all panels, open triangles indicate stimulation of the HEK-Blue null cell line with either OMVs (A, C) or bacteria
(B, D) in each assay, filled triangles indicate positive controls for each respective cell line. Data represents mean ± SEM of three biological
replicates. ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (One-way ANOVA with Dunnett’s multiple comparisons test,
compared to non-stimulated controls).
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FIGURE 4

B fragilis OMVs enter host intestinal epithelial cells and transport their peptidoglycan and RNA cargo intracellularly. The (A) lipid (DiI; red),
(B) peptidoglycan (BODIPY-FL vancomycin; green) and (C) RNA (Syto RNASelect; green) cargo associated with B. fragilis OMVs was fluorescently
labelled. Fluorescently labelled B. fragilis OMVs were then incubated with Caco-2 cells for 4 hours, and OMV entry was visualized by confocal
microscopy. Cell nuclei and cellular actin were visualized by staining with DAPI (blue) or Phalloidin (magenta). Intracellular B. fragilis OMVs are
indicated by white arrows. DPBS containing each respective stain (Control) were incubated with Caco-2 cells to control for the non-specific
uptake of each fluorescent stain by host cells. Images are representative of three biological replicates of Caco-2 cells stimulated with each type
of fluorescently-labelled B. fragilis OMVs. Scale bar = 10 mm.
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of peptidoglycan delivered by B. fragilis OMVs, HEK-Blue cells

expressing human NOD1 were stimulated with an increasing

dose of B. fragilis OMVs or B. fragilis bacteria (Figures 5A, B).

We found that stimulation of NOD1-expressing HEK-Blue cells

with an MOI of 2 × 107 OMVs per cell resulted in significant

activation of NOD1 compared to non-stimulated controls (p <

0.05) (Figure 5A). Based on our quantification of peptidoglycan

associated with OMVs (Figure 1D), this corresponded to

approximately 12 ng of peptidoglycan associated with 2 × 107

OMVs resulting in the activation of NOD1 (Figure 5A). In

comparison, we observed that NOD1 was not activated by

B. fragilis bacteria at any MOI examined in this study,

indicating that there are differences in the ability of B. fragilis

and their OMVs to activate NOD1 (Figure 5B). We next

characterized the ability of OMVs to activate NOD2, which

has been previously reported to have a role in the detection of

B. fragilis OMVs by bone marrow-derived dendritic cells (25,

50). However, we did not observe any significant activation of

NOD2-expressing HEK-Blue cells by either B. fragilis OMVs or

B. fragilis bacteria at any of MOI examined in this study

(Figures 5C, D). Furthermore, heat-killed bacteria did not

activate either NOD1 or NOD2, and the inability of B. fragilis

bacteria to activate NOD1 signaling compared to OMVs was not

due to a reduction in host cell viability (Supplementary

Figures 2A–C).

Having determined that B. fragilis OMVs harbor both DNA

and RNA cargo (Figures 1D, E) and that RNA associated with

B. fragilis OMVs can enter epithelial cells (Figure 4C), we next

investigated their ability to activate the RNA receptors TLR7 and

TLR8, and TLR9 that detects bacterial DNA. To address this,

TLR7, TLR8 and TLR9 expressing HEK-Blue cells were

stimulated with an increasing dose of B. fragilis OMVs or their

parent bacteria (Figures 5E–J). Stimulation of TLR7 expressing

HEK-Blue cells with an increasing dose of B. fragilis OMVs

resulted in significant activation of TLR7 compared to non-

stimulated controls, with a minimumMOI of approximately 5 ×

105 OMVs per cell being required to induce TLR7 activation (p <

0.05) (Figure 5E). In contrast, live and heat killed B. fragilis

bacteria could not activate TLR7 at any concentration examined

in this study (Figure 5F, Supplementary Figure 3A).

Furthermore, the inability of live or heat killed B. fragilis to

activate TLR7 compared to OMVs was not due to impairing the

viability of HEK-Blue cells expressing TLR7 (Supplementary

Figure 3B). We also found that neither B. fragilis OMVs, nor live

or heat-killed B. fragilis bacteria were able to induce the

activation of TLR8 (Figures 5G, H, Supplementary Figure 3C),

suggesting that B. fragilis bacteria were unable to activate either

TLR7 or TLR8, and that RNA associated with B. fragilis OMVs

preferentially activated TLR7 compared to TLR8 (Figure 5E).

This is in contrast to what we have previously observed using

S. aureusMVs, where an equivalent amount of RNA-containing

S. aureus MVs could activate both TLR7 and TLR8 (6).

Moreover, we found that live and heat killed B. fragilis bacteria
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and their OMVs could not activate TLR9 responses at all MOIs

examined (Figures 5I, J, Supplementary Figure 3D). The inability

of B. fragilisOMVs to activate TLR9 responses may be attributed

to them having approximately ten-fold less DNA (0.311ng per

109 OMVs) than RNA (3.21ng per 109 OMVs) content

(Figures 1D, E) and therefore, the amount of DNA delivered

by B. fragilis OMVs may be insufficient to induce TLR9

activation. Moreover, NF-kB activity was not observed in the

negative control HEK-Blue null cell line in response to

stimulation with B. fragilis OMVs or bacteria, revealing that

the delivery of bacterial cargo by B. fragilis OMVs is essential for

their ability to activate the intracellular receptors NOD1 and

TLR7 (Figure 5).

Taken together, our data identify the ability of the intestinal

commensal B. fragilis to package protein, DNA, RNA,

peptidoglycan and LPS into their OMVs, and that there is

enrichment of immunogenic cargo in B. fragilis OMVs.

Furthermore, we show the ability of enriched B. fragilis OMV-

associated cargo to be delivered intracellularly to host cells, which

ultimately enables B. fragilis OMVs to preferentially activate a

broader range of innate immune receptors compared to their

parent bacteria. Moreover, these findings identify novel

mechanisms of selective immune activation mediated by

B. fragilis OMVs at the host epithelial cells surface via

preferential activation of TLR4, TLR7 and NOD1.
Discussion

The immunostimulatory functions of BMVs depend upon

the specific cargo they contain and their ability to deliver this

cargo to host cells. BMVs produced by both pathogens and

commensals can package various biological cargo including

nucleic acids, proteins, LPS and peptidoglycan. Furthermore,

pathogen-derived BMVs can be enriched in immunostimulatory

cargo, enabling them to activate host PRRs and drive immune

responses in the host. However, the enrichment of

immunostimulatory cargo in commensal-derived BMVs

compared to their parent bacteria, and their subsequent ability

to deliver this cargo and activate innate immune receptors is not

equally well characterized. The findings of this study reveal that

OMVs produced by the commensal B. fragilis contain protein,

nucleic acids, LPS and peptidoglycan and are enriched in LPS,

peptidoglycan and proteins compared to their parent bacterium

(Figures 1, 2). Additionally, we show that B. fragilis OMVs can

enter intestinal epithelial cells to deliver their RNA and

peptidoglycan cargo intracellularly (Figure 4). Moreover, the

enrichment of peptidoglycan, LPS and protein cargo into

B. fragilis OMVs, in addition to their ability to deliver their

cargo into host epithelial cells, enables them to activate a more

diverse range of PRRs which includes TLR4, TLR7 and NOD1

compared to their parent bacteria (Figures 3, 5). Collectively, our

findings identify the enrichment of select cargo into B. fragilis
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FIGURE 5

B fragilis OMVs activate NOD1 and TLR7 whereas B fragilis bacteria cannot. (A, B) NOD1, (C, D) NOD2, (E, F) TLR7, (G, H) TLR8 and (I, J) TLR9
expressing HEK-Blue cells were stimulated with an increasing MOI of either B. fragilis OMVs (A, C, E, G, I, squares) or B. fragilis bacteria (B, D, F,
H, J, circles) for 18 hours. Open triangles indicate stimulation of the HEK-Blue null cell line with either B. fragilis OMVs or B. fragilis bacteria as a
negative control in each assay. Filled triangles indicate positive controls for each respective cell line. Data represents mean ± SEM of three
biological replicates. ns=not significant, *p < 0.05, **p < 0.01. (One-way ANOVA with Dunnett’s multiple comparisons test, compared to non-
stimulated controls).
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OMVs that subsequently results in their ability to activate a

broader range of host innate immune receptors compared to

their parent bacteria, revealing that B. fragilis OMVs may

function to increase the potential for commensal-host

crosstalk at the intestinal epithelial barrier.

In this study, we investigated the type and quantity of

biological cargo associated with B. fragilis OMVs and

determined their ability to activate host innate immune

receptors compared to their parent bacteria. Our data revealed

that B. fragilis OMVs contain a wide range of biological cargo

consisting of protein, LPS, peptidoglycan, DNA and RNA

(Figure 1). Interestingly, B. fragilis OMVs contained

approximately ten-fold more RNA than DNA (Figures 1D, E),

which is consistent with previous studies identifying that MVs

derived from the Gram-positive commensals Lactobacillus reuteri

(20) and Lactobacillus casei (18) also packaged significantly more

RNA than DNA. While the RNA associated with pathogen-

derived BMVs is becoming increasingly recognized as being able

to activate innate immune receptors and to modulate cellular

functions when delivered into host cells (37, 51), knowledge

regarding the immunostimulatory and immunomodulatory

abilities of RNA delivered by commensal-derived BMVs is

limited, highlighting that future research endeavors should focus

on broadening our understanding of their functions.

Our data show that B. fragilis OMVs were enriched with

protein cargo compared to their parent bacterium (Figure 2A).

In agreement with our findings, a previous study examining the

proteome of B. fragilis OMVs found that they were enriched in

acidic proteases and sugar-hydrolysing glycosidases, which

facilitated the catabolism and acquisition of environmental

nutrients and were thought to ameliorate the establishment

and composition of the gut microbiota (15). Moreover, while

selective protein packaging into pathogen-derived BMVs has

been shown to promote pathogen colonisation or survival (52,

53), proteins enriched in BMVs produced by various pathogens

also have important roles in facilitating bacterial pathogenesis

and promoting the development of inflammatory host immune

responses (12, 52–55), further supporting the notion that

bacteria can regulate the proteome of their OMVs to modulate

their functions.

We also observed the enrichment of LPS into B. fragilis

OMVs compared to their parent bacteria (Figure 2C). Although

ProQ Emerald stain used in this study cannot discriminate

between different LPS isoforms at the molecular level, the LPS

enriched in B. fragilis OMVs was characteristic of both larger

LPS species, as well as smaller LPS, LOS or lipid A species

(Figure 2C). Consequently, we observed that B. fragilis OMVs,

but not their parent bacteria, induced dose-dependent activation

of TLR4, the host immune receptor responsible for the detection

of LPS. Therefore, our findings suggest that the enrichment of

LPS into B. fragilis OMVs enhances their ability to activate TLR4

compared to their parent bacteria. In agreement with our

findings, a previous study showed that long-chain LPS
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moieties could be enriched in Porphyromonas gingivalis OMVs

compared to their parent bacteria (7). Moreover, it was also

r e p o r t e d t h a t OMV s p r o d u c e d b y w i l d - t y p e

Neisseria meningitidis strains induced stronger TLR4 responses

compared to OMVs produced by LPS-depleted strains,

demonstrating that OMVs containing more LPS were more

readily able to induce the activation of TLR4-mediated

immune responses (56). Collectively, these studies support our

findings that LPS can be enriched in B. fragilisOMVs which may

contribute to their enhanced capacity to mediate TLR4 signaling

compared to their parent bacteria.

In addition to examining the ability of B. fragilis OMVs to

preferentially activate host cell surface expressed TLRs, we also

investigated the ability of B. fragilis OMVs to enter epithelial

cells, rendering their cargo accessible to intracellular PRRs, and

their subsequent ability to activate these cytoplasmic PRRs.

Using previously validated methods to label BMVs and their

associated peptidoglycan and RNA cargo, we demonstrated that

B. fragilis OMVs entered intestinal epithelial cells and delivered

their fluorescently-labelled peptidoglycan and RNA cargo

intracellularly (Figure 4). Considering that B. fragilis bacteria

are non-invasive and do not readily secrete immunostimulatory

effector molecules via a known secretion system (57, 58), OMVs

are emerging as a novel secretion mechanism utilized by

B. fragilis to deliver immunostimulatory cargo into the

cytoplasm of host epithelial cells. Consistent with our findings,

a previous study reported the ability of OMVs produced by the

closely related Bacteroides thetaiotaomicron to enter intestinal

epithelial cells using both Caco-2 cells and small intestinal

organoid models of OMV entry (59). The entry of B. fragilis

OMVs into intestinal epithelial cells has not been well described,

however previous studies have reported the uptake of B. fragilis

OMVs by host dendritic cells ex vivo, which was thought to

facilitate the activation of the cytoplasmic NOD2 immune

receptor (22, 25). Additionally, OMVs produced by

commensal and probiotic strains of Escherichia coli were also

found to enter intestinal epithelial cells, whereby fluorescent

labelling of their peptidoglycan cargo demonstrated the

intracellular delivery of peptidoglycan and the subsequent

activation of NOD1-dependent immune responses (21). In

contrast to the limited studies reporting the delivery of

commensal-derived peptidoglycan into host cells via BMVs,

there are numerous studies reporting the ability of BMVs

produced by pathogens including H. pylori, Vibrio cholerae

and Aggregatibacter actinomycetemcomitans to contain

peptidoglycan and induce the activation of NOD1- or NOD2-

dependent immune responses upon their entry into host

epithelial cells (5, 42, 60–62). The BMV-mediated delivery of

bacterial RNA to host cells has been also observed for pathogen-

derived BMVs (37, 44, 48), resulting in the activation of

intracellular detectors of microbial RNA, TLR7 and TLR8 (6,

40), but this has not been characterized in the context of

commensal-derived BMVs. Therefore, our findings identify
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that B. fragilis can deliver bacterial RNA to host epithelial cells

via OMVs and suggests the possibility that other commensal

organisms may also be capable of potentially delivering

bacterial-derived RNA into host cells via this mechanism, and

this forms the basis of future studies. Collectively, these findings

demonstrate that B. fragilis OMVs enter intestinal epithelial cells

to deliver peptidoglycan and RNA cargo intracellularly, resulting

in the activation of their respective cytoplasmic PRRs.

Having shown that B. fragilis OMVs are enriched in

peptidoglycan (Figure 2), as well as their ability to deliver this

cargo intracellularly (Figure 4), we demonstrated that B. fragilis

OMVs can activate NOD1, the intracellular receptor for Gram-

negative peptidoglycan (Figure 5A). However, in contrast to a

previous study reporting that B. fragilis OMVs activated NOD2

following phagocytosis by dendritic cells (25), B. fragilis OMVs

did not activate NOD2 in our epithelial HEK-Blue cell model of

PRR activation. This may be explained by the differences in

OMV entry between phagocytic dendritic cells compared to

non-phagocytic epithelial cells (63), in addition to the increased

expression of NOD2 by cells of myeloid origin (64).

Furthermore, B. fragilis OMVs activated the intracellular RNA

receptor, TLR7, but did not activate TLR8 which can also detect

microbial RNA. Whilst human TLR7 and TLR8 are both

responsible for the detection of single-stranded RNA

compounds, and can be activated by RNA delivered by

S. aureus MVs into host epithelial cells (6), evidence suggests

that TLR7 may have greater ligand sensitivity than TLR8 (65),

thus providing a potential explanation as to why we did not see

TLR8 activation by B. fragilis OMVs in our study. In addition,

we did not observe TLR9 activation in response to stimulation

with B. fragilis OMVs at any MOI examined in this study, which

suggests that the amount of DNA delivered by B. fragilis OMVs

may not have been sufficient to mediate TLR9 activation (35).

We have previously shown that BMVs produced by different

strains of a bacterial species vary in their amount of DNA and

RNA cargo and therefore differ in their ability to activate their

respective TLRs (35). Therefore, although we did not see

activation of TLR8 and TLR9 by B. fragilis OMVs in our

study, we cannot exclude the possibility that stimulation of

these cells with an increased amount of OMVs, or with OMVs

produced by a different B. fragilis strain that harbor a greater

concentration of DNA and RNA, may activate these TLRs.

Most importantly, the findings of our study revealed that

B. fragilis bacteria did not induce the activation of any

intracellular receptor tested in this study, which may be due to

the bacterium being unable to directly deliver their biological

cargo intracellularly. Therefore, the ability of the commensal

B. fragilis to produce OMVs that mediate the activation of

intracellular receptors NOD1 and TLR7 enables B. fragilis to

activate a broader range of immune receptors at the epithelium.

Collectively these findings suggest that OMV secretion by

B. fragilis is a novel mechanism used by this bacterium to
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increase their potential to mediate immune crosstalk at the

intestinal epithelium.

Overall, our findings identify that B. fragilis OMVs are

enriched in immunostimulatory cargo and can transport

this cargo directly into host epithelial cells to preferentially

activate host PRRs compared to their parent bacteria.

Furthermore, whilst previous studies have recognized the

immunomodulatory properties of commensal bacteria or their

BMVs, this study compares and provides evidence of key

differences in the abilities of B. fragilis OMVs and B. fragilis

bacteria to activate host TLRs and NODs. Therefore, OMVs

emerge as a novel secretion mechanism used by B. fragilis

and potentially other non-invasive commensal bacteria to

mediate TLR and NOD activation in epithelial cells. In this

way, commensal-derived BMVs may directly contribute to

immune activation or modulation at the intestinal mucosal

surface. Further research elucidating the composition and

ability of other commensal and microbiota-derived BMVs to

selectively deliver immunogenic cargo, and to activate and signal

via host innate immune receptors is needed to improve our

understanding of their contribution to maintaining homeostasis

in the gastrointestinal niche.
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SUPPLEMENTARY FIGURE 1

Live and heat-killed B. fragilis bacteria activate TLR2, but not TLR4,
without reducing host cell viability. HEK-Blue (A) null cells as well as (B)
TLR2 and (C) TLR4 expressing HEK-Blue cells were stimulated with an

increasing dose of either live (closed circles) or heat-killed (open circles)
B. fragilis bacteria for 18 hours. Triangles represent positive controls for

each respective cell line. Data represents mean ± SEM of three biological
replicates. ns = not significant, *p < 0.05 (Unpaired t-test). (D) HEK-Blue

null cells as well as (E) TLR2 and (F) TLR4 expressing HEK-Blue cells were
stimulated with either live or heat-killed B. fragilis bacteria (MOI 1,000) for

18 hours, and cell viability was measured using MTT Assay. Non-
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stimulated cells (NS) were used as a control. Data represents mean ±
SEM of at least three biological replicates. ns = not significant (One-way

ANOVA with Tukey’s multiple comparisons test).

SUPPLEMENTARY FIGURE 2

Live and heat-killed B. fragilis bacteria do not activate NOD1 or NOD2, and

do not decrease the viability of NOD1-expressing cells. HEK-Blue cells
expressing (A) NOD1 or (B) NOD2 were stimulated with an increasing

dose of either live (closed circles) or heat-killed (open circles) B. fragilis
bacteria for 18 hours. Triangles represent positive controls for each

respective cell line. Data represents mean ± SEM of three biological

replicates. ns = not significant (Unpaired t-test). (C) The viability of
NOD1-expressing HEK-Blue cells following 18 hours stimulation with

either live or heat-killed B. fragilis bacteria (MOI 1,000) was measured
by MTT Assay. Non-stimulated cells (NS) were used as a control. Data

represents mean ± SEM of four biological replicates. ns = not significant
(One-way ANOVA with Tukey’s multiple comparisons test).

SUPPLEMENTARY FIGURE 3

Live and heat-killed B. fragilis bacteria do not activate TLR7, TLR8 or TLR9,

and do not decrease the viability of TLR7-expressing cells. HEK-Blue cells

expressing (A) TLR7, (C) TLR8 or (D) TLR9 were stimulated with an
increasing dose of either live (closed circles) or heat-killed (open circles)

B. fragilis bacteria for 18 hours. Triangles represent positive controls for
each respective cell line. Data represents mean ± SEM of three biological

replicates. ns = not significant, (Unpaired t-test). (B) The viability of TLR7-
expressing HEK-Blue cells following 18 hours stimulation with either live

or heat-killed B. fragilis bacteria (MOI 1,000) was measured by MTT Assay.

Non-stimulated cells (NS) were used as a control. Data represents mean ±
SEM of four biological replicates. ns = not significant (One-way ANOVA

with Tukey’s multiple comparisons test).
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39. Cañas MA, Giménez R, Fábrega MJ, Toloza L, Baldomà L, Badia J. Outer
membrane vesicles from the probiotic Escherichia coli Nissle 1917 and the
commensal ECOR12 enter intestinal epithelial cells via clathrin-dependent
endocytosis and elicit differential effects on DNA damage. PLoS One (2016) 11
(8):e0160374. doi: 10.1371/journal.pone.0160374
Frontiers in Immunology 16
181
40. Cecil JD, O'Brien-Simpson NM, Lenzo JC, Holden JA, Chen YY, Singleton
W, et al. Differential responses of pattern recognition receptors to outer membrane
vesicles of three periodontal pathogens. PLoS One (2016) 11(4):e0151967.
doi: 10.1371/journal.pone.0151967

41. Alhawi M, Stewart J, Erridge C, Patrick S, Poxton IR. Bacteroides fragilis
signals through toll-like receptor (TLR) 2 and not through TLR4. J Med Microbiol
(2009) 58(Pt 8):1015–22. doi: 10.1099/jmm.0.009936-0

42. Irving AT, Mimuro H, Kufer TA, Lo C, Wheeler R, Turner LJ, et al. The
immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on
early endosomes to promote autophagy and inflammatory signaling. Cell Host
Microbe (2014) 15(5):623–35. doi: 10.1016/j.chom.2014.04.001

43. Choi JW, Kim SC, Hong SH, Lee HJ. Secretable small RNAs via outer
membrane vesicles in periodontal pathogens. J Dent Res (2017) 96(4):458–66.
doi: 10.1177/0022034516685071

44. Rodriguez BV, Kuehn MJ. Staphylococcus aureus secretes
immunomodulatory RNA and DNA via membrane vesicles. Sci Rep (2020) 10
(1):18293. doi: 10.1038/s41598-020-75108-3

45. Nicola AM, Frases S, Casadevall A. Lipophilic dye staining of Cryptococcus
neoformans extracellular vesicles and capsule. Eukaryot Cell (2009) 8(9):1373–80.
doi: 10.1128/ec.00044-09

46. Nakayama-Imaohji H, Hirota K, Yamasaki H, Yoneda S, Nariya H, Suzuki
M, et al. DNA Inversion regulates outer membrane vesicle production in.
Bacteroides fragilis. PLoS One (2016) 11(2):e0148887. doi: 10.1371/
journal.pone.0148887

47. Ha JY, Choi SY, Lee JH, Hong SH, Lee HJ. Delivery of periodontopathogenic
extracellular vesicles to brain monocytes and microglial IL-6 promotion by RNA
cargo. Front Mol Biosci (2020) 7:596366. doi: 10.3389/fmolb.2020.596366

48. Zhang H, Zhang Y, Song Z, Li R, Ruan H, Liu Q, et al. sncRNAs packaged by
Helicobacter pylori outer membrane vesicles attenuate IL-8 secretion in human
cells. Int J Med Microbiol (2020) 310(1):151356. doi: 10.1016/j.ijmm.2019.151356

49. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jéhanno M, Viala J, et al.
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Sex hormones, intestinal
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microbiome: Major influencers
of the sexual dimorphisms
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and Maria Jelinic1*
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Obesity is defined as the excessive accumulation of body fat and is associated

with an increased risk of developing major health problems such as

cardiovascular disease, diabetes and stroke. There are clear sexual

dimorphisms in the epidemiology, pathophysiology and sequelae of obesity

and its accompanying metabolic disorders, with females often better protected

compared to males. This protection has predominantly been attributed to the

female sex hormone estrogen and differences in fat distribution. More recently,

the sexual dimorphisms of obesity have also been attributed to the differences

in the composition and function of the gut microbiota, and the intestinal

immune system. This review will comprehensively summarize the pre-clinical

and clinical evidence for these sexual dimorphisms and discuss the interplay

between sex hormones, intestinal inflammation and the gut microbiome in

obesity. Major gaps and limitations of this rapidly growing area of research will

also be highlighted in this review.

KEYWORDS

leukocytes, obesity, gut microbiota, estrogen (17b-estradiol), testosterone
Introduction

Obesity is a globally increasing pandemic affecting all ages, ethnicities, sexes, and

socio-economic groups. The prevalence of obesity has tripled in the last forty years now

affecting ~30% of adults worldwide (1). Obesity is the excessive accumulation of body fat

and is associated with an increased risk of developing major health problems such as
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cardiovascular disease, diabetes and stroke (2). The most used

standard in identifying overweight and obesity is a body mass

index (BMI; body weight (kg)/height (m) 2) > 25 kg/m2 classified

as overweight and > 30 as obese (3). It is important to note, that

while these are the most widely reported BMI cutoffs, they are

only relevant to Caucasians. The BMI cutoffs for obesity for

other racial and ethnic categories vary to these values (4). For

example, the cutoffs for South Asian populations are slightly

lower with a BMI > 23 are classified as overweight and > 25 as

obese (3). Concomitant metabolic disturbances of obesity

include low-grade chronic inflammation, metabolic

endotoxemia, hypertension, dyslipidemia, hyperglycemia, and

insulin resistance (5). Interestingly, there are clear sexual

dimorphisms in the epidemiology and pathophysiology of

obesity and its accompanying metabolic disorders. Generally,

females are better protected compared to males – this

phenomenon will be discussed in much more detail

throughout this review (6). Protection in females has been

attributed to various biological processes, that will be the focus

of this review, such as the influence of adipose distribution, sex

hormones, sex chromosomes, the gut microbiota and the

intestinal immune system (7–10).
Adipose tissue biology in obesity

Obesity is instigated by a chronic imbalance of increased

energy intake and/or reduced energy expenditure (1). This

increases adiposity, a key driver in the development of obesity

and the consequential inflammatory state (11). Adipocytes are the

predominant cell type in adipose tissue. However, a variety of

other cell types also reside in fat beds including leukocytes,

endothelial cells and fibroblasts (12). Adipose is a major source

of both inflammatory and hormonal signals, and thus is becoming

recognized as an endocrine organ in its own right (12). Adipocytes

are traditionally classified as either white or brown (12). White

adipocytes are particularly important in the storage of energy,

whereas brown adipocytes are primarily involved in

thermoregulation (via non-shivering thermogenesis) (12). In

obesity, where there is a persistent excess of energy, white

adipocytes undergo hypertrophy and proliferate to adapt to the

accumulation of triglycerides (13). As a result, white adipocytes

promote a chronic inflammatory response by secreting pro-

inflammatory cytokines such as tumor necrosis factor alpha

(TNF-a), interleukin-6 (IL-6), and interleukin-1 beta (IL-1b)
(14). This pro-inflammatory phenotype is further compounded

by a reduction in the release of anti-inflammatory molecules by

obesogenic adipose (15). Ultimately, these changes aid the

infiltration of pro-inflammatory immune cells into the adipose

tissue and surrounding organs (16). Unsurprisingly, in obesity,

white adipose tissue provokes dyslipidemia, insulin resistance and

hyperglycemia further exacerbating the dysregulation of whole-
Frontiers in Immunology 02
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body energy homeostasis (16) (Figure 1). Importantly, the

changes in adipocyte biology and the subsequent downstream

metabolic processes in obesity significantly differ between the

sexes and therefore, serve as a major source for the sexual

dimorphism of obesity (17).
Sexual dimorphisms in adipose
tissue distribution, sex hormones
and sex chromosomes

Historically, females have been grossly underrepresented in

clinical trials and pre-clinical research. Part of this sex bias in

research is the result of an early misconception that men and

women are the same. We now know that men and women are

unique on a cellular level, and in the setting of obesity there are

major sexual dimorphisms. Obesity is slightly more common in

females. However, compared to males, females are protected from

many of the metabolic disturbances and sequalae that are associated

with disease progression in obesity (18, 19). These sexual

dimorphisms are also reflected in experimental animal models of

diet-induced obesity (19). Male rodents experience an earlier onset

and greater degree of obesity, as well as more prevalent concomitant

risk factors compared to their female counterparts (such as

hyperglycemia, hyperinsulinemia and hypertension) (20, 21).

Interestingly, older female animals, or those which model a post-

menopause stage (i.e., ovariectomized) are less protected than

young females with intact ovaries (22). This correlates with

human epidemiology of obesity, whereby men and post-

menopausal women are at the greatest risk of developing

complications of obesity (23). Collectively, this supports the

notion that sex hormones in pre-menopausal women are

protective in the setting of obesity. Indeed, sex hormones, such as

estrogen, testosterone and androgens are related to the regulation of

energy metabolism, food intake and body weight in humans (22,

24). Estrogen is of particular importance and well-established to be

protective against cardiometabolic disorders such as obesity,

hypertension, and diabetes (25).

The correlation between adipose tissue distribution, sex

hormones and the concomitant metabolic disturbances of

obesity are well defined (Figure 2), and visceral adiposity is a

known driver in the progression of disease in obesity (26). The

distribution of adipose tissue throughout the body differs

between men and women (27–29). Women have a greater

degree of subcutaneous fat (‘gynoid’ pattern), primarily in the

gluteofemoral region. Whereas adipose tissue in men is

predominantly seen in the abdominal area (‘android’ pattern)

as visceral fat (30, 31). The sexual bias of these effects has been

reported in both rodent models of obesity and in a clinical

setting. Male mice on a high fat diet are at a higher risk of

developing a pro-inflammatory profile (visceral inflammation,
frontiersin.org
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FIGURE 1

Adipocyte biology in obesity. A chronic imbalance of increased energy intake and or reduced energy expenditure increases adiposity, via
hypertrophy and proliferation of white adipocytes. This promotes the secretion of pro-inflammatory cytokines (i.e., tumor necrosis factor alpha
(TNF-a), interleukin 6 (IL-6), IL-1b, and IL-10) to aid the infiltration of pro-inflammatory immune cells into the adipose tissue and surrounding
organs (16). This process promotes dyslipidemia, insulin resistance and hyperglycemia further exacerbating the dysregulation of whole-body
energy homeostasis. Created with BioRender.com.
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glucose intolerance, insulin resistance and hyperinsulinemia)

when compared to their female counterparts (32, 33). Increased

visceral adiposity in men exacerbates the secretion of pro-

inflammatory molecules into systemic circulation which

produces a knock-on effect whereby the risk of cardiovascular

events is markedly increased. This was observed in the European

Health Examination Survey in Luxembourg (34). Interestingly,

the Netherlands Epidemiology of Obesity Study reported that

visceral adipose tissue distribution was more strongly associated

with cardiometabolic risk factors in obese females than in obese

males (35). The differences observed in these two studies may be

due to the Netherlands study including only obese participants,

whereas in the Luxembourg study the BMI of participants

ranged from <20 to >35 kg/m2.

Pre- and post-menopausal studies in women emphasize the

role of estrogen in the distribution of adipose tissue by which

intra-abdominal visceral fat is increased in post-menopausal

women (25, 36–38). With this shift in fat distribution, post-

menopausal women undergo metabolic alterations. Lipoprotein

lipase activity increases and lipolysis decreases with the fall of

estrogen and increased androgenicity is induced during the

transition to menopause (36). Ovariectomy in rodents is

commonly used as a model of estrogen depletion that occurs

in humans. White adipose inflammation is increased and

comparable to a male-like phenotype of inflammatory gene

expression in ovariectomized mice (39). Despite this pro-

inflammatory profile, there were no differences in adipocyte

size and total adiposity between ovariectomized and sham mice.

This suggests that ovarian hormones are not important in the

expansion or apoptosis of adipocytes (39).
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In addition to the detrimental effects of visceral adipose, studies

also report striking protective effects of gluteofemoral subcutaneous

adipose tissue (40). Specifically, increased gluteofemoral mass is

associated with lower arterial calcification, arterial stiffness,

improved blood lipid levels and atherosclerotic protection (41).

While the precise protective mechanisms remain unclear,

gluteofemoral adipose has an active role in fatty acid uptake and

release by ‘trapping’ excessive fatty acids, preventing lipid

accumulation and lipotoxicity (41–43). Lipolysis relative to energy

expenditure is therefore higher in women. Other studies link the

protective effects of gluteofemoral adipose with the secretion of anti-

inflammatory molecules such as adipokines (41).

Sex chromosomes are another crucial contributing factor to the

sexual dimorphisms of adipose tissue distribution and the

subsequent metabolic complications of obesity. Female gonads

typically occur in individuals with XX chromosomes and male

gonads in those with XY chromosomes (44). In a unique mouse

model, gonadectomized male and female mice carrying XX

chromosome complements developed worse obesity disease

outcomes than gonadectomized mice carrying the XY

chromosome complements (i.e. increased adiposity, increased

satiety, and elevated lipid and insulin levels) (45). Gonadectomized

mice carrying XO and XXY chromosome complements revealed that

the differences between the XX and XY mice due to the additional X

chromosome (or “X chromosome dosage”) rather than the lack of a

Y chromosome. Indeed, several genes that escape X chromosome

inactivation are highly expressed in adipose and liver tissues – both of

which are key regulators of metabolism. Thus, the X chromosome

may be an important factor in addition to gonads/sex hormones that

causes sex differences in obesity and metabolism (45).
FIGURE 2

Adipose tissue distribution, sex hormones and metabolic disturbances of obesity. Males and post-menopausal females have increased cardiovascular
risk, abdominal/visceral obesity and reduced insulin subcutaneous adipose distribution compared to pre-menopausal females. The adipose tissue within
males and post-menopausal females is more pro-inflammatory than that of pre-menopausal females. Created with BioRender.com.
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Human sex chromosome anomalies also exist such as

Klinefelter syndrome (XXY) and Turner syndrome (XO) (46). In

Klinefelter syndrome, the most common sex chromosome disorder

in men, patients typically present with hypergonadotropic

hypogonadism and infertility, with a 5-fold higher incidence in

metabolic syndrome, stemming from hypogonadism and low

testosterone levels, affecting adiposity and different metabolic

traits (47). Turner syndrome patients (the most common sex

disorder observed in females, whereby one of the X chromosomes

are partially or completely missing) have dramatically reduced

gonadal hormone levels. These patients also lack protection

against abdominal obesity and have a 4-fold increase in risk for

type 2 diabetes (48). Notably, the presence of XX and XY

chromosomes influence the developmental path between sexes

and gonadal hormones. This ultimately affects the gene

expression that may underpin the differences in obesity and

metabolism observed between males and females. Although

largely attributed to sex hormones and sex chromosomes, the

sexual dimorphism of obesity has also been partially credited to

sex differences in the microflora residing in our intestines.
The gut microbiota: A key player in
health and disease

The gut microbiota is made up of trillions of complex and

dynamic microorganisms living within the intestines and

working symbiotically with their host for essential metabolic

functions (49). Dietary carbohydrates are fermented by the gut

microbiota generating short chain fatty acids (SCFA) as by-

products, primarily acetate, butyrate and propionate (50). A

higher abundance of SCFA, particularly butyrate, is associated

with reduced intestinal inflammation and offers protection

against the development of insulin resistance and obesity (51,

52). Additionally, there are certain beneficial, anti-inflammatory

bacterial species that respond well to fiber rich diets such as

Akkermansia muciniphila, Bifidobacterium spp., Prevotella spp.,

and Veillonella spp. forming a favored environment in terms of

functionality and immunity (53). Other by-products of the gut

microbiota include energy metabolites including pyruvic, citric,

fumaric and malic acid (54, 55). These organic acids aid in

digestion, immunity, and specifically in preventing the growth of

pathogenic bacteria and thus, offer further protection for their

host (56, 57).

In addition to aiding in the digestion of foods to produce

favorable by-products, the gut microbiota also has an important

role in stimulating and regulating hormone production (58).

Previous studies show significant correlations between sex

steroid levels (i.e., estrogen, progesterone, and testosterone)

and gut microbiota composition (7, 59–61). These studies of
Frontiers in Immunology 05
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the interactions between sex hormones and the gut microbiota

revealed sexual dimorphisms in the composition of the gut

microbiota which will be discussed later. Another crucial

function of the gut microbiota is the maintenance of the

intestinal immune system response and its tolerance to the

bacterial community (62). Due to their close proximity, it is

essential that the gut microbiota and intestinal immune system

tolerate one another (62). The interaction between the immune

system and gut microbiota is a recognized key player in the

development of cardiometabolic diseases and will be discussed in

detail later in this review. The next section of the review will

focus on the role of the gut microbiota in regulating metabolic

functions, particularly in the context of diseases such as obesity

and other cardiometabolic diseases (63).

The gut microbiota clearly influences the health of its host

and various disease states are associated with “dysbiosis” of the

gut microbiota (i.e. an altered composition or functionality).

However, dysbiosis is often disease-specific and not consistent

between different studies. This is likely due to environmental

factors such as diet, lifestyle and drugs being major determinants

of gut microbiome composition. Consequently, the gut

microbiome is highly individualized which makes it difficult to

define what constitutes a healthy microbiome (64). Thus, both

clinical and experimental studies should be replicated in

independent locations to maximize reproducibility and

translatability of findings (65). Moreover, it is largely unclear if

gut dysbiosis is a cause or the consequence of disease,

highlighting the need for further studies defining the

molecular mechanisms by which altered microbiomes cause

disease. A recent study built a machine learning model that

included both human variables and gut microbiota to try to infer

gut microbiota and disease associations more accurately (66).

Despite the striking variations in findings between studies, one

of the most consistent findings of intestinal dysbiosis in the setting

of disease is the loss of microbiota diversity (67, 68). A highly

diverse microbiota is thought to be crucial to good gut health as it

is more resilient against pathogens, has a greater functionally

complex community and builds a stronger and more stable

immune system (69–71). Therefore, reduced gut microbiome

diversity is most likely detrimental in disease due to a

subsequent loss of microbial community function. Many studies

have highlighted that microbial community composition is less

important than microbial community function. Therefore,

increased microbial diversity can be both beneficial or

detrimental, more context is often required for accurate

interpretation. For example, germ-free mice lacking a

microbiome (and thus lack microbiome diversity), but are

protected diet-induced obesity, compared to mice with a gut

microbiota (72). Ultimately, making conclusions based on

microbiota diversity alone has limited value, and should

be avoided.
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Major shifts in gut microbiota
in obesity

Dysbiosis is a particularly common consequence of a poor

diet – a common factor in obesity (73). Diets have a marked

influence on the gut microbiota, for example, diets low in fiber

and rich in bad fats can modify the bacterial population in as

little as 24 hours (74, 75). Diet-induced obesity in animal models

is often used to mimic metabolic disturbances and the

concomitant gut dysbiosis seen in humans (76, 77). Typically,

obesogenic diets include high fat and/or high sugar contents

with variations in the types of fat and sugar as well as differences

in the duration of diet regimes (77, 78). Importantly, the gut

microbiome also influences the concomitant metabolic

disturbances of obesity. Oral antibiotic treatment (ampicillin)

improves glucose tolerance in high fat diet-fed obese mice. These

‘protective’ effects of antibiotics in obesity are only effective in

early life, suggesting that the plasticity of the gut microbiome

reduces with age (79, 80).

Gut microbiota dysbiosis describes the imbalance of

microorganisms within the gut resulting in metabolic

disturbances in the body and contributing to the development

of obesity (81, 82). Overall, dysbiosis can be identified by the loss

of beneficial bacteria, the increased abundance of harmful

bacteria and a loss of compositional and functional diversity

(83). Notably, an emphasis has been placed on the status of the

Firmicutes: Bacteroidetes ratio, two dominant phyla in the gut

microbiota, and how these phyla alter with disease (84). Many

studies conclude that disease states such as obesity are associated

with an increase in the abundance of the Firmicutes phyla and a

decrease in the abundance of the Bacteroidetes phyla (85–87).

Moreover, this phenomenon has proven to be reversible with

weight loss (88). While the majority of studies report increased

Firmicutes : Bacteroidetes ratios in obesity, it is important to

highlight that this is not always the case, and contrasting findings

have become more common in recent years. For example, in a

recent small cohort study of Beijing volunteers the ratio of

Firmicutes/Bacteroidetes decreased significantly in people with

obesity (89). Larger studies have also reported similar findings

(90). Unfortunately, the Firmicutes: Bacteroidetes ratio is not a

robust marker of obesity-related microbiome dysbiosis and

many of the studies interpreting changes to the Firmicutes:

Bacteroidetes ratio are drastically underpowered (91).

A more accurate approach may be to detect obesity-related

changes to the genus, family and species levels within the gut

microbiome (54). Beneficial bacteria such as Akkermansia

muciniphila and members of the Bifidobacterium genus have a

negative correlation in the development of obesity (92, 93). The

beneficial effects of A. muciniphila on the intestinal epithelial

barrier have long been reported, as it a highly effective mucin-

degrading bacterium, with the ability to use various enzyme

combinations to hydrolyze up to 85% of mucin structures within
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the gut (94). A reduction in A. muciniphila is associated with

increased intestinal permeability or a “leaky gut” – a hallmark of

gut dysbiosis in obesity (95). Intestinal permeability allows

leakage of water, proteins and other endotoxic molecules such

as lipopolysaccharide (LPS) into systemic circulation with the

ability to reach other organs and tissues (96). High circulating

levels of LPS, termed metabolic endotoxemia, promotes further

inflammation, weight gain and diabetes in experimental animals

and humans (97). Recent studies have explored the possibility of

using A. muciniphila-associated therapies as a next-generation

treatment for obesity (98). Opposingly, harmful bacteria such as

the those from the Desulfovibrio, Fusobacterium and Bilophila

genera are positively correlated with obesity (92, 93, 99).
The metabolic and hormonal
consequences of gut dysbiosis
in obesity

Harmful bacteria within the gut have specified mechanisms

that can be destructive to the host. For example, members of the

Desulfovibrio genus and other sulphate-reducing bacteria induce

apoptosis of cells on the intestinal epithelial barrier allowing

barrier degradation (100). Additionally, the abundance of gram-

negative bacteria increases, with endotoxic lipopolysaccharide

(LPS) in their outer membrane (101). LPS then gains access into

systemic circulation due to the increased permeability of the

epithelial barrier (102). The combination of an increase in

harmful bacteria, the decrease in beneficial bacteria, and an

increased concentration of pro-inflammatory cytokines within

the intestines causes degradation of tight junction proteins

between cells allowing LPS and other molecules into

underlying tissues and thus, increasing intestinal inflammation

(100, 103, 104). Some studies have explored the therapeutic

potential of targeting this increase in harmful bacteria in obesity.

Alteration of the gut microbiota via antibiotics in mice with diet-

induced obesity inhibits weight gain, increases lipid oxidation,

thermogenesis, and adiponectin gene expression in epididymal

adipose tissue. Increases in these molecular pathways likely

inhibit fat synthesis and promote a “leaner” phenotype (105).

Advances in metagenomics and metabolomics revealed new

associations between microbial-derived metabolites (i.e. LPS,

short chain fatty acids (SCFAs), ethanol, trimethylamine

(TMA), and bile acids) and obesity.

Bile acids are a class of amphipathic steroids synthesized in

the liver from cholesterol and metabolized by the gut microbiota.

Bile acids facilitate intestinal fat absorption but also modulate

glucose, lipid and energy metabolism, intestinal integrity and

immunity (106). While there are some discrepancies between

studies, circulating bile acid levels are generally positively

correlated with obesity. Importantly, microbiome-derived bile

acid species have different signaling functions to liver-derived
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species. There is a growing body of evidence suggesting a link

between the microbiome – an important player in bile acid

metabolism – and bile acid levels/composition in obesity (106).

Fecal microbiota transplantation (FMT; from a single lean

donor) in obese, metabolically uncompromised patients had

sustained shifts in microbiomes and bile acid levels toward

those of the donor (107). Like much of the microbiome

research to date, further studies are still needed to establish

whether there is causality, as these “beneficial” changes were not

associated with weight loss or changes to glucose metabolism.

To date, numerous studies suggest that gut microbiomes

influence eating behavior in humans and animals. Appetite-

related hormones such leptin (inhibits appetite) and ghrelin

(promotes appetite) are produced by peripheral organs,

including gut and adipose tissue. Changes to specific microbial

compositions have reported effects on these hormones, and vice

versa. For example, in obese and non-obese humans, higher

circulating leptin concentrations are associated with reduced gut

microbiome diversity (108). Moreover, in vivo and in vitro

studies showed that the translocation of living gut microbiota

to adipose tissues in obese patients with increased intestinal

permeability inhibits leptin signaling (109). Alternatively, the

gut microbiota may modulate appetite via grehlin. In another

study, treatment with SCFAs, lactate, or bacterial supernatants to

promote gut microbiome health attenuated ghrelin-mediated

signaling (110).

Clearly, whilst gut dysbiosis has been consistently reported in

obesity, the severity, and subsequent consequences of dysbiosis

vary among obese individuals depend on many factors, which

likely explains inconsistent findings between studies (111, 112).

One such factor that has more recently been recognized to

influence the gut microbiota is an individual’s sex.
Sexual dimorphisms and
gut microbiota

The impact of the gut microbiota and its influence on the

development of obesity has been well documented. However,

one aspect that was overlooked in earlier research is the effect of

sex. Many studies have investigated the impact of the gut

microbiota by altering variables such as diet, lifestyle, and

drugs but it is important to recognize that the gut microbiota

is different for males and females prior to any manipulations

(113). Sequencing the microbial community of prepubescent

male and female mice does not show any separation between

sexes indicating that sex differences are influenced by gonadal-

derived sex hormones and puberty (59, 114). Typically, in mice,

the female gut microbiota more closely resembles that of

prepubescent males, or castrated males, rather than age-

matched males (59, 115). Furthermore, the diversity differs

between sexes, with males having a lower species richness and
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evenness compared to females of the same age in mice models

(116). As well as differences in diversity, both animal and human

studies show clear variance in the abundance of specific bacteria

being higher in one sex compared to the other (113, 117–119).

The distinct differences in the male and female gut microbiota,

for both animal and human models, inevitably generate

differences in metabolic processes and therefore, differences in

dysbiosis and the protection or susceptibility to metabolic

diseases including obesity (56, 115, 120).

It is well-established that sex steroid hormones are the major

drivers of sexual dimorphisms in males and females however,

whether there is the strong interaction between sex hormones

and gut microbiota is still unclear (59). An observational study

that compared the microbiota of men and women with higher

serum hormone levels to those with low hormone levels suggests

that sex hormones do indeed influence the gut microbiota (121).

Higher levels of hormones were associated with a greater

diversity in the gut community compared to those with lower

hormone levels in both sexes. Moreover, bacteria such as those

from the Acinetobacter, Ruminococcus and Megamonas genus

were significantly associated with testosterone levels in men and

Slackia and Butyricimonas were significantly associated with

estradiol levels in women (121). Gut microbial transplants to

the opposite sex have also been used to determine the hormonal

association (10). In these studies females receiving male donor

gut microbiota, not only showed higher levels of gut

inflammation (a common sign of obesity and cardiometabolic

disease) but also resulted in raised testosterone levels (10, 115).

The gut microbiota has also been shown to directly influence

sex hormone levels in animal studies using microbial transplants

between germ-free mice and mice of opposite sex (7, 10, 122).

Colonizing germ-free mice with gut microbiota increases the

levels of circulating androgens and begins the development of

immune and protective pathways (7, 59). However, there is also

evidence that sex hormones can also influence the gut

microbiome. Inoculating germ-free mice with human male

donor gut microbiota results in males and females harboring

these microorganisms differently (122). In female mice, the gut

microbiota significantly differed from the matched males and

donor, with a higher bacterial diversity (122). Collectively, these

studies indicate that there is likely a two-way communication

between systemic sex hormones and the gut microbiome,

whereby both factors impact one another.

The interactions between sex hormones and gut microbiota

have also been studied in animal models using hormone and

gonadectomy treatments (61, 101). Estradiol, the most common

form of estrogen, is used in hormone treatments to remedy the

loss of ovarian estrogen typically seen in menopausal women

(123). High fat diet-fed female mice treated with estradiol are

protected from cardiometabolic disease (reduced weight gain,

improved glucose tolerance and insulin sensitivity) when

compared to untreated high fat diet-fed female mice (61).

Moreover, estradiol alters the gut microbiota by slowing the
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increase in Firmicutes: Bacteroidetes ratio that is usually seen in

high fat diet-fed mice (61). Interestingly, sequencing of the gut

microbiome of these mice revealed that bacteria from the S24-7

and Ruminococcaceae families, known to generate beneficial

SCFA, were in higher abundance in estradiol-treated mice,

compared to untreated mice (61). The benefits of estradiol

treatment are not limited to just females. Male mice treated

with estradiol have a reduced susceptibility to gut epithelial

permeability, inflammation and weight gain compared to

untreated males (101, 124).
Sexual dimorphisms of the gut
microbiota in obesity

As previously discussed, the female sex is also protected from

the development of metabolic disturbances in obesity, and the gut

microbiota responds differently to diet based on sex (summarized in

Table 1). This was demonstrated in overweight and obese adults

undergoing either a high protein or low-fat weight loss intervention

diet (125). Changes in the gut microbiota occurred not only in diet-

specific manner but also differed based on sex (125). Additionally,

in animal models of obesity, high fat/high sugar diet-fed mice,

demonstrated that females respond slower to the biological adverse

effects of the diet as well as differentiating in the composition of the

gut microbiota, compared to males (126). The increased Firmicutes:

Bacteroidetes ratio typically seen in the development of obesity and
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metabolic disease is significantly slower in female mice (127).

Moreover, differences in the abundance of specific genera are also

observed in metabolic syndrome patients. Higher abundances of

Veillonella, Methanobrevibacter, Acidaminococcus, Clostridium,

Roseburia and Faecalibacterium genera in males, whereas genera

such as Bilophila, Ruminococcus and Bacteroides were greater in

females (68, 82). In the male gut microbiota for example,Veillonella

genera are found in higher abundance in children with type 1

diabetes however, Roseburia genera is found to improve metabolic

alterations brought on by high fat diets (128, 129). Likewise, for

females, Bilophila genera aggravates metabolic dysfunction

however, Bacteroides genera has numerous metabolic benefits on

the host (130, 131). These findings suggest that it is not simply the

abundance of specific bacteria in the gut microbiota that determine

health and disease within the host.

In addition to the sexual dimorphism in response to poor

“Western-style” diets, the sex-specific response to beneficial diet

supplementations have also been studied (132, 133). Beneficial fiber

compounds, including pre- and probiotics, can attenuate the

unfavorable effects of the diet by shaping the gut microbiota (93).

The addition of prebiotic fibers, such as oligofructose, significantly

increases beneficial gut bacteria in healthy and gnotobiotic female,

but not male mice, such as Bacteroides and Bifidobacterium genera

and A. muciniphila (122, 134). Furthermore, probiotic treatments

also adjust the gut microbiota differently for males and females

(135). Administration of Lactobacillus reuteri increased the

abundance of the Bacteroidetes phylum and decreased Firmicutes
TABLE 1 Summary of human and mouse studies investigating the sexual dimorphisms of intestinal microbiota in obesity.

Model Age Physiological effects Main findings Ref

4-months of either moderately high-
protein or LFD in patients with BMI >
25kg/m2

N/A Weight loss: ↓ BMI, total & visceral fat, BP, total
glucose, LDL cholesterol, leptin, and insulin
regardless of diet or sex.

Weight loss-related changes to the intestinal microbiota
occurred in a sex- and diet-specific manner.

(125)

Men & post-menopausal women, split
based on BMI, following either a
Mediterranean or low-fat diet.

♂:
61.2
±1.3y
♀:
60.3
±1.4y

N/A: study did not compare physiological
parameters between sexes or groups.

Obesity influenced sex differences in gut microbiota.
♂: ↓ Bacteroides abundance with ↑ BMI; ↑
Methanobrevibacter abundance (vs. ♀) regardless of BMI.
♀: ↔ Bacteroides abundance with ↑ BMI; ↑ Bilophila
abundance (vs. ♂) regardless of BMI.

(82)

C57BL/6 mice fed either a NCD or HFD
(60% fat) for 20 weeks.

8
weeks
old

♂: ↑ weight gain for the first 7 weeks on HFD vs.
♀.
No sex differences following this timepoint.

Sex differences existed in diversity and structure of the
gut microbiota at baseline.
Gender-specific changes to gut microbiota occurred
following HFD.

(113)

C57BL/6 mice fed either a LFLS (10% total
fat) or HFHS (45% total fat) for 14 weeks.

8
weeks
old

♂: HFHS ↑ weight gain and plasma leptin vs. ♀
HFHS mice.

Significant differences in gut microbiota between males
and females in both LFLS and HFHS groups.
Diet-induced changes to Firmicutes differed between
males and females for certain genera.

(126)

C57BL/6 mice fed either a LFD (10% total
fat) or HFD (60% total fat) for 20 weeks.

6
weeks
old

HFD increased body weight in males and
females however, males developed obesity much
earlier than female mice.

♂: HFD ↓ Bacteroidetes, Proteobacteria & Tenericutes; ↑
Firmicutes. LFD ↓ Proteobacteria & Tenericutes; ↑
Bacteroidetes; ↔ Firmicutes.
♀: HFD ↓ Firmicutes & Tenericutes; ↑ “others”; ↔
Bacteroidetes. LFD ↓ Firmicutes & Tenericutes; ↑
Bacteroidetes & “others”.

(127)
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in healthy female mice, but showed opposite effects in healthy male

mice (135). Given the differences at the phylum level, this also

incurred significant differences at the genus level. Females had a

significantly greater abundance of Bacteroides, Prevotella and

Lactobacillus, but males had a higher abundance of Clostridium

(135). These findings not only illustrate that the female gut

microbiota has a stronger protection against the adversities of

poor diet, but also that the male and female gut microbiota

respond differently to the effect of beneficial supplements and

how they harbor their microbial communities. The explanation

for the sexual dimorphisms in gut microbial composition and

function, in both healthy and metabolically disturbed subjects,

comes full circle and back to differences in sex steroid hormones

and inflammatory responses.

Gonadectomy surgery can be used to eliminate sex steroid

hormones and therefore, also be used to study the interactions

between sex hormones and the gut microbiota in obesity. In

ovariectomized obese female mice, the Firmicutes phyla

dominated the gut microbiota community which is commonly

seen in obese and high fat diet-fed mice and the sequenced gut

community of ovariectomized female mice more closely

resembles that of male mice (101, 136). Furthermore, when

treating ovariectomized female mice and male mice with

estrogen the microbial composition resembles that of non-

ovariectomized female mice (101). Similar to ovariectomized

mice and the reduction in estrogen, is the changes occurring to

the gut microbiota with menopause (137). Studies have shown

that the gut microbiota of post-menopausal women reveal

higher abundances of Firmicutes compared to both pre-

menopausal women and age-matched males (137). These

findings reveal that sex and sex hormones, specifically in the

presence of obesity, strongly guide the shape of the gut

microbiota. In addition to the sexual dimorphism existing

within the gut microbiota and obesity, research has revealed

that sex-based differences of obesity are also associated with the

immune system specifically within the gut (Figure 3).
Sexual dimorphism of
intestinal inflammation

Obesity is commonly accompanied with low-grade systemic

inflammation which is a key driver of the subsequent

comorbidities of obesity due to higher concentrations of

endotoxic molecules (i.e., LPS from bacteria) and in

circulation increased adiposity increasing cytokines such as

TNF-a, IL-1, and IL-6 (138, 139). Many studies in obesity

have concentrated on visceral adipose tissue as the driving

force of inflammation however, inflammation within the

intestinal tract precedes both adipose tissue inflammation and

obese characteristics such as weight gain (138). This finding is of

particular importance as a significant proportion of the systemic
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innate and adaptive immune cells within the body (70%) reside

within the intestinal tract (140). To our knowledge, the sexual

dimorphisms of the intestinal immune system in the setting of

obesity has not been researched in a preclinical setting. However,

studies have identified sex differences in healthy individuals

(141, 142). For example, in the lamina propria layer of the

intestines female have higher immune activation and higher

CD4+ and CD8+ T cell counts in compared to males (141).

Another crucial mediator of the sexual dimorphisms in

intestinal immunity is the gut microbiota. Due to their close

proximity, the interplay between the gut microbiota and

intestinal immune system is well-established as shaping and

developing one another (143). This is highlighted in studies

using germ-free mice, which lack a gut microbiota. The

consequence of this is poorly developed intestinal lymphatic

tissue (Peyer’s patches) and immune cell populations (144).

Moreover, the sex differences of intestinal immunity in

autoimmune disease settings are abolished in germ-free mice,

suggesting that the sex bias in immunity is driven by sex

differences in the microbiome rather than sex hormones

(59, 115).

As mentioned previously, females have a stronger intestinal

immune response compared to males and this influence of the

gut microbiota on this must also be considered (145). Therefore,

the sexual dimorphisms of the gut microbiota and in particular,

the difference in biomarkers of obesity such as the Firmicutes:

Bacteroidetes phyla and taxa abundance difference likely drive

the discrepancies in the intestinal immune system of males and

females (127). For example, the Firmicutes phyla are the

predominant producers of butyrate, a known anti-

inflammatory molecular metabolite (146). Therefore, the

increased Firmicutes abundance typical of obese males

(compared to obese females), elevates butyrate production,

which could suppress the intestinal immune response in

males. Alternatively, the Bacteroidetes phyla, generally seen in

higher abundance in obese females compared to obese males, are

gram-negative bacteria (147). Gram-negative bacteria contain

LPS in their outer membrane thus, an increased abundance of

these taxa, and subsequent increased circulating LPS, correlates

with a stronger intestinal immune response (147).

Although a stronger immune response is associated with an

increased inflammatory profile, this may be beneficial in the context

of obesity and intestinal inflammation. For example, females are

superior in eliminating pathogenic and opportunistic bacteria

(possibly obesity-related bacteria) present in the gut, which might

be a by-product of their enhanced immune response. The enhanced

immune response in females may very well be the factor that

protects or delays the development of obesity-related metabolic

disturbances in females (148). In the opposing manner, the

intestinal immune response is relatively smaller in males, thus

allowing the manifestation of deleterious microorganisms and

thus, possibly exacerbating the disease development of obesity.
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Conclusion

The sexual dimorphisms in the epidemiology and

pathophysiology of obesity put males and post-menopausal

women at the greatest risk of metabolic disturbances and end-

organ damage. Although several factors such as sex hormones,

sex chromosomes and fat distribution serve as a basis for these

sexual dimorphisms, they can also be attributed to differences in

the composition and function of the gut microbiota and the

intestinal immune response. Both the gut microbiota and

immune system are well-documented influencers of the

development of obesity however, the important role that sex

plays in this relationship is often overlooked. The “give-and-
Frontiers in Immunology 10
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take” relationship each of these three factors have on one

another is an important consideration for future studies

(Figure 4). Moreover, the vast majority of studies to date are

purely associative. More studies that assess causality are needed

to unequivocally identify which harmful gut bacteria and or

specific gut microbiome imbalances cause obesity. Importantly,

it is crucial that these causal studies firstly consider the sex

differences in the gut microbiota prior to commencing the study;

and secondly, assess the role that sex plays throughout the

treatment that will influence the study outcomes. In addition

to this, the sex differences in the intestinal immune response in

obesity must also be considered in future studies. Very few

studies examine both the microbiome and intestinal immune
FIGURE 3

Microbial diversity, sex hormones and chromosomes in obesity. Differences in sex-based characteristics are modulated by a variety of factors.
Women have a greater degree of subcutaneous fat, whereas males predominantly accumulate visceral fat. In obesity, the shift in the Firmicutes:
Bacteroidetes determines disease severity. Obese males have less species richness, and testosterone was found to be associated with increased
Firmicutes, thus more anti-inflammatory butyrate release. Obese females, on the other hand, despite having greater microbial diversity, have an
increase estradiol and Bacteroidetes, resulting in greater LPS release, thus eliciting a greater immune response. Created with BioRender.com.
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response. Finally, due to the sexual dimorphisms that exist in

both the gut microbiota and intestinal immune response, it is

crucial that females – both pre- and post-menopausal – are

represented in research studies to the same extent as males for

findings and future treatments to be valid in both sexes.
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protein suppresses TFEB
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Young Jae Kim1,2,3, Hyeon Ji Kim1,2,3, Seunga Choi1,2,
Hwa-Jung Kim1,2,3 and Eun-Kyeong Jo1,2,3*
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Mycobacterial acyl carrier protein (AcpM; Rv2244), a key protein involved in

Mycobacterium tuberculosis (Mtb) mycolic acid production, has been shown to

suppress host cell death during mycobacterial infection. This study reports that

mycobacterial AcpM works as an effector to subvert host defense and promote

bacterial growth by increasing microRNA (miRNA)-155-5p expression. In

murine bone marrow-derived macrophages (BMDMs), AcpM protein

prevented transcription factor EB (TFEB) from translocating to the nucleus in

BMDMs, which likely inhibited transcriptional activation of several autophagy

and lysosomal genes. Although AcpM did not suppress autophagic flux in

BMDMs, AcpM reduced Mtb and LAMP1 co-localization indicating that AcpM

inhibits phagolysosomal fusion during Mtb infection. Mechanistically, AcpM

boosted the Akt-mTOR pathway in BMDMs by upregulating miRNA-155-5p, a

SHIP1-targeting miRNA. When miRNA-155-5p expression was inhibited in

BMDMs, AcpM-induced increased intracellular survival of Mtb was

suppressed. In addition, AcpM overexpression significantly reduced

mycobacterial clearance in C3HeB/FeJ mice infected with recombinant M.

smegmatis strains. Collectively, our findings point to AcpM as a novel

mycobacterial effector to regulate antimicrobial host defense and a potential

new therapeutic target for Mtb infection.
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Introduction

Tuberculosis (TB) is a worldwide infectious disease that has

claimed many lives, and the fight against TB still faces many

challenges. According to theWorld Health Organization’s global

TB report 2020, TB caused an estimated 10 million new cases

and 1.5 million deaths in 2020, making it the second most deadly

infectious disease caused by a single pathogen after COVID-19.

Mycobacterium tuberculosis (Mtb), the bacteria that causes

tuberculosis, has a variety of defense mechanisms to evade the

host’s innate immune system, including autophagy, apoptosis,

and inflammation (1). Mtb can also survive as a latent infection

for a long time in alveolar macrophages, making it resistant to

anti-TB drugs and difficult to eradicate (2). To control Mtb, it’s

crucial to understand the dynamics of the host-pathogen

interaction. To date, several mycobacterial factors, such as

SapM (3), ESAT-6/CFP-10 (4), nuoG (5), Eis (6), LprG (7),

PE_PGRS47 (8), SecA2 (9, 10), LprE (11), PknG (12), and

phthiocerol dimycocerosates (PDIM) (13), are known to

influence how Mtb suppresses host defenses through

modulating various innate immune strategies against Mtb in

host immune cells. Nonetheless, new mycobacterial components

that alter the host’s innate immune response must be discovered

to better understand the molecular mechanisms underlying

mycobacterial pathogenesis and develop new therapeutic targets.

Mtb requires a unique acyl carrier protein (AcpM), the second

most glycosylated protein involved in mycolic acid biosynthesis

(14). Mycolic acids, which protect Mtb from the host environment

while also eluting virulence, are one of the most important

components of the mycobacterial cell wall (15). AcpM interacts

with PptT, which transfers 4′-phosphopantetheine (Ppt) from

coenzyme A (CoA) to AcpM in Mtb for mycolic acid synthesis

(16). According to a recent study, a small compound called “8918”

inhibited PptT action by binding to the Ppt pocket in the active

site, resulting in selective antimicrobial activity comparable to

rifampin (17). These findings raise concerns about the intrinsic

properties of the AcpM and how they affect Mtb virulence.

Although AcpM is essential for Mtb growth by producing lipid-

rich cell walls, little is known about its immunological properties

in host-pathogen interactions.

This study investigated the mechanisms by which the AcpM

protein prevents nuclear translocation of transcription factor EB

(TFEB) and phagosomal maturation in host macrophages.

AcpM appeared to inhibit autophagy in bone marrow-derived

macrophages (BMDMs) by lowering the LC3 I to II ratio;

however, it did not affect autophagic flux in BMDMs. Rather

than this, AcpM markedly reduced nuclear translocation of

TFEB and several autophagy-related genes including

lysosomal-associated membrane protein 1 (Lamp1), which was

regulated by TFEB, in macrophages. Moreover, AcpM activated

the protein kinase B (Akt) pathway, which is associated with Mtb

survival in host cells, by inducing miR-155, which targets SH2-

domain-containing inositol 5-phosphatase 1 (SHIP1) (18).
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AcpM prevented Mtb from fusing with lysosomes in BMDMs,

thus increasing Mtb intracellular survival (ICS). Finally, in the

lung lysates of recombinant M. smegmatis-infected mice, AcpM

overexpression increased Mtb colony-forming unit (CFU) levels

while decreasing several autophagy and lysosomal genes.

Taken together, these findings help us to explore the

relationship between the host immune response and

mycobacterial infection in terms of Mtb AcpM, revealing its

potential as a target for novel tuberculosis therapies.
Materials and methods

Animals and ethics statement

Female C57BL/6 and BALB/c mice were purchased from

Samtako Bio (Gyeonggi-do, Korea) at 6–7 weeks of age, and

C3HeB/FeJ mice were obtained from the Jackson Laboratory

(Bar Harbor, ME, USA). Mice were maintained under specific

pathogen-free conditions. All animal experimental methods and

procedures were performed following the relevant ethical

guidelines and regulations approved by the Institutional

Research and Ethics Committee at Chungnam National

University, School of Medicine (202009A-CNU-155; Daejeon,

Korea) and the guidelines of the Korean Food and

Drug Administration.
Cell culture

Bone marrow cells were isolated from C57BL/6 mice (6-8

weeks old) and cultured in Dulbecco’s modified Eagle’s medium

(DMEM; Lonza, Walkersville, USA) containing 10% fetal bovine

serum (FBS; Gibco, NY, USA) and antibiotics (Lonza).

Differentiating for 4–5 days in the presence of 25 mg/ml of

recombinant mouse macrophage colony-stimulating factor (M-

CSF) (R&D Systems) in a 37°C humidified atmosphere

con t a in ing 5% CO2 produced pr imary BMDMs .

Approximately 4 x 105 cells/well in the 24-well cell culture

plate (SPL Life Science Co., Gyeonggi-do, Korea) or 2 x 105

cells/well in the 48-well cell culture plate (Corning, NY, USA)

were used for the entire in-vitro analysis.
Preparation of recombinant AcpM
protein and anti-AcpM antibody

Recombinant AcpM protein was prepared according to the

previous study (19). Briefly, mycobacterial acpM was amplified

from genomic DNA of Mtb H37Rv ATCC 27294 using the

forward (5’-CATATGCCTGTCACTCAGGAAGAAATC-3’)

and reverse primers (5 ’-AAGCTTCTTGGACTCGG

CCTCAAGCCT-3’), and the PCR product was inserted into
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the pET-22b (+) vector (Novagen, Madison, WI, USA). The

recombinant plasmids were transformed into E. coli BL21 cells

by heat-shocking for 1 min at 42 °C. Cell disruption was used to

obtain the overexpressed AcpM protein, which was then purified

using NI-NTA resin. The purified recombinant protein was

dialyzed and incubated with polymyxin B-agarose (Sigma

Chemical Co.) to remove residual endotoxin. The purified

endotoxin-free AcpM was filter sterilized and kept frozen at

-80°C until use. To collect anti-AcpM antibodies, BALB/c mice

were injected three times intraperitoneally with purified AcpM

(25 mg per mouse) emulsified in incomplete Freund’s adjuvant.

One week after the final immunization, serum was collected and

stored frozen until use with proper dilution.
Construction of recombinant
M. smegmatis strains

Mycobacterial acpM was amplified from genomic DNA of

Mtb H37Rv ATCC 27294 using the forward (NdeI site, 5’-

CATATGCCTGTCACTCAGGAAGAAATC-3’) and reverse

primers (HindIII site , 5 ’-AAGCTTCTTGGACTCGG

CCTCAAGCCT-3’) as in the previous study (19). Then,

amplified acpM was inserted into the pVV16 vector to create

pVV16_AcpM. The pVV16 (vector only) and pVV16_AcpM

plasmids were electroporated into suspensions of M. smegmatis

mc2155 competent cells at 2.5 kV, 1,000 W, and 25 mF using a

Gene Pulser (Bio-Rad, San Diego, CA, USA) to construct

Ms_Vec and Ms_AcpM, respectively. Western blot image of

AcpM expression in Ms_Vec and Ms_AcpM using anti-AcpM

antibody was presented in Supplementary Figure S1.
Western blot analysis

BMDMs cultured in 24-well cell culture plates were lysed in

150 ml of radioimmunoprecipitation assay (RIPA) buffer (LPS

solution, CBR002) added with protease and phosphatase

inhibitor cocktail (Roche, Mannheim, Germany). The whole

mouse lung was homogenized in 1 ml of PBS containing 0.05%

Tween 80 (PBST) and then half of the homogenates were

centrifuged and lysed in 500 ml of RIPA buffer containing

protease and phosphatase inhibitor cocktail. The cell lysates

were mixed with Protein 5X Sample Buffer (ELPIS BIOTECH,

EBA-1052) and boiled for 10 min. Prepared protein extracts

were separated by SDS-polyacrylamide gel electrophoresis

(PAGE) and then transferred to polyvinylidene difluoride

(PVDF; Millipore, Burlington, MA, USA) membranes. The

membranes were then blocked using 1X blocking solution

(Biofact) for 1 h at room temperature (RT) and then incubated

overnight with primary antibodies at 4 °C. After washing with

tris-buffered saline supplemented with 0.1% Tween 20 (TBST),

the membranes were incubated with the secondary antibodies
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for 1 h at RT. Immunoblotting was performed using an

enhanced chemiluminescence reagent (Millipore, WBKL

S0500) and a UVitec Alliance mini-chemiluminescence device

(UVitec, Rugby, UK). The densitometric values were calculated

using ImageJ software and data were normalized to loading

controls shown in the figures. Bafilomycin A1 (B1793) was

purchased from Sigma-Aldrich (St. Louis, MO, USA) The

primary and secondary antibodies used were as follows: Anti-

p62 (1:1000 diluted; P0067) and anti-LC3 (1:1000 diluted;

L8918) antibodies were purchased from Sigma-Aldrich. anti-

LAMP1 (1:1000 diluted; sc-20011) was purchased from Santa

Cruz Biotechnology (Dallas, TX, USA), Anti-b-actin (1:2000

diluted; 5125s), anti-phospho-mTOR (1:1000 diluted; 2971s),

anti-mTOR (1:1000 diluted; 2983s), anti-phospho-Akt (1:1000

diluted; 4060s), anti-Akt (1:1000 diluted; 9272s), anti-TFEB

(1:1000 diluted; 4240s), anti-ATG5 (1:1000 diluted; 12994s),

anit-SHIP1 (1:1000 diluted; 2728s), anti-FOXO3a (1:1000

diluted; 12829s), anti-mouse IgG (1:5000 diluted; 7076s), and

anti-rabbit IgG (1:5000 diluted; 7074s) antibodies were

purchased from Cell Signaling Technology (Danvers, MA, USA).
Bacterial strains and culture

Mtb H37Rv was kindly provided by Dr. R. L. Friedman

(University of Arizona, Tucson, AZ, USA). Mtb was grown at

37 °C with shaking in Middlebrook 7H9 broth (Difco, Paris,

France) supplemented with 0.5% glycerol, 0.05% Tween-80

(Sigma-Aldrich), and oleic albumin dextrose catalase (OADC;

BD Biosciences). Mtb-expressing enhanced red fluorescent

protein (Mtb-ERFP) and recombinant M. smegmatis strains

were grown in Middlebrook 7H9 medium supplemented with

OADC and 50 mg/ml kanamycin (Sigma-Aldrich). Bacterial

strains were then harvested by centrifugation at 3000 rates per

min for 30 min and the pellets were resuspended in ice-cold

phosphate-buffered saline (PBS). All mycobacterial suspensions

were aliquoted and stored at −80 °C until just before use. For all

experiments, mid-log-phase bacteria (O.D = 0.6) were used. The

number of CFUs of the inoculum was verified by serially diluting

and plating on Middlebrook 7H10 agar (Difco).
Immunofluorescence analysis

BMDMs were cultured on coverslips in 24-well cell culture

plates. After the appropriate infection or treatment, cells were

washed twice with PBS, fixed with 4% paraformaldehyde for

15 min, and permeabilized with 0.25% Triton X-100 (Sigma-

Aldrich) for 10 min. Cells were incubated with anti-TFEB

antibody (1:400 diluted; Bethyl Laboratories, A303-673A) or

anti-LAMP1 Ab (1:400 diluted; Santa Cruz Biotechnology, SC-

19992) overnight at 4°C. Cells were washed with PBS to remove

excess primary antibodies and then incubated with secondary
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anti-rabbit or anti-rat IgG-Alexa Fluor 488 Ab (1:400 diluted;

Invitrogen, A11008 or A11006) for 1 h at RT. Nuclei were

stained using Fluoromount-G™, with DAPI mounting medium

(Thermo Fisher Scientific, 00-4959-52). Immunofluorescence

images were acquired using a confocal laser-scanning

microscope (Zeiss, LSM-900). Quantification of TFEB-nuclear

translocation was performed by manual calculation and the

degree of colocalization between Mtb-ERFP and LAMP-1 was

analyzed using the JACoP plugin of the ImageJ software.
Total RNA extraction and sequencing

Total RNA from BMDMs was isolated using QIAzol lysis

reagent (Qiagen, Hilden, Germany) and miRNeasy Mini Kits

(Qiagen) according to the manufacturer’s instructions. RNA

quality was assessed by Agilent 2100 bioanalyzer using the RNA

6000 Pico Chip (Agilent Technologies, CA, USA), and

quantification was performed using a NanoDrop 2000

Spectrophotometer system (Thermo Fisher Scientific, MA,

USA). For messenger RNA-sequencing (mRNA-seq), the

library was constructed using QuantSeq 3’ mRNA-Seq Library

Prep Kit (Lexogen, Wien, Austria) according to the

manufacturer’s instructions. In brief, each sample was

prepared with 500 ng of total RNA, an oligo-dT primer with

an Illumina-compatible sequence at its 5’ end was hybridized

with the RNA, and reverse transcription was performed. After

degradation of the RNA template, second-strand synthesis was

initiated by a random primer with an Illumina-compatible linker

sequence at its 5’ end. The double-stranded library was purified

using magnetic beads to remove all reaction components and

amplified to add the complete adapter sequences required for

cluster generation. The finished library was purified from PCR

components, and then high-throughput sequencing was

performed as single-end 75 sequencings using NextSeq 500

(Illumina, CA, USA). For micro RNA-sequencing (miRNA-

seq), the construction of the library was performed using the

NEBNext Multiplex Small RNA Library Prep kit (New England

BioLabs, MA, USA) according to the manufacturer ’s

instructions. Briefly, for library construction, total RNA from

each sample was used 1 µg to ligate the adaptors, and then cDNA

was synthesized using reverse-transcriptase with adaptor-

specific primers. PCR was performed for library amplification,

and libraries were cleaned up using QIAquick PCR Purification

Kit (Qiagen) and AMPure XP beads (Beckman Coulter, CA,

USA). The Agilent 2100 Bioanalyzer instrument assessed

the yield and size distribution of the small RNA libraries for

the High-sensitivity DNA Assay (Agilent Technologies). The

NextSeq500 system produced High-throughput sequences to

single-end 75 sequencings (Illumina).

All raw reads received the quality check using BBduk, a tool

in the BBMap package (https://sourceforge.net/projects/bbmap),
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to remove low-quality bases (< Q20). The remaining reads from

QuantSeq 3’ mRNA-Seq and miRNA-seq were mapped to the

mouse mm10 genome reference and mature miRNA sequences

of the miRBase database (20) using Bowtie2 software (21),

respectively. Read counts of genes were calculated with

Bedtools (22) and the raw counts were transformed into

counts per million (CPM) for exclusion of very lowly

expressed genes using edgeR (version 3.36.0) (23). Genes with

one or more log2-CPM in at least two samples were kept for

further analysis. Next, normalization factors were calculated

with the trimmed mean of M-values (TMM) method using the

calcNormFactors function in edgeR. For Z-score normalization,

the TMM-adjusted log CPM counts were calculated, and

Gaussian normalization was performed. To identify

differentially expressed genes (DEGs), gene expression levels

were statistically tested between groups using the glmFit and

glmLRT functions embedded in the edgeR package. Benjamini

and Hochberg’s false discovery rate (FDR) method was used to

correct for multiple testing. Genes with the fold change over two

and the significance (adjusted p-value) below 0.01 were

considered DEGs. The binding site between miRNA and the 3’

untranslated region (UTR) of target mRNA was predicted by

miRWalk 3.0 at http://mirwalk.umm.uni-heidelberg.de/ (last

accessed February 2022).
Quantitative real-time PCR

For mRNA expression analysis, total RNA from BMDMs

cultured in 48-well cell culture plates or mouse lung tissue

homogenates was extracted using TRIzol reagent (Invitrogen;

15596026) according to the manufacturer’s instructions,

followed by RNA quantitation and assessment using QIAxpert

(Qiagen). Complement DNA from total RNA was synthesized

using the reverse transcription master premix (ELPIS Biotech;

EBT-1515c) as manufacturer ’s instruction. Two-step

quantitative real-time PCR (qRT-PCR) was carried out using

cDNA, primers, and Rotor-Gene SYBR Green PCR Kit (Qiagen,

204074). Reactions were run on a Rotor-Gene Q 2plex system

(Qiagen, 9001620). The samples were amplified for 40 cycles as

follows: 95°C for 5 s and 60°C for 10 s. Data were expressed as

relative fold changes using the 2-DD threshold cycle (Ct) method

with b-actin (BMDMs) or Gapdh (lung tissue homogenates) as

an internal control gene. The primer sequences used are shown

in Supplementary Table 1.

For miRNA expression analysis, total RNA from BMDMs

cultured in 48-well cell culture plates was isolated using QIAzol

lysis reagent (Qiagen, 79306) and miRNeasy Mini Kits (Qiagen,

217004) according to the manufacturer’s instructions. Next,

cDNA from total RNA was synthesized using miScript II RT

Kits (Qiagen, 218161) by the manufacturer’s instructions. Three-

step qRT-PCR was performed using the miScript SYBR Green
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PCR Kit (Qiagen, 218073), and samples were amplified for 50

cycles as follows: 95°C for 15 s, 55°C for 30 s, and 72°C for 30 s.

Small nuclear RNA (RNU6-6P RNA; Qiagen, MS00033740) was

used for the normalization of the expression of miR-155-3p and

miR-155-5p. The primer sequences used are shown in

Supplementary Table 2.
Transient transfection

BMDMs cultured in 48-well cell culture plates were

transiently transfected with a miRNA mimic negative control

(20 nM), miR-155-5p mimic (20 nM), miRNA inhibitor negative

control (100 nM), or miR-155-5p inhibitor (100 nM) using the

Lipofectamine 3000 Transfection Kit (Invitrogen, L3000-008)

according to the manufacturer’s instructions. Genolution (Seoul,

South Korea) provided the miR-155-5p mimic (5′-
UUAAUGCUAAUUGUGAUAGGGGU-3′) and miR-155-5p

inhibitor (5′-ACCCCUAUCACAAUUAGCAUUAA-3′), and
Ambion (Austin, TX, USA) provided the miRNA mimic

negative control (4464058) and inhibitor negative

control (4464076).
Colony-forming unit assay

BMDMs cultured in 48-well cell culture plates were

transiently transfected with miRNA inhibitor negative control

or miR-155-5p inhibitor before infecting with Mtb H37Rv at a

multiplicity of infection (MOI) of 3 for 4 h. The infected cells

were washed with PBS to remove extracellular bacteria and

further incubated in the fresh medium for the indicated

periods. Cells were then lysed in sterile distilled water for

30 min, serially diluted with PBS, and plated on the

Middlebrook 7H10 agar plates containing OADC. Plates were

incubated for 2-3 weeks at 37°C and colonies were enumerated

to assess intracellular bacterial viability.
In-vivo analysis with recombinant
M. smegmatis strains

Frozen bacterial cells were centrifuged after thawing, and the

pellet was resuspended in PBST. After anesthetizing C3HeB/FeJ

mice, 1×106 CFU/mouse of Ms_Vec or Ms_AcpM were

inoculated intranasally. At the indicated times after infection,

mice were euthanized and the lungs were collected to assess the

bacterial burden. Lung tissues were homogenized using a tissue

homogenizer (Omni International Inc., Warrenton, VA, USA)

in PBST. Serial dilutions of the homogenates were planted in

7H10 agar plates, and colonies were counted after 3-4 days of

incubation at 37°C.
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Statistical analysis

All of the experiments were repeated as indicated in figure

legends, with consistent results. An unpaired Student’s t-test

was used to determine the significance of differences between

two groups, and an one-way analysis of variance (ANOVA)

followed by Tukey’s multiple comparison test was used to

determine the significance of differences among three or

more groups using Prism® software version 8 (GraphPad

Software, San Diego, CA, USA). Data are expressed as means

± standard deviation (SD) or standard error of the mean

(SEM); statistical significance was defined as *p < 0.05,

**p < 0.01, and ***p < 0.001.
Results

AcpM inhibits TFEB expression and its
nuclear translocation

To find the key molecule governing the host defense in

AcpM-treated BMDMs, mRNA-seq analysis was performed

(Figure 1A; Supplementary Table 3). Several autophagy-related

genes, including Tfeb, were significantly downregulated in

AcpM-treated BMDMs (AcpM) when compared to untreated

cells (Un) (Figure 1A). Since TFEB is known to play a pivotal

role in the regulation of lysosomal biogenesis and autophagy

(24), qRT-PCR and western blot analysis were conducted to

confirm its relative expression. Over time, AcpM treatment

reduced the gene (Figure 1B) and protein (Figure 1C) levels of

TFEB. Furthermore, AcpM treatment effectively suppressed the

nuclear translocation of TFEB. The degree of TFEB in the

nucleus reduced at early time points after AcpM addition in

BMDMs, as shown by confocal images with TFEB staining in

green (Figure 1D).
AcpM suppresses the expression of
numerous autophagy and lysosomal
genes in the TFEB downstream pathway

TFEB enters the nucleus to function as a transcription

factor inducing lysosomal biogenesis. Since AcpM blocks its

nuclear translocation (Figure 1D), various genes related to

autophagy or lysosomal activity were thought to decrease with

AcpM treatment in BMDMs. In detail, AcpM treatment

significantly reduced the levels of Lamp1 , Lamp2 ,

autophagy-related gene 5 (Atg5), Atg 7, and several Tfeb

downstream genes such as Uvrag and Vps11 over time

(Figure 2A). AcpM also significantly suppressed the

expression of Rap7a , Gabarap, Beclin-1 (Becn1), and

damage-regulated autophagy modulator 2 (Dram2) at most
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FIGURE 1

AcpM suppresses TFEB expression and its nuclear translocation. (A) A heatmap and a bar graph showing the expression of autophagy-associated
genes in the AcpM-treated (AcpM, 10 mg/ml for 18 h) and untreated (Un) BMDMs. The left panel heatmap shows relative expression levels for each
gene with Z-scores. The bar graph in the right panel depicts the fold change (FC). Gene names with an asterisk indicate statistical significance
(FDR < 0.01). (B, C) BMDMs were treated with recombinant AcpM (10 mg/ml) for indicated times, and the harvested cells were subjected to either
qRT-PCR analysis to measure Tfeb mRNA gene expression (B) or immunoblot analysis to measure TFEB protein expression (C). One representative
image, (C, upper panel) and the densitometric analysis (C, lower panel) of immunoblots were presented. (D) BMDMs treated with recombinant AcpM
(10 mg/ml) for 2 or 6 h were harvested and stained with TFEB (green). Then the cells were subjected to confocal microscopy. Representative
confocal images (Scale bar: 50 mm) from each group were presented. Statistical analysis was determined with an unpaired t-test or one-way
ANOVA and presented as means ± SD from at least three independent experiments performed. *p < 0.05; **p < 0.01; ***p < 0.001. a.u., arbitrary
unit; n.s., not significant; Un, untreated; AcpM, AcpM-treated.
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time points (Figure 2A). Moreover, both LAMP1 and ATG5

protein levels in BMDMs were significantly reduced at 48 h

after AcpM treatment (Figure 2B). Collectively, AcpM

addition blocks nuclear translocation of TFEB, thereby

downregulating the expression of various autophagy and

lysosomal genes in BMDMs.
Frontiers in Immunology 07
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AcpM inhibits LC3-II/LC3-I ratio,
but does not affect autophagic
flux in murine macrophages

To determine whether AcpM affected autophagy in murine

BMDMs, p62 and LC3 levels were validated by western blotting.
A

B

FIGURE 2

AcpM suppresses various autophagy and lysosomal genes. (A) BMDMs were treated with recombinant AcpM (10 mg/ml) for the indicated times.
Total RNAs extracted from the cells were then subjected to qRT-PCR analysis to measure the expression of autophagic/lysosomal genes.
(B) BMDMs treated with recombinant AcpM (10 mg/ml) for the indicated times were harvested, lysed, and subjected to immunoblot analysis to
measure the LAMP1 and ATG5 expression. The representative image (upper panel) and the densitometric analysis (lower panel) of protein bands
were presented. Statistical analysis was determined with one-way ANOVA and presented as means ± SD from at least three independent
experiments performed. *p < 0.05; **p < 0.01; ***p < 0.001. a.u., arbitrary unit; n.s., not significant.
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AcpM treatment increased p62 while decreasing the LC3-II band

over time (Figure 3A). To confirm the effect of AcpM in

autophagic flux, the vacuolar type H+-ATPase (V-ATPase)

inhibitor bafilomycin A1 (Baf-A1) was used. Baf-A1 was added

1 h before AcpM treatment to inhibit the lysosomal activity. After

8 h and 24 h, LC3-II bands in the AcpM-treated cells showed a

significant difference in Baf-A1-untreated and -treated conditions,
Frontiers in Immunology 08
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indicating that AcpM had no effect on the basal autophagic flux

(Figure 3B). Furthermore, at 24 h after AcpM treatment, p62

levels were higher in Baf-A1-treated cells than in Baf-A1-

untreated cells, implying that p62 accumulation in AcpM-

treated conditions is not due to a block in autophagic flux.

These findings indicate that, while AcpM inhibits LC3-II/LC3-I

ratio over time, it has no effect on autophagic flux in BMDMs.
A

B

FIGURE 3

AcpM has no effect on autophagic flux in macrophages. (A) BMDMs were treated with recombinant AcpM (10 mg/ml) for the indicated times and the
cell lysates were subjected to immunoblot analysis. One representative image (upper panel) and the densitometric analysis of the protein bands
(lower panel) were presented. (B) BMDMs were pretreated with or without Baf-A1 (50 nM) for 1 h and then followed by AcpM (10 mg/ml) treatment.
After 8h or 24 h, cells were harvested and subjected to immunoblot analysis with cell lysates. One representative image (upper panel) and the
densitometric analysis (lower panel) of immunoblots were presented. Statistical analysis was determined with an one-way ANOVA and presented as
means ± SD from at least three independent experiments performed. *p < 0.05; ***p < 0.001. a.u., arbitrary unit; n.s., not significant.
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AcpM suppresses phagosomal
maturation of Mtb during infection

The next question was whether adding AcpM protein to

Mtb-infected macrophages would affect phagosomal

maturation. BMDMs were infected with an Mtb-ERFP strain,

which was followed by AcpM treatment in fresh media. The cells

were then stained with LAMP1 antibody to visualize lysosomes

in confocal microscopy analysis. The colocalizing rate between

Mtb and LAMP1 was significantly lower in the AcpM-treated

conditions than in the untreated group (Figure 4). Therefore,

AcpM helps Mtb circumvent phagosomal maturation by

blocking phagosome and lysosome fusion.
AcpM induces Akt-mTOR signaling
via upregulating SHIP1-targeting
miR-155-5p expression

Previous studies have highlighted the importance of

miRNAs in the regulation of host immune response (25–27).

To see if AcpM was involved in the increase of specific

miRNAs, miRNA-seq analysis was performed. The

expression rates of miRNA-155p-3p and miRNA-155p-5p

were the highest among the miRNAs that showed a

significant change in the miRNA-seq analysis of AcpM-

treated BMDMs when compared to untreated cells
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(Figure 5A, Supplementary Table 4). However, the qRT-PCR

analysis revealed that miR-155-5p increased more than tenfold

with increasing AcpM concentration in BMDMs, while miR-

155-3p showed no significant change (Figure 5B). Previous

studies showed that SHIP1 prevented Akt phosphorylation,

thus blocking the Akt-mTOR pathway (18, 28). Also, as miR-

155 was shown to target SHIP1 from an earlier study

(Figure 5C) (29), the gene expression and protein amount of

SHIP1 was investigated under AcpM treatment in BMDMs. At

3 and 6 h-post AcpM treatment, Ship1 expressions analyzed

with two different primers were significantly suppressed

(Figure 5D). In western blot analysis, total SHIP1 expression

was also significantly reduced from 3 to 18 h after AcpM

administration, which was accompanied by an increase in

phosphorylation of Akt and mTOR (Figure 5E). Along with

increased Akt phosphorylation, there was also a reduction in

FOXO3 levels (Figure 5E). To further demonstrate the ability

of AcpM-induced miR-155-5p to regulate SHIP1 expression,

miR-155-5p mimic and inhibitor (m155 and i155,

respectively), as well as negative controls of miRNA mimic

and inhibitor (mNC and iNC, respectively), were transfected

into BMDMs. It was discovered that either m155 transfection

or AcpM addition suppressed SHIP1 effectively and that i155

transfection could counteract AcpM-induced miR-155-5p

expression and restore SHIP1 levels (Figure 5F). Overall,

these findings suggest that AcpM-induced miR-155-5p plays

a role in Akt-mTOR activation by targeting SHIP1.
FIGURE 4

AcpM inhibits phagosome-lysosome fusion of Mtb. BMDMs were infected with Mtb-ERFP (MOI 5) for 4 h and then incubated with or without
AcpM (10 mg/ml) in the freshly changed media for 4 h. Cells were stained with anti-LAMP1 (green) antibody and DAPI (blue) to visualize
fluorescent images using Zeiss LSM-900 confocal microscopy (Scale bar: 50 mm for field views, 5 mm for single cell images). The colocalization
rates between Mtb-ERFP and LAMP1 were assessed by calculating Pearson correlation coefficient from 12-15 field images (at least 80 cells per
image). Statistical analysis was determined with an unpaired t-test and presented as means ± SD from at least three independent experiments
performed. ***p < 0.001. Un, untreated; AcpM, AcpM-treated.
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FIGURE 5

AcpM suppresses SHIP1 by increasing miR-155 expression. (A) A volcano plot representing differentially expressed miRNAs with the log2-fold
change (FC) plotted against the negative log10 false discovery rate (FDR) for the AcpM-treated group compared to the untreated group. Red
and blue dots indicate upregulated and downregulated genes, respectively. (B) BMDMs were treated with recombinant AcpM (10 or 20 mg/ml)
for 8 h and the cell lysates were subjected to qRT-PCR analysis to measure the miR-155-3p and miR-155-5p expression. (C) The 3′ UTR of ship1
mRNA is shown schematically, along with the relative location of the mouse miR-155-5p binding site. (D, E) BMDMs were treated with
recombinant AcpM (10 mg/ml) for indicated times, and the harvested cells were subjected to either qRT-PCR analysis to determine the gene
expression of Ship1 (D) or immunoblot analysis to measure the expression of SHIP1 and SHIP1-downstream signaling molecules (E). The
representative image (E, upper panel) and the densitometric analysis (E, lower panel) of protein bands were presented. (F) BMDMs were
transfected with mNC, m155, iNC, or i155, then further treated for 8 h with recombinant AcpM (10 mg/ml). Cells were lysed and subjected to
immunoblot analysis to determine the SHIP1 protein level. The representative image (upper panel) and the densitometric analysis (lower panel)
of SHIP1 bands were presented. Statistical analysis was determined with an unpaired t-test or one-way ANOVA and presented as means ± SD
from at least three independent experiments performed. *p < 0.05; **p < 0.01; ***p < 0.001. a.u., arbitrary unit; n.s., not significant; mNC,
negative control of miR-155-5p mimic; m155, miR-155-5p mimic; iNC, negative control of miR-155-5p inhibitor; i155, miR-155-5p inhibitor. Un,
untreated; AcpM, AcpM-treated.
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AcpM promotes Mtb intracellular
survival by inducing the
expression of miR-155-5p

Because AcpM inhibited Mtb fusion with lysosomes

(Figure 4), Mtb ICS was thought to be increased. As expected,

the Mtb CFU level was significantly higher in BMDMs 3 days

after AcpM treatment than in the untreated group (Un)

(Figure 6A). Furthermore, when i155-transfected groups were

compared to iNC-transfected groups, CFU level in the AcpM-

treated groups was significantly reduced (Figure 6B). Relative

miR-155-5p expression in the same experimental settings as in

Figure 6B revealed a positive correlation between the miR-155-

5p and the Mtb CFU levels in BMDMs (Figure 6C). According to

the findings, AcpM is thought to promote Mtb survival in

BMDMs by upregulating miR-155-5p expression.
AcpM overexpression enhances
in-vivo survival of M. smegmatis
in C3HeB/FeJ mice

To evaluate the effect of AcpM secretion in-vivo, recombinant

M. smegmatis strains overexpressing AcpM (Ms_AcpM) and a

vector plasmid carrying control (Ms_Vec) were used. C3HeB/FeJ

mice were challenged with either Ms_Vec or Ms_AcpM via nasal
Frontiers in Immunology 11
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route and sacrificed at 1, 4, and 7 days post-infection (dpi). One

day after infection, there was no significant difference in CFU

levels between lung lysates from two recombinant strains-infected

mice, indicating that an equal amount of strains was properly

administered through the nasal airways (Figure 7A). However, the

viability of Ms_AcpM was significantly higher than that of

Ms_Vec at 4 and 7 dpi (Figure 7A), suggesting that AcpM

overexpression improves M. smegmatis in-vivo survival.

Interestingly, qRT-PCR analysis of the samples obtained from

the same mice revealed a decrease in several autophagy and

lysosomal genes including Tfeb (Figure 7B). These data suggest

that AcpM overexpression helps M. smegmatis survival in mouse

lungs, possibly by altering TFEB downstream pathways as shown

in murine macrophages.
Discussion

In this study, AcpM, an essential protein for Mtb survival

and mycolic acid synthesis (30), was newly discovered as a

mycobacterial effector for pathogenesis through blocking TFEB

activation and increasing miR-155-5p expression. A schematic

summary of the AcpM’s suggested mode of action was presented

in Figure 8. Previously, the apoptosis inhibiting feature of AcpM

was also described (19). In murine BMDM settings, AcpM did

not directly affect autophagic flux, but significantly suppressed
A

B C

FIGURE 6

AcpM increases intracellular survival of Mtb by miR-155 upregulation. (A) BMDMs were infected with Mtb H37Rv (MOI 3) for 4 h and treated with
recombinant AcpM (10 mg/ml) in the fresh media. After 3 days, cells were lysed and subjected to a CFU assay to explore the intracellular survival of
Mtb. (B, C) BMDMs were transfected with either iNC or i155, then infected with Mtb H37Rv (MOI 3) for 4 h before treating recombinant AcpM (10 g/
ml) in fresh media. Cells were lysed and subjected to CFU assay at the indicated times (B) or qRT-PCR after 18 h (C). Statistical analysis was
determined with an unpaired t-test and presented as means ± SD from at least three independent experiments performed. *p < 0.05; **p < 0.01;
***p < 0.001. iNC, negative control of miR-155-5p inhibitor; i155, miR-155-5p inhibitor. Un, untreated; AcpM, AcpM-treated.
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multiple autophagy gene expression, which may influence host

defense pathways in an autophagy-independent manner.

Importantly, we found that the mRNA and protein expression

of LAMP1, which is regulated by TFEB (31), was down-

regulated by AcpM, suggesting that AcpM affects lysosomal

biogenesis during Mtb infection. In addition, our data

highlights the AcpM function in the elevation of miR-155-5p,

which was shown to target SHIP1 (29, 32, 33). Previous studies

showed that SHIP1 plays an essential role in the activation of

Akt pathway, thereby enhancing intracellular Mtb survival (18).

In addition, miR-155 can target FOXO3 (34), which is associated

with the gene expression of multiple autophagy-related genes

such as Atg5, Atg12, Becn1, Lc3 and Bnip3 (35, 36). However, the

role of Mtb-induced miR-155 expression in regulating host

defense in the early stages of infection has sparked debate.

Wang et al. reported that miR-155 induced autophagy to

eliminate intracellular mycobacteria by targeting Ras homolog

enriched in brain (Rheb) in RAW264.7 cells (37). Indeed, the

miR-155 level is elevated in both Mtb-infected macrophages (37)

and active TB patients (38). On the other hand, Rothchild et al.

demonstrated that miR-155 promoted Mtb survival in BMDMs

through targeting SHIP1 in the early stages of infection, even
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though it also activated Mtb-specific T cell function in the

adaptive immune response to effectively reduce bacterial

survival in the late stages of infection (28). Kumar et al. also

discovered that overexpression of miR-155 reduced the

expression of BTB and CNC homology 1 (BACH1) and

SHIP1, allowing Mtb to survive in macrophages (18). These

results show a partial correlation with ours that miR-155 favors

mycobacterial survival in macrophages by targeting SHIP1-Akt

axis. Although the role of miR-155 in host defense regulation

varies depending on the host cell type or bacterial strain, it

appears that miR-155 inhibits antimicrobial host defense in

macrophages in the early stages of infection.

TFEB is known as a master regulator of lysosomal biogenesis

(24). Previous research reported that the suppression of the Akt-

mTOR pathway enhances nuclear translocation of TFEB to

induce transcriptional activation of lysosomal and autophagy-

related genes (39, 40). According to our findings, AcpM

increased Akt and mTOR phosphorylation (Figure 5E) while

decreasing TFEB expression and its nuclear translocation

(Figure 1), which likely leads to the downregulation of

autophagy and lysosomal genes (Figure 2). Recent studies

showed that TFEB activation is critically involved in the
A

B

FIGURE 7

AcpM overexpression increases the survival of M. smegmatis in-vivo. (A) C3HeB/FeJ mice (n = 22) were intranasally infected with recombinant
M. smegmatis strains Ms_AcpM (n = 11) or Ms_Vec (n = 11) and euthanized at the indicated times after infection (1, 4, or 7 dpi). The lungs were
resected from mice to assess the bacterial burden by CFU assay. (B) Lung lysates from two randomly selected mice from each group were
analyzed in triplicate using qRT-PCR to evaluate the expression level of autophagic/lysosomal genes at 7 dpi. Statistical significances were
calculated with an unpaired t-test. Data are presented as mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001; a.u., arbitrary unit; n.s., not significant;
CFU, colony-forming unit; dpi, days post-infection; Ms_V, Ms_Vec-infected; Ms_A, Ms_AcpM-infected.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.946929
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Paik et al. 10.3389/fimmu.2022.946929
regulatory node of antimicrobial responses against Mtb in

macrophages (41–43). Importantly, we found that AcpM did

not affect the induction of autophagy or activation of autophagic

flux when treated with Baf-A1 in basal conditions at both 8 h

and 24 h after AcpM treatment (Figure 3). Thus, the AcpM’s role

in the suppression of antimicrobial responses against Mtb

infection seems to be associated with the inhibition of TFEB,

but not directly related to the suppression of autophagy. In

addition, a recent study revealed that TFEB activation is required

for the induction of mitochondrial itaconate synthesis to control

intracellular bacterial growth (44, 45), suggesting the critical

function of TFEB in terms of antimicrobial defense in

macrophages. Future studies will clarify whether AcpM is

involved in the regulation of immunometabolic remodeling in

macrophages to further affect TFEB-induced antimicrobial

responses during Mtb infection.

We also found that AcpM increased miR-155 production,

which targets SHIP1 to prevent its negative regulation on Akt

phosphorylation, resulting in the increased Mtb survival in host

cells. Because AcpM-induced miR-155-5p upregulates the Akt/

mTOR pathway by targeting SHIP1, it is supposed that miR-

155-5p-mediated Akt/mTOR activation leads to the suppression

of TFEB activation. Since the level of miR-155 is related to the

virulence of infected mycobacterial strains (18, 37), the present

data is important to show the function of AcpM as an inducer of

miR-155 to further regulate the host protective responses during

infection. In this regard, identifying other mycobacterial factors
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that stimulate miR-155 expression and elucidating the exact

mechanism of how mycobacteria activate miR-155 production

would help us better understand mycobacterial pathogenesis.

To further understand the function of AcpM during

mycobacterial infection, an attempt was made to construct an

AcpM-conditional knockout system using the Mtb H37Rv

strain. However, we were unable to achieve it, most likely due

to the AcpM’s essential role in Mtb survival. Thus,M. smegmatis

strains, Ms_AcpM and Ms_Vec, were used to test if AcpM

overexpression could increase the number of surviving bacteria

in lung tissues of infected mice. BecauseM. smegmatis strains are

non-pathogenic, they have little tolerance for the host’s innate

immune system. To slow down the declining survival rate of

recombinant M. smegmatis strains, an in-vivo challenge was

conducted using C3HeB/FeJ mice (46). As a result, CFU levels of

Ms_AcpM were significantly higher than that of Ms_Vec,

implying that AcpM overexpression improves the survival of

M. smegmatis in-vivo (Figure 7A). Thus, AcpM expressed in

mycobacteria is likely to suppress the tfeb and tfeb-downstream

autophagy-related gene expression in the lung tissues in the

same way that recombinant AcpM protein does in macrophages.

Recently, a small molecule called “8918,” which selectively

binds to PptT, was discovered to have anti-tuberculosis efficacy

comparable to rifampin, a first-line anti-tuberculosis drug (17).

In addition, a newly discovered Ppt hydrolase, PptH, which

removes Ppt from AcpM, made Mtb more sensitive to 8918,

even when PptT was only partially inhibited (17). Therefore, it’s
FIGURE 8

The proposed mechanism of action of AcpM in Mtb-infected macrophages. AcpM promotes the expression of miR-155, which targets SHIP1 to
activate the Akt/mTOR pathway. The activated Akt/mTOR signaling pathway inhibits TFEB nuclear translocation and reduces the expression of
autophagy and lysosomal genes, which is likely to induce antimicrobial defense in macrophages. AcpM also improves intracellular mycobacterial
survival by inhibiting phagosome-lysosome fusion.
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possible to believe that Mtb virulence is influenced by the

formation and maintenance of holo-AcpM. Finding small

chemical compounds that can selectively target AcpM could

be helpful in the development of new anti-mycobacterial drugs.

In summary, AcpM’s role in modulating antimicrobial host

defense was revealed in this work. AcpM was discovered to

effectively reduce TFEB nuclear translocation and downregulate

the expression of autophagy and lysosomal genes in

macrophages. In addition, AcpM-mediated miR-155-5p

activated the Akt/mTOR pathway by targeting SHIP1. AcpM

also improved intracellular mycobacterial survival by reducing

phagosome-lysosome fusion. These findings highlight the

importance of understanding host-pathogen interactions in the

context of the Mtb virulence factors and provoke future studies

targeting AcpM to expand the development of novel

Mtb therapeutics.
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Genomics and transcriptomics
reveal new molecular
mechanism of vibriosis
resistance in fish
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Lei Wang1, Xinran Ma1, Jie Wang1, Qihao Zhang1

and Songlin Chen1,2,3,4*
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Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China, 2Laboratory
for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine
Science and Technology, Qingdao, China, 3Shandong Key Laboratory for Marine Fishery Biotechnology
and Genetic Breeding, Qingdao, China, 4College of Life Science, Qingdao University, Qingdao, China
Infectious diseases have caused dramatic production decline and economic

loss for fish aquaculture. However, the poor understanding of fish disease

resistance severely hampered disease prevention. Chinese tongue sole

(Cynoglossus semilaevis) is an important economic flatfish suffering from

vibriosis. Here we used genomic, transcriptomic and experimental

approaches to investigate the molecular genetic mechanisms underlying fish

vibriosis resistance. A genome-wide comparison revealed that the genes under

selective sweeps were enriched for glycosaminoglycan (GAG) chondroitin

sulfate (CS)/dermatan sulfate (DS) metabolism. Transcriptomic analyses

prioritized synergic gene expression patterns in this pathway, which may lead

to an increased CS/DS content in the resistant family. Further experimental

evidence showed that carbohydrate sulfotransferases 12 (Chst12), a key

enzyme for CS/DS biosynthesis, has a direct antibacterial activity. To the best

of our knowledge, this is the first report that the chst12 gene has a bactericidal

effect. In addition, CS/DS is a major component of the extracellular matrix

(ECM) and the selection signatures and fine-tuned gene expressions of ECM-

receptor interaction genes indicated a modification in the ECM structure with

an enhancement of the barrier function. Furthermore, functional studies

conducted on Col6a2, encoding a collagen gene which constitutes the ECM,

pointed to that it may act as a cellular receptor for Vibrio pathogens, thus plays

an important role for the Vibrio invasion. Taken together, these findings provide

new insights into the molecular protective mechanism underlying vibriosis

resistance in fish, which offers crucial genomic resources for the resistant

germplasm breeding and infectious disease control in fish culturing.

KEYWORDS

vibriosis resistance, molecular mechanism, selective sweep, RNA-Seq, fish disease
control, Cynoglossus semilaevis
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Introduction

Currently, the global food production and security is facing

great challenges. Aquaculture plays an increasingly important

role in nutrition and food supply. However, infectious diseases

are recognized as a major cause of mortality and constitute a

major global threat for the production of fish farming (1), and

the success and sustainability of fish aquaculture largely depends

on the control of diseases (2). Genetic breeding of fish

with improved diseases resistance remains a highly sought-

after objective in aquaculture (3), providing effective and long-

term control over disease problem. To achieve the selective

breeding and disease control, it is important to understand the

molecular mechanisms determining the resistance of fish to

pathogenic microbes.

Conceptually, “disease resistance” refers to the host’s ability

to reduce pathogen invasion (limitation of pathogen entry into

the targe tissue and replication) (1), which in fish encompasses a

variety of mechanisms including maintenance of epithelial

barriers and the mucus coat; nonspecific cellular factors such

as phagocytosis by macrophages and neutrophils; nonspecific

humoral factors such as lysozyme, complement, and transferrin;

and specific humoral and cellular immunity (4). A number of

studies have documented the genetic variations and genes

associated with disease resistance in fish. Quantitative trait

locus (QTL) mappings and genome-wide association studies

(GWAS) allowed detection of the single-nucleotide

polymorphisms (SNPs) and genes associated with disease

resistance in many fish, such as Atlantic salmon, rainbow trout

(2, 5) and Chinese tongue sole (6). Comparative transcriptome

analyses of resistant and susceptible fish upon pathogenic

infections indicated that transcriptional responses induced by

various pathogens generally involved essentially the same genes

and pathways in immune systems, such as complement, immune

signaling transduction pathways and a number of enzymes and

chemokines among Atlantic salmon (7, 8), rainbow trout (9),

common carp (10) and Chinese tongue sole (11). While these

studies have shown that the resistant and susceptible fish have

different genetic architecture and distinct molecular responses

after temporary infections, a crucial question that how the fish

disease resistance emerges and why the resistant fish can resist

the pathogenic infections remains poorly resolved.

Vibriosis, caused by the Vibrio genera species such as V.

anguillarum, V. alginolyticus, V. harveyi, and V. splendidus, is

one of the most detrimental infectious diseases for various

marine fish and invertebrate. Outbreaks of vibriosis result to

50-100% mortalities in different fish. Chinese tongues sole

(Cynoglossus semilaevis) is an important and widely cultivated

economic flatfish species with delicious taste and superior

nutritive value, which is recorded as one of the nine varieties

in the national marine fish industry technology system of China

(https://www.cafs.ac.cn/info/1024/38584.htm). C. semilaevis has
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suffered from striking production decline caused by its dominant

bacterial pathogen V. harveyi. In our previous work, we have

conducted a successive selective breeding for more than 10 years

and produced robust C. semilaevis families with high vibriosis

resistance (12). This constant selection practice provides a

unique opportunity for tracing the evolutionary and molecular

basis underlying the acquisition of vibriosis resistance in fish,

using the pre-selection and post-selection individuals. It is

proposed that divergence in both gene sequence frequencies

and gene expressions underpin the phenotypic evolution (13).

Combining multiple approaches will lead to cross information,

allowing a dissection of the genetic mechanisms of resistance to

infections, and contribute to the identification of potential

targets of selection for improved resistance (14).

The objective of this study was the identification of the

genetic determinants of resistance to vibriosis using the species

C. semilaevis as a model. With this objective, we sequenced,

analyzed and compared the genomes and transcriptomes of

selected resistant and sensitive fish. Both the genomic and

transcriptomic divergence highlighted the functional potentials

of CS/DS metabolism and ECM-receptor interaction in the

vibriosis resistance. Additionally, we characterized the

expression and defensive functions of crucial genes in the host

defense against the bacterial pathogens. These results

demonstrated that the selection pressure has acted on specific

genes and pathways in mediating the bacterial adhesion and

invasion, which may largely account for the improved

vibriosis resistance.
Results and discussion

Genome-wide selective sweeps and
genes relevant to vibriosis resistance

The selection pressure finally acts on phenotype. To accurately

detect the genomic signatures of the selection associated with

vibriosis resistance, we measured the genome-wide variations

between 74 pre-selection and 108 post-selection C. semilaevis.

From the genome resequencing data, we detected 3,768,965 single

nucleotide polymorphisms (SNPs), among which 1,600,893 SNPs

were located in the genic regions, including 51,901

nonsynonymous, 131,463 synonymous and 1,417,529 intronic

SNPs. In addition, 2,142,956, 9,050 and 15,254 SNPs were located

in intergenic, upstream and downstream and unknown regions,

respectively (Supplementary Table S1).

The result of PCA indicated that the pre-selection and post-

selection individuals were separately clustered (Figure 1A),

which was in line with the phylogenetic relationship revealed

by the Neighbor-Joining (NJ) tree (Supplementary Figure S1A).

Some individuals in the two groups were overlap clustered. A

possible reason is that all the fish were originated from a
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relatively small ancestral breeding population, thus some

individuals might have a close genetic relationship. This may

also partially explain why in the PCA result, the PC2 mainly

discriminates the pre- and post-selection individuals. In

addition, the genetic stratification was further confirmed using

STRUCTURE program, which identified the optimal number of

the genetic clusters when the K was set to 2 (Supplementary

Figure S1B). These results indicated a genetic divergence

correlating with the selection to vibriosis resistance in

C. semilaevis.

The selected genomic regions are expected to have a reduced

allele frequency, elevated differentiation, and lower genetic

diversity between genetically diverged groups. To detect the

genomic regions and genes with selection signatures, we

screened the genome using three distinct metrics of selective

sweeps, including XP-CLR, FST and nucleotide diversity. First,

the XP-CLR approach identified a total of 39.5 Mb genomic
Frontiers in Immunology 03
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regions with selective sweep signals, harboring 2011 gene (XP-

CLR value greater than 1.1 (top 5%)) (Figure 1B). These genes

were enriched in 7 KEGG pathways, including “melanogenesis”,

“calcium signaling pathway”, “tight junction”, “phagosome”,

“GAG degradation”, “vascular smooth muscle contraction”

and “gap junction” (p < 0.05) (Supplementary Table S2). In

addition, calculation of z transformation of FST (top 5%,

empirical FST ≥ 1.82) identified 170 selective sweeps in a total

length of 45.12 Mb (Figure 1B). In these regions, we retrieved

2057 genes that were annotated with KEGG pathways such as

“lysine degradation”, “notch signaling pathway” and “lysosome”

(p < 0.05) (Supplementary Table S2). Furthermore, we

constructed a genome-wide empirical distribution of the log2
(qp ratio (qpref/qp resist)) between the pre-selection (ref) and

post-selection (resist) groups, and identified 288 selective sweeps

(52.98 Mb) that had reduced nucleotide diversity in the post-

selection group (5% right tail, where log2(qp ratio) was 0.145)
A

B

C

FIGURE 1

Genetic divergence and genome-wide identification of selective sweeps for vibriosis resistance in C. semilaevis. A total of 3,768,965 SNPs (MAF > 5%,
missing rate < 10%) identified from 182 samples were used. (A) PCA shows a genetic divergence between pre-selected (ref) and post-selected (resist)
individuals. The first and second dimensional coordinates are plotted. Pre-selected and post-selected individuals are shown in blue and red colors,
respectively. (B) Distributions of XP-CLR, Z (FST) and qp (in log2 (qp ratio (qpref/qpresist)) values calculated using a 40 kb sliding window with a step size of
20 kb. The dashed horizontal lines correspond to the top 5% values of each measurement (where XP-CLR was 1.10, Z(FST) was 1.82, and log2 (qp ratio)
was 0.1455). (C) Top 20 enriched KEGG pathways for the 207 genes under selective sweep, which were simultaneously identified by XP-CLR, Z (FST) and
log2 [qp ratio (qpref/qpresist)].
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(Figure 1B). These regions harbored 2302 genes that were

overrepresented in various metabolic and signaling pathways

such as “phosphatidylinositol signaling system” and “RIG-I-like

receptor signaling pathway” (p < 0.05) (Supplementary

Table S2).

We found that most of the selective sweeps were distinctly

identified or slightly overlapped, and a total of 5.24 Mb genome

sequences were simultaneously identified by the three metrics. A

total of 207 genes were in these shared selective sweeps

(Supplementary Table S3), which were most overrepresented

in “GAG degradation” and “GAG biosynthesis-chondroitin

sulfate (CS)/dermatan sulfate (DS)” (p < 0.05) (Table 1;

Figure 1C). CS/DS are representative sulfated GAGs that are

widespread on cell surfaces and are abundant in the ECM, where

they have essential functions in tissue development and

homeostasis and are among the first host macromolecules

encountered by infectious agents (15). These results indicated

that mutations affecting genes in the CS/DS metabolism

pathways may underlie the changes in the vibriosis resistance

and provided clues for the functional characterization of the

genes responsible for this trait.
Transcriptional differences between the
resistant and susceptible groups

Variation in gene expression patterns often plays a key role

in the evolution of many complex phenotypes. To explore

whether the gene expressions, especially those in the CS/DS

metabolism, were regulated, we performed RNA-seq

comparisons in gill and skin between the resistant and

susceptible families. Both gill and skin are the surface tissues

that directly encounter outside stimulations and act as the first

line of defense against pathogens.

A total of 653 and 1421 differentially expressed genes

(DEGs) were identified in gill and skin, respectively

(Supplementary Figure S2). The DEGs included 367 and 1001

down-expressed, and 286 and 420 up-expressed in gill and skin

of the resistant family, respectively. The discovery of more than

1000 transcriptional divergent genes indicated that the resistance

against vibriosis in C. semilaevis might be controlled by multiple

genes. This is in line with the results in fish and mammals that a
Frontiers in Immunology 04
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few genes with large range of immune responses control host

defense against foreign organisms (16). Moreover, KEGG

analyses allowed an identification of the DEGs significantly

enriched for “ECM-receptor interaction” in gill, and in

“complement and coagulation cascades”, “cardiac muscle

contraction” , “starch and sucrose metabolism” and

“aminoacyl-tRNA biosynthesis” in skin (adjusted p < 0.05)

(Figure 2; Supplementary Table S4).

Interestingly, we observed that the up- and down-expressed

genes in gill were enriched for “GAG biosynthesis-CS/DS” and

“GAG degradation”, respectively (Figure 2; Supplementary

Table S5), indicating that the metabolism of CS/DS might be

under distinguished regulations between the resistant and

susceptible families. These transcriptomic results are as would

be predicted from results of the selective sweep analyses,

indicating that the artificial selection has substantially changed

the genes and gene expressions in the CS/DS metabolism, which

may contribute to drive the vibriosis resistance evolution.

CS/DS is a major component of the ECM, which is mainly

composed of water, proteins, and polysaccharides. It is notable

that the DEGs in both gill and skin were enriched in “ECM-

receptor interaction” (Figure 2; Supplementary Table S5, S6),

which participates in a wide variety of cellular functions

including the homeostasis, inflammation, and response to

bacterial infection (17). Our results indicated that this pathway

and the involved DEGs might link tightly to the improvement of

vibriosis resistance.
CS/DS metabolism and chst12 gene in
vibriosis resistance

Both the selective sweep and transcriptomic analyses

pinpointed a conspicuous connection of the biosynthesis and

degradation of CS/DS to the evolution of vibriosis resistance

(Figure 1C, Figure 2). CS/DS has a number of useful biological

properties for tissue integration including anti-inflammatory

activity, water and nutrient absorption, improved wound

healing and biological activity that may help to restore

arthritic joint function (18). Previous studies have

demonstrated that several pathogens including parasites,

bacteria, and viruses can utilize cell surface CS/DS chains to
TABLE 1 Enriched KEGG pathways for the genes in selective sweeps simultaneously identified by XP-CLR, FST and nucleotide diversity
measurements.

#Term ID p-Value qValue

Glycosaminoglycan degradation dre00531 0.004092 0.286472

Glycosaminoglycan biosynthesis - chondroitin sulfate/dermatan sulfate dre00532 0.031101 0.534791

Vascular smooth muscle contraction dre04270 0.033716 0.534791

Fatty acid metabolism dre01212 0.035902 0.534791

Adrenergic signaling in cardiomyocytes dre04261 0.038199 0.534791
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attach to and infect host cells (15). For example, CS chains rich

in E units can serve as a cell surface receptor in the case of herpes

simplex virus (HSV) infection (19). In addition, it has been

reported that CS can activate the NF-kB transcription factor in

antigen presenting cells and this pro-inflammatory immune

response of CS was largely dependent on its molecular size

and the degree of acetylation (20).

The tissue CS/DS content depends on both synthesis and

degradation of these molecules. Our RNA-seq data showed that

chst12, chst15 and chst11-like genes exhibited significantly elevated

expressions in the resistant families (Figure 3A, left panel). On the

contrary, most of the genes pivotal for CS/DS degradation,

including alpha-iduronidase (idua), arylsulfatase B-like (arsb-

like) and hyaluronidase-5-like (hyal5) were lower-expressed

(Figure 3A, right panel). Therefore, not only increased

biosynthesis, but also decreased their degradation may

contribute to increase the CS/DS content in the resistant family.

At genetic level, three genes including chst15, arsb and idua, which

have undergone selective sweep, are critically important for the CS

metabolism (Figure 3B). For example, arsb is required for the

hydrolysis of 4-sulfates of the N-acetyl-d-galactosamine-4-sulfate

units of CS and DS. Therefore, the genetic changes on these genes

may have facilitated the regulation in gene expressions and the

evolution of the resistance to vibriosis.

The carbohydrate sulfotransferase (Chst) are key enzymes

that can catalyze the transfer of sulfate to position 4 of the N-

acetylgalactosamine (GalNAc) residue of CS/DS and play a key

role in tissue remodeling (21). The Chst12 is one of the CS

structure modifying sulfotransferases, which can effectively

regulate the levels of CS synthesis (5). Previous studies showed

that inhibition of CHST12 promoted inflammation in human

bone diseases (22). In zebrafish, Chst12 and other CS/DS

modification enzymes are differentially expressed while CS/DS

structure varies significantly during development (23). However,
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very few studies have investigated the role of the sulfotransferase

in the host defense against pathogens. Here we first explored the

expression characteristics of chst12 upon bacterial stimulation in

vitro and in vivo. Results showed that the expression of chst12

was robustly stimulated by lipopolysaccharide (LPS) in both the

skin and kidney cells (p < 0.05), whereas its response to PBS was

modest (Figure 3C). Using the tissue samples removed from the

V. harveyi infected fish, we observed that the expression of

chst12 varied significantly after the infection. Specifically, in both

skin and spleen, the transcript levels of chst12 gradually

increased from 24 hours post infection (hpi), reaching the

peak at 72 hpi (p < 0.05). In kidney, the peak of expression

level appeared at 96 hpi (p < 0.05). In gill, intestine and liver, a

decreased expression occurred at 12 hpi and maintained at a low

level till 96 hpi (Figure 3D). These results indicated that the

infection may stimulate the expressions of chst12 in skin, kidney

and spleen, while the expressions in gill and intestine were

inhibited. The differential expression patterns in different

tissues also indicated that chst12 gene is a highly responsive

gene to the infection of V. harveyi, and that CHST12 may play

roles in both mucosal and systemic immune processes against

the bacterial invasion. Further studies need to be performed to

illustrate the specific function of chst12 gene in the immune

responses in different tissues.

We further constructed the Chst12 recombinant protein

using Pichia pastoris KM71. The molecular weight of the

recombinant Chst12 was about 28-30 kDa, which was

verified by 12% SDS-PAGE (Figure 3E). Using the Oxford

cup method, we found that recombinant Chst12 had an

obvious inhibitory ability against both V. harveyi and

Edwardsiella tarda (Figure 3F). Thus, chst12 gene might play

dual roles in the vibriosis resistance both indirectly, by

regulating the CS/DS biosynthesis and directly, by inhibiting

the bacterial growth. To the best of our knowledge, this is the
FIGURE 2

Top 20 KEGG pathways enrichments for the DEGs between the resistant and susceptible families of C. semilaevis.
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FIGURE 3

Identification of glycosaminoglycan CS/DS metabolism that contribute to improvement of vibriosis resistance. (A) Schematic diagram of
pathways for biosynthesis (right panel) and degradation (left panel) of CS/DS chains. Heatmaps show the significantly different expression levels
of the genes in the resistant (VR) and susceptible (VS) families. Gi: gill, Sk: skin. Ids: iduronate 2-sulfatase; Ust: uronyl 2-O-sulfotransferase;
C6ST: chondroitin 6-O-sulfotransferase-1. O unit: GlacA-GalNAc, A unit: GlacA-GalNAc(4S), C unit: GlacA-GalNAc(6S), D unit: GlacA(2S)-
GalNAc(6S), E unit: GlacA-GalNAc(4S, 6S). 2S, 4S, and 6S represent the 2-O-, 4-O-, and 6-O-sulfate group, respectively. GalNAc: N-
acetylgalactosamine, GlcA: glucuronic acid. (B) chst15, arsb-like and iuda genes in glysosaminoglycan metabolism pathways were embedded in
selective sweeps. The XP-CLR, FST and qp ratio values are plotted. Genomic regions located above the dashed line (corresponding to the top 5%
values) were termed as strong selective sweeps for the post-selection individuals (grey regions). The boundaries of genes are marked in purple.
(C) Relative expression levels of chst12 gene after LPS stimulation, with respect to its background expression levels in kidney and skin cells,
respectively. Cells were treated with LPS at 28°C for 2h. (D) Time-course relative expressions of chst12 gene in skin, gill, spleen, liver, kidney and
intestine after V. harveyi infection. Data are means ± S.D., representing average values of three replicates. Different words indicate significant
differences (p < 0.05). (E) Analysis of recombinant Chst12 by 12% SDS-PAGE. (F) Antimicrobial activity of recombinant Chst12 against V. harveyi
and E. tarda using Oxford cup method.
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first report that the chst12 gene has significant bactericidal

impact upon infectious bacterial pathogens. Previous studies

have shown that the Chst proteins may play important

regulatory roles in a variety of human disease and cancers

(24). In addition, evidence showed that Chst genes had

the antiviral function and enhanced resistance to white

spot syndrome virus in Procambarus clarkii (25). Taken

together, we identified Chst12 as a significant CHST member

which plays an anti-infection role in vibriosis resistance.

These results demonstrated that the artificial selection for

vibriosis resistance has likely acted at least partly on the

genes for CS/DS metabolism, in which the defenses

preventing the establishment and invasion of pathogens are

caused mainly by fine-tuned modulation of CS/DS and gene

antibacterial activity.
ECM-receptor interaction in
vibriosis resistance

The genetic and transcriptomic analyses also presented an

emphasis on the functional potential of “ECM-receptor

interaction” in the vibriosis resistance (Figure 2), involving 15

ECM genes under the selective sweeps, and 16 and 20 DEGs in

gill and skin, respectively (Figure 4A; Supplementary Table S7).

The intersection of DEGs and selection genes consisted of seven

genes, including col6a2, col9a2, col28a, lamb3, fndc7, cav3 and

itgb1 (Figure 4A).

ECM composing of several protein components, such as

collagen (Col), laminin (Ln), fibronectin, is a complex and

dynamic structure that provides the scaffold and surface where

complex interactions between invading pathogens, host tissues

and immune cells occur (26). A study in oyster has reported that

the responses to Vibrio tasmaniensis LGP32 infection was

characterized by genes in ECM remodeling and other four

categories (27). Accumulating evidence have shown that

bacterial pathogens bind to different ECM proteins and

adhesive matrix molecules, to effectively establish tissue

adherence and invasion (28). In this context, Lna2 acts as a

bridge between the host cell and the pathogens, including group

B Streptococcus, and Staphylococcus aureus (29). Similarly,

fibronectin has been reported to have a bridging function in

the invasion of S. aureus (30).

We found that different types of ECM genes systematically

exhibited different expression patterns. For example, the Ln

protein family comprising about 20 glycoproteins, assemble

into a cross-linked web and interweave with the type IV

collagen network in basement membranes (31). The Ln-5

(a3b3g2) isoform is the dominant form that are distributed in

the skin in vertebrates. We observed that all the lna3, b3 and g2
genes showed higher expressions in the resistant family

(Figure 4A), which may indicate an enhanced ECM structure

as a physical barrier against the vibrio invasion.
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Collagens, constituting of different types that can be

subdivided into fibril-forming collagens, network-forming

collagens, fibril-associated collagen with interrupted triple

helices (FACIT), transmembrane collagens and finally

multiplexins. A recent study for steelhead trout (Oncorhynchus

mykiss) reported that the resistant fish have a different response to

parasite infection at the tissue level with the collagenous stratum

compactum acting as a barrier preventing parasite spreading (32).

We found that the network-forming collagens (type IV collagen)

col4a4 and col4a5, which are the major nonfibril structural

component of basement membranes, were up-expressed in skin

tissue of the resistant families; The fibril-associated collagens with

interruptions in their triple helices (FACITs), such as col6a2,

col6a3, col12a1 and col28a1 showed down-expressions in skin

tissue; All the fibril-forming collagens (e.g., types I, II, III collagen)

levels were not different (Figure 4A).

In addition, several other collagen related genes were

also differentially expressed. For instance, procollagen

galactosyltransferase 1-like, which is involved in the biosynthesis

of collagen type IV and facilitates the formation of collagen triple

helix, was up-expressed (Figure 4A). The collagenase 3-like gene,

which encodes an enzyme that degrades a variety of ECM proteins,

including fibronectin, laminin and types III, IV, IX, and X collagen,

was also up-regulated (Figure 4A). Therefore, the fine-tuned

expressions of these ECM genes indicated ECM remodeling and

an alteration in the ECM architecture, which may lead to an

enhancement of the barrier function. Furthermore, we measured

the expression patterns of three ECM genes including col6a2, col28a

and collagenase3, in response to LPS stimulation in skin cells. All

these genes exhibited significant decreased levels with LPS with a

higher concentration (40 mg/mL) (p < 0.05) (Figure 4B), suggesting

that they are responsive to bacterial simulations.

The first event in bacterial invasion requires attachment of

the bacteria to the host cells. Pathogens usually take advantage of

existing receptor proteins to facilitate opportunistic penetration

in hosts. To identify the candidate receptor protein for Vibrio

species, we exploited the role of an ECM gene col6a2, which was

down-expressed in both gill and skin of the resistant family, in

mediating the bacterial adhesion to host cell. First, to assess

whether bacteria can bind to Col6a2, we mixed the recombinant

Col6a2 protein with different Vibrio pathogens, including V.

parahaemolyticus, V. anguillarum and V. harveyi. After

removing the unbound Col6a2 protein, the bindings were

measured using Western Blot analysis. Clear target bands were

detected in all cases (Figure 4C), indicating that these Vibrio

pathogens could directly bind to Col6a2 protein. In addition,

bacteria-cell adhesion assays based on transfected col6a2 in

HEK293T cells showed that the number of adherent bacteria

were significantly increased after the transfection, suggesting that

the overexpression of Col6a2 could significantly improve the

adhesions of all the three Vibrio species to HEK293T cells

(Figure 4D). These results showed the Col6a2 had extracellular

adhesion activity to V. parahaemolyticus, V. anguillarum and
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V. harveyi, thus may act as a Vibrio acceptor that can enhance the

bacterial-cell adhesions. Taken together, our data validated that

Col6a2 may play a bridging role between the Vibrio pathogens

and the host cell, and the differential expression patterns of the

col6a2 between the resistant and susceptible families may partly

account for their different resistance to Vibrio infection.

Together with the multiple levels of evidence and previous

study linking ECM genes as a preferred target for Gram-negative

bacterial adhesion (29, 30), our data suggest that modulation of

ECM structure might be an important tissue protective

mechanism contributing to vibriosis resistance. We identified

Col6a2 as a receptor for Vibrio pathogens, and its lower
Frontiers in Immunology 08
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abundance may limit the Vibrio adhesion and invasion in the

resistant family.
Conclusions

In this study, we presented the genomic selective signatures

and transcriptomic divergence underlying the vibriosis

resistance for the C. semilaevis. Our results revealed that the

selection pressure for resisting Vibrio infection may

preferentially target genes in the CS/DS metabolism and ECM-

receptor interaction pathways, both of which work in mediating
A

B

D

C

FIGURE 4

ECM-receptor interaction has strong associations with vibriosis resistance and identification of Col6a2 as a Vibrio receptor for C. semilaevis.
(A) Schematic of the genetic and transcriptomic divergence in ECM-receptor interaction. Red and blue colors indicate the lower and higher
expressed genes in the resistant family compared to susceptible family (p < 0.05). * indicates the genes under selective sweeps. (B) Relative
expressions of col6a2, col28a and collagenase 3 gene in skin and kidney cells after LPS stimulation. Cells were treated with 20 and 40 ng/mL
LPS at 28°C for 2h. The alphabets a, b and c indicate significantly different expressions among the samples (P < 0.05). (C) Western Blot analysis
showed that Col6a2 binds to three Vibrio pathogens, including V. anguillarum, (VA); V. harveyi, (VH); V. parahaemolyticus, (VP); E. coli (EC) and
control (CK). (D) Transfections of HEK293T cells with col6a2 enhanced the Vibrio adhesions. * indicate significant differences (p < 0.05) of the
transfected versus untransfected cells using one-way ANOVA.
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bacterial adhesions and invasions and act as the first barrier of

the host defense system. Furthermore, we characterized chst12

and col6a2 as critical genes with important functional

implications for defense against bacterial infections. These

results demonstrated that C. semilaevi evolved tissue protective

mechanisms as a first defense line preventing invasive vibrio

diseases. Our findings provide critical genetic resources

facilitating breeding, as well as important knowledge to

improve the prevention and treatment of fish infectious diseases.
Materials and methods

Selective breeding and
sample preparation

The selective breeding of the vibriosis resistant and

susceptible families for C. semilaevis were performed as

previously described (12). Briefly, we first identified the genetic

sex of parental fish by a sex-specific AFLP marker (33), and

constructed full-sib families by strip spawning. Each family was

tagged with visible implant elastomers and reared in several

common tanks under a flow-through system. The pedigree

information of each family was precisely recoded to trace their

lineages. When fish reached at average size of 10-12 cm,

challenge tests were performed by intraperitoneal injection

with a medial lethal dose (LD50) of V. harveyi ATCC 33843

(12, 34). We recorded the mortality of each family, and the

families with a survival rate > 80% and < 30% were considered as

Vibrio resistant (VR) and susceptible (VS) families, respectively.

The artificial selections have been performed for successive

five generations, and the generated VR and VS families were

used for transcriptomic sequencing and comparison. We also

sampled the fish in the challenge experiment to analyze their

time-course immune responses after V. harveyi infection. In

addition, to identify the genomic divergence and signatures of

selective sweeps underlying the resistance variation, we

conducted genome resequencing for 182 tongue soles,

including 74 tongue soles from the pre-selection breeding

population and 108 fish from the post-selection resistant

families, which were sampled in 2012 and 2018, respectively.
Genome re-sequencing and genotyping

Genomic DNA was extracted from the fins using DNeasy

Blood & Tissue Kit (Qiagen, Germany). PE libraries with an

insert distance of 300 bp were constructed according to the

standard protocol (Illumina, USA). The sequencing was

performed on Illumina HiSeq platform, producing raw reads

in 2×150 bp. The low quality reads were detected and filtered

using QC-Chain (35). Finally, the resequencing of the 182 fish
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yielded a total of 1.39 Tb high-quality data with an average

sequencing depth of 13.8 × (Supplementary Table S8).

We used the BWA software (36) to align the clean reads to

the reference genome (NCBI Accession No. GCA_000523025.1),

with an average mapping rate of 97.79% (Supplementary Table

S8). The variants calling was performed with SAMtools (37) and

GATK (38) with default parameters, respectively. SNPs

identified by both the methods were retained for further

analysis. Then the SNPs with minor allele frequency (MAF) >

0.05 and missing rate < 10%, and no departure from Hardy-

Weinberg equilibrium (p < 0.001) were used for further analyses.
SNP annotation

We used ANNOVAR (39) to annotate the SNPs as coding

regions, UTRs, upstream or downstream regions (within 1 kb

region from the transcription start or stop site), and intergenic

regions. Exonic SNPs were further categorized into synonymous

(causing no amino acid changes), nonsynonymous (causing

amino acid changes), stop gain or stop loss ones. The SNPs-

related genes were functional annotated by KEGG database

using BLAST.
Population structure analysis

Principal-component analysis (PCA) of the genetic

divergence between the pre-selection and post-selection

individuals was performed using GCTA (40) and the first two

dimensional coordinates were plotted. An individual-based

neighbor-joining tree was constructed using TreeBest (v1.9.2)

(41) according to a p-distance matrix with a bootstrap value of

1,000. The genetic structure was also examined using the

software STRUCTURE (38), setting the pre-defined genetic

clusters (K) from 2 to 5. We ran the analysis with

10,000 iterations.
Genome-wide scan of selective sweeps

To detect the candidate selected regions between the pre-

selection (original, ORI) and post-selection (resistant, RES) fish,

we firstly used a cross-population composite likelihood

approach XP-CLR (Chen et al., 2010) to compare the allele

frequency distributions with parameters of ”-w1 0.005 100 100 –

p0 CHR# 0.8”. Then we used the program VCFtools (v0.1.14)

(42) to estimate the fixation index (FST) and the nucleotide

diversity (qp), which was represented by the log2(qp ratio) of

qpORI/qpRES, throughout the whole genome. A 40 kb non-

overlapping window with a step size of 20 kb, was used to

screen the whole genome and the windows containing more
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than 10 SNPs were retained. Adjacent windows were merged

into a single selective sweep if their distance was less than 200 kb.

The windows with top 5% of the maximum XP-CLR, FST and

log2(qp ratio) values were deemed as candidate significant

selective sweeps and genes in these regions were defined as

selection genes. Additionally, the selection genes locating in the

overlapping selective sweeps identified by the three metrics were

subjected to KEGG and GO enrichment analyses.
RNA-seq and comparative
transcriptomic analyses

To characterize and compare the gene expression patterns,

we collected gill and skin tissues from the resistant and

susceptible families, respectively. Three replicates for each

tissue samples were used for total RNA extraction with TRIzol

(Invitrogen, USA). Pair-ended (PE) RNA-seq libraries were

constructed using the Truseq mRNA stranded RNA-Seq

Library Prep Kit (Illumina, USA) according to the standard

protocol. Sequencing of the 30 libraries was conducted with a

BGI-Seq500 sequencing platform, generating raw reads with a

read length of 2 × 100 bp and an insert size of 350 bp. The quality

control of the raw data was performed with RNA-QC-Chain

(43) to remove the ambiguous N’s, adaptor reads, low quality

reads with more than 20% of the bases having a quality score <

20. Finally, we obtained 62.26-79.69 million raw reads per

sample, amounting to a total of 86.47 Gb clean data

(Supplementary Table S9). The raw reads were deposited at

the NCBI sequence read archive (SRA) under project

number PRJNA785712.

We aligned the clean reads to the reference genome of C.

semilaevis (NCBI Accession No. GCA_000523025.1) using

BWA (36). The mapping rates varied from 83.9% to 93.1%,

averaging 88.6% (Supplementary Table S9). Fragments per

kilobase per million mapped sequence reads (FPKMs) value

for each gene was calculated with RSEM (v1.2.12) (44). Then we

used NOIseq (45) to detect the DEGs, which were defined

following the criteria of |log2(Fold Change)| ≥ 1, with a

probability ≥ 0.9. Hierarchical heatmaps of the gene

expression levels were constructed with Euclidean distance

using the Cluster (v3.0) (46).
KEGG enrichment analyses

We conducted KEGG and GO enrichment analyses using

phyper in R software, with Danio rerio (dre) as the reference

species for the KEGG analyses. KEGG pathways and GO terms

with p-values less than 0.05 were considered enriched, and with FDR

of the p-value (q-value) less than 0.05 to be significantly enriched.
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Cell culture and LPS treatment

The skin and kidney cells were cultured using similar methods

as previously described (47). Briefly, the cells were derived from the

corresponding tissues of the tongue sole, and were maintained at

24°C in L-15 medium with 20% fetal bovine serum (FBS), 100 IU/

mL penicillin and 100 mg/mL streptomycin. Cells were subcultured

over 3-4 days using standard procedures, and then plated on 12-

well culture plates at a density of 3×105/well to form a complete

monolayer (34). After 24 h, LPS (Sigma-Aldrich, USA) was added

to reach final concentrations of 20 and 40 ng/mL, respectively. The
control group was treated with PBS. The cells were sampled for

RNA isolation at 24 h post treatment.
V. harveyi challenge experiment

To investigate the time-course transcriptomic responses to

V. harveyi infection in vivo, we performed a V. harveyi challenge

test as previously described (34). Briefly, Around 50 fish were

intraperitoneal injected with 1.0 × 104 CFU of a 24 h bacterial

culture. Another 50 fish were injected with PBS as the control

group. Five individuals were sampled at 0, 12, 24, 48, 72 and 96

hours post infection (hpi). Skin and gill tissues were removed

and used for RNA extraction and qPCR analyses.
Quantitative real-time PCR

Total RNAs were extracted using Trizol and reverse transcribed

intocDNAwith thePrimeScript™RTreagentKitwithgDNAEraser

(Takara, Japan). The gene expression levels were measured with

quantitative real-time PCR (qPCR) using the 7500 Real-Time PCR

System (AppliedBiosystems,USA). The reaction systemconsisted of

1 × SYBR Premix Ex Taq, 200 nM each primer, 1 × ROX Reference

Dye II (Takara, Japan) and 1 µL of the cDNA template in a final

volume of 20 mL, with three replicates for each sample. The PCR

conditionswere performed as 95 °C for 30 s, followedby 40 cycles for

5 s at 95 °C, and 60 °C for 33 s. The relative expression was analyzed

with the 2-DDCt method and the statistical significance (p < 0.05) was

determined by one-way analysis of variance (one-way ANOVA),

followed by a two-sided Dunnett’s post hoc test.
Recombinant protein expression and
purification in Pichia pastoris

Based on the information of Chst12 and optimal codons of

Pichia pastoris, codon optimized chst12 gene sequence was

synthesized and cloned into pMV vector by the Beijing Genomics

Institute. The plasmid containing the codon optimized chst12
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sequence was named pMV-chst12. Then, a pair of primer 9k-

chst12F/9k-chst12R was synthesized and used to amplify the target

sequence. The product was ligated into the linearized vector pPIC9k

precut with EcoRI and NotI to construct the recombinant plasmid.

The resulting constructs pPIC9k-Chst12 was transformed into the

E. coliDH5a and verified by sequencing. The recombinant plasmid

pPIC9k-Chst12 was extracted and linearized with SalI followed by

transformation with Pichia pastoris host strain KM71 using

PEG1000 method (48).

The cDNA encoding CDS without signal peptide of Col6a2

was amplified and cloned into T1 vector, and then transformed

into E. coli DH5a. The col6a2 with HIS tag was inserted into

pic9K Vector (EcoRI site) with the help of ClonExpress® Ultra

One Step Cloning Kit (Vazyme, China). The positive clones were

confirmed using sequencing, the recombinant expression

plasmid was extracted and transformed into GS115 using

Quick & Easy Yeast Transformation Mix (Takara, Japan).

Transformants were selected for their ability to grow on

histidine-deficient minimal dextrose agar plates. In addition,

isolation of genomic DNA was performed, and PCR

amplifications were then carried out to select positive clones

according to Invitrogen’s recommendations with a pair of

primers (5’AOX1/3’AOX1). For each positive clone, small-

scale expression trials were initially performed to identify the

most productive transformants and secretion of Chst12 was

determined by SDS-PAGE using 10% (w/v) separating gel and

5% (w/v) stacking gel at 96 h after induction with methanol.

After treatment with methanol at the final concentration of 1%

for 4 days, the cells were pelleted out from the culture medium

by centrifugation at 8,000 r/min for 10 min at 4 °C. The

supernatant was used to purify the recombinant Chst12 by

affinity chromatography using Ni-NTA-agarose resin (49). The

purified protein was identified by 12% SDS-PAGE. Primer

sequences were listed in Supplementary Table S10.
Antibacterial assay

The antibacterial activity of recombinant protein was tested

by the Oxford-cup method. The V. harveyi ATCC 33843 and E.

tarda H1 were cultured in LB medium to OD600 nm = 0.5, and

then take 100 mL to spread LB plate. Then placed the sterilized

Oxford cups vertically on the surface of the plates. 100 mL 1 mg/

mL Ampicillin, 50 mg/mL recombinant protein and PBS were

filled into the cups respectively. The plates were cultivated at 37°

C for 12 h and then halo of growth inhibition were observed.
Bacteria adhesion to recombinant
Col6a2 protein

Three pathogenic Vibrio species, including V. parahaemolyticus,

V. anguillarum, and V. harveyi, were cultivated overnight. Then 900
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mL bacteria were then combined with 100 mL of recombinant Col6a2

protein and incubated at room temperature (25°C) for 40 min. After

centrifugated at 2,000 rpm for 1 min, the precipitate was recovered

and submitted to Western blot after being centrifuged at 2,000 rpm

for 2 min. SDS-PAGE was used to separate the samples, which were

then transferred to the nitrocellulose filter membrane (300 mA for

40 min). The membrane was blocked for 2 h with 5% (w/v) nonfat

milk, washed three times with TBST (TBS containing 0.05 percent

Tween-20), and then incubated overnight at 4°C with mouse anti-

His-tag antibody (the primary antibody, diluted 1: 1000), followed by

1 h incubation with goat anti-mouse HRP-conjugated IgG (the

secondary antibody, diluted 1: 1000). After that, the protein was

stained with DAB (3, 3’-diaminobenzidine) solution for 10 min. The

primary and secondary antibodies were purchased from Beyotime

Biotechnology (China).
Bacteria-cell adhesion assays

Human embryonic kidney cell line HEK293T were

purchased from Procell (China) and were routinely cultured

following American Type Culture Collection (ATCC) culturing

condit ions , in Dulbecco ’s modified Eagle medium

(supplemented with 10% Foetal Bovine Serum and 1%

penicillin/streptomycin) at 37°C with 5% CO2. The plasmids

pcDNA3.1-col6a2 (GFP-tagged) was constructed and used for

the overexpression of Col6a2. The transfections of recombinant

vector (pcDNA3.1-col6a2) were performed using Lipo8000™

transfection reagent (2 mg DNA and 6 mL Lipo8000) (Beyotime

Biotechnology, China). After transfection, the cells were treated

with 500 mg/mL G418 for 4 weeks to obtain stable cell lines. All

treated samples were observed and captured under Nikon

ECLIPSE TE 2000-U fluorescence microscope.

The bacterial and cell adhesion assays were then performed.

Briefly, 2×105 HEK293T cells per well were seeded into 24-well

plates. After culturing overnight, the plates were gently washed

with PBS to remove the non-adherent cells. Then 50 mL of the

diluted bacteria (102-103 CFU/mL) was mixed into the cell well

and incubated for 30 min. After that, the plates were gently

washed with PBS to remove the non-adherent bacteria. The

attached cells were then gently harvested with Cell Scrapers and

transferred to coated plates with LB for V. parahaemolyticus

RIMD 2210633 and V. anguillarum PF4-E2-R4, and with

trypticase soy broth for V. harveyi ATCC 33843. After being

cultured at 28 °C or 37 °C for 12 h, the colonies were counted

with Gel-Pro Analyze v4.0 (Media Cybernetics, USA). Statistical

significance (p < 0.05) was determined by one-way ANOVA.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and
frontiersin.org

https://doi.org/10.3389/fimmu.2022.974604
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2022.974604
accession number(s) can be found below: https://www.ncbi.nlm.

nih.gov/, PRJNA542202.
Ethics statement

The animal study was reviewed and approved by the Animal

Care and Use Committee of the Chinese Academy of

Fishery Sciences.
Author contributions

QZ and SC conceived the study and designed the analytical

strategy. QZ, LW, and QHZ performed animal work and

prepared biological samples. QZ analyzed the data. YC

performed the cell culture, recombinant protein expression

and cDNA transfection experiment. ZC, XM, and JW

performed the qPCR experiments. QZ and SC wrote the

manuscript. All authors contributed to the article and

approved the submitted version.
Funding

This work was supported by National Natural Science

Foundation of China (grant number 31973006); Central
Frontiers in Immunology 12
224
Public-interest Scientific Institution Basal Research Fund,

CAFS [grant number 2020TD20] and Taishan Scholar

Climbing Project of Shandong Province of China.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.974604/full#supplementary-material
References
1. Robinson NA, Gjedrem T, Quillet E. Chapter 2 - Improvement of disease
resistance by genetic methods. In: Jeney G, editor. Fish diseases. Academic Press
Salt Lake City (2017). p. 21–50.
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