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Editorial on the Research Topic
Planning and operation of integrated energy systemswith deep integration of
pervasive industrial internet-of-things

Introduction

Modern energy systems have been evolving toward complex cyber-physical systems. As
with many other industrial systems, modern energy systems are characterized by the pervasive
integration of Internet-of-Things (IoT) devices. The IoT devices include smart meters, phasor
measurement units, and sensors installed in demand-side devices (e.g., appliances). Deep
penetration of IoT facilities enables the different stakeholders in energy systems to monitor the
system’s status on a granular level; in the meantime, this also imposes significant challenges and
complexities on the development of planning and operation strategies to optimize the energy
system’s efficiency. With this context in mind, this Special Article Research Topic has been set
up to solicit the most recent and original contributions to the planning and operation of
integrated energy systems with deep integration of industrial IoT.

Ten papers are collected in this special article Research Topic, covering several important
problems in industrial IoT-supported management technologies for integrated energy systems.
The articles are categorized as follows.

Architectural design and analysis of IoT-enabled
infrastructure for energy systems

The architectural design of integrated IoT and energy platforms plays an important role in
modern energy systems. Two papers in this Research Topic are devoted to studying this aspect.
Liu et al. provide a comprehensive review of the application of edge computing in the
Ubiquitous Power Internet of Things (UPIoT). The article introduces the concept of
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UPIoT and edge computing, investigates the architectural design of
edge computing platforms for UPIoT, and discusses the potential
multi-fold challenges. Shen et al. propose a Narrow Band Internet of
Things (NB-IoT)-based demand-side data management framework
for smart grades. The framework provides encrypted data
transmission, management, and intelligent analysis services to
support upper-level energy applications.

Advanced demand-side management

The pervasive IoT devices enable fine-grained energy data
aggregation, and this creates new opportunities to develop data-
driven demand-side management techniques. Three papers are
collected in this direction, providing solutions for utilizing
fundamental IoT facilities to improve demand-side energy
efficiency.

Yang et al. propose an industrial IoT-enabled low-carbon demand
response (LCDR) scheme. The scheme analyses the carbon cost on
both the generation and demand sides; allowing the demand-side
energy resources to be managed in an environmental-economic
dispatch problem. Hou et al. study the visualization technique for
the security risk analysis of vehicle networks. They develop a dynamic
attack graph generation method to identify and visually display the
security risks caused by the vulnerabilities in an Internet-of-vehicle
system. This technique can help the system operator gain a better
situational awareness of the vehicle network’s security and perform
better risk management. Zheng et al. develop a data-driven electricity
theft detection technique that can effectively identify the abnormal
energy metering data collected by edge computing devices.

Forecasting for renewable energy and
power load

One direct advantage the pervasive IoT devices can provide to
energy systems is more accurate forecasting for renewable power
generation and power consumption. Two papers are collected on
this Research Topic. Wang et al. propose a probabilistic forecasting
method for industrial loads. The method utilizes a convolutional
long-short-term memory network and a mixture density network
to predict the probability density of the load. Liu et al. postulate a
new wind power forecasting technique that uses super-resolution
perception technology to detect errors in historical meteorological
and wind power data collected by industrial IoT devices. The
method will then correct any errors, recover the data from low-
to high-frequency, and generate wind power predictions. These
forecasting techniques can be used to assist upper-level energy
system applications.

Planning and control of smart grids

IoT facilities have been playing an increasingly important role
in optimizing the operation of smart grids. Three papers are
collected in this special article Research Topic, which proposes
innovative methods for planning and controlling the energy
resources in smart grids. Cai et al. propose a planning model
for grid-integrated energy storage systems (ESSs). The model
determines the installation location and capacity of ESSs in the
grid to minimize the workload in high-voltage transmission
network reconfiguration, thereby mitigating transmission
congestion. Zhao et al. develop a cluster partition-based zonal
voltage control technique for power distribution networks with
highly penetrated photovoltaics (PVs). The method partitions a
distribution network into multiple clusters, and it designs
algorithms to optimize the voltages in the clusters. Zhang et al.
propose a control technique for solid oxide fuel cell (SOFC)
hybrid direct-current microgrids. The technique analyzes the
thermal and electrical characteristics of the microgrid; based on
this, it regulates the current and voltage of the SOFC system to
realize high efficiency and steady-state thermal safety of the
system.

We hope the papers collected in this special article Research Topic
can provide useful references to researchers and engineers and can
advance knowledge in power and energy systems and ubiquitous
computing.
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Edge Computing Application,
Architecture, and Challenges in
Ubiquitous Power Internet of Things
Dongqi Liu1*, Haolan Liang1,2, Xiangjun Zeng1, Qiong Zhang1, Zidong Zhang1 and
Minhong Li3

1School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, China, 2Hunan
Institute of Engineering, Xiangtan, China, 3Shenzhen Power Supply Bureau Co., Ltd., Shenzhen, China

The Ubiquitous Power Internet of Things (UPIoT) is a concrete manifestation of the Internet
of things (IoT) in the power industry, which is a deep integration of the interconnected
power network and communication network, realizing full perception of the system status
and full business penetration in all links of power production, transmission, and
consumption. The introduction of edge computing in UPIoT fully meets the
requirements of rapid response, real-time perception, and to some extent, privacy
protection. However, there is currently no comprehensive investigation on the
application of edge computing technology in UPIoT. First, this paper introduces the
development background and construction of UPIoT and its technical architecture.
Then the challenges faced by UPIoT in the process of construction are analyzed.
Furthermore, the paper elaborates on the functions and features of edge computing,
proposes that the support of edge computing technology can solve the challenges of
efficient, fast, and secure processing of massive edge data faced by the traditional cloud-
based centralized big data processing technology of UPIoT, and analyzes the architecture
of the edge computing-assisted UPIoT. For the three typical scenarios of UPIoT, namely
power monitoring system, smart energy system and power metering system, the edge
computing architecture of the three scenarios are analyzed, and the specific application
methods and roles played by edge computing in the three scenarios are also elaborated.
Finally, we discuss the challenges of edge computing in UPIoT, in terms of policy
challenges, market challenges, and technical challenges, as well as outline the
outlooks of the technical challenges.

Keywords: power internet of things, UPIoT, edge computing, edge computing applications, edge computing
architecture, smart grid

1 INTRODUCTION

The combination of the energy revolution with the digital revolution has led to the development of
the fourth industrial revolution. With the application of these new technologies, such as IoT, edge
computing, 5G communication, and artificial intelligence (AI) in the power system, the power
system is being promoted to become intelligent, digital, and networked. The aim is for these modern
technologies to break through the bottleneck of power development and realize 100% renewable
electricity. Meanwhile, the development trends of the power grid are to adapt to the diverse needs of
“new loads,” improving the flexibility and flexibility of the power grid, and opening up the blue ocean
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of the digital economy (state grid corporation of China, 2019a). In
2019, the state grid corporation of China set the goal of
constructing the UPIoT, which integrates the power network
and communication networks through various information
sensing technologies, intelligent collection technologies, big
data technologies, and other modern technologies to connect
massive power-related entities, realizing comprehensive
intelligent perception, identification, and management of
power equipment, information interaction, and data sharing,
as well as rapid response to demand.

With the continuous construction and development of UPIoT,
a large number of intelligent terminals and devices are accessed,
so the computing model with traditional cloud computing as the
core is no longer effective in real-time transmission, computation,
and storage for the process of the billions or trillions of data that
are generated by heterogeneous massive intelligent terminals.
Edge computing, a new computing model proposed under the
rapid development of the Internet of Things, artificial
intelligence, big data, and cloud computing, which is an open
platform that uses network, computing, storage, and application
core capabilities as a whole on the side close to the physical
environment or data source, and the edge computing platform is
deployed in the network measurement close to the data source to
provide the nearest end service nearby, so as to get faster network
service response and meet the basic needs of the industry in terms
of real-time services, application intelligence, security, and
privacy protection (Bai et al., 2020). Therefore, some services
from the original cloud can be allocated to the edge side of the
network for processing, so as to meet the real-time requirements
of various tasks while ensuring overall system performance
(Sharma and Wang, 2017; Fu et al., 2018; Zhang et al., 2018;
Maier and Ebrahimzadeh, 2019; Song et al., 2019; Xu et al., 2019).
Especially for supporting ubiquitous IoT, the processing will be
done at the local edge computing layer, based on edge computing
technology that can localize the computation, analysis, and
control to provide a faster response to users without handing
over responsibility to the cloud, thus enhancing the processing
efficiency and reducing the data processing load in the cloud.
Therefore, edge computing technology is naturally similar to
UPIoT in terms of agile connectivity, computation, topology,
real-time services, data optimization, application intelligence,
security, and privacy protection, and can well support the
construction of UPIoT.

There is much discussion in the literature of edge
computing but very little work has been done towards the
edge computing technology that is applied in the UPIoT. For
edge computing, some surveys have studied basic
characteristics, research challenges, and opportunities of
different edge computing paradigms (Shi et al., 2016; Hu
et al., 2015; Varghese et al., 2016; Dustdar et al., 2019;
Caprolu et al., 2019). The concept of edge computing has
been extended to the wider IoT. Scholars have discussed the
application of edge computing in some IoT fields (Yu et al.,
2017). conducted a survey to examine how edge computing can
enhance the implementation and the performance of IoT, and
compared the performance of the different loT applications
that are based on the EC and cloud computing architectures.

Alrowaily and Lu (2018) reviewed the concepts, features,
security, and application of edge-computing-enabled IoT as
well as its security features in the data-driven world.
Porambage et al. (2018) surveyed multiaccess edge
computing, and they presented a holistic overview of this
paradigm in relation to IoT. The integration of multiaccess
edge computing into IoT applications and their synergies are
also analyzed and discussed. Pan and McElhannon (2018)
investigated the key rationale, the efforts, the key enabling
technologies, and typical IoT applications benefiting from edge
cloud. Omoniwa et al. (2019) presented a survey on EC-based
IoT literature in the period from 2008 to 2018, including
services, enabling technologies, and open research issues,
and briefly displayed how the EC-IoT was applied in real-
life cyber-physical systems, such as the intelligent
transportation system or smart grid. Qiu et al. (2020)
introduced the concept of industrial IoT (IIoT), and
presented the research progress and future architecture of
the EC-assisted IIoT. As can be seen above, most articles
mainly elaborate on the architecture, key technologies,
advantages, and challenges of EC-assisted IoT, and there are
few implementation plans and deployments for the specific
application scenarios of edge computing. However, for the
power grids, it simply explains the application and role of edge
computing in the smart grid, and it does not specifically cover
the various levels of the power generation, transmission, and
distribution of power grids, and there is currently no
comprehensive investigation on the application of edge
computing technology in UPIoT.

This paper focuses on edge computing in UPIoT and combs
through many research achievements concerning edge
computing in UPIoT, discussing the architecture of edge
computing in UPIoT. Then, the application of the three
scenarios is explored, namely power monitoring system, smart
energy system, and advancedmetering infrastructure; meanwhile,
the advantages of applying edge computing in the three scenarios
of the UPIoT, in terms of data privacy protection, security, and
communication time, are analyzed. Finally, we elaborate on the
challenges and future directions for the application of edge
computing in UPIoT.

2 AUTONOMOUS UBIQUITOUS INTERNET
OF THINGS IN ELECTRICITY

Promoting the construction of UPIoT is an important initiative to
realize the energy Internet, which is a strategic deployment for the
development of the world economy and the upgrading of the
world energy infrastructure. UPIoT is essentially a kind of
Internet of things, a specific expression and application of
Ubiquitous Internet of Things in the power industry. (the state
grid corporation of China, 2019b). Around each link of the
electric power system, modern information technologies and
advanced communication technologies such as mobile Internet
and artificial intelligence are fully applied to realize the
interconnection of all things and human-computer interaction
in each link of the electric power system (state grid corporation of
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China, 2020). It is a new form of network with a deep integration
of traditional industrial technology and IoT technologies, and it is
a concrete manifestation of the IoT in the power industry.
Overall, it is a smart service system with state awareness,
efficient information processing, and convenient and flexible
application features. The architecture of UPIoT is shown in
Figure 1.

Like IoT, UPIoT also includes a sensing layer, a network layer,
a platform layer (management layer), and an application layer.

2.1 Perception Layer (Terminal Layer)
Smart sensing is the core foundation technology of the perception
layer of UPIoT (Jiang et al., 2019b). Smart sensing devices are
used to collect, monitor, and sense real-time data from end-of-
grid operation equipment. The data flow of the power grid
operation runs through the whole chain of power generation,
power transformation, transmission, distribution, and
consumption. For the primary measurement equipment of
power system transmission and distribution, part of it is the
basic data of the equipment, and the other part is the real-time

operation status data of the equipment (Wang et al., 2019). The
real-time data is monitored and sensed by the corresponding
intelligent monitoring equipment, such as infrared
thermometers, monitoring cameras, or inspection robots. For
the secondary equipment on the distribution side, such as relay
protection devices and electrical energy monitoring equipment,
they can collect the system and equipment operation data. The
most typical smart sensor of electricity consumption side
equipment is the smart meter, which can sense the basic
electricity consumption of users in real time and transmit the
user’s energy consumption and electric energy trading data to the
system platform.

2.2 Network Layer
This is used to achieve efficient and secure data transmission over
a wide area between the sensing layer (terminal layer) and the
platform layer (Li Z. S. et al., 2018; Wang, 2019). In order to meet
the access of different types of sensors, it may include different
types of network compositions such as mobile communication,
limited IoT, and local area network. They have specific

FIGURE 1 | The architecture of UPIoT.
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communication protocols and specifications and have strong
extensibility. With the rapid development of 5G technology in
China, 5G communication technology will be gradually applied
in electric power IoT. 5G communication has the characteristics
of wide wireless coverage, short transmission delay, system
security engagement, and high transmission rate, which is the
core technology to realize and build electric power IoT.

2.3 Platform Layer
The data transmitted by the network layer is stored and managed
through a unified data center, meaning some of the data can also
be shared across departments, subjects, and even industries.
Using cloud computing technology, deep learning, big data
analysis, and other core technologies, it realizes efficient data
processing and IoT management. The platform layer is the basis
for realizing advanced applications, and is dedicated to improving
collaborative computing and real-time response to meet users’
power supply needs and business response.

2.4 Application Layer
The application layer is the core goal of UPIoT, which provides
control and decision support for users, electricity sellers, and grid
operators. Through the interconnection of power and
information, the application layer realizes the production and
operation of the grid, operation management, and related energy
services and breeds new business models and emerging
businesses. These new models include micro-grid operation
and management, operation and management of electric
vehicles, campus energy management, and system multi-
dimensional resource management.

The shape of UPIoT will gradually evolve as key technologies,
such as sensor technology, communication technology, and
cloud/edge computing technology, are deepened in the
smart grid.

3 ARCHITECTURE OF EDGE COMPUTING
FOR UBIQUITOUS POWER INTERNET OF
THINGS
3.1 Edge Computing for Ubiquitous Power
Internet of Things
Many new challenges are introduced by the development of the
UPIoT. Although current cloud computing has been applied in
the UPIoT, it still cannot meet the challenges that we
summarize as follows (Chen et al., 2019): 1)low latency
requirement, 2)Network bandwidth constraints, 3)Restricted
equipment resources, 4)Uninterrupted connection and
interaction with the cloud center, and 5)Privacy protection
and data security.

In order to overcome these challenges and realize the
construction of UPIoT, three key technologies in IoT are
important components of its overall architecture: sensor
technology, communication technology, and edge computing
technology. Among them, edge computing is the important
carrier for constructing it, and it is the most important core
technology to support the UPIoT in realizing real-time response,

short-period data analysis, various types of edge intelligent
services, and so on.

Edge computing refers to a new computing model that
analyzes and processes a portion of data using the computing,
storage, and network resources distributed on the paths between
data sources and the cloud computing center (Shi et al., 2016).
Edge computing focuses on real-time, short-period data analysis,
close to the device side, and it is better able to support local
business real-time analysis and intelligent processing. Meanwhile,
it has features such as distributed, low latency, high efficiency, and
relieves traffic pressure, and it is more efficient and secure
compared to simple cloud computing. The main advantages of
edge computing applied to the UPIoT are as follows (Industrial
Internet Consortium:Edge Computing Task Group, 2018; Du
et al., 2021):

3.1.1 Improved System Performance
With edge computing, in addition to collecting and transmitting
data to the cloud platform, data collected at the edge can be
analyzed and processed in milliseconds. For example, the
advanced measurement system in the smart grid, where the
user electricity consumption data collected by smart meters is
uploaded to the edge intelligent fusion terminal, without
uploading tens of thousands of data to the cloud platform for
processing. The computing software of the edge platform can
analyze these data in real-time and only upload the fused or
processed data to the cloud center, which greatly reduces the
communication broadband, shortens the data transmission time,
and improves the overall performance of the system.

3.1.2 Protected Data Security and Privacy
Cloud platform service providers give customers a
comprehensive system of centralized data security protection
solutions. However, once centralizing stored data get leaked, it
will lead to serious consequences. Edge computing migrates
computing closer to the device, avoiding the need to upload
data to the cloud, which greatly reduces the risk of private data
being compromised or corrupted during transmission, and also
reduces the security risk of cyber attacks to the cloud center that
result in leakage of all stored data stored.

3.1.3 Reduced Operational Costs
Since cloud computing requires uploading data to the cloud
center for processing, cloud computing possesses the
characteristics of data migration, bandwidth, and latency of
cloud computing, which makes it very expensive to use cloud
computing, whereas edge computing can significantly reduce
operational costs by reducing the amount of data upload,
thereby reducing data migration, bandwidth requirements, and
latency.

3.2 Architecture of Edge Computing in the
Ubiquitous Power Internet of Things
Thousands of power terminal devices and sensing nodes access
the smart grid in a variety of ways, and can sense or control the
power grid. These nodes are usually organized or self-organized
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into various clusters to form edge networks (Cornel–Cristian
et al., 2019). By deploying edge computing into the UPIoT, it can
locally process massive heterogenous data and the acquisition of
signals, solving the problem of fast response and centralized
service, and reducing cloud pressure and communication
overhead. The edge computing reference paradigm in UPIoT
is as shown in Figure 2. The reference paradigm consists of device
layer, edge layer, and cloud application layer; its architecture
comprehensively describes the characteristics of UPIoT and edge
computing. This paper clearly elaborates the inner architecture of
the edge computing gateway in the edge layer. In edge computing
gateway, which has certain computation resources that can
provide a chance to offload part of the workload from the
cloud, the edge not only requests service and content from the
cloud, but also performs the computing tasks from the cloud.
Meanwhile, the gateway can process amounts of data from
various terminals, smart devices, and end users of the power
terminal layer, and provides a distributed information computing
service with large volumes of data and fast responses.

Edge can perform computing offloading, data storage,
caching, and processing, as well as distribute request and
delivery service from cloud to user. Under such
circumstances, this mode can satisfy the demand of rapid
responses required by devices and users in the smart grids,
The internal architecture of the edge computing gateway is
shown in Figure 2 (Liu et al.,2019); its software system consists
of a host operating system and multiple containers. APPs are
running inside the container systems; the cloud server and the
edge computing device perform data interaction instructions
for uplink and downlink, and the terminal node uploads data
to the edge computing device, various software applications
run on edge computing devices. By encapsulating the
application functions as APPs that are loaded in the

container, this can provide support for advanced
applications of smart grids such as edge autonomy of smart
substations, intelligent online monitoring, rapid request
distribution, and service delivery.

The application of edge computing in the IoT has attracted a
great deal of research. Some typical IoT scenarios are applied,
such as smart transportation, smart healthcare, the smart home,
and the smart building. We roughly analyze how to apply edge
computing in these four scenarios, and then elaborate on the
current related articles on the application of edge computing to
smart grids. For example, applying edge computing technology to
smart transportation, mobile edge computing (MEC) puts the
mobile base stations at the edge of the network, and the mobile
base stations are deployed in a decentralized manner, providing
servers for applications in base stations close to the edge of the
network, allowing data to be processed as close to the vehicle and
road sensors as possible, thus reducing the round-trip time for
data. The server-side application of mobile edge computing can
obtain local messages directly from the vehicle and road sensor
applications, identify high-risk data and sensitive information
that needs to be transmitted in near real-time through algorithm
analysis, and send early warning messages directly to other
vehicles in the area to facilitate early decision making by
drivers to allow nearby vehicles to avoid hazards, slow down,
or change routes (Li and Liu, 2017). It provides relatively real-
time driving parameters setting guidelines for different vehicles,
and the cloud service platform obtains the historical data from the
area edge servers in different regions and applies these to the
upper-level applications such as vehicle scheduling across
regions, violation monitoring, and traffic map construction
and updating. For smart healthcare, with the improvement of
living standards, the demand for high quality medical and health
care is increasing (Rahmani et al., 2018). Healthcare can also be

FIGURE 2 | Proposed reference architecture of edge computing architecture and the inner architecture of the edge computing gateway in UPIoT.
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aided by edge computing. Edge computing applied to smart
healthcare systems comprehensively improves global
healthcare, and at the same time, brings safer, timely, and
effective medical assistance to patients in different regions. In
the smart medical system, edge computing and 5G technology are
combined in the system to achieve real-time patient information
acquisition by IoT devices, ensuring low latency and real-time
computing through high-quality network transmission and
computing power, realizing remote diagnosis, remote surgery,
and emergency rescue, providing flexible and personalized
medical services for patients, and meeting the patient’s ability
to send data about their health condition without leaving home.
For example, MEC can help health advisers to assist their
patients, independent of their geographical location. MEC
enables smartphones to collect patient physiological
information, such as pulse rate and body temperature, from
smart sensors and send it to the cloud server. Health advisers
who have access to the cloud server can immediately diagnose
patients and assist them accordingly (Stantchev et al., 2015).
Furthermore, the smart home system is the hot application under
the IOT, through computer and communication technologies, the
system produces an amount of sensitive data locally, and the data
collected by the sensor is transmitted to the decision-making unit,
which calculates the appropriate control signals to achieve the
predetermined goal. The gateway is applied as the edge that is
between the home device and the cloud, through internet services,
such as Bluetooth,Wi-Fi, and home LAN, to realize locally
controled kinds of smart home devices and remotely operated
home devices. Therefore, the edge gateway form the home edge
network and the intelligent home service platform, reducing
uplink data transmission, service cloud platform load, and
responding to user needs with ultra-low latency (Trimananda
et al., 2018). Moreover, for the smart building, smart building
control systems consist of wireless sensors that are deployed in
different parts of buildings. Sensors are responsible for
monitoring and controlling building environments, such as
temperature, gas level, or humidity. In a smart building
environment, sensors installed with edge computing are
capable of sharing information and become reactive to any
abnormal situation. These sensors can maintain the building
atmosphere on the basis of collective information received
from other wireless nodes. For example, if humidity is
detected in the building, MEC can react and perform actions
to increase the air in the building and blow out the moisture. As
one of the IoT applications, the smart grid is a cyber physical
system covering various smart devices. For instance, Tencent
Cloud and Pengmai Energy Technology took edge computing
into account and released the overall architecture of energy IoT
solution in Cloud Tencent and Energy IoT Pengmai (2018).
(Okay., 2016).proposed a fog computing-based smart grid
model, and presented an example scenario, the smart homes,
in terms of latency and security, of the advantages of the model.
Sun H. Y. et al. (2019) introduced an edge computing technology
for power distribution internet of things (PD-loT), and provided
the architecture of edge computing for PD-loT, meanwhile, they
analyzed the internal and external interaction mechanism of the
data center construction under this architecture and the cloud-

side collaboration mechanism based on the data center.
Furthermore, they have analyzed the application of edge
computing in the typical service of power distribution “orderly
charging of electric vehicles.” Li B. et al. (2018) discussed the
application of edge computing in demand response, and analyzed
the application of edge computing in specific scenarios in the field
of power supply and demand, such as home energy gateways,
non-intrusive load monitoring, and orderly power management.
Gong et al. (2018) proposed a packet transport network (PTN)
physical architecture model of active distribution network (ADN)
based on edge computation, and constructed a cyber physical
system (CPS) management and control model of ADN based on
edge computation. Kumar et al. (2016) proposed a generalized
architecture for data management based on vehicular delay-
tolerant network (VDTN) using edge computing for smart
gird, and also proposed an energy efficient virtual machine
migration utilizing load forecasting. Zahoor et al. (2018)
proposed a three-layered framework named cloud–fog-based
smart grid, analyzed the edge computing layer close to the
consumers’ region that performs effective management of the
network resource with low latency, and considered two scenarios
for performance evaluation of their cloud–fog-based smart grid
model. Liu et al. (2019) presented an architecture of edge
computing-driven autonomous ubiquitous IoT in Electricity,
which is based on the edge computing architecture and virtual
synchronization technology, and introduced the applications that
may be deployed in the edge computing gateways. Chen et al.
(2019) introduced the services of IoT-based smart grid supported
by edge computing, and proposed an architecture introducing
edge computing into IoT-based smart grid, as well as presented
the three scenarios of the smart grid. Long et al. (2020) discussed
the advantages of edge computing technology used in the
demand-side management of power consumption in the smart
grid. Khan et al. (2020) highlighted the role of edge computing in
realizing the vision of smart cities, and reviewed the state-of-the-
art literature focusing on edge computing applications in smart
cities, including smart transportation, smart health-care, smart
grid, and smart farming.

Following an investigation, we found that there are only a
few surveys discussing the current status of the applications of
edge computing in UPIoT, since it is too new to have attracted
too many people’s attention. This paper will analyze the
architecture and application of edge computing in three
scenarios of power IoT, including distribution network
automation monitoring system, smart energy system, and
power metering system, as well as analyze the advantages of
introducing edge computing in the three scenarios. It provides
a significant reference for follow-up researchers, designers,
and beginners.

4 APPLICATION OF EDGE COMPUTING IN
UBIQUITOUS POWER INTERNET OF
THINGS
As shown in Figure 3 (Chen et al., 2019), applying edge
computing technology, IoT technology, and 5G
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communication technology in three major scenarios, improves
the performance of the power system and makes the power
system more intelligent and automated.

4.1 Power Monitoring System
The power monitoring system is composed of the control center
at all levels, such as substations, power line surveillance, and so on
(Tao et al., 2017). The system applies modern control technology,
visualization technology, modern communication technology,
and Internet of things technology to intelligently monitor
power equipment hot spots, power, and environment. It
intelligently analyzes data, and realizes comprehensive
visualization display and intelligent linkage alarm, at the same
time, it effectively assists power equipment informatization,
overhaul, and operation. Overall, it serves for smart grid
overhaul, operation, and whole life cycle management (Li,
2019). As shown in Figure 4 it mainly describes the two
service applications of transmission lines and the intelligent

substation in the power monitoring system based on edge
computing.

4.1.1 Transmission Line Monitoring
On the one hand, in order to realize the intelligent inspection
of the transmission line, the unmanned aerial vehicles obtain
the image, video, and other data of the surrounding
environment of the power transmission through the fixed-
focus camera in the pan-tilt. The front-end edge computing
detection module recognizes and locates the acquired video
stream and the condition of the overhead line. The application
of edge computing device nodes in the power line realizes the
autonomous, procedural, and standardized collection of image
information in the process of the transmission line equipment.
Meanwhile, the acquired images and video image data are
processed and analyzed locally, reducing invalid information
sent back to the cloud platform, and improving the
effectiveness of image data information. This method of

FIGURE 3 | The three scenarios of the IoT-based power system in the edge computing environment.
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utilizing the edge computing detection module that reduces
the pressure on broadband reduces the load pressure on the
cloud platform, and reduces the complexity of subsequent
defect diagnosis. Furthermore, the manual participation in
inspection operations is reduced, and the efficiency is
improved by 5–7 times. On the other hand, it is neccesary
to improve the intelligent level of transmission line monitoring
and early warning, operation and maintenance, and overhaul.
By deploying PMU, FTU, and other sensing units to collect
local information, the data types include second-level switch
position signals, fault signals, and minute-level signals.
Equipment status data, such as electrical information and
connector temperature, partial discharge signal, tower
status, and channel status, support normalized operations,
such as line inspection and troubleshooting. Among them,
electrical information, switch status, and local analysis results
will be uploaded to the master station layer as remote
information, which realize real-time online monitoring and
state detection and improve the intelligent level of
environmental monitoring and early warning of important
transmission channels, as well as realize intelligent operation,
maintenance, and overhaul of the power grid.

4.1.2 Intelligent Monitoring of Substation
With the continuous improvement of the IEC 61850 standard
and the continuous improvement and deepening of key
technologies such as electronic voltage transformers, current
transformers, MU, intelligent terminals, and process layers, as

well as the continuous construction and deployment of UPIoT, he
substation tends to be digital and intelligent (Tang et al., 2021).
The system of the substation monitoring system is divided into
process layer, bay layer, and station control layer. Substations
need to monitor a huge number of secondary equipment such as
lines, switch, and circuit breakers, and collect the electrical
quantities of the lines and the on-off status of control
equipment through the process-level intelligent integrated
device of the terminal, then upload them to the GOOSE/SV
network. SV messages and GOOSE messages are standard
message formats in the IEC61850 communication protocol,
they are the line state value and the switch state value,
respectively. These messages are transmitted from the process
layer to the bay layer, and the bay layer performs line stability
control and relay according to the message content. The
protection action is performed, and then protection is
uploaded and information is relayed to the station control
layer in MMS messages, so as to realize the analysis and
processing of the monitoring data. Finally, the remote control
host at the station control layer transmits it to the dispatch center
through the communication protocol in the monitoring system,
and waits for the analysis result and task dispatch of the dispatch
center. However, both station domain protection and line
protection of substations have extremely low delay
requirements, and the impact of factors such as message
analysis, communication congestion, and network packet loss
will bring harm and hidden dangers to the operation of the power
grid. By deploying the edge computing platform at the station

FIGURE 4 | The architecture diagram of edge computing for power distribution system.
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control layer, the platform process, and storing part of the
information on-site by capturing and parsing MMS messages,
this would reduce the burden on telecontrol communications
while ensuring the quality of application services (Bai et al., 2020).
The architecture of edge computing in the integrated automation
system of substation as shown in Figure 5.

4.2 Smart Energy Systems
The smart energy system is an integrated management system,
which is made up of a distributed generator, energy storage
devices, flexible loads, and energy conversion devices. The
integrated energy management platform coordinates the
electrical energy interactions in the power network and uses a
microgrid central controller, a distributed power grid connection
interface device, and an intelligent control terminal to implement
the basic functions of the smart energy system.

The edge computing architecture for the smart energy system
is shown in Figure 6. The architecture consists of three layers:
device layer, edge layer, and cloud layer. The cloud layer takes the
cloud platform as the core and provides various cloud services.
For different scales, the cloud layer can deploy the public cloud,
private cloud, or hybrid cloud. The equipment layer consists of
various types of power devices, including uncontrolled
distributed power sources such as photovoltaic and wind
turbines, controlled distributed power sources such as diesel
generators and power conversion devices such as inverters,
energy storage devices such as electric vehicle charging piles
and batteries, and various types of loads. The edge layer is the
core of the entire architecture; it consists of edge gateway, edge
platform, and edge services. The edge layer provides computing,
storage, application deployment, and other functions at the edge
side near the data source of the device. The edge gateway is the
core device in the edge computing architecture, which collects the
operation data of distributed power supplies, loads, power
conversion devices, and energy storage devices in real-time,
and then uploads them to the edge platform. Under the

coordination of the edge platform, each edge gateway executes
the control commands derived from the calculation results at the
edge side to control the dispatchable power devices (Xu et al.,
2020).

We will analyze the typical applications and the related
advantages brought by the architecture based on the EC-IoT
smart energy systems, including identification of malicious
behavior of electricity consumption and Real-time perception
of distributed energy power generation status, efficient data
processing, and fast reactive voltage response.

4.2.1 Identification of Malicious Behavior of Electricity
Consumption
With the massive access of a large number of distributed energy
sources and terminals containing power electronic equipment,
the terminal equipment in the smart energy system is vulnerable
to permission attacks, data storage and encryption attacks,
vulnerability threats, and remote control (Lei et al., 2020).
These risks will lead to abnormal activities of the terminal’s
feedback data, allowing the micro-grid central controller to
collect wrong information and then make wrong decision-
making activities, causing the local or even the entire system
of the micro-grid to collapse (Komninos et al., 2014; Lei et al.,
2020). In order to monitor malicious behaviors of users online in
real time, the smart energy system uses the microgrid central
controller, distributed energy grid-connected interface devices,
and charging piles, as edge computing modules to form an edge
computing platform. For example, the edge computing module
establishes the power generation behavior of each device with the
characteristics of power and time through the distributed energy
generation collected in real time. The edge computing module
uses electricity consumption and time as parameters for the user’s
electricity consumption behavior in the microgrid, and then
establishes the user’s electricity consumption behavior pattern
and constructs the database for users. Through the edge module,
which can extract power generation and power consumption data

FIGURE 5 | The architecture of edge computing in the integrated automation system of substation.
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anytime and anywhere, then realizes data interaction with the
main station, identifies the characteristics of power generation
and consumption, and realizes the power balance of smart energy
and the identification of malicious behavior (Mao, 2020).

4.2.2 Real-Time Perception of Distributed Energy
Power Generation Status, Efficient Data Processing,
and Fast Reactive Voltage Response
By installing the edge computing equipment on the grid-
connected inverter side of photovoltaic and other power
generation equipment, the output electrical quantity and fault
information of the inverter in real-time can be monitored and the
main data can be uploaded to the integrated energy management
system. On the one hand, edge computing devices can collect data
from grid-connected inverters, box transformers, and combiner
boxes in real time. On the other hand, the architecture of the edge
computing module is composed of hardware and software, and
has embedded control software. When the grid voltage and
frequency collected in real time fluctuate abnormally, there is
no need to wait for the control instructions of the cloud platform.

The control algorithm adaptively controls the power output of the
inverter, and quickly responds to the grid voltage and frequency,
so as to realize the comprehensive perception of the state of the
power generation unit and efficient data processing (Sun et al.,
2021), and quickly support the safe and stable operation of
the grid.

4.3 Advanced Metering Infrastructure
Advanced metering infrastructure (AMI) consists of smart
meters, data concentrators, data centers, and communication
networks. AMI is interconnected with the communication
network to achieve two-way communication of power data. In
the AMI, the smart meters are uploading their power usage
information to the data concentrators through wired and
wireless communication in the Neighborhood Area Network
(NAN). And then the data center actively requests power data
from data concentrators through the wide area network (WAN),
or data concentrators pass through the WAN at a preset time
interval, and they centrally upload power consumption data to
the data center, then the data center distributes electricity price

FIGURE 6 | The edge computing architecture of the smart energy systems.
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information to users and implements related measures such as
load management, demand response, and meter control
commands to improve customer service (Liang et al., 2021).

With the rapid development of the smart grid, the data
generated by smart meters and other power terminal devices
has exploded. Facing the computing demand of massive data,
traditional cloud computing solutions face huge challenges in
transmission bandwidth, transmission delay, data storage, and
real-time response. The introduction of edge computing
technology and the introduction of edge computing modules
in the data concentrator constitute the AMI edge computing
framework, as shown in Figure 7. The data collected by the
terminal is processed locally in the concentrator, and only the
calculation results are uploaded to the cloud, thus reducing the
network burden, lowering transmission costs, and meeting users’
real-time response needs, etc.

We will present the typical applications and the related
advantages brought by the architecture based on the EC-IoT
advanced metering infrastructure, including real-time power
forecasting and efficient abnormal detection.

4.3.1 Real-Time Power Consumption Prediction
By adding an edge computing module under the current power
concentrator, the massive power metering data is passed to the
concentrator, and the edge module is an edge device. Based on the
computing power of the edge module, the combination of deep
learning andmachine learningmethods is adopted, such as online
learning combined with machine learning algorithms (GBDT,
XGBOOST, Linear Regression, etc.), which is used to train the
time-series consumption data, then realize the real-time

prediction of metering data and real-time feedback of
consumption bills and the reasonable strategy of the power
consumption to users that meet the demand response. Since
the data from the massive power terminals are transferred to the
edge device, they are no longer transferred to the cloud, and
processed directly by the edge device’s own computing resources,
which greatly improves the data processing efficiency. In
addition, for the new power data generated every moment, the
online learning method can be used to quickly complete training
and make predictions, which greatly improves the real-time data
processing (Chen et al., 2019).

4.3.2 Efficiently Abnormal Detection
The traditional anomaly detection method relies on cloud
computing technology to analyze and process all collected data
in the data center. A distributed detection method based on edge
computing is proposed, which sets up edge node detectors on the
edge side of the grid to collect, store, and detect data directly
instead of the original central processor. The edge computing-
based detection method transforms the traditional centralized
detection into a distributed detectionmethod. Combined with the
deep learning approach, the anomaly detection model is
constructed, and the training process is separated from the
edge nodes and placed at the central node to complete. The
distributed detection model of the power metering system based
on edge computing is shown in Figure 8. At the edge, the edge
node concentrator is responsible for collecting and storing smart
meters and related data around them, uploading the processed
real-time data and the stored related historical data to the central
node, which can perform local processing and detection based on

FIGURE 7 | The edge computing architecture of the AMI.
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the data they monitor and collect, and sending the trained
anomaly detection model down to the edge nodes. In the
cloud center, it undertakes the training task of the detection
model, and after the model is trained, it is then downlinked to the
corresponding edge node. The edge node can realize offline
detection, which can realize more efficient and safe monitoring
of the power grid and reduce the pressure on the cloud center.

5 CHALLENGES AND OPPORTUNITY OF
THE EDGE COMPUTING IN THE
UBIQUITOUS POWER INTERNET OF
THINGS

The UPIoT seeks to achieve the information-physical-social
integration of power energy systems, however, the
construction of the UPIoT is still in its infancy at this stage.
Although edge computing technology has been gradually applied
to various aspects of the power grid, there are still huge challenges
to the application of edge computing in the UPIoT. These
challenges come partly from the limitations of edge computing
technology itself and partly from the potential constraints that
exist when edge computing is combined and applied with UPIoT.
This section analyzes the market, policy, and technology risks of

edge computing in UPIoT applications, and discusses the
technical challenges and corresponding outlook for UPIoT
based on edge computing.

5.1 Market Challenge
Edge computing enables UPIoT. Constructing UPIoT requires
the installation of massive amounts of edge devices, and power
operators update traditional solutions to upgrade power
infrastructure according to emerging development needs, but
it is difficult to quantify its effect on power production, business
capacity improvement, and cost reduction, and the
corresponding business model is still in the exploration stage.
Therefore, the development of the edge computing that is applied
in the UPIoT will be faced with market and economic challenges,
such as the possibility of investing hundreds of billions of dollars
and how to develop operational and business models. Will the
return on investment achieve the expected results? And how will
the financial crisis be dealt with on the impact of grid planning,
investment and operation? All these questions require grid
companies, operators, governments, and others to think deeply.

5.2 Policy Challenge
Edge computing realizes the interconnection of power equipment
and sensors through the integration of wireless networks, mobile
center networks, Internet, and other communication networks.

FIGURE 8 | The distributed detection model of the power metering system based on edge computing.
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The collection of massive power terminal data must be
transmitted to the edge platform through communication, and
then the data is processed and analyzed on the edge platform, so it
is essential to ensure the security of the edge side network. On the
one hand, it is necessary to ensure that data can be reliably and
quickly transmitted from the remote end to the platform, and on
the other hand, it is necessary to prevent data leakage and resist
cyber attacks. Therefore, how to develop new information
security protection technologies and systems is a difficult point
for edge computing to be applied in the UPIoT, and there is a lack
of a unified standard system in the power industry. In Europe and
the United States, the development of smart grids is relatively
advanced, and the development of security and stability standards
is more detailed and comprehensive, For example, the European
Telecommunications Standards Institute (ETSI) has defined
typical service scenarios and engineering implementation
guidelines for edge computing (European Telecommunications
Standards Institute, 2016), so the application of edge computing
can be promoted in the EU and other countries. However, in
China, the security protection of the power secondary system
follows the overall protection principle of “security zone, network
dedicated, horizontal isolation, and vertical authentication” to
ensure the security of the power data network. On the one hand,
the standard system related to edge computing is not complete;
on the other hand, due to the huge scale of China’s power
industry and the relatively conservative policy implementation,
it is difficult to apply a new technology immediately. Therefore, in
order to realize ubiquitous IOT intelligent sensing, the
introduction of edge computing will inevitably lead to network
and information security issues, and the relevant specific policies
are not yet perfect, so it is difficult to apply and implement edge
computing perfectly. Therefore, there are corresponding policy
risks for edge computing to be applied to UPIoT, which require
in-depth thinking by countries all over the world.

5.3 Technical Challenge
There are many distinctive technical challenges in UPIoT edge
computing environments, including management and processing
of massive heterogeneous power terminal devices accessing edge
side, data offloading and load balancing, edge intelligence, edge
network security, data sharing security, and privacy protection.

We summarize these technical challenges in detail and outline
potential research directions.

5.3.1 Management and Processing of Massive
Heterogeneous Power Terminal Devices Accessing
Edge Side
Due to the stage of construction and real-time operation of the
power system, a large amount of historical and real-time data,
such as control, monitoring, and metering, will be accumulated
on the power IoT platform, which constitutes a multi-source
heterogeneous data source for the platform layer of the UPIoT.
Heterogeneous data sources arise from a variety of power devices,
owing to the variety of power devices, the lack of unified access to
the edge node standards, and the edge network center node itself
which is more difficult to expand. However, moving the location
of the edge computing center will bring a lot of delay.

Furthermore, in the edge computing network, there are not
only static end-devices (e.g., sensors or video cameras), but
also dynamic ones such as UAVs and electrical vehicles,
making the device management even more challenging.
Meanwhile, since different devices have huge differences in
hardware configurations and software functions, and the
corresponding data computing, storage, and communication
capabilities vary, this also offers a challenge (Qiu et al., 2020).
Therefore, there is an issue in management of massive
heterogeneous power devices accessing the edge nodes, and
the edge network must be programmable to support
application-specific requirements of edge terminal devices. For
this challenge, SDN and NFV technology realize the management
and control of multi-source heterogeneous terminal equipment,
as well as the scheduling and routing of data flows. SDN and NFV
are two of the latest technologies designed to introduce flexibility
in network management and orchestration. SDN is mainly
characterized by the decoupling of the control plane from the
data plane; it provides programmability for network application
development and supports the new technology in a unified
manner (Bera et al., 2017). SDN and NFV are applied for the
edge network. It will make the network more flexible and
programmable (Han et al., 2018). Many researchers have
carried out certain discussions and research on the application
of software-defined network technology in the power Internet of
Things, and have achieved relevant results (Yang et al., 2017;
Wang et al., 2015; Zhong et al., 2021), However, the combination
of edge computing with SDN, the application of which in the
UPIoT is in its infancy, will become a trend and is worth in-depth
research in the future. Furthermore, utilizing deep learning
techniques on the edge computing platform to assist in edge
network control for the large-scale heterogenous power terminal
devices is also an area of focus research for studies. At the same
time, with the development of 5G networks and its application to
the power Internet of Things, in the future, we can study the
application of 5G technology to UPIoT-assisted edge computing
for edge terminal network management; the edge node
management issues will be easy to handle in a 5G network
(Kumareshan and Poongodi, 2016). Specifically, 5G core
networks can collect status information of various nodes
regularly (e.g., node location, resource use, task list, and
adjacent nodes), monitor and update node management
information and strategies, and optimize other strategies such
as data processing strategy and network protection strategy
according to the collected information. The combination of
edge computing with 5G that adapt to the challenge of
management and control in the unified access of massive
heterogeneous terminals in the UPIoT, is worth exploring in
depth in the future. This is only one side. On the other hand, for a
large amount of multi-source heterogeneous data, the computing
power is deployed at the edge nodes to deal with heterogeneous
data. However, in the actual operation of the UPIoT, on the one
hand, the algorithm iteration speed is very fast, and multiple
versions of calculation programs cannot be stored locally for a
long time. On the other hand, the interface types of terminal
devices vary greatly due to the influence of operating
environment, communication network, and other factors.
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There are both wired communication interfaces, such as Ethernet,
PLC, RS485/232, and wireless communication interfaces, such as
4G/5G public network. There are both traditional wireless
business terminals, such as RTU, PTU, and TTU, and
intelligent business terminals. Therefore, it is difficult to
process a large amount of multi-source heterogeneous data,
which affects the efficiency and performance of edge
computing. For this challenge, the technologies of UPIoT
microservices, algorithm subscription, and container VM
technology are worth studying in depth, which can be carried
out to improve the flexibility of algorithm deployment, and then
promote agile development and rapid iteration of edge
computing in the UPIoT.

5.3.2 Realizing Edge Autonomy to Meet the Business
Demand for Real-Time Response
With the construction and development of the UPIoT, the amount
of power equipment has increased sharply, and the deployment area
is also relatively wide. The on-site installation environment is not
only complicated but also diverse, resulting in a sharp increase in the
workload of installation, commissioning, management, and
maintenance of power devices. Although edge computing is
introduced, in current UPIoT systems based on edge computing,
edge devices can only perform lightweight computing tasks. To
enable edge devices and edge servers to performmore complex tasks
with a higher data processing performance and lower latency, edge
computing combined with artificial intelligence, big data analysis,
and other technologies that are applied in the UPIoT assisted edge
computing, which make edge devices and servers intelligent.
However, edge equipment resources and computing capabilities
are limited, it is difficult to achieve lean management, and there
exists a challenge of realizing edge autonomy and Intelligence to
meet the business demand for real-time response to improve the
quality of service (QoS) and quality of experience (QoE).

Many scholars propose some ideas for coping with challenges
from two aspects: the edge device itself and the edge model
architecture. In terms of edge computing devices, this could be
done by adding AI processor modules or re-designing the
intelligent chip to improve the computing power of edge
devices. In the design of chip architecture, the aim would be
to support the edge computation paradigm and facilitate AI
models (e.g., DNNs, CNN, etc) acceleration on the resource-
limited IoT devices. Meanwhile, customized AI processors are
developed to be better suited to specific edge devices and usage
scenarios. For example, developing customized power chips and
AI edge computing processors (Zhao et al., 2021) to meet the
requirements of massive data processing and calculations.
However, there exists a great challenge in developing devices
more suited to edge AI and realizing the theoretical
complementarity of edge computing and AI (Qiu et al., 2020).
At present, in support of the intelligence of the edge computing
for the UPIoT, the reconstruct of the edge device is not researched
in-depth since some emerging technologies and architectures are
under development. On the other hand, artificial intelligence
models have been deployed at the edge layer. Although machine
learning can be used to enhance the intelligence of edge devices,
the high complexity of deep learning in many machine learning

methods leads to the relatively high difficulty of the deployment.
Due to the computing power of edge devices being generally
weak, it is necessary to compress and simplify the model, and
optimize the model architecture to adapt to the edge system to
improve the processing performance. On the one hand, the
technology of model compression for the edge device is worth
researching since many approaches, such as model compression,
conditional computation, and algorithm synchronization, are
proposed to improve the efficiency of training and inference of
deep AI models that are utilized in the edge. On the other hand,
the architecture of the deep learning model is needed to optimize
for the UPIoT assisted edge computing, As we know, the goal of
the continuous development and construction of the UPIoT is
realizing the transition from “collection + centralized control” to
“collection + control + regional autonomy,” and gradually
shifting from “vertical closure” to “horizontal openness,” The
research of cloud-edge collaboration technology has become a
developmental trend of edge computing in the UPIoT. Taking
smart substation as an example, it will evolve from three stages as
an important infrastructure for the construction of UPIoT: edge
interconnection to edge intelligence, and then to edge autonomy.
Utilizing the cloud-edge collaborative model for the substation,
which remains in the initial stage, needs more efforts to be made,
and is an effective way to realize the edge of substation autonomy,
and can be the focus point for researchers that need to think and
study in the next step.

5.3.3 Edge Network, Edge Node Security Protection,
and Data Privacy Protection
Although applying edge computing to the UPIoT can bring the
advantages of reduced transmitted data volume on the network,
communication delay, computational costs, and enhanced
flexibility, a large number of terminals accessed to the edge
layer inevitably increase data interfaces that may be used as a
springboard to attack edge nodes. On the other hand, edge nodes
are close to the edge, and the network protection is weak. In the
edge computing scenario, edge computing networks are
distributed, scalable, and heterogeneous, the security measures
of edge servers are weaker than traditional cloud servers, and
they are vulnerable to attacks frommalicious nodes in the network.
Traditional security protection methods cannot satisfy the
protection requirements of edge computing, as the security risks
cannot be fully considered at the start of the design. Moreover, the
integration of various technologies has also intensified the security
threats related to data, networks, and applications. In UPIOT based
on edge computing, there are challenges of edge network, edge
node security protection, and data privacy protection. In response
to this challenge, blockchain is being considered as a disruptive
technology by academicians and industries that offers potential
solutions to solve the security and privacy issues of edge computing
networks and devices (Kang et al., 2019; Frey et al., 2019). The
incorporation of blockchain and edge computing into a single
framework, and then combining the attribute-based access control
model, will make it possible to have reliable access and control over
the network, storage, and distributed computational resources at
the edge. Blockchain technology can also improve the security of
the EC-assisted IoT paradigm as it permits only trusted IoT
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devices/nodes to interact with each other. On the one hand,
blockchain-based trusted data management schemes (e.g.,
lightweight consortium blockchain) for cooperative
authentication, authorization, and privacy preserving could be
developed (Gai et al., 2019; Mao et al., 2020; Wang et al., 2020),
meanwhile, utilizing blockchain to form a security mechanisms for
edge nodes/devices could ensure the security and credibility of edge
nodes in the UPIoT. These two proposed methods can not only
prevent edge nodes from being attacked and lead to data privacy of
the problem of leakage, but also ensure the integrity and security of
the data sharing using the external network; therefore, it ensures
the credibility of regional terminal computing tasks in the edge
layer, and then returns the correct calculation results to the cloud
and terminal users safely and reliably. Overall, these are potential
research directions for studies, and need more research and
developments. On the other hand, the combination of
blockchain and machine learning methods (such as federated
learning, deep learning, reinforcement learning, and deep
reinforcement learning) to enhance the access control, secure
storage, and privacy -preserving data of EC-assisted UPIoT, can
be adopted to detect abnormal behavior, such as energy theft with
energy privacy protection in the smart gird (Yao et al., 2019), which
is an emerging field and a promising direction for research.

5.3.4 Edge Computation Offloading and Load
Balancing Realize Demand Response
UPIoT is a promising solution to meet the increasing electricity
demand of modern cities, while challenges face the real-time
processing and analysis of huge data collected by the power
terminal devices due to the limited computing capability of the
devices and long distance transmission from the cloud center. Edge
computing enables power terminal tasks to be offloaded on the
edge side for in-situ processing. It reduces communication delays
and energy consumption. However, the power consumption,
computing power, and storage space of edge-layer servers are
also limited. Computation offloading and load balancing are
great challenges in UPIoT systems based on edge computing.

For the challenge of the data offloading, scholars mostly combine
artificial intelligence technologies (Lin et al., 2019; Sun W. et al.,
2019) (such as deep reinforcement learning (Dinh et al., 2018; He
et al., 2018; Dai et al., 2019; Luo et al., 2019; Min et al., 2019; Zhang
et al., 2019a; Zhang et al., 2019b), such as markov chain decision-
making, game theory, Lyapunov optimization,machine learning and
so on) to improve the performance of computing offloading
schemes. However, according to the characteristics of UPIoT, to
find the optimal balance between energy consumption, delay,
amount of data, bandwidth, it is necessary to design the
computation offloading strategy according to the data volume,
task type, and equipment capabilities (Jiang et al., 2019a; Pan
et al., 2020), which is worthy of in-depth consideration, and is
the outline for future studies by researchers at this stage.
Furthermore, another challenge is considering how to allocate
resources reasonably after making the data offloading decision,
that is, the problem of where the resources are distributed. In
other words, there is a new problem in that the data offloading
schememay lead to the overload of some edge devices, then creating
another challenge of load balancing. Load balancing based on

specific characteristics and scenarios of the UPIoT combining
new technologies is a significant research direction. Considering
the scale and frequency of scheduling are significantly larger, it is
necessary to improve the existing load balancing algorithms to adapt
the characters of the UPIoT edge system. A typical method depends
on the NFV and SDN integrated edge cloud platform to orchestrate
the resources to fulfill the offloaded tasks from the battery-
constrained edge terminal devices. In UPIoT based on edge
computing, using the task data and loading data from the
equipment and edge servers, combined hierarchically with AI, a
load balancing service can set up the load balancing scheme based on
a machine learning model for each layer. In addition, SDN can be
utilized to conduct load balancing scheduling from the global
perspective of the edge network. To minimize the complexity of
scheduling and routing, emerging SDN technology will have a
significant impact on the routing scheme and communication
mode of edge network, and brings more comprehensive and in-
depth routing schemes for edge computing in UPIoT (Kaur et al.,
2018; Li X. et al., 2018; Nayak et al., 2018; Al-Hubaishi et al., 2019).
At present, some scholars propose to use SDN to establish a grid
edge computingmodel, with minimum delay as the goal orientation,
and use deep reinforcement learning to reasonably schedule and
allocate computing resources (Shang et al., 2021). However, there is
very little research on resource allocation strategies that target how to
balance time delay and energy consumption, which is a direction
worthy of research. On the other hand,Machine learning algorithms
based on resource allocation in edge-cloud architecture, edge-edge
architecture, could also solve the problem of load balancing. For
example, based on the edge-cloud architecture, the computing tasks
of the terminal cannot be completely offloaded to the edge side for
execution, so some tasks are offloaded to the remote cloud server for
calculation, and the result will be first returned to the edge server,
and finally back to the terminal device. If a client’s requirement is
more critical, it will be handled by the cloud; otherwise, servicing is
done by the edge. However, the reality of how edge computing and
cloud computing can work together efficiently and seamlessly is a
significant research direction (Li et al., 2020). When considering the
computation offloading in edge computing, it is necessary to
consider the gaming and cooperation between the edge and the
cloud for task scheduling and collaboration.

6 CONCLUSION

Edge computing integrates network, computing, and storage on
the edge of the network. The introduction of edge computing can
solve the problems of cloud computing architecture facing the
UPIoT, which is unable to handle massive heterogeneous data,
communication delays, high computing pressure, data privacy
leakage, and difficulty in satisfying user demand response and
other issues. First, this article introduces the edge computing
technology and the framework of the UPIoT, and gives the
architecture of the combination of edge computing and the
UPIoT and the internal architecture of the edge computing
layer. Moreover, one of the contributions of this paper is to
analyze the technical application of edge computing in the three
power Internet of Things scenarios: power monitoring system,
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smart energy system, and power metering system. It also gives the
architecture of the edge computing in the three scenarios.
Furthermore, the major contribution is putting forward the
policy challenges, market challenges, and technical challenges
of the application of edge computing in UPIoT, meanwhile, the
technical challenges and outlooks in four major areas are
analyzed in detail. This paper aims to obtain more attention
from other researchers in edge computing in the UPIoT, and
make power industry development more rapid and convenient.
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Short-Term Probability Density
Function Forecasting of Industrial
Loads Based on ConvLSTM-MDN
Yuan Y. Wang1, Ting Y. Wang1, Xiao Q. Chen2*, Xiang J. Zeng1, Jing J. Huang1 and
Xia F. Tang1

1Changsha University of Science and Technology, Changsha, China, 2California Institute of Technology, Pasadena, CA,
United States

Load forecasting for industrial customers is essential for reliable operation decisions in the
electric power industry. However, most of the load forecasting literature has been focused
on deterministic load forecasting (DLF) without considering information on the uncertainty
of industrial load. This article proposes a probabilistic density load forecasting model
comprising convolutional long short-term memory (ConvLSTM) and a mixture density
network (MDN). First, a sliding window strategy is adopted to convert one-dimensional
(1D) data into two-dimensional (2D) matrices to reconstruct input features. Then the
ConvLSTM is utilized to capture the deep information of the input features. At last, the
mixture density network capable of directly predicting probability density functions of loads
is adopted. Experimental results on the load datasets of three different industries show the
accuracy and reliability of the proposed method.

Keywords: load forecasting, probability density, convolutional long short-term memory, mixture density network,
industrial customers

1 INTRODUCTION

The improvement of the demand-side electrical energy management is of critical importance to reliable
and economical operation of the modern power system (Wang et al., 2021a). Accurate short-term load
forecasting (STLF) can help the department of demand-side management to understand and analyze
electricity consumption behavior and further make intelligent control strategy to strengthen energy
management. In many developing countries, electricity consumption by industrial customers is the major
part of total electricity consumption on the demand side (Tan et al., 2020). For example, in China, about
67% of electrical energy is consumed by industrial customers (National Bureau of Statistics of the People’s
Republic of China, 2021). However, the complex electricity tariff rules (Wang et al., 2020) and the high
uncertainty of industrial loads make it difficult for industrial customers to make a correct electricity
strategy, which leads to excessively high electricity costs and non-essential losses. To solve the
aforementioned problems, industrial customers can adjust production planning in advance to improve
energy efficiency and economic benefits. Therefore, high-accuracy STLF for industrial customers is
urgently needed.

As a typical time series forecasting problem, many STLF methods have been a hot topic in academia
and industry (Cai et al., 2017; Hou et al., 2020a; Hou et al., 2020b; Cai et al., 2021; Hou et al., 2021), which
can be roughly categorized into statistical methods and artificial intelligence methods (Kuster et al., 2017).
Among them, the statisticalmethods (Zhao and Li, 2021; López et al., 2019) are difficult to handle load time
series with high randomness and non-linearity (Wang et al., 2021b) and usually result in low forecasting
accuracy. The artificial intelligence methods can be further divided into the shallow machine learning
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(Wang et al., 2021c) and deep learning (Ruan et al., 2021). These
methods have powerful non-linear processing capabilities, which
address the drawback of statistical methods. However, shallow
structure-based methods need additional feature extraction and
selection due to their poor performance in feature mining, so they
are not suitable to be implemented in different datasets (Afrasiabi
et al., 2020). In addition, the depth limitation of shallow machine
learning also restricts the forecasting accuracy.

Deep learning models can capture deep features from historical
load data through multi-layer non-linear mapping and can handle
various relevant factors. Jiao et al. (2018) used the long short-term
memory (LSTM) network to predict the load of non-residential
customers, which brings a significant improvement compared with
several shallow machine learning models. A single model suffers the
limitations of the algorithm and some accidental factors, resulting in
poor generalization performance (Fallah et al., 2019). Hence, Farsi
et al. (2021) adopted the combinedmodel of CNN-LSTM, which can
comprehensively utilize the information provided by each model to
improve the forecasting accuracy.

However, commonly used two-dimensional (2D) CNNs are not
suitable for one-dimensional (1D) time series data, while using 1D
CNN to learn time series faces the problem of overfitting, unless
increasing the number of CNN layers. Therefore, applying CNN to
the time series forecasting problem is suboptimal (Essien and
Giannetti, 2020). The convolutional LSTM (ConvLSTM) proposed
by Shi et al. (2015) has both powerful feature extraction capabilities of
CNN and excellent time sequence processing capability of LSTM, so
it can not only capture features but also perform well in sequential
learning. Essien and Giannetti (2020) established a deep ConvLSTM
encoder–decoder architecture for multistep machine speed
prediction. Experimental results show that the proposed method
has higher test accuracy (rootmean square error (RMSE) ranges from
64.23 to 64.93) than the deep LSTM and the CNN-LSTM
encoder–decoder models. In addition, ConvLSTM has been
successfully applied to time series forecasting problems such as
wind power forecasting (Sun and Zhao, 2020) and solar
irradiation forecasting (Hong et al., 2020). All the studies
described before prove that ConvLSTM has a significant
performance in forecasting time series data. Hence, applying
ConvLSTM to STLF is expected to improve the probability
forecasting accuracy of industrial customers.

The aforementioned approaches are implemented as point
forecasts, which only provide the future point value without
information about the associated uncertainty. To measure the
uncertainty of load and accommodate the risk brought by the
uncertainty of load, probabilistic load forecasting (PLF) gets more
attention in industrial applications (Zhang et al., 2019a). The existing
PLF methods can be divided into prediction intervals (PIs), quantile
prediction, and probabilistic density function (PDF) forecasting
according to the output form, and they provide the statistical
information of the future load. Among all methods, PDF
forecasting can fully reflect distribution information of future load
data, which provides far more information than other forms of PLF
(Xie et al., 2019), (Zhang et al., 2020). Therefore, PDF forecasting is an
essential tool to quantify uncertainty in load forecasting.

On PDF forecasting, He et al. (2017) used kernel-based support
vector quantile regression to generate complete probability

distribution of future values and then predicted PDFs according
to copula theory. He et al. (2019) developed the least absolute
shrinkage and selection operator-quantile regression neural
network (LASSO-QRNN) for electricity consumption forecasting.
As mentioned before, many PDF forecasting methods focus on
indirectly predicting PDF in current research, but the forecasting
errors of indirect forecasting models grow with each iteration,
resulting in low forecasting accuracy (Afrasiabi et al., 2021). It is
necessary to research the method of directly forecasting PDF. In
Zhang et al. (2020), an improved deep mixture density network
(MDN) was built to predict wind power of multiple wind farms, and
then a laconic and accurate PDF at each time step was produced. To
enhance the learning ability of MDN, He et al. (2019) combined the
deep learning approach and MDN to characterize PDF of wind
speed. This method can directly construct PDFs by processing raw
data and enhance forecasting accuracy and computational efficiency.
Afrasiabi et al. (2020) also merged the deep learning model into
MDN to directly predict PDFs of residential loads. In case studies, the
accuracy rates of median prediction were 10.024 and 6.694% in terms
of mean absolute percentage error (MAPE), respectively, which
demonstrated the effectiveness of the deep mixture model.

A critical issue is that although PDF forecasting techniques
based on MDN have been applied to wind power probabilistic
forecasting and residential load probabilistic forecasting, none of
themethodologies proposed so far are looking into industrial load
forecasting. The amount of literature on PLF of industrial loads is
quite limited. Berk et al. (2018) proposed an inhomogeneous
Markov switchingmethod to achieve PLF of industrial customers.
Da Silva et al. (2019) combined the bottom-up approach with
hierarchical linear models for PLF in the industrial sector. Due to
the continuous development of the industry and the increasing
variability of customers’ activities (Wang et al., 2021a), PLF that
can predict uncertain information is more suitable for industrial
load forecasting. Based on the aforementioned analysis, we
merged the deep learning model into MDN as a solution for
industrial load forecasting.

With the aim of directly learning the severe uncertainty of
industrial loads and providing accurate load forecasting results,
we developed a new deep mixture model based on ConvLSTM
and MDN. The model exploits the strengths of ConvLSTM in
feature extraction and sequence learning to learn deep features of
load data. ConvLSTM and MDN are combined by using a dense
layer to directly predict PDF. The main contributions of this
study are described as follows:

(1) This study introduces an emerging deep learning model into
the field of industrial load forecasting, namely, ConvLSTM.
Meanwhile, in order to make full use of the load and various
types of data related to the load, a simple input construction
method for ConvLSTM is proposed. ConvLSTM can extract
key features of these data well to improve the performance of
probabilistic forecast accuracy.

(2) The probability density function forecasting is new to the
industrial load forecasting literature. We built a novel
mixture model combining ConvLSTM and MDN. The
model aims to acquire full statistical information about
future industrial load consumption in the form of PDF.
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The proposed method can predict industrial loads with
strong non-linear relationship, high variability, and severe
uncertainty.

(3) Comprehensive case studies are conducted on load datasets
of different industrial customers and compared with multiple
state-of-art models. Experimental tests results show that the
proposed model has stronger robustness, better
generalization performance, and higher forecasting
accuracy. For instance, ConvLSTM improves the accuracy
of LSTM by more than 20%.

The rest of the study is organized as follows: Section 2 presents
basic knowledge about CNN, LSTM, convolutional LSTM, and
MDN. Section 3 analyzes the relevant characteristics of the load,
and the proposed ConvLSTM-MDN model and methodological
approach are introduced in Section 4. Numerical simulations
results are reported and discussed in Section 5. Finally, Section 6
concludes the study.

2 TECHNICAL PRELIMINARIES

2.1 CNN
CNN is a deep neural network with convolution operation, which
can extract features among input data with two advantages: local
perception and weight sharing. Therefore, CNN has less number
of parameters than ordinary neural networks. The typical CNN
consists of convolutional layers, pooling layers, and fully
connected layers. Convolutional layers employ a set of
learnable kernels to perform the convolution operation on
input data, in order to extract features or patterns from
inputs. Pooling layers can shrink the parameter dimensions
and control overfitting. Fully connected layers are put at the
end of a sequence of the layers, which can summarize features
extracted by previous layers to generate outputs.

2.2 LSTM
As a special variant of recurrent neural networks (RNNs), LSTM
can effectively surmount the problems of gradient vanishing and
gradient exploding when RNN learns long-term temporal
correlations. Based on the architecture of RNNs, memory cell
and three control gates are included in the architecture of the
LSTM to control information flow. The memory cell can
accumulate the state information and remain unchanged.
Three control gates, namely, input gate, output gate, and
forget gate, are used to record new information selectively and
clear previous information selectively, thus solving the long-term
dependence problem in sequence learning.

2.3 ConvLSTM
In order to satisfy the requirements of different tasks, various
modified versions are developed from LSTM. On the basis of
the fully connected LSTM (FC-LSTM) network, Shi et al.
replaced the FC layer operators in the state-to-state and input-
to-state transitions with convolution operators to obtain
ConvLSTM models with the complementary strengths of
LSTM and CNN models. Therefore, the network topology

of ConvLSTM enables it to perform convolution operation on
multidimensional data to capture the spatial and temporal
features rather than just temporal features. Figure 1 illustrates
the inner structure of the ConvLSTM. Similarly, the
ConvLSTM also uses the forget gate to decide which
information is to be “remembered” or “forgotten.”
Different from LSTM, the input matrix xt of ConvLSTM is
fed as image (i.e., 2D or 3D matrix). In the ConvLSTM, the
future cell state is determined by the input at the current time
step, output at the previous time step, and cell state at the
previous time step. The key formulas of the overall
ConvLSTM connections are shown in (1) to (5):

ft � σ(wxf pxt + whf p ht−1 + wcf+ct−1 + bf), (1)
it � σ(wxi pxt + whi p ht−1 + wci+ct−1 + bi), (2)
ot � σ(wxo pxt + who p ht−1 + wco+ct + bo), (3)
ct � ft+ct−1 + it+tanh(wxcpxt + whc p ht−1 + bc), (4)
ht � ot+tanh(ct), (5)

where t is the time step; f, i, o, and c represent forget gate, input gate,
output gate, and cell state, respectively; the variables x, h,w, and b are
input vector, output vector, weight matrix, and bias vector,
respectively; σ denotes the sigmoid activation function; tanh
denotes the hyperbolic tangent activation function; + denotes the
Hadamard product; and p denotes the convolution operator.

2.4 MDN
The MDN can predict PDFs of the target variables, which was
first introduced by Christopher M. Bishop in the 1990s. The
structure of MDN is composed of a Gaussian mixture model and
a feed-forward network. MDN uses Gaussian function as the
basic component and superposes a sufficient number of Gaussian
functions in a certain proportion to fit the final PDF. Gaussian
function enables the MDN to flexibly and accurately represent
arbitrary probability distributions (Zhang et al., 2019b). The
output variables of model are used to construct final PDFs,
which include mean, standard deviation, and proportion of
Gaussian distribution. Theoretically, when the mixing
coefficients and Gaussian parameters are correctly chosen,
MDN can approximate any PDF (Bishop, 1994).

For any given value of a, the Gaussian mixture model provides
a general form that approximates any conditional density
function p(yt|a). The equation is as follows:

FIGURE 1 | Inner structure of ConvLSTM.
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p(yt|a) � ∑K
k�1

πk(a, t)φ(yt

∣∣∣∣μk(a, t), ]k(a, t)),
∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K},

(6)

where K is the number of components in the mixture model;
πk(a, t), μk(a, t), and ]k(a, t) represent mixing coefficient, mean,
and standard deviation of the kth component, respectively. It
should be noted that the sum of mixing coefficients must be 1,
which can be achieved by controlling the output through the
softmax function. The softmax function is given by

∑K
k�1

πk(a, t) � 1, 0≤ πk(a)≤ 1 , (7)

αk(a, t) � exp(πk(a, t))∑K
l�1exp(πk(a, t))

. (8)

Similarly, to ensure that the variance is greater than or equal to
0, ]k(a) can be reformulated as follows:

βk(a, t) � exp(]k(a, t)). (9)
In order to control the output value of the MDNmodel within

reasonable bounds, the modified exponential linear unit (ELU)
activation function can be used as follows:

g(a) � elu(a) + 1. (10)
The loss function of standard MDN is maximum likelihood

method, which may lead the loss function to NaN value. The
reason is that the function approaches infinitesimal as the input
value approaches 0. To mitigate the possibility of NaN value, this
study employs continuous ranked probability score (CRPS) as the
loss function. CRPS is computed as the integral of the square,
which avoids infinitesimal or infinite situations.

3 ANALYSIS OF INDUSTRIAL LOAD
TEMPORAL RELEVANCY AND RELEVANT
FACTORS
3.1 Industrial Load Temporal Relevancy
Industrial load is time series data, so an essential element of it is time.
Temporal relevancy is important information that cannot be

ignored. In this study, some industrial load data is randomly
selected to perform Pearson correlation analysis on the load at
adjacent times and the adjacent daily load at the same time. The
analysis results are shown in Figure 2. It can be seen that the degree
of correlation between loads in both cases tends to weaken with the
increase of the time interval, that is, the load temporal relevancy
gradually weakens. Therefore, it is important to select historical load
data in a suitable time range as the input features of model.

3.2 Industrial Load Relevant Factors
This study considers two types of relevant factors: temperature
and calendar information. First, the influence of temperature on
load is analyzed by Pearson correlation coefficient. If the
correlation coefficient score is greater than 0.6, temperature is
selected as the input feature of the model. Taking the load data of
an industrial customer in 2018 as an example, the correlation
coefficient score is 0.827, which indicates a strong correlation.
Meanwhile, Figure 3 presents the load and temperature profiles.
It is obvious that the load increases with decreasing or increasing
temperature in winter and summer.

Calendar information includes working days, weekends and
holidays. Industrial loads relate to production plan and activities
of workers. Due to the work schedule, the load from Monday to
Friday and the load on the weekend are significantly different. In
addition, holidays are also an important factor. For example, in
China, during important traditional festivals such as the Spring
Festival, the National Day, and the Mid-Autumn Festival,
employees of most industrial enterprises rest. Therefore, we
cannot ignore the effect of calendar information on the load.

4 THE LOAD FORECASTING FRAMEWORK
BASED ON CONVLSTM-MDN MODEL

This study proposes a deep model for probability density
forecasting of industrial load, based on ConvLSTM-MDN. The
framework of the proposed method is established by three steps,
including data pro-processing, 1D time series to 2D matrices
transforming and probability density forecasting of industrial

FIGURE 2 | Load correlation of adjacent time to d (day) and t (time). (A) shows the Pearson correlation analysis results of adjacent daily loads, and (B) shows the
Pearson correlation analysis results of the load at adjacent times.
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load. Each step in the framework is introduced in the following
sections.

4.1 Data Pro-Processing
For load data of industrial customers, the main reasons for
missing data include acquisition equipment failures and signal
transmission interruption. In order to prevent missing data from
destroying the continuity of load data, the following method is
adopted: when the proportion of missing data on a certain day is
low, linear interpolation is employed to process these data.
Instead, all data for the day are deleted.

Then, in order to accelerate convergence speed of the model,
we use the min-max normalization (Farsi et al., 2021) method to
scale load data and temperature data to the range (0,1). Because
the calendar information is discrete data, we adopt One-Hot
encoding method to convert it into a form that can be processed
by deep learning algorithms. This studymarksMonday–Friday as
0 and weekends as 1. According to the actual holiday date of
industrial customer, the holiday is marked as 1, and other days are
marked as 0.

4.2 1D Time Series to 2D Matrices
Transforming
Although the ConvLSTM algorithm takes into account the
advantages of the CNN in feature extraction and the LSTM in
sequential learning, the use of ConvLSTM in industrial load
forecasting will face the problem of data dimension mismatch,
that is, the structure of standard ConvLSTM is not suitable for
directly processing load data which is 1D time series data. To
tackle this problem, we adopted a method to convert the 1D data
into 2D matrices that can be processed by ConvLSTM.

The load dataset is denoted as D = {l1, l2, . . ., lS} with K
instances per day; the temperature dataset, date dataset, and
holiday dataset are denoted as T = {T1, T2, . . ., TS}, W = {W1,
W2, . . ., WS}, and H = {H1, H2, . . ., HS}, respectively. We
reconstruct these time series into a series of 2D matrices
[N×M], where N is manually set, M is equal to (K+3), and

they are integers and greater than 2. The reconstruction
method is as follows.

First, construct the first matrix graph: The l1 to lK data on the
first day are the first row of the matrix. The lK+1 to l2K data of the
second day are the second row of the matrix. N days of data are
selected to construct the 2D matrix [N×K]. Then, temperature,
date type, and holiday corresponding to the moment of the first
column load are added to the matrix in order to obtain the first
2D matrix [N×M]. This matrix can be used to predict lN×k+1 data.
The first 2D matrix is as follows:

⎧⎪⎪⎨⎪⎪⎩
l1 / lK T1 W1 H1

..

.
1 ..

. ..
. ..

. ..
.

l(N−1)×K+1 / lN×K T(N−1)×K+1 W(N−1)×K+1 H(N−1)×K+1

⎫⎪⎪⎬⎪⎪⎭.

(11)
Second, other matrix graphs are constructed: a fixed-length

sliding window method of 1D time series load dataset (with a
length of N×K and one step size) is used to capture the other load
matrix. That is, the l2 to lK+1 data are the first row of the second
matrix. The lK+2 to l2K+1 data are the second row of the second 2D
matrix. N rows of data are selected to construct the second load
matrix. The second matrix is also obtained by adding
temperature, date type, and holidays to the load matrix in
order. The second matrix can be used to predict lN×K+2 data.

Finally, following the fixed-length sliding window method
described before, the last 2D matrix is obtained. A total of (S-
N×K) 2D matrices can be obtained. Figure 4 shows the diagram
of 2D matrix conversion.

4.3 Probability Density Forecasting of
Industrial Load
1) Hyper-Parameters Optimization

Hyper-parameters are important factors that directly influence
the prediction accuracy of models. In this study, the prediction
accuracy is largely related to ConvLSTM layer parameters

FIGURE 3 | Load and temperature profiles.
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(number of filters, kernel size) andMDN parameters (the number
of components). Too many filters will increase model training
time and result in overfitting. On the contrary, models may not
get good accuracy results. In addition, a larger kernel size can
capture better global features, but the amount of calculation will
slow down training process. A smaller kernel size can improve
learning speed, but may not capture features well. Similarly,
appropriate number of components can better fit PDFs.

Therefore, we applied the grid search method for the hyper-
parameter optimization. The grid search method loops through
all selectable candidates to find the optimal parameters set. This
method is simple to implement and has great versatility. It is
described as follows: Given the possible values of three hyper-
parameters, then find the optimal set of hyper-parameters that
minimizes the validation loss. Table 1 shows the search space of
the three hyper-parameters in ConvLSTM layer and MDN. The
other benchmark models included in this study use the similar
approach to optimize the model hyper-parameters.

2) ConvLSTM-MDN Model

The converted 2D matrices are used as the input data of the
model. The input set is a dimensional tensor with (Y, 1,N,M, 1) size,
whereY is the number of samples. Themodel designed in this study is
composed of ConvLSTM layer, flatten layer, dense layer, and MDN.
The number of three layers is 1. The activation function of
ConvLSTM layer is a rectified linear unit (ReLU). The flatten
layer is a transition layer which can flatten the multidimensional
array into a linear vector. The dense layer is used to extract the
association between the previous features, and the activation function
of dense layer is linear function. Afterward, the hidden layers
mentioned earlier are merged into MDN to output the
approximated parameters (m mean values, m standard deviation,
and m mixing coefficients) in parallelized manner, where m is the
number of components in the MDN model. The future PDFs are
obtained according to the approximated parameters. Furthermore,
the loss function of the model is CRPS.

FIGURE 4 | Diagram of 1D time series to 2D matrix transforming.

TABLE 1 | Hyper-parameters of ConvLSTM layer and MDN.

Layer Parameter(s) N of 2D matrix Value

ConvLSTM Filters 15, 30, 45, 60, 75, and 90
Kernel size 2 (2×2)

3 (2×2), (3×3)
..
. ..

.

d (2×2), (3×3), . . ., (d×d)

MDN Number of components — 3, 4, 5, 6, 7, 8, 9, and 10
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3) Evaluation Metrics

To evaluate the deterministic forecasting performance of the
proposed model, two commonly used evaluation metrics are
adopted in this work, which are RMSE and MAPE. RMSE can
measure the deviation between the forecasted and the actual
value. But it is sensitive to data that fluctuates greatly in short
time. MAPE measures the accuracy by calculating the relative
error between the forecasted value and the actual value, which can
solve the problem of RMSE. If the actual value is zero, MAPE
cannot be calculated. The advantages of two evaluation metrics
can be leveraged. The aforementioned evaluation metrics are
defined as follows:

RMSE �
������������
1
n
∑n
i�1
(ŷi − yi)2√

, (12)

MAPE � 100%
n

∑n
i�1

∣∣∣∣∣∣∣∣ŷi − yi

yi

∣∣∣∣∣∣∣∣. (13)

Furthermore, we select CRPS as probabilistic evaluation
metrics to evaluate the performance of predicted PDF. CRPS
is widely used in the field of probabilistic forecasting, which can
comprehensively assess the calibration and sharpness of the
forecasted PDF. CRPS is expressed as follows:

CRPS � 1
n
∑n
i�1

∫+∞

−∞
[F�(x) − F(x)]2dx. (14)

The general research framework based on the ConvLSTM-
MDN model is visualized in Figure 5.

5 CASE STUDY

The proposed model is tested on three different types of industrial
customers to assess the feasibility of the probabilistic forecasting
method in load forecasting for industrial customers. Two industrial
datasets are collected from a nonferrous metal smelting industry and
a medical industry in Hunan Province, China, with a temporal
resolution is 15-min interval. Another dataset is retrieved from
the Irish Smart Metering Electricity Customer Behaviour Trials
(CBTs) (Commission for Energy Regulation (CER), 2012).
Temperature data are acquired from the National Oceanic and
Atmospheric Administration (NOAA) website. After converting
the aforementioned data into 2D matrices by using the fixed-
length sliding window method mentioned in Subsection 4.2, the
input dataset of themodel is obtained. Then, 70% of the input dataset
is dedicated to training, 10% for validating, and 20% for testing.

For the sake of comparison, eight different models are integrated
into the MDN to construct PDFs with the same dataset, including
linear regression (LR), autoregressive integrated moving average
model (ARIMA), SVR, random forest (RF), feedforward neural

FIGURE 5 | Load forecasting framework based on the ConvLSTM-MDN model.

TABLE 2 | Hyper-parameters of the contrast models.

Model Hyper-parameter(s) Value

ARIMA-MDN (p, d, q) (2, 0, 1)
SVR-MDN Kernel function RBF

Penalty coefficient 1
RF-MDN Trees 80
FFNN-MDN FFNN layer, units 1, 120
LSTM-MDN LSTM layer, units 1, 120
2D-CNN-MDN Convolutional layer 1

Filters, kernel size 60, (2×3)
Max-pooling layer 1

2D-CNN-LSTM-MDN Convolutional layer 1
Filters, kernel size 45, (2×3)
Max-pooling layer 1
LSTM layer, units 1, 60

TABLE 3 | Forecasting results of each N.

N of 2D matrix Evaluation metrics

Median CRPS (%)

RMSE (kW) MAPE (%)

2 19.717 2.813 13.475
3 19.052 2.605 12.774
4 19.094 2.708 13.192
5 21.795 3.016 15.385
6 20.555 2.813 14.086
7 24.123 3.802 18.519

The bold values indicate the minimum value of each evaluation metrics, that is, the best
forecasting effect.
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network (FFNN), LSTM, 2D-CNN, and 2D-CNN-LSTM. The
hyper-parameters of all models are given in Table 2. The first to
sixth model in the contrast models directly use 1D time series data as
the input data. The rest of model use 2D matrices as input data. The
activation function of the neural network in all models is ReLU.
Adam Optimizer is used to optimize the network parameters to
minimize loss function. The number of components in the MDN
network of all contrast models is 3.

5.1 Experiment 1: Load Forecasting of the
Nonferrous Metal Smelting Industrial
Customer
The nonferrous metal smelting industry data collected between 1
March 2018 and 31 August 2018 are selected for a short-term

probability density function forecasting case study. After converting
a 1D time series to 2D matrices, the input dataset is split into three
parts for training (1 March 2018 to 6 July 2018), validation (7 July
2018 to 24 July 2018), and testing (25 July 2018 to 31 August 2018).

5.1.1 2D Matrix Size Analysis
According to the conversionmethod described in Subsection 4.2, the
size of converted 2D matrix is [N×M]. From Section 3.1, we know
that temporal relevancy between loads weakens as the time interval
increases. Since theM of the matrix is fixed, time length of historical
load is determined byN. Too largeNmay result in longer processing
time and running out of memory. On the contrary, too small Nmay
lead to insufficient extraction of information. Therefore, we need to
select an appropriate value ofN. Considering the processing time, we

FIGURE 6 | ConvLSTM-MDN model predictive distribution and real values for a day at (A) 8:00 and (B) 16:00 in experiment 1.

FIGURE 7 | PIs under different confidence levels obtained by the proposed ConvLSTM-MDN model in experiment 1.
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set the value range of N to [2,7] in this study. By comparing the
optimal result corresponding to eachN, theNwithminimum error is
selected as the finalN. The result corresponding to eachN is shown in
Table 3.

It is observed that the most accurate results are obtained when
N = 3, that is, the RMSE, MAPE, and CRPS values are lower than
the other values of N. When N = 7, the three error are the largest.
The difference between the error of other N is little. Furthermore,
the optimal hyper-parameters (filters, kernel size, and the number
of components in the MDN) of the model corresponding toN = 3
are 30, (2 × 2), and 3.

5.1.2 Forecasting Result
After determining the size of 2D matrix and hyper-parameters of
the model, training set and validation set are used to train the
model to obtain the optimal model. Finally, the testing set is input
into the optimized ConvLSTM-MDN model to forecast PDFs of
industrial load. Figure 6 shows the predicted PDFs for two
different times of a day in the testing set and associated real
values. Figure 6A,B show the PDFs for peak hours and off-peak
hours, respectively. As shown in the figures, real values are very
close to the peak of the PDF curve, especially real value in

TABLE 4 | Load forecasting evaluation on the testing set.

Time From 25-Jul-2018 to 31-Aug-2018

Evaluation metrics Median CRPS (%) Forecasting time(s)

RMSE (kW) MAPE (%)

LR-MDN 53.616 10.028 40.391 0.050
ARIMA-MDN 52.296 9.690 40.376 0.459
SVR-MDN 42.826 7.681 32.897 0.523
RF-MDN 34.196 5.816 24.496 0.500
FFNN-MDN 33.184 5.640 23.125 0.574
LSTM-MDN 28.628 4.554 21.002 0.140
2D-CNN-MDN 28.625 3.989 19.622 0.180
2D-CNN-LSTM-MDN 23.707 3.600 17.418 0.401
Proposed model 19.051 2.604 12.774 0.606

The bold values indicate the minimum value of each evaluation metrics, that is, the best forecasting effect.

FIGURE 8 | Load forecasting profiles of all models in experiment 1.

TABLE 5 | Forecasting results of each N

N of 2D matrix Evaluation metrics

Median CRPS (%)

RMSE (kW) MAPE (%)

2 17.870 2.372 13.517
3 17.520 2.371 13.433
4 17.404 2.343 13.283
5 17.865 2.414 13.702
6 18.094 2.487 13.993
7 18.692 2.593 14.545

The bold values indicate the minimum value of each evaluation metrics, that is, the best
forecasting effect.
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Figure 6B almost coincides with the peak, which indicates that
the sharpness of predicted PDF is clear.

Taking two sample days in testing set as an example, the PIs under
different confidence level obtained by the proposed ConvLSTM-
MDN framework are shown in Figure 7. As presented in Figure 7,
the PIs under a higher confidence level can cover the PIs under a
lower confidence level. In addition, the PIs under different confidence
levels and real values of the load have similar fluctuation. Since the PIs
under a low confidence level is narrower than the PIs under a high
confidence level, the small number of real loads falls outside the PI
with lowest confidence level. The PIs becomes narrower when the
value of load rises or falls rapidly, and the PIs for peak hours
become wider.

5.1.3 Comparisons Analysis
The forecasting result comparisons between the proposedmodel and
contrast models are all provided in Table 4, with the best
performance being highlighted. In the table, the forecasting effect
of statistical method integrated into the MDN obviously worse than
machine learning algorithms integrated into the MDN, and shallow
machine learning algorithms worse than deep learning algorithms.
For deep learning algorithms, the model combining 2D-CNN and
LSTM can achieve better performance than LSTM and 2D-CNN
alone for forecasting. The ConvLSTM, which leverages the strengths
of CNN and LSTM, performs better than 2D-CNN-LSTM. For
instance, the RMSE improvement rates is 19.64%, the MAPE
improvement rates is 27.67%, and the CRPS improvement rates

FIGURE 9 | ConvLSTM-MDN model predictive distribution and real values for a day at (A) 8:45 and (B) 23:00 in experiment 2.

FIGURE 10 | PIs under different confidence levels obtained by the proposed ConvLSTM-MDN model in experiment 2.
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is 26.67%. It indicates that ConvLSTM can better capture features of
industrial load. In addition, the application of ConvLSTM network
to the load forecasting of industrial customers is feasible and
effective. Compared with comparison models, the proposed

model achieves the most accurate results, which shows the
superiority of the model in PLF and DLF. Above all, it can be
concluded that the ConvLSTM-MDN model is effective for solving
the load forecasting problem of industrial customers.

In order to clearly display the prediction results of all models,
the load of 2 days in the testing set is selected for further analysis,
as shown in Figure 8. It is observed that the load of industrial
customer in experiment 1 has strong volatility and high
nonlinearity, which brings challenges to all models. According
to curves in the figure, contrast models have large deviations from
the real load, but the proposed model in this study generally fits
and catches the trend of actual load.

5.2 Experiment 2: Load Forecasting of
Medical Industrial Customer
In this experiment, the load data of the medical industry from 1
March 2018 to 31 August 2018 are used to run simulations.

TABLE 6 | Load forecasting evaluation on the testing set.

Time From 28-Jul-2018 to 31-Aug-2018

Evaluation metrics Median CRPS (%) Forecasting time(s)

RMSE (kW) MAPE (%)

LR-MDN 53.308 9.231 65.224 0.705
ARIMA-MDN 33.045 5.725 30.018 1.945
SVR-MDN 50.035 7.692 41.837 0.949
RF-MDN 51.780 8.285 46.491 0.466
FFNN-MDN 25.141 3.072 17.822 0.061
LSTM-MDN 22.499 2.956 16.804 0.374
2D-CNN-MDN 22.719 3.091 17.434 0.693
2D-CNN-LSTM-MDN 22.018 2.736 16.078 0.281
Proposed model 17.404 2.343 13.283 1.768

The bold values indicate the minimum value of each evaluation metrics, that is, the best forecasting effect.

FIGURE 11 | Load forecasting profiles of all models in experiment 2.

TABLE 7 | Forecasting results of each N.

N of 2D matrix Evaluation metrics

Median CRPS (%)

RMSE (kW) MAPE (%)

2 0.407 15.986 0.194
3 0.406 14.972 0.191
4 0.393 14.516 0.183
5 0.415 18.867 0.205
6 0.417 16.916 0.202
7 0.435 17.910 0.215

The bold values indicate the minimum value of each evaluation metrics, that is, the best
forecasting effect.
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Similarly, the approximate time range of testing set is from 25 July
2018 to 31 August 2018.

5.2.1 2D Matrix Size Analysis
According to the comparison inTable 5, themost accurate results are
obtained whenN = 4. Although the values of three evaluationmetrics
fluctuate with the change of N, the fluctuation range is small, that is,
the difference between the maximum and minimum of RMSE,
MAPE, and CRPS is 1.288, 0.25, and 1.315, respectively. It reflects
the stability of themodel under different input features. Furthermore,
in the case ofN= 4, filters, kernel size and the number of components
are 75, (2 × 2), and 3.

5.2.2 Forecasting Result
Figure 9 shows the PDFs of the peak hour (Figure 9A) and off-
peak hour (Figure 9B) of a day in the testing set and the
associated real values. It can be observed from the figure that
real values all falls near the peak of the PDF curve, especially real
value in Figure 9B is the closest to the peak. It indicates that the
high forecasting accuracy of the proposed model.

Figure 10 shows the PIs under different confidence level
obtained by the proposed ConvLSTM-MDN model and real

values in two sample days. It can be seen that a few real
values fall outside the PI with lowest confidence level, and all
real values fall within the PI with highest confidence level. The PIs
under all confidence levels and real values of the load have similar
fluctuation trend, which shows that the proposed model can
capture the dynamic changes of the load.

5.2.3 Comparisons Analysis
Table 6 shows the evaluation metrics of all models on the testing set.
The performance of deep learning algorithms integrated into the
MDN significantly outperform the performance of shallow machine
learning algorithms and statistical method integrated into the MDN
in the term of all metrics. Among contrast models, the 2D-CNN-
LSTM-MDN model has the best forecasting results. But compared
with the 2D-CNN-LSTM-MDN model, the ConvLSTM-MDN
model has the minimum errors, which indicate that the proposed
model improves the forecasting accuracy. Although the forecasting
time is the longest, it is acceptable in practical application with the
popularization of cloud computing.

Figure 11 shows the comparison between the prediction
results and actual values for 2 days in the testing set. It is
observed that the proposed model can better fit the trend of

TABLE 8 | Load forecasting evaluation on the testing set.

Time From 21-Oct-2010 to 31-Dec-2018

Evaluation metrics Median CRPS (%) Forecasting time(s)

RMSE (kW) MAPE (%)

LR-MDN 0.684 86.362 0.523 0.450
ARIMA-MDN 0.961 111.577 0.775 0.845
SVR-MDN 0.749 84.804 0.531 0.846
RF-MDN 0.584 81.013 0.464 0.654
FFNN-MDN 0.475 19.321 0.240 1.102
LSTM-MDN 0.496 18.106 0.249 0.744
2D-CNN-MDN 0.521 33.586 0.303 0.746
2D-CNN-LSTM-MDN 0.425 20.494 0.218 0.884
Proposed model 0.393 14.516 0.183 0.393

The bold values indicate the minimum value of each evaluation metrics, that is, the best forecasting effect.

FIGURE 12 | ConvLSTM-MDN model predictive distribution and real values for a day at (A) 10:00 and (B) 13:00 in experiment 3.
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actual load, and other models have large deviations from the real
load, especially the LR-MDN model.

5.3 Experiment 3: Load Forecasting of the
Irish Industrial Customer
In this experiment, public dataset small-to-medium industrial
customer collected from Irish is from 1 January 2010 to 31

December 2010 with a 30-min interval. According to the
splitting rules, the approximate time range of testing set is
from 21 October 2010 to 31 December 2010.

5.3.1 2D Matrix Size Analysis
Table 7 shows the minimum error for each N. This experiment
also achieves the best forecasting result when N = 4, which is the
same as experiment 2. In the case of N = 4, filters, kernel size and

FIGURE 13 | PIs under different confidence levels obtained by the proposed ConvLSTM-MDN model in experiment 3.

FIGURE 14 | Load forecasting profiles of all models in experiment 3.
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the number of components are 15, (2 × 2), and 3. There is a
significant difference between Irish industrial load and other
industrial loads, for example, the maximum values of the three
industrial loads are 8.257 kWh, 971.2 kWh, and 785.4 kWh.
Therefore, the value of the evaluation metrics in this
experiment is completely different from the evaluation metrics
in the previous two experiments.

5.3.2 Forecasting Result
Figure 12 shows the PDFs of the peak hour and off-peak hour of a
day in the testing set and the associated real values. It can be
observed from the figure that the real value in Figure 12A is the
closest to the peak. Figure 13 shows the PIs under different
confidence level and real values in two sample days. In order to
better display the forecasting result, we adjust the value of
confidence level. As the value of confidence level decreases,
real values that falls outside the PI increases. In addition, The
PIs under all confidence levels can capture the dynamic changes
of the load.

5.3.3 Comparisons Analysis
Table 8 shows the evaluation metrics of all models on the testing
set. The results of shallow machine learning algorithms are far
inferior to deep learning algorithms. Among all the models, the
proposed model has the best forecasting performance. Figure 14
shows the comparison between the prediction results and actual
values for 2 days in the testing set. It can be seen that contrast
models are quite different from the real load, and the proposed
model can better fit the trend of actual load.

6 CONCLUSION

In this study, we propose a new probabilistic forecasting method,
which can capture the uncertainty of a single industrial customer’s
load. By restructuring the load and various relevant factors into
2D matrices using a sliding-window approach, the forecasting
model—ConvLSTM-MDN—was applied to the short-term
probability forecasting problem of industrial loads. In order to
verify the performance of the proposed method, this study builds
the classical statistical methods, state-of-the-art deep- and shallow-
based models for comparison, and conducts numerical simulations
in three experiments. The following results were noted.

1) For three completely different industrial customers, the
experimental results of 2D matrix size analysis show that
the best forecasting results are obtained when N is 3 or 4.
Therefore, when N is in the range of (3, 4), the historical load
of a reasonable time interval can be obtained as input feature,

which can not only ensure the forecasting accuracy but also
reduce the training time.

2) The proposed model takes full advantage of the capabilities of
ConvLSTM in feature extraction and sequence learning and
the capabilities of MDN in describing uncertainty. The final
results show that the model can effectively improve the
forecasting accuracy of industrial load. For example,
15–60% improvement in accuracy compared to deep-based
models.

3) The hybrid model used in this study is not complex, and a
variety of external factors are considered, which is beneficial to
be extended to various industrial customers. The forecasting
results for three industrial customers show that the model
generalizes well.

In our future work, we will study how to reduce computational
demand and training time when the value of N increases.
Moreover, the feature factors affecting industrial customer
such as electricity price will be considered to improve
forecasting accuracy.
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Cluster Partition-Based Zonal Voltage
Control for Distribution Networks With
High Penetrated PVs
Xingyu Zhao, Chuanliang Xiao*, Ke Peng, Jiajia Chen and Xinhui Zhang

School of Electronic Engineering, Shandong University of Technology, Zibo, China

With the high penetrated photovoltaics (PVs) accessing distribution networks (DNs) in the
future, the overvoltage of distribution network will be more serious, and the voltage control
will be more complex. To solve this problem, a cluster partition-based zonal voltage control
method for DN is proposed in this study. First, a cluster partition method using a
comprehensive performance index is proposed: in terms of DN structure, a global
density quality function index is introduced to measure the coupling degree of nodes
in clusters. In terms of cluster function, the inconsistency coefficient index is presented to
reflect the PV output characteristics, and a node membership function index is presented
to limit the scale of the cluster. Then, the DN cluster partition is carried out under the fast
Newman (FN) algorithm. Second, a second-order cone programming (SOCP) model of
voltage control is established to maximize the PV consumption in each cluster. To achieve
the coordinated optimization of clusters, an iterative optimization strategy among clusters
is proposed. Finally, the effectiveness and rationality of the proposed method are verified in
a 10 kV actual feeder system in Zhejiang Province, China.

Keywords: distributed network, photovoltaic generation, cluster partition, distributed optimization, voltage control

1 INTRODUCTION

In order to promote the realization of peaking and carbon neutrality goals, China will carry out the
development of roof-distributed PVs for the whole county. However, the integration of large-scale
PVs aggravates the overvoltage in the DN (Wang et al., 2021), and the voltage control model turns
into a high-dimensional complex model (Liao et al., 2017; Li et al., 2018), which is difficult to solve.
Therefore, the investigation of voltage control strategies for active distribution networks (ADNs)
with a high penetration of PVs is necessary to improve the consumption of PVs. Zonal voltage
control (Han et al., 2019) provides an effective solution for solving the complex voltage control.
Under the network partition, the high-dimensional voltage control model can be transformed into
several subproblems which are easy to be solved (Xiao, 2020). Zonal voltage control mainly exists in
two aspects: network partition and subnetwork voltage regulation.

To implement the zonal voltage control, the network partition is first carried out. In terms of the
network partition index, the DN structure and power balance are the main basis for a network
partition. Hu et al. (2021) used the reactive voltage sensitivity matrix to express the electrical coupling
degree between nodes, and the sensitive nodes are found out to complete the network partition. Dou
et al. (2018) proposed a division index system of virtual cluster, including the spatial location, output
characteristics, and response mode of PVs. Kou et al. (2019) proposed the network partition indexes
which include the net load of nodes and active and reactive power regulation capacity of PVs. Chai
et al. (2007) proposed the cluster performance index. The index considers the electrical distance
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between nodes and regional voltage regulating ability, which can
ensure each cluster solves the voltage violations within the
clusters. In the context of PV accessing in the whole counties,
the scale of PVs in DNs is continuous expanded, the influence of
PVs on network partition cannot be ignored. Therefore, it is not
enough to employ the electrical distance and power balance as the
network partition index. If the consistency of PV output and
nodal voltage in the cluster can be considered during the network
partition, the output of the subnetwork will be more smooth and
controllable. In terms of network partition algorithms, there are
three main types: intelligent algorithms, clustering algorithms,
and community discovery algorithms of complex networks. Bi
et al. (2019) proposed an improved genetic algorithm, which can
find the optimal network partition according to the state of tie
switch. Although the amount of calculation is reduced, this
algorithm has a long time scale, which is not suitable for real-
time optimization. Yan et al. (2021) used the Tabu search
algorithm to complete the network partition. But this
algorithm cannot automatically generate the optimal number
of clusters, which can lead to an inaccurate result. Wang et al.
(2021) proposes a fast-unfolding clustering algorithm for cluster
partitioning, which employs the complex network modularity
function to avoid setting the threshold value. When the network
structure changes, the algorithm is no longer applicable. In
different scenarios, and the time scale and accuracy of the
network partition are different. For the zonal voltage control
of DNs, the voltage control belongs to a real-time optimization,
which requires a short-time scale of network partition. Therefore,
determining how to establish a network partition algorithm with
fast computing speed and accurate performance is the key to
achieving zonal voltage control.

After DNs are partitioned into several subnetworks, the zonal
voltage control method can be applied. The zonal voltage control
mainly focuses on the optimization within subnetworks and the
coordination among subnetworks. Xiao et al. (2017) adopted the
zonal voltage control strategy of “maximize reactive power
regulating first, and then minimize active power curtailing.”
Although the control process is simplified, the active
power–reactive power interaction between subnetworks is not
considered. According to the overvoltage degree, Li et al. (2021)
proposed a voltage regulation control strategy based on the
energy storage cluster. Autonomous optimization is realized by
utilizing the energy storage system in clusters, but the
coordination between clusters is not considered. Chai et al.
(2019) used the alternating direction method of multipliers
(ADMM) to optimize the zonal voltage between upstream and
downstream clusters, which only achieves the coordination
between adjacent clusters. With the high penetrated PVs
accessing distribution networks, it is necessary to further
establish a reasonable and effective coordination strategy
among clusters. Therefore, realizing the independent voltage
control in each subnetwork and the coordinating control
among the subnetworks deserves deep research.

In light of the aforementioned issues, this study proposes a
cluster partition-based zonal voltage control method for DNs.
The main contributions of this study are summarized as follows:

1) Based on the community partition theory, a cluster partition
method combined with the cluster comprehensive
performance index and FN algorithm is proposed. The
electrical information of the network structure and the
impact of PVs on the partitioning solutions are considered,
and the size of each subnetwork can be restricted.

2) A SOCP-based voltage control model aiming at the maximum
PV consumption in the cluster is established. The high-
dimensional voltage control model of the whole DN is
transformed into several subproblems within the clusters,
which are easily solved.

3) An iterative optimization-based active power coordination
strategy among clusters is proposed to realize the coordination
among different clusters. The maximum PV consumption for
all clusters can be guaranteed.

The remainder of this study is organized as follows. In
Section 2, a comprehensive performance index-based cluster
partition method is proposed. In Section 3, an independent
optimization model in the cluster is proposed. In Section 4, the
active power coordination and interaction strategy among
clusters is proposed. The case study is described in Section 5,
and a 10 kV actual feeder network is used for simulation
verification, followed by discussion and conclusions in
Section 6.

2 COMPREHENSIVE PERFORMANCE
INDEX-BASED CLUSTER PARTITION
METHOD
2.1 Comprehensive Performance Index of
Cluster Partition
In order to solve the problem that the factors of the existing
cluster partition index are not comprehensive, in this study, based
on the DN structure and cluster function, the comprehensive
performance index is proposed to complete the cluster partition.
The comprehensive performance index is composed of the global
density quality function index, the inconsistency coefficient
index, and the node membership function index.

The global density quality function is selected to measure the
coupling degree of nodes in clusters according to the DN, so as to
satisfy the structural principle which means that the nodes with a
strong coupling degree should be divided into the same clusters,
and nodes with a weak coupling degree should be divided into
different clusters. First, the global internal density quality
function Qi

GD and the global external density quality function
Qe

GD are defined, where Qi
GD represents the coupling degree of

nodes within the cluster and Qe
GD represents the coupling degree

of nodes between clusters.

Qi
GD � ∑K

k�1 ∑x∈Vk
∑y∈Vk

Axy∑i ∑j Aij
, (1)

Qe
GD � ∑K

k�1 ∑x∈Vk
∑y∈V−Vk

Axy∑i ∑j Aij
, (2)
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where k is the number of clusters, Vk represents the k-th cluster,
Axy represents the weight of the edges of nodes x and y,∑K

k�1 ∑
x∈Vk

∑
y∈V−Vk

Axy represents the sum of edge weights of all

nodes in the cluster K, ∑K
k�1 ∑

x∈Vk

∑
y∈V−Vk

Axy represents the sum of

edge weights of all nodes in different clusters, Aij represents the

weight of the edges of nodes i and j, and ∑
i
∑
j
Aij represents the

sum of edge weights of all nodes in the whole network.
In this study, the edge weight of the DN is determined by the

active voltage sensitivity matrix SPU, which can be got from Xiao
et al. (2017). In order to reflect the coupling degree between nodes,
the average value of edge weight is used to represent the weight Aij:

Aij � SijPU + SjiPU
2

, (3)

where the value of Qi
GD andQe

GD belongs to (0,1). As Qi
GD is close

to 1, it indicates that the nodes in a cluster have a strong coupling
degree. As Qe

GD is close to 0, indicates that the nodes in different
clusters have a weak coupling degree. The global density quality
function index QGD is defined as follows:

QGD � 1
2
(Qi

GD + 1 − Qe
GD). (4)

The value ofQGD belongs to (0,1). AsQGD is close to 1, it indicates
that in the same clusters, the nodes have a strong coupling degree
and in the different clusters, the nodes have a weak coupling degree,
that is, the larger the value of QGD, the better the partition result.

Due to the strong fluctuation of PV output, it is difficult to ensure
that the clustering results can satisfy the DN topology constraints. If
the PV nodes with inconsistent output are partitioned into the same
cluster, the PV output in each cluster will be smoother, and the
regulation ability of clusters can be increased. Therefore, the
inconsistency coefficient index X is proposed to describe the
variation trend of PV output in the cluster at different times.

X � 1
ΔT∑T

t�2
∑
i∈Vk

∑
j∈Vk

ft(Pi,Pj)/(T − 1), (5)

where Pi and Pj are the output sequences of PV i and PV j in the
network, T is the sampling number of PV output in the whole day,
and ΔT is the sampling time interval, which is set to 15 min. The
expression of ft(P

i, Pj) is given as follows:

ft(Pi,Pj) � ⎧⎨⎩ 1, (Pi
t − Pi

t−1)(Pj
t − Pj

t−1)< 0
0, (Pi

t − Pi
t−1)(Pj

t − Pj
t−1)≥ 0 , (6)

where ft(P
i, Pj) is the inconsistency of the output curve trend

between PV i and PV j during the t-th to the t-1 sampling point
within a cluster. When the output curve trend of two PVs is
inconsistent (one rising and one falling), ft(P

i, Pj) is taken as 1,
and ft(P

i, Pj) is taken as 0 when they are consistent.
A suitable scale of cluster will affect the difficulty of subsequent

zonal voltage control. The balance of nodal size in clusters will
reduce the complexity of zonal voltage control. Therefore, in

order to judge the nodal size of each cluster, a node membership
index is established:

M � μ(x,V |x|)
μ(x,V − V |x|), (7)

μ(x,V|x|) � 1

|V[x]| ∑y∈V |x| Axy, (8)

μ(x,V − V |x|) � 1

|V − V[x]| ∑y∈V−V |x| Axy, (9)

where V[x] represents the cluster which node x belongs to, that is,
x ∈V[x]; |V[x]| represents the sum of total edges between nodes in
the cluster, where node x belongs to; μ(x, V[x]) indicates the
membership degree of the nodes connected to x in the same
cluster V[x]; V-V[x] represents the cluster which does not contain
node x; |V-V[x]| indicates the sum of edges between nodes within
clusters, except V[x]; and μ(x, V-V[x]) indicates the membership
degree of node y in cluster V-V[x].

Based on the aforementioned indexes, the comprehensive
performance index is defined as follows:

ω � ω1QGD + ω2X + ω3M , (10)
where ω1, ω2, and ω3 are the weights of global density quality
function index, inconsistency coefficient index, and node
membership index, respectively, which meet 0≤ω1; ω2; ω3 ≤ 1
and ω1+ω2+ω3 = 1.

2.2 Cluster Partition Algorithm
Community structures are formed by the aggregation of network
nodes, which generally utilize regional coupling of physical,
chemical, or social interaction relations (Cohen, 2009). The
community should satisfy that the nodes with a strong coupling
degree belong to the same clusters, and nodes with a weak coupling
degree belong to different clusters. A power network is also a
complex network composed of points and edges, in which the
point corresponds to the node in the network, and the edge
corresponds to the connecting line between nodes (Liu, 2019).
The community not only reflects the structural characteristics of
the network but also reveals the internal relations of the network.
Based on the community discovery algorithm, the community
structure, which has a close connection within the community and
a sparse connection between communities, can be analyzed. The
FN algorithm is a complex network community partition
algorithm based on a local search proposed by Newman et al.
(2004). The steps of using the FN algorithm to divide clusters are as
follows:

Step 1: Each node in the network is regarded as a separate cluster,
and the initial comprehensive performance index valueω0

is calculated according to Eq. 10.
Step 2: For node i, node j is selected randomly from the

remaining nodes to merge into a node pair. The
comprehensive performance index ω1 is calculated.
Then calculate the value Δω = ω1-ω0.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9008243

Zhao et al. Zonal Voltage Control

41

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Step 3: Step 2 is repeated for all node pairs. The node pair with
the largest Δωwill be merged into a cluster and referred to
as an individual node.

Step 4: Steps 1-3 are repeated until the comprehensive performance
index value for all node pairs does not increase. The optimal
cluster partition and the associated comprehensive
performance index value can be obtained.

3 ZONAL VOLTAGE CONTROL MODEL IN
CLUSTERS

3.1 Objective Function
For the overvoltage in the DN, a SOCP-based voltage control
model is established with the objective function to maximize the
PV consumption. Based on the cluster partition, combined with
the regulation capacity of energy storage, the objective functions
of clusters can be established as follows:

F � max
⎧⎪⎨⎪⎩∑nPVK

i�1 PPV
i,t − PESS,t − Ploss,t

⎫⎪⎬⎪⎭, (11)

where nPVK is the number of installed PVs in cluster K, PPV
i,t is the

output power of PV i at time t, PESS,t is the energy storage power at
time t, and Ploss,t is the network loss at time t.

3.2 Constraints of the Proposed Model
1) Power flow constraints of DN

The traditional nonlinear power flow model can be
transformed into a SOCP power flow model by second-order
cone relaxation (Peng et al., 2021).

{P2
ij,t + Q2

ij,t � Lij,tU
2
i,t

U2
i,t � ui,t

�
�����������

2Pij,t

2Qij,t

Lij,t − ui,t

�����������
2

≤ Lij,t + ui,t ,∀(i, j) ∈ χ,

(12)
PPV ,j,t − PL,j,t − PESS,j,t � ∑

l∈Φ(j) Pjl,t −∑
i∈Λ(j)(Pij,t

− rijLij,t),∀j ∈ ΠP
K , (13)

Pp
PV ,j,t − PL,j,t − PESS,j,t � ∑

l∈Φ(j) Pjl,t −∑
i∈Λ(j)(Pij,t

− rijLij,t),∀j ∈ ΠP
K , (14)

QPV ,j,t − QL,j,t � ∑
l∈Φ(j) Qjl,t −∑

i∈Λ(j)(Qij,t − xijLij,t),∀j ∈ Π,

(15)(Umin)2 ≤ ui,t ≤ (Umax)2,∀j ∈ Π, (16)
Lij,t ≤ (Imax

ij )
2
,∀(i, j) ∈ χ. (17)

In the aforementioned constraints, Eq. 12 represents the
second-order cone relaxation transformation of branch power
flow, where Lij,t represents squared current magnitude of line i-j
at time t; Pij,t and Qij,t represent the active power and reactive
power of the line from node i to node j at time t, respectively; Ui,t

represents the voltage amplitude on node i at time t; ui,t represents

the square of the voltage amplitude on node i at time t; and χ
represents all line sets. Eqs 13–15 represent the injection power
balance equation of active and reactive nodes, whereV(j) and Λ(j)
represent the parent branch set and child branch set of node j,
respectively; PPV,j,t represents the adjusted active power generation
of the j-th PV node at time t; Pp

PV,j,t represents the output active
power of the j-th PV at time t, which is the constant value; QPV,j,t

represents the reactive power regulation amount of the PV inverter
of the j-th PV at time t, which is the constant value; U represents a
collection of all nodes; ΠP

K represents the collection of all nodes in
cluster K; PL,j,t and QL,j,t represent the active and reactive load
demand of the j-th node at time t; PESS,j,t represents the energy
storage absorbed power at the j-th node at time t; and rij and xij
represent the resistance and reactance of line i-j. Eqs 16, 17
represent the node voltage amplitude and branch current
constraints, where Imax

ij represents themaximum current of line i-j.

2) Upper and lower limits of PV output:

0≤PPV ,i,t ≤Pmax
PV ,i,t , (18)

where Pmax
PV,i,t is the upper limit value of active power output of PV

i at time t.

3) Energy storage state constraints:

SOC,min ≤ SOC,t ≤ SOC,max, (19)
−PESS,N ≤PESS,t ≤PESS,N , (20)

where SOC,t is the energy storage state of charge at time t; SOC,max

and SOC,min are the upper and lower limits of the energy storage
state of charge, respectively; PESS,t is the energy storage power at
time t; and PESS,N is the rated power of energy storage.

4 ITERATIVE OPTIMIZATION-BASED
ACTIVE POWER COORDINATION
STRATEGY OF CLUSTERS
To realize the coordination among clusters, an iterative optimization-
based active power coordination strategy among clusters is proposed,
which takes advantage of the weak coupling between clusters. The
specific process of the proposed strategy is shown in Figure 1.

Step 1: Based on the cluster partition, check whether the node
voltage in each cluster exceeds the voltage limit. If the
node voltage is within the normal range, it ends; if there
exists overvoltage, proceed to the next step.

Step 2: The clusters with overvoltage are recorded as
CV � {CV

1 , C
V
2 , . . . , C

V
K, . . . , C

V
N}. Then, each cluster in

CV optimizes the objective of Eq. 11 to obtains the
optimal output power of PV
P0
PV � {P0

CV
1 ,PV

, P0
CV
2 ,PV

, . . . , P0
CV
K,PV

, . . . , P0
CV
N,PV

}, and the
charging power of stored energy P0

ESS �{P0
CV
1 ,ESS

, P0
CV
2 ,ESS

, . . . , P0
CV
K,ESS

, . . . , P0
CV
N,ESS

}.
Step 3: Based on the intra-cluster optimal solution P0

PV and P0
ESS,

a power flow calculation is carried out for the DN after the
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active power cutting of the PV in cluster C
V
. When the

voltage of the whole network is qualified, it ends.
Otherwise, go to the next step.

Step 4: Taking P0
PV as the initial value, each cluster in CV

optimizes the objective of Eq. 11 again to obtains the
best output power of PV
P1
PV � {P1

CV
1 ,PV

, P1
CV
2 ,PV

, . . . , P1
CV
K,PV

, . . . , P1
CV
N,PV

}, and the
charging power of stored energy P1

ESS �
{P1

CV
1 ,ESS

, P1
CV
2 ,ESS

, . . . , P1
CV
K,ESS

, . . . , P1
CV
N,ESS

}.
Step 5: Perform a power flow calculation based on the optimized

results in step 4. If the voltage of the whole network is
qualified, it ends; otherwise, proceed to the next step.

Step 6: Repeat steps 2-5 until all node voltages are within the
normal range.

FIGURE 1 | Flowchart of the proposed voltage control.

FIGURE 2 | Topology of 10 kV feeder under study.
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5 CASE STUDY

5.1 Case Study System
In order to verify the effectiveness of the proposed method, an actual
three phase balanced 10 kV radial active distribution network in
Zhejiang Province, China, was employed. The feeder has 34 nodes in
total. Among them, bus 0 is employed as the reference node, its
voltage value is set to 1.05 p.u. The total load in the feeder is 7.3MVA,
and a total of 4MWPVs and 1.2MWenergy storage are added to the
network. The topology of the feeder is shown in Figure 2.

In this network, the capacity of installed PVs and energy
storages are shown in Tables 1, 2, respectively.

First, the feeder is modeled by OpenDSS simulation platform,
and then the cluster partition and the zonal voltage control are
carried out under MATLAB. In order to verify the effectiveness of
the proposed method, the day with the largest PV output in 2021
is taken as a typical scenario to be analyzed. The daily maximum
PV output is shown in Figure 3.

5.2 Cluster Partition of the Feeder
Different partition results can be obtained under the
comprehensive performance index with different weights. In the
cluster partition, different weights can be set for each index
according to the experimental conditions. In this study, three
weight combinations (numbered C1, C2, and C3) are employed
to illustrate the influence of a comprehensive performance index
on cluster partition. Table 3 shows the cluster partition results
obtained by different weight combinations.

It can be seen from Table 3 that as a certain weight creasing,
the influence of the corresponding index will be enhanced in the
cluster partition. For example, from the weight combination C1
to C2, the weight ω1 becomes smaller; meanwhile, the global
density function index becomes smaller. It can be known that the
value of ω1 in Eq. 10 will be smaller, which means the influence of
the global density function index is reduced. Therefore, the weights
ω1, ω2, and ω3 should be set according to the experimental

TABLE 1 | Capacity of installed PVs.

Node location 11 12 23 24 30 32

Capacity (kW) 500 500 500 500 500 1,500

TABLE 2 | Capacity of installed energy storage.

Node location 10 13 20 29

Capacity (kW) 300 300 300 1,000

FIGURE 3 | Daily maximum outputs of PVs.

TABLE 3 | Results of cluster partition under different weight combinations.

Number ω1 ω2 ω3 QGD X M ω Number
of clusters

C1 0.4 0.3 0.3 0.8639 0.6637 0.7233 0.7617 6
C2 0.3 0.4 0.3 0.8322 0.6866 0.7016 0.7308 7
C3 0.3 0.3 0.4 0.8148 0.6748 0.7039 0.7311 7

FIGURE 4 | Cluster partition results under the proposed method.

TABLE 4 | Results of cluster partition under different indexes.

Cluster Node

ω ρ

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2 12, 13, 14, 15, 16, 17 12, 13
3 18, 19, 20, 21 14, 15, 16, 17
4 22, 23, 24 18, 19, 20, 21
5 25, 26, 27, 28, 29 22, 23, 24
6 30, 31, 32, 33 25, 26
7 27, 28, 29
8 30, 31, 32, 33
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conditions. According to the actual needs in this study, the cluster
partition is analyzed by setting ω1 = 0.4, ω2 = 0.3, and ω3 = 0.3. The
cluster partition results are shown in Figure 4.

It can be seen from Figure 4 that the feeder is partitioned into
6 clusters using the proposed cluster partition method, and there
are no isolated nodes exist. Meanwhile, each cluster has the PVs
or energy storage, which means each cluster has an adjustable
capacity for zonal voltage. To further verify the effectiveness of
the proposed method, the modular degree, function ρ (Li and
Yang, 2019) is employed to compare with the comprehensive
performance index. Table 4 shows the cluster partition results
under the two different indexes.

From Table 4, it can be seen that the feeder can be
partitioned into several clusters under the two indexes, and
there are no isolated nodes exist. But it should be noticed that
under the function ρ, two clusters have no PVs or energy
storage, and the nodal size of the cluster is more unbalanced

than the clusters obtained by comprehensive performance
index, which means the proposed a comprehensive
performance index can generate a more reasonable cluster
partition for subsequent zonal voltage.

5.3 Cluster Partition-Based Zonal Voltage
Control
Without any voltage regulation measures, the nodal voltage of the
feeder is shown in Figure 5. It can be seen from Figure 5 that the
voltage of some nodes exceeds the limit at 13:00 noon. To
illustrate that the proposed method can effectively adjust the
node voltage to a safe operating range, the operating condition of
the feeder at 13:00 noon is selected as a typical scenario to be
analyzed. In typical scenarios, the actual output of each PVs is
shown in Table 5.

In the typical scenario, the solar irradiance comes to the
largest during a day, and some nodal voltages exceed the
allowable upper limit, which is shown in Figure 6. Under the
proposed method, the cluster containing overvoltage nodes is
recorded as CV � {CV

1 , C
V
2 , C

V
3 , C

V
4 , C

V
5 , C

V
6 }. Under the

proposed voltage control method, the profile of nodal
voltage and PV outputs are shown in Figures 7, 8,
respectively.

FIGURE 5 | Voltage profile of 10 kV feeder during a day.

TABLE 5 | Actual outputs of PVs under the proposed method.

PV 11 12 23 24 30 32

Outputs (kW) 343.6 343.6 343.6 343.6 343.6 1,030.9

FIGURE 6 | Voltage profile of 10 kV feeder at 13:00.

FIGURE 7 | Optimized nodal voltage under the proposed method.

FIGURE 8 | PV outputs under different scenarios.
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It is shown in Figure 7 that under the proposed voltage
strategy, there is no overvoltage existing in the whole network.
Meanwhile, Figure 8 shows that the minimum curtailed PV
output is 21.34 kW and the maximum is 198.94 kW, which
achieves the goal of maximum PV consumption and avoids
the waste of resources.

6 CONCLUSION

Aiming at the overvoltage problem caused by the high
penetrated PVs, a cluster partition-based zonal voltage
control method for the DN is proposed in this study.
Considering the structure of DNs, output characteristics of
distributed PV in clusters, and the cluster scale, a
comprehensive performance index-based cluster partition
method is proposed in this study. Based on the community
discovery algorithm, the FN algorithm is employed to carry
out the partition. The electrical information of the network
structure and the impact of PVs on the partitioning solutions
are considered, and the size of each subnetwork can be
restricted. Based on the cluster partition, an SOCP-based
voltage control model aiming at the maximum PV
consumption in the cluster is established, and an iterative
optimization-based active power coordination strategy
among clusters is proposed. The maximum PV
consumption for all clusters can be guaranteed, and the

overvoltage problem caused by high penetrated PVs can be
effectively solved.
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Secure Transmission and Intelligent
Analysis of Demand-Side Data in
Smart Grids: A 5G NB-IoT Framework
Yongpeng Shen1, Ting He1, Qian Wang1, Junmin Zhang2 and Yanfeng Wang1*
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In order to tap the advantages of Narrow Band-Internet of Things (NB-IoT) on the demand
side of the smart grid, improve the security of information transmission, and make use of
demand-side data, we focus on the secure transmission, trusted services, and intelligent
analysis of “5G + Smart Grid,” and we construct a comprehensive solution which consists of
encrypted data terminals,management systems, and intelligent analysismethods. A 5GNB-
IoT framework proposed in this study can serve grid planning and demand response, and it
can further promote the deep integration of 5G and the smart grid. Therefore, this research
will contribute to the implementation of a new generation of information technology on the
smart grid, build a deep integration application scenario of the “5G + Smart Grid,” improve
the intelligence of the grids, and further promote the “dual carbon” goal of the power system.

Keywords: NB-IoT, the smart grid, security transmission, demand-side data, information technology

1 INTRODUCTION

The smart grid is an electricity network that can cost-efficiently integrate the behavior and actions of
all users, including generators, consumers, and those that both generate and consume, in order to
ensure the power system is economically efficient and sustainable with low losses and high levels of
quality, security of supply, and safety (TEN-E, 2017). The smart grid uses the IoT technology to add
intelligence and monitoring to every node. The applications of the smart grid can balance the flow of
power more efficiently. They can detect surges, outages, and energy waste. They can also deal with
peak loads or fluctuations immediately and automatically.

With large-scale access to renewable energy sources such as wind, solar, and electric vehicles, and
distributed access to demand-side energy storage, the power system is changing dramatically. The
power system is becoming more diverse in terms of forms of energy supply, massive amounts of data,
and ways of interaction and control.

The demand side is the “nerve ending” of the smart grid, which has the characteristics of a large
number of terminals and extensive connection of equipment. A safe, reliable, and intelligent demand
side is the cornerstone of the power system. Two-way communication among generators,
transmitters, and customers is the key to the smart grid. This mutual intelligent system offers
solid benefits, including energy management, reliability and resilience, and the integration of
intermittent renewable energy generation and storage. It also accommodates distributed power
generation and microgrids, enhances the value of electric vehicles, and gives customers greater
choices of how and when to use electricity (IIOT Power, 2019; Xu et al., 2020a; Xu et al., 2020b; Yuan
et al., 2021).

The downside of the smart grid is how to interact with each other between those
interconnections—driven by IoT technologies, data flow, and information management. In terms
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of its nature, do the disadvantages offer cybersecurity threats,
opportunities for malevolent forces to intrude, disrupt, or
destroy? (IIOT Power, 2019).

Most of the research studies on demand-side information
security by scholars belong to the scope of a home area network
(HAN) and a neighborhood area network (NAN) in the advanced
metering infrastructure (AMI) framework, which can be divided
into two categories: one does not use any encryption means, but
other methods are used to ensure the security of demand-side
information, such as connecting batteries and other equipment
on the user side, or adding noise to the demand-side information
artificially (Yuan et al., 2020; Tan et al., 2013; Lang et al., 2022;
Chen et al., 2013). The aforementioned methods ensure the safety
of the user’s personal information but reduce the usability of the
information. Lu et al (2012) proposed a privacy protection and
data aggregation scheme based on homomorphic encryption,
which can prevent the leakage of user privacy during smart
grid communication. Abdallah and Shen (2015) proposed a
lattice-based number theory research unit (NTRU) public key
cryptosystem with low computing resource consumption, which
enabled the use of a more secure public key cryptosystem in the
demand-side network while still achieving low computing
resource consumption. Nicanfar et al (2012) proposed an
identity-based public key encryption system to construct an
identity authentication strategy suitable for a HAN. Jokar et al
(2011) proposed an intrusion detection scheme at the physical
layer and 802.15.4 Media Access Control (MAC) layer to
determine whether the HAN has been invaded by detecting
signal strength, data size, format, and flow direction.
Sanduleac and Ciornei (2021) proposed a general framework
for extracting technical knowledge from high reporting rate smart
meters (HRRSM) data to strengthen distribution system operator
(DSO) monitoring tools to protect the privacy of users.

Through the analysis of the aforementioned secure
transmission methods, the following conclusions can be drawn.

1) At present, the demand side mostly adopts the neighborhood
area network and local area network framework in the AMI
framework, and the advantages of the 5G Massive Machine-
Type Communication Wide Area Network (mMTC WAN)
have not yet emerged.

2) The current research studies only focus on the efficiency and
structure of transmission but have not paid enough attention
to the issue of information security transmission in the
context of a two-way interaction.

3) How to use intelligent approaches to increase the value of
demand-side data requires urgent attention.

In response to the aforementioned problems, we focus on the
secure transmission, trusted services, and intelligent analysis of
the “5G + Smart Grid” and construct an all-round solution
consisting of encrypted data terminals, management systems,
and intelligent analysis methods. The proposed “5G + Smart
Grid” framework can service grid planning, demand response,
and promote the deep integration of 5G and the smart grid.

The rest of this article is organized as follows. In section 2, the
features of the demand side of the smart grid are analyzed.

Section 3 describes the overall technical framework of the
proposed 5G NB-IoT secure transmission and intelligent
analysis of demand-side data in the smart grid. Sections 4–6
describe the secure transmission system, trusted service
management system, and data intelligent analysis system in
detail, respectively. Finally, the conclusion is stated in section 7.

2 ANALYSIS OF THE DEMAND SIDE IN THE
SMART GRID

We consider the demand side in the smart grid that contains a
distributing substation, distributed power source, distributed
energy storage, industrial electricity supply, and residential
electricity supply, as shown in Figure 1. Sometimes, the
concepts of the distributed power source and distributed
energy storage are confused. For example, electric vehicles are
both distributed power sources and distributed energy storage.
Photovoltaic power stations as distributed power sources may
also be equipped with energy storage, to become distributed
energy storage.

Generally, each distributed power source, distributed energy
storage, industrial electricity customer, and residential electricity
customer is connected to the distribution network through a
smart meter (SM). In industrial application scenarios, various
pieces of electrical equipment are connected to the mains through
smart sockets (SS), such as lighting equipment, charging
equipment, hoister, blowers, heaters, refrigerators, air
conditioners, water heaters, cookers, and washing machines.
The Intelligent Distribution Trans-former supervisory
Terminal Unit (iTTU) is responsible for monitoring the
working status of transformers and the entire distribution
network.

In the next-generation power distribution network, each
iTTU, SM, and SS is responsible for monitoring the voltage,
current, active power, reactive power, and other information of
relevant nodes. They must have communication functions to
transfer the grid data to the data center in real time for further
analysis. The basic features of the next-generation demand side in
the smart grid can be summarized as follows.

1) Large number of nodes.

As mentioned previously, on the demand side of the smart
grid, each node will have at least one SM. Each electrical
apparatus will be connected to the mains through SS. It will
result in a user having dozens of data nodes, while a power
distribution network will have thousands of data nodes.

2) Many application scenarios.

The application scenarios on the user side include a
distributing substation, distributed power source, distributed
energy storage, industrial electricity supply, residential
electricity supply, smart power distribution, and others. At the
same time, it covers multiple stakeholders, such as equipment
manufacturers, telecom operators, and users. Once a data leakage
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problem occurs, it is difficult to clarify the security
responsibilities.

3) Fast iteration speed and emerging security upgrade risks.

At present, the communication architecture of the smart grid
has not yet been unified, the business and profit models have not
yet been clarified, and the communication protocol between the
various entities has not yet formed a unified standard; meanwhile,
with the rapid development of the smart grid, new things and new
models are constantly emerging. Therefore, smart grid data
terminals must have high-security upgrade management
functions and convenient software iteration speed to adapt to
the new models and new requirements.

In view of the aforementioned characteristics of the demand
side of the smart grid, combined with its basic characteristics, the
smart grid data transmission system should have the following
attributes.

1) Low power consumption and massive connection
characteristics to facilitate massive deployment in the area
and long-term reliable operation in battery-powered
scenarios.

2) Complete the perception layer security functions such as
physical data security, trusted service management, security
upgrade management, and key life cycle management.

3) A complete network layer security solution adopts a unified
communication system to facilitate unified deployment on a
global scale and has a complete IoT card security
management chain.

4) Access stratum (AS) and non-access stratum (NAS) network
layer security features.

3 OVERALL TECHNICAL FRAMEWORK

NB-IoT is a new and streamlined IoT terminal communication
technology proposed by 3 GPP R13 on the basis of long-term
evolution (LTE) technology. It is a narrowband wireless cellular
communication technology specially designed for the IoT to
achieve the requirements of large connection, wide coverage,
low power consumption, etc. From the perspective of basic
features and network layer security features, NB-IoT highly
matches the needs of the demand side in the smart grid. The
basic characteristics of NB-IoT can be summarized as follows.

1) Deep coverage.

NB-IoT provides better deep coverage than other competing
technologies. It has a high transmit power spectral density (PSD).
In the downlink standalone mode, PSD is 43 dBm/180 kHz,
which is 17 dB higher than that of LTE; in the in-band mode,
PSD is 35 dBm/180 kHz, which is 9 dB higher than LTE. A
multiple retransmission technology is employed to increase
hybrid automatic repeat request (HARQ) gain and exchange
coverage gain at a lower rate, and the maximum downlink
retransmission and uplink retransmission are 2,048 and 128
times, respectively. In general, the coverage radius of NB-IoT
is about 4 times that of GSM/LTE (Ratasuk et al., 2016; Martinez
et al., 2019).

FIGURE 1 | Demand side in the smart grid.
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2) Ultralow power consumption.

NB-IoT has a power saving mode (PSM) and an extended
discontinuous reception (eDRX) mode, which greatly reduce the
power consumption of the module. In the PSM, the terminal is still
registered on the network but cannot obtain the signal, so the
terminal maintains a long time of deep sleep to save power. In
the eDRXmode, the idle mode discontinuous reception cycle ranges
from seconds to hours, and the connection mode discontinuous
reception cycle supports 5.12 and 10.24 s, which greatly improves the
downlink reachability during a low-power operation. Ultralow
power consumption can ensure that a battery-powered NB-IoT
terminal has a long service life of up to 10 years (depending on the
specific application) (Wang et al., 2017; Kanj et al., 2020).

3) Ultralow cost.

By simplifying the protocol stack, the radio frequency circuit,
and the complexity of baseband processing, NB-IoT does not
require a duplexer, so out-of-band and blocking indicators are
reduced. For example, it reduces baseband complexity and radio
frequency circuits by 10% and 65%, respectively (Hoglund et al.,
2020; Ballerini et al., 2020; Li et al., 2017). At present, the cost of
NB-IoT modules has fallen below 15 yuan.

4) Massive connections.

NB-IoT adopts the narrowband technology and upper/lower
equivalent power enhancement technology, thereby greatly
increasing the channel capacity. NB-IoT improves spectral density
by reducing the signaling overhead of the air interface. Through the
optimization of the base station and the core network, NB-IoT
realizes independent admission congestion control, downlink data
buffering, and terminal context storage, which can achieve 50,000
connections/cell (Zayas et al., 2017; Sultania et al., 2020).

In terms of network layer security, NB-IoT has the following
characteristics:

1) For terminals that support both the control plane optimized
transmission scheme and the user plane optimized
transmission scheme, NB-IoT adopts two layers of security
mechanisms: AS and NAS. The former ensures Radio
Resource Control (RRC) security and user plane security in
the access network. The latter ensures NAS security in Evolved
Packet Core (EPC).

2) By defining access safe management entity (ASME), NB-IoT
realizes that the access network receives the highest level key
from a home subscriber server (HSS). In addition, NB-IoT
constructs a four-layer key structure, including terminal and
HSS shared keys, terminal and ASME shared keys, terminal
and mobility management entity (MME) shared keys, and
terminal and base station shared keys.

3) The security activation of the access layer and the non-access
layer is completed through security mode control (SMC), and
the security of the access layer can be reactivated through the
RRC connection re-establishment process and the RRC
connection recovery process.

4) By using the integrity protection key and integrity check code
(consisting of count value, bearer identification, upstream and
downstream direction indication, and data content), a data
integrity protection mechanism is constructed to ensure data
integrity (Lu et al., 2020).

The basic characteristics and network layer security
characteristics of NB-IoT show that it has the ability for large-
scale deployment in the demand side of the smart grid. However,
the basic characteristics of the energy IoT, such as the large
number of nodes, many application scenarios, fast iteration
speed, and constant risks of security upgrade, also put forward
strict security requirements for NB-IoT module hardware,
module software, and IoT card management.

Focusing on the secure transmission and intelligent analysis of
massive data on the demand side of the smart grid and based on
application scenarios such as a distributing substation,
distributed power source, distributed energy storage, industrial
electricity supply, and residential electricity supply, this study
constructs a technical framework of “5G NB-IoT + Smart Grids,”
as shown in Figure 2. The framework includes data secure
transmission, trusted service management of data
transmission, and the intelligent analysis of demand-side data
based on machine learning. The technical details of the three
aspects will be described in detail in the following sections.

4 SECURE TRANSMISSION SYSTEM

The smart grid demand-side data secure transmission system consists
of two parts, the NB-IoT encrypted data terminal and the data
transmission management system. As shown in Figure 3, the NB-
IoT smart grid encrypted data terminal hardware takes the NB-IoT
security module as the core, supplemented by peripheral circuits such
as data acquisition and power management. The NB-IoT smart grid
data transmission system is composed of a smart grid data terminal
on the demand side, an NB-IoT base station of a telecom operator, a
smart grid data server and application server, as well as a visualization
platform, a Web client, and a mobile app, as shown in Figure 4.

The core of the smart grid demand-side data secure
transmission system lies in the NB-IoT security module, which
consists of the highly integrated SoC of NB-IoT R16/R17, SE-SIM
(ESAM), and SE-SIM (eSIM). The software of the NB-IoT
security module consists of AES/3DES, SDK software, RTOS
software, eSIM application software, and eSIM OS. Among these,
Advanced Encryption Standard (AES) and triple data encryption
standard (3DES) are two standards in present data encryption.
AES is a new encryption using an alternative replacement
network, while 3DES is only an adaptation of the old DES
encryption relying on a balanced Feistel network.

5 TRUSTED SERVICE MANAGEMENT
PLATFORM

The main function of the trusted service management platform is
to provide cloud management services for data secure
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transmission systems in the demand side of the smart grid. Its
core technologies include trusted service management, security
upgrademanagement, and key lifecycle management, as shown in
Figure 5.

1) Trusted service management.

Trusted service management is the top level of the whole
platform. It is mainly responsible for the function management of
the entire platform, including security element management,
security domain management, application provider
management, application information management,
application lifecycle management, security element (SE) life

FIGURE 2 | Overall technical framework of secure transmission and intelligent analysis of demand-side data in smart grids based on NB-IoT.

FIGURE 3 | Hardware structure of the NB-IoT encrypted data terminal.

FIGURE 4 | Structure of a secure transmission system.
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management, security domain (SD) lifecycle management, and
business template management.

2) Security upgrade management.

If the software code of the data terminal needs to be
upgraded due to functional changes, bug corrections,
version updates, and other reasons, the safety of the
upgrade process must be ensured. Security upgrade
management mainly includes application locking,
application personalization, application unlocking,
application downloading, application deleting, application
migration, application upgradation, and resume breakpoint.

3) Key lifecycle management.

The lifecycle management of keys is a necessary means to
ensure data security. The key lifecycle management system

includes key generation, key issuance, key storage, key
archiving, key backup, key recovery, key destruction, and key
exporting.

6 DATA INTELLIGENT ANALYSIS

The overall structure of the demand-side data intelligent analysis
system is shown in Figure 6. First, pre-processing operations
such as sampling, data standardization, and data cleaning are
performed on massive data. Then the user load pattern is
determined through cluster analysis. On this basis, demand-
side flexibility is quantitatively analyzed, and regression
prediction is performed on the grid load. The analysis results
will serve for grid planning, demand response, new energy
consumption, etc.

1) Cluster analysis of daily load.

FIGURE 5 | Structure of a trusted service management.

FIGURE 6 | Framework work of data intelligent analysis based on machine learning.
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According to different electricity consumption habits, the load
on the demand side presents diverse characteristics. The daily
load curve at a specific time interval can be used as the clustering
feature. Taking 24 typical load characteristics in different seasons
as clustering objectives, the user load characteristics can be curved
through cluster analysis.

Assuming that the daily load curve of user i at hour intervals is
Ri, a 24-dimensional vector is obtained after normalization, and
the Euclidean distance between the daily load data of user i and
the typical load characteristic j is

d(Ri,Rj) �
������������
∑24
t�1

(Rit − Rjt)2
√√

, (1)

where Rit and Rjt are the loads at t hours of user i and of the
typical load characteristic j, respectively. The clustering objective
function is the sum of the squares of minimum errors of k
clusters, that is,

E � ∑k
i�1

∑
R∈Ci

d2(R, μ(Ci)), (2)

where, μ(Ci) is the cluster center of Ci.

2) Demand-side flexible evaluation.

According to the clustering results of daily load characteristics,
through the evaluation of the user’s removable and adjustable
load, the demand-side flexible quantitative evaluation can be
realized (Yuan et al., 2020; Yuan et al., 2021). The daily peak
contribution of user i on the jth month is defined as

Fi,j � 1
n
∑n
d�1

pd
i,j(td)

Pd
j (td)

, (3)

where pd
i,j(td) is the power demand of user i at time td on the jth

day, td is the time of system peak demand on the dth day of
mth month, and Pd

j (td) is the system peak demand at td (Yuan
et al., 2020).

3) Regression forecasting of daily load.

Based on the demand-side flexible measurement evaluation
results, combined with multi-user daily load characteristics, the
neural network regression prediction model of the time series of
the daily load can be constructed. The inputs of this model are
season, time, demand-side flexibility, user-side demand
management, and energy storage ratio.

7 CONCLUSION

Essentially, the smart grid is an IOT-enabled application that allows
utilities and their customers to exchange electricity and information
and thereby improves energy efficiency. On the demand side, the
value of IoT will be more prominent, due to the features such as a

large number of nodes, many application scenarios, fast iteration
speed, and emerging security upgrade risks. The rapid development
of 5G communication technology will provide new power for the
development of the smart grid. As the main technology of 5G
mMTC, NB-IoT highly matches the needs of the demand side in the
smart grid. Currently, the advantages of NB-IoT LPWAN in the
demand side of the smart grid have not yet emerged, the issue of
information security transmission has not been paid enough
attention to, the value of demand-side data has not been fully
tapped. Based on the aforementioned reasons, we constructed an
all-round solution which consists of encrypted data terminals,
management systems, and intelligent analysis methods. The main
contributions of this study are as follows:

1) We analyzed the basic features of the next-generation demand
side in the smart grid, the requirements of the data
transmission system, and the basic features and network
layer security features of NB-IoT. We also revealed that
NB-IoT has the ability for large-scale deployment in the
demand side of the smart grid.

2) We constructed the “5G NB-IoT + Smart Grids” technical
framework from aspects of data secure transmission, trusted
service management of data transmission, and the intelligent
analysis of demand-side data based on machine learning and
provided the technical details of the aforementioned three
aspects in detail.

This research will contribute to the implementation of new
generation information technologies on the smart grid, build a
“5G + smart grid” in-depth integration application scenario,
improve the intelligence of the grids, and further promote the
“dual carbon” goal in power systems.
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Edge Computing Based
Electricity-Theft Detection of
Low-Voltage Users
Yingjun Zheng1, Feng Chen2, Hongming Yang1 and Sheng Su1*

1School of Electrical and Information Engineering, Changsha University of Science & Technology, Changsha, China, 2Changsha
Electric Power Corporations, State Grid of China, Changsha, China

Electricity theft of low voltage (LV) users could result not only in the escalation of power loss
but also in dangerous electric shock. Since LV users are served by distribution
transformers, electricity theft of an LV user will cause line loss escalation of the
associated distribution serving zone (DTSZ). Therefore, it seems promising to identify
anomaly users of electricity theft with a Granger causality test to find out the user causing
an escalation of line loss in DTSZ with time series of users’ usage and line loss. However,
meters of LV users in severe environments occasionally suffer from communication failure
to upload metering data to the head end of advanced metering infrastructure (AMI), which
could distort the daily electricity usage of the associate user. Consequently, it could cause
false alarms unavoidably once we detect electricity theft with these distorted data. Since
the distribution transformer unit (DTU) collects metering data of LV users within associate
DTSZ without distortion, an edge computing–based electricity theft detection approach is
proposed in this article. The correlation between line loss of a DTSZ and electricity usage of
anomaly users of electricity theft is first analyzed. Thereafter, the Granger causality test is
used to identify anomaly users with authentic usage data with edge computing in DTU.
Finally, the abnormal data and the data repaired by different missing data filling algorithms
are used on the main station to detect electricity theft. Numerical simulation suggests that
although missing data completion could recover information in missing data partially, it
could result in notable false positive alarms in electricity theft, while the proposed method
based on edge computing can completely eliminate the data distortion caused by
communication failure.

Keywords: electricity theft, communication failure, edge computing, missing data completion, distribution
transformer terminal, attribution analysis

1 INTRODUCTION

Electricity theft of low voltage (LV) users could cause substantial revenue loss to power utilities.
Moreover, anomaly wire hooks result in numerous electric shocks to users. Therefore, it is highly
preferred to identify anomaly LV users (Wang Y. et al., 2019; Zhang et al., 2019; Partha et al., 2020).
Since there are millions of LV residential users with diversified usage patterns, it is rather difficult to
identify anomaly ones of electricity theft, and electricity detection of LV users remains a difficulty in
industrial applications (Li et al., 2018).

The extensive application of smart meters could provide substantial meter data on electricity
usage, which can lay a solid foundation for data-driven electric theft detection. Zheng et al. (2019)
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detected electricity theft with maximum information coefficient
and density peak fast clustering algorithm in combination.
Zhuang et al. (2016) and Sun et al. (2018) detected electricity
theft with fluctuation of multi-day usage, fluctuation of the SD of
usage, and trend of usage with an improved outlier identification
algorithm. Since extracted features play a key role in the precision
of anomaly detection, a stacked de-correlation auto-encoder is
employed (Hu et al., 2019) to extract highly condensed
independent features. Thereafter, a support vector machine is
used to identify anomaly users (Hu et al., 2019). Since power
utilities have limited market crews for onsite inspection, a false
positive rate (FPR) is key to evaluating the performance of
electricity theft (Jin et al., 2022). To prevent false positives
alarm, marketing crews implement onsite inspection of DTSZ
with a high loss ratio above 8%. Since there is an underlying
correlation between anomaly users of electricity theft and line loss
of associated feeder, a Granger causality analysis–based approach
is proposed by Jin et al. (2020) to detect users who cause
fluctuations in line loss. Since high line loss in a DTSZ is
usually caused by electricity theft, once we detect electricity
theft in DTSZ with a high loss rate, it could achieve a low
false alarm rate (Tang et al., 2020).

It should be pointed out that the meters of LV users
communicating via power line communication (PLC) could
suffer failure occasionally. Once a smart meter fails to upload
its usage data to the head end of AMI, it will upload it in the
following days. The head end calculates the daily line loss of a
DTSZ according to the daily served electricity and accumulation
of all users’ daily usage. Line loss of the DTSZ escalates on the
days when the meter fails and declines to even below zero in the
following days when meters upload usage data of communication
failure and that very day. Existing approaches to electricity
detection identify anomaly users with accurate metering data,
while false data cause misleading results inevitably.

To overcome the problem of detecting electricity theft with
metering data in the head end of AMI, an edge computing–based
electricity detection approach is proposed in this article. The rest
of the article is organized as follows. Existing approaches to
missing data completion are investigated in Section 2.
Correlation of anomaly users’ usage and line loss of associate
DTSZ in investigated and edge computing–based approach is
developed in Section 3. Numerical simulation of real-world
metering data is analyzed in Section 4 to demonstrate the
superiority of the proposed method to that of data restored
with various missing data completion algorithms. Section 5
concludes the article.

2 ELECTRICITY MISSING DATA
COMPLETION METHOD

Metering data could suffer interference and failure in the process
of data acquisition, conversion, and communication, and missing
data and false data are common for industrial applications of
power utilities. Traditionally, power systems are measured with
redundancy. Therefore, some missing data or false data can be
identified and corrected with state estimation. There are similar

missing data and false data in AMI. However, since these data are
not closely coupled with each other, they can be corrected and
filled with state estimation (Yang Y. et al., 2020). Traditionally,
missing data and false data of AMI are filled or corrected with the
mean of previous and following data, interpolation mode, closest
distance data, regression model, and maximum expectation based
algorithm (Sundararajan et al., 2019). However, most of them
implement data completion with statistic-based and mechanism-
based models and neglect underlying features of a single time
series and correlation among various time series. Data
completion with these approaches is not as satisfying as
expected (Chen et al., 2019; Yang et al., 2019).

Since missing data is rather common in various fields,
numerous researchers have researched missing data
completion and achieved notable progress in recent years
(Siamkaz et al., 2018; Song et al., 2019). Based on the inertial
effect of the measured data, Ruan deduced coarse values of pre-
attack measurements. Then, based on the deduced coarse values
and suggested state bounds, an optimization model is proposed to
recover the measurements (Ruan et al., 2022). The matrix filling
method used in the Netflix recommendation system is established
on the premise that the data matrix has low rank and sparsity. It
could reconstruct the original matrix precisely in the case of
partial loss of original data. The low-rank matrix completion
theory is based on the low rank of the data to recover the missing
data. It takes matrix rank minimization as the objective function.
The classical mathematical model of data recovery is expressed as
follows.

{min
K

‖K‖p
s.t. PΩ(M) � PΩ(K) (1)

PΩ(M) � {Mi,j (i, j) ∈ Ω
0 (i, j) ∉ Ω (2)

where ‖ · ‖p denote the matrix kernel norm; K denotes the
restored low-rank matrix; M denotes the matrix to be repaired
with only some elements observed; Ω denotes the set of positions
of non-empty elements in M. If Mi,j a member of matrix M is
observed, then (i, j) ∈ Ω;PΩ is the operator. Since there are
Gaussian noise, spikes, and other formal noise for the most
real-world system, the data recovery model can be depicted in
Eq. 3 as follows.

{ min
K, E,G

(‖K‖p + ρ‖E‖1 + δ‖G‖2F)
s.t. PΩ(M) � K + E + G +N

(3)

where E denotes peak outlier matrix, G denotes Gaussian noise
matrix, ρ and δ denote weight coefficients correspondingly, andN
denotes auxiliary matrix. The augmented Lagrange function in
Eq. 3 can be transformed into an unconstrained optimization
problem and solved with the alternating direction method of
multipliers (ADMM) according to literature (Yang T. et al., 2020).

Tensor completion is a high dimensional matrix completion.
Since the electricity usage of multiple users on different days may
have an underlying multi-dimensional internal correlation,
tensor completion could be utilized to recover missing or false
with high precision (Zhao et al., 2020). The fundamental principle
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of tensor completion is similar to matrix completion and could be
referred to (Zhao et al., 2020).

Unlike matrix completion and tensor completion to recover
missing data with low-rank data, generative adversarial
networks (GAN) is a data-driven approach which extracts
features from large amounts of unlabeled data through
GAN’s adversarial game. A discriminant model that can
accurately identify the authentic and false/missing data and
a generic model that can capture the potential features and
spatial and temporal features of the data are obtained.
Thereafter, the dual semantic perception constraint is
utilized to retrain the model to find the candidate data that
has the greatest similarity to the data to be reconstructed with
missing values (Wang S. et al., 2019). It should be pointed out
that the GAN based approach works on a large number of data,
and it is not appropriate for the date completion of limited LV
users in a DTSZ. Matrix completion and tensor completion are
utilized to recover false/missing data in this article.

3 DETECTION OF POWER THEFT IN LOW
VOLTAGE PLATFORM BASED ON EDGE
COMPUTING

3.1 Correlation Analysis of User Power
Quantity and Line Loss in Low Voltage
Station Area
Non-technical loss (NTL) in DTSZ is mainly caused by electricity
theft, and the NTL caused by anomaly users is usually correlated
to its metering data and associated NTL. Therefore, there is an
underlying correlation between the metering data of anomaly
users and the NTL of DTSZ. The correlation could be identified
with Granger causality analysis to find out the anomaly users
caused an escalation of loss of DTSZ.

Metering data of a real-world DTSZ is employed to analyze
the correlation between metering data and loss of DTSZ. Loss

of the DTSZ in 62 consecutive days is shown in Figure 1. There
are six industrial and commercial users and 33 low-voltage
residential users in the DTSZ. The served daily mean electricity
is about 1200 kWh, while the daily mean loss is about 100 kWh
in January and February 2020. The loss rate came up to 9.6%,
and it is highly suspected that there is an anomaly user of
electricity theft. Since electricity theft of industrial and
commercial users is contributing much more than average
residential users, electricity usage of six industrial and
commercial users within the DTSZ from 30 December 2019
to February 2020 is analyzed as follows.

The red line denotes the daily loss of DTSZ (G), and the
black line denotes the daily loss rate of DTSZ. The other six
lines denote the electricity consumption of six industrial and
commercial users, which are depicted as H1~H6 in the
following section. It can be observed that the loss profile of
DTSZ has a similar trend as that of users’ usage. Most of them
escalate in the beginning and then decline in the end.

3.2 Data Communication and Anomaly
Analysis in LV DTSZ
DTU is generally installed on the secondary side of the
distribution cabinet (Liu et al., 2020). It communicates via
protocol RS485 or PLC within the DTSZ and communicates
with the head end of AMI with wireless communication or optical
fiber. DTU collects metering data of the distribution transformer
and associates LV users within DTSZ and uploads it to the head
end of AMI (Huang et al., 2021; Zhong et al., 2021).
Communication architecture within a typical DTSZ is shown
in Figure 2.

In real-world AMI, meters of users operate in severe
environments and it could suffer communication
occasionally. Once it suffers communication failure, it could
upload daily metering data in the following days, which could
cause zero electricity usage on the previous day and electricity

FIGURE 1 | Electricity usage of users and loss of DTSZ with a high loss rate.
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usage of 2 days on the following day in the head end of AMI. In
order to demonstrate the impact of communication failure on
data quality of the head end of AMI, user one of DTSZ was
selected to report 0 electricity usage on 29 January 2020, and
the usage was accumulated and uploaded on the following day.
The usage of users and loss data of DTSZ is plotted as shown in
Figure 3. It can be observed that the loss and loss rate of DTSZ

escalated notably on 29 January 2020 due to communication
failure. While it decreases notably on the following day since
usage in two consecutive days is accumulated. As a
consequence, communication failure could distort the
underlying correlation between anomaly users’ electricity
usage and loss of DTSZ and result in misleading electricity
theft identification as a consequence.

FIGURE 2 | Basic communication diagram of the distribution area.

FIGURE 3 | Electricity usage of users and loss of DTSZ with communication failure.
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3.3 Edge Computing Based Electricity Theft
Detection in Distribution Serving Zone
Co-integration test and Granger causality analysis are commonly
used in economics to analyze the correlation among time series.
In general, a co-integration test is used to test whether there is a
long-term equilibrium among time series. Thereafter, Granger
causality analysis is used to determine whether a variable impacts
another variable (Zhu et al., 2017; Fan et al., 2019; Tian et al.,
2019). Since electricity usage of an anomaly user of electricity
theft is correlated to its usage in most theft modes, the fluctuation
of loss pf DTSZ caused by anomaly users has a similar profile as
time series of economic variables disturbed by other factors.
Therefore, the equilibrium relationship and causal relationship
between the loss of DTSZ and users’ metering data can be
analyzed to detect anomaly users.

Traditionally, field terminals, such as DTU, have limited
computing and storage resources. Complex functions such as
identification of anomaly users of electricity theft can only be
implemented in the head end of AMI. Communication failure
induced data missing could impact its performance notably
(Shi et al., 2016; Covi et al., 2021). In recent years, more and
more meters are being deployed in distribution systems with
the rapid development of Internet of Things (IoT) technology
(Deng et al., 2021). Since computing and storage resources of
concurrent IoT terminals escalate notably, it is technically
feasible to implement some of the complex functions in IoT
terminals with edge computing (Li et al., 2020; Wang et al.,
2020; Liu et al., 2022).

DTU could be utilized as a platform for edge computing in
DTSZ. Since it collects substantial data within the DTSZ, it can

provide loss analysis, power quality monitoring, and topology
analysis with edge computing. Since different vendors implement
different business functions in the diversified OS environment,
Docker technology is employed to provide an appropriate
container for the APP of various vendors on the same DTU
platform (Gong et al., 2018). Docker-based DTU is composed of a
system layer and an application (APP) layer. The APP layer is
divided into acquisition APP and business APP, which can
interact with each other through the message bus. The former
collects real-time operation data and load data; The latter accesses
the data center through the device bus, extracts the required data
for calculation and analysis, and implements edge computing of
business functions (Nie et al., 2020).

Electricity theft detection can be implemented in the DTU
with edge computing. The fundamental of the approach is that
the concentrator APP of DTU collects users’metering data within
the DTSZ. Loss analysis APP collects serving electricity and
calculates the loss of DTSZ. Thereafter, the electricity theft
detection APP identifies anomaly users with Granger causality
analysis with loss data andmetering data of associated users in the
DTSZ. The framework of the implementation process is shown in
Figure 4. The method proposed in this paper transfers the
detection of electricity theft from the head end of AMI to the
DTU in the edge, which can eliminate communication associated
data missing to identify anomaly users with lower fails
positive rate.

Granger causality analysis is first used to identify anomaly
users in DTSZ depicted in Section 1. Thereafter, the distorted
data and distorted data recovered with various data completion
approaches are analyzed in this section.

4 NUMERICAL SIMULATION

4.1 EdgeComputing–Based Electricity Theft
Detection
ADF unit root tests were performed for G and H1-H6, and their
differential sequences were on the edge side. With 5%
confidence as the standard, all the sequences were first-
order unitary sequences, and the test results are shown in
Table 1.

The Engle–Granger co-integration test was applied to G and
H1-H6, respectively. Thereafter, the stationarity test of residual
series was implemented with the ADF test. The stationarity test
results of the residual series are listed in Table 2, and the shaded
area in the table indicates that the result is less than the threshold
of −3.4363. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

G � 22.9015 + 1.3434H4

T1 � 4.5562, T2 � 16.4799
R2 � 0.8190, �R2 � 0.8160
F � 271.5902, D � 1.4099

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
G � −0.6793 + 1.6065H5

T1 � −0.1428, T2 � 22.2943
R2 � 0.8923, �R2 � 0.8905
F � 497.0337, D � 0.9883

(5)

FIGURE 4 | Electricity theft detection framework with edge computing.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
G � 13.0982 + 1.3801H6

T1 � 2.7918, T2 � 19.7185
R2 � 0.8663, �R2 � 0.8641
F � 388.8198, D � 1.0359

(6)

When the residual sequence is stationary, the regression
equation between the corresponding variables is shown as
above. In Eqs 4–6, T1 and T2 are the t-test values of
corresponding parameters, R2 denotes the determinability
coefficient, �R2 denotes the adjusted determinability coefficient,
F denotes the model test value, and D denotes the Dubin Watson
statistic. If F test value and T test value are significant, the
regression effect of the equation is better.

After constructing the least squares regression model for
H1–H6 and G, the co-integration test results show that the test
value in the stationarity test of residual sequences ofH1–H3 andG
is greater than the threshold while that in the stationarity test of
residual sequences of H4–H6 and G is less than the threshold,
which indicates H4–H6 has a co-integration relationship with G.
The subsequent Granger causality analysis can be continued, and
the threshold refers to the critical value of McKinnon’s co-
integration test (Pan, 2017). To further clarify the dynamic
relationship between H4~H6 and G, an error correction model
among H4~H6 and G is established, and the results are listed in
Eqs 7–9. It can be observed that when H4–H6 fluctuates
(increases) by 1% in the short term, H4–H6 will increase by
0.7040%, 1.2302%, and 1.1019%, respectively. According to the
coefficient of error correction term, when the short-term
fluctuation of H4–H6 and G deviates from the long-term
equilibrium relationship among them, the non-equilibrium
state among H4–H6 and G will be corrected to the equilibrium
state with the adjustment force of −0.5700, −0.4457, and −0.4409,
respectively. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΔG � 0.7040ΔH4 − 0.5700et−1
T1 � 4.1511, T2 � −4.8494
R2 � 0.3567, �R2 � 0.3228
D � 2.1373

(7)

where et−1 � G(t−1) − 20.0735 − 1.3920H4(t−1), ΔG is the first-
order difference of G, ΔH4 is the first-order difference of H4,
G(t−1) is the first-order lag sequence of G, and H4(t−1) is the first-
order lag sequence of H4.⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΔG � 1.2302ΔH5 − 0.4457et−1
T1 � 10.0978, T2 � −4.1534
R2 � 0.6645, �R2 � 0.6469
D � 2.0424

, (8)

where et−1 � G(t−1) + 2.2644 − 1.6356H5(t−1), ΔH5 is the first-
order difference of H5, and H5(t−1) is the first-order lag
sequence of H5.⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΔG � 1.1019ΔH6 − 0.4409et−1
T1 � 7.3627, T2 � −3.6399
R2 � 0.5144, �R2 � 0.4888
D � 2.1190

(9)

where et−1 � G(t−1) − 17.0197 − 1.3225H6(t−1), ΔH6 is the first-
order difference of H6, and H6(t−1) is the first-order lag sequence
of H6.

The co-integration relationship among H4~H6 and G and the
error correction model were analyzed. It can be observed that the
error correction coefficients in the three error correction models
of H4~H6 and G all conform to the reverse adjustment
mechanism. Characteristics of long-term stability and the
dynamic relationship between H4~H6 and G with co-
integration relationship are further clarified. Since there is a
co-integration relationship between H4~H6 and G, the causal
relationship between their influences can be further analyzed with
Granger causality analysis. Granger causality analysis results of
edge computing are shown in Table 3. It can be observed that the
significance of “H4 is not the Granger cause of G″ is less than the
critical level of 5%, which indicates the null hypothesis is rejected.
Therefore, H4 is the cause of the change of G, and H4 can be

TABLE 1 | Results of stationary test for DTSZ with high loss rate.

Time series ADF 5% Confidence Stationary Time series ADF 5% Confidence Stationary

G −1.7940 0.3801 N △G −8.9978 0.0000 Y

H1 −2.4498 0.1328 N △H1 −9.7337 0.0000 Y

H2 −0.4467 0.5171 N △H2 −10.7129 0.0000 Y

H3 −1.9382 0.3130 N △H3 −7.9962 0.0000 Y

H4 −0.4595 0.5121 N △H4 −8.0350 0.0000 Y

H5 −1.8255 0.3650 N △H5 −9.3035 0.0000 Y

H6 −0.4429 0.5187 N △H6 −9.7269 0.0000 Y

TABLE 2 | Residual sequence smoothness test results of user and loss.

User Inspection results User Inspection results

H1 −3.1573 H4 −5.7480
H2 −3.3738 H5 −4.5032
H3 −2.9929 H6 −4.5394

TABLE 3 | Granger causality test results of edge computing.

Assuming Significance

G is not a Granger reason for H4 0.0137
H4 is not a Granger reason for G 0.0465
G is not a Granger reason for H5 0.5068
H5 is not a Granger reason for G 0.4232
G is not a Granger reason for H6 0.0275
H6 is not a Granger reason for G 0.7291
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regarded as the anomaly user of electricity theft in the DTSZ. This
has been verified by on-site inspection.

4.2 Master Station Detection Comparative
Experiment
When LV users suffer communication failure and upload
metering data on the following day, the data at the head
end of AMI is distorted with missing data and could cause
misleading electricity theft detection results. In order to verify
the superiority of the proposed approach, six industrial and
commercial users in DTSZ were set to upload zero usage on the
30th day (28 January 2020) and upload usage on two
consecutive days on the following day (29 January 2020).
Therefore, the loss of DTSZ increased on the first day and
decreased on the second day. The metered usage of each user
and loss of DTSZ are listed as shown in Table 4. Granger
causality test is used to test whether there is a correlation
between each user and the loss of DTSZ based on distorted
false data. The ultimate results of Granger causality analysis at
the head end of AMI are shown in Table 5.

It can be concluded from Table 5 and Schedules as follows.

• When users suffer communication failure and fail to upload
metering data, there is no co-integration relationship between the
user’s electricity usage and loss of DTSZ. Therefore, we cannot
analyze it with Granger causality analysis. The co-integration
relationship between electricity usage of other users and loss of
DTSZ remains, and they can be analyzed with Granger causality
analysis.

• Except for the user who suffers communication failure, all
other users could be identified as anomaly users of electricity
theft. Since user 4 has been confirmed to be the anomaly user of
electricity theft by onsite inspection, once we identify the anomaly
user of electricity theft with distorted data with data missing, the

false positive rate escalates to 80%, which is not acceptable for
industrial applications.

Missing data completion got broad research in recent years.
Yang Y. et al. (2020) proposed a low-rank matrix theory based on
matrix completion of power quality data. It designs a multi-norm
joint low-rank optimization model and solves it with an
alternating direction multiplier method. Zhao et al. (2020)
proposed a tension completion based approach to recover
missing data of multiple-user, and a low-rank tensor
completion model was employed to recover missing data in
DTSZ. It analyzes the characteristics of the LV data in DTSZ
and constructs the standard missing tensor.

In order to find outperformance of matrix completion and
Tensor completion, missing data of each user is recovered with
these two approaches. The authentic usage and recovered usage
with the two completion approaches are listed in Table 6. The
authentic loss on 29 January and 30 January is 115.30 and
118.13 kWh, respectively. According to the user usage data
recovered with correction, the loss of the DTSZ calculated
with recovered data is listed in Table 7.

It can be observed from Tables 6, 7 that although it is widely
supposed that matrix completion and tensor completion can
recover missing data ideally, its premise is that time series are
of low rank. Missing data cannot be recovered precisely once
there is no strong correlation between users’ usage data in the
DTSZ. The data recovered with these two approaches are used to
test whether the Granger causality test can accurately identify
anomaly users of electricity theft. The Granger causality analysis
results are listed in Table 8.

It can be concluded from Table 8 as follows.

• According to the data analysis with matrix completion,
Granger causality analysis cannot identify any anomaly user of
electricity theft once users H1–H3 or H6 suffer communication

TABLE 4 | Daily electricity usage of each anomaly user and loss of DTSZ.

Issue Date User 1 User 2 User 3 User 4 User 5 User 6

Daily metering usage 2020/1/29 0.00 0.00 0.00 0.00 0.00 0.00
2020/1/30 174.15 172.04 145.58 140.06 160.32 169.20

Loss of DTSZ 2020/1/29 210.34 205.93 192.97 193.00 195.55 201.10
2020/1/30 23.09 27.50 40.46 40.43 37.88 32.33

TABLE 5 | Result of Granger attribution test at the head end of AMI.

Missing user Stationary (loss
and electricity

usage)

Co-integration relationship
(loss and

electricity usage)

Significance test
results

Audit results

Edge computing Null First order differential stationary H4, H5, H6 H4 Correct
Detecting in the head end of AMI User 1 First order differential stationary H2, H3, H4, H5, H6 H2, H3, H4, H5, H6 Miscalculation

User 2 First order differential stationary H1, H3, H4, H5, H6 H1, H3, H4, H5, H6 Miscalculation
User 3 First order differential stationary H1, H2, H4, H5, H6 H1, H2, H4, H5, H6 Miscalculation
User 4 First order differential stationary H1, H2, H3, H5, H6 H1, H2, H3, H5, H6 Miscalculation
User 5 First order differential stationary H1, H2, H3, H4, H6 H1, H2, H3, H4, H6 Miscalculation
User 6 First order differential stationary H1, H2, H3, H4, H5 H1, H2, H3, H4, H5 Miscalculation
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failure and recover with matrix completion. User H4 is correctly
identified as an anomaly user of electricity theft once user H4

suffers communication failure and recovers with matrix
completion. User H5 is incorrectly identified as an anomaly
user once user H5 suffers communication failure and recovers
with matrix completion. The accuracy rate of electricity theft
detection with data in the head end of AMI declined to 16.6%.

• According to the data analysis after tensor completion,
Granger causality analysis cannot determine any anomaly user
of electricity theft once user H1 or H3 suffers communication
failure and recovers with tensor completion. User H4 can be
judged as an anomaly user once users H2, H4, or H5 suffer

communication failure and recover with tensor completion.
User H6 can be misjudged as an anomaly user once user H6

suffers communication failure and recovers with tensor
completion. The accuracy rate of electricity theft detection
with data in the head end of AMI declined to 50%.

• The goal of either matrix completion or tensor completion is
to get the minimum norm of low-rank matrix/tensor. They
recover data within a certain error range with higher linear
correlation for the low rank of the data. It can be observed
from Tables 5, 6 that there are notable errors in the recovered
data of both algorithms. According to the Granger causality
analysis by Jin et al. (2020), the one-to-one correspondence

TABLE 6 | Recovered electricity usage of each anomaly user.

Packing method Date Daily usage/(KWh)

H1 H2 H3 H4 H5 H6

Authentic usage 2020/1/29 95.04 90.63 77.66 77.70 80.25 85.80
2020/1/30 79.11 81.41 67.91 62.36 80.07 83.40

Matrix completion 2020/1/29 102.52 102.37 95.85 97.57 96.22 98.56
2020/1/30 97.45 95.63 90.46 90.75 92.81 91.38

Tensor completion 2020/1/29 107.39 108.31 79.33 79.14 85.41 86.79
2020/1/30 89.22 95.16 82.31 71.01 83.93 90.97

TABLE 7 | Calculated loss for each recovered anomaly user.

Data completion Date Loss of power/(KWh)

H1 H2 H3 H4 H5 H6

Matrix completion Recovered data on 29 January 104.37 103.15 100.64 97.12 99.27 106.31
Error of 29 January −9.48% −10.54% −12.71% −15.77% −13.90% −7.80%
Recovered data on 30 January 98.20 96.95 94.17 90.79 93.03 98.49
Error of 30 January −16.87% −17.93% −20.28% −23.14% −21.25% −16.63%

Tensor completion Recovered data on 29 January 102.65 106.38 105.85 102.97 103.47 107.23
Error of 29 January −10.97% −7.74% −8.20% −10.69% −10.26% −7.00%
Recovered data on 30 January 113.28 114.14 112.35 111.03 111.17 112.73
Error of 30 January −4.11% −3.38% −4.89% −6.01% −5.89% −4.57%

TABLE 8 | Results of Granger causality analysis of anomaly user with data recovery.

Edge of
the results

User with
missing data

Stationary (loss
and electricity

usage))

Co-integration relationship
(loss and

electricity usage)

Significance test
results

Audit results

Without data
missing

First-order differential
stationary

H4, H5,
H6

H4 T

Matrix fill User 1 First order differential stationary H1, H2, H4, H5, H6 NULL F
User 2 First order differential stationary H1, H2, H4, H5, H6 NULL F
User 3 First order differential stationary H1, H2, H3, H4, H5, H6 NULL F
User 4 First order differential stationary H1, H2, H4, H5, H6 H4 F
User 5 First order differential stationary H1, H2, H4, H5, H6 H5 False-positive
User 6 First order differential stationary H1, H2, H4, H5, H6 NULL Failure

Tensor completion User 1 First order differential stationary H1, H2, H4, H5, H6 NULL F
User 2 First order differential stationary H1, H2, H4, H5, H6 H4 T
User 3 First order differential stationary H1, H2, H3, H4, H5, H6 NULL F
User 4 First order differential stationary H1, H2, H4, H5, H6 H4 T
User 5 First order differential stationary H1, H2, H4, H5, H6 H4 T
User 6 First order differential stationary H1, H2, H4, H5, H6 H6 False-positive
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between electricity usage and loss of the detected user at the same
time has a great influence on the final result, while both
completion algorithms change correlation to a certain range,
which results in the failure of Granger causality analysis–based
approach.

In conclusion, both matrix completion and tensor completion
based approaches cannot recover data missing ideally and could
negatively impact the precision of Granger causality–based
electricity theft detection. The proposed approach to
implement electricity theft in DTU of DTSZ with edge
computing could eliminate the impact of communication
failure–induced difficulty and facilitate precise electricity theft
detection.

5 CONCLUSION

The article analyzes communication failure’s impact on data
missing in the head end of AMI and points out that the false
metering data could negatively impact electricity theft detection
of LV users in DTSZ. Edge computing–based approach is
proposed to detect electricity theft of DTSZ in DTU with edge
computing, which can identify anomaly users with authentic
metering data in the edge and mitigate the difficulty of data
recovery of missing/false data caused by communication failure.
The real world metering data of a DTSZ is employed to produce
distorted data caused by communication failure. Thereafter,
produced data is recovered with matrix completion and tensor
completion. Numerical simulation of these data shows that the
Granger causality analysis–based approach could identify
anomaly users of electricity precisely with authentic data in

the edge. However, all users are identified as anomaly users of
electricity theft once the false data in the head end system is
utilized. Once false/missing data are recovered with matrix
completion or tensor completion, the accuracy of the Granger
causality analysis–based approach declines to 16.7% or 50%.

It should be pointed out that there is an anomaly LV user
bypass meter, and its electricity usage is zero around the clock.
Since there are numerous vacant apartments without electricity
usage, it is rather difficult to detect these anomaly users since its
meter data do not provide any useful information. We cannot
detect these users precisely, even with authentic metering data.
The way to identify these users requires further investigation.
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An Ontology-Based Dynamic Attack
Graph Generation Approach for the
Internet of Vehicles
Shuning Hou1, Xiuzhen Chen2*, Jin Ma1, Zhihong Zhou1 and Haiyang Yu1

1Institute of Cyber Science and Technology, Shanghai Jiao Tong University, Shanghai, China, 2Shanghai Municipal Key Lab of
Integrated Management Technology for Information Security, Shanghai, China

With the development of automobile intelligence, the security of the Internet of Vehicles has
become a key factor that affects the development of intelligent vehicles. However, existing
security risk analysis methods for the IoV either focus only on certain levels, such as the
component level, or perform only a static analysis. This paper proposes a dynamic attack
graph generation method for the IoV to identify and visually display the security risks
caused by the associated vulnerabilities in an IoV system. First, using the actual
architecture of the IoV, this paper shows how to model the security elements and their
relationships in the IoV system and proposes a network security ontology model for this
system. Second, it shows how to construct a reasoning rule base according to the causal
relationship between the vulnerabilities using the Semantic Web Rule Language Finally, in
view of the rapid change in the network topology of the IoV, a dynamic attack graph
generation algorithm based on an ontology reasoning engine is proposed, which can
effectively reduce the overhead caused by the changes in the attack graph. The
effectiveness of the algorithm is demonstrated through an actual security event
scenario and a constructed scenario. The experimental results show that the algorithm
can dynamically and accurately display the network attack graph of the IoV. The proposed
method is helpful in globally analyzing the threat caused by the combined exploitation of
the vulnerabilities in an IoV system and risk management.

Keywords: internet of vehicles, dynamic attack graph, ontology, vulnerability, security risk

1 INTRODUCTION

Owing to the development of modern automobiles, people’s daily travel is becoming increasingly
more convenient and comfortable. In addition to efficiency and convenience, the rapid development
of the technology of the Internet of Vehicles (IoV) has brought about a series of potential security
threats, such as cloud supply chain issues, private data security, protocol cracking, and illegal data
injection. For attackers, the attack surface of the IoV has become more extensive, and it is no longer
limited to near-range physical attacks.

The 2020 Global Automotive Network Security Report (Upstream Security, 2020) released by
Upstream Security reported an investigation of the security incidents happening in the automotive
field since 2010 and concluded that the most common attack vectors use different entry points such
as servers, mobile applications, and on-board diagnostic (OBD) ports. In addition, IOActive (Thuen,
2016), an Israeli automotive network information security company, scored the collected vehicle-
related vulnerabilities on a one to five scale and found that approximately 72% of the vehicle-related
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vulnerabilities belonged to the medium- and low-risk categories.
IOActive also pointed out that this did not necessarily mean
that there was no significant risk. These single vulnerabilities
may not be harmful; however, when multiple vulnerabilities are
exploited in combination, the attack consequences can be
immeasurable.

Taking the Tesla attack chain disclosed by Tencent Keen Lab
as an example (Keen, Security, 2022), the researchers first
considered the wireless network as the starting point of the
attack. The vulnerability of the vehicle browser was used to
execute arbitrary code in the browser. Furthermore, the kernel
privilege escalation vulnerability was exploited to obtain the root
privilege to extract information about the vehicle system. The
researchers then bypassed the integrity check mechanism
through the electronic control unit (ECU), modified and
refreshed the firmware, and finally broke through the gateway
to realize the transmission of any controller area network (CAN)
message on the CAN bus. This is a complex attack path that
exploits multiple vulnerabilities on various attack surfaces. The
defense of an IoV system against an attack is insufficient if it only
analyzes the vulnerabilities from a single level. It is necessary to
comprehensively consider and analyze various attack surfaces to
discover potential attack paths leading to the target under the
“cloud-channel-edge-terminal” architecture of the IoV, as shown
in Figure 1. Therefore, this study considered attack graph
technology as an effective way to analyze the potential attack
paths in an IoV system.

Attack graph technology (Lallie et al., 2020) can show
potential attack paths and attack consequences through vertex

and directed edge structures from the perspective of attackers in
combination with specific network structure information. Most
of the studies on attack graph are oriented toward ordinary
enterprise network information systems. There are few studies
on the attack graph of the IoV, a special information system, and
there is also a lack of unified and standardized expression of IoV
security knowledge. This paper proposes a dynamic attack graph
generation approach based on ontology (McGuinness and Van
Harmelen, 2004) for the IoV. A security ontology of the IoV is
established, formulates a unified and standardized expression for
security knowledge, which including the network topology,
vulnerabilities and their relationships, and other security
elements in the IoV, the proposed method can mine all
potential attack paths in advance using the ontology inference
engine HermiT (Glimm et al., 2014). The main contributions of
this study are as follows:

1. This paper proposes an IoV network security ontology. The
ontology models various security elements and their
relationships in the IoV system, and then formulates a
unified and standardized expression for IoV security
knowledge.

2. This paper builds a knowledge base of the reasoning rules of
the IoV. This paper analyzes different types of security
vulnerabilities and corresponding attack methods, such as
long-distance wireless attacks, short-range wireless attacks,
and physical contact attacks, and describes specific attacks by
Semantic Web Rule Language (SWRL) (Horrocks et al.,
2004) rules.

FIGURE 1 | The “cloud-channel-edge-terminal” architecture of the IoV.
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3. This paper proposes a dynamic attack graph generation
algorithm. The algorithm can update incrementally according
to the change in network topology, which is more suitable for the
IoV characterized by rapid changes in network topology. This
can effectively demonstrate the vulnerability of the global IoV
network and help with risk management and has lower
computational complexity while updating attack graph.

The rest of this paper is organized as follows. Section 2
discusses the existing related works. Section 3 presents the
components of the proposed model. Section 4 shows how to
construct different IoV network attack scenarios to verify the
effectiveness of the algorithm. Finally, Section 5 concludes
the paper.

2 RELATED WORKS

The security threats of the IoV will not only cause economic
losses to individuals and enterprises but also endanger personal
safety and even national public security in severe cases. Therefore,
several studies have been conducted to improve the security
performance of the IoV. Existing studies on the security
vulnerability analysis of the IoV are mainly divided into three
levels: platform, network, and component levels (Li, 2019). They
not only discover hidden vulnerabilities through penetration
testing but also evaluate the risk globally using attack graphs
and other methods such as attack trees and matrices. Detailed
information on related works at each level is given as follows.

2.1 The Network Level
Studies on security at the network level mainly focus on the
network communication security of the IoV, including identity
authentication and privacy disclosure. Researchers have proposed
group signature schemes (Shao et al., 2016), batch authentication
schemes (Sutrala et al., 2020), and lightweight anonymous
authentication schemes (Sadri and Rajabzadeh Asaar, 2020) to
solve these problems.

2.2 The Platform Level
Studies on security at the platform level mainly aim at the security
of the vehicle CAN bus and in-vehicle sensor network, which
distinguishes normal behaviors from attack behaviors by
extracting the vehicle characteristics (electrical, physical, and
data packet characteristics) or by using a deep learning
algorithm in the normal state (Choi et al., 2018; Song et al., 2020).

2.3 The Component Level
Studies on security at the component level focus on various
vulnerabilities in the IoV system, analyze vulnerabilities and
security risks based on the penetration testing results, and
propose security protection suggestions or measures for the
IoV network. Through the results of laboratory simulation
experiments and actual road tests, Koscher et al. (Koscher
et al., 2010) proved that attackers who gain control of key
ECUs can evade the internal security features of intelligent
networked vehicles and conduct malicious operations on them.

In 2015, (Miller and Valasek, 2015), successfully hacked an in-
vehicle communication system remotely by exploiting the
vulnerability of the Uconnect system port in the Jeep vehicle.
The final experimental results proved that attackers could exploit
this vulnerability to control car braking and steering. In addition,
they (Miller and Valasek, 2014) demonstrated the long-range
attack surface of intelligent connected cars and analyzed the
security of different manufacturers’ car networks.

In general, the above studies on the security risks of the IoV
mainly focus on the detection and mining of single vulnerabilities
through simulation experiments, road experiments, and the use
of fuzzing and feature extraction technologies, without
considering the possibility of escalating the risks from the
combined vulnerabilities at the same level or multiple levels.

In recent years, some researchers have looked into the
application of graph technology in the field of IoV security.
In the SAE J3601 “Cybersecurity Guidebook for Cyber-
Physical Vehicle Systems” (SAE J3061 Vehicle Cybersecurity
Systems Engineering Committee, 2016) launched by the
American Society of Automotive Engineers in 2016, the
attack tree technology is proposed to model the risk of the
vehicle system network and quantify the system risk from the
perspective of a threat. Kong et al. (Kong et al., 2018) proposed
a security risk assessment framework for smart cars, to identify
and assess security risk. The framework is based on the
Guidelines for the Management of IT Security, using attack
tree to analyze and categorize the assets, threats, and
vulnerabilities. However, due to characteristics of attack
tree, an attack tree can only analyze one attacker purpose.
when faced with multi-target attackers, attack tree analysis is
more complex than attack graph.

Salfer and Eckert, (2018) proposed an automatic generation
model, called security analyzer for exploitability risks
(SAlfER), which can semi-automatically quantify the risk of
a given attacker by his/her exploitation steps with both budget
and cost with cycles. In addition, they proposed an algorithm
for a random attack graph for the security evaluation of a
vehicle network, which creates a path for each starting node,
continuously expands, clones, completes the path, and writes
the path with similar dependencies in the attack graph to
generate the result. The model mainly aims at the design stage
before the vehicle goes into production, refers to the vehicle
development documents, comprehensively considers various
possibilities, calculates the security risk, and makes key
business decisions in terms of safety and sustainability.
Ibrahim et al. (Ibrahim et al., 2020) used the Architecture
Analysis and Design Language (AADL) to assess the risk of
vehicle system security cases. The vehicle system design,
connection, weakness, resources, potential attack examples,
and their pre-conditions and post-conditions were modeled
using the AADL. The generated final attack diagram is
displayed graphically to help the system administrator select
the best countermeasures. The above two references
demonstrate the feasibility of applying attack graph
technology to security studies on the IoV. However, they
either focused only on in-vehicle systems or performed only
a static analysis using vehicle development documents.
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In this paper, ontology and attack graphs were combined and
applied to the field of IoV security to formulate a unified and
standardized expression of IoV security knowledge. In view of
the current situation of multistep attacks using the combined
vulnerabilities in the IoV, this study integrates the overall
architecture of the cloud-channel-edge-terminal to generate a
comprehensive attack graph, which is conducive to the
comprehensive risk analysis of IoV systems and has far-reaching
significance for the construction of active defense systems for the IoV.

3 ONTOLOGY-BASED ATTACK GRAPH
GENERATION ALGORITHM

Owing to the lack of a unified and standardized expression for
security knowledge in existing studies on attack graphs of the IoV,
this paper proposes a security ontology for the IoV system and
formalizes a normative definition of the security elements in this
system that can better describe its network architecture and
vehicle-related security vulnerabilities. The IoV attack graph
generation model proposed in this paper is shown in
Figure 2. It includes two modules: construction of an IoV

security ontology and generation of a dynamic attack graph.
The former models the security elements and their relationships
with the IoV system. The latter instantiates the entities to
construct a knowledge base, inputs them into the inference
engine HermiT, and finally generates a complete attack graph
through the graph generation engine. When the scenario
information changes, the inference engine locates the
corresponding rules and nodes to update the attack graph in a
timely manner.

3.1 Construction of the IoV Security
Ontology
Ontology (Guarino et al., 2009) is a method and theory used to
describe the essence of things, which refers to the formal
specification of shared concepts in the same field. Research on
building a network security ontology model (Iannacone et al.,
2015) can better describe the intelligence and information related
to attacks. This paper proposes an IoV security ontology by
analyzing the cloud-channel-edge-terminal architecture of the
IoV and abstracting the related security elements and their
relationships, including the assets, vulnerabilities, and attacks.

FIGURE 2 | IoV attack graph generation model.
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3.1.1 Definition of the IoV Security Ontology
This study combines the actual architecture of the IoV with
existing security ontologies to build a specific security
ontology for the IoV, as shown in Figure 3, which mainly
includes five types of entities: assets, vulnerable components,
vulnerabilities, attacks, and attackers. The entity classes are
defined as follows:

Definition 1: The asset class. This class includes the equipment
and sensitive data at all levels of the IoV system, i.e., a four-layer
architecture of the cloud-channel-edge-terminal. The cloud layer
corresponds to the application layer of the IoV, and the main
equipment consists of various data collection and processing
and cloud service support servers, including database, web,
and travel navigation data processing servers. The channel
layer corresponds to the network layer, including the cellular
network 2G/3G/4G, WLAN, and the satellite communication
network. The edge layer includes many edge computing nodes,
which generally refer to the roadside equipment. The terminal
layer corresponds to the perception layer, which is responsible for
collecting vehicle location information and traffic information
around the vehicles and for perceiving the environment and its
state during driving. It primarily includes RFID readers and
various communication terminals, such as vehicle terminals,
mobile applications, and sensors. In addition, because ICVs
have more than one attack surface, the asset entities at the
terminal layer are further subdivided into in-vehicle terminals,
external terminals, etc.

Definition 2: The vulnerable component class. This class
shows the location of the vulnerability in the attack target

assets. It is divided into subclasses such as software, hardware,
programs, and services. These are all common types of
components in the network assets of the IoV.

Definition 3: The vulnerability class. This class shows the
technical drawbacks that can be exploited by attackers to launch
attacks. Vulnerabilities are divided into software, hardware, and
protocol vulnerabilities, according to the location where the
vulnerability is hosted.

Definition 4: The attack class. The main subclasses include
long-range wireless, short-range wireless, and physical access
attacks. Among them, the long-distance wireless attacks are
mainly carried out through Wi-Fi, cellular networks (3/4/5G),
cloud platforms, GPS, etc. The short-range wireless attacks are
mainly carried out through Bluetooth, keyless entrance systems,
dedicated short-range communications, etc. The physical access
attacks are performed through actual physical contact by the
attackers.

Definition 5: The attacker class. According to the identity of
the attacker, the attacker class is divided into internal and external
attackers.

3.1.2 Relationship Model Between Entities
The relationship between entity classes is reflected by the
entity properties, which are divided into datatype and
object properties (McGuinness and Van Harmelen, 2004).
Datatype properties are mainly properties of a single
individual class, whereas object properties are properties
that define the relationships between different individual
classes.

FIGURE 3 | IoV security ontology.
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• Datatype properties

The datatype properties of the asset class entities include the
asset name, asset level, asset importance level, and asset motion
status, which are only limited to vehicle entities. The value of the
motion status is either still or moving.

The datatype properties of the vulnerable component class
entities include the component name, component version,
component function, and component-related information
importance level.

The datatype properties of the vulnerability entities include
the vulnerability ID, vulnerability description information,
functions affected by the vulnerabilities, Common
Vulnerability Scoring System score, patch information, and
utilization probability.

The datatype properties of the attack entities include their
Common Attack Pattern Enumeration and Classification ID,
attack preconditions, and attack postconditions, i.e., attack
benefits. Attack preconditions are prerequisite permissions
required to implement this type of attack and are mainly
composed of two parts: specific permissions and location. That is,
the preconditions describe the specific type of software/hardware the
attack needs to obtain the corresponding permissions. The attack
postconditions are similar to the attack preconditions. The
postconditions describe the expected benefits after the attack is
launched and consist of specific permissions and locations.

The datatype properties of the attacker class include the
attacker’s location (distinguishing between long-distance and
close-range attackers), capabilities, and permissions.

• Object properties

According to the relationship between the entity classes above,
the object property defined in the IoV security ontology is as
follows:
access property: This is a symmetric property, which indicates
that both instances can access each other.

access(Asset, Asset)
compromise property: This property indicates that an attacker
can successfully compromise an asset instance.

compromise(Attack, Asset)
hasComponent property: This property indicates that an asset
instance has a containment relationship with a component
instance.

hasComponent(Asset, Component)
exist property: This property represents the existence of a
vulnerability in a component instance.

exist(Component, Vulnerability)
exploit property: This property indicates that an attacker needs
to exploit the vulnerability of an instance to an attack.

exploit(Attack, Vulnerability)

launch property: This property indicates that an attacker
needs to use a certain type of attack to launch an attack
behavior.

launch(Attacker, Attack)

3.2 Attack Graph Generation Method for
the IoV
Attack graph generation is divided into two stages: the initial
attack graph generation and the dynamic attack graph update.
The generation of attack graphs is based on the IoV security
knowledge base, which is constructed by the SWRL rules of the
security elements in IoV attack scenarios. Through inference
engine HermiT, initial attack graph generates. When the
network topology, vulnerability information, and other data
change dynamically, the inference engine locates the
corresponding rules and nodes to update the attack graph
in a timely manner.

3.2.1 Inference Rules Knowledge Base
The SWRL (Horrocks et al., 2004) is a language that presents
rules in a semantic manner and can be used in attack graph
generation algorithms to infer the process of exploiting
vulnerabilities to invade assets. An SWRL rule includes the
body (inference precondition) and the head (inference
result). The body part points out all the preconditions
required for inference, including specific instances and the
relationships between instances. And the head provides the
inference results that can be obtained under the rule.?in rules
represents this station is a variable. Entities can
substate them.

The reasoning rules in this paper are divided into three types
according to their different functions:

1. Vulnerability Existence Inference Rules

Vulnerability existence inference rules can infer whether an
asset has a vulnerability based on its category and current version.
An example of a vulnerability existence inference rule is provided
below.

Component(?comp)̂ hasversion(?comp, ?x)
^Vulnerability(?vul)
ĥasupdateversion(?vul, ?y)
ŝwrlb: lessThan(?x, ?y)
→ exist(?comp, ?vul)

2. Vulnerability Exploitability Inference Rules

Vulnerability exploitability inference rules can construct
a single-step attack path and determine whether the
attacker’s resources and attack capabilities in the current
state can attack the specified assets. An example of
a vulnerability exploitability inference rule is provided
below.
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Asset(?asset)̂ Component(?comp)
^Vulnerability(?vul)̂ Attacker(?attacker)
^Attack(?attack)
ĥasComponent(?asset, ?comp)
êxist(?comp, ?vul)
êxploit(?attack, ?vul)
l̂aunch(?attacker, ?attack)
âssess(?asset, ?attacker)
→ compromise(?attacker, ?asset)
âttackbenefit(?attacker, ?asset)

This rule means that when an asset instance has a vulnerability
group and there is a vulnerable instance in the vulnerable
component, there is a certain attack method that can exploit
the vulnerability. If the attacker knows how to use this attack
method and can successfully access the asset, it can be inferred
that the asset can be compromised by the attacker and attacker
gains the attack benefits.

Take attacker launches the command injection attack by
exploit the vulnerability V1 in CAN bus to vehicle as an
example, the corresponding rules rule are as follows:

Asset(vehicle)̂ Component(CANbus)
^Vulnerability(V1)̂ Attacker(attacker)
^Attack(commandInjection)
ĥasComponent(vehicle, CANbus)
êxist(CANbus, V1)
êxploit(commandInjection, V1)
l̂aunch(attacker, commandInjection)
âssess(vehicle, attacker)
→ compromise(attacker, CANbus)
ĉommandInjection(attacker, CANbus)

The rule means if the permissions obtained by the attacker
meet all the preconditions above, the attacker can launch the
command injection attack successfully and compromise the CAN
bus on this vehicle.

3. Network Connectivity Inference Rules

The network connectivity inference rules can infer the
attacker’s access privileges according to the reachability
between the resources and the assets compromised by the
attacker. An example of a network connectivity inference rule
is presented below.

compromise(?asset1, ?attacker)
âssess(?asset1, ?asset2)
→ assess(?attacker, ?asset2)

This rule means that when the asset of instance 1 is
compromised by an attacker instance and instance 1 can
assess the asset of instance 2, it can be inferred that the
attacker can access the asset of instance 2.

3.2.2 Initial Attack Graph Generation Algorithm
In the initial state, all the security elements in IoV attack scenarios
and their relationships are instantiated. The inference engine then

mines the causal relationships among the scattered vulnerabilities
according to the inference rules, determines the potential attack
paths of the attacker, and finally synthesizes all possible attack
paths to generate a complete attack graph for the output.

Definition 6: Assume an attack graph G=<C, V, E>, where C
represents the condition set (including all initial conditions,
preconditions, and postconditions), V represents the set of
vulnerabilities, and E represents the edge set.

The initial attack graph generation algorithm is mainly based
on the breadth-first traversal (BFS) algorithm. The algorithm
takes the security ontology instance of the target network, the
attack scenario, and the attacker’s target (optional) as inputs and
generates an attack graph G in the form of a tuple. The
algorithm adopts the method of forward chaining, starting
from the initial conditions, based on the BFS to obtain
additional properties by continuously searching for
vulnerable hosts in the network. To generate an attack graph,
line two to five in theAlgorithm 1 first obtains the initial object
properties of the attacker CA and assets A through function
Properties (). The second step (line 7–8) is to call inference
engine by function onto. reasoner (), and obtain inferential facts,
then locate the specific inference rule set F. The third step is to
find the corresponding vulnerability nodes and pre-post-
condition nodes for each rule of F and to construct the node
set and edge set of the attack graph (line 12–25). The resources
owned by the attacker are then updated until the inference
ruleset is traversed (line 26). Then, the second step is repeated
until the attacker’s goal is reached and the algorithm terminates
(loop starts on line 6). If the attacker does not specify a specific
goal, it is assumed that the attacker’s goal is to obtain all the
resources that can be compromised in the system as much as
possible, and the algorithm terminates when no new inference
facts are generated.

3.2.3 Dynamic Attack Graph Update Algorithm
Owing to the rapid movement of vehicle nodes, the network
topology update frequency is higher than that of traditional
enterprise information systems. Therefore, this paper
summarizes three situations that can cause changes in the IoV
attack graph. These three situations are described below.

Network topology changes: Vehicles leaving/entering the
communication area will cause network topology changes.
This type of situation causes a change in the vehicle terminal
node Nv. When a vehicle leaves or enters the communication
area, the node should be deleted or added.

Network connectivity changes: Changes in firewall rules or
when a moving vehicle communicates with different roadside
base stations/cloud servers can cause changes in network
connectivity. Changes in network connectivity are mapped to
changes in attack scenarios, which are changes in object
properties between asset nodes, and the properties of related
nodes should be added or deleted.

Node information changes: The change in the motion state
of a vehicle and in the node-related vulnerability information
belongs to the change in the node information. When a vehicle
is stationary, physical contact is possible; therefore, physical
contact attacks are possible. When the motion state of a
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vehicle changes, the connectivity relationship between the
vulnerable nodes is related to physical contact changes, and
the related security properties of the node should be added or
deleted.

Algorithm of Adding Security Properties: When a node or
security properties are added, first, the corresponding node
should be instantiated to build the datatype properties
associated with Nv and the object properties with the newly
added vulnerability node Nv (line 1–13 in Algorithm 2). Then,
the algorithm calls the inference engine to determine the new
inference facts, finds the reasoning rules related to the reasoning
fact, adds nodes and edges to the attack graph, and adds the attack
consequences to the scene for further reasoning until no new
reasoning facts are generated, which is the same diagram in
Algorithm 1.

Algorithm of Deleting Security Properties: In the case of deleting
a node or security properties, the algorithm first obtains all the
properties of Nv, finds all sets of the vulnerable nodes V that Nv is
related to and the condition nodes related to Nv, deletes all
vulnerable nodes in V and the edges related to the vulnerable

FIGURE 4 | Typical attack scenario.
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nodes in the attack graph, and deletes the related condition nodes
and the edges connected to them at the same time.

4 EXPERIMENT RESULTS AND ANALYSIS

4.1 Experiment on a Typical Attack Scenario
4.1.1 Construction of a Typical Attack Scenario
According to the White Paper on Security Penetration of
Intelligent and Connected Vehicles (China Software Tesing

Center, 2020), the types of attacks in typical attack scenarios
can be divided into three categories according to different attack
surfaces: long-distance wireless attacks, short-range wireless
attacks, and physical contact attacks. Therefore, when
constructing the attack scenario, considering these three attack
methods, we selected ten vulnerabilities related to the IoV system
and constructed the attack scenario shown in Figure 4. Among
them, V1 and V2 are vulnerabilities in cloud servers, which are
mainly related to long-distance wireless attacks, and the
consequences include sensitive information collection and
privilege escalation. V3 is a low-version browser vulnerability
on in-Vehicle infotainment (IVI) system. V4 is an unverified
vulnerability in a Wi-Fi connection, which is related to short-
range wireless attacks. A short-range attacker can gain access to a
vehicle from this vulnerability. V10 is a physical contact
vulnerability exposed outside of the vehicle. An attacker can
access the internal bus of a vehicle through physical contact with
the OBD interface and implement command injection attacks on
the vehicle. The vulnerability information is presented in Table 1.

4.1.2 Attack Graph Generation and Analysis
The attack graph generated by the experiment at T0 is shown in
Figure 5. There are four attack paths in total.

Path 1:Through the cloud vulnerability V1, attacker can
launch attack Info Collection(attacker, Vehicle1) , and collect
private information of vehicle 1. Based on that, attacker conducts
social engineering attack
exploit(SocialEngineeringAttack, CVE − 2015 − 5065), and
successfully gains the account information of vehicle
1 hasAccount(attacker, Vehicle1). The attacker obtains the
invading interface and local user privilege of invading vehicle
1. Finally, by exploiting vulnerability V7 on ECU Gateway,
attackers can finally achieve arbitrary code execution attacks
execArbitraCode(attacker, Vehicle1). Vehicle 1 will receive
arbitrary codes that cause denial of service attacks or other
malicious operations possibly.

Path 2 is a short-range wireless attack. Owing to the lower
version of the installed car browser, a permission vulnerability V3
in IVI was exploited by attacker
gainUserPrivi(attacker, Vehicle1.IVI). The attacker obtains
the local user privilege of vehicle 1. Then attacker discovers a
shell vulnerability on the system, escalates the shell privilege to
obtain the root permission of the IVI system

TABLE 1 | Vulnerability information.

Vulnerability CVE ID Vulnerability Component Attack Consequence

V1 CVE-2015-1761 SQLServer Information Collection
V2 CVE-2013-5065 WebServer Privilege Escalation
V3 CVE-2009-1725 In-vehicle Browser Permission Acquisition
V4 CVE-2018-11476 Wi-Fi Unauthenticated Access
V5 CVE-2018-11477 Wi-Fi Information Collection
V6 CVE-2018-11478 OBD Dongle Command Injection
V7 CVE-2013-6282 ARM Linux Privilege Escalation
V8 CVE-2016-9337 ECU Gateway Arbitrary Code Execution
V9 CVE-2018-9311 T-Box Initial Access
V10 CVE-2018-9322 OBD Interface Verify Bypass
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gainRootPrivi(attacker, Vehicle1.IVI), and finally passes the
ECU gateway vulnerability. Command injection attacks can thus
be exploited execArbitraCode(attacker, Vehicle1) .Vehicle 1
will receive arbitrary codes that cause denial of service attacks
or other malicious operations possibly.

Path 3 is a physical contact attack. Here, the attacker
successfully collects sensitive vehicle
information Info Collection(attacker, Vehicle1) and
accesses vehicle 1 through an unauthenticated Wi-Fi
connection access(Vehicle1, attacker) , and then obtains
command injection permissions through a vulnerability in
the OBD dongle commandInjection(attacker, Vehicle1).

Vehicle 1 will receive and execute malicious commands
possibly.

Path 4 is a combination of short-range wireless and physical
contact attacks. Here, the attacker uses a pseudo base station
and a signal amplifier to conduct a man-in-the-middle attack
between vehicle 2 and the telematics service provider (TSP)
and then uses the telematics communication box (T-Box)
vulnerability V9 to implant a backdoor
gainUserPrivi(attacker, Vehicle2.T − Box). At the same
time, the attacker obtains the access rights of the vehicle 2
bus by using the vulnerability V10 bypassed by the OBD
interface verification and finally obtains the control rights

FIGURE 5 | Attack graph at time T0.

FIGURE 6 | Attack graph at time T1.
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of the T-Box and the vehicle CAN bus
gainRootPrivi(attacker, Vehicle2.CAN). The attacker
gained top administrative privileges on the vehicle 2.

Consider the following situation: the cloud webserver has
updated at T1 and the vulnerability V2 is remedied. At the
same time, the motion state of vehicle 2 changes from static to
moving, and the V9 vulnerability exploitation condition is not
established. In this case, the V2 and V9 vulnerability nodes
should be deleted. Moreover, inference rules whose
preconditions involve changing the object properties should
be determined, as well as the relevant condition nodes, and
then the nodes and the connected edges should be deleted. The
dynamic attack graph generated after the node information
changes at T1 is shown in Figure 6.

4.2 Algorithm Complexity Analysis
To demonstrate the scalability of algorithm, a series of
experiments are conduct. The network configuration
information of cloud platform is the same as typical attack
scenario. And we simulated a standard vulnerable ICV
configuration which has four exploitable vulnerabilities. We
gradually increase the number of standard ICVs and obtain
the computational time of the algorithm. Figure 7 shows
average computational time in each attack scenario. The
experimental results show that with the increase of the
number of vehicles, the computational time of attack graph
generation does not increase exponentially. After the initial
attack graph generation, the attack graph only updates the
local attack graph rather than the overall attack graph
generation.

4.3 Algorithm Complexity Analysis
To verify the scalability of the algorithm, this paper evaluates
the efficiency of the algorithm by analyzing its time
complexity. Given the number of nodes in graph generated
N and the number of edges E, when the network information

of the IoV changes, the algorithm only updates the
corresponding instance relationships and properties in the
ontology and makes local changes to the attack graph. The
time complexity of this local change is O (Δn+Δe). The
traditional attack graph generation tool MulVAL (Ou,
Govindavajhala and Appel, 2005) needs to reconstruct the
overall attack graph, and the time complexity of this algorithm
is O (n + e). Obviously, O (Δn+Δe) <O (n + e). Compared with
regenerating the complete attack graph, the dynamic attack
graph generation algorithm based on the local update
proposed in this paper reduces the computational
overhead, improves the timeliness of the attack graph, and
can better adapt to the rapid change in the IoV topology.

5 CONCLUSION

This paper proposes an IoV network security ontology model
in combination with the “cloud-channel-edge-terminal” and
constructs an IoV reasoning rule knowledge base by SWRL
rules. Both of them help with applying attack graph
technology to the field of network security of the IoV and
can describe attack scenarios in IoV system well. On this basis,
this paper proposes a dynamic attack graph generation
algorithm that can be updated incrementally according to
the changes in the network topology, which is more suitable
for IoV networks characterized by rapid changes in network
topology. The algorithm can show the vulnerability of the
global IoV network effectively and help carry out better risk
management and has lower algorithm complexity while
updating attack graph. Finally, the experiment results
demonstrated the effectiveness and feasibility of the
proposed algorithm.
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Optimization and Control for Solid
Oxide Fuel Cell System Hybrid DC
Microgrids From the Perspective of
High Efficiency, Thermal Safety, and
Transient Response
Lin Zhang1†, Wenhui Tang1, Feng Wang1, Chao Xie1, Weibin Zhou1 and Hongtu Xie2†*

1Department of Early Warning Technology, Air Force Early Warning Academy, Wuhan, China, 2School of Electronics and
Communication Engineering, Sun Yat-sen University, Guangzhou, China

Managing the power transients with both high efficiency and thermal management
constraints is a difficult task in the solid oxide fuel cell (SOFC) hybrid direct-current
(DC) microgrids. This article proposed a SOFC-based DC microgrid, which consists of
the SOFC stand-alone system, DC microgrid network, and DC/DC boost converter, along
with the associated DC/DC load. The control and optimization strategy of the SOFC-based
DC microgrids has been designed, including the thermal and electrical characteristics
analysis. First, the voltage and current regulator based on the proportional–integral (PI) is
designed, which can maintain the voltage stability of the proposed SOFC system. In
addition, the optimal regulator based on the optimal operating points (OOPs) is designed,
which can realize high efficiency and steady-state thermal safety of the proposed SOFC
system. Finally, the main performance, including the SOFC stack electrical characteristics
verification, SOFC stand-alone system electrical and thermal response, load-tracking
characteristics, and system efficiency is observed and discussed in the proposed control
and optimization strategy. Experimental results verify the correctness of the theoretical
analysis and the effectiveness of the proposed optimization and control strategy.

Keywords: solid oxide fuel cell (SOFC), direct-current (DC) microgrid, control and optimization, high efficiency,
thermal safety, transient response

1 INTRODUCTION

In recent years, global energy demand is steadily increasing (Zhang et al., 2020a; Deng et al., 2021),
which has made a great impact on various fields (Xie et al., 2020). Thus, the electric power generation,
transmission, and distribution around the globe will be subjected to pre-eminent concern due to
several reasons, such as the limited fossil fuel resources, incremental electric power consumption,
global climatic change, legislation for integrating renewable energy sources (RESs), and stochastic
properties of the RESs and their associated challenges (Zhang Y et al., 2019; Zhang et al., 2020b; Xu
et al., 2022). Compared to the alternating-current (AC) microgrids, the direct-current (DC)
microgrids have attracted both researchers and industrialists since it has many advantages,
including the role to effectively solve the effects of the distributed generation accessing network
to improve the power quality and transactive energy, and the elimination of the frequency and phase
control (Eid, 2014; Srinivasan and Kwasinski, 2020). Among several novel propositions, the solid
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oxide fuel cell (SOFC) is one of the most effective and efficient
RESs, which can generate electricity directly from the
electrochemical reaction with the least spread of pollution,
compared to the conventional energy production methods
(Wang et al., 2022). The SOFCs are excellent regional power
supply equipment applied to the power supply systems and will
be widely used in the DCmicrogrids, due to the advantages of fuel
adaptability, high efficiency, noiseless operation, and high
reliability. The advantages of the SOFC generation in the
microgrids can be summarized as follows:

• Improving system efficiency. Fuel utilization of the SOFC
system is more than 60% and its energy storage systems
(ESSs) sometimes reached 90% (Barnes, 2002). Its power
generation efficiency can be 55%–65%, which is generally
more efficient than the combustion engines (Singhal and
Kendall, 2003). This is important in the DC microgrids
needed for the combined heat and power systems.

• Cutting down expenditures. The wide varieties of fuel can be
used in the SOFC system, and the DC microgrids based on
the RES can be easily interfacing with the distribution
generation without the interlinking AC/DC-and DC/AC-
interfacing transformation stages, just by realizing the
combined power supply through a variety of the new
energy sources. Its implementation is simple and cost-
effective. It shows a good application perspective in
majority of the rural areas that do not have access to
reliable electricity (Gandini and Almeida, 2017; Hirsch
et al., 2018).

• Strengthening capability of the regulating peak. The SOFCs
can serve as the independent power generation as well as the
grid-connected system, and many SOFC power stations
connected to the power grid can greatly enhance the
peak regulation capability of the microgrids.

• Improving security. The worldwide power grids mostly use
the high-voltage electricity for long distance transmission,
which result in low reliability and serious losses caused by
large area blackouts due to accidents. The SOFCs can go on
the power supply for the basic load to support the
power grid.

However, the researches on the SOFC are still in their
beginning stage, with the lack of dynamic load following, the
poor thermal response, and gas starvation being some of the
drawbacks of SOFC systems that need to be addressed (Mumtaz
et al., 2018; Pranita et al., 2022), which requires constant
improvement and development to large-scale commercial
applications, especially the fast load tracking on the premise of
the high efficiency and operating safety under optimal working
conditions should be discussed in the DC microgrids. For the
SOFC-based DC microgrid development, safe operating,
including thermal management and gas starvation, is an
important control task, especially the high operating
temperatures may lead to the thermal gradient and local hot
spots (Zhang et al., 2010). Moreover, the optimal operation points
and optimized power switching strategies are discussed to
improve the system efficiency. In addition, the load transients

often involve significant peaks in power relative to steady-state
load (Li et al., 2015). Thus, load tracking is another important
control task in the DC microgrids.

In recent years, diverse thermal safety has been focused and
discussed to ensure the SOFC system operating in the proper
temperature. When the SOFC system temperature has been
recognized to have the significant impact on the cell lifespan
and operating safety; in order to mitigate temperature excursion
and ensure thermal safety, the excess air for the cooling SOFC
system is controlled to maintain the SOFC system within a safe
range (Sorrentino et al., 2008; Huo et al., 2010; Hajimolana et al.,
2013), including a proportional–integral (PI) controller, a variable
structure controller, or a neural network predictive controller,
which are suitable for the thermal safety control. However,
these control schemes had not considered the maximum
electrical efficiency operations of the SOFC stand-alone system.
Moreover, the gas starvation problem, considering the operating
safety, is also discussed (Carré et al., 2015), by developing a feed-
forward control for the SOFC system with anode-off gas recycle.
The results show that the control scheme was sensitive to external
disturbance and produced a steady-state error.

Many optimal control methods have been raised and
developed, which can provide an important reference on the
swift response and dynamic load variation issues of the SOFC-
based DC microgrids. The load-tracking studies under both
stand-alone and grid-connected conditions have been
discussed, especially the load-tracking and small signal stability
issues pertaining to grid-connection is investigated (Padulles
et al., 2000; Zhu and Tomsovic, 2002; Li et al., 2005). An
adaptive control paradigm is portrayed for the swift response
of the SOFC in a grid-connected microgrid (Awais et al., 2021).
The aforementioned control strategies are restricted to its
constraints or unable to tackle the sudden and large load
variations, and the cooperative thermo-electrical control
strategy has been not considered, which further needs to be
discussed and analyzed.

The main goal of this article was to design the optimization
and control strategy to ensure fast load following by
comprehensively considering the high efficiency, fuel
exhaustion, and thermal safety in the SOFC-based hybrid DC
microgrids. This article is organized as follows: Section 2
describes the hybrid power system architecture, including its
essential operational requirements. Section 3 deals with the
modeling and validation and optimization and control strategy
of the SOFC-based hybrid DC microgrid. Finally, the article ends
with a conclusion in Section 4.

2 SOLID OXIDE FUEL CELL HYBRID
DIRECT-CURRENT MICROGRID SYSTEM
LAYOUT
2.1 System Architecture
The overall block diagram of the SOFC-based hybrid DC
microgrid system is shown in Figure 1. It includes the SOFC
stand-alone system, commonly used DC/DC boost converters,
whose controlled output voltage is greater than the input voltage,
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which can maintain the high reliability and load power supply
(Ahmed and Blejis, 2013; Armghan et al., 2020; Liu et al., 2020).
The investigated SOFC stand-alone system is shown in Figure 2.
The system incorporates the stack and balance of plant (BOP),
including the fuel feed pipes and valves, air feed pipes and valves,
heat exchangers, SOFC stack, and tail-burner. The rated full
power of the co-flow planar stack is 5 kW, which can provide
the power to the external load through electrochemical reactions.
Generally, a classic SOFC BOP includes the air/fuel feed pipes and
valves, second air bypass manifold, fuel and air heat exchangers,
and tail-burner. Then, the fuel and air heat exchangers are
designed to minimize the inlet temperature difference of the
SOFC stack. The tail-burner can promote the utility rate of the
fuel by burning the tail gas. Meanwhile, its output hot gas is

spilled into the heat exchanger as the heat source. Finally, the
temperature of the SOFC system is convenient to control by
adding the second air bypass manifold.

2.2 System Essential Operational
Requirements
In addition to the fast power tracking, operating safety (including the
thermal safety and avoiding fuel exhaustion) and high efficiency are
the most important considerations for control and optimization.
This article mainly discusses the thermal performance indices
associated with thermal safety, fuel concentration indices
associated with fuel exhaustion, and optimal operation points
associated with high efficiency, which are depicted as follows:

FIGURE 1 | Schematic diagram of the SOFC-based hybrid DC microgrid.

FIGURE 2 | Overall SOFC stand-alone system layout.
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2.2.1 Thermal Performance Indices
The high temperature or temperature gradient in the SOFC may
cause material deformation or even damage, thus being the essential
operational requirements. For example, as one of themost important
components, the high temperature gradient in stack could result in
large thermal stress and may cause stack deformation or even
damage. In addition, stack temperature should be within the
materials’ bearing range. Under the aforementioned assumption,
the temperature constraints in the SOFC can be shown as follows:

(1) Burner temperature TB ≤ 1273K.
(2) Maximum positive-electrode-electrolyte-negative (PEN)

temperature Max.TPEN ∈ [873K, 1173K].
(3) Maximum PEN temperature gradient

Max.|ΔTPEN|≤ 8Kcm−1.
(4) Stack inlet temperature difference ΔTinlet ≤ 200K.

2.2.2 Fuel Concentration
The external load changes, ensuring that adequate fuel supply is one
of the most important prerequisites for the safe operating. The
primary cause of fuel exhaustion is identified as fuel delay due to the
slow dynamics in the fuel and air supply path. To observe the fuel
exhaustion condition, the fuel concentration in the stack must be
observed in real time. For avoiding the fuel exhaustion, the fuel
concentration in the stackmustmeet the basic requirementsXH2> 0.

2.2.3 Optimal Operation Points
For the further analysis of SOFC systemperformance, considering the
high efficiency of SOFC, the operating parameters, including the
system inlet air and fuel flow rate and system current, are selected as
the assemble-regulating variables in this article. The too low or high
value of all these aforementioned operating parameters would lead to
low efficiency or poor system performance, and they must be
operated within their region under the different external load powers.

Based on the performance indices discussed previously, in addition
to the thermal and electricalmanagement and constraint enforcement,
the optimal operating points (OOPs) are manipulated to achieve the
optimal energy efficiency through the transverse optimization process,
which have been conducted in our and other’s previous works (Zhang
et al., 2015a; Zhang et al., 2015b; Zhang et al., 2018; Zhang L et al.,
2019). The OOPs can ensure thermal safety, and high efficiency in
static can be obtained, which is shown in Table 1.

3 OPTIMIZATION AND CONTROL OF SOLID
OXIDE FUEL CELL-BASED DIRECT-
CURRENT MICROGRID
In the study of optimization and control of the hybrid SOFC
system for the voltage stability, it is necessary to develop the full
and quite accurate model of each subsystem component. This
section first deals with the modeling of the system.

3.1 Mathematical Model
A lot of researches considering the SOFC stand-alone system model
with the BOP were established for the simulation and optimization
in our earlier works (Zhang et al., 2015a; Zhang et al., 2015b; Zhang
et al., 2018; Zhang L et al., 2019), especially the exit temperatures,
species molar fractions, andmolar flow rates of each control volume,
which can be divided into the gas phase and solid phase, as shown in
Figure 3, have been obtained from the transient energy, species, and
mass conservation equations, respectively. These conservation
equations are of the same general form within various system
components in Table 2. _Q is the energy, T is the temperature,
and V, ρ and C are the volume, density, and specific heat capacity of
each control volume, respectively. W is the generating power, Ri is
the reaction rate of the individual species i, U is the voltage, i is the
current density,N is themolar flow rate, h is the gas enthalpy, S is the
area, F is the gas flow rates or Faraday’s constant, X is the molar
fraction, R is the universal gas constant, Cv is the constant volume-
specific heat capacity, Cp is the constant pressure-specific heat
capacity, hgs is the convection heat transfer coefficient, λg is the
gas thermal conductivity, d is the radius, u is the velocity, μ is gas
viscosity, and L is the distance between the control volume. The
subscript S represents the solid control volume, and in and out
represent the inlet and outlet, respectively. Cell denotes the fuel cell,
and ref represents reference. PEN is the positive electrode-
electrolyte-negative electrode, and cond and conv represent the
heat conduction and thermal conversion, respectively.

3.1.1 Burner
Burner is the main component for the off-gas recovery and
recycle. To reduce the computational burden, the SOFC
burner is assumed to operate adiabatically, and the fuel is
oxidized completely. It is assumed as the 0D lumped
parameter model, and the heat transfer with the external

TABLE 1 | OOPs of the SOFC stand-alone system.

SOFC net output
power Pnet (W)

Output
current Is (A)

Inlet air flow
rate Fair (mol/s)

Inlet fuel flow
rate FH2 (mol/s)

Bypass valve opening
ratio BP (%)

1000 10 0.09920 0.00772 0.2
1500 14 0.13888 0.01135 0.2
2000 20 0.19841 0.01543 0.1
2500 26 0.27405 0.02006 0.05
3000 32 0.34390 0.02469 0
3500 38 0.37697 0.02932 0
4000 44 0.43649 0.03419 0
4500 50 0.49601 0.03997 0
5000 52 0.57538 0.04774 0
5500 58 0.63490 0.05428 0
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environment is ignored. Simultaneously, the catalytic combustion
reaction time in the burner is in millisecond; thus, its reaction
process can be neglected. The quasi-static model is selected to
build the burner model. Its burning wall temperature can be
determined according to (1), and its outlet molar flow rate, molar
fractions, and outlet temperature can be computed by (5) and (7)
to (12), respectively.

3.1.2 Fuel and Air Heat Exchangers
By introducing two heat exchangers in the SOFC system, the fuel
and air can be preheated with the same hot stream from the burner
at the same time. Thus, it can minimize the stack inlet temperature
difference effectively. The structure of both the heat exchangers is
assumed to be counter-current pipe heat exchangers. The
integrated fuel and air heat exchangers are discretized into N
nodes in the flow direction. As shown in Figure 3, each node
includes the gas phase control volumes (air, fuel, and exhaust) and
solid phase control volumes (the fuel tube, air tube, and exhaust
tube). The temperature and species molar fractions of the gas phase
control volumes are calculated by the conservation of the energy

equation and the species conservation equation, respectively. The
temperature of the solid phase control volumes is calculated from
the dynamic solid-state energy conservation equation, as shown in
(1), whereas the temperature of the gas phase control volumes can
be calculated from (10).

3.1.3 Mass Flow Controllers
As shown in Figure 2, the air/fuel fed into the SOFC stack is
manipulated by three pipes and valves, where the dynamics can be
approximated by the first-order plus delay time, which is given by:

G(s) � 1
Ts + 1

e−Tds, (16)

where T is the inertia time constant; and Td is delay time or dead
time, in which the delay time have a direct effect on the dynamic
response, especially during the load tracing.

3.1.4 Solid Oxide Fuel Cell Stack
In this article, each single cell unit in the SOFC stack is assumed to
operate identically; thus, a single cell unit can be taken as a

FIGURE 3 | Nodes and control volumes of the 1D model.

TABLE 2 | Universal SOFC system building equations.

Control volume Variable Equation

Solid phase BOP temperature ∑ _Qin � ρsVsCs
dT
dt (1)

PEN temperature ρPENVPENCPEN
dTPEN
dt � ∑ _Qin,PEN + _Qreact − _Wout(2)

_Qreact � RH2O · hH2O(3)
_Wout � i · Snode · Ucell (4)

Gas phase Molar flow rate Fout � Fin +∑Ri (5)
Stack: RO2 � 1

2RH2 � −1
2RH2O � − iSnode

2F (6)
Burner: RO2 � 1

2RH2 � −1
2RH2O � −FinXH2 ,in(7)

Molar fraction N d(Xi )
dt � FinXi,in − FoutXi,out + Ri (8)

PV � NRT (9)
Temperature NCv

dT
dt � Finhin − Fouthout +∑ _Qin (10)

Cv � ∑XiCp,i(T) − R, i ∈ {H2 ,O2 ,H2O,N2}(11)
h � ∑Xi(∫T

T�Tref CP,i(T)dT + href ,i), i ∈ {H2 ,O2 ,H2O,N2}(12)

Gas and solid adjacent components Heat conduction _Qcond � Sarea ·kss ·(T2−T1)
L (13)

Heat transfer _Qconv � Sarea ·hgs · (T2 − T1)(14)
hgs � 0.023 λg

d (duρ
μ
)0.8(Cpμ

λg
)0.4(15)
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representative of the entire stack performance. In addition, as
shown in Figure 3, the fuel cell can be quasi-dimensionally
discretized into five nodes in this article.

Four temperature layers (such as fuel channel, air channel,
interconnector, and PEN) are considered for the fuel cell in the
SOFC stack model. The temperatures in the PEN and interconnect
plates are determined using the energy conservation equation, as
shown in (3) to (5). In addition, the temperatures and species mole
fractions in the cathode and anode gas streams are calculated from
the conservation of the energy equation and the species conservation
equation, as shown in (5) to (12), respectively. Conduction of heat
transfer between the solid phase control volumes is calculated based
on the Fourier’s Law, as shown in (13). Finally, the convection heat
transfer between each gas and solid phase control volume is
determined according to (14) and (15).

As the polarization losses, ohmic loss and concentration loss are
the function of the PEN temperature, gas pressure, and current
density in the fuel cell. The fuel cell output voltage can be
represented using a nonlinear algebraic equation, which is given by:

Ucell � f(i, pH2, pO2, pH2O, pa, TPEN), (17)
where TPEN represents the PEN temperature. For the accuracy of
the model building, the electrical dynamic model of the fuel cell is
obtained based on a lot of experimental data for the practical
guidance. The equivalent resistance is shown using the partial
derivative method, which is given by:

Rtot � z(Uohm + Uact + Ucon)
zI

, (18)

where I is the current; and Uohm, Uact, and Ucon represent the
ohmic loss, activation loss, and concentration loss in the SOFC
system, respectively, provided that:

Rtot � a0 + a1x +/ + anx
n; x � 0.001TPEN/Is, (19)

where a0, . . .. . .an represent the polynomial coefficient. Then, we
can have:

Ucell�UOCV−IRtot,

�UOCV−I(a0+a1·(0.001TPEN

Is
)+/+an·(0.001TPEN

Is
)n).

(20)
The open circuit voltage can be adopted by the Nernst voltage,

which is given by:

FIGURE 4 | Test of the fuel cells. (A) Fuel cell; (B) test furnace; and (C) electrical characteristics.

TABLE 3 | Parameter values of the equivalent resistance.

n a0 a1 a2 a3 a4

4 0.0028 0.2796 −0.9274 1.5921 −0.8775
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UOCV � E0 + RTPEN

2F
ln(PH2P

0.5
O2

PH2O
), (21)

E0 � −12.45058 + 26.3104(TPEN/1000)
− 12.4(TPEN/1000)2 − (2.7645e − 4)/TPEN.

(22)

To get the polynomial coefficient in (19), the electrical
characteristics of the single cell (10*10 cm2) under the ideal

conditions are conducted in an electrical furnace. As shown in
Figures 4A,B, the voltage, current, and power density are
investigated. The operating temperatures were set in the range
from 923 to 973 K with the space of 50 K, especially the output
power density and voltage are investigated under each
temperature, and the open circuit voltage is calculated when
the current is 0 A.

FIGURE 5 |Control and optimization of the SOFCDCmicrogrid. (A)Overall control schemes; (B) boost-type DC/DC converter model; and (C) steady-state optimal
points for the optimal regulator.
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Then, the electrical characteristics curves of the
voltage–current–power density are shown in Figure 4C; it showed
that the open circuit voltage is about 1.12–1.18 V, and the power
density is about 550–770mW/cm2. Based on the value obtained in our
test, referring to (20), the equivalent resistance can be calculated by the
least square fitting; assuming the polynomial of order n = 4, the values
of a1-a4 are shown in Table 3. Referring to our previous work, the
Newton iteration algorithm is adopted to build the electrical
characteristic model to ensure that the voltage of each fuel cell
node is equal, which will not be addressed in this article.
Moreover, the SOFC system structure parameters are confirmed by
the physical facility in our group, and the physical parameters are
determined by referring to the authoritative chemical handbook.More
detail can be found in Zhang et al. (2015a) and Zhang et al. (2015b).

3.1.5 Blower
The blower supplies air to the SOFC system, which is the main
parasitic losses in the SOFC stand-alone system; the output power
of the different air flow can be expressed as:

Pbl � − 1
τbl

p
γRTamb

γ − 1
⎡⎢⎢⎣(pout

pamb
)(γ−1)/γ − 1⎤⎥⎥⎦Fair, (23)

where τbl is the effectiveness, γ is the specific heat ratio, and p is
the pressure.

3.1.6 Solid Oxide Fuel Cell System Efficiency
The efficiency of the SOFC stand-alone system can be defined as:

ηsys �
Us · Is − Pbl

FH2 · LHVH2
× 100%, (24)

where Us is the stack voltage and LHVH2 is the low heating value
of H2.

3.2 Optimization and Control
As shown in Figure 5A, the SOFC stand-alone system is connected
to the DC/DC converter of the boost type. The design of the two
control loops is made considering the voltage stability and SOFC
dynamics in the DCmicrogrids. The voltage and current regulator
are shown in Figure 5B, which can allow voltage conversion as well
as the full control of the fuel cell current and DC bus voltage. The
average value of the DC/DC converter models can be referred to
Zakzouk et al. (2019) for this study. The optimal regulator mainly
controls the load demanded power by referring to OOPs.
Figure 5C shows the high fuel utilization (FU) and low air

FIGURE 6 | Characteristics of the SOFC-based DC microgrid system. (A) Input characteristic and stack remain H2 molar flow fraction; (B) related outputs
considering efficiency and fuel exhaustion; (C) output electrical characteristic; and (D) Output thermal characteristic.
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excess ratio (AR) under the OOPs in the steady state, which can
ensure high efficiency. Moreover, the PI regulator uses the control
method, and the demanded voltage of the DCmicrogrid is 220 V in
this study. The demanded load power change is given as
2.5 kW→3.5 kW→5 kW→1.5 kW→4.5 kW→5 kW. The
efficiency of the DC/DC boost converter in this study is
assumed to be 90%.

The proposed control and optimization scheme for the
SOFC-based DC microgrids is implemented in the Simulink/
SimPower systems, and the characteristics of the SOFC-based
DC microgrid system are shown in Figure 6. Figure 6A shows
the system input characteristics and stack remain H2 molar flow
fraction in the proposed SOFC system. It is worth pointing that
our previous study (Zhang L et al., 2019) has revealed that safety
operating, whether ensuring the thermal safety or avoiding fuel
exhaustion, should be in the cost of the fast load tracing, namely,
the SOFC system current that should slowly change. The SOFC
system current slope limitation is adopted to deal with the
problem of fuel exhaustion and thermal safety. By observing the
H2 molar flow fraction in the SOFC stack, the large amount of
hydrogen is shown in stack (≥82%). The output electrical
characteristics of the proposed SOFC system are shown in
Figure 6C, and the response time of the output electrical
variables, including the SOFC output net power and voltage,
is within tens of seconds. In addition, by the proposed optimal
regulator with the OOPs, considering the parasitic loss of the
blower power, the SOFC system efficiency shows a high value
(45%–65%). Due to the current slow switching and BP
regulation, the output thermal characteristics of the proposed
SOFC system shown in Figure 6D are all within their
temperature constraints.

The performances of the SOFC-based DC microgrid system is
shown in Figure 7. The DC/DC inputs (Figure 7A) responses based
on the SOFC system outputs and load changes, and the current is well
limited to its maximum reference current (60 A). The DC/DC voltage
outputs (Figure 7B) are well regulated at 220 V, and the power
outputs can well meet the load requirements. Figure 7C shows the
duty and efficiency to dealwith voltage stability and the energy convert
and transfer efficiency (40%–60%) in the proposed DC microgrid.

4 CONCLUSION

This article presented the optimization and control strategy for
the SOFC-based hybrid DC microgrids from the perspective of
high efficiency, thermal safety fuel exhaustion, and transient
response. The structure of the SOFC-based DC microgrid is
first introduced. Moreover, the hybrid system has been
modeled, especially the SOFC stand-alone system core part
stack is validated with the experiments for the more precise
corresponding electrical characteristics in the DC microgrid.
Considering the high efficiency, steady-state thermal safety,
and load tracing, the optimization and control strategy based
on the voltage and current regulator and OOPs for the SOFC-
based DC microgrid is implemented. The performance shows
that the proposed DC microgrid has the large amount of
hydrogen in stack (≥82%), thermal safety, voltage stability
(220 V), and high efficiency (40%–60%). An alternative is to
design the optimization, control, and energy management
strategy to optimize all the performance of the SOFC-based
DC microgrid, such as the SOFC/battery/supercapacitor-based
DC microgrid, which is the next topic for our further studies.

FIGURE 7 | Performances of the SOFC-based hybrid DC microgrid system. (A) DC/DC inputs; (B) DC/DC outputs; and (C) Duty and DC microgrid efficiency.
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Multistage Bilevel Planning Model of
Energy Storage System in Urban
Power Grid Considering Network
Reconfiguration
Zhongqi Cai1, Kun Yang1, Yong Chen1, Ruixiong Yang1, Yanxun Gu1, Yu Zeng2*, Xi Zhang2,
Sashuang Sun2, Sirong Pan2, Youbo Liu2 and Junyong Liu2

1Zhuhai Power Supply Bureau of Guangdong Power Grid, Zhuhai, China, 2College of Electrical Engineering, Sichuan University,
Chengdu, China

The large-scale integration of renewable energy sources (RESs) and the rapid
development of loads cause frequent transmission congestion in the urban power grid
(UPG). Transmission system operators usually perform the high-voltage distribution
network (HVDN) reconfiguration to mitigate the transmission congestion. However, as
the loads and RESs change rapidly, the HVDN reconfiguration might be conducted
frequently. This might cause severe security problem. An energy storage system (ESS)
provides an effective way of alleviating the transmission congestion. If the ESS is installed
and operated elaborately, the transmission congestion of UPG can bemitigated with a little
HVDN reconfiguration. Hence, this study proposes a multistage bilevel planning model for
the optimal allocation of ESS. The upper-level model aims at maximizing the annual
comprehensive revenue of HVDN, and the lower-level model focuses on the minimization
of the operational cost. Simulation results carried out on a real-world test system verify that
the proposed method has the great potential of reducing the investment and operational
cost while mitigating the transmission congestion.

Keywords: energy storage station, multistage planning, high-voltage distribution network, congestionmanagement,
network reconfiguration, load shedding

1 INTRODUCTION

The acceleration of urbanization in many developing countries has caused the surge of the electricity
load and renewable energy sources (RESs). Owing to the limited transmission capacity, the
transmission congestion occurs more frequently than before. This limits the penetration of RESs
(He et al., 2021). To guarantee the safe operation of the power system, the grid dispatchers have to
curtail the generation of RESs and shed load as reported by Bird et al. (2016) and Goop et al. (2017).

Transmission switching is an efficient way to deal with the congestion management problems by
elaborately selecting the transmission lines to be disconnected (Zhang et al., 2022). Extensive studies
have been performed recently on this subject. In a study by Khanabadi et al. (2018), a decentralized
transmission switching model is proposed to alleviate transmission congestion under credible
contingencies. In a study by Salkuti (2018), a multiobjective-based congestion management
methodology is established, considering the influences of network reconfiguration. The network
topology is reconfigured to improve the hosting capacity of renewable generation and variable loads
in a study by Haghighat and Zeng (2016). Many researchers have investigated the method that
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relieves the transmission congestion by performing high-voltage
distribution network (HVDN) reconfiguration. The research by
Zhang et al. (2020) and Hoffrichter et al. (2018) shows the great
potential of implementing HVDN reconfiguration to mitigate the
transmission congestion. However, implementing congestion
management through frequent transmission switching could
increase the risk of safe operation and reduce the power
supply reliability.

The increasing penetration of RESs stimulates the
installation of grid-side energy storage systems (ESSs),
providing an effective solution to relieving the transmission
congestion. On the grid side, the ESS plays the role of delaying
the investment in transmission and distribution
infrastructure (Hu et al., 2012; Macrae et al., 2014; Macrae
et al., 2016), shaving peak load (Subramani et al., 2018),
regulating the frequency (Dhundhara and Verma, 2018),
and ensuring the safe operation (Nick et al., 2014). Several
studies investigate the role of the ESS in increasing the
transmission capacity of congested transmission networks
(Del Rosso and Eckroad, 2014). In a study by Yan et al.
(2020), a robust optimization model is designed to operate
the ESS, considering uncertainties. The results show that the
ESS could increase the system flexibility and mitigate the
transmission congestion. In the research by Yang et al.

(2021), a joint planning method of the ESS and
transmission network is proposed to relieve the
transmission congestion and reduce the curtailment of RES.
Chen and Liu (2021) proposed a network reconfiguration
integrated dynamic tariff–subsidy congestion management
method, alleviating microgrid congestion caused by RESs
and flexible demands through the ESS and network
reconfiguration. In the research by Nick et al. (2017), the
siting and sizing schemes of ESSs are optimized, considering
the impact of network reconfiguration. In a study by Fiorini
et al. (2017), the sizing and siting of large-scale ESSs are
optimized in transmission grids to enhance the use of
renewables. However, the investment cost of the ESS is
relatively high owing to technical reasons and unreasonable
planning methods. On the one hand, current ESS planning
methods do not consider the development of the transmission
network and the growth of the load, causing the excessive
investment at the early stage (Cao et al., 2020). On the other
hand, the planning model does not consider the role of HVDN
reconfiguration in alleviating transmission congestion.

In order to fill up the gaps discussed above, this study proposes
a multistage bilevel planning method for the ESS that considers
the HVDN reconfiguration. The main contributions are shown as
follows:
1) A collaborative scheduling strategy that co-optimizes the ESS

operational strategy and the HVDN topological structure is
developed, avoiding the frequent HVDN reconfiguration and
load shedding while maximizing the operating benefits of the
urban power grid (UPG).

FIGURE 1 | Illustration of the urban power grid structure.

FIGURE 2 | Structure of transformer unit.

FIGURE 3 | Simplified urban power grid structure.
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2) The proposed ESS planning procedure that consists of HVDN
reconfiguration can effectively reduce the cost of ESS
installation and improve the efficiency of the ESS.

3) The idea of multistage planning is incorporated into the
optimal ESS allocation. On the one hand, it can maximize
the utilization of the ESS. On the other hand, it can effectively

avoid the waste of energy storage resources, reduce the investment
and operation costs, and improve the revenue of the ESS.

2 TYPICAL STRUCTURE OF URBAN
POWER GRID

In general, the UPG mainly consists of a 220-kV/500-kV
transmission network and a 110-kV HVDN (Yuan and
Hesamzadeh, 2017; Zhang et al., 2020) (as shown in
Figure 1). Owing to the high density of urban loads and
the limited transmission capacity, some transmission lines
might be overload during system operations (Zhang et al.,
2020).

To simplify the HVDN topology structure and improve the
computation efficiency, the concept of a transformer unit (TU) is
defined as shown in Figure 2, in which the letter P represents the
active power transferred by TU. In order to simplify the problem,
only the balance of the active load is considered.

Hence, the UPG structure in Figure 1 can be simplified as
shown in Figure 3.

3 MULTISTAGE PLANNING APPROACH

The flow chart of the multistage planning approach for the ESS in
the UPG is shown in Figure 4.

Assume that the planning horizon of the ESS is n years. The
planning stages are determined by the growing rate of the load.
During the period of rapid load growth, the number of the stages
should be more, and the length of the stages should be shorter. In
this study, the planning horizon is divided into N stages as shown
in Eq. 1:

FIGURE 4 | Flow diagram of energy storage system’s multistage
planning.

FIGURE 5 | Flowchart of bilevel optimization solution.

FIGURE 6 | Network configuration of the China 407-node urban power
grid system.
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S � [S1, S2, / , SN] (1)
where SN represents the Nth planning stage.

The planning scheme of the ESS at different stages is
denoted as

Eset � [Eset1, Eset2, / , EsetN] (2)
where EsetN denotes the ESS planning scheme at the Nth stage.

Note that the planning scheme at the Nth stage is
determined on the basis of the prior planning scheme Eset,
N-1.

4 PROBLEM FORMULATION

In order to reduce the difficulty of solving the ESS planning problem
and improve the efficiency, the siting of the ESS is determined using
a multiattribute comprehensive index evaluation model from the
study by Guo et al., 2020, Song et al. (2019). The sizing problem is
described using a bilevel mathematical model.

4.1 Siting Model
The siting of the ESS is determined using a multiattribute
comprehensive index that comprises the line load rate and the

FIGURE 7 | Sequential technical indices for energy storage system siting. (A) sequential maximum line load factor. (B) sequential maximum node load shedding
factor.
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FIGURE 8 | Comprehensive indicators for energy storage system siting.

TABLE 1 | Energy storage system planning results of each stage of case I.

Num Name Stage 1 Stage 2 Stage 3 Total

P E P E P E P E

1 ESS-5 14 16 14 14 14 19 41 49
2 ESS-14 5 21 17 15 16 12 38 49
3 ESS-24 9 19 19 15 19 20 45 55
4 ESS-38 14 19 18 14 16 20 48 52
5 ESS-74 15 18 19 17 17 12 51 46
6 ESS-114 16 22 14 13 13 14 44 50
7 ESS-125 13 16 18 20 16 17 47 53
8 ESS-173 10 20 14 17 19 13 43 50

Total 96 151 133 125 130 127 357 404

Investment cost Operation cost Peak-shaving
revenue

Lagged facility
upgrades revenue

Net revenue

73,680 21,420 66,810 42,840 14,550

TABLE 2 | Energy storage system planning results of each stage of case II.

Num Name Stage 1 Stage 2 Stage 3 Total

P E P E P E P E

1 ESS-5 46 64 — — — — 46 64
2 ESS-14 43 51 — — — — 43 51
3 ESS-24 39 56 — — — — 39 56
4 ESS-38 50 68 — — — — 50 68
5 ESS-74 51 57 — — — — 51 57
6 ESS-114 35 58 — — — — 35 58
7 ESS-125 60 49 — — — — 60 49
8 ESS-173 31 47 — — — — 31 47

Total 355 449 0 0 0 0 355 449

Investment cost Operation cost Peak-shaving
revenue

Lagged facility
upgrades
revenue

Net revenue

76,330 23,300 64,597.5 41,600 6567.5
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nodal load curtailment rate. The detailed descriptions of the index
are shown as follows:

The line load rate is the ratio of the maximum line load rate to
the line capacity. The line load factor matrix F1 for each node is
formed by taking the line load rate of each branch associated
with the node as an indicator:

F1 � [f1(1), f1(2),/, f1(m),/, f1(N)]T (3)
where f1(k) is the line load rate of the branch associated with the
nodem.N is the number of the 110-kV nodes. F1(k) is modeled as
follows:

f1(k) � max
maxpk,mk,t

pmax
mk

, t � 1, 2,/, T (4)

2) The nodal load curtailment rate is the ratio of the
maximum load curtailment to the load at a node. This
index reflects the overall reliability of the system and is
used as an indicator to form the nodal load curtailment
ratio matrix F2:

F2 � [f2(1), f2(2),/, f2(k),/, f2(N)]T (5)
where f2(k) is the load curtailment rate of the node k. f2(k) is
modeled as follows:

f2(k) � ΔpLCA
k,t

pload
k,t

, t � 1, 2,/, T (6)

Thus, the comprehensive evaluation index of node k is
formulated as follows:

r(k) � αf1(k) + βf2(k) (7)
where α and β are the weights for f1(k) and f2(k), respectively.

The index r(k) for each node is ranked from the largest
to the smallest, and the top S values are selected to install
the ESS.

4.2 Sizing Model
4.2.1 Upper-Level Model
The upper-level (UL) problem takes the total net proceeds of the
ESS within its life cycle as the objective. The detailed model is as
follows:

max∑
e∈E

πe ∑
t∈T
[Cgain−peak + Clag−inv] −∑

t∈T
[Cess−inv + Cess−ope] (8)

Cgain−peak � ∑
(i,k)∈CHVDN

CLCA(ΔpLCA,bef
e,ik,t − ΔpLCA

e,ik,t) (9)

Clag−inv � ∑
k∈BΕ

k

Crηp
−
k (10)

Cess−inv � ∑
k∈BE

k

(Cs�sk + Cp �pk) (11)

Cess−ope � ∑
k∈BE

k

(1 + ir
1 + φ

)τ

Cf �pk (12)

s.t.

0≤ �sk ≤ smax (13)
0≤ �pk ≤pmax (14)

Cess−inv ≤Cess−inv
max (15)

Eq. 5maximizes the total net proceeds of the ESS within its life
cycle. It can be calculated using Eqs. 9–12. Equation 9 calculates
the peak-shaving revenue of the ESS. Equation 10 calculates the
revenue for delaying the investment on upgrading the grid
infrastructure. Equations 11 and 12 are the investment cost
and the operational cost for the ESS, respectively. In Eq. 11,
the parametersCs and Cp can be calculated as follows (Pandi et al.,
2015; Hassan and Dvorkin, 2018):

Cs � Ĉ
s φ(1 + φ)ω(1 + φ)ω − 1

· 1
ND

(16)

Cp � Ĉ
p φ(1 + φ)ω(1 + φ)ω − 1

· 1
ND

(17)

TABLE 3 | Energy storage system planning results of each stage of case III.

Num Name Stage 1 Stage 2 Stage 3 Total

P E P E P E P E

1 ESS-5 55 68 — — — — 55 68
2 ESS-14 49 70 — — — — 49 70
3 ESS-24 54 61 — — — — 54 61
4 ESS-38 41 56 — — — — 41 56
5 ESS-74 57 60 — — — — 57 60
6 ESS-114 49 44 — — — — 49 44
7 ESS-125 36 45 — — — — 36 45
8 ESS-173 44 57 — — — — 44 57

Total 384 460 0 0 0 0 384 460

Investment cost Operation cost Peak-adjusted
revenue

Lagged facility
upgrades
revenue

Net revenue

78,200 24,040 59,358 46,080 3,198
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where Ĉ
s
and Ĉ

p
represent the energy- and power-related

components of the ESS investment cost, respectively; φ
represents the annual discount rate; ω represents the ESS
lifetime; and ND represents the number of days in the target
year (Hassan and Dvorkin, 2018). Equations 13 and 14 show the
maximum capacity (power rating and energy) of the ESS that can

be installed at each HVDN node. Eq. 15 limits the total
investment cost for the ESS.

4.2.2 Lower-Level Model
The lower-level model optimizes the topological structure of the
HVDN, which aims at minimizing the curtailment of the load.

FIGURE 9 | System initial operation condition. (A) initial line ratio of the 220-kV transmission network. (B) initial line ratio of the 110-kV transmission network.
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The detailed reconfiguration model of the HVDN in each typical
day is represented as follows: ∀e ∈ E, t ∈ T:

minfn � ∑
t∈T

∑
k∈BH

CLCAΔpLCA
e,k,t (18)

s.t.

pg
e,i,t − pload

e,i,t − ∑
(i,j)∈LT

pe,ij,t � 0, ∀i ∈ BT (19)

pload
e,i,t − ∑

(i,k)∈LT−H
pe,ik,t � 0, ∀i ∈ BT (20)

pload
e,k,t − ΔpLCA

e,k,t � ∑
(i,k)∈LT−H

pe,ik,t + ∑
(m,k)∈LH

pe,mk,t

+ pess
e,k,t − ∑

(k,l)∈LH
pe,kl,t, ∀k ∈ BH (21)

0≤ ze,mk,t + ze,km,t ≤ 1, ∀(m, k) ∈ LH (22)

∑
(i,k)∈LT−H

ze,ik,t + ∑
(m,k)∈LH

ze,mk,t � 1 (23)

ze,ki,t ≡ 0, k ∈ BH, i ∈ BU,∀(i, k) ∈ LT−H (24)
0≤ ∑

t∈T
(ze,km,t+1 − ze,km,t)≤ q, ∀(m, k) ∈ LH (25)

0≤ ∑
t∈T
(ze,mk,t+1 − ze,mk,t)≤ q, ∀(m, k) ∈ LH (26)

0≤ ∑
(m,k)∈LH

(ze,km,t+1 − ze,km,t)≤ λ (27)

0≤ ∑
(m,k)∈LH

(ze,mk,t+1 − ze,mk,t)≤ λ (28)

0≤pe,mk,t ≤ ze,mk,tp
max
mk , ∀(m, k) ∈ LH (29)

0≤pe,ik,t ≤ ze,ik,tpmax
ik , ∀(i, k) ∈ LH (30)

0≤ΔpLCA
e,k,t ≤ΔpLCA,max

k , ∀k ∈ BH (31)
pess
e,k,t � pdis

e,k,t − pch
e,k,t, ∀k ∈ BE

k (32)
Ssoce,k,t � Ssoce,k,t−1 + (αch

k p
ch
e,k,t − αdis

k pdis
e,k,t)/�sk, ∀k ∈ BE

k (33)
0≤pdis

e,k,t ≤ u
dis
e,k,t

�pk, ∀k ∈ BE
k (34)

0≤pch
e,k,t ≤ u

ch
e,k,t

�pk, ∀k ∈ BE
k (35)

Ssock,min ≤ S
soc
e,k,t ≤ S

soc
k,max,∀k ∈ BE

k (36)
uch
e,k,t + udis

e,k,t ≤ 1, ∀k ∈ BE
k (37)

Equation 18 minimizes the curtailment of the load at HVDN
node, Eqs 19–21 are the power balance constraints, Eqs 22–24
are radial constraints, Eq. 25 and Eq. 28 represent the
limitation for the number of switching constraints, Eq. 29
and Eq. 30 represent the branch power constraints, Eq. 31 is
the load curtailment amount constraints at the
HVDN node, and Eqs 32–37 represent the ESS operation
constraints.

FIGURE 10 | System operation condition. (A) line ratio of the 220-kV
transmission network. (B) line ratio of the 110-kV transmission network.

FIGURE 11 | Load curtailment.
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4.2.3 Solving Process
TheULproblem features strong nonlinearity, and the LL problem is a
mixed-integer linear programming problem. Therefore, a hybrid
method is used in this study, including the CPLEX optimizer and
the PSO (Song et al., 2019). The solving process is a procedure of
alternating iterations between the UL model and the lower-level
model through coupling variables. First, the UL model is solved to
obtain the initial size for the ESS. Then, the lower-level model is
solved to obtain the optimal collaborative operational strategy of the
ESS and HVDN based on the ESS size yielded by the UL model. In
the end, the updated size of each ESS is used to check whether the

termination conditions are met. The flowchart of the process is
shown in Figure 5.

5 CASE STUDY

5.1 Simulation Setup
The proposed method is tested on a real 407-node UPG system in
China. The system has a peak load of 4,080 MW, and the
transmission system comprises 50,220-kV substations and
91,220-kV lines. Each substation has two or three nodes that

FIGURE 12 | System operation condition. (A) line ratio of the 220-kV transmission network. (B) line ratio of the 110-kV transmission network.
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are connected with the HVDN. The HVDN comprises 68,110-kV
substations and 138,110-kV lines. Figure 6 shows part of the grid
structure of the UPG. The ESSs are installed on the 110-kV DCU.
The technical parameters of an ESS can be found in a study by
Chen and Liu (2021). Other parameters are as follows: the
construction life of the ESS is 2 a, its service life is 15 a, and
its utilization days in a year are 280 days; the discount rate is taken
as 8%; and the inflation rate is taken as 1.5%. Assuming that the
ESS planning horizon n is 15 years and is divided into three
stages, i.e., N = 3. The duration of each stage is 3, 5, and 7 years.

To show the advantages of the proposed method, three cases
are set for comparison.

Case I: consider the multistage ESS planning scheme with the
HVDN reconfiguration.
Case II: consider the single-stage ESS planning scheme with
the HVDN reconfiguration.
Case III: consider the single-stage ESS planning scheme
without the HVDN reconfiguration.

The numerical results are discussed as follows.

5.2 Simulation Results
The time-series data analysis results of the line load rate and the
node load shedding rate are shown in Figure 7.

Figure 7A shows the maximum load factor of the lines that
connect with the nodes during a day. It can be seen from
Figure 7A that each node experiences a period of high load rate.

Figure 7B shows the node load shedding index during a day. It
can be seen from Figure 7B that some nodes encounter the
curtailment of the load during the peak time to meet the
constraints.

According to the importance of the above indicators in the
upper objective function, the weights of each indicator are set to
form a comprehensive indicator curve as shown in Figure 8. As

shown in Figure 8, the indicator value of eight nodes, i.e., nodes 5,
14, 24, 38, 74, 114, 125, and 173, surpass the threshold. Hence, we
chose these nodes as the candidates for installing the ESS.

The planning scenarios are solved separately for different
cases, and the configuration of the ESS at each stage is shown
in Tables 1–3.

1) As shown in Table 1, the capacity of the ESS keeps increasing
at each planning stage to achieve the maximization of the
objective of the UL model.

2) As shown in Table 2, regardless of the ESS construction
sequence, the investment cost increases by 3.6% from RMB
736.8 million in case I to RMB 763.30 million in case II, and
the operation cost increases by 8.8% from RMB 214.2 million
in case I to RMB 233 million in case II. It is obvious that the
proposed multistage planning method achieves a better
operational economy. The waste of the resources caused by
the overinvestment is avoided while the growing load demand
is satisfied.

3) From Tables 2 and 3, it can be seen that the ESS planning
without considering the HVDN reconfiguration not only
requires a larger investment cost but also has a lower net
benefit. The results demonstrate that the collaboration of the
ESS operational strategy and HVDN reconfiguration can
reduce the cost for ESS allocation.

4) As shown in Tables 1–3, the net benefits of the system are
positive during the whole life cycle of the ESS. It shows that the
investment of the ESS can effectively save the cost for
constructing new transmission lines and substations.

The line ratio during a day is shown in Figure 9. To highlight
the advantages of the proposed method, the method that only
considers the HVDN reconfiguration (Haghighat and Zeng,
2016) is used to make a comparison with the proposed method.
The numerical results are discussed as follows.

As shown in Figure 10, most of the line ratios are limited to
the acceptable level after reconfiguring the HVDN topology. The
load curtailment is shown in Figure 11.

In Figure 11, the load curtailment occurs at the 12th to 23rd
time intervals and 361.89-MW load is curtailed in total. Although
the transmission congestion is alleviated, the problems of
frequent HVDN reconfiguration and the load shedding remain
unsolved.

The optimized line ratio yielded by the proposed method is
shown in Figure 12.

FIGURE 13 | Load curtailment. (A) energy storage system (ESS)-
24 operational strategy. (B) ESS-125 operational strategy.

TABLE 4 | Comparison of results of different congestion management schemes.

Method Optimization results

Method I Total number of switching 35 times
Total load curtailment 361.89 MW

Method II Total number of switching 19 times
Total load curtailment 190.68 MW
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As shown in Figure 12, all line ratios are limited to the
acceptable levels after performing the optimal ESS charging/
discharging strategy and HVDN reconfiguration. The
operational results are shown in Figures 13 and 14.

As shown in Figures 13 and 14, the load shedding is reduced
and the SoC of each ESS is within the specified range.

5.3 Results and Discussion
The optimization results of the two methods are shown in
Table 4. The proposed method is represented as method II.

As shown in Table 4, the traditional method that only considers
the HVDN reconfiguration requires 361.89-MW load curtailment,
and the number of switch actions reaches 35 times. Based on the
collaboration of the ESS operational strategy and the HVDN
reconfiguration proposed in this study, the load shedding can be
reduced to 190.68MW. Besides, the number of switch actions
reduces to 19 times compared with that in the conventional method.

6 CONCLUSION

To reduce the frequency of HVDN reconfiguration and
mitigate the transmission congestion, this study proposes
a multistage planning method for ESS allocation in the
UPG, considering the influence of HVDN reconfiguration.
From the numerical results, conclusions can be drawn, as
follows:

1) Through co-optimizing the HVDN topology and ESS
operational strategy, transmission congestion can
be effectively mitigated while reducing the load
curtailment and the frequency of the HVDN
reconfiguration.

2) The proposed ESS planning procedure incorporates the
HVDN reconfiguration, which can effectively reduce the
cost of ESS installation.

FIGURE 14 | Energy storage system (ESS) operational strategy. (A) ESS-24 operational strategy. (B) ESS-125 operational strategy.
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3) The multistage planning method can improve the economic
operation of the ESS compared with the single-stage planning
method.

In future work, the effect of the 10-kV distribution system
reconfiguration can be further incorporated in the ESS planning
model. Besides, the uncertainties of the RES and electric vehicles
can be also considered to improve the adaptiveness of the proposed
method.
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NOMENCLATURE

Abbreviations
UPG Urban power grid

TS 220-kV transmission system (TS) in the UPG

HVDN 110-kV high-voltage distribution network

ESS Energy storage system

B. Indexes
i,j Node index in the TS

k,l,m Node index in the HVDN

b Node index in the HVDN

n Number of the regional HVDN

E Set of typical operational scenarios, indexed by e

T Set of time intervals, indexed by t

C. Sets
BT, LT Node set and branch set in the TS

BH, LH Node set and branch set in the HVDN

LT−H Branch set in the TS and HVDN interface

BE
k Set of nodes that connect with an ESS

Eset Indicating the planning scheme of the ESS

S Set of the planning stages

D. Parameter
Cs/Cp/Cf Unit prices for energy reservoir (Cs), power rating (Cf), and
operational costs (Cf)

πe Weight of a typical operational scenario indexed by e

nE Number of the typical operational scenarios

αch/disk Charging/discharging efficiency of an ESS

ω Energy storage lifetime

φ Annual discount rate

λ The maximum number of the operated HVDN switches during the time
interval t

q The maximum number of times an HVDN switch can be operated in
a day

ir Inflation rate

ND Number of days in a calendar year

CLCA Cost for load curtailment

ΔpLCA,max
k Maximum load curtailment amount (LCA) at the bus k

smax Maximum install energy of an ESS

pmax Maximum install power rating of an ESS

Ssock,min, S
soc
k,max Minimum and maximum SoCs of the ESS at the bus k

pmax
ik Maximum active power through the branch (i,k)

pmax
mk Maximum active power through the branch (m,k)

Cess−inv
max Maximum ESS investment cost

E. Variables
ΔpLCA

e,k,t LCA at the node k during the time interval t

pg
e,i,t Active power injected into the node i during the time interval t

pload
e,i,t , p

load
e,k,t Active load demand at the node i and k during the time

interval t

pe,mk,t, pe,kl,t Active power through the branch (m,k) and (k,l) during the
time interval t

pe,ij,t, pe,ik,t Active power through the branch (i,j) and (i,k) during the time
interval t

pk,mk,t Active power through the branch (m,k) to/from node k during the
time interval t

ze,ik,t, ze,mk,t Binary variable that indicates the power direction through the
branch (i,k) and (m,k) during the time interval t

pch/dis
e,k,t Charging/discharging of storage at the bus k during the time

interval t

Ssoce,k,t SoC of ESS at the time interval t

�sk/�pk Energy/power rating of the ESS at the bus k

uch/dise,k,t Binary variable indicating whether the ESS is installed at the bus k
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The rapid development of the Industrial Internet-of-Things extends demand

response (DR) research to the aspect of low-carbon emission in smart grids.

This study proposed the concept of low-carbon DR (LCDR) in the electricity

market as well as the price-based LCDRmechanism and its model. First, carbon

cost conduction from the generation side to the demand sidewas analyzed, and

then conduction function was quantifiably deduced. Second, the mechanism

and model of price-based LCDR were proposed by considering three DR

signals, namely, the electricity price, carbon price, and carbon emission

intensity of the demand side, based on the traditional price-based DR

(PBDR) mechanism. Third, the proposed LCDR mechanism was applied to

the environmental–economic dispatch optimization problem. At last, case

studies on the modified IEEE 39-bus system verified that the LCDR

mechanism can reduce carbon emissions while maintaining the function of

the traditional PBDR. Meanwhile, the applicability of LCDR was illustrated based

on carbon emission sensitivity to LCDR model parameters. The proposed

mechanism can guide participants in the electricity market in reducing

electricity carbon emissions.

KEYWORDS

price-based low-carbon demand response, carbon emissions, carbon emission cost
conduction, carbon emission intensity, environmental–economic dispatch

Introduction

The application of Industrial Internet-of-Things (IIoTs) (Sisinni et al., 2018) brings

advanced measurement and communication technologies to the power grid, such as cyber

networks (Sridhar et al., 2012) and smart meters (Depuru et al., 2011), making the power

grid smarter than ever. The extensive use of smart equipment significantly enhances the

observability and controllability of the demand side in the smart grid and provides strong

hardware and data support for the development of demand response (DR) (Chen et al.,

2020). DR refers to “changes in electric usage by customers from their normal

consumption patterns in response to changes in the price of electricity over time, or
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to incentive payments designed to induce lower electricity use at

times of high wholesale electricity market prices or when system

reliability is jeopardized” (Siano, 2014).

At present, carbon emission reduction has achieved a global

consensus (United Nation, 2021). As consumption terminals, the

power consumers in the demand side should undertake their

carbon reduction responsibility. Based on DR, consumers can

change their load in time and space with their power suppliers

from high- to low-carbon emission generators, resulting in

carbon emission reduction. In this context, DR can play a

vital role in carbon neutrality based on the IIoTs.

By widely using smart meters, the energy consumption of the

demand side can be effectively monitored. Using high-frequency

meter data, more accurate characteristics of loads and carbon

emissions can be obtained. Based on the advanced cyber

networks, the consumers can receive more accurate and

timely DR signals (Albadi and El-Saadany, 2007) from

independent system operators or dispatching departments.

These signals include electricity price, electricity carbon

emission intensity (CEI), incentives, and control instructions.

As a result, consumers can achieve carbon emission reduction

(Stoll et al., 2014), which is beneficial for themselves and the

power grid, by reducing their carbon consumption.

DR programs generally include the price-based demand

response (PBDR) (Conejo et al., 2010) and the incentive-based

DR (IBDR) (Lu and Hong, 2019). In PBDR programs, consumers

respond to real-time prices based on the demand elasticity model

(Kirschen et al., 2000) and modify their demands by shaving/

shifting flexible load from peak times into valley times to flatten

load curves. PBDR programs are usually applied to the day-ahead

and real-time market clearing (Wu, 2013; (Li et al., 2022),

economic dispatching (Dehnavi and Abdi, 2016), and power

grid planning (Wang et al., 2020). A successful PBDR can help

the power market set efficient electricity prices, improve

economic efficiency, and reduce environmental costs and

carbon emissions.

At present, carbon emission costs (Gillenwater and

Breidenich, 2009) have been internalized into the electricity

market. It is generally considered that carbon emission costs

are directly included in the generation side (Newcomer et al.,

2008). Through market clearing, carbon emission costs can be

conducted from the generation side to demand side,

accompanied by the increase in electricity prices (Wook et al.

(2010); Panagiotis et al. (2021)). The energy consumption price

that consumers pay becomes the integrated electricity–carbon

price. Thus, the PBDR needs to take carbon emission costs into

account; moreover, research on PBDR should be extended to the

field of low-carbon emission.

Recent research on low-carbon–oriented PBDR mostly

focuses on the impact of traditional PBDR programs on

carbon emissions. He et al., (2020) proposed an

environmental–economic dispatch (EED) model with a price-

based integrated DR program considering the carbon trading

scheme. In the study by Zeng et al. (2014), PBDR is used for

planning distribution systems in a transition toward low-carbon

sustainability. A new piecewise linear approximation method for

calculating carbon emission factors was proposed by Fleschutz

et al. (2021) to quantify the effect of PBDRs on operational

carbon emissions in European countries. Song et al. (2014) and

Dahl and Petersen (2016) developed new simulation models to

investigate the joint influence of price and CO2 signals in DR

programs. However, existing research still have major problems.

First, there is no clear analysis of the conduction process of

carbon emission costs from the generation side to the demand

side, making it difficult to quantify carbon emission costs for the

demand side. Second, there is a lack of low-carbon–oriented DR

mechanism to achieve better carbon emission reductions.

Therefore, this study proposed the concept of LCDR as well

as the price-based LCDRmechanism considering the conduction

of carbon emission costs in the smart grid. The main

contributions of this study are as follows:

1) Quantified carbon emission cost conduction from the

generation side to the demand side in the wholesale

electricity market and deduced electricity carbon emission

cost function and carbon emission cost conductivity (CECC)

in the demand side.

2) Proposed the price-based LCDR mechanism and its model,

which integrates three DR signals, namely, electricity price,

carbon price, and CEI of the demand side.

3) Established an EEDmodel considering the price-based LCDR

model to verify the proposed mechanism and analyzed the

applicability of the mechanism based on the sensitivity of

carbon emission to the three main parameters of the LCDR

model.

The remainder of the paper is organized as follows. Section

2 quantifies carbon emission cost conduction in the wholesale

electricity market. Section 3 proposes the price-based LCDR

mechanism and its corresponding model. Section 4 establishes

an EED optimization model considering the LCDR mechanism.

Section 5 presents case studies to show the function of carbon

emission reduction in the LCDR mechanism and its application

scenarios.

Quantified analysis of carbon
emission cost conduction in the
wholesale electricity market

In general, carbon emission cost is internalized into

electricity cost and directly included in the generation side. It

is directly passed to the demand side in the wholesale electricity

market, resulting in the increase in electricity prices. According

to the operation characteristic of the power grid and the market

clearing method, the additional carbon emission cost per unit of
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electricity consumption is different. That is, each node in the

power grid has a different CECC.

Therefore, this study proposed a quantified analysis method

for carbon emission cost conduction including three parts: 1) the

carbon emission cost of electricity consumption, 2) the clearing

mechanism of the electricity market, 3) the electricity CEI of the

demand side.

Carbon emission cost of electricity
consumption

Carbon price in the carbon trading market offers a generally

accepted reference price for market participants, which can be

used to calculate carbon emission cost. In general, carbon

emission cost (Zhang et al., 2016) is the product of carbon

price and carbon emissions:

Cc
t � ρct · Et (1)

In the power grid, the carbon emission cost generated by

power production and consumption can be accurately calculated

using real-time carbon price, electricity CEI, and electricity

power, benefiting from advanced smart meters:

Cc
t � ρct · et · Pt (2)

where et and Pt are determined by the physical characteristic and

the market clearing mechanism of the power grid.

Clearing mechanism of the electricity
market

When demand-side loads are determined, the market

clearing mechanism determines the operation state and output

of the generator.

The security-constrained economic dispatch (Jabr et al.,

2000) is a general spot market clearing model. The purpose of

this model is to maximize the social welfare of power grids over a

period of time. It needs to meet a series of physical operational

constraints of the power grid. In general, the time period is

divided into multiple time steps in the economic dispatch model.

Then, the scheduling result of each time step is calculated using

the optimal power flow (OPF) model (Dommel and Tinney,

1968). The OPF model aims to minimize the short-term

generation costs, calculate the output of each generator, and

determine the electricity price for consumers using the well-

known locational marginal price method (Kirschen and Strbac,

2004). Using the obtained market clearing results, the electricity

carbon emissions of generators and consumers can be calculated

as follows:

EG,t � eG · PG,t (3)
ED,t � eD,t · PD,t (4)

where eG is a performance parameter for generators, which is

supplied by generator producers.

It can be seen that with a certain load and carbon price,

the carbon emission cost of a consumer is only determined by

eD,t. Thus, eD,t can quantify carbon costs conducted from the

generation side to the demand side. Therefore, the solution

of eD,t is the key problem. The solution contains two parts,

namely, the operation condition problem and the market

clearing mechanism of the power grid. Based on the market

clearing results, the carbon emission flow (CEF) method

(Zhou et al., 2015) is introduced to calculate ed,t at time t

in this study, which is presented in detail in the following

section.

Electricity carbon emission intensity of the
demand side

The introduced CEF model can track the footprint of carbon

emissions accompanying power flow in the power grid. Then, the

consumers’ real-time electricity CEI can be calculated, and from

which generator carbon emissions are coming at a certain time

can be determined. According to Zhou et al. (2015), the electricity

CEI of nodes can be calculated as follows:

eD,t � (PD,t − P′T
B,t)−1 · RC,t (5)

RC,t � PG,t · eG (6)

where eD,t and RC,t are N-dimensional column vectors, PD,t and
P′B,t are N × N-level matrices, PG,t is an N × G-level matrix, and

eD,t is a G-dimensional column vector.

We further derived the carbon emission cost conduction

function for electricity consumptions and the equivalent

FIGURE 1
The modified IEEE 39-bus system.
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conducted carbon price for demand-side consumers according to

Eqs. 2 and 5:

Cc
D,t � ρct · eD,t · PD,t (7)

ρcD,t �
Cc

D,t

PD,t
� eD,tρ

c
t (8)

Based on this, the concept of CECC was proposed in this

study. The nodal CECC of the ith node is expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
γcD,i,t �

eD,i,t
eACEI,t

eACEI,t �
∑G

g�1PG,g,teG,g∑N
i�1PD,i,t

(9)

γcD,i,t accurately reflects the difference in CECC for consumers

caused by the operation characteristics of the power grid in time

and space.

Mechanism of the price-based low-
carbon demand response

Price-based demand response model

Based on the economic theory, the elasticity coefficient is

generally used to describe the change rate between consumers’

demand and price (Conejo et al., 2010) in PBDR programs,

which is expressed as follows:

εt,τ � ρτ
PD,t

dPD,t

dρτ
(10)

When t equals τ, εt,t is defined as a negative self-elasticity. On

the contrary, εt,τ is defined as a positive cross-elasticity. By

introducing the multiperiod linear elastic load model, the

response load amount is expressed as follows:

ΔPD,t � ∑T
τ�1

εt,τP
0
D,τ(ρτρ0τ − 1) (11)

Price-based low-carbon demand
response model

This study proposed a price-based LCDR model considering

two factors that impact the demand of consumers, such as the

integrated electricity–carbon price and the nodal CEI of the

demand side.

First, consumers make demand changes in response to the

integrated price that includes electricity and carbon costs

conducted from the generation side. According to Eq. 11, the

first part of the DR amount on the ith node is as follows:

ΔP′D,i,t � ∑T
τ�1

εi,t,τP
0
D,i,τ(ρei,τρe0i,τ

− 1) (12)

Then, consumers continue to carry out the low-carbon

response to their nodal CEIs. By translating the impact of

CEIs into carbon costs, the second part of the DR amount is

expressed as follows:

ΔP″D,i,t � ∑T
τ�1

εi,t,τP
0
D,i,τ(eD,i,τe0D,i,τ

+ ρcτ
ρc0τ

− 2)⎤⎦ (13)

The detailed derivation of Eq. 13 is presented in the

Appendix. Based on Eqs. 12 and 13, the total DR amount of

the LCDR is derived as follows:

ΔPD,i,t � ΔP′D,i,t + ΔP″D,i,t

� ∑T
τ�1

εi,t,τP
0
D,i,τ[(ρei,τρe0i,τ

− 1) + (eD,i,τ
e0D,i,τ

+ ρcτ
ρc0τ

− 2)] (14)

Furthermore, when using the single-period elastic load

model (Zeng et al., 2014) for simplicity, the relevant parts of

εi,t,τ in Eq. 14 can be omitted. At last, the designed LCDRmodel is

expressed as follows:

ΔPD,i,t ≈ εi,t,tP
0
D,i,t[(ρei,tρe0i,t

− 1) + (eD,i,t
e0D,i,t

+ ρct
ρc0t

− 2)] (15)

Environmental–economic dispatch
optimization model considering the
price-based low-carbon demand
response

The EED model determines the operation state of power

grids and the three DR signals. Thus, the proposed price-based

LCDR is studied based on the EED model.

Objective function

The EED optimization model aims to minimize short-term

generation costs within 1 day in this study. Generation costs are

the sum of fuel and carbon emission costs, which is expressed as

follows

Min : F � ∑T
t�1
∑G
g�1

k[Ce
G(PG,g,t) + Cc

G(PG,g,t)] (16)

where the fuel and carbon emission cost functions of thermal and

gas generators are calculated as follows:

Ce
G,g,t � agP

2
G,g,t + bgPG,g,t + cg (17)
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Cc
G,g,t � ρctEG,g,t � ρct eG,g,tPG,g,t (18)

The short-term generation costs of renewable power plants,

such as wind and solar powers, are assumed to be zero. The

uncertainty and randomness of their outputs are also ignored in

this study. Moreover, DR costs are not taken into account in the

objective function. It supposes that there are no free carbon

emission quotas for participants, such as electricity suppliers and

consumers, in the electricity market in this study. That is, all

electricity carbon emission costs must be paid based on the

carbon price.

Constraints

The proposed EEDmodel should meet the following equality

and inequality constraints.

The power grid–related constraints are expressed as

follows:

∑G
g�1

PG,g,t −∑N
i�1
PD,i,t � 0 (19)

{PL,l,t � (θa − θb)/xl

θ � B−1PInj
(20)

Pmin
L,l ≤PL,l,t ≤Pmax

L,l (21)
Pmin
G,g ≤PG,g,t ≤Pmax

G,g (22)

{PG,g,t − PG,g,t−1 ≤Rup
g if PG,g,t ≥PG,g,t−1

PG,g,t−1 − PG,g,t ≤Rdown
g if PG,g,t−1 ≥PG,g,t

(23)

0≤PW,g,t ≤P
pre
W,g,t (24)

0≤PS,g,t ≤P
pre
S,g,t (25)

The price-based LCDR-related constraints are as follows:

Eqs. 15.

PD,i,t � P0
D,i,t + ΔPD,i,t (26)

−Dmax
i ≤ΔPD,i,t ≤Dmax

i (27)

∑T
t�1
P0
D,i,t � ∑T

t�1
PD,i,t (28)

Constraints (19–25) impose the power grid–related

constraints. Equation 19 ensures the power balance, and Eq.

20 calculates the direct current power flow in branch l, where θ

and PInj are N-dimensional column vectors, and B is an N ×

N-level matrix. Constraint (21) denotes the capacity limits of the

power flow in branches, constraints (22) and (23) denote up and

down output limits and generation ramping limits for generators,

and constraints (24) and (25) are output limits for wind and solar

power plants, respectively.

Equation 15 and constraints (26–28) explain the LCDR-

related constraints. Equation 15 calculates the response load

ΔPD,i,t of consumers, which is mainly influenced by three DR

signals. ΔPD,i,t is the controllable variable of the demand side.

Constraint (26) indicates the total load of consumers after the

LCDR, constraint (27) sets limits on the amount of load shifting,

and constraint (28) considers the total demand energy that

remains unchanged within 1 day.

In addition, ρe0i,t is calculated according to the method

proposed by Jin et al. (2013) in this study. The hours

within a day are divided into day and night. ρe0i,t is

expressed as the demand-weighted average price within all

the same type hours of consumers on the ith node before

implementing the LCDR:

TABLE 1 Parameters of generators and power plants in the modified IEEE 39-bus system.

Location Type Rated active
power (MW)

Ramping rate
(MW/min)

CEI (tCO2/MW) Generation cost
coefficients

ag bg cg

4 Wind -- -- 0.0 0.00 0 0.0

17 Solar -- -- 0.0 0.00 0 0.0

30 Hydro 1,040.0 5.20 0.0 0.00 0 0.0

31 Gas 646.0 3.23 0.4 0.02 20 2.0

32 Thermal 725.0 3.63 1.0 0.01 5 0.2

33 Thermal 652.0 3.26 1.0 0.01 5 0.2

34 Gas 508.0 2.54 0.4 0.02 20 2.0

35 Hydro 687.0 3.44 0.0 0.00 0 2.0

36 Gas 580.0 2.90 0.4 0.04 20 2.0

37 Gas 564.0 2.82 0.4 0.04 20 2.0

38 Thermal 865.0 4.33 1.0 0.01 5 0.2

39 Thermal 1,100.0 5.50 1.0 0.01 5 0.2
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ρe0i,t �
∑t∈ThP0

D,i,tρ
e,Pre
i,t∑t∈ThP0

D,i,t

(29)

In parallel, e0D,i,t is also expressed as the demand-weighted

CEI without implementing the LCDR:

e0D,i,t �
∑t∈ThP0

D,i,te
pre
D,i,t∑t∈ThP0

D,i,t

(30)

Furthermore, ρc0t is predicted based on day-ahead carbon prices.

For simplicity, it is assumed as the closing price of the previous-

day carbon market in this study.

Case study

The proposed EED model was simulated on a modified IEEE

39-bus system. Three cases were used to verify the superiority of

the proposed price-based LCDR mechanism in the carbon

emission reduction:

Case 1: EED model without DR as the benchmark.

Case 2: EED model with PBDR based on the integrated

electricity–carbon price.

Case 3: EED model with the proposed price-based LCDR based

on the integrated electricity–carbon price and nodal CEI.

The proposed EED optimization model can be established as

an MINLP problem and solved using a modified MATLAB-

MOST solver (Zimmerman et al., 2011).

Settings of modified IEEE 39-bus system

The modified IEEE 39-bus system is shown in Figure 1,

which includes four thermal generators, four gas generators, two

hydropower generators, one wind power plant, and one solar

power plant.

Table 1 shows the detailed parameters of these generators

and power plants, such as the type, rated active power, ramping

rate, generation CEI, and short-term generation cost coefficients

(U.S. Energy Information Administration, 2020). The wind and

solar plants are placed on nodes 4 and 17, respectively, and their

predicted output profiles are taken from Lee et al. (2021), as

shown in Figure 2.

The hourly load data within a day were selected from an

open-source synthetic representation of the Electric Reliability

Council of Texas power grid (Wu et al., 2021). It was assumed

that the load profiles are of the same typical waveform for each

node in this study. The load amount of each node was set to

0.9 times the original data in the IEEE 39-bus benchmark system

to better show the effect of the proposed LCDR mechanism. The

total demand-side energy remained at 138.31 GW h throughout

the studied day.

The values of self-elasticity coefficients of the demand side at

different hours were set to −0.2 (Jin et al., 2013). The maximum

DR amount of consumers participating in DR programs was both

20%, that is, the value of Dmax
i was 0.2 p.u. The carbon price was

assumed to be a fixed value of 50 $/tCO2 within a day. The

bidding factor k was set to 1.5. Moreover, the power loss over

branches was not considered in this study.

Results and analysis

The hourly results of the EED with the proposed LCDR

model are illustrated in Figure 3, which include the hourly

generation power composition, electricity consumption costs,

and carbon emissions of the power grid. The results shows that

terminal and gas generators output more power in the time

periods of larger load, and there were higher average costs and

ACEIs for the power grid.

FIGURE 2
Typical profiles of load, wind power, and solar power.

FIGURE 3
Hourly results of the environmental–economic dispatch
(EED) with the proposed low-carbon demand response (LCDR)
model.
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The results of these three cases are shown in Table 1. Both the

proposed LCDR and the PBDR reduced the electricity

consumption costs of the demand side and the carbon

emissions of the power grid. The reductions caused by the

LCDR were more significant than those caused by the PBDR.

In particular, carbon emissions based on the LCDR were reduced

by 0.63% (376 tCO2) in a day, which can accumulate into a large

reduction amount in a long term. In addition, the electricity

consumption costs were reduced by 0.53% with the LCDR, which

was also better than the PBDR.

Figure 4 presents the hourly total load, hourly average

integrated price of the demand side, and hourly ACEI curves

of the power grid for cases 1, 2, and 3. The curve trends of the

load, price, and ACEI are basically the same. The price and the

ACEI both increase with the increase in load. However, they

decrease when the wind and solar powers are high.

It can be observed from the three load curves that

consumers mainly respond in the valley periods between

1:00 and 7:00 and the peak periods between 19:00 and 24:

00 in case 1. Compared with the PBDR, the LCDR can cause a

large range and quantity of load shifting by responding to the

integrated price and nodal CEI. The reference values of price

and CEI are low from 1:00 to 7:00 and high from 19:00 to 24:

00. These lead to large demand changes as consumers pursue

lower carbon emissions and electricity consumption costs

based on Eq. 15 when implementing the LCDR. For example,

the peak time of the load without DR occurs at 21:00, whereas

it shifts to 12:00 with LCDR in case 3. Similar LCDR

characteristics and demand changes can also be illustrated

by the load, integrated price, and nodal CEI curves of node 7,

as shown in Figure 5.

TABLE 2 Comparison of electricity consumption costs and carbon emissions of the demand side for cases 1, 2, and 3.

Cases Electricity consumption costs Carbon emissions

Total (M$) Unit (price)
($/MW·h)

Reduction (%) Total (tCO2) Unit (ACEI)
(tCO2/MW)

Reduction (%)

1 13.398 96.871 0 59,045 0.4269 0

2 13.378 96.727 0.15 58,947 0.4262 0.16

3 13.327 96.358 0.53 58,669 0.4242 0.63

FIGURE 4
Hourly total load, integrated price, and average carbon
emission intensity (ACEI) curves for cases 1, 2, and 3

FIGURE 5
Hourly load, integrated price, and nodal carbon emission
intensity (CEI) curves of node 7 for cases 1, 2, and 3

FIGURE 6
Carbon emission reductions and output changes of
generators and power plants with different carbon prices.
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Carbon emission sensitivity analysis

This study also analyzed the applicability of the proposed

LCDR mechanism. Three variables that mainly affect the carbon

emission reduction ability of the LCDR model were selected for

carbon emission sensitivity analysis. The variables included

carbon price, DR participation ratio of consumers, and the

proportion of renewable power to total power. The carbon

price was from $5 to $70 at intervals of $5, the DR

participation ratio was from 5 to 50% at intervals of 5%, and

the proportion of renewable power was from 10 to 80% at

intervals of 10%, respectively.

Carbon emission reductions with the change in the

aforementioned three variables of case 3 compared with case

1 are shown in Figure 6, Figure 7, and Figure 8, respectively.

Figure 6 demonstrates that carbon emission reduction initially

increases with the increase in carbon price, then begins to

decrease when carbon price exceeds $50, and finally becomes

0. It is evident that only appropriate carbon prices can incent

consumers to reduce carbon emissions positively when

implementing LCDR programs. At low carbon prices,

consumers do not pay enough attention to nodal CEI. Load

shifting causes power to transfer from low- to high-CEI

generators, leading to an increase in carbon emissions. At

high carbon prices, carbon costs become the main part of

electricity consumption costs, and low-CEI generators have

priority to output more power. The power transfer caused by

the LCDR is mainly between high-CEI thermal generators; thus,

the emission reduction is very negligible.

The relationship between carbon emission reduction and

LCDR participation ratio is shown in Figure 7. With the increase

in the participation ratio, carbon reduction gradually increases,

but the marginal reduction decreases and finally becomes 0. The

maximum reduction is 436.83 tCO2 when the ratio reaches 45%.

It shows that only appropriate LCDR participation ratios can

effectively reduce carbon emissions. Extensive flexible load

participating in the LCDR induces limited reductions. This is

because when the reference price and CEI remain unchanged, the

maximum DR abilities of consumers are fixed. With the increase

in LCDR participation ratios, the abilities of consumers are

gradually released until their maximum values are reached

and they stop growing.

We added several renewable power plants to analyze the

sensitivity of carbon emissions to renewable power proportions.

There are three more wind power plants located at nodes 1, 12,

and 23 and two more solar power plants located at nodes 8 and

26. The different renewable power proportions were obtained

by changing the outputs of all wind and solar plants. Figure 8

demonstrates that carbon emission reductions initially increase

and then decrease with the increase in power proportions. This

is because when proportions increase at an early period, the

power transferred from high- to low-CEI generators or power

plants continues to grow, resulting in increased reductions.

Then, when proportions become very large, the outputs of

renewable plants become very high. On the contrary, the

outputs of carbon emission–produced generators continue to

decrease, resulting in decreased carbon reductions.

Conclusion

Benefiting from the development of IIoTs in the smart grid,

this study proposed a price-based LCDR mechanism based on

the integrated electricity–carbon price and CEI signals. Then, the

LCDR mechanism was verified using the EED optimization

model. Four main conclusions were drawn based on the case

study simulation: 1) Compared with traditional PBDRs,

appropriate LCDR programs can incent the demand side to

positively reduce electricity carbon emissions. 2) The carbon

price needs to be suitable for the current stage of the low-carbon

FIGURE 7
Carbon emission reductions and output changes of
generators and power plants with different LCDR participation
ratios.

FIGURE 8
Carbon emission reductions and output changes of
generators and power plants with different renewable power
proportions.
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transformation of power grids. Just with appropriate carbon

prices can consumers effectively reduce carbon emissions by

DR. 3) As the LCDR participation ratio increases, the marginal

benefit for carbon emission reduction decreases. 4) With the

increase in the renewable power proportion, carbon emission

reductions caused by the LCDR initially increase and then

decrease.

The proposed quantification method for carbon emission cost

conduction in the power grid can be extended to IBDR and other

fields in the electricity market. This study ignored the impact of

consumers’ utility function and also did not consider the DR costs,

uncertainty of renewable power output, and change in daily carbon

price. Therefore, further research on the LCDR considering the

aforementioned issues needs to be conducted.
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Appendix

According to the proposed LCDR mechanism, consumers

carry out their low-carbon response based on the nodal CEI. This

study quantified the impact of nodal CEI on the demand by

translating it into carbon emission cost. Based on Eqs. 8 and 10,

the second part of the DR is expressed as follows:

dPD,t � εt,τPD,t

ρτ
dρτ �

εt,τPD,t

ρcD,t
dρcD,t �

εt,τPD,t

eD,tρct
d(eD,tρct) (A1)

By using the multiperiod linear elastic load model, Appendix

Eq. A1 is derived as follows:

ΔP″D,i,t � ∑T
τ�1

εi,t,τ
P0
D,i,τ

e0D,i,τρ
c0
τ

(ρc0τ deD,i,τ + e0D,i,τdρ
c
τ)

� ∑T
τ�1

εi,t,τP
0
D,i,τ(ρc0τ deD,i,τe0D,i,τρ

c0
τ

+ e0D,i,τdρ
c
τ

e0D,i,τρ
c0
τ

)
� ∑T

τ�1
εi,t,τP

0
D,i,τ(eD,i,τ − e0D,i,τ

e0D,i,τ
+ ρcτ − ρc0τ

ρc0τ
)

� ∑T
τ�1

εi,t,τP
0
D,i,τ(eD,i,τe0D,i,τ

+ ρcτ
ρc0τ

− 2)⎤⎦
(A2)

Furthermore, omitting the relevant parts of εi,t,τ, the

secondary demand deviation responding to nodal CEI can be

finally denoted as follows:

ΔP″D,i,t ≈ εi,t,tP
0
D,i,t(eD,i,te0D,i,t

+ ρct
ρc0t

− 2) (A3)
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Nomenclature

Indices and sets

a, b Index of two end nodes on branches

g, G Index and total number of generators and power plants

h, Th Index and set of diurnal hour types

i, N Index and total number of power grid nodes

k Bidding factor

l, L Index and total number of branches

t, τ, T Index and total number of time periods

Parameters

ag , bg, cg First-, second-, and third-order cost coefficients of

generator g

Dmax
i Bound of the DR amount for node i

eG , eG,g Carbon emission intensity (CEI) for generators and

generator g

Pmin
G,g , Pmax

G,g Upper and lower output limits for generator g

Pmin
L,l , Pmax

L,l Upper and lower capacity bounds for branch l

Rup
g , Rdown

g Ramp-up and ramp-down rate limits for generator g

Variables

Cc
t Carbon emission cost at time t

Ce
G,g,t , C

c
G,g,t Fuel and carbon emission costs for generator g at

time t

Cc
D,t Carbon emission cost for consumers at time t

et , eACEI,t CEI and average CEI (ACEI) of the power grid at time t

eD,t , eD,i,t Demand-side CEI for nodes and node i at time t

e0D,i,t , e
0
D,i,τ Reference CEI for node i at time t and τ

epreD,i,t Predicted CEI for node i at time t based on EED without DR

Et , EG,t, ED,t Carbon emission, carbon emission for generators,

and consumers at time t

Pt Power or load amount at time t

PD,t , PD,i,t Demand-side load of nodes and node i at time t

P0
D,i,t Reference load of node i at time t

PG,t , PG,g,t Power output of generators and generator g at time t

PL,l,t Power flow in branch l at time t

PW,g,t , PS,g,t Output of wind and solar power plant g at time t

Ppre
W,g,t , P

pre
S,g,t Predicted output of wind and solar power plant g at

time t

ΔPD,i,t , ΔP′D,i,t, ΔP″D,i,t Total and first and second parts of the

DR amount of node i at time t

xl Reactance of branch l

γcD,i,t Carbon price conductivity for node i at time t

εt,t , εt,τ Self-elasticity and cross-elasticity coefficient at related

time t and τ

εi,t,τ , εi,t,t Self-elasticity and cross-elasticity coefficient for node i

at time t and τ

θa , θb Voltage-phase angle of nodes a and b

ρt , ρτ Price at time t and τ

ρcD,t Conducted carbon price for consumers at time t

ρct , ρ
c
τ Carbon price at time t and τ

ρc0t , ρc0τ Reference carbon price at time t and τ

ρei,τ , ρei,t Integrated electricity–carbon price of node i at time t

and τ

ρe0i,t , ρ
e0
i,τ Reference integrated price of node i at time t and τ

ρe,Prei,t Predicted integrated price of node i at time t based on EED

without DR

Matrices

B Node admittance matrix for power grids

eD,t Vector for the CEI of consumers at time t

eG,t Vector for the CEI of generators at time t

P9B,t Matrix for branch power outflow distribution at time t

RC,t Vector for the ejected CEF rate of generators at time t

PD,t Matrix for the power demand of consumers at time t

PG,t Matrix for the power output of generators at time t

PInj Vector for power injection

θ Vector for nodal voltage phase
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wind power forecasting by
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1School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong,
China, 2Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, Guangdong,
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Institute of Big Data, Shenzhen, China

As an important part of renewable energy, wind power is crucial to the

realization of carbon neutrality. It is worth studying on how to accurately

predict the wind output so that it can be integrated into the power grid as

much as possible to enhance its utilization rate. In this article, a data

enhancement method and a framework are proposed to assist wind power

forecasting. The proposed method uses the super-resolution perception

technology to first detect the completeness and correctness of historical

meteorological and wind power data collected by industrial devices. Then,

the detected errors are corrected and the missing data are recovered to make

the data complete. The frequency of the data is then increased using the

proposed method so that the data become complete high-frequency data.

Based on the enhanced complete high-frequency data with more detailed

characteristics, more accurate forecasts of wind power can be achieved,

thereby improving the utilization rate of wind power. Experiments based on

public datasets are used to demonstrate the effectiveness of the proposed

method and framework. With the proposed method and framework, higher

frequency data with more detailed information can be achieved, thereby

providing support for accurate wind power prediction that was not possible

before.

KEYWORDS

super-resolution perception, SRPWPN, deep learning, short-term wind power
forecasting, artificial intelligence

1 Introduction

The emission of greenhouse gases (GHG) leads to the continuous increase in global

temperature, and the resulting climate change with frequent extreme weather is attracting

attention worldwide (Liu et al., 2022). To cope with global climate change, many countries

have set targets to limit carbon dioxide emissions; for example, the European Union,

China, and the United States announced plans to achieve carbon neutrality before 2050,

2060, and 2050, respectively. To reduce carbon dioxide emissions, it is necessary to reduce

the use of fossil fuels. As an alternative to fossil energy, renewable energy will account for a
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substantial increase in the proportion of electricity in the future.

Wind power is a vital source of renewable energy and will be

vigorously developed. According to the GWEC 2021 of the

Global Wind Energy Council, the new global installed

capacity in 2020 is 93 GW, with a 53% year-on-year increase

rate, and the global installed wind power capacity exceeded

742 GW by 2020 (GWEC, 2021).

Due to the randomness of wind speed, the generation of wind

power is intermittent, and its large-scale integration into power

grids will bring great challenges to the security and stability of

power grids (Wang et al., 2021). To deal with the instability of

power generation, a certain proportion of reserve services needs

to be configured, and most of the units providing these services

are thermal power units (Welikala et al., 2017). Most of the time,

these units operate under inefficient conditions, which is not only

a huge waste of investment but also brings additional impacts

such as more carbon dioxide emissions to the environment.

Therefore, how to use historical data to accurately predict wind

power forecasting is a very valuable task. Short-term wind power

forecasting is to predict the short-term power generation of wind

farms, thereby reducing the uncertainty of wind power

generation (Khazaei et al., 2022). Therefore, the accurate

prediction of short-term wind power is of great significance

for increasing the proportion of wind power integration into

power grids, ensuring the safety and stability of power grids, and

mitigating climate change.

However, accurate short-term wind power forecasting is a

difficult problem. Many meteorological factors, such as wind

speed, wind direction, and temperature, may affect the

generation of wind power. Therefore, the generation of wind

power often presents nonlinear uncertainty. There are many time

series and classic machine learning methods used for short-term

wind power forecasting, including the autoregressive moving

average (ARMA) (Gomes and Castro, 2012), autoregressive

integrated moving average (ARIMA) (Azimi et al., 2016),

seasonal autoregressive integrated moving average (SARIMA)

(Liu et al., 2021), and the generalized autoregressive conditional

heterosked (GARCH) model (Chen et al., 2018). With the

application of machine learning in various fields, some classic

machine learning algorithms including support vector regression

(SVR) (Ranganayaki and Deepa, 2017), classification and

regression tree (CART) (González et al., 2015), and Gaussian

process regression (GPR) (Fang and Chiang, 2016) are also used

for short-term wind power forecasting. Due to the limitation of

their learning ability, these methods cannot meet the

requirements of achieving high-frequency accurate wind

power forecasting. With their strong nonlinear learning

ability, deep neural networks have achieved remarkable results

in image processing, speech recognition, natural language

processing, etc. There are also some studies on short-term

wind power forecasting, such as deep belief network (DBN)

(Wang et al., 2018), recurrent neural network (RNN) (Kumar

et al., 2021), long short-term memory (LSTM) (Shahid et al.,

2020), convolutional neural network (CNN) (Yu et al., 2020),

semi-supervised generative adversarial network (SSGAN) (Zhou

et al., 2021), and spatiotemporal attention networks (SAN) (Fu

et al., 2019). Among them, the SSGAN has better generalization

ability than other deep neural networks, and it is a semi-

supervised learning method, which requires less data and is

more practical.

Existing studies are based on data collected at the inherent

sampling frequency of terminal devices such as Internet-of-

things (IoT) devices and do not consider the utilization of

higher-frequency complete data with more detailed

information. Higher-frequency complete data can not only

provide more detailed information for accurate wind power

forecasting but also help achieve a shorter forecast period,

thereby facilitating wind power to be efficiently integrated

into power grids. Collecting high-frequency data is a

challenging task with several problems. First, collecting

high-frequency data requires the installation of high-

frequency meters to replace the installed low-frequency

meters, which will be an additional investment and a

resource waste. Second, the transmission of high-frequency

data requires a large amount of bandwidth, which requires

upgrading the existing communication network to improve

the data transmission capacity. Third, even if high-frequency

data are collected and transmitted to where it is needed

(such as a data center), massive storage space is required to

store the data. Therefore, it is a more practical solution

to recover high-frequency data from existing low-frequency

data. There are some studies on improving the frequency of

data, such as linear interpolation, binary interpolation,

ARIMA, and backpropagation-artificial neural network

(BP-ANN), but they have problems such as large errors,

poor quality, or low computational efficiency (Liu et al.,

2020; Liang et al., 2020). SRP is a technology that uses

advanced artificial intelligence technologies to recover low-

frequency incomplete data to obtain high-frequency complete

data; its effectiveness has been verified in many areas.

For example, in the study by Liang et al. (2020), super-

resolution perception net for state estimation (SRPNSE)

is proposed for improving data completeness in smart grid

state estimation. A super-resolution perception convolutional

neural network (SRPCNN) is proposed in the study by

Liu et al. (2020) to generate high-frequency load data from

low-frequency data collected by smart meters. A monthly-

super-resolution perception convolutional neural network

(M-SRPCNN) is proposed in the study by de-Paz-Centeno

et al. (2021) to up-sample monthly energy consumption

measured at hourly resolution. Compared with other data

quality improvement methods, the SRP method has the

advantages of higher efficiency, better quality, and richer

information. Therefore, the application of SRP technologies

to enhance wind power forecasting is a very valuable research

topic.
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Against this background, super-resolution perception wind

power net (SRPWPN) is proposed based on SRP in this article to

enhance the completeness and frequency of data used in wind

power forecasting. The proposed method combines the attention

mechanism and residual network, which can provide accurate

data support for wind power forecasting. The main contributions

of this article are described as follows:

1) This article is the first to formalize the SRP problem for short-

term wind power forecasting and propose a corresponding

framework to solve the proposed problem.

2) This article is the first to propose the SRPWPN to improve the

quality of historical data to obtain complete high-frequency

data, thereby providing more detailed information for more

accurate and higher-frequency wind power forecasting. The

SRPWPN provides more detailed information and higher

quality data for the current short-term wind power

forecasting task.

3) Based on public datasets, the effectiveness of the proposed

method and framework is verified using experiments,

demonstrating their data enhancement capability for short-

term wind power forecasting. In addition, experiments also

demonstrate that the proposed method can provide complete

data with higher frequency, more detailed information, and

higher quality.

The rest of this article is organized as follows: Section 2

formulates the problems of SRP for short-term wind power

forecasting and short-term wind power forecasting. The

methodology is introduced in Section 3. Experiments and

numerical simulation results are reported and discussed in

Section 4. Finally, Section 5 concludes this article.

2 Problem formulation

2.1 Problem formulation of SRP for short-
term wind power forecasting

The purpose of SRP for wind power forecasting is to recover

high-frequency complete data from the incomplete low-

frequency data collected by terminal devices, thereby

supporting more accurate wind power forecasting. The

historical incomplete low-frequency data ILF includes features

such as wind power, wind direction, wind speed, temperature,

pressure, and density, which are expressed as follows:

ILF � {ilf0
0, ilf

1
0, . . . , ilf

n
0 , ilf

0
1, ilf

1
1, . . . , ilf

n
1, . . . , ilf

n
t }, (1)

where t represents the time index and n represents the number of

features. Compared with ILF, complete high-frequency data

CHF are more densely indexed in temporal dimension. The

relationship between complete high-frequency data CHF and

incomplete low-frequency data ILF is expressed as follows:

ILF � ↓αCHF + e, (2)
where ↓α represents the degradation function, α is the down-

sampling factor, and e represents noise caused by sampling

devices. The goal of SRP is to find a function f(·) such that

its output ĈHF is as close as possible to the complete high-

frequency data CHF, which can be expressed as follows:

ĈHF � f(ILF) � ↑βCLF (3),

where ↑β is the SRP function which is implemented by a deep

neural network and β is the SRP factor. For example, given

incomplete low-frequency data ILF with a sampling interval of

15 min, when the SRP factor β is three, SRP can obtain complete

high-frequency data ĈHF with a sampling interval of 5 min.

2.2 Problem formulation of short-term
wind power forecasting

Short-term wind power forecasting is based on historical data

to predict wind power generation for some time in the future,

where the historical dataXwith t time steps and n features can be

expressed as follows:

X � {x0
0, x

1
0, . . . , x

n
0, x

0
1, x

1
1, . . . , x

n
1, . . . , x

n
t }. (4)

The wind power forecasting task for k time steps in the future

at time t can be expressed as follows:

Ŷ � g(X|θ) + ε (5),

where Ŷ is the predicted wind power generation with k time steps

in the future at time t, g(·|θ) represents the relationship function
described by themodel parameter set θ that uses historical data to

predict future wind power generation, and ε is the forecasting

error. Therefore, the goal of model g(·|θ) is to make prediction

result Ŷ as close as possible to actual data Y. Actual data Y are

expressed as follows:

Y � {xp
t+1, x

p
t+2, . . . , x

p
t+k}. (6)

3 Methodology

3.1 The framework of short-term wind
power forecasting with SRP

The goal of SRP is to enhance the frequency and quality of

historical data to achieve more accurate short-term wind power

forecasting, so a framework for short-term wind power

forecasting based on SRP is proposed to achieve the above

goal. The framework is shown in Figure 1. First, the historical

data containing six features such as wind speed and wind power

are used as the input of the data preprocessing part as incomplete

low-frequency data. Those missing values, duplicate values,
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outliers, etc., are all processed, and the data are also normalized to

obtain low-frequency data. Then the low-frequency data are used

as the input of the SRP part, and the complete high-frequency

data are obtained by enhancing the historical data through the

SRP part. Then based on the complete high-frequency data

obtained by SRP, the wind power forecasting method can

predict the target wind power generation.

3.2 Super-resolution perception wind
power net

SRPWPN is proposed to enhance the historical data, and

its structure is shown in Figure 2. Data CHF ↓↑ represent the

data obtained by data CHF first through bicubic down-

sampling and then bicubic up-sampling. ILF ↑ represents

the data up-sampled by the bicubic function. Incomplete

low-frequency data ILF are first extracted by three two-

dimensional (2D) convolutional layers to achieve feature

extraction and then used as the input for the next 16 super-

resolution perception blocks (SRPB). In SRPB, the data are

used as the input of the 2D convolutional layer, and then the

corresponding output is normalized, and then the above

process is repeated. F represents the identity mapping,

which is added to the previous calculation results, and the

rectified linear unit (ReLU) function is used for activation

(Agarap, 2018).

CHF, CHF ↓↑, and ILF ↑ are mapped to V, K, and Q by

three 2D convolutional layers, respectively. To calculate the

similarity between Q and K, Q and K are first sliced into

patches denoted as qi and kj, then these patches are

normalized by Eqs 7, 8, respectively. The similarity between qi
and kj is obtained by Eq. 9 to form the correlation Similarityij.

For the hard attention part, element bi of hard attention map B is

calculated by Eq. 10, and then used together with V as the input

of the hard attention operation. In the hard attention operation,

the index selection operation is shown in Eq. 11, where di is the

element of D and vi is the element of V. After the hard attention

operation,D and outputA of SRPB are concatenated as the input

E of soft attention operation. In the soft attention part, element ci
of the hard attention map C is calculated by Eq. 13, and then also

used as the input of the soft attention operation. Then, the

convolution operation is performed on E to get the result

Ecov. The results Ecov and C are element-wise multiplicated

directly through Eq. 13, where ⊙ represents the element-wise

multiplication. Finally, EC and A are added together to get the

final output ĈHF.

qnormi � qi����qi���� (7)

knormj � kj����kj���� (8)

Similarityij � 〈 qi����qi����, kj����kj����〉 (9)

bi � argmax
j

Similarityij (10)

di � vbi (11)
ci � max

j
Similarityij (12)

EC � Ecov ⊙ C (13)

4 Experiments

The experiments are divided into two parts: one part is to use

SRPWPN to enhance historical data, and the other part is to

perform short-term wind power forecasting on the recovered

data and original data. For the first part, the following three

experiments were performed:

1) The sampling interval of incomplete low-frequency data is

15 min, and the SRP factor β is three.

2) The sampling interval of incomplete low-frequency data is

10 min, and the SRP factor β is two.

3) The sampling interval of incomplete low-frequency data is

1 h, and the SRP factor β is six.

FIGURE 1
Framework of short-term wind power forecasting with SRP.
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Experiments Eqs 1, 2 are conducted on the dataset

National Renewable Energy Laboratory (NREL), and

experiment (3) is conducted on the dataset The La Haute

Borne (TLHB). For the second part, three short-term wind

power forecasting methods, CNN, LSTM, and SSGAN,

perform short-term wind power forecasting on the

complete high-frequency data recovered by SRP and the

original high-frequency data, respectively.

4.1 Dataset description

Two datasets were used in the experiments. The first dataset is

from the National Renewable Energy Laboratory (NREL). There

are six wind farms used for the experiments in NREL, their site

IDs are 123229, 123815, 123978, 124043, 124044, and 124045,

respectively. NREL contains meteorological information such as

wind direction, wind speed, temperature, pressure, and density, as

FIGURE 2
Super-resolution perception wind power net.
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well as wind power for each wind farm. The time range of the data

is from 2012-01-01 00:00:00 to 2013-12-31 23:55:00, where the

time interval between two consecutive points is 5 min. The

abstract information of the used six wind farms is shown in

Table 1, where capacity factor represents the average power

output divided by the wind turbine’s maximum power

capability. The second dataset is the La Haute Borne (TLHB)

wind farm, which is located in the Grand Est of northeastern

France. There are four wind turbines in TLHB, their site IDs are

R80711, R80721, R80736, and R80790, respectively. Other

variables, such as wind speed, wind direction, and temperature,

are also included in this dataset. The time range of the data is from

TABLE 1 Information of six wind farms.

Index Site ID Latitude Longitude Capacity Capacity factor

1 123229 48.716766 −101.827454 16 0.437

2 123815 48.870552 −101.73111 16 0.426

3 123978 48.895412 −101.98913 16 0.435

4 124043 48.91811 −101.90655 16 0.388

5 124044 48.91947 −101.87832 16 0.398

6 124045 48.92083 −101.85009 16 0.403

FIGURE 3
Graphs of historical data for three different wind farms in NREL.
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2017-01-01 00:00:00 to 2018-01-13 00:00:00, where the time

interval between two consecutive points is 10 min.

4.2 Exploratory data analysis

For NREL, three wind farms with site IDs of 123815, 124043,

and 124045 are selected for exploratory data analysis, where

temperature, wind speed, and wind power are selected as

represented features for visualization. Figure 3 shows the

historical data graphs of the represented features for the three

wind farms. It can be seen that the temperature has obvious

periodicity due to seasonal changes, while the wind speed does

not have a similar periodicity as the temperature. The wind power

related to the strongwind speed has almost the same pattern in every

season. In addition, the maximum value of wind power is 16MW,

even if the wind speed does not reach the maximum value at the

corresponding time. The reason is that when the wind speed exceeds

the rated wind speed of the wind turbine and is less than the cut-out

wind speed, and the wind turbinewill generate constant power at the

rated power. The wind power is zero at certain time points because

the wind speed at those time points is lower than the cut-in wind

speed of the wind turbine. For TLHB, two wind farms with site IDs

R80711 and R80721 are selected, where absolute wind direction,

wind speed, wind power, and outdoor temperature are selected

represented features. The historical data of the represented features

are shown in Figure 4. The wind power of the two wind farms is

between 0 and 2,000 kW, and is not significantly affected by the

season. Therefore, periodicity is not considered in the experiments,

but these features are used directly.

FIGURE 4
Graphs of historical data for two different wind farms in TLHB.

TABLE 2 Experimental results of different methods on NREL (MAPE on 15 min/10 min).

Site ID LI BI ARIMA BP-ANN SRPCNN SRPWPN

123229 27.92%/26.35% 31.83%/29.13% 26.63%/24.41% 22.72%/21.95% 9.88%/6.37% 3.26%/2.04%

123815 26.15%/25.03% 30.95%/27.84% 22.95%/20.19% 21.03%/19.94% 10.27%/8.52% 3.34%/2.10%

123978 25.98%/24.59% 28.72%/24.72% 24.86%/21.74% 22.65%/21.59% 9.15%/6.76% 3.23%/1.93%

124043 28.13%/26.87% 29.70%/25.28% 23.43%/21.26% 21.46%/20.73% 10.53%/7.52% 3.29%/2.08%

124044 26.34%/23.05% 30.18%/26.31% 25.48%/22.83% 20.87%/18.65% 8.84%/7.91% 3.35%/1.97%

124045 24.82%/21.86% 31.99%/28.63% 22.19%/20.04% 21.32%/19.48% 9.77%/7.15% 3.20%/1.99%

The bold characters is to emphasis the results which indicates the results are better than other methods.
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FIGURE 5
SRPWPN on historical data with site IDs 123229 and 123815 in NREL.

TABLE 3 Experimental results of different methods on TLHB.

Site ID LI (%) BI (%) ARIMA (%) BP-ANN (%) SRPCNN (%) SRPWPN (%)

R80711 35.58 42.47 29.05 25.82 15.49 8.08

R80721 36.04 41.53 30.82 26.93 16.85 7.75

R80736 34.65 39.49 31.37 24.18 14.64 8.49

R80790 33.60 38.35 28.64 25.04 15.06 7.37

The bold characters is to emphasis the results which indicates the results are better than other methods.

FIGURE 6
SRPWPN on historical data with site IDs R80711 and R80721 in TLHB.
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4.3 Data preprocessing

The historical data in NERL are down-sampled by Eq. 14 to

obtain data with sampling intervals of 15 and 10 min,

respectively. xhf is the original high-frequency data, and the

down-sampling factors α are three and two, respectively.

Similarly, for TLHB, the sampling interval of down-sampled

data is 1 h and the down-sampling factor α is six. Then the data

are checked for missing data, and if there are missing data, then

they are filled with the mean of the corresponding feature. Next,

duplicate data are checked according to timestamps, and deleted

if they exist. Then, each feature is detected and processed for

outliers according to the method in reference (Liu et al., 2022).

After that, each feature in the historical data is normalized by Eq.

15, where xnorm denotes the normalized result, x include the

original data, x min denotes the minimum value of this feature,

and xmax denotes the maximum value of this feature.

x � ↓αxhf (14)
xnorm � x − x min

x max − x min
(15)

4.4 Experimental results of SRP for
enhancing historical data

SRPWPN performs SRP on historical data from NREL with

sampling intervals of 15 and 10 min, resulting in complete high-

frequency data with a sampling interval of 5 min after

enhancement. Similarly, SRP recovers data with a sampling

frequency of 1 hour in TLHB to obtain data with a frequency

of 10 min; 75% of the historical data is used for model training,

5% is used for model validation, and 20% is used to evaluate

model performance. The loss function used by SRPWPN is

defined as follows:

loss � ����y − ŷ
����22, (16)

where y represents the real data and ŷ represents the recovered

data by SRPWPN. For model training of SRPWPN, Adam was

chosen as the optimizing algorithm (Kingma and Ba, 2014). The

mean absolute percentage error (MAPE) is used as the metric for

evaluating the performance of SRPWPN, which is shown as

follows:

MAPE � 1
ND

∑ND

nd�1

∣∣∣∣∣∣∣∣ynd − ŷnd

ynd

∣∣∣∣∣∣∣∣ × 100%, (16a)

where ND denotes the number of data points, ynd is the real

value of nd-th data point, and ŷnd is the recovered value of nd-th

data point. To verify the experimental effect of SRPWPN, linear

interpolation (LI), binary interpolation (BI), ARIMA, BP-ANN,

and SRPCNN are added to the experiment as comparative

methods.

The experimental results of SRPWPN on NREL are shown

in Table 2. It can be seen that SRPWPN has a good

performance on the historical data of the six wind farms in

NREL, and the minimum MAPE is 1.93%, which means that

the minimum error does not exceed 2%. In addition, the

maximum MAPE is only 3.35%, which means that

SRPWPN has very stable and excellent performance in

enhancing historical data. The performance of SRPWPN on

data with a sampling interval of 10 min is better than that with

TABLE 4 MAPE results of short-term wind power forecasting on TLHB.

Index Site ID CNN (%) CNN_SRP (%) LSTM (%) LSTM_SRP (%) SSGAN (%) SSGAN_SRP (%)

1 123229 6.59 7.52 4.18 5.27 3.28 4.67

2 123815 6.61 7.75 4.09 5.09 3.24 4.93

3 123978 6.45 7.50 4.18 5.18 3.31 4.74

4 124043 6.35 7.62 4.37 5.06 3.15 4.73

5 124044 6.63 7.47 4.29 5.16 3.25 4.98

6 124045 6.47 7.45 4.39 4.61 3.59 4.98

TABLE 5 MAPE results of short-term wind power forecasting on NREL.

Index Site ID CNN (%) CNN_SRP (%) LSTM (%) LSTM_SRP (%) SSGAN (%) SSGAN_SRP (%)

1 R80711 8.54 8.93 6.49 6.96 5.47 6.14

2 R80721 9.73 10.92 7.82 9.24 5.03 6.32

3 R80736 8.39 9.85 7.93 8.59 6.71 5.85

4 R80790 9.04 10.47 6.51 7.88 5.23 5.96
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a sampling interval of 15 min, which means that a larger SRP

factor needs to recover more detailed information and is more

challenging. Figure 5 shows the actual effect of SRPWPN on

the historical data of NREL with site IDs 123229 and 123815.

The subfigures in the first row show the SRP effect of wind

speed and wind power with site ID 123229, and the second

row shows the SRP effect of wind speed and wind power with

site ID 123815. It can be seen that most of the detailed

information is recovered in SRPWPN, and the experiments

with a smaller SRP factor have better results. Table 3 shows the

experimental results of SRPWPN on TLHB. The minimum

MAPE is 7.37%, which means that the minimum error does

not exceed 7.5% and is slightly worse than the result on NREL.

Since the maximum MAPE does not exceed 8.5%, this proves

that SRPWPN has a similarly excellent performance. The

actual effect of SRPWPN on TLHB with site IDs

R80711 and R80721 is shown in Figure 6. The subfigures in

the first row show the SRP effect of absolute wind direction,

wind speed, wind power, and outdoor temperature with site

ID R80711, and the second row shows the SRP effect of wind

speed and wind power with site ID R80721. When the actual

value fluctuates greatly, SRPWPN can also learn its internal

FIGURE 7
SSGAN on site IDs 123229 and 123815 in NREL.

FIGURE 8
SSGAN on site IDs R80711 and R80721 in TLHB.
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relationship well and reconstruct the corresponding

information accurately. Taking the wind power of

R80711 as an example, although its value decreased from

near 1,900 KW to around 300 KW at around 10 pm,

SRPWPN still recovered it accurately. It can be seen that

most of the detailed information is recovered in SRPWPN.

4.5 Experimental results of short-term
wind power forecasting with super-
resolution perception wind power net

The experimental results of different short-term wind

power forecasting methods on real high-frequency data and

high-frequency data recovered by SRPWPN are compared to

demonstrate that SRPWPN can provide almost the same

information as high-frequency data. To verify the

effectiveness of the complete high-frequency data recovered

by SRPWPN, three short-term wind power forecasting

methods including CNN, LSTM, and SSGAN are used in

the experiments. For NREL, the three methods perform

short-term wind forecasts on complete high-frequency data

with a real sampling interval of 5 minutes and data with a

sampling interval of 5 minutes recovered by using SRPWPN

from incomplete low-frequency data with a sampling interval

of 10 min. For TLHB, the three methods perform short-term

wind forecasts on complete high-frequency data with a real

sampling interval of 10 min and on data with a sampling

interval of 10 min recovered by using SRPWPN from

incomplete low-frequency data with a sampling interval of

1 h. In the experiments, the historical data of the past 7 days

are used to predict the wind power generation of the next day.

MAPE is used as the evaluation metric, and the experimental

results are shown in Tables 4, 5. The column with the suffix

SRP in the table represents the error of the short-term wind

power forecasting results of the prediction method on the data

recovered from the SRPWPN. Although the results of the

three methods on the data recovered by SRPWPN are slightly

inferior to the actual data, the biggest difference is not more

than 2%. The worst of the three methods on the data recovered

by SRPWPN is CNN, whose MAPE does not exceed 11% in

TLHB, and the best is SSGAN, whose MAPE does not exceed

7% in the two datasets. It can be considered that the data

recovered by SRPWPN are very close to the effect of real data

in practical applications. As the best short-term wind power

forecasting method, SSGAN is selected as the visualization

method. CNN and LSTM are chosen as the comparative

methods. Figure 7 shows SSGAN on the raw historical data

and data recovered by SRPWPN with site IDs 123229 and

123815 in NREL. The subfigures in the first row show the

performance of SSGAN on site ID 123229, and the second row

shows the performance of SSGAN on site ID 123815. Original

represents the real wind power of the two sites, SRP data

represent the predicted results of SSGAN on complete high-

frequency data recovered by SRPWPN, and raw data represent

the results of SSGAN on the real data with a sampling interval

of 5 minutes. Figure 8 shows SSGAN on the raw historical data

and data recovered by SRPWPN with site IDs R80711 and

R80721 in TLHB. The subfigures in the first row show the

performance of SSGAN on site ID R80711, and the second row

shows the performance of SSGAN on site ID R80721. Original

represents the real wind power of the two sites, SRP data

represent the predicted results of SSGAN on complete high-

frequency data recovered by SRPWPN and raw data represent

the results of SSGAN on the real data with a sampling interval

of 10 min. The results predicted by SSGAN are almost the

same as the actual results, which proves that the data

recovered by SRPWPN can be well utilized by short-term

wind power forecasting methods, thereby achieving higher

frequency accurate wind power forecasting, and the recovered

information is sufficient for short-term wind power

forecasting to use.

5 Conclusion

A deep SRP network named SRPWPN is proposed for

short-term wind power forecasting, and an SRP-based short-

term wind power forecasting framework is proposed to

achieve accurate short-term wind power forecasting at

higher frequencies. In the proposed framework, SRPWPN

is used to recover complete high-frequency data from

incomplete low-frequency data, thereby enhancing

historical data and then using short-term wind power

forecasting methods on the enhanced data to achieve

higher-frequency accurate short-term wind power

forecasting. In the SRPWPN, incomplete low-frequency

historical data are used as the input, and then detailed

information is reconstructed through structures such as

attention mechanism and SRPB, thereby obtaining

complete high-frequency data for higher-frequency short-

term wind power forecasting. The experimental results

show that the SRPWPN can recover the most lost detailed

information, and its maximum MAPE does not exceed 8.5%.

The maximum MAPE of short-term wind power forecasting

experiments on the complete high-frequency data recovered

based on SRPWPN is less than 11%. The MAPE of the best

short-term wind power forecasting method SSGAN is less

than 6.5%, which proves the effectiveness of the proposed

SRP-based wind power forecasting framework. Regardless of

whether the sampling frequency is 10 min, 15 min, or 1 h of

historical data, the proposed method enhances the data well.

With the proposed data enhancement method, SRPWPN and

SRP-based short-term wind power forecasting framework,

accurate short-term wind power forecasting at higher

frequencies can be achieved.
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