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Editorial on the Research Topic
AI-Driven zero carbon cyber-energy system

The increasing pressure from the energy crisis and environment pollution has led to the urgency
of energy structure and technology upgrades. As a future energy development trend, Cyber-Energy
System (CES) focuses on deeply integrating multiple types of energy resources (including electricity
power, heat, cooling, and gas, etc.) and advanced communication technology to improve the energy
utilization efficiency, reduce the costs and emissions, and increase the proportion of renewable
energy resources. Since AI technology is both suitable for solving model-driven and data-driven
research problems, it fits well with the features of CES such as diversified information date and
interdependent infrastructures. By reasonably utilizing AI and multi-energy conversion technology,
it is entirely possible for CES to achieve low (even zero) operation in the processes of energy
generation, conversion, transmission, distribution, and consumption. Meanwhile, zero carbon in
CES requires innovation in many aspects, including policy, markets, modeling, planning, control,
and operation, which brings many new challenges.

The aim of this Research Topic is to address and disseminate state-of-the-art research and
opportunities regarding the application of AI and multi-energy conversion technology to
achieve low/zero system operation for CES. Through a rigorous peer-review process, 10 articles
have been accepted, which are summarized as follows.

In the article “A Deep Learning Approach to the Transformer Life Prediction Considering
Diverse Aging Factors,” He et al. investigated the aging phenomenon of power system
transformers, whose representative degeneration variables were extracted from real
transformer operational data. Combined with the average life of the equipment, the
extracted features were used as indicators for transformer reliability evaluations. A deep
learning–based approach was developed by using a convolutional neural network for
effective equipment life prediction. The performance of the transformer life prediction
model was verified using field-test data.

In the article “Autonomous underwater vehicle docking system for energy and data
transmission in cabled ocean observatory networks,” Sun and Han presented an active
landmark tracking framework to improve the accuracy and reliability of short-range
docking between autonomous underwater vehicles (AUVs) and a docking station (DS) in
cabled ocean observatory networks (COON). The proposed framework included a two-stage
docking algorithm based on convolutional neural networks (CNN) to estimate the 3D relative
position and orientation between the AUV and DS during docking, as well as an extended
Kalman filter and Hungarian matching algorithm to improve the robustness of the system. The
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effectiveness of the proposed framework was demonstrated through
experiments in both a pool and a lake.

In the article “Distributed Low-Carbon Energy Management
Method for Port Microgrid Based on We-Energies under
Polymorphic Network,” Teng et al. proposed a port microgrid
based on we-energies and its polymorphic distributed low-carbon
energy management. Firstly, a polymorphic energy management
system was established for a port microgrid based on we-energies
to guarantee information interaction between neighbors. Further,
considering the characteristics of we-energies, the operating cost
function was constructed. In addition, a port microgrid low-carbon
energy management model was constructed. Finally, a distributed
solution method was proposed to reduce port carbon emissions and to
help the development of the green low-carbon port.

In the article “Green Polymorphic Cooperative Formation
Strategy of Low-Carbon Unmanned Surface Vessels,” Lu et al.
constructed a multi-lateral cooperative control system for USVs in
a polymorphic network to achieve topological scalability of multi-
USVs. Amulti-lateral distributed control protocol was proposed.With
the help of a MAS (Multi-Agent System) model and an Ad-Hoc
network, green, energy-saving, and scalable autonomous cooperative
formation of the future USVs was structured.

In the article “Intelligent Decoupling Control Study of PMSM
Based on the Neural Network Inverse System,” Da-Wei et al.
established a decoupling control system model of a permanent
magnet synchronous motor neural network inverse system. The
data collected from the analytical inverse system of the PMSM
model was used to analyze and compare the prediction accuracy
and running time of the neural network, so as to optimize the structure
and parameters of the neural networks. The results showed that the
permanent magnet synchronous motor decoupling control system
based on an RBF neural network inverse system has better dynamic
and static decoupling performance and robustness.

In the article “Polymorphic Distributed Energy Management for
Low-Carbon Port Microgrid With Carbon Capture and Carbon
Storage Devices,” Shan et al. proposed a polymorphic distributed
energy management method for a low carbon port microgrid with a
carbon capture and carbon storage device. First, this paper presented a low
carbon port microgrid in a polymorphic network environment to realize
an information interaction among energy subjects in different modes and
to improve the network communication performance. Further, an energy
management model of the low-carbon port microgrid was constructed
considering the additional carbon capture and carbon storage device in
the port. In addition, a distributed energy management method was
proposed for different port microgrid operation modes.

In the article “Energy Management Without Iteration—A
Regional Dispatch Event-Triggered Algorithm for Energy Internet,”
Tan proposed a region scheduling event triggering algorithm
(RDETA). With RDETA, the energy management does not need to
iterate with each asynchronous communication and does not rely on a
global synchronous clock. In addition, the RDETA is capable of using
regional communications and regional energy dispatching. Therefore,
the size of the dispatch area can be adjusted automatically according to
the extent of the energy problem. Simulation results and theoretical
analysis demonstrated the effectiveness of the proposed algorithm.

In the article “Intelligent Command Filter Design for Strict
Feedback Unmodeled Dynamic MIMO Systems with Applications
to Energy Systems,” Feng et al. proposed a command-filtered control
scheme for multi-input multi-output strict feedback non-linear

unmodeled dynamical systems. Therein, a dynamic signal
combined with radial basis function neural networks was
considered, which enabled handling of the dynamic uncertainties.
The command filter was further employed to prevent explosions. The
authors showed that the proposed method possessed better suitability
than single-input single-output strict feedback non-linear systems.

In the article “Low carbon economic dispatch of power system at
multiple time scales considering GRU wind power forecasting and
integrated carbon capture,” Ding et al. proposed a three-stage
economic dispatch framework, based on the Carbon Capture and
Storage (CCS) technique and the multi-timescale Gated recurrent unit
(GRU) wind power forecasting model. In the proposed framework, the
CCS plants were equipped with conventional thermal power plants to
enable low carbon emission and flexible regulation capability. Meanwhile,
the AI-based GRU forecasting technique with higher accuracy and less
training time efficiently facilitated optimal system dispatches. Based on
the corresponding 3-stage GRU wind power forecasting, a three-stage
dispatch modeling with day-ahead, intra-day, and dynamic stages was
developed for the power system with large integration of CCS and wind
plants to improve the system operation and control, further achieving low
wind curtailment, load loss, and dispatching costs.

In the article “Measurement Error Estimation for Distributed Smart
Meters Through a Modified BP Neural Network,” Xia et al. presented a
measurement error estimation method for distributed smart meters by
using a modified BP neural network. The considered BP neural network
was designed by reasonably combining the internal activation function,
iterative step size, and other relevant parameters. Several experiments
were considered to demonstrate the feasibility and effectiveness of the
constructed distributed smart electricity meter system.
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Energy Management Without
Iteration—A Regional Dispatch
Event-Triggered Algorithm for Energy
Internet
Jiaming Tan*

Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China

Centralized algorithms and distributed algorithms have gained great attention on the
energy Internet nowadays. The centralized algorithm presses too much communication
and numeration load to its control center in large-scale and neterogeny EI. The distributed
algorithm requests too many times of iteration, and the performance and convergence
speed is quite slow. The current literature presents a regional dispatch event-triggered
algorithm (RDETA). Energy management in RDETA can transform between a centralized
model and distributed model. With the effort, the energy management does notrequire
iteration times in quantity. And due to event-triggered asynchronous communication,
energy management not only relieson a global synchronous clock but also
decreasecommunication frequency in most cases and increasecommunication
frequency in exigency. In addition, RDETA adopts regional communication and
regional energy dispatch, which can automatically modulate the scale of dispatch area
by the degree of the energy problem. Finally, simulation results and theoretical
demonstration show the aforementioned contributions of the proposed algorithm.

Keywords: asynchronous communication, centralized algorithm, distributed algorithm, energy internet, energy
management, multi-agent system, renewable energy source, zone control

INTRODUCTION

Energy is a fundamental guarantee to industrial engineering and human society. With the much
more frequent appearance of the fossil energy crisis, global environmental pollution, and multiple
energy loads in industry, agriculture, and the daily life of humanity in recent years, it is imperative to
create a better strategy to utilize multi-energy in higher efficiency, lower pollution, and more
sustainable methods. Energy Internet (EI) and multi-energy systems rise in response to the proper
time and conditions (Huang et al., 2010; Sun et al., 2017; Abdella et al., 2021). The key contributions
of EI are to realize cooperation (Wang et al., 2020), optimization (Lu et al., 2019), management
(Zhang et al., 2017), control (Zhang et al., 2020a), and complementation (Qin et al., 2019) among
multiple energy subsystems. Furthermore, EI also contributes greatly in absorbing unstable
renewable energy resources through the complex energy networks, enhancing the utilization rate
of energy and accelerating energy sustainable development.

However, different from traditional fuel-based centralized power systems, EI is called for
effectively coupling various neterogeny energy with different speeds and costs of the
manufacture, transmission, and conversion and simultaneously managing large-scale energy
systems. In consequence, how to cooperatively allocate energy generation resources including
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renewable resources that are incapable to control, complex energy
conversion among various energy, and satisfying changeable and
unpredictable energy loads tends into an exceedingly serious
challenge in EI. For handling these issues, recent investigations
adopt two main methods. One is centralized algorithms, and
another is distributed algorithms.

The centralized algorithm can be subdivided into analytical
algorithms (Lin and Viviani, 1984; Lin et al., 1992; Wright, 1997)
and heuristic algorithms (Sun et al., 2013; Moeini-Aghtaie et al.,
2014). Centralized algorithms have a high quality of performance
and a high speed. They can settle small-scale energy trading with
no need for iteration. However, the centralized algorithms rely on
a strongly centralized communication and control center, are
sensitive to single-point failures and modeling errors (Yile et al.,
2017), are hard to protect users’ privacy (Pourbabak et al., 2017),
etc. To sum up, the centralized algorithm is suitable for small-
scale systems, whereas is unfit for large and complex systems in
EI. To overcome the aforementioned drawbacks, the distributed
algorithm becomes a burgeoning and effective substitute
methodology to replace the centralized algorithm to deal with
large and complex systems in EI. Demystified by multi-agent
systems (Liang et al., 2021), distributed algorithms divide EI into
subsystems and subdivide subsystems into energy devices. So Sun
(2019) named subsystems in EI we-energy, and defined we-
energy as basic energy units with the functions of the multi-
energy manufacture, multi-energy consumption, multi-energy
conversation, and multi-energy storage. This we-energy has
high quality compared with other recent researches in the
author’s view, so this study chooses we-energy as a model of
energy subsystems.

The distributed algorithm in EI mainly includes four species of
rudimentary theoretical knowledge containing price-guide
algorithms (Yuang et al., 2022), alternating direction method
of multipliers (ADMM) (Zhang et al., 2017), Newton descent
algorithms (Li et al., 2020), and consensus-based methods (Sun
et al., 2019). Xu et al. (2018) adopted a quasi-Newton algorithm to
address economic optimization issues in multi-area. Sun et al.
(2015) applied consensus-based methods in multi-agent systems
to EI on the first try. Despite distributed algorithms being much
fitter to large and complex EI than the centralized algorithm, the
synchronous clock bus line is still too long due to the scale of
global systems. Therefore, Li et al. (2019) renovated
communication strategy to asynchronous event-triggered
communication and embedded it into the execution of
traditional distributed algorithms. Through its effort, each
energy body can asynchronously trigger information
exchanging to the global system at discrete instants driven by
serious conditions to remove unnecessary communication.
Nevertheless, communication and calculation in each time of
triggering are still too large to operate. By the way, Li et al. (2019)
sacrificed energy balance under the circumstances that
communication is not triggered whereas disadvantages of
energy mismatch are far more serious than economic loss. So
sacrificing economic optimization is a better choice. Huang et al.
(2016) raised co-optimization among microgrids. Can et al.
(2021) adopted a price-guiding algorithm in EI, whereas the
price in it is the energy selling price. The research value of the

selling price is much less than that of energy manufacturing and
converting costs. Additionally, nonlinear cost functions make
energy cost changeable, which greatly increase the difficulty of
research.

To sum up, recent research on EI has disadvantages hereafter.
First, the largest challenge in energy management is all current
algorithms require iterations. As we all know, iteration press a
great burden on communication and calculation.
Communication and calculation times about algorithms with
iterations are hundreds of thousands of magnification to that
without iterations. So it is a serious matter to invent an algorithm
without iteration in EI. Second, because of the large and complex
scale of EI, the synchronous clock bus line and global
communication consume too much operation cost. The
asynchronous communication in the literature (Li et al., 2019)
addressed that problem to a certain degree whereas the
communication in (Li et al., 2019) was a global
communication. Regional communication may be better.
Third, price-guiding is an irreplaceable method to alloplastic
energy flow issues, because energy price is the only way to
estimate value among different types of energy. However,
recent research only invests in the selling price. Compared
with the selling price, energy cost is far more ponderable in
energy conversation. Nevertheless, because of complex cost
functions, energy cost is fickle and difficult to be modeled.
Finally, distributed algorithms at present are too sensitive to
initial values whereas some initial values are difficult to ensure.

These challenges about EI hereinbefore can be settled together.
Herein, a regional dispatch event-triggered algorithm (RDETA)
comes into being to address the aforementioned issues. Mainly
contributions of this article are summarized as following:

1) RDETA does not require iterations. As we all know, iterations
press too much burden on communication and calculation.
Communication and calculation times about algorithms with
iterations are hundreds of thousands of magnification to that
without iterations. Therefore, RDETA could increasingly
decrease communication and calculation costs in EI.

2) RDETA renovates the communication method to event-
triggered asynchronous regional distributed parallel
communication, which is exceedingly fit for large EI.
Because of the scale of EI, global communication requires
too many communicating times. RDETA upsteps
communication scope by event-triggered strategy.
Furthermore, asynchronous communication does not rely
on the synchronous clock bus line. Meanwhile, it decreases
communication frequency in most cases to reduce
unnecessary costs and increases communication frequency
in exigency to aggrandize algorithm adjusting performance to
be answerable for emergency circumstances.

3) This study subdivides energy price into energy selling price,
energy average cost price, and energy momentary cost price.
With this effort, the price-guiding method is better in complex
nonlinear cost functions in EI. It is worth noting that these
concepts all hereinbefore are originally put forward in this
study. They fit energy management whereas may not fit other
economic management issues.
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4) RDETA adopts high order partial differential equations to
centralize dispatch in one or two we-energies. Each energy
devices only transmit its partial differential formula and high
order partial differential formulas to the control platform
inside we-energy. The agents communicate nothing about
operating conditions. Therefore, RDETA reinforced the
protection of users’ privacy. In addition, because of high
order partial differential equations, RDETA is not sensitive
to initial values.

5) Three secondary contributions. One is to replace day-ahead
forecasting with communication-ahead forecasting to
enhance forecasting accuracy. Another is that when the
event-triggered system does not activate, RDETA chooses
to sacrifice economic optimality rather than energy supply-
demand balance because the detriment of energy mismatch is
much greater than that of reducing economic earnings. The
last contribution is that RDETA entirely handles the issue of
energy conversion.

The rest of this study is as follows. Section 2 introduces the
proposed mathematical model of EI, we-energies, and energy
devices. Section 3 first introduces some fundamental knowledge.
Then, it introduces the proposed RDETA. Section 3
demonstrates the optimal performance and avoiding Zeno
behavior of RDETA, too. Section 4 analyses several illustrative
case studies to show the proposed RDETA applied to a simulated
EI. The conclusion drawn from this study is in Section 5.

MATHEMATICAL MODEL OF EI

An anticipated construction of single we-energy, employed to
couple multiple energy components together, is depicted in
Figure 1A. We can divide the energy devices of each we-

energy into seven classes, i.e., including the energy
manufacturer (EM), the energy transform devices (TD), the
energy storage devices (SD), the energy load (EL), the energy
transfer path (TP), the information communication path (ICP),
and the we-energy control platform (CP). As a small but complex
and consummate energy subsystem of the energy prosumer (the
conception of prosumer was in (Kubli et al., 2018)), we-energies
can play multitudinous roles of energy supplier, energy
transformer, and energy terminal user by controlling orders
from CP. CP controls its multi-energy generators, multi-
energy transform devices, multi-energy storage devices, and
multi-energy loads. e.g., each we-energy can sell the part of
excess power flow to other we-energies to help we-energies
under power shortage circumstances and earn an additional
economic profit.

The we-energy is regarded as a power supplier at this moment.
In the meantime, the we-energy shall purchase deficit heat energy
flow from other we-energies if it is hard to reach its heat supply-
demand balance, so it plays a role of the heat terminal user. As
shown in Figures 1A, B, the dispatch inside we-energy is
centralized dispatch controlled by CP whereas the cooperation
among we-energies is implemented under a sparse and
distributed communication network based on the theory of
multi-agent systems that are topology structures with great
promise in the future compositive energy systems. In this
mode, each we-energy only needs to exchange information
with its corresponding neighbors when an event triggers
asynchronous communication to implement their co-
management. We can obtain optimal operating conditions
through RDETA. To this end, the interconnected EI cyber
information structure and physical structure are far different
from preceding energy hub models (Sheikhi et al., 2015; Bahrami
and Sheikhi, 2016). The energy hub models in previous research
are mainly devoted to the energy import side. Each energy hub

FIGURE 1 | (A) We-energy framework. (B) Energy Internet framework.
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can reach its energy supply-demand balance. However, we-
energies are integrated energy agents constituted of energy
hubs and terminal energy users and their co-dispatch can
reach further interconnection on both energy entrance sides
and energy exit sides. Through these efforts, the system
flexibility, scalability, and reliability of EI can be greatly
improved. Additionally, it is necessary for energy in the EI
network to be transmitted and transformed in easy means. So
only power, heat, and gas frequently-used energy conform to the
requirement from the network in EI. On this account, EI in this
study is power-heat-gas EI. Other types of energy including coal
are not discussed in this study. What is noteworthy is that, despite
great promise about interconnection among we-energies, the
large-scale and complex structure of it brings abundant serious
challenges because of the frequency of communication, iterations,
and calculations. To handle these issues, RDETA uses various
methods such as regional communications, event-triggered
asynchronous communications, transitions between distributed
model and centralized model, and high-order partial differential
equations. The purposes of these methods are to avoid global
communications in large EI, reduce unnecessary superfluous
communications and rely upon synchronous clock bus lines,
settle complex and large EI with the performance-superior
centralized algorithm in distributed multi-agent systems, and
avoid iterations. In addition, RDETA replaces the day-ahead
forecasting (Zhang et al., 2020b) with communication-ahead
forecasting to enhance forecasting accuracy.

We-Energy Model
As seen in Figure 1A, at the energy entrance or export side, the
received power flow(Pin), heat flow (Hin), and gas flow (Gin)
enter into or depart from the we-energy via the solid-state
transformers, the caliducts, and the natural gas pipelines.
Inside the we-energy structure, the received generated power
flow comes from the wind generators (WG) (PW), the solar
generators (SG) (PS), and the power output of the CHP units
including coal-based CHP units (CCHP) (PCC) and gas-based
CHP units (GCHP) (PGC). The received dissolved power flow is
split into two paths, i.e., the one consumed by the terminal power
users and the other one transformed by the power conversion
devices including electric boilers (EB) (PEB) and power-to-gas
devices (P2G) (PP2G). The received generated heat flow comes
from the heat output of CHP units incorporating solar heat
devices (SH), CCHP (HCC), GCHP units (HGC), and EB
(HEB). The received consumption of heat flow is utilized by
terminal users only because heat is difficult to transform. The
received generated gas flow comes from the equivalent gas
generators (EGG) and the gas output of P2G (GP2G). The
received dissolved gas flow is subdivided into two paths,
i.e., the one consumed by the terminal gas users and the other
one transformed by the gas-based CHP units(PGC). In addition,
the energy (i.e., power, heat, and gas) storage devices (PS, HS, and
GS) can adjust their operating conditions of energy supply or
demand of the we-energy, which are determined by the
discharge/charge states (PSD),(HSD), and(GSD). It is worth
noting that, all the aforementioned energy flows are vectors.
The positive values of the symbol of energy output, and vice-

versa. The energy loads contain two parts including the utilization
of terminal users and the transfer loads. The transfer loads mean
one type of energy converses with another type of that, e.g., power
flow converses to gas flow via P2G, by this method, certain gas
load transfers to the power load.

From the preceding part of the study, we can get to know that,
the EM includes five kinds of devices, i.e., theWG, the SG, the SH,
the CCHP, and the EGG. The TD includes the P2G, the EB, and
the GCHP. The SD contains PS, HS, and GS.

Energy flow in we-energies could be calculated as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Pin
i,t−PU

i,t

Hin
i,t−HU

i,t

Gin
i,t−GU

i,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
v SST
PP η SST

PP v EB
PH η EB

PH v p2G
PG η P2G

PG

0 1 0

v GCHP
GP η GCHP

GP v GCHP
GP η GCHP

GP v EWC
GG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Pin
i,t+PEM

i,t +PSD
i,t

Hin
i,t+HEM

i,t +HSD
i,t

Gin
i,t+GEM

i,t +GSD
i,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(1)

i is the serial number of the we-energy; t is the time; superscript U
is the terminal energy user; v is the proportion of the energy
converted from the corresponding energy carrier in the total
energy flow; and η is the efficiency of energy conversion.

⎧⎪⎨⎪⎩
PEM
i,t � PW

i,t + PS
i,t + PCCHP

i,t

HEM
i,t � HS

i,t + PCCHP
i,t

GEM
i,t � GEGG

i,t

(2)

We consider an EI as a multi-agent system with n we-energy
subsystems, including in each we-energy no more than ξ
participants but not limited to energy devices and terminal
users. For the simplification of notations, we adopt a three-
dimensional vector {Xi,j ∈ R3|i � 1, ..., ε; j � 1, ..., ξi} to
represent the decision variables of controllable devices in EI
and employ xmi,j to represent the m th element of Xij. The
three elementsx1

i,j,x
2
i,j, and x3i,j in Xij express power, heat, and

gas flow, respectively.

EM Devices Mathematical Model
Renewable Energy Devices Model
One of the main purpose is to promote the utilization of
renewable resources because they are clean, environmentally
friendly, and low-cost. However, renewable energy resources
are scattered in the distribution of geographic position and
unpredictable energy production in time. As for better
absorbing them, the forecasting accuracy is exceedingly
significant. Traditional researchers adopt day-ahead forecasting
(Bahrami and Sheikhi, 2016) to predict renewable energy
generators. Nevertheless, due to the long time scale (1 day),
the accuracy of day-ahead forecasting is exceedingly hard to
be assured. For heightening the predicted precision, this study
presents communication-ahead forecasting using the day-ahead
assist method as follows:

{μmi,j,tk+1 � xm
i,j,tk

+ sgm
i,j,tk

(tk+1 − tk) + Δr(tk+1−tk)
∣∣∣∣∣xm

i,j ∈ RE} (3)
REmean the set of renewable energy devices; tk and tk+1 mean the
present time and the next measuring time; sgm

i,j,tk
is the day-ahead

subgradient factor which expresses the tendency of xm
i,j,tk

in tk;
Δr(tk+1−tk) is the day-ahead convex or nonconvex compensation
from tk to tk+1 because the trend of xm

i,j may not be linear; μmi,j,tk+1 is
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the mathematic expectation of xm
i,j,tk+1 . Note that the accurate

value may not be the mathematic expectation because of the
forecast error. In this study, we assume that the forecasting error
obeys the Gaussian distribution whose feasibility analysis has
been introduced in the study by Wu et al. (2015). Then, the
probability density function of xmi,j,tk+1 can be modeled as:

f(xm
i,j,tk+1) � 1���

2π
√

σmi,j,tk+1
e
−
(xm

i,j,tk+1
−μm

i,j,tk+1
)

2(σm
i,j,tk+1

)2 ∣∣∣∣∣xm
i,j,tk+1 ∈ RE (4)

σmi,j,tk+1 is the standard deviation of xmi,j,tk+1 , which shows the
dispersed degree of accurate value. σmi,j,tk+1 is determined by
day-ahead forecasting and measure frequency. It can be
calculated as:

σmi,j,tk+1 � Imi,j(tk+1 − tk) (5)
Imi,j is the day-ahead disperse degree forecasting value.

In addition, the confidence intervals of xm
i,j,tk+1 can be solved as

[xm−down
i,j,tk+1 , xm−up

i,j,tk+1] by the Eq. 4 by the homologous method in
probability theory in the confidence level 100(1 − z)%. We
choose z as 0.05 in this study. In addition, we adopt TD, SD,
and EL to absorb all renewable energies. Then the operating
conditions of renewable energy devices can be:

{xm
i,j,tk+1 ∈ [xm−down

i,j,tk+1 , xm−up
i,j,tk+1]∣∣∣∣∣xm

i,j ∈ RE} (6)
Based on the aforementioned reason, the cost of renewable

energy devices can be the punishment for energy deficiency. So if
we choose the forecasting result higher, the economic
optimization will be better, whereas the dependability will be
worse, and vice-versa. The cost functions of renewable energy
devices can be as following:

Cm−RE
i,j,tk+1 � aREi,j (xm

i,j,tk+1 − xm−down
i,j,tk+1 )2 (7)

aREi,j is a positive constant.
The limits of renewable energy devices are as follows:

{xm
i,j,tk+1 ∈ [xm−down

i,j,tk+1 , xm−up
i,j,tk+1]∣∣∣∣∣xm

i,j ∈ RE} (8)
That is the same as Eq. 6.

By the way, Δr(tk+1−tk) and σmi,j,tk+1 have their trigger conditions.
If the trigger condition of Δr(tk+1−tk) is not reached, the tendency
of xmi,j,tk will be regarded as linear. If the trigger condition of σ

m
i,j,tk+1

is not reached, we will regard the mathematic expectation of
xm
i,j,tk+1 as the accuracy of it and the equations including Eqs 4–8

will be meaningless because the forecasting precision is enough.
In this study, the trigger condition of them is that they are more
than 4 and 50 s, respectively.

Fossil Fuel Burning Based EM Devices
First, the technology of co-generation combining heat and power
has already matured recently. And because of the high-efficient
performance, that technology is much better than fuel-based
plants and fuel-based boilers in the purpose of
environmentally friendly and economic optimal. To sum up,
fuel-based plants and fuel-based boilers are all replaced by co-

generation combined heat and power devices. Second, to handle
and investigate the ramping rate constraints of CCHPs, its form
in discrete shape is always modeled into a knapsack mathematical
problem. It is worth noting that we only consider the ramping
constrain of the bower but not of heat because the response speed
of heat is exceedingly slow. That reason is also fit for GCHP. The
cost function of CCHP is as follows:

Ci,j,tk � ai,jx
1
i,j

2 + bi,jx
1
i,j,tk

+ αi,jx2
i,j,tk

2

+βi,jx2
i,j,tk

+ ci,jx
1
i,j,tk

x2
i,j,tk

+ χi,j+
(x1

i,j + x2
i,j,tk

) × (ηi,j)−1 × prf

(9)

where ai,j, bi,j, αi,j, βi,j, ci,j, and χi,j express cost factors, which are
controlled by the energy emission of the thermal unit. They are all
constants and the second-order coefficients with a single variable
are positive constants. ηi,j is the energy conversion efficiency of
CCHP. prf represents the price of coal. And the constraints of
CCHP are as follows:

−Pramp
i,j ≤x1

i,j,tk
− x2

i,j,tk
≤Pramp

i,j (10)
di,jx

1
i,j,tk

+ ei,jx
2
i,j,tk

+ f i,j ≥ 0 (11)
di,jx

1
i,j,tk

+ ei,jx
2
i,j,tk

≤ gi,j (12)
Pramp
i,j is the ramp rate constraint. Other coefficients without

introduction are constants.

EGG Devices
Natural gas is a kind of fossil fuel and there are not any devices
that can produce it. The only way to get natural gas is to buy it
from related departments. The only thing we need to consider is
the natural gas price, which cannot be changed by EI but decided
by other departments.

TD Devices Mathematical Model
P2G and EB Models
The model and cost function of P2G are as follows:

−x3
i,j,tk

� ηi,j,tkx
1
i,j,tk

(13)
Ci,j,tk � −θi,j,tkx1

i,j,tk
(14)

ηi,j,tk is the energy transforming the efficiency of P2G. θi,j,tk is a
positive constant that expresses operating cost. The constraint of
DP2G is as follows:

PP2G−min
i,j ≤ − x1

i,j,tk
(15)

PP2G−min
i,j is the start-stop limit of P2G. Because power energy in

the network of EI is limited and the capacity of P2G is very large,
we do not consider the energy conversion upper constraint. There
is a resemblance between P2G and EB in the model, the operating
cost function, and the constraint. We only need to replace the
energy type.

GCHP Models
The model and operating cost function of DGC are as follows:
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Ci,j,tk � (x1
i,j + x2

i,j,tk
) × (ηi,j)−1 × (prg + θi,j) (16)

Where θi,j is a positive constant that expresses operating cost. ηi,j
is the energy conversion efficiency of CCHP. prg represents the
price of gas. By the way, some coefficients are shown in the same
letters between CCHP and GCHP, whereas the significance of
them is different because the subscripts change along with the
types of device. The reason is also fit to conditions between other
devices.

The constraints of GCHP are as follows:

−Pramp
i,j ≤x1

i,j,tk
− x2

i,j,tk
≤Pramp

i,j (17)
di,jx

1
i,j,tk

+ ei,jx
2
i,j,tk

+ f i,j ≥ 0 (18)
di,jx

1
i,j,tk

+ ei,jx
2
i,j,tk

≤ gi,j (19)
Pramp
i,j is the ramp rate constraint. Other coefficients without

introduction are constants.

SD Devices Mathematical Model
There is an optimal reserve in SD. If the stored energy is much less
than the optimal reserve, it will press too much stress on SD
devices. If things go on like this for too long, it may injure the
capacity of SD devices. If the stored energy is much more than the
optimal reserve, the stored energy will be under a risk of a leak. So
the optimal condition function of SD is as follows:

Om
i,j,tki,t

� ai,jx
m−S
i,j,tk

(xm−S
i,j,tk

− 2μmi,j) + bi,j (20)
O is the optimal function of stored energy in SD, superscript m
represents the type of energy, xm−S

i,j,tk
is the stored energy in time, tk.

μmi,j is the optimal reserve of energy in SD, ai,j and bi,j are
invariable constants, and ai,j is negative. The cost function of
DPSD is as follows:

Ci,j,tk � Om
i,j,tk

− Om
i,j,tk−1 + θi,j

�����xm
i,j,tk

�����2 (21)
θi,j is a positive constant that expresses operating cost, and xm

i,j,tk
is

the energy flow from SD. So we can know the following:

xm
i,j,tk

� xm−S
i,j,tk−1 − xm−S

i,j,tk
(22)

The limits of SD are as follows:

−xm
i,j

in − SD
≤xm

i,j,tk
≤xm

i,j

out − SD
(23)

xm−S−min
i,j ≤xm−S

i,j,tk
≤xm−S−max

i,j (24)
xm
i,jin − SD and xm

i,jout − SD are the maximum energy flow limits
about energy input and output rate of DPSD, respectively.
xm−S−min
i,j and xm−S−max

i,j are minimum and maximum values of
energy capacity, respectively.

EL Mathematical Model
There are two essential challenges in EL. One is the randomness
of terminal users, the other is load shifting. Load shifting is
analyzed here. RDETA could absorb the randomness of terminal
users in the large multi-agent system of EI by RDETA, which will
be introduced in Section IV. In the multi-energy system of EI,

different energy loads can transform between each other by
energy conversion, e.g., power flow converses to gas flow via
P2G, through this method certain gas load transfers to the power
load. So the model of EL is as follows:

xm
i,j,tk

� um
i,j,tk

+ trmi,j,tk (25)
trn1i,j,tk + trn2i,j,tk + trn3i,j,tk + . . . + trnNi,j,tk � −ηmn

i,j tr
m
i,j,tk

(26)
ηmn
i,j is the energy conversion efficiency from energym to energy n.
m is a constant, while n is a set of various numbers because a kind
of energy can change into more than one type of energy. By the
way, the energy load can also be forecast predicted by
communication-ahead forecasting which is similar to
renewable energy resources. The only difference is that we
regard the mathematic expectation of forecasting value as the
accuracy value because the randomness of energy load is much
lower than that of renewable energy resources.

ENERGY MANAGEMENT AND RDETA
ALGORITHM
Proposes and Difficulties of Energy
Management
Considering an EI with a number of we-energies, the expectation
of energy management is to minimize the cost under the
circumstance that the total energy demand in the whole
society that covers is satisfied by the synergy among all
participators. We can model it as a mathematical objective
function as:

min obj � ∑ε,ξi
i�1,j�1

(Ci,j,tk)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑ε
i�1

∑ξi
j�1

I × Xi,j � ∑ε
i�1

∑ξi
j�1

Ui,j

φ(xm
i,j)< 0

(27)

The cost not only includes the visualized economic
expenditure but also contains some invisible expenditure
incorporating but not limited to the inaccurate forecasting of
renewable energy resources, undertaking the risk of energy
mutation, energy pour and energy shortage, and the like. Ui,j

is the matrix of terminal users’ energy consumption. φ is a local
closed convex set for Xi,j. The main difficulties of energy
management are as follows:

First, the maximal challenge is too many iterations for the
following reason. The complex mathematical issue of energy
management is impossible to be solved by continuous math
theory. So the only way to settle it is discrete mathematics
based on supercomputers. However, that method brings
hundreds of thousands of times of iterations. What is more,
each time of iteration is accompanied by large communication.
Second, the randomness of terminal users and the uncertainty of
renewable energy resources cause a mass of trouble. Third,
because of the complexity of energy management, recently
parallel algorithms in computer math in embedded software
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are incompatible with EI, which highly limits the high
performance of supercomputers. Fourth, because of the large
scale of EI, it is exceedingly difficult to build the synchronous
clock bus line and global communication. Fifth, although a
certain part of EI is uncertain, it does not change
tempestuously moment by moment. When participators
change a little, the dispatch earnings may be no more than the
cost of computing and communicating. Sixth, the principle of
multi-energy conversion is complex and multitudinous, and the
iteration in the algorithm is incompatible with energy conversion.
Seventh, the privacy of we-energies and devices is difficult to
protect. Last but not least, the cost of energy generation and
conversion is changeable, which causes certain trouble to
economic optimization.

The Developing of Energy Management
Algorithms
Energy management in a traditional power system adopts the
centralized algorithm, which is nearly infeasible because of too
much pressure on the control center and communication. So the
distributed algorithm rises (Yuang et al., 2022). The distributed
algorithm not only greatly reduces the pressure of the control
center but also absorbs renewable energy resources in the huge
system of EI. Moreover, the issue of privacy protection is half
done in it (agents communicate with neighbor agents so their
privacy is not entirely protected). Additionally, the incompatible
issue is settled on its own. The distributed algorithm is great
progress because it is at least a feasible method. However, other
disadvantages hereinbefore still exist. What is more, the
distributed algorithm requires an excess of iteration times
and a large of communications at each time of iteration.
What is worth noting is that the computing and
communicating times in distributed algorithms are much
more than that in centralized algorithms. Whereas the
computing and communicating in distributed algorithm
allocate to all we-energies, but that in the centralized
algorithm are entirely undertaken by the control center. A
large number of technology limits including the hardware
structure, the size of the microcircuit, and the packaging
technology impose certain restrictions on the performance of
the supercomputer in the control center, so a centralized
algorithm is impracticable. However, the number of the
control platforms is not limited, so distributed algorithms
can handle much more complex issues. So the distributed
algorithm is doable in EI although the computing and
communicating cost is large. Li et al. (2019) proposed the
asynchronous distributed algorithm which reduces some
meaningless communication and does not require the
synchronous clock bus line. However, there are still various
challenges in energy management, especially the iteration
problem and the communicating and computing pressure it
brings. Furthermore, the algorithm in the study by Li et al.
(2019) sacrifices energy supply-demand balance under certain
circumstances, which does great harm to EI. To this end, this
study proposed that the RDETA algorithm can handle all
aforementioned challenges. The difficulties of energy

management, the contributions, and the greatest motivations
of all these algorithms are in Table 1 (✔ for entirely addressing,
✖ for not addressing, • for half addressing). RDETA adopts
several technologies. Some are original, others are not original.
Table 2 shows all technologies and their contributions and their
original circumstances (✔ for original, ✖ for not original).

Basic Knowledge of Graph Theory
Consider an EI system with ε we-energies, where i th we-energy
has ξi participators. An undirected graph Graph � (V, E, B) is
adopted to model it, where V � {vi|i � 1, 2,/, n} is a set of nodes
representing agents in multi-agent systems and E ⊆ V × V is a set
of undirected edges. Therein, the edge (vi, vj) denotes that vi node
and vj node can communicate with each other if needed. The
relationships between vi and vj is shown in B � [bi,j] ∈ Rm×n. The
diagonal elements in that matrix are all zeros constantly. If a non-
diagonal element bi,j > 0, (vi, vj) ∈ E, they are neighbor agents.
Whereas ifbi,j � 0,(vi, vj) ∉ E, they are not neighbor agents. In
the undirected graph, sides between nodes are not directed, so
(vi, vj) ∈ E equals to(vj, vi) ∈ E. In this study, we only study
connected graph because non-connected graph represents two
island energy system that need to be researched, respectively. If
we replace a node the graph will be non-connected, that node is
called cut-vertex.

RDETA Algorithm
In this study, the main purpose is to minimize all costs under the
circumstance that all energy demands and all limits are satisfied.
So we can model all participants in each we-energy as a vector
space including a lot of vectors including the operating
condition vector{Xi,j ∈ R3|i � 1, ..., ε; j � 1, ..., ξi}, their partial
differential, and high-order differentials of cost functions. It
is worth noting that, for polynomial functions, their high-order
differentials will restrain to zero sooner or later. Whereas for
other functions including but not limited to exponential
functions, trigonometric functions and logarithmic functions,
and their high-order differentials will never restrain.
Additionally, some functions may have a too high order,
which may greatly increase the computing pressure. So we
should use an order supremum dd to avoid these troubles. If
a vector is not zero after (dd + 1) order differential, we adopt
Chebyshev polynomials to lower the order to dd. We establish
that in the original state all we-energies operate in the island
model in a random condition and that all the energy supply-
demand balances are satisfied. Then we will transmit the change
value vector of energy resources and the energy loads to the
control center inside the we-energy and the control center will
solve the energy mismatch vector. Due to the different time
scales between different types of energy, we deal with the
forecasting results of a different energy in different ways for
renewable energy devices and energy loads as follows:

x1
i,j,tk

� 0.5 × (zx1
i,j,tk

+ fx1
i,j,tk+1) (28)

x2
i,j,tk

� zx2
i,j,tk

(29)
x3
i,j,tk

� fx3
i,j,tk

(30)
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zx and fx are the present energy flow and the forecasting energy
flow in the next measuring time. The responding speed of power
is less than 1 ms and the inductor and capacitance can store or
release some power in proper time. So we regard the power flow
as the average value of the zx and fx so that the power flow in the
time between two measurings will press close to the power
demand.

The responding speed of gas may be several seconds or
several seconds. We control gas at this time, and because of
the slowly responding speed, the control may come into play
in the next measuring time. So we regard the gas flow as fx in

the next measuring time. . The responding time of heat is too
long to consider. For this reason, the forecasting of it is
meaningless. So we do not forecast it to reduce computing.
Then each device transmits all their condition vectors, their
partial differential and high-order partial differentials vectors
of cost functions to the control center. Then, the control can
solve the issues that all the first-order partial derivative values
of the same independent values in EM are equal when the
multi-energy balance is reached by high-order partial
differential equations. The homologous independent values
vector shows their optimal working conditions without TD

TABLE 1 | The development and contributions of an energy management algorithm.

Type of algorithm Centralized
algorithm

Distributed algorithm Asynchronous
distributed algorithm

Regional
dispatch event-

triggered
algorithm
(RDETA)

Greatest motivation First algorithm in
energy
management

Disperse the pressure in the
control center

No longer
communicate
meaninglessly

No longer need
iterations

Feasibility analysis Infeasible Feasible Feasible Feasible
Difficulty in energy management
and the addressing
circumstances of the algorithms

Too many iterations ✖ ✖ ✖ ✔

Randomness of terminal
users and renewable energy
resources

✔ ✔ ✔ ✔

Incompatible parallel
algorithms in computer

✖ ✔ ✔ ✔

Build the synchronous clock
bus line

✖ ✖ ✔ ✔

Global communication ✖ ✖ ✖ ✔

Meaningless
communications

✖ ✖ ✔ ✔

Energy conversion ✖ ✖ ✖ ✔

Privacy-protecting ✖ • • ✔

Changeable cost ✖ ✖ ✖ ✔

Difficulty they bring and the addressing circumstance in later
algorithms

Too much pressure
to control center

✔ ✔ ✔

Increase too many times of
communications in each time
of iteration

✖ ✔

The accuracy of astringency is
poor

✖ ✔

Sacrifice energy
supply-demand
balance

✔

TABLE 2 | All technologies in RDETA and their contributions and original circumstances.

High-order
partial

differential
equation

Asynchronous
communication

Coupling
distributed

model
and centralized

model

Regional
communication

Communication
-ahead

forecasting

Concept of average
cost and

instantaneous
cost

Sacrifice
economic

optimization
to ensure
energy
balance

Contribution Remove
iterations,
protect users’
privacy

Remove synchronous
bus line, avoid
meaningless
communication

Make infeasible
centralized
algorithms
feasible

Remove global
communication

Enhance the
accuracy of
forecasting

Handle the energy
management issue at
a changeable cost

Avoid the
detriment of
energy mismatch

Originality ✔ ✖ ✔ ✔ ✔ ✔ ✔
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devices. That first order is the instantaneous cost of the
corresponding type of energy for the reason we will
introduce in as follows. Then if the instantaneous cost of
one type of energy is less than another type of energy and the
cheap energy can change into the expensive energy by TD
devices, the control center can solve another issue when the
instantaneous cost of the expensive energy equals that of the
conversion of the cheap energy when the multi-energy is
balance. The instantaneous cost of conversion energy is the
first-order partial differential of a composite function. The
inside function is the cost function of the controllable EM
devices of that energy (renewable energy devices are not
controllable). The outside function is the cost function of
TD. The new independent variable is the new operating
conditions of relevant EM devices and the changeable of
them is the opposite number of the operating conditions of
TD devices. After that, the optimal work of island mode in
each we-energy is finished. The next issue is the collaborative
optimization among we-energies. First, we should solve all
instantaneous costs of each energy and stack them into a price
vector Si with three elements. The instantaneous cost of
energy whose load changes to another load is the partial
differential of the energy generation about the controllable
EM cost functions, while the instantaneous cost of energy
whose load changes from another load is the partial
differential of part of the energy generation which is
utilized by terminal users about that. Then, the we-energy
will transmit the energy price vector to neighbor we-energies
and compute the trigger vector as follows:

Ti
1 � Si

Ti
2 � ave{Ti

1, all(Ti2
1)|i ~ i2}

Ti
3 � ave{Ti

2, all(Ti2
2)|i ~ i2}

.......

T
i
k � ave{Ti

k, all(Ti2
k
)|i ~ i2}

(31)

The symbol ave means the average vector of all vectors in
the set. The symbol ~ means that the two number we-energies
between that symbol are neighbor-agents. The symbol all
means a set of all elements under that circumstance. All
we-energies will transmit their Ti

1 to Ti
q+1 to their neighbor-

agents. q is the number of cut-vertex in the EI system. The
reason for that is the low connected degree EI needs more
control. If the difference value absolute of one of the element
in Ti

1 to Ti
q+1 is larger than the homologous element in the

trigger vector ℵ which is very small, the asynchronous
communication between their two we-energies will be
triggered. Then, two we-energies will be regarded as one
big we-energy. They will share one control center and
repeat the we-energy partial differential equation dispatch
hereinbefore as follows:

d(Ci,j,tk)
xm
i,j,tk

� d(Ci,j’,tk)
xm
i,j’ ,tk

d(Ci,j,tk)
xm
i,j,tk

� k1,
d2(Ci,j,tk)
(xm

i,j,tk
)2 � k2,

d3(Ci,j,tk)
(xm

i,j,tk
)3 � k3...

dn(Ci,j,tk)
(xm

i,j,tk
)n � kn

d(Ci,j′,tk)
xm
i,j′,tk

� kk1,
d2(Ci,j′,tk)
(xm

i,j′,tk)
2 � kk2,

d3(Ci,j′,tk)
(xm

i,j′,tk)
3 � kk3...

dn(Ci,j′,tk)
(xm

i,j′,tk)
n � kkn

(32)
The partial derivative values are the energy prices for the reason

that is expressed hereinafter. k and kk are constants. There are three
advantages of this operation. First, this operation is centralized in the
two we-energies but is distributed in the whole EI for the reason that
the twowe-energies are very small to the whole large system of EI. It is
worth noting that the method of partial differential equations is unfit
for big systems but is fit for small systems. A big we-energy including
two we-energies is a small system that is very fit to the method of the
partial differential equations. Second, the partial differential equations
can solve the issue of energymanagement without iteration. However,
it is unfit for large systems because of the pressure of communication
and computing. The RDETA adopts the partial differential equations
in two we-energies which not only avoid iteration but also avoid too
much computing and communicating pressure.

So the price vector in the two we-energies will be the same. Then,
the control center will compute how much energy should be
transmitted from one we-energy to another and stack it into an
energy flow vector. After that, the asynchronous communication
will be cut off, while the energy transmitting value will be reserved
in a transmitting vector and the we-energies will transmit energy
according to that. There are some points which should be emphasized.
First, a we-energy can only asynchronously communicate to only one
we-energy at a time. If the price difference still exists between it and
another we-energy, that we-energy may communicate to it after it
finished the asynchronous communication before. Second, after the
asynchronous communication, if another asynchronous
communication between them does not appear, the energy
transmitting between them will be invariant even if the operating
conditions of some energy devices change by the dispatch inside the
own we-energy or the asynchronous communication between the we-
energy and another we-energy. Third, when the nextmeasuring time is

FIGURE 2 | Heat instantaneous price (cent).
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reached, all we-energies will dispatch inside themselves by partial
differential equations first, then they may asynchronously
communicate and asynchronously dispatch. If one or two we-
energies have the energy transmitting assignment between other
we-energy, the asynchronous energy dispatch should consider the
energy transmitting assignment. Fourth, if one we-energy should
asynchronously communicate to two or more we-energies, whose
we-energy will be communicated first may be random because there is
not an asynchronous clock bus line in EI, so the trigger timemaynot be
same in different we-energies. We cannot control which two we-
energies will trigger early. Fifth, if the operating condition of a device is
out of its in equation constraint, we will adjust it to a value on the
constraint boundary. Then, we will adjust other values to reach the
energy balance. By these methods, the energy management of RDETA
will be realized. What is more, if the energy conversion efficiency and
the operating cost factor of TD devices are all under a trigger condition,
we can regard the transmitted load as the terminal users’ load to
simplify the computing pressure. In this study, that condition is 70%
for energy conversion and 2 cent for the operating cost factor. It is
worth noting that, RDETA cannot adopt KKT. The KKT is a good
optimal method and good at handling optimal problems with in
equation limits. However, KKT requires entire cost functions. If we
adopt KKT, too much pressure will be given on communication and
computing. To this end, RDETA adopts partial differential equations
rather than KKT conditions. Devices only need to exchange partial
differential vectors rather than all cost functions by this means.
Generally, the communication needs to end when all the
asynchronous communication is not triggered, while if the number
of cut-vertex is less than 3, we can stop the communication when all
we-energies communicate to all neighbors for one time.

Testification of Optimality and Avoiding
Zeno Behaviors
As you can see, we do not prove the astringency of RDETA. The
reason for that is there is not any iteration in RDETA, the astringency

is obviously meaningless. The optimality is very easy to understand.
However, what is themeaning of avoiding Zeno behaviors? The Zeno
behaviormeans the trigger happens infinite times in a limited time. In
this study, the Zeno behavior means the asynchronous
communication is activated infinite times in one time of measuring.

The cost is changeable, which brings a serious challenge to energy
management. For handling that issue, we propose several concepts
including average cost, instantaneous cost, and finite difference cost.

The average cost is the specific value of the whole energy
generation or conversion cost (can be solved by the cost
function) and the energy flow. The finite difference cost is
the specific value of a length of energy cost and the energy
flow difference. The difference between the average cost and
the finite difference cost is that the average cost is a specific
value with the whole generation (conversion) energy, which is

FIGURE 3 | Power instantaneous price (cent).
FIGURE 4 | Power exchanging flow (kw).

FIGURE 5 | Heat exchanging flow (kw).

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 90819910

Tan Energy Management Without Iteration

1615

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


from zero to an energy flow value. However, the finite
difference cost is between energy flow a to energy flowb.
That value can be solved by the difference value of the cost function
value between a and b. If we choose a pair of values about a and b, in
which a is exceedingly similar tob, the length finite difference cost can
change into a point cost. The point cost is called the instantaneous cost.

Because the absolute value of ℵ is exceedingly small, we can
assume it as zero. Only if all trigger vectors are the same, the
asynchronous communication will stop. Obviously, if all price
vectors in each we-energy are the same, all trigger vectors will be
the same, too. If price vectors are not all in the same value, Ti

1 will
trigger asynchronous communication. So the necessary and sufficient
condition of asynchronous communication will stop is that all price
vectors are in the same value.

FIGURE 6 | Gas exchanging flow (kw).

FIGURE 7 | WholeEI asynchronous communication trigger times.

FIGURE 8 | Power supply-demand mismatch.

FIGURE 9 | Heat supply-demand mismatch.

FIGURE 10 | A gas supply-demand mismatch.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 90819911

Tan Energy Management Without Iteration

1716

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


If there are εwe-energies in EI, we can regard them as ε − 1 we-
energies because we can regard two neighbor we-energies as one
big we-energy. The neighbor we-energies of the big we-energy are
all of the neighbor we-energies of them. The asynchronous
communication can adjust their price vectors to the same.
Even if another we-energy communicates to one of them,
which leads their price vectors different, they can adjust
themselves. What is worth noting is if a we-energy
communicates to one of them for one time, the change of that
we-energy which does not belong to the big we-energy is different
from the change while the big we-energy is really one we-energy
because that we-energy only communicates to one of them but
not to both of them. However, after several times of adjusting
inside the big we-energy and between the outside we-energy and
one of the we-energy in the big we-energy, the dispatch will be the
same of the big we-energy is a really we-energy because the big
we-energy will adjust them to one we-energy sooner or later even

if other we-energies disturb them. The two we-energies will
undertake the perturbance together. Then, we can regard the
big we-energy and a neighbor we-energy of it as a bigger we-
energy for the same reason. So the big we-energy can enlarge over
and over again until adsorbing the whole EI. So the price vectors
of each we-energy will be the same after certain communication.
The asynchronous communication will stop at the same time.
The Zeno behavior of the asynchronous communication time is
infinite and will never appear.

The optimization proof of the whole EI is the same as that of
one we-energy because we can regard the whole EI as a big we-
energy. In that big we-energy, all energy cost functions are convex
functions, all price vectors are the same, and all energy conversion
instantaneous costs are the same too. Under that circumstance,
the energy balance is reached. If some energy devices operate in
another condition, other devices also need to change the
operating conditions to ensure the energy balance. The price
of them will change. According to the theory of convex
optimization, the increasing finite difference cost of the
devices generating or transforming more energy is more than
the decreasing finite difference cost of other devices because all
functions are convex functions. (The cost functions of TD devices
are also convex functions because they are composite functions.)

There are a large number of contributions of RDETA, which are
summarized in Figure 2. Some are obvious while some are vague.
We introduce some obscure contributions here. It is worth noting
that there is not a relationship between the importance of the
contributions and whether to introduce them here. The only
reason to introduce them is that they are difficult to understand.

The reason RDETA can enhance privacy protection is that each
we-energy only needs to exchange their Ti

1 to T
i
q+1 to other neighbor

agents when the asynchronous communication is not triggered. The
information in them is very less. Their operating conditions and a lot
of important information do not need to exchange. The reason
RDETA can make infeasible centralized algorithms feasible is that
centralized algorithms are unsuitable for large systems, while
RDETA only adopts it in one or two we-energy. The reason

FIGURE 11 | Times of communicating and computing pressure.

FIGURE 12 | We-energy framework.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 90819912

Tan Energy Management Without Iteration

1817

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


RDETA can remove global communication is that RDETA only
communicates in two we-energies at one time.

SIMULATION RESULTS

The performance of the proposed RDETA algorithm is tested on
an EI system with five we-energies. The simulation platform and
all data are shown in the Supplementary Appendix. The
measurement interval time is 10 s. The simulation results are
as follows.

Figures 2, 3 are the instantaneous price of power and heat (the
gas price never changes). Figures 4–6 are energy exchanging between
each we-energy and others. Figure 7 is the asynchronous
communication times in whole EI. What is worth noting is that
the communication order is randomized to a certain degree because
there is not a synchronous clock bus line. For comparing with the
traditional distributed algorithm, we give a distributed Newton
algorithm result. Most data and models for the distributed Newton
algorithm are the same as that in RDETA, while the gas production
cost function is different becausewithout the changing price of gas, the
traditional algorithm cannot run. The cost function is as follows:

CDGP
i,t � aDGPi,t GDGP2

i,t + bDGPi,t GDGP
i,t + cDGPi,t

To differentiate, that device is called DGP in the distributed
Newton algorithm but called EGG in RDETA.

Figures 8–10 are the power-heat-gas mismatch. The Zeno
coefficient is the decrease times of the Newton downhill factor.
The traditional Newton distributed algorithm goes by 43 times of
iteration with global communication to make all types of energy
mismatch less than500kw. However, RDETA adopts four times of
iterations with regional communication (the communication
workload of regional communication is one-sixth to that of

global communication because there are six sides in the graph
of EI in this study.) to make all types of energy match zero.
Therefore, RDETA adopts a workload 64.5 times less than that of
the traditional distributed algorithm to realize a better energy
management result than that in the traditional distributed
algorithm. Compared with traditional centralized algorithms,
communicating and computing pressure of the control center
about RDETA is much less. Figure 11 is the times of
communicating and computing pressure of the control center
between traditional centralized algorithms and RDETA. As you
can see, the communicating and computing pressure times
between them are growing sharply with the growth of we-
energy numbers. So RDETA is much more suitable for the
large EI with lots of we-energies than traditional centralized
algorithms.

Figure 12 is the we-energy framework. Figure 13 is the EI
framework. There are five we-energies in EI in this article. The
price of gas is 8 cents per kwh . The price of coal is 6 cents per kwh .
sg for power and gas is0.1 times the initial measure value. k − 1
means the initial condition.Δr is all 2. I is all 4. sg of the energy load is
0.1 times its initial value. Other data is in the following big table. Some
data is the same in CCHP and GCHP, so we only introduce it once.
The heat load does not change the whole time.

CONCLUSION

In this study, an innovative asynchronous communication energy
management framework without iterations has been introduced for
the future EI. Along with five we-energies, the EI system can better
address the features and requirements of EI in a way with much less
workload. By the combination of distributed algorithms and
centralized algorithms and the partial differential equations, the
cost of RDETA greatly decreases and its performance of that is
obviously increased. Simulation results and theoretical
identifications have demonstrated the effectiveness of it. However,
cyber attacks and nonconvex issues are out of consideration in this
study. So they need to address this in future work.
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This study presents a command filtered control scheme for multi-input multi-output
(MIMO) strict feedback nonlinear unmodeled dynamical systems with its applications
to power systems. To deal with dynamic uncertainties, a dynamic signal is introduced,
together with radial basis function neural networks (RBFNNs) to overcome the influences
of the dynamic uncertainties. Command filters (CFs) are used to prevent the explosion
of complexity, where the compensating signals can eliminate the effect of filter errors.
Compared with single-input single-output strict feedback nonlinear systems, the method
proposed in this study has more suitability. In the end, the simulation experiments are
carried out by applying the developed algorithm to power systems, where the simulation
results verify the efficacy of the approach proposed.

Keywords: power system, dynamic uncertainty, command filter, MIMO system, strict feedback nonlinear system

1 INTRODUCTION

In recent years, adaptive control has become a hotspot because of its strong disturbance-
rejection property. Related theories, such as model reference control, robust adaptive control,
and adaptive dynamic programming (Mukherjee et al., 2017; Yang et al., 2021b; Han and
Liu, 2020; Yang et al., 2021d; L’Afflitto, 2018; Yang et al., 2021e), have been applied to many
fields, including power systems, wind energy systems, and multi-agent systems (Li et al., 2020;
Xu et al., 2018; Wu et al., 2017; Ghaffarzdeh and Mehrizi-Sani, 2020; Zou et al., 2020b; Ghosh and
Kamalasadan, 2017; Namazi et al., 2018; Zou et al., 2020a). Moreover, applications of adaptive
control on energy systems are also widely reported (Deese and Vermillion, 2021; Quan et al., 2020;
Liu et al., 2022; Nascimento Moutinho et al., 2008; Liu et al., 2021). Among them, backstepping is
a powerful tool since many energy systems can essentially be modeled as strict feedback systems,
which can be analyzed through the backstepping technique.

The main idea of backstepping is to divide the whole system into a series of subsystems
so that they can be analyzed individually. In this way, the control design and stability
analysis can both be simplified, especially for large-scale systems (Yang et al., 2021a). Meanwhile,
for unmodeled dynamical systems, if the unmodeled dynamics are ignored, the disturbance
from dynamic uncertainties may result in unbounded evolution. Therefore, the dynamic
uncertainties need to be paid enough attention, which is not considered in the aforementioned
literatures. Zhao J. et al. (2021) presented a fuzzy adaptive control approach with an observer
design for unmodeled dynamical systems. Xia et al. developed an output feedback control
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design with quantized performance for dynamic uncertainties
in Xia and Zhang (2018). Wang et al. (2017)investigated
nonstrict feedback systems with unmodeled dynamics and
dead zones through output feedback-based control methods.
Although the aforementioned results can successfully tackle
dynamic uncertainties, they are not able to deal with the
explosion of complexity and avoid the influences of filter
errors.

In the backstepping process, the explosion of complexity often
occurs because the virtual control is repeatedly differentiated.
Meanwhile, the computational complexity increases significantly,
which results in the presented design not being suitable for
applications (Yang et al., 2020). To deal with this issue, the
dynamic surface control method is proposed (Wang and
Huang, 2005). The dynamic surface control method uses first-
order filters, where the virtual control is replaced by the filter
states in each subsystem (Yang et al., 2021c). In this way, the
repeated differentiation issue can be evaded. However, filter
errors are introduced simultaneously, which degrades the
control precision. Thus, command filters (CFs) are developed
(Farrell et al., 2009). Based on the dynamic surface control
approach, CFs additionally introduce compensating signals
to compensate for the loss caused by filter errors, which
further improves the control accuracy compared with the
dynamic surface control method. Owing to this advantage,
CFs are widely applied to many systems. For example,
Zhu et al. (2018)investigated a command filtered robust adaptive
neural network (NN) control for strict feedback nonlinear
systems with input saturation. Zhao L. et al. (2021)presented
an adaptive finite-time tracking control design with CFs. The
adaptive fuzzy backstepping control approach of uncertain strict
feedback nonlinear systems is developed by Wang et al. (2016).
However, the applications of the backstepping technique in
energy systems are not taken into consideration in these works.
In addition, the systems of interest in these works are single-
input single-output systems, whichmay give conservative results.
Therefore, in this study, for multi-input multi-output (MIMO)
strict feedback nonlinear unmodeled dynamical systems, a
command filtered control method is developed and applied to
energy systems.

The contributions of this study are two-fold. First, this study
designs an adaptive backstepping control scheme for MIMO
strict feedback nonlinear unmodeled dynamical systems with
CFs, the compensating signal design and controller design are
improved such that they can get higher tracking precision.
Second, this study investigates the applications of the presented
CF-based adaptive backstepping control approach on power
systems, and a MIMO circuit system is used in the simulation
experiments to verify the effectiveness of the method developed.

The rest of this article is organized as follows. Section 2
provides the problem formulation and necessary assumptions.
In Section 3, the control design is proposed. The stability
analysis of the system with the presented design is carried
out in Section 4. In Section 5, a voltage source converter-high
voltage direct current transmission system is used to verify the
efficacy of the proposed method. The conclusion is made in
Section 6.

2 PROBLEM FORMULATION

In this study, the circuit system under consideration is modeled
as

̇ς = q (ς, X) ,
̇Xi = Fi (X i) +GiXi+1 +Di +Δi (ς, X) ,
̇Xi = Fn (X) +GnU +Dn +Δn (ς, X) ,
y = X1,

(1)

whereX = [X1 … Xn]
T ∈ ℝnm, y ∈ ℝm, andU ∈ ℝm are the system

state, output, and the control input, respectively. Fi(⋅) ∶ ℝim→
ℝm is a known continuous function, q(⋅, ⋅) ∶ ℝ×ℝnm→ℝ is an
unknown continuous function, Gi ≠ 0 is a known constant, Di ∈
ℝm is an unknown constant vector, X i = [X1, ⋯ , Xi]

T ∈ ℝim, ς ∈
ℝ is the unmeasured portion of the state, and Δi ∈ ℝm is the
unmodeled dynamics.

In this study, the following assumptions are needed.

Assumption 1: Jiang and Praly (1998):The dynamic uncertainty
Δi in Eq. 1 is assumed to satisfy

‖Δi (ς, X)‖ ≤ ϕi1 (‖X i‖) +ϕi2 (‖ς‖) , i = 1, …,n (2)

with unknown smooth functions ϕi1 (⋅) ∶ ℝ
+
0 →ℝ

+
0 and ϕi2 (⋅) ∶

ℝ+0 →ℝ
+
0 . In addition, ϕi2 (⋅) is assumed to be strictly increasing.

Assumption 2: Jiang and Praly (1998): There exists an input-to-
state practically stable Lyapunov function Vς (ς) for ̇ς = q (ς,X) in
Eq. 1 such that

ω1 (‖ς‖) ≤ Vς (ς) ≤ ω2 (‖ς‖) ,
∂Vς

∂ς
q (ς,X) ≤ −c0Vς (ς) + ϑ (‖X1‖) + d0,

(3)

with ω1 and ω2 belonging to class K∞ functions, ϑ (⋅) ∶ ℝ+0 →ℝ
+
0 ,

and c0 and d0 being positive constants.
To deal with the dynamic uncertainty, a dynamic signal is
designed with the following dynamics,

̇r = −cr + ϑ (‖X1‖) + d0, r (0) = r0, (4)

where ϑ (X1) ≥ ϑ (‖X1‖), c ∈ (0,c0), and c0 > 0 and r0 are constants.

Lemma 1: Hardy et al. (1952): For any ξ0 > 0, one has

0 ≤ ‖ξ0‖ − ξ0  tanh(
ξ0
χ
) ≤ 0.2785χ,

where χ > 0 is a constant.

Lemma 2: Jiang and Praly (1998):
For the unmeasured partial state ς (t)with initial state ς0,Vς (ς)

given in Assumption 2, the dynamic signal r(t) in Eq. 4, and all
t ≥ 0, there is a non-negative function B (t) such that

Vς (ς) ≤ r (t) +Φ (t) . (5)

In addition, there is a limited time T0 = T0 (c0, r0,ς0) such that
Φ (t) = 0 for all t ≥ T0.
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With no loss of generality, chooseΘ (X1) asΘ (X1) = X2
1Θ(X

2
1).

Accordingly, the dynamic signal r(t) is designed as

̇r = −cr +X2
1Θ(X

2
1) + d0, r (0) = r0. (6)

The control objective of this study can be formulated as
follows.

Control Objective: Consider the reference output Xd
satisfying {Xd, ̇Xd, ̈Xd} are bounded. Under Assumptions 1–2,
design a neuro-adaptive controller for the system (1), such that,

1. the system output X1 can track the reference Xd
asymptotically, and

2. all signals in the closed-loop system keep bounded.

3 NEURO-ADAPTIVE CONTROLLER
DESIGN

First, the tracking errors Ei, filter errors Zi, and the compensated
tracking errors Λi are defined for each subsystem as

Ei = Xi −Ai−1, i = 1,2,3,
Zi = Ai − Si, i = 1,2,
Λi = Ei −Bi, i = 1,2,3,

(7)

where Ai is the filter state, A0 = Xd, Si is the virtual control, and Bi
is the compensating signal.

For the subsequent design and analysis, denote Θi =
‖W∗i ‖

i , i = 1,…,n with W∗i being the ideal weight vector of the
RBFNNs. In addition, denote Θ̂i (t) as the estimation of 𝛩i with
an estimation error Θ̃i (t) = Θi − Θ̂i (t).

3.1 Adaptive Backstepping Design
3.1.1 Step 1
Based on Eqs 1, 7, taking a derivative of E1 yields

̇E1 =F1 (X1) +G1X2 +D1 +Δ1 − ̇Xd

= F1 (X1) +G1E2 +G1S1 +G1Z1 +D1 +Δ1 − ̇Xd. (8)

For the first subsystem, the virtual control S1 is designed as

S1 =
1
G1
(−F1 −K1E1 −

Θ̂1

2η1
Λ1φ

T
1φ1 + ̇Xd), (9)

with K1 = diag{K11, ⋯ , K1m} is a positive definite matrix, and
η1 > 0. To avoid repeated differentiation of the virtual control, a
CF is designed as

̇A1 =
S1 −A1

τ1
,A1 (0) = S1 (0) , (10)

with a positive constant τ1. To eliminate the effect of filter errors,
the compensating signal is developed as

̇B1 = −K1B1 +G1B2 +G1Z1,B1 (0) = 0. (11)

To compensate for the unknown dynamics, the adaptive law
for 𝛩1 is presented as

̇Θ̂1 =
1
2η1

ΛT
1Λ1φ

T
1φ1 − γ1Θ̂1, Θ̂1 (0) = 0, (12)

where γ1 > 0 is a constant.

3.1.2 Step i (2≤i≤n−1)
From Eqs 1, 7, differentiating Ei leads to

̇Ei = Fi +GiXi+1 +Di +Δi − ̇Ai−1

= Fi +GiEi+1 +GiSi +GiZi +Di +Δi − ̇Ai−1. (13)

The virtual control design Si is developed as

Si =
1
Gi
(−Fi −Gi−1Ei−1 −KiEi −

Θ̂i

2ηi
Λiφ

T
i φi + ̇Ai−1), (14)

where Ki = diag{Ki1, ⋯ , Kim} is a positive definite matrix, and
ηi > 0. To obviate repeated differentiation of the virtual control
Si, a CF is given as

̇Ai =
Si −Ai

τi
,Ai (0) = Si (0) , (15)

with a positive design parameter τi. To diminish the influences of
filter errors, the compensating signal is proposed as

̇Bi = −Gi−1Bi−1 −KiBi +GiBi+1 +GiZi,Bi (0) = 0. (16)

To deal with the parameter estimation, the adaptive law to
estimate 𝛩i is designed as

̇Θ̂i =
1
2ηi

ΛT
i Λiφ

T
i φi − γiΘ̂i, Θ̂i (0) = 0, (17)

with a constant γi > 0.

3.1.3 Step n
According to Eqs 1, 7, the differentiation of En can be
transformed as

̇En = Fn +GnU +Dn +Δn − ̇An−1. (18)

The controller design is given as

U = 1
Gn
(−Fn −Gn−1En−1 −KnEn −

Θ̂n

2ηn
Λnφ

T
nφn + ̇An−1), (19)

with design parameters Kn = diag{Kn1, ⋯ , Knm} is a positive
definite matrix, and ηn > 0. The compensating signal for this step
is presented as

̇Bn = −Gn−1Bn−1 −KnBn,Bn (0) = 0. (20)

The adaptive law is developed as

̇Θ̂n =
1
2ηn

ΛT
nΛnφ

T
nφn − γnΘ̂n, Θ̂n (0) = 0, (21)

where γn > 0 is a constant.

4 STABILITY ANALYSIS

In this section, we analyze the stability of the closed-loop system
(Eq. 1) with the presented design of the virtual control (Eqs 9,
14), controller (Eq. 19), adaptive laws (Eqs 12, 17, 21), CFs
(Eq. 10) and (15), and compensating signals (Eqs 11, 16, 20).
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4.1 Step 1
Inserting Eq. 9 into Eq. 8, we obtain

̇E1 = −K1E1 +G1E2 +G1Z1 −
Θ̂1

2η1
Λ1φ

T
1φ1 +D1 +Δ1. (22)

From the aforementioned equation and Eq. 11, one has

Λ̇1 = −K1Λ1 +G1Λ2 −
Θ̂1

2η1
Λ1φ

T
1φ1 +D1 +Δ1. (23)

The Lyapunov function is defined as V1 (Λ1, Θ̃1) =
1
2
ΛT

1Λ1 +
1
2
Θ̃T

1 Θ̃1. From Assumption 1, the term ΛT
1Δ1 satisfies

ΛT
1Δ1 ≤ ‖Λ1‖ϕ11 (‖X1‖) + ‖Λ1‖ϕ12 (‖ς‖) . (24)

For the term ‖Λ1‖ϕ11 (‖X1‖) in the aforementioned equation,
based on Lemma 1, one has

‖Λ1‖ϕ11 (X1, Λ1) ≤ ΛT
1
̂ϕ11 (‖X1‖) + ε

′
11, ε′11 = 0.2785ε11, (25)

with ε′11 and 𝜀11 being positive constants and

̂ϕ11 (X1, Λ1) = ϕ11 (‖X1‖) tanh(
ΛT

1ϕ11 (‖X1‖)
ε11
).

Consider the term ‖Λ1‖ϕ12 (‖ς‖) in Eq. 24, according to
Lemma 2, we have

‖Λ1‖ϕ12 (‖ς‖) ≤ ‖Λ1‖ϕ12 (ω−11 (r +Φ)) . (26)

It is to be noted that ϕ12(⋅) is strictly increasing and non-
negative from Assumption 1, together with the fact that r +Φ ≤
max {2r,2Φ}, one has

‖Λ1‖ϕ12 (ω−11 (r +Φ)) ≤ ‖Λ1‖ϕ12 (ω−11 (2r))
+ ‖Λ1‖ϕ12 (ω−11 (2Φ)) . (27)

From Lemma 1, we can obtain

‖Λ1‖ϕ12 (ω−11 (2r)) ≤ Λ
T
1
̂ϕ12 (Λ1, r) + ε′12, ε′12 = 0.2785ε12, (28)

where ε′12 and ε12 are positive constants, and

̂ϕ12 (Λ1, r)ϕ12 (ω−11 (2r)) tanh(
Λ1ϕ12 (ω−11 (2r))

ε12
),

‖Λ1‖ϕ12 ‖(ω−11 (2Φ))‖ ≤
1
4
ΛT

1Λ1 + d1 (t) , (29)

where d1 (t) = ϕ2
12 (ω
−1
1 (2Φ (t))). From Eqs 23–29, the derivative

of V1 can be expressed as

̇V1 = Λ
T
1 (−K1Λ1 +G1Λ2 −

Θ̂1

2η1
Λ1φ

T
1φ1 +D1 +Δ1)− Θ̃

T
1
̇Θ̂1

≤ −ΛT
1K1Λ1 −

Θ̂1

2η1
ΛT

1Λ1φ
T
1φ1 +G1ΛT

1Λ2 +
1
2
ΛT

1Λ1

+ 1
2
DT

1D1 − Θ̃
T
1
̇Θ̂1 +ΛT

1
̂ϕ11 (x1, Λ1) + ε′11 +ΛT

1
̂ϕ12 (Λ1, r)

+ ε′12 +
1
4
ΛT

1Λ1 + d1 (t) . (30)

Using RBFNNs satisfies

̇V1 ≤ −ΛT
1K1Λ1 −

Θ̂1

2η1
ΛT

1Λ1φ
T
1φ1 +G1ΛT

1Λ2

+Λ1H1 (Y1) +
1
2
DT

1D1 + ε′11 + ε′12 + d1 (t) − Θ̃
T
1
̇Θ̂1, (31)

whereH1 (Y1) = ̂ϕ11 (x1,Λ1) + ̂ϕ12 (Λ1, r) +
3
4
Λ1,Y1 = [X1,Λ1, r]

T. It
is to be noted that H1 (Y1) is an unknown function. Then,
according to the universal approximation theory, the unknown
function H1 (Y1) can be approximated by the RBFNNs in the
following form,

̂H1 (Y1|W∗1 ) =W
∗T
1 φ1 (Y1) , (32)

withW∗1 being the ideal weight vector defined as

W∗1 = arg min
W1∈ΩW1

[ sup
Y1∈ΩY1

‖ ̂H1 (Y1|W1) −H1 (Y1)‖] ,

where ΩW1
and ΩY1

are compact regions for W1 and Y1,
respectively.The corresponding approximation error ε∗1 is defined
as

ε∗1 =H1 (Y1) − ̂H1 (Y1|W∗1 ) ,

with ‖ε∗1‖ ≤ ε1 and a positive constant ε1.
Based on the definition of 𝛩1, combining with Young’s

inequality, we have

ΛT
1H1 (Y1) ≤

Θ1

2η1
ΛT

1Λ1φ
T
1φ1 +

η1
2
+ 1
2
(ΛT

1Λ1 + ε21) . (33)

Inserting Eq. 33 into Eq. 31 yields

̇V1 ≤−ΛT
1K1Λ1 −

Λ1Λi

Li
+

Θ̃1

2η1
ΛT

1Λ1φ
T
1φ1 +

η1
2

+ 1
2
(ΛT

1Λ1 + ε21) + ε
′
11 + ε
′
12 + d1 (t) − Θ̃

T
1
̇Θ̂1. (34)

4.2 Step i (2≤ i ≤ n−1)
Inserting the virtual control design Eq. 14 into Eq. 13, we have

̇Ei = −Gi−1Ei−1 −KiEi +GiEi+1 +GiZi −
Θ̂i

2ηi
Λiφ

T
i φi +Di +Δi. (35)

On the basis of Eq. 16 and the aforementioned equation, one
can obtain

̇Λi = −Gi−1Λi−1 −KiΛi +GiΛi+1 −
Θ̂i

2ηi
Λiφ

T
i φi +Di +Δi. (36)

To analyze the stability of the i-th subsystem through the
Lyapunov theory, define the Lyapunov function for Λi and Θ̃i as
Vi (Λi, Θ̃i) =

1
2
ΛT

i Λi +
1
2
Θ̃T

i Θ̃i. Based on Assumption 1, the term
ΛT

i Δi satisfies

ΛT
i Δi ≤ ‖Λi‖ϕi1 (‖X i‖) + ‖Λi‖ϕi2 (‖ς‖) . (37)
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Consider the term ‖Λi‖ϕi1 (‖X i‖) in Eq. 37, on account of
Lemma 1, one has

‖Λi‖ϕi1 (‖X i‖) ≤ Λ
T
i
̂ϕi1 (X i, Λi) + ε′i1, ε′i1 = 0.2785εi1, (38)

with ε′i1 > 0, 𝜀i1 > 0, and

̂ϕi1 (X i, Λi) = ϕi1 (‖X i‖) tanh(
Λiϕi1 (‖X i‖)

εi1
).

For the term ‖Λi‖ϕi2 (‖ς‖) in (37), according to Lemma 2, we
can obtain

‖Λi‖ϕi2 (‖ς‖) ≤ ‖Λi‖ϕi2 (ω−11 (r +Φ)) . (39)

Since ϕi2 is strictly increasing and non-negative from
Assumption 1, based on the fact r +Φ ≤max {2r,2Φ}, one has

‖Λi‖ϕi2 (ω−11 (r +Φ)) ≤ ‖Λi‖ϕi2 (ω−11 (2r))
+ ‖Λi‖ϕi2 (ω−11 (2Φ)) . (40)

On the basis of Lemma 1, we can obtain

‖Λi‖ϕi2 (ω−11 (2r)) ≤ Λ
T
i
̂ϕi2 (Λi, r) + ε′i2, ε′i2 = 0.2785εi2, (41)

with ε′i2 > 0, 𝜀i2 > 0, and

̂ϕi2 (Λi, r) = ϕi2 (ω−11 (2r)) tanh(
Λiϕi2 (ω−11 (2r))

εi2
).

Using Young’s inequality, we have

‖Λi‖ϕi2 (ω−11 (2Φ)) ≤
1
4
ΛT

i Λi + di (t) , (42)

where di (t) = ϕ2
i2 (ω
−1
1 (2Φ (t))).

From Eqs 36–42, the derivative of Vi becomes

̇Vi = Λi(−Gi−1Λi−1 −KiΛi +GiΛi+1

−
Θ̂i

2ηi
Λiφ

T
i φi +Di +Δi)− Θ̃

T
i
̇Θ̂i

≤ −Gi−1Λ
T
i−1Λi −Λ

T
i KiΛi +GiΛ

T
i Λi+1 −

Θ̂i

2ηi
ΛT

i Λiφ
T
i φi

+ 1
2
ΛT

i Λi +
1
2
DT

i Di +ΛT
i
̂ϕi1 (X i, Λi) + ε′i1 +ΛT

i
̂ϕi2 (Λi, r)

+ ε′i2 +
1
4
ΛT

i Λi + di (t) − Θ̃
T
i
̇Θ̂i. (43)

Applying RBFNNs yields

̇Vi ≤ −Gi−1ΛT
i−1Λi −ΛT

i KiΛi +GiΛT
i Λi+1 −

Θ̂i

2ηi
ΛT

i Λiφ
T
i φi

+ΛT
i Hi (Yi) +

1
2
DT

i Di + ε′i1 + ε′i2 + di (t) − Θ̃
T
i
̇Θ̂i, (44)

where Hi (Yi) = ̂ϕi1 (X i, Λi) + ̂ϕi2 (Λi, r) +
3
4
Λi,Yi = [XT

i , Λi, r]
T.

The unknown function Hi (Yi) can be approximated in the
following form:

̂Hi (Yi|W∗i ) =W
∗T
i φi (Yi) , (45)

whereW∗i is the ideal weight vector defined as

W∗i = argmin
Wi∈ΩWi

[ sup
Yi∈ΩYi

‖ ̂Hi (Yi|Wi) −Hi (Yi)‖] ,

with ΩWi
and ΩYi

being compact regions for Wi and Yi,
respectively. The approximation error ε∗i is defined as

ε∗i =Hi (Yi) − ̂Hi (Yi|W∗i ) ,

where ‖ε∗i ‖ ≤ εi and 𝜀i > 0.
Based on the definition of𝛩i, using Young’s inequality, one has

ΛT
i Hi (Yi) ≤

Θi

2ηi
ΛT

i Λiφ
T
i φi +

ηi
2
+ 1
2
(ΛT

i Λi + ε2i ) . (46)

Inserting Eq. 46 into Eq. 44, one can obtain

̇Vi ≤ −Gi−1ΛT
i−1Λi −ΛT

i KiΛi +GiΛT
i Λi+1 +

Θ̃i

2ηi
ΛT

i Λiφ
T
i φi

+
ηi
2
+ 1
2
(ΛT

i Λi + ε2i ) +
1
2
DT

i Di + ε′i1 + ε′i2 + di (t)

− Θ̃T
i
̇Θ̂i. (47)

4.3 Step n
Inserting Eq. 19 into Eq. 18 results in

̇En = −Gn−1En−1 −KnEn −
Θ̂n

2ηn
Λnφ

T
nφn +Dn +Δn. (48)

Based on the aforementioned equation and Eq. 20, we have

̇Λn = −Gn−1Λn−1 −KnΛn −
Θ̂n

2ηn
Λnφ

T
nφn +Dn +Δn. (49)

To investigate system stability through the Lyapunov theory,
the Lyapunov function is defined for Λn and Θ̃n as Vn (Λn, Θ̃n) =
1
2
ΛT

nΛn +
1
2
Θ̃2

n. According to Assumption 1, the term ΛT
nΔn

satisfies

ΛT
nΔn ≤ ‖Λn‖ϕn1 (‖X‖) + ‖Λn‖ϕn2 (‖ς‖) . (50)

For the term ‖Λn‖ϕn1 (‖x‖) in Eq. 50, one can obtain

‖Λn‖ϕn1 (‖X‖) ≤ Λ
T
n
̂ϕn1 (X, Λn) + ε

′
n1, ε
′
n1 = 0.2785εn1, (51)

with ε′n1 and εn1 being positive constants and

̂ϕn1 (X, Λn) = ϕn1 (‖X‖) tanh(
Λnϕn1 (‖X‖)

εn1
).

For the term ‖Λn‖ϕn2 (‖ς‖), from Lemma 2, we have

‖Λn‖ϕn2 (‖ς‖) ≤ ‖Λn‖ϕn2 (ω−11 (r +Φ)) . (52)

Based on the facts that ϕn2(⋅) is strictly increasing and non-
negative from Assumption 1 and r +Φ ≤max {2r,2Φ}, one has

‖Λn‖ϕn2 (ω−11 (r +Φ)) ≤ ‖Λn‖ϕn2 (ω−11 (2r))
+ ‖Λn‖ϕn2 (ω−11 (2Φ)) . (53)
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From Lemma 1, we can obtain

‖Λn‖ϕn2 (ω−11 (2r)) ≤ Λ
T
n
̂ϕn2 (Λn, r) + ε′n2, ε′n2 = 0.2785εn2, (54)

where ε′n2 > 0 and εn2 > 0 are constants and

̂ϕn2 (Λn, r) = ϕn2 (ω−11 (2r)) tanh(
Λnϕn2 (ω−11 (2r))

εn2
).

Applying Young’s inequality, we have

‖Λn‖ϕn2 (ω−11 (2Φ)) ≤
1
4
ΛT

nΛn + dn (t) , (55)

with dn (t) = ϕ2
n2 (ω
−1
1 (2Φ (t))). From Eqs 48–55, the derivative of

Vn becomes

̇Vn = Λn(−Gn−1Λn−1 −KnΛn

−
Θ̂n

2ηn
Λnφ

T
nφn +Dn +Δn)− Θ̃

T
n
̇Θ̂n

≤ −Gn−1ΛT
n−1Λn −ΛT

nKnΛn −
Θ̂n

2ηn
ΛT

nΛnφ
T
nφn

+ 1
2
DT

nDn +
1
2
ΛT

nΛn +ΛT
n
̂ϕn1 (X, Λn) + ε′n1

+ΛT
n
̂ϕn2 (Λn, r) + ε′n2 +

1
4
ΛT

nΛn + dn (t) − Θ̃
T
n
̇Θ̂n. (56)

Inserting Eqs 19, 51, 52 into Eq. 56 results in

̇Vn ≤ −Gn−1ΛT
n−1Λn −ΛT

nKnΛn −
Θ̂n

2ηn
ΛT

nΛnφ
T
nφn

+ΛT
nHn (Yn) +

1
2
DT

nDn + ε′n1 + ε′n2 + dn (t) − Θ̃
T
n
̇Θ̂n, (57)

where Hn (Yn) = ̂ϕn1 (X, Λn) + ̂ϕn2 (Λn, r) +
3
4
Λn, Yn =

[X, Λn, r]
T. The unknown function Hn (Yn) can be estimated

as

̂Hn (Yn|W∗n ) =W∗Tn φn (Yn) , (58)

withW∗n being the ideal weight vector defined as

W∗n = argmin
Wn∈ΩWn

[ sup
Yn∈ΩYn

‖ ̂Hn (Yn|Wn) −Hn (Yn)‖] ,

where ΩWn
and ΩYn

are compact regions for Wn and Yn,
respectively, with the approximation error ε∗n defined as

ε∗n =Hn (Yn) − ̂H1 (Yn|W∗n ) ,

with ε∗n satisfying ‖ε
∗
n‖ ≤ εn and a positive constant 𝜀n.

From the definition of𝛩n, combining with Young’s inequality,
we can obtain

ΛnHn (Yn) ≤
Θn

2ηn
ΛT

nΛnφ
T
nφn +

ηn
2
+ 1
2
(ΛT

nΛn + ε2n) . (59)

Applying Young’s inequality, substituting Eqs 21, 59 into
Eq. 57 yields

̇Vn ≤ −Gn−1ΛT
n−1Λn −ΛT

nKnΛn +
Θ̃n

2ηn
ΛT

nΛnφ
T
nφn +

ηn
2

+ 1
2
(ΛT

nΛn + ε2n) +
1
2
DT

nDn + ε′n1 + ε′n2 + dn (t)

− Θ̃n
̇Θ̂n. (60)

Theorem 1: Under Assumptions 1–2, with the virtual control
(Eqs 9, 14), the CF design (Eqs 10, 15), the adaptive laws (Eqs 12,
17, 21), the compensating signals (Eqs 11, 16, 20), and the
controller (Eq. 19), the following facts hold.

1. The tracking errors will converge to the neighborhood of
the origin asymptotically.

2. The boundedness of all signals in the closed-loop system
(Eq. 1) can be guaranteed.

Proof: Define V =
n

∑
i=1

Vi, applying Young’s inequality yields

Θ̃T
i Θ̂i ≤

1
2
ΘT

i Θi −
1
2
Θ̃T

i Θ̃i.

Based on Eqs 34, 47, 60, the overall Lyapunov function
satisfies

̇V ≤ −
n

∑
i=1

ΛT
i (Ki −

1
2
Im)Λi −

n

∑
i=1

γi
2
Θ̃T

i Θ̃i

+ 1
2

n

∑
i=1
[ηi + ε2i +D

T
i Di + γi +ΘT

i Θi + 2ε′i1

+ 2ε′i2 + 2di (t)]
≤ −aV + b,

where Im is them-dimension identity matrix,

a = min
i=1,…,n
{λmin (2Ki − Im) , γi} ,

b = 1
2

n

∑
i=1
[ηi + ε2i +D

T
i Di + γi +ΘT

i Θi + 2ε′i1 + 2ε′i2 + 2di (t)] .

Therefore, Λi, Θ̃i, and Θ̂i are bounded. Next, we investigate the
boundedness of Zi, and the dynamics of the filter error Zi can be
expressed as

̇Zi = ̇Ai − ̇Si = −
Zi

τi
− ̇Si, (61)

where

̇si =
1
Gi
(− ̇Fi −Gi−1

̇Ei−1 −Ki
̇Ei −
̇Θ̂i

2ηi
Λiφ

T
i φi −

Θ̂i

2ηi
̇Λiφ

T
i φi

−
Θ̂i

ηi
Λiφ

T
i ̇φi + ̈Ai−1)

is continuous on the compact set Ωi ×ΩXd
with

ΩXd
={(Xd, ̇Xd, ̈Xd)|X2

d + ̇X
2
d + ̈X

2
d ≤ R0} ,

Ωi ={(Ei,Zi, Θ̃i)|E2
i +Z

2
i + Θ̃

2
i ≤ Ri} ,

and R0 > 0,Ri > 0. Thus, ̇Si is bounded, which derives that Zi is
also bounded from Eq. 61. According to Eqs 11, 16, 20, Bi is
bounded.Thus,Ei,Ai, Si,U, andXi are all bounded, which invokes
ς, Δ, and r to be bounded based on Lemma 2 and Eq. 6. In the
end, we can conclude that the boundedness of all the signals in
the closed-loop system can be guaranteed. This completes the
proof.
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5 SIMULATION STUDY

The system considered in this section is a voltage source
converter-high voltage direct current transmission system with
the following dynamics (Hu et al. (2020)).

̇ς =q (ς, x) ,

̇x1 =− b2x1 −
xn
L2
+ωx2 +T1 + δ1 (ς,x) ,

̇x2 =− b2x2 −
x4
L2
−ωx1 + δ2 (ς,x) ,

̇x3 =
x1 − x5
C2
+ωx4 + δ3 (ς,x) ,

̇x4 =
x2 − x6
C2
+ωx3 + δ4 (ς,x) ,

̇x5 =− b1x5 +
x3
L1
+ωx6 −

ud

L1
+ δ5 (ς,x) ,

̇x6 =− b1x6 +
x4
L1
+ωx5 −

uq

L1
+ δ6 (ς,x) ,

where L1 and L2 are the electrical inductances, and C1 and C2
are the capacitances. Applying variable transformation Xi =
[x2i−1, x2i]

T, X i = [x2i, x2i−1]
T, X = [X1, X2, X3]

T, T = [T1, 0]T,
c1 = diag {1, −1}, and U = [ud, uq]

T, the aforementioned

equation becomes

̇ς =q (ς,X) ,

̇X1 =− b2X1 −
X2

L2
+ωc1X1 +T +Δ1 (ς,X) ,

̇X2 =
X1 −X3

C2
+ωX2 +Δ2 (ς,X) ,

̇X3 =− b1X3 +
X2

L1
+ωX3 −

U
L1
+Δ3 (ς,X) .

By applying the presented control scheme, the control design
is developed as

S1 = L2(−b2X1 +K1E1 +
Θ̂1

2η1
Λ1φ

T
1φ1 +ωc1X1 − ̇Xd),

S2 = C2(
X1

C2
−
E1

L2
+K2E2 +ωX2 +

Θ̂2

2η2
Λ2φ

T
2φ2 − ̇A1),

U = L1(−b1X3 +
X2

L1
+ωX3 −

E2

C2
+K3E3

+
Θ̂3

2η3
Λ3φ

T
3φ3 − ̇A2),

with the compensating signal design

̇B1 =−K1B1 −
B2

L2
−
Z1

L2
,B1 (0) = 0.

̇B2 =
B1

L2
−K2B2 −

B3

C2
−
Z2

C2
,B2 (0) = 0.

̇B3 =
B2

C2
−K3B3,B3 (0) = 0.

FIGURE 1 | Output tracking performance and evolution of dynamic uncertainties.
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In addition, the CF design and adaptive law design are the
same as Eqs 10, 11, 15, 16, 20.

The design parameters are given as L1 = 4 mH,
L2 = 8 mH, C2 = 0.1μF, T = [0.01,0.02]T, ω = 100π rad/s,
K1 = diag {1258, 1646}, K2 = diag {124630, 161622}, K3 =
diag {188539, 138474}, γ1 = 0.00085, γ2 = 0.00066, γ3 = 0.00059,
η1 = 0.00005, η2 = 0.000003, η3 = 0.000004.

The RBFNNs are chosen in typical Gaussian form. To
be specific, the RBFNN φ1 (X1, Λ1, r) contains 32 nodes
with the center and width being [−2,2] × [−2,2] × [−2,2]
× [−2,2] × [−2,2] and 2, respectively. RBFNN φ2 (X2, Λ2, r)
contains 128 nodes and the center and width are distributed
in [−2,2] × [−2,2] × [−2,2] × [−2,2] × [−2,2] × [−2,2] × [−2,2]
and 2. RBFNN φ3 (X, Λ3, r) contains 512 nodes with the
center and width selected as [−2,2] × [−2,2] × [−2,2] × [−2,2]
× [−2,2] × [−2,2] × [−2,2] × [−2,2] × [−2,2] and 2, respectively.

The simulation results are shown in Figure 1. From Figure 1,
it can be observed that the output tracking objective can be
achieved and the system output can track the reference output
asymptotically.The dynamic uncertainties can also converge with
the convergence of system states.

6 CONCLUSION

In this study, a control approach for MIMO strict feedback
nonlinear unmodeled dynamical systems with CFs is developed.
Thedynamic signal design introduced togetherwithRBFNNs can
efficiently prevent the effect of the dynamic uncertainties. The
CFs employed in the controller design can not only prevent the

explosion of complexity, but can also eliminate the effect of filter
errors through the compensating signal design. Compared with
single-input single-output strict feedback nonlinear systems, the
approach proposed in this study is suitable formore general cases.
Finally, in the simulation experiments, the presented method is
applied to power systems, where the simulation results validate
the effect of the scheme proposed.
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Intelligent Decoupling Control Study of
PMSM Based on the Neural Network
Inverse System
Gong Da-Wei1, Qiu Zhi-Qiang2,3, Zheng Wei2,3, Ke Zhi-Wu2,3 and Liu Yang1*

1School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China,
2Wuhan Second Ship Design and Research Institute, Wuhan, China, 3Science and Technology on Thermal Energy and Power
Laboratory, Wuhan, China

This study obtains the analytical inverse system of a permanent magnet synchronous
motor (PMSM)model based on the traditional magnetic field orientation decoupling control
mode by analyzing the inverse quality of the PMSM. Using the neural network’s excellent
approximation ability and well learning functions, a neural network inverse system (NNIS) of
the decoupling control system was established by identifying and offline training the back
propagation neural network (BPNN) and radial basis function neural network (RBFNN). The
data collected from the analytical inverse system of the PMSM model are used to analyze
and compare the prediction accuracy and running time of the neural network, so as to
optimize the structure and parameters of the neural network. The simulation results of
three PMSM decoupling control systems show that the PMSM decoupling control system
based on RBF NNIS has good dynamic and static decoupling performance, and
robustness.

Keywords: PMSM, neural network, inverse system, decoupling control, optimization

INTRODUCTION

PMSM is an efficient and energy-saving motor, and it is a nonlinear, multivariable, and strongly
coupled control object (Bu et al., 2015; Sun et al., 2016; Bu et al., 2019a). The control effect of
traditional motor control methods is not ideal. Various control methods of modern motors are
essentially decoupling control. At present, the industry adopts field-oriented control to realize
decoupling control through id = 0. This is a decoupling method based on an accurate mathematical
model, which has good performance in steady-state decoupling. However, the system performance in
the dynamic process and when the motor parameters change is not very ideal, and intelligent control
is the development trend in the future. This kind of the control method does not have high
requirements for the mathematical model. At present, it has many successful applications (Li et al.,
2019a; Jie et al., 2020), such as NNIS. This method is an important branch of intelligent decoupling
control of the PMSM.

In the decoupling strategy of the NNIS, the key is the design and construction of the neural
network, but the relevant research and literature have not been discussed too much. A typical
error in the back-propagation feed-forward neural network (BPNN) is selected in many
documents to identify the inverse system (Bu et al., 2019b; Xie and Xie, 2020). There is no
detailed description on how to select the parameters and algorithm in the BPNN. Similarly,
RBFNN with good approximation and fitting ability has not been used to identify the inverse
system, let alone compare the decoupling performance of two different neural network
structures.
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This study deeply discusses the structural design of the BPNN,
compares the decoupling effect between RBFNN and BPNN
inverse systems, and finally obtains a PMSM decoupling
system with excellent dynamic and static performance, and
strong robustness when the parameters change and load
disturbances occur.

NEURAL NETWORK IDENTIFICATION AND
SAMPLE COLLECTION

The original training data of neural networks can be obtained
through MATLAB simulation experiment of closed-loop
analytical inverse decoupling control. Each group of training
data of neural networks includes 5 input signals y1, y1, y2, y2’,
and y2″, and 2 output signals ud and uq of the neural network
(Wang et al., 2018; Bu and Li, 2019).

The stator current input is given as 0, the speed input is given
as a random quantity with amplitude ranging from 40 rad/s to
140 rad/s, and the sampling system of the PMSM NNIS is shown
in Figure 1.

DESIGN AND DECOUPLING OF BP NNIS
FOR THE PERMANENT MAGNET
SYNCHRONOUS MOTOR
BPNN (Back Propagation Neural Network)
BPNN is an error back propagation feedforward neural network.
The structure of the BPNN is shown in Figure 2. The sample
input vector p=(p1, p2, . . . , pn) is normalized to obtain the input
layer vector x∈(x1, x2, . . . , xn)T. There are m neurons in the
hidden layer, and the hidden layer output h=(h1, h2, . . . , hm)

T is
obtained. There are k neurons in the output layer, and the output
y=(y1, y2, . . . , yk)

T of the output layer is obtained. The output is
de-normalized to obtain q=(q1, q2, . . . , qk)

T sample training
output. The weight between the input layer and the hidden layer
iswij, and the threshold is θj. The weight between the hidden layer
and the output layer is vjh, and the threshold is τh.

The output of neurons in each layer meets the following
requirements:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

hj � f⎛⎝∑n
i�1
wijxi − θj⎞⎠

yh � f⎛⎝∑m
j�1
vjhhj − τh⎞⎠

(1)

FIGURE 1 | PMSM inverse system sampling simulation diagram.

FIGURE 2 | BPNN structure.

TABLE 1 | Prediction error of BPNN with different hidden layer nodes.

Nodes Percentage of maximum
relative error (%)

Mean square error

10 9.405 8.31501e10-5
11 8.017 6.69010e10-5
12 1.623 1.12043e10-5
13 1.953 1.19563e10-5
14 20.361 2.01616e10-4
15 36.896 6.92855e10-4
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Number of Hidden Layer Nodes
There is a relationship among the number of hidden layer
neurons J, the input vector dimension n, and the number of
partitionsM (Yin et al., 2004). Given the other two of them, one of
the three parameters can be calculated. In the n-dimensional
input space, the maximum number of linearly divisible J hidden
layer neurons is

M(J, n) � ∑n
k�0

( J
k
) (2)

Now consider the case that the size of hidden layer nodes is
small, when n ≥ J,

M � ( J
0
) + ( J

1
) +/ + ( J

J
) � 2J (3)

It is concluded that the hidden layer with 3 nodes will be able
to provide classification, but when J ≥ n, the scale of the input
vector must be larger than 3.

According to the above formula, J required to complete the
classification as M in the n-dimensional pattern space can be
found. This M constitutes the solution of the equation:

M � 1 + J + J(J − 1)
2!

+/ + J(J − 1)/(J − n + 1)
n!

J> n (4)

According to the previous section, the BPNN to be trained has
5 inputs and 2 outputs. Set the number of training iterations at
net. trainparam. epochs: 2000, net. trainparam. goal: 10e-6 when
using MATLAB training. The relationship between prediction
error and the number of hidden layer nodes M is shown in
Table 1.

The accuracy of neural network prediction decreases first and
then increases with the number of nodes increasing. When the
number of nodes is 12, the mean square error of prediction is
minimum, so the number of nodes in the hidden layer is
determined to be 12.

Hidden Layers of the Back Propagation
Neural Network
According to Kolmoagorov’s theorem (the representation
theorem for continuous functions), given a continuous function:

Φ: Em → Rn,Φ(X) � Y (5)
Em is a unit cube, then V can be precisely realized by a three-

layer neural network (Zhao and Wang, 2022a), the first layer of
the neural network has 5 processing units, the middle layer has 12
processing units, and the third layer has 2 processing units. The
continuity theorem guarantees that any continuous function and

mapping can be implemented by a three-layer neural network
(Ting, 2017).

When using the single-layer hidden layer BPNN for training,
the optimal number of hidden layer nodes is determined to be 12
(Zhao and Wang, 2022a). Now consider using the multi-layer
hidden layer, and the prediction error of single-layer and dual-
layer BPNN is shown in Table 2.

Compared with the single hidden layer, the multi-hidden
layer has stronger generalization ability and higher prediction
accuracy, but the training time is longer. When choosing the
number of hidden layers, both network precision and training
time should be considered. When the network precision meets
the requirement, the single hidden layer can be selected to
speed up the process (Li et al., 2021a). The comparative
analysis not only verifies the reliability of the continuity
theorem but also determines the use of the single hidden
layer in training.

Back Propagation Neural Network Transfer
Function
The transfer function is used to calculate the output of the hidden
layer and the output layer, and logsig (S-shaped transfer function)
is available:

f(x) � 1
1 + e−αxi

(6)
tansig (hyperbolic tangent S transfer function):

f(xi) � 1 − e−αxi

1 + e−αxi
(7)

purelin (linear transfer function):

f(xi) � xi (8)
The default settings tansig and purelin are used for offline

training using MATLAB/Simulink as shown earlier. After
repeated comparison of different transfer functions, the
prediction accuracy is greatly improved when tansig and
tansig are used for the transfer functions of the hidden layer

TABLE 2 | Prediction error of BPNN with different hidden layer nodes.

Layer number Percentage of maximum
relative error (%)

Mean square error Running time (s)

Single layer 1.623 1.12043e10-5 5238.44
Double layer 0.059 9.64101e10-7 9196.80

TABLE 3 | Prediction error of BPNN with different activation functions.

Hidden layer transfer
function

Tansig Tansig

Transfer function of output layer purelin tansig
Percentage of maximum relative error 1.623% 0.160%
Mean square error 1.12043e10-5 2.38189e10-6
Running time 5238.44s 2919.85s
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and output layer. The prediction errors of the BPNN with
different activation functions are shown in Table 3.

Therefore, the BPNN is used to select the hyperbolic tangent S
transfer function for function fitting approximation (Yin et al.,
2004).

The Optimized Back Propagation Neural
Network Module Is Generated
Repeated training is needed to determine the optimal parameters
of the BPNN, and the neural network module generated by
training is used to replace the inverse system for offline
decoupling simulation of the BP NNIS of the PMSM (Yin
et al., 2004; Pang et al., 2020). The main parameters of the
program to generate BPNN are as follows:

net = newff (miN•max (pn) [122], {“tansig”, “tansig”},
“trainlm”, “learngdm”); net. trainPar.epochs = 2000; net.
trainPar.show = 10; net. trainPar.goal = 10e-6; net.
trainPar.min_grad = 1e-15;
net.trainPar.mu_dec = 0.1; net. trainPar.mu_inc = 7; net.
trainPar.goal = 0.04; net. trainPar.lr = 0.5;
The PMSM decoupling control system based on the BP NNIS
can be constructed by replacing the inverse system module
with the generated BPNN module and adding normalization
and inverse normalization modules before and after the neural
network module, as shown in Figure 3.

The parameter setting of PI and PD regulator of BP NNIS is
shown in Table 4.

At 0–0.2 s, the given load torque TL is 6 Nm, and at 0.4 s, the load
torque mutates to 12Nm; at 0–0.4 s, the given rotor speed ωr is
40 rad/s, in 0.4 s,ωr changes to 140 rad/s. Torque and speed response

curves under inverse control mode are shown in Figure 4, and
Figure 5 shows the torque and speed response curves of the inverse
systembased on the BPNNunder the same conditions (Zhang, 2010).

Comparing Figure 4 and Figure 5, it can be found that when
the set load torque changes suddenly, both controls can maintain
the stability of load speed, but the inverse system control method
has long torque response time and large peak value, and the peak
value of torque reaches 17 Nm. The overshoot is 41%, while the
torque response time of BP NNIS is short and the peak value is
small, and the overshoot is only 16%.When the set speed changes
suddenly, the speed response of the two control modes is
relatively fast, and there is basically no overshoot. However, in
the inverse system control mode, the torque fluctuation is large
and the adjustment time is long, while in the BP NNIS, the torque
fluctuation is small and the recovery time is short.

In the test, the speed is kept at 90 rad/s, and the load has
periodic step change between 6 Nm and 12 Nm rated load
torque. The response curve of speed and torque under inverse
control mode is shown in Figure 6. Figure 7 shows the speed and
torque response curves of the inverse system based on the BPNN
under the same conditions.

Comparing Figure 6 and Figure 7, it is not difficult to find that
when the rated load torque changes periodically, the two control
modes can maintain the speed stability, but under the inverse
system control mode based on BPNN, the torque response
overshoot is smaller and the adjustment time is shorter.

INVERSE SYSTEM DESIGN AND
DECOUPLING OF RADIAL BASIS
FUNCTION NEURAL NETWORK FOR
PERMANENT MAGNET SYNCHRONOUS
MOTOR

Radial Basis Function Neural Network
RBFNN as a feedforward network can approximate analytic
nonlinear relations with arbitrary accuracy (Wang et al., 2022;
Yang et al., 2020). It is a powerful tool to deal with complex
nonlinear, uncertain, and coupling problems in MIMO systems.
Now a PMSM decoupling control system based on the RBF NNIS

FIGURE 3 | NNIS of PMSM decoupling control system.

TABLE 4 | PID parameters of BP NNIS.

Regulator parameter PI PD

kp ki kp kd

BPNN 0.03 0.01 1.143 0.0006
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FIGURE 4 | Response curve of inverse system decoupling control.

FIGURE 5 | Response curve of BPNN inverse system decoupling control.

FIGURE 6 | Response curve of BPNN inverse system decoupling control when torque changes periodically.
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is established (Zhao and Wang, 2022b), which makes the system
have good dynamic and static characteristics.

The RBF neural model is shown in Figure 8.
Before using the RBFNN, it is necessary to determine the

number of hidden layer neurons, the center of transfer function,
expansion constant, and a set of corresponding weights.

Structure of the Radial Basis Function
Neural Network
The design methods of the RBFNN can be divided into two
categories (Li et al., 2020; Li et al., 2021b; Huang et al., 2022).

1) The function center is randomly selected from the sample data
and the center is fixed. After the RBF center is determined, the
output of hidden layer is known (Chen, 2021).

Gaussian function is selected as radial basis function, so the
transfer function of radial basis function neural network can be
expressed as

R(X − ci) � exp( − M

d2
m

||X − ci||2) (9)

In the formula, M is the number of neurons in the hidden
layer; dm is the maximum distance between the selected centers.
In this case, the mean square deviation of Gaussian RBF is fixed as

σ � dm
2M

√ (10)

The connection weight of the network can be directly
calculated by the previous formula:

W � R+d (11)
In the formula, d is the desired response vector. R+ is the

pseudo inverse of matrix R, and R is determined by

R � {rji} (12)

gji � exp( − M

d2
m

||Xj − ci||2) (13)

In the formula, Xj is the data quantity of the jth input sample,
and the singular value decomposition method can be used to
calculate the pseudo inverse of the matrix. This method
corresponds to the MATLAB/newrb construction method.

2) In the dynamic adjustment method of function center, the
center of RBF is moved, and its position is determined by self-

FIGURE 7 | Response curve of BPNN inverse system decoupling control when torque changes periodically.

FIGURE 8 | RBF neural model. RBFNN structure as shown in Figure 9.

FIGURE 9 | RBF neural network.
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organizing learning, while the linear weight of the output layer
is calculated by supervised learning rules. The purpose of
learning is to have the center of RBF located in the important
area of input space. The specific steps are as follows:

1) Initialize the cluster center ci. Generally, M samples are
selected from the input sample Xi as the clustering center.

2) The input samples are grouped according to the nearest
neighbor rule (Zuo et al., 2014); that is, M samples in Xi
are assigned to the input sample cluster set θi with center ci,
that is, Xj∈θi, and meet

di � min
∣∣∣∣∣∣∣∣Xj − ci

∣∣∣∣∣∣∣∣ (14)

where di represents the minimum Euclidean distance.

3) Calculate the mean value of samples in θi (i.e., clustering
center ci)

ci � 1
Mi

∑
xj∈θj

Xj (15)

whereMi is the number of input samples in θi. Calculate according to
the aforementioned steps until the distribution of cluster center no
longer changes. After the center of RBF is determined, if RBF is a
Gaussian function, its mean square deviation σ can be calculated by
Eq. 18. The output of the hidden layer can then be calculated. This
method corresponds to the MATLAB/newrbe construction method.

Newrb and newrbe were, respectively, used to establish two kinds
of RBFNNs. The error of the sum of squares was set as 10e-4 pairs of
neurons. By comparing the sum of square error, the structure
prediction error of different RBFNNs is shown in Table 5.

By comparison, it is concluded that newrbe can only be stopped
when the number of neurons reaches the number of training samples.
Although the required error precision is reached, the running time is
too long.On the contrary, newrb can use fewer neurons to achieve the
error precision, and the running time is shorter.

The Spread of the Radial Basis Function
Neural Network
When applying the newrbe function to the design of the radial basis
function neural network, the spread needs to cover as many input
intervals as possible (Li et al., 2019b; Yang et al., 2019), so it needs to be

TABLE 5 | Prediction error of different RBFNN structures.

RBFNN structures Number of neurons Square sum error Running time (s)

Newrb 4000 0.23225 2310.65
Newrbe 258 3.29834 255.39

TABLE 6 | Prediction error of different RBF spread.

Spread Number of neurons Square sum error Running time (s)

0.8 523 15.18543 613.22
1.0 258 3.29834 255.39
1.2 917 25.32467 1019.17

By comparison, when spread is set as the default value 1, the number and running time of
neurons have advantages when the sum of square error requirements are met.

TABLE 7 | PID parameters of RBF NNIS.

Regulator parameter PI PD

kp ki kp kd

RBFNN 0.003 0.001 14 0.01

FIGURE 10 | Response curve of RBFNN inverse system decoupling control.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 9367767

Da-Wei et al. PMSM Intelligent Decoupling Control Study

3635

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


set as large as possible. However, too large spread will lead to the
difficulty of numerical calculation, and the corresponding regions cross
too much, which will reduce the accuracy. Reasonable selection of
spread values has great influence on the prediction accuracy of the
RBFNN. Newrb is used to construct the RBFNN and spread is set as
different values for comparison (Wang andXu, 2012; Pang et al., 2020).
The prediction errors of different RBF spreads are shown in Table 6.

Generating Optimized Back Propagation
Neural Network Module
In addition, the display interval was set as 1, themaximumnumber of
neurons was set as 600, and the neural network module generated by
training was used to replace the inverse system for the decoupling
offline simulation of the inverse system of the RBFNN of the PMSM.
The main parameters of the program to generate the RBFNN (Zuo
et al., 2014) are as follows:

goal = 0.0001; spread = 1; MN = 600; DF = 1;
net = newrb (pn, tn, goal, spread, MN, DF);
By replacing the inverse system module with the generated

RBFNNmodule, and adding the normalized and anti-normalized
modules in the front and back to the neural network module, a
PMSM decoupling control system based on the NNIS can be
constructed, as shown in Figure 3.

The parameter setting of PI and PD regulator of RBF NNIS is
shown in Table 7.

1) Static decoupling experiment under the same conditions as
section 3:

Figure 10 shows the torque and speed response curves under
the RBF NNIS control mode under the same conditions.

Comparing Figure 10A with Figure 5A, it can be found
that when the speed remains unchanged and the torque
changes suddenly, the control mode based on the RBF
NNIS has faster response speed and shorter system stability

time than BPNN. When the speed changes suddenly, the RBF
NNIS also has a faster response speed.

2) Dynamic decoupling experiment against load disturbance
under the same conditions as in Section 3:

Figure 11 shows the torque and speed response curves under
the RBF NNIS control mode under the same conditions.

ComparingFigure 7AwithFigure 11A, it can be found that when
the set speed remains unchanged and the torque changes step
periodically, the control method based on the RBF NNIS has
faster response speed, smaller overshoot, and more stable torque
in a steady state than BPNN torque regulation. Comparing
Figure 11B with Figure 7B, it can be found that when the torque
changes suddenly, the speed of the RBF NNIS is also more stable.

Decoupling Performance Analysis
The static decoupling test can verify the static decoupling
performance of the system, that is, the stability of one variable
when the other variable changes. It can be seen from Figure 5 that
the inverse decoupling control system based on the RBFNN has a
very small overshoot, basically no oscillation, and the fastest
response time when the speed and torque change.

The anti-load disturbance experiment can verify the dynamic
decoupling performance of the system, and the dynamic decoupling
performance is an important criterion for evaluating the advantages
and disadvantages of the decoupling system. As can be seen from
Figure 7, the inverse decoupling control system based on the RBFNN
responds rapidly and is basically synchronized with the given load.
The speed response under the control mode of the inverse system
decoupling control system based on the RBFNN has no overshoot,
the oscillation amplitude is very small, and the stability value is
quickly restored. The speed response of the inverse systemdecoupling
control system based on the BPNN has overshoot and large
oscillation amplitude. Under the control mode of the inverse
system decoupling control system (Bu et al., 2018), speed has a
long-time jitter, and the recovery to the stable value is slow.

FIGURE 11 | Response curve of RBFNN inverse system decoupling control when torque changes periodically.
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CONCLUSION

After verification and comparative analysis, it can be
confirmed that the PMSM based on the RBF NNIS control
mode has excellent static decoupling characteristics and better
dynamic decoupling control performance. The simulation
research based on RBF NNIS decoupling control has good
robustness and stability compared with the other two
decoupling controls. This is an optimized NNIS PMSM
decoupling control system, which has a certain
application value.
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Measurement Error Estimation for
Distributed Smart Meters Through a
Modified BP Neural Network
Tian Xia*, Cencen Liu, Ming Lei, Shuibin Xia, Ding Li and Dongyue Ming

Marketing Service Center of State Grid Hubei Electric Power Co., Ltd., Wuhan, China

Smart meters generally suffer degradation of metering accuracy and performance due to
aging, faults, and other factors, which, however, are difficult to detect. This study proposes
a measurement error estimation method for distributed smart meters based on a modified
BP neural network. First, the relationship model between the metering correction
coefficient, network loss, and energy consumption measurement value for the
distributed system is established. Then, a modified BP neural network for the
parameter estimation method is proposed, in which the internal activation function,
iterative step size, and other parameters are comprehensively designed. Finally, the
parameters of the distributed smart meter measurement error are solved through
training and learning. The case study verifies the effectiveness of the proposed
method, and this study lays a theoretical foundation for accurate prediction of the
measurement error for distributed smart meters.

Keywords: modified BP neural network, smart meters, measurement error, activation function*, linear model

1 INTRODUCTION

With the popularization of power networks and the full coverage of smart meters, energy metering
engineering has become the focus of increasing attention of the operation department of power
companies. Among them, the measurement error of the metering device is directly related to the
accuracy of the electric energy measurement and is also the basis for the economic accounting of the
power company (Wang et al., 2019a). Monitoring and evaluating the measurement error of electric
energy metering by metering devices has become an imperative method for the economic interest
and fairness of transactions for both power supply companies and users, and it is also an effective
means to manage and predict the use of electric energy (Steiner et al., 2018).

Generally, the measurement errors of electric energy metering devices are mainly caused by electric
energy meters, transformers, and secondary wiring. Many related works have been presented, including
error source detection, error modeling, and error evaluation. Among them, the measurement error
model, which describes the differences between the actual value and the estimated value, can be obtained
in the calibration study for smart meters (Dong et al., 2018); the corresponding measurement error is
commonly detected by the test system based on a pseudorandom distortion test signal and indirect
likelihood function (Wang et al., 2019b), which could also be confirmed by testing devices or platforms
(Donahue et al., 2014). In addition, the current remote error estimation has also become a state-of-the-art
field, in which remote calibration and monitoring systems including some monitoring equipment,
communication networks, and the master station should be installed (Gao et al., 2019;Zhang et al., 2018).
However, solving the measurement error requires the installation of a large number of standard terminal
devices, increasing investment, and operation and maintenance costs (Luan et al., 2015).
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Recently, the application of deep learning and mathematical
model construction methods to realize the remote analysis of
smart meter measurement error has become a state-of-the-art
field. Amathematical model of smart electrical meter errors in the
smart grid was proposed by Kong et al. (2020, 2021), which was
built by using the dimension reduction estimation model and
damped recursive least squares, and then the clustering and
Kalman prediction methods were presented to estimate smart
meter errors. An artificial neural network for power loss
estimation was proposed by Kashef et al. (2018a) to estimate
line loss; the advantage is that it has real-time estimation and high
precision for fast calculation of power loss of each line in the
distribution system. A remote estimation method based on the
neural network filter and generalized damping recursive least
squares was proposed by Kashef et al. (2018b), which can estimate
both users’ smart meters’ errors and the loss accurately. Most of
the mentioned methods integrated the analytical formulas of
network loss into the estimation models to mitigate the impact of
network loss changes (Sun et al., 2016;Liu et al., 2015), which,
however, are generally limited by the complexity, calculation
accuracy, and applicability of the network loss analytical
formulas (Alonso et al., 2020;Xia et al., 2019).

To overcome the above drawbacks, artificial intelligence
methods, especially neural networks, have been applied to
avoid cumbersome analytical formulas and improve
applicability. The back-propagation (BP) neural network
algorithm was used to achieve distributed computing of
network losses, and finally, obtain a root mean square error
that is lower than 5% by Chao et al. (2018). A novel real-time
power loss estimation method was proposed by Kashef et al.
(2018b) for the distribution system, in which a neural network
power loss estimation method was applied. Although neural
network-related methods generally need sample training to
obtain good performance in estimating network losses (Hao
et al., 2020;Ruan et al., 2019), it induces frequent and
drastically changing network losses simultaneously (Kashef
et al., 2018b), which results in neural networks becoming
unstable for remote error estimation (Zhou et al., 2021).

Motivated by the above analysis, this study proposes a novel
remote measurement error estimation method for distributed
smart meters through a modified BP neural network. The main
contributions lie in the following: 1) a measurement error model
considering network loss is established, and the k-means
clustering method is introduced to simplify the model in
estimating the correction parameter; 2) a traditional BP
network model is modified to fit the established model, where
the intrinsic activation function and iterative rules are optimized
to ensure the utilization of new data, estimator change range
reduction, and good robustness against the network loss; and 3) a
simulated distributed smart electricity meter system is built for
analyzing the distributed smart meter data, the feasibility, and
effectiveness of which are verified through tests. Finally, the
proposed method provides a basis for efficiently detecting
smart electricity meters with large measurement errors.

The rest of the article is organized as follows: Section 2
introduces the distributed smart meter error model, which
builds the relationship among the master meters’ reading

value, network loss, and sub-meters’ reading value. Then, an
overview of the measurement error estimation method based on a
modified BP neural network is described in Section 3. In Section
4, experiments are carried out, as well as the verification
experiment of the measurement error estimation. The
conclusions are drawn in Section 5.

2 DISTRIBUTED SMART METER ERROR
MODEL

In the distribution energy consumption measurement system, the
classic topology for the distribution feeder unit is shown in
Figure 1. According to the conservation of energy, there is an
electric energy relationship between the smart electricity meters
of the terminal and the master meter in the distributed topology
during the tth measurement period, that is,

y(t) � ∑m
i�1
ri(t)ξ i + Δw(t) (1)

where y(t) is the total electric energy (kW.h) from the master
smart meter in the tth measurement period, ri(t) is the electric
energy (kW.h) generated from the ith meter on the user’s side,
and ξi is the correction parameter of the smart meter to evaluate
the measurement error. Δw(t) is the network loss in the tth
measurement period of this distribution system.

Based on the error model analysis in Eq. 1, each terminal
smart meter (sub-meter) measurement may be biased due to the
degradation or lack of proper maintenance, thus leading to the
measurement results of the master smart meter being biased from
the actual value. For description convenience, the reading value of
the smart meters and the master smart meter is applied into Eq. 1.
Thus, Eq. 1 can be written as follows:

Y(t)t×1 � R′(t)t×(m+t)X(t)(m+t)×1 (2)
where Y(t)t×1 is the matrix represented by Y(t)t×1 = [y(1) y(2). . .
y(t)]T, R′(t)t×(m+t) is the matrix written as R′(t)t×(m+t) = [R(t)t×m
It×t] with R(t)t×m = [r(1)1×m r(2)1×m. . .r(t)1×m ]T, where r(i)1×m =
[r1(i) r2(i) . . .rm (i)], i = 1,. . ., t, and It×t is the identity matrix. Let

X(t)(m+t)×1 � [ ξm×1

Δw(t)t×1 ] be the objective matrix where Δw(t)t×1
is the network loss matrix during the tth measurement period.

FIGURE 1 | The distribution of smart meters in the electric grid.
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From the description of linear equations in Eq. 2, the final
matrix X(t) can be solved by the least-squares method, that is,

X(t)(m+t)×1 � ([R′(t)t×(m+t)]TR′(t)t×(m+t))−1 [R′(t)t×(m+t)]TY(t)t×1
(3)

Generally speaking, the actual model of smart meter errors can
be considered as a set of linear equations consisting of t equations.
However, X is a matrix of unknowns to be solved since it contains
m + t unknown variables. In this situation, if the number of
unknown variables is more than those of equations, then the
matrix inverse may not be solvable, where R′(t) may contain an
indefinite value. To this end, a modified BP neural network is
proposed to solve the model parameters for estimating the
measurement error of smart electricity meters.

3 PARAMETER ESTIMATION FOR THE
MODEL

To estimate the parameters in the distributed energy
consumption measurement system, the following strategies are
carried out. First, the k-means clustering method is adopted for
classifying the data from the master smart meter to simplify the
model considering the same network loss in the same class. Then,
a traditional BP neural network is modified in terms of an
activation function and iterative length to fast fit the model
for the distributed measurement system.

3.1 k-Means Clustering Model
The k-means clustering algorithm is a classic clustering method
based on Euclidean distance. Since the number of centers k is
given, the data will be classified into the center under the criterion
that its distance to the center is minimized. Through the cluster
centers being updated iteratively, the classes will finally be
generated. Generally, the mathematic model is to minimize the
within-class variance as follows:

SSE � ∑k
i�1

∑
x∈Ci

(x −mi)2 (4)

where x is the data belonging to the class Ci; k is the number of
cluster centers; and mi is the center of the class Ci containing Ni

data, which is obtained by

mi � 1
Ni

∑
x∈Ci

x (5)

Based on the rule of the k-means clustering, the number of
classes will be obtained once the number of smart meters is set. In
each class, network loss can be considered as a constant, that is,
Δw(t) ≈ Δwc, so the correction coefficient can be solved by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y(1)c − Δwc

y(2)c − Δwc

..

.

y(t)c − Δwc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r1(1) r2(1) / rm(1)
r1(2) r2(2) / rm(2)
..
. ..

. ..
. ..

.

r1(t) r2(t) / rm(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ξ1
ξ2
..
.

ξm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

where y(t)c is the data belonging to cluster C and Δwc is the
constant network loss. If the number of data is larger than the
number of smart meters, the correction coefficient ξi can be
obtained by Eq. 6, and Δw(t) can be then calculated by Eq. 1.
Notably, the value of network loss is often positive. So, it is
necessary to place the constraint condition to solve the value of
Δw(t) in cluster C. Here, Δwc is obtained by the minimum error in
Eq. 7, that is,

min (y(t)c − Δwc − ŷ(t)c)2 (7)
where Δwc>0 and ŷ(t)c is the estimated value calculated by the
least-squares method through Eq. 6. Nevertheless, the constraint
condition Δwc>0 makes it difficult to solve Eq. 7directly by the
least-squares method. Here, the golden section method (Erik
et al., 2018) is used to obtain the value of Δwc, where the
maximum value of Δwc is set as 10% of the centers.

Notably, the network loss listed in Eq. 1 is mainly generated by
the branch of smart meters. To alleviate the network loss while
fitting the model, the number of classes can be set by using the
number of meters.

Additionally, Δwc calculated by Eq. 6 simplifies the model in
Eq. 1. However, the network loss still affects the result of the
correction coefficient calculated by the least-squares method.
Thus, in this article, a modified BP neural network is
proposed to achieve the optimal value of the correction
coefficient ξi.

3.2 BP Neural Network
The BP neural network is regarded as a widely used neural
network and has wide applications. The main idea of the BP
neural network is to adopt a gradient descent to search for the
hypothesis space of possible weight vectors. Thus, the BP
neural network is generally taken as a gradient descent
method to adjust the weights of each layer of the neural
network to minimize the total error. On the one hand, the
minimum mean square error of reality and expectation can be
achieved through neural network iteration. On the other hand,
the BP neural network algorithm takes a forward feedback
learning process, which, in essence, is a process where errors
propagate backward and the weight coefficients of each layer
are connected as well. Since the feedback learning runs through

FIGURE 2 | BP neural network structure diagram.
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the adjustment of the connection mode, weight and threshold
of each neuron, and the identification of the whole network,
the corresponding neural network structure can be given as in
Figure 2. Usually, the neural network has three layers, that is,
input layer, the hidden layer, and output layer. The data stream
often contains two aspects. One aspect is the data forward
feedback, that is, the input data xi is transmitted to the output
layer via the hidden layer. In this process, the neuronal state of
each layer only affects the neuronal state of the next layer, and
the state is determined by the weight and bias terms as well as
the activation function. The other aspect is the back-
propagation error, that is, network weights and thresholds
are adjusted according to the prediction error, such that the BP
neural network prediction output can constantly approach the
desired output.

To be specific, let x be the input data, ω and b1 be the
parameters from input layers to the hidden layers, and v and
b2 be the parameters from hidden layers to the output layers. Each
neural layer is connected by the activation function, which is
designed as follows:

(1) The activation function S1 from the input layer to the
hidden layer

net1 � ωTx + b1, h � S1(net1) (8)

(2) The activation function S2 from the hidden layer to the
output layer

net2 � vTh + b2, ŷ � S2(net2) (9)
According to Eqs 8, 9, the predicted value of the neural

network can be written as

y � S2(vTS1(ωTx + b1) + b2) (10)
To measure the approximation between the predicted value

and the actual value, the expected value of the loss function
adopted by the BP neural network is obtained as

E(θ) � 1
2
∑
i

(yi − ŷi)2 (11)

where θ is the parameter of the inner model. By the derivative of
the loss function in Eq. 11 for v and b2, respectively, the error
terms of the output unit can be calculated as follows:

∇(k)v� zE

zv
� zE

zŷ

zŷ

znet2

znet2
zv

∇(k)b2� zE

zb2
� zE

zŷ

zŷ

znet2

znet2
zb2

(12)

where k is the iteration number and ∇ denotes the gradient
operation. The error terms of the hidden neuron can be
expressed as

∇(k)ω� zE

zω
� zE

zŷ

zŷ

znet2

znet2
zh

zh
znet1

znet1
zω

∇(k)b1� zE

zb1
� zE

zŷ

zŷ

znet2

znet2
zh

zh
znet1

znet1
zb1

(13)

During back-propagation, the learning rate parameter η is
used to update the weights and bias terms of the BP neural
network. Then, it can be written as

v(k)� v(k−1) − η
zE

zv
, b(k)2 � b(k−1)2 − η

zE

zb2
(14)

Alternatively, the parameter can then be updated in hidden
layers as follows:

ω(k)� ω(k−1) − η
zE

zω
, b(k)1 � b(k−1)1 − η

zE

z b1
(15)

With the neural network iterations described above, the
parameters of the weights and biases in the neural network are
optimal since the loss function is satisfied with the condition that
the error is less than the given threshold or the number of
iterations exceeds the setting value. Then, the neural network
can work well in terms of classification, prediction, and so on.

FIGURE 3 | The framework of our model.
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3.3 A Modified BP Neural Network for
Parameter Estimation
In the BP neural network, the activation function is the core part
that enables the neural network to achieve good performance.
Traditional activation functions, such as the sigmoid function,
generally aim at nonlinear data mapping. The established
mathematical model contains linear equations as previously
discussed, as seen in Eq. 3. The traditional activation
functions of the BP neural network may not be suitable to

solve the parameters of the model. Thus, the BP neural

network is optimized and improved here, the framework of

which is shown in Figure 3. The details are given as follows.

(1) Parameter for the BP neural network

To facilitate the corresponding modified BP neural network,
the input x in the neural network model and neuron weight ω can
be expressed as

FIGURE 4 | The data from six smart electricity meters: (A) sub-meter 1, (B) sub-meter 2, (C) sub-meter 3, (D) sub-meter 4, (E) sub-meter 5, and (F) sub-meter 6.
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x� ( r1 r2 / rm )T (16)

ω�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1,1 ω1,2 / ω1,k

ω2,1 ω2,2 / ω2,k

..

. ..
. ..

. ..
.

ωm,1 ωm,2 / ωm,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (17)

where k is the number of hidden-layer neurons and m is the
number of input.

(2) Structure for BP neural network

The BP neural network with one hidden layer in an
engineering application usually has better approximation
performance, and the number of neurons in the hidden layer
plays a role in fitting the output value. Here, the empirical
formula is adopted (Erik et al., 2018), which is expressed as

l � ceil( �����
n + k

√ + a) (18)
where n is the number of neurons in the input layer, k is the
number of neurons in the output layer, a is a constant selected
from the range [1, 10], and ceil (.) is the top integral function.

(3) Activation function for BP neural network

In this article, Eq. 1 belongs to the multivariate linear model.
Thus, the activation functions S1 and S2 are set as the linear
model:

S(z) � z (19)
The output can be then written as

y � vT(ωTx + b1) + b2 (20)
Thus, the correction coefficient ξi can be finally determined by

ω and v.

(4) Iterative step length for the BP neural network

FIGURE 5 | The data from the master meter.

FIGURE 7 | The data from the master meter and the predicted value by
the proposed method.

TABLE 1 | The parameter setting of the BP neural network.

Hidden
neurons

Maximum iteration
number

Learning
rate η

Training
error

10 1000 0.0002 1e-3

TABLE 2 | The class center and network loss.

Class center Network loss

Class 1 0.3713 0.0070
Class 2 0.6146 0.0060
Class 3 0.8436 0.0080
Class 4 1.0962 0.0040
Class 5 1.3752 0.0010
Class 6 1.7671 0.0050

FIGURE 6 | | The modified BP neural network training error during
iteration.
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Consider the fact that ξi is related to the weights that do not
change frequently with time in the mathematical model. Thus, let
the correction coefficients ξi of smart meters be unchanged over
time. The updating procedure of parameters can be simplified as

ω(k)� ω(k−1) − ηsign(zE
zω

)
b(k)1 � b(k−1)1 − ηsign(zE

zb1
)

(21)

where sign is a symbolic function and expressed as

sign(z) � {−1 z< 0
1 z≥ 0

(22)

4 TEST RESULTS AND DISCUSSION

To verify the effectiveness of the proposed method, experiments
were carried out in a laboratory. In this case, seven smart meters
were installed. One of them was taken as a master meter and the
others as sub-meters. In the sub-meters, sub-meter 2 was set with

a 15% measurement error for the test, and the remaining
measurement accuracy was 0.5 s level. The whole experimental
test period was 2 days, and energy consumption data were
recorded every 15 min. A total of 192 measuring points were
recorded, as shown in Figure 4 and Figure 5. In the test, k was set
as 6 in the k-means clustering; the weight ω of the modified BP
neural network was initialized as the full 1m × k matrix, and other
parameters are shown in Table 1. Experiments were performed
by usingMATLAB 2021A on a computer with Intel(R) Core(TM)
2 Duo 2.1 GHz i7 CPU 16G RAM, and Windows 64bit operation
system.

Table 2 illustrates the class centers computed by k-means
clustering. It can be seen that the network loss in each class is very
small. This phenomenon occurred because it only had small loads
such as lighting among the master meter and the sub-meters, and
the master meter was not far away from the sub-meters in the test
environment.

Figure 6 illustrates the error during the proposed modified
BP neural network training. It can be seen that the error
decreases as the number of iterations increases. After 50
iterations, the error tends to be 0.05, and the final predicted
value of the proposed BP model is basically close to the actual
value, as shown in Figure 7. Thus, it will fit the mathematical
model in Eq. 1. The parameter of the proposed BP neural
network is listed in Table 3.

Since the BP neural network is modified as linear mapping
as in Eq. 20, the proportional coefficient ξi can be obtained
from ω and v, where ξi = vTωi

T. Thus, the measurement
accuracy of each sub-meter can be then solved by 1/ξi, i =
1, 2,. . ., 6, as shown in Table 4. It can be seen that the value of
1/ξ2 is 0.8532. Thus, the measurement error is 0.1468, which is
close to the 15% measurement error in sub-meter 2. This
demonstrates that our model can effectively detect the
measurement error.

Alternatively, to demonstrate the performance of the proposed
method in estimating the measurement error, a comparison with
the least-squares method was carried out. The results are shown
in Table 5. It can be seen that the result value 1/ξ2 from the least-
squares method is 0.8606. Thus, the measurement error is 0.1394,
which is a larger offset than the 15% measurement error.
Generally, the least-squares method only pursues the
minimum error of least-squares equations, regardless of the
network loss. Nevertheless, our method uses the k-means
clustering method to classify the data, which can eliminate the
influence of the unknown network loss during the calculation of
the correction coefficient ξi. To demonstrate this point, the result
of the modified BP neural network without the k-means
clustering method is listed, as seen in Table 5. It can further

TABLE 3 | The parameter results from the proposed modified BP neural network.

Layer Parameter Value

Input layer to hidden layer ω = [ω1, ω2, ω3, ω4, ω5, ω6] (1.0100, 1.1763,1.0071, 1.0075, 1.0053, 1.0019)
b1 −0.0128

Hidden layer to output layer v = [v1] 1.0035
b2 0.0095

TABLE 4 | Measurement error estimation.

1/ξ1 1/ξ2 1/ξ3 1/ξ4 1/ξ5 1/ξ6

0.9936 0.8532 0.9964 0.9960 0.9982 1.0016

TABLE 5 | Comparison results.

Least-squares method Proposed BP without
k-means method

1/ξ1 0.9907 0.9972
1/ξ2 0.8606 0.8550
1/ξ3 0.9915 1.0008
1/ξ4 0.9903 1.0000
1/ξ5 0.9979 0.9984
1/ξ6 0.9959 0.9984

TABLE 6 | Running time.

Method Time/s

Least-squares method 0.0352
Proposed BP without k-means method 0.1768
Proposed BP with original parameter updated 0.2268
Proposed method 0.1834
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demonstrate the desired performance of the proposed method in
detecting the measurement error.

Table 6 illustrates the running time of the above methods. It
can be seen that the proposed method costs more CPU time
than that of the least-squares method. Nevertheless, to obtain a
better parameter, the proposed model utilizes k-means
clustering and a modified BP neural network. Generally, it
has the same level of running time. However, the original
strategy for parameter updating takes a bit more time than the
proposed method. This demonstrates the usefulness of the
modified strategy.

5 CONCLUSION

In this article, a remote error estimation method is proposed
which is based on a modified BP neural network. The method
takes the distributed smart electricity meter as the research
object and builds the mathematical model inherent in the
correction coefficient that is hidden by the energy from the
smart meter and the master meter in the system. A classic
k-means clustering is applied to classify the data, allowing the
model to be simplified during the calculation of parameters. The
BP neural network is then optimized to solve the parameter by
modifying the activation function and the update rule of the

neural network parameter. The experiments show that the
desired performance can be obtained by our model. In the
near future, the proposed method will be applied to the
actual application, and the remote experiment platform will
be set up as well.
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A Deep Learning Approach to the
Transformer Life Prediction
Considering Diverse Aging Factors
Lanfei He1, Lie Li 2*, Ma Li1, Zhiwei Li 1 and Xiao Wang2

1State Grid Hubei Electric Power Co.,Ltd., Economic and Technological Research Institute, Wuhan, China, 2School of Electrical
Engineering and Automation, Wuhan University, Wuhan, China

The reliability of a high-capacity power transformer is fundamental to the stable operation
of power systems. However, characterization of the transformer aging process is a difficult
task, considering the diverse aging factors in its life cycle. This prevents effective
management of such equipment. In the work, we study the aging phenomenon of
power system transformers, whose representative degeneration variables are extracted
from real transformer operational data. Combining with the average life of the equipment,
the extracted features are used as indicators for the transformer reliability evaluations. We
developed a deep learning–based approach using a convolutional neural network for
effective equipment life prediction. The performance of the transformer life prediction
model is verified using field-test data, which demonstrates the superior accuracy of the
presented approach.

Keywords: Transformer, life differentiation phenomenon, life prediction, convolutional neural network, aging factors

INTRODUCTION

The model power system quickly evolved with the accelerated marketization incentives. In this
process, the safety and reliability of the power system became important concerns to be addressed.
With the narrower profit margin, the system operators face multiple challenges: ensuring safety,
reducing electricity prices, and increasing efficiency. In recent years, the system operator of China,
State Grid, has found a relatively low age among scrapped samples and a relatively high proportion of
over-aged samples among the transformer equipment. The problems are as follows: First, the
scrapping age of substation equipment is usually 6–10 years, and the average service life of main
equipment is lower than the transformer depreciation period and the pricing depreciation period. To
a certain extent, this will result in a waste of depreciation costs. It is difficult to fully incorporate into
the cost of transmission and distribution prices. Second, the over-aged transformers have accounted
for 10% of the original value of the physical assets of the power grid. Some of the over-aged
transformers can still operate normally. Under strict supervision and examination requirements, the
over-aged transformers cannot be depreciated, which reduces the electricity price level and the
company’s investment capacity.

Reliability is an important indicator for verifying the safe operation of equipment (Song and
Cheng, 2015). It refers to the ability or possibility of equipment to perform specified functions
without failure within a certain period and under certain conditions (Song, 2001). Overall, the
operating life of primary equipment in the power grid is significantly different, and this difference
increases the difficulty of primary equipment reliability assessment and reasonable life estimation.
Particularly in the field of reasonable life prediction of transformers, this difference in phenomena is
rarely studied in current research.
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Transformers are the current representative of large-power
equipment, which include multiple failure forms such as
discharge, overheating, or both (Castro and Miranda, 2005;
Jongen et al., 2007; Zheng et al., 2012; Fox et al., 2019). The
reasonable life estimation of the transformer also belongs to the
category of fault prediction. The main method is to predict the
possible future failures through the historical data obtained by
monitoring and to ascertain the remaining life. At present,
transformer life prediction models can be divided into
physical failure mechanism models and data-driven models
(Abu-Elanien and Salama, 2012; Zhou, 2013; Ignacio et al.,
2018; Zhang et al., 2018). The physical failure mechanismmodel
is based on the transformer failure mechanism and
mathematically characterizes the material failure process.
Chen and Liu (2020) proposed a transformer life prediction
model based on the hidden Markov model. Shi et al. (2020)
established the Arrhenius equation based on the degradation
mechanism of variable activation energy and then predicted the
remaining life of the transformer. Based on the data-driven life
model, the operating parameters that can characterize the
degree of transformer degradation are obtained mainly based
on the monitoring technology, and the operating trend of the
parameters is directly predicted (Hu et al., 2022). Common
operating parameters include vibration signal, noise signal, and
insulating oil content (Bacha et al., 2012; Ma et al., 2013; Tian
et al., 2013; Guo et al., 2017; Yan et al., 2020). This method does
not involve a specific failure mechanism, so it has a wider scope
including the long-short-term memory network–based life
prediction model (Dai et al., 2021), the life prediction model
based on the SVM algorithm with RBF as the kernel function,
etc. (Wang, 2021).

However, both the physical failure mechanism model and the
data-driven model are based on the specific operating conditions
of the transformer, that is, monitoring the parameter distribution
of the equipment in the time series and space series and
predicting the life through the model (Ishak, 2010; Husnayain
et al., 2016; Qian et al., 2018). However, the model established
based on the aforementioned method has some limitations
because the parameters are derived from a single device, so
the application object is also limited to a specific type of
device. State Grid’s transformers have the characteristics of a
large number of equipments, wide distribution, and complex
sources. It is difficult to use traditional methods to evaluate the
life of all equipment.

Based on a convolutional neural network, this article proposes
a transformer life prediction method considering the difference in
transformer life. First, according to the factory information and
scrap age information of scrapped transformers provided by a
company, four types of data of rated capacity, voltage level,
manufacturer, and workplace are screened out. The
characteristics of its life distribution are analyzed, respectively,
and data of average life, life concentration, and the proportion of
high-life equipment and low-life equipment were obtained. The
aforementioned total of 16 data were taken as input, and the
transformer age was taken as output. The convolutional neural
network was trained to obtain the life prediction model.
Compared with the traditional life prediction model, the
advantages of the model proposed in this article are 1)
considering the influence of the life difference phenomenon
on the reliability of the transformer, the prediction accuracy is
improved; 2) since the input is the equipment delivery and
operation information and does not involve the specific
operation conditions, the life prediction can be carried out
before operation, and the operation and maintenance strategy
can be formulated as soon as possible according to the prediction
results.

LIFE DIFFERENCE PHENOMENON

Statistical statistics are carried out on the decommissioned,
scrapped, and to-be-scrapped transformers of a power supply
company, and a statistical graph is drawn, as shown in Figure 1. It
can be found that the life distribution of the transformer is close
to the normal distribution. Most of the equipment life is in the
middle interval, and there are few high-life equipment and low-
life equipment. However, this phenomenon increases the
difficulty of equipment operation and maintenance. For
possible low-life equipment, it should be the focus of attention

FIGURE 1 | Life distribution.

TABLE 1 | Corresponding parameters of equipment with rated capacity.

Rated capacity α β E xh xl

1 36.15 4.324 32.91 40% 40%
1.6 18.73 1.995 16.60 0 17%
1.8 29.64 4.504 27.05 0 0
2 22.56 2.218 19.98 0 0
2.5 25.94 2.516 23.02 15% 0
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and is necessary to increase the frequency of maintenance, timely
maintenance, and improve equipment reliability. For possible
long-life equipment, appropriate attention can be reduced to save
costs, analyzing the life distribution chart; dividing the equipment
into older equipment, normal equipment, and younger
equipment according to the distribution law of equipment life;
and counting their proportions in the total equipment
respectively; and summarizing the distribution law of
equipment life. The equipment is divided into 5-year intervals.
With the increase in service life, the service life in this interval
increases first and then decreases; The pieces of equipment with a
service life of 11–15 years are more than twice that of 6–10 years,
and the increase is significantly greater than that in other ranges.
The pieces of equipment with a service life of 36–40 years are less
than 1/2 of that of 31–35 years, and the decrease is significantly
greater than that in other intervals. Therefore, equipment with a
service life of 10 years or less (main transformer and
disconnector) is defined as low-life equipment, equipment
with a service life of 36 years or more is defined as high-life
equipment, and other equipment is defined as normal equipment.

When the equipment is put into operation, it is necessary to
evaluate the reliability of the equipment to facilitate the
formulation of the operation and maintenance strategy. Due to
the lack of operational data as the basis for evaluation, the
equipment can only be roughly evaluated through historical
data, such as manufacturer and operation city before the
equipment is put into operation. Due to different production
processes, equipment produced by different manufacturers will

also have different characteristics in reliability. Similarly, different
operating cities will have different working environments, which
will further affect the reliability of the equipment. The extraction
of reliable data from this kind of text information is key to the
reliable evaluation of equipment before operation.

EXTRACTION OF TRANSFORMER AGING
FACTORS

In the transformer operation and maintenance data, the
average life is the most intuitive embodiment of equipment
reliability, and it is also important data that can be used for
life prediction. However, the data on average life cannot reflect
the impact of life differentiation. Therefore, it is necessary to
extract the aging factors that can reflect the phenomenon of life
differentiation from the transformer life distribution data to
improve the accuracy of reasonable life prediction.

The life differentiation characteristics of equipment can be
described by three parameters: life concentration, the proportion
of high-life equipment, and low-life equipment. Life
concentration indicates the concentration degree of
transformer life distribution. The more the proportion of main
transformers is close to the average life, the higher the life
concentration. The proportion of high life and low life is the
proportion of transformers with a life of more than 35 years and
less than 10 years in the total number, which can be obtained
directly through statistics.

Because the Weibull distribution can be used to describe the
characteristics of equipment life distribution, life concentration
and average life can be expressed by the relevant characteristics of
the Weibull distribution (Zhou et al., 2013). The Weibull
distribution was proposed by Swedish physicist W. Weibull in
1939. It is mainly used to describe the probability distribution of
material fatigue strength. The Weibull distribution is widely used
in reliability engineering, especially in the distribution form of
cumulative wear failure of electromechanical products. Due to the

TABLE 2 | Corresponding parameters of equipment at each voltage level.

Voltage level α β E xh xl

6kV 31.68 2.516 28.11 29% 12%
10kV 20.75 2.116 18.38 3% 24%
35kV 23.46 2.598 20.84 6% 19%
110kV 26.15 3.428 23.50 4% 14%
220kV 35.18 3.245 31.53 33% 0

TABLE 3 | Corresponding parameters of equipment of each manufacturer.

α β E xh xl

A company 13.94 5.457 12.86 0 33%
B company 25.45 1.807 22.63 25% 0
C company 28.73 4.241 26.13 7% 7%
D company 27.83 4.59 25.43 0 0
E company 27.13 2.668 24.12 17% 0

TABLE 4 | Corresponding parameters of equipment of all affiliated companies.

α β E xh xl

A power supply company 18.84 1.817 16.75 3% 31%
B power supply company 19.02 1.799 16.91 5% 21%
C power supply company 25.38 2.099 22.48 0 17%
D power supply company 19.84 1.921 17.60 6% 29%
E power supply company 15.71 1.518 14.16 0 31%

FIGURE 2 | Convolutional neural network.
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ease of inferring the distribution parameters using the probability
value, it is widely used in the data processing of various life tests.
The probability density of the Weibull distribution is shown in
Eq. (1).

f(t) � β

α
(t
α
)β−1

e
−(t

α)β
, (1)

where α is the scale parameter and β is the shape parameter.
According to the properties of the Weibull distribution, the
shape parameter β is related to the concentration of life
distribution. The larger the β, the more concentrated the life
distribution. The smaller the β, the more dispersed the life
distribution. The average life of the equipment can be expressed
by mathematical expectations. Therefore, the average life of the
equipment can be calculated according to the parameters of the
Weibull distribution and the service life expectation, as shown
in Eq. (2).

E � α · Γ(1 + 1
β
). (2)

The fitting method of the Weibull distribution characteristic
parameters is as follows:

1) The service lives of n different equipment with the same
feature were arranged from short to long, which are
N1, N2, . . . , Nn, respectively;

2) Eq. (3)was used to calculate the unbiased estimation of fatigue
cumulative distribution F;

F � i−0.3
n+0.4. (3)

3) Eq. (4) was fitted to obtain an unbiased estimation of α, β.

ln(1 − F) � −(N
α
)β

. (4)

Now, the reliability information such as the rated capacitance,
voltage grade, manufacturer and affiliated company of the main
transformer, and the corresponding proportional parameters are
counted, respectively; scale parameter, α; shape parameter, β; the
average life (mathematical expectation), E; proportion of high-life
equipment, xh; and proportion of low-life equipment, xi are
shown in Tables 1–4:

Next, according to the aforementioned data and combined
with the life distribution of equipment, a reasonable life
prediction model of transformers based on a convolutional
neural network is established.

FIGURE 3 | Life prediction model.

TABLE 5 | Life prediction model parameters.

Network layer Parameters Parameters Parameters Parameters

Input layer 1*4 1p4 1p4 1p4
Convolution layer (Relu) 64-[1p2] 64-[1p2] 64-[1p2] 64-[1p2]
Convolution layer (Relu) 64-[1p2] 64-[1p2] 64-[1p2] 64-[1p2]
Convolution layer (Relu) 128-[1p2] 128-[1p2] 128-[1p2] 128-[1p2]
Flatten layer
Full connection layer (Tanh) 128
Full connection layer (Tanh) 128
Classification layer (Softmax) 8
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AI-BASED APPROACH TO THE LIFE
PREDICTION MODEL

Convolutional Neural Network
In recent years, with the rapid development of the computer

field, deep learning has been applied to all aspects. The
convolutional neural network possesses a considerable ability
for face recognition and image recognition and has great
application prospects in the field of transformer fault
diagnosis. In this article, a reasonable life prediction model of
a transformer is constructed based on a convolutional neural
network. A convolutional neural network generally includes an

input layer, convolution layer, pooling layer, full connection layer,
and output layer (Zhou et al., 2017). Taking one-dimensional
data as an example, its general structure is shown in Figure 2.

The input layer is the input data of some characteristic
quantities, including rated capacity, voltage level,
manufacturer, and workplace. These are transformed into
digital features using the Weibull distribution as input, such as
x1, x2, x3, as shown in Figure 2.

The convolution layer is equivalent to a feature-extraction
process. The important features are extracted through the
convolution kernel during the movement of the input layer, as
shown in Figure 2. Taking the 1*3 convolution kernel as an
example, the calculation process is as follows:

cn � xn × ω1 + x n+1 × ω2 + x n+2 × ω3 + bn, (5)
where x is input, ω is the weight, and b is the offset. The calculated
results can use Relu, Tanh, and other activation functions as the
output of each neuron in the convolution layer, that is,
Cn � f(cn). The expression of the activation function is as
follows:

Reluf(x) � max(0, x), (6)
Tanhf(x) � ex − e−x

ex + e−x
. (7)

The pooling layer mainly reduces the amount of calculation in
the neural network, as shown in Figure 2. Taking the 1*2
maximum pooling layer as an example, the calculation process
is as follows:

pn � max(Cn, C n+1). (8)
The full connection layer is the neural network, as shown in

Figure 2. Its calculation steps are as follows:

FIGURE 4 | Training process.

FIGURE 5 | Prediction results.
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dn � ∑1
m

pm × ωmn + bn. (9)

Similarly, the calculated results can use Relu, Tanh, and other
activation functions as the output of each neuron in the whole
connection layer, that is, Dn � f(dn).

The calculation process of the output layer is the same as that
of the full connection layer. As shown in Eq. 9, the Softmax
function is used in the activation function, and the expression is
as follows:

Softmaxf(x) � exi

∑n
i�0
exi

. (10)

Life Prediction Model
The life prediction model is shown in Figure 3. First, the four

characteristic quantities of voltage grade, rated capacity,
manufacturer, and workplace are obtained using the Weibull
distribution, and a total of 16 characteristics are used as the input
layer of the model. The data output from the convolution layer is
fused through the data, integrated into one-dimensional data, and
sent to the fully connected neural network. The life prediction is

divided into eight intervals. 1–5 years is the first interval, and the
probability of the result falling into this interval is P1. 6–10 years
is the second interval, and the probability of the result falling into
this interval is P2, and so on. The last interval is 35–40 years, and
the probability of the result falling into this interval is P8. The
activation layer of the convolutional neural network adopts the
Relu function, the fully connected neural network adopts the
Tanh function, and the output layer adopts the Softmax function
(see Table 5 for specific parameters).

ACCURACY VERIFICATION OF LIFE
PREDICTION MODEL
Verification of AI-Based Approach to the
Life Prediction Model

K-fold cross-validation is adopted for the data set. That is, the
data set is divided into k copies, of which k-1 is used as training
data and the remaining one is used as test data. There are 501
groups of transformer data in total. A total of 100 groups were
considered test data and the rest as training data. The training
process is shown in Figure 4.

The prediction results of the last 100 test data are shown in
Figure 5. Through TSNE visualization, the classification results of
100 data types are displayed, as shown in Figure 6.

FIGURE 6 | TSNE visualization results.

FIGURE 7 | Confusion matrix.

TABLE 6 | Comparison of different life prediction models.

Life prediction model Accuracy (%)

Decision tree 65.4
Random forest 71.2
Support vector machine 62.6
Neural network 75.00
Convolutional neural network 84.83

FIGURE 8 | Model training process without considering life difference.
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It can be seen from Figure 5 that most of the prediction results
are consistent. Each color in Figure 6 represents a prediction
interval. It can be seen that the graphs of each interval are well
distinguished. It shows that the life prediction model has high
accuracy, and the life prediction confusion matrix of each
classification is shown in Figure 7.

The accuracy is low due to the small number of training and
tests in the eighth division. The prediction accuracy of other life
intervals is high, which is more than 80%.

Comparison With Other Models
To verify the superiority of the model in transformer life

prediction, the model is compared with the following other
models.

1) Prediction results of different models

To verify the ability of the convolutional neural network in life
prediction, decision tree, random forests, support vector
machine, neural network, and deep confidence network were
used to simulate the same data. The simulation results are shown
in Table 6.

It can be seen from Table 6 that a convolutional neural
network has higher prediction accuracy in transformer life
prediction. Compared with the current common prediction
algorithms, the accuracy is improved by more than 10%.

2) Influence of life differentiation on life prediction results

To verify the impact of life differentiation on life prediction
results, only the average life in the data of rated capacity, voltage
level, manufacturer, and the working city was considered. Four
data of k1, k5, k9, and k11 were used as the input of the convolutional
neural network. The training results are shown in Figure 8.

According to the results, the prediction accuracy of the
transformer life prediction model without considering the
phenomenon of life differentiation can only reach 40.37%.
Compared with the model proposed in this article, the
accuracy was reduced by 52.41%. This is because more

characteristic information was extracted from the transformer
life distribution data, which improved the identification of the
training data and thus improved the final accuracy.

CONCLUSION

Based on the statistics of the scrapped data of transformers
provided by power supply companies, this article analyzes the
impact of life differentiation on the reliability evaluation of
transformers. According to this phenomenon, the information
containing life-differentiation information is extracted from the
data and used as the input of the life prediction model based on a
convolutional neural network. Compared with other prediction
algorithms, the superiority of the convolutional neural network in
life prediction is verified. In comparison with the life prediction
model without considering the phenomenon of life
differentiation, it is verified that the life prediction model
considering the phenomenon of life differentiation has higher
prediction accuracy.

In the future, the transformer life prediction method based on
an AI approach will become the mainstream in the industry.
However, it still needs to overcome the dependence on the data
sample size. The data source of this article was limited, and more
aging factors were not considered, which need to be further
improved.
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Polymorphic Distributed Energy
Management for Low-Carbon Port
Microgrid With Carbon Capture and
Carbon Storage Devices
Qihe Shan1, Jing Song1, Qi Xu2*, Geyang Xiao2 and Feifei Yu1

1Navigation College, Dalian Maritime University, Dalian, China, 2Research Institute of Intelligent Networks, Zhejiang Lab,
Hangzhou, China

In order to reduce the carbon emission of the port and build a green port, a polymorphic
distributed energy management method for the low carbon port microgrid with carbon
capture and carbon storage device is proposed. Firstly, this paper presents a low carbon
port microgrid in a polymorphic network environment to realize the information interaction
among energy subjects in different modes and improve network communication
performance among port power generation device, main grid, carbon capture and
carbon storage device. Secondly, the energy management model of low-carbon port
microgrid is constructed considering the additional carbon capture device and carbon
storage device in the port. Then, based on the multi-agent consensus algorithm, a
distributed energy management method is proposed, which is respectively oriented to
the grid-connected operationmode, island operationmode and switching operationmode
of the port microgrid, so as to achieve the economic, low carbon and reliable operation of
the port microgrid. Finally, the simulation results of Matlab verify the effectiveness of the
proposed method.

Keywords: energy management, polymorphic, carbon tax, distributed, port microgrid

1 INTRODUCTION

Under the accelerated development of the global economy, the demand for cargo transportation in
international trade is growing. As the node of global maritime transport, ports are embracing new
development opportunities. However, the large amount of carbon dioxide emitted by the port
aggravates environmental pollution (Kinnon et al., 2021) and leads to global warming, which hinders
the sustainable development of the port. At the same time, under the influence of IMO regulations
and the urgent demand for carbon neutrality in the world (Wang et al., 2018), it is critical to reduce
CO2 emissions from ports and build a low carbon port microgrid.

With the transformation of port energy, utilizing new energy sources to supply power for ports
has become an effective way to reduce port carbon emissions (Zhang et al., 2021). However,
considering the instability and uncertainty of new energy sources (Li et al., 2021;Wang et al., 2022), it
is still necessary to include conventional power plants in the port microgrid to ensure the reliability of
the port power supply. Energy management of port microgrid is the key to ensure its reliable
operation and has been studied by many experts and scholars. The energy management problem is a
complex system optimization problem with the objective of maximizing the operating economy and
satisfying multiple constraints for safe and stable operation (Deng et al., 2021; Zhang et al., 2022a).

Edited by:
Yushuai Li,

University of Oslo, Norway

Reviewed by:
Feng Tao,

Southwest Jiaotong University, China
Lingxiao Yang,

Anhui University, China
Weihang Yan,

National Renewable Energy
Laboratory (DOE), United States

*Correspondence:
Qi Xu

xuqi@zhejianglab.com

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 23 May 2022
Accepted: 21 June 2022
Published: 14 July 2022

Citation:
Shan Q, Song J, Xu Q, Xiao G and Yu F
(2022) Polymorphic Distributed Energy

Management for Low-Carbon Port
Microgrid With Carbon Capture and

Carbon Storage Devices.
Front. Energy Res. 10:951192.

doi: 10.3389/fenrg.2022.951192

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9511921

ORIGINAL RESEARCH
published: 14 July 2022

doi: 10.3389/fenrg.2022.951192

5756

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.951192&domain=pdf&date_stamp=2022-07-14
https://www.frontiersin.org/articles/10.3389/fenrg.2022.951192/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.951192/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.951192/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.951192/full
http://creativecommons.org/licenses/by/4.0/
mailto:xuqi@zhejianglab.com
https://doi.org/10.3389/fenrg.2022.951192
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.951192


To address the additional cost of specific types of load demand in
ports, Kermani (Kermani et al., 2022) proposed an energy storage
system that includes multiple energy storage devices to decline
power peaks, reduce energy waste and ensure port economics.
Kanellos (Gennitsaris and Kanellos, 2019) proposed a multi-
agent based real-time load demand response system to limit
port carbon emissions and minimize port operating costs to
solve the problem of flexible loads and significant carbon
emissions in ports. Most current energy management methods
are classified as centralized or distributed algorithms (Yang et al.,
2019; Yang et al., 1109; Huang et al., 2022), but for low carbon
port microgrid that contains large scale clean energy, due to the
distributed nature of its generation devices and loads, distributed
algorithms have attracted widespread attention. To tackle the
existence of multiple generation modes and load types in ports,
Zhang (Zhang et al., 2020) proposed a novel distributed energy
management approach for ports based on a multi-agent
consensus algorithm to optimize port energy allocation and
improve energy efficiency. Aiming at the damage caused by
false data injection attacks on port power systems, Shan (Shan
et al., 2022) proposed a distributed energy management strategy
with a topology reconstruction mechanism to mitigate the impact
of the attacks and improve the security of port power systems.
Port microgrids are divided into two modes of operation: grid-
connected mode and island mode. Meanwhile, the network
contains a variety of power generation devices such as
conventional power plants, photovoltaic power generation,
wind turbine power generation, as well as carbon capture and
carbon sequestration device, with the diversifiedmode. Due to the
problems of single IP and low suppression of unknown threats in
the existing communication networks (Guan et al., 2018; Hu
et al., 2019), it is difficult to adapt to the distributed energy
management of the low-carbon port microgrid. Therefore,
polymorphic networks, that match the actual low carbon port
microgrid, must be developed so that the communication
network can obtain polymorphic convergence dynamic. And
relevant scholars have already conducted wide exploration on
polymorphic networks. Wu (Hu et al., 2020) introduced
“structure definability” to all aspects of networks to improve
the efficiency, performance, functionality and security of the
Internet from the perspective of network architecture and to
achieve the requirements of nowadays intelligent, diverse, highly
robust and efficient networks. Hu (Hu et al., 2022) proposed a
scheme of the polymorphic network element based on codesign
of domain-specific software and a heterogeneous resource
allocation and replacement method to realize efficient resource
utilization. The results show that the proposed scheme can
provide a basic platform to support the polymorphic network.
In (Salamatian, 2011), Kave proposed two propositions: the
Internet of the future should be polymorphic and it should be
built on a strong foundation of network science. Zhang (Zhang
et al., 2022b) constructed a multilateralised distributed
cooperative control framework and proposed a
communication topology reconfiguration method applicable to
multiple multi-agent systems with different functions after
networking in order to address the limitations of cooperative
control of a single multi-agent system in a unilateral network

environment. Thus it can be seen that the polymorphic network
promotes the implementation of distributed control and
optimization technology. As existing networks cannot meet the
communication needs of modern smart ports, how to build a low-
carbon port microgrid in a polymorphic network environment
and realize its distributed energy management is the issue that
needs attention.

Large-scale clean energy is connected to the port microgrid
instead of traditional energy, which has achieved the reduction
of pollution and carbon emission in the port to a certain extent.
To further reduce carbon emissions, carbon capture devices
need to be installed in ports to capture carbon dioxide,
capturing the carbon dioxide emitted from conventional
power plants in ports and then storing it through carbon
sequestration devices, which can minimize the emission of
carbon dioxide from port microgrid to the air (Damm and
Fedorov, 2008) and promote the implementation of a green
port. There have been a lot of researches on carbon capture and
storage devices. Mostafa (Mostafa et al., 2018) demonstrated
that carbon capture devices are more efficient in reducing CO2

and less expensive to operate by comparing the CO2 emission
quality and operating costs of CO2 emissions from power
systems that include carbon capture devices with those that
use chemical absorption. Alireza (Akbari-Dibavar et al., 2021)
integrated carbon capture and storage devices into a
conventional power plant and proposed the economic-
emission dispatch problem using a Pareto frontier in a
multi-objective optimization framework to achieve an
economical and low-carbon power system. Fang (Fang et al.,
2019) proposed a joint generation and demand-side
management method under the Energy Efficiency Operating
Index (EEOI) constraint to address the power shortage caused
by carbon capture devices on board ships and illustrated the
feasibility of carbon capture devices to reduce CO2 emissions
from the shipping industry. In addition to the use of clean
energy and the installation of carbon capture and storage
devices, market mechanisms represented by carbon taxes
and carbon trading have become important initiatives to
reduce carbon emissions from ports and ships. Arijit (De
et al., 2021) proposed a ship fuel management strategy that
took into account carbon taxes and explored the impact of fuel
prices and carbon taxes on shipping operations in terms of
operating costs. Zhen (Lin et al., 2022), on the basis of
considering carbon tax, proposed a mathematical model that
minimizes the sum of the total carbon emission cost and the
total penalty cost of the port and effectively solved the model by
using the heuristic algorithm based on the sequential method,
to minimize the carbon emission of the port and optimize the
spatial allocation of the port. For the problem of vessel
scheduling and cargo flow allocation under the carbon
emission trading mechanism, Wang (Yu and Wang, 2015)
proposed a ship scheduling and cargo flow allocation model
considering the cost of container cargo detention time under
the mechanism to achieve the maximum emission reduction
and profit for liner companies. But, for now, the use of carbon
trading to reduce carbon emissions requires multi-sectoral
supervision, and the implementation steps are cumbersome,
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with the application effect not ideal. Therefore, in the process of
distributed energy management for low-carbon port microgrid,
how to use the carbon tax to treat the carbon dioxide emitted
into the air by the port under the target of reducing the carbon
emission of the port and achieving a green port is a critical issue
that needs to be solved.

As shown above, this paper is dedicated to constructing a low-
carbon port microgrid under the polymorphic network
environment and proposes a distributed energy management
method under various operating conditions to ensure reliable
and economic operation of the port microgrid and to achieve
pollution and carbon reduction in the port. The specific
contributions are as follows.

1) Construct a low-carbon port microgrid based on the
polymorphic network, in order to realize the information
interaction among various energy subjects under different
modes and improve the performance of network
communication among the port power generation device,
main grid and carbon capture and storage device.

2) Considering carbon capture and storage devices, the energy
management model of the low-carbon port microgrid is
constructed. With the objective of minimizing the operating
cost of the port microgrid, the power purchase or selling cost
of the main power grid and the cost of carbon, as well as
considering the supply and demand balance of the port
microgrid and other constraints, the energy management
model is constructed to achieve economic, low-carbon and
reliable operation of the port microgrid.

3) A distributed energy management method for various
working conditions of the port microgrid is proposed in this
paper. For both grid-connected and island operationmodes of the
port microgrid, the distributed energy management of the low-
carbon port microgrid is implemented based on multi-agent
leader-following consensus and average consensus respectively
to ensure the reliability and economy of the port.

2 ANALYSIS OF LOW-CARBON PORT
MICROGRID ARCHITECTURE UNDER
POLYMORPHIC NETWORK
There is a carbon capture device, a carbon sequestration device,
and various power generation devices such as the conventional
power plant, photovoltaic power generation, and wind turbine
power generation in the low-carbon port microgrid, as shown in
Figure 1.

The port microgrid can be operated in grid-connected mode
or island mode. In grid-connected mode, the loads in the port
microgrid are powered by the main grid, conventional power
plant, photovoltaic power generation, wind turbines, and storage
devices. In island mode, the port microgrid is powered by the
conventional power plant, photovoltaic power generation, wind
turbines and storage devices.

To achieve low-carbon operation, the port microgrid uses the
carbon capture device and storage device to treat the carbon
dioxide emissions from the conventional power plant. Most of the
carbon dioxide emitted is captured by the carbon capture device
and a small amount is released into the air. The carbon dioxide
captured by the carbon capture device is then encapsulated and
stored in a carbon storage device, and this part of carbon dioxide
can be used for various purposes, including as a raw material for
P2G, making dry ice, etc.

Due to the diverse working conditions and device types of
low-carbon port microgrids, it is difficult for the existing
traditional communication network architecture to adapt to
modern smart low-carbon ports. Therefore, this paper
proposes a diversified, specialized and intelligent low-
carbon port microgrid based on the polymorphic network,
and its network architecture is shown in Figure 2. The low
carbon port microgrid based on the polymorphic network is
mainly divided into three layers: the data layer, the control
layer, and the service layer, with different functions. The data

FIGURE 1 | Components of the low-carbon port microgrid.
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layer is mainly responsible for the full-dimensional definition
of the topology, protocols, software and hardware, and
interfaces of the port microgrid, providing refined services
for diversified applications and essential support for the
realization of future network intelligence, flexibility, and
diversity. The control layer undertakes the service layer
upward to address and route between single modality and
different modalities, and controls the data layer downward to
calculate and convert the different requirements of the upper-
layer business into the control information of the data layer.
Through the polymorphic controller, the diversified routes are
defined according to the service requirements, and the
communication topology is constructed according to the
constraint conditions to realize polymorphic addressing
interconnection and on-demand switching, so as to lay the
foundation for the subsequent distributed energy
management. The service layer mainly realizes the
distributed energy management of the low-carbon port
microgrid. The essence of polymorphic network is the
process of top-down functional fitting from business
requirements to fine-grained resource partitioning on the
basis of a fully-dimensional definable network structure.
The three layers implement business and service fitting,
service and route fitting, route and resource fitting which
are driven by business requirements, respectively. First,
various device operation models are established, then the
low-carbon port microgrid energy management model is
constructed, and finally the distributed energy management
method is designed according to the port microgrid
operation mode.

3 LOW-CARBON PORT MICROGRID
ENERGY MANAGEMENT MODEL

3.1 Objective Function
This paper aims to minimize the operating cost of polymorphic
low-carbon port microgrid. The objective function includes three
parts: one is the operating cost of the power generation and
energy storage device; one is the cost of trading with the main
grid; the other is the carbon cost. The function is as follows:

F � min{F1 + F2 + F3} (1)
where, F is the total operating cost of the polymorphic low carbon
port microgrid, F is the operating cost of the power generation
and energy storage device, F2 is the cost of trading with the main
grid and F3 is the carbon cost.

3.1.1 The Operating Cost of the Power Generation and
Energy Storage Device
The operating costs of power generation and energy storage
devices include the conventional power plant generation costs,
wind turbine generation costs, photovoltaic generation costs, and
energy storage device operating costs. The details are as follows.

F1 � ∑
n1

ffu +∑
n2

fw +∑
n3

fpv +∑
n4

fs (2)

where, ffu is the cost of conventional power plant generation, fw

is the cost of wind turbine generation, fpv is the cost of
photovoltaic generation and fs is the cost of energy storage
device operation, n is the total number of powered devices in the
port microgrid, n1 + n2 + n3 + n4 � n.

FIGURE 2 | The polymorphic network architecture of low-carbon port microgrid.
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Since the operating cost functions of the considered generation
and storage devices are generally in the quadratic form (Teng
et al., 2020), they can be uniformly expressed as:

fi � (Pi − αi)2
2βi

+ φi, i ∈ 1, 2, 3...n (3)

where, fi is the operating cost of the i th device, Pi is the amount
of power supplied by the i th device, αi ≤ 0, βi ≥ 0 and φi are the
cost coefficients of the i th device.

3.1.2 The Cost of Trading With the Main Grid
When the port microgrid is connected to the main grid, the port
and the grid company agree on a trading price for electricity.
When the port microgrid generates more electricity than it needs
and still has a large surplus, it can sell the excess electricity into
the market at the price agreed by the grid company to earn the
difference; when the microgrid generates less electricity than it
needs, it can buy the required electricity at the price agreed by the
grid company to ensure the safe and reliable operation of the port.
The cost of trading with the main grid is as follows

F2 � λ0PM (4)
where, λ0 is the trading electricity price agreed with the main grid
and PM is the power purchased from (sold to) the main grid.

3.1.3 The Carbon Cost
In the carbon cost, since the carbon storage device needs to store
carbon dioxide through a series of methods, and the stored
carbon dioxide requires a harsh storage environment, the cost
of carbon sequestration should be additionally considered here.
For this reason, the carbon cost includes the carbon storage costs
and carbon tax costs. And the formula is as follows:

F3 � fcs + ftax (5)
where, fcs is the cost of carbon storage, ftax is the cost of the
carbon tax.

In the cost of carbon, as the operation of the carbon capture
device consumes electricity, it can be seen as an electrical load and
is not additionally accounted for in the cost of carbon. However,
carbon storage device requires various methods to sequester
carbon dioxide. The sequestered carbon dioxide requires a
harsh preservation environment, so the cost of carbon
sequestration is also considered here. The energy consumption
of a carbon capture device includes both operational and fixed
energy consumption. Operational energy consumption is
proportional to the mass of carbon dioxide captured. With the
more carbon dioxide captured, the more operational energy is
used. The amount of carbon dioxide that a carbon capture plant
can capture is related to the quality of carbon dioxide emitted by
conventional power plants. In contrast, the quality of carbon
dioxide emitted by the port is related to the amount of electricity
produced by the port plant. At the same time, the carbon capture
plant consumes a certain amount of power to keep running, even
when it is not in operation, and this is used as fixed energy
consumption. The relevant equation for the carbon capture
device is expressed as follows.

Pcc � Pfec + Poec � Pfec + ψEcc

Ecc � τEfu � τωPfu
(6)

where, Pcc is the total energy consumption of carbon capture
device, Pfec is the fixed energy consumption of carbon capture
device, Poec is the operating energy consumption of carbon
capture device, ψ is the energy consumption coefficient of the
carbon capture device to capture unit CO2, Ecc is the mass of CO2

captured by the carbon capture device, τ is the efficiency of the
carbon capture device to capture CO2, Efu is the mass of CO2

emitted by the port conventional power plant, ω is the mass of
CO2 produced by the unit power output of the conventional
power plant in the port, Pfu is the electricity produced by the port
conventional power plant.

The cost of carbon storage is relative to the quantity of carbon
dioxide trapped by the carbon capture device, while its energy
consumption is relative to the amount of carbon dioxide stored.
The details are as follows

fcs � σEcc

Pcs � γEcc
(7)

where, σ is the cost coefficient of storing unit carbon dioxide, Pcs

is the energy consumption of carbon storage, and γ is the energy
consumption factor of storing a unit of carbon dioxide.

Among the carbon cost, the formula for the carbon tax is as
follows.

ftax � CtaxEe (8)
where, Ctax is the unit price of the tax per unit of CO2 emitted
and Ee is the mass of CO2 emitted into the air by the port
microgrid.

3.2 Constraint
To ensure the reliable operation of the port microgrid, the
following constraints should be followed.

1) Power balance constraint

∑n
i�1
Pi + PM � ∑n

i�1
Pload + Pcc + Pcs (9)

where, PM is the main grid input and output power, and Pload is
the load of the port microgrid.

2) Output power constraints for power generation devices

Pmin
i ≤Pi ≤Pmax

i (10)
where, Pmin

i and Pmax
i are the minimum output power and

maximum output power of the i th generation device,
respectively.

3) Energy consumption constraints for carbon capture devices

Pmin
cc ≤Pcc ≤Pmax

cc (11)
where, Pmin

cc and Pmax
cc are the minimum and maximum energy

consumption of the carbon capture device, respectively.
4) Energy storage constraints

SoCmin ≤
∣∣∣∣∣∣∣1 − Ps

Pe

∣∣∣∣∣∣∣≤ SoCmax (12)
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where, Pe is the rated power of the energy storage device, SoCmin

and SoCmax are the upper and lower limits of the capacity of the
energy storage device, respectively.

4 DISTRIBUTED ENERGY MANAGEMENT
METHOD FOR LOW CARBON PORT
MICROGRID
The polymorphic port microgrid has two modes of operation:
grid-connected mode and island mode. Since there are
differences in the energy management methods of the two
modes, the distributed energy management methods are
designed in this section for the two operation modes and the
operation mode switching states, respectively. The topology of
the information flow of the low-carbon port microgrid based on
the polymorphic network is shown in Figure 3A, and the
topology of the energy flow is shown in Figure 3B, where
information can be exchanged between different modes by
routing. Information can be exchanged directly within
the modes.

4.1 Graph Theory
A directed graph can be represented as G � {V, E}, N is the
number of nodes.WhereV � {v1, v2, v3, ......vN} is the set of nodes
and E � {e1, e2, e3, ......eM} is the set of lines connecting two
points, that is, the set of relations between two points. aij
denotes the edges (vi, vj), when (vi, vi) ∈ E, aij � 1; when
(vi, vi) ∉ E, aij � 0. The adjacency matrix represents the
relations between vertices, and A � (aij)N×N, is an N-order
square matrix (Li et al., 2020).

4.2 Grid Connection Mode
In the grid-connected mode, since the electricity price of the main
grid is not affected by other factors, the main grid does not receive
information, but only transmits information. However, in the
energy flow, the main grid is able to exchange energy with the
generation plant, carbon capture and storage plant. In the event
that the port microgrid generates too much power, or does not
generate enough power to meet the required load, it can sell
power or buy power from the main grid.

Since port microgrids exhibit distributed characteristics, this
section proposes a distributed energy management approach for

port microgrids in grid-connected mode, where the model for the
energy management problem can be written as the following
equation.

min
⎧⎨⎩∑N

i�1
F1 + F2 + F3

⎫⎬⎭
s.t. ∑n

i�1
Pi + PM � ∑n

i�1
Pload + Pcc + Pcs

Pmin
i ≤Pi ≤Pmax

i

(13)

Taking (1)–(8) into (13), the objective function is further
expressed as:

min
⎧⎨⎩∑N

i�1
((Pi − αi)2

2βi
+ φi) + λ0PM + CtaxEe + σEcc

⎫⎬⎭ (14)

Since in the objective function, Ee and Ee in the carbon cost
function are both linearly related to Pi, which can be combined
with the power generation cost, the objective function (14) can be
organized as the following formula.

min
⎧⎪⎨⎪⎩∑N

i�1
⎛⎝(Pi − α′

i)2
2β′i

+ φ′
i
⎞⎠ + λ0PM

⎫⎪⎬⎪⎭ (15)

where, α′i, β
′
i and φ′

i are the cost coefficients of the collapsed
function.

The Lagrangian function of the model for this problem takes
the form of:

L(P1, P2..., PN, PM, λ, �], ])
� ∑N

i�1
⎛⎝(Pi − α′

i)2
2β′i

+ φ′
i
⎞⎠ + λ0PM + λ⎛⎝∑n

i�1
Pi + PM −∑n

i�1
Pload − Pcc − Pcs

⎞⎠

+∑n
i�1
]i(Pi − Pmax

i ) +∑n
i�1

]i (Pmin
i − Pi)

(16)
where, λ, �] and ] are all Lagrangian multipliers, and the carbon
capture and carbon storage loads can be expressed as
Pcc + Pcs � DiPi, Di is a coefficient matrix.

As the low carbon port microgrid distributed energy
management model contains inequality constraints, in order to
find its optimal solution, its KKT (Karush Kuhn Tucker)
condition is analyzed.

FIGURE 3 | The topology of low carbon port microgrid based on polymorphic network. (A) is the topology of the information flow, (B) is the topology of the
energy flow.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zL(Pp
1, P

p
2..., P

p
N, P

p
M, λ

p, ]p, ]p )
z{P1, P2..., PN, PM} � 0

∑n
i�1
Pi + PM −∑n

i�1
Pload − Pcc − Pcs � 0

]pi (Pi − Pmax
i ) � 0

]pi (Pmin
i − Pi) � 0

(17)

According to (17), we get:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λp � Pi − αi′

β′i(1 −Di)
λp � λ0

(18)

Bringing (18) into (17) gives the global optimum result as:

Pp
i �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λpβ′i(1 −Di) + αi′ Pi ≤ λpβ′i(1 −Di) + αi′≤Pi

Pi λpβ′i(1 −Di) + αi′>Pi

Pi λpβ′i(1 −Di) + αi′< Pi

(19)

Pp
M � ∑n

i�1
Pload +∑N

i�n
DiPi −∑n

i�1
Pi (20)

When in grid-connected mode, the iterative approach of
electricity prices follows the leader-following consistency
(Chen and Li, 2021), with the following iterative process.
According to (21), the amount of power generated by each
generating unit can be obtained as:

λi(k + 1) � λi(k) + μi
⎡⎢⎢⎣ ∑

j∈Ni

aij(λj(k) − λi(k)) + ai0(λ0 − λi(k))⎤⎥⎥⎦
(21)

The above equation represents that the λ of each node follows
the leader-following consensus to the main grid price λ0 and the
node ai0 � 1, which is capable of receiving direct main grid
communication information from the main grid.

According to (21), the power generation capacity of each
generation unit can be obtained as follows.

It can be obtained that the power generation capacity of each
generation unit is as follows.

Pi(k) � {
λ(k)βi′ (1 −Di) + α′i Pi ≤ λ(k)β′i(1 −Di) + αi′≤Pi

Pi λ(k)β′i(1 −Di) + αi′>Pi

Pi λ(k)β′i(1 −Di) + αi′< Pi

(22)
where, Pi(k) is the amount of electricity generated by the i th
node at the k th iteration.

Then, based on the known estimated local mismatch values
Pi(k), the formula is as follows.

⎧⎪⎪⎨⎪⎪⎩
ρi(k + 1) � ΔP̂i(k) + ε[∑

j∈Ni
aij(ΔP̂j(k) − ΔP̂i(k))] + ΔPi(k + 1) − ΔPi(k)

ΔP̂i(k + 1) � (1 − a0i)ρi(k + 1)
(23)

where, ΔPi(k) is the actual local mismatch at the k th iteration
and ΔP̂i(k) is the estimated local mismatch at the k th iteration.
ΔP̂i(k + 1) � (1 − a0i)ρi(k + 1) means that for the neighbor
unit of the main grid, the power complement of the main
grid is obtained directly in each iteration. At the k + 1 th
iteration, the estimation of the local power mismatch
becomes zero.

PM(k + 1) � PM(k) +∑N
i�n
a0iρi(k + 1) (24)

where, PM(k + 1) is the supplementary power value of the main
grid to neighbor nodes at the k + 1 th iteration, which equals the
sum of the supplementary power value of the k th iteration and
the mismatch value of all neighbor nodes.

For the above algorithm, for a connected undirected graph G,
when the step size of the algorithm satisfies μi ∈ (0, 1∑N

j�0aij
) and

ε ∈ (0, 1
maxi�1,2,3...N∑N

j�0aij
), it can be obtained that:

limk→∞λi(k) � λ(0), i � 1, 2, 3...N
limk→∞Pi(k) � Pp

i , i � 1, 2, 3...N
limk→∞ΔP̂i(k) � 0, i � 1, 2, 3...N

limk→∞PM(k) � ∑n
i�1
Pload +∑N

i�n
DiP

p
i −∑n

i�1
Pp
i � Pp

M

(25)

where, the value of PM(k) can be positive or negative.
The low carbon port microgrid under the grid-connected

mode considered in this paper can both buy electricity from
and sell electricity to the port’s main grid, ensuring a balance
between energy supply and demand and enabling the economic
operation of the port microgrid.

4.3 Island Mode
In island mode, the port microgrid cannot buy power from the
main grid and has to be powered by a generation device to supply
the load. In this case, not only the economy of the port must be
considered, but also its security. The economic optimization of
the port microgrid is achieved on the basis that the port load
demand can be met. In this section, the incremental cost of the
islanding model is corrected by adding a penalty factor to meet
the supply-demand balance of the port microgrid. The iterative
formula used is as follows.

λi(k + 1) � λi(k) + μi′⎡⎢⎢⎣∑
N

j�1
aij(λj(k) − λi(k))⎤⎥⎥⎦ + ζ(k)ΔP̂i(k)

(26)
where, μi′ is the step size of the algorithm and ζ(k) is the
feedback gain.

According to (26), the power generation capacity of each
generation unit can be obtained by
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Pi(k) � {
λ(k)βi′ (1 −Di) + α′i Pi ≤ λ(k)β′i(1 −Di) + αi′≤Pi

Pi λ(k)β′i(1 −Di) + αi′>Pi

Pi λ(k)β′i(1 −Di) + αi′< Pi

(27)
where, Pi(k) is the amount of electricity generated by the i th
node at the k th iteration.

Then, according to the known Pi(k), the local mismatch value
is estimated, and the formula is as follows.

⎧⎪⎪⎨⎪⎪⎩
ρi(k + 1) � ΔP̂i(k) + ε′[∑

j∈Ni
aij(ΔP̂j(k) − ΔP̂i(k))] + ΔPi(k + 1) − ΔPi(k)

ΔP̂i(k + 1) � ρi(k + 1)
(28)

where, ΔPi(k) is the actual local mismatch value at the k th
iteration and ΔP̂i(k) is the estimated (local) mismatch value at
the k th iteration.

For a connected undirected graph G, when the step size of
the above algorithm satisfies μ′i ∈ (0, 1∑N

j�0aij
) and ε′ ∈ (0,

1
maxi�1,2,3...N∑N

j�0aij
), for feedback gains ζ(k), it satisfies limk→∞ζ(k) �

0 and ∑∞
k�0ζ(k) � ∞. λi(0) is any given initial value, then we can

obtain that, in the island mode, when the local estimate of the
initial value of the mismatch value satisfies
ΔP̂i(0) � ∑n

i�1Pload + ∑N
i�nDiPi(0) −∑n

i�1Pi(0), it can be
obtained that:

limk→∞λi(k) � λpi , i � 1, 2, 3...N
limk→∞Pi(k) � Pp

i , i � 1, 2, 3...N
limk→∞ΔP̂i(k) � 0, i � 1, 2, 3...N

(29)

In the island model considered in this paper, security and the
guarantee of supply and demand balance are more important as
the port microgrid is not connected to the main grid. The essence
of the algorithm is to follow the average consensus and add a
penalty factor for feedback gain to correct the incremental cost in
order to achieve safety and economy of port operation.

4.4 Switching Mode
Low carbon port microgrid switching mode operation refers
to the process of switching from grid-connected mode to
island mode or from island mode to grid-connected mode.
In the switching process, it is necessary to realize the
economical operation of the port microgrid as much as
possible on the basis of ensuring the supply and demand
balance. At this time, the iterative process of the electricity
price λ is as follows.

λi(k + 1) � λi(k) + μi′⎡⎢⎢⎣ ∑
j∈Ni

aij(λj(k) − λi(k)) +mai0(λ0 − λi(k))⎤⎥⎥⎦
+ ζ′(k)ΔP̂i(k)

(30)
where, m denotes the mode of operation of the port microgrid,
when in grid-connected mode, m � 1, otherwise, m � 0; when
m � 1, λ of each node follows the leader-following consensus to
the main grid electricity price λ0, where ai0 � 1 represents the
node can directly receive the communication information from
the main grid; when m � 0, λ of each node follows the average
consensus, and adopts the penalty factor correction method to
tend to λp.

According to the above equation, the power generation
capacity of each generation unit can be obtained by:

Pi(k) � { λ(k)βi′ (1 −Di) + α′i Pi ≤ λ(k)β′i(1 −Di) + αi′≤Pi

Pi λ(k)β′i(1 −Di) + αi′>Pi

Pi λ(k)β′i(1 −Di) + αi′< Pi

(31)
where, Pi(k) is the amount of power generated by the generation
unit at the i th node at the k th iteration.

Then, based on the known estimated local mismatch values
Pi(k), the formula is as follows.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρi(k + 1) � ΔP̂i(k) + ε′[∑
j∈Ni

aij(ΔP̂j(k) − ΔP̂i(k))] + ΔPi(k + 1) − ΔPi(k)
ΔPMi(k + 1) � ma0iρi(k + 1)
PMi(k + 1) � m[PMi(k) + a0iΔPMi(k + 1)]
ΔP̂i(k + 1) � ρi(k + 1) + a0i[PMi(k) − PMi(k + 1)]

(32)

Among them, ∑N
i�1ΔP̂i(0) � ∑n

i�1
Pload + ∑N

i�n
DiPi(0) − ∑n

i�1
Pi(0)

and PMi(0) � 0.
Then, the power exchanged with the main grid can be

expressed as:

PM(k) � ∑N
i�1
PMi(k) (33)

FIGURE 4 | The energy flow topology of the low-carbon port microgrid.

TABLE 1 | The port microgrid energy supply device parameters.

FU PV1 PV2 W1 W2 S

αi 2.1 3.1 2.3 2.9 2.5 2.7
βi 25 20 26 19 30 10
φi 0.44 0.1 0.05 0.2 0 05 0 44
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The switching mode considered in this paper is the switching
of the port microgrid between grid-connected mode and island
mode. With the algorithm used in this paper, the safe and
economic operation of the port microgrid can be achieved on
the basis of ensuring a balance between supply and demand in the
port microgrid.

5 SIMULATION RESULTS

In this paper, Matlab is used to simulate and verify the proposed
method. The considered low carbon port microgrid consists of a
conventional power plant, two photovoltaic power generation
devices, two wind power generation devices, a storage device, a
carbon capture device, a carbon sequestration device and the
main grid. The energy flow topology of the low-carbon port
microgrid based on the polymorphic network is shown in
Figure 4 and the parameters of the power generation device
are shown in Table 1. The following simulation cases are
conducted in grid-connected mode, island mode and switching
mode respectively.

5.1 Grid-Connection Mode
For this case, the operation of a polymorphic port microgrid in
grid-connected mode is considered and divided into two
scenarios: buying electricity from and selling electricity to the
main grid.

5.1.1 Purchase Power From the Main Grid
When the low-carbon port microgrid generation cannot meet the
required load of the port, the port will purchase power from the
main grid to meet the port load demand. In this section, in order
to verify the accuracy and convergence of the algorithm, the
proposed model is solved using the centralized algorithm and the
distributed algorithm, respectively. The simulation results of the
centralized algorithm are shown in Figure 5A, and the results
obtained by the distributed algorithm are shown in
Figures 5B–D. The total load demand of the port microgrid is
110 MW.

Theminimum cost result obtained in the centralized algorithm
with grid-connected power purchase is 4,005.39 ¥ of each supply
device as shown in Figures 5B–D. Since electricity price from the
main grid is relatively high, the amount of electricity supplied

FIGURE 5 | Simulation results of power purchase from the main grid in grid-connected mode. (A) is the results of centralized algorithm, (B) is the dynamic curve of
the electricity price λ, (C) is the dynamic curve of the power output, (D) is the dynamic curve of the estimated power.
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from the main grid is lower. At the same time, the figure shows that
the traditional power plant supplies less power and emits less CO2,
which further illustrates that the model built in this paper can
effectively reduce the carbon emission of the port. By using
distributed algorithms, the operating cost of the low-carbon port
microgrid is 4088.13 ¥, with 4.44 t of CO2 emitted into the air and
10.36 t ofCO2 treated by carbon capture and storage device which are
very little different from the results obtained by the centralized
algorithm, further proving the accuracy of the proposed algorithm
in this paper. The electricity price λ follows multi-agent leader-
following consensus, and λ � 0.75. The main grid acts as the
leader and its final electricity price converges to the electricity price
of the main grid when k � 100. The power supply of each power
generation unit is [4.05, 18.09, 17.15, 20.85, 10.20, 21.80, 24.98], of
which 4.05MW is bought from the main grid to maintain a balance
between supply and demand in the portmicrogrid. The total electricity
consumption of the portmicrogrid is 117.13MW,which is larger than
the initially set load demand of 110MW. This is because the energy
consumption of carbon capture and carbon storage device varies
according to the amount of electricity produced by conventional
power plants during operation.

5.1.2 Sell Power to the Main Grid
When the generation capacity of the low carbon port microgrid is
larger than the load required by the port itself, the port will sell
electricity to the main grid to earn a profit. In this simulation case,
the total load demand of the port is 100 MW, and the simulation
results are shown in Figures 6A–D.

In grid-connected mode, when the port load is 100 MW, the
operating cost of the low carbon port microgrid is 3,338.28 ¥, the
carbon dioxide emitted into the air is 4.44 t, and the carbon
dioxide treated by the carbon capture and storage device is
10.36 t. The incremental cost (electricity price) converges to
the electricity price of the main power grid when k � 260, and
λ � 0.75. The electricity production of each unit is [-5.94, 18.09,
17.15, 20.85, 10.20, 21.80, 24.98]. The total electricity
consumption of the port microgrid is 107.13 MW. The main
grid supply is negative because the main grid does not supply
electricity to the port. There exists excess electricity generation in
the port, which is sold to the main grid to make a profit; and the
electricity sold to the main grid is 5.94 MW.

As shown in Figure 5 and Figure 6, most of the carbon
dioxide emitted from conventional power plants will be treated

FIGURE 6 | Simulation results of power selling to the main grid in grid-connectedmode. (A) is the dynamic curve of the electricity price λ, (B) is the dynamic curve of
the power output, (C) is the dynamic curve of the estimated power, (D) is the dynamic curve of the total supply.
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by carbon capture and storage devices, incurring carbon
treatment costs. Although carbon dioxide is still being
emitted into the air, but most of it is treated by carbon
capture and storage devices, which can greatly reduce the
pollution to the environment. A small proportion of the
carbon dioxide emitted into the atmosphere will be subject
to a carbon tax, resulting in higher power generation cost, so
the port microgrid produces more electricity from
photovoltaic and wind power than conventional power
plants. Regardless of whether the port generates less or
more than the required port load, the total generation can
satisfy the supply-demand balance constraint, and its
mismatch value eventually stabilizes at 0, as shown in
Figure 5D and Figure 6C. If the port generates less than
the required load for the port, it needs to buy electricity from
the main grid, in this case PM > 0, as shown in Figure 5C, and
conversely, sell electricity to the main grid for profit, as shown
in Figure 6B. The convergence of the simulation results proves
the effectiveness of the proposed algorithm.

5.2 Island Mode
For this case, the operation of a polymorphic port microgrid in island
mode is considered. Unlike the grid-connected mode, in the island
mode, it is not possible to purchase power from the main grid, so it is

essential to ensure the economics and the security of the polymorphic
port microgrid. In this section, the centralized algorithms and the
distributed algorithms are used to solve the proposed model, and the
obtained simulation results are shown in Figures 7A–D.

The results obtained using the centralized algorithm are shown
in Figure 7A, which shows the power supply of each power supply
device, and the lowest cost result is 4,035.78 ¥. By using distributed
algorithms, the low-carbon port microgrid costs 4,116.80 ¥, and
emits 4.61 t of CO2 into the air, with 10.77 t of CO2 treated by the
carbon capture and storage device. The difference between the
results obtained by the centralized algorithm and the distributed
algorithm proposed in this paper is small, which can prove the
accuracy of the proposed algorithm. In thismode, there is no leader
and the values for each unit follow an average consensus under the
penalty factor correction method. It can be seen in the graph that
the values converge to consistency at k � 25, with a faster
convergence rate, λ � 0.78 at this time. The power supply for
each device is [18.76, 17.78, 21.68, 10.53, 22.66, 26.01], and the total
power used by the port microgrid is 117.42MW, which is able to
meet the required load of the port.

The cost is reduced compared to the grid-connectedmode because
the port’s power generation device powers all loads. At the same time,
as the island mode cannot purchase power from the main grid, to
ensure the safety of the port during islandmode operation and tomeet

FIGURE 7 | Simulation results in island mode. (A) is the results of centralized algorithm, (B) is the dynamic curve of the electricity price λ, (C) is the dynamic curve of
the power output, (D) is the dynamic curve of estimated power.
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the balance of supply and demand of the port microgrid, the
conventional power plant generates more power and emits more
carbon dioxide into the air, illustrating that the grid-connected mode
can effectively reduce carbon emissions from the port and is more
friendly to the environment. In terms of convergence speed, the island
model uses average consensus, which is significantly faster than the
grid-connected model. The simulation results for both the grid-
connected and island modes, which eventually reach convergence,
prove the effectiveness of the proposed algorithm.

5.3 Switching Mode
During the operation of the port microgrid, the possible
emergencies will lead to its failure to connect with the main
grid, changing it from grid-connected mode to island mode,
which will make the supply-demand balance and security unable
to be guaranteed.While the port, as an essential transport hubnode,
is obliged to operate continuously and reliably. Therefore, it is
necessary to ensure the safety and reliability of the port microgrid
during operation. In this section, a distributed energy management
algorithm is used to study the switching mode of the port
microgrid, which is divided into two switching modes: “grid-
connected–island–grid-connected” and “island–grid-
connected–island” for energy management. The simulation
results are shown in Figures 8A–D and Figures 9A–D.

5.3.1 Switching “Grid-Island-Grid”
From Figure 8, it can be seen that at k � 501, the port microgrid
switches from grid-connected mode to island mode; at k � 1001, the
portmicrogrid switches from islandmode to grid-connectedmode. In
grid-connected mode, the devices are supplied with [18.76, 17.78,
21.68, 10.53, 22.66, 26.01]; in islandmode, the supply of each device is
supplied with [4.05, 18.09, 17.15, 20.85, 10.20, 21.80, 24.98]. After each
switchover, the values go out of line with short fluctuations and after
about 100 iterations, the port microgrid can reach convergence again
after adjustment quickly. From Figure 8C, we can see that the
mismatch values converge to 0 after switching mode, indicating
that the port microgrid can satisfy the supply-demand balance
constraint after switching modes.

5.3.2 Switching “Island-Grid-Island”
At k � 501, the port microgrid switches from island mode to grid-
connected mode; at k � 1001, the port microgrid switches from grid-
connected mode to island mode. Figure 9 shows that when the port
microgrid is switched from grid-connected mode to grid-connected
mode, the system values fluctuate more, and the system needs to go
throughmore iterations to reach stability. With the port load all being
110MW, the total power supply is higher when in island mode, as its
conventional power plant generates more power and produces more
CO2, which also represents higher energy consumption of the carbon

FIGURE 8 | Simulation results of “grid-island-grid” switching mode. (A) is the dynamic curve of the electricity price λ, (B) is the dynamic curve of the power output,
(C) is the dynamic curve of estimated power, (D) is the dynamic curve of the total supply.
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capture device and carbon storage device. At the same time,moreCO2

is emitted into the air in island mode.
In switching mode, the low-carbon port microgrid is still

able to reduce the carbon emissions of the port. The
simulation results show that the carbon emission is less in
grid-connected mode than in island mode, the reason is that
in island mode, the conventional power plant needs to
generate more electricity to maintain the safe and stable
operation of the port microgrid, so the carbon emission is
more in island mode.

However, the low-carbon port microgrid is able to operate
safely, economically, and at a low carbon level, whether switching
from grid-connected mode to island mode or from island mode
to grid-connected mode. The simulation results further validate
the effectiveness of the algorithm.

6 CONCLUSION

The large amount of carbon emissions from the port leads to
serious environmental pollution problems, so building low
carbon ports is of great practical importance. In this paper, a
low-carbon port microgrid with carbon capture and storage

devices has been constructed in a polymorphic network
environment, and its energy management problems have
been investigated, and distributed solutions have been
proposed for various operation modes. Firstly, a low
carbon port microgrid in a polymorphic network
environment has been proposed, which consists of a data
layer, a control layer and a service layer, enabling the
information interaction among various energy bodies in
different modes and improving the performance of
network communication among the power generation
device, the main grid and the carbon capture and storage
device. Secondly, the energy management model of a low
carbon port microgrid has been constructed to minimize the
operating cost of the low carbon port microgrid. Then,
applicable distributed energy management methods have
been proposed for various operating conditions of the port
microgrid. For both grid-connected and island operation
modes, the distributed energy management of the low
carbon port microgrid has been implemented based on the
multi-agent leader-following consensus and average
consensus, respectively. In addition, the port microgrid
grid-connected and island operation switching model has
been discussed. Finally, the simulation results have verified

FIGURE 9 | Simulation results of “island-grid-island” switchingmode. (A) is the dynamic curve of the electricity price λ, (B) is the dynamic curve of the power output,
(C) is the dynamic curve of the estimated power, (D) is the dynamic curve of the total supply.
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the effectiveness of the proposed low-carbon port microgrid
energy management method. The distributed energy
management method proposed in this paper has reduced
the operating cost and carbon emissions of the port
microgrid, as well as realized the economical, safe and
stable operation of the port.

In this paper, only the low carbon operation in the port
microgrid is achieved, but not the zero carbon emission of the
port. In the future, we can consider abandoning the use of
traditional power plants of the port to supply electricity. The
port microgrid has been kept in grid-connected mode, and when
its own generation device cannot meet its own load, it purchases
insufficient electricity from the main grid to realize the zero
carbon operation of the port.
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Distributed low-carbon energy
management method for port
microgrid based on we-energies
under polymorphic network
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In order to reduce port pollution and carbon emissions and improve the

utilization rate of clean energy, a port microgrid based on we-energies

(WEs) and its polymorphic distributed low-carbon energy management

method is proposed. First, this study considers a variety of heterogeneous

Wes, such as ship we-energies (SWEs), to establish a polymorphic energy

management system for port microgrids and to achieve reliable information

exchange between WEs under different communication networks. Second,

considering the bidirectional energy transmission characteristic of the portWEs,

the operating cost function of heterogeneous WEs is established. In addition,

with the objective of economic and low-carbon operation of port microgrids,

the energy management model of a port microgrid is constructed, and the

optimal solution is obtained based on distributed optimization theory. Finally,

simulation cases are performed to verify the effectiveness of the proposed

method.

KEYWORDS

portmicrogrid, clean energy, low carbon, distributed energymanagement, we-energy,
polymorphic network

1 Introduction

With the development of the shipping industry, maritime transport is responsible for

nearly 90% of global trade in goods. As important transportation hubs for sea and land

transport, ports consume huge amounts of energy (Coppola et al., 2016; Huang et al.,

2022). In addition, ships and large port equipment emit a lot of air pollutants, causing

poor air quality in the port and the surrounding environment (Tang et al., 2018;

Alamoush et al., 2020). Therefore, in order to solve the problem of port energy

consumption and environmental pollution, it is urgent to build a green and low-

carbon port microgrid with clean energy as the main energy (Nikolaos and

Theocharis, 2021). In order to ensure the reliability of operation of the port

microgrid, it is crucial to study its energy management issues (Çağatay and Jasmine,

2019).
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The essence of port microgrid energy management is an

optimization problem with constraints, which requires meeting

the conditions of reliable operation for port microgrid and

minimizing port operating costs by using suitable

optimization strategies (Hein et al., 2021). Research results on

port microgrids have mainly considered the uncertainty of

renewable energy supply on the energy supply side (Çağatay

and Jasmine, 2021) and the reliability of supplying flexible loads

such as ships on the demand side (Parise et al., 2016; Fang et al.,

2020). Considering the presence of a large number of flexible

loads in the port power system, an energy management model

with multiple decision variables and constraints has been

proposed to vary the flexible loads’ power demand at high

loads or high electricity prices in order to optimize the

operating costs of the port power system (Kanellos et al.,

2019). Studies on energy management in port microgrids are

often solved by using centralized optimization methods (Olivares

et al., 2014; Kermani et al., 2020). The centralized methods rely

on the design of the centralized controller, which will need to be

redesigned if the structure of the port microgrid changes. At the

same time, although the centralized controller is capable of

handling huge amounts of data in the microgrid, its failure

would cause huge losses to the port. To sum up, the

centralized methods have problems such as difficult network

expansion and single point of failure. Moreover, port microgrids

with large-scale clean energy present a distributed structure, so

the distributed methods are attracting extensive attention of

researchers (Li et al., 2020; Li et al., 2021). In the distributed

methods, each agent needs to obtain information about its

neighbors with the help of a communication network and

performs local calculations based on the exchange of

information between itself and its neighbors to achieve

distributed energy management (Yang et al., 2019). For port

power systems with flexible loads, such as ships, a distributed

hierarchical control method has been proposed to solve the

problem of reducing the operating costs of the port power

system (Gennitsaris and Kanellos, 2019). A multiobjective

operation scheduling method based on an innovative virtual

fuzzy electricity price has been proposed to address the problem

of carbon emissions for large ports in a short period of time

(Kanellos, 2019). A distributed alternating direction method of

multipliers algorithm has been proposed for the existence of

energy entities with different energy forms in the port energy

system, in which the energy bodies only share local information

with their neighbors to complete the information update, solving

the problem of optimal operating costs of the port energy system

(Zhang et al., 2020). A distributed hierarchical topology

reconfiguration approach has been proposed for port power

systems with false data attacks, solving the problem of energy

management in port power systems with an unknown and

arbitrarily large number of attacked nodes (Shan et al., 2022).

The high level of clean energy connected to the port

microgrid increases the flexibility of the energy supply and

gives rise to a manufacturing and marketing integration of

energy main body – WEs, which contains at least one type of

energy production equipment or energy consumption

equipment (Sun et al., 2017; Sun et al., 2019). According to

the type of energy consumption of the power generating

equipment, the port microgrid includes traditional energy

generating equipment WEs (TWEs) and clean energy

generating equipment WEs (CWEs). However, as more and

more all-electric ships fueled by clean energy come into

service (Wen et al., 2021; Zhang et al., 2021), they can

either be connected directly to the shore power plant with

generators switched off and powered by the port microgrid for

the purpose of reducing pollution (Fang et al., 2020) or they

can be used as power generators to supply electricity to the

shore loads, giving them manufacturing and marketing

integration of behavior. Therefore, all-electric ships fueled

by clean energy can also be considered a dynamic type of WE

in port, namely ship WEs (SWEs). The bidirectional energy

transmission characteristic of WEs makes them both energy

suppliers and energy consumers (Sun et al., 2019), to the

extent that the operating costs of WEs are no longer just the

cost of the power generating equipment. This not only

increases the complexity of the WE operating cost function

but also creates difficulties in modelling the energy

management of the port microgrid. In addition, the

distributed energy management methods for the considered

port microgrid rely on the information interaction between

WEs, which is based on the premise that all WEs need to be in

the same communication network. However, the SWEs and

various heterogeneous WEs ashore are always in different

traditional communication networks. Due to the problems of

closed network element structure and single communication

mode in the traditional communication network, the network

convergence has a low support capability, with the result that

the information interaction between the WEs based on the

traditional communication network cannot be realized, thus,

the distributed energy management of the port microgrid

cannot be realized. In recent years, the polymorphic network

is a newly emerging type of smart network in different

communication networks, which uses a dynamic

combination of resources and network reconfiguration to

enhance the functions, performance, and other needs of

the network and fundamentally meet the service needs of

network intelligence, diversity, personality, high tenacity,

and high performance (Hu et al., 2019). Polymorphic

network breaks the traditional network structure to

achieve flexible interconnection of heterogeneous

networks, and new networks with hybrid addressing based

on polymorphic identification can achieve efficient

interaction of different data in space (Hu et al., 2020). The

implementation of distributed energy management for port

microgrids based on WEs can be guaranteed under a

polymorphic network.
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In summary, this study is dedicated to solving the energy

management problem of port microgrids containing WEs and

proposes a distributed method under a polymorphic network,

with the following main contributions:

1) A polymorphic energy management system was established

for a port microgrid based onWEs. Considering various WEs

in different communication networks, such as SWEs and

CWEs in the port microgrid, in order to guarantee the

information interaction between neighbor WEs, the port

microgrid energy management system was established

based on a polymorphic network to realize distributed

energy management.

2) Considering the bidirectional energy transmission

characteristic of WEs, the operating cost function for

WEs was constructed. The manufacturing and

marketing integration of the behavior of WEs meant

that the operating cost for WEs not only included the

cost of WE’s power generation but also the cost or benefit

of trading with neighbor WEs or the main grid. We

constructed operating cost functions for WEs with

incremental cost as a variable, simplified the cost

functions based on rotation symmetry, and analyzed the

convexity of the operating cost functions.

3) Considering the cost of carbon emissions, a port microgrid

energy management model was constructed, and a

distributed solution method was proposed. With the

objective of minimizing the operating cost of all WEs

and the carbon emissions of the port, taking into

account the constraints on the reliable operation of the

port microgrid, the energy management model of port

microgrid was constructed, and a distributed energy

management strategy was proposed based on a multi-

agents consensus algorithm.

The structure of the rest of the article is as follows. In Section

2, a polymorphic energy management system for WE-based port

microgrid is established. In Section 3, the port microgrid energy

management model is established, and a distributed solution

method is proposed. In Section 4, the proposed method is

validated by simulation using MATLAB. Finally, the results of

the study are summarized.

2 Polymorphic energy management
system for port microgrid based
on WEs

The port microgrid considered in this study is composed

of a large number of WEs, which can be classified according to

the type of power generating equipment: TWEs and CWEs. In

particular, CWEs include wind turbine WEs (WWEs) and

photovoltaic generating equipment WEs (PWEs). Unlike

traditional ships that use shore power after berthing, all-

electric ships fueled by clean energy are also dynamic WEs

for port microgrids – SWEs. The widespread presence of WEs

gives the port microgrid a distributed characteristic and

requires a distributed method based on a multi-agents

system to solve the port microgrid energy management

problem. Distributed energy management relies on the

interaction of information between agents corresponding to

each WEs, provided that all the agents are in the same

communication network and that their communication

topology meets certain constraints. However, the shore-

based WEs and berthing SWEs are in different

communication networks, making information interaction

between neighbor agents impossible. Polymorphic network

supports polymorphic identification, such as content

identification and identity identification. Identification

based on polymorphic addressing can realize flexible

networking and provide a channel for information

interaction between WEs in different communication

networks. Therefore, a polymorphic energy management

system for a port microgrid was constructed, and its

structure is shown in Figure 1.

As can be seen in Figure 1, the port microgrid polymorphic

energy management system consists of a data layer, a control

layer, and a service layer from the bottom up. The function of

the data layer is fitting the routing and resources of a variety of

heterogeneous infrastructure platforms, providing basic data

support and security for the construction of port microgrid

network elements, receiving operational data, and

broadcasting the scheduling instructions. The control layer

is used for polymorphic addressing for heterogeneous WEs

based on different identities and forming a dynamic

communication topology network following certain

constraints so as to enable peer-to-peer information

interaction between neighbor WEs. The function of the

service layer is to enable the energy management of the

port microgrid. First, the generating cost functions of

different WEs are obtained, and various WEs’ operating

cost functions are established, considering the bidirectional

energy transmission characteristic. Second, the energy

management model of the port microgrid with the

economic and low-carbon objective is constructed. Finally,

based on the communication topology of the WEs given by the

control layer, a distributed solution method is designed to

realize the distributed energy management of the port

microgrid.

In summary, the polymorphic energy management system of

the port microgrid is based on a polymorphic network to achieve

the compatibility of heterogeneous traditional communication

networks, which enables the interaction of information between

WEs in different modes and lays the foundation for the

subsequent implementation of distributed energy management

in the port microgrid.
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3 Distributed energy management for
port microgrid

3.1 Communication network

Port microgrid energy management relies on the exchange

of information between neighbor WEs, and its

communication topology is represented as G(V , E,A),
which is an undirected and strongly connected graph (Liu

et al., 2017), where the set of nodes V � {v1, v2, v3, . . . , vn}
denotes the finite non-empty set of all WE nodes in G. The set
of edges E � {e1, e2, e3, . . . , en} denotes the existence of

communication paths between WEs and neighbors in G. A

is the matrix of connection weights for information

interactions between WEs. aij > 0 if there is a path of

information exchange between any heterogeneous WEs vi
and vj; otherwise, aij� 0. It is worth noting that there are

no self-looping connected paths in G, that is, there is no aii� 0
in graph G.

3.2 Operating cost function of WEs

The bidirectional energy transmission of WEs in port

microgrids complicates their operating cost, which includes

not only the cost of generating equipment but also the cost

FIGURE 1
Port microgrid polymorphic energy management system.
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associated with energy interaction between WEs. As the energy

consumed by the load in theWE can be supplied by theWE itself,

neighbor WEs via the microgrid, or even the main grid.

Therefore, the operating cost of individual WE in the port

microgrid in this study includes the following: the generating

electricity cost of the WEs, the cost of purchasing electricity from

neighbors and the main grid, and the cost of selling electricity to

neighbors and the main grid. Based on the above-stated analysis,

the operating cost of individual WE in the port microgrid is

expressed as follows:

~f (Prk)� Cok(Prk)−∑N
j�1
akjPrkPk→j+∑N

j�1
ajkPrjPj→k

+Prg
⎡⎢⎢⎣Pk

load+Pk
loss+∑

N

j�1
akjPk→j−Pk−∑N

j�1
ajkPj→k

⎤⎥⎥⎦,
(1)

where Cok(Prk) represents the generating cost function

expressed with incremental cost as a variable, Pk→j

represents the port WE k supplying energy to WE j, Pk
load

represents the load of the WE k, Pk
loss represents the energy loss

from the WE k, Prg represents the main grid electricity price,

Prk represents the incremental cost of WE k, depending on the

output power of generating equipment for the WE, Pk

represents the power generation from WE k, and ajk
represents that the WE k can transmit electricity to the

WE j.

Remark 1. The unit price of electricity trading between WEs is

the incremental cost of each WE’s generation equipment.

Assuming a port microgrid containing N WEs, and

considering the bidirectional energy transmission between

WEs, based on the constructed operating cost function of the

individual WE, the operating cost of the port microgrid can be

expressed as follows:

∑N
k�1

~f (Prk)� ∑N
k�1

Cok(Prk)−∑N
k�1

∑N
j�1
akjPrkPk→j+∑N

k�1
∑N
j�1
ajkPrjPj→k

+∑N
k�1

Prg
⎡⎢⎢⎣Pk

load+Pk
loss+∑

N

j�1
akjPk→j−Pk−∑N

j�1
ajkPj→k

⎤⎥⎥⎦,
(2)

where N represents the number of WEs in the port microgrid.

Noting that ajkPrjPj→k , akjPrkPk→j, and akjPk→j, akjPj→k have

a special symmetry structure in the port microgrid, a rotational

symmetry-based analysis yields

∑N
k�1

∑N
j�1
ajkPrjPj→k−∑N

k�1
∑N
j�1
akjPrkPk→j� 0

∑N
k�1

akjPk→j−∑N
k�1

ajkPj→k� 0.

(3)

According to Eq. 3, it can be seen that the cost of energy

interaction betweenWEs in the port microgrid offsets each other.

Therefore, the operating cost function of port microgrid based on

WEs can be expressed as

~f (Pr)� ∑N
k�1

Cok(Prk)+Prg
⎡⎣Pload+Ploss−∑N

k�1
Pk

⎤⎦

� ∑N
k�1

Cok(Prk)+Prg⎡⎣Pload+Ploss−∑N
k�1

(Prk−bk)
2ak

⎤⎦

� ∑N
k�1

[Cok(Prk)−PrgPrk

2ak
+Prgbk

2ak
+Prg(Pk

load+Pk
loss)]

� ∑N
k�1

f k(Prk).

(4)

Remark 2. Due to the manufacturing and marketing integration

of WEs, the energy supply–demand balance of theWE is ensured

by considering the electricity trading between WEs and the

electricity trading between the WE and the main grid.

Furthermore, the relationship between the incremental cost

Prk and the power generation Pk of the kth WE has the

following relationship:

Prk(Pk)� dCk(Pk)
dPk

. (5)

For CWEs and TWEs, the cost function Ck(Pk) with the

power generation Pk of the kth WE is generally a convex

quadratic function (Huang et al., 2016; Kanellos, 2019);

therefore, Prk� 2akPk+bk , where ak and bk denote the

generating cost coefficients, respectively, ak > 0, bk > 0. In turn,

it can be obtained that Pk� (Prk−bk)
2ak

. The second row in model (4)

makes variable substitution according to the relationship

between Pk and Prk .

3.3 Convexity analysis

As the process of analyzing the operating cost function of

WEs requires modeling with the incremental cost Prk , the

generating cost function of WEs also needs to be converted to

a function with Prk . Thus, the equivalence of the generating cost

function for the WEs with Prk and Pk as variables is defined as

Cok(Prk) � Ck(Pk)� Ck(C′−1
k (C′

k(Pk)))� Ck(C′−1
k (Prk)). (6)

The character of the port microgrid operating cost function is

closely related to the design of subsequent distributed energy

management methods for the port microgrid, so it is necessary to

prove whether the constructed port microgrid operating cost

function is convex. As Prk in the port microgrid operating cost

function Eq. 4 is transformed so that the two added terms Prgbk
2ak

and − PrgPrk

2ak
are linearly related to Prk . Whether the constructed

operating cost function of the port microgrid is convex depends

critically on whether the WE generating cost function with the

incremental cost Prk is convex. To prove that the equivalently

transformed cost function Cok(Prk) of the WEs is convex, we

present Lemma 1.

Frontiers in Energy Research frontiersin.org

Teng et al. 10.3389/fenrg.2022.952396

7675

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.952396


Lemma 1. It is assumed that the cost function of electricity

generation Ck(Pk) of the WE is a smooth convex function and

satisfies the inequality condition:

(C″k(Pk))2−C′k(Pk)C″′k(Pk)≥ 0. (7)

Then, the cost function Cok(Prk) of electricity generation

with the incremental cost Prk as the variable for the WE is a

smooth convex function.

Proof. The cost function Cok(Prk) of electricity generation from

WEs is a smooth convex function that yields the second order

derivative of the function Cok(Prk) with Prk as the variable.

z2Cok(Prk)
zP2

rk

�
z[C′k(C′−1k (Prk)) 1

C″k(C′−1k (Prk))⎤⎥⎥⎦
zPrk

�
C″k(Pk)−C′k(Pk)C″′k(Pk)

C″k(Pk)(C″k(Pk))2
� (C″k(Pk))2−C′k(Pk)C″′k(Pk)

(C″k(Pk))3 .

(8)

From Lemma 1, we know that

(C″k(Pk))2−C′k(Pk)C″′k(Pk)≥ 0 and Ck(Pk) is a smooth

convex function, and we know that (C″k(Pk))3 > 0. Therefore,
the conclusion z2Cok(Prk)

zP2
rk

> 0 is obtained from Eq. 7, and the cost

function described by incremental cost is a smooth convex

function, that is, Cok(Prk) is a convex function. The proof is

completed.

Since the cost function of electricity generation Ck(Pk) for
WE is a smooth quadratic convex function, based on Lemma

1, Cok(Prk) is also a smooth convex function and therefore the

port microgrid operating cost function is a smooth convex

function.

3.4 Energy management model of port
microgrid

In order to build a green, low-carbon, and economic port

microgrid, the objective of energy management for port

microgrid is to minimize the operating cost and carbon

emissions. Based on the operating cost function for port

microgrid and considering the cost of port carbon emissions,

the energy management model for port microgrid is constructed

as follows:

min∑N
k�1

f k(Prk)+eco∑m
k�1

Emk(Prk)
s.t. Pk,min ≤Pk ≤Pk,max

, (9)

where N � m + n, m represents the number of TWEs, n
represents the number of CWEs, eco represents the cost per

unit of carbon emissions, Emk(.) represents the carbon emissions

generated by traditional energy generating equipment fromWEs,

and Pk,min and Pk,max represent the minimum and maximum

output of electricity generating equipment from WE k,
respectively.

Remark 3. The first term in Eq. 9, namely the operating cost of

the port microgrid based on WE, is a convex function. The

second item is the cost of carbon emissions for WE. As CWEs

do not produce carbon emissions, that is, ∑n
k�1Em(Pk)� 0,

only the cost of carbon emissions for TWEs are considered.

The cost functions of carbon emissions for TWEs are

quadratic in relation to the output power of the equipment

(Pourakbari-Kasmaei et al., 2020). To ensure uniformity of

variables in the port microgrid energy management model, the

cost functions of carbon emissions for TWEs need to be

expressed in the form of the incremental cost Prk . After

transformation by Eq. 5, Prk is linearly related to Pk , so

that the cost functions of carbon emissions for TWEs with

incremental cost Prk are also convex functions after variable

replacement through Lemma 1. In summary, the objective

function of the energy management model for the port

microgrid is convex. In addition, as the energy

supply–demand balance of every WE is ensured, the energy

supply–demand balance of the whole port microgrid is also

ensured. Therefore, there is a potential supply–demand

balance constraint in the objective function of the port

microgrid energy management model and only the output

power constraints of generating equipment for the WE need to

be considered. Therefore, the port microgrid energy

management problem is essentially a convex optimization

problem with inequality constraints and can be solved by

distributed methods.

3.5 Distributed energy management
method

Considering the distributed structure presented by the port

microgrid, the convex optimization problem (9) with inequality

constraints can be solved based on the distributed optimization

method (10).

{P*−g(P*−α(∇f (P*)+ Lz*))� 0
LP*� 0

, (10)

where P* � {P*
rk , k � 1, . . . ,N}, α represents the update step

(positive number), different steps affect the reliability of the

method, L represents the Laplace matrix, ∇f (.) represents the
gradient of the objective functions for port microgrid, g(.)
represents the projection operator, Ω′ represents a hyper-

rectangular set, Ω′� {Prk ∈ RN
r : P

min
rk ≤Prk ≤Pmax

rk }, and the

projection operator g(.) is equivalently described as
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Prk �
⎧⎪⎨⎪⎩

Pmax
rk

Prk

Pmin
rk

Prk >Pmax
rk

other
Prk <Pmin

rk

.

According to Eq. 10, a distributed solution method for the

energy management problem for the port microgrid is proposed.

The method is expressed in the following iterative way:

{Prk+1� g(Prk−α(∇f (Prk)+L(zk+Prk)))
zk+1� zk+LPrk+1

. (11)

Since model (9) is differentiable and its gradient is

continuous as a convex function, and there exists an auxiliary

variable z satisfying condition (10) (Liu et al., 2017), the

incremental cost of WEs can converge to an optimal solution,

and then a distributed optimal solution to the energy

management problem for the port microgrid is obtained.

4 Simulation

4.1 Port microgrid simulationmodel based
on WEs

In this subsection, we used MATLAB as an experimental tool

to verify the effectiveness of the distributed energy management

method for the port microgrid proposed in this article. The

considered port microgrid model based on WEs is shown in

Figure 2.

The port microgrid model contains 10 WEs, including

6 CWEs (2 WWEs and 1 PWE), 2 TWEs, and 2 SWEs. The

port microgrid has a total of 41555W of load and line losses. The

electricity required is provided by both the main grid and the

WEs, at the cost of 5 Yuan per unit of carbon emissions. It is

assumed that there are no energy losses in the generating

FIGURE 2
Simulation and validation model of a port microgrid based on WEs.
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equipment during the simulations for the heterogeneous WEs.

The parameters related to the operation of the generating

equipment in the heterogeneous WE during regular operation

of the microgrid are shown in Table 1 (Huang et al., 2016).

4.2 Case 1: Traditional port microgrid
energy management model with Pk

An energy management model with the objective of

minimizing the operating cost and carbon emissions of the

port microgrid, without considering the trading of electricity

between WEs and the trading of electricity between the WE and

the main grid, is as follows:

min ∑N
k�1

f k(Pk)+eco∑m
k�1

Emk(Pk)

s.t.

Pk,min ≤Pk ≤Pk,max

Pload+Ploss� PMG+∑N
k�1

Pk

. (12)

It is assumed that the total energy losses remain constant

during the regular operation of the port microgrid. It was

solved by using the centralized method and the distributed

method based on the leader-following consensus algorithm

(Huang et al., 2016), respectively. The results of the operation

of each generating equipment in the port microgrid are shown

in Table 2.

According to Table 2, the centralized method and the leader-

following consensus method result in different operating costs

for the port microgrid, namely 30,821 Yuan and 30,801 Yuan,

respectively.

4.3 Case 2: Traditional port microgrid
energy management model with Prk

min F(Pr)� ∑N
k�1

Cok(Prk)+PrgPMG

s.t. ∑N
k�1

Pk+PMG� Pload+Ploss

Pmin
k ≤Pk ≤Pmax

k

. (13)

In this study case, the load demand, transmission line energy

losses, andmain grid electricity price are kept constant in the port

microgrid, and a distributed method (Liu et al., 2017) is used to

solve the port microgrid energy management problem (13). The

parameter α is taken as 0.000001, and the incremental cost of the

heterogeneous WEs converges around 0.9 when the simulation

reaches the 300000th step. The operation of the microgrid is

analyzed considering the operating cost of the WEs. Figure 3

shows the simulation curves based on the distributed method.

Table 3 shows the output of WEs power generating equipment

through different cases.

TABLE 1 Parameters of power generating equipment.

Energy
type

a b c Pi
min Pimax αi βi γi

TR energy 0.000533 0.869 213.1 50 200 0.0000004 0.3 4.5

Clean energy1 0.008890 0.333 200 37.5 150 0 0 0

0.000741 0.833 240 45 180 0 0 0

Clean energy2 0.0001 0.50000 10 0 180000 0 0 0

0.0005 0.20000 15 0 125000 0 0 0

TABLE 2 Operating data of WEs.

WE-1 WE-2 WE-3 WE-4 WE-5

Distributed method 37.5 37.5 37.5 122.9 122.9

Centralized method 37.5 37.5 37.5 122.6 122.6

WE-1 WE-2 WE-3 WE-4 WE-5

Distributed method 8000.0 8000.0 25000.0 112.7 112.7

Centralized method 7997.3 7997.3 24987.0 112.5 112.5

Port microgrid Distributed method Cost 30821.0 Carbon emissions 82.8

Centralized method Cost 30801.0 Carbon emissions 82.6
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As can be seen from Figure 3, the incremental cost of WEs is

ultimately 1.0 Yuan per kWh. In the port microgrid, TWEs are

operating, and there is not only the operating cost of the WE but

also carbon emissions cost. According to Table 3, the operating

cost of the port microgrid during regular operation of the

heterogeneous WEs is 30,381 Yuan. This case has a lower

operating cost compared with Case 1 without carbon

emissions cost.

4.4 Case 3: The proposed model and
method

In this case, the distributed method (11) proposed in this article

is used to solve the energy management problem (9) for the port

microgrid. It is assumed that load demand, transmission line energy

losses, and main grid electricity price in the port microgrid remain

constant. α is taken as 0.000000015, and the incremental cost of the

heterogeneous WEs converges around 1.0 when the simulation

reaches the 300000th step. Figures 4 and 5 show the simulation

curves obtained based on the distributed method.

A comparative analysis between Case 3 and Case

1 shows that the power output of heterogeneous WEs

does not differ significantly under the three solution

methods. Therefore, the distributed method proposed in

this paper can enable port microgrid energy management.

As can be seen from Figure 4, the incremental cost of WEs

converges to 1.0 Yuan per kWh when the port microgrid is

operating steadily. The output power and operating cost of

the heterogeneous WEs in the port microgrid during

regular operation can be seen in Table 3. The operating

cost of the port microgrid is 30,792 Yuan, of which the cost

of carbon emissions is 412.7 Yuan. In this study case, there

are not only low operating costs but also low carbon

emissions.

A comparison between Case 1 and Case 3 shows that the

distributed solution method proposed in this article can solve

the port microgrid energy management problem, indicating

FIGURE 3
Operating curves of WEs. (A) Increment cost of WEs. (B) Output power of WEs

TABLE 3 Operating data of WEs by using the distributed method.

WE-1 WE-2 WE-3 WE-4 WE-5

Case 2 37.5 37.5 37.5 122.7 122.7

Case 3 37.5 37.5 37.5 122.6 122.5

WE-1 WE-2 WE-3 WE-4 WE-5

Case 2 7997.6 7997.6 24979.5 112.5 112.5

Case 3 7997.5 7997.4 24986.9 112.5 112.5

Port microgrid Case 2 Operating cost 30381.0 Carbon emissions cost 413.2

Case 3 30792.0 412.7
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the effectiveness of the distributed solution method proposed

in this article. In addition, Case 3 has lower operating costs

compared with Case 1. The comparison between Case 2 and

Case 3 shows that Case 3 is able to maximize the use of clean

energy, which not only reduces the operating cost of the port

microgrid but also reduces carbon emissions, contributing to

the development of a green and low-carbon port.

5 Conclusion

The large-scale use of clean energy in port microgrids has

given rise to WEs in the port, and the widespread presence of

WEs has made the port microgrid a distributed structure. A

distributed energy management strategy for WE-based port

microgrid under a polymorphic network has been proposed in

this article. First, this article has established a polymorphic

energy management system for port microgrids based on

WEs, ensuring reliable information interaction between

heterogeneous WEs, including SWEs, and laying the

foundation for the subsequent implementation of

distributed energy management. Then, considering the

characteristic of bidirectional energy transmission between

WEs in the port, the operating cost function of WEs has been

analyzed and established. Furthermore, an energy

management model for the port microgrid has been

constructed considering both the operating cost and the

carbon emissions of WEs. Finally, this article has proposed

a distributed method to solve the energy management

problem of the port microgrid based on the multi-agents

consensus method. Through the comparison and analysis

of different simulation cases, it has been concluded that the

method proposed in this article can not only reduce the

operating cost of the port microgrid but also reduce carbon

emissions, which can help the development and construction

of the green low-carbon port.

FIGURE 4
Operating curves of WEs. (A) Increment cost of WEs. (B) Output power of WEs

FIGURE 5
Operating cost of the port microgrid.
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At the current stage of a global energy shortage, the optimization of marine energy
consumption has received attention. In order to save marine energy consumption
and reduce pollution, research on low-energy-consumption Unmanned Surface Vessels
(USVs) and their green and low-carbon cooperative operation methods needs to be paid
attention to. Due to the ever-changing environment of USVs in actual sea conditions
and the increasingly complex tasks, the cooperation of a single swarm of USVs is
incompetent. First, in order to cope with larger-scale and complex tasks, we construct
the multilateral cooperative control system for USVs with topology scalability under a
polymorphic network and propose the multilateral distributed control protocol. Second,
in order to reduce the energy consumption of the cooperative operation of USVs, the low-
energy-consumption and low-carbon USVs are selected with the lowest EEOI index as
the optimization goal, and based on ad hoc on-demand distance vector routing (AODV),
the optimal path between USVs is obtained. Then, the swarms are grouped by External
Equitable Partition (EEP), and the green autonomous cooperative formation strategy is
proposed. Finally, the simulation examples are used to verify the effectiveness of the
method proposed in this article.

Keywords: low-carbon USV, polymorphic network, low-energy consumption, multilateral distributed control
protocol, green autonomous cooperative formation strategy

1 INTRODUCTION

Due to the lack of global energy and serious marine pollution, the pressure on energy conservation
and emission reduction is unprecedented, and it is necessary to strengthen thework of saving energy,
reducing consumption, and reducing the pollution of ships (Źarko et al., 2021; Yushuai et al., 2021).
Under such environmental conditions, it has become the general trend to vigorously develop and
use green USVs.

USV is an intelligent system that is unmanned (Zhenyu and Ge, 2018), green, and energy-
saving (Bertaska et al., 2015) and navigates on the water surface by remote control or autonomous
means (Zheng et al., 2021; Sharma et al., 2012). It has the characteristics of low cost, small size,
and high controllability (Rui et al., 2017). A single USV has major limitations in its operations—a
limited mission area, a lack of system autonomy, and a lack of sufficient fault tolerance. With the
development of the marine economy and technology, mission-oriented USVs emerge as the times
require, which consist of multiple USVs and operate in a swarm mode (Joseph et al., 2005). In
the process of driving or when performing a certain task, maintaining a certain formation can
greatly improve the work efficiency of task completion (Lewis and Tan, 1997) and has high fault
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tolerance and robustness (Zhengfeng et al., 2021). The USV
control technology has continuously made new research
progress. In the process of the development, it gradually
established a USV autonomous cooperative control theory
that meets the clustered marine operation tasks under
the complex environment, with the characteristics of high
reliability, high precision, strong adaptation, anti-interference,
autonomous cooperation, low carbon, low-energy consumption,
and the capabilities of fast swarm task response, cluster
formation reconstruction, and transformation (Yan et al., 2021;
Zhouhua et al., 2021). As a typical agent, the USVs’ cooperative
control can be researched and designed based on a multi-
agent system (MAS). The agents in the system use appropriate
communication routing protocols and distributed cooperative
control methods to make their states consistent (Garey
and David, 1978; Durfee and Corkill, 1989), to solve the
resource allocation problem (Qiaoyun et al., 2007; Chou and
Abraham, 1982), the task division problem (Lei and Qi, 2002),
and the communication problem between agents (Smith, 1980).

Due to the constantly changing environment of USVs under
actual sea conditions and the increasingly complex tasks they
face, the cooperation of a group of USVs is often incompetent
under some special conditions, requiring USVs with different
functions under a variety of differentmorphic networks to jointly
perform tasks. For example, when performing amaritime search,
rescue, and salvage tasks, the USV formation responsible for
communication with the ground, salvage, and transportation
needs to work together, though these three kinds of USVs,
each with their own mission objectives, use different control
algorithms under different communication networks. The key
to distributed cooperative control is the information interaction
between neighbor USVs. However, multiple groups of USVs
are in different unilateral communication networks. After
regrouping, they cannot directly exchange information and
thus cannot achieve cooperative control under the traditional
communication network. Therefore, the polymorphic network
architecture has been proposed, of which the basic idea is to
design an open network architecture with the characteristics
of a “reconfigurable network” based on a fully dimensional
definable platform (Julong et al., 2014), to meet the needs of the
diversified development of the multilateral network (Jiangxing
and Yuxiang, 2021; Li et al., 2019) and have achieved the goals
of multilateral co-management, equality and openness, and
high performance (Hui et al., 2019). The polymorphic network
development paradigm adopts the idea of separating the network
from the supporting environment and combines various existing
or future networks (including business or service ormanagement
functions) in a modal form, dynamically loading and running a
definable network support environment on the full dimension.
Realize the symbiotic coexistence, independent evolution, and
transformation of multiple network modalities in the same
technical and physical environment (Jiangxing and Kaizhi, 2022)
according to the modal customized software and hardware
configuration, message format, routing protocol, exchange
mode, forwarding logic, business characteristics, operation and
maintenance specifications, security policies, etc. To sum up, the
polymorphic network provides a channel for the communication

required by the USVs under multiple unilateral communication
networks. Therefore, in the face of increasingly complex working
conditions and mission requirements, when designing the
communication network between the different groups of USVs,
we cannot borrow from the design concept of the traditional
unilateral communication network because these USVs have
the characteristics of independence, autonomy, cooperation,
distribution, and heterogeneity. Also, it is necessary to build
a multilateral distributed cooperative control system for USVs
under a polymorphic network. The meaning of multilateral
distributed cooperative control refers to the task-oriented
regrouping of multiple groups of USVs under the polymorphic
network by constructing a reasonable communication topology
and designing a suitable routing protocol and distributed control
protocol, in which case all USVs in each group can maintain
communication with each other after regrouping, and the state
eventually tends to be consistent. In this way, the cooperative
control of multiple groups of USVs with different functions is
realized. When designing a new communication network, we
should consider the characteristics of distributed, multilateral co-
management, plug-and-play, equal openness, scalable structure,
and at the same time meeting the control requirements of each
group ofUSVs. It is in linewith the characteristics of polymorphic
networks, so the future cooperative control of USVs will rely on
polymorphic networks. Therefore, the polymorphic network is
the basis for realizing the cooperative control of green USVs.

To develop green shipping, reduce marine pollution, and
reduce carbon emissions, driven by specific tasks, how to
build a low-carbon and low-energy-consumption USVs under
the polymorphic network to efficiently and greenly achieve
multilateral cooperative control is an issue that requires further
research. Green and energy-saving USVs should be selected
to achieve energy saving and emission reduction. The energy
utilization efficiency of USVs can be evaluated by EEOI (the
Ship Energy Efficiency Operational Indicator), which is an
evaluation obtained by comprehensively considering the ship’s
cargo capacity, sailing distance, fuel consumption, greenhouse
gas emissions, and other factors (Chon et al., 2019). The smaller
the EEOI index, the higher the energy efficiency of the ship. The
reduction of EEOI can be achieved by optimizing the speed of the
ship, the route, rational stowage, recovering the waste heat from
themain engine exhaust gas, and using clean energywith lowCO2
emissions (Jingmin, 2016). Based on the EEOI index, the energy
efficiency index of the selectable USVs can be quantified, and the
low-carbon and low-energy-consumption USVs can be selected.
For the selected green USVs under the polymorphic network,
although the information exchange between multiple groups of
USVs can be realized, the temporary network cannot guarantee
the realization of multilateral distributed cooperative control.
Therefore, there are two key issues that need to be studied: one
is how to analyze and reorganize the USVs originally under
a unilateral communication network considering some suitable
conditions, and the other one is how to design a reasonable
ad hoc network topology and realize multilateral distributed
cooperative control based onmulti-agentmulti-consensus theory
(Olfati-Saber et al., 2007; Gambuzza and Mattia, 2019). The ad
hoc network of the USVs adopts a distributed structure, and
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each node in the network has an equal status and makes
independent decisions (Scott, 2013). Also, these nodes form
the network in a self-organization manner (Scott et al., 2003),
which makes the network have strong stability, openness, and
invulnerability (Xueli et al., 2017; Yang et al., 2021). Adopting
the AODV protocol is beneficial to save energy when USV
exchange information (Bhagyalakshmi andDogra, 2018;Mohsen
and Naif, 2019) and obtain the optimal path for inter-swarm
communication (Yuan et al., 2007; Qiang et al., 2011). Therefore,
how to use the fewest routes to reorganize the selected low-
carbon and low-energy-consumption USVs, build the topology
of the ad hoc network of multiple groups of USVs in a green
and low-energy-consumption manner, and design a multilateral
distributed cooperative control strategy is a concerning issue.

In order to solve the aforementioned problems, under
the polymorphic network, a green autonomous cooperative
formation strategy for multiple groups of USVs is proposed to
achieve low-carbon and low-energy-consumption multilateral
cooperative control, which can cope with the current large-
scale and complex maritime tasks, helping the shipping industry
reduce pollution and carbon emission. Also, the contributions are
as follows:

1) Utilize the EEOI index to quantify the energy efficiency
operation index of the USVs under the optional unilateral
communication network and construct a low-carbon and low-
energy-consumption restructured USVs. Based on the AODV
protocol of the wireless ad hoc network, the optimal network
routing of the USVs is established so as to complete the low-
energy-consumption networking of multiple groups of USVs.

2) According to the EEP, the multiple groups of USVs are
reasonably grouped, and the communication topology
reconstruction method is proposed under the polymorphic
network. Also, based on the multi-agent multi-consensus
algorithm, a green autonomous cooperative formation strategy
of multiple groups of USVs is proposed to realize multilateral
distributed cooperative control.

The rest of this article can be written as follows: in Section 2,
the multilateral distributed cooperative control framework is
introduced. In Section 3, we introduce some basic theoretical
knowledge. In Section 4, we propose the communication
topology reconstruction method and green autonomous
cooperative formation strategy for multiple groups of USVs. In
Section 5, we conduct an experimental simulation and analyze
the data generated by the experiment.

2 LOW-ENERGY-CONSUMPTION
MULTILATERAL DISTRIBUTED
COOPERATIVE CONTROL FRAMEWORK
FOR LOW-CARBON UNMANNED
SURFACE VESSELS

The low-energy-consumption multilateral distributed
cooperative control framework of multiple groups of USVs is
an ad hoc network system based on the polymorphic network, as

shown inFigure 1. It can independently complete the networking
process with the characteristics of distributed, plug-and-play,
and scalable structure (Shirani et al., 2012). Multiple groups
of USVs respond quickly and efficiently according to mission
requirements. Under the polymorphic network, low-energy-
consumption and low-carbon USVs are selected based on the
EEOI index for re-networking. Meanwhile, based on AODV
and EEP, the task-oriented routing protocol and communication
topology of the reorganized low-energy-consumption and low-
carbon USVs are designed to realize low-energy-consumption
multilateral distributed cooperative control. Finally, green
autonomous cooperative formation can be realized.

The framework is designed with the following core thinking:
In the face of large-scale and complex maritime tasks, it is
no longer completed by a single USV under the traditional
unilateral communication network. Instead, it is realized by
multiple groups of MAS composed of multiple low-carbon
USVs under the polymorphic network through low-energy-
consumption multilateral distributed cooperative control. When
USVs perform tasks, after receiving the task sent by the
base station on the shore, all agents should only rely on the
information exchange between each other. Also, some agents
with sufficient energy and low EEOI index are selected as
virtual leaders to form a temporary MAS with their surrounding
neighbors and are responsible for communicating with other
agents in the MAS and with virtual leaders of other MASs.
Through the appropriate routing protocol and communication
topology, a low-energy-consumption multilateral distributed
cooperative control system with autonomous and dynamic
connection functions is established to realize green autonomous
cooperative formation. When the task is completed, the MASs
are eliminated, and all agents maintain the same level. With the
new task generating, a new low-energy-consumptionmultilateral
distributed cooperative control system will be formed.

The multilateral distributed cooperative control framework
of multiple groups of USVs consists of two levels, namely,
the task sender and the task executor. The task sender is
to analyze and evaluate the task risk and difficulty level,
divide the task reasonably, and send the task to USVs. The
task executor, that is, the MAS corresponding to each group
of USVs, can choose to accept or reject the tasks assigned
by the nearby task senders through information exchange
according to its own situation. When accepting tasks, it can
form a cooperative control system with other MASs to achieve
low-energy-consumption multilateral distributed cooperative
control. The specific operation steps are as follows:

Step 1: Task sending. In the Part 1 of Figure 1. Analyze and
evaluate the risks and difficulties of maritime tasks and
deploy tasks to USVs through base stations on the shore.

Step 2: Task acceptance. The USVs accept the task and evaluate
the energy consumption of the USV to perform the task
according to the EEOI index of each USV. In the Part
2 of Figure 1 shows the green USVs selected based on
the EEOI index. The green USV with low carbon and
low-energy consumption is selected as the virtual leader,
accepts the assigned task, and forms a MAS with the green
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FIGURE 1 | Low-energy-consumption multilateral distributed cooperative control framework for multiple USVs.

USVwith low carbon and low-energy consumption within
a suitable distance in which the state of the USV can
achieve consensus.The virtual leader is also responsible for
establishing communication with virtual leaders of other
MASs. As shown in the Part 3 ofFigure 1, all virtual leaders
form a temporary ad hoc network, temporarily forming
a simple low-energy-consumption multilateral distributed
cooperative control system. The selection principles of
USVs with low carbon and low-energy consumption are as
follows:

min
n

∑
i=1

EEOIi =

∑
j
FCj ×CFj

mcargo ×D
,

where EEOIi is the EEOI index of the i-th USV, j is the fuel type,
FCj is the sailing fuel consumption, CFj is the carbon dioxide
conversion coefficient, mcargo is the cargo capacity, and D is the
cargo distance.

Step 3: Task execution. According to the specific requirements
of the tasks accepted by the MAS composed of each
USV, as shown in the Part 4 of Figure 1, the optimal
routing design and structural topology design are carried
out for the temporary ad hoc network of the virtual
leaders of all MASs. The reconstructed ad hoc network
realizes communication and achieves a multi-consistency
state with the least routing and realizes low-energy-
consumption multilateral distributed cooperative control
to perform tasks.

Step 4: Mission complete. When a mission is completed, the
cooperative control system disbands itself, the MAS of all
USVs is disbanded, and the virtual leaders disconnect from
communication and restore independence and maintain
the same level of status as other USV agents. The entire

system waits for the next task assignment, maintains the
state in the Part 1 ofFigure 1, and re-organizes the network
according to the tasks and according to the above four
steps.

The aforementioned multilateral distributed cooperative
control framework of multiple groups of USVs is a kind of ad
hoc network designed in the polymorphic network environment
according to the actual characteristics of the application
scenario. The low-carbon and low-energy-consumption USVs
agents in this scene have a certain specificity in moving and
performing different tasks; therefore, the constructed low-
energy-consumption multilateral distributed cooperative control
framework of the USVs not only inherits the characteristics
of the polymorphic network and ad hoc network but also has
the characteristics of green energy saving, pollution reduction,
and carbon reduction. This framework can realize the green
autonomous cooperative formation of multiple groups of USVs.

3 PRELIMINARIES

3.1 Graph Theory
MAS is a loosely coupled system composed of multiple agents,
which aims to describe the connection between agents in
the system, reveal the information and control relationship
between agents, and reflect the storage and sharing methods
of information in the system and the distribution pattern of
problem-solving capabilities. The network structure of the MAS
system is represented by matrix G = (V ,E ,A), where the number
of nodes (or vertices) in the network is n, the number of edges (or
links) is e, V = {w1,w2,…,wn} is used to represent a set of finite
non-empty node sets, and E ⊆ V ×V is the edge formed by the
nodes in G. The edge represents the communication relationship
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between nodes. Then, for any two nodes wi,wj ∈ V , where i ≠ j,
there is (wi,wj) ∈ E , and it is said thatwi andwj can communicate
with each other. Each edge has a corresponding value, that is, a
weight, and the weight of the edge can be positive or negative
according to the direction. The adjacency matrix of the system is
A = [wij]n×n, if (wi,wj) ∈ E , then wij = 1, otherwise wij = 0, where
i ≠ j; the degree matrix of the system is D = diag{d1,d2,…,dn},
where di = ∑j≠iwij.

The Laplace matrix of the system is L(G) = [lij]n×n:

lij = {
∑

j≠i
wij , i = j

−wij , i ≠ j

It satisfies the relation:L(G) =D −A.

3.2 Unmanned Surface Vessel Model
The dynamic equation of the considered low-carbon and low-
energy-consumption USV is as follows (Alslaim et al., 2016):

̇η = R (ψ)v, (1)

M ̇v +C (v)v +D (v)v + g (v,η) = w + 𝜏, (2)

where η = [x,y,ψ]T ∈R3 is used to denote the position and
heading of the USV. R(ψ) ∈R3×3 is a given rotation matrix,
v = [u,v, r]T ∈R3 is the surge, sway, and yaw velocities in the
ship reference frame. M ∈R3×3 is the inertia matrix. D(v) ∈
R3×3 is the nonlinear damping matrix. C(v) ∈R3×3 is the
Coriolis-centripetal matrix. 𝜏, w, and (v,η) are controller input,
disturbance, and unmodeled fluid dynamics, respectively.

3.3 Multi-Agent System
TheUSVmodel studied in this article is essentially an agent, and
the USVs can be represented by MAS. The research on USVs
is carried out by using a MAS controlled by a linear first-order
integral. The state of its MAS satisfies the following dynamic
equation:

̇xi (t) = Axi (t) +Bui (t) , (3)

where xi(t) ∈ ℝn is the state of the agent, ui(t) ∈ ℝp is the
controller input of the system, and A and B are the Laplace
matrix corresponding to the state of the agent and the controller,
respectively.

Through the dynamic equation in Eq. 3, its discrete consistent
control equation is obtained

̇xi = −
n

∑
j=1

aij (xi − xj) , i = 1,2,…,n, (4)

which is

̇x = −Lx, (5)

where L is the Laplace operator of MAS.

FIGURE 2 | Schematic diagram of ad hoc network structure.

3.4 Mobile Ad Hoc Networks
Mobile ad hoc network (MANET) refers to a network that
is temporarily composed of mobile nodes through wireless
communication inwhich these nodes act as routers for each other
to forward packets without relying on any fixed infrastructure
and services. Due to the transmission coverage of mobile nodes
being so limited that long-distance communication generally
needs to be carried out by means of multi-hop transmission,
mobile networks are also called mobile multi-hop wireless
networks. The schematic diagram of the mobile ad hoc network
is shown in Figure 2. Its operation is completely distributed,
and the tasks related to network control and organization
are all assigned to each node. Due to the independence of
nodes, the networking of ad hoc networks has quite significant
characteristics compared with other communication networks
(Lei et al., 2011), i.e., distributed ad hoc architecture, wireless
transmission technology, multi-hop routing, andmobile network
topology.

4 GREEN AUTONOMOUS COOPERATIVE
CONTROL METHOD FOR MULTIPLE
GROUPS OF
LOW-ENERGY-CONSUMPTION
UNMANNED SURFACE VESSELS

When multiple groups of USVs perform ad hoc networks based
on polymorphic networks and perform large-scale and complex
maritime tasks due to the differences in the EEOI index as well as
communication distance and control algorithm of each USV in
the swarm, andwhendesigning the ad hoc network ofUSVs,USV
with low-carbon and low-energy-consumption is first selected
as the virtual leader agent according to the earlier indicators.
With the virtual leader agent as the center, the low-carbon and
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low-energy-consumption USVs within a certain communication
range form a MAS, and then multiple MASs form a low-energy-
consumptionmultilateral distributed cooperative control system.
To realize the low-energy-consumption multilateral cooperative
control of multiple groups of USVs, first an ad hoc network is
established between low-carbon and low-energy-consumption
virtual leader agents through a suitable routing protocol, and
then an appropriate topology design is carried out for the ad
hoc network so that the entire cooperative control system can
meet the multi-consensus requirements; eventually, the green
autonomous cooperative formation of multiple groups of low-
energy-consumption USVs can be realized.

4.1 Ad Hoc On-Demand Distance Vector
Routing Protocol of
Low-Energy-Consumption Unmanned
Surface Vessels
When performing large-scale and complex tasks in the ocean,
the high speed and random movement of USVs without
infrastructure or supply measures as well as the changeable wind
andwaves at seawhich affect the channel, posing challenges to the
reliability of the routing and the energy of the network system.
The routing refers to the process of transmitting information
from the source to the destination through the network, and the
routing protocol is the regulation that needs to be followed in the
routing process. It is also an important mechanism to ensure that
the relevant information can be effectively shared among routers.
In the ad hoc network of USVs, USVs are affected by the wind
and waves, and they always correct their tracks to keep sailing.
Therefore, the USVs need to rebuild the topology at a relatively
fast speed and transport the data to the destination in a reasonable
way.

In the self-organizing network of USVs, commonly used
routing protocols are divided into active routing protocols and
reactive routing.

The DSDV (Destination-Sequenced Distance Vector) routing
protocol is a typical active routing protocol. All USVs using
this protocol will actively maintain routes where they can
communicate with other nodes while moving. When the state
of the USV changes, DSDV will update its state in time. Due to
DSDV maintaining and updating the routing network of large-
scale USV clusters frequently, although the delay is effectively
reduced and network reliability is improved, it increases the
operating cost of USVs and significantly increases energy
consumption (AL-Dhief et al., 2018).

AODV is a typical reactive routing. USVs using this protocol
do not have to maintain the routing at all times, and the protocol
takes effect only when information is transmitted between USVs,
in which case it can better adapt to the dynamic changes of the
link as well as reduce the overhead of mutual communication
between nodes. AODV has the characteristics of fast adaptation
to a dynamic link environment, low overhead, and support
for multicast. The routing algorithm used in this protocol is a
dynamic algorithm. Even when the USV is moving at a high
speed, the construction of the route can be completed quickly, and
the information can be accurately delivered to the destination. If

there are some errors, they can be repaired in a relatively short
period of time based on a specific repair method, minimizing
communication interruption time and thereby reducing the
energy consumption of the USV routing network.

Through the introduction of DSDV and AODV protocols
and under the condition of limited energy reserve of USVs,
choosing the ADOV protocol can make the maintenance process
of information more concise and effectively reduce the energy
consumption of USVs.

The topology of the USV ad hoc network will continue to
change according to the task situation and the surrounding
environment, and the energy reserve is limited. To sum up, the
AODV protocol is applicable to the continuous topology change,
multi-hop, high dynamic, and large-scaleUSVnetwork. Based on
theAODVprotocol, the low-energy-consumptionUSVswill only
issue an application to build a route when it has to transmit data,
and it is not necessary tomaintain the state of the topology during
the task execution, which can reduce the routing overhead. If
the USV in the middle also has a reply mechanism, it only
takes a relatively short time to find a route in this case, and the
communication link can be reconfigured in a short time.

Three message types are defined in the AODV routing
protocol: Route Request (RREQ) message, Route Reply (RREP)
message, and Route Error (RERR) message (Deepak and
Anandakumar, 2019), and three node types are defined: source
node, intermediate node (forward node), and destination node
(destination). If a node in an ad hoc network is to successfully
transmit a data message, two conditions must be met:

1) Node wj is within the transmission range of node wi, which
is

|wi −wj| ⩽ d. (6)

FIGURE 3 | Communication model of USV ad hoc network.
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2) At the same time, all other nodes wj in the network that are
sending data packets to the destination node wk satisfy:

|wk −wj| ⩾ (1+Δ) |wi −wj (Δ > 0) , (7)

where Δ is a constant greater than zero, representing the
protection area.

As shown in Figure 3, in USVs 1, the virtual leader
communicates with other members in the swarm with a routing
distance of radius r, and communicates with the virtual leaders of
USVs 2 and USVs 3 with a routing distance of radius R. Suppose
to communicate with a swarm with a routing distance greater
than R, a communication link needs to be established through
the AODV routing protocol.

4.1.1 Reverse Route Establishment
When the AODV protocol in the ad hoc network of multiple
groups of USVs starts to execute, when a USV sends the RREQ
message to the destination USV, each node that the RREQ
message passes throughwill be recorded to the reverse path of the
source node. After the destination node is found, it is no longer
necessary to broadcast the RREQ message. The RREP message
will be propagated along this path, and the node that receives
the RREQ message records the address of the previous hop
node. While establishing a reverse route, sufficient time should
be maintained so that the RREQ message traverses the entire
network and generates an RREPmessage to the node sending the
RREQ message (Parveen and Chaubey, 2019).

4.1.2 Forward Route Establishment
When the RREQ message reaches the node or destination node
that contains the routing information of the destination node, the
reverse path will be used to send the RREP message. A forward
route is established while forwarding the RREP message. It can
be said that the forward route is the opposite of the reverse route.
Once the forward route is established, the source node can begin
data transfer.

After a certain RREP message is forwarded by a node, it can
receive another RREP message. The RREP message is discarded
or forwarded, depending on its destination node sequence
number. If a new RREP message has a higher destination node
sequence number, the route will be updated and the new RREP
message will be forwarded. If the destination node sequence
number of the old RREP message and the new RREP message is
the same and the new RREPmessage has a smaller hop count, the
new RREPmessage will be preferentially selected and forwarded;
otherwise, all RREP messages arriving later will be discarded.
Other RREP messages are discarded, which reduces the number
of RREPmessages transmitted to the source node and ensures the
update of routing information. When the source node receives
the first RREP message, the source node can start the destination
node data transmission (Kitts et al., 2012).

The routing establishment process of the USVs is shown
in Figure 4. When USV A needs to send a message to the
destination USV H, USV A will broadcast an RREQ message
to USVs B and E. The USV receiving the RREQ message will
judge whether the reverse route needs to be updated according

FIGURE 4 | Route establishment process.

to the number of hops and select the best route according to the
principle of the smallest number of hops. When USV B receives
the RREQ message from USV A, it will compare whether the IP
address of USV B is the same as the destination USV address
in the RREQ message. If they are the same, add 1 to the serial
number of USV B and generate an RREP message. Otherwise,
USV B is not the destination USV. It will update the reverse route
to USV A to establish a reverse route and forward the RREQ
message to other USVs. By analogy, when the destination USV
H receives the RREQ message from USV A, USV H generates
an RREP message and returns to USV A along the reverse route.
When USV A receives the RREP message from the destination
USV H, USV A starts to transmit data. So far, the route selection
from USV A to the destination USV H has been completed.

4.2 Topological Design of Unmanned
Surface Vessels Based on External
Equitable Partition
When studying ad hoc networks of USVs, the network topology
is usually represented by the underlying network, which has
been extensively studied on the issues of multi-consensus. The
topology design of the underlying network of the USVs is carried
out by graph division, and the nodes with a constant number of
in-degrees are grouped into the same cell. EEP is a typical graph
division, and the topology design of the communication network
composed of virtual leader agents of each group ofUSVs in the re-
networked multiple groups of low-energy-consumption USVs is
performed to achieve green autonomous cooperative formation.

After multiple groups of low-energy-consumption USVs
establish an ad hoc network based on the AODV protocol, the
network routing composed of virtual leader agents of each group
of MAS in the ad hoc network is represented by a directed graph
G. Then, we can design the topology of graph G. Thus, the entire
low-energy-consumptionmultilateral cooperative control system
can achieve the expected multi-consensus control requirements.

Given a directed graph G and its vertex set V(G) and edge set
E(G), if there are two nodes (wi,wj) ∈ E , there is a directed edge
between wi and wj. wi is the tail of the edge, and wj is the head
of the edge, then wi is said to be the neighbor of wj. For each
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partition, π is a map of vertices that divides V into m different
cells, namely, q1,q2,…,qm, with⋃

m
l=1ql and qi ∩ qj = ∅, where i ≠ j.

Definition 1: If any two cells ql and qk in π = {q1,q2,…,qm} are
divided, including l = k, there is a constant dlk such that each node
in ql has dlk neighbors in qk, then the division π = {q1,q2,…,qm}
is said to be equitable.

Definition 2: Given a division π = {q1,q2,…,qm} of a graph G
and a vertex set V(G), if for any pair of units ql and qk, where
l ≠ k, each node in cell ql has dlk neighbors in qk, then π is called
external equitable partition (EEP).

In EEP, the nodes in a cell do not necessarily have the same
number of neighbors because the graph produced by the partition
is not regular. While a cell in a fair partition has the same out-
degree to every cell, in EEP, this only applies to the number of
connections between different cells.

Divide a given graph G into m cells, each of which can be
represented by a feature matrix P ∈ Rn×m.

Pij = {
1, node i is in cell j
0, node i is not in cell j

Through the feature matrix P, let N = PTP, where N ∈ Rm×m,
and the element on the diagonal of N is the size of each cell
|ql|. Because the diagonal terms of PTP are not zero, PTP is
invertible. Moreover, there is the following relationship between
the Laplacian matrix L of the graph G and the Laplacian matrix
Lπ of the quotient graph

LP = PLπ , (8)

and obtain

Lπ = (PTP)−1PTLP. (9)

By Eqs 8 and 9, we obtain

LP = P(PTP)−1PTLP. (10)

Multiplying both sides of Eq. 10 by (PTP)−1PT , we obtain

LP(PTP)−1PT = P(PTP)−1PTLP(PTP)−1PT . (11)

Define the relevant feature matrix as PH = P(PTP)−1PT and bring
it into (Eq. 11), we get

LPH = PH
TLPH . (12)

Now, through the definition of directed graph, this article
further illustrates the graph topology. Given a Laplacian L
associated with a graphG, there is a directed path fromnodewj to
nodewi. For the nodewj, its reachable setR(wj) can be defined as
including nodewj and all nodeswi reached bywj through directed
paths.

Let R1,R2,…,Rt represent the reachable set of graph G.
Define the exclusive part set Hi =Ri\∪j≠iRj of Ri, where Hi ∩
Hj = ∅; define the common part set Ci =Ri\Hi ofRi.

The MAS model corresponding to the low-energy-
consumption USVs is given:

̇x (t) = −Lx (t) + u. (13)

In Eq. 13, [x1(t),x2(t),…,xn(t)]T ≡ x(t) ∈ Rn. L represents the
directed graph Laplacian of MAS, and u is the distributed
proportional controller

u = −Lux (t) . (14)

By dividing the graph π = {q1,q2,…,qm}, the multi-consensus
condition is defined:

lim
t→∞
[xi (t) − xj (t)] = 0 ∀i, j|xi ∈ qv,xj ∈ qv, i ≠ j, v = 1,2,…,m.

(15)

The asymptotically stable flow of consistent trajectories after
system partitioning is defined as follows:

Mπ = {x ∈ ℝn|xi = xj,∀i, j|xi ∈ qv,xj ∈ qv, i ≠ j, v = 1,2,…,m} .
(16)

By designing the Laplacian operator of the controller u of the
MAS, we get:

̇x (t) = −(L+Lu)x (t) . (17)

LetLπ = L+Lu in Eq. 17 and perform x = Tx replacement on
the node cooperates of Lπ , separate the exclusive set from the
common set, and express it in the style of the following triangle:

L =(

L1 0 ⋯ 0 0
0 L2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ Lt 0
M1 M2 ⋯ Mt M

). (18)

In Eq. 18, Li is the hi × hi Laplace matrix associated with the
exclusive set Hi, Mi is the δ× hi matrix, M is an δ-order square
matrix associated with the union of all common parts, and the
elements on its diagonal represent the number of connections
between the common part and the exclusive part (hi ≔ |Hi|δ ∶=
|∪ti=1Ci|).

Through the previous methods, the controllers u of multiple
groups of low-energy-consumption USVs ad hoc networks are
designed to change the structure diagram of the original system,
and the expected topology diagram Lπ is obtained. Then,
transpose the Lπ to obtain the transposed matrix L, which can
more clearly reflect the influence of the grouped information and
the change of the topology structure on the multi-consensus of
the ad hoc network of multiple groups of USVs.

Based on EEP, the topology design of the ad hoc network
structure of USVs is carried out, and the MAS of the low-
energy-consumption USVs is grouped according to the task
requirements, so that the grouped MAS reaches a multi-
consensus state, improves the efficiency of task execution, and
achieves the green autonomous cooperative formation strategy.

5 SIMULATION

Under the polymorphic network, when facing complex maritime
tasks, multiple groups of USVs form a low-energy-consumption
multilateral distributed cooperative control system to achieve
green autonomous cooperative formation.
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5.1 Routing Design of
Low-Energy-Consumption Unmanned
Surface Vessels Under Ad Hoc
On-Demand Distance Vector Routing
Protocol
The simulation scenario is set as follows: by evaluating the EEOI
index of each USV in the ad hoc network of the USVs, in the
selection of the USVs with the smallest EEOI index, eight USVs
are selected to form a network with the surrounding neighbors
within the range of the communication radius r, respectively,
forming the MAS of eight USVs. Based on the AODV protocol
and the Prim algorithm, a node is used as the starting point, and
the edge with the minimum weight of each vertex is gradually
found to construct the minimum spanning tree so as to find
the best route with the minimum number of hops. As shown in
Figure 5, the eight black circles in the figure represent eightMAS,
respectively, and the radius of the route established by each MAS
is R (the dotted circle in the figure is the routing radius), where
eight USVs are represented by eight nodes, and their coordinates
are (3, 31)m, (12, 31)m, (6.5, 23)m, (9, 16)m, (18, 19)m, (23, 26)
m, (6, 7) m, (13, 0.2) m. Let the radius of the route established by
eachUSVbeR = 10m, and calculate the distance between the two
points by Eq. 6. When d ⩽ R, a route can be established directly
between two nodes. When d > R, no route can be established
directly between nodes. Then, according to the AODV routing
protocol, according to the principle of the smallest number of
hops, find a suitable intermediate node.

A) The route is established with node 1 as the starting point
and node 4 as the endpoint. According to Eq. 6, the distance
between node 1 and node 4 is d = 16.16 m, which is greater than
the routing radius R = 10 m of the node.The route between node
1 and node 4 cannot be established directly. The routing radius
of node 1 includes node 2 and node 4, while the routing radius
of node 3 includes node 1, node 2, and node 4. As shown in
Figure 6, there are two routes from node 1 to node 4, namely,
1→ 2→ 3→ 4 and 1→ 3→ 4. Considering the principle of
green energy saving and the minimum number of hops, the
AODV protocol obtains the optimal route as 1→ 3→ 4.

B) The route is established with node 6 and node 4 as the
endpoints. According to Eq. 6, the distance between node 6 and
node 4 is d = 86 m, which is greater than the routing radius of the
node R = 10 m. The route between node 6 and node 4 cannot be
established directly. The routing radius of node 6 includes node
5, and the routing radius of node 5 includes node 5 and node 4.
As shown in Figure 7, the route from node 6 to node 4 is derived
as 6→ 5→ 4 based on the AODV protocol.

C) The route is established with node 8 and node 4 as the
endpoints. According to Eq. 6, the distance between node 8 and
node 4 is d = 655.64m, which is greater than the routing radius of
the node R = 10 m.The route between node 8 and node 4 cannot
be established directly.The routing radius of node 8 includes node
7, and the routing radius of node 7 includes node 8 and node 4.
As shown in Figure 8, the route from node 6 to node 4 is derived
as 8→ 7→ 4 based on the AODV protocol.

Through the simulation results, it can be seen that in the
multilateral distributed cooperative control system of multiple

FIGURE 5 | Eight USV ad hoc network structure diagram.

FIGURE 6 | Routing simulation diagram from node 1 to node 4.

groups of low-carbon and low-energy-consumption USVs, the
virtual leader agent of each group of low-energy-consumption
USVs achieves the goal of establishing routes with long-distance
nodes with the minimum number of hops based on the AODV
protocol, which follows the green energy-saving concept of
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FIGURE 7 | Routing simulation diagram from node 6 to node 4.

FIGURE 8 | Routing simulation diagram from node 8 to node 4.

realizing communication between swarms with the least routing
and effectively reduces the energy consumption caused by the
re-networking of multiple groups of low-carbon and low-energy-
consumption USVs facing complex tasks under the polymorphic
network.

5.2 Topology Design of
Low-Energy-Consumption Unmanned
Surface Vessel Communication Network
Under External Equitable Partition
The simulation scenario is set as follows: after the route formation
of the low-energy-consumption USVs is completed, in order to
enable the low-energy-consumption USVs to further perform

FIGURE 9 | Network routing for USVs.

tasks according to the assignment of tasks, it is necessary to design
the topology of the communication network of the low-energy-
consumptionUSVs based on the connectivity of network routing.
The established network routing of the low-energy-consumption
USVs is shown in Figure 9.

Based on graph theory, the Laplacian operator for network
routing in Figure 9 is:

L =

[[[[[[[[[[[[

[

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−2 1 1 0 0 0 0 0
0 0 −1 3 −1 0 −1 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0

]]]]]]]]]]]]

]

.

Let the initial state of the eight USVs be x0 = [1;3;5;7;2;4;6;8]
and the time to be t ∈ [1,10]. Through the dynamic equation
̇x = −Lx of Eq. 3, the time evolution diagram of ̇x is obtained

as shown in Figure 10, in which each USV cannot achieve the
expected consensus within the specified time. Therefore, the
topology of the system is designed.

According to the task requirements, the following topology
design is carried out on the structure of the system through
EEP: node 1, node 2, and node 3 are divided into a group for
operations, node 5 and node 6 are divided into a group, node 7
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FIGURE 10 | Time evolution plot of x. (t ).

FIGURE 11 | Network routing after topology design of USVs and Laplacian
operator after division.

and node 8 are divided into a group, and the bidirectional link
from node 1 to node 2 is added through controller u, the route
from node 5 to node 6 is added, and the route from node 7 to
node 8 is added; delete the route from node 2 to node 3. Get
the following 4 grouping sets, which areH1 = {1,2,3},H2 = {5,6},
H3 = {7,8}, and C = {4} and get the partition: π = {H1,H2,H3,C}.
As shown in Figure 11, the divided structure diagram and the

corresponding Laplace operator are obtained:

L+Lu =

[[[[[[[[[[[[

[

1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
0 0 −1 3 −1 0 −1 0
0 0 0 0 1 −1 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 −1 1

]]]]]]]]]]]]

]

.

Transpose L+Lu, get the transposed Laplacian:

L+Lu =

[[[[[[[[[[[[

[

1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 −1 1 0
0 0 −1 −1 0 −1 0 3

]]]]]]]]]]]]

]

.

The characteristic matrix P of Figure 11 and the Laplace
matrix Lπ of its quotient graph:

P =

[[[[[[[[[[[[

[

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

]]]]]]]]]]]]

]

Lπ =
[[[

[

0 0 0 0
0 0 0 0
0 0 0 0
−1 −1 −1 3

]]]

]

. (19)
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FIGURE 12 | Time evolution diagram of x. (t ) after EEP design.

The relation of L+Lu, P and Lπ satisfies (Eq. 8). Through
Eqs 9–11, the matrix PH of Figure 11 is obtained:

PH =

[[[[[[[[[[[[

[

0.3 0.3 0.3 0 0 0 0 0
0.3 0.3 0.3 0 0 0 0 0
0.3 0.3 0.3 0 0 0 0 0
0 0 0 0.5 0.5 0 0 0
0 0 0 0.5 0.5 0 0 0
0 0 0 0 0 0.5 0.5 0
0 0 0 0 0 0.5 0.5 0
0 0 0 0 0 0 0 1

]]]]]]]]]]]]

]

. (20)

L+Lu and PH are verified by Eq. 12, and the result of Eq. 12 is
satisfied.

The exclusive set after the graph is divided as H =
{H1,H2,H3} = {{1,2,3}, {5,6}, {7,8}}, the common set is C = {4},
the initial state of the eight USVs is x0 = [1;3;5;7;2;4;6;8], and
the time is t ∈ [1,10], and the time evolution diagram is obtained
by the dynamic equation ̇x = −Lx of Eq. 3 which is shown in
Figure 12:

The experimental results show that on the basis of ensuring
the connectivity of the entire network routing of multiple
groups of low-energy-consumption USVs, the topology design
of network routing is carried out based on EEP, improving the
work efficiency of multiple groups of low-energy-consumption
USVs, achieving the expected multi-consensus state, realizing
low-energy-consumption multilateral cooperative control, and

finally realizing the green autonomous cooperative
formation of multiple groups of low-energy-consumption
USVs.

6 CONCLUSION

In the polymorphic network environment, both artificial
intelligence and ad hoc networks have been rapidly developed
and widely used. In this article, a low-energy-consumption
networking method for USVs that perform large-scale and
complex tasks has been presented. Combined with the
characteristics of the polymorphic network, such as multilateral
co-management, green energy saving, and scalable structure,
a low-energy-consumption multilateral distributed cooperative
control system framework for multiple groups of USVs has been
proposed. First, through the evaluation of the EEOI index, low-
carbon and low-energy-consumptionUSVs have been selected to
form a system for the task. Second, a green networking method
for low-energy-consumption USVs with minimum routings has
been proposed. In addition, a distributed cooperative control
protocol based on the MAS multi-consensus algorithm has
been designed to realize the multilateral cooperative control of
multiple groups of low-energy-consumptionUSVs. Furthermore,
the green autonomous cooperative formation can be realized,
and USVs can perform tasks efficiently and quickly in groups.
Finally, the effectiveness of the proposed method has been
verified by a simulation example, which provides technical
support and a theoretical basis for realizing green energy-saving
autonomous cooperative control of USVs in a polymorphic
network environment.
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Autonomous underwater vehicle
docking system for energy and
data transmission in cabled
ocean observatory networks
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Cabled ocean observatory networks (COON) are used for long-term all-

weather observation of submarine scientific data, which contribute to low-

carbon ocean energy research. Autonomous underwater vehicles (AUV) with

clean energy can provide active search capabilities by connecting with the

docking station (DS) on the COON to complete energy and data transmission in

long-term detection tasks. The AUV is guided by optical active landmarks and a

vision system for short-range docking. In this study, we propose an active

landmarks tracking framework to solve the problem of detecting failure caused

by incomplete observation of landmarks. First, a two-stage docking algorithm

based on CNN is used to estimate the 3D relative position and orientation

between DS and AUV during docking, including detect phase and PnP pose

estimator. Then extended Kalman filter and Hungarian matching algorithm are

introduced to improve the robustness of the algorithm. The reliability of the

vision-based short-range docking algorithm is verified in the pool, and the

robustness of the algorithm to the field environment is shown in the lake field

experiment combined with long-range guidance. The experimental results

indicate that the algorithm framework can effectively leverage the landmarks

information and enhance the scope of the visual guidance algorithm.

KEYWORDS

autonomous underwater vehicle, underwater docking, visual navigation, underwater
active landmarks, marine robotics, low carbon

Introduction

Cabled ocean observatory networks (COON) can realize all-weather, in situ, long-

term, continuous, real-time, high-resolution, and high-precision observations of the

ocean from the seabed to the sea surface, and the observations can be used to study

scientific problems such as sea-air exchange, climate change, ocean circulation, low-

carbon ocean bioenergy, and ecosystems (De Leo et al., 2018; Seyfried et al., 2022).

While the observation range of the COON is limited by cable, scholars have proposed

that the use of autonomous underwater vehicles (AUV) in the COON to combine the

advantages of AUV and COON (Manalang and Delaney, 2016; Liu et al., 2021; Deeb et al.,
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2019). AUV are not limited by cables and can provide more

powerful and flexible solutions for long-term missions of

exploring underwater renewable energy, deep-sea minerals,

and acquiring natural data. When applying AUV in the

COON, the main factors restricting AUV are the limited

energy carrying capacity and information transmission

capacity, which can be solved by underwater docking

(Palomeras et al., 2018; Yazdani et al., 2020; Lin et al., 2022).

It is of great significance for the application of AUV in COON to

provide a reliable docking and recovery system in the actual use

scenario.

The main sensors of the AUV docking are acoustic,

electromagnetic, and optical sensors. For the short-range

guidance in the recovery task, Deltheil et al. (2000) compared

various sensing methods and proposed that the optical sensor has

excellent robustness and flexibility and is the best scheme for

AUV recovery. Numerous research have successfully completed

the short-range docking and recovery task through visual

detection algorithm and active landmarks, which has verified

the feasibility of this technology. Optical landmarks are mainly

divided into active landmarks and passive landmarks. Passive

landmarks do not emit light actively, identified by their own

texture features. They have a close range of visibility and have

high requirements for water quality (Maire et al., 2009; Wang

et al., 2021). The active landmarks have higher visibility than the

passive ones, and an effective terminal guidance scheme can be

provided by arranging appropriate light landmarks (Li D. J. et al.,

2015; Li Y. et al., 2015; Ghosh et al., 2016; Sans-Muntadas et al.,

2019).

Park et al. (2009) used five light landmarks for guidance and

successfully completed docking within 15 m in the pool

environment. However, the detection failed as part of DS

entered the blind area of vision at close range, resulting in

docking failure. Zhou et al. (2014) Proposed a video tracking

algorithm to solve the problem of landmarks loss. However, the

landmarks layout and docking method limit the applicable scene

and guiding distance of the algorithm.

The aforementioned experiments are carried out in the pool

environment, and different water quality and optical interference

in the natural environment have a great impact on the detection

and segmentation algorithm. Liu et al. (2019) proposed a two-

stage docking framework of detection and pose estimation, which

successfully completed the guidance in the lake environment.

The experimental results show that the two-stage framework can

detect docking stations and estimate their relative pose more

efficiently and successfully, compared with the state-of-the-art

baseline systems. However, limited by the framework, the

detection fails in the absence of enough landmarks.

Considering a DS with n landmarks, a minimum of n-1

landmarks is required, which leads to a narrow entrance angle

required in the early stage of docking.

Most visual methods are tested in the pool; however, the

interference of the field environment reduces the control

performance of the AUV, which puts forward higher

requirements for the robustness of the guidance algorithm.

Our method improves on real-world usage, expanding the

workspace of the system. Using the information more

effectively of the landmarks to improve the guidance

performance in the field environment is the main research

goal of this study. There are the following main problems in

the guidance of underwater recovery docking using active

landmarks:

1) Image variance is caused by different water quality and

environment, and landmarks intensity changes caused by

different distances and angle, which makes detection more

difficult.

2) In the docking process, only part of the landmarks of the

docking DS can be observed due to short distance or large

pose deviation, failing the target detection algorithm.

3) The identification of the landmarks cannot be correctly

matched when the coordinates of the landmarks are not

completely observed.

In order to solve the aforementioned problems, we propose

active landmarks tracking algorithm for docking tasks. The main

contributions of this study are as follows:

1) A tracking framework combined with a two-stage docking

algorithm of detection and pose estimation is proposed to

make full use of landmarks information in docking tasks.

Compared with the original one, the tracking algorithm can

work effectively despite the failure of target detection and

incomplete observation.

2) Field experiments were carried out in the water pool and lake,

providing the first angle of view data for the successful

docking of underwater landmarks.

In this study, we introduce the system overview in the second

section. In the third section, the framework of the tracking

algorithm for active landmarks will be introduced. In the

fourth section, we show the docking experimental results of

the pool and lake environment, which verifies the reliability

and robustness of the algorithm.

Docking system overviews

In this section, an overview of our recycling system will be

introduced. Our recycling system includes DS and AUV, as

shown in Figures 1A, B. DS includes acoustic guidance

module, light landmarks, and electromagnetic tightening

devices. The length and width of the funnel-shaped entrance

of the DS is 1.2 m, the acoustic guidance system is arranged above

the funnel, and the landmarks are arranged around the opening

of the funnel for the visual guidance system, as shown in
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Figure 1C. Considering the underwater absorption of light, a

460 nm blue LED light source is used to make the landmarks

better spread in the underwater environment. In addition, the

landmarks lamp is added with a 60° angle convex lens to enhance

the effective guiding distance. The intensity of the light is

adjusted to a suitable range for the capture of the camera, in

order to avoid the fusion of the boundary of the two lights on the

image.

Our AUV is a small torpedo-shaped vehicle called Portable

AUV(PAUV). The PAUVhas an air weight of 80 kg, a length of 2 m,

a diameter of 240mm, and a maximum speed of 5 knots. Equipped

with two tail thrusters, two culvert thrusters, and two tail rudders.

PAUV mainly includes a control computer, Doppler velocity

log(DVL), inertial measurement unit (IMU), GPS, acoustic sensor,

optical sensor, battery units, and motors. Ultra-short baseline system

(USBL) is used as acoustic guidance for long-distance navigation

tasks, which can work effectively within 2 km and provide ranging

and direction-finding functions. It is switched to the optical guidance

method at a short range to complete the final precise docking. A

NanoSeaCam monocular color camera and embedded computer

NVIDIA Jetson TX2 are used for optical guidance. The camera with

20fps is installed at the bow of the PAUV, and an embedded

computer is installed in the middle of the PAUV, as shown in

Figures 1C,D. Jetson TX2 is an excellent embedded edge computing

platform with 256 CUDA cores. The computing performance

reaches 1.33 TFLOPS and only 15W power consumption is

required when running. The first view color image of the PAUV

is captured by the camera and sent to Jetson TX2 for calculation.

Then, the obtained guidance information is sent to the main control

computer for control. Data exchange between eachmodule is realized

through LAN.

Underwater docking algorithm

In this section, we introduce the two-stage docking algorithm

and landmarks tracking method. The main task of the underwater

docking algorithm is to accurately identify the DS within the visual

range of active landmarks and give the 3D relative position and

orientation information for docking navigation. Then the AUV uses

FIGURE 1
Docking systems. (A)Docking station (B) Active landmark (C) Portable AUV (D) JetsonTX2.
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the relative attitude information to update the endpoint of the line

tracking task, so as to achieve the docking mission.

Two-stage docking algorithm

The two-stage docking algorithm divides the underwater

docking task into two parts: target detection and poses estimation.

Target detection computes the size and position of the underwater

DS obtained from the color image during the docking process, then

the 2D image coordinates of each landmark are obtained through

image segmentation and clustering algorithm. Pose estimation gives

the relative position and orientation from the landmarks 2D

coordinates by using different PnP algorithm considering the

different light numbers.

Target detection
The difficulty of target detection is that the image of the

underwater environment will appear blurred, noise, color shift,

contrast reduction, and interference light source and occlusion in

the actual environment. The above problems can be effectively

solved by introducing a convolutional neural network (CNN),

which has surpassed the traditional method in many target

recognition tasks. A CNN called Docking Neural Network

(DoNN) (Liu et al., 2019) inspired by the YOLO (Redmon

et al., 2016) is used to detect DS. We first briefly introduce

YOLO so that the improvement of the DoNN algorithm on

docking datasets can be explained intuitively.

YOLO divides the input image into S × S grid cells, each cell

predicts B bounding boxes. The bounding box is denoted by

B � (x, y, w, h, confidence), where (x, y) denotes the center

coordinate of the box and (w, h) is the width and height of

the box. Confidence refers to the IOU between the predicted box

and ground truth. Moreover, Pr(Classi|Object) · Pr(Object) is

used as the class score for the category distribution. The loss of

YOLO is as follows:

lcoord(θ) � ∑S
2

i�0
∑B
j�0
1objij [(xi − x̂i)2 + (yi − ŷi)2]

+∑S
2

i�0
∑B
j�0
1objij [( 		

wi
√ − 		̂

wi

√ )2 + ( 		
hi

√ −
		̂
hi

√ )2] (1)

FIGURE 2
(A) Output of DoNN (B) Binary image (C) Landmarks with identification.

FIGURE 3
Coordinate frames used in underwater docking.
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lobj(θ) � ∑S
2

i�0
∑B
j�0
1objij (Ci − Ĉi)2 (2)

lnoobj(θ) � ∑S
2

i�0
∑B
j�0
1noobjij (Ci − Ĉi)2 (3)

lclasses(θ) � ∑S
2

i�0
1obji ∑

c∈classes
(pi(c) − p̂i(c))2 (4)

lYOLO(θ) � λcoord lcoord(θ) + lobj(θ) + λnoobj lnoobj(θ) + lclasses(θ)
(5)

where θ denotes the network parameters (weights), 1obji denotes

if an object appears in the cell i and 1objij denotes that the j th

bounding box predictor in the cell i is used for that prediction.

Parameters λcoord , λnoobj are used to control the contribution of

different parts of the loss function.

The major difference between DoNN and YOLO is the loss

function. DoNN redesigned the loss function used in YOLO and

remove both the class loss and the confidence partial of class is

compatible with docking datasets which contain only one object

class. Relatively, the class score using Pr(Dock) to reduce the

FIGURE 4
(A) Complete observation; (B) Incomplete observation.

FIGURE 5
Tracking framework combing two-stage docking and SORT algorithm.

FIGURE 6
(A) Tracking results in close incomplete observation (B) Tracking result in big deviation incomplete observation.
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instability introduced by Pr(Classi|Object) in one sure target

class. The loss of DoNN is shown in the formula.

lDoNN(θ) � λcoord lcoord(θ) + λobj lnoobj(θ) + λnoobj lnoobj(θ) (6)

The experiment shows that DoNN can effectively obtain the

2D position of the DS from the pictures of the complex

environment for the underwater DS image. The neural

network runs on the Jetson TX2, and each image takes 0.17s.

With the bounding box given by DoNN, a threshold-based

segmentation is used to obtain the 2D coordinates of the

landmarks. The output box of the DoNN is considered the

segmented target region, which effectively shields the impact

of ambient light on the landmarks division of the DS. The

coordinates and numbers of lights are given by a clustering

algorithm. Under the condition of observation with at least

5 landmarks, the prior knowledge is used to obtain the

identification number corresponding to each landmark

coordinate required by the PNP algorithm. The detection

process is shown in Figure 2.

Pose estimation
Pose estimation in underwater docking refers to recovering

3D relative position and orientation between docking stations

and AUVs from 2D images. The basic principle of the pose

estimation algorithm considers that the 2D coordinates of the

landmarks are the projection of the real landmarks on the visual

plane, so the real 3D pose can be restored from the 2D image. In

this case, the PNP algorithm estimates through several pairs of

control points, one of which is in the 2D plane and the other in

3D space.

The pose referred to in this study is the position and orientation

of the AUV relative to the DS, we employ Euler angles to represent

rotation between the camera and the landmarks as shown in Figure 3.

We denote pose vector as p � (t1, t2, t3, r1, r2, r3), where ti is the
positionXc, Yc, Zc, and ri refer to the orientationYaw, Pitch, andRoll.

Non-iterative 3D pose estimation methods based on control

points mainly include DLT (Abdel-Aziz and Karara, 1971), EPnP

(Lepetit et al., 2009), R-PnP (Li, S et al., 2012). For a small

number of control points, the EPnP method remains the best

choice. However, as the AUV approaches or deviates greatly from

the DS, it may cause incomplete observation of landmarks.

Considering that the landmarks are arranged in a uniform

circle, there may be only three pairs of effective control points

when half or less of DS are observed, which is also common in the

practical scenario, the problem will degenerate to P3P.

Although the P3P problem has four solutions, considering the

continuity of video, we can still get an effective solution sequence.

Intuitively, we propose to find the best solution by finding a pose

vector pn
m that minimizes the pose error with the last pose.

argminPn
m
⎛⎝λx∑3

1

∣∣∣∣∣tPn
m

i − tp
n−1

i

∣∣∣∣∣ +∑3
1

∣∣∣∣∣rPn
m

i − rp
n−1

i

∣∣∣∣∣⎞⎠ (7)

FIGURE 7
Docking process image in water pool.

FIGURE 8
Trajectories of the five recovery processes in water-pool.
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where pn−1 is the last pose and denotes the m th possible pose in

frame n. λx is used to balance the weight between position and

orientation error.

Landmark tracking algorithm

The two phases tracking algorithm remain some problem. For

example, once the first stage of target detection fails, the image

cannot be used for segmentation even if the image meets the

estimation conditions. As shown in Figure 4, during the docking

process of AUV, with the gradual reduction of the distance from the

DS, it is easy to enter the blind area of the camera. Similarly, under

the large initial error condition, AUV will enter the camera blind

area and lose guidance too early. The larger the error in the early

stage of docking, the more eager guidance information is needed

(Xie et al., 2021). If we can effectively use the observation

information of the landmarks in a short distance to give the

estimated relative position and orientation can effectively

improve the reliability of terminal guidance.

The aforementioned problems can be effectively solved by

introducing the landmarks tracking method. SORT was

proposed as a classic multi-target tracking framework (Bewley

et al., 2016). Referring to this algorithm, a landmarks-based

tracking framwork is proposed. The proposed tracking

framework combining two-stage docking and SORT is shown

in Figure 5.

Based on the two-stage algorithm, Hungarian matching and

Kalman filter in the SORT algorithm are introduced for tracking.

For the tracking part, we retain the IOU loss function in SORT

and delete the targets with large IOU loss. In addition,

considering that the DS is a whole, instead of predicting multi

landmarks, the Kalman filter is applied directly to the final

detection results to estimate the pose of the next frame. The

predicted result is then projected on the 2D coordinate plane so

that it can be matched with the current incomplete observation to

obtain the match of control points, which is required in the PnP

algorithm. Considering the continuity of the docking process, we

believe that there will not be much change in a continuous

sequence of images, so the neural network method can be

FIGURE 9
Docking process image in the lake (success).

FIGURE 10
Docking process image in the lake (failed).

Frontiers in Energy Research frontiersin.org07

Sun and Han 10.3389/fenrg.2022.960278

104103

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.960278


independent of the segmentation method after the DS is detected.

Through this structure, the segmentation algorithm can continue

to work, using the information of the previous frame in the case

of detection failure. Figure 6 shows that the algorithm can still

effectively match control point pairs when only three landmarks

are observed.

Experimental analysis and results

In this part, we compared and verified the algorithm by

only executing optical guidance in the pool environment. In

the lake experiment, the acoustic guidance system was used

for long-distance guidance, and the robustness of the

algorithm was verified in combination with short-range

optical guidance.

Water pool experiment

Our goal in the pool experiment is to verify the feasibility of

close-range guidance and evaluate the performance by using only

the visual guidance algorithm. The pool experiment provides the

basis for the real environment experiment on the lake. We

experimented with a 10 m wide, 25 m long, and 7 m deep

pool, and the water quality was clear. The center of the DS is

hoisted to a position 2 m underwater from the water surface.

When the AUV is 20 m away from the DS radially, it performs

the underwater docking task from the water surface. The forward

speed is 0.5 m/s. The whole docking process is only completed by

the visual method. A successful docking is shown in Figure 7. In

the pool environment, five docking operations were carried out

with different initial positions and angles, all the docking was

successful. The trajectories of the five recovery processes are

shown in Figure 8.

Field experiment

The purpose of the outfield test is to verify the robustness of

the algorithm in the field environment based on the pool

experiment and to verify the system stability of the acoustic

system for correct optical terminal guidance. The field test was

carried out in Fuxian Lake, China. The elevation of Fuxian Lake is

1722.5 m, the average water depth is 95.2 m, and the water

quality is relatively clear. We selected a relatively flat terrain

and placed the DS at the bottom of the lake in advance to ensure

its stability. The center of the DS is about 15 m underwater away

from the water surface. The AUV dives from the water surface at

a distance of 1000 m from the DS and starts the homing and

docking mission. First, rough guidance is carried out through

acoustic guidance, and then switched to optical guidance when it

is 15 m away from the DS.

When performing short-range optical docking, the forward

speed is 0.5 m/s. We conducted 4 docking tests on the lake,

including 3 successes and 1 failed docking. Figures 9, 10 show a

FIGURE 11
Trajectories of the four recovery processes in the lake.
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successful and a failed docking process. Data show that the

docking distance on the lake has been reduced, accompanied

by more disturbances.

As shown in Figure 10, when the DS is seen, the optical

module gives a correct estimation. It can be seen from the image

that AUV is deflecting towards DS. However, AUV cannot

enormously adjust pose within a short distance owing to

inherent mobility, and it missed the DS.

It is noteworthy that in the failed run4 as shown in Figure 11,

the prediction of P3P accounted for 33% of the effective output and

lasted for 1.6 m in the final stage. If the position and attitude

information provided by P3P is missing, AUV will lose guidance

information earlier with a large deviation. It can be seen that the P3P

algorithm can still provide final help at the boundary of the visual

blind area, to expand the workspace of the docking algorithm.

Conclusion

In this study, an underwater active landmark tracking algorithm

is proposed to complete the terminal optical guidance. The beneficial

characteristics of the neural network are used to effectively identify

the DS in the field environment. By introducing the tracking

framework, observation failure caused by short-range and large

observation angles is improved, and good docking accuracy and

robustness are shown in the water pool and field experiments.

Acoustic guidance is the pre-step of optical landmarks

guidance in the outfield experiment. It is found that if the

USBL system cannot effectively bring the vehicle into the

visual range of landmarks for optical guidance, the whole

docking process will fail no matter how accurate the optical

guidance algorithm is. Therefore, if the effective working scopes

of optical guidance can be effectively improved, it will be of great

significance to the whole guidance system. In the future, further

research will be carried out on how to improve the directivity and

working range of optical guidance.
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Low carbon economic dispatch
of power system at multiple time
scales considering GRU wind
power forecasting and integrated
carbon capture
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To achieve carbon neutrality in electricity, measures such as increasing the share

of renewable energy sources such as wind power and achieving more accurate

and faster wind power forecasting, and low carbon retrofitting of thermal power

units are all important to achieve the goal. Firstly, the GRU prediction algorithm

was used to forecast wind power, which performed well in terms of prediction

accuracy andmodel training speed. Then, we continue to fully utilize the source-

side low-carbon characteristics by installing flue gas bypass systems and liquid

storage in carbon capture plants to form an integrated carbon capture plant

operation, thereby reducing carbon emissions and the proportion of abandoned

wind. Secondly, a three-stage low carbon economic dispatch model is

established to reduce wind abandonment by combining wind power forecasts

on different time scales. Finally, a case study was carried out using a modified

IEEE-39 node system. The results show that the proposed three-stage integrated

dispatching method can make full use of wind energy and achieve the goal of

economic dispatching of the power system.

KEYWORDS

low carbon, multiple time scales, GRU, carbon capture, dispatch of power system

1 Introduction

Currently, renewable energy sources such as wind power are gradually replacing

traditional fossil energy sources (Duan et al., 2021). Unlike other renewable energy

sources, wind power generation is random and volatile, and has certain anti-peak

characteristics. The large-scale grid connection of wind power increases the pressure

on the system for peaking, and if necessary, some wind power needs to be abandoned to

ensure system safety. The problem of wasted wind power is no longer negligible. The main

causes of wind power wastage are shifted between generation and load peaks, the low

accuracy of wind power forecasts, and the insufficient adjustment rate of thermal power

units (Huang et al., 2021; Han et al., 2022; Zhu et al., 2022). Highly accurate wind power

forecasting can be achieved through artificial intelligence algorithms. The problem of the

adjusting rate of thermal power units can be solved by introducing integrated carbon
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capture plants. In conclusion, wind power can be absorbed

through a reasonable dispatch control strategy, combined with

multi-timescale wind power forecasting (Cheng et al., 2022; Tian

et al., 2022; Wei et al., 2022).

At present, wind power forecasting focuses on the study of

forecast errors and multi-time scale forecasting, and is used to

improve the utilization-ratio of wind power by matching it with

dispatch schedules on different timescales (Aslam and Albassam,

2022; Chen W et al., 2021). The accuracy of wind power

forecasting improves as the time scale is shortened, and it is

relevant that multi-timescale forecasting can correct deviations

in long time scales. The wind power forecasts currently used in

power system dispatching are mainly long-timescale for day-ahead

dispatching. At the same time, there has been a lot of research on

traditional and artificial intelligence algorithms to effectively deal

with the volatility and randomness of wind power and improve its

accuracy (Li et al., 2021; Sun et al., 2021). Traditional algorithms

include statistical models such as autoregressive integrated moving

average (ARIMA), which uses statistical methods to establish the

relationship between historical and forecast values. However,

traditional algorithms are poor at predicting volatility. Artificial

intelligence algorithms include machine learning algorithms and

neural network algorithms (Sun et al., 2021; Sahra et al., 2022).

Machine learning algorithms such as least squares support vector

machines (LSSVM) and support vector regression (SVR). Neural

network algorithms such as convolutional neural network (CNN),

recurrent neural network (RNN), long short-term memory

(LSTM), and gated recurrent unit (GRU), of which RNN,

LSTM, and GRU are recurrent neural networks, can store

sequence history information and combine it with current

input values, which are calculated and then continued into

subsequent units (Tanveer and Zhang 2022). Recurrent neural

networks are specifically used for time series, which can effectively

improve prediction accuracy and reduce model training time.

Due to its time-series nature, LSTM and GRU have great

advantages in processing wind power data. For power prediction

of multiple wind turbines, CNN can be used to extract the spatial

features of the data first, and then the temporal characteristics of the

power series can be established by LSTM to achieve the power

prediction of wind turbines (Chen et al., 2021a).When the historical

data is few, the pre-trained model can be fine-tuned in the target

domain with small data by transfer learning (TL) to make full use of

the source domain data and improve the performance of the model

on the target domain data. GRU is then used to extract temporal

feature information from wind power and meteorological data

(Chen et al., 2021b). For ultra-short-term wind power prediction,

the key features of the input data can be extracted by CNN and the

dynamic changes of the features proposed by CNN can be learned

by bi-directional modeling using bidirectional gated recurrent unit

(Bi-GRU) network (Meng et al., 2022). In this paper, the GRU is

used to predict wind power as preparatory data for input into a

dispatch model containing carbon capture technology to achieve

integrated economic dispatch of the power system.

After the multi-timescale wind power forecasts have been

made, they are fed into the dispatching model. Wind

abandonment can be improved by considering regulation

devices in the dispatch plan. Typical regulation devices are

storage devices, high energy-carrying devices, pumped storage

plants, etc. Conditioning devices are effective in improving wind

power utilization-ratio, but energy storage devices have

significant energy losses. High energy-carrying devices are

often difficult to create links with wind farms due to the

constraints of where the resource is located (Xiang et al.,

2021; Zhang Z et al., 2022). Carbon capture devices, on the

other hand, are converted from traditional thermal power plants

and do not have geographical restrictions (Gao et al., 2021;

Huang et al., 2022; Xie et al., 2022).

Today, coal is still the dominant fuel, and carbon capture and

storage (CCS) is an important technology to combat global

climate change by allowing the continued use of fossil fuels

and significantly reducing CO2 emissions. However, there are

potential risks associated with carbon storage and CCS is

currently a high investment. CO2 transport and storage

should therefore be given more consideration where coal-fired

power plants have a large installed capacity and are densely

distributed. The investment risk can be solved by using better

capture solvents, better boiler systems, and more efficient

turbines, which can effectively reduce costs and energy losses

(Fan et al., 2018; Fan et al., 2021).

The dispatch mathematical model in this paper is divided

into optimization objectives and constraints. The optimization

objective includes the start-up and shut-down and coal

consumption costs of thermal power units, the cost of wind

abandonment penalties, the cost of carbon trading, the

depreciation cost of carbon capture plants, and the cost of

solvent losses in the carbon capture process. The CCS

technology includes carbon capture, transport, and storage.

However, in general, the cost of the carbon capture process is

the largest and changes with the capture method, so this paper

focuses on the cost of carbon capture (Fan et al., 2019).

Constraints include power balance constraints, wind power

output constraints, thermal unit output constraints, thermal

unit climbing constraints, thermal unit start/stop constraints,

and integrated carbon capture plant operation constraints.

The dispatch model in this paper includes an integrated

carbon capture plant. Carbon capture and storage is an

important technology for decarbonization (Qian et al., 2020;

Liu et al., 2022; Nie et al., 2022). While thermal power is still the

dominant energy source, the addition of carbon capture

equipment to conventional thermal power plants can increase

system operational flexibility while achieving low-carbon and

effectively improving wind power utilization (Chen et al., 2021;

Zhang G et al., 2022). Carbon capture plants have the advantage

of regulating peak load curves, making them an ideal source of

power to complement wind power. However, current research

has mainly used split-flow carbon capture plants, where the
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CO2 absorption process is coupled with the CO2 resolution

process, which does not allow for energy time-shifting, resulting

in an increase in carbon capture energy consumption with

increasing thermal power plant output, which is not

conducive to achieving economics. The integrated carbon

capture plant, however, introduces a liquid storage type on

top of the split-flow type, which enables the decoupling of the

CO2 absorption process from the CO2 resolution process and

makes the system more flexible and economical to operate (Jin

et al., 2021; Xing et al., 2021).

This paper first uses LSTMandGRU to forecast wind power in

three dimensions (1h, 15min, and 5min), with GRU performing

better in terms of both prediction accuracy and model training

speed. A three-stage (day-ahead, intra-day, and dynamic)

economic dispatch model for power systems with integrated

carbon capture plants is then constructed, with wind power

forecasts as inputs to the dispatch model, and each time scale

corresponding to the other. The dispatching results show that the

proposed three-stage integrated dispatching model can make full

use of wind energy and achieve the goal of low-carbon economic

dispatch. Section 2 presents the low-carbon mechanism analysis,

Section 3 introduces the principles of the forecasting algorithm and

the construction of the three-stage dispatch model, and Section 4

presents the case study validation and analysis.

The main contributions of this paper are as follows:

1) Combining wind power forecasting with power system

dispatch, more accurate wind power forecasting accuracy

will facilitate optimal system dispatch. This is reflected in

the reduction of wind power waste and the economy of

dispatching costs.

2) A combination of split-flow and liquid storage carbon capture

technology has been constructed, which is based on the

transformation of the original thermal power plant and

does not have geographical restrictions. At the same time,

the addition of liquid storage carbon capture enables the

decoupling of CO2 absorption and extraction processes,

making system operation more flexible.

3) Existing research mostly focuses on day-ahead dispatching.

This paper combines day-ahead, intra-day, and dynamic

stages, to form a three-stage dispatching model, which can

improve the system energy structure and reduce wind

abandonment and load loss.

2 operational mechanisms that take
into account multi-timescale wind
power projections and the low
carbon characteristics of carbon
capture plants

A carbon capture plant is a traditional thermal power plant

with a flue gas bypass system or solution storage to achieve either

split-flow carbon capture or liquid storage carbon capture, while

a combination of the two forms of carbon capture results in an

integrated carbon capture plant.

Carbon capture and storage (CCS) is an important way to

achieve low carbon development in the power industry. It

consists of three components: carbon capture, transport, and

storage, of which the capture process is closely linked to the

power plant. By converting a traditional thermal power plant into

a carbon capture plant, a large amount of CO2 is separated from

the flue gas emitted by the plant and processed through a series of

processes to form a high concentration of CO2, which is

eventually isolated from the atmosphere through geological

storage and deep-sea storage.

CCS, as one of the key measures for CO2 reduction, is

considered to be the most promising technology for

development. Numerous studies have reported that CCS

technology has an important contribution to make to the

global goal of controlling temperature rise. In addition to

this, CCS technology can not only improve the recovery of

conventional energy but also facilitate the development and

utilization ratio of unconventional energy and mineral

resources. Considering the irreversible trend of the global

low-carbon energy transition, accelerating the research and

implementation of CCS technology is an inevitable choice to

support global energy security, which is conducive to the

rational allocation of energy, promoting the efficient use of

resources, and effectively solving the bottleneck problem of

regional development. At the same time, CCS technology can

turn waste into treasure, promote the formation of new

economic points, and inject vitality into the development of

the market economy. Although CCS is an important way to

reduce carbon dioxide emissions in the future, CCS projects

still have problems such as large investment, high energy

consumption and uncertain risks, and some of the key

technologies are still being worked out and solved, making

it difficult to play a large role in a short period. Overall, it is

still at the stage of research and development and

implementation, and there is still a gap between it and

large-scale promotion, which requires continued in-depth

research.

Carbon capture is divided into post-combustion, pre-

combustion and oxygen-enriched combustion carbon capture.

Post-combustion capture is the most mature technology and is

widely used. This paper uses post-combustion carbon capture

technology.

An integrated carbon capture plant can respond to system

demand for active CO2 emissions, but can also transfer carbon

capture consumption from peak load times to valley times, and

absorb carbon capture energy during valley times. This

improves dispatch decision flexibility while relieving

operational pressure at peak load times. An integrated

carbon capture plant can improve wind power utilization-

ratio, but can also achieve a time-shift of carbon capture
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energy consumption, enabling low carbon economic operation

of the system.

The transfer of energy consumption for carbon capture is

achieved by the amount of fluid-rich and fluid-poor storage.

The process is that when the system energy consumption

increases at a certain time, the carbon capture will also be

intensified and the carbon capture energy consumption will

increase. At this point, the carbon capture rich-tank will start

to store CO2 and not resolve it until the load is low. In

summary, a liquid storage carbon capture plant can divert

carbon capture energy from peak loads and increase net

system output.

Figure 1 shows the internal schematic of an integrated

carbon capture plant. Post-combustion carbon capture in

thermal power plants consists of CO2 separation and

CO2 compression. Firstly, the processed flue gas is fed into

an absorption tower containing monoethanolamine (MEA)

solvent. Under certain operating conditions the MEA

absorbs the CO2 in the flue gas to form a rich liquid

containing CO2, while the rest of the flue gas (mainly

O2 and N2) is discharged directly into the atmosphere

through the top of the tower. The rich liquid is then

pumped into the regeneration tower, where the operating

conditions are changed to achieve CO2 resolution and MEA

solvent regeneration, with the resolved CO2 being compressed

and stored, and the lean liquid from the regeneration tower

being returned to the absorption tower to complete the

recycling of the solution.

The MEA solution has a strong alkaline and is therefore

often used as an absorbent for acidic gases such as CO2 and is

widely used in the absorption of CO2 in coal-fired power plants.

The MEA solution reacts rapidly with CO2 at 20–50°C to

produce a more stable carbamate, which removes CO2 from

the flue gas. The MEA solution hardly reacts with other gases in

the flue gas. When the temperature of the MEA solution is

raised to 105°C or higher, the carbamate can thermally

decompose, thus regenerating the MEA solvent and releasing

the CO2.

The reaction equation of MEA with CO2 is:

H2O +MEAH+#MEA +H3O
+

2H2O#H3O
+ +OH−

HCO−
3 +H2O#H3O

+ + CO2−
3

CO2 +OH− → HCO−
3

HCO−
3 → CO2 +OH−

MEA + CO2 +H2O → MEACOO− +H3O
+

MEACOO− +H3O
+ → MEA +H2O + CO2

(1)

The net output of a carbon capture plant needs to reduce the

carbon capture energy consumption, which is divided into

operational energy and fixed energy consumption. The energy

used to resolve CO2 in the carbon capture process is much

greater than the energy used to absorb it. Thus, the mathematical

FIGURE 1
Internal schematic of an integrated carbon capture plant.
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model of a carbon capture plant, considering only the energy

consumption for resolution and compression, is as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

EGi,t � egiPGi,t

0≤ δi ≤ 1
EtotalCO2i,t � ECGi,t + βδiEGi,t

0≤EtotalCO2i,t ≤ ηβegiPGi,max

PBi,t � λEtotalCO2i,t

PGi,t � PJi,t + PDi + PBi,t

(2)

where PGi,t is the total output of unit i at time t. egi is the carbon

intensity of unit i. EGi,t is the total CO2 emissions of unit i at time

t. δ is the flue gas split ratio of unit i. β is the carbon capture

efficiency. ECGi,t is the amount of CO2 to be captured supplied by

the solution storage of unit i in period t. EtotalCO2i,t is the total

CO2 captured by unit i at time t. η is the maximum operating

factor of the solution regeneration and the compression tower.

PGi,max is the maximum output of unit i at time t. λ is the energy

consumption required to capture each unit of CO2. PBi,t is the

operational energy consumption of carbon capture plant i at time

t. PDi is the fixed energy consumption of carbon capture plant i.

PJi,t is the net output of carbon capture plant i at time t.

From eq. (2), it can be deduced that the net output range for

integrated carbon capture plants and the split-flow carbon

capture plants are:

PGi,min − ληβδimaxegiPGi,max − PDi ≤PJi,t ≤PGi,max − PDi

PGi,min − λβδimaxegiPGi,min − PDi ≤PJi,t ≤PGi,max − PDi
(3)

It can be seen from the equations that the integrated carbon

capture plants have a greater net output range than the split flow

plants, using Figure 2 depicts the net output range of the three

plants.

Compared to conventional thermal power plants, split-flow

carbon capture plants have a lower net bottom output limit. The

time-shifting nature of the carbon capture energy consumption

of a carbon capture plant, based on the addition of a storage tank

to the plant, results in a lower net bottom output limit for an

integrated carbon capture plant. With the same rotating reserve

requirements, the lower net output limit facilitates the absorption

of wind power, resulting in energy savings and emission

reductions. In addition, carbon capture plants can change the

plant operation by changing the flue gas split ratio, whereas

traditional thermal plants require boiler adjustments. Changing

the flue gas split ratio is more time-sensitive and can effectively

address wind abandonment and load loss.

Wind power is a key source for decarbonizing power system

because it is low-cost and zero-carbon. However, unlike other

forms of energy, wind power generation is random and highly

volatile, and exhibits certain anti-peak characteristics. Nowadays,

the large-scale grid connection of wind power puts greater

pressure on system peaking, and sometimes some of the wind

energy has to be abandoned to ensure system safety. Shortening

the forecast scale can effectively improve the accuracy of wind

power forecast, while the lack of efficiency of thermal regulation

can be solved by fast regulation devices (carbon capture plants). If

the two are combined, more wind energy can be absorbed. At the

same time, low wind power forecasting accuracy requires

flexibility in the dispatch. Therefore, improving the accuracy

of wind power forecasting, promoting the absorption of wind

power and reducing the level of system carbon emissions remain

topical issues.

There are two ways to improve the accuracy of wind power

forecasting, one is to shorten the time scale and the other is to use

forecasting algorithms that conform to the pattern of wind power

generation.

The accuracy of wind power forecasting improves with the

shortening of the time scale. The results of wind power

forecasting on different time scales are sent to the dispatching

model, which helps to correct the deviation between the long-

time scale pre-dispatching plan and the short time scale working

conditions. At present, the economic dispatch of power systems

containing wind power is mostly concentrated in the long-time

scale dispatch phase, so it is of practical significance to study the

combination of wind power prediction and dispatch on multiple

time scales.

Because of the stochastic and highly volatile nature of wind

power, the use of forecasting algorithms that match its

characteristics has a crucial impact on the results. Traditional

statistical model-based forecasting algorithms establish a

mapping relationship between input and output quantities

FIGURE 2
Net output range for conventional thermal power plants,
split-flow carbon capture plants and integrated carbon capture
plants.
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and do not focus on the influence of the stochastic component,

nor do they take into account the decaying nature of the

stochastic component over time. In the paper, GRU is used to

forecast wind power. As a variant of the RNN, GRU is suitable for

processing time series data and can effectively extract the

correlation information between each time sub-series.

Compared with the LSTM, GRU has fewer parameters and is

more computationally efficient.

Due to the large-scale wind power grid connection, the

traditional day-ahead dispatching strategy is no longer

sufficient to meet the requirements of system safety and

economy. Combining multi-time-scale wind power forecasting

with multi-time-scale dispatching enables the system to have a

deeper regulation range and a faster regulation rate, based on the

energy transfer characteristics of carbon capture plants. The

deeper regulation range allows for the absorption of wind

abandonment during the day-ahead and intra-day dispatch

stages. The faster regulation rate allows the system to

participate in the dynamic dispatch stage.

The three-stage dispatching strategy is: the day-ahead stage

sets the next day’s 24 h unit start-up and shutdown and output

plan, the intra-day stage can correct the unit output according to

the 15min short-term wind power forecast, and the dynamic

stage can adjust the net output of the carbon capture plant

according to the 5-min ultra-short-term wind power forecast.

The carbon capture plant can increase or decrease the energy

consumption of the carbon capture equipment at any time in

response to system requirements, changing the net output and

increasing the speed of output regulation of the thermal plant. At

the same time, due to the presence of carbon capture

consumption, the net output of the carbon capture plant is

lower and the regulation range is deeper. The specific

mechanisms for eliminating wind abandonment are as follows.

For the same standby requirements, carbon capture plants

have a lower net output threshold, thus enabling less wind to be

abandoned. On the one hand, carbon capture plants can provide

more up-rotating reserves. When more up-rotation reserve is

required, conventional thermal plants can only turn on

additional units, resulting in wind abandonment. Carbon

capture plants, do not need to restart units with the required

up-rotation reserve, which effectively reduces wind abandonment.

On the other hand, carbon capture equipment can change the

net output of a carbon capture plant by adjusting the shunt ratio,

essentially regulating the rate of steam extraction, which is faster.

Compared to conventional thermal power plants, which require

5–10 min for standby response, carbon capture plants can

respond to standby requirements in less than 5 min. As a

result, conventional thermal plants are unable to respond

quickly to a 5-min wind forecast during the dynamic stage,

whereas carbon capture plants have limited regulation but can

effectively reduce wind abandonment.

3 Multi-timescale low carbon
economic dispatch model

3.1 Predictive model

3.1.1 Pre-processing
Exponential weighted moving average (EWMA) is often used

to describe trends of time series. It considers the high weight of

recent data, at the same time, gradually reduces the weight of

recent data to compensate overall trend. This feature can describe

future trends in wind power and further enrich the dataset.

The process of constructing the EWMA feature is as follows.

For wind power, n is the total number of time points.

⎧⎪⎨⎪⎩
ei � l0, i � 0, 1

ei � (1 − α)ei−1 + αli−1, i � 2, 3 . . . n
ei � (1 − α)en + αln, i> n

(4)

Where, α is the smoothing parameter. The value range of α is

(0, 1], and differential evolution method is used to minimize the

objective function to obtain the optimal α value. The calculated

objective is as follows.

α � argmin⎛⎝∑N
i�1

							
(li − ei)2

√ ⎞⎠ (5)

Simple moving average (SMA) is an unweighted arithmetic

average of the n values preceding a given variable. For example, a

96-point simple moving average of a 15-min wind power forecast

refers to the average of the previous day’s wind power. If the

power at each point is p1 to pn, and when calculating successive

values, a new point is added while an old point is dropped out, the

SMA is calculated as.

SMAt1,n � SMAt0,n − p1

n
+ pn+1

n
(6)

Figure 3 shows the wind power (15 min) and its EWMA and

SMA features for Belgium in July 2021. The red line in the figure

is the EWMA, which reflects the trend of wind power in the short

term and provides reference information for wind power

forecasting. The blue line in the figure is the SMA. SMA is

the wind power average over the first N points and is a simple

extraction of the wind power trend. EWMA can extract the trend

while eliminating the effect of complex noise and enriching the

dataset.

Curve features include average, minimum, maximum, and

average difference values, respectively used to describe average

trend and extreme value of time series data and changes of time

series data on different days. For time-series data of impact

quantity V, Vi
w means impact quantity within time-window w,

point i changes from 1 to 4. Equations show calculation of Vmean

and Vmean−diff . The time-window w is set as four for insight into

hourly changes in wind power.
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Vmean � ∑w
i�1
viw/w (7)

Vmean−diff � ∑w
i�2
(viw − vi−1w )/(w − 1) (8)

Figure 4 shows the curve characteristics of wind power.

Constructing curve features for wind power can maximize the

use of data trends and help the model learn. Using average,

extreme and average difference values, wind power prediction

models will be more sensitive. Data that is only one-dimensional

FIGURE 3
EWMA and SMA features of wind power from Belgium July 2021.

FIGURE 4
Curve features for wind power from Belgium in July 2021.
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is extended to four dimensions. As the amount of data increases,

the model can also get better prediction results.

3.1.2 LSTM
Long short-term memory network (LSTM) solves the

gradient disappearance of recurrent neural network (RNN)

during remote transmission. LSTM currently has an excellent

performance in natural language processing and time series

prediction. The basic unit structure diagram is shown in

Figure 5 (Farah, Aneela and Muhammad., 2021).

In Figure 5, Xt and ht are the input and output of the basic

unit at time t, it and ft are the output of the input gate and forget

gate at time t respectively, and Ot is the output of the outputting-

gate at time t, and gt is the unit state at time t. The specific

calculation equations are as follows:

1) Input status

gt � tanh(Wigxt + big +Whcht−1 + bhg) (9)

2) Gating status

it � sigmoid(Wijxt + bii +Whiht−1 + bhi) (10)
ft � sigmoid(Wifxt + bif +Whfht−1 + bhf) (11)
Ot � sigmoid(Wioxt + bio +Whoht−1 + bho) (12)

3) Memory status

Ct � ft × Ct−1 + it × gt (13)

4) Output status

ht � ot × tanh(Ct) (14)
where: tanh is the hyperbolic tangent function; W is the weight

vector; b is the bias.

It can be seen from Eqs (10)–(12) that LSTM fully considers

the correlation between various data while making predictions,

and gives sufficient space for important information. Therefore,

it can usually obtain more desirable results when performing

time-series data prediction.

3.1.3 GRU
Traditional convolutional networks do not have the

computational ability to take into account time propagation,

and the current moment output value of a recurrent neural

network (RNN) is influenced by the input values of previous

moments. For the wind power prediction problem, there is a

time-dependent characteristic, that is, there is some correlation

in the time dimension of wind power. RNN has an advantage

over linear prediction models in dealing with non-linear

relationships between variables. At the same time, although

RNN solves the problem of long-term dependence of the

prediction target, there is the problem of gradient

disappearance or explosion when the network is back-

propagated for calculation. The long short-term memory

(LSTM) network only updates the internal states of the cells

through linear transformations, allowing the information to be

smoothly propagated backward across the entire time axis, thus

increasing the information propagation distance, but the

complex network structure of the LSTM often takes more

time to train. The gated recurrent unit (GRU) simplifies the

LSTM cell, which not only retains the strong time-series

dependent capture capability but also effectively reduces the

model training time (Niu et al., 2020).

To fully exploit the temporal characteristics of wind power to

improve prediction accuracy, this section introduces a deep

learning algorithm, Gated Recurrent Unit (GRU), with

temporal memory capability. The deep learning framework

used is TensorFlow and Keras, based on which the prediction

model and structural parameters of GRU are designed to forecast

FIGURE 5
Schematic diagram of the basic unit structure of LSTM. FIGURE 6

Schematic diagram of the basic unit structure of GRU.
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on three time-scales to match the economic dispatch on each

time scale for wind power.

3.1.3.1 Principle of prediction algorithm

GRU is a variant of the LSTM that simplifies the gating

structure of the LSTM, thus effectively reducing the training time

of the network. While the LSTM consists of three gating

mechanisms, GRU unifies the forgetting and updating gates of

the LSTM into a new updating gate, and thus contains only two

gating mechanisms. The update gate allows adaptive control of

the information flowing through the hidden unit, combining it

with new inflow content for information update. The reset gate

allows the contents of the memory cell to be reset. The GRU

schematic is shown in Figure 6.

Where xt and ht are unit input and output variables. ht−1 and
ht are internal state variables at twomoments before and after the

hidden layer. g is a non-linear operator. In the schematic diagram

+, -, 1- are linear operators. The GRU concrete state update

equation is as follows.

Resetting gate

rt � σ(Wrxt + Rrht−1 + br) (15)

Candidate Status:

h′t � g(Wzxt + Rz(rt ⊙ ht−1) + bz) (16)

Update Gate:

ut � σ(Wuxt + Ruht−1 + bu) (17)

New Status:

ht � ut ⊙ h′t + (1 − ut) ⊙ ht−1 (18)

where xt is the input vector at moment t.Wr,Wz andWu are the

weight matrices associated with the input status. Rr, Rz and Ru

are the weight matrices associated with the recurrent state. br, bz
and bu are the bias vectors. σ is the activation function: Sigmoid.

g is the activation function tanh. ⊙ is the dot product. rt, ut take

values in the range [0,1], if both take 1, the GRU is equivalent to

an RNN. the smaller the value of ut, the smaller the update of the

state information of the GRU, more for the previously saved

information.

The incremental cross-validation model is shown in Figure 7.

Cross-validation is commonly used in the process of building

predictive models and selecting model parameters. Specifically,

the dataset is sliced in different ways and then various

combinations of training and validation sets are fed into the

model, where the training set is used for model training and the

validation set is used to verify the model. With different slicing

methods, data that was last used as the training set may become

samples in the test set in the next iteration, thus enabling cross-

validation. For time series data, incremental window cross-

validation or fixed window cross-validation can be used to

ensure time integrity and also to prevent future data leakage.

Grid search is an automated method of adjusting parameters by

continuously searching through a given range of parameter to

find the best parameters. This method is evenmore advantageous

when applied to small dataset and the sklearn provides a function

GridSearchCV specifically. Applying cross validation to small

dataset maximizes sample information. Also, by using models

with different parameters, overfitting can be reduced to a certain

extent, thus improving the robustness of the model. After grid

adjustment of the parameters, the prediction accuracy and time

lapse of the model are optimized.

A comparison of the predictions before and after cross-

validation using incremental cross-validation is shown in

Figure 8, which includes the wind power prediction targets

(measured and upscaled) and the GRU predictions before and

after cross-validation. As can be seen from the graph, the GRU

forecasts are superior in terms of prediction accuracy and time

delay when using incremental cross-validation.

FIGURE 7
Flow chart of the prediction algorithm.
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3.2 Low-carbon dispatch modeling
considering multi-time-scale wind power
forecasting and integrated carbon capture
power plants

3.2.1 Multi-timescale low carbon dispatch
framework

Multi-timescale wind power forecasting combined with

integrated carbon capture plants can exploit the low carbon

potential of the system. Firstly, the time-shifted nature of

integrated carbon capture energy can both reduce the system’s

lower net output limit and respond positively to the system’s need

to emit CO2. Secondly, multi-timescale wind power predictions

reduce wind power prediction errors and enable more accurate

system dispatch plans to be made. This enables the full utilization

of wind power, reduces the output of high carbon units and

optimizes the low carbon and economic performance of the

system. Thirdly, liquid storage carbon capture plants have a

certain effect in the dynamic dispatch stage. Errors are reduced

through highly accurate wind power predictions. The flue gas

diversion ratio is then set in both the day-ahead and within-day

phases, thus improving system dispatch flexibility, maximizing

carbon capture and exploring low-carbon potential. In summary,

multi-timescale wind power load predictions together with

integrated carbon capture plants work together in the three

stages of dispatch to optimize the system energy structure,

resource allocation, reduce wind abandonment and load loss

situations, and thus achieve low carbon economic dispatch.

Figure 9 shows the multi-timescale low carbon economic

dispatch framework. The dispatch plan is developed 24 h in

advance and the time unit is 1 h. The dispatch quantities to be

determined are the unit start/stop plan and the unit output plan,

which are brought into the within-day dispatch model as the

determined quantities. The within-day scheduling plan is a 4 h

plan with a 15min interval. Within-day scheduling is a good way

of correcting the deviations between the day-ahead scheduling

plan and the actual working conditions during the day. What

needs to be determined in the intra-day stage is the unit output

plan for the next 4 h and the results are brought into the dynamic

dispatch model. The dynamic dispatch plan is advanced every

5 min to develop a post 15 min plan, to combine a highly accurate

wind power forecast with the dispatch plan to adjust the carbon

capture energy consumption. The amount of carbon capture

energy needs to be determined during the dynamic stage.

Wind power forecasting on multiple time scales can improve

the accuracy and combine it with the dispatching of carbon

capture plants to develop more accurate dispatching plans to

effectively deal with load loss and wind abandonment while

maximizing the low carbon performance of the system and

reducing system costs.

3.2.2 Day-ahead dispatching model
3.2.2.1 Optimization objective

The objective function for the day-ahead dispatch stage is:

C1 � min(CK + CH + CQ + CT + CZ + CR) (19)

FIGURE 8
GRU predicted wind power before and after incremental cross-validation.
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1) CK is the start-up and shutdown cost of the thermal unit,

CH is the coal consumption cost of the thermal unit, CQ is the

penalty cost of wind abandonment, CT is the cost of carbon

trading, CZ is the depreciation cost of the carbon capture plant,

and CR is the cost of solvent loss in the carbon capture process.

CK � ∑24
t�1
∑N
i�1
(Ui,t(1 − Ui,t−1) + Ui,t−1(1 − Ui,t))Ci (20)

where N is the number of thermal power units. Ui,t is the start-

stop state of unit i at time t. Ci is the start-stop cost of unit i.

2) Coal consumption costs for thermal power units.

CH � ∑24
t�1
∑N
i�1
Ui,t(aiP2

Gi,t + biPGi,t + ci) (21)

Where ai, bi and ci is the coal consumption cost factors for unit i.

PGi,t is the total unit output of unit i at time t.

3) Cost of wind abandonment.

CQ � ∑24
t�1
Kq(Ppre,1

w,t − Pw,t) (22)

Kq is the wind abandonment cost factor. Pw,t is the wind power

online in period t. Ppre,1
w,t is the predicted day-ahead wind power in

period t.

4) Cost of carbon capture.

CT � KT
⎛⎝Ec −∑N

i�1
∑24
t�1
(δhPGi,t)⎞⎠ (23)

KT is the carbon trading price. Ec is the total amount of

CO2 produced by thermal power units. δh is the carbon

emission allowance factor.

5) Depreciation costs of carbon capture equipment.

FIGURE 9
Low carbon economic dispatch framework for systems considering multi-time scale wind power predictions.

Frontiers in Energy Research frontiersin.org11

Ding et al. 10.3389/fenrg.2022.953883

118117

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.953883


Cz � CFL(1 + r)NZJr

365((1 + r)NZJ − 1) +
PRYVRY(1 + r)NRYr

365((1 + r)NRY − 1) (24)

CFL is the total cost of the carbon capture equipment. NZJ is the

depreciable year of the carbon capture equipment. r is the

discount rate for the carbon capture plant project. PRY is the

cost per unit volume of solution storage. VRY is the volume of

solution storage. NRJ is the depreciable year of the solution

storage.

6) The cost of solvent loss during carbon capture.

CR � ∑24
t�1
∑N
i�1
KRφEtotalCO2i,t (25)

KR is the ethanolamine solution cost factor. φ is the solvent loss

factor. EtotalCO2i,t is the mass of CO2 captured by unit i at time t.

3.2.2.2 Constraints

1) Power balance constraint.

P1.t � Pw,t +∑N
i�1
PJi,t (26)

Where P1.t is the load. PJi,t is the net output of unit i in period t.

Pw,t is the online wind power at period t.

2) Wind power output constraints.

0≤Pw,t ≤Ppre,1
w,t (27)

3) Thermal power unit output constraints.

{PGi,min ≤PGi,t ≤PGi,max Ui,t � 1
PGi,t � 0 Ui,t � 0

(28)

PGi,min is the minimum technical output of unit i. PGi,max is the

maximum output of unit i.

4) Thermal power unit climbing constraints.

{ PGi,t − PGi,t−1 ≤Ui,tR
u
i

PGi,t−1 − PGi,t ≤Ui,t−1Rd
i

(29)

Ru
i is the uphill climb rate of unit i and Rd

i is the downhill climb

rate of thermal unit i.

5) Start/stop constraints for thermal power units.

⎧⎨⎩ (Ton
i,t−1 − Ton

i,min)(Ui,t−1 − Ui,t)≥ 0

(Toff
i,t−1 − Toff

i,min)(Ui,t − Ui,t−1)≥ 0
(30)

where, Ton
i,min is the minimum start-up time of unit i. Toff

i,min is the

minimum shutdown time of unit i. Ton
i,t−1 is the time that unit i has

been on continuously up to period t. Toff
i,t−1 is the time that unit i

has been continuously shut down to period t. The start/stop

constraint for thermal power units is intended to govern. The

start/stop time must not be less than a fixed value to avoid

affecting the safety of the unit.

6) Operational constraints on integrated carbon capture plants.

Carbon capture power plants add a flue gas bypass and

storage tank based on a conventional thermal power plant, so

their unit output constraints, creep constraints and start-stop

constraints are the same as those of a conventional thermal

power plant. A split-flow carbon capture plant will limit the flue

gas split ratio, thus limiting the carbon capture energy

consumption. Integrated carbon capture plants directly limit

the amount of total CO2 resolved.

(1 − δxz)≤ δi ≤ δxz (31)

{(1 − δxz)λβegiPGi,t ≤PBi,t

PBi,t ≤ ηλβegiPGi,max − (1 − δxz)λβegiPGi,t
(32)

where, δxz is the flue gas split ratio limit. λ is the energy required

to capture a unit of CO2. β is the carbon capture efficiency. egi is

the carbon emission intensity. PBi,t is the energy consumption to

operate the carbon capture unit i at time t. η is the maximum

operating factor of the solution regeneration tower and the

compression tower.

Reservoir carbon capture is an important component of

integrated carbon capture. A storage solution is CO2 in the

form of a compound in an alcoholic amine solution. The mass of

CO2 captured using a solution volume equivalent transformation

is as follows.

VCAi,t � ECGi,tMMEA

MCO2θCRρR
(33)

Where VCAi,t is the volume of solution required to release

CO2 from the solution reservoir installed in the carbon

capture plant i at time t. MMEA is the molar mass of MEA.

MCO2 is the molar mass of CO2. θ is the amount of CO2 resolved

in regeneration towers. CR is the concentration of alcoholic

amine solution. ρR is the density of the alcohol-amine solution.

The solution storage constraints mainly include the reservoir

volume constraint and the reservoir volume variation constraint,

as in the following equation.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

VFYi,t � VFYi,t−1 − VCAi,t

VPYi,t � VPYi,t−1 + VCAi,t

0≤VFYi,t ≤VCRi

0≤VPYi,t ≤VCRi

VFYi,0 � VFYi,24

VPYi,0 � VPYi,24

(34)

VFYi,t is the volume of solution in the liquid-rich storage of unit i

at time t. VCAi,t is the volume of solution required to release

CO2 from the solution storage installed at carbon capture plant i

at time t. VPYi,t is the volume of solution in the depleted solution

storage of unit i at time t. VCRi is the solution storage capacity of

unit i. VFYi,0 is the volume of solution in unit i’s liquid-rich tank
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at time 0.VFYi,24 is the volume of solution in the rich tank of unit i

at time 24.VPYi,0 is the volume of solution in the liquid-poor tank

of unit i at time 0. VPYi,24 is the volume of solution in the poor

tank of unit i at time 24.

7) Rotating standby constraints.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑N
i�1
min[Ru

i , (Ui,tPGJi,max − PGJi,t)]≥ rup,tsys

∑N
i�1
min[Rd

i , (PGJi,t − Ui,tPGJi,min)]≥ rdown,tsys

(35)

Where rup,tsys is the required upper rotating reserve for the system

at time t. rdown,tsys is the required lower rotation reserve of the

system at time t. PGJi,max is the upper net output limit of unit i.

PGJi,min is the lower net output limit of unit i.

8) flow constraints.

3.2.2.3 Power balance constraint

∑
i∈CG,j

Pi,t− ∑
(h,j)∈CF,j

fhj,t+ ∑
(h,j)∈CE,j

fhj,t −Dj,t � 0 (36)

Where, CG,j is the set of units (thermal units, wind turbines)

connected to node j.fhj,t is the power flow of line (h, j).CF,j is the

set of lines starting at node j.CE,j is the set of lines ending at node

j. Dj,t is the load demand of node j.

Line transmission capacity and node voltage constraints.

Flow analysis using DC flow.

fhj,t � θh,t − θj,t
xhj

−fhj
max#fhj,t#fhj

max

−θj max#θj,t#θj
max

θref ,t � 0

(37)

Where, θh,t is the phase angle of the voltage at node h. θj,t is the

voltage phase angle at node j. xhj is the reactance of line (h, j).

fhj
max is the maximum value of the transmission capacity of line

(h, j). θj max is the maximum voltage phase angle. θref ,t is the

voltage phase angle of the balance node.

3.2.3 Intraday dispatching model
3.2.3.1 Optimization objective

The intra-day dispatch stage, compared to the day-ahead

dispatch, is the stage where the change in the predicted wind

power causes a change in the cost of wind abandonment. In

addition, the cost of loss of load needs to be taken into account

during this stage.

C2 � min(CH + CQ + CT + CZ + CR + CS) (38)

CQ � ∑ΔT
t�1

Kq(Ppre,2
w,t − Pw,t) (39)

CS � ∑ΔT
t�1

KSPS,t (40)

Where Ppre,2
w,t is the intra-day wind power forecast in 15min CS is

the cost of the lost load.KS is the penalty cost per unit of lost load.

PS,t is the lost load power of the system at time t.

3.2.3.2 Constraints
The parts of the intraday dispatch model that change are the

thermal unit climbing constraint and the rotating reserve

constraint. Unit start-up and shutdown are not considered in

the intraday dispatch stage, and therefore unit start-up and

shutdown constraints are not considered. The unit output

constraints and carbon capture operation constraints are

similar to those of the day-ahead dispatch model.

1) Load balance constraint.

P2.t � Pw,t +∑N
i�1
PJi,t + PS,t (41)

Where: P2.t is the predicted load within the day. Pw,t is the grid

power of wind power at time t. PJi,t is the net output of unit i in

period t. PS,t is the lost load of the system in period t.

2) Thermal power unit climbing constraints.

{PGi,t − PGi,t−1 ≤Ui,tR
u
i /4 + PGi,max(1 − Ui,t−1)

PGi,t−1 − PGi,t ≤Ui,tR
d
i /4 + PGi,max(1 − Ui,t) (42)

3) Rotating alternate restraint.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑N
i�1
min[Ru

i /4, (Ui,tPGJi,max − PGJi,t)]≥ rup,tsys

∑N
i�1
min[Rd

i /4, (PGJi,t − Ui,tPGJj,min)]≥ rdown,tsys

(43)

3.2.4 Dynamic dispatching model
The dynamic dispatch stage focuses on adjusting wind power

output and correcting carbon capture energy consumption. The

wind power data is forecasted over a very short period of 5 min.

The accurate forecasts help the system to adjust the net output of

the carbon capture plant, thus increasing the wind power

utilization and reducing the loss of load.

3.2.4.1 Optimization objective

The adjustment target for the Dynamic dispatch stage is the

carbon capture energy consumption within the carbon capture

plant. The dynamic dispatch stage has a short cycle time and the

start-up and shutdown of the units and the total output are

already determined in the day-ahead and intra-day dispatch
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stages. The dynamic phase adjusts the system’s CO2 emissions,

wind abandonment, and load loss by adjusting the variables

within the carbon capture plant.

C3 � min(CQ + CT + CZ + CR + CS) (44)

CQ � ∑ΔT
t�1

Kq(Ppre,3
w,t − Pw,t) (45)

where: Ppre,3
w,t is the dynamic predicted wind power.

3.2.4.2 Constraints

The dynamic dispatch phase does not take into account the

thermal unit output plan as it is already established in the

intraday dispatch phase. The remaining constraints such as

individual unit output and carbon capture plant constraints

are similar to the previous two stages.

1) Load balance constraint.

P3.t � Pw,t +∑N
i�1
PJ,t + PS,t (46)

Where: P3.t is the dynamic forecast power of the load. Pw,t is the

grid power of wind power at time t. PJi,t is the net output of unit i

in period t. PS,t is the lost load power of the system in period t.

2) Carbon capture power regulation constraint.

The dynamic stage focuses on the adjustment of the carbon

capture energy consumption, which is mainly borne by the

solution storage.

⎧⎪⎨⎪⎩
ΔPBSi,t � PBi,t

ΔPBXi,t � PBimax − PBi,t

PBimax � ληβegiPGi,max

(47)

where: ΔPBSi,t is the maximum net output adjustment for carbon

capture unit i at time t. ΔPBXi,t is the minimum net output

adjustment value for carbon capture unit i at time t. PBimax is the

maximum operating energy consumption of the regeneration

and compression towers, in other words, the carbon capture

energy consumption. λ is the energy required to capture a unit of

CO2. η is the maximum operating factor of the regenerative and

compression towers of the solution. β is the carbon capture

efficiency. egi is the carbon emission intensity. PGi,max is the

maximum output of unit i.

Liquid storage carbon capture enables energy time-shifting,

but at the same time, the net output regulation of the carbon

capture unit should be kept within the regulation range.

−∑n
i�1
ΔPBXi,t ≤∑n

i�1
ΔPJi,t ≤∑n

i�1
ΔPBSi,t (48)

where ΔPJi,t is the net output adjustment of carbon capture unit i

at time t.

4 Case study and analysis

4.1 Case settings

The wind power in this paper uses data from the Belgian grid

in July 2021. Various forecasting algorithms were first used to

forecast wind power on three time-scales, with the GRU

algorithm performing well in terms of training speed and

accuracy. Figure 10 shows the 15min wind power forecast

results, Measured and upscaled is the raw Belgian wind power

data, most recent forecast is the forecast for wind power from the

Belgian grid, the SVR forecast is the result of the SVR model

forecast, the LSTM forecast uses the model LSTM, and the model

used in this paper is GRU, which is the GRU forecast with cross-

validation labeled in the figure. The wind power is scaled to

match the system of 488.3 MW(Li et al., 2021).

This paper is validated with a modified IEEE-39 nodal system

containing 10 thermal power units. Wind farms of 198.5, 191.5,

and 98.3 MW are introduced at nodes 9, 19, and 22 respectively.

If the system adopts carbon capture technology, G1 and G2 are

converted into carbon capture power plants, if the system does

not adopt it, G1 and G2 are conventional thermal power plants.

Figure 11 shows the system. Table 1 shows the relevant

parameters for the thermal plant and Table 2 shows the

remaining parameters to be set. The dispatch quantities are

solved using the CPLEX.

Comparison cases are set depending on whether the GRU

wind power forecasts or from the Belgian grid are used.

Case 1: Consider the day-ahead dispatch of the Belgian grid

with its wind power forecast (Most recent forecast) or GRU wind

power forecast with carbon capture equipment.

Case 2: Consider the Belgian grid’s own wind power forecasts

(Most recent forecast) or GRU wind power forecasts, with the

intra-day dispatch of carbon capture equipment.

Case 3: Dynamic dispatch using the Belgian grid’s own wind

power forecasts (Most recent forecast) or GRU wind power

forecasts with carbon capture equipment.

4.2 Results and analysis

Figure 12 shows the results of the day-ahead dispatch with

and without carbon capture devices. A shows thermal units 1 and

two without carbon capture devices and B shows thermal units

1 and 2 with integrated carbon capture devices. The graphs show

that after the retrofitting of carbon capture devices, there is a

significant reduction in wind abandonment and a visible increase

in the utilization of wind power. The analysis of the columns

without carbon capture devices and the Belgian wind forecast

column (with carbon capture devices) in Table 3 shows that the

cost of the wind abandonment penalty is reduced by 69.032%

with the installation of carbon capture devices. At the same time,
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the cost of carbon trading is reduced by 24.211%, and carbon

emissions are reduced by 41.694% after the installation of carbon

capture devices. Although the cost of running thermal power

plants is higher with the addition of carbon capture devices, the

total cost is reduced by 30.788%. This shows that carbon capture

can reduce carbon emissions and at the same time satisfy the

economy, helping to achieve low carbon economic dispatch of

the power system.

FIGURE 10
Wind power forecasting results (raw wind data\Irish grid forecasts\SVR, LSTM and GRU forecasts).

FIGURE 11
IEEE-39 node system.
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As the load is supplied by the net thermal output and the grid

power of wind power, it is only necessary to compare the net

thermal output to analyze the system’s wind abandonment

situation. The net output of thermal units is shown in

Figure 13. As can be seen from the graph, the different times

of net thermal output are concentrated between 1:00 to 12:00,

and the difference in net output during the corresponding period

is the difference in the amount of wind abandoned with or

without carbon capture devices.

Figure 14 shows a comparison of the dispatch results for case

1 (both with carbon capture units, using different wind power

forecasts). As can be seen from the graph, when using GRU to

forecast wind power, there is a certain degree of reduction in the

amount of abandoned wind power due to the increased accuracy

TABLE 1 Thermal power unit parameters (Total of 10 thermal units; input parameters include operation, cost, climbing parameters and carbon
capture intensity) (Shui et al., 2019).

Unit
number

Maximum
output

Minimum
output

Start-
stop
costs

Cost
parameter
a

Cost
parameter
b

Cost
parameter
c

Minimum
start/stop
time

Unit
climbing

Carbon
emission
intensity

1 455 200 31,500 0.00336 113.33 7000 6 200 0.9

2 455 150 35,000 0.00217 120.82 6790 5 200 0.92

3 130 30 3850 0.014 116.2 4900 5 80 0.99

4 130 25 3920 0.01477 115.5 4760 5 80 0.98

5 162 45 6300 0.02786 137.9 2450 5 100 1.02

6 80 20 1190 0.04984 155.82 2590 3 72 1.05

7 85 25 1820 0.00553 194.18 3360 3 80 1.06

8 55 10 210 0.02891 181.44 4620 1 60 1.12

9 55 10 210 0.01554 190.89 4655 1 60 1.15

10 55 10 210 0.01211 194.53 4690 1 60 1.1

TABLE 2 Other system parameters (Mainly system size parameters and carbon capture plant operating and cost parameters) (Yu et al., 2022).

Parameter name Value

λB (Energy consumption per unit of carbon capture)/((MW·h)/t) 0.269

θB (Carbon Capture Efficiency) 0.9

η (Maximum operating condition)/% 120

MMEA (MEA Moore’s mass)/(g/mol) 61.08

MCO2(CO2 molar mass)/(g/mol) 44

θ (The amount of regeneration tower can be resolved)/(molCO2/molMEA) 0.24

CR (Solution concentration)/% 30

σR (Solution density)/(t/m3) 1.01

σT (Carbon trading price)/($/t) 120

λh (Carbon emission allowance factor)/(t/(MW·h)) 0.7

μ2 (Day-ahead wind power reserve factor) 0.2

ω (Net Residual Value Rate)/% 5

NC(Depreciable life of liquid storage tank)/year 5

PCY(Liquid storage tank unit price)/($/m3) 300

VCY(Reservoir volume)/m3 60000*4

μ1 (Day-ahead load standby factor) 0.05

CZJ (Total price of carbon capture equipment)/million $ 165159.4

CGJ (Total cost of retrofit of regenerative tower compressor expansion to 120% capacity)/million $ 14264.3

NT (Depreciable life of carbon capture equipment)/Year 15

σQ (Cost of wind abandonment penalty)/($/(MW·h)) 210

λB (Energy consumption per unit of carbon capture)/((MW·h)/t) 0.269
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of the forecast. As can be seen from Table 3, in the day-ahead

dispatching phase, the carbon transaction cost, abandonment

penalty cost, total cost, and carbon emissions are reduced by

166,206$, 11,547$, 177,753$ and 1479t respectively when using

GRU to forecast wind power compared to using the Belgian grid

to forecast wind power, a respective decrease of 23.293%,

83.644%, 24.439%, and 12.716%. This validates the

advantages of the flexible operation of carbon capture units.

At the same time, by using GRU to forecast wind power, carbon

capture units can capture more CO2 and effectively improve

wind power utilization. Overall, the improvement in the

accuracy of wind power forecasting has been proven to have

a positive impact on the reduction of carbon emissions and

system economics.

In the day-ahead dispatch stage, carbon emissions depend

mainly on the level of wind power consumption and the

output of high-carbon units. As wind power does not emit

carbon, the higher its utilization rate, the more thermal units

will be replaced. At the same time, the amount of abandoned

wind power decreases, the output of high-carbon thermal

units decreases, and carbon emissions are reduced

accordingly.

As shown in Figure 15, closely related to the net output of

the thermal units is the carbon capture energy consumption.

Unlike the split carbon capture unit, case 1 uses an integrated

FIGURE 12
Day-ahead dispatch results with and without carbon capture devices ((A) is without carbon capture devices, (B) is with carbon capture devices).

TABLE 3 Day-ahead dispatching costs.

Costs Without carbon capture Belgian grid wind
power forecast

GRU wind power forecast

Operating Costs of Thermal Power Units/$ 711397 735595 751974

Carbon Trading Costs/$ 383544 290683 192160

Wind Abandonment Penalty Costs/$ 825835 255743 209170

Depreciation cost of storage fluid/$ 0 47378 47379

Total Cost/$ 1920776 1329401 1200684

Carbon Emissions/t 17746 10347 9605

FIGURE 13
Comparison of the output of thermal power units with and
without carbon capture devices.
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carbon capture unit, where the processes of CO2 absorption

and CO2 capture are not coupled, enabling a time-shifting of

the carbon capture energy consumption, so that the energy

consumption is higher in the low load periods and the lower

limit of the net output of the carbon capture unit is lower than

that of the split type. The carbon capture units G1 and G2 are on

all hours, so there is no need to increase the net output to

provide down-rotation reserves, which allows more wind power

to be absorbed and reduces the carbon emissions of the system

compared to not installing carbon capture devices. However,

due to the low load, there is still a problem of wind

abandonment and the low carbon capability needs to be

further explored.

Figure 16 shows a comparison of the changes in the storage

tanks of case 1, where A considers the Belgian grid forecast wind

power and B considers the GRU forecast wind power. As can be

seen from the graph, the carbon capture units release CO2 at

low load times (2:00–9:00), which shows a decrease in the

amount of liquid-rich tank storage and an increase in the

amount of liquid-poor tank storage. During peak load hours

(16:00–24:00), CO2 is stored, showing a rise in the amount of

liquid stored in the rich tank and a fall in the amount of liquid

stored in the lean tank. The reduced energy consumption of the

carbon capture equipment processing enables energy time-

shifting, laying the foundation for low carbon economic

dispatch and further reducing carbon emissions with

integrated carbon capture compared to split carbon capture.

Compared to the dispatch carried out by the Belgian grid

predicting wind power, the use of GRU predicts that wind

power has a CO2 release during the small low load hours

between 13:00 and 16:00.

Table 4 shows the cost table for the dispatch phase within

case 2. Two scenarios are included: using the Belgian grid

forecast or using the GRU forecast for wind power. Intraday

dispatch does not take into account unit start-ups and

shutdowns, so the costs include carbon trading costs, wind

abandonment costs, lost load costs, and total costs. In the

intraday scheduling phase, the total cost of using GRU wind

forecasts is reduced by 177,753$ or 24.439% compared to using

forecast wind. Carbon emissions are reduced by 1479t or

12.716%. The cost of the wind abandonment penalty is

reduced by 11,547$, or 83.644%. It can be seen that the

carbon capture system using GRU prediction wind power

has the same advantages in terms of wind abandonment,

cost, and carbon emissions in intra-day dispatch.

The intra-day dispatch is based on the start-up and

shutdown of the units determined by the day-ahead

dispatch, and the intra-day dispatch output is adjusted as

follows. As can be seen from Figure 17, the same wind

abandonment situation exists in case 2 intra-day dispatch

FIGURE 14
Comparison of dispatch results for case 1 ((A) considering grid forecast wind power in Belgium, (B) considering GRU forecast wind power).

FIGURE 15
Comparison of carbon capture energy consumption using
different forecast wind power in day-ahead dispatch.
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when using the Belgian grid forecast wind power for dispatch,

with the abandonment time points mainly existing in the

0–20 period. This is because thermal power needs to reach a

minimum output before it can be dispatched, and when thermal

units start and stop, this can be seen as a sudden change in

output power, and as the time scale shortens, due to the

influence of creep. Combining all periods within a day, the

remaining thermal units are adjusted less than the sudden

change in thermal power caused by the start and stop of the

thermal units, resulting in a wind abandonment and load loss

situation. Systems containing carbon capture plants and using

GRU to forecast wind power have stronger wind abandonment

and load shedding characteristics.

Table 5 shows the dynamic dispatch stage cost table and

Figure 18 shows the case 3 dynamic dispatch diagram.

Intraday dispatch provides a reference point for the total

output of the thermal plant for dynamic dispatch, which

regulates the carbon capture energy consumption without

changing the total output.

As can be seen from Table 5, the total cost of forecasting wind

power using GRU is reduced by $134,983$ compared to the

Belgian forecast of wind power in dynamic scheduling. Carbon

emissions are reduced by 2395t or 19.867%. Loss of load costs is

reduced by 6173$, or 73.218%. The cost of the wind

abandonment penalty is reduced by 137,018$ or 18.540%. It is

clear that in dynamic dispatch, the system using GRU to forecast

wind power is more advantageous in terms of disposing of

abandoned wind and dealing with load loss.

Figure 18 shows a graph of dynamically dispatched unit output.

As can be seen from the graph, the improvement in prediction

accuracy has led to greater involvement of carbon capture plants in

the regulation of the 5min time scale, resulting in significant

improvements in wind abandonment and load shedding, and

demonstrating the effectiveness of the fast regulation

characteristics of carbon capture plants. By regulating the carbon

capture energy consumption to follow the changes in load and wind

power, the carbon capture plant achieves the objective of absorbing

the abandoned wind and reducing the lost load.

FIGURE 16
Comparison of reservoir changes in the day-ahead dispatch of Case 1 ((A) considering the Belgian grid forecast wind power, (B) considering the
GRU forecast wind power).

TABLE 4 Intraday dispatching costs.

Costs Belgian grid wind
power forecast

GRU wind power forecast

Carbon Trading Costs/$ 713539 547333

Wind Abandonment Penalty Costs/$ 13805 2258

Lost Load Costs/$ 0 0

Total Cost/$ 727344 549591

Carbon Emissions/t 11631 10152
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FIGURE 17
Intraday stage dispatch diagram ((A) considering Belgian grid forecast wind power, (A) considering GRU forecast wind power).

TABLE 5 Dynamic dispatching costs.

Costs Belgian grid wind
power forecast

GRU wind power forecast

Carbon Trading Costs/$ 7586 621

Wind Abandonment Penalty Costs/$ 739027 602009

Lost Load Costs/$ 8431 2258

Total Cost/$ 739872 604889

Carbon Emissions/t 12055 9660
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5 Conclusion

This paper constructs a multi-timescale optimal dispatch

model that considers improving wind power forecasting

accuracy while containing an integrated carbon capture plant

and demonstrates the effectiveness of carbon capture plants in

absorbing wind abandonment, coping with load loss situations,

and reducing system costs, as shown in the following findings.

1) During day-ahead dispatch, the system with an integrated carbon

capture plant has a 69.032% reduction in the cost of wind

abandonment penalties relative to a system with only

conventional plants, due to the deeper regulation range of the

carbon capture plant. Carbon trading costs are reduced by

24.211% and carbon emissions are reduced by 41.694%. This

demonstrates the effectiveness of carbon capture plants in

improving wind power utilization and reducing carbon emissions.

2) In the intraday dispatch stage, the use of GRU to forecast

wind power has led to an increase in forecast accuracy, which,

when combined with carbon capture plants, can further

exploit the low carbon performance of the system and

improve economic efficiency. In the intra-day dispatch

FIGURE 18
Dynamic dispatch diagram for case 3 ((A) considering Belgian forecast wind power, (A) considering GRU forecast wind power).
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stage, the system’s dispatch flexibility can be improved to

further reduce wind abandonment and achieve full utilization

of source-side adjustable resources.

3) During dynamic dispatch, the system can respond to

fluctuations in load and wind power in timely due to the

fast regulation characteristics of the carbon capture plant and

the improved accuracy of wind power forecasting. Its total

cost is reduced by 134,983$ relative to a system that uses the

Belgian grid forecast wind power. Carbon emissions were

reduced by 2,395t or 19.867%. The cost of loss of load is

reduced by 6173$, or 73.218%. The cost of wind

abandonment penalties was reduced by 137,018$, or

18.540%. This justifies the improvement in forecasting

accuracy and the use of multi-scale scheduling in dealing

with wind abandonment and load loss.
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