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Editorial on the Research Topic

Clinical application of artificial intelligence in emergency and critical

care medicine, volume III

Two years have passed since the first launch of the Research Topic on the application

of artificial intelligence (AI) in emergency and critical care settings (1). We have

witnessed increasing submissions to this topic over these years, indicating continued

research interest among the critical care community. AI is a data analysis approach that

has revolutionized many industry areas (2, 3), as well as clinical medicine (4). With more

data being captured and stored during routine clinical practice, the large volumes of data

have the potential to reveal more knowledge to better inform clinical decision makings

(5). In general, clinical questions involving all stages of clinical practice including

diagnosis, treatment, and prognosis can be well-investigated by the employment of AI

technology. Figure 1 illustrates howAI can help tomake better patient care in all stages of

clinical practice. Diagnosis is usually the first step in the management of patients. Prompt

and accurate diagnosis can help better patient treatment in the critical care setting. For

instance, there has been a large body of evidence showing that early initiation of a sepsis

care bundle can help to improve survival outcomes, and thus strenuous efforts have been

made to provide early warning for sepsis. The automated early warning system has been

widely applied in the clinical setting, and preliminary studies show promising results

(6). With the help of AI, the identification of sepsis can be done earlier with increased

accuracy (7). The second aspect relating to the diagnosis refers to the sub-classification

of a heterogeneous syndrome. Many diseases or syndromes in the critical care

Frontiers inMedicine 01 frontiersin.org
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FIGURE 1

Illustrations of the application of artificial intelligence to various aspects of clinical practice.

setting encompass a heterogenous population and the

identification of subtypes can help tailor treatment strategies (8).

In volume III of the topic series, Wu et al. trained a classification

model on facial expressions video clips, and their deep learning

method is shown to accurately classify patients with or without

pain. This important study implies that pain assessment

can be achieved by an automated computer system, thereby

providing high granularity time-varying facial expression data

for patient management. Sepsis-Associated Thrombocytopenia

(SAT) is an important complication in sepsis patients and

early risk stratification can help to tailor individualized

treatment. Jiang et al. trained multiple machine learning (ML)

models for the prediction of SAT in a Chinese cohort, and

then these models were validated in an open-access critical

care database.

The second step in patient management involves the

treatment strategy. Since critically ill patients are usually

treated with multi-module strategies, the effectiveness of

treatment strategies is time sensitive, and varies across

the individual subject. Thus, an individualized treatment

strategy is needed, in line with the idea of precision

medicine. Mechanical ventilator (MV) weaning is an important

medical decision-making process for the management of

patients on MV. Liu et al. developed an AI algorithm to

dictate MV weaning. This study paves the way for the

realization of personalized medicine in the management of

MV patients.

Finally, the prognosis is also important for the management

of critically ill patients. Risk stratification for intensive care unit

(ICU) patients is useful for clinicians to make better decisions

and for consulting with family members. The diagnosis and

prognosis can be studied with the supervised ML algorithm.

The difference lies in the study design. While the studies on

diagnostic performance require cross-sectional data to train

the model, those involving prognostic performance require a

follow-up period allowing the outcome (label) to occur. ICU

readmission is an important indicator of the quality of care

and is an important outcome measurement. In this topic issue,

Hegselmann et al. developed an explainable boosting machine to

predict ICU re-admission using a German dataset.

In conclusion, the successful launch of the special issue

on the application of AI in critical care medicine indicates

that researchers continue to be interested in this particular

field. The power of big data and AI are revolutionizing clinical

practice in the near future. The ICU is a highly technological

environment where each patient generates a large volume of data

per day, such special characteristics make it the best place for

AI applications.
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Prediction Models for
Sepsis-Associated
Thrombocytopenia Risk in Intensive
Care Units Based on a Machine
Learning Algorithm
Xuandong Jiang, Yun Wang, Yuting Pan and Weimin Zhang*

Intensive Care Unit, Dongyang Hospital of Wenzhou Medical University, Jinhua, China

Sepsis-associated thrombocytopenia (SAT) is a common complication in the intensive

care unit (ICU), which significantly increases the mortality rate and leads to poor

prognosis of diseases. Machine learning (ML) is widely used in disease prediction

in critically ill patients. Here, we aimed to establish prediction models for platelet

decrease and severe platelet decrease in ICU patients with sepsis based on four

common ML algorithms and identify the best prediction model. The research subjects

were 1,455 ICU sepsis patients admitted to Dongyang People’s Hospital affiliated with

Wenzhou Medical University from January 1, 2015, to October 31, 2019. Basic clinical

demographic information, biochemical indicators, and clinical outcomes were recorded.

The prediction models were based on four ML algorithms: random forest, neural network,

gradient boosting machine, and Bayesian algorithms. Thrombocytopenia was found

to occur in 732 patients (49.7%). The mechanical ventilation time and length of ICU

stay were longer, and the mortality rate was higher for the thrombocytopenia group

than for the non-thrombocytopenia group. The models were validated on an online

international database (Medical Information Mart for Intensive Care III). The areas under

the receiver operating characteristic curves (AUCs) of the four models for the prediction

of thrombocytopenia were between 0.54 and 0.72. The AUCs of the models for the

prediction of severe thrombocytopenia were between 0.70 and 0.77. The neural network

and gradient boosting machine models effectively predicted the occurrence of SAT, and

the Bayesian models had the best performance in predicting severe thrombocytopenia.

Therefore, these models can be used to identify such high-risk patients at an early stage

and guide individualized clinical treatment, to improve the prognosis of diseases.

Keywords: sepsis-associated thrombocytopenia, intensive care unit, machine learning, artificial intelligence,

prediction

INTRODUCTION

Artificial intelligence (AI) has enabled many cutting-edge scientific research achievements in
the field of medical care, especially for acute and severe diseases. In fields such as disease risk
assessment, early warning of disease deterioration, and early warning of death, AI can alert officials
regarding potential risks earlier and more accurately. Machine learning (ML) is a branch of AI, and
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it has been used for predicting disease outcomes. Using
the Medical Information Mart for Intensive Care (MIMIC)
database, Garcia Gallo et al. (1) established a model to predict
the mortality of patients with severe sepsis based on the
ML algorithm, which achieved better evaluation results than
traditional scoring systems such as Sequential (sepsis-related)
Organ Failure Assessment (SOFA) Score and Simplified Acute
Physiology Score II. Thorsen-Meyer et al. (2) applied the ML
algorithm and further employed intensive care unit (ICU) time
series data analysis to predict the 90-day mortality in real-time,
thus improving the prognosis of diseases in ICU patients.

Sepsis-related thrombocytopenia (SAT) is a common
complication in the ICU; in particular, the incidence of
thrombocytopenia in patients with septic shock can be as high
as 55% (3). SAT involves many mechanisms (4), which might
include inflammation-mediated platelet production changes,
endothelial dysfunction, abnormal blood coagulation function,
and hemodilution. Thrombocytopenia can significantly increase
the incidence of complications and mortality in patients
with sepsis (5). A study by Azkárate et al. (6) showed that
thrombocytopenia was associated with a 1.7-fold increased risk
of mortality in severe sepsis patients. Thrombocytopenia may
cause severe hemorrhage; a multicenter observational study (7)
in UK ICU found that a total of 169 patients (9% of the study
population) received platelet transfusion, and the prevalence
of severe thrombocytopenia (<50 × 10(9) /L) was 12.4, and
35.4% of the patients finally died in the ICU. In actual clinical
work, when a decrease in platelet count is observed for a patient,
especially a severe decrease, platelets should be infused in time
to reduce the risk of bleeding because platelets cannot be stored
for a long time. However, patients may have to wait for 2–3 days
from the beginning of platelet reservation to the actual infusion
of platelets. In this process, the patients are at a high risk of
bleeding and may even experience hemorrhagic shock, which is
life-threatening. Early detection of platelet decrease is crucial for
critically ill patients.

Presently, there are many related models for predicting
sepsis using artificial intelligence (8, 9), which can enhance
doctors’ medical decision-making ability for patients with
sepsis. However, research on predicting SAT and severe
thrombocytopenia in the ICU is lacking, and effective models
for predicting SAT using ML algorithms have not yet been
established. Therefore, we used a large amount of real-
time data from the ICU to establish prediction models
for thrombocytopenia in ICU sepsis patients for the early
identification of patients with a high risk of thrombocytopenia,
which would help reduce the occurrence of bleeding events and
improve the prognosis of diseases in patients.

MATERIALS AND METHODS

Study Design and Research Subjects
Our study was reported according to the guidelines of the
TRIPOD (10) statement (Checklist in Additional File 1). A
retrospective study was conducted with 1,455 sepsis patients who
were admitted to the ICU of Dongyang People’s Hospital between
January 1, 2015, and October 31, 2019. External validation was

performed using the MIMIC III dataset (11), a freely accessible
online critical care database. The inclusion criteria were age ≥18
years and admission to the ICUwith sepsis. The exclusion criteria
were patients who had hematological malignancy, cirrhosis
patients who had underlying thrombocytopenia before ICU
admission, and patients who had undergone splenectomy.

This study was approved by the Ethics Committee of
Dongyang People’s Hospital (DRY-2021-YX-178). The need for
informed consent was waived because of the retrospective,
observational study design. The data were anonymously analyzed
after the removal of personal information from the data. One
author (XJ) obtained permission for accessing the MIMIC
database after the completion of “Protecting Human Research
Participants,” an online training course launched by the National
Institutes of Health (certification number: 7632299).

Data Collection and Grouping
Data Collection
Data were collected using themedical record informationmining
software provided by Shanghai Le9 Healthcare Technology
Co., Ltd. The collected information included the following: (1)
basic clinicodemographic information [age, sex, disease severity
(Acute Physiology and Chronic Health Evaluation, APACHE II
score, SOFA score), smoking history, alcohol abuse history, and
complications]; (2) blood gas, blood routine, biochemistry, and
liver function indicators on the first day of ICU admission; and
(3) clinical outcomes (mortality, time on ventilator, length of ICU
stay, length of hospital stay, and hospitalization cost).

Diagnostic Criteria
Definition of SAT: Sepsis patients with thrombocytopenia.

Thrombocytopenia (12, 13):Platelet count <100 × 109/L or
a 30% relative decrease of the baseline platelet count during
ICU stay; the baseline platelet count was defined as the highest
value over the past seven days before ICU admission. We used
the initial platelet count in ICU admission as baseline platelet
count for patients without platelet count measurement before
ICU admission.

Severe thrombocytopenia (14, 15): Platelet count<50× 109/L
during ICU stay.

Sepsis 3.0 (16): Organ dysfunction triggered by an infection
that endangers the patient’s life and rapid increase in the SOFA
score, with a total score of two points.

Sepsis shock (16): The patient with sepsis requiring
vasopressors to maintain mean blood pressure at 65 mmHg or
higher and having a serum lactate level higher than 2 mmol/L
(18 mg/dL) after fluid resuscitation.

Data Processing
Selection of Independent Variables
Sixty-five potentially related variables were preliminarily
screened. After excluding three variables with more than 15%
of missing values, the remaining 62 variables were subjected
to data preprocessing using CARET in R language. Thirteen
variables showing a strong correlation (correlation coefficient
>0.9) with other independent variables were eliminated.
The remaining 57 variables were then subjected to feature
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TABLE 1 | Comparison of the additional evaluation metrics of four machine learning models in external validation.

Models for predicting thrombocytopenia

RF Bayesian NNET GBM

Accuracy 0.61 0.55 0.68 0.67

Precision 0.61 0.59 0.71 0.67

Recall 0.72 0.40 0.65 0.74

Specificity 0.50 0.70 0.71 0.61

Models for predicting severe thrombocytopenia

RF Bayesian NNET GBM

Accuracy 0.71 0.68 0.72 0.72

Precision 0.47 0.45 0.48 0.48

Recall 0.55 0.84 0.59 0.49

Specificity 0.77 0.62 0.77 0.81

RF, random forest; NNET, neural network; GBM, gradient boosting machine.

FIGURE 1 | Flow chart of the study. ICU, Intensive Care Unit.

selection using the backward selection method, random
forest (RF) sampling, and 10% cross-checking. Then, the
efficiency (precision, recall, accuracy, and specificity, the cutoff
point was 0.5) was calculated, and the variables were ranked
according to their importance. The 10 most important variables
were retained.

Handling of Missing Values
Variables with>15%missing values were deleted. If the incidence
of missing values was <2%, the mean value of the variable
was used to replace the missing values. The missing values of
variables with loss rates of >2 and <15% were replaced using
multiple imputations.
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TABLE 2 | Comparisons of baseline characteristics between with thrombocytopenia and without thrombocytopenia.

No-SAT (n = 723) SAT (n = 732) Total (n = 1,455) P

Age (years) 65.6 ± 16.1 65.6 ± 17.1 65.6 ± 16.6 0.97

Male [n (%)] 455 (62.9) 471 (64.3) 926 (63.6) 0.613

Alcohol drinking [n (%)] 277 (38.3) 262 (35.8) 539 (37) 0.347

Smoking [n (%)] 275 (38) 289 (39.5) 564 (38.8) 0.609

CKD [n (%)] 17 (2.4) 19 (2.6) 36 (2.5) 0.896

Cancer [n (%)] 84 (11.6) 82 (11.2) 166 (11.4) 0.867

Diabetes [n (%)] 122 (16.9) 108 (14.8) 230 (15.8) 0.3

Hypertension [n (%)] 366 (50.6) 311 (42.5) 677 (46.5) 0.002

APACHE-II 17.1 ± 6.1 19.7 ± 7 18.4 ± 6.7 < 0.001

SOFA 6 ± 2.7 7.8 ± 3.3 6.9 ± 3.2 < 0.001

Sepsis_shock [n (%)] 44 (6.1) 145 (19.8) 189 (13) < 0.001

Antiplatelet drug used [n (%)] 185 (25.6) 101 (13.8) 286 (19.7) < 0.001

Biochemical indexes on ICU

admission

Red blood cell (x109/L) 3.8 ± 0.7 3.7 ± 0.8 3.8 ± 0.7 0.038

Hematokrit (L/L) 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.045

White blood cell (x109/L) 11.3 (8.3, 14.77) 12.03 (8.04, 16.71) 11.54 (8.13, 15.39) 0.052

Neutrophil count (x109/L) 9.82 (6.88, 13.19) 10.47 (6.92, 14.93) 10.06 (6.89, 13.93) 0.013

Lymphocyte count (x109/L) 0.83 (0.5, 1.22) 0.69 (0.43, 1.06) 0.75 (0.47, 1.14) < 0.001

Platelet count (x109/L) 193 (153, 243.5) 211 (154, 274) 201 (153, 256) 0.002

Platelet distribution width (%) 16 (15.5, 16.4) 16.2 (15.8, 16.5) 16.1 (15.7, 16.5) < 0.001

Mean platelet volume (fl) 9.8 ± 1.3 9.9 ± 1.3 9.8 ± 1.3 0.031

pH 7.42 (7.37, 7.47) 7.38 (7.3, 7.43) 7.4 (7.34, 7.45) < 0.001

Serum sodium (mmol/L) 140.2 (137.5, 142.8) 141.4 (138.6, 144.1) 140.9 (138, 143.5) < 0.001

Serum calcium (mmol/L) 2.1 ± 0.2 2 ± 0.2 2 ± 0.2 < 0.001

Serum lactic acid (mmol/L) 1.7 (1.2, 2.6) 3.1 (1.8, 5.2) 2.2 (1.4, 3.85) < 0.001

Serum bicarbonate (mmol/L) 96 ± 7.3 94.7 ± 8.7 95.4 ± 8 0.002

Prothrombin time(s) 14.4 (13.6, 15.3) 15.4 (14.2, 17.03) 14.8 (13.9, 16.1) < 0.001

Activated partial thromboplastin

time(s)

39.1 (35.4, 44.35) 40.55 (36.07, 47.73) 39.8 (35.7, 46) < 0.001

International normalized ratio 1.12 (1.05, 1.23) 1.23 (1.12, 1.41) 1.17 (1.08, 1.3) < 0.001

D-dimer (µg/L) 2.61 (1.28, 5.43) 4.88 (2.21, 12.03) 3.5 (1.58, 8.09) < 0.001

Alanine aminotransferase (U/L) 20 (13, 37) 24 (15, 55.25) 23 (13, 44) < 0.001

Aspartate aminotransferase (U/L) 29 (22, 54.5) 45 (26, 99) 36 (23, 70) < 0.001

Serum albumin (g/L) 32.2 ± 5.1 30.5 ± 5.6 31.3 ± 5.4 < 0.001

C-reactive protein (mg/L) 40 (9.95, 99.85) 62.1 (21.27, 144.92) 55.87 (14.61, 125.15) < 0.001

Serum urea (mmol/L) 6.92 (5.08, 9.49) 8.08 (5.74, 12.09) 7.53 (5.43, 10.76) < 0.001

Serum creatinine (mmol/L) 68 (53, 89) 82 (59, 123.25) 74 (56, 105.5) < 0.001

Procalcitonin (ug/L) 0.41 (0.12, 1.5) 1.04 (0.3, 5.74) 0.67 (0.17, 2.92) < 0.001

Continuous variables are described by means and quarterbacks. Categories variables are analyzed by χ
2 test and continuous variables are analyzed by Wilcoxon rank sum test. SAT,

sepsis-associated thrombocytopenia; APACHE, acute physiology and chronic health evaluation; ICU, Intensive Care Unit; CKD, Chronic kidney disease; SOFA, Sepsis-related Organ

Failure Assessment.

Handling of Outliers
Outliers were detected using the interquartile range (IQR),
i.e., the difference between the upper and lower quartiles of
the boxplot. We used 1.5 times of IQR as the standard, and
points exceeding this criterion (the upper quartile + 1.5 times
of IQR, or the lower quartile – 1.5 times of IQR) were
defined as outliers. The excluded outliers were handled as
missing values.

Model Establishment
The following R packages for the ML method were used: caret,
ipred, ranger, arm, nnet, and gbm. Samples were randomly
divided into training set and test set in a 7:3 ratio. All ML models
were evaluated using 10× cross-validation.

The hyperparameters were adjusted by grid search as follows.
For the RF model, the number of trees and mtry parameters were
adjusted. For the neural network (NNET) model, size and decay
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TABLE 3 | Comparison of infection site and clinical outcomes between groups.

No-SAT (n = 723) SAT (n = 732) Total (n = 1,455) P

Ventilation duration (days) 0.96 (0.28, 5) 3.91 (0.8, 8.8) 2.12 (0.47, 7.38) <0.001

ICU length of stay (days) 3.88 (1.88, 8.47) 6.97 (3.62, 12.02) 5.22 (2.6, 10.65) <0.001

Hosp. LOS (days) 19 (13, 29) 18 (11, 28) 19 (12, 28) 0.022

Hospital mortality [n (%)] 94 (13) 221 (30.2) 315 (21.6) <0.001

Cost (x103, yuan) 51.2 (33.5, 79.0) 55.54 (36.3, 87.6) 53.6 (34.5, 82.7) 0.002

Infection site [n (%)]

Pulmonary 510 (70.5) 509 (69.5) 1019 (70) 0.718

Urinary 54 (7.5) 78 (10.7) 132 (9.1) 0.043

Blood stream 67 (9.3) 150 (20.5) 217 (14.9) < 0.001

Continuous variables are described by means and quarterbacks. Categories variables are analyzed by χ
2 test and continuous variables are analyzed by Wilcoxon rank sum test. SAT,

sepsis-associated thrombocytopenia; ICU, Intensive Care Unit; Hosp. LOS, length of hospital stay.

parameters were adjusted. For the gradient boosting machine
(GBM) model, n.trees, interaction.depth, and shrinkage were
adjusted. Finally, the importance of variables was sorted using the
function “varImpPlot” within the “caret” package in R.

Model Validation and Evaluation

The area under the receiver operating characteristic curve (AUC),
sensitivity, specificity, and 95% CI of each model were calculated.
The confusion matrix was evaluated using accuracy, precision,
and recall as parameters presented in Table 1. Local Interpretable
Model-Agnostic Explanations (LIME) provides another method
for model interpretation (17).

Statistical Analysis
Descriptive statistics were analyzed conventionally using the
CBCgrps package in R (18). Normally distributed measurement
data were expressed as x ± s and compared between groups
using the two-independent-samples t-test. Meanwhile, non-
normally distributed data were expressed as M (P25, P75) and
compared using the Mann–Whitney U test. Enumeration data
were expressed in terms of the rate and percentage and compared
between the groups using the χ

2 test. All statistical analyses were
performed using R (software version 3.6.3). A P-value of 0.05 was
considered significant.

RESULTS

Comparison of Basic Information and
Clinical Outcomes
A total of 1,455 patients with sepsis were included in this study.
The flow chart of the study is shown in Figure 1, including
732 SAT patients (49.7%). Regarding the sources of infection,
pulmonary infection accounted for the highest proportion, with
1,019 cases (70%), followed by blood-borne infection, with 217
cases (14.9%), and urinary tract infection, with 132 cases (9.1%).
There were 189 patients with septic shock, and 76.7% of them
had SAT.

Table 2 shows a comparison of general clinical information
and clinical outcomes between the thrombocytopenia and non-
thrombocytopenia groups. There was no significant difference in

age and gender between the two groups, with an average age of
65.6 ± 16.6 years and 63.6% of subjects being male. The disease
conditions in the thrombocytopenia group were more serious,
and the APACHE and SOFA scores were significantly higher
than those in the non-thrombocytopenia group, with statistically
significant differences (P < 0.001). There were significant
differences in terms of mechanical ventilation time, length of
ICU stays, length of hospital stays, and mortality between
the two groups (P < 0.001), and the clinical outcome of the
thrombocytopenia group was worse.Table 3 shows a comparison
of infection site and clinical outcomes between the groups. We
compared the baseline characteristics and clinical outcomes of
the external validation set, shown in Supplementary Table S1.
The comparison of feature distribution between the training,
internal validation, and external validation is shown in in
Supplementary Table S2. The incidence rate of SAT in the three
groups of patients was similar, and there was no significant
difference in age, SOFA score, and initial platelet count in
ICU admission.

Evaluation of Machine Learning Algorithm
Models
Figure 2 shows the ROC comparison of four ML models for
thrombocytopenia prediction, with internal validation showing
AUCs between 0.74 and 0.79 and external validation showing
AUCs between 0.54 and 0.72. Table 3 shows the pairwise
comparison in external validation. Results of external validation
show that NNET and GBM had the best prediction, with
no significant difference between the two models, while
the prediction accuracy of RF and Bayesian models was
slightly worse. Additional evaluation metrics for the four
machine learning models in external validation are presented
in Table 4. We established the model for predicting severe
thrombocytopenia using the same method. Figure 3 shows
the ROC comparison of ML models for the prediction of
severe thrombocytopenia, with internal validation showing
AUCs between 0.84 and 0.89 and external validation showing
AUCs between 0.70 and 0.77. The prediction was better
than for thrombocytopenia, with the Bayesian model showing
the best results. The calibration curve analysis of models is
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FIGURE 2 | ROC curves of the four machine learning models for predicting thrombocytopenia. (A), Internal validation; (B), external validation; RF, random forest;

NNET, neural network; GBM, gradient boosting machine; Baye, bayesian.

TABLE 4 | Comparison of the area under the roc curve of four machine learning models in external validation.

Models for predicting thrombocytopenia

RF Bayesian NNET GBM

RF / 0.001 0.001 0.001

Bayesian 0.001 / 0.001 0.001

NNET 0.001 / 0.94

GBM 0.001 0.001 0.94 /

Models for predicting severe thrombocytopenia

RF Bayesian NNET GBM

RF / 0.001 0.913 0.127

Bayesian 0.001 / 0.001 0.001

NNET 0.913 0.001 / 0.662

GBM 0.127 0.001 0.662 /

ROC, Receiver operating characteristic; RF, random forest; NNET, neural network; GBM, gradient boosting machine.

shown in Supplementary Figure S1. Figures 4, 5 showed the
top 10 variables of the four models ordered by importance.
LIME provides explanations for any individual patient, and the
contribution of a given variable may change depending on other
features of the patient in Supplementary Figures S2, S3 shows
contributions by the variables for two patients (#2, #3). The red
(blue) color indicates that the variable contradicts (supports) a
given class.

DISCUSSION

Our study found that SAT had high morbidity and mortality, as
well as poor clinical outcomes in ICU, and RF, Bayesian, NNET,
and GBM prediction models achieved good predictions.

Thrombocytopenia is very common in ICU patients, with
sepsis being its main cause (12). Previous studies on SAT have
shown that the incidence rate in critically ill patients (3, 19)
was approximately 50%—similar to our findings. Platelets play
crucial roles in inflammatory response (20), such as promoting

immune response and blood coagulation activation. Presently,
many published articles have shown that thrombocytopenia is
significantly related to the poor prognosis of patients and is
closely related to the degree of thrombocytopenia (21).

Thrombocytopenia is a common reason of platelet transfusion
in the ICU. When the platelet count is <50 × 109/ L, clinicians
often transfuse platelets (22, 23) to reduce bleeding events. A
British prospective multicenter observation study (7) showed
that, in ICU patients with severe thrombocytopenia, themortality
rate was as high as 35.4%. Therefore, we also predicted severe
thrombocytopenia in patients with sepsis. The models had higher
accuracy and better prediction effect. For such patients, early
discontinuation of antiplatelet drugs, use of platelet-increasing
drugs, and early reservation of platelets might help prevent
bleeding events and improve the prognosis of patients.

In this study, among the four ML models, the top variables
in terms of importance scores were SOFA score, serum lactic
acid, serum sodium bicarbonate, and dimer, which suggested
that these factors had a significant correlation with SAT.
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FIGURE 3 | ROC curves of the four machine learning models for predicting severe thrombocytopenia. (A), Internal validation; (B), external validation; RF, random

forest; NNET, neural network; GBM, gradient boosting machine; Baye, bayesian.

FIGURE 4 | Top 10 variables of the four machine learning models for predicting thrombocytopenia ordered by importance. SOFA, Sepsis-related Organ Failure

Assessment; INR, International normalized ratio.
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FIGURE 5 | Top 10 variables of the four machine learning models for predicting severe thrombocytopenia ordered by importance. SOFA, Sepsis-related Organ Failure

Assessment; INR, International normalized ratio.

A retrospective study including 267 patients with abdominal
infection showed that a high SOFA score was an important
risk factor for hospital-acquired thrombocytopenia. A systematic
evaluation (24) found that disease severity was an influencing
factor of thrombocytopenia, while serum lactic acid and serum
sodium bicarbonate were classic indicators reflecting the severity
of the patient’s disease. Plasma D-dimer is an important marker
of thrombosis activity. In sepsis patients, fibrinolysis activation
and D-dimer level have been independently correlated with
mortality (25). Therefore, monitoring the SOFA score, serum
lactic acid, serum sodium bicarbonate, and dimer levels is helpful
for the early detection of thrombocytopenia patients.

This study has some limitations. First, this was a single-
center, retrospective study, and some data were missing. We
supplemented the data through multiple imputation functions of
statistical software to reduce the bias of research results. Second,
there are many reasons for thrombocytopenia. For example,
some patients with sepsis were treated with hemodialysis, and
heparin-induced thrombocytopenia was reported after using
heparin. These patients were not excluded, which influenced
the results. Third, due to the algorithm characteristics of ML,

the models could not clarify the specific relationship between
variables and thrombocytopenia, and they were not suitable
for all people, which limited the performance of the models.
Therefore, based on the algorithms, we showed the measurement
of variable importance in the four models and LIME feature plot
explained the relationship between variables in the models and
thrombocytopenia to a certain extent. Finally, our ML models
to predict SAT between ICU stays, the models to predict SAT
each day of the ICU stays will be more clinically meaningful.
In the future, we will develop software and join the electronic
information system to predict SAT each day of the ICU stays.

CONCLUSION

We established four ML models to predict SAT and severe
thrombocytopenia. The models were validated in MIMIC III and
can be used to identify such high-risk patients at an early stage
and guide individualized clinical treatment. In the future, we will
conduct a prospective cohort study and apply these models to
clinical practice.

Frontiers in Medicine | www.frontiersin.org 8 January 2022 | Volume 9 | Article 83738215

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Jiang et al. Prediction Models for SAT

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of Dongyang People’s
Hospital. Written informed consent for participation was not
required for this study in accordance with the national legislation
and the institutional requirements.

AUTHOR CONTRIBUTIONS

YW and YP carried out the design and contributed to manuscript
revision. XJ participated in data analysis and drafted the
manuscript. WZ provided overall supervision and undertook
the responsibility of submitting the manuscript for publication.
All authors contributed to the article and approved the
submitted version.

FUNDING

This study was supported by the Clinical Research Fund
Project of the Zhejiang Medical Association (2020ZYC-B44 and
2018KY866) and the Conba Hospital Management Project of the
Zhejiang Hospital Association (2021ZHA-KEB335).

ACKNOWLEDGMENTS

We would like to thank Editage (www.editage.cn) for English
language editing.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2022.837382/full#supplementary-material

Supplementary Figure S1 | Calibration of four machine learning models. (A):

Models for predicting thrombocytopenia in Internal validation set; (B): Models for

predicting thrombocytopenia in external validation set. (C): Models for predicting

severe thrombocytopenia in Internal validation set; (D): Models for predicting

severe thrombocytopenia in external validation set; RF, random forest; NNET,

neural network; GBM, gradient boosting machine; Baye, bayesian.

Supplementary Figure S2 | Heatmap plot showing the contribution of each

variable to the classification of sample patients. The relative contribution of each

variable was calculated using the LIME algorithm. Patients #2, #3 are shown as

examples. Red (blue) color indicates that the relevant variable contradicts

(supports) a given label. SOFA, Sepsis-related Organ Failure Assessment; INR,

International normalized ratio; LIME, Local Interpretable

Model-Agnostic Explanations.

Supplementary Figure S3 | LIME feature plot shows the contribution of each

variable to the classification of sample patients. Red (blue) color indicates that the

relevant variable contradicts (supports) a given label. SOFA, Sepsis-related Organ

Failure Assessment; INR, International normalized ratio; LIME, Local Interpretable

Model-Agnostic Explanations.

Supplementary Table S1 | Baseline characteristics and clinical outcomes

between SAT and No-SAT groups in the MIMIC III cohort. Continuous variables

are described by means and quarterbacks. Categories variables are analyzed by

χ
2 test and continuous variables are analyzed by Wilcoxon rank sum test. SAT,

sepsis-associated thrombocytopenia; SOFA, Sepsis-related Organ Failure

Assessment; DM, diabetes mellitus; COPD, Chronic Obstructive Pulmonary

Disease; AST, aspartate aminotransferase; INR, International normalized ratio; PT,

prothrombin time; Hosp. hospital, LOS length of stay; ICU LOS, ICU length of stay.

Supplementary Table S2 | Comparison of feature distribution between the

training, internal validation, and external validation. Continuous variables are

described by means and quarterbacks. Categories variables are analyzed by χ
2

test and continuous variables are analyzed by Wilcoxon rank sum test. SAT,

sepsis-associated thrombocytopenia; ICU, Intensive Care Unit; SOFA,

Sepsis-related Organ Failure Assessment; Hosp. LOS, length of hospital stay.
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Objective: Pain assessment based on facial expressions is an essential issue in

critically ill patients, but an automated assessment tool is still lacking. We conducted

this prospective study to establish the deep learning-based pain classifier based on

facial expressions.

Methods: We enrolled critically ill patients during 2020–2021 at a tertiary hospital

in central Taiwan and recorded video clips with labeled pain scores based on facial

expressions, such as relaxed (0), tense (1), and grimacing (2). We established both

image- and video-based pain classifiers through using convolutional neural network

(CNN) models, such as Resnet34, VGG16, and InceptionV1 and bidirectional long

short-termmemory networks (BiLSTM). The performance of classifiers in the test dataset

was determined by accuracy, sensitivity, and F1-score.

Results: A total of 63 participants with 746 video clips were eligible for analysis.

The accuracy of using Resnet34 in the polychromous image-based classifier for pain

scores 0, 1, 2 was merely 0.5589, and the accuracy of dichotomous pain classifiers

between 0 vs. 1/2 and 0 vs. 2 were 0.7668 and 0.8593, respectively. Similar accuracy of

image-based pain classifier was found using VGG16 and InceptionV1. The accuracy

of the video-based pain classifier to classify 0 vs. 1/2 and 0 vs. 2 was approximately

0.81 and 0.88, respectively. We further tested the performance of established classifiers

without reference, mimicking clinical scenarios with a new patient, and found the

performance remained high.

Conclusions: The present study demonstrates the practical application of deep

learning-based automated pain assessment in critically ill patients, and more studies are

warranted to validate our findings.

Keywords: pain, critically ill patients, facial expression, artificial intelligence, classifier
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BACKGROUND

Pain is an essential medical issue but somehow difficult to
assess in critically ill patients who cannot report their pain (1).
Therefore, the Critical-Care Pain Observation Tool (CPOT) has
been developed to grade the pain through assessing behavior
alternations, such as facial expressions, among critically ill
patients in the past two decades (2). The facial expression is
the fundamental behavior alternation in CPOT and consists
of relaxed, tense, and grimacing (pain score 0, 1, and 2) (3).
Currently, facial expression-based pain assessment is graded by
the nurse, and there is an unmet need to develop an automated
pain assessment tool based on facial expression to relieve the
medical staff from the aforementioned workload (4).

A number of automated recognition of facial expressions
of pain and emotion has been developed through using
distinct approaches (5–9). Pedersen et al. used Support Vector
Machine (SVM) as a facial expression-based pain classifier in
UNBC-McMaster Shoulder Pain Expression Archive Database,
consisting of 200 video sequences obtained from 25 patients
with shoulder pain, and reported that the accuracy of the leave-
one-subject-out 25-fold cross was 0.861 (7). Given that video
sequences contain temporal information with respect to pain,
two studies were used Recurrent Neural Network (RNN) and
hybrid network to extract the time-frame feature among images
and reported an improved performance (8, 9). Furthermore,
recent studies have employed fusion network architectures and
further improved the F1 score to ∼0.94 (10, 11). Therefore,
the recent advancements in deep learning might enable us
to establish a facial expressed-based pain assessment tool in
critically ill patients.

Notably, the application of the aforementioned methods in
critically ill patients might not be straightforward due to real-
world difficulties to obtain standardized and whole unmasked
facial images of patients admitted to the intensive care unit
(ICU) (12). Unlike the high-quality whole facial image in the
UNBC-McMaster Shoulder Pain Expression Archive Database,
critically ill patients may have masks on the face due to needed
medical devices, such as endotracheal tube, nasoesophageal tube,
and oxygen mask. Furthermore, pain-associated facial muscle
movements might hence be subtle due to sedation and tissue
oedema in critically ill patients. Therefore, there is a substantial
need for using facial images obtained in sub-optimal real-world
conditions at ICUs to establish an automated facial expression-
based assessment tool for pain in critically ill patients. In
the present prospective study, we recorded facial video clips
in critically ill patients at the ICUs of Taichung Veterans
General Hospital (TCVGH) and employed an ensemble of three
Convolutional Neural Network (CNN) models as well as RNN to
establish the pain classifier based on facial expressions.

MATERIALS AND METHODS

Ethical Approval
This study was approved by the Institutional Review
Board approval of the Taichung Veterans General Hospital
(CE20325A). Informed consent was obtained from all of the

participants prior to the enrollment in the study and collection
of data.

Study Population
We conducted this prospective study by enrolling patients who
were admitted to medical and surgical ICUs at TCVGH, a referral
hospital with 1,560 beds in central Taiwan, between 2020-Nov
and 2021-Nov. The CPOT is a standard of care in the study
hospital, and grading of the facial expression-based pain score
is in accordance with the guideline (3). In detail, a score of 0
is given if there is no observed muscle tension in the face, and
the score of 1 is composed of a tensed muscle contraction, such
as the presence of frowning, brow lowering, orbit tightening as
well as levator muscle contraction. The score of 2 consists of
grimacing, which is a contraction of facial muscles, particularly
muscles nearby the eyebrow area, plus eyelid tightly closed.

Video Sequences With Labeled Pain Grade
Based on Facial Expression
Figure 1 depicts the protocol of video record, labeling, and
image preprocessing of the present study (Figure 1). Video
record and labeling were performed by three experienced nurses
after training for inter-rater concordance, and the labeling was
further validated by two senior registered nurses. To mitigate
information bias and synchronize the recording and labeling,
we designed a user interface that enables the study nurse to
observe the patient for 10 s, to record a video for 20 s, and then
label the pain score at the end of the video. To further reduce
the potential sampling errors, we recorded three labeled videos
in each observation; therefore, each 90-s video sequence has
three 20-s clips (Figure 1A). Given the nature of observation of
this study, we conducted the recording per day during the ICU
admission of participants, particularly before and after suction,
dressing change as well as invasive procedures, to obtain the
videos with distinct pain grades in individual critically ill patients.
With regards to the hardware, the frame per second of the applied
camera was 30, and the total frames of a 20-s video clip were
nearly 400–600 frames per clip. To standardize the video clips,
we used 50 frames in each 20-s clip; therefore, there were 2.5
representative frames per second for the following experiments.
To avoid any interference with critical care, we designed a
portable camera rack that enables us to take high-quality video
∼1–2m from the patient.

Image Preprocessing
We used a facial landmark tracker to locate the facial area (13).
Due to the face that was masked by the aforementioned medical
devices might not be detected by the facial landmark tracker, we
further used multi-task CNN to locate the facial area if the face
was not located by the facial landmark tracker (14). Given that the
area nearby the eyebrow is the key area to interpret pain score,
we hence cropped the face between hairline and nose not only
to focus on the eyebrow area, but also to avoid the confounding
of the aforementioned medical devices. We further cropped the
central part of the eyebrow area with a fixed ratio of height/width
(3/4) for the following experiments. Given that facial images with
extreme angles may lead to the facial landmark misalignment
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FIGURE 1 | Schematic diagram of image acquisition and preprocessing. (A) Recording of video clips with labeling and (B) Preprocessing of video sequences.

and affect the following experiments, we hence excluded the faces
with yaw or pitch angle over 30 degrees (Figure 1B).

Image-Based Pain Classifiers
Figure 2 illustrates the deep learning-based Siamese network
architectures for image- and video-based pain classifiers in this
study (15) (Figure 2). To reduce the need for an extremely
high number of labeled but unrelated images for learning, we
employed a relation network architecture for the image-based
pain classifier (16). In brief, the aforementioned relation network
is designed for learning to compare the differences among labeled
images of each individual patient; therefore, the essential need
is the images with distinct grades among individual patients,
instead of a high number of unrelated images from patients
with high heterogeneity. Therefore, we used the data of the 63
participants who had images of all of 0, 1, 2 labeled images. In
detail, by feeding grade-0 facial expression image and grade 1/2
images into CNN encoder, two vectors were obtained to represent
the subtle difference between the image of grade-0 and grade-
1/2, instead of calculating the complex distance metric of two
images in high dimensions. Indeed, the application of relation
network should be in line with clinical grading of pain by the
nurse, who had to recognize the baseline facial appearance of an
individual patient prior to grade pain-score based on the facial
expression. In this study, we used three CNN models that have
fewer vanishing gradient issues, such as Resnet34, VGG16, and
inceptionV1, as well as two types of the fully connected layer
set up with one and two layers (17–19). Therefore, there were
a total of six combinations for the image-based pain classifier,
and we applied the voting to optimize the classifier performance
through averaging outputs of different models. With regards to
the main hyperparameters, we used the cross-entropy loss as the
loss function in the image-based pain classifier, and the learning

rate, optimizer, and trained epochs were 1e-4, Adam, and 60
epochs, respectively.

Video-Based Pain Classifiers
With regard to the video-based pain classifier, we employed a
many-to-one sequence model given that the output of this study
is a one pain grade. Similar to the image-based pain classifier, we
used a Siamese network architecture as feature extractors. Given
that multiple CNN encoders were used in the present study,
we hence processed the image through three CNN encoders to
get three vectors and concatenate these vectors to a relatively
low-dimensional space. The concatenated output vectors of each
frame were then fed into the bidirectional long short-term
memory networks (BiLSTM) for the classification of pain (20).
Given that the CNN encoder had been trained in the image-based
pain classifier, we hence reduced the learning rate to 1e-5 on
the video-based pain classifier and froze the weights of the CNN
encoder in the first 10 epochs, and this approach may facilitate
to focus on training BiLSTM in the first 10 epochs. The other
parameters, such as loss function, optimizer, and trained epochs,
were in line with those used in the image-based pain classifier.

Statistical Analyses
Data were expressed in frequency of occurrence (percentages)
for categorical variables and as means ± SD for continuous
variables. Differences between the survivor and non-survivor
groups were analyzed using Student’s t-test for continuous
variables and Fisher’s exact test for categorical variables. The
proportion of train, validation, and test datasets were 60, 20, and
20%, respectively. The performance of the pain classifier in the
test dataset was determined by accuracy, sensitivity, and F1-score.
Python version 3.8, PyTorch 1.9.1, and CUDA 11.1 were used in
this study.
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FIGURE 2 | Schematic diagram of network architectures in the present study. (A) Image-based pain classifiers using relation and siamese network architecture, (B)

Video-base pain classifier using bidirectional long short-term memory networks (BiLSTM).

RESULTS

Patients’ Characteristics
A total of 341 participants were enrolled, and there were 7,813
qualified videos, of which the number of scores 0, 1, and 2
were 5,717, 1,714, and 382, respectively. Given that we employed
relation network architecture in this study, we hence used images
among 63 participants who had all of the pain-score 0, 1, and 2
labeled video clips, and the number of videos with 0, 1, and 2
were 351, 253, and 142, respectively. The mean age of included
patients for analyses was 69.3 ± 14.6 years, and 55.6 (35/63) of
them was male (Table 1). The majority (81.0%, 51/63) of enrolled
participants were critically ill patients who were admitted to
medical ICUs. The ICU severity scores of acute physiology and
chronic health evaluation II (APACHE II), sequential organ
failure assessment (SOFA) day-1, SOFA day-3, and SOFA day-7
were 25.3± 5.7, 9.0± 3.7, 8.5± 4.1, and 8.2± 3.8, respectively.

Performance of Image-Based Pain
Classifiers
In image-based pain classifiers, we attempted to classify with
three pain categories (0, 1, and 2) and dichotomous pain
classifiers (0 vs. 1/2 and 0 vs. 2) given pain score = 2
reflects a clinical warning signaling requiring immediate clinical
evaluation andmanagement (Table 2). In Resnet34 with one fully
connected layer (1024, 3), the performance of the polychromous

classifier for 0, 1, and 2 appeared to be suboptimal, with
the accuracy, sensitivity, and F1 score were merely 0.5589,
0.5589, and 0.5495, respectively. The performance of the two
dichotomous image-based pain classifiers was much higher than
that in polychromous pain classifier. The accuracy, sensitivity,
and F1 score were 0.7668, 0.8422, and 0.8593 to classify 0 vs.
1/2 and were 0.8593, 0.8925, and 0.8638 to classify 0 vs. 2. We
further tested the performance of using VGG16, InceptionV1,
and two fully connected layers. The performances of Resnet34
and VGG16 were slightly higher than that of InceptionV1. For
example, the accuracy of dichotomous pain classifier between 0
vs. 1/2 in Resnet34, VGG16, and Inception were 0.7668, 0.7578,
and 0.7055, respectively. With regard to the efficacy of using
two fully connected layers ([1024, 256] followed by [256, 3]),
the performance tended to improve in a few models, such as
dichotomous pain classifier between 0 vs. 1/2 in InceptionV1
(accuracy increased from 0.7055 to 0.7587).

Performance of Video-Based Pain
Classifiers and the Pain Classifier Without
Reference
We then examined the performance of a video-based pain
classifier through concatenating vectors of the aforementioned
three CNN encoders and BiLSTM with distinct hidden layers
(Table 3). We found that the performance of video-based
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TABLE 1 | Characteristics of the enrolled 63 participants who had videos with all

of three pain-score categories.

Basic data

Age, years 69.3 ± 14.6

Sex (male) 35 (55.6%)

Height (cm) 160.1 ± 8.0

Body weight (kgs) 57.3 ± 10.0

ICU types

Medical ICUs 51 (81.0%)

Surgical ICUs 12 (19.0%)

Laboratory data (Day-1)

White blood cell counts (/ml) 13,670.7 ± 11,259.5

Hematocrit (%) 28.8 ± 8.4

Creatinine (mg/dl) 1.9 ± 1.4

Sodium (mg/dl) 140.3 ± 5.5

Potassium (mg/dl) 4.0 ± 0.7

Severity scores

APACHE II score 25.3 ± 5.7

SOFA score, day-1 9.0 ± 3.7

SOFA score, day-3 8.5 ± 4.1

SOFA score, day-7 8.2 ± 3.8

Data were presented as mean ± standard deviation and number (percentage). ICU,

intensive care unit; APACHE II, acute physiology and chronic health evaluation II; SOFA,

sequential organ failure assessment.

pain classifiers among the polychromous classifier and two
dichotomous classifiers was higher than those in the image-
based pain classifier. The accuracy in classifying 0 vs. 1/2 was
nearly 0.8 and reached ∼0.88 to classify 0 vs. 2. Additionally,
we further tested the performance of the established classifier
without reference, mimicking the clinical scenario in a new
patient without an image score of 0 as the reference (Table 4).
We found that the performance of both image- and video-
based classifiers slightly decreased in classifiers without reference.
Notably, the performance of a video-based classifier without
reference to differentiate 2 from 0 was up to 0.8906, indicating
the established classifier had learned the difference between 0
and 2. Collectively, we established the image and video facial
expression-based pain classifier in critically ill patients, with
the accuracy to classify 0 vs. 1/2 and 0 vs. 2 were ∼0.8 and
0.9, respectively.

DISCUSSION

In this prospective study, we developed a protocol to obtain
video clips of facial expressions in critically ill patients and
employed the deep learning-based approach to establish the
facial expression-based pain classifier. We focused on the area
nearby eyebrow that is less likely to be masked by medical
devices and employed an ensemble of three CNN models, such
as Resnet34, VGG16, and InceptionV1, to learn pain-associated
facial features and BiLSTM for temporal relation between video
frames. The accuracy of the dichotomous classifier to differentiate
tense/grimacing (1/2) from relaxed (0) facial expression was

TABLE 2 | Performance image-based pain classifiers with pain score zero as the

reference in different settings.

CNN

model

Fully

connected

layers

Pain score

0 vs. 1 vs. 2

Pain score

0 vs. 1/2

Pain score

0 vs. 2

Accuracy Resnet34 1 layer

(1024, 3)

0.5589 0.7668 0.8593

Sensitivity 0.5589 0.8422 0.8925

F1-score 0.5495 0.7832 0.8638

Accuracy 2 layers 0.6032 0.7711 0.8568

Sensitivity (1,024, 256) 0.6032 0.8380 0.8514

F1-score (256, 3) 0.5969 0.7855 0.8561

Accuracy VGG16 1 layer

(1024, 3)

0.5914 0.7578 0.8557

Sensitivity 0.5914 0.6665 0.8499

F1-score 0.5867 0.7141 0.8548

Accuracy 2 layers 0.5871 0.7578 0.8276

Sensitivity (1,024, 256) 0.5871 0.6908 0.8064

F1-score (256, 3) 0.5811 0.7405 0.8239

Accuracy InceptionV1 1 layer

(1024, 3)

0.5872 0.7055 0.8302

Sensitivity 0.5872 0.8216 0.8782

F1-score 0.5788 0.7362 0.8380

Accuracy 2 layers 0.5567 0.7587 0.8035

Sensitivity (1,024, 256) 0.5567 0.8159 0.8338

F1-score (256, 3) 0.5556 0.7718 0.8093

CNN, convolutional neural network.

TABLE 3 | Performance of video-based pain classifiers with different numbers of

hidden layers in bidirectional long short-term memory (BiLSTM) networks.

Hidden

layers

Pain score

0 vs. 1 vs. 2

Pain score

0 vs. 1/2

Pain score

0 vs. 2

Accuracy 64 0.6144 0.8145 0.8810

Sensitivity 0.6144 0.7947 0.8755

F1-score 0.6123 0.8107 0.8803

Accuracy 128 0.5941 0.8054 0.8461

Sensitivity 0.5942 0.7858 0.7589

F1-score 0.5902 0.8015 0.8314

Accuracy 256 0.6006 0.8268 0.8367

Sensitivity 0.6006 0.8244 0.7500

F1-score 0.5948 0.8264 0.8212

BiLSTM, bidirectional long short-term memory.

∼80%, and the accuracy to detect grimacing (2) was nearly
90%. The present study demonstrates the practical application
of deep learning-based automated pain assessment in ICU, and
the findings shed light on the application of medical artificial
intelligence (AI) not only to improve patient care, but also to
relieve healthcare workers from the routine workload.

Pain is the fifth vital sign in hospitalized patients but is
somehow difficult to assess in critically ill patients who cannot
self-report the pain (21, 22). Facial expressions of pain consist
of coordinated pain-indicative muscle movements, particularly
the contraction of muscles surrounding the eyes, i.e., orbicularis
oculi muscle (23). Notably, facial pain responses appear to be
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TABLE 4 | Accuracy of proposed image- and video-based pain classifiers with

and without reference.

Reference Pain score

0 vs. 1 vs. 2

Pain score

0 vs. 1/2

Pain score

0 vs. 2

Image-based pain classifiers

Accuracy Pain score 0 0.6347 0.8000 0.8937

Sensitivity 0.6347 0.8022 0.8826

F1-score 0.6321 0.8004 0.8953

Accuracy No reference 0.6421 0.7954 0.8771

Sensitivity 0.6421 0.7974 0.9074

F1-score 0.6371 0.7947 0.8724

Video-based pain classifiers

Accuracy Pain score 0 0.6144 0.8268 0.8810

Sensitivity 0.6144 0.8244 0.8755

F1-score 0.6123 0.8264 0.8803

Accuracy No reference 0.6130 0.7858 0.8906

Sensitivity 0.6130 0.8016 0.8344

F1-score 0.6102 0.7892 0.8841

consistent across distinct types of pain stimulation, such as
pressure, temperature, electrical current, and ischemia (23, 24).
A number of studies have explored the physiological basis of
how pain signaling leads to pain-indicative muscle movement.
Kuramoto et al. recently used facial myogenic potential
topography in 18 healthy adult participants to investigate the
facial myogenic potential and subsequent facial expressions (25).
Furthermore, Kunz used functional MRI (fMRI) to address the
association between brain responses in areas that processed the
sensory dimension of pain and activation of the orbicularis oculi
muscle (26). Although promising, monitoring of facial myogenic
potential might be infeasible in critically ill patients given that
contact device-associated issues regarding infection control and
the potential interference with critical care (27). The possibility
of application of fMRI in ICU appears to be low; therefore, using
a portable camera to take high-quality video ∼1–2m from the
patient as well as AI-based image analyses focusing on eyebrow
area as we have shown in the present study has high applicative
value in critically ill patients.

It is estimated that more than 50% of patients in ICU
experienced experience moderate to severe pain at rest, and
80% of critically ill patients experience pain during procedures
(28, 29). Therefore, CPOT, as well as Behavioral Pain Scale (BPS),
has been introduced for pain assessment in patients at ICUs in
the past two decades, and facial expression is the fundamental
domain in both BPS andCPOT given thatmuscle tension in facial
areas, particularly facial area nearby eyebrow, can be directly
observed by the caring staff without contact (3, 30). Notably,
contactless monitoring in ICU is of increasing importance in the
post-coronavirus disease (COVID) era (27). A number of AI-
based tools, such as the dynamic relationship of facial landmarks
or CNN-learned facial features, have been developed to assess
pain in non-ICU patients (7, 23, 31). Nevertheless, the subtle
pain-associated movement of facial muscles/landmarks in the

non-ICU patient is largely distinct from those in critically
ill patients under sedation. Given that patients in ICU often
received mechanical ventilation, experienced fear were deprived
of normal sleep, felt isolation; therefore, appropriate sedation,
at least light sedation, is recommended as a standard of care in
critically ill patients and hence leads to difficulties to identify
pain based on facial expressions (32). In addition to the impact
of sedation on pain assessment, subtle facial muscle movements
might also be confounded by facial oedema resulting from fluid
overload, which is highly prevalent in critically ill patients who
underwent fluid resuscitation, as we have shown in our previous
studies (33, 34). Collectively, automated pain assessment based
on facial expressions in critically ill patients is currently an
unmet need in the research field of medical AI due to the
aforementioned difficulties.

Intriguingly, we found a suboptimal performance in
the polychromous classifier, whereas the performance in
dichotomous classifiers was high. We postulated that the
relatively little difference between pain grades 1 and 2 may lead
to the reduced performance to differentiate between 1 and 2,
and the performance of dichotomous classifiers was high due to
the apparent difference between 0 and 1/2. We found a higher
performance in video classifiers than those in image classifiers,
and this finding indicates that the temporal relation among
image frames is crucial to classify pain by facial expressions.
A similar finding has been found in pain classifiers using the
UNBC-McMaster shoulder pain database (7–9). The accuracy of
the leave-one-subject-out 25-fold cross in facial expression-based
pain classifier by machine learning approach was ∼0.861 using
the UNBC-McMaster database (7). Similar to our approach,
Rodriguez et al. used VGG to learn basic facial features as
well as LSTM to exploit the temporal relation between video
frames and reported a further increased accuracy (0.933) in
the aforementioned UNBC-McMaster database (8). Similarly,
Huang et al. proposed an end-to-end hybrid network to extract
multidimensional features including time-frame features from
images of the UNBC-McMaster database and also found an
improved performance (9). Recently, Semwal and Londhe
further used distinct fusion network architectures, including
CNN-based fusion network to learn both the spatial appearance
and shape-based descriptors, as well as decision-level fusion
network to learn the domain-specific spatial appearance and
complementary features, to improve the performance of pain
intensity assessment, with the F1 score, was ∼0.94 (10, 11). This
evidence highlights the potential application of automated pain
assessment based on facial expressions in hospital.

The inevitable medical devices and high heterogeneity in
critically ill patients have led to technical difficulties as we
have shown in this study. We choose to crop the facial area
nearby the eyebrow area, and this approach not only keeps the
essential area to detect painful facial expressions but also is
essential to extend the established model to clinical scenarios
with distinct facial masks, such as the increasing prevalence of
wearing a facial mask in the post-COVID era. Moreover, we used
a pain score of 0 to train the pain classifiers in this study and
further tested the performance of established classifiers without
reference (Table 4). Notably, the performance of dichotomous
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classifiers, particularly the 0 vs. 2 classifier, remains high without
reference, indicating that the established model has learned the
pain-associated facial expression in critically ill patients.

Timely detection of severe pain, such as pain score 2, is
crucial in critical care. Frequent pain assessment is substantial
for the identification of the existence of pain and the adjustment
dosage of pharmacological analgesic agents or the intensity
of non-pharmacological management (1). The previous studies
have shown that regular pain assessment is associated with a
better outcome, such as ventilator-day, in critically ill patients
(35, 36). Severe pain may reflect not only inadequate pain
control, but also the potential deterioration of critical illness.
For example, increasing pain has been implicated with anxiety,
delirium, and poor both short-term and long-term outcomes in
critically ill patients (37). Therefore, the automated AI-based pain
assessment, particularly timely identification of severe pain/pain
score 2, should serve as an actionable AI target, i.e., the detection
of pain score 2 indicates the need for immediate evaluation and
management by the healthcare worker. Additionally, we have
established the user interface to guide the user with regard to
quality of the image and the real-time classification of pain based
on facial expressions, and the application of the establishedmodel
should hence reach level 5 of technology readiness level (TRL)
(Supplementary Demonstration Video 1) (38, 39).

There are limitations in this study. First, this study is a single
center study. However, the pain relevant management in the
study hospital is in accordance with the guideline; therefore, the
generalization issue should be at least partly mitigated. Second,
we recorded the video for 90 s in each record, and a longer
duration could further improve the accuracy. Third, we focused
on the facial expression in the present study, and more sensors
for the other domains of CPOT/BPS are warranted in the future.

CONCLUSION

Autonomous facial expression-based pain assessment is an
essential issue in critical care but is somehow difficult in
critically ill patients due to inevitable masked areas by
medical devices and relatively subtle muscle movement resulting
from sedation/oedema. In the present prospective study, we

established the deep learning-based pain classifier based on
facial expression focusing on the area nearby eyebrow, with
the accuracy to detect tense/grimacing and grimacing were
∼80 and 90%, respectively. These findings indicate a real-world
application of AI-based pain assessment based on the facial
expression in ICU, and more studies are warranted to validate
the performance of the automated pain assessment tool.
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Background: Sepsis-associated acute kidney injury (SA-AKI) is common in critically

ill patients, which is associated with significantly increased mortality. Existing mortality

prediction tools showed insufficient predictive power or failed to reflect patients’ dynamic

clinical evolution. Therefore, the study aimed to develop and validate machine learning-

based models for real-time mortality prediction in critically ill patients with SA-AKI.

Methods: The multi-center retrospective study included patients from two distinct

databases. A total of 12,132 SA-AKI patients from the Medical Information Mart for

Intensive Care IV (MIMIC-IV) were randomly allocated to the training, validation, and

internal test sets. An additional 3,741 patients from the eICU Collaborative Research

Database (eICU-CRD) served as an external test set. For every 12 h during the ICU stays,

the state-of-the-art eXtreme Gradient Boosting (XGBoost) algorithm was used to predict

the risk of in-hospital death in the following 48, 72, and 120 h and in the first 28 days

after ICU admission. Area under the receiver operating characteristic curves (AUCs) were

calculated to evaluate the models’ performance.

Results: The XGBoost models, based on routine clinical variables updated every 12 h,

showed better performance in mortality prediction than the SOFA score and SAPS-II.

The AUCs of the XGBoost models for mortality over different time periods ranged from

0.848 to 0.804 in the internal test set and from 0.818 to 0.748 in the external test set. The

shapley additive explanation method provided interpretability for the XGBoost models,

which improved the understanding of the association between the predictor variables

and future mortality.

Conclusions: The interpretable machine learning XGBoost models showed promising

performance in real-time mortality prediction in critically ill patients with SA-AKI, which are

useful tools for early identification of high-risk patients and timely clinical interventions.

Keywords: sepsis, acute kidney injury, mortality, machine learning, critical care
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INTRODUCTION

Sepsis is life-threatening organ dysfunction due to a dysregulated
host response to infection. It is a major cause of health loss
worldwide (1, 2). Acute kidney injury (AKI), characterized by
an abrupt increase in serum creatinine (SCr) or decrease in
urine output, is a common complication of critical illness (3–5).
AKI has been shown to be more frequent, less likely to resolve,
and associated with higher mortality in critically ill patients
with sepsis than in those without (6). Considering the critical
condition of patients with sepsis-associated AKI (SA-AKI), the
accurate prediction of their outcomes is a topic of interest.

Studies have shown that widely-used severity scores, such
as the Simplified Acute Physiology Score II (SAPS-II) and
the Sequential Organ Failure Assessment (SOFA) score, exhibit
insufficient power for outcome prediction in SA-AKI patients
(7, 8). A few prediction models for mortality in patients with
SA-AKI have been established (7, 8). However, they were limited
to small sample size or inadequate predictive performance. In
addition, the models incorporated static measurements at single
time points, typically in the early period after intensive care unit
(ICU) admission, and failed to reflect patients’ dynamic clinical
evolution. There is still a lack of feasible ways to assess the real-
time risk of death and guide individualized treatment decisions
in critically ill patients with SA-AKI.

The rapid development in big data analytics and machine
learning techniques, along with the data-rich environment in
ICU settings, provide unprecedented opportunities to establish
novel mortality prediction tools in SA-AKI patients (9–11).
Advanced machine learning methods are adept at handling high-
order interactions and fitting complex non-linear relationships,
which can be used to integrate large amounts of data from
electronic health records (EHRs). The application of data-driven
analytics by machine learning has shown promise to improve
predictive performance in medical fields (12–15).

The study aimed to develop and validate machine learning-
based models for real-time mortality prediction in critically ill
patients with SA-AKI, in an attempt to provide useful tools for
early prognostic assessment and clinical decision-making.

METHODS

Source of Data
Data were obtained from the Medical Information Mart for
Intensive Care IV (MIMIC-IV) v1.0 and the eICU Collaborative
Research Database (eICU-CRD) v2.0 (16–19). The MIMIC-IV
is a large and publicly available database containing records
from patients admitted to the ICUs of the Beth Israel Deaconess
Medical Center from 2008 to 2019. The eICU-CRD is a multi-
center telehealth database including data from more than
200,000 admissions to 335 ICUs at 208 hospitals across the
United States between 2014 and 2015. The study was an analysis
of the third-party databases with pre-existing institutional
review board approval and all protected patient information de-
identified. One of the authors has completed the Collaborative
Institutional Training Initiative course and can access the
databases (certification number 40010711).

Study Population
The study included adult patients with sepsis who developed
AKI within 48 h after ICU admission. In the MIMIC-IV, sepsis
was diagnosed based on the Sepsis-3 criteria, including suspected
infection and a SOFA score ≥ 2 (1). We identified patients with
suspected infection (antibiotics administration concomitant with
body fluid cultures) during the first 24 h after ICU admission and
calculated SOFA scores using data from the same period (20). In
the eICU-CRD, sepsis was identified according to the admission
diagnosis recorded on the Acute Physiology and Chronic Health
Evaluation IV dataset (21). AKI was defined based on the 2012
Kidney Disease: Improving Global Outcomes Clinical Practice
Guideline, using both SCr and urine output criteria (3). Baseline
SCr was defined as the minimum SCr value in the 7 days prior
to ICU admission, or the first SCr value after ICU admission if
no pre-admission SCr was available (22, 23). If the patient had
multiple ICU admissions during a hospital stay, only the first
ICU stay was included in the analysis to ensure the independence
of the data. Patients with age < 18 years old, end-stage renal
disease (identified by diagnosis codes), and ICU stay < 48 hours
were excluded.

Outcomes and Predictor Variables
The primary outcome was in-hospital mortality within 28 days
after ICU admission, censored at hospital discharge or 28 days,
whichever occurred first. Each patient’s ICU stay within 28 days
was separated into 12-hour windows, which were labeled as
“death” or “survival”. Specifically, to predict mortality in the
next 48, 72, and 120 h, the time windows in the corresponding
hours before death were labeled as “death” and the remaining
as “survival”. To predict mortality in the first 28 days after ICU
admission, all time windows were labeled as “death” in patients
who died and “survival” in patients who survived. The final
objective of the model was to predict the correct label for each
time window. Additionally, the secondary outcomes were ICU
length of stay, hospital length of stay and use of renal replacement
therapy (RRT) within the first 28 days.

The predictor variables within each time window contained
four static features (age, sex, ethnicity, and baseline SCr) and
sets of dynamic features including hours from ICU admission,
vital signs, laboratory values, and interventions. The list of
all predictor variables included for modeling is provided in
Table 1. For dynamic features, their values were time-varying and
updated on a 12-hour basis. We used the mean value of variables
measured multiple times and the lowest Glasgow Coma Scale
(GCS) score in each time window. For variables with no recorded
measurements during the 12-hour windows, their values were
carried forward from the most recent measurements.

Statistical Analysis
Statistical analyses were performed using R 4.1.2 (https://cran.
r-project.org). Continuous variables were presented as medians
with interquartile ranges and categorical variables were presented
as numbers with percentages. The schematic diagram of methods
is shown in Supplementary Figure S1. We divided the study
population in the MIMIC-IV into the training (50%), validation
(30%), and internal test (20%) sets, randomized at the patient
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level to ensure that each patient was allocated to only a subset.
We used the cohort of SA-AKI patients in the eICU-CRD as
an external test set. In the training set, the eXtreme Gradient

TABLE 1 | List of the predictor variables.

Variables Type

Demographics age, sex, ethnicity static

Length of stay hours from admission dynamic

Vital signs systolic blood pressure, diastolic blood

pressure, heart rate, respiratory rate, body

temperature, oxygen saturation, glasgow coma

scale score, urine output

dynamic

Laboratory data baseline serum creatinine static

hemoglobin, white blood cells, platelets, serum

total bilirubin, serum albumin, serum creatinine,

blood urea nitrogen, arterial pH, partial

pressure of arterial oxygen, partial pressure of

arterial carbon dioxide, serum sodium, serum

potassium, serum chloride, serum bicarbonate,

lactate, international normalized ratio, partial

thromboplastin time

dynamic

Interventions mechanical ventilation, vasopressors, renal

replacement therapy, loop diuretics

dynamic

Boosting (XGBoost) algorithm was used to establish mortality
prediction models with all predictor variables input. XGBoost,
a scalable end-to-end tree boosting system, is an optimized
implementation of the gradient boosting framework designed to
be highly efficient, flexible, and portable (24). During the training
process, it generates a series of decision trees, each of which is
generated based on the previous one to decrease the gradient
of the loss function. After that, a prediction model composed of
multiple decision trees is obtained. The XGBoost algorithm can
handle missing values by adding a default direction for them in
each tree node and learning the optimal direction from the data.
Therefore, missing values were directly input into the XGBoost
models as not available values. Supplementary Table S1 provides
the percentages of missing values in the predictor variables. For
machine learning approaches, hyperparameter tuning is required
to fit the complex relationship in the data and avoid overfitting.
The hyperparameters in the XGBoost models (learning rate,
minimum sum of instance weight, maximum tree depth, and
minimum loss reduction) andmax number of boosting iterations
were optimized on the validation set to achieve the maximum
area under the receiver operating characteristic curves (AUCs).
The xgboost package was used for XGBoost modeling. Details
on the functions and tuning parameters used for the XGBoost
algorithm can be found in Supplementary Table S2. More

FIGURE 1 | Study flow diagram. SA-AKI, sepsis-associated acute kidney injury; ICU, intensive care unit; ESRD, end-stage renal disease.
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TABLE 2 | Baseline characteristics and outcomes of SA-AKI patients in the training, validation and internal test sets.

Variables Training set

(n = 6,066)

Validation set

(n = 3,639)

Internal test set

(n = 2,427)

Age (year) 69 (58–79) 70 (59–80) 69 (59–80)

Sex, male, n (%) 3,501 (57.7) 2,089 (57.4) 1,330 (54.8)

Ethnicity, n (%)

White 4,182 (68.9) 2,505 (68.8) 1,730 (71.3)

Black 512 (8.4) 332 (9.1) 219 (9.0)

Hispanic 195 (3.2) 109 (3.0) 71 (2.9)

Asian 139 (2.3) 94 (2.6) 34 (1.4)

Other/Unknown 1,038 (17.1) 599 (16.5) 373 (15.4)

Baseline serum creatinine 1.1 (0.8–1.5) 1.0 (0.8–1.5) 1.1 (0.8–1.5)

Positive cultures*, n (%)

Respiratory culture 960 (15.8) 603 (16.6) 347 (14.3)

Blood culture 648 (10.7) 391 (10.7) 229 (9.4)

Urine culture 1,044 (17.2) 616 (16.9) 375 (15.5)

Wound culture 213 (3.5) 134 (3.7) 75 (3.1)

Fluid culture 199 (3.3) 116 (3.2) 90 (3.7)

MRSA screen 310 (5.1) 189 (5.2) 109 (4.5)

Tissue 97 (1.6) 67 (1.8) 38 (1.6)

Anaerobic culture 108 (1.8) 64 (1.8) 41 (1.7)

Fungal culture 154 (2.5) 86 (2.4) 65 (2.7)

KDIGO diagnostic criteria, n (%)

Serum creatinine 540 (8.9) 345 (9.5) 229 (9.4)

Urine output 3,467 (57.2) 2,035 (55.9) 1,368 (56.4)

Both 2,059 (33.9) 1,259 (34.6) 830 (34.2)

Outcomes

In-hospital mortality#, n (%) 1,127 (18.6) 620 (17.0) 444 (18.3)

ICU length of stay 4 (3–8) 4 (3–8) 4 (3–8)

Hospital length of stay 10 (6–16) 9 (6–16) 9 (6–16)

Use of RRT#, n (%) 562 (9.3) 325 (8.9) 224 (9.2)

MRSA, methicillin-resistant Staphylococcus aureus; KDIGO, kidney disease: improving global outcomes; ICU, intensive care unit; RRT, renal replacement therapy. Continuous variables

were presented as median (interquartile range) and categorical variables were presented as n (%).
*Positive cultures taken during the suspected infection time.
# In the first 28 days after ICU admission.

details about the XGBoost algorithm can be found at XGBoost
Documentation (https://xgboost.readthedocs.io/).

The performance of the prediction models was assessed on
the internal and the external test sets. AUC was selected as the
primary evaluation metric. Other metrics included sensitivity,
specificity, and accuracy.We reported the metrics under multiple
cutoff values, based on the local maximas of the receiver
operating characteristic curves. We compared the performance
of the XGBoost models with traditional risk scores, including the
SOFA score (25) and SAPS-II (26). We did not calculate the risk
scores in each 12-hour window for patients in the eICU-CRD
because some required variables were unavailable.

The XGBoost algorithm provides the importance of features
in predicting the outcome. We used the gain as the measure,
representing the fractional contribution of each feature to the
model output based on the total gain of this feature’s splits.
To explore the interpretability of the XGBoost models, we used
the Shapley Additive exPlanations (SHAP) method (27), which
provides consistent and locally accurate attribution values for
each feature. The influence of the predictor variables on the

outcome can be explained by the summing effects of variable
attributions in calculating the output risk for each observation.

In sensitivity analysis, we applied other frequently used
machine learning algorithms such as random forest and
support vector machine to our dataset for comparison (28, 29).
Additionally, we assessed the performance of the SOFA score,
SAPS-II and XGBoost model using data gathered in the early
period after ICU admission, i.e., the first 12 h, in predicting
in-hospital mortality in the first 28 days.

RESULTS

Baseline Characteristics and Outcomes
A total of 15,603 critically ill patients with SA-AKI were
included in our study, with 6,066 in the training set, 3,639
in the validation set, 2,427 in the internal test set, and 3,471
in the external test set (Figure 1). Baseline characteristics and
outcomes of the study population in each dataset are shown
in Table 2 and Supplementary Table S3. In the MIMIC-IV,
56.6% of SA-AKI patients were diagnosed by urine output
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FIGURE 2 | Receiver operating characteristic curves of the models for mortality in the following 48 h in the training set. (A) validation set; (B) internal test set; (C)

external test set; (D) SOFA, sequential organ failure assessment; SAPS-II, simplified acute physiology score II; XGBoost, extreme gradient boosting.

criteria, 9.2% by SCr criteria, and 34.2% by both criteria. In
the eICU-CRD, the proportions of SA-AKI patients meeting
urine output criteria, SCr criteria, and both criteria were 38.5,
40.9, and 20.5%, respectively. The overall in-hospital mortality
within 28 days was 18.6% in the training set, 17.0% in the
validation set, 18.3% in the internal test set, and 22.7% in the
external test set. For each 12 h window of the ICU stays, the
number of in-hospital deaths in the first 28 days is shown in
Supplementary Table S4. Distribution of the predictor variables

within each 12-hour window of the ICU stays is shown in
Supplementary Table S5.

Model Performance
The receiver operating characteristic curves of the models
for mortality in the following 48, 72, and 120 h and in the
first 28 days after ICU admission are shown in Figure 2 and
Supplementary Figures S2–S4. The XGBoost models showed
better discrimination than the SOFA score and SAPS-II,
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with the AUCs ranging from 0.848 to 0.804 in the internal
test set and from 0.818 to 0.748 in the external test set.
The sensitivity, specificity, and accuracy of the XGBoost
models at different cutoffs for mortality prediction in the

TABLE 3 | Performance of the XGBoost model for mortality in the following 48 h

at different cutoffs.

Cutoffs Sensitivity (%) Specificity (%) Accuracy (%)

Internal test set

0.0214 90.0 58.5 60.0

0.0280 85.0 66.6 67.4

0.0349 80.1 72.9 73.2

0.0431 75.0 78.3 78.1

0.0445* 74.3 79.1 78.9

0.0515 70.0 82.5 81.9

0.0600 65.1 85.6 84.7

0.0676 60.0 87.9 86.6

External test set

0.0214 93.2 40.9 43.8

0.0280 89.2 50.5 52.7

0.0349 85.5 57.8 59.4

0.0431 81.1 64.7 65.7

0.0515 75.8 70.4 70.7

0.0600 71.6 75.0 74.8

0.0676 69.1 78.1 77.6

0.0735* 67.4 80.3 79.5

*The cutoff value corresponding to the maximum Youden index (sensitivity +

specificity - 1).

internal and the external test sets are provided in Table 3

and Supplementary Tables S6–S8. In the internal test set, the
XGBoost model achieved a sensitivity of 80.1% and specificity
of 72.9% at the cutoff of 0.0349 for mortality in the following
48 h. The sensitivity was slightly higher, and the specificity was
lower in the external test set than in the internal test set across
different cutoffs. The calibration curves of the XGBoost models
comparing the predicted and observed probability across deciles
in the internal and the external test sets are shown in Figure 3 and
Supplementary Figures S5–S7. The XGBoost models were well-
calibrated, except that they might underestimate or overestimate
the probability at the higher risk deciles.

Model Interpretability
Figure 4 and Supplementary Figures S8–S10 illustrate the
feature importance derived from the XGBoost models. The top
five most important predictor variables in the XGBoost model
for mortality in the following 48 h were urine output, GCS score,
hours from admission, serum lactate level, and age. Figure 5 and
Supplementary Figures S11–S13 provide the SHAP summary
plots of the XGBoost models, revealing the impact of the
predictor variables onmodel output. Lower GCS score, decreased
urine output, prolonged ICU length of stay, older age, and
higher blood urea nitrogen (BUN) level were the top five factors
associated with increased risk of death in the following 48 h.

Sensitivity Analysis
In sensitivity analysis, the XGBoost models showed higher AUCs
than the random forest and the support vectormachinemodels in
the internal and the external test sets (Supplementary Table S9).
In addition, the XGBoost model using data gathered during
the first 12 h after ICU admission showed poor predictive

FIGURE 3 | Calibration curves of the XGBoost model for mortality in the following 48 h in the internal. (A) and the external; (B) test sets.
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FIGURE 4 | Feature importance derived from the XGBoost model for mortality in the following 48 h. The importance value represents the fractional contribution of

each feature to the XGBoost model based on the total gain of this feature’s splits. Higher percentage means a more important feature. GCS, glasgow coma scale;

PaCO2, partial pressure of arterial carbon dioxide; PaO2, partial pressure of arterial oxygen; INR, international normalized ratio; RRT, renal replacement therapy.

performance for in-hospital mortality in the first 28 days, with
the AUC being 0.770 (95% CI 0.747–0.794) in the internal test
set and 0.676 (95% CI 0.655–0.697) in the external test set
(Supplementary Figure S14).

DISCUSSION

In this multi-center retrospective study, we developed and
validated interpretable machine learning-based models using the
XGBoost algorithm for real-timemortality prediction in critically
ill patients with SA-AKI. The XGBoost models exhibited better
performance than traditional risk scores (including the SOFA
score and SAPS-II) or other machine learning models (including
the random forest and support vector machine models) in
predicting death in the following 48, 72, and 120 h and in

the first 28 days after ICU admission. The XGBoost models
could help identify high-risk patients in real time for early
clinical interventions.

SA-AKI is common in critically ill patients with rapid clinical
evolution and significantly higher mortality than those without
AKI or with AKI attributed to other causes (6). Reliable
prediction models are essential for clinicians to assess the risk of
death and make proper clinical decisions in critically ill patients
with SA-AKI. Generic scores, such as the SOFA score and SAPS-
II, are widely used for outcome prediction in critical care settings.
However, they have shown controversial results on predictive
performance for mortality in AKI patients (7, 8, 30–32). Recently,
several models have been proposed to predict AKI mortality in
unselected ICU patients (31, 32), but few have been validated
in patients with SA-AKI. Da Hora Passos et al. (7) proposed a
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FIGURE 5 | SHAP summary plot of the XGBoost model for mortality in the following 48 h. Higher SHAP value means a higher probability of death within the next 48 h.

Purple represents higher feature values and yellow represents lower feature values. A dot is created for each feature attribution in calculating the output risk for each

observation. GCS, glasgow coma scale; INR, international normalized ratio; RRT, renal replacement therapy; PaO2, partial pressure of arterial oxygen; PaCO2, partial

pressure of arterial carbon dioxide.

clinical score to predict 7 days mortality in a cohort of 186 SA-
AKI patients who required continuous RRT. The five-variable
score showed better performance than the generic models, with a
C-statistic of 0.82, but was limited to a single center and small
sample size. In addition, Hu et al. (8) established a prediction
model for in-hospital mortality in critically ill patients with SA-
AKI. However, the model included only static clinical variables
and showed insufficient predictive power.

Compared with the other risk prediction tools, our models
have several strengths. First, the study demonstrated the
applicability of the XGboost algorithm in mortality prediction
in critically ill patients with SA-AKI. The XGBoost models
had stronger predictive power than the traditional risk scores.
Sensitivity analysis further showed that the XGBoost models
were superior to the random forest and the support vector
machine models. XGBoost-based models have shown exciting

performance in various situations, such as volume responsiveness
in patients with oliguric AKI (14), long-term kidney outcomes in
patients with IgA nephrology (33), and mortality in ICU patients
with rhabdomyolysis (34). The reasons for the improvement
in predictive abilities observed in the XGBoost models may be
multifactorial. The XGBoost algorithm, based on the gradient
tree boosting framework, is adept at fitting non-linearities,
discontinuities and complex high-order interactions. It is also
robust to outliers in and multicollinearity among predictor
variables. Besides, the XGBoost algorithm can handle missing
values automatically, allowing the input of only available
predictor variables in its clinical application.

Second, the real-timemortality predictionmodels can provide
dynamic risk assessment and guide clinical decision-making.
Patients in the ICU environment are clinically unstable, change
rapidly between states of deterioration and improvement, and

Frontiers in Medicine | www.frontiersin.org 8 June 2022 | Volume 9 | Article 85310233

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Luo et al. Mortality Prediction in SA-AKI

require continuous monitoring and interventions (35). It has
promoted the establishment of real-time prediction models in
critical care, such as models for mortality in critically ill children
(35), the development of AKI (36), and sepsis onset (37, 38).
Previously published models for mortality prediction in SA-AKI
patients included static physiological parameters gathered during
the early stages of the ICU stays. However, SA-AKI patients
with similar disease severity at the early stage of ICU admission
may exhibit different clinical outcomes due to distinct disease
trajectories and treatment responses. The real-time prediction
models can provide the risk of death updated on a 12-hour
basis, which is more accurate and allows clinicians to make
predictions dynamically.

Third, ourmodels achieved promising predictive performance
in both the internal and the external test sets, which
demonstrated their robustness and generalizability. The
predictor variables included in our model are routinely
collected and usually available in the EHRs, and their values
are rarely influenced by the examiner. Using only the most
basic and commonly measured clinical data can facilitate
the generalizability of the prediction model in other ICUs.
Our models were further validated in an external test set,
including 3,471 SA-AKI patients from a large multi-center
critical care database with significantly different distributed
features. Furthermore, automated data extraction from EHRs
and data input can save additional labor and cost and reduce the
possibility of incorrect entry in future clinical applications of the
models (35).

Fourth, the interpretability of the models was explored to
reveal the predictors for death over different time periods. Most
recently, the relationship between the evolution of SA-AKI and
mortality has been revealed. Uhel et al. (39) found that persistent
AKI, but not transient AKI, was associated with increased
mortality in critically ill septic patients. Ozrazgat-Baslanti et al.
(40) also showed that persistent AKI and the absence of renal
recovery were associated with worse clinical outcomes. Our
results further demonstrated that decreased urine output and
higher BUN level were important factors for increased real-
time risk of death, suggesting the necessity for continuous
renal function monitoring in SA-AKI patients. Additionally, the
discovery of other potentially modifiable extra-renal risk factors,
such as lower GCS score, higher lactate level, higher heart rate,
and higher respiratory rate, may help improve patient care
and outcomes.

Our study was subject to some limitations. Firstly, it
was a retrospective analysis based on the publicly accessible
databases. The diagnosis of sepsis in the eICU-CRD may
not meet the updated Sepsis-3 criteria. It remains unclear
whether the prediction model performs well for individual
prognostication and whether its clinical application can improve
patient outcomes. Secondly, although the XGBoost algorithm
can handle missing values automatically, the presence of
missing data may lead to bias. Thirdly, clinical data beyond
the ICU stays were unavailable, limiting the continuous
assessment of the risk of death for SA-AKI patients who were
transferred to the general wards or other locations. Finally, the

visualization and application of the models are still limited.
In our subsequent study, we will prospectively investigate the
effectiveness of our models and develop a web-based risk
calculator that automatically extracts data from EHRs and
performs risk calculations.

CONCLUSIONS

This study developed and externally validated interpretable
machine learning XGBoost models for real-time mortality
prediction in critically ill patients with SA-AKI. The XGBoost
models, based on routine clinical variables updated every 12 h,
showed promising performance in predicting death in the
following 48, 72, and 120 h and in the first 28 days after
ICU admission. The real-time prediction models are useful
tools for early identification of high-risk patients and timely
clinical interventions. Future studies are required to determine
the robustness and effectiveness of the prediction models in a
prospective way.
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Objective: Patients with prolonged mechanical ventilation (PMV) are comprised of a

heterogeneous population, creating great challenges for clinical management and study

design. The study aimed to identify subclusters of PMV patients based on trajectories of

rapid shallow breathing index (RSBI), and to develop a machine learning model to predict

the cluster membership based on baseline variables.

Methods: This was a retrospective cohort study conducted in respiratory care center

(RCC) at a tertiary academic medical center. The RCC referral criteria were patients with

mechanical ventilation for at least 21 days with stable hemodynamic and oxygenation

status. Patients admitted to the RCC from April 2009 to December 2020 were screened.

Two-step clustering through linear regression modeling and k-means was employed

to find clusters of the trajectories of RSBI. The number of clusters was chosen by

statistical metrics and domain expertise. A gradient boostingmachine (GBM) was trained,

exploiting variables on RCC admission, to predict cluster membership.

Results: A total of 1371 subjects were included in the study. Four clusters were

identified: cluster A showed persistently high RSBI; cluster B was characterized by a

constant low RSBI over time; Cluster C was characterized by increasing RSBI; and

cluster D showed a declining RSBI. Cluster A showed the highest mortality rate (72%),

followed by cluster D (63%), C (62%) and B (61%; p = 0.005 for comparison between

4 clusters). GBM was able to predict cluster membership with an accuracy of >

0.95 in ten-fold cross validation. Highly ranked variables for the prediction of clusters

included thyroid-stimulating hormone (TSH), cortisol, platelet, free thyroxine (T4) and

serum magnesium.
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Conclusions: Patients with PMV are composed of a heterogeneous population that

can be classified into four clusters by using trajectories of RSBI. These clusters can be

easily predicted with baseline clinical variables.

Keywords: prolongedmechanical ventilation, rapid shallow breathing index, gradient boosting machine, mortality,

ICU

BACKGROUND

Prolonged mechanical ventilation (PMV) after critical illness has
long been noticed as an emerging public health challenge. It is
reported that patients with PMV have a 1-year mortality rate
of 50–70% (1). This group of patients is typically characterized
by old age, high comorbidity burden, high frailty score and
increased likelihood of in-hospital complications (2). Great
efforts have been made to improve the clinical outcomes of these
patients. For example, many hospitals established specialized
ventilator weaning unit such as respiratory care center (RCC)
to manage these patients (3). In the literature, there have been
many studies reporting the epidemiological characteristics of
PMV patients, including risk factors for PMV, prediction of
weaning probability, short and long-term mortality (4–6). The
results are inconsistent across studies due to the heterogeneity of
the PMV patients.

While PMV is well described in the literature, it has
been noted that PMV patients are heterogeneous, comprising
subclusters with distinct clinical characteristics and clinical
outcomes. The heterogeneity creates great challenges for the
clinical management and study designs. To the best of our
knowledge, there has been no study to address the heterogeneity
of PMV patients in the literature. Since MV liberation is the
primary aim in the management of these patients, many studies
have developed models and/or scores for the prediction of
ventilator weaning (7–10). Rapid shallow breathing index (RSBI),
defined as the ratio of respiratory frequency to tidal volume, is a
canonical index to predict weaning success (11, 12). People on
a ventilator who cannot tolerate independent breathing tend to
breathe rapidly and shallowly and will therefore have a high RSBI.
It is reasonable to characterized patients into subclusters based on
longitudinal changes of RSBI. The present study aimed to explore
the latent subclusters of PMV patients based on the trajectories
of RSBI. A machine learning (ML) model based on variables
collected upon RCC arrival was trained to predict cluster
membership of PMV patients. Important variables associated
with cluster assignment were explored in the ML model. We
hypothesized that PMV patients could be well separated into
several subtypes. The subtypes would have prognostic value
for weaning and mortality outcomes. More importantly, these

Abbreviations: RCC, respiratory care center; RSBI, Rapid shallow breathing

index; IMV, invasive mechanical ventilation; WBC, white blood cell count; RCC,

respiratory care center; Q1, the first quartile; Q3, the third quartile; BUN, blood

urea nitrogen; Cr, creatinine; RDW, red cell distribution width; MCV, mean

corpuscular volume; NLR, neutrophil to lymphocyte ratio; SD, standard deviation;

LIME, local interpretable model-agnostic explanations.

subtypes can be predicted early by using machine learning
method trained on routinely collected variables.

METHODS

Source of Data
This is a retrospective study conducted in the RCC of the Chang
Gung Memorial Hospital from April 2009 to December 2020.
All patients admitted to the RCC was screened for potential
eligibility. The study was approved by the institutional review
board (IRB) of the Chang Gung Memorial Hospital (Approval
number: 202101862B0). The written informed consent was
waived by the IRB because the study did not involve any
interventions. Data were deidentified and stored in an encrypted
computer. One patient with positive for HIV was excluded for
confidential issues. The study was conducted according to the
Helsinki declaration and was reported in accordance to the
transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) checklist (13).

Participants
All patients admitted to the RCC was screened for potential
eligibility. The indications for RCC admission must fulfill all
the following criteria: (1) patients with mechanical ventilation
for at least 21 days; (2) stable hemodynamic status (mean
blood pressure > 70 mmHg with normal serum lactate) without
vasopressors to maintain blood pressure; (3) stable oxygenation
status with FiO2 < 40% and positive end expiratory pressure
(PEEP) < 10 cm H2O. Patients met one of the following criteria
were excluded: (1) duplicated admissions to the RCC of the
same patient; (2) patients who declined weaning attempts; (3)
withdrawal of life support; (4) Transfer to other facility before
weaning attempt started and (5) no spontaneous breathing.

Patient Characteristics
Demographics, clinical and laboratory variables on RCC entry
were extracted from the medical records. Demographic and
clinical variables included age, sex, etiology of mechanical
ventilation, hospital days upon RCC arrival, ventilation days
upon RCC arrival, use of non-invasive ventilation (NIV) upon
RCC arrival, Glasgow coma scale (GCS) upon RCC arrival,
and comorbidities. Laboratory variables included blood gas,
white blood cell count (WBC), hemoglobin (Hb), hematocrit
(Hct), mean corpuscular volume (MCV), red cell distribution
width (RDW), platelet, segment, lymphocyte, monocyte,
eosinophil, basophil, neutrophil to lymphocyte ratio (NLR),
blood urea nitrogen (BUN), creatinine (Cr), ionized calcium
(Ca), phosphorus (P), magnesium (Mg), albumin, cortisol
(AM), cortisol (PM), thyroid-stimulating hormone (TSH),
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Free thyroxine (T4), pH, blood gas, dead-space fraction, and
prealbumin were extracted.

Weaning indices were measured upon RCC arrival and
then once a week as part of the routine practices to assess
the patient’s readiness for weaning, unless the patient was
in respiratory distress requiring FiO2 of 50% or higher,
or in unstable hemodynamic status requiring vasopressor.
Before measurement, the patient was disconnected from the
mechanical ventilator. A handheld haloscale respirometer
(Ferraris Medical, London, UK) was attached to the endotracheal
tube to measure the minute ventilation (L/min). The average
tidal volume (ml) was obtained by dividing the minute
ventilation by the respiratory rate. Rapid shallow breaths
index (RSBI) was calculated by dividing the respiratory rate
(breaths/min) by average tidal volume in liter. Maximal negative
inspiratory pressure (Pimax) was measured by inspiratory force
meter (Boehringer Laboratories, Norristown, PA) when the
patient was instructed to inhale forcefully and maximally.
Finally, we obtained ventilatory parameters including tidal
volume, respiratory rate, minute ventilation, maximal negative
inspiratory pressure, and RSBI (14).

Outcome Measurements
The following clinical outcomes were recorded for the study:
long-term mortality outcome followed until December 2021,
successful weaning from mechanical ventilation on RCC
discharge, post-weaning respiratory failure after RCC discharge,
days of duration from RCC discharge to respiratory failure,
post-weaning respiratory failure before hospital discharge,
days of duration from RCC discharge to respiratory failure
in hospital, non-invasive mechanical ventilation (NIV)
for post-weaning respiratory failure, invasive mechanical
ventilation (IMV) for post-weaning respiratory failure,
hospital length of stay, weaning and mortality outcome on
hospital discharge, and long-term outcome at most recent
follow up.

Two-Step Clustering Through Linear
Regression Modeling and K-Means
Two-step clustering through linear regression modeling
and k-means was employed to identified clusters of the
RSBI trajectories. Each trajectory was represented by the
coefficients of an individually fitted linear regression model.
The trajectories are then clustered based on the coefficients
using k-means clustering (15, 16). The best number of
clusters was determined by multiple metrics including log
likelihood value, Bayesian information criterion (BIC), and
Akaike’s information criterion (AIC). We also considered
to merge the cluster with fewer than 20 subjects. The
trajectories of weaning indices were visualized for each
latent cluster.

Statistical Analysis
Baseline characteristics and laboratory variables were
compared across the identified latent clusters. Categorical
variables were reported as number (percentage) and
were compared across latent clusters with χ2 test.

Numeric variables were firstly tested for normality
distribution and then compared across latent clusters
using analysis of variance or Kruskal-Wallis rank sum
test as appropriate (17). A P < 0.05 was considered as
statistical significance.

Model Development and Cross Validation
To predict RSBI trajectory clusters on RCC admission, we
trained a GBM to predict cluster membership. Since the response
was multiclass variable, cross entropy was employed as the
loss function. The metric accuracy was used to evaluate the
model performance in ten-fold cross validation procedure. GBMs
build an ensemble of shallow and weak successive trees with
each tree learning and improving on the previous (18, 19).
The advantage of GBM includes its flexibility in allowing
optimization on different loss functions and providing several
hyperparameter tuning options that make the function fit very
flexible. No data pre-processing is required that GBM often
works great with categorical and numerical values as is. The
hyperparameters in our GBM include the number of trees (from
1 to 15 at step 1), learning rate (0.1), and the interaction
depth (depth of trees: 10, 15, 20, and 25). The minimum
number of observations in terminal nodes was set to 30. A grid
search strategy was employed to tune the hyperparameters. The
accuracy was used in the 10-fold cross validation process for the
hyperparameter tuning.

To understand the potential association between risk
factors and latent clusters, we reported model specific variable
importance for the GBM model. Variable importance is
determined by calculating the relative influence of each
variable: whether that variable was selected to split on
during the tree building process, and how much the
squared error (over all trees) improved (decreased) as a
result. A greater value of variable importance indicates its
higher association with latent clusters. Model interpretation
was also performed by using local interpretable model-
agnostic explanations (LIME) and iBreakdown algorithms
(20). The intuition behind LIME is to learn the behavior
of the underlying model (model-agnostic) by perturbing
the predictors to see how the predictions change (21, 22).
However, the explanation in LIME is additive while some
complex relationships between predictors and clusters are
non-additive. To address this limitation of LIME, we employed
iBreakdown algorithm to detect interactions for instance-level
explanations (23). All statistical analyses were performed with R
(version 4.1.1).

RESULTS

Participants
A total number of 1,720 RCC admissions were screened
from April 2009 to December 2020. 349 admissions
were excluded due to reasons such as duplicated RCC
admission, decline weaning attempt, transfer to other
facility before weaning attempt started, no spontaneous
breathing, withdrawal of life support and missing data on
ventilator parameters (Figure 1). A number of 1,371 RCC
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FIGURE 1 | Flowchart of patient enrollment and schematic illustration of the analysis workflow. RSBI, Rapid shallow breathing index; RCC, respiratory care center;

LIME, local interpretable model-agnostic explanations.

admissions were included for the analysis. The median age
of the study population was 76 (65–83) years. The median
Charlson comorbidity index was 4 (3–7) and the most
commonly reason for MV was acute lung injury (37%).
The median follow-up days after RCC arrival was 105 (42–512)
days (Table 1).

Clusters of RSBI Trajectory
The 4-cluster model was considered as the best model it
showed low BIC and AIC values, and high Log likelihood value
(Figure 2A). Cluster B accounted for the largest proportion of
patients and showed a constantly low RSBI during RCC stay.
Cluster C was characterized by increasing RSBI (Figures 2B,C).

The clinical characteristics were compared across the clusters.
Cluster B showed the highest proportion of male, while cluster D
showed the lowest proportion of male patients (63% vs. 51%; p
= 0.008). The APACHE II upon RCC arrival was the highest in
cluster A and was the lowest in cluster D [median [Q1, Q3]: 24
(20, 28) vs. 23 (19, 26); p= 0.021, Table 1]. Interestingly, patients
in cluster C showed lower plasma magnesium on RCC entry than
that in cluster A (1.87 (1.63, 2.17) vs. 1.99 (1.72, 2.27) mg/dl;
p = 0.007). The serum cortisone level on RCC entry was also
associated with subsequent trajectory clusters (Table 2).

There were significant differences in clinical outcomes
between the four clusters (Table 1). For the mortality outcome,
cluster B showed the lowest mortality rate and cluster A showed
the highest mortality (72 vs. 61%; p = 0.005). The weaning
probability was highest in cluster B and the lowest in cluster A on

hospital discharge (52 vs. 40%; p = 0.007). However, there was
no significant difference on respiratory failure rate across clusters
after successful weaning (p= 0.231).

Predicting Trajectory Clusters on RCC
Admission
The model hyperparameters of the GBM model were chosen
by grid search to achieve the highest accuracy (> 0.95;
Figure 3A). The top variables that are predictive of trajectory
clusters included age, serum cortisol, BUN, platelet, and serum
magnesium upon RCC arrival (Figure 3B). Four representative
samples (sample ID = 1, 2, 4 and 5) were explored by LIME
algorithm, which showed variables supporting or contradicting
the assignment to a specific cluster (Figures 3C,D). The
result indicated that TSH, cortisol, platelet, free T4 and
serum magnesium were important predictors of clusters in
many instances.

We also trained random forest (RF) and LASSO regression
models, against which the GBMmodel was compared. The results
showed that the GBM model outperformed LASSO and RF
models with resampling method (Figure 4).

DISCUSSION

The study for the first time explored the latent trajectories
of patients with PMV (IMV duration > 21 days with stable
hemodynamic and respiratory conditions) using RSBI. Four
clusters were identified for the study population, namely, cluster
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TABLE 1 | Baseline characteristics in the total population and across clusters.

Variables Total (n = 1,371) A (n = 349) B (n = 461) C (n = 323) D (n = 238) p

Gender, Male (%) 799 (58) 178 (51) 289 (63) 194 (60) 138 (58) 0.008

Age (years), Median (Q1,Q3) 75.99 (64.89, 82.55) 76.84 (66.39, 82.61) 75.1 (65.08, 82.83) 75.71 (62.3, 82.57) 76.36 (64.41, 82.04) 0.403

APACHE II upon RCC arrival,

Median (Q1,Q3)

23 (20, 27) 24 (20, 28) 23 (20, 28) 23 (19.5, 27) 23 (19, 26) 0.021

Tracheostomy, n (%) 371 (27) 94 (27) 127 (28) 92 (28) 58 (24) 0.738

Pre-Albumin (mg/dl, RCC Day 1),

Median (Q1,Q3)

16.3 (11.4, 21.4) 16.21 (11.12, 20.65) 16.9 (11.9, 22) 16.2 (11.4, 22.15) 15 (11.52, 21.78) 0.292

Charlson comorbidity index,

Median (Q1,Q3)

4 (3, 7) 5 (3, 7) 4 (3, 7) 4 (3, 7) 4 (3, 6) 0.251

GCS upon RCC arrival, Median

(Q1,Q3)

9 (7, 11) 9 (7, 11) 9 (7, 11) 10 (8, 11) 10 (9, 11) 0.085

Etiology of mechanical

ventilation, n (%)

0.107

Acute lung injury 505 (37) 120 (34) 161 (35) 140 (43) 84 (35)

Neurologic disease 331 (24) 69 (20) 120 (26) 76 (24) 66 (28)

Miscellaneous 210 (15) 60 (17) 69 (15) 47 (15) 34 (14)

Cardiac disease 156 (11) 51 (15) 56 (12) 26 (8) 23 (10)

Post-thoracic or abdominal

surgery

100 (7) 27 (8) 30 (7) 22 (7) 21 (9)

Chronic lung injury 69 (5) 22 (6) 25 (5) 12 (4) 10 (4)

Equivalent hydrocortisone steroid

dose (mg), Median (Q1,Q3)

60 (40, 100) 60 (40, 80) 60 (40, 100) 80 (40, 100) 60 (40, 100) 0.572

Hospital days upon RCC arrival,

Median (Q1,Q3)

24 (21, 33) 24 (21, 34) 24 (21, 33) 25 (21, 34) 23 (20, 31) 0.162

Ventilation days upon RCC arrival,

Median (Q1,Q3)

21 (20, 25) 21 (20, 25) 21 (20, 26) 22 (20, 25) 21 (20, 24) 0.191

Ventialtor days upon extubation,

Median (Q1,Q3)

38 (32, 47) 38 (32, 49) 39 (34, 47) 39 (32, 49) 35 (31, 42) < 0.001

Post-weaning respiratory failure

after RCC discharge, n (%)

456 (33) 105 (30) 164 (36) 97 (30) 90 (38) < 0.001

Follow up days after RCC arrival,

Median (Q1,Q3)

105 (42, 512) 119 (45, 513) 111 (44, 524) 96 (40, 428) 84 (36, 612.5) 0.542

Last follow up condition, n (%) 0.005

Dead 885 (65) 250 (72) 283 (61) 201 (62) 151 (63)

No ventilator 451 (33) 90 (26) 168 (36) 108 (33) 85 (36)

On ventilator 35 (3) 9 (3) 10 (2) 14 (4) 2 (1)

In-hospital mortality, n (%) 363 (26) 86 (25) 125 (27) 84 (26) 68 (29) 0.735

Hospital length of stay, Median

(Q1,Q3)

65 (53, 82) 65 (54, 83) 65 (55, 81) 65 (56, 86) 61 (49, 76.75) 0.019

Weaning from MV in hospital or

RCC, n (%)

654 (48) 141 (40) 239 (52) 151 (47) 123 (52) 0.007

IMV for post-weaning respiratory

failure, n (%)

283 (21) 67 (19) 99 (21) 57 (18) 60 (25) 0.231

IMV, invasive mechanical ventilation; Q1, the first quartile; Q3, the third quartile; RCC, respiratory care center; GCS, Glasgow coma scale; APACHE II, The Acute Physiology and Chronic

Health Evaluation II.

A, B, C andD. Cluster B was characterized by a constant low RSBI
over time; Cluster C was characterized by increasing RSBI; cluster
D showed a declining RSBI, and cluster A showed persistently
high RSBI. Many variables on RCC entry were associated with
cluster membership including TSH, cortisol, platelet, free T4 and
serum magnesium. These variables were also confirmed to be
top ranked variables in GBM to classify trajectory clusters. It
is feasible to predict the trajectories of RSBI upon RCC arrival

using machine learning methods. Further external validation
of the GBM is mandatory before this model can be used in
clinical practice.

The identification of clusters for PMV patients has several
implications. First, the heterogeneity of the population is
addressed by classifying patients into clinically meaningful
subgroups. These subgroups showed distinct clinical
characteristics and outcomes, which is helpful for risk
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FIGURE 2 | Clustering to identify clusters of patients with prolonged mechanical ventilation. (A) The best number of clusters was chosen by using statistical metrics.

Greater values of log likelihood indicate better model fit, whereas lower values of BIC and AIC indicate better model fit. (B) Trajectory characteristics of each cluster.

Individual trajectories are represented by black lines and the cluster trajectory is colored. The cluster label and percentage are shown on the top of each panel. (C)

Trajectory and 90% confidence interval for each of the ventilator parameters, stratified by the cluster membership. BIC, Bayesian information criterion; AIC, Akaike’s

information criterion; MV, minute ventilation; Pimax, maximum inspiratory pressure; RR, respiratory rate; RSBI, Rapid shallow breathing index; TV, tidal volume.

stratification and clinical decision making (24). Cluster
A showed the lowest survival probability as compared
to other clusters. Since it is feasible to predict patient
trajectory on RCC admission, such early risk stratification
can help resource allocation and family consultation. Second,
individualized treatment strategy can be implemented for
different subgroups. For example, we observed that low
serum magnesium was associated with increased risk of
cluster C trajectory with worsening RBSI during RCC
treatment. This unfavorable outcome might be addressed
by supplementing magnesium for this group of patients.
Third, the identification of subtypes of patients can help
to design clinical trials. Some interventions may have

beneficial effects in a subgroup of patients, and trials
investigating such interventions should target this subgroup.
Such implementation of trial design has been explored in
sepsis, showing that the probability of obtaining statistically
significant beneficial/harmful effects vary by the proportion of
subtypes (25).

The associations of several variables with cluster membership
are supported by the literature. Serum magnesium has long been
noticed to be associated with prolonged mechanical ventilation
(26, 27). Hypomagnesemia is common in mechanically
ventilated patients, and there is strong, consistent observational
evidence that hypomagnesemia is significantly associated with
increased need for prolonged mechanical ventilation and
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TABLE 2 | Laboratory findings on RCC entry.

Variables Total (n = 1,371) A (n = 349) B (n = 461) C (n = 323) D (n = 238) p

WBC (×109/L), median (Q1,Q3) 9.3 (7.05, 12.4) 9.2 (7.1, 12.1) 9.4 (7, 12.5) 9.5 (7.1, 12.55) 9.35 (7.12, 12.2) 0.943

Hb (mg/dl), median (Q1,Q3) 9.7 (8.9, 10.5) 9.6 (8.9, 10.3) 9.7 (9, 10.6) 9.7 (8.9, 10.45) 9.75 (8.9, 10.7) 0.396

Hct, median (Q1,Q3) 0.3 (0.28, 0.32) 0.3 (0.28, 0.32) 0.3 (0.28, 0.33) 0.3 (0.27, 0.32) 0.3 (0.28, 0.33) 0.349

MCV, median (Q1,Q3) 90.6 (87, 94.3) 90.9 (87.1, 95) 90.5 (87.1, 93.9) 90.5 (86.65, 93.7) 90.5 (87.23, 94.27) 0.339

RDW, median (Q1,Q3) 0.16 (0.15, 0.18) 0.16 (0.15, 0.18) 0.16 (0.15, 0.18) 0.16 (0.15, 0.18) 0.16 (0.15, 0.17) 0.024

Platelet (×109/L), median (Q1,Q3) 218 (147, 307.5) 210 (138, 299) 224 (154, 314) 213 (142, 295) 223.5 (160.5, 316.5) 0.057

Segment (×109/L), median

(Q1,Q3)

0.79 (0.72, 0.86) 0.79 (0.71, 0.86) 0.79 (0.72, 0.85) 0.8 (0.73, 0.86) 0.79 (0.73, 0.86) 0.9

Lymohocyte (×109/L), median

(Q1,Q3)

0.1 (0.06, 0.16) 0.11 (0.06, 0.15) 0.1 (0.06, 0.16) 0.1 (0.07, 0.15) 0.11 (0.06, 0.16) 0.946

Monocyte (×109/L), median

(Q1,Q3)

0.06 (0.04, 0.08) 0.06 (0.04, 0.08) 0.06 (0.04, 0.08) 0.06 (0.04, 0.08) 0.06 (0.04, 0.08) 0.893

Eosinophil (×109/L), median

(Q1,Q3)

0.01 (0, 0.03) 0.01 (0, 0.03) 0.01 (0, 0.03) 0.01 (0, 0.03) 0.01 (0, 0.03) 0.753

Basophil (×109/L), median

(Q1,Q3)

0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.571

NLR, median (Q1,Q3) 7.5 (4.66, 13) 7.41 (4.79, 13.23) 7.55 (4.62, 12.43) 7.8 (4.66, 12.91) 7.45 (4.52, 13.42) 0.936

BUN (mg/dl), median (Q1,Q3) 27.8 (16.3, 54) 32.1 (17.5, 59.4) 27.7 (15.9, 54.9) 26.2 (16.55, 50.55) 25.3 (15.93, 49.3) 0.174

Cr (mg/dl), median (Q1,Q3) 0.75 (0.48, 1.71) 0.78 (0.47, 1.69) 0.75 (0.49, 1.93) 0.73 (0.46, 1.79) 0.74 (0.47, 1.46) 0.652

Ca (mg/dl), median (Q1,Q3) 8.2 (7.9, 8.7) 8.3 (7.9, 8.8) 8.3 (7.9, 8.7) 8.2 (7.8, 8.6) 8.2 (7.9, 8.6) 0.23

P (mg/dl), median (Q1,Q3) 3.5 (2.9, 4.2) 3.6 (2.9, 4.2) 3.5 (2.9, 4.2) 3.5 (2.9, 4.4) 3.4 (2.8, 4.1) 0.59

Mg (mg/dl), median (Q1,Q3) 1.91 (1.68, 2.2) 1.99 (1.72, 2.27) 1.88 (1.67, 2.18) 1.87 (1.63, 2.17) 1.92 (1.72, 2.17) 0.007

Albumin (mg/dl), median (Q1,Q3) 2.5 (2, 2.9) 2.4 (2, 2.8) 2.5 (2.1, 2.9) 2.5 (2.02, 2.9) 2.5 (2, 2.8) 0.089

Cortisol (mcg/dl, AM), median

(Q1,Q3)

14.32 (10.39, 18.15) 14.51 (10.62, 19.12) 14.97 (10.89, 18.2) 13.91 (10.66, 17.91) 13.04 (9.33, 16.86) 0.013

Cortisol (mcg/dl, PM), median

(Q1,Q3)

15.07 (10.6, 20.03) 15.45 (10.52, 20.52) 14.78 (10.72, 20.01) 15.46 (11.31, 20.03) 14.5 (10.19, 18.98) 0.313

TSH (mIU/L), median (Q1,Q3) 2.19 (1.18, 4.24) 2.51 (1.24, 4.46) 2.05 (1.09, 4.32) 2.11 (1.17, 4.18) 2.13 (1.19, 3.9) 0.26

Free T4 (Free T4), median (Q1,Q3) 0.97 (0.8, 1.16) 0.95 (0.79, 1.13) 0.98 (0.8, 1.16) 0.98 (0.82, 1.17) 0.99 (0.8, 1.14) 0.737

pH (Upon RCC arrival), median

(Q1,Q3)

7.49 (7.46, 7.52) 7.49 (7.45, 7.51) 7.49 (7.46, 7.52) 7.49 (7.46, 7.52) 7.49 (7.46, 7.52) 0.178

PaCO2 (mmHg, Upon RCC

arrival), median (Q1,Q3)

38 (32.92, 43.18) 38.45 (33.7, 44.42) 37.5 (32.4, 42.6) 38 (32.75, 42.8) 37.8 (33.12, 43.1) 0.072

PaO2 (mmHg, Upon RCC arrival),

median (Q1,Q3)

101.8 (84.53, 121.92) 101 (85.6, 120.12) 101.3 (83.1, 123.5) 103.8 (86.45, 124.45) 102 (87.82, 119.65) 0.607

HCO3 (mmol/L, Upon RCC

arrival), median (Q1,Q3)

29.3 (25.4, 32.9) 29.7 (25.5, 33.6) 29 (25.4, 32.6) 29.1 (25.35, 32.65) 29.65 (25.92, 33.2) 0.263

SaO2 (Upon RCC arrival), median

(Q1,Q3)

0.98 (0.97, 0.99) 0.98 (0.97, 0.99) 0.98 (0.97, 0.99) 0.98 (0.97, 0.99) 0.98 (0.97, 0.99) 0.64

FiO2 (Upon RCC arrival), Median

(Q1,Q3)

0.35 (0.3, 0.35) 0.35 (0.35, 0.35) 0.35 (0.3, 0.35) 0.35 (0.3, 0.35) 0.35 (0.35, 0.35) 0.268

End-tidal CO2 (mmHg, Upon

RCC arrival), median (Q1,Q3)

34 (30, 38) 33 (31, 41) 34 (31, 38) 33.5 (29, 37) 34.5 (30.75, 38) 0.578

Dead space fraction (Upon RCC

arrival), mean ± SD

0.08 ± 0.18 0.1 ± 0.17 0.08 ± 0.19 0.08 ± 0.17 0.08 ± 0.18 0.858

Pre-Alb (mg/dl, RCC Day 1),

median (Q1,Q3)

16.3 (11.4, 21.4) 16.21 (11.12, 20.65) 16.9 (11.9, 22) 16.2 (11.4, 22.15) 15 (11.52, 21.78) 0.292

Pre-Alb (mg/dl, RCC Day 14),

median (Q1,Q3)

17.85 (13.1, 23.7) 17.9 (13.5, 23.85) 17.75 (13.03, 23.62) 16.65 (12.23, 22.2) 20 (15.5, 25.2) 0.022

WBC, white blood cell count; Hb, hemoglobin; Hct, hematocrit; RCC, respiratory care center; Q1, the first quartile; Q3, the third quartile; BUN, blood urea nitrogen; Cr, creatinine;

RDW, red distribution width; MCV, mean corpuscular volume; NLR, neutrophil to lymphocyte ratio; P, phosphorus; Mg, magnesium; TSH, thyroid-stimulating hormone; T4, thyroxine;

PaCO2, arterial partial pressure of carbon dioxide; PaO2, arterial partial pressure of oxygen; HCO3, Bicarbonate; SaO2, arterial oxygen saturation; FiO2, inspired oxygen fraction; SD,

standard deviation.
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FIGURE 3 | Gradient boosting machine training and interpretation. (A) Hyperparameter tuning for the gradient boosting machine model. We used grid search strategy

to select hyperparameters with the highest accuracy. (B) Variable importance in the GBM model. Higher importance value indicates greater influence of the variable in

differentiating the clusters. (C) LIME interpretation for four sample subjects. The horizontal axis is labeled by the sample ID. The observed cluster membership for

patients 1, 2, 4 and 5 were A, B, C and D respectively. Blue (red) color indicates the variable is supporting for (contradicting against) a given cluster. For example, the

subject 4 has magnesium < 1.92 supporting for cluster C. (D) The iBreakdown explainer for patient #4 showed that there was more support for allocation to cluster C

than to other clusters. The feature TSH = 0.023 strongly supports its assignment to cluster C, whereas the APACHE II = 30 on RCC arrival contradicts its assignment

to cluster C. The short bar indicates the confidence interval for uncertainty. LIME, local interpretable model-agnostic explanations; HCT, hematocrit; WBC, white blood

cell count; BUN, blood urea nitrogen; Cr, creatinine; RDW, red distribution width; MCV, mean corpuscular volume; GCS, Glasgow coma scale; GCSM, motion

component of GCS.

increased mortality (28). The causality of hypomagnesemia
and PMV has not been firmly established in the critical
care literature. In a randomized controlled trial involving

liver transplantation, Gucyetmez B and colleagues reported
that intravenous magnesium sulfate administration was
associated with shortened duration of mechanical ventilation
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FIGURE 4 | Comparisons of the Gradient boosting machine with other models. The performance metrics of accuracy and kappa was reported. The boxplot shows

the median and range of the performance metrics in resampled datasets. GBM, gradient boosting machine; LASSO, Least Absolute Shrinkage and Selection

Operator; RF, random forest.

(29). However, the association of magnesium and trajectory
clusters in RCC has not been explored and this is a novelty
in our study. Although our latent clusters were identified
by using longitudinal RSBI, changes of other ventilator
parameters also have important clinical implications. For
example, the cluster A shows constant RR with slightly
increasing Pimax (i.e., less negative value indicates less
inspiratory efforts) over RCC treatment, indicating less
demand of ventilation with recovered critical illness. It is
reasonable to deduce that oxygen consumption will decline
after resolution of critical illness, which is reflected by reduced
minute ventilation. Collectively, these changes in ventilator
parameters indicate recovered overall condition and improved
lung function.

Several limitations must be acknowledged in the study. First,
the study was retrospective in design and there are many
missing values in ventilator parameters. We had to exclude
these patients due to missingness. It is largely unknown whether
this exclusion will compromise the representativeness of our
sample for the study population. Second, although we trained a
GBM model for the prediction of subsequent trajectory clusters,
the model was not validated in external dataset. We used 10-
fold cross validation for training the model, but this cannot

preclude the possibility of poor performance in other datasets.
Third, the causality of baseline characteristic variables and cluster
assignment cannot be fully confirmed in the present study
design due to potential unmeasured confounding factors. Further
randomized controlled trials are mandatory to confirm potential
causal associations. P1.0 is another important parameter to
predict weaning failure. It was not included in the analysis
because this variable was not routinely measured. Finally, RSBI
was the primary index used for trajectory clustering, which
had its inherent strengths and limitations. RSBI is widely
used to predict the weaning success and its measurement is
easy at bedside. However, RSBI can be affected by pressure
augmentation, PEEP, and a bias flow (30, 31).

CONCLUSIONS

The study identified four clusters of patients requiring PMV
based on longitudinal RSBI. These clusters have distinct clinical
characteristics and outcomes, which is implicative for the
implementation of precise medicine for this study population.
It is also feasible to predict cluster assignment with variables
collected upon RCC arrival with machine learning algorithms.
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Background: Although there has been a large amount of research focusing

on medical image classification, few studies have focused specifically on

the portable chest X-ray. To determine the feasibility of transfer learning

method for detecting atelectasis with portable chest X-ray and its application

to external validation, based on the analysis of a large dataset.

Methods: From the intensive care chest X-ray medical information market

(MIMIC-CXR) database, 14 categories were obtained using natural language

processing tags, among which 45,808 frontal chest radiographs were labeled

as “atelectasis,” and 75,455 chest radiographs labeled “no finding.” A total of

60,000 images were extracted, including positive images labeled “atelectasis”

and positive X-ray images labeled “no finding.” The data were categorized

into “normal” and “atelectasis,” which were evenly distributed and randomly

divided into three cohorts (training, validation, and testing) at a ratio of

about 8:1:1. This retrospective study extracted 300 X-ray images labeled

“atelectasis” and “normal” from patients in ICUs of The First Affiliated Hospital

of Jinan University, which was labeled as an external dataset for verification

in this experiment. Data set performance was evaluated using the area under

the receiver operating characteristic curve (AUC), sensitivity, specificity, and

positive predictive values derived from transfer learning training.

Results: It took 105 min and 6 s to train the internal training set. The AUC,

sensitivity, specificity, and accuracy were 88.57, 75.10, 88.30, and 81.70%.

Compared with the external validation set, the obtained AUC, sensitivity,

specificity, and accuracy were 98.39, 70.70, 100, and 86.90%.

Conclusion: This study found that when detecting atelectasis, the model

obtained by transfer training with sufficiently large data sets has excellent

external verification and acculturate localization of lesions.
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atelectasis, transfer learning, ResNet, artificial intelligence (AI), ICUs
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Introduction

Atelectasis, as the most common postoperative pulmonary
complication (PPC) (1), is also the most common disease
in intensive care units (ICUs), and is often accompanied
by pneumothorax, pleural effusion, pulmonary edema, and
other pulmonary diseases, and requires reintubation within
48 h after a complication. Portable chest radiography (2)
is one of the most common non-invasive radiological tests
for rapid and straightforward atelectasis detection in ICUs.
The main direct signs (3) of atelectasis on chest radiographs
include defect migration, parenchymal opacity with unbroken
linear boundaries, and vascular displacement. Indirect signs
(4) have ipsilateral diaphragmatic elevation, hilar removal,
heart involvement, and mediastinum and trachea dysfunction;
however, it is difficult to rapidly distinguish the characteristics
of early chest radiographs of patients with atelectasis from
pleural effusion and lung consolidation with increased density.
With the rapid development of deep-learning technology,
the convolutional neural network (5) extracts inherent
characteristics from medical image data for classification and
recognition based on images much more effectively than do
traditional recognition algorithms. The problem of inaccurate
diagnoses caused by the continuous increase in the number
of chest X-rays that exceeds the increase in the number of
radiologists has somewhat been solved. Because previous studies
have developed chest X-ray diagnostic algorithms based on
deep neural networks, 14 basic lung diseases can be diagnosed.

The present study was the first to extract large-scale positive
atelectasis data from the MIMIC-CXR-JPG database (6–8), an
intensive care medical information database, to obtain a model
with high accuracy and obtain reliable external validation. The
purpose of this study was to determine the feasibility of transfer
learning methods for detecting atelectasis using portable chest
X-rays based on large data sets. In addition, this study used
multi-center data set for the first time to realize the early
diagnosis and prediction of bedside portable chest radiographs
and obtained good external validation.

Materials and methods

Data source

Training and testing cohorts
In this study, 14 categories that were clearly diagnosed as

“positive” or “negative” were obtained from the MIMIC-CXR-
JPG database using the open-source tagging tools NegBio9 (9)
and CheXpert10 (10) (473,057 chest radiographs and 206,563

Abbreviations: MIMIC-CXR, medical information mart for intensive care
chest X-ray; AUC, area under the curve; ROC, curves receiver operating
characteristic curves; ICUs, intensive care units; AI, artificial intelligence.

text reports). There were 45,808 chest radiographs labeled
“atelectasis” and 75,455 chest radiographs labeled “no finding.”
A total of 60,000 images were extracted, including positive
images labeled “atelectasis” and positive X-ray images labeled
“no finding,” and blank text was excluded. The data were defined
as “normal” and “atelectasis” with an even distribution. At the
same time, the data set was classified and randomly divided into
three sets (training, validation, and testing) at a ratio of about
8:1:1. The MIMIC-CXR-JPG common database was used as the
internal testing data of this experiment.

External validation cohort
An external testing data set was developed in this study,

with primary image data from ICUs patients at The First
Affiliated Hospital of Jinan University, from which data
during 2017–2021 were randomly selected by three senior
attending physicians for a definitive diagnosis of the patients
with atelectasis, who found no apparent abnormalities in the
chest radiological image data, and professional radiologists
carried out a review of the random tag data set. After
excluding the data of poor posture placement and unclear
diagnoses, 300 images with complete labels were finally
extracted: 150 with atelectasis and 150 without abnormalities.
The flow-chart of the training data creation is shown in
Figure 1.

Experimental environment

All experiments were performed using the Ubuntu 20.04
64-bit operating system. For the training process of the CNN
model, MATLAB language was adopted as the programming
environment. The specific software and hardware configuration
are listed in Table 1.

Data preprocessing

This study processed both internal and external testing
cohorts. The frontal chest images from the MIMIC-CXR-
JPG database had a resolution of 256 × 256 × 1 pixels,
while those from The First Affiliated Hospital of Jinan
University were 512 × 512 × 3 pixels. Since the image
resolutions of the two data sets had different heights and
widths, the image data from the two other sources had to
be standardized. We achieved this by automatically cropping
the chest region and adjusting it to 224 × 224 × 3
pixels in order to fit the model input resolution more
conveniently. At the same time, the image was randomly scaled
horizontally and vertically, and processing methods were cut
and shifted to enhance the data processing (11) in order to
further optimize the verification and evaluation of the testing
results.
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FIGURE 1

Data flow design of the internal and external datasets.

Model

The selected study model was the ResNet50 (12) network
model, which is based on the residual error learning method
from the VGG19 improved classification model. Based on the
existing training network depth, a more-optimized residual
learning framework was put forward, not only to solve the
problem of the gradient disappearance and explosion (13), but
also to further deepen the network depth. The problem of
network performance degradation is also avoided. ResNet50
covers 49 convolutional layers and one full connection layer,
retains the convolutional layer with a core size of 7 × 7 in
VGG19 (14) to learn more features, and uses the maximum
pooling layer for downsampling. In addition, there are five
stages and two significant boards in the ResNet50 network. Stage
0 has a simple structure and is mainly used for the preprocessing

TABLE 1 Hardware and software configuration.

Experimental
environment

Configuration instructions

Hardware
environment

CPU Intel (R) Xeon
5218 16C 2.3

GHz

GPU NVIDIA TESLA
V100, 32 GB

Memory 32 GB

Software
environment

Operating
system

Ubuntu 20.04

Programming
environment

MATLAB 2021a

of input images. It has gone through the convolutional layer,
batch normalization, and ReLU activation function (12). The
next four stages are composed of a bottleneck and have similar
structures. After continuous convolution operation of residual
blocks, the number of channels in the image pixel matrix
becomes deeper and deeper, then passes through the flatten
layer, and finally input into the full connection layer and output
the corresponding category probability through SoftMax layer,
the typical features of the image are automatically extracted, and
the last constitute a classifier to divide the image into “normal”
and “atelectasis.” The specific network architecture is shown in
Figure 2.

Training strategy

Considering the extensive data set analyzed in this study,
a general machine-learning method called transfer learning
was used to improve the rate and performance of model
learning. Transfer learning (15, 16) can transfer the knowledge
learned by the model from the source domain to another target
domain, so that the model can better acquire the understanding
of the target domain, and improve the speed and simplicity
of the learning, compared with the initial training network
that uses randomly initialized weights. This study used a
pretrained ResNet50 network model to randomly divide the
data into the training (80%) and validation (20%) sets, and
the same pretreatment operation was adopted. Since the chest
radiography images were asymmetric (16), we adopted random
undersampling technology and adaptive moment estimation
(Adam) using vector momentum, which was adapted to increase
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FIGURE 2

Flow chart of ResNet50 (CoNV is convolution operation, Batch Norm is Batch regularization processing, ReLU is activation function, MAXP00L
and AvgPOOL are two pooling operations, including convolution transformation stage, and classification stage, respectively).

the convergence speed. Our model was trained with a 0.0001
learning rate, minimum batch size of 64, and maximum of 8
epochs, in order to achieve the maximum number of 7,200
iterations. The training lasted 105 min and 6 s. By fine-tuning
the experimental parameters, the best experimental results were
obtained. The training effect is shown in Figure 2.

Performance analysis

In the experiments, the area under the receiver operating
characteristic curve (AUC) (17) and the accuracy, specificity,
and sensitivity (Eqs. 1, 2, and 3 below) were used as
evaluation indicators (18). A larger AUC indicates that the
prediction result is closer to the actual situation, and hence
better model performance. Through the following formula, we
can get the following indicators, respectively: false positives
(FP), true negatives (TN), true positives (TP), and false
negatives (FN). The confusion matrices were calculated from the
following indexes, which can further help to analyze the model
performance and calculate the above evaluation values.

Accuracy = (TP + TN)/(TP + FN + TN + FP) (1)

Specificity = TN/(TN + FP) (2)

Sensitivity = TP/(TP + FN) (3)

Visualization

Based on the model obtained by the experimental training,
Grad-CAMs (19, 20)can be used to generate a gradient class
activation map. Grad-CAMs generated the class activation map

and highlighted the areas that are important for the classification
of the image, which not only provides insight into the nature of
the black box of the model (16), but is also helpful for obtaining
the key feature extraction of images and enables predictions of
the classification decision interpretation model.

Results

The whole training process took 105 min and 6 s. The
learning curve of the model is shown in Figure 3, and the
verification accuracy reached 79.91%. The partial accuracy curve
reached 80% when the training was completed, and the loss rate
decreased significantly to below 40%.

The confusion matrix results of the model on the testing and
validation cohorts were calculated and shown in Figure 4. The
testing cohort was distributed in a 2× 2 matrix according to the
labeled labels and the predicted results. Each square represents
the ratio of predicted positives to actual positives. Total data
volume and prediction are shown for each level. The trained
model can classify the testing cohort at an accuracy of 81.70%,
and the specificity and sensitivity were 88.30 and 75.10%,
respectively. An accuracy of 86.90% was obtained by classifying
the external validation set, and the corresponding specificity and
sensitivity in the calculations were 100 and 70.70%, respectively.
Table 2 lists all the evaluation indexes obtained in the internal
and external testing cohort of this experiment. By calculating the
above scores, the confusion matrixes of the internal and external
testing cohorts were obtained, which could help to get TPs, TNs,
FPs, and FNs. Meanwhile, the AUC was used as the evaluation
index, with the vertical axis representing the true category rate.
The horizontal and vertical axes represented the FP and TP
rates, respectively, and the ROC curve was drawn. Larger AUC
values indicate that the model prediction result is closer to the
actual situation. The AUCs of the internal and external testing
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FIGURE 3

Training accuracy and training loss curves (the black curve and blue curve represent the accuracy of training set and verification set,
respectively, the orange curve represents the loss).

cohorts obtained in the model training were 88.57 and 98.39%,
respectively, as shown in Figure 5.

On this basis, the Grad-CAMs map was drawn to predict
the deep model. Figure 6 shows that the proposed model can
accurately distinguish between normal chest radiographs and
those with atelectasis. The red area on the chest radiographic
heat map offers the critical area for the machine to determine its
classification (21). Randomly generated heat maps focused on
the lungs and heart.

Discussion

Atelectasis remains a significant challenge for physicians
in general anesthesia and ICUs treatment and diagnosis.
Undiagnosed or late-diagnosed atelectasis can have a significant
mortality risk (22). From a pathological point of view (3),
atelectasis mainly manifests as reversible alveolar or lobe
collapse, which is generally caused by obstruction of the affected
alveoli in the airways, resulting in damage to the exchange of
carbon dioxide and oxygen. According to preliminary studies,
almost all patients undergoing major surgery will present

with some degree of atelectasis (23, 24). Typically 2–4% of
elective thoracic surgeries and 20% of emergency surgeries are
related to PPCs, among which atelectasis is the most common
respiratory complication. Without timely early diagnosis and
intervention, a series of serious and often fatal complications
will occur as the disease progresses. Eventually, due to decreased
lung compliance, hypoxemia, decreased pulmonary vascular
resistance, hypoxemia, postoperative infection, diffuse alveolar
injury, respiratory failure, or even death (in extreme cases) may
occur. So far, X-ray imaging has always been an essential means
of atelectasis diagnosis, and portable chest X-ray in ICUs (25)
is a rapid and straightforward method for the early diagnosis
of atelectasis. This is especially true among ICUs patients with
respiratory and hemodynamic parameters within a normal
range, and where the direct signs of atelectasis mostly appear
on chest radiograph crack deviations (3, 4, 26), parenchymal
turbidities, linear boundary, and vascular displacements, among
which increased density of dysfunctional lung areas is the most-
obvious manifestation of atelectasis. In order to help ICUs
doctors diagnose atelectasis early using portable chest X-ray,
we established a model of bedside chest X-rays for detecting
atelectasis by applying transfer learning based on the ResNet50
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FIGURE 4

The confusion matrix of the internal and external validation sets.

TABLE 2 Accuracy, sensitivity, specificity, AUC scores of internal and external datasets.

Datasets Accuracy Sensitivity Specificity AUC scores

Internal validation datasets 81.70% 75.10% 88.30% 89.31%

External validation datasets 85.30% 70.70% 100.00% 98.39%

convolutional network, and used the explicit atelectasis data
extracted from the MIMIC-CXR-JPG database as an internal
testing cohort, which yielded an accuracy of 81.70%. This result
was further externally verified using ICUs atelectasis image
data rescreened and relabeled by doctors at The First Affiliated
Hospital of Jinan University, achieving an accuracy rate of
86.90%. Obviously, the process of data relabeling is one of the
main reasons for the increased accuracy of external validation
in this study compared with previous studies.

Data enhancement and transfer learning were
simultaneously adopted in this study to improve the accuracy
of image classification and avoid overfitting. The ResNet50
network model parameters were obtained through the
migration study less, high precision, deep residual layer
network structure is complex, which solves the problem of
low efficiency based on large training data sets and makes
training more precise. Calculating the specificity, sensitivity,
accuracy, and AUC revealed that the training model was highly
robust (27), which provided external verification, with values
of 100.00, 70.70, 86.90, and 98.39%, respectively. Finally, the
features extracted from the training images were visualized
by a heat map displaying the lung and the region near the
heart. In addition, the novelty of this study was highlighted by

the application of the transfer learning method to chest X-ray
atelectasis examinations, and its reliable external validation.

This study had some limitations. Firstly, we used all
the atelectasis image data sets during 2011–2017 in the
MIMIC-CXR-JPG database, which is large but only provided
relatively limited patient information, such as gender, age,
and diagnostic test, and the clinical backgrounds of patients
were unavailable. Atelectasis diagnoses could therefore only
be labeled according to the diagnostic test, and whether it
was associated with other pulmonary complications remains
to be determined. We will further attempt to establish a
more practical model combined with the experience of clinical
practice, use more diverse neural network learning algorithms
and network models, and make horizontal comparison with
other more advanced networks, to classify atelectasis in more
detail, with a view to providing greater assistance in early
clinical intervention, diagnosis and treatment. Secondly, the
case-control design used in this study artificially increased
the prevalence of atelectasis by using positive data collected
from the MIMIC-CXR-JPG database and The First Affiliated
Hospital of Jinan University, thus overestimating the positive
predictive value compared with the clinical reality (28). In
addition, the data sets of internal and external validation
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FIGURE 5

The AUC diagram of the internal and external validation sets.

FIGURE 6

Representative cases in the external testing sets. (A) Example of a true-positive case, that is the original chest radiograph of atelectasis with
pleural effusion in ICUs. (B) Grad-CAM heatmap of class activation derived from model prediction classification.

included in this paper are random and uniform data, which
satisfies the ideal comparison of data to a certain extent.
Queue design will therefore be used in the future to obtain
more-reliable actual tags. Thirdly, our internal and external
testing cohorts were basically derived from portable chest
X-ray images from ICUs and the results might not be

applicable to outpatients and general patients. Moreover,
the image data in the MIMIC-CXR-JPG database (6, 29)
were derived from foreign databases, and there were some
differences in diagnostic reporting and standards. There was
some heterogeneity in the atelectasis data obtained from The
First Affiliated Hospital of Jinan University based on the external
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validation, and so the results obtained should be considered
exploratory only.

In the future, we will attempt to explore more cutting-edge
and optimized AI models for portable chest X-ray diagnoses of
acute and severe pulmonary complications such as atelectasis,
and further promote precision medicine (30, 31), to allow
the application of machine learning in clinical imaging
diagnosis to realize human-machine mutual assistance and
true generalization.

Conclusion

In summary, this study found that when detecting
atelectasis, a model obtained by training with sufficiently
large data sets exhibited better external verification and can
better help ICUs doctors to diagnose atelectasis and implement
interventions early.
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A prediction and interpretation
machine learning framework of
mortality risk among severe
infection patients with
pseudomonas aeruginosa

Chen Cui†, Fei Mu†, Meng Tang†, Rui Lin, Mingming Wang,

Xian Zhao, Yue Guan* and Jingwen Wang*

Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, China

Pseudomonas aeruginosa is a ubiquitous opportunistic bacterial pathogen,

which is a leading cause of nosocomial pneumonia. Early identification of the

risk factors is urgently needed for severe infection patients with P. aeruginosa.

However, no detailed relevant investigation based on machine learning has

been reported, and little research has focused on exploring relationships

between key risk clinical variables and clinical outcome of patients. In this

study, we collected 571 severe infections with P. aeruginosa patients admitted

to the Xijing Hospital of the Fourth Military Medical University from January

2010 to July 2021. Basic clinical information, clinical signs and symptoms,

laboratory indicators, bacterial culture, and drug related were recorded.

Machine learning algorithm of XGBoost was applied to build a model for

predicting mortality risk of P. aeruginosa infection in severe patients. The

performance of XGBoost model (AUROC = 0.94± 0.01, AUPRC= 0.94± 0.03)

was greater than the performance of support vector machine (AUROC = 0.90

± 0.03, AUPRC = 0.91 ± 0.02) and random forest (AUROC = 0.93 ± 0.03,

AUPRC = 0.89 ± 0.04). This study also aimed to interpret the model and to

explore the impact of clinical variables. The interpretation analysis highlighted

the e�ects of age, high-alert drugs, and the number of drug varieties. Further

stratification clarified the necessity of di�erent treatment for severe infection

for di�erent populations.

KEYWORDS

machine learning, interpretation, stratification analysis, Pseudomonas aeruginosa,

severe infection, risk factors

Introduction

Pseudomonas aeruginosa (P. aeruginosa), a ubiquitous Gram-negative pathogen, can

colonize almost any part of the human body (1). More than 50% of severe acute and

chronic hospital-acquired infections are caused by P. aeruginosa (2), such as ventilator-

associated pneumonia and catheter infections in immunocompromised patients (3–5).

It contributes to mortality rates as high as 13.5% in ventilation-associated pneumonia
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caused by P. aeruginosa (6). The most common cause of death

from cystic fibrosis is P. aeruginosa lung infections (7).

Pseudomonas aeruginosa infection with diverse pathological

background exerts a heavy health burden for modern society.

Thus, there is an urgent need to identify the mortality

risk factors of infection for severe infection patients with

P. aeruginosa early. A retrospective study has shown that

APACHE II score and septic shock are critical factors for

mortality in P. aeruginosa bacteremia, and combination

therapy does not significantly reduce overall 14-day mortality

(8). Several other studies have analyzed the risk factors for

mortality of P. aeruginosa using logistic regression, such as

age, sex, ICU admission, glucocorticoid use, inappropriate

treatment regimens, mechanical ventilators, the use of a central

venous catheter, and a higher APACHE II score (8–10). In a

multi-center study, risk factors for mortality of community-

acquired P. aeruginosa included previous pseudomonas

infection/colonization, tracheostomy, bronchiectasis, invasive

respiration and/or vasopressor therapy (IRVS), and very severe

chronic obstructive pulmonary disease (COPD) (11). Using

of previous antibiotic and ICU admission is important risk

factors for drug-resistant P. aeruginosa (12), which increases

the number of days in hospital stays and all-cause mortality

in hospitalized patients significantly (13). Most of studies

above used traditional logistic regression to predict the risk

factors of P. aeruginosa infection, and there was no research for

identification of the mortality risk prediction of P. aeruginosa

infection in severe patients.

Machine learning is a data-driven computingmethod, which

does a lot of work based on big data. While machine learning has

been demonstrated in a few different fields, it has only recently

been gaining popularity in the field of medicine. Compared to

logistic regression, machine learning methods are often more

comprehensive, accurate, and rapid in clinical risk prediction

(14). Various machine learning methods have been widely

used in constructing prediction models of disease risk, such as

gastrointestinal bleeding risk assessment, prediction of mortality

in intensive care units, and sepsis-associated thrombocytopenia

(15–17). Ma et al. used an unsupervised learning algorithm

to classify septic shock into five phenotypes, investigate the

associated risk factors, and determine the best treatment strategy

for these phenotypes (18). However, there has not yet been

a machine learning method for the mortality risk of severe

infection patients with P. aeruginosa.

In this study, we proposed a mortality risk prediction

framework for severe infection patients with P. aeruginosa

infection based onmachine learning. Our framework focused on

decision support and model interpretation. Based on XGBoost

algorithm and electronic medical records (EMR) data, we built

a machine learning model with good predictive performance

using grid searching and cross-validation (19). Furthermore,

the SHapley Additive exPlanation (SHAP) values were used

to explain the prediction model from a global perspective

for overcoming the shortcomings of machine learning models

(20). It has the advantage of providing more details about the

relationship between predictive variables and outcomes, and

describing in detail the relationship between clinical factors and

risks. The interpretative analysis revealed key clinical features of

the risk of mortality P. aeruginosa infection in severe patients.

Finally, we conducted a stratified analysis of patients from

three aspects: infection site, advanced age, and the number of

intravenous drug varieties. The results have some implications

for P. aeruginosa clinical practice. Our study enables accurate

predictions of the risk of mortality P. aeruginosa infection in

severe patients, as well as interpretation of key variables that can

support clinical decisionmakingmore accurately and effectively.

Materials and methods

Patient selection

The study was conducted at the Xijing Hospital of the

Fourth Military Medical University, and a total of 571 patients

with severe infections were included in the study between

January 2010 and July 2021. There were 338 patients in

the death group and 233 patients in the control group.

Our study was approved by the domestic ethics committee

with the approval number KY20212130-C-1. This study is a

retrospective, observational study design that does not require

informed consent. The collected research data were de-identified

and analyzed anonymously.

Data collection

Data collected using EMR at the First Affiliated Hospital

of Fourth Military Medical University: basic information: age,

sex, etc.; drug related: number of drug varieties, number

of antibiotics drugs varieties, high-alert medication, etc.;

clinical signs and symptoms: headache, cough, temperature,

etc.; laboratory indicators: white blood cell count, absolute

neutrophil value, etc.; bacterial culture: blood culture, urine

culture, etc. All data collected are provided in the Supplementary

Section (Supplementary Table 1). Here, high-alert medication

refers to drugs that may cause serious injury or death to

patients due to improper use of medication errors (17).

According to the severity of adverse consequences that may be

caused by their clinical use, high-alert medication is divided

into 3 grades: A, B, and C. For the specific classification

of high-alert medication, please refer to the recommended

list of high-alert medication in China recommended by the

Chinese Pharmaceutical Association (https://www.cpa.org.cn/

index.php?do=info&cid=75676) and the management of high-

alert medication in Xijing Hospital of the Fourth Military
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Medical University. The details of high-alert medication can be

found in the Supplementary Section (Supplementary Table 2).

Inclusion criteria and exclusion criteria

Inclusion criteria: From January 2010 to July 2021,

hospitalized patients with severe infection who associated with

P. aeruginosa infection; Diagnosis of severe infection with P.

aeruginosa, severe infection was defined as requiring at least

3 days of intravenous antibiotic therapy and at least 3 days of

hospitalization after the diagnosis of confirmed infection. The

ICD code for the diagnosis of severe infection in this study is

shown in Supplementary Table 3. The P. aeruginosa infection

was defined by combining the patient’s clinical symptoms,

signs, laboratory indicators, microbial culture, imageology, etc.

Culture specimens of microorganisms come from different

sites of infection, such as blood culture, urine culture, and

sputum culture. The result of the patient’s treatment was death

or recovery.

Exclusion criteria: Non-P. aeruginosa infection; Patients

with incomplete data and medical record information (the

missing value of laboratory indicators exceeds 50%, incomplete

medical history, no medication records); Some comorbidities

such as autoimmune diseases (systemic lupus erythematosus,

ANCN-associated vasculitis, rheumatoid arthritis, etc.,),

malignant tumors (stomach cancer, ovarian cancer, lung

cancer, etc.,) were excluded; Suspected contaminated specimens

(the same sample culture of 3 or more pathogenic bacteria);

Non-infected or colonized patient, such as the patient’s clinical

symptoms, signs, laboratory indicators, imageology were not

abnormal; Hospitalization for less than 3 days.

Preprocessing and imputation of clinical
variables

All the clinical variables we collected could be divided

into numerical and categorical variables according to clinical

significance, and longitudinal and non-longitudinal variables

according to whether repeated monitoring occurred during

admission. Then, the categorical variables were converted

into one-hot vectors. For clinical longitudinal variables, we

extracted the maximum increase and maximum decrease during

hospitalization for each variable. For laboratory longitudinal

variables, we extracted the slope of all laboratory variables

over time, the maximum increase and decrease during

hospitalization. Finally, we got 91 variables in total (including

derived variables). A detailed description and classification

of all variables can be found in the Supplementary Section

(Supplementary Table 1).

Outliers were detected using the interquartile range (IQR).

As a threshold, the 2 times of IQR were used, and points

exceeding this threshold (the upper quartile + 2 times of

IQR, or the lower quartile – 2 times of IQR) were defined

as outliers. Data points out of the valid value threshold were

identified as outliers. The excluded outliers were modified as the

nearest threshold.

Variables which had more than 50% missing values were

deleted, while variables which had less than 20% missing values

were replaced by the median values. Multivariate imputation by

chained equations (MICE) was used to impute missing values

while loss rates of variables were between 20 and 50%.

Finally, the z-score normalization was only performed for

the all continuous values used by Support Vector Machine

(SVM) (21). Since tree-based models such as XGBoost did

not require standardization, the z-score normalization step was

omitted when interpreting XGBoost, LightGBM (22), CatBoost

(23), and Random Forests (RF) (24).

Model algorithm

The XGBoost is a scalable end-to-end tree boosting system,

which implements machine learning algorithms in a gradient

enhancement framework that is efficient, flexible, and portable.

It could be used for handling sparse data, and solving many

data science problems quickly and accurately. The XGBoost has

been widely used by data scientists to obtain state-of-the-art

results inmanymachine learning challenges. The equations were

as follow:

L (∅) =

n
∑

i

l
(

ŷi, yi
)

+

k
∑

j

�(fj) (1)

Here, l is a loss function that measures the differences between

the prediction ŷiand the target yi. The � penalizes the

complexity of the model.

In order to minimize the L, the function could be write as:

L̃
(t)

=

n
∑

i=1

[

gift (Xi) +
1

2
hif

2
t (Xi)

]

+ �(ft) (2)

gi = ∂ŷ(t−1) l
(

yi, ŷ
(t−1)

)

(3)

hi = ∂2
ŷ(t−1) l(yi, ŷ

(t−1)) (4)

Here, all XGBoost models were implemented by using XGBoost

(version 1.5.1). All codes were implemented using Python 3.7.9.

Method comparison

In order to evaluate the performance of our model, we

compared the XGBoost with LightGBM, CatBoost, SVM, and

Frontiers inMedicine 03 frontiersin.org

59

https://doi.org/10.3389/fmed.2022.942356
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Cui et al. 10.3389/fmed.2022.942356

RF methods. All models have been optimized by grid searching

to adjust hyperparameters. The detailed hyperparameters of

XGBoost were described in Section 3.2. We selected the best

model for predicting mortality risk for patients with severe P.

aeruginosa infection.

The different parameters of LightGBM, CatBoost,

SVM, and RF are summarized in Supplementary Section

(Supplementary Tables 4–7). LightGBM and CatBoost were

implemented by lightgbm 3.3.2 and catboost 1.0.6 in Python

3.7.9. The SVM and RF models were implemented by using

scikit-learn. All code was implemented using Python 3.7.9.

Evaluation metrics

The performance of the machine learning classifier was

assessed using accuracy (ACC), receiver operator characteristics

(ROC) curve, precision recall (PR) curve, area under the

receiver operator characteristics curve (AUROC), and area

under the precision recall curve (AUPRC), as defined by the

following metrics:

ACC =
TP + TN

TP + TN + FP + FN
(5)

Recall = True Positive Rate =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

False Positive Rate =
FP

TN + FP
(8)

where TP, TN, FP, and FN refer to true positives, true negatives,

false positives, and false negatives, respectively. Here, a “positive”

label means that the outcome indicator of sample is death.

Interpretation algorithm

In order to interpret the prediction results of XGBoost,

Shapley additive explanations values were introduced, which

unify Shapley regression values (20), Shapley sampling values,

local interpretable model-agnostic explanations (LIME) (25),

and other three existing additive feature attribution methods

(DeepLIFT) (26), layer-wise relevance propagation (27), and

quantitative input influence. Shapley values were defined as a

class of additive feature attribution methods, which have an

explanation model that is a liner function of binary variables

as follow:

g
(

z′
)

= ∅0 +

M
∑

i=1

∅izi
′ (9)

Where z′ ∈ {0, 1}M ,M is the number of simplified input feature,

and ∅i ∈ R. ∅0 is the constant of the interpretation model, ∅i

is the predicted mean value of all training samples, and is the

attribution value of each feature.

Statistical analysis

In this paper, two independent-sample t-tests were used

for the statistical analysis. A p-value of less than 0.05 was

considered significant. All statistical analyses were performed

using Scipy 1.7.2.

Results

General information

A total of 571 hospitalized patients infected with P.

aeruginosa were included in this study. The flow chart of this

study is shown in Figure 1. In terms of the source of infection,

pulmonary infections accounted for the highest percentage of

455 cases (80%), followed by bloodstream infections with 57

cases (10%) and skin and soft tissue infection with 54 cases (9%).

A detailed description of the clinical characteristics of the whole

cohort is provided in Table 1.

Model optimization and performance

To optimize the XGBoost model, the dataset was divided

into five sets. One of the five sets was selected as test set,

the rest four sets were selected as training set. We explored

different hyperparameters through a grid search, such as the

maximum depth, the number of estimators, and learning rate.

We considered the maximum depth with 2, 4, 8, 16, and 32,

the number of estimators with 5, 10, 15, 20, 25, and 30, and

the learning rate with 0.01, 0.05, 0.1, 0.2, 0.3, and 0.5. The best

models with different hyperparameters were selected according

to the mean performance based on cross validation.

The ROC curve and PR curve of three machine learning

models are shown in Figure 2. The AUC of 5-fold cross

validations were between 0.90 and 0.96 and PR of 5-fold cross

validations was between 0.91 and 0.97. The ACC, AUROC, and

AUPRC of mean performance of 5-fold cross validation were

displayed in Table 2. The results shown that XGBoost had better

prediction ability than other methods.

Model interpretation

Although the XGBoost model can achieve good predictions

performance, the lacking of interpretation limits the application

in clinical practice. To facilitate interpretation of the prediction

model, an artificial intelligence SHAP values for global model

interpretation were introduced (20). Compared with traditional
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FIGURE 1

Flow chart of the study.

feature importance methods (such as decision tree weights

importance), SHAP values have better consistency and can show

the positive or negative relationship of each predictive variable

with respect to the target.

Importance of clinical variables

According to the importance and impacts of variables on

model prediction, a bee swarm plot was formed for each feature.

As shown in Figure 3, a series bee swarm plots were listed in their

order of importance.

We found that older (red) patients had a higher risk

of mortality than younger (blue) patients (large on the

horizontal). Similarly, patients who used more types of high-

alert medications and more types of intravenous drugs had

higher risk of mortality than those who used fewer types. The

lower the maximum decrease in respiratory rate (significantly

lower than normal), the higher the risk of mortality. In addition,

patients who underwent drainage (red) had a lower risk of

mortality than patients who did not undergo drainage (blue).

It is important to emphasize that all effects only describe

the behavior of the model and are not causality in the

real world.

Detailed dependencies of variables

To further elucidate the detailed relationship between

mortality risk and clinical variables, SHAP interaction values

were used to reveal the dependencies relationships based on

the key feature of importance the bee swarm plots. Here,

each point corresponds to a sample of infected patients,

and each scatter plot shows the effect of features on

SHAP interaction values. The results were shown in SHAP

dependence plots (Figure 4). By analyzing the dependencies

factors, it was found that the risk of mortality was significantly

higher in patients with higher maximum increases in urea

and creatinine when the number of intravenous drugs

was higher.

Evaluation on di�erent pathogens
infection

In addition to P. aeruginosa, Klebsiella pneumoniae (K.

pneumoniae) is major hospital-acquired pathogen, causing

pneumonia, urinary tract infection, intra-abdominal infection,

and bacteremia in immunocompromised patients (28).

Here, we build a clinical dataset of K. pneumoniae

infections as an external validation for testing and discussing the

generalization performance of our model. The hyperparameters

of model were obtained from the best performance in

Section 3.2. Five sub-models trained on the 5-fold cross

validation were used in the external validation set. The average

performance of each sub-model on these external test sets

is shown in Table 3. We can find that the performance

of model on K. pneumoniae still had some degree of

predictive ability, but it is a little worse than prediction for

infection patients with P. aeruginosa. It suggested that our
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TABLE 1 Characteristics of patients at baseline and clinical outcomes.

Categories Variables Total (n= 571)

Basic information Age (years) [median (IQR)] 64 (47–81)

Male [No. (%)] 428 (74.86%)

Hosp (days) [median (IQR)] 23 (13–40)

Drug Allergy [No. (%)] 69 (12%)

Smoking [No. (%)] 105 (18%)

Alcohol User [No. (%)] 55 (10%)

Drug related Number of Drug Varieties [median (IQR)] 52 (39-66)

Number of Intravenous Drugs Varieties [median (IQR)] 7 (4-10)

Clinical signs and symptoms Headache [No. (%)] 91 (16%)

Cough [No. (%)] 365 (64%)

Expectoration [No. (%)] 322 (56%)

Sore Throat [No. (%)] 15 (3%)

Hemoptysis [No. (%)] 7 (1%)

Dyspnea [No. (%)] 149 (26%)

Vomiting [No. (%)] 187 (33%)

Diarrhea [No. (%)] 76 (13%)

Lymphadenopathy [No. (%)] 14 (2%)

Drainage [No. (%)] 222 (39%)

Tracheotomy [No. (%)] 104 (18%)

Endotracheal Intubation [No. (%)] 150 (26%)

Central Venous Catheter [No. (%)] 43 (8%)

Indwelling Catheter [No. (%)] 302 (53%)

PICC Catheter [No. (%)] 141 (25%)

Temperature (◦C) [median (IQR)] 36.9 (36.5–37.6)

Respiratory Rate (min−1) [median (IQR)] 21.0 (19.0–25.0)

Heart Rate (min−1) [median (IQR)] 89.0 (78.0–105.0)

DBP (mmHg) [median (IQR)] 68.0 (60.0–76.0)

SBP (mmHg) [median (IQR)] 116.0 (102.0–129.0)

Bacterial culture Blood [No. (%)] 57 (10%)

Urine [No. (%)] 16 (3%)

Phlegm [No. (%)] 455 (80%)

Secretions [No. (%)] 54 (9%)

Cerebrospinal Fluid [No. (%)] 7 (1%)

Feces [No. (%)] 0 (0%)

Number of Concurrent Infection [No. (%)] 399 (70%)

Laboratory Indicators WBC(× 10
9
/L) [median (IQR)] 10.08 (6.9–14.39)

NEUT# (× 10
9
/L) [median (IQR)] 7.96 (5.12–11.82)

NEUT% [median (IQR)] 0.83 (0.74–0.89)

RBC (× 1012/L) [median (IQR)] 3.19 (2.77–3.66)

PLA (× 10
9
/L) [median (IQR)] 166.0 (91.0–258.0)

HGB (g/L) [median (IQR)] 95.0 (84.0–110.0)

ALT (IU/L) [median (IQR)] 29.0 (17.0–57.0)

AST (IU/L) [median (IQR)] 31.0 (20.0–55.0)

DBIL (µmol/L) [median (IQR)] 8.4 (4.6–16.0)

CREA (µmol/L) [median (IQR)] 78.0 (59.0–115.0)

Urea (mmol/L) [median (IQR)] 8.87 (5.7–15.0)

ALB (g/L) [median (IQR)] 31.6 (28.5–34.8)

(Continued)
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TABLE 1 Continued

Categories Variables Total (n= 571)

SAA (mg/L) [median (IQR)] 202.0 (72.1–421.0)

ESR (mm/h) [median (IQR)] 56.0 (26.25–84.5)

CRP (mg/L) [median (IQR)] 60.5 (25.25–116.15)

IL-6 (pg/mL) [median (IQR)] 56.96 (25.03–139.2)

PCT (ng/mL) [median (IQR)] 0.95 (0.31–3.42)

NEUT# represents the neutrophil count.

FIGURE 2

Receiver operator characteristics (ROC) curve and precision recall (PR) curve of five machine learning models.

TABLE 2 Methods comparison based on AUROC and AUPRC.

Method ACC AUROC AUPRC

XGBoost 0.88± 0.02 0.94± 0.01 0.94± 0.03

LightGBM 0.86± 0.05 0.92± 0.02 0.93± 0.05

CatBoost 0.86± 0.02 0.93± 0.03 0.93± 0.03

Random Forest 0.86± 0.03 0.93± 0.03 0.89± 0.04

Support Vector Machine 0.84± 0.03 0.90± 0.03 0.91± 0.02

prediction model had some capacity for prediction on different

pathogens infection.

Stratification analysis

Stratified analysis of infection sites

Figures 5A,B shows the number and proportion of P.

aeruginosa cultured at different infection sites. The percentage of

P. aeruginosa cultured in phlegm, others, and blood was higher.

Here, others refer to infection sites except blood, urine, phlegm,

secretions, cerebrospinal fluid, and feces. Compared with the

control group, more P. aeruginosa was cultured in phlegm of

patients in the death group. And the proportion of P. aeruginosa

cultured in sputum and urine, sputum and blood at the same

time was significantly higher than the death group. At the same

time, we analyzed the association between the infection site

and the number of concurrent infections. Figure 5C suggests

that there was a statistically significant difference between the

number of co-infections in the death group and the control

group (p< 0.01), and the death group was often accompanied by

0–3 co-infections, when infection site was blood. The association

between the infection site and the number of high warning

drugs used was also analyzed. Figure 5D shows that when P.

aeruginosa was detected in sputum culture or blood culture,

the number of A-Alert drug use was more in the death group

than in the control group, and the difference was significant (all

p < 0.01).
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FIGURE 3

Summarize bee swarm plots for top 15 clinical variables of SHAP values. In a bee swarm plot, each point corresponding to a sample of single P.

aeruginosa infected patient of data set. The position of each point on the horizontal axis indicated the e�ect of that feature on the model

prediction, and the color of a point reflected the eigenvalue of the case. For binary variables (such as drainage or not), red dots and bule dots

correspond to 1 and 0 respectively. For numerical variables (such as age), the color of dots represented high and low values, respectively.

Overlapping points that fall in the same horizontal position will be scattered vertically to show the density.

FIGURE 4

(A,B) SHAP dependence plots for interaction of crucial clinical variables. The x axis represents the eigenvalue of the axis title, and the y axis

indicates the corresponding SHAP value, representing the contribution of this feature to prediction results of model. The color of every dot

reflects the eigenvalues of right axis title. The larger the value of the x-coordinate of the sample point, the variable of x-axis is more large. The

larger the value of the y coordinate of the sample point, the greater risk of mortality of the sample point, and the redder the color of the sample

point, the higher the value of the right index.

Stratified analysis of age

These results in Figures 6A,B suggested an increasing trend

in the number of deaths with increasing age. When the patients

were older than 75, the maximum decrease in respiratory rate

in the death group was significantly different from that in the

control group (Figure 6C, p < 0.01). Figure 6D shows that when

patients were older than 18, the maximum increase in platelets

was significantly lower in the death group than that in the

control group (all p < 0.01). Figure 6E shows that the older

the age, the greater the number of A-alert drugs was used. And

when the patients were younger than 75, the number of A-alert

drugs used in the death group was significantly different from

the control group (all p < 0.05 or p < 0.01). While the patients

were older than 75, the number of B-alert drugs used in the death
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TABLE 3 Performance of model on external validation sets.

Infection ACC AUROC AUPRC

P. aeruginosa 0.88± 0.02 0.94± 0.01 0.94± 0.03

K. pneumoniae 0.85± 0.04 0.91± 0.03 0.92± 0.05

group was significantly different from that of the control group

(Figure 6F, p < 0.01).

Stratified analysis of drug varieties

Figure 7 shows the association between the number of drug

varieties and the maximum increase in creatinine, the maximum

increase in urea, the maximum decrease in respiratory rate,

and the maximum decrease in diastolic blood pressure. The

results in Figures 7C,D show that the higher the number of

intravenous drug varieties, the more significant the maximum

increase was in creatinine and urea (p < 0.01 or p <

0.05). Figure 7E reveals the association between the number

of intravenous drug varieties and the maximum decrease

of respiratory rate. When the number of intravenous drug

varieties was < 7, the maximum decrease of respiratory rate

in the death group was significantly smaller than that of the

control group (p < 0.01). Figure 7F suggests that when the

number of intravenous drug varieties was < 10, the maximum

decrease in diastolic blood pressure in the death group was

statistically significantly different from that of the control group

(all p < 0.01), and close attention should be paid to patients

whose maximum decreases in diastolic blood pressure were

small and the number of intravenous drug varieties was more

than 10.

Discussion

P. aeruginosa infection constitutes a major clinical challenge

(29). Therefore, it is of great significance to predict the risk

factors of mortality for P. aeruginosa in severe patients. In

this study, we assessed the risk factors of 571 patients with

severe infection with P. aeruginosa, such as 338 deaths and 233

cures. A prediction model for mortality risk of P. aeruginosa

in severe patients was established. Compared to some other

machine learning algorithms, the XGBoost model achieved the

best performance in ACC, AUROC, and AUPRC. Furthermore,

in order to indicate the relationship between the clinical

variables and the risk of mortality, the SHAP values were

introduced to evaluated the importance of clinical variables

in predictor.

The most obvious finding to emerge from the analysis above

was that advanced age was one of the mortality risk factors for

P. aeruginosa infection in severe patients, which was consistent

with the results of a previous study (10). Then, the number

of high-alert medication types and intravenous drug types

were risk factors for mortality from P. aeruginosa infection,

which had not been described in previous severe infection

studies. The combination of many drugs is likely to cause some

side effects on patients, and studies have shown that paying

attention to high-risk drugs will greatly reduce hospitalization,

disability, death, and other conditions (30). When the number

of high-alert medication types and intravenous drugs types

is too much, it reminds clinicians to pay more attention to

the medication situation of patients. Timely adjustments of

medication regimen are expected to improve the prognosis

and reduce mortality of patients. Drainage is also a mortality

risk factor for P. aeruginosa infection in severe patients. The

results of this study indicate that patients who have been

drained have a lower risk of mortality than patients who do

not have been drained. This result is in accord with the fact

that drainage is conducive to the timely discharge of purulent

secretions, effusions, blood, and exudates from the wound.

Drainage might possess dual roles in clinical treatment, one

in assessing the condition patients and the other in facilitating

wound healing. For abscess without effective drainage, the

minimum effective concentrations for antimicrobial activity

may not be reached.

In addition, we further stratified to explore the relationships

between the site of infection, age stratification, and the

number of medication species with important variables, laying

the foundation for future variable interaction studies. The

conclusion also verified that the risk of death from blood

culture with P. aeruginosa was higher than other sites, and it

was consistent with our common knowledge. Simultaneously,

with patients’ ages increasing and the higher the number

of intravenous drug varieties used, the number of deaths

showed an increasing trend. It suggested that risk factors

such as advanced age and the number of drug varieties

used need to be actively paid attention to for patients

infected with P. aeruginosa, especially when the age was

greater than 75 and the number of drug species was >

10. These conclusions were preliminary and needed to be

further validated.

This retrospective study still had several limitations.

Firstly, this was a single-center study and, therefore, has

all the limitations inherent in such a study design. The

distribution and characteristics of the clinical data used in this

study could vary among different regions. In future works,

integrating more data and having more precise estimates

are possible. The clinical data from the multi-centric will

help researchers to build more generalization and prospective

prediction models. Future works should be used in elucidate

the diversity of AMP resistance mechanisms in more realistic

clinical settings. In future works, our model should be used

in the multi-centric study or other clinical datasets such

as MIMIC III (31) or a critical care database involving

patients with infection (32). Secondly, our model was built
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FIGURE 5

Stratified analysis of infection sites. (A) Histogram showing the number of P. aeruginosa cultured at di�erent infection sites. (B) Histogram

showing the proportion of P. aeruginosa cultured at di�erent infection sites. (C) Violin plots showing the number of concurrent infections

between di�erent infection sites. (D) Violin plots showing the number of A-Alert drugs between di�erent infection sites.

based on the clinical data from patients with P. aeruginosa

infection. Although it showed some predictive capacity in testing

on clinical data from patients with Klebsiella pneumoniae

infection, it still has significant shortcomings compared to

the performance in P. aeruginosa infection. And it needs

to be improved in future studies to expand the application

of the model. Thirdly, the clinical data used in this study

only included part of structured clinical information. Other

informative data, such as nursing notes and radiology reports

were not used. More detailed clinical data such as drug

dosage or time, mechanical ventilation time and effectiveness

evaluation will provide a new perspective for deep analysis

and interpretation. Finally, since only the correlation rather

than the causal relationship between the predictors and risk
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FIGURE 6

Stratified analysis of age. (A) Histogram showing the number of age stratification. (B) Histogram showing the proportion of age stratification. (C)

Violin plots showing the maximum decrease in respiratory rate between di�erent age stratification. (D) Violin plots showing the maximum

increase in platelets between di�erent age stratification. (E) Violin plots showing the number of A-alert drugs between di�erent age stratification.

(F) Violin plots showing the number of B-alert drugs between di�erent age stratification.
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FIGURE 7

Stratified analysis of intravenous drugs varieties. (A) Histogram showing the number of intravenous drugs varieties stratification. (B) Histogram

showing the proportion of intravenous drugs varieties stratification. (C) Violin plots showing the maximum increase in creatinine between

di�erent intravenous drugs varieties stratification. (D) Violin plots showing the number of maximum increase in urea between di�erent

intravenous drugs varieties stratification. (E) Violin plots showing the maximum decrease in respiratory rate between di�erent medication

varieties stratification. (F) Violin plots showing the maximum decrease in diastolic diastolic blood pressure between di�erent medication varieties

stratification.
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outcome was considered in this study, our conclusions still

required further prospective trials to evaluate. More in-depth

investigation of the causal relationship between the clinical

feature and risk is essential for supporting clinical control

and decision.
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outcome prediction models for
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undergoing continuous renal
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Bo Li, Yan Huo, Kun Zhang, Limin Chang, Haohua Zhang,

Xinrui Wang, Leying Li and Zhenjie Hu*

Intensive Care Unit, Hebei Medical University Fourth A�liated Hospital and Hebei Provincial Tumor

Hospital, Shijiazhuang, China

Object: This study aimed to develop and validate a set of practical predictive

tools that reliably estimate the 28-day prognosis of acute kidney injury patients

undergoing continuous renal replacement therapy.

Methods: The clinical data of acute kidney injury patients undergoing

continuous renal replacement therapy were extracted from the Medical

InformationMart for Intensive Care IV databasewith structured query language

and used as the development cohort. An all-subset regression was used for the

model screening. Predictive models were constructed via a logistic regression,

and external validation of the models was performed using independent

external data.

Results: Clinical prediction models were developed with clinical data from

1,148 patients and validated with data from 121 patients. The predictive model

based on seven predictors (age, vasopressor use, red cell volume distribution

width, lactate, white blood cell count, platelet count, and phosphate) exhibited

good predictive performance, as indicated by a C-index of 0.812 in the

development cohort, 0.811 in the internal validation cohort and 0.768 in the

external validation cohort.

Conclusions: The model reliably predicted the 28-day prognosis of acute

kidney injury patients undergoing continuous renal replacement therapy. The

predictive items are readily available, and the web-based prognostic calculator

(https://libo220284.shinyapps.io/DynNomapp/) can be used as an adjunctive

tool to support the management of patients.

KEYWORDS

acute kidney injury, continuous renal replacement therapy, prediction model,

nomogram, validation
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1. Introduction

Acute kidney injury (AKI) is a critical comorbidity and a

global health problem with high morbidity and high mortality

(1–3). In the intensive care unit (ICU), the morbidity can be as

high as 50% (4). Since there are no specific drugs for AKI, renal

replacement therapy (RRT) plays a major role in treatment (2).

Although there is currently no evidence that continuous RRT

(CRRT) is superior to intermittent RRT (IRRT) (5–7), CRRT

is often preferred for hemodynamically unstable patients (2).

However, among these patients, even with appropriate CRRT,

there is still very high mortality (8), and the cost of treatment

is often high. Thus, it is important to develop reliable tools

that can inform expectations regarding outcomes and decisions

regarding treatment.

Clinical predictive models can estimate the probability of

a patient’s outcome through the statistical implementation of

a series of clinical characteristics of the patient, and may be

helpful for patient management as a decision support tool (9).

Currently, the most widely used outcome prediction models

in the ICU are the Acute Physiology and Chronic Health

Evaluation II (APACHE II) classification system (10) and the

Sepsis-related Organ Failure Assessment (SOFA) score (11).

However, these models do not focus on outcome prediction

in AKI patients undergoing CRRT. Several prediction models

have been published (12, 13), but there are some limitations in

clinical practice, such as improper variable selection strategies,

difficulty of use in clinical settings and a lack of generalizability

to different settings. Therefore, there is an urgent need develop

an easy-to-use predictive tool that supports clinical decision-

making.

We developed and validated outcome prediction models of

AKI patients treated with CRRT.

2. Methods

2.1. Data source

The development cohort included 1148 patients who

were recruited from Medical Information Mart for Intensive

Care IV (MIMIC IV version 1.0) (14, 15). MIMIC IV is a

relational database containing the real information of patients

admitted to the ICUs of Beth Israel Deaconess Medical Center

in Boston, MA, USA, from 2008 to 2019. The principal

investigator completed the Human Research Course (Record

ID: 37097306) and obtained access to this database, and the

project was approved by the institutional review boards of

the Computational Physiology Laboratory of the Massachusetts

Institute of Technology and Beth Israel Deaconess Medical

Center and was granted a waiver of informed consent. All

data were extracted with structured query language (SQL) from

BigQuery.

The validation cohort included 121 patients treated in

the Department of Intensive Care Unit, Fourth Hospital of

Hebei Medical University, Shijiazhuang, China. This study was

approved by the Ethics Committee of the Fourth Hospital of

Hebei Medical University (approval number: 2021KS034).

2.2. Patient involvement

The inclusion criteria in this study were as follows: (1)

AKI patients meeting the KDIGO-AKI criteria; and (2) patients

who received CRRT after diagnosis. Patients younger than

18 years were excluded, and when the same patient were

admitted multiple times, only data for the first admission was

included. In addition, in the validation cohort, patients whose

family members voluntarily stopped treatment within 24 h after

receiving CRRT were also excluded.

2.3. Diagnosis and outcomes

AKI was defined as any of the following Kidney Disease

Improving Global Outcomes (KDIGO) criteria (16): increase in

SCr≥ 0.3mg/dl (≥ 26.5mol/l) within 48 h; increase in SCr≥ 1.5

times baseline, which is known or presumed to have occurred

within the prior 7 days; or a urine volume < 0.5ml/kg/h for 6 h.

The primary outcome was defined as death within 28 days

after receiving CRRT. Patients in the validation cohort whose

family members voluntarily stopped treatment for more than 24

h were considered dead.

2.4. Variable extraction

The following variables were extracted from the relevant

literature and clinical records:

Demographic characteristics: Age (17–21), sex (20, 21),

height, and weight (21).

Comorbidities: Congestive heart failure (CHF) (18),

atrial fibrillation (AF), chronic liver disease (CLD), chronic

obstructive pulmonary disease (COPD), chronic coronary

syndrome (CCS) (18), hypertension, diabetes, and malignant

cancer (18, 19).

Last vital signs within 2 h prior to receiving CRRT: Heart

rate (HR) (18), mean arterial pressure (MAP) (18, 21), and

temperature (T).

Results of the last laboratory test within 24 h prior to

receiving CRRT: White blood cell count (WBC), hemoglobin

(HB) (17, 20), red cell volume distribution width (RDW) (22),

platelet count (PLT) (18, 20, 21), sodium (20), potassium (20),

calcium, phosphate (18, 23, 24), total bilirubin (TBIL) (18,

20, 21), albumin (18, 20, 21), creatinine (18, 21), baseline

creatinine (20, 21), pH (17, 20), oxygenation index (21), base
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excess (20), and lactate (20, 21). Oxygenation index is calculated

by equation PaO2/FiO2.

Interventions 24 h prior to receiving CRRT: Mechanical

ventilation (18, 20, 21), vasopressor use (20, 21), sedative use,

and analgesic use.

Central venous pressure (CVP) (missing rate: 74.7%), mean

platelet volume (25) (missing rate: 100%), troponin (missing

rate: 73.9%), N-terminal pro B type natriuretic peptide (NT-

proBNP) (missing rate: 97.4%), and creatine kinase (missing

rate: 70.2%) were not extracted due to excessive amounts of

missing data (missing rate > 50%), and there appears to be no

evidence of their relationship with prognosis in this group of

patients.

2.5. Handling of missing data

In the development cohort, there were missing data for most

variables. Variables with excessive amounts of missing data were

excluded.We assumed that the data were missing at random and

filled in missing data using multiple imputation with chained

equations. We performed fifty multiple imputations and merged

the dataset into the development dataset. All analyses were

performed with R software (version 4.1.1; R Foundation for

Statistical Computing).

2.6. Model development

Weused aQ-Q plot to assess the normality of the continuous

variables, and cubic spline functions were used to assess the

linearity of the relationship. Continuous variables that did

not conform to normal or linear distributions were converted

to categorical covariates based on their clinical significance.

The continuous variables are expressed as the mean (standard

deviation), and the categorical covariates are reported as

numbers and percentages.

All variables were included in the logistic regression

model, and we added an interaction term between mechanical

ventilation and oxygenation index. The variables were screened

using an all-subset regression, with the best model judged

by adjusting the r-squared and Bayesian information criterion

(BIC). The screened models were tested for multicollinearity by

calculating the variance inflation factor (VIF).

Finally, we used the best model to construct a nomogram

that could provide clinicians with an intuitive and quantitative

tool for predicting the outcomes of AKI patients undergoing

CRRT.

2.7. Model validation

The model discrimination was evaluated with the C-index

and area under the receiver operator characteristic curve (AUC).

The model calibration was evaluated with Brier scores and

calibration plots. Decision curve analysis (DCA) curves were

used to assess the clinical applicability of the model (26, 27).

Internal validation was performed with the enhanced

bootstrap technique, in which regression models were fitted in

1,000 bootstrap replicates, drawn with replacement from the

development cohort. The model was refitted in each bootstrap

replicate and tested using the original sample to estimate

optimism in the model performance. External validation was

performed with the validation cohort.

FIGURE 1

Flow chart of this study.
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TABLE 1 Clinical characteristics of the development cohort.

Overall Survival Death

N 1,148*50 662*50 486*50

Sex (male) [n(%)] 34,800 (60.6) 19,950 (60.3) 14,850 (61.1)

Age [mean (SD)] 63.17 (14.61) 62.60 (14.68) 63.95 (14.48)

BMI [mean (SD)] 31.37 (8.28) 31.02 (8.06) 31.84 (8.56)

CHF [n (%)] 12,150 (21.2) 7,150 (21.6) 5,000 (20.6)

AF [n (%)] 16,200 (28.2) 9,850 (29.8) 6,350 (26.1)

CLD [n (%)] 9,350 (16.3) 4,550 (13.7) 4,800 (19.8)

COPD [n (%)] 7,600 (13.2) 4,300 (13.0) 3,300 (13.6)

CCS [n (%)] 16,200 (28.2) 9,900 (29.9) 6,300 (25.9)

Hypertension [n (%)] 6350 (11.1) 3,100 (9.4) 3,250 (13.4)

Diabetes [n (%)] 23,500 (40.9) 14,950 (45.2) 8,550 (35.2)

Malignant cancer [n (%)] 7,650 (13.3) 3600 (10.9) 4,050 (16.7)

MAP (mmHg) [mean (SD)] 73.71 (13.79) 75.83 (14.13) 70.83 (12.76)

HR (bpm) [mean (SD)] 88.66 (19.44) 85.79 (19.17) 92.56 (19.11)

Temperature (◦C) [n (%)]

<36.0 7,210 (12.6) 3515 (10.6) 3695 (15.2)

[36.0, 37.5] 41,331 (72.0) 24,776 (74.9) 16,555 (68.1)

[37.5, 38.0] 4,330 (7.5) 2,368 (7.2) 1,962 (8.1)

≥38.0 4,529 (7.9) 2441 (7.4) 2,088 (8.6)

WBC (∗109/L) [n(%)]

<4.0 2,535 (4.4) 1,120 (3.4) 1,415 (5.8)

[4.0, 10.0] 17,198 (30.0) 12,220 (36.9) 4,978 (20.5)

[10.0, 40.0] 36,139 (63.0) 19,188 (58.0) 16,951 (69.8)

≥40.0 1528 (2.7) 572 (1.7) 956 (3.9)

Hemoglobin (g/dL) [mean (SD)] 9.29 (1.75) 9.31 (1.72) 9.26 (1.78)

RDW (%) [mean (SD)] 17.05 (2.67) 16.67 (2.34) 17.57 (2.99)

PLT (∗109/L) [n(%)]

>150 24,543 (42.8) 16,170 (48.9) 8,373 (34.5)

≤150 11,659 (20.3) 7,170 (21.7) 4,489 (18.5)

≤100 14,989 (26.1) 7,372 (22.3) 7,617 (31.3)

≤50 6209 (10.8) 2,388 (7.2) 3821 (15.7)

Sodium (mmol/L) [n(%)]

<135.0 19,410 (33.8) 11,644 (35.2) 7,766 (32.0)

[135.0,145.0] 33,517 (58.4) 20,001 (60.4) 13,516 (55.6)

>145.0 4473 (7.8) 1455 (4.4) 3,018 (12.4)

Potassium (mmol/L) [mean (SD)] 4.77 (0.97) 4.70 (0.94) 4.87 (1.00)

Calcium (mmol/L) [n(%)]

<2.25 45,339 (79.0) 26,116 (78.9) 19,223 (79.1)

[2.25, 2.75] 11,499 (20.0) 6,674 (20.2) 4,825 (19.9)

>2.75 562 (1.0) 310 (0.9) 252 (1.0)

Phosphate (mmol/L) [mean (SD)] 2.08 (0.79) 1.95 (0.75) 2.26 (0.82)

Total bilirubin ≥ 17.1 µmol/L [n(%)] 36,292 (63.2) 19,085 (57.7) 17,207 (70.8)

Albumin (g/dL) [mean(SD)] 2.91 (0.73) 2.98 (0.71) 2.82 (0.74)

Creatinine/Baseline creatinine [n(%)]

<1.5 4,578 (8.0) 3,363 (10.2) 1,215 (5.0)

≥1.5 5,527 (9.6) 3,653 (11.0) 1,874 (7.7)

≥2.0 12,982 (22.6) 7,150 (21.6) 5,832 (24.0)

(Continued)

TABLE 1 Continued

Overall Survival Death

≥3.0 34,313 (59.8) 18,934 (57.2) 15,379 (63.3)

pH [mean (SD)] 7.31 (0.11) 7.34 (0.10) 7.28 (0.12)

Oxygenation index [n (%)]

≤100 6,409 (11.2) 3,086 (9.3) 3323 (13.7)

[100, 200] 22,440 (39.1) 12,171 (36.8) 10,269 (42.3)

[200, 300] 18,407 (32.1) 11,345 (34.3) 7,062 (29.1)

>300 10,144 (17.7) 6498 (19.6) 3646 (15.0)

Base excess (mmol/L) [mean (SD)] −5.48 (6.38) −3.89 (5.67) −7.64 (6.65)

Lactate (mmol/L) [mean (SD)] 3.93 (4.27) 2.54 (2.61) 5.83 (5.25)

Mechanical ventilation use [n (%)] 18,250 (31.8) 9,500 (28.7) 8,750 (36.0)

Vasopressor use [n (%)] 34,900 (60.8) 15,200 (45.9) 19,700 (81.1)

Sedative use [n (%)] 38,800 (67.6) 20,600 (62.2) 18,200 (74.9)

Analgesic use [n (%)] 42,900 (74.7) 22,700 (68.6) 20,200 (83.1)

*BMI, bodymass index; CHF, congestive heart failure; AF, atrial fibrillation; CLD, chronic

liver disease; COPD, chronic obstructive pulmonary disease; CCS, chronic coronary

syndromes; MAP, mean arterial pressure; HR, heart rate; WBC, white blood cells count;

RDW, red cell volume distribution width; PLT, platelet count.

3. Results

3.1. Model development

In total 1,148 patients from the MIMIC IV database were

eventually included in our study (Figure 1). The 50 datasets

obtained by multiple imputation techniques were merged into

the final development cohort (Table 1). The best models were

screened by adjusting the r-squared value and BIC (Figure 2).

The VIFs of the screened variables were all <5. Seven

variables (age, vasopressor use, RDW, lactate, WBC, PLT, and

phosphate) were finally included in our model, which was used

to plot the nomogram (Figure 3) and make the web-based

prognostic calculator (Figure 4, https://libo220284.shinyapps.io/

DynNomapp/).

The predictive performance of our model as measured

by the C-index was 0.812 (Table 2 and Figure 5A) in the

development cohort, indicating that the model had relatively

good discriminative capacity. Our model showed high

agreement between the actual and predicted probabilities in

the development cohort, with a Brier score of 0.173 (Table 2

and Figure 5B). In addition, the DCA curve demonstrated

that our model was clinically useful in the development cohort

(Figures 5C,D).

3.2. Internal validation

Our model also achieved good internal validation

performance after 1,000 bootstrap replicates, with a C-index of

0.811 and a Brier score of 0.173 (Table 2).
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FIGURE 2

All-subsets regression by adjusting the r-squared value (A) and BIC (B).

3.3. External validation

In total 121 patients were eventually included in the

external validation cohort (Table 3 and Figure 1). The predictive

performance of the nomogram as measured by the C-

index was 0.768 (Table 2 and Figure 6A) in the external

validation cohort, indicating that the model had relatively

good discriminative capacity and generalizability in different

settings. The nomogram also showed acceptable agreement

between the actual and predicted probabilities in the external

validation cohort, with a Brier score of 0.202 (Table 2

and Figure 6B). In addition, the DCA curve demonstrated
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FIGURE 3

The nomogram for acute kidney injury patients undergoing continuous renal replacement therapy.

FIGURE 4

The web-based prognostic calculator.

that our model was clinically useful in different settings

(Figures 6C,D).

4. Discussion

AKI is common in the ICU, and although a subset of small

studies has shown that preventive measures, and the rapid

identification of AKI can lead to improved outcomes (28–30),

patients entering the ICU often already have AKI, thus in clinical

practice in the ICU, ICU physicians tend to focus more on the

treatment and prognosis of AKI than on the prevention and

diagnosis of AKI.

TABLE 2 The performance in model development, internal validation,

and external validation.

C-index Brier score

Development 0.812 0.173

Internal validation 0.811 0.173

External validation 0.768 0.202

CRRT plays an important role in the management of AKI

in the ICU. Since not all patients with AKI ultimately benefit

from CRRT, patients, their relatives and clinicians need reliable
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FIGURE 5

The receiver operator characteristic curve (A), calibration plots (B), decision curve analysis curves (C), and clinical impact curve (D) for model in

the development cohort.

information regarding prognosis such that they can effectively

participate in shared decision-making. This is important because

they are unlikely to rely solely on clinician experience and

intuition when making treatment decisions.

With the widespread use of electronic medical record

systems in clinical settings, “big data” and clinical medicine are

becoming inseparable. From the perspectives of volume, speed,

and diversity, the ICU is a wonderful combination of “big data”

and clinical medicine (31). In such an era of big data, the organic

combination of medical informatics and big data analytics

provides a fertile new ground for analyzing the management

of AKI (32, 33). Prediction tools provide an opportunity to

improve AKI management in the era of big data.

Numerous predictive models of acute kidney injury are

available (34), but few models are available for patients with

AKI who are receiving CRRT (18, 35–37). Therefore, we aimed

to obtain a reliable tool to predict the 28-day mortality in this

group of patients. It is essential to clarify that although the use
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TABLE 3 The predictor items of external validation cohort.

Overall Survival Death

N 121 63 58

Age [mean (SD)] 62.56 (14.79) 57.32 (14.18) 68.26 (13.36)

Vasopressor use [n (%)] 88 (72.7) 36 (57.1) 52 (89.7)

RDW (%) [median [IQR]] 14.90 [13.90, 16.20] 14.50 [13.70, 15.35] 15.60 [14.60, 17.12]

Lactate (mmol/L) [mean (SD)] 3.80 (3.83) 2.89 (2.43) 4.79 (4.74)

WBC (∗109/L) [n (%)]

<4.0 4 (3.3) 2 (3.2) 2 (3.4)

[4.0, 10.0] 28 (23.1) 17 (27.0) 11 (19.0)

[10.0, 40.0] 87 (71.9) 42 (66.7) 45 (77.6)

≥40.0 2 (1.7) 2 (3.2) 0 (0.0)

PLT (∗109/L) [n (%)]

>150 53 (43.8) 30 (47.6) 23 (39.7)

≤150 24 (19.8) 11 (17.5) 13 (22.4)

≤100 23 (19.0) 13 (20.6) 10 (17.2)

≤50 21 (17.4) 9 (14.3) 12 (20.7)

Phosphate (mmol/L) [mean (SD)] 1.69 (0.70) 1.59 (0.68) 1.81 (0.71)

*RDW, red cell volume distribution width; WBC, white blood cells count; PLT, platelet count.

of Major Adverse Kidney Events (MAKE) has been suggested as

a composite endpoint for such studies (38). Such a composite

endpoint was also used in the SEA-MAKE score developed by

Sukmark et al. (39). Twenty-eight day mortality was chosen as

the single endpoint in this study. The primary considerations

are as follows: First, the significant advantage of the composite

endpoints is that it increases the number of events, but in

patients with AKI undergoing CRRT, mortality would have been

high enough and a better solution might have been to use

a multivariate outcome with different outcomes, but due to

the limitations of the study, this issue needs to be considered

in future studies. Second, we did not know which predictors

contributed to each component of the composite outcomes.

Finally, even with the current definition of MAKE, death is

still the most serious and important outcome of a concern.

Therefore, mortality was ultimately chosen as the outcome

variable in this study.

Ultimately, the prediction models performed robustly in

a validation cohort from different geographical regions, time

periods, and settings of care. The predictors in our model are

readily available, and the nomogram and web-based prognostic

calculator could facilitate clinical adoption.

4.1. Comparison with previous studies

Several prediction models of the outcome of AKI patients

with CRRT have been developed, although their clinical use is

rare.

Kim et al. (12) developed the MOSAIC model for patients

with AKI undergoing CRRT. Unfortunately, this model only

incorporated APACHE II outcomes and SOFA scores, and

although these data were extremely accessible, they did not

consider several other indicators that have predictive value and

are readily available. A study by Oh et al. (22) showed that RDW

was an independent predictor of the 28-day mortality in patients

with AKI receiving CRRT. Phosphate reflected disease severity

and predictedmortality in AKI patients undergoing CRRT in the

studies by Jung et al. (23, 24). Both RDW and phosphate were

included in our study. In addition, we considered additional

comorbidities and laboratory indicators.

Machine learning algorithms have also been applied to

predict outcomes in AKI patients undergoing CRRT (13).

Machine learning algorithms appear to provide better predictive

performance than traditional models, but their hard-to-interpret

nature may also lead to overestimation of model accuracy and

exaggeration of actual performance (40). We chose the more

robust logistic regression model in our study. Our model did not

perform worse than machine learning algorithms.

The HELENICC score is an excellent model for predicting

mortality in patients with sepsis-related AKI undergoing

CRRT (41), but not all patients with AKI undergoing CRRT have

sepsis, and we hope that our model will be useful for clinical

decision making in a larger number of patients with AKI.

The greatest advantage of this study over previous studies

is that the external validation was based on completely

independent data, and good model performance was achieved.

This finding demonstrates the good generalizability of our

model.
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FIGURE 6

The receiver operator characteristic curve (A), calibration plots (B), decision curve analysis curves (C), and clinical impact curve (D) for model in

the validation cohort.

4.2. Implications for clinical practice

As statistician Professor Efron stated, in the absence of

genius-level insight, statistical estimation theory is intended as

an instrument for peering through noisy data and discerning

a smooth underlying truth (42). Our models are not

solely designed to predict patient outcomes but to offer new

possibilities for clinicians and patient families to participate in

shared decision-making regarding patient care.

We were able to quickly assess the risk of patient death

with the nomogram and web-based prognostic calculator in this

study, but some challenges exist.

On the one hand, although ICU physicians readily accept

data-driven advice in their interactions with smart devices and

the Internet, they remain cautious regarding the advice such

technology provides in clinical decision-making (43). Even when

models conclude that some AKI patients will not be able to

reverse their deterioration even with CRRT, ICU physicians
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still prefer to treat them to the fullest. Physicians are always

concerned that they are doing too little, and sometimes they

are willing to do more than resuscitation interventions knowing

that a treatment does not fundamentally change the patient’s

outcome (44). Using such technologies in clinical work must

provide actionable information for the right patient at the right

time. For example, outcomes can be predictive information

to help clinicians make clinical decisions with some basis

of reference. In addition, many factors that influence clinical

decisions, including clinical, social, and personal factors, are not

necessarily reflected in the digital record, thus any predictive

results need to be evaluated, interpreted, and fleshed out by

the clinician before any action is taken. Therefore, it is still

the clinician who makes the final decision. Of course, this also

requires critical care physicians to have some ability to interpret

and use these results (43).

On the other hand, no medical practice is immune to ethical

considerations, and the application of these technologies to the

management of critically ill patients is fundamentally a medical

practice for patients. This also requires compliance with medical

ethical requirements.

It is important to emphasize that the inappropriate use of

these technologies can cause harm to patients (45). Therefore,

we must be cautious and ensure that it can be reasonably and

safely tested and used in critically ill patients (46).

4.3. Weaknesses of the study

There are potential limitations in our study.

First, missing data are unavoidable in retrospective studies.

Rather than excluding all patients with missing data from the

analysis, we used multiple imputation to reduce the impact

of missing data. With theoretical and empirical evidence of

the technique’s superiority to traditional complete case analysis,

multiple interpolation has become widely accepted and is

increasingly used (47, 48).

Second, because our development cohort was derived from

the MIMIC-IV database, variables with significant predictive

value that are easily accessible, such as the mean platelet

volume and some widely reported biomarkers, were not

included in our study. Han et al. (25) showed that the mean

platelet volume may be an inexpensive and useful predictor

of the 28-day all-cause mortality in AKI patients requiring

CRRT. The predictive value of biomarkers such as tissue

inhibitor metalloproteinase-2 (TIMP-2), insulin-like growth

factor-binding protein 7 (IGFBP7) and neutrophil gelatinase-

associated lipocalin (NGAL) has also been widely reported (49,

50). Unfortunately, these variables were not available in the

MIMIC-IV database. These variables may need to be considered

in future model updates.

Finally, our model seems to underestimate the mortality

rate of patients. However, the performance during model

development, internal validation, and external validation was

in the acceptable range. Importantly, our validation cohort was

completely independent of the development cohort in both time

and space.

5. Conclusion

The prediction model we developed based on data

from 1,148 patients from the MIMIC IV database reliably

estimated outcomes in a fully independent validation

cohort containing data from 121 patients. The predictor

items are readily available, and the nomogram and the

web-based prognostic calculator offer new possibilities for

shared clinical decision-making between clinicians and

patient families.
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Group-based trajectory analysis
of acute pain after spine surgery
and risk factors for rebound pain
Yi-Shiuan Li1,2†, Kuang-Yi Chang1,2†, Shih-Pin Lin1,2,
Ming-Chau Chang2,3 and Wen-Kuei Chang1,2*
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Background: This retrospective study was designed to explore the types of

postoperative pain trajectories and their associated factors after spine surgery.

Materials and methods: This study was conducted in a single medical center,

and patients undergoing spine surgery with intravenous patient-controlled

analgesia (IVPCA) for postoperative pain control between 2016 and 2018 were

included in the analysis. Maximal pain scores were recorded daily in the first

postoperative week, and group-based trajectory analysis was used to classify

the variations in pain intensity over time and investigate predictors of rebound

pain after the end of IVPCA. The relationships between the postoperative pain

trajectories and the amount of morphine consumption or length of hospital

stay (LOS) after surgery were also evaluated.

Results: A total of 3761 pain scores among 547 patients were included in

the analyses and two major patterns of postoperative pain trajectories were

identified: Group 1 with mild pain trajectory (87.39%) and Group 2 with

rebound pain trajectory (12.61%). The identified risk factors of the rebound

pain trajectory were age less than 65 years (odds ratio [OR]: 1.89; 95% CI:

1.12–3.20), female sex (OR: 2.28; 95% CI: 1.24–4.19), and moderate to severe

pain noted immediately after surgery (OR: 3.44; 95% CI: 1.65–7.15). Group 2

also tended to have more morphine consumption (p < 0.001) and a longer

length of hospital stay (p < 0.001) than Group 1.

Conclusion: The group-based trajectory analysis of postoperative pain

provides insight into the patterns of pain resolution and helps to identify

unusual courses. More aggressive pain management should be considered

in patients with a higher risk for rebound pain after the end of IVPCA

for spine surgery.

KEYWORDS

group-based trajectory analysis, spine surgery, patient-controlled analgesia (PCA),
rebound pain, multimodal analgesia (MMA)
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Introduction

The indications for spine surgeries vary from herniated
disks, spondylolisthesis, fractures, and tumors to scoliosis
correction surgeries, and most of these patients need
decompression and spine fusion surgeries. As the
knowledge of spinal biomechanics, imaging diagnostics,
and medical technology is improving over time, the
complexity and diversity of spine surgery are increasing
as well (1). Although these complex surgeries may benefit
those suffering from spinal disease (2, 3), intense pain
following the procedures, especially in the immediate
and early postoperative period (4–6), often results in
clinical problems such as delayed recovery induced
by a reduction in patient mobility (7–9). As a result,
effective postoperative pain control is of paramount
importance and has been connected with better surgical
outcomes (10, 11), reduced length of hospital stays
(LOSs) (10, 11), lower incidence of chronic postsurgical
pain (12), and decreased opioid dependence (7, 13).
However, how to well control acute pain after spine
surgery remains a major challenge for clinicians (1, 6, 7,
14, 15).

Intravenous patient-controlled analgesia (IVPCA) is a
common and effective method to relieve acute pain after
spine surgery (16–18) and it optimizes the delivery of
analgesics and minimizes the interindividual variability in
pharmacokinetics and pharmacodynamics (19). While some
studies emphasized the importance of multimodal analgesia
in spine surgery (1, 6, 14), IVPCA remains the gold
standard for postoperative pain control for spine surgery
worldwide (15–18). In addition, IVPCA provides better
analgesia after spine surgery than conventional as-needed
analgesic regimens do and improves patient satisfaction
in the early postoperative days as well (20). However,
moderate to severe rebound pain after the discontinuation
of IVPCA was noted in other types of surgeries (21),
and it is not clear whether this phenomenon also exists
in patients receiving IVPCA for pain control after spine
surgery. Accordingly, we hypothesized that some patients
undergoing spine surgery were at risk of having rebound
pain after the end of IVPCA and that there were risk
factors associated with the development of rebound pain
and designed this retrospective study to investigate these
issues. The group-based trajectory analysis was used to
classify the variations in postoperative pain scores over time
and identify patients with rebound pain after discontinuing
IVPCA. The risk factors of rebound pain were also explored,
and the influence of rebound pain trajectory on the total
amount of IVPCA consumption and LOS after surgery were
evaluated as well.

Materials and methods

The inclusion and exclusion criteria

This study was approved by the Institutional Review Board
of Taipei Veterans General Hospital, Taipei, Taiwan (IRB-
TPEVGH no. 2020-01-003AC). Written informed consent was
waived and all the included patients were de-identified before
analysis. We carefully reviewed the electronic medical records
of patients receiving spine surgery and postoperative IVPCA for
postoperative pain control in our hospital from January 2016
to December 2018 and collected all records. Those with severe
postoperative complications, less than three pain assessments
in the first postoperative week, IVPCA use of fewer than 48 h,
age < 20 years old, staged surgery, re-operation, or missing key
data, such as operation records, were excluded from the analysis.

Anesthesia method and pain
management

In this study, all patients were administered general
anesthesia with fentanyl (2–3 µg/kg) followed by propofol
(1–2 mg/kg) and cisatracurium (0.2 mg/kg) or rocuronium
(0.8 mg/kg) for induction. After endotracheal intubation,
general anesthesia was maintained using desflurane or
sevoflurane with the aforementioned neuromuscular blocking
agents. Toward the end of the surgery, the inhalation agent
was tapered off and the residual neuromuscular block was
reversed with neostigmine and atropine. All patients were
transferred to our post-anesthesia care unit where an infusion
pump for IVPCA was connected to the patients with a loading
dose of morphine of 2–4 mg and a bolus dose of 1 mg. No
adjunct analgesics, such as acetaminophen and non-steroidal
anti-inflammatory drugs, were administered with IVPCA. After
the discontinuation of IVPCA on the fourth postoperative day
(POD 4), pain management was shifted to oral medications,
including Ultracet (acetaminophen 325 mg + tramadol 37.5 mg)
every 6 h and 25 mg diclofenac every 8 h as needed.

Data collection and endpoints

After surgery, patient-reported pain scores on a numeric
rating scale (NRS) from 0 to 10 for no pain to the worst pain
were recorded by the nurses in charge at least one time per day.
Postoperative maximal daily pain scores were collected in series
and used in the trajectory analyses. Patient attributes, such as
age, sex, body mass index (BMI), and comorbidities, surgical
features, such as surgical time and blood loss, PCA pump
settings, and LOS after surgery were collected. The primary
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endpoint was the patterns of postoperative pain trajectories,
and the secondary endpoints were the total amount of PCA
consumption and LOS after surgery.

Statistical analysis

Group-based trajectory analysis was employed to categorize
the variations in postoperative pain over time and the technical
details refer to Jones et al. (22). The numbers and features
of postoperative trajectories were decided by comparing the
Bayesian information criteria of different models and examining
the generated trajectories and estimated parameters (23, 24).
Two main patterns of pain trajectories were identified, and
we compared patient characteristics between the two groups
with the Student’s t-test, the Mann–Whitney U–tests, or the
chi-squared tests as appropriate. The relationships between the
types of postoperative pain trajectories and collected variables
were evaluated and presented as odds ratios (OR) with 95%
confidence intervals (CI) as well. Backward model selection
with an exit criterion of significance level greater than 0.05
was performed to determine the final model for the prediction
of postoperative pain trajectories. In addition, a simplified
risk scoring system was developed to predict a rebound
pain trajectory after the discontinuation of IVPCA for spine
surgery. The area under the receiver operating characteristic
(ROC) curve (AUC) was used to assess the predictive power
of the final model and the simplified risk scoring system.
Besides, linear backward regression analysis with an exit
significance level of 0.05 was used to select independent
predictors of total morphine consumption and log-transformed
LOS after surgery. The adjusted association between the types
of pain trajectories and total morphine consumption or LOS
was also evaluated after the final predictive models were
determined. A p-value less than 0.05 was considered statistically
significant in this study. All the analyses were conducted
using SAS software, version 9.4 (SAS Institute Inc., Cary,
NC, United States).

Results

Analysis of postoperative pain
trajectories

There were 547 patients with a pain score of 3,761 included
in the analysis, and the average maximal pain scores on the
first five PODs ranged between 2.98 and 3.33 (Figure 1, blue
line). The mean morphine consumption was 52.6 mg and the
median LOS was 7 days. The two postoperative pain trajectory
groups were identified after the analysis: Group 1 with a mild
pain trajectory (87.4%) and Group 2 (12.6%) with a rebound
pain trajectory after the end of IVPCA (Figure 1, black line and

Postoperative day
0 1 2 3 4 5

S
R

N

3

4

5

6
Group 1, predicted
Group 2, predicted
Group 1, observed
Group 2, observed
Overall, observed

FIGURE 1

Observed and predicted maximal daily pain scores during the
first postoperative week were stratified by distinct pain
trajectories after spine surgery. NRS, a numeric rating scale for
pain intensity. Solid blue line: observed overall pain scores
during the first postoperative week; solid black line: observed
pain scores of the mild pain trajectory group; solid red line:
observed pain scores of the rebound pain trajectory group;
dashed black line: predicted pain scores with their 95%
confidence interval (CI) for the mild pain trajectory group; and
dashed red line: predicted pain scores with their 95% confidence
interval for the rebound pain trajectory group.

TABLE 1 Comparisons of patient characteristics between the two
postoperative pain trajectory groups after spine surgery.

Group 1 Group 2
(n = 478) (n = 69) p

Age ≤ 65 years 189 (39.5%) 38 (55.1%) 0.011

Sex (women) 291 (60.9%) 52 (75.4%) 0.013

Height (cm) 157.8± 9.1 155.9± 8.4 0.096

Weight (kg) 67.3± 14.6 63.7± 11.8 0.045

Body mass index ≥ 25 kg/m2 303 (63.4%) 42 (60.9%) 0.390

ASA physical status ≥ 3 155 (32.4%) 21 (30.4%) 0.428

Creatinine (mg/dl) 0.89 (0.77–1.07) 0.84 (0.73–1.13) 0.388

Maximal NRS before surgery 2.69± 1.02 2.86± 1.25 0.230

Surgical time > 3.5 h 235 (49.2%) 39 (56.5%) 0.155

Surgical blood loss ≥ 500 ml 219 (45.8%) 29 (42.0%) 0.323

Spine segment involved 3 (2–4) 3 (2–4) 0.503

Instrumentation 411 (86.0%) 60 (87.0%) 0.501

Spine involved

Thoracic 49 (10.3%) 11 (15.9%) 0.116

Lumbar 458 (95.8%) 63 (91.3%) 0.095

Sacral 121 (25.3%) 16 (23.2%) 0.415

Total IVPCA consumption (ml) 50.13± 26.52 69.50± 42.55 <0.001

Length of hospital stay days 7 (6–9) 8 (8–12) <0.001

Values are mean + SD, count (%) or median (IQR).
IVPCA, intravenous patient-controlled analgesia; ASA, American Society of
Anesthesiologists; NRS, a numeric rating scale for pain intensity.

red line, respectively). Table 1 shows the comparisons of patient
attributes and no significant differences in the surgical features
were found between the two groups. However, significant

Frontiers in Medicine 03 frontiersin.org

85

https://doi.org/10.3389/fmed.2022.907126
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-907126 August 16, 2022 Time: 15:58 # 4

Li et al. 10.3389/fmed.2022.907126

differences in the distributions of age, sex, and body weight were
noted between those with rebound pain and their counterparts
without it. Moreover, patients in Group 2 also tended to have
more morphine consumption and longer LOS after surgery
(both p < 0.001).

Factors associated with rebound pain
trajectory after the end of intravenous
patient-controlled analgesia

After the group-based trajectory analysis, we identified
three factors associated with the rebound pain trajectory,
such as age ≤ 65 years (adjusted OR: 1.89, 95%, CI:
1.12–3.20), female sex (OR: 2.28, 95% CI: 1.24–4.19),
and moderate to severe pain (NRS ≥ 4) on POD 0
(OR: 3.44, 95% CI: 1.65–7.15; Table 2). Surgical features
and other patient characteristics were not related to the
rebound pain trajectory. Moreover, a simplified risk scoring
system for predicting rebound pain trajectory after the
discontinuation of IVPCA could be developed as the following
formula:

Risk score = 1 ∗ (age ≤ 65 years = 1, > 65 = 0) + 1∗

(female = 1, male = 0) + 2 ∗ (Moderate to severe pain on

POD 0 = 1, no to mild pain = 0)

Figure 2 illustrates the estimated probabilities of rebound
pain trajectory at distinct risk scores. The risk of developing
rebound pain after the end of IVPCA ranged from 5.6 to 42.4%
for patients with no to all three risk factors. Figure 3 depicts
the ROC curves of the original model and a simplified scoring
system. The predictive power of the two models assessed by
areas under ROC curves was similar (0.64).

Predictors of total morphine
consumption after surgery

After the backward model selection processes,
five independent predictors of increased morphine

TABLE 2 Risk factors of rebound pain trajectory after the
discontinuation of IVPCA following spine surgery.

β SE (β ) OR 95% CI p Simplified
risk score

Age ≤ 65 vs. > 65 0.64 0.27 1.89 1.12∼3.20 0.018 1

Sex (women vs. men) 0.82 0.31 2.28 1.24∼4.19 0.008 1

NRS ≥ 4 on POD 0 1.23 0.37 3.44 1.65∼7.15 0.001 2

OR, odds ratio; CI, confidence interval; NRS, a numeric rating scale for pain intensity
after surgery; POD, postoperative day.
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FIGURE 2

Predicted probability of the rebound pain trajectory for the
simplified risk scoring systems after the discontinuation of
intravenous patient-controlled analgesia (IVPCA) for spine
surgery. The probability of developing rebound pain after the
end of IVPCA for spine surgery increased gradually from 5.6% for
the simplified score of 0–42.4% for the score of 4.
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FIGURE 3

A receiver operating characteristic (ROC) curve analysis of
predictive power for the selected model and the simplified risk
scoring system for the rebound pain trajectory. AUC, area under
ROC curve.

consumption were identified, such as age ≤ 65, male sex
(both p < 0.001), greater preoperative pain (p = 0.001),
more spine segment involved (p = 0.009), and rebound
pain trajectory (p < 0.001; Table 3). On average,
those with the rebound pain trajectory consumed
17.9 mg more morphine during their IVPCA course
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TABLE 3 Predictors of total IVPCA consumption after spine surgery.

β SE Std β p

Pain trajectory (Group 2 vs. Group 1) 17.93 3.59 0.20 <0.001

Age (≤65 vs. > 65 years) 13.36 2.45 −0.22 <0.001

Sex (women vs. men) −9.61 2.46 −0.16 <0.001

NRS on POD 0 3.64 1.12 0.13 0.001

Spine segment involved 2.42 0.92 0.11 0.009

Constant 33.45 4.81 − <0.001

β, regression coefficients; SE, standard error; std β, standardized regression coefficients;
Group 1, mild pain trajectory; Group 2, rebound pain trajectory; IVPCA, intravenous
patient-controlled analgesia; NRS, a numeric rating scale for pain intensity after surgery;
POD, postoperative day.

after controlling for the effects of other predictors in
the final model.

Factors related to length of hospital
stays after surgery

There were six factors associated with LOS after
surgery, such as surgical time, lumbar spine involved,
preoperative pain (all p < 0.001), American Society of
Anesthesiologists (ASA) physical status (p = 0.005), spine
segment involved (p = 0.014), and rebound pain trajectory
(Table 4). On average, patients with the postoperative
rebound pain trajectory tended to stay 17.2% longer
in hospital (p = 0.001) than those with normal pain
resolution after the adjustment for the other selected
predictors in the model.

Discussion

This is the first study to describe the phenomenon of
rebound pain after the discontinuation of IVPCA for spine
surgery. Although Nicholson et al. (25) used “rebound pain”
to describe the increase in pain score between 8 and 24 h
after surgery in a patient still “receiving PCA,” this is totally
different from our findings. Approximately one-eighth of the
target population experienced this unpleasant journey after
the end of IVPCA. With the aid of group-based trajectory
analysis, patients with abnormal pain resolution after spine
surgery could be recognized and the associated factors could
be identified. Regional anesthesia (RA), such as short-lasting
spinal anesthesia and peripheral nerve blocks, is widely
used in various surgery due to effective pain relief in the
early postoperative phase. However, severe pain was noted
in up to 40% of patients when the RA wears off, and this
phenomenon is known as “rebound pain” (26). Recently,
rebound pain was also observed in patients receiving epidural
analgesia for video-assisted thoracoscopic surgery (21).

TABLE 4 Factors associated with length of hospital stay (LOS)*
after spine surgery.

β SE Std β p exp(β )

Pain trajectory (Group 2 vs. Group 1) 0.16 0.05 0.13 0.001 1.172

Surgical time > 3.5 h 0.19 0.03 0.22 <0.001 1.204

Lumbar spine involved −0.42 0.08 −0.21 <0.001 0.660

Maximal NRS before surgery 0.06 0.02 0.14 <0.001 1.058

ASA physical status ≥3 0.10 0.04 0.11 0.005 1.106

Spine segment involved 0.03 0.01 0.10 0.014 1.034

Constant 2.10 0.10 <0.001 8.144

*Length of hospital stay is log-transformed in the analysis.
β, regression coefficients; SE, standard error of regression coefficients; std β, standardized
regression coefficients; exp(β), exponentiated regression coefficients; Group 1, mild
pain trajectory; Group 2, rebound pain trajectory; ASA, American Society of
Anesthesiologists; IVPCA, intravenous patient-controlled analgesia; NRS, a numeric
rating scale for pain intensity.

All these aforementioned rebound pain phenomena were
developed after the transition from an effective analgesic
intervention to other routine pain management. These
findings highlight the importance of analgesic transition
and the necessity of early identification and intervention.
Our study provides important clues for clinicians to early
detect high-risk patients, and thus, preventive strategies
could be initiated in advance to refine the quality of
postoperative care and pain management following spine
surgery (27).

Several risk factors of rebound pain were identified in
this study and among them, younger age (28–31) and female
sex (28–30, 32) were associated with analgesic consumption.
These two non-modifiable factors were identified as risk factors
in rebound pain development in other studies as well (21,
27). In addition, some previous studies revealed that younger
age (28–31), female sex (28–30, 32), preoperative NRS (30,
33), and the number of spine segments involvement (4, 34)
were associated with higher postoperative pain scores and
more analgesic consumption. Although preoperative pain has
been proposed as a risk factor for inferior postoperative
pain control and more morphine consumption in a previous
study (33), our study demonstrated that the postoperative
pain on POD 0, rather than the preoperative pain, was an
independent predictor of rebound pain trajectory after the
end of IVPCA for spine surgery. The discrepancy might
result from the difference in outcomes of interest and study
population since we focused on the rebound pain trajectory
after the end of IVPCA for spine surgery instead of general
pain scores observed after surgery. Since the IVPCA remains
the gold standard for postoperative pain control in complex
spine surgery, the prediction of rebound pain in advance is
of paramount importance. In spite of the efforts which have
been made to evaluate the effects of surgical time and blood
loss and the complexity of the surgery, such as procedure
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types and the number of spine segments involved, none of
these factors were significantly associated with rebound pain
trajectory. A more comprehensive classification of spine surgery
might be considered in future studies.

In this study, we used group-based trajectory analysis to
model the variations in pain intensity over time and identify
distinct patterns of postoperative pain trajectories and their
associated factors. Similar to clinical decision-making, this
approach directly focuses on postoperative pain observations.
Patient characteristics were not involved in the group
classification processes but evaluated post hoc to avoid
untoward interference in trajectory recognition. In addition,
the group-based trajectory analysis has a great advantage
in handling missing data, which is commonly observed in
retrospective studies (35). Furthermore, a simplified risk
scoring system was developed based on the estimated results
of group-based trajectory analysis. The risk of developing
rebound pain after the end of IVPCA could be easily assessed
with the help of this system. Among the three risk factors,
moderate to severe pain noted immediately after spine surgery
despite IVPCA in use should be regarded as an early sign of
possible rebound pain after the transition from IVPCA to other
analgesic modalities. Once moderate to severe pain is noted
after surgery, more aggressive multimodal pain management
should be considered to reduce the risk of rebound pain after
the end of IVPCA. This scoring system has great potential
to be applied in clinical practice to prevent rebound pain
after the discontinuation of IVPCA (36, 37) and improve
pain control quality following spine surgery. For example, a
70-year-old male patient who is satisfied with IVPCA had no
to mild pain on POD 0 after spine surgery, and the simplified
risk score of rebound pain is 0; while a 60-year-old female
patient who has moderate to severe pain on POD 0 under
IVPCA management had the simplified risk score of rebound
pain of 4. The probability of developing rebound pain (group
2) after the end of IVPCA in these two patients would be
5.6 and 42.4%, respectively. The clinicians should introduce
more vigorous pain management, such as prolonged PCA
duration or multiple model pain management control to
prevent or manage the rebound pain afterward. However, its
validity and clinical utility of this risk scoring system await
further investigation.

There were some limitations to our study. First, the
impacts of unobserved variables on the patterns of variations
in postoperative pain scores over time could not be further
evaluated and more covariates should be included in future
studies for better prediction of the rebound pain trajectory.
Second, the preoperative analgesic prescriptions were not
further investigated due to data unavailability. Third, we
only evaluated the effects of surgical time, blood loss,
instrumentation, and spine segments involved on the risk
of having a rebound pain trajectory but did not further
assess the associations between different kinds of spine

surgical procedures and the incidence of rebound pain
since there is still no consensus on the classification of
complex spine surgery.

In conclusion, two major patterns of postoperative pain
trajectories were recognized in patients receiving IVPCA
for spine surgery using group-based trajectory analysis, and
about one-eighth of them had a rebound pain trajectory.
Three predictors of rebound pain trajectory were identified,
namely, younger age, female sex, and moderate to severe
pain on POD 0. A simplified risk scoring system was
developed based on the analytical results but its clinical
utility needs further investigation. Preventive strategies, such
as early introduction of more aggressive multimodal analgesia,
should be considered in high-risk patients to reduce the
incidence of rebound pain since patients with rebound pain
trajectory were inclined to have longer hospital stay after
surgery and more opioid consumption. Group-based trajectory
analysis provides valuable information to categorize variations
in postoperative pain over time and detect unusual patterns
of pain resolution for further optimization of perioperative
pain management. More patient attributes and surgical features
should be collected in future studies to further elucidate the
underlying mechanism of rebound pain after the end of IVPCA
for spine surgery.
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Background: Intensive care unit (ICU) readmissions are associated with

mortality and poor outcomes. To improve discharge decisions, machine

learning (ML) could help to identify patients at risk of ICU readmission.

However, as many models are black boxes, dangerous properties may remain

unnoticed. Widely used post hoc explanation methods also have inherent

limitations. Few studies are evaluating inherently interpretable ML models for

health care and involve clinicians in inspecting the trained model.

Methods: An inherently interpretable model for the prediction of 3 day ICU

readmissionwas developed.We used explainable boostingmachines that learn

modular risk functions and which have already been shown to be suitable

for the health care domain. We created a retrospective cohort of 15,589 ICU

stays and 169 variables collected between 2006 and 2019 from the University

Hospital Münster. A team of physicians inspected the model, checked the

plausibility of each risk function, and removed problematic ones. We collected

qualitative feedback during this process and analyzed the reasons for removing

risk functions. The performance of the final explainable boosting machine was

comparedwith a validated clinical score and three commonly usedMLmodels.

External validationwas performedon thewidely usedMedical InformationMart

for Intensive Care version IV database.

Results: The developed explainable boosting machine used 67 features and

showed an area under the precision-recall curve of 0.119 ± 0.020 and an area

under the receiver operating characteristic curve of 0.680± 0.025. It performed

on par with state-of-the-art gradient boosting machines (0.123 ± 0.016, 0.665

± 0.036) and outperformed the Simplified Acute Physiology Score II (0.084 ±

0.025, 0.607 ± 0.019), logistic regression (0.092 ± 0.026, 0.587 ± 0.016), and

recurrent neural networks (0.095 ± 0.008, 0.594 ± 0.027). External validation

confirmed that explainable boosting machines (0.221 ± 0.023, 0.760 ± 0.010)

performed similarly to gradient boosting machines (0.232 ± 0.029, 0.772 ±

0.018). Evaluation of the model inspection showed that explainable boosting

machines can be useful to detect and remove problematic risk functions.
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Conclusions: We developed an inherently interpretable ML model for 3 day

ICU readmission prediction that reached the state-of-the-art performance of

black box models. Our results suggest that for low- to medium-dimensional

datasets that are common in health care, it is feasible to develop ML models

that allow a high level of human control without sacrificing performance.

KEYWORDS

intensive care unit, readmission, artificial intelligence, machine learning, explainable

AI, interpretable machine learning, doctor-in-the-loop, human evaluation

Introduction

Discharge decisions in an intensive care unit (ICU) are

complex and require consideration of several aspects (1).

Discharging a patient too early can lead to the deterioration

of the patient’s health status that requires subsequent ICU

readmission. This is associated with mortality and poor

outcomes such as an increased length of ICU stay (2–4).

A study conducted in 105 ICUs in the United States in

2013 found a median ICU readmission rate of 5.9% (5).

Identified risk factors include admission origin, comorbidities,

physiological abnormalities, and age (4, 6, 7). However,

incorporating all available information appropriately for

interpretation of an individual patient case can be challenging

for clinicians (8).

Machine learning (ML) can automatically detect patterns

in large quantities of data and has already shown the

potential to transform health care (9). However, many ML

models are considered black boxes, since they can be too

complex for humans to understand (10). Studies have found

that ML models contained an unnoticed racial bias (11)

or relied on dangerous correlations (12), which can cause

distrust among stakeholders, preventing their adoption (13).

Interpretable ML could alleviate these issues by providing

human-understandable explanations, enabling users to ensure

properties such as fairness or robustness (14). Many studies

have used so-called post hoc explanation methods such as

local interpretable model-agnostic explanations (15) or Shapley

additive explanations (16), which provide an explanation

for a single prediction (17–19). However, post hoc methods

have several shortcomings with respect to robustness and

adversarial attacks (20–22) limiting their usefulness in health

care settings (23). Hence, in this work, we used inherently

interpretable or transparent models (10, 24) that allow humans

to inspect and understand the entire model before using it

for predictions.

A research gap exists owing to the lack of studies

about transparent ML models for health care that include

human evaluations. A recent review on explainable artificial

intelligence using electronic health records showed that

only nine out of 42 studies used inherently interpretable

models (25). Applications included mortality prediction, disease

classification, risk stratification, and biomedical knowledge

discovery. However, only three studies reported human expert

confirmation of their results, which is considered essential for

a meaningful evaluation of interpretable ML (14). For ICU

readmission prediction, we identified two papers (26, 27) that

explicitly developed interpretable models based on rule sets and

logistic regression (LR). However, no human validation of the

results was performed.

In this study, we aimed to develop an inherently

interpretable explainable boosting machine (EBM) model

for the prediction of 3 day ICU readmission. We involved

clinicians in the development process to inspect and verify the

entire model. The validation process was evaluated to determine

its effect and reveal possible issues. Second, the resulting EBM

model was compared with different baseline and state-of-the-art

black box ML models to assess the effect of transparency

on performance.

Materials and methods

Study setting and preregistration

This study was approved by the ethics review board of

the medical chamberWestfalen-Lippe (reference number: 2020-

526-f-S). We provided the TRIPOD (Transparent Reporting

of a Multivariable Prediction Model for Individual Prognosis

or Diagnosis) checklist (28) in Supplementary material 1. This

work was preregistered online (29); however, it had two

deviations: a readmission interval of 3 days instead of 7 days

was considered to exclude fewer patients with insufficient

follow-ups. Also, we only performed external validation for the

final performance results, which we considered most relevant.

An overview of all steps conducted for this study can be

found in Figure 1. All code for preprocessing the data, training

the models, and inspecting the final EBM model is publicly

available (30, 31).
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FIGURE 1

Flowchart of the study. (A) We created a local cohort for the development of machine learning (ML) models. Information on intensive care unit

(ICU) transfers was extracted from the hospital information system (HIS), and ICU data was extracted from the patient data management system

(PDMS). Extensive preprocessing was applied to clean the data. We generated labels for 3 day ICU readmission and descriptive statistics as

(Continued)
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FIGURE 1 (Continued)

features. (B) Four ML models were developed for comparison. For LR, we also performed feature selection. The RNN directly uses the time

series data. (C) The development of the EBM model involved four steps [see 1–4 in (C)]. We conducted parameter tuning for EBM (and our other

models) and performed greedy risk function selection based on the importance determined on the temporal splits. In step 3, we inspected the

model with a team of clinicians to identify and remove problematic risk functions. The remaining risk functions were used for the predictions.

(D) We evaluated all models for their area under the precision-recall curve (PR-AUC) and area under the receiver operating characteristic curve

(ROC-AUC) on the hold-out split. (E) External validation for the EBM and GBM models was performed on the Medical Information Mart for

Intensive Care (MIMIC) version IV. (D,E) Error bars were determined with the standard deviation on five temporal splits. EBM, explainable boosting

machine; SAPS II, Simplified Acute Physiology Score II; LR, logistic regression; GBM, gradient boosting machine; RNN, recurrent neural network.

FIGURE 2

Flowchart of the cohort selection for the University Hospital Münster (UKM) cohort. Transfers to ICU and IMC wards of the UKM between 2006

and 2019 served as initial data. We included four ICUs managed by the ANIT-UKM department. Transfers had to be merged using a manual

procedure to obtain consecutive ICU stays. Patients who died in the ICU and those who were discharged to an external ICU or IMC were

excluded. We required an observation period of at least 3 days to ensure readmission to an ICU in the UKM. Lastly, implausible cases were

removed.

Cohort

We included all ICU patients managed by the Department

of Anesthesiology, Intensive Care and Pain Medicine at

the University Hospital Münster (ANIT-UKM) who were

discharged to standard care and had a follow-up period of at

least 3 days (see Figure 2). Initially, all ICU and intermediate

care (IMC) transfers of adult patients between 2006 and 2019

were retrieved from the hospital information system (HIS;

ORBIS, Dedalus Healthcare Group; n = 199,764). First, 283

entries were removed because of ambiguous discharge dates,

overlapping hospital stays, or overlapping transfers that could

not be delineated. Next, transfers not managed by the ANIT-

UKM (n = 101,243) and IMC transfers (n = 39,165) were

excluded. In step 4, we merged consecutive transfers (n =

26,246) into a single ICU stay. Some entries (n= 147) contained

artifacts with short intervals between two transfers, and we

designed a stepwise procedure to decide whether a discharge

occurred. Next, we excluded ICU stays that ended with the

death of the patient (n = 2,327) or a discharge to an external
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ICU or IMC unit (n = 10,688). We used the same procedure

as in step 4 to identify artifacts (n = 67) and to distinguish

consecutive transfers and readmissions to an external ICU. We

then excluded all ICU stays without a 3 day follow-up period at

the UKM to ensure that all patients with worsening conditions

who were included were transferred to an observed ICU (n =

3,975). This also excluded patients who were transferred to an

external facility or home, which introduced a selection bias.

However, we reckoned that ensuring a complete observation

interval outweighed this effect. Lastly, we removed implausible

cases with no age entry (n = 63) or that had only very few

heart frequency recordings (n = 200); thus, 15,589 ICU stays

were included.

ICU patients who were readmitted to any ICU (n = 822)

or IMC unit (n = 31) or died within 3 days (n = 38) were

labeled as true (Supplementary material 2). Patient deaths were

also labeled to obtain a consistent outcome. Patients who were

discharged to standard care and underwent a planned procedure

with a subsequent re-admission to an ICU or IMC unit

incorrectly received a positive label. However, we considered this

effect to be small. To verify our cohort selection and labeling

procedure, we sampled 20 positive stays stratified across wards

and verified them using additional clinical information.

Table 1 summarizes the key characteristics of the resulting

UKM cohort. The ICU patients of the included stays had a mean

age of 63.33 ± 14.73 years, and more than two-thirds of them

were male (n= 10,670). ICU patients with 3 day readmission or

who died after discharge showed several differences: the patients

were 3 years older on average, the proportion of male patients

further increased from 68.3 to 70.8%, and the mean length of

the previous ICU stay was approximately 13.5 hours longer.

Supplementary material 2 contains an overview of the included

ICUs.

Variables and features

We included data that was routinely collected in the ICU

for our analysis. For this purpose, 6,496 item definitions with

651,258,647 time-stamped recordings were extracted from the

patient data management system (PDMS; Quantitative Sentinel,

GE Healthcare) of the ANIT-UKM (see the flow chart in

Supplementary material 2). We excluded all variables that were

not collected during the study period (n = 1,322), derived

variables computed using formulas in the PDMS (n = 1,029),

and clinical notes because of the highly heterogeneous data

quality (n = 777). We also excluded clinically irrelevant

variables (n = 1,979) such as device-specific or billing

information. The remaining 1,362 variables were processed

in consultation with a senior physician who had extensive

experience with the PDMS. For 802 non-medication variables,

we determined the coverage across the study period and

generated descriptive statistics to exclude irrelevant variables (n

TABLE 1 Overview of the UKM cohort.

Characteristic All ICU stays No 3 day

readmission or

death after

ICU discharge

3 day

readmissions

or death after

ICU discharge

Number of ICU

stays, n (%)

15,589 (100.0) 14,698 (94.3) 891 (5.7)

Number of patients,

n (%)

14,188 (100.0) 13,349 (94.1) 839 (5.9)

Age, mean± SD,

years

63.33± 14.73 63.16± 14.77 66.08± 13.85

Female sex, n (%) 4,919 (100.0) 4,659 (94.7) 260 (5.3)

Male sex, n (%) 10,670 (100.0) 10,039 (94.1) 631 (5.9)

Length of ICU stay,

mean± SD, days

3.70± 8.08 3.67± 8.11 4.23±7.53

ICU at discharge ICU 1 (n= 4,063) ICU 1 (n= 3,820) ICU 1 (n= 243)

ICU 2 (n= 6,402) ICU 2 (n= 6,035) ICU 2 (n= 367)

ICU 3 (n= 1,034) ICU 3 (n= 960) ICU 3 (n= 74)

ICU 4 (n= 4,090) ICU 4 (n= 3,883) ICU 4 (n= 207)

The key characteristics of all included ICU stays and the ICU stays divided by their

labels. This information is based on ICU stays, so a single patient can be considered more

than once.

= 522). Of the resulting 280 variables, 70 were included directly,

and 210 were further processed and merged into 50 variables.

For medications, we assigned World Health Organization

Anatomical Therapeutic Chemical (ATC) codes to all entries.

We defined 44 clinically relevant medication categories within

the ATC hierarchy and merged the respective variables. All

medication variables that were not assigned to any category

were excluded (n = 187). In addition, we manually determined

five medication categories as additional variables for therapeutic

and prophylactic antithrombotic agents and equivalence dosages

of cardiac stimulants, norepinephrine and dopamine, and

glucocorticoids, which we considered clinically relevant. Hence,

we included 120 non-medication and 49 medication variables

(Supplementary material 2). Further data cleaning methods are

described in Supplementary material 2.

We assigned variables to nine different classes according

to their data and generated respective features for each class

(see Supplementary material 2). This was particularly important

for time series data since EBM models cannot handle it. We

featurized time series data via median, interquartile range

(IQR), minimum, maximum, and linear trend for different time

windows. We defined three time horizons (high, medium, and

low) based on the median sampling interval of a variable that

used different time windows before ICU discharge (high: 4, 12,

and 24 hours; medium: 12, 24 hours, and 3 days; low: 1, 3,

and 7 days). Hence, we generated 15 features for each time

series variable. Patient flows, medications, and interventions

were always considered as low time horizon. For patient flows,
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we extrapolated the daily flow. For medications, we used a

binary indicator and the number of administered drugs. For

interventions, we also used a binary indicator and the interval

since it was last performed. For static data, we used the last

value from the most appropriate time interval (patient history,

hospital stay, and ICU stay). Four additional features were

created manually, which results in a total of 1,423 features. A

list of all variables, feature classes, and their respective features is

given in Supplementary material 2.

Explainable boosting machines and
baseline models

EBMs belong to the class of generalized additivemodels (32).

A generalized additive model (33) models a label ŷ by a bias term

β0 and a sum of features transformed by shape functions fi(xi).

The label ŷ can optionally be transformed by a link function g

(see equation 1). EBMs add additional shape functions for the

interactions of two variables fi,j
(

xi, xj
)

(34) and use the logit

link function for dichotomous classifications analogous to LR

(see equation 2, note that the logit function was moved to the

right side).

g
(

ŷ
)

= β0 +
∑

i

fi(xi) (1)

ŷ = logit−1



β0 +
∑

i

fi(xi)+
∑

i6=j

fi,j
(

xi, xj
)



 (2)

In this study, the shape functions fi(xi) and fi,j
(

xi, xj
)

of

EBMs are also called one- (1D) and two-dimensional (2D)

risk functions, because each of them models the log-odds of

being readmitted to the ICU within 3 days. Different methods

can be used to estimate the risk functions (33). EBMs use

boosted decision trees that allow versatile function shapes that

have shown optimal performance across several tasks (35). By

visualizing the learned risk functions, EBMs can be inspected

and owing to their modularity, inappropriate functions can be

removed. Also, for a given input, contributions of each risk

function can be used as an explanation of a prediction. A study

that applied them in two health care tasks highlighted their

potential to identify and remove spurious correlations (12).

Moreover, an evaluation revealed that physicians can grasp the

concept of EBMs and feel confident working with them (36).

In this work, we compared to the validated Simplified Acute

Physiology Score (SAPS) II, LR with feature selection, gradient

boosting machines (GBMs), and recurrent neural networks

(RNNs) with long short-term memory units for comparison

(Supplementary material 2). We selected 130 features for the LR

model, and we conjectured that inspecting this model requires

a similar effort as inspecting our EBM model with at most 100

risk functions. Hence, the LR model serves as an interpretable

baseline of the same complexity. GBMs and RNNs are both

considered black box models owing to their complexity.

Development of the EBM model with a
limited number of risk functions

For our experiments, we used the area under the precision-

recall curve (PR-AUC) as the primary performance indicator

due to the label imbalance. We also reported the area under

the receiver operating characteristic curve (ROC-AUC) since

it is commonly reported in the medical literature. We selected

the two most recent years for validation and hold-out data

to simulate a real-world deployment (17). Five temporal

splits were used for risk function selection and estimation

of the standard deviation as pseudo-confidence intervals

(Supplementary material 2).

To limit the model size and allow inspection in a reasonable

amount of time, we performed automatic risk function selection

of at most 80 1D and 20 2D functions based on their

importance. To obtain good parameters, we first performed

tuning based on the PR-AUC on the train and validation

data of the full split (Supplementary material 2). We did

this in three steps: we performed parameter tuning on all

features, we estimated the 80 most important 1D risk functions

approximately, and performed another parameter tuning for

these 80 risk functions. Next, we used these parameters for

risk function selection in a greedy stepwise forward procedure

based on their mean importance on the five temporal splits

(Supplementary material 2). We used the temporal splits to get

more robust estimates and to prevent overfitting on the full

split. A random 85% training and 15% validation split were

used for each temporal split because a subset of variables was

only collected for some years, which led to a biased weight

estimate when using training and validation data based on

years. Importance was calculated as the mean absolute log-odds

score of a risk function. Finally, we chose the risk function

selection with the highest PR-AUC performance on the full

validation split. We repeated the same procedure for 2D risk

functions on the features of the included 1D risk functions. This

is coherent with the EBMs training algorithm, which first trains

1D functions and then adds 2D functions for the residuals.

Inspection of the EBM model by a
multidisciplinary team

The goal of the EBM model inspection was to identify the

risk functions that should not remain in the final prediction

model. The model was inspected by a team of three individuals:

a senior physician working at the included ICUs, a senior
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physician responsible for the data infrastructure at the ANIT-

UKM, and the developer of the EBM model with a machine

learning and health care background. They discussed and

determined potential problems of the risk functions a priori

to agree on a common set of exclusion criteria. For each

risk function, they discussed its main properties and agreed

on its content, then they determined if any of the identified

problems applied, and then they decided if the problems justified

the exclusion of a risk function. We recorded the identified

problems for all risk functions (Supplementary material 3) and

collected qualitative feedback during the EBMmodel inspection

(Supplementary material 2).

External validation on the medical
information mart for intensive care
version IV database

We used the Medical Information Mart for Intensive Care

(MIMIC) version IV database for external validation (37, 38).

It contains 76,540 ICU stays of 53,150 patients admitted to

the Beth Israel Deaconess Medical Center between 2008 and

2019. After applying a similar cohort selection and labeling

procedures, we included 19,108 ICU stays, of which 1,626

(8.5%) were labeled positively (Supplementary material 2). For

performance comparison, we resampled negative instances to

obtain the same positive rate as in the UKM cohort. We

extracted 41 variables responsible for the 67 features used in

the final EBM model from MIMIC-IV. Only a single variable

could not be created.We also performed external validation with

the GBM model, as it performed best in the model comparison.

However, we only used the variables of the EBM model because

extracting all variables from the MIMIC-IV database was not

feasible. Both models were trained again on theMIMIC-IV data.

Results

Development of the EBM model with a
limited number of risk functions

We first performed parameter tuning for an EBM with all

features (Supplementary material 2). The best EBM with 1,423

1D risk functions achieved a PR-AUC of 0.151 ± 0.028 and

a ROC-AUC of 0.652 ± 0.034 on the hold-out split. Next, we

performed risk function selection based on the five temporal

splits. Supplementary material 2 contains the performance for

different numbers of risk functions and bin sizes. The best EBM

model had a bin size of 200 and contained 80 1D risk functions.

It achieved a PR-AUC of 0.130 ± 0.021 and a ROC-AUC of

0.681 ± 0.026. We repeated the same procedure for the 2D

risk functions. We added five 2D functions with a bin size of

four. The resulting model showed a decreased performance,

with a PR-AUC of 0.113 ± 0.018 and ROC-AUC of 0.646 ±

0.01. The 85 most important risk functions of the resulting

EBM model and their respective variables, features, and relative

importance (variance) are listed in Table 2. The five 2D risk

functions yielded the highest importance, followed by the 1D

functions for endotracheal tube, age, antithrombotic agents in

a prophylactic dosage, partial thromboplastin time, and O2

saturation. The graphical representations of all risk functions are

given in Supplementary material 3.

Inspection of the EBM model by a
multidisciplinary team

The resulting EBM model was inspected by a

multidisciplinary team including two clinicians to identify

and remove problematic risk functions. A priori to the model

inspection, they identified four potential problems that they

assigned to risk functions during the inspection:

• It encodes health care disparities that should not be

reproduced (n= 0)

• It contains undesirable artifacts from the data generation

process (n= 8)

• It contradicts medical knowledge (n= 13)

• It is not interpretable so that its effect cannot be clearly

determined (n= 17).

The model inspection took 4 hours, that is, approximately 3

minutes per function. Not all risk functions with a problem were

excluded, so we assigned the risk functions into three classes:

included without problems (n= 52), included with problems (n

= 15), and excluded with problems (n = 18). Most functions

were excluded owing to the lack of interpretability (n = 10),

followed by undesirable artifacts (n = 6) and contradictions

of medical knowledge (n = 6). More than one problem could

be assigned to each risk function. Five functions for partial

thromboplastin time (PTT) were excluded because of artifacts.

Using the feature histograms, the team recognized a change

in the PTT measurement procedure since 2019, invalidating

the risk functions learned on the training data. Also, all 2D

risk functions were labeled as not interpretable and were

excluded from the model. Figure 3 shows two included 1D

risk functions and three 1D and one 2D functions that were

excluded because of different problems. After model inspection,

the EBM contained 67 1D risk functions. It achieved a PR-AUC

of 0.119 ± 0.020 and a ROC-AUC of 0.680 ± 0.025 on the

hold-out data. Hence, inspection decreased the PR-AUC and

increased the ROC-AUC compared with a model trained on all

1D risk functions.

We collected qualitative feedback from the team during

model inspection (Supplementary material 2). A major problem
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TABLE 2 Overview of the variables and features of the risk functions included in the final EBMmodel ordered by importance.

No. Variable(s) Feature(s) Relative

importance %

Excluded

during model

inspection

1 Age [years], Base Excess (BE) [mmol/L] Static per patient, IQR 3 days 4.20 X

2 Drugs for constipation, Leucocytes [thousand/µL] Unique 1 day, median 1 day 3.52 X

3 Blood volume out [mL], Procalcitonin [ng/mL] Extrapolate 7 days, maximum 7 days 2.57 X

4 Hematocrit [%], Blood volume out [mL] Maximum 3 days, extrapolate 3 days 2.19 X

5 Leucocytes [thousand/µL], Blood volume out [mL] Median 1 day, extrapolate 3 days 1.87 X

6 Endotracheal tube (tubus) exists Days since last application 1.71

7 Age [years] Static per patient 1.70

8 Antithrombotic agents prophylactic dosage Days since last application 1.65

9 Partial thromboplastin time (PTT) [s] Maximum 1 day 1.63 X

10 O2 saturation [%] Minimum 12 hours 1.58

11 Blood volume out [mL] Extrapolate 7 days 1.52

12 Gamma-GT [U/L] Median 7 days 1.46

13 Chloride [mmol/L] Trend per day 3 days 1.40

14 Heart rate [bpm] Minimum 4 hours 1.39

15 Partial thromboplastin time (PTT) [s] Maximum 3 days 1.37 X

16 Chloride [mmol/L] Minimum 1 day 1.37

17 Hemoglobin [mmol/L] Maximum 3 days 1.30

18 Length of stay before ICU [days] Manually added 1.28

19 Hematocrit [%] Maximum 3 days 1.26

20 Calcium [mmol/L] Trend per day 3 days 1.26 X

21 Estimated glomerular filtration rate (eGFR) ml/min/1.73 m2 Trend per day 7 days 1.24

22 Richmond agitation sedation (RAS) scale Maximum 3 days 1.24

23 Urine volume out [mL] Extrapolate 1 day 1.24

24 Thrombocytes [thousand/µL] Trend per day 7 days 1.24

25 Blood volume out [mL] Extrapolate 3 days 1.23

26 paO2/FiO2 [mmHg/FiO2] Median 1 day 1.21

27 pH Trend per day 3 days 1.21

28 Phosphate [mg/dL] Minimum 7 days 1.20

29 pH Median 1 day 1.20

30 Body core temperature [◦C] Minimum 1 day 1.18 X

31 Creatine kinase (CK) [U/L] Minimum 7 days 1.15

32 Richmond agitation sedation (RAS) scale Trend per day 12 hours 1.13 X

33 Potassium [mmol/L] Median 1 day 1.13

34 Glasgow coma scale (GCS) score Minimum 3 days 1.11

35 Body core temperature [◦C] Median 1 day 1.10

36 Base excess (BE) [mmol/L] IQR 3 days 1.10 X

37 Blood urea nitrogen [mg/dL] Minimum 3 days 1.10

38 paO2/FiO2 [mmHg/FiO2] Trend per day 3 days 1.09

39 Drugs for constipation Unique 1 day 1.09

40 Urine volume out [mL] Extrapolate 7 days 1.09

41 Partial thromboplastin time (PTT) [s] Minimum 7 days 1.07 X

42 Diastolic blood pressure [mmHg] Median 1 day 1.06

43 Partial pressure of oxygen (pO2) [mmHg] Minimum 12 hours 1.06

44 Creatine kinase-MB (CK-MB) [U/L] Maximum 3 days 1.05

45 Richmond agitation sedation (RAS) scale Maximum 1 day 1.05

46 Partial thromboplastin time (PTT) [s] Minimum 3 days 1.05 X

47 Systolic blood pressure [mmHg] IQR 12 hours 1.05

48 paO2/FiO2 [mmHg/FiO2] Median 3 days 1.04

49 Creatine kinase (CK) [U/L] Median 7 days 1.04 X

(Continued)

Frontiers inMedicine 08 frontiersin.org

98

https://doi.org/10.3389/fmed.2022.960296
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Hegselmann et al. 10.3389/fmed.2022.960296

TABLE 2 Continued

No. Variable(s) Feature(s) Relative

importance %

Excluded

during model

inspection

50 Lactate [mmol/L] Maximum 3 days 1.04

51 Creatine kinase-MB (CK-MB) [U/L] Median 3 days 1.04

52 Lactate [mmol/L] Minimum hours 1.00

53 Phosphate [mg/dL] Maximum 1 day 1.00

54 Partial thromboplastin time (PTT) [s] Maximum 7 days 0.98 X

55 Partial pressure of carbon dioxide (PCO2) [mmHg] Median 1 day 0.98

56 Base excess (BE) [mmol/L] Trend per day 3 days 0.97

57 Glucose [mg/dL] Median 3 days 0.97

58 Base excess (BE) [mmol/L] Minimum hours 0.96

59 Methemoglobinemia (MetHb) [%] Minimum hours 0.96

60 Is on automatic ventilation Days since last application 0.95

61 Body core temperature [◦C] Minimum 4 hours 0.95 X

62 Partial pressure of carbon dioxide (PCO2) [mmHg] IQR 1 day 0.95

63 Sodium [mmol/L] Median 3 days 0.93

64 Leucocytes [thousand/µL] Median 1 day 0.92

65 Sodium [mmol/L] Trend per day 3 days 0.92

66 Procalcitonin [ng/mL] Maximum 7 days 0.91

67 Base excess (BE) [mmol/L] Median hours 0.91

68 Mean blood pressure [mmHg] Median 4 hours 0.87

69 Leucocytes [thousand/µL] Trend per day 3 days 0.84 X

70 pH Median 3 days 0.84

71 Bilirubin total [mg/dL] Maximum 7 days 0.84

72 Partial pressure of oxygen (pO2) [mmHg] IQR hours 0.84

73 Base excess (BE) [mmol/L] IQR 1 day 0.83

74 Body core temperature [◦C] Trend per day 1 day 0.83

75 C-reactive protein [mg/dL] Maximum 3 days 0.83

76 Heart rate [bpm] Minimum 1 day 0.82

77 Hematocrit [%] Median hours 0.80

78 Partial pressure of carbon dioxide (PCO2) [mmHg] Minimum 3 days 0.76

79 Mean blood pressure [mmHg] Median hours 0.72

80 Calcium [mmol/L] Maximum 1 day 0.69

81 Estimated respiratory rate Median 1 day 0.68

82 pH IQR 1 day 0.67

83 Leucocytes [thousand/µL] IQR 3 days 0.63

84 Heart rate [bpm] IQR 4 hours 0.60

85 Reduced hemoglobin (RHb) Median hours 0.60 X

These risk functions were selected from a total of 1,423 based on their importance on the five-temporal splits. Risk functions 1–5 are two-dimensional, and the remaining functions are

one-dimensional. The relative importance was determined on the final training split. The last column indicates whether a risk function was excluded during the model inspection by a

team of physicians. Visualizations of all risk functions and the detailed reasons for exclusion are given in the supplement.

was drawing the line for risk function exclusion. Most functions

partially fulfilled at least one problem. The team agreed to

exclude a risk function when a problem was clearly present

and would have a considerable impact on patients; that is,

value ranges with many patients affected. Still, many functions

could be assigned to either category (comments 1–3). The team

stated that it was difficult to consider the cohort reduced to

a single independent risk function (comments 4–7). This is

against clinical practice, where several patient measurements

are integrated. Also, only examining patient features at the

time of discharge was hard, since usually the whole patient

history is factored in (comment 8). In addition, the team

members tended to construct explanations for risk functions

without clear evidence (comment 9). Moreover, values outside

the usual value ranges and IQR and trend features were more

difficult to understand (comments 10 and 11). In particular,

the 2D functions posed a problem because the combinations

of features were uncommon in clinical practice. Even though
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it was possible to grasp the content of the risk function, it was

difficult to infer its clinical implications that led to exclusion

(comment 12). There was a tendency to rely more on the model

to derive useful relationships when a risk function was less

interpretable (comment 13). In addition to that, we collected

general properties that hindered or supported interpretability,

which confirmed previous findings (36).

Performance of EBM compared to
baseline models

After the risk function selection and model inspection, the

EBM model contained 67 1D risk functions. It achieved a PR-

AUC of 0.119 ± 0.020 and a ROC-AUC of 0.680 ± 0.025

(Figure 4). For recall values of 0.4, 0.5, 0.6, and 0.8 the precision

values were 0.130 ± 0.032, 0.111 ± 0.019, 0.105 ± 0.013, and

0.082 ± 0.005. Utilizing SAPS II in the last 24 hours showed an

inferior performance of 0.084 ± 0.025 (PR-AUC) and 0.607 ±

0.019 (ROC-AUC). Also, LR with 130 selected features and the

RNN achieved a lower performance, with a PR-AUC of 0.092 ±

0.026 and 0.095 ± 0.008 and a ROC-AUC of 0.587 ± 0.016 and

0.594 ± 0.027. Both were placed between the EBM and SAPS II

for PR-AUC and below SAPS II for ROC-AUC. The latter could

be due to the optimization of PR-AUC during parameter tuning

and variable selection. The GBM trained on all 1,423 features

achieved a PR-AUC of 0.123 ± 0.016 and a ROC-AUC of 0.665

± 0.036. Hence, it performed similarly to the developed EBM

model with 67 1D risk functions.

External validation on the medical
information mart for intensive care
version IV database

The final EBM model for the UKM cohort used 67

features generated by 42 variables. We extracted 41 of those

variables from MIMIC-IV. Variables were collected differently

for theMIMIC cohort (Supplementary material 2). The EBM for

external validation contained 66 1D risk functions. For the GBM

model, we generated all the features of the 41 variables, resulting

in 515 features. The EBM and GBM performed similarly on

MIMIC-IV, with a PR-AUC of 0.221 ± 0.023 and 0.232 ± 0.029

and a ROC-AUC of 0.760± 0.010 and 0.772± 0.018 (Figure 4).

This performance was much higher than that for the UKM

cohort, which we mainly attributed to the better data quality

of MIMIC-IV.

Discussion

This study showed that for the prediction of 3 day ICU

readmission, a transparent EBM model containing only 67 risk

functions performed on par with state-of-the-art GBMs trained

on 1,423 features and outperformed RNNs trained on time series

data. Both the GBMs and RNNs can be considered black box

models owing to their complexity. Hence, we found additional

evidence that in a health care setting with structured data,

a simple and inherently interpretable model can be sufficient

for competitive prediction performance (10). The final model

achieved a PR-AUC of 0.119 ± 0.020 and a ROC-AUC of

0.680 ± 0.025. External validation on the MIMIC-IV database

showed improved EBM results of a PR-AUC of 0.221 ± 0.023

and a ROC-AUC of 0.760 ± 0.010 and confirmed that they

performed similarly to the GBMs. Our results are consistent with

those of previous studies, showing that EBMs outperformed LR

and were on par with random forests and boosting methods

(12, 34). However, in contrast to the existing work, adding 2D

risk functions lead to lower performance on the hold-out data.

Several risk functions of the final EBM model are consistent

with the main risk factors reported in the literature (4, 6, 7),

such as age, length of hospital stay before ICU admission,

disease severity (e.g., based on the GCS score), physiological

state (e.g., heart rate), and need for organ support (e.g., presence

of an endotracheal tube). In our study, many concepts had

much finer granularity; for example, several variables captured

the physiological state of the patient. We also note that some

known risk factors were available features but did not end up

in the final model. Among those are sex, admission origin,

and use of vasopressors. However, some information might be

mediated through other variables. For example, blood loss is

usually a clear indicator of a past surgery and might contain

additional information, making it more relevant than a simple

indicator for surgery. The overall predictive performance for 3

day ICU readmissions was relatively low. This is probably due

to the limitations regarding data quality, which are supported

by the higher performance on MIMIC-IV. MIMIC-IV was

created in several iterations and integrated the feedback of many

researchers, which led to higher data quality. Moreover, the

prediction of ICU readmission prediction is a difficult task, and

only a few readmissions are preventable (39). Still, we think

that an EBM model for the prediction of 3 day ICU trained on

a local cohort can offer useful insights for decision-making in

the ICU.

Several studies on ICU readmission prediction have been

conducted (26, 40–52), and we identified two systematic reviews

(53, 54). Most of them also used MIMIC (38), not the most

recent version IV, for model development or validation. The

readmission intervals ranged from 48 hours (46, 47, 52) to

72 hours (26, 50, 51), 7 days (48), 30 days (40, 44, 49),

and anytime until hospital discharge (41–43). A single study

considers multiple intervals of 24 hours, 72 hours, 7 days,

30 days, and anytime (45). We chose an ICU readmission

interval of 3 days because clinicians at the ANIT-UKMexpressed

that it would include relevant medical conditions that they

could act upon before discharging a patient and, hence, would
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FIGURE 3

Two most important risk functions and four excluded risk functions of the EBM model. (A,B) Two most important risk functions that are included

in the EBM model. (A) Contains the number of days since the last existence of an endotracheal tube. Patients that have an endotracheal tube

immediately before discharge have a highly increased risk. Lower risk is assigned to values between 0.4 and 4.1 days. Also, patients with no

endotracheal tube (unknown) receive an increased risk. (B) The risk function for age shows an increased risk for higher age values. There is a

peak at 60 years with no obvious explanation. (C) A maximum PTT value over the last 3 days before discharge between 82.5 and 115.5 s gets a

lower risk for 3 day ICU readmission. It was identified that this is an artifact of the previous procedure to determine the PTT for cardiac surgery

patients. This will not generalize for future data. (D) For a median hematocrit between 24.875 and 28.525%, the model determined an elevated

risk. For slightly lower and higher values, the risk is negative. This is against common medical knowledge, where a decreasing hematocrit value

should be associated with increased risk. (E) The interquartile range (IQR) of the partial pressure of carbon dioxide (pCO2) over the last day

before discharge receives an increased risk for values between 0 and 0.863 and 2.513 and 3.313 mmHg. However, the interpretation of this

behavior and determining its clinical implications was impossible. (F) The 2D risk function for age and the IQR of the base excess (BE) over 3

days. Patients over 71.5 years have a high risk for a high IQR of the BE. Patients between 59.5 and 71.5 have only a slightly increased risk for low

IQR values, and younger patients have a decreased risk across all BE values. The team excluded it due to a lack of interpretability.
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FIGURE 4

Performance evaluation on the University Hospital Münster (UKM) cohort (A,B) and external validation on the Medical Information Mart for

Intensive Care version IV (MIMIC-IV) database (C,D). (A) The area under the precision-recall curve (PR-AUC) was considered the most relevant

performance indicator owing to the imbalanced label distribution. We optimized the PR-AUC during the parameter tuning and selection

procedures for all models. The di�erences between models are relatively small. The explainable boosting machines (EBMs) and gradient

boosting machines (GBMs) show the highest PR-AUC. (B) The area under the receiver operating characteristic curve (ROC-AUC) was

determined as an additional performance measure. Again, the EBM and GBM models performed best. (C,D) The same performance indicators

were determined on the MIMIC-IV database. Both models again showed similar results. The confidence intervals for all curves were determined

with the standard deviation on the five temporal splits.

be most useful in practice. Also, we considered it a good

trade-off between having sufficient follow-up and preventing

exclusion of patients due to loss of follow-up (see step 7

in Figure 2). Previous studies have tested many models, and

two (26, 27) mentioned the goal of developing interpretable

models, but no validation by humans was performed. All studies

reported ROC-AUC, which ranged from 0.64 (52) to 0.91 (42).

Unfortunately, comparing the performance with the existing

work is impossible for two reasons. First, we considered PR-

AUC due to the label imbalance of ICU readmissions and
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optimized it in our experiments. However, none of the existing

studies have reported this performance measure. One study

contained a precision-recall curve (47), but no area under the

curve. Second, we created a custom UKM cohort, and we

used MIMIC-IV for external validation. None of the identified

studies used these data. If the ROC-AUC is considered as a

performance measure, our results are in the lower spectrum of

the reported models. However, we did not optimize for it in

our experiments.

A main goal of this study was to involve clinicians in

the model development process to inspect the learned EBM

and remove problematic risk functions. This approach showed

mixed results. On the one hand, our collaboration confirmed

that clinicians can easily grasp the concept of EBMs (36),

making them a useful transparent model candidate for health

care applications (55). Like LR, which is well-known in the

medical domain, feature contributions are summed to a total

log-odds score. This modularity also allowed to focus on a single

risk function at a time. Confidence intervals and histograms

over patient densities further helped to assess the relevance

of function segments. For instance, it was possible to ignore

fluctuations of risk functions in regions with few patients. In

addition, our model development process enabled discussions

with clinicians and encouraged a critical review of the model.

Several aspects were raised for the first time, such as the problem

with PTT measurements. Hence, with EBMs, stakeholders can

be involved in the development process to establish trust, which

could ultimately lead to higher adoption rates (13). Moreover,

we identified and removed 18 risk functions due to the lack

of interpretability, undesirable data artifacts, and contradiction

of medical knowledge. This demonstrates the capability of

EBMs to enable the identification and removal of undesirable

components. This would have been impossible with a black

box ML model (10, 12). Lastly, model inspection led to a

performance increase on the hold-out data, which suggests

better generalization.

However, we also observed several shortcomings during the

model inspection. Of the 85 risk functions, 33 were labeled as

problematic, of which 17 were not interpretable. Reducing a

patient cohort to one or two features and considering a fixed

time interval before discharge are counter to typical clinical

practice, where many variables are usually integrated over a long

time horizon. Thus, it was often difficult to create an intuition

about the effect of certain risk functions. Also, for meaningful

interpretation of EBMs, it is necessary to understand the model

inputs (24, 55). In particular, interpretability was hindered by

variables and descriptive statistics that are less common in

clinical practice. One workaround would be to let clinicians

choose interpretable features a priori. In addition, the shapes

of risk functions sometimes showed a fluctuating behavior (36).

We already increased the bin size to prevent these artifacts,

but some still occurred in the final model. Another major issue

was drawing the line between the inclusion and exclusion of

risk functions. Most functions showed problematic behaviors.

Thus, we decided to exclude only functions with a problem that

affected a considerable part of the cohort. However, this decision

rule is vague, and we expect low interrater reliability. We think it

could be helpful to have a clear application scenario to determine

more specific rules for exclusion. Moreover, we observed that it

was more difficult to justify the exclusion of less interpretable

functions and that the team relied on the EBM algorithm to find

relevant associations in the data (56, 57).

This work has limitations. Even though the prediction of

ICU readmission is a relevant medical problem, it can be

difficult to turn predictions into actions when institutional

factors such as insufficient ICU beds must be considered.

No multicenter cohort was used for the development and

validation of our prediction model, so the external validity of

our results is low. Also, the data quality of the local cohort

was limited, and our experiments only focused on a single

interpretable model. External validation on the MIMIC-IV

database was only performed for two models, and no in-

depth analysis was performed for the improved performance.

Moreover, interpretability should be evaluated in the context

of its end task (14). Ideally, this could be increased trust

leading to higher adoption of the system or even improved

patient outcomes. We limited our analysis to prediction

performance, the identification of problematic risk functions,

and qualitative feedback. Moreover, no rigorous set of rules has

been established for model inspection, so the process would

likely exhibit low interrater reliability. The confidence intervals

of the performance were only estimated on five temporal splits,

and our EBM did not outperform the existing ML models by

a large margin. Lastly, automatic risk function selection for

EBMs might have removed important confounders, making it

impossible to detect them during the model inspection.

Conclusion

We demonstrated a procedure to develop a transparent

EBM model for the prediction of 3 day ICU readmission that

involved clinicians to inspect and verify the learned model. The

EBM performed on par with or outperformed state-of-the-art

black box ML models such as GBMs and RNNs. This suggests

that a simple inherently interpretable model might suffice for

clinical use in cases with low- to medium-dimensional data,

while allowing a high level of human control. Evaluation of the

model inspection revealed that an EBM model can facilitate

a critical review with clinicians and enables identification of

problematic components.
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Background: In-hospital mortality, prolonged length of stay (LOS), and 30-day

readmission are common outcomes in the intensive care unit (ICU). Traditional

scoring systems and machine learning models for predicting these outcomes

usually ignore the characteristics of ICU data, which are time-series forms. We

aimed to use time-series deep learning models with the selective combination

of three widely used scoring systems to predict these outcomes.

Materials and methods: A retrospective cohort study was conducted on

40,083 patients in ICU from the Medical Information Mart for Intensive Care-

IV (MIMIC-IV) database. Three deep learning models, namely, recurrent neural

network (RNN), gated recurrent unit (GRU), and long short-term memory

(LSTM) with attention mechanisms, were trained for the prediction of in-

hospital mortality, prolonged LOS, and 30-day readmission with variables

collected during the initial 24 h after ICU admission or the last 24 h before

discharge. The inclusion of variables was based on three widely used scoring

systems, namely, APACHE II, SOFA, and SAPS II, and the predictors consisted

of time-series vital signs, laboratory tests, medication, and procedures. The

patients were randomly divided into a training set (80%) and a test set (20%),

which were used for model development and model evaluation, respectively.

The area under the receiver operating characteristic curve (AUC), sensitivity,

specificity, and Brier scores were used to evaluate model performance.

Variable significance was identified through attention mechanisms.

Results: A total of 33 variables for 40,083 patients were enrolled for mortality

and prolonged LOS prediction and 36,180 for readmission prediction. The

rates of occurrence of the three outcomes were 9.74%, 27.54%, and 11.79%,

respectively. In each of the three outcomes, the performance of RNN, GRU,

and LSTM did not differ greatly. Mortality prediction models, prolonged LOS

prediction models, and readmission prediction models achieved AUCs of

0.870 ± 0.001, 0.765 ± 0.003, and 0.635 ± 0.018, respectively. The top
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significant variables co-selected by the three deep learning models were

Glasgow Coma Scale (GCS), age, blood urea nitrogen, and norepinephrine

for mortality; GCS, invasive ventilation, and blood urea nitrogen for prolonged

LOS; and blood urea nitrogen, GCS, and ethnicity for readmission.

Conclusion: The prognostic prediction models established in our study

achieved good performance in predicting common outcomes of patients

in ICU, especially in mortality prediction. In addition, GCS and blood urea

nitrogen were identified as the most important factors strongly associated

with adverse ICU events.

KEYWORDS

intensive care unit (ICU), mortality, length of stay, readmission, prognostic prediction,
deep learning

Introduction

Patients in the intensive care unit (ICU) are usually critically
ill, presenting a high mortality risk compared with other
departments in the hospital (1). In addition, readmission and
prolonged length of stay (LOS) are both common clinical
outcomes indicating patients’ health conditions (2, 3), critical
care quality (4, 5), and medical efficiency (6). Thus, early
identification of seriously ill patients and those with prolonged
LOS and readmission risk and subsequent management is
exceedingly important in improving patient outcomes and
providing optimal allocation of medical resources.

However, traditional scoring systems, even some machine
learning methods in predicting these outcomes, especially in
stratifying the risk of readmission, have shown only modest
results (7–10). Although part of the existing work based on
machine learning models seems promising (11–13), few of
them are able to take advantage of the characteristics of
features collected in the ICU, which are time-series forms.
Presently, these time-series problems can be approached with
deep learning-based models, such as recurrent neural network
(RNN) and its derived models, namely, gated recurrent unit
(GRU) (14) and long short-term memory (LSTM) (15), which
can learn valuable information from a large number of rapidly
changing variables, making it possible to make full use of ICU
data collected at a high frequency (16). Based on these advanced
models, several studies have conducted prognostic prediction of
patients in ICU, but most were disease-specific or ICU-specific
(17–20), the clinical use of which was restricted to a specific
group. To the best of our knowledge, no studies have ever
predicted common outcomes while maximizing the value of
these models of patients in general ICU. Furthermore, because
of the complexity of these deep learning models, they are
not easy to interpret, which restricts their practical application
to clinical decisions (21, 22). Therefore, transparency and

explainability must be considered when constructing prediction
models. Recently, several methods have been introduced
to improve model interpretability; among them, attention
mechanisms seem to be one of the most prospective approaches
(23), which have been proven to provide the foundation for
clinical interpretation (24). Through explainable prediction
models, significant factors can be identified at an early stage to
help clinicians offer better medical interventions.

In this study, we aimed to apply three time-series deep
learning models for predicting three common ICU outcomes,
namely, mortality, prolonged LOS, and readmission, of patients
in ICU from the Medical Information Mart for Intensive Care-
IV (MIMIC-IV) database and identified predictors of high
importance based on attention mechanisms to facilitate model
interpretability.

Materials and methods

Data source and study participants

Patient information was extracted from the MIMIC-
IV database (25) to conduct a retrospective cohort study.
The MIMIC-IV database contains real medical records with
comprehensive information for each patient, ranging from
demographic information, vital signs, and laboratory tests
to medication administration. All patient information was
collected from those who were admitted to the emergency
departments and ICU of a tertiary academic medical center in
Boston, MA, United States, from 2008 to 2019. The database
involves a total of 53,150 patients admitted to the ICU, and all
patients’ information was de-identified.

A total of 40,083 patients were included in our study.
Patients were excluded for the following reasons: (1)
age ≤ 18 years or ≥ 90 years and (2) stay in the ICU for
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less than 24 h. In addition, we only included the first admission
record if a patient was admitted to the ICU more than once, so
the admission records and subject IDs corresponded.

Predictors and outcomes

We extracted the following data from the MIMIC-IV
database upon the initial 24 h of ICU admission and the
last 24 h before discharge, and all of the variables were
selected according to three conventional scoring systems
[APACHE II (26), SOFA (27) and SAPS II (28)]: (1)
basic information: age, sex, admission type, ethnicity; (2)
diagnosis: AIDS, hematologic malignancy, metastatic cancer;
(3) laboratory measurements: serum sodium, serum potassium,
serum creatinine, hematocrit, white blood cell count, blood
urea nitrogen (BUN), serum bicarbonate, bilirubin, platelets;
(4) vital signs: temperature, mean arterial pressure, systolic
blood pressure, heart rate, respiratory rate, PaO2, Glasgow
coma score (GCS); (5) medication administration: dopamine,
dobutamine, epinephrine, norepinephrine; (6) output: urinary
output; (7) surgical procedures: invasive mechanical ventilation,
non-invasive mechanical ventilation.

Three primary outcomes were needed for prediction in our
study. One is the occurrence of death in the hospital, which was
defined as whether the patient died during hospitalization, and
this information can be extracted from hospital_expire_flag in
the admissions table in the MIMIC-IV database. Another is the
occurrence of prolonged LOS, a binary variable with a cutoff
point of 75th percentile LOS of the study participants, which
was 4 days in our study. Thus, patients with LOS for more than
4 days were labeled as 1, and those with LOS for less than 4 days
were labeled as 0. Prolonged LOS information was calculated
from the icustays table. The other outcome is readmission, which
was defined as whether the patient was recorded as having
full-cause readmission within 30 days after hospital discharge.

Data extracted from the initial 24 h after ICU admission
were used to predict mortality and prolonged LOS, while data
derived from the last 24 h before discharge were used to predict
the risk of 30-day readmission.

Data preprocessing and statistical
analysis

Continuous variables are presented as the means ± SDs
or medians and interquartile ranges and are compared using
Student’s t-test or Wilcoxon rank-sum test according to their
normality test results. Categorical variables are presented as
counts and percentages and compared through the Chi-square
test or Fisher’s exact test with significant p-values < 0.05.

According to recording frequencies, predictors can be
classified into dynamic predictors and static predictors.

Dynamic variables were those recorded more than once during
ICU hospitalization, mostly consisting of vital signs and
laboratory tests. Static variables, which included demographic
information such as age, sex, and admission type, were all
constant and did not change over time. The initial 24 h of
ICU admission and the last 24 h before discharge were divided
into a time-series of 24 steps, and all variables were obtained
for each 1 h window to generate a complete dataset. For
static variables, the same value of each patient was recorded
24 times. For dynamic variables, if a variable was recorded
more than once in an hour, its mean value was used for
aggregation, and then the last observation carried forward
(LOCF) was conducted to impute missing values of time-
series data. After the first missingness imputation, variables
with missing rates of more than 30% were excluded. All
categorical variables were one-hot encoded, so the final number
of predictors was 33.

All participants were randomly split into a training set (80%)
and a test set (20%). The mean value of each continuous variable
in the training set was used to impute the remaining missing
values in both the training set and the test set. Three deep
learning models, RNN, GRU, and LSTM, were used for model
development in the training set, and model performance was
evaluated in terms of AUC, sensitivity, specificity, and Brier
score in the test set. Variable importance according to the
attention mechanism was also produced from the test set.

All data analysis procedures were conducted with SAS
9.4 and Python 3.7.

Recurrent neural network

The mechanism of RNN to tackle time-series problems is
that it includes a hidden layer, which incorporates information
from all former steps, and with the extension of each time step,
the hidden layer iteratively updates, and stores new memory.
As shown in Figure 1A, Xt represents input variables of the
present time step, while Ht−1 is the hidden layer of the previous
time step, two of which co-determine the hidden layer Ht of the
present time step, so Ht contains all information of both the
previous time steps and the present time step.

Gated recurrent unit

Gated recurrent unit enriches the structure of RNN with
gating systems (an update gate and a reset gate) to solve the
problem of too much information kept in the hidden layer
when time sequences are too long, in which the update gate
(Zt) decides how much information to forget and how much
information to keep and the reset gate (Rt) determines how
much information on former steps to forget, as shown in
Figure 1B.
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FIGURE 1

Model diagram of a single cell. (A) RNN; (B) GRU; (C) LSTM.

Long short-term memory

Long short-term memory is more complicated than GRU.
It has three gates, an input gate (It), a forget gate (Ft), and
an output gate (Ot) addition with a memory cell Ct . The three
gates are all generated by Xt and Xt−1, and they separately
decide how much present input information to keep, how much
previous information to forget, and how much total information
to output. The schematic diagram of an LSTM cell is shown in
Figure 1C.

Attention mechanism

Considering the complexity of the three deep learning
models, especially LSTM, which has relatively more parameters,
it would be very difficult to explain the contribution of each
variable from these prediction models. Hence, an additional
layer was added to each of the three models at the level of
input variables; specifically, each variable of each time step
(33 × 24 time-specific variables in all) was given an attention
weight, which can be represented as at = softmax(xtWt),
and the sum of the weight of each time step was equal
to 1 (|at| = 1), so the new input variable was represented
as Xnew = A� X. As a result, we ignored the possibly
different contributions of each time step but focused on
the contribution of each variable. Through the aggregation

of all time steps, the global contribution of each variable
can be generated.

Results

Patient characteristics

A total of 40,083 patients were included in our study for
the prediction of mortality and prolonged LOS after excluding
those who did not meet the selection criteria, and 36,180 of them
were included to predict readmission, as shown in Figure 2.
Among these patients, 3,903 (9.74%) deaths occurred during
hospitalization, and 11,038 (27.54%) underwent prolonged LOS.
After excluding 3,903 patients who died in the hospital, 4,268
(11.79%) were readmitted to the hospital within 30 days after
discharge. The comparison of basic information of these patients
stratified by outcomes is shown in Table 1. Patients with
in-hospital death, compared with those without, were older
(P < 0.001), comprised more women (P < 0.001) and more
other or unknown ethnicity (P < 0.001), and were more likely
to be admitted to the emergency room and transferred from the
hospital (P < 0.001), had a longer LOS in the ICU (P < 0.001),
and were more likely to be diagnosed with metastatic cancer
(P < 0.001) and hematologic malignancy (P < 0.001). Patients
with prolonged LOS were also comprised of more women
(P < 0.015) and other or unknown ethnicity (P < 0.001),
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FIGURE 2

Flow chart depicting the inclusion of study participants.

more transferred from the hospital (P < 0.001), and more
were diagnosed with hematologic malignancy (P < 0.048),
while fewer were diagnosed with metastatic cancer (P = 0.025).
Patients who were readmitted were also older (P < 0.001),
comprised of more white people and fewer other or unknown
ethnicity (P < 0.001), more were transferred from the hospital
(P < 0.001) and diagnosed with metastatic cancer (P < 0.001)
and hematologic malignancy (P < 0.001). The diagnosis of AIDS
showed similar results between both patients with and without
in-hospital death (P = 0.777), prolonged LOS (P = 0.985), and
readmission (P = 0.146).

Model performance

The receiver operating characteristic (ROC) curves of the
three prediction models in predicting in-hospital mortality,
prolonged LOS, and 30-day readmission are shown in
Figures 3A–C. The AUCs of RNN, GRU, and LSTM in
predicting mortality were 0.862 ± 0.001, 0.870 ± 0.001, and
0.869 ± 0.002, respectively, and those in prolonged LOS
prediction were 0.761± 0.002, 0.757± 0.011, and 0.765± 0.003,
respectively. The AUCs of readmission prediction reached only
0.625 ± 0.008, 0.631 ± 0.011, and 0.635 ± 0.018 for the three
deep learning models. Other performance metrics, namely,
sensitivity, specificity, and Brier score, are shown in Table 2.

Variable significance

The significance of the variables is shown in Figures 4–6.
All three prediction models (RNN, GRU, and LSTM) indicated
the important roles of GCS, age, blood urea nitrogen, and
administration of norepinephrine in predicting mortality. GCS,
invasive ventilation, and blood urea nitrogen were all among
the top five significant predictors for prolonged LOS prediction.
Blood urea nitrogen, GCS score, and ethnicity were strong
predictors for 30-day readmission prediction.

Discussion

In this study, three time-series deep learning models were
applied to predict in-hospital mortality, prolonged LOS, and 30-
day readmission with conventional and easily available variables
in ICU settings, and influential factors associated with the
three outcomes were identified through attention mechanisms
to enhance model interpretability.

Our study focused on the outcome prediction of general
patients without distinguishing their diseases, and the results
showed in-hospital mortality of 9.74%, a prolonged LOS
of 27.54%, and 30-day readmission of 11.79%, which were
roughly consistent with previous studies (29, 30). For better
practical use in clinical settings, we only included variables
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TABLE 1 Characteristics of study participants grouped by outcomes.

Characteristic Total
(N = 40,083)

Outcome 1 Outcome 2 Total
(N = 36,180)

Outcome 3

Death
(N = 3,903)

Survival
(N = 36,180)

P-value PLOS
(N = 11,038)

Non-PLOS
(N = 29,045)

P-value Readmission
(N = 4,268)

Non-
readmission
(N = 31,912)

P-value

Age/year,
Mean± SD

63.6± 16.1 68.5± 14.7 63.1± 16.2 < 0.001 63.7± 16.0 63.6± 16.2 0.444 63.1± 16.2 64.7± 15.4 62.9± 16.3 < 0.001

Sex, n (%) < 0.001 0.015 0.412

Male 23,096 (57.6) 2,131 (54.6) 20,965 (57.9) . 6,253 (56.6) 16,843 (58.0) 20,965 (57.9) 2,498 (58.5) 18,467 (57.9)

Female 16,987 (42.4) 1,772 (45.4) 15,215 (42.1) . 4,785 (43.4) 12,202 (42.0) 15,215 (42.1) 1,770 (41.5) 13,445 (42.1)

Ethnicity, n (%) < 0.001 < 0.001 < 0.001

White 26,768 (66.8) 2,307 (59.1) 24,461 (67.6) . 7,044 (63.8) 19,724 (67.9) 24,461 (67.6) 2,998 (70.2) 21,463 (67.3)

Black American 3,540 (8.8) 289 (7.4) 3,251 (9.0) . 934 (8.5) 2,606 (9.0) 3,251 (9.0) 394 (9.2) 2,857 (9.0)

Asian 1,178 (2.9) 116 (3.0) 1,062 (2.9) 291 (2.6) 887 (3.1) 1,062 (2.9) 125 (2.9) 937 (2.9)

Hispanic 1,423 (3.6) 103 (2.6) 1,320 (3.6) 373 (3.4) 1,050 (3.6) 1,320 (3.6) 138 (3.2) 1,182 (3.7)

Others/Unknown 7,174 (17.9) 1,088 (27.9) 6,086 (16.8) 2,396 (21.7) 4,778 (16.5) 6,086 (16.8) 613 (14.4) 5,473 (17.2)

Admission location,
n (%)

< 0.001 < 0.001 < 0.001

Emergency room 17,587 (43.9) 2,024 (51.9) 15,563 (43.0) . 4,862 (44.0) 12,725 (43.8) 15,563 (43.0) 1,915 (44.9) 13,648 (42.8)

Physician referral 10,154 (25.3) 412 (10.6) 9,742 (26.9) 2,073 (18.8) 8,081 (27.8) 9,742 (26.9) 870 (20.4) 8,872 (27.8)

Transfer from hospital 9,946 (24.8) 1,236 (31.7) 8,710 (24.1) . 3,511 (31.8) 6,435 (22.2) 8,710 (24.1) 1,213 (28.4) 7,497 (23.5)

Others 2,396 (6.0) 231 (5.9) 2,165 (6.0) 592 (5.4) 1,804 (6.2) 2,165 (6.0) 270 (6.3) 1,895 (5.9)

LOS/day,
Mean± SD

4.1± 5.3 6.2± 6.8 3.9± 5.0 < 0.001 9.6± 7.6 2.0± 0.8 < 0.001 3.9± 5.0 5.3± 6.9 3.7± 4.7 < 0.001

Metastatic cancer, n
(%)

< 0.001 0.025 < 0.001

Yes 4,715 (11.8) 776 (19.9) 3,939 (10.9) 1,234 (11.2) 3,481 (12.0) 3,939 (10.9) 552 (12.9) 3,387 (10.6)

No 35,368 (88.2) 3,127 (80.1) 32,241 (89.1) . 9,804 (88.8) 25,564 (88.0) 32,241 (89.1) 3,716 (87.1) 28,525 (89.4)

Hematologic
malignancy,
n (%)

< 0.001 0.048 < 0.001

Yes 1,278 (3.2) 257 (6.6) 1,021 (2.8) 383 (3.5) 895 (3.1) 1,021 (2.8) 165 (3.9) 856 (2.7)

No 38,805 (96.8) 3,646 (93.4) 35,159 (97.2) . 10,655 (96.5) 28,150 (96.9) 35,159 (97.2) 4,103 (96.1) 31,056 (97.3)

AIDS, n (%) 0.777 0.985 0.146

Yes 47 (0.1) 4 (0.1) 43 (0.1) 13 (0.1) 34 (0.1) 43 (0.1) 2 (0.0) 41 (0.1)

No 40,036 (99.9) 3,899 (99.9) 36,137 (99.9) . 11,025 (99.9) 29,011 (99.9) 36,137 (99.9) 4,266 (100) 31,871 (99.9)

PLOS, prolonged length of stay; non-PLOS, non-prolonged length of stay; AIDS, acquired immune deficiency syndrome. The bold font designates the statistically significant variables with p value less than 0.05.
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FIGURE 3

ROC curves of RNN, GRU, and LSTM. (A) Mortality prediction; (B) prolonged LOS prediction; (C) 30-day readmission prediction.

TABLE 2 Model performance in predicting hospital mortality, PLOS, and 30-day readmission of patients in ICU.

Performance Mortality prediction PLOS prediction 30-day readmission prediction

RNN GRU LSTM RNN GRU LSTM RNN GRU LSTM

AUC 0.862± 0.001 0.870± 0.001 0.869± 0.002 0.761± 0.002 0.757± 0.011 0.765± 0.003 0.625± 0.008 0.631± 0.011 0.635± 0.018

Sensitivity 0.787± 0.012 0.796± 0.015 0.790± 0.020 0.651± 0.009 0.666± 0.018 0.655± 0.027 0.658± 0.036 0.652± 0.083 0.691± 0.064

Specificity 0.786± 0.011 0.782± 0.012 0.783± 0.017 0.771± 0.009 0.741± 0.012 0.760± 0.024 0.567± 0.039 0.541± 0.072 0.524± 0.061

Brier Score 0.073± 0.003 0.087± 0.006 0.082± 0.010 0.169± 0.006 0.204± 0.019 0.185± 0.014 0.105± 0.001 0.105± 0.002 0.104± 0.009

AUC, area under the curve; PLOS, prolonged length of stay; RNN, recurrent neural network; GRU, gated recurrent unit; LSTM, long short-term memory. The bold font represents the
best score of the three models.

FIGURE 4

Variable importance generated by mortality prediction models. (A) RNN; (B) GRU; (C) LSTM.

that are commonly used and easily available according to
three traditional scoring systems [APACHE II (26), SOFA (27),
and SAPS II (28)] and collected within 24 h, so compared
with other similar studies, the number of variables in this
study was relatively small, which partly explained the not

very outstanding performance of our prediction models. For
example, in Golas’s study, 3,512 variables were included (31)
and in Sherman’s study, 165 variables were included (32),
while in our study, only 33 variables were included, which
were all among the common clinical measurement indicators.
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FIGURE 5

Variable importance generated by prolonged LOS prediction models. (A) RNN; (B) GRU; (C) LSTM.

FIGURE 6

Variable importance generated by 30-day readmission prediction models. (A) RNN; (B) GRU; (C) LSTM.

Specifically, the values of AUC indicated good discrimination
capability in mortality prediction, moderate in prolonged LOS,
and not as good in readmission. All prediction models were
trained with a 24-h time window, which was a comprehensive
consideration of various conditions, such as the significance
of each period, the complexity of variable availability, and the
missingness rate. Nevertheless, the length of the time window
can also have a certain impact on model performance. In
Na’s study, the best-performing model (GRU) was trained
with 8/16/24/48-h time windows, and the overall tendency
indicated that the extended time window corresponded to better
predictive performance (33). In addition, the performance of
the readmission prediction model may be strongly affected

by the period of readmission, ranging from 24 h to 30 days
in existing studies (34–36); usually, the shorter the time
interval is the better the prediction capability. Thus, using
a relatively narrow time window, which is 24 h, to predict
long-term outcomes theoretically resulted in a weak predictive
capability. However, the result is still competitive in all three
outcome predictions because of the application of deep learning
models with a small quantity of time-series variables (8, 9,
31, 37).

The results of the performances of the three deep learning
modes (RNN, GRU, and LSTM) did not differ greatly in
predicting outcomes, and this was inconsistent with what was
obtained by Na’s study (33). For a similar task (mortality
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prediction using RNN, GRU, and LSTM with variables collected
within a 48-h observation window), GRU and LSTM performed
better than RNN. In their study, the observation window
was double-length, which may be related to the difference in
the results. The superiority of LSTM and GRU is that their
additional gate systems can better select important information
stored in hidden layers on each time step, so when the time
window is too short, the information contained is more likely
to be undiscardable so that the advantages of LSTM and GRU
cannot be reflected (23).

Attention mechanisms allowed us to identify important
features used by three different models in prediction, and
the influential variables of each outcome selected by different
deep learning models also did not differ greatly. The GCS was
identified as the top important factor for mortality, prolonged
LOS, and readmission prediction, and the same results can also
be extracted from other similar studies. For example, some
studies have concluded that GCS is an independent mortality-
related factor and has the most significant feature importance
in some specific diseases (38, 39). This variable was also
demonstrated to be one of the most important determinants
of prolonged LOS in patients with traumatic brain injury (40).
Moreover, in Oh’s study, 2.28-fold higher unplanned 2-day
readmissions were associated with GCS scores less than 13
(41). A lower GCS score indicates more severely impaired
consciousness, which may lead to a poor outcome if timely
medical intervention is not conducted (42). Age was also
demonstrated to have a strong relationship with in-hospital
mortality in the ICU by previous studies (43, 44), with a
higher mortality rate occurring among elderly patients. These
patients generally have reduced immunity, underlying chronic
diseases, and worse recovery ability, which may complicate
their health status and result in adverse outcomes (45, 46).
In Martin’s study, BUN was discovered to have a significant
association with 28-day mortality (47), and Jamshid’s study
identified BUN as one of the factors with the highest predictive
values to predict the risk of mortality from patients with severe
COVID-19 (48), which also provides support for our results.
BUN was also identified as a significant variable for prolonged
LOS and readmission prediction, and the same results can
also be found in homogeneous studies (49, 50). The increased
level of BUN is associated with kidney damage, which is
supported by multiple mechanisms (51). We also included some
medication administration information following SOFA scoring
systems (27), and the results showed that norepinephrine, which
was recommended as first-line therapy for cardiogenic shock
(52), had decisive implications on mortality prediction. This
result was also generated by Lu’s study, which concluded that
patients in cardiogenic shock treated with norepinephrine had
significantly increased short-term mortality rates (53). These
patients, especially those in refractory shock, usually had an
extremely poor prognosis, which lead to higher mortality
(54). We also found that invasive ventilation was a decisive

predictor for prolonged LOS, a risk factor also suggested by
a meta-analysis containing 28 articles (3). In the prediction of
readmission, the results showed that ethnicity was a decisive
predictor, with the white people owning an increased probability
for readmission and other/unknown ethnicity decreasing. In
Mukhopadhyay’s study, the results also showed that ethnicity
was independently associated with hospital readmissions (55).

There are several limitations to our study. First, we excluded
some variables that may have predictive values because of high
missingness rates, such as the mean arterial blood pressure and
bilirubin, and the insurance variable, which may influence LOS,
was also not included considering that more than half of the
insurance type was labeled “Others.” Second, as a single-center
study, the generalizability and representation of our conclusion
still need to be demonstrated by other data sources. Third,
the alternative variables may still be not comprehensive. For
example, the diagnosis at ICU admission was not considered
a predictor in our study, which may affect the application and
generalization of this model in different patient groups. More
variables that are easily available need to be explored to further
improve model performance.

Conclusion

Three time-series deep learning models were applied for the
prediction of three common ICU outcomes, namely, mortality,
prolonged LOS, and readmission. The prediction models
reached good performance, especially in mortality prediction,
which is of great value in clinical settings considering the
conventional and easily available variables incorporated. Our
results also indicate that GCS and blood urea nitrogen were
highly associated with adverse outcomes of patients in ICU, and
focusing on these variables can better assist clinical decisions.
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Background: Although publications have been increasing rapidly, the research

quality has yet to improve in the field of critical care medicine (CCM) in China.

This study aimed at investigating the current status of and the influential factors

for impactful publications in CCM research by Chinese authors.

Methods: Publications by authors with the a�liation of critical care medicine

department or intensive care unit (CCM/ICU) in Chinese as well as American

hospitals from 2001 to 2020 were retrieved from the Web of Science Core

Collection (WoSCC) database for this bibliometric analysis. Moreover, statistical

analyses to test factors a�ecting impactful publications by Chinese authors

were performed.

Results: Of 13,487 articles retrieved by this search strategy, 6,622 were

published by Chinese authors as first or corresponding authors. The annual

publications by Chinese authors have been rapidly increasing from 2001 to

2020, and so did the citations to these articles. However, the proportion in

the world of publications by Chinese authors was much less than that by

American authors each year [M (IQR): 1.85 (9.592) vs. 27.77 (7.3), p < 0.001].

In addition, impactful articles were significantly less published by Chinese

than by American authors, including articles either in journals with a high

impact factor (p < 0.001) or in the top 10 journals in the field of CCM (5.4

vs 13.4%, p < 0.001), and articles with high citation frequency as well (p <

0.001). Moreover, the percentage of impactful publications by Chinese authors

was likely associated with academic background and regions of the author’s

a�liations, funds support, public health events of COVID-19, and collaboration

between authors.

Conclusion: Our results demonstrated that CCM research in China grew

rapidly in the recent 20 years. However, the impactful publications remained

limited, largely owing to the shortage of comprehensive research training,

inactive collaboration, and underfunded CCM research.

KEYWORDS

China, research, impactful publications, critical care medicine, factors, bibliometric

analysis
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Introduction

Critical care medicine (CCM) in China was seen to make

great progress in the past two decades (1). It plays an important

role not only in the management of critical illness in hospitals

but also in increasing actions of public health emergencies and

natural disasters. However, the achievement of research was not

consistent with clinical practice in the field of CCM in China.

Based on bibliometric analysis, Li et al. (2) reported that the

number of publications on CCM was much less in China than

that in the United States and other developed countries from

2000 to 2010. Moreover, the research with high quality were

mostly concentrated in Taiwan and Hong Kong. In fact, the

majority of articles in this field from mainland China were less

impactful during this period (3).

To promote the scientific research in CCM, experts from the

Chinese Society of Critical Care Medicine established the China

Critical Care Clinical Trials Group (CCCCTG), comprising

intensivists from 24 ICUs from 21 provinces in China, which

joined the Global Sepsis Alliance (GSA) in 2010. In addition,

there were more and more activities specific to scientific

research training, for example, the Conference of Critical

Care Research Forum (CCCRF), Salon for Young Critical

Care Investigators, and Critical Care Research Campaign, etc

(4). Accordingly, the number of publications on CCM from

China has been increasing rapidly over the last decade (5–

8). Meanwhile, the research quality has yet to improve. An

updated bibliometric analysis showed that China contributed

only 1% of the top 2,000 highly cited articles on critical care,

as of 13 February 2018 (9). In addition, there never was an

article on CCM from China with annual citations over 100

before 2018 (10). These data suggest that problems remain

in promoting the quality of research on CCM in China.

Notably, the barriers were under-investigated. Therefore, this

study aimed at investigating the current status of and the

influential factors for impactful publications in CCM research

from 2001 to 2020 by Chinese authors, who reported the

affiliation of Critical CareMedicine department or intensive care

unit (CCM/ICU) in Chinese hospitals, through a bibliometric

and visualized analysis.

Methods

Data sources and search strategies

Web of Science Core Collection (WoSCC) database is

one of the most comprehensive, systematic, and authoritative

databases, which has been successfully used for bibliometric

analysis (11, 12). Publications by authors reporting the affiliation

of CCM/ICU in Chinese hospitals from 2001 to 2020 were

retrieved for this bibliometric analysis. The search strategy was

“Address: (Chinese OR China OR CN) AND (Intense Care Unit

OR Crit Care OR ICU OR intensive care OR critical care) NOT

Address: (Respiratory OR Pulmonary OR PCCM).” The data set

retrieved from the WoSCC database was transformed into an

Excel version. The collected articles were further screened by

the first or corresponding authors who reported the affiliation

of CCM/ICU in Chinese hospitals. Being a comparator, data

regarding publications from CCM/ICU in American hospitals

were collected by the same search strategy, but “American OR

America OR US” replaced “Chinese OR China OR CN.” Time

windows were unified as “1 January 2001 to 31 December 2020”;

and there were no language or article type restrictions. All data

were collected online on 1 May 2022 and no ethical proof

was required.

Data collection

Data regarding publications retrieved from WoSCC

included title, keywords, authors, affiliations and regions,

journal, date of publication, funding, citations, etc. Data were

extracted by two authors (QW and ZL) independently and

the agreement of the results was 98%, showing significant

consistency. All data were saved in a text or excel format for

further analysis.

Bibliometric analysis

All downloaded documents were imported to the Web of

Science-Incites Research Performance Analysis Platform (WoS-

Incites, https://incites.clarivate.com/), VOSviewer (version

1.6.15), and Microsoft Excel 2019. WoS-Incites were used

to analyze the number of publications, impact factors of the

journals, citation frequency, characteristics of the authors,

and their affiliations. VOS viewer 1.6.15 (Leiden University,

Leiden, The Netherlands) was used to analyze and visualize co-

authorship of authors, institutes, countries, and co-occurrence

analysis of keywords (13). Microsoft Excel 2019 was used to

diagrammatize results fromWoS-Incites (14).

Statistical analysis

Continuous variables were expressed as mean ± standard

deviation (mean ± SD) or median [interquartile range;

M (IQR)] depending on whether they followed a normal

distribution. Differences between groups were compared by

Student’s t-test or the Wilcoxon rank sum test based on

data distribution. Categorical variables were described using

cases and percentages or proportions. And differences between

groups were compared by the chi-square test or Fisher’s exact

probability method. Two-sided p-values < 0.05 were considered

statistically significant.
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Results

Publications and citations

Publications

There were 13,487 articles published in international peer-

reviewed journals listed on the Science Citation Index (SCI)

from 2001 to 2020 reporting one author at least with the

affiliation of CCM/ICU in Chinese hospitals. The number of

annual publications was over 100 in 2008 and has been rapidly

increasing since 2008 (Figure 1 inner).

Out of the 13,487 publications, 6,622 were further retrieved

by the first or corresponding author who reported the affiliation

of CCM /ICU in Chinese hospitals (Figure 1). Stratified with

the impact factors (IFs), 531 (8.02%), 4,685 (70.75%), 1,192

(18.00%), and 214 (3.23%) out of 6,622 articles were published

in journals without IF, IF ≤ 5, IF between 5–10 (5 < IF < 10)

and IF ≥ 10, respectively (Supplementary Figure S1). Notably,

the number of annual publications in journals with IF> 5 would

not exceed 100 until 2017, while publications were over 50 in

journals with IF ≥ 10 till 2020 (Figure 1).

Publications by Chinese vs. American authors

The proportion of publications in the world on CCM

research from 2001 to 2020 by Chinese authors was much

less than that by American authors [M (IQR): 1.9 (0.4,

10.0) vs 27.8 (25.6, 32.9), p < 0.001, Table 1]. However, the

proportions contributed by Chinese authors increased yearly,

while a decreased trend was found in that by American authors

in this study period (Supplementary Table S1). As shown in

Supplementary Figure S2, the proportion of publications by

American authors always ranked first in the world each year

from 2001 to 2020. The ranking of publications by Chinese

authors has entered the top 10 since 2012 (rank ninth) and

kept the second place since 2014. Significantly, the number

and percentage (the number/the total) of publications in

the top 10 high impactful journals in the field of CCM

(including NEJM; JAMA, BMJ, Am J Resp Crit Care Med,

Intensive Care Med, Critical Care Med, Ann Intensive Care,

the detailed data are shown in Supplementary Table S2) were

also much less by Chinese authors than by American authors

in these two decades [358 (5.4%) vs 3,060 (13.4%), p < 0.001,

Table 1].

The keywords in publications

A total number of 10,980 and 21,689 keywords were

identified from 6,622 and 22,819 publications by first and

corresponding authors with affiliations of CCM/ICU in

Chinese and American hospitals, respectively. The top 724

keywords with co-occurrence frequency equal to or over

five were selected for co-occurrence network and overlay

analysis. The occurrence frequency of keyword was displayed

in circle size, as shown in Figures 2A,B. It was shown that

“Sepsis” was only the same one out of the top five keywords

(ranked by the occurrence frequency) in publications by either

Chinese authors [“Sepsis” (642), “Acute lung injury” (412),

“Inflammation” (289), “Apoptosis” (268), “Mortality” (232)]

or America authors [“Pediatric” (1,402), “Trauma” (624),

“Sepsis” (605), “Critical care” (584), “Intensive care unit”

(546); Figures 2A,B, Supplementary Table S3], respectively. In

addition, eight keywords including “Sepsis,” “Septic shock,”

“Acute kidney injury,” Acute lung injury,” “Mechanical

ventilation,” “Inflammation,” “Mortality,” and “Intensive

care unit” were shared in the top 20 keywords by both

Chinese and American publications (Supplementary Table S3).

Moreover, it was demonstrated that seven and 13 keywords

of Chinese publications, in comparison with 0 and 20

keywords of American publications, were categorized as basic

researches and clinical researches, respectively (p = 0.008,

Table 1).

In addition, the overlay analysis of the keywords represented

the trends of topics in Chinese and American publications

between 2001 and 2020. The circles of keywords were marked

on colors from blue to yellow to display the overlay visual map

of the keywords over time, which was quantitively calculated

by the average publication year of the articles in which the

keyword appeared (Avg.pub.year) (15). It was demonstrated

that the Avg.pub.year of “nuclear factor-kappa B (2014.29,

Ranked eighth)” and “ischemia/reperfusion injury (2013.75,

Ranked sixth)” in publications by Chinese authors were about

7–9 years delayed from that of the similar keywords “nuclear

factor-kappa B (2005.44, Ranked first)” and “reperfusion

(2006.10, Ranked fourth)” by authors from America among the

top 10 earliest research topics (Supplementary Figures S3A,B,

Supplementary Table S4). As shown in Supplementary Table S4,

the latest research topics were similar in publications by authors

from China and America, that mainly focused on COVID-

19, and the Avg.pub.years of these hot topics were from 2019

to 2020.

Citations

The citations to articles published by the first or

corresponding authors with the affiliation of CCM /ICU

in Chinese hospitals each year from 2001 to 2020 are also

shown in Figure 1. Similar to the trend of publications, the

total citations to these articles kept a rapid growth year by year

from 2012, despite a rollback in 2018 (Figure 1). Out of the

top 10 highly cited articles by Chinese authors, only one was

not related to COVID-19 as shown in Supplementary Table S5

(16). The total citations of the top 10 highly cited articles

in the world ranged from 3,116 to 10,788 from 2001 to

2020 (Supplementary Table S5), of which there was only one
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FIGURE 1

Annual publications and the cumulative citations from 2001 to 2020.The X-axis represented each year from 2001 to 2020, the Y-axis represented

the number of annual publications (bar) and the cumulative citations (blue line) to all articles till the year published by first and corresponding

authors from a�liations of Critical Care Medicine (CCM) department or intensive care unit (ICU) in Chinese hospitals. These annual publications

were stratified by the impact factor (IF) of the journals publishing these articles, marked on red (IF ≥ 10), black (5 < IF < 10), gray (IF ≤ 5) and

white (without IF) as well. The inner figure showed the trend of annual publications with one author at least on author list from a�liations of

CCM department or ICU in Chinese hospitals.

article published by the Chinese author (17). Significantly,

the percentage of articles published by Chinese authors was

much lower than that of American authors in the top 10,

100, and 1,000 highly cited articles in the world, as shown

in Table 1 (p < 0.001). Additionally, either the average

citation frequency (citations/articles) in the two decades

[M (IQR): 17.0 (11.9, 18.4) vs. 27.8 (15.9, 36.9), p = 0.012]

or the individual citation frequency in WOSCC [citations

of individual article; M (IQR): 5.0 (2.0, 14.0) vs. 8.0 (1.0,

24.0), p < 0.001] was significantly lower in Chinese authors

publications (Table 1).

Factors barred to or facilitated the
impactful publications in Chinese CCM
research

Academic background of the authors’
a�liations

As shown in Supplementary Figure S4, 69.55% (491/706)

of the first and corresponding authors reported affiliations of

CCM/ ICU in Chinese hospitals with academic background,

including 65.72 and 3.82% of them affiliated with university

(or college) and research institutes, respectively. Meanwhile,
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TABLE 1 Publications and the citations by Chinese vs. American authors from 2001 to 2020.

By Chinese authors By American authors p-Value

Publications in total 6,622 22,819 —

Publications in journals with, n (%)

IF < 5 4,669 (70.5) 13,116 (57.5)

IF ≥ 5 1,953 (29.5) 9,703 (42.5) <0.001

IF ≥ 10 608 (9.2) 3,066 (13.4)

Publications in top 10 impactful journals linked to CCM† , n (%) 358 (5.4) 3,060 (13.4) <0.001

Yearly proportions of publication in the world (%)# ,M (IQR) 1.9 (0.4, 10.0) 27.8 (25.6, 32.9) <0.001

The top 20 keywords in publications, n (%)

Categorized to basic research 7 (35.0) 0 (0.0) 0.008

Categorized to clinical research 13 (65.0) 20 (100.0)

Yearly citation frequency (yearly citations/articles, %),M (IQR) 17.0 (11.9, 18.4) 27.8 (15.9, 36.9) 0.012

Individual citation frequency in WOSCC†† ,M (IQR) 5.0 (2.0, 14.0) 8.0 (1.0, 24.0) <0.001

Highly citated articles*, n (%)

In top 10 1 (10.0) 3 (30.0) <0.001

In top 100 3 (3.0) 55 (55.0)

In top 1,000 21 (2.1) 660 (66.0)

†The top 10 impactful journals linked to CCM include NEJM (NEW ENGLAND JOURNAL OF MEDICINE); JAMA (JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION);

BMJ (British Medical Journal); Am J Resp Crit Care Med (AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE); Intensive Care Med(INTENSIVE

CARE MEDICINE); Critical Care Med (CRITICAL CARE MEDICINE; Ann Intensive Care (ANNALS OF INTENSIVE CARE), the detailed data regarding publications are shown

in Supplementary Table S1.
#Yearly proportions of publication: the proportions of publications in the world each year from 2001 to 2020 by Chinese vs. American authors on CCM researches, the detailed data are

shown in Supplementary Table S1.
††Individual citation frequency in WOSCC: Citations of each publication in the database of WOSCC (Web of Science Core Collection).
*The highly cited articles: the top 10, 100 and 1,000 highly cited articles in the world.

FIGURE 2

Visualization map of Keywords co-occurrence network in publications on Critical Care Medicine research. Keywords co-occurrence network in

articles published by authors from a�liations of CCM or ICU in Chinese (A) vs American (B) hospitals from 2001 to 2020 were mapped. The size

of the circles indicated the co-occurrence frequency of keywords. The color of each circle indicated clusters, which was a set of keywords

calculated in the co-occurrence network as a community. The connecting lines indicated co-occurrence of the 2 keywords at both ends. The

thickness of lines between circles indicated strength of linkage calculated by the frequency of co-occurrence.

only 18.84% of the authors served hospitals without academic

background (i.e., hospitals not affiliated with any university,

college, or research institutes). Significantly, the percentages of

articles published in journals with IF≥ 5 and IF≥ 10 by authors

from academic hospitals were significantly higher than that from

non-academic hospitals (p < 0.001, Table 2).
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FIGURE 3

Geographical distribution of the publications by Chinese authors. The X-axis were the provinces/municipalities, where the hospitals of the first

or corresponding authors of the publications were located. The Y-axis represented the number of their publications from 2001 to 2020, which

were stratified by the impact factor (IF) of the journals publishing these articles, marked on red (IF ≥ 10), black (IF < 5), and gray (IF < 5) as well. A

disequilibrium analysis of the distribution of impactful publications among regions from 2001 to 2020 were performed by using Fisher’s exact

probability analysis, and the result suggested that P < 0.001, which indicated the number of publications in di�erent impact factor groups varied

by regions.

Geographic distribution of publications by
Chinese authors

The affiliations of 6,622 publications were distributed

in 31 provinces/municipalities of China (Figure 3). Beijing

was the only one out of the 31 provinces/municipalities

with publications over 1,000. Meanwhile, there were 13

provinces/municipalities with publications <100 as shown in

Figure 3. Significantly, <50 articles were published by authors

from Hainan, Tibet, Qinghai, Inner Mongolia, Ningxia, and

Shanxi province/municipality in these two decades.

By a Fisher’s exact probability analysis, a significant

disequilibrium was found in the distribution of the proportions

of publications stratified with IF < 5, IF ≥ 5, and IF ≥ 10 in 31

provinces or municipalities of mainland China (the detailed data

are shown in Supplementary Table S6).

COVID-19-related publications

There were 206 (11.94%) out of 1,724 publications focused

on COVID-19 research in 2020. Compared with non–COVID-

19 publications in 2020 and in 2019 as well, the percentages of

COVID-19-related publications in impactful journals (i.e., IF ≥

5 or IF ≥ 10) were significantly increased (p < 0.001, Table 2).

Funds supporting

Out of 6,622 publications by Chinese authors, 2,307

(34.84%) articles were reported with funds support. In

comparison with the percentage of publications without fund,

the percentage of those with funds supporting was significantly

increased in journals with either IF ≥ 5 (36.41 vs. 25.77%) or IF

≥ 10 (8.58 vs. 9.50%; p < 0.001, Table 2).

Collaboration network analysis of the authors,
institutes, and countries

The collaboration network visual map between the authors,

the institutes, and the countries in the 13,487 articles was

generated by VOS viewer (Figures 4, 5A,B). The total link

strength was calculated on the number of publications co-

authored by the authors, the institutes, and the countries. Of all

45,266 authors on the author list of the 13,487 articles, 342 who
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TABLE 2 Factors a�ecting the impactful publications in CCM

researches by Chinese authors from 2001 to 2020.

IF < 5 IF ≥ 5 IF ≥ 10 p-Value

Authors from academic

hospital*, n (%)

Yes (total= 5,406) 3,690 (68.3) 1,716 (31.7) 518 (9.6) <0.001

No (total= 1,216) 980 (80.6) 236 (19.4) 90 (7.4)

Fund for publications#,

n (%)

Yes (n= 2,307) 1,467 (63.6) 840 (36.4) 198 (8.6) <0.001

No (n= 4,315) 3,203 (74.2) 1,112 (25.8) 410 (9.5)

Publications related to

COVID-19†, n (%)

Yes (in 2020, n= 206) 81 (39.3) 125 (60.7) 71 (34.5) <0.001

No (in 2020, n= 1,518) 1,058 (69.7) 460 (30.3) 118 (7.8)

No (in 2019, n= 1,169) 920 (78.7) 249 (21.3) 36 (3.1)

IF: impact factor of the journals, which published the articles.
*Academic hospital: the word “institute” or “college” or “university” was reported in the

affiliation of the first or corresponding author.
#Fund: it was based on the declaration of the article.
†COVID-19: any keywords with regard to COVID-19 (including coronavirus disease,

SARS-CoV-2, novel coronavirus pneumonia, etc.) was found in title/abstract.

published 20 or more articles were analyzed. Ranked with the

total link strength, the top three authors were “yang, yi” (419),

“qiu, haibo” (413), and “liu, ling” (273), who come from the same

affiliation, the Department of Critical Care Medicine, Nanjing

Zhong da Hospital, School of Medicine, Southeast University,

Nanjing. In addition, there were three other authors (“liu,

dawei,” “long, yun,” and “wang, hao”) in the top 10 authors with

the most collaborations came from the same affiliation too, The

Department of Critical Care Medicine, Peking Union Medical

College Hospital, as shown in Figure 4, Supplementary Table S7.

Out of the total 6,372 institutes of these authors, 398

published 10 or more articles. The Capital Medical University

was the affiliation with the highest collaboration link strength

(capital med univ, 1,162), followed by the China Medical

University (China med univ, 1,072) and Shanghai Jiao

Tong University (shanghai jiao tong univ, 1,037, Figure 5A,

Supplementary Table S7). Moreover, authors from 61 countries

collaborated with Chinese authors in five or more publications

among the 13,487 articles. Authors from America (“usa”)

collaborated with Chinese authors (“peoples r China”) most,

followed by authors from “Italy,” “England,” and “Canada”

(Figure 5B, Supplementary Table S7).

Discussion

It was demonstrated that the publications by the first or

corresponding authors with the affiliation of CCM/ICU in

Chinese hospitals have been rapidly increasing from 2001 to

2020, and so did the citations to these articles (Figure 1).

However, the proportion in the world of publications on CCM

research by Chinese authors was much less than that by

American authors each year (Table 1). In addition, the number

and the percentage of impactful articles were significantly less

published by Chinese than by American authors, including

articles published in journals with a high impact factor (i.e., IF

≥ 5, IF ≥ 10), articles in the top 10 journals in the field of

critical care medicine, and the high frequently cited articles as

well (Table 1). Moreover, it was found that several factors likely

affected the output of impactful publications in CCM researches

by authors with the affiliation of CCM/ICU in Chinese hospitals,

such as the academic background of authors affiliations, funds

support, public health event of COVID-19, regions of author’s

affiliation and collaboration between authors (Table 2, Figure 4).

Previous studies suggested that several factors facilitate

Chinese CCM research, including rapid economic growth,

expansion of ICUs and intensive care practitioners (18),

and responses to disasters such as SARS 2003, Wenchuan

earthquake in 2008, the outbreak of COVID-19, etc. (1, 19,

20). Furthermore, it was demonstrated that the public health

event of COVID-19 was associated with the production of

higher impactful publications by Chinese authors in this study

(Table 2). Meanwhile, the rapid increase of publication in

CCM research in China could be also driven by the academic

evaluation system in the past two decades largely. Although

there have never been any officially issued rules, in fact, articles,

awards, titles, degrees, and honors were highly weighted in the

evaluation of an individual or team’s competitiveness. Based

on the regulations of most medical colleges or institutes, for

instance, the candidates were not qualified to apply Doctor

of Philosophy (PhD) or Medical Doctor (MD) degree until

publishing one article at least in the SCI journal. Notably,

reports of this evaluation would be closely tied with professional

promotion and appointment. In this study, interestingly, several

findings supported this approach, which was not evidenced

in the previous studies (9, 10). First, hospitals where the

most authors served (69.55%) were affiliated with academic

institutes (Supplementary Figure S4). Few of them could be

unaffected by this hidden regulation. Moreover, very few authors

(18.8%) served nonacademic hospitals. According to the data

from Beijing clinical quality control and improvement center

for Critical Care Medicine, there are only 25 (29.8%) ICUs

(including general, surgical, or medical ICUs) in hospitals with

academic backgrounds among a total number of 84 grade II

and III hospitals even in Beijing (unreported data). Second,

over half of the articles (59.6%, 4,927/8,268) were published by

authors from six out of 31 provinces/municipalities including

Beijing, Zhejiang, Guangdong, Shanghai, Jiangsu, and Shandong

(Figure 3), where medical colleges and research institutes were

highly concentrated in China. Finally, the keywords of these

articles were linked to lab research rather than clinical topics

more frequently (Supplementary Table S3). These findings

suggested that the majority of Chinese intensivists working in

nonacademic hospitals have not successfully published articles
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FIGURE 4

Cluster visualization map of the authors Co-authorship in research of Critical Care Medicine from 2001 to 2020. Each circle represented one

author and circle size indicated number of his/her publications from 2001 to 2020. The lines between two circles indicated co-appearance of

authors in an article. The thickness of lines indicated strength of linkage calculated by the number of publications. The color of each circle

indicated cluster, which was a set of authors calculated in the co-authorship network as a community.

in SCI journals during this period. There could be no argument

about intensivists in academic hospitals getting better training

and having a higher passion for scientific research. But, our

results suggested that the research of Chinese intensivists is,

partly at least, driven by the academic evaluation system rather

than by their interests in questions arising through the day-

to-day care of critically ill patients. Fortunately, a special

notification was issued by the government for correcting the

disadvantage of this evaluation system (https://news.sciencenet.

cn/). Hopefully, the researches of Chinese intensivists will

be conducted with the impetus to study questions arising

through intensive caring. In this way, the production of Chinese

intensivists’ research will be not only rich but more impactful

in future.

A comprehensive training in scientific research is the

base for highly impactful publications. Our findings suggested

that authors who got better research training probably, for

instance, who served in hospitals with academic backgrounds

and in cities with more medical colleges/universities/research

institutes, be more likely to publish impactful articles (Table 2).

To our knowledge, however, there was an acute shortage of

training courses specific to critical care research in China.

This accounted for the significant difference in publishing

impactful articles between Chinese and American authors

largely (Table 1).

Collaboration can enhance the power, efficiency,

generalizability, and rapid completion of clinical research (21),

and hence may improve the research quality large probably.

Over the past 5 years, for instance, all 17 randomized controlled

trials searched for “sepsis” in the New England Journal of

Medicine were interagency collaborations. In addition, only one

out of the top 10 most frequently cited articles in the field of
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FIGURE 5

National and international Co-authorship network. Cluster regarding collaboration in Critical Care Medicine researches was mapped between

authors from di�erent a�liations of China (i.e national collaboration, A) or between authors from China and those from other countries (i.e

international collaboration, B) from 2001 to 2020. Each circle indicated an a�liation of China, or one country. The circle size represented the

number of publications and the lines between two circles indicated co-appearance of two a�liations or countries in one article. Color of each

circle indicated the cluster. The thickness of lines indicated strength of linkage calculated by the number of publications co-authored by the

di�erent a�liations or countries.

CCM was written by Nusbaum independently (9). Significantly,

the success of clinical trial groups such as the Canadian Critical

Care Trials Group (CCCTG) (22) and Australia and New

Zealand Intensive Care Society Clinical Trials Group (ANZICS-

CTG) (23) has fueled efforts to build similar collaboration

models around the world. In China, an investigator-led group,
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China Critical Care Clinical Trials Group (CCCCTG) was

launched 20 years ago (24), and was active in Critical Care

researches over the ensuing years. By this bibliometric analysis,

however, it was revealed that collaborations between either

domestic or international authors were limited in CCM

researches. Moreover, the results showed that the most frequent

collaborations took place among the authors who served in

the same ICU (Figure 4, Supplementary Table S7). Therefore,

collaboration could be a modifiable factor to promote the

research quality of Chinese intensivists in future.

Funding is important to facilitate either basic or clinical

medical research. However, CCM research not only in China,

but around the world, was under-funded in comparison with

other specialties, although critical illnesses became a burden

of healthcare increasingly. According to Coopersmith’s report,

332 (1.7%) out of 19,257 grants funded by the National

Institutes of Health were definitely related to critical care

and a maximum of 1,212 (6.3%) grants were possibly related

to critical care (25). It was demonstrated that 5,624 (41.6%)

out of 13,487 publications reported funding in this study.

Additionally, we performed a search on the Website Science

net (https://fund.sciencenet.cn/) for grants from catalog of

H15 (“acute and intensive care medicine/trauma/burns/plastic

surgery”) of NSFC (National Natural Science Foundation of

China) and successfully applied by the Chinese intensivists

from 1 January 2016 to 31 December 2020. Of a total of

1,073 (517.85 million RMB Yuan) funded projects, as shown in

Supplementary Table S8, only 141 (13.14%; 6.344 million out of

517.85 million RMB Yuan) led by Chinese intensivists have been

approved. Interestingly, rapid growth in clinical trials was found

in both websites Clinical Trials (https://clinicaltrials.gov/) and

ChiCTR (Chinese Clinical Trail Registry, http://www.chictr.org.

cn) registered by Chinese intensivists from 1 January 2016 to

31 December 2020 (Supplementary Figure S5). These findings

suggested that multiple resources of funding would be a possible

strategy to promote Chinese CCM research in future.

There were several limitations in this study. First, this

research was only based on the electronic database of the Web

of Science, while other electronic databases were not searched

and analyzed, such as PubMed, Embase, and Cochrane Library,

especially published in Chinese Literature databases such as

CNKI, CQVIP, Wanfang, etc. Second, there were some flaws

in our data source. For example, an author signed different

names of hospital / institute / university in his / her different

published articles, making the system unable to identify the

articles published by the same person. Third, the software

defaults so that the acronym cannot be changed. and if you want

to change it, you may need to do the later stage of photoshop

(but this may cause manual revision and non-repeatability of

the results). Fourth, there may be differences in data recognition

by different software, resulting in possible errors in results.

Finally, when calculating clinical registration research items, we

cannot completely exclude a very small number of projects led

by respiratory and critical illness experts, anesthesiologists, or

other emergency department experts from being included in

this study.

Conclusion

This bibliometric analysis demonstrated that CCM research

in China grew rapidly in recent 20 years. However, the impactful

publications remained limited. The results of this study

suggested that the lack of universality, as well as a comprehensive

training in scientific researches, inactive collaboration, and

underfunded, be the important barriers to the promotion of the

quality and quantity of Chinese CCM research.
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Background: For the intensivists, accurate assessment of the ideal timing for

successful weaning from the mechanical ventilation (MV) in the intensive care

unit (ICU) is very challenging.

Purpose: Using artificial intelligence (AI) approach to build two-stage

predictive models, namely, the try-weaning stage and weaning MV stage to

determine the optimal timing of weaning from MV for ICU intubated patients,

and implement into practice for assisting clinical decision making.

Methods: AI and machine learning (ML) technologies were used to establish

the predictive models in the stages. Each stage comprised 11 prediction

time points with 11 prediction models. Twenty-five features were used for

the first-stage models while 20 features were used for the second-stage

models. The optimal models for each time point were selected for further

practical implementation in a digital dashboard style. Seven machine learning

algorithms including Logistic Regression (LR), Random Forest (RF), Support

Vector Machines (SVM), K Nearest Neighbor (KNN), lightGBM, XGBoost, and

Multilayer Perception (MLP) were used. The electronic medical records of the

intubated ICU patients of Chi Mei Medical Center (CMMC) from 2016 to 2019

were included for modeling. Models with the highest area under the receiver
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operating characteristic curve (AUC) were regarded as optimal models and

used to develop the prediction system accordingly.

Results: A total of 5,873 cases were included in machine learning modeling

for Stage 1 with the AUCs of optimal models ranging from 0.843 to 0.953.

Further, 4,172 cases were included for Stage 2 with the AUCs of optimal

models ranging from 0.889 to 0.944. A prediction system (dashboard) with

the optimal models of the two stages was developed and deployed in the

ICU setting. Respiratory care members expressed high recognition of the AI

dashboard assisting ventilator weaning decisions. Also, the impact analysis of

with- and without-AI assistance revealed that our AI models could shorten the

patients’ intubation time by 21 hours, besides gaining the benefit of substantial

consistency between these two decision-making strategies.

Conclusion: We noticed that the two-stage AI prediction models could

effectively and precisely predict the optimal timing to wean intubated patients

in the ICU from ventilator use. This could reduce patient discomfort, improve

medical quality, and lower medical costs. This AI-assisted prediction system is

beneficial for clinicians to cope with a high demand for ventilators during the

COVID-19 pandemic.

KEYWORDS

artificial intelligence, machine learning, intensive care unit, weaning mechanical
ventilation, optimal weaning timing

Introduction

Mechanical ventilation (MV) is frequently applied in
the intensive care unit (ICU). Approximately eight hundred
thousand patients receive MV annually in the United States (1).
Extubation decision is critical during an ICU stay. An early trial
of the weaning process and successful extubation may lower the
medical costs and ventilator-related complication rates. Besides,
it could improve the patient’s prognosis (2–4). Therefore, after
the recovery of the critical illness, clinicians should immediately
prepare to liberate the patients from MV. Evaluation of an
ICU patient’s fitness for weaning and subsequent extubation
is objectively referred to the airway, respiratory, neurological
parameters, etc. (5). Most of the times, liberation from MV
requires three steps – readiness testing, weaning, and extubating
and the process of MV liberation is dynamic and complicated. In
daily practice, extubation is usually left to the discretion of the
clinician (6); therefore, various protocols for ventilator weaning
have been established and assessed to increase the extubation
rate (7–18).

Despite following the recommended extubation process
established in the American Thoracic Surgery weaning protocol,
the failure rate still ranges from 10 to 15% of ICU patients
in the United States (19). Truthfully, there has been no
significant decrease in extubation failure in the past decades.
Therefore, an advanced strategy is mandatory to increase

the prediction accuracy (20). Several multivariate outcome
prediction models have evolved in many aspects of health
care research in these years. They include artificial neural
networks (ANN), logistic regression (LR) models, random forest
(RF) models, and support vector machines (SVM) (21–26).
Machine learning (ML) is a subject of computer science that
incorporates numerous components to empower the systems
to learn from currently acquired data, predict the outcome,
and make changes in action when faced with a new problem.
Clinically, ML could increase the prediction rate of successful
weaning from ventilatory support. The parameters considered
in the prediction of successful weaning and extubation were
based on literature (27–34) and clinical experience.

Many studies (35–38) have reported the usefulness of AI
in the ICU, such as the early warning systems that predict the
risk of physiological deterioration in acutely ill patients, the
development of acute respiratory distress syndrome, the early
development of sepsis and the pathogen that causes it, and
clinical outcome and mortality. However, studies on the utility
of AI in predicting the weaning and extubation process among
critically ill patients requiring MV are limited (39–43), while
those that explore AI’s capacity to predict the weaning timing
for intubated patients are rare.

This study aims to develop an AI digital dashboard
to remind the ICU clinicians of the optimal timing for
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FIGURE 1

Study flow.

weaning initiation, propose an individualized treatment
recommendation, and assist in making extubation decisions.
Data that can be conveniently collected were chosen as
variables for building the prediction model, including patients’
characteristics and respiratory pattern parameters during
spontaneous breathing trials (SBTs). A preliminary impact
analysis was performed after AI assistance to predict successful
extubation in ICU patients.

Materials and methods

Ethical consideration

This study was reviewed and accepted by the CMMC (IRB
Serial No.: 10912-016). The process was performed according to
the approved guidelines and regulations, and informed consent
was waived from the patients because of the nature of our
retrospective study.

Study design

The study flow chart is demonstrated in Figure 1.
In the beginning, we established a professional team,
including clinicians, respiratory therapists, data scientists,
and information technology engineers, and held regular

FIGURE 2

Two-stage weaning assessment.

meetings and discussions. We retrospectively collected data
from adult ventilated patients (≥20 years old) who stayed at the
ICU of CMMC from January 2016 to December 2019. Patients
who signed the DNR (Do not resuscitate) were excluded.
According to clinical experience, if the try-weaning timing
is appropriate, the success probability of the final complete
weaning ventilator will also increase. Therefore, this study
divided the complete assessment of ventilator use into two
stages: (1) the try-weaning stage and (2) the complete weaning
MV stage (Figure 2).
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Try-weaning stage means switching the ventilator from
control mode to support mode for an ICU patient, while
the complete weaning MV stage means transitioning from
support mode ventilation to oxygen therapy or extubation
for an ICU patient.

Setting and data source

Chi Mei Medical Center is a large hospital in Tainan, Taiwan
with 1288 beds, including 109 ICU beds. It has a comprehensive
hospital information system to store each kind of clinical data
such as demographics, diagnoses, vital signs, laboratory data,
and prescribed medications in the database. Since 2016, CMMC
adopted IoT technology to capture parameters from the MV in
ICUs automatically per minute. So far, big data from MV was
cumulated and ready for further AI and machine learning study.

Features and outcome variables

The first stage model used 25 features, including primary
patient data of age, Acute Physiology and Chronic Health
Evaluation II (APACHE II) score, Therapeutic Intervention
Scoring System (TISS) score, and the first and last Internet of
Thing (IoT) data of the respirator consisting of inspired oxygen
fraction (FiO2), positive end-expiratory pressure (PEEP),
respiratory rate (RR), minute ventilation (Mv), peak inspiratory
pressure (Ppeak), mean airway pressure (mPaw), peripheral
oxygen saturation (SpO2), expiratory tidal volume (Vte), heart
rate (HR), systolic blood pressure (SBP), and diastolic blood
pressure (DBP). Based on clinical experience, the outcome
variable was binary coded with 1 (i.e., successful try-weaning),
which means that MV was shifted from the control mode to the
support mode for at least 48 h, otherwise it was coded with 0.

The second stage model used 20 features, including primary
data consisting of age, APACHE II score, and TISS score; and
the last respirator IoT data before extubation consisting of
FiO2, PEEP, RR, Mv, Ppeak, mPaw, SpO2, pressure support
level (PSL), tidal volume with pressure support (PSLvolume),
body temperature (BT), HR, SBP, DBP, Glasgow Coma Scale
eye-opening (GCS_E), GCS motor response (GCS_M), SBT
count during support mode, and sputum suction count within
24 hours before extubation (Suction). The outcome variable
was binary coded with 1 (i.e., successful weaning MV), which
means weaning from MV for at least 48 h, otherwise coded
with 0. This is also accepted as a basis for the provision of
government-related health subsidies in Taiwan.

All potential features were selected based on the literature (6,
7, 44, 45), clinic availability and the experience of clinicians. We
performed correlation analysis between features and outcomes
to assist in feature selection decisions. Features with the raw data
were obtained from the hospital information system (HIS) and
real-time IoT transferring from ventilators.

Model building and measurement

Raw data was collected from the electronic medical records
of ICU to build the models for stage 1 and stage2. We randomly
divided the cleaned data into 70% training and 30% testing

TABLE 1 Stage 1 demography.

Feature Overall

N=5873

Age, mean (SD) 64.0 (15.3)

APACHE II score, mean (SD) 19.6 (8.5)

TISS score, mean (SD) 29.7 (7.9)

IoT data First* Last**

FiO2 , mean (SD) 45.4 (20.8) 32.3 (15.0)

PEEP, mean (SD) 5.6 (1.4) 5.8 (1.5)

RR, mean (SD) 15.8 (4.2) 14.0 (4.0)

Mv, mean (SD) 8.8 (2.8) 7.9 (2.4)

Ppeak, mean (SD) 24.3 (4.3) 23.1 (4.1)

mPaw, mean (SD) 10.6 (2.8) 10.1 (2.7)

SpO2 , mean (SD) 98.7 (2.3) 98.1 (4.7)

Vte, mean (SD) 576.0 (115.5) 576.8 (117.8)

HR, mean (SD) 93.8 (21.3) 84.4 (21.4)

SBP, mean (SD) 139.4 (37.8) 128.8 (33.1)

DBP, mean (SD) 79.2 (21.6) 68.9 (18.7)

Outcome

Successful try-weaning
within 8 h, n (%)

1,113 (19.0)

Successful try-weaning
within 12 h, n (%)

1,588 (27.0)

Successful try-weaning
within 24 h, n (%)

2,840 (48.4)

Successful try-weaning
within 36 h, n (%)

3,112 (53.0)

Successful try-weaning
within 48 h, n (%)

3,523 (60.0)

Successful try-weaning
within 60 h, n (%)

3,710 (63.2)

Successful try-weaning
within 72 h, n (%)

3,968 (67.6)

Successful try-weaning
within 84 h, n (%)

4,114 (70.0)

Successful try-weaning
within 96 h, n (%)

4,281 (72.9)

Successful try-weaning
within 108 h, n (%)

4,373 (74.5)

Successful try-weaning
within 120 h, n (%)

4,506 (76.7)

*First: data of the first record in control mode. **Last: data of the last record
in control mode. SD, Standard Deviation; IoT, Internet of Things; APACHE II, Acute
Physiology and Chronic Health Evaluation II; TISS, Therapeutic intervention scoring
system; FiO2, the fraction of inspired oxygen; PEEP, positive end-expiratory pressure;
RR, respiratory rate; Mv, minute ventilation; Ppeak, peak inspiratory pressure; mPaw,
mean airway pressure; SpO2, peripheral oxygen saturation; Vte, expiratory tidal volume;
HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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data. Due to the data imbalance problem (fewer cases in
the minority class), we applied the Synthetic minority over-
sampling technique (SMOTE) method to process the training
data (46). We performed a grid search for five-fold cross-
validation on the training dataset to obtain the best hyper-
parameters for modeling. Finally, we used the testing dataset
(also called hold-out dataset) for the final evaluation of the
model quality. Four model quality indicators of accuracy,

TABLE 2 Stage 2 demography.

Feature Overall

N= 4172

Age, mean (SD) 64.3 (15.3)

APACHE II score, mean (SD) 18.9 (8.0)

TISS score, mean (SD) 29.6 (7.7)

FiO2 , mean (SD) 26.1 (2.1)

PEEP, mean (SD) 5.2 (0.7)

RR, mean (SD) 16.4 (5.0)

Mv, mean (SD) 7.7 (2.4)

PSL, mean (SD) 9.4 (2.0)

PSLvolume, mean (SD) 484.4 (125.3)

Ppeak, mean (SD) 15.4 (2.0)

mPaw, mean (SD) 8.3 (1.8)

SpO2 , mean (SD) 98.7 (1.6)

BT, mean (SD) 36.6 (0.5)

HR, mean (SD) 85.4 (16.7)

SBP, mean (SD) 135.1 (23.8)

DBP, mean (SD) 72.2 (14.9)

GCS_E, mean (SD) 3.5 (0.7)

GCS_M, mean (SD) 5.7 (0.7)

SBT times, mean (SD) 1.4 (2.8)

Suction times, mean (SD) 5.0 (4.4)

Outcome

Successful weaning-MV within 24 h, n (%) 1,807 (43.3)

Successful weaning-MV within 48 h, n (%) 2,133 (51.1)

Successful weaning-MV within 72 h, n (%) 2,451 (58.7)

Successful weaning-MV within 96 h, n (%) 2,709 (64.9)

Successful weaning-MV within 120 h, n (%) 2,910 (69.8)

Successful weaning-MV within 144 h, n (%) 3,070 (73.6)

Successful weaning-MV within 168 h, n (%) 3,198 (76.7)

Successful weaning-MV within 192 h, n (%) 3,312 (79.4)

Successful weaning-MV within 216 h, n (%) 3,402 (81.5)

Successful weaning-MV within 240 h, n (%) 3,462 (83.0)

Successful weaning-MV within 264 h, n (%) 3,518 (84.3)

SD, Standard Deviation; APACHE II, Acute Physiology and Chronic Health Evaluation
II; TISS, Therapeutic intervention scoring system; FiO2, the fraction of inspired oxygen;
PEEP, positive end-expiratory pressure; RR, respiratory rate; Mv, minute ventilation;
PSL, pressure support level; PSLvolume, tidal volume with pressure support; Ppeak,
peak inspiratory pressure; mPaw, mean airway pressure; SpO2: BT, body temperature;
HR: heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; GCS_E:
Glasgow Coma Scale eye-opening; GCS_M, Glasgow Coma Scale-motor response; SBT,
spontaneous breathing trials.

sensitivity, specificity, and AUC (area under the ROC) were
applied to assess the model quality. However, the overall model
performance is generally evaluated by AUC in many medical
studies since both true/false positive and true/false negative are
fairly considered. Thus, AUC was used in this study as the main
indicator to determine the optimal model. We used the optimal
models for subsequent implementation of the predictive system.

Each outcome used a variety of ML algorithms to build
models, including LR, RF, SVM, K Nearest Neighbor (KNN),
lightGBM, XGBoost, and Multilayer Perception (MLP). The ML
models were performed based on Sklearn library and related ML
modules in Python.

The main purpose of this study was to predict the optimal
timing to wean MV, not just successful weaning or not; thus,
we divided each stage into 11 time periods based on clinical
experience, and built 11 prediction models with the period data
rather than building a single model with the end-point data of
ICU patients with MV. That is, it is of great value to predict
whether a patient can successfully wean or not over time. After
all, most patients with MV in ICU will eventually be successfully
weaned but we expect timely or even early safe weaning of
MV to avoid overuse rather than just predicting success or not
(in CMMC, the average extubation success rate exceeds 85%).
However, hospitals can reduce or increase the predictive periods
according to their needs while implementing.

Stage 1 of timing prediction for successful try-weaning
involves the following: After the patient enters the ICU for
intubation, we built 11 models for 11 prediction time points,
namely: 8th hour, 12th hour, 24th hour, 36th hour, 48th hour,
60th hour, 72nd hour, 84th hour, 96th hour, 108th hour, and
120th hour. The first stage is considered a success if the MV is
shifted from assist control to support mode for at least 48 h.

Stage 2 of timing prediction for successful weaning-MV
involves the following: We built 11 models in days (after the
patient completed the first stage successfully). The second stage
is considered a success if the patient can last longer than 48 h
after extubation from the support mode or leave the ICU safely
for shorter than 48 h (47).

The data used in each model came from the data collected
at this time point. For example, the 60th HR model used data
of patients, which was collected at or nearer the 60th hour time
point of using the respirator.

Two-stage artificial intelligence
prediction system development of the
optimal models

We chose the optimal models for each stage to develop
a two-stage prediction system in a digital dashboard style
to assist the weaning decision of respiratory medical teams.
The system was developed using Microsoft Visual Studio R©

with VB language.
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FIGURE 3

Stage 1 Spearman correlation (the 60th hour model). Note: outcome_60: Successful weaning or not before using 60 h of MV; FiO2_first, _last:
the first/last value of FiO2 after using MV within 60 h, others are labeled similar.

The web-based dashboard is linked to the real-time database
of the existing HIS which could retrieve the required feature
values of a specific model. The clinical staff could obtain the
related predictive data and figure out the best timing of MV
weaning by just previewing the patient’s data in the dashboard.
The dashboard automatically retrieves the clinical data of the
patient for AI prediction without the need for manual input and
immediately displays the probabilities of successful MV weaning
at each time from the beginning of ventilator use to the nearest
future time point. The dashboard would automatically refresh
the prediction for all patients every 60 min.

For example, if a patient has used MV for over 50 hours, the
dashboard will show the probability of the 24th, 48th, and 72nd
hour. The respiratory care team can further double-click on the
targeted patient to prompt a new page to overview the detailed

feature values at that predicting period. By monitoring the
trend curve of the successful probabilities (in colored balls) and
detailed feature values, the respiratory care team could evaluate
whether each patient is eligible to start trying weaning or liberate
the individual from MV more objectively and efficiently at this
time point.

Results

Demographics

We retrospectively collected 6,184 cases of patients who
used MV in CMMC ICU from 2016/1/1 to 2019/12/31. After
excluding the cases with missing values, 5,873 cases were
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FIGURE 4

Stage 1 Spearman correlation.

included for modeling in Stage 1 and 4,172 cases were included
in Stage 2. Tables 1, 2 show the patients’ demographics in Stage
1 and Stage 2 respectively.

For example in Stage 1, Spearman correlation analysis for
the 60th hour model (Figure 3) showed that the most relevant to
the timing of successful try-weaning was the first FiO2, followed
by APACHE II score, and the last PEEP and mPaw. Spearman
correlation analyses for all models in Stage 1 are shown in
Figure 4. Moreover, for Stage 2, Spearman correlation analysis
for the 120th hour model (Figure 5) showed that the number
of SBTs was most relevant to the timing of successful weaning-
MV, followed by the number of Suctions. Spearman correlation
analyses for all models in Stage 2 are shown in Figure 6.

Modeling results

In this study, eleven models were established in each of
the two stages. In Stage 1, the 60th-hour model was taken as
an example. Each model used seven algorithms with optimal
hyper-parameters. Models’ performances with the seven ML

algorithms are shown in Table 3 (Stage 1) (Supplementary
Table 1 for other models in Stage 1). With the 60th-hour model
as an example, according to the value of AUC model, the
lightGBM model obtained the maximum value (AUC = 0.860)
and was used as the basis for implementing the online prediction
system. Besides, ROC curve is a performance measurement for
a classification model at various thresholds. Figure 7 covers the
ROC curves of the seven algorithms and the three highest AUCs
(lightGBM, XGBoost and Random forest) ranged from 0.860 to
0.847 showing good model quality with smooth empirical ROC
curves and AUCs near to 1.

In Stage 2, the 120th hour (5th day) model was taken as an
example. The lightGBM model was selected for implementation
based on the AUCs of the seven algorithms (AUC = 0.923)
[Table 3 (Stage 2)] (Supplementary Table 2 for other models in
Stage 2). Figure 8 shows the ROC curves of the seven algorithms
and the three highest AUCs (lightGBM, Random forest and
Logistic regression) ranged from 0.913 to 0.923. It also shows
excellent models. Hyper-parameters used for building optimal
model for each algorithm are listed in Supplementary Table 3.
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FIGURE 5

Stage 2 Spearman correlation (the 120th Hour model). Note: outcome_120: Successful weaning or not before using 120 h of MV, others are
labeled similar.

Moreover, we randomly chose patients A, B, and C who
successfully weaned from MV in 2021 (weaning time points
at the 144th hr, 216th hr, and 242th hr, respectively) and
observed them retrospectively. Taking the data at the 48th-hour
ventilator use as features (the patients all failed to wean at the
48th hr), the probabilities predicted by our 48th-hr model were
all <50%, which mean a tendency for unsuccessful weaning
(probabilities were 32.58, 40.24, and 20.1%, respectively). These
predictions were correct. We then fed the same data to a single
model (usually the last model, represented here by our 264th-
hr model) and all displayed a tendency for successful weaning
(probabilities were 95.23, 79.06, and 61.38%). These predictions
were incorrect. This proves that, adopting in practical, using
multiple models is more appropriate to the prediction of
weaning time than when using a single model only.

Prediction system development and
deployment

Using the optimal prediction models, the AI Center and
the Department of Information Systems of CMMC jointly
developed the timing prediction system (a dashboard) for try-
weaning and weaning MV and integrated it with the existing
hospital information system (respiratory care system). Such
graphical presentation and drill-down interactive function help
track the status of patients and enhance users’ acceptance of
the AI dashboard. Our results showed that this system could
predict the optimal timing for try-weaning and weaning MV
during the decision-making process of the clinicians. Moreover,
the reference data from this system could be used effectively for
communication with the patient’s family.
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FIGURE 6

Stage 2 Spearman correlation.

Use case scenario

The interface of the AI dashboard is shown in Figure 9.
Stage 1 (try-weaning) displayed the patient’s basic information
(bed number, medical record number, name), the time when
ventilator use was started, the current number of hours of use,
and the probability of success in each period. For example, the
first patient of Stage 1 had used the ventilator for 63 h; the
system captured the patient’s characteristic data and displayed
the predictions for the nearest future. It could be seen that the
probability of successful try-weaning within 72 h of this patient
was 56.35%, which implies that the medical team may switch the
mode of the patient’s ventilator (start try-weaning) during this
time. Stage 2 (weaning MV) presented content similar to Stage
1, which included basic information, starting time of support
mode, current total hours of support mode, and the success
probability of each period. For example, the first patient in Stage
2 had been in the support model for 51 h; the system predicted
that the success probability of liberating the patient in MV
within three days (72 h) was 33.36%, so it was not recommended
to wean during this period.

TABLE 3 Testing results of the predictive models: Stage 1 try-weaning
model of the 60th HR and Stage 2 MV-weaning model of the
120th HR.

Algorithm Accuracy Sensitivity Specificity AUC

Stage 1

Logistic regression 0.710 0.710 0.710 0.776

Random forest 0.760 0.760 0.760 0.847

SVM 0.716 0.778 0.609 0.759

KNN 0.686 0.749 0.578 0.730

LightGBM 0.768 0.788 0.733 0.860

MLP 0.732 0.746 0.709 0.815

XGBoost 0.774 0.806 0.718 0.853

Stage 2

Logistic regression 0.827 0.827 0.826 0.913

Random forest 0.824 0.822 0.829 0.918

SVM 0.713 0.714 0.712 0.797

KNN 0.649 0.679 0.580 0.683

lightGBM 0.842 0.842 0.842 0.923

MLP 0.805 0.804 0.807 0.905

XGBoost 0.810 0.810 0.810 0.908
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FIGURE 7

Stage 1 ROC curve (the 60th Hour model).

User evaluation and impact analysis of
artificial intelligence assistance

After the hospital launched the dashboard system and
implemented it for one month, we interviewed some of the
respiratory care members (3 physicians and 5 therapists) and
gained high positive feedback. They thought that the dashboard
was a very useful tool in helping them determine the optimal
timing for trying to wean a patient from the ventilator.
According to them, it was also a useful tool for shared decision-
making (SDM) especially when communicating with patients or
their families. Also, they raised expectations for improvement.
For example, they hoped that the predicted value at each time
point could be drawn as a polyline to easily see the trend of
the predicted probabilities for a patient. These expectations
were later realized.

So far, this AI dashboard has been online in ICU for
nearly two years. Therefore, we conducted an anonymous 5-
scaled questionnaire survey (with Google Form) for all 10 ICU

physicians during September 30, 2022 and October 5, 2022, and
received 8 valid questionnaires. Overall, they believe that the
AI is easy to use (mean = 4.5), the prediction results provided
by the AI are of reference value (mean = 4.0), and the AI is
helpful to the MV weaning decision (mean = 4.25). However,
2 physicians answered "seldom use AI", 4 physicians answered
"frequent use of AI", and the remaining 2 physicians answered
"already use AI regularly". One of the physicians who answered "
seldom use of AI" left a comment saying that physicians have had
extensive experience in assessing MV weaning and AI assistance
is not very necessary.

Moreover, we selected an ICU ward and recorded the
successful extubation time and associated data. The collected
data was then compared with that of the previous year. In other
words, the parameters collected from July to November 2019
(without AI assistance) was contrasted with those of July to
November 2020 (with AI assistance). Intubated adult patients
weaned from MV successfully were enrolled in the study
implementation. Patients with tracheostomy and transferred to
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FIGURE 8

Stage 2 ROC curve (the 120th Hour model).

FIGURE 9

A screenshot of the artificial intelligence (AI) prediction system interface.
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TABLE 4 The results of clinical evaluation and comparison.

Feature Overall 2019/07-11 (without AI) 2020/07-11 (with AI) P-Value

N=171 N=78 N=93

(A) Analysis of weaning rate

Age, mean ± SD 66.2 ± 15.7 65.7 ± 16.3 66.7 ± 15.2 0.695

Gender

Female, n (%) 58 (33.9) 29 (37.2) 29 (31.2) 0.507

Male, n (%) 113 (66.1) 49 (62.8) 64 (68.8)

APACHE II score, mean ± SD 20.8 ± 8.5 20.3 ± 8.7 21.7 ± .5 0.262

TISS, mean ± SD 30.6 ± 6.5 30.1 ± 6.8 31.0 ± 6.4 0.243

COMA scale, mean ± SD 8.7 ± 3.5 9.1 ± 3.6 8.3 ± 3.4 0.068

Extubation

Successful, n (%) 167 (97.7) 76 (97.4) 91 (97.8) 1.000

Failure, n (%) 4 (2.3) 2 (2.6) 2 (2.2)

Feature Overall 2019/07-11 (without AI) 2020/07-11 (with AI) P-Value

N=167 N=76 N=91

(B) Analysis of successful weaning use-time

Age, mean ± SD 66.0 ± 15.8 65.7 ± 16.4 66.4 ± 15.1 0.814

Gender

Female, n (%) 56 (33.5) 29 (38.2) 27 (29.7) 0.321

Male, n (%) 111 (66.5) 47 (61.8) 64 (70.3)

APACHE II score, mean ± SD 20.9 ± 8.5 20.4 ± 8.8 21.8 ± 8.5 0.278

TISS, mean ± SD 30.7 ± 6.5 30.3 ± 6.8 31.1 ± 6.4 0.318

COMA scale, mean ± SD 8.6 ± 3.5 9.0 ± 3.5 8.3 ± 3.5 0.099

Intubation hours, mean ± SD 170.9 ± 150.7 178.0 ± 147.7 156.6 ± 150.4 0.300

ICU Days, mean ± SD 9.3 ± 7.5 9.3 ± 8.0 8.8 ± 6.9 0.631

the respiratory care ward were excluded. The analysis results
of Table 4A showed no statistically significant difference in the
demographic distribution between these two groups, including
the age, gender, and disease severity (Apache II, TISS, COMA) of
patients. It provided a fair basis for AI intervention comparison.
It also showed that there was no significant difference in
successful extubation-rate, indicating that patient safety was not
compromised (actually slightly improved) with AI. However,
in Table 4B, we noticed the average intubation hours after AI
intervention were about 21 hours shorter than that without
AI intervention, and the average stay in ICU was reduced
by 0.5 days, showing that our AI-assisted system does boost
patients wean from ventilators earlier, which could improve the
quality of care.

We also performed Kappa analysis (P < 0.05 for
significance) on the patients with AI to estimate the consistency
of AI prediction and regular care procedure. As shown in
Table 5, all values of Kappa are above 0.61 indicating that all
models have substantial consistency between these two decision-
making strategies (48).

TABLE 5 Analysis of Kappa values in 11 models of Stage 2.

Stage 2 model Cohen Kappa

24 HR model 0.785

48 HR model 0.710

72 HR model 0.681

96 HR model 0.841

120 HR model 0.796

144 HR model 0.677

168 HR model 0.776

196 HR model 0.752

216 HR model 0.789

240 HR model 0.711

264 HR model 0.657

Discussion

Most related studies in the past explored the factors that
affect weaning from the ventilator or predicted the success
of weaning. However, this study argues that precise weaning
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decisions should consist of two phases, try-weaning and
complete weaning MV, and that each should have a separate
predictive model built. In addition, we believe that, clinically,
deciding on the optimal timing for weaning is more crucial
than predicting the final success, so we built 11 models at
11 time points for each stage. More importantly, we used the
optimal models to build a prediction system (AI dashboard) for
monitoring all patients with MV in ICU to validate the feasibility
of our comprehensive AI approach. The impact study confirmed
that the average intubation time was shortened by 21 h after AI
intervention. Overall, this study has significant academic and
practical values.

Mechanical ventilation use is a life-guarding technique
providing critically ill respiratory support, and it is one of
the most common interventions given to ICU patients (49).
In this study, correlation analyses for all models in Stage 1
showed that FiO2, mPaw, APACHE II score, PEEP, SpO2 tend
to be higher correlated to the predictive models. It implies
that oxygenation, hemodynamics and disease severity have great
influence on full support mode shift to partial support mode.
Increasing FiO2, mPaw and PEEP is to improve the patient’s
oxygenation status, but too high mPaw and PEEP will cause
lung overdistension and affect cardiac output. Similar, frequency
of suction, numbers of SBT, GCS_M, APACHE II score, PSL
volume, RR tend to higher correlate to the predictive models
in Stage 2. It implies that cough strength, respiratory capacity
and disease severity affected weaning success. This reminds
clinical staff to assess the amount of sputum or secretions, the
patient’s mobility, ability to cough, and breathing patterns to
ensure successful extubation. However, the biomedical etiology
and pathophysiology of weaning failure are complex and often
multifactorial, including airway and lung dysfunction, brain
dysfunction, cardiac dysfunction, diaphragm dysfunction, and
endocrine dysfunction. Accordingly, determining the reason
and subsequently developing a treatment strategy require a
dedicated clinician with in-depth knowledge of these parameters
of weaning failure (50). Moreover, earlier recognition of the
patient’s capacity for some level of autonomous respiration
is fundamental to progressively initiating the weaning of
the patient from MV and finally gaining full independent
respiratory function (51). Thus, our study provides a new AI-
enabled solution to realize the expectation.

Ideally, the clinical weaning parameters collected in critical
care need to be objective and easy to acquire, and the process
would not impede patient management. The physiological
mechanisms resulting in respiratory failure vary for different
individuals, and diverse weaning parameters will contribute
to one aspect of the pathophysiological mechanism. It has
been proved that it is insufficient to improve the outcomes of
ventilated patients by applying the weaning index only (52).
Our AI models, which incorporate a full range of patients’
basic parameters, physiological parameters, and respiratory
parameters, and consider the dynamic changes in time series,

were used to establish a two-stage, multi-time series prediction
model, which significantly improves the success in predicting
weaning and conforms to clinical experience.

There have been several studies in the past that explored the
prediction of related ICU respirator use with machine learning
methods or traditional statistical methods (e.g., regression
analysis method). Our research found that ML methods roughly
outperformed traditional statistics. In the studies of ML method,
we also obtained more excellent results. Our models are not
only of high quality (AUC >0.94) but also the two-stage
design is closer to clinical experience of weaning decision-
making than a single-stage design. Cheng (53) also proposed a
two-stage decision-making approach; however, our prediction
model quality was more superior to theirs since we also
subdivided each stage into 11 time points which helped to
precisely grasp the timing of weaning MV and even shorten
the intubation time. More importantly, among these studies,
only our research realized the ML models in practice. We
summarized the comparison of our study with previous works
(53–56) in Table 6.

Furthermore, LightGBM models were noted with the
highest AUC values amidst the seven ML algorithms, consistent
with Chen et al. (57). Moreover, LightGBM has been regarded
as the most effective model to predict extubation success when
compared with XGBoost, MLP, and SVM. LightGBM is a
gradient boosting framework of tree-based learning algorithms
with faster training speed and better accuracy, but with
lower memory usage.

Further analysis indicated that our models had
convinced predictability regarding the Swets classification
(0.5 ≤ AUC ≤ 0.7, lower predicted; 0.7 ≤ AUC ≤ 0.9, certain
predictive ability; AUC > 0.9, high predictive ability) (58).
However, it was found that the models over time have a
tendency of decreasing AUC (0.953∼0.864, lightGBM models
in Stage 1; 0.943∼916, lightGBM models in Stage 2), which
may imply that the longer the patient uses the ventilator,
the more complicated it becomes when considering whether
the patient can undergo try-weaning. This finding can also
support why we use multiple periods instead of single period to
predict weaning MV.

Our AI system could allow the clinicians to grasp the
appropriate weaning time precisely, which could prevent the
worthless dangers due to delayed or premature weaning process.
Thus, with our AI system, the risks of complications and medical
costs related to ventilatory support for patients are expected
to decrease. More importantly, our AI system could lessen
the effect of inter-clinician variability and improve the overall
ICU care quality.

The deficiency of thorough evidence and the difference of
results between individuals and subpopulations demonstrates
there is scanty consensus on the issue of the best weaning
protocol in clinical literature (59, 60). Our research results could
provide useful solution to this long-standing clinical difficulty.
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TABLE 6 A comparison with related studies.

Study Patient group Predictive
outcome

ML algorithm
(* best algorithm)

Sample size Numbers of
features

Model‘s performance (the
highest AUC)

Real world
implementation

This Study Adult ICU patients with
invasive mechanical
ventilation

(1). Timing of full
support shifting to partial
support modes
(2). Timing of weaning
MV

Seven ML algorithms:
LR, RF, SVM, KNN, LGBM, XGB,
MLP.
11 models were established in
each of the two stages.
*The best algorithm: LGBM.

Stage 1: 5,873
Stage 2: 4,172

Stage 1: 25
Stage 2: 20

Stage 1: 0.843-0.953
Stage 2: 0.889-0.944

Yes.
A predictive dashboard
with best AI models was
implemented and
integrated into the
existing HIS

(52) Adult ICU patients with
invasive mechanical
ventilation

(1). The success shifting
from full to partial
support ventilation
(2). Successful SBT

Seven ML algorithms:
LR, Ridge Regression, Elastic Net,
RF, SVM, ANN, XGB.
1 model was established in each of
the two stages.
*The best algorithm: XGB and
RF.

First model:
2,153
Second model:
3,132

First model: 16
Second model:
12

First model: 0.76
Second model: 0.79

No

(53) Cardiac Surgery patients
with invasive mechanical
ventilation

Successful weaned within
24 h

Six ML algorithms:
LR, RF, SVM, DT, ANN, XGB.
*The best algorithm: SVM.

1,439 28 0.88 No

(54) Adult ICU patients with
invasive mechanical
ventilation

Successful extubation Three ML algorithm:
RF, LGBM, XGB.
*The best algorithms: LGBM.

117 (Total
number of
labeled was
12,268)

57 0.950 No

(55) Adult ICU patients with
invasive mechanical
ventilation

Successful extubation Six ML algorithms:
CNN, ANN, LR, SVM, DT, RF
*The best algorithm: CNN.

2,299 25 0.94 No

MV, Mechanical Ventilation; LR, Logistic Regression; RF, Random Forest; SVM, Support Vector Machines; KNN, K Nearest Neighbor; LGBM, lightGBM; XGB: XGBoost; MLP, Multilayer Perception; CNN, Convolutional Neural Network, ANN, Artificial
Neural Network; DT: Decision Tree.
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AI applications should be aptly weighed parallel to other
information sources and certified by well-designed prospective
studies before comprehensive implementation. Although we
noticed a substantial and even almost perfect consistency in
the prediction of successful weaning from ventilators after AI
intervention, we position our AI system as an auxiliary, not as a
determiner for diagnosis.

Clinical decision assistance systems could aid clinicians
in their decision-making (61) and provide individualized
management protocols based on the patients’ clinical data and
updated knowledge (62). Besides, AI is a powerful instrument
that lowers the medical error rate and improves healthcare
consistency and efficacy (63). However, there has been a lot
of concern about the demerits of AI model applications in the
decision of MV weaning. First, deep learning lacks explanatory
power and related potential bias is hard to identify (64).
Moreover, new ethical issues have been presented such as issues
of erroneous decisions by AI, legal responsibility, and private
information security crisis are taken into consideration (65).

There are limitations to our study. First, it is a single-
center study, and we do not have an external cohort to validate
our obtained models despite using data routinely collected in
a real-world setting. Thus, extra care in terms of research
generality must be given when extrapolating the findings
to other centers. Second, some weaning-relevant data, like
rehabilitation program arrangement, were not assessed in our
dataset. We consider the model’s accuracy could be improved
significantly after assessing this detailed information. Third, our
enrolled patient number was relatively small, impacting the
result. Fourth, our study failed to include essential features and
modalities, like chest X-ray images, cuff-leak test, diaphragm
ultrasonography, and fluid balance, which are widely assessed
to predict successful extubation. Further, no information related
to laryngeal edema after extubation was trained in our models.
Therefore, it could be difficult for the developed model to
forecast the extubation failure rate due to post-extubation
laryngeal edema.

Conclusion

Weaning timing assessment in ICU patients with MV is
one of the most critical steps for respiratory care teams. We
employed AI technology to develop a comprehensive system
and embedded it into the existing HIS to predict the timing
of weaning MV; this proves the clinical innovation of AI
intervention in critical care. According to our knowledge, such a
study with valuable academic and practical implications is rare.

Most studies only report the quality of predictive models;
thus, it may be difficult to judge its actual clinical value.
Our study established a predictive model and validated the
model in the clinical field, which proved that it has better
benefits than traditional ones. Therefore, our study supports

that AI could be a promising approach in predicting MV
weaning timing in ICU and is expected to advance clinical
research in this field.

Although we can see that the AI prediction dashboard we
proposed can be an effective tool to assist weaning decision-
making, it should be noted that it cannot be regarded as the only
dependence for final decision-making. That is, after referring
to the AI’s prediction, the medical team still need to conduct
and discuss a professional and comprehensive observation
and evaluation of the patient again before making the final
weaning decision.

Our study showed that the use of ML approaches
could obtain better predictive ability in ICU, however, some
physicians also reported that AI assistance is not very
necessary. Thus, how to increase physicians’ willingness
to accept AI is indeed a key research topic. Besides, AI
algorithms are difficult to understand (so-called black-box),
which may affect the trust of clinical staff. Therefore,
follow-up research to improve the explainability of AI must
be done. Furthermore, intensivists expect that AI can be
applied to build a decision support tool for integrated
consideration of a patient rather than simply providing
predictions on an illness. This is a challenge that should
be taken seriously. However, we still have a long way to
go at this moment.
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