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Editorial on the Research Topic

The impact of alkalizing the acidic tumor microenvironment to improve
efficacy of cancer treatment
In recent years, the acidic tumor microenvironment (TME) that is created by cancer-

specific metabolism has attracted much attention in cancer therapy. In this Research Topic,

we discuss the wide range of knowledge that has accumulated regarding cancer

metabolism, focusing on the effects of acidity of the TME on cancer pathology. Points

discussed include characteristics of the acidic TME (Bogdanov et al.), an overview of

alkalization therapy (Hamaguchi et al., Wada et al.), a clinical trial of alkalizing agents on

cancer patients (Gillies et al.), the association between acidic TME and glioblastoma

(Seyfried et al.), the association between pH of the TME and the immunological state

(Hosonuma and Yoshimura in press), role of the immunosuppressive TME in pancreatic

cancer (Hashimoto et al.), Drosophila as an effective toolkit to investigate cancer metabolic

abnormalities (Jiang et al.), acidic imaging positron emission tomography probes (89Zr-

labeled pH-low insertion peptides) (Bauer et al.), role of the proton-sensing G protein-

coupled receptor GPR68 in breast cancer (Elemam et al.), the association between cancer

and chronic heart failure focusing on mitochondrial abnormalities (Takada et al.), and the

association between cancer metabolism and ascorbic acid (Maekawa et al.). To address

cancer metabolism and target it as a treatment, it is necessary to recognize how cancer

develops, and what characteristics of the metabolic process are involved. Here, we will

outline the origins and metabolism of cancer, how to deal with it, and the importance of

alkalization of the TME.

How does cancer develop? The most important point was reported by Otto Warburg in

“On the origin of cancer cells” (1). Cancer cells develop when there is a lack of oxygen, but a

supply of nutrition. Cancer cells are primarily glycolytic, as they perform fermentation,

meaning that they are dependent on the glycolytic system rather than oxidative

phosphorylation by cellular respiration. The essence of this is the presence of

mitochondria in eukaryotic cells. Cancers comprise cells that have been forced to choose

their own path of life without working, but not failing, mitochondria. Gilles R. and Gatenby

R. et al. reported in detail that cancer cells are dependent on aerobic glycolysis for survival
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as a result of Darwinian selection pressure (2). In addition, as

Seyfried T. has stated, cancer can be considered as a metabolic

disease (3). These points suggest that cancer cells try to survive on

their own in an environment where there is a lack of oxygen but a

supply of nutrients. In other words, cancer is comprised of cells that

have lost their coordination with other cells in the body, and are

living on their own.

How does cancer metabolism work? Cancer cells have a unique

metabolism that differs from that of normal cells, and as enhanced

glycolysis generates large amounts of acidic substances (protons)

inside the cell, cancer cells expel protons to the outside of the cell by

proton transporters, resulting in the inside of the cell being alkaline

and the outside being acidic (4). The most important proton

transporter that is involved in this phenomenon is sodium/proton

(Na+/H+) exchanger isoform 1 (5). In the general biological

environment, the extracellular pH of normal cells is maintained

at pH 7.2 to 7.4, whereas the pH around cancer cells tends to be

more acidic at pH 6.2 to 6.8 (6). This acidification of the TME has

been reported to promote cancer progression. In this state, cancer

cells become resistant to a variety of treatments, their proliferation

is activated, and their metastatic potential is also increased (7, 8). In

general, current cancer treatments do not target the pH balance of

the TME that results from this cancer-specific metabolism. This

means that adequate and satisfactory cancer treatment results have

not yet been achieved.

What happens when the acidic TME is alkalized? Reversal of the

pH gradient between the inside and the outside of cancer cells, i.e.,

extracellular acidification and intracellular alkalinization, attenuates

the intracellular concentration of many anticancer drugs, and leads

to resistance to anticancer drug treatments (5). For example, it has

been reported that an increase in intracellular pH from 7.0 to 7.4,

although in an experimental system, leads to a 2,000-fold increase in

adriamycin resistance in human lung cancer cell lines (9).

Conversely, lowering the intracellular pH (raising the extracellular

pH) of cancer cells is expected to attenuate their resistance to

various anticancer drugs, and to make anticancer drug therapy

more effective. Furthermore, an acidic TME is known to decrease

anticancer immune responses, and hence alkalinization of the acidic

TME is expected to improve the function of immune cells, such as

dendritic cells, natural killer cells, cytotoxic T cells, and

macrophages (10, 11). In addition, this treatment method of

lowering the intracellular pH (raising extracellular pH) may be

sufficiently effective on its own (Wada et al.).
Frontiers in Oncology 026
Clinical methods for alkalization of this acidic TME include

alkalization therapy with alkalizing agents or proton pump

inhibitors (Hamaguchi et al.). In addition, the influence of the

daily diet should also be considered. Diets with alkalizing effects are

rich in vegetables and fruits, which at the same time have anti-

inflammatory and gut-regulating properties (12). Alkalization

therapy is a treatment that acts on cancer metabolism, and can be

used in combination with anticancer drugs, radiation therapy, and

other therapies, and is also a safe treatment method. In the future,

the combination of alkalization therapy and conventional therapy

for the treatment of cancer needs to be further investigated in

prospective clinical trials.
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Background: Breast cancer (BC) is the most diagnosed cancer and the leading cause of
global cancer incidence in 2020. It is quite known that highly invasive cancers have
disrupted metabolism that leads to the creation of an acidic tumor microenvironment.
Among the proton-sensing G protein-coupled receptors is GPR68. In this study, we
aimed to explore the expression pattern of GPR68 in tissues from BC patients as well as
different BC cell lines. Methods: In-silico tools were used to assess the expression of
GPR68 in BC patients. The expression pattern was validated in fresh and paraffin-
embedded sections of BC patients using qPCR and immunohistochemistry (IHC),
respectively. Also, in-silico tools investigated GPR68 expression in different BC cell
l ines. Val idat ion of GPR68 expression was performed using qPCR and
immunofluorescence techniques in four different BC cell lines (MCF-7, MDA-MB-231,
BT-549 and SkBr3). Results: GPR68 expression was found to be significantly increased in
BC patients using the in-silico tools and validation using qPCR and IHC. Upon
classification according to the molecular subtypes, the luminal subtype showed the
highest GPR68 expression followed by triple-negative and Her2-enriched cells.
However, upon validation in the recruited cohort, the triple-negative molecular subtype
of BC patients showed the highest GPR68 expression. Also, in-silico and validation data
revealed that the triple-negative breast cancer cell line MDA-MB-231 showed the highest
expression of GPR68. Conclusion: Therefore, this study highlights the potential utilization
of GPR68 as a possible diagnostic and/or prognostic marker in BC.
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INTRODUCTION

According to the World Health Organization (WHO), breast
cancer (BC) is the most commonly diagnosed cancer and the
leading cause of global cancer incidence in 2020, with an
estimated 2.3 million new cases, representing 11.7% of all
cancer cases. Furthermore, BC was reported to be the fifth
leading cause of cancer-related mortality worldwide, with
685,000 deaths (1).

It is quite known that highly malignant and invasive cancers
have disrupted metabolism and specifically an elevated glycolytic
activity. This creates an acidic milieu, also known as theWarburg
effect, which is an important hallmark of the tumor
microenvironment (TME) (2). Such an environment regulates
proliferation, apoptosis, and metastasis of cancer cells as well as
modulate inflammation, anti-tumor immunity, and angiogenesis
(3–5). Possible antagonizing approaches to this environment is
the use of bicarbonate buffer that reduces growth and metastasis
of cancers including melanoma, breast, prostate, pancreatic and
lung cancers (6–8). Consequently, targeting tumor acidity may
serve as a potential and promising therapeutic approach
for cancers.

There are several acid-sensing cell surface receptors and ion
channels that can sense acidity in the microenvironment; among
them are proton sensing G protein-coupled receptors (GPCRs).
GPCRs are considered the largest family of cell signaling
receptors with over 800 GPCRs encoded in the human
genome, representing approximately 3% of the human
genome. They are seven-transmembrane spanning domain
receptors that respond to numerous types of extracellular
signals such as lipids, peptides, proteins, ions, and photons
which regulate many physiological processes (9). Furthermore,
GPCRs represent more than 30% of targets for FDA approved
small molecules (10, 11). In tumors, GPCRs are known to
regulate cellular processes that are critical for the initiation and
progression of tumors, such as cell proliferation, inhibition of
apoptosis, immune evasion, tumor invasion, angiogenesis, and
metastasis (12, 13).

Among the members of the proton sensing GPCRs is GPR68,
also known as ovarian cancer G protein-coupled receptor 1
(OGR1). It was first identified from the HEY human ovarian
cancer cell line and is located on chromosome 14 band q31
(14q31) (14). So far, the only endogenous agonist of GPR68 is H+

ions/acidic environment, where it is inactive at pH 7.8 and
becomes activated at pH 6.8 (15). Being coupled with Gaq
subunit, GPR68 activation triggers Ca2+ release from
intracellular stores, stimulates protein kinase C (PKC)
signaling and formation of inositol trisphosphate (IP3).
Moreover, GPR68 activates the mitogen-activated protein
kinase (MAPK) signaling pathways (16–19). Also, GPR68 acts
as a double‐edged sword, where it was found to be a tumor-
suppressor in the prostate cancer (20), whereas other studies
revealed that GPR68 has an oncogenic profile by promoting
cancer outgrowth (21). In this study, we sought to investigate
GPR68 expression in the breast tumor microenvironment that
might aid in sensing acidosis and regulating BC progression.
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SUBJECTS, MATERIALS AND METHODS

In-Silico Expression of GPR68 in Breast
Cancer Patients and Cell Lines
In-silico tools TNM plot (https://www.tnmplot.com/) (22) and
UALCAN TCGA data analysis (http://ualcan.path.uab.edu/
index.html) (23) were used to assess the expression of
GPR68/OGR1 in various cancers compared to normal tissues.
Also, these tools were used to explore GPR68 expression in BC
tissues compared to healthy ones. Moreover, the UALCAN tool
was used to retrieve Kaplan-Meier plots in order to investigate if
there is an association between GPR68 expression levels and the
survival of BC patients. The UALCAN tool was also used to
explore the association with the clinicopathological parameters
of BC patients. On the other hand, GPR68 expression was
explored in the different BC cell lines using the in-silico tool
EMBL-EBI (https://www.ebi.ac.uk/gxa/home) by examining the
data of RNA-seq in 934 human cancer cell lines from the cancer
cell line encyclopedia.

Breast Cancer Tissues
The cohort included in this study was composed of a total of 98
female Egyptian BC patients who underwent conservative breast
surgery/mastectomy in Alexandria University, Kasr El-Aini and the
National Cancer Institute hospitals, Egypt. Pathologists confirmed
the pathological diagnosis of all samples, and their
clinicopathological parameters were summarized in Table 1. The
mean age (±SD) of recruited patients was 47.18 (±11.40) years.
Some of the adjacent normal counterparts of the cancerous tissues
were resected (n=15), that were used in the comparison with the
fresh BC samples (n=28). Also, other non-tumor fibrocystic breast
tissues (n=20) were collected for histological comparison to the
formalin-fixed paraffin-embedded (FFPE) BC tissues (n=70). All
patients enrolled in this study agreed and signed informed consents.
The study was approved by the research ethics committee of the
University of Sharjah, UAE (REC-21-09-04-01). All experiments
were performed in compliance with the ethical standards of the
declaration of Helsinki.

Cell Culture of Breast Cancer Cell Lines
Four different cell lines were used in the study, hormonal luminal
A cell line (ER+, PR+, Her2-: MCF-7), triple-negative/basal-like
cell lines (ER-, PR-, Her2-: BT-549 and MDA-MB-231), and the
Her2+ SKBr3 (ER-, PR-, Her2+). All four cell lines were obtained
from ATCC, USA. MCF-7, BT-549, MDA-MB-231 cell lines
were cultured in complete RPMI-1640 medium, while SkBr3 was
cultured in complete DMEM media. All culture media were
supplemented with 2 mM L-glutamine, 1% non-essential amino
acids, 100 U/mL penicillin, 100 mg/mL streptomycin, 71.5 mM 2-
mercaptoethanol, and 10% fetal bovine serum (Sigma-Aldrich,
St. Louis, MO, USA).

RNA Extraction, Reverse Transcription,
and qRT-PCR
Fresh breast tissues were snapped frozen in liquid nitrogen directly
after collection and stored at -80°C. For RNA extraction from BC
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tissues, Trizol RNA extraction method was applied. For cell lines,
RNA was extracted using the RNeasy extraction kit (Qiagen,
Germany). Complementary DNA was synthesized using High-
Capacity cDNA Reverse Transcription Kit (Thermofisher
Scientific, USA). GPR68/OGR1 expression was detected and
quantified using the primers (Forward: GTTTGAAGGCGG
CAGAAATG, Reverse: GTGGAATGAGGAGGCATGAA), HOT
FIREPol EvaGreen qPCR Supermix (SolisBioDyne, Estonia) and
Quantstudio 3 real time qPCR (Applied Biosystems, USA).
Ribosomal 18S was used as housekeeping gene and relative
quantification was calculated as 2-DDCT.

Immunohistochemical Staining and
Scoring of GPR68 Expression
BC paraffin-embedded tissues were sectioned at 4 mm, after which
they were stained with rabbit anti-human GPR68 antibody
Frontiers in Oncology | www.frontiersin.org 310
(Invitrogen, USA, Cat. no: 720277), at 1:200 dilution. The
secondary conjugation and detection were done using
UltraVision Quanto Detection System HRP and DAB Quanto
(Thermofisher Scientific, USA). The images were captured with
Olympus DP74 microscope digital camera attached to a BX43
microscope (Olympus Life Sciences, Tokyo, Japan).
Immunoreactive score (IRS) was used to evaluate the
expression status of GPR68 in the different samples according
to the recommendations by Remmele and Stegner (24). IRS is
usually generated by the multiplication of the staining intensity
and the percentage of immuno-stained cells with a range from 0-
12. Microscopic evaluation of the immunohistochemical stainings
was performed by two independent investigators. Also,
semiquantitative analysis of DAB staining of GPR68 was done
using the immunohistochemistry (IHC) Toolbox plugin in Image
J software (https://imagej.nih.gov/ij/index.html). Optical density
(OD) was calculated as log (max intensity/mean intensity).
Immunofluorescence of GPR68 in Breast
Cancer Cell Lines
The four different BC cell lines were seeded in 6 well plates,
coated with cover slides. The cells were washed with PBS, fixed
using 4% paraformaldehyde for 15 minutes and permeabilized
using 0.1% Triton-X for 10 minutes. The cells were stained with
the primary anti-human GPR68 antibody (Invitrogen, USA, Cat.
no: 720277, 2 mg/ml), at 4°C and left overnight. Then, the
secondary antibody AlexaFluor 488-conjugated goat anti-rabbit
IgG (Invitrogen, USA, Cat. no: A-11008) was incubated for 45
minutes. After washing multiple times, coverslips were removed
carefully and loaded on slides with DAPI nuclear stain
(Invitrogen, USA). The images were captured with Olympus
DP74 microscope digital camera attached to an BX43 inverted
microscope (Olympus Life Sciences, Tokyo, Japan), at x400 and
x1000. The blue color indicated the nucleus of the BC cell lines
while the green color indicated the GPR68 expression.
Statistical Analysis
Statistical analysis was performed using SPSS 27 (IBM, Armonk,
NY, USA) software package and GraphPad Prism 6 (San Diego,
CA, USA). For SPSS analysis, descriptive univariate analyses
were conducted using frequencies and percentages for
categorical variables as well as means, medians, and standard
deviations for scale variables. The Chi-square test was performed
to assess the associations between categorical variables. The
normality of continuous variables was tested visually using the
Q-Q plots and statistically using the Kolmogorov-Smirnov test.
Differences in the means of normally distributed continuous
variables were analyzed using the independent t-test and
ANOVA test, for two independent or multiple samples,
respectively. Non-parametric tests, including Mann–Whitney
or Kruskal–Wallis tests were used for skewed continuous
outcomes. For GraphPad Prism analyses, normality tests were
conducted, and the non-parametric Mann Whitney U-test was
used to compare two groups. P-value <0.05 was considered
statistically significant.
TABLE 1 | Clinicopathological characteristics of the recruited cohort of breast
cancer patients (n = 98).

Category Frequency Percent (%)

Age
≤ 40 28 28.6
> 40 70 71.4
Tumor size
T1 16 16.3
T2 50 51.0
T3 32 32.7
Histologic type
Invasive ductal carcinoma 89 90.8
Invasive lobular carcinoma 5 5.1
Others 4 4.1
Histologic grade
G1 8 8.2
G2 65 66.3
G3 24 24.5
G4 1 1.0
ER status
Negative 47 48.0
Positive 51 52.0
PR status
Negative 45 45.9
Positive 53 54.1
Her2 status
Negative 78 79.6
Positive 20 20.4
Ki-67
Low (<14) 26 26.5
High (≥14) 72 73.5
Molecular subtype
Luminal A 33 33.7
Luminal B 24 24.5
Her2-enriched 9 9.2
Triple-negative 32 32.7
Nodal status
N0 26 26.5
N1 32 32.7
N2 21 21.4
N3 19 19.4
Tumor stage
Stage 1 9 9.2
Stage 2 36 36.7
Stage 3 53 54.1
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RESULTS

In-Silico Analysis of GPR68 Expression in
Various Cancers
GPR68 expression was assessed across various cancer types using
the online tools TNMplot (https://www.tnmplot.com) and
UALCAN (http://ualcan.path.uab.edu/index.html). As shown
in Figure 1A, the TNMplot tool explored the GPR68
expression in various cancer types, where BC was among the
tumors with a significant differential expression. This expression
pattern was also reported in the UALCAN tool data (Figure 1B).
In particular, as shown in Figure 1C, BC tumor tissue showed
higher GPR68 expression compared to adjacent normal tissues
(p=1.15e-17). This was further validated by UALCAN tool where a
similar expression pattern was observed in BC patients (n=1097)
that showed significantly higher GPR68 compared to normal breast
tissues (n=114) with a p-value of 1.63e-12 (Figure 1D).

Breast Cancer Patients’ Survival Based on
GPR68 Expression
It was crucial to explore whether GPR68 might have any effect on
the prognosis and survival of BC patients. To investigate this
issue, in-silico UALCAN tool was implemented. The results
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showed that GPR68 was not a potential prognostic factor in
BC (p=0.85, Figure 2A). However, upon the classification of
patients according to the molecular subtypes, luminal, Her2-
enriched or triple-negative, GPR68 showed a significant effect on
BC patients’ survival (p=0.0064, Figure 2B).

Validation of GPR68 mRNA and Protein
Expression in Breast Cancer Patients
The in-silico data was validated in BC patients’ samples collected
from different hospitals. As illustrated in Figure 3A, the mRNA
of GPR68 expression was higher in BC patients compared to
normal breast tissues (p<0.01). Further, the in-silico data
revealed that GPR68 is differentially expressed in the various
molecular subtypes of BC. High GPR68 expression was found to
be in the luminal as well as the triple-negative molecular subtype,
as shown in Figure 3B. To confirm these observations,
quantitative real-time qPCR performed on our cohort showed
that triple-negative and luminal B subtypes had high expression
of GPR68 expression as compared to normal controls
(Figure 3C, p<0.05 and p<0.0001, respectively).

In addition, GPR68 expression was validated in the recruited
cohort and assessed by immunohistochemical staining of
paraffin-embedded BC tissues. Different intensities were
A

B

D

C

FIGURE 1 | In-silico expression of GPR68 across various cancer types. (A) TNMplot showing breast cancer to be among the cancers where GPR68 was
upregulated in tumor tissues. The significant differences by the Mann-Whitney U test are marked with “red*”. (B) UALCAN tool supporting GPR68 upregulation in
breast cancer. (C) GPR68 was upregulated in the breast cancer tissues (n=112) compared to paired adjacent normal breast tissues using TNMplot data analysis.
(D)UALCAN tool confirmed the upregulation pattern in 1097 breast cancer patients compared to 114 normal breast tissues. BLCA, Bladder urothelial carcinoma;
BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; COAD, Colon
adenocarcinoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and neck squamous cell carcinoma; KICH, Kidney chromophobe;
KIRC, Kidney renal clear cell carcinoma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; PAAD,
Pancreatic adenocarcinoma; PCPG, Pheochromocytoma and paraganglioma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; SARC, Sarcoma;
SKCM, Skin cutaneous melanoma; STAD, Stomach adenocarcinoma; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC , Uterine corpus endometrial carcinoma.
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observed in BC tissues ranging from mild, moderate, to strong
staining, with a cytoplasmic and/or membranous localization
(Figure 4A). All BC sections were scored using the IRS system,
that is usually generated by the multiplication of the staining
intensity and the percentage of immuno-stained cells with a
range from 0-12 (24).GPR68 was found to be higher in BC
samples when compared to non-tumor breast tissues
Frontiers in Oncology | www.frontiersin.org 512
(Figure 4B). As shown in Figure 4C, upon the classification of
BC patients, GPR68 expression in BC tissues showed a high
expression in all the molecular subtypes. Such an expression
pattern was further confirmed using the semi-quantification
method via IHC Toolbox by Image J, where a higher
expression of GPR68 was observed in BC tissues compared to
non-tumor breast samples (Figure 4D). The expression across
A B

FIGURE 2 | Kaplan Meier survival graphs of breast cancer patients based on GPR68 expression using UALCAN in-silico tool. (A) Survival plot of breast cancer
patients that are classified according to high and low GPR68 expression showing that it is not a prognostic factor. (B) Classification of breast cancer patients with
low and high GPR68 expression as well as molecular subtypes (Her2-enriched, luminal and triple-negative) showed GPR68 to be a potential marker affecting the
survival of breast cancer patients.
A B

C

FIGURE 3 | Quantification of GPR68 mRNA expression in breast cancer patients using qRT-PCR. (A) GPR68 mRNA expression was upregulated in breast cancer
tissue samples of the recruited cohort compared to their normal counterparts. (B) In-silico analysis of GPR68 among the various molecular subtypes of breast
cancer. (C) Validation of GPR68 expression on the mRNA level in the luminal A, luminal B, Her2-enriched and triple-negative breast cancer subtypes. *p<0.05,
**p<0.01, ****p<0.0001.
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the different molecular subtypes was compared where the highest
expression was observed in the triple-negative BC group,
followed by the Her2-enriched and subsequently the luminal
subgroup (Figure 4E). A negative control image as well as
representative images of GPR68 expression in the different
molecular subtypes of BC are illustrated in Figure S1.

Association of GPR68 Expression
With the Clinicopathological Parameters
of Breast Cancer Patients
It was important to assess the correlation between GPR68
expression and the clinicopathological parameters of BC
patients, in the in-silico data and recruited cohort (Table 2).
The in-silico data revealed GPR68 expression to be unaltered
across the different age groups. This was similar to the
association reported from our recruited cohort, where age was
not found to affect GPR68 expression in BC patients. Upon
investigating the association with the molecular subtypes of BC,
the in-silico data showed that the luminal group had a higher
expression as compared to the Her2-enriched and triple-negative
patients (p<0.0001 for both). However, in our recruited cohort
the semi-quantification of GPR68 expression was higher in non-
hormonal BC patients (triple-negative and Her2-enriched) when
compared to the hormonal luminal A and B (p=0.046). This was
Frontiers in Oncology | www.frontiersin.org 613
further supported by a higher GPR68 expression in the PR
negative BC patients as compared to PR positive BC patients
(p<0.05). Lastly, in-silico data reported a significant change
according to nodal metastasis status, where BC patients with
N1 and N2 profiles had higher GPR68 expression compared to
those with N0 (p<0.05). However, this was not observed in the
recruited cohort.

The observed discrepancy between the in-silico and validated
GPR68 expression could be attributed to the different ethnicities
between the BC patients. As mentioned earlier, our recruited
cohort is comprised of Egyptian BC patients, i.e., African
ethnicity, while the in-silico data was mainly composed of
Caucasians, African Americans, and Asians. Intriguingly, the
in-silico UALCAN tool showed that there was a significant
increase in GPR68 expression in the Caucasian population in
comparison to the African American population (p<0.05,
Figure 5). This highlights the impact of race and ethnicity on
GPR68 expression in BC.
Validation of GPR68 mRNA and Protein
Expression in Breast Cancer Cell Lines
In order to assess the effect and mechanism of GPR68 in BC, four
cell lines were selected as they showed various GPR68 expression
A B

D E

C

FIGURE 4 | Immunohistochemical assessment of GPR68 expression in paraffin-embedded breast cancer tissues. (A) Microscopic images showing various
degrees of intensity: mild, moderate, and strong GPR68 expression. Images were captured at x400 magnification, with a scale bar representing 100 mm.
Brown/DAB staining denotes GPR68 expression. (B) Immunoreactive scoring of GPR68 expression in immunohistochemical staining of BC tissues compared
to non-tumor tissues. (C) GPR68 expression according to immunoreactive scores between the different molecular subtypes of breast cancer patients. (D)
Semi-quantitative assessment of GPR68 expression in breast cancer patients compared to non-tumor breast tissues, by calculating the optical density of DAB
substrate using IHC toolbox-Image J. (E) Semi-quantitative assessment of GPR68 expression across the different molecular subtypes of breast cancer patients.
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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according to the EBI tool using RNA-seq data of cancer cell line
encyclopedia (Figure 6A). Upon validation of this data with
qPCR, the triple-negative adenocarcinoma MDA-MB-231
showed the highest expression of GPR68 at the mRNA level,
followed by the luminal A MCF-7 cell line, followed by Her2+ SkBr3
and lastly the triple-negative invasive ductal carcinoma BT-549
(Figure 6B). This was further validated using immunofluorescence,
where a cytoplasmic and membranous expression of GPR68 was
observed (Figure 6C).
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DISCUSSION

In this study, GPR68 expression in BC was explored using various
approaches including in-silico analysis, fresh biopsies, FFPE tissues,
and cell lines. A significant upregulation pattern was observed along
with a differential expression in BCmolecular subtypes, suggesting a
potential role in BC pathogenesis that needs to be further studied.

The effects of acidosis on cancer cells have been previously
investigated in different tumors (3). However, the exact
TABLE 2 | Association between GPR68 expression and the clinicopathological parameters of breast cancer patients, using data from the in-silico and the recruited
cohort in the study.

In-silico Recruited Cohort

Categories p value Categories GPR68 expression p value

Age 21-40 yrs vs. 41-60 yrs 0.887 ≤ 40 0.033492 0.782
21-40 yrs vs. 61-80 yrs 0.832
21-40 yrs vs. 81-100 yrs 0.999
41-60 yrs vs. 61-80 yrs 0.897 > 40 0.044524
41-60 yrs vs. 81-100 yrs 0.91
61-80 yrs vs. 81-100 yrs 0.866

Tumor Stage Stage 1 vs. Stage 2 0.851 Early (1–2) 0.044313 0.308
Stage 1 vs. Stage 3 0.24
Stage 1 vs. Stage 4 0.376
Stage 2 vs. Stage 3 0.105 Advanced (3–4) 0.040389
Stage 2 vs. Stage 4 0.381
Stage 3 vs. Stage 4 0.766

Molecular Subtype Luminal vs. Her2-enriched 0.000002**** Non-hormonal:
Triple-negative & Her2-enriched

0.048693 0.046*
Luminal vs. triple-negative 0.000078****

Hormonal:
Luminal A & B

0.027408Her2-enriched vs. triple-negative 0.209

Nodal Metastasis Status N0 vs. N1 0.011* Negative 0.042336 0.529
N0 vs. N2 0.045*
N0 vs. N3 0.813
N1 vs. N2 0.764 Positive 0.038511
N1 vs. N3 0.241
N2 vs. N3 0.233
March
 2022 | Volume 12 | Article
Bold text indicates significant findings. *p<0.05 and ****p<0.0001.
FIGURE 5 | In-silico analysis of GPR68 expression across the different ethnicities (Caucasians, African-American and Asians) of breast cancer patients compared to
normal breast samples. *p<0.05 and ****p<0.0001.
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mechanisms and receptors that might facilitate these effects still
need to be further explored. Among the proton sensing GPCRs is
OGR1/GPR68, which is considered a novel pH sensor that is
activated by an acidic extracellular pH (15, 19). Such proton
sensing GPCRs were reported to play a role in tumor
development, metastasis, inflammation, and angiogenesis
process (3). GPR68 expression has been investigated across
cancer types including skin, head and neck squamous cancer
as well as pancreatic ductal adenocarcinoma (25–28). Since BC is
the most prevalent cancer globally, we aimed at investigating the
expression pattern of GPR68 in order to understand its role in
the BC microenvironment.

Our in-silico data revealed GPR68 expression to be highly
upregulated in BC across the different tumor types. This goes in
line with previous in-silico findings by Wiley et al. where the
most prominent increased GPR68 expression was in pancreatic
ductal adenocarcinoma, cervical squamous cell carcinoma,
certain subtypes of breast adenocarcinoma and ovarian cancer
(29). The in-silico data revealed a high transcript level of GPR68
BC patients as compared to normal breast samples. This was
further confirmed at the mRNA and protein levels by qPCR and
IHC, respectively in the recruited cohort. Furthermore, GPR68
didn’t show any prognostic potential in BC patients unless they
were classified according to their molecular subtypes, which is
similar to the findings reported by Zhang et al. where the high
GPR68 expression group did not have different survival rates
Frontiers in Oncology | www.frontiersin.org 815
(25). The in-silico data revealed that luminal subtypes have the
highest GPR68 expression, followed by the triple-negative and
Her2-enriched BC subtypes. Nevertheless, upon validation of
GPR68 expression at the mRNA and protein levels, it was
observed that the highest expression is in the triple-negative
molecular subtype. Furthermore, there was a higher GPR68
expression in the PR negative BC patients when compared to
the PR positive BC patients. Such discrepancy between the in-
silico and validated GPR68 expression could be attributed to the
different ethnicities between the BC patients, which was further
supported by GPR68 expression across different ethnicities using
the in-silico UALCAN tool. Such findings point out the effect of
race and ethnicity on GPR68 expression, especially in BC.

Previous studies demonstrated the role of GPR68 in tumor
development where GPR68 deficiency significantly reduced
tumor allograft development in GPR68 knockout mouse model
of prostate cancer cells (21). In addition, activation of GPR68
caused the stimulation and secretion of proinflammatory
mediators such as IL‐6 and IL‐8 (CXCL8), which triggered
tumor progression (30–32). The expression of GPR68 in BC
cell lines was previously reported by Herzig et al., which showed
a weak GPR68 expression in the BC cell lines MCF-7 and MDA-
MB-231 (27, 33). Since the molecular subtype was found to affect
GPR68 expression, it was essential to explore the baseline
expression of GPR68 in four different BC cell lines. In-silico
data, as well as the mRNA and protein expression of GPR68,
A
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FIGURE 6 | GPR68 expression in breast cancer cell lines. (A) In-silico data showing GPR68 expression in 4 different breast cancer cell lines using the EMBL-EBI
tool. The grey color represents the lowest expression while the darkest blue color represents the highest expression. (B) Validation of GPR68 mRNA expression
using qPCR in breast cancer cell lines with MDA-MB-231 showing the highest expression. (C) Immunofluorescence of GPR68 in breast cancer cell lines, where the
blue color indicates the nucleus, and the green fluorescence represents GPR68 expression. Microscopic images were captured at x400 and x1000 magnification,
with a scale bar of 100 and 20 mm, respectively. ****p<0.0001.
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revealed a strong expression in the triple-negative
adenocarcinoma MDA-MB-231 cell line, followed by the
luminal A MCF-7 cell line, and Her2+ SKBr3, with the lowest
expression existing in the invasive ductal carcinoma triple-
negative BT-549 cell line. Additionally, our data indicated a
membranous and cytoplasmic GPR68 expression that could be
possibly due to the internalization of GPR68 that might occur as
a consequence of excessive activation, as previously reported
(34). Such a process would need additional confirmation in
future functional studies. Previous studies utilized MCF-7 cell
lines to investigate the role of GPR68 in BC, where its
overexpression inhibited cell migration by a Ga12/13-Rho-
Ras-related C3 botulinum toxin substrate 1 (Rac1) pathway
(33). Furthermore, overexpression of GPR68 increased the
apoptosis of MCF-7 BC cells and inhibited cell growth,
migration, and proliferation (33, 35). Our data revealed that
MDA-MB-231 is a good candidate to investigate the function of
GPR68 in BC.

In conclusion, this study is the first to report GPR68
expression in BC patients and its association with the
clinicopathological parameters including molecular subtypes.
Moreover, this study explores GPR68 expression across various
cell lines showing MDA-MB-231 as a potential candidate for
further studies to explore GPR68 in the BC microenvironment
and allow researchers to understand its role in the pathogenesis
of BC.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
Frontiers in Oncology | www.frontiersin.org 916
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Research ethics committee of the University of
Sharjah, UAE (REC-21-09-04-01). The patients/participants
provided theirwritten informed consent to participate in this study.
AUTHOR CONTRIBUTIONS

Conceptualization, NE, IT, and AM. Methodology, NE and IS.
Formal analysis, NE and AH. Investigation, NE and IT. Data
curation, RY, NY, YE, and TM. Writing—original draft
preparation, NE. Writing—review and editing, RY, AH, IT,
and AM. Supervision, IT and AM. All authors have read and
agreed to the final version of the manuscript.
FUNDING

This research was funded by the University of Sharjah, Sharjah,
UAE, grant number 1901090255.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2022.
847543/full#supplementary-material

Supplementary Figure 1 | Representative images of immunohistochemical
staining of breast cancer tissues. (A) A negative control for the
immunohistochemical staining process. (B) Representative images of GPR68
expression in luminal A, luminal B, Her2-enriched and triple-negative breast cancer
tissues. All images were captured at x200 magnification, with a scale bar of 200 mm.
REFERENCES

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer J Clin
(2021) 71:209–49. doi: 10.3322/caac.21660

2. Vander HeidenMG, Cantley LC, Thompson CB. Understanding theWarburg
Effect: The Metabolic Requirements of Cell Proliferation. Sci (New York NY)
(2009) 324:1029–33. doi: 10.1126/science.1160809

3. Justus CR, Dong L, Yang LV. Acidic Tumor Microenvironment and pH-
Sensing G Protein-Coupled Receptors. Front Physiol (2013) 4:354.
doi: 10.3389/fphys.2013.00354

4. Pillai S, LangsenM, Nguyen J, Wojtkowiak J, Bui M, Gatenby R, et al. Abstract
1846: Acid Sensing G Protein-Coupled Receptor OGR1 is Required for Acid
Induced Adiposomogenesis in Breast Cancer Cells. Cancer Res (2019)
79:1846. doi: 10.1158/1538-7445.AM2019-1846

5. Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated Ph: A Perfect
Storm for Cancer Progression. Nat Rev Cancer (2011) 11:671–7. doi: 10.1038/
nrc3110

6. Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy
K, et al. Neutralization of Tumor Acidity Improves Antitumor Responses to
Immunotherapy. Cancer Res (2016) 76:1381–90. doi: 10.1158/0008-
5472.CAN-15-1743

7. Robey IF, Baggett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF, et al.
Bicarbonate Increases Tumor pH and Inhibits Spontaneous Metastases.
Cancer Res (2009) 69:2260–8. doi: 10.1158/0008-5472.Can-07-5575
8. Ibrahim-Hashim A, Cornnell HH, Abrahams D, Lloyd M, Bui M, Gillies RJ,
et al. Systemic Buffers Inhibit Carcinogenesis in TRAMP Mice. J Urol (2012)
188:624–31. doi: 10.1016/j.juro.2012.03.113

9. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, et al.
The G Protein-Coupled Receptor Repertoires of Human and Mouse. Proc
Natl Acad Sci U.S.A. (2003) 100:4903–8. doi: 10.1073/pnas.0230374100

10. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A
Comprehensive Map of Molecular Drug Targets. Nat Rev Drug Discov (2017)
16:19–34. doi: 10.1038/nrd.2016.230

11. Sriram K. Insel PA. G Protein-Coupled Receptors as Targets for Approved
Drugs: How Many Targets and How Many Drugs? Mol Pharmacol (2018)
93:251–8. doi: 10.1124/mol.117.111062

12. Lynch JR, Wang JY. G Protein-Coupled Receptor Signaling in Stem Cells and
Cancer. Int J Mol Sci (2016) 17:707. doi: 10.3390/ijms17050707

13. O'Hayre M, Degese MS, Gutkind JS. Novel Insights Into G Protein and G
Protein-Coupled Receptor Signaling in Cancer. Curr Opin Cell Biol (2014)
27:126–35. doi: 10.1016/j.ceb.2014.01.005

14. Xu Y, Casey G. Identification of Human OGR1, a Novel G Protein-Coupled
Receptor That Maps to Chromosome 14. Genomics (1996) 35:397–402.
doi: 10.1006/geno.1996.0377

15. Ludwig M-G, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, et al.
Proton-Sensing G-Protein-Coupled Receptors. Nature (2003) 425:93–8.
doi: 10.1038/nature01905

16. Huang W-C, Swietach P, Vaughan-Jones RD, Ansorge O, Glitsch MD.
Extracellular Acidification Elicits Spatially and Temporally Distinct Ca2+
Signals. Curr Biol (2008) 18:781–5. doi: 10.1016/j.cub.2008.04.049
March 2022 | Volume 12 | Article 847543

https://www.frontiersin.org/articles/10.3389/fonc.2022.847543/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.847543/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.1126/science.1160809
https://doi.org/10.3389/fphys.2013.00354
https://doi.org/10.1158/1538-7445.AM2019-1846
https://doi.org/10.1038/nrc3110
https://doi.org/10.1038/nrc3110
https://doi.org/10.1158/0008-5472.CAN-15-1743
https://doi.org/10.1158/0008-5472.CAN-15-1743
https://doi.org/10.1158/0008-5472.Can-07-5575
https://doi.org/10.1016/j.juro.2012.03.113
https://doi.org/10.1073/pnas.0230374100
https://doi.org/10.1038/nrd.2016.230
https://doi.org/10.1124/mol.117.111062
https://doi.org/10.3390/ijms17050707
https://doi.org/10.1016/j.ceb.2014.01.005
https://doi.org/10.1006/geno.1996.0377
https://doi.org/10.1038/nature01905
https://doi.org/10.1016/j.cub.2008.04.049
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Elemam et al. GPR68 Expression in Breast Cancer
17. Mohebbi N, Benabbas C, Vidal S, Daryadel A, Bourgeois S, Velic A, et al. The
Proton-Activated G Protein Coupled Receptor OGR1 Acutely Regulates the
Activity of Epithelial Proton Transport Proteins. Cell Physiol Biochem (2012)
29:313–24. doi: 10.1159/000338486

18. de Vallière C, Vidal S, Clay I, Jurisic G, Tcymbarevich I, Lang S, et al. The pH-
Sensing Receptor OGR1 Improves Barrier Function of Epithelial Cells and
Inhibits Migration in an Acidic Environment. Am J Physiol-Gastrointestinal
Liver Physiol (2015) 309:G475–G90. doi: 10.1152/ajpgi.00408.2014

19. Saxena H, Deshpande DA, Tiegs BC, Yan H, Battafarano RJ, Burrows WM,
et al. The GPCR OGR1 (GPR68) Mediates Diverse Signalling and Contraction
of Airway Smooth Muscle in Response to Small Reductions in Extracellular
pH. Br J Pharmacol (2012) 166:981–90. doi: 10.1111/j.1476-5381.2011.01807.x

20. Parry DA, Smith CE, El-Sayed W, Poulter JA, Shore RC, Logan CV, et al.
Mutations in the pH-Sensing G-Protein-Coupled Receptor GPR68 Cause
Amelogenesis Imperfecta. Am J Hum Genet (2016) 99:984–90. doi: 10.1016/
j.ajhg.2016.08.020

21. Yan L, Singh LS, Zhang L, Xu Y. Role of OGR1 in Myeloid-Derived Cells in
Prostate Cancer. Oncogene (2014) 33:157–64. doi: 10.1038/onc.2012.566
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Acidosis of the tumor microenvironment is a hallmark of tumor progression and has
emerged as an essential biomarker for cancer diagnosis, prognosis, and evaluation of
treatment response. A tool for quantitatively visualizing the acidic tumor environment could
significantly advance our understanding of the behavior of aggressive tumors, improving
patient management and outcomes. 89Zr-labeled pH-low insertion peptides (pHLIP) are a
class of radiopharmaceutical imaging probes for the in vivo analysis of acidic tumor
microenvironments via positron emission tomography (PET). Their unique structure allows
them to sense and target acidic cancer cells. In contrast to traditional molecular imaging
agents, pHLIP’s mechanism of action is pH-dependent and does not rely on the presence
of tumor-specific molecular markers. In this study, one promising acidity-imaging PET
probe ([89Zr]Zr-DFO-Cys-Var3) was identified as a candidate for clinical translation.

Keywords: pH-low insertion peptides, membrane-insertion behavior, acidic tumor microenvironment, zirconium-
89, PET imaging, human dosimetry estimates
INTRODUCTION

Cancer is a complex disease with potentially high heterogeneity between tumors and within an
individual tumor and its metastases (1). Tumor growth and progression depend not only on tumor
genotype but also on the metabolic status of cancer and the immune cells within the tumor
microenvironment (TME). Cancer cells alter their metabolism (metabolic switch) to support their
rapid proliferation and dissemination across the body, manifested in high rates of glucose
consumption and an overexpression of surface carbonic anhydrases (e.g., CA IX), which catalyze
the transformation of carbon dioxide and water into carbonic acid (2). As a result of anaerobic (3)
and aerobic glycolysis (4) (Warburg Effect) and the overexpression of carbonic anhydrases, cancer
cells contribute to the acidification of the TME. Also contributing to acidity are tumor-associated
macrophages (TAMs). The progression of immune-excluded (“cold”) tumors is associated with the
presence of acidic metabolically active TAMs, which generate immuno-suppressive signals, enhance
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angiogenesis, and promote metastases (5, 6). A better
understanding of these processes could greatly impact
patient outcomes.

The ability of the pHLIP family to sense and target acidic
cancer cells and TAMs within the TME could be leveraged to
investigate tumor biology and predict cancer treatment
responses. As such, pHLIP technology is a highly active area of
research (see reference for a comprehensive review) (7). Briefly,
pHLIP is a water-soluble unstructured peptide at neutral and
high pH values (state I, Figure 1). Being a moderately
hydrophobic peptide, pHLIP exhibits a high affinity for the cell
membrane (state II, Figure 1). Several carboxyl groups within
the pHLIP sequence are protonated at a low cell surface pH,
which triggers the peptide’s folding and insertion across the cell
membrane to form a stable transmembrane helix (state III,
Figure 1). The dielectric environment at the membrane
slightly increases the pKa values of the carboxyl groups. At low
local pH values (6.0–6.5), found at the surface of metabolically
active cells (8–10), the environment promotes the peptide’s
protonation. Variation and truncation of the original pHLIP
sequences allowed us to identify pHLIP Var3 as the lead
candidate for clinical translation because of its optimal pK
values and improved insertion rates as well as suitable
pharmacokinetic and pharmacodynamic properties (11, 12). A
variety of imaging and therapeutic agents have been successfully
delivered by pHLIP agents to tumors (in more than 20 different
human and murine tumor models). The cargo (payload) is
attached either to the N-terminus of the peptide — the end
that remains in the extracellular space (Figure 1) — or to the
membrane-inserting end (C-terminus) (13–29). The pHLIP’s
tumor uptake correlates with the tumor’s extracellular pH (30–
32) and can be enhanced by acidification using co-injection of
glucose (33) and overexpression of CA IX (31). In addition to
primary tumors, satellites near the primary tumor and micro-
metastases in distant organs are targeted by pHLIP agents (33–
36). It was also demonstrated that pHLIP conjugates target the
acidic TAMs within the TME (28).
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The acidic TME can be imaged with pHLIP-based PET-
compatible radiotracers. Clinically, a pHLIP-based radiotracer
could provide more information about the TME and tumor
progression than a standard [18F]FDG PET scan. Our groups
have evaluated 18F-labeled (37), 99mTc-labeled (32), 64Cu- and
[18F]AlF-labeled (38), as well as 68/67Ga-labeled (39) pHLIP
analogues in various tumor models. A phase I clinical trial on
breast cancer with an investigational 18F-labeled pHLIP probe
(based on a D-amino acid sequence of Var3 pHLIP) was
completed at Memorial Sloan Kettering Cancer Center (MSK)
(NCT04054986). The phase I protocol was performed as a first-
in-human PET/CT trial of five patients with metastatic breast
cancer and demonstrated the safety and slow blood clearance
(several hours) of the 18F-labeled pHLIP conjugate. The short
half-life and/or availability of the radionuclides mentioned above
is a significant limiting factor for long-term circulating pHLIP
compounds. In preclinical PET imaging, an optimal tumor
contrast has been observed with pHLIP at or after 24 hours.
For this reason, long-lived PET radionuclides, such as the widely
available zirconium-89 (89Zr), would likely maximize clinical
diagnostic potential with pHLIP. Here, we investigated several
89Zr-radiolabeled pHLIP imaging agents with the goal of
introducing a novel PET pH-sensor with optimized
pharmacokinetics and a high tumor uptake for a possible
clinical translation.
MATERIALS AND METHODS

pHLIP Conjugates
The D-amino acid versions of the Var3 and WT pHLIPs were
synthesized and conjugated with the chelators by the company
CS Bio (Menlo Park, CA) with ≥ 95% purity. The HOPO chelator
was provided by the laboratory of Dr. Lynn Francesconi
(Chemistry Department at Hunter College, New York). The
DFOsqa chelator was synthesized following a procedure
described in the literature (40). 1H- and, 13C-NMR (nuclear
FIGURE 1 | Schematic presentation of the interaction of a pHLIP-cargo conjugate with the lipid bilayer of a membrane at neutral/high and low pH values (for
purpose of this study, the cargo represents a [89Zr]zirconium-chelate, attached to the N-terminus). The pHLIP sequence is an unstructured coil in the solution at
neutral and high pH values (state I). The equilibrium shifts towards the membrane-bound state II when lipids (e.g., cell membranes) are added to the system. At a low
surface pH (6.0–6.2), aspartic acid and glutamic acid residues are protonated and the overall hydrophobicity increases. This triggers the partitioning of the peptide
into the lipid bilayer. The equilibrium at low pH values is shifted towards the membrane-inserted state III, which is accompanied by membrane-associated folding to
form a transmembrane alpha-helix. This figure was created with BioRender.com.
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magnetic resonance), and ESI MS (electrospray ionization mass
spectrometry) analysis did match the literature records [SI (40)].
All other chemicals were purchased from commercial suppliers
without further purification unless otherwise stated.

Radiochemistry
[89Zr]Zr-oxalate in 1 M oxalic acid was received from 3D
Imaging LLC (Little Rock, AR). All activities recorded in this
study were determined by an Capintec® CRC-55tR dose
calibrator. For the radiolabeling, the required activity (185
MBq/5 mCi) was transferred into a Protein LoBind®

Eppendorf tube and adjusted with 1 M HEPES [4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid] buffer [four-
times the volume of (89Zr)Zr-oxalate] to pH 7.0–7.4. To this,
the pHLIP conjugate was added [60 μL of a 5×10-4 M pHLIP-
solution in DMSO (dimethyl sulfoxide), equivalent to 30 nmol].

The mixture was incubated at 37°C for 30 minutes. The
completion of the radiolabeling was checked by radio instant
thin-layer chromatography (iTLC) using iTLC-SG chromatography
paper (Agilent Technologies) and an aqueous EDTA
(ethylenediaminetetraacetic acid) solution (50 mM, pH 4). The
iTLCs were scanned on an radio-TLC imaging scanner (AR2000;
Eckert & Ziegler Radiopharma GmbH). The radiochemical yield of
all constructs exceeded 95%, and they were used without purification.
The 89Zr-radiolabeled pHLIP were prepared for intravenous
injection by diluting the reaction mixture with sterile filtered
phosphate-buffered saline (PBS) to the required volume (2.5 mL).
Each mouse received 100 μL of PBS solution containing 1.2 nmol of
pHLIP and 7.4 MBq/200 μCi of activity.

A potential degradation of the compounds was investigated
by serum stability assay. For this, 100 μL of the prepared PBS
solution (containing 1.2 nmol of pHLIP and 7.4 MBq/200 μCi)
was added to 900 μL of human serum (heat inactivated from
Millipore Sigma) and incubated for seven days at 37°C. The
release of free 89Zr4+ was measured by radio instant thin-layer
chromatography (as described above) and the degradation of the
whole construct was checked by radio high-performance liquid
chromatography (HPLC). The analytical reverse-phase HPLC
was performed on a Shimadzu system equipped with a Flow
Count PIN diode radiodetector from BioScan, a DGU-20A
degasser, two LC-20AB pumps, and an SPD-M20A photodiode
array detector. A BetaBasic 18 column (150 Å, 5.0 μm, 4.6×150
mm, Thermo Scientific) was used with water (+ 0.1%
trifluoroacetic acid) and acetonitrile (+ 0.1% trifluoroacetic
acid) as solvents. The gradient started at 5% acetonitrile and
increased to 95% over 15 minutes at a constant flowrate of 1 mL/
min. The radiochemical purities of all 89Zr-radiolabeled pHLIP
conjugates were greater than 90% over the course of seven days.

Biophysical Studies
The interaction of the pHLIP agents with liposomes was
investigated by recording the tryptophan fluorescence and
c i rcu lar d ichro i sm (CD) spec t ra by us ing a PC1
spectrofluorometer (ISS, Inc) and an MOS-450 spectrometer
(Biologic, Inc), respectively, with temperature control set to
25.0°C. Liposomes, consisting of large unilamellar vesicles,
were prepared by extrusion. POPC (1-palmitoyl-2-oleoyl-sn-
Frontiers in Oncology | www.frontiersin.org 320
glycero-3-phosphocholine) (Avanti Polar Lipids, Inc.) in
chloroform was desolvated on a rotary evaporator and dried
under vacuum for several hours. The phospholipid film was
rehydrated in 10 mM phosphate buffer, pH 8.0, vortexed, and
passed 21 times through the extruder (50 nm membrane).

Using an excitation wavelength of 295 nm, tryptophan
fluorescence spectra were recorded from 310–400 nm. CD
spectra were recorded from 190–260 nm with 1-nm steps. The
concentration of the peptide and the POPC liposomes varied in
different experiments: 5–15 mM of pHLIP agents and 1 mM of
POPC liposomes.

The pH-dependent insertion of the peptides into the lipid
bilayer of the POPC liposomes was studied by monitoring either
the changes in tryptophan fluorescence spectra or changes in the
molar ellipticity at 222 nm as a function of the pH value. After
the addition of aliquots of HCl, the pH values of the solutions
containing peptide and POPC liposomes were measured using
an Orion PerHecT ROSS Combination pH Micro Electrode and
an Orion Dual Star pH and ISE Benchtop Meter. Fluorescence
spectra were analyzed using the Protein Fluorescence and
Structural Tool Kit (PFAST) (41) to determine the positions of
spectral maxima (lmax). The lmax and millidegree data were
normalized to 0–1 and were plotted as a function of pH. The pH-
dependence was fit with the Henderson-Hasselbach equation
to determine the cooperativity (n) and the mid-point (pK)
of transition:

Normalized   pH   dependence =
1

1 + 10n pH−pKð Þ

The tryptophan fluorescence kinetics were measured using an
SFM-300 mixing system (Bio-Logic Science Instruments) in
combination with the MOS-450 spectrometer with temperature
control set to 25.0°C. All samples were degassed before the
measurements to minimize air bubbles in the samples. The
peptide and POPC samples were incubated overnight to reach
equilibrium, to assure that most of the peptide is associated with
the liposome lipid bilayers. To follow the peptide insertion, equal
volumes of the peptide-POPC solution and of HCl were mixed to
lower the pH from 8 to 4. To monitor fluorescence intensity
changes during the peptide insertion into POPC liposomes
induced by the pH drop, the tryptophan emission signal was
observed through a cut off 320 nm filter at an excitation of 295 nm.

All data was fit to the appropriate equations by nonlinear least
squares curve fitting procedures employing the Levenberg
Marquardt algorithm using Origin 8.5.

Cell Preparation and Animal Models
The RM-1 and 4T1 cell lines were purchased from ATCC and
cultured according to the recommended conditions at 5% CO2

atmosphere and 37°C in DMEM (Dulbecco’s Modified Eagle
Medium) and RPMI 1640 medium, respectively, each containing
10% fetal bovine serum. The media were provided by the MSK
Media Preparation Core. For the subcutaneous allografts, the
cells were stripped in the absence of magnesium or calcium ions
using a mixture of 0.25% trypsin and 0.53 mM EDTA in Hank’s
Balanced Salt Solution, concentrated in 1 mL of the
corresponding medium, and a small aliquot was used to
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determine the cell count (Beckman Coulter Vi-CELL XR).
Another aliquot was diluted with the medium so that 50 μL
contained 1×106 cells.

The imaging and biodistribution studies were performed with
male (RM-1 model) and female (4T1 model) athymic nude mice
and the kidney-blocking experiments were performed with female
SCIDmice received from Charles River Laboratories (Stone Ridge,
NY). After arrival, the mice were kept in theMSK vivarium for one
week before any experimental handling was performed. The
animals were allowed free access to water and food, and all
animal care and experimental procedures were approved by the
Institutional Animal Care and Use Committee (IACUC). For the
subcutaneous allografts, a 1-to-1 ratio of Corning Matrigel Matrix
and the cell solution was prepared and stored on ice for the
injections. Each mouse received a subcutaneous injection of 100
μL (50 μL cell solution, viability > 90%, + 50 μL Matrigel) into the
flank on the level of the right shoulder. The injections were
performed under anesthesia (2% isoflurane, Baxter Healthcare,
Deerfield, IL, USA). Palpable tumors of similar size (100–300
mm3) developed 5–8 days after grafting.

Small Animal in vivo PET Imaging and
Post-Mortem Biodistribution Studies
The mice were intravenously injected (tail vein) with the
radiolabeled pHLIP conjugates (1.2 nmol, 7.4 MBq/200 μCi,
100 μL, in sterile filtered PBS). The activity of the syringe prior to
injection and after injection was used to determine the percent of
injectate administered.

PET images were obtained at the respective timepoints with the
mice under anesthesia (2% isoflurane) on a microPET Focus 120
(Concorde Microsystems) or an Inveon PET-CT (Siemens) rodent
scanner. All images were analyzed using the Medical Imaging Data
Examiner Amide (version 0.9.0) or the Inveon reconstruction
software suite. The counting rates in the reconstructed images
were converted to percent of injected dose per weight (%ID/g) by
applying a system-specific calibration factor. At the final timepoint,
the remaining mice were euthanized (by CO2 asphyxiation,
followed by cervical dislocation) and their tumors were resected
for histological analysis.

For the biodistribution studies the tumor-bearing mice were
randomized before the injections. Only mice with suitable
tumors (150–300 mm3) were utilized. An exception was made
for the 120-hour timepoint, for which only mice with smaller
tumors (150 mm3) were selected. The mice were grouped in
cohorts of four. At the respective timepoint, the mice were
euthanized (by CO2 asphyxiation, followed by cervical
dislocation) and their blood was collected by cardiac puncture
as a terminal procedure, followed by quick removal of the
tumors. After this, the other organs/samples were collected. All
samples were weighed and the radioactivity for each one was
counted for 1 minute using an automatic gamma counter
(Wizard2 2480 3′′, PerkinElmer, Waltham, MA), resulting in
less than 10% error due to counting statistics for each
measurement. The exact activities of all samples of one mouse
were determined by an Capintec® CRC-55tR dose calibrator.
These decay-corrected measurements were used to determine a
Frontiers in Oncology | www.frontiersin.org 421
calibration factor and calibrate all counts to the corresponding
activities. Activity concentrations were calculated as percentage
injected dose per tissue weight (%ID/g wet tissue). All data was
processed and visualized using Origin 8.5.

The animal studies, including the different radiotracers and
animal models, are listed in Table S1.

Dosimetry
Briefly, human dosimetry estimates were extrapolated from the
serial biodistribution and PET image data for [89Zr]Zr-DFO-
Cys-Var3 in female nude mice. The decay-corrected percentage
of administered activity in human organ i, %IDi,human, was
calculated using the following equation, which assumes
interspecies equivalence of the organ-level mean standardized
uptake values (42):

%IDi,human=
%IDi,mouse

mi,mouse 
�mmousemi,human

mhuman

Here, %IDi,mouse/mi,mouse is the activity concentration in mouse
organ i (see Table S2), mmouse is the mouse total body mass
(approx. 25 g); mi,human and mhuman are the blood-inclusive
source organ mass and total body mass, respectively, of the
computational phantom used to represent the reference adult
patient (43, 44). The activity concentration in the blood was
assumed to be representative of the red bone marrow. For each
organ, the %IDi,human vs. time was modeled using mono- or bi-
exponential functions, which were fit to the data using weighted
least-squares regression using the Microsoft Excel
SOLVERSTAT statistics package (45). The weight of each
observation was taken as the inverse of the variance (computed
from the SDs given in Table S2). The time-integrated activity
coefficient (46) for human organ i,~ai was computed from the
analytical expressions for the integrals of the fit functions; the
standard error in each ~ai, s~ai was computed via Gaussian error
propagation of the standard errors in the fit parameters, taking
the covariances into account. Finally, the absorbed dose and
effective dose coefficients were computed with MIRDcalc
software (47), using the ~ai and s~ai as input. 3D-absorbed dose
maps were generated using PARaDIM software (48). The results
can be found in Table S3

Ex vivo Autoradiography, Staining,
and Microscopy
Themiceof the imaginggroupswereeuthanizedat thefinal timepoint
(72 hours, byCO2 asphyxiation, followedby cervical dislocation) and
their tumors were resected, embedded in OCT compound (optimal
cutting temperature compound) and frozen. The following day, a
series of contiguous tumor sections of 10 mm thickness were cut and
exposed to a phosphor-imaging plate (Fujifilm BAS-MS2325, Fuji
Photo Film, Japan) for 24 hours at−20 °C and read using a Typhoon
8600 photographic film scanner (GE Healthcare). Digital images of
radioactivity distribution at 50 mm resolution were obtained. The
same sections were subsequently used for H&E (hematoxylin and
eosin) and CD31 (platelet endothelial cell adhesion molecule-1,
PECAM-1, highlighting blood vessels) staining. The staining and
scanning/digitalizing of all slices was performed by the MSK
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Molecular CytologyCore Facility. Autoradiographic and histological
images were registered using Adobe Photoshop CS3 software.

Cherenkov and Fluorescence Imaging
For the side-by-side imaging study, five male RM-1 tumor-bearing
athymic nude mice were injected with a 100 μL PBS-solution
containing [89Zr]Zr-DFOsqa-Lys-Var3 (1.2 nmol of pHLIP and
7.4 MBq/200 μCi) and the fluorophore Alexa546-Cys-Var3 (5
nmol). Alexa546-Cys-Var3 was provided by the laboratory of
Prof. Dr. Yana K. Reshetnyak. At 48 hours post-injection, the
mice were sacrificed and the kidneys, livers and tumors were
resected and imaged. Cerenkov luminescence imaging (recording
time of 5 minutes) and fluorescence imaging (recording time of 1
minute) was performed with an IVIS Spectrum (PerkinElmer).
Cerenkov luminescence was recorded in p s–1 cm–2 sr–1 and
fluorescence in p s–1 cm–4 sr–1 μW–1.
RESULTS

Preparing the pHLIP Conjugates
In this study, six 89Zr-labeled pHLIP conjugates were
investigated. The pHLIP sequence was originally based on the
wild type pHLIP (WT), which was isolated from the C-helix of
Frontiers in Oncology | www.frontiersin.org 522
the bacteriorhodopsin protein, a proton pump found in archaea
organisms (13, 49). Optimization of this sequence led to Var3
pHLIP compound, which is used in this study (12). At the N-
terminus, the pHLIP sequences can be modified with either a
lysine (Lys-Var3 or Lys-WT) or a cysteine (Cys-Var3) residue,
which can be used to conjugate a chelator by harvesting the
cysteine–maleimide or a lysine–isothiocyanate reaction,
respectively. The N-terminus of the pHLIP sequence remains
in the extracellular matrix, while the C-terminus crosses the cell
membrane into the intracellular space as shown in Figure 1.
Previous studies confirmed that the cargo can affect the
pharmacokinetics of the pHLIP conjugates (34); therefore, the
choice of the chelator can be a critical factor. We investigated six
89Zr-labeled pHLIP conjugates (Figure 2) to identify the best
candidate for a possible clinical translation. Five Var3 constructs
were synthesized, using the zirconium-chelators DFO, DFO*,
DFOsqa, and HOPO. The Zr4+-ion forms a +1 charged chelate
with DFO and DFOsqa, while DFO* and HOPO form a neutral-
charge chelate. It was previously shown that the WT pHLIP
exhibits lower tumor targeting than the Var3 pHLIP. The WT
sequence was used in this study to demonstrate the benefits of
the optimized Var3 pHLIP version.

The radiolabeling of all pHLIP with [89Zr]zirconium oxalate
conjugates resulted in a radiochemical yield > 95% (verified by
A

B

FIGURE 2 | (A) The pHLIP sequences (d-amino acids) of the six investigated constructs in single letter code and (B) the chemical structures of the four chelators
(active conjugation side in red). The conjugation was either performed by reacting the Lys-pHLIP with the isothiocyanate version of the chelator (activated ethyl ester
for DFOsqa) or reacting the Cys-pHLIP with DFO-maleimide.
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iTLC and radio-HPLC) and no additional purification was
necessary. The stability of the radiotracers was investigated in
human serum at 37°C, indicating no release of unchelatssed 89Zr4
+-ions or breakdown of the pHLIP constructs over a period of 7
days (Figure S1).

Biophysical Characterization
A biophysical characterization of all pHLIP agents was performed to
check on their membrane-insertion behavior. The pH-dependent
bilayer interactions of the constructs were measured using POPC
liposomes by changes in steady-state tryptophan fluorescence and
CD. The tryptophan (Trp) fluorescence and CD was recorded for
the pHLIPs in solution at a pH value of 8 (state I), and in presence of
POPC liposomes at the pH of 8 (state II) and 4 (state III) (Figures 1,
S2, S3, and Table S4). The fluorescence signal of the WT pHLIP
cannot be directly compared with the emission of the Var3
constructs, since the Trp residues in the WT are located at the
beginning and middle of the transmembrane helix, while the Trp
residues in Var3 are located at the beginning and end of the
transmembrane helix. Therefore, it is not surprising that the
position of the fluorescence maximum of the DFO-Lys-WT in
state III shows the lowest value (lmax = 338.9 nm, Table S4).
Among the five investigated Var3 agents, the spectral signals of the
HOPO-Lys-Var3 were distinct, either because the HOPO-
zirconium chelate absorbs light and/or its conjugation with
pHLIP alters the pH-dependent behavior of the pHLIP. We also
compared the spectral properties of the agents with and without
chelated (natural) zirconium, and obtained very similar results
(Table S4), indicating that the presence of the metal does not
affect their spectral properties. Both DFO-Lys-WT and HOPO-Lys-
Var3 were excluded from further biophysical studies. The pK value
(midpoint of transition) and the cooperativity (n) of the peptides’
insertion into the membrane was investigated for the four
Frontiers in Oncology | www.frontiersin.org 623
remaining Var3 agents. The low wavelength shifts of the Trp
fluorescence (fluor. changes, Figure 3A) indicate the peptide’s
propagation into the hydrophobic environment of the lipid
bilayer. The increase of their ellipticity (CD changes, Figure 3B)
indicates a coil-helix transition. The normalized data fitted by the
Henderson-Hasselbalch equation is shown in Figure 3 and Table
S4. All agents exhibit similar pK values with the highest
cooperativity (n = 1.6) established for the DFO-Cys-Var3 coil-
helix transition. The investigated agents demonstrated a fast
insertion (msec) into the membrane (Figure S4) similar to the
rate of the unmodified Var3 peptide (12). The influence of the
metal-chelate complex on the peptide is minimal since it was
attached to the membrane non-inserting end (N-terminus).

In vivo Imaging Studies in RM-1 and 4T1
Tumor Models
The murine cell lines RM-1 and 4T1, end-stage models for
prostate and breast cancer, were respectively allografted
subcutaneously into male and female athymic nude mice
(1×106 cells/mouse). Both cell lines grow rapidly; within one
week of allografting, an optimal tumor size (100–300 mm3) was
reached. Approximately 7.4 MBq/200 μCi (apparent molar
activity of approx. 6.3 MBq/nmol) of the 89Zr-labeled pHLIP
conjugate was intravenously administered (0.1 mL) to the
tumor-bearing mice. PET scans were performed at 4, 24, 48,
and 72 hours post-injection. The PET scans obtained from the
4T1 model, injected with [89Zr]Zr-DFOsqa-Lys-Var3, are
displayed in Figure 4A. The variant for which serial
biodistribution studies were performed, [89Zr]Zr-DFO-Cys-
Var3, was cleared from the blood with a (biological) half-life of
(16.0 ± 0.4) hours. A good tumor-background ratio for all
compounds was observed for the 48-hour timepoint. All
radiotracers were additionally evaluated in the RM-1 model
A

B

FIGURE 3 | The pH-dependent insertion of pHLIP agents into the lipid bilayers of POPC liposomes was studied by monitoring the changes in the position of the
maxima of the tryptophan fluorescence spectra (A) and ellipticity of the CD signals measured at 222 nm (B) as function of the pH. The data was fitted using the
Henderson-Hasselbalch equation. The fitting curves (red lines) and 95% confidence intervals (pink areas) are shown.
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and PET images at multiple timepoints were recorded. For all
compounds, the 48-hour timepoint showed the best tumor-to-
background ratio (Figure 4C); the tumor-to-muscle uptake-
ratios ranged from 11.6 ± 4.9 to 16.9 ± 6.8 for the Var3
conjugates and was 5.5 ± 1.5 for DFO-Lys-WT. A comparison
of the PET images between the 4T1 and RM-1 tumor models
revealed a similar biodistribution of the constructs with slight
variations in the tumor- and kidney-uptake (Figure S5). The
radiotracers’ distributions are discussed in more detail in the
“Biodistribution” section.

Histological Tumor Analysis
After the 72-hour timepoint, all mice used in the imaging study
were sacrificed. The tumors were resected, frozen in OCT
compound, and sectioned (10 μm slices) the following day,
followed by the recording of autoradiographs. Additional slides
were prepared for H&E and CD31 staining (murine blood vessels
staining). The pHLIP agents were present in the entire tumor
mass, and the highest activity areas overlapped with the tumor
stroma, as displayed in Figures 4B and S6, indicating the acidic
hotspots within the TME. This result is in line with previously
reported findings (50) showing that pHLIP compounds target
the tumor–stroma interface, which serves as an acidic dump for
cancer cells to maintain an optimal intracellular pH. A similar
tumor distribution was observed for all pHLIP constructs.
Additionally, 10 μm kidney sections were prepared, revealing
Frontiers in Oncology | www.frontiersin.org 724
that within kidney the 89Zr-labeled pHLIP compounds are
present primarily in its cortex (Figure S6).

Biodistribution Studies
The in vivo PET study revealed optimal tumor uptake and
tumor-to-background contrast at the 48-hour timepoint. For
this reason, the 48-hour timepoint was chosen for a single
timepoint biodistribution study to compare the six pHLIP
constructs more thoroughly in the RM-1 tumor model. The
biodistribution data of the organs with the highest uptake is
shown in Figure 5A. Additional data can be found in Table S5.
All Var3 agents demonstrate similar biodistribution. This differs
from the biodistribution of the WT agent, which demonstrates
the lowest tumor targeting and highest spleen, liver, and lungs
uptake. All Var3 agents exhibit high tumor uptake with the
highest value (12.4 ± 4.7) %ID/g observed for [89Zr]Zr-DFOsqa-
Lys-Var3. However, the high tumor uptake also correlates with a
high kidney uptake, (82.5 ± 14.2) %ID/g for DFOsqa-Lys-Var3.
The tumor-kidney-uptake correlation of all compounds is
visualized in Figure 5B. It is reported that a significant pH
gradient exists within the kidney parenchyma, related to the
metabolic activity of the thick ascending limb of the loop of
Henle, which might be of relevance for the acid-based
homeostasis (51). This suggests that the radiotracers with a
higher tumor uptake would also show an increased
kidney accumulation.
A

C

B

FIGURE 4 | (A) Coronal MIP PET images at 4, 24, 48, and 72 hours of female athymic nude mice bearing subcutaneous 4T1 tumor allografts on the right shoulder,
administered with 7.4 MBq/200 µCi of [89Zr]Zr-DFOsqa-Lys-Var3 (1.2 nmol pHLIP). (B) Ex vivo autoradiograph (top) and H&E staining (bottom) of 10 µm-tumor slices (excised
at 72 hours post-injection), not scaled or calibrated. (C) Coronal MIP PET images at 48 hours of male athymic nude mice bearing subcutaneous RM-1 tumor allografts on the
right shoulder, administered with 7.4 MBq/200 µCi and 1.2 nmol of the corresponding pHLIP conjugate. The scale bar applies to all PET images.
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Cherenkov and Fluorescence Imaging
The distinct kidney uptake was observed for all 89Zr-labeled Var3
conjugates. At the same time, according to the literature,
fluorescently labeled pHLIP conjugates exhibit significantly less
kidney uptake (34, 52) than radiometal-chelate-containing
pHLIPs. Therefore, we carried out a side-by-side imaging
study. Five male RM-1 tumor-bearing athymic nude mice were
co-injected with [89Zr]Zr-DFOsqa-Lys-Var3 and fluorophore
Alexa546-Cys-Var3. The mice were sacrificed at 48 hours post-
co-injection and the kidneys, livers, and tumors were resected
and imaged. Cherenkov irradiation originating from the 89Zr-
decay and the Alexa546 fluorescence was recorded (Figure 6).
Cherenkov imaging (expressed as radiance) and fluorescence
imaging (expressed as radiant efficiency) are two different
modalities. The organ uptake should be compared within the
same modality. A slightly higher tumor-to-kidney ratio of
Alexa546-Cys-Var3 was observed compared to the ratio for
[89Zr]Zr-DFOsqa-Lys-Var3 — indicating that the metal-
chelator constructs exhibit higher kidney retention.

Blocking the Kidney Uptake
Additional experiments were performed to investigate the
influence of various kidney-uptake blockers and diuretics.
Healthy female SCID mice received a “blocking agent” 30
minutes prior to the injection of [89Zr]Zr-DFOsqa-Lys-Var3
(7.4 MBq/200 μCi, 1.2 nmol). The goal was to achieve a
significant kidney clearance (uptake < 80%ID/g), as
determined by PET imaging. Five different drugs were
investigated: amiloride (epithelial sodium channel inhibitor), 5-
(N,N-dimethyl)amiloride (more potent amiloride analog),
probenecid (inhibits kidney uptake of organic anions),
chlorthal idone (inhibits sodium reabsorption), and
acetazolamide (carbonic anhydrase inhibitor). However, none
of these drugs led to a significant reduction of kidney uptake
compared to the control mice, which did not receive any
inhibitor. The experimental set-up can be found in Table S6.
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Biodistribution and Dosimetry of the [89Zr]
Zr-DFO-Cys-Var3 Lead Candidate
Due to elevated uptake, the kidney was expected to be the organ
limiting administered activity for clinical PET. Since none of the
kidney blocking strategies were effective in reducing the kidney
uptake of [89Zr]Zr-DFOsqa-Lys-Var3, the [89Zr]Zr-DFO-Cys-
Var3 agent, which shows (7.3 ± 2.9) %ID/g tumor uptake and
(25.7 ± 3.0) %ID/g kidney uptake, was selected as the lead
compound. A multiple-timepoint biodistribution was
performed (4, 24, 48, 72, and 120 hours) using the 4T1 tumor
model and [89Zr]Zr-DFO-Cys-Var3 (Figure S7 and Table S2).
Additionally, PET-CT images were recorded for each timepoint
(Figure S8). The tumor- and kidney-uptake values [(9.7 ± 1.7) %
ID/g and (47.6 ± 11.5) %ID/g, 48-hour timepoint] were
significantly higher for this compound in the 4T1 model than
in the RM-1 model [(7.3 ± 2.9) %ID/g and (25.7 ± 3.0) %ID/g,
48-hour timepoint].

Because the 4T1-tumors grew relatively quickly, smaller tumors
(100mm3) had to be chosen for the 120-hour timepoint, most likely
leading to a slightly lower (not significant) tumor- and kidney-
uptake for this timepoint [(6.8 ± 0.7) %ID/g and (35.3 ± 5.9) %ID/g,
120-hour timepoint]. Overall, the highest tumor uptake was
detected for the 48-hour timepoint and a small but not significant
tumor- and organ-clearance was observed for the 72- and 120-hour
timepoints. A progressive drop in radiotracer blood level was
observed over this five-day interval. A trace amount of (0.2 ±
0.05) %ID/g was detected for the 120-hour timepoint.

Murine biodistribution data was extrapolated to reference
human adults in order to obtain radiation dosimetry estimates
for human i.v. administration of [89Zr]Zr-DFO-Cys-Var3. The
effective dose coefficient was 0.50 mSv/MBq. The organs with the
highest absorbed dose coefficients were the kidneys [male, (1.83
± 0.11) mGy/MBq; female, (2.18 ± 0.14) mGy/MBq], followed by
the adrenals [male, (0.934 ± 0.047) mGy/MBq; female, (0.991 ±
0.038) mGy/MBq] A graphical summary of the dose coefficients
is given in Figure 7; tabulated values can be found in Table S3.
A B

FIGURE 5 | (A) Biodistribution data of the six investigated pHLIP constructs at 48 hours post-injection evaluated in the RM-1 tumor model (n=4). (B) Direct
comparison of the kidney and tumor uptake.
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DISCUSSION

Previously, 18F-labeled (37), 99mTc-labeled (32), 64Cu- and [18F]AlF-
labeled (38), as well as 68/67Ga-labeled (39) pHLIP analogs were
investigated in various mouse models. However, the short half-life of
the radionuclides or their availability is a limiting factor. The blood
clearance of these radiolabeled pHLIP constructs was found to be
several hours. For PET imaging, an optimal tumor-to-tissue ratio
would be expected after 24 hours or even later. In Figure 8, the
biodistribution data for [89Zr]Zr-DFO-Cys-Var3 to [64Cu]Cu-
NO2A-cysVar3 and [18F]AlF-NO2A-cysVar3, from a previously
published study (38), are compared. The half-life of 18F (110
minutes) does not allow for awaiting a suitable tumor-to-blood
ratio. The four hour timepoint with a tumor-to-blood ratio of 0.51
± 0.12 corresponds to two half-lives of [18F]AlF-NO2A-cysVar3
(25% of activity remained). For [64Cu]Cu-NO2A-cysVar3, a suitable
tumor-to-blood ratio of 4.8 ± 1.3 was reported for the 48-hour
timepoint. However, after 48 hours, only 6% of the short-life 64Cu
remains (t1/2 = 12.7 hours) – challenging for imaging at late
timepoints. For this reason, other radionuclides like the widely
available 89Zr are better suited. Zirconum-89 is a radiometal with a
half-life of 3.3 days, which matches the goal of employing long-term
imaging using the pHLIP conjugates. 89Zr’s relatively low positron
energy (EAvg=395 keV) allows for high-resolution PET imaging,
comparable to fluorine-18 (53). As a further benefit, most medical
centers are capable of producing 89Zr using low-energy proton-
accelerating cyclotrons (14.0–14.5 MeV) and the 89Y(p, n)89Zr
production route (54). However, the release of the 89Zr4+-ion from
Frontiers in Oncology | www.frontiersin.org 926
the pHLIP compounds should be avoided, since the free radiometal
accumulates in the mineral bone, decreasing imaging sensitivity and
elevating radiation absorbed doses to the red marrow and skeletal
endosteum (55).

This study investigated the influence of different zirconium
chelators on the pharmacokinetics of the pHLIP compound. For
a higher in vivo stability of the peptide, the sequence was built
with D-amino acids. Four different chelators were conjugated to
the N-terminus of the Var3 and WT pHLIP sequence. The most
prominent chelator for the Zr4+-ion is DFO, which offers 6 donor
atoms for the metal center. The DFO-Zr4+-chelate carries a net
+1 charge. Three DFO constructs were compared in this study:
DFO-Lys-Var3, DFO-Cys-Var3, and DFO-Lys-WT. The
cysteine variant used DFO-maleimide for the bifunctional
chelator and DFO-NCS for the lysine variant. Despite it being
the most commonly used zirconium chelator, reports indicate
that DFO can lead to unwanted bone uptake of 89Zr due to the
chelate’s instability (56). For this reason, we also investigated the
chelators DFO* and HOPO, which both form a neutrally-
charged chelate with the Zr4+-ion. DFO* is structurally similar
to DFO but offers an additional hyrdoxamate group, resulting in
a total of 8 donor atoms and a more stable chelate (56). The
HOPO chelator [3,4,3-(LI-1,2-HOPO)] offers the same amount
of donor atoms and was reported to be an excellent alternative to
DFO (57). Finally, we investigated DFOsqa, a deferoxamine
conjugated to 3,4-diethoxy-3-cyclobutene-1,2-dione (squaric acid
diethyl ester). It was reported that squaric acid conjugates enable a
fast and simple conjugation to peptides under mild conditions and
A B

FIGURE 6 | Five RM-1 tumor bearing male nude mice received 7.4 MBq/200 µCi [89Zr]Zr-DFOsqa-Lys-Var3 (1.2 nmol) and Alexa-546-Cys-Var3 (5 nmol) in a co-
injection. At 48 hours the tumors kidneys and livers were resected, and fluorescence (A) and Cherenkov (B) images were recorded using the IVIS system.
May 2022 | Volume 12 | Article 882541

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bauer et al. Imaging Tumor Acidosis
that the squaric acid might even induce beneficial effects on the
pharmacokinetic properties (58). Furthermore, the squaric acid is
assumed to coordinate onto the zirconium resulting in a more stable
chelate (58).

An efficient single method was developed to radiolabel all six
conjugates under mild conditions and in only 30 minutes. The
radiolabeling yield was greater than 95%, and no purification steps
were necessary. All agents could be easily developed into a clinical
kit-like product. The stability of the six [89Zr]Zr-pHLIP conjugates
was investigated in a serum stability assay and in vivo studies. All
agents exhibited high stability: lack of degradation and no
significant release of free [89Zr]Zr4+-ions. Biophysical studies
confirmed that all agents preserved the ability to interact with the
lipid bilayer, driven by a drop in pH. The membrane insertion and
folding pK values (in the range of 5.5 to 5.9) and fast membrane-
Frontiers in Oncology | www.frontiersin.org 1027
insertion kinetics indicated that agents could potentially sense a low
pH (6.0–6.2) at the surface of activated cells within the TME.

The in vivo study performed on tumor models in mice,
mimicking late-stage prostate and breast cancers, demonstrated
a good targeting of the tumors by all Var3-based agents, as well
as a high kidney uptake. Tumor targeting ranged from 7–12 %
ID/g and kidney uptake increased from 25–83 %ID/g. In the
side-by-side comparison study, tumor, kidney, and liver uptake
were measured for co-injected radioactive and fluorescent
pHLIPs. Fluorescent pHLIP showed significantly lower kidney
uptake and slightly higher tumor targeting. Also, regulators of
pH [acetazolamide; amiloride and 5-(N,N-dimethyl)amiloride],
probenecid, an inhibitor the kidney uptake of organic anions;
and chlorthalidone, an inhibitor of sodium reabsorption, failed
to reduce the kidney uptake of [89Zr]Zr-DFOsqa-Lys-Var3. The
A B

FIGURE 7 | Human dosimetry estimates for [89Zr]Zr-DFO-Cys-Var3 projected from murine biodistribution. (A) Organ-level absorbed dose and effective dose
coefficients computed for the ICRP 110 reference adult phantoms. Units are absorbed dose [mGy] per unit administered activity [MBq] unless otherwise specified.
(B) Left, Computational phantoms used in dose calculations; Right, Maximum intensity projections of the 3D dose distribution.
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results clearly indicate that a high kidney retention is associated
with the presence of a metal chelator rather than the pHLIP itself.

[89Zr]Zr-DFOsqa-Lys-Var3 resulted in the highest tumor uptake
amongst the investigated pHLIP compounds [(12.4 ± 4.7) %ID/g].
However, the kidney uptake was (82.5 ± 14.2) %ID/g, and the
attempts to reduce this value by employing “kidney blocking
agents” did not show the expected response. For this reason, we
selected DFO-Cys-Var3 for a possible clinical translation,
which exhibits high tumor targeting [(7.3 ± 2.9) %ID/g] and
a moderate kidney uptake [(25.7 ± 3.0) %ID/g)]. The serial
biodistribution study (4, 24, 48, 72, and 120 hours) confirmed
the results of the imaging study using the 4T1 tumor model.
Moderate blood clearance of [89Zr]Zr-DFO-Cys-Var3 was
observed. The blood-activity concentration at 24 hours was
(5.8 ± 0.5) %ID/g; the biological blood clearance half-life was
(16.0 ± 0.4) hours. The biological half-life for total body
excretion was (415 ± 10) hours; minimal uptake was evident
in the contents of the bladder or gastrointestinal tract on the
PET images. Notably, in the PET images, kidney uptake was
primarily localized to the cortex and minimal in the renal
medulla or pelvis. An optimal tumor uptake was detected for
the 48-hour timepoint (9.7 ± 1.7) %ID/g. Slight differences for
the tumor- and kidney-uptakes were determined between the
two tumor models and among different sizes of tumors. The
differences can be related to the aggressiveness and acidity of
the tumor. Human reference dosimetry estimates are required
usage approval of [89Zr]Zr-DFO-Cys-Var3 in investigational
new drug studies and for documentation. In terms of the
estimated human dosimetry, the effective dose coefficient was
in line with full-length 89Zr-labeled monoclonal antibodies
(59). The major difference in dosimetry was that, for [89Zr]
Zr-DFO-Cys-Var3, the kidneys were the critical organ;
however, no kidney toxicity is expected. Our preclinical
biodistribution results, together with the human dosimetry
estimates, suggest that [89Zr]Zr-DFO-Cys-Var3 will be safe
and effective at administered activities required to obtain
diagnostic quality PET images in human patients.
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CONCLUSION

Detailed investigation of the pharmacokinetics of the Var3 PET
agents within the TME performed on tumor sections revealed that
the agents stain the entire tumor mass and highlighted areas of
acidification within the tumor–stroma interface. It was previously
shown that targeting by fluorescent pHLIPs is not restricted to
hypoxic areas. As sensors of the cell surface acidity, pHLIP
constructs target the stroma (50), specifically metabolically active
macrophages within the environment surrounding the cancer cells
(28). In the era of immuno-oncology, this is an important finding
toward improving therapy outcomes. An acidic TME created by
both cancer cells and TAMs inhibits the presence of T-cells within
the TME and suppresses the cytotoxic functions of T-cells (60).
Acidity facilitates tumor growth, leads to drug resistance, and
promotes immuno-suppression (60, 61). Thus, the development
of novel imaging probes for tumor acidity has a high significance.
Such probes would allow clinicians to predict and monitor the
outcome of immunotherapies. pHLIP agents are very well suited for
this task, but they exhibit slow blood clearance and tumor targeting,
as established in preclinical and clinical studies. [89Zr]Zr-DFO-
Var3, containing the long-lived 89Zr isotope, could be imaged for
several days after administration, suggesting its potential for clinical
translation for the identification of optimal imaging timepoints and,
eventually, for supporting immuno-oncology therapeutics.
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Meaning and Significance of
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Objectives of the Study: Our research aims to answer the following questions. Can
cancer progression be stopped by changing the body condition of person with cancer? Can
cancer be cured?If cancer progression can be stopped, what is the underlying mechanism?

Theoretical Rationale for Alkalization Therapy: Almost 70 years ago, Goldblatt H. &
Cameron G. reported on the idea of alkalization therapy. Before that, Otto Warburg had
been studying the metabolism of cancer and had discovered the essential nature of cancer.
He published a review in Science in 1956 under the title “On the origin of cancer cells”. From
his phenomena described above, we established the theoretical rationale for alkalization
therapy, based on the question of “How does cancer form and what is its nature”?

Limitations of Deductive Methods and Inductive Approaches: In this paper, we
describe a method to reconstruct the limitations and weaknesses of modern cancer
medicine as Science-based Medicine using an inductive method, and to present a new
vision of cancer therapy. How should we treat cancer? (Case presentation): Using a
specific clinical case, we present patients in whom were successfully treated with no or
few anticancer drugs.

Summary: The biggest weakness of current cancer treatments is that they only treat the
cancer and not the actual patient. The “alkalization therapy” that we advocate does not
compete with any of the current standard treatments, but improves the effectiveness of
standard treatments, reduces side effects, and lowers medical costs.

Keywords: cancer, metabolism, tumor microenvironment, alkalization therapy, urine pH, bicarbonate
INTRODUCTION

Why did we decide to work in this kind of therapy? An experience was the beginning of this work.
About 20 years ago (2001), when I was working at a university hospital, a patient with inoperable
adenocarcinoma of the lung, clinical stage 3B, came to see me three years later. I had told him that
his prognosis was probably about six months, but three years later he came to see me in good health.

When I asked him what he did to overcome the advanced cancer, he told me that he changed his
diet. The diet was a low-calorie diet consisting mainly of vegetables and brown rice. I realized at the
time, ‘If you don’t change the body of the cancer carrier, the cancer will not become suppressed. This
can only be achieved through diet. It can only be reached by diet.
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https://www.frontiersin.org/articles/10.3389/fonc.2022.920843/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.920843/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:wadah@kuhp.kyoto-u.ac.jp
https://doi.org/10.3389/fonc.2022.920843
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.920843
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.920843&domain=pdf&date_stamp=2022-07-14


Wada et al. Alkalization Therapy for Cancer
In the books I read later titled ‘Radical Remission’, the author,
Kelly Turner, describes that “The first of the nine things that
people who have had radical remission in common is changing
their diet and drinking water.” (1).
OBJECTIVES OF THE STUDY

Our aim was to consider the mechanisms by which cancer
develops and to explain how these mechanisms can be applied
clinically. Is it possible to stop the progression of cancer by
changing the body of a person who has cancer? If the cancer
stops growing, what is the mechanism by which this happens?
Can it be cured? These are the questions that our research aims
to answer.
THEORETICAL BASIS OF
ALKALIZATION THERAPY

When we think about how it is that cancer can form in the human
body, there must be some mechanism at work. An interesting
experiment to consider this was reported 70 years ago. Fibroblasts
of cardiac tissue are cultured under atmospheric conditions; they
can be normally passaged. The fibroblast cultures were injected
with nitrogen instead of air in a sealed container, and when about
half of the cells had died, they were returned to their original
atmospheric conditions. As a result, cancer cells developed in the
nitrogen-injected culture, but no carcinogenesis was observed in
the atmospheric conditions (2). It was during this period that
Warburg studied the metabolism of cancer and discovered its
essential nature. He published a review in Science in 1956 with
the title ‘On the origin of cancer cells’ (3). In his review, Warburg
described the work described above. The implication of this
experiment is that the presence of nutrients but the absence of
oxygen causes cancer. What happens when there is no oxygen?
Mitochondria breakdown occurs in the cell. When the
mitochondria break down, cytochrome C is released from
mitochondria and the cell undergoes apoptosis and dies.
Warburg et al. observed that in cells maintained under such
anaerobic conditions, glycolysis was enhanced, and oxidative
phosphorylation was reduced. This is what Warburg calls a cell
with enhanced fermentation and reduced respiration. In other
words, under anaerobic conditions, cells that avoid mitochondrial
breakdown and choose to live by glycolysis are ‘cancers’. This
activated aerobic glycolysis, which is called the ‘Warburg effect’ is
a hallmark of cancer metabolism and is known to be common to
all cancers (4, 5).

It is a common understanding in biology that we, eukaryotic
multicellular organisms, are made up of ‘eukaryotic cells with the
characteristics of archaea and the mitochondria formed by a-
proteobacteria’ (6, 7), and cancer cells are ancestral to archaea in
terms of energy metabolism. In most cancer cells, mitochondria
Frontiers in Oncology | www.frontiersin.org 232
do not use oxygen, but do only substrate-levels phosphorylation
dose produce minimal energy to maintain their own
mitochondrial membrane potential. Cells that are forced to live
on glycolysis in this way gradually develop abnormalities in
gene expression. In most cases, this dysregulation occurs
epigenetically in most cancers, but in rare cases, mitochondrial
mutations have been reported to cause cancer recently.

More recently, Seyfried has proposed that cancer is not
caused by a genetic abnormality but that it is a mitochondrial
metabolic disease. He has experimentally shown that the cause of
cancer is in the cytoplasm of the tumor, not in the nucleus. This
is also the same proposal made by Warburg. The authors agree
with this view and the importance of treating cancer as a
metabolic disease (8, 9). Moreover, cancer patients with type II
diabetes are known to have a poor prognosis (10), but we use
metformin as needed to keep their hemoglobin A1c levels below
6, preferably around 5.8. When cancer cells start to live on
glycolysis, their intracellular pH is always alkaline. In contrast,
the intracellular pH of normal cells is almost neutral (11). Since
cancer cells that live by glycolysis generate large amounts of H+
protons, they activate a mechanism to expel protons from the cell
to keep the intracellular pH alkaline (12). As a result, the tumor
microenvironment (TME) becomes acidic. Furthermore,
extracellular acidic pH and intracellular alkaline pH of cancer
cells is known to induce malignant behaviors, such as increased
invasion and metastasis, multi drug resistance, and suppression
of immune surveillance (13). One interesting example of this was
reported in human lung cancer cell culture experiments, where
0.4 increase in intracellular pH was associated with a 2000-fold
increase in the level of doxorubicin resistance in the tumor (14),
proliferation and metastasis, expression of genetic abnormalities,
growth factor activation, MDR and multidrug resistance, and
vascular proliferation are activated.

It is well known that current cancer treatments often leave the
TME acidic, resulting in poor therapeutic efficacy and severe side
effects (4, 15). Therefore, our alkalization therapy aims to change
the acidic TME to an alkaline. The actual methods are dietary
interventions and the oral or intravenous administration of
drugs that alkalize the body. As our bodies are made from the
food that we eat, we believe that the act of alkalizing the body via
food is a logical approach. A method to measure the pH of the
TME has not yet been established to date, and hence we use urine
pH as a surrogate indicator. The reason for this is that through
our clinical practice, we have experienced that the urine of most
patients who have achieved radical remission has an alkaline pH
of 7.5 to 8. In the literature, it has been reported that Na+-H+
exchange 1 (NHE-1) becomes inactive when the extracellular
environment is alkalized. NHE-1 has high ion transport activity
under acidic conditions and its activity decreases with the shift to
alkaline conditions, and that its activity decreases with the shift
to alkalinity and completely disappears around pH 7.5 (16, 17).
Thus, whether alkalization of TME really improves the
therapeutic effect in clinical practice is an issue that should be
examined in the future.
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LIMITATIONS OF DEDUCTIVE METHOD
AND INDUCTIVE APPROACHES:
LEARNING FROM HEGEL’S “DIALECTIC”;
PARADIGM SHIFT FROM EBМ TO SBМ

Georg Wilhelm Friedrich Hegel was a famous philosopher who
advocated dialectics. Today’s medicine is based on the concept of
Evidence Based Medicine (EBM). This EBM is a “deductive
method”. What would you do if you were a cancer patient and
you were told that stage 4 cancer cannot be cured, that there is
only treatment to suppress it, or that treatment will not cure it?
In deductive reasoning, we start from a given hypothesis and
predict ‘what we will see’ if the hypothesis is true. In deductive
reasoning, this prediction of ‘what we will see’ is always objective
in the sense that it will be true if the hypothesis is true. The
problem is that we cannot expand our knowledge beyond what is
in the hypothesis. The biggest problem is that current medicine
treats stage 4 cancer based on the assumption that it cannot be
cured. To solve this problem, it is important to study people who
have been cured of stage 4 cancer. In other words, it is important
to “try to evaluate the significance of the results observed in a
single experiment,” i.e., to find “inductive” evidence. This
combination of inductive and deductive perspectives provides
a purely deductive method (called objective probability
calculation) for drawing scientific conclusions from inductive
ends (18).

From the point of view of Hegel’s dialectic, the current EBM
includes the antithesis that ‘it is not possible to cure stage 4 cancer
while receiving anticancer drugs. As a proposition to deny this, it
is important to construct a hypothesis because ‘there are people
who have been cured of stage 4 cancer’, and to perform
inductively what those who have been cured have done in the
treatment of stage 4 cancer. At present, it appears most
appropriate to construct the hypothesis based on current
molecular biological knowledge. Based on the results
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(Aufheben), the subsequent hypothesis needs to be tested, and
new EBM needs to be constructed. Medical treatments based on
the molecular biological findings necessary to construct this
hypothesis is what is referred to as science-based medicine (SBM).
HOW DO WE DEAL WITH CANCER?

Alkalinizing the Acidic Tumor
Microenvironment
So, what should we doctors do in actual clinical practice? As we
have already mentioned, cancer is a cell that is based on a
metabolic disorder, so the first thing to do is to stop this disorder.
Cancer is said to undergo ‘selfish’metabolic reprogramming, and
it was mentioned above that the pH, which indicates the acid-
alkaline level inside the cancer cell, must become ‘alkaline’. To
maintain the homeostasis of intracellular alkalization, ion
transporters, such as NHE-1, vacuolar H+-ATPases,
monocarboxylate transporters and carbonic anhydrases are
expressed on the surface of cancer cells (12). The first thing to
do is to stop these proton transporters.

The patient should first be advised to change his/her diet. It is
important to measure the patient’s urine daily with a litmus test
paper. Under normal conditions, the urine pH is almost 5-5.5
acidic, but as the diet is changed to an alkalinizing diet (fruits and
vegetables, no meat, no dairy products), the patient’s urine pH
will increase. The aim is to achieve a urine pH of 7.5-8 or higher,
and if this is not achieved, alkalinizing agents may be given
intravenously or orally. Figure 1 is from our paper published in a
journal and shows that in cases of small cell lung cancer, the
urine pH was approximately 7.3 in the alkalization group and 6.4
in the control group, indicating an increase in urine pH in the
alkalization group that showed efficacy increase in the
alkalization group (19). Several other reports have also been
made (20, 21).
FIGURE 1 | (Left) The mean urine pH of the alkalization group of small cell lung cancer patients is shown to be higher than that of the control group. (Right) The
overall survival of the alkalization group of small cell lung cancer patients is shown to be prolonged compared with that of the control group.
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The next thing to do is to reduce inflammation. C-reactive
protein (CRP) is used as an indicator. The patient should be taught
to keep the CRP below 0.05. It is reasonable to assume that the
elevated CRP in carcinoma carriers is due to acidification of the
TME, where protons present in the TME attract primary immune
cells such as neutrophils and macrophages (22, 23). A rapid
reduction in CRP can be achieved by ‘donating’ electrons to the
patient. A large intravenous dose of ascorbic acid (at least 4 grams)
is very effective. Warming the patient’s body and making him
sweat are also helpful. Obesity also raises CRP, so patients should
be advised to reduce their weight. At this time, it is important to
improve the bacterial flora in the intestine. There is a growing
consensus that abnormalities in the intestinal microflora are
involved in carcinogenesis [Schwabe & Jobin (24) Zambirinis
et al. (25) Johnson et. al. (26) Yu & Schwabe (27)
Gopalakrishnan et al. (28) Routy et al., (29) Riquelme et al.,
(30)]. It has been reported that the human gut microbiota
regulates many host processes, including metabolism,
inflammation, immunity, and cellular responses, and that its
composition is known to be altered in many diseases, including
cancer (31). The gut microbiome may also affect the development
of cancer. It has also been reported that the microbiome can
worsen the prognosis of cancer, by producing carcinogenic toxins
and metabolites. Therefore, to improve the gut microbiome, foods
rich in ‘water-soluble pectin’ should be consumed.

The next step is to ‘suppress the primary immunity and
activate the secondary immunity’ (32). Cancer is known to utilize
inflammatory cytokines to grow. In the absence of cancer, this
response is the first response in the “wound-healing process” and
is called the primary (innate) immune response, but it is also
known to support cancer growth (22). Normally, TMEs are
acidic. Recently, it has been known that this acidification has a
beneficial effect on cancer cell proliferation, migration, invasion,
metastasis, therapeutic response and the function of stromal cells
such as immune cells and vascular cells in cancer growth. It is
believed that the activation of proton-sensitive GPCRs by
acidosis causes the above conditions. Considering this aspect, it
is safe to assume that elimination of protons presents in TME,
i.e., alkalization of it, can inhibit cancer growth. Acidification of
the TME is associated with the accumulation of myeloid-derived
suppressor cells (MDSCs), which are a population of cells that
proliferate during cancer, inflammation, and infection, and have
a robust ability to suppress effector T-cell responses (33). It has
been reported that about 80% of MDSCs eventually differentiate
into neutrophils and the remaining 20% into macrophages in the
TME, and that alkalization of the TME prevents these MDSCs
from accumulation in the TME. When the TME becomes
alkaline, the primary (innate) immune response is suppressed,
but as a result the secondary (acquired) immune response
becomes more active. The white blood cells that play a central
role in this process are lymphocytes. There are several subsets of
lymphocytes but identifying the specific subset does not appear
to be important in making clinical decisions.

In our clinical experience, we found that patients who show
improvement have a neutrophil/lymphocyte ratio of less than 2,
or even less than 1.5, and a lymphocyte count of more than 1,500,
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or even more than 2,000, which we use to determine the clinical
status of the patient. CRP is also useful in determining neutrophil
activity, and a CRP of 0.05 or less is considered as low neutrophil
activity. The goal is to achieve a urine pH of 7.5 to 8.0 or more.
Once this is achieved, it is often our experience that anticancer
drugs can be given at less than half the standard dose and still
show satisfactory effects.

Causes of Drug Resistance, Invasion,
and Metastasis of Cancer
It is well-known that cancer cells that survive anticancer drug
treatments gradually become resistant to the drugs. This is
closely associated with acidification of the TME around a
cancer. Alkalization of the TME around malignant cells is
known to attenuate the intracellular concentrations of
anticancer drugs, such as vinblastine, adriamycin, cisplatin,
paclitaxel, campthothecin, etc. (4), and hence tumors become
resistant to anticancer drugs when the TME becomes acidic
(34). As mentioned above, Keizer and Joenje H (14)
demonstrated using human lung cancer cells that an increase
in intracellular pH from 7 to 7.4 results in very high drug
resistance, such as a 2,000-fold increase in adriamycin
resistance. There is a strong positive correlation between the
degree of MDR and the intracellular pH of cancer cells. This
mechanism is likely to be associated with the high acidification
of intracellular organelles (lysosomes, endosomes, Golgi
network, etc.). The so-called protonation, ion capture effect,
or the theory of ‘Mathematical Modelling of Tumor Acidity
Regulation of Intracellular pH’ has been proposed to explain
this hypothesis (35). In addition, with regard to metastasis,
NHE-1 also regulates the formation of invadopodia (cellular
structures that mediate the migration and invasion of tumor
cells). Therefore, reducing NHE1 activity in cancer cells is
linked to the inhibition of metastasis, and this can be achieved
by ‘alkalization’ of the TME (11). In conclusion, tumors acquire
resistance to anticancer drugs and the ability to metastasize
because of the acidification of the microenvironment
surrounding the tumor (TME), and therefore, alkalization of
the TME is expected to substantially reduce cancer activity.

Purification of the Arterioles
Carcinogenesis occurs when, as Warburg states, ‘nutrients are
supplied but oxygen is lacking’. It is reasonable to assume that
this is true in the human body because of the narrowing of the
arterioles. When the narrowing of the arterioles occurs, it
becomes difficult for blood cell components to flow, but liquid
components can flow. The flow of fluid means that nourishment
is being carried out, and the difficulty in the flow of blood cells
means that without the flow of red blood cells, it is difficult for
oxygen to be supplied. When white blood cells become blocked, a
cytokine storm develops, leading to chronic inflammation (36).
Most cancer patients consume large amounts of high-fat food. In
addition to eating meat and drinking heavily, many male patients
also smoke. Many female patients prefer sweet cakes with lots of
cheese and cream. These dietary habits may be considered as a
cause of narrowing of the arterioles.
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In addition, soft stools and diarrhea are more common in
male patients and constipation is more common in female
patients. These are all associated with dysbiosis of the
intestinal microflora. The gut microbiota as above also needs
to be purified to become synbiotic (37). This study by Zitvogel
showed that alterations in the human gut microbiota can lead to
cancer. By avoiding high-fat diets and purifying the gut
microbiota to a symbiotic state, it is possible to stop cancer in
its tracks.

Anti-Tumor Effect of Intravenously
Administered Ascorbic Acid
In our clinic we often use intravenous ascorbic acid in the
treatment of cancer. There has been much debate as to whether
ascorbic acid (vitamin C) is effective in the treatment of cancer,
but it has recently been shown that the pharmacological effects of
taking this substance orally and administering it intravenously are
quite different. Although the function of vitamin C in vivo is not
clearly and fully understood, it is understood that this substance
acts in vivo as an electron donor (38). The antitumor effect of
ascorbic acid can only be achieved by intravenous or intrathoracic
or intraperitoneal administration. Oral administration does not
have such an antitumor effect, which the authors intend to report
in detail elsewhere (39–41).
DISCUSSION

The main problem with current cancer treatment is that it does
not consider the condition of the cancer patient’s own body. As
stated earlier, “In conclusion, cancer is the result of cells being
forced to choose glycolysis as a metabolic pathway to survive in
the presence of nutrients but without oxygen. In the case of
cancer, it is reasonable to assume that the first priority is to restore
the body of the person with cancer to the state it was in when
there was no cancer. In other words, it is important to ‘make the
cancer patient’s body less susceptible to cancer’ before treating it.
All multicellular organisms are made up of eukaryotic (nucleated)
cells. Eukaryotic cells emerged from prokaryotes 4 billion years
ago through mitochondrial symbiosis, resulting in a drastic
expansion of the number of genes expressed by 200,000 (6–7).
This leap in genomic capacity, due to the power of mitochondria,
was a prerequisite for the key evolutionary processes that led to
the increasing complexity of eukaryotes (multicellular organisms)
(6). Based on this complex network of genes and considering the
results of the experiments of Goldblatt & Cameron (2), we can
understand that hypoxia induces induction at the genetic level,
the accumulation of which results in cancer.

Otto Warburg, studying cancer metabolism, states that ‘the
characteristics of cells which have survived hypoxia are altered,
there is an increase in fermentation (glycolysis) and a decrease in
respiration (oxidative phosphorylation), and these characteristics
accumulate’. This first event in carcinogenesis has recently been
reported to be the transmission of signals from the mitochondria
to the nucleus, resulting in the condition described above. It is
reasonable to assume that avoiding ‘mitochondrial break-down’
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is a survival strategy for cells in oxygen-deprived conditions, as it
does not lead to cell death. Mitochondrial retrograde signaling is
a mitochondrial-to-nuclear signaling pathway that influences
many cellular and biological activities during normal and
pathophysiological conditions. In yeast, it is used as a sensor of
mitochondrial abnormalities and initiates the readjustment of
sugar and nitrogen metabolism, for which the RTG gene has
been found to be responsible (42–45). However, although a
similar response has been observed in human cells, the
signaling players remain unclear.

Retrograde signaling has been suggested to be involved in
tumor progression by inducing the invasion of non-neoplastic
cells. It has been speculated that Nuclear Factor k B (NFkB)
may be the master regulator of this network in humans (46). In
most tumors, the Warburg effect is a “selfish” metabolic
reprogramming, with an initial overexpression of hypoxia-
inducible factor-1 (HIF-1) (15). This suggests that the human
retrograde signaling pathway is based on the activation of NFkB
in the absence of oxygen, which somehow transmits a signal
from the mitochondria to the nucleus to avoid mitochondrial
disruption, the first genetic abnormality being the overexpression
of hypoxia-inducible factor-1 (HIF-1). When carcinogenesis is
triggered, the surrounding environment of the cancer cell
becomes acidic and the cell adapts to this, leading to malignant
transformation of the cell (47). When this occurs, the pH within
the cancer cell becomes alkaline and the TME becomes acidic.
The regulation of this intracellular alkalization and acidification
of the extracellular microenvironment is crucial in the treatment
of cancer.

There are many studies on proton pump inhibitors (PPIs) as a
drug repositioning therapy targeting acidic TME (48–51). Several
in vivo and in vitro studies have shown that combination of PPI
and chemotherapies increases the chemotherapeutic responses
(52–54). Furthermore, preclinical studies in human tumor cell
lines have reported that administration of PPI alone, without
chemotherapy, induced apoptosis of cancer cells and produced
anticancer effects (55–57). Population-based studies have also
suggested that PPI use may prevent the development of breast
cancer (58–60). Although clinical studies are limited, three
patients of advanced colorectal carcinoma were treated with
high-dose PPI in combination with chemotherapy and
reported favorable results (61). Furthermore, for patients with
metastatic breast cancer, the combination of chemotherapy and
PPI was reported to significantly prolong time to progression and
overall survival compared to chemotherapy alone (62). On the
other hand, several animal studies have also shown that systemic
alkalization with buffer therapy using bicarbonate and/or
alkalizing agents inhibits tumor progression (63–65).
Moreover, although Amiloride and Cariporide are known as
drugs that stop alkalization in cancer cells, they have not yet been
applied clinically due to their adverse effects. There are many
reported intervention methods to neutralize acidic TME, most of
which are based on the concept of proton control by external
intervention of drugs. ‘Alkalization therapy’ we advocate
alkalizes TME using an alkalinizing diet and alkalizing agents
to cleanse the body of cancer patients.
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Alkalinizing diet and alkalinizing agents are used in the
treatment. However, the measurement of the acid-alkaline
level of the microenvironment surrounding the cancer is not
available in current clinical practice (12, 66, 67). We found
that in all cases where various cancer treatments were effective
using our ‘alkalization therapy’, the urine pH became alkaline
(19–21, 68, 69). Due to the impossibility of measuring the pH
of the microenvironment surrounding the cancer, we use the
patient’s urine pH as a surrogate indicator to practice alkalization
of it. This alkalization of the urine pH means a decrease in the
number of acidic substances such as protons excreted in the
urine and does not imply an extreme alkalization of the acid-
alkaline balance of the body fluids.

When the TME is acidic, cancers are more resistant to all
therapies, including anticancer drugs, radiotherapy, immune
checkpoint inhibitors and molecular targeted therapy, and the
side effects of these therapies are more severe (4, 47, 70). In the
treatment of cancer, it is important to suppress primary
immunity and activate secondary immunity. The primary
immune system began over hundreds of millions of years ago
when a series of specialized enzymes and proteins evolved to
protect our primitive ancestors from attack by the outside
world. This inflammatory immune response worked so well
that its function has been conserved. Until now, cancer
researchers have treated cancer with the belief that genes are
the main underlying cause of cancer. However, in the last few
decades we have come to understand that the inflammatory
component of the primary (innate) immune system, which is
normally part of the wound healing process, promotes
carcinogenesis by aiding tumor development and growth. The
reason why the inflammatory component of the primary
(innate) immune system is activated in cancer development
and growth is due to the acidification of the TME caused by the
extracellular excretion of intracellular protons from glycolysis.
It has been reported that cancer cells are more active in this
acidic environment (22, 71). The tumor microenvironment
is acidic. This acidification has a multifaceted effect on
cancer cell proliferation, migration, invasion, metastasis,
resistance to treatment and the function of stromal cells such
as immune cells and vascular cells. However, the molecular
mechanisms by which cancer cells and stromal cells sense and
respond to acidic pH in the tumor microenvironment are not
well understood.

The role of the family of pH-sensing G protein-coupled
receptors (GPCRs) in tumor biology is increasingly being
recognized as important to regulate cancer cell metastasis and
proliferation, immune cell function, inflammation, and
angiogenesis. Neutrophils sense protons of the TME via GPCRs
expressed on their cell surface and aggregate in areas of high
proton concentrations. Macrophages accumulate by a similar
mechanism (72, 73). Acidification of TME is associated with pro-
tumor polarization of tumor-associated macrophage phenotype
(74), and it is reported that Inhibition of tumor acidosis through
PPIs promote an antitumor phenotype of tumor-associated
macrophages (75). MDSCs are a population of cells that
proliferate during cancer, inflammation, and infection, and
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have the robust ability to suppress T-cell responses (33, 76).
MDSCs accumulate at sites of activation of the innate immune
system by the activity of neutrophils and macrophages, as
described earlier, and NO and ROS are said to be involved in
this mechanism. About 80% and 20% of MDSCs differentiate into
neutrophils and macrophages, respectively, and if the acidic TME
is left without intervention, inflammation in this environment
will increase. It hence appears reasonable to assume that
acidification of the TME is the most common cause of the
resistance of cancers to treatment. Our strategy of alkalinizing
the acidic TME is called ‘alkalization therapy’.

The aims of this treatment are to achieve (1) a urine pH of 7.5
to 8.0 or more, (2) a CRP level of 0.05 or less, and (3) a
neutrophil/lymphocyte ratio of 2.0 or less (1.5 if possible), and
a lymphocyte count of 1,500 to 2,000 or more. The cause of the
increased CRP is thought to be the presence of H+ and the
development of arteriolitis owing to vascular narrowing in
hyperlipidemia, obesity, diabetes, and heavy drinking.
Alkalization of the body is very much influenced by the diet
consumed and is determined using urine pH. In addition, the
association between intestinal microflora and cancer will require
further study in the future.
CONCLUSION

The treatments we advocate do not in conflict with conventional
standard therapies but can be used in combination to increase
their efficacy and reduce side effects. The human body is a
dissipative structure, which means that it is an open system
that is not in thermodynamic equilibrium. This means that it is
possible to reduce the entropy of the body. It is our experience
that alkalization of the TME enables various treatments to
become more effective, and with the future collaboration of
many researchers, we hope that it will soon become possible to
treat intractable cancers using standard treatments combined
with alkalization therapy (19, 21, 21, 68, 69, 77, 78).
PATIENTS DEMONSTRATING A
SUCCESSFUL TREATMENT RESPONSE
TO ALKALIZATION THERAPY

The cases shown here are patients whose treatment involved no
anticancer drugs or, if used, exceedingly small amounts of oral
medication. These case reports are comprehensively included
in “Investigation of survival factors for cancer patients using
data science methods” approved by Institutional Review Board of
the Japan-Multinational Trial Organization. Written informed
consent for publication of these case reports and accompanying
images has been obtained from the patients.

(i) Male, 84 years old (at the time of first consultation),
Unresectable renal pelvis cancer, cT3N2M0, Periaortic lymph
node (LN) metastasis (+)
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First visit to our hospital February 2021, January 2021: Visited
T Hospital due to gross hematuria; CT scan showed venous
invasion of right renal pelvis carcinoma and pararenal aortic LN
metastasis. The same diagnosis was made at the University
Hospital. He was told by the doctor that anticancer drug
treatment would not be given because he was too old, and it
would not be effective. An alkalizing diet and intravenous
vitamin C showed a marked improvement in the renal pelvis
cancer. No anticancer drugs were used.

After 4 months of alkalinizing diet + alkalinizing agents +
intravenous vitamin C, the tumor in renal pelvis of the right
kidney, which was found in January 2021, was significantly
reduced in June 2021. The red circles indicate the sites of renal
Frontiers in Oncology | www.frontiersin.org 737
pelvis cancer (Figure 2). In February 2021, urine pH = 5.5, which
increased to 8 in July (5 months after the visit) (Figure 3).

(ii) Female, 76 years old, Malignant lymphoma of stomach,
2015/12, First visit to Wada Clinic.

Her gastric malignant lymphoma disappeared two and a half
years after her first visit to Wada Clinic, simply by changing her
diet (Figure 4). All she did was to start an alkaline diet as
alkalization therapy.

(iii) Female, 89 years old, malignant lymphoma of the
right tonsil.

In February 2009, the patient presented with an enlarged right
tonsil and swollen lymph nodes in the right mandible, which
were biopsied and a diagnosis of malignant lymphoma was
FIGURE 2 | A contrast enhanced computed tomography of abdomen are shown.
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made. The malignant lymphoma was diffuse large B-cell
lymphoma, CD20 positive, CD79a positive and negative for
epithelial marker A E1/AE3 negative.

The patient was advised to be hospitalized and receive
anticancer therapy, and came to our clinic on April 2009
because of anxiety about side effects. At the time of the
Frontiers in Oncology | www.frontiersin.org 838
consultation, the patient had an ulcer on the right oral mucosa,
which made opening the mouth a little difficult.

After the visit to our clinic, I recommended her to drink 2
bags of red bean cedar tea (Yunnan Yew tree) infused with 1 liter
of tea per day to soak the affected area, and 3 bags of Misatol
(plum extract supplement) in 3 portions to soak the affected area.
FIGURE 4 | Her images of upper gastrointestinal endoscopy are shown.
FIGURE 3 | His urine pH levels are shown.
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The lymphoma disappeared after two months. The lymphoma
almost disappeared after two months and has not recurred since
(Figure 5). She lived her daily life in good health, but two years
and eight months after the start of treatment, at the age of 91, she
passed away as if asleep after breakfast one day.

(iv) Female, 15 years old, malignant lymphoma of tonsil.
The patient was first seen at our clinic in 2020/3. She was

diagnosed as diffuse Large B Cell Lymphoma (DLBCL) of
tonsillar origin at the Children’s Hospital in 2019. PET-MRI
showed no obvious accumulation except for enlarged right
palatine tonsil. Prior to her illness, she was an imbalanced
eater of foods. She was very fond of sweets. In the two months
following the first visit, there was no increase in the lymphoma
of the tonsils. However, in May 2020, the tumor became
airway obstructed (Figure 6), causing breathing difficulties,
and she underwent emergency surgery at the prefectural
hospital. Since the resection, she has been taking apple
Frontiers in Oncology | www.frontiersin.org 939
pectin juice, citric acid preparations, red bean cedar tea
(Yunnan Yew tree) and summer white chrysanthemum
(feverfew) and has had no recurrence. She has not been
treated with any anti-cancer drugs. Her IL-2R decreased
after her visit to our clinic and has continued to decrease
steadily after her surgery (Figure 7).

(v) Male, 64 years old. Gastric cancer (unresectable), multiple
liver metastases, Adenocarcinoma(por), Group5. First visit to
our clinic August 2020.

History of the disease: Introduced by Dr. B, Department of
Surgery, Hospital A. On July, 2020, the patient was brought to
the emergency room because of fatigue on standing up. When he
came to the hospital, he was found to be anemic with Hb = 7.2
and was diagnosed with advanced gastric cancer on further
examination. A contrast-enhanced CT scan revealed multiple
liver metastases, and he and his wife decided not to take standard
anti-cancer treatment and came to our clinic.
FIGURE 5 | Her photographs of right tonsil are shown.
FIGURE 6 | Her tumor of tonsil is shown.
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(Diet before the onset of the disease) Dairy products: a lot.
350ml of milk, a pack of yoghurt, a lot of cheese,
taste: strong.

(Course) Recently, he has been cooking by himself. He eats an
alkalizing diet with lots of vegetables and fruit. He wants to
reflect on his diet and way of life and challenge himself to live
with cancer. He doesn’t want to do standard therapy.

He has decided to do the following Things.
Start the Maruyama vaccine (immunostimulant) and receive

lentinan (immunostimulants) intravenously once a week. Take
one tablet of the oral anticancer drug TS-1 (5FU derivative) (20
mg) twice a week. Alkalization of the urine with citric acid
Frontiers in Oncology | www.frontiersin.org 1040
preparations and sodium. The patient drinks 140 ml of apple
pectin juice daily for three months and receives 25 g of Vit C
intravenously. In order to increase the secondary immunity,
mushrooms should be ground up and eaten in soups. Keep
warm and exercise.

One year and three months later, gastric endoscopy showed
that all cancers had disappeared (Figure 8), and PET scans also
showed that all liver metastases had disappeared. (He has put this
information on you-tube. The address is as follows: https://
youtu.be/zHF_zUE9prI).

(vi) Male, 70 years old. Multiple gastric cancer, first visit in
December 2012.
FIGURE 7 | Her IL-2R levels are shown.
FIGURE 8 | An upper gastrointestinal endoscopy showed that tumors had disappeared.
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At the beginning of October 2012, he had a check-up at a
hospital in Kagawa. He went to a hospital in December. He was
told that he would have to undergo an immediate resection, but
when he asked to wait until next year, he was told that the polyps
in the upper part of the stomach would be removed under
endoscopy, and that the lower part of the stomach would be
removed and a subtotal resection would be performed.He was
positive for H. pylori and was put on medication.

Hehasbeenreceiving intravenous lentinan(an immunostimulant)
once a week since December 2012 and was started on TS-1 20 mg
orally three times a week. After three years, his stomach cancer
had disappeared after following a diet and lifestyle that was “light
in taste, rich in fresh fruits and vegetables, dairy-free and meat-
free” (Figure 9).

(vii) Male, 74 years old. First seen in our clinic on December
2014.

The patient was diagnosed with gastric cancer (early stage)
after a thorough physical examination in 2012. He underwent
gastrectomy (laparotomy) at a hospital in February 2012 and was
told that there was no abnormality at the one-year check-up after
the surgery. In November 2013, his physical examination
revealed an abnormality in the remaining stomach, which was
diagnosed as a recurrence of the remaining stomach, and he
underwent a total gastrectomy in January 2014. In January 2014,
he had a total gastrectomy. The pathological examination of the
resected specimen showed that it was a scirrhous gastric cancer.
He was told that the cancer was left at the anastomosis of the
dissection. After his consultation, he was treated with
intravenous lentinan (an immunostimulant) once a week and
TS-1 capsules (an oral 5FU derivative, 20 mg) twice a month.
Seven years later, in 2021, he is still alive and well.

(viii) Male, 68 years old (at time of first visit). Post-operative
recurrence of gastric cancer; first visit to our hospital in May 2015.
Frontiers in Oncology | www.frontiersin.org 1141
In 2015, he went to the emergency room of his local doctor for
hematemesis, was diagnosed as gastric hilar cancer and
underwent emergency surgery.He underwent total gastrectomy
and cholecystectomy and was diagnosed with anastomotic
marginal gastric cancer remains. Postoperatively, tumor
markers (CA72-4, CEA) were elevated, and recurrence
was suspected.

In Wada clinic Lentinan (immunostimulant) was started
intravenously and combined with TS-1 capsule (oral 5FU
derivative, 20 mg) once a week. The patient is alive and well 6
years after surgery (Figure 10).

(ix) Female, 50 years old. Postoperative recurrence of breast
cancer with multiple systemic metastases, including bone
metastases. First visit to our clinic October 2019.

The resected tissue showed ER+, PgR+, HER2 1+ (negative),
Ki67 26-29% (hormone receptor positive). In 2012, she
underwent partial resection and lymphatic dissection for right
breast cancer. In May 2020, a PET scan showed multiple
metastases in the right axilla, vertebrae, and ribs, and she came
to our clinic in October 2019. In terms of lifestyle, she loved
sweets and enjoyed making pastries.

After her visit to our clinic, she has been on an ‘alkalizing
diet’. In Wada clinic, we recommended her to do the following.

She took 140 ml/day of apple pectin juice (apple shimmer) at
home, followed an alkalizing diet and ‘dairy products’ were
strictly forbidden (79).

At theWada Clinic she was given 25g vitamin C intravenously
once a week. Subcutaneous injections of a luteinizing hormone-
releasing hormone derivative microcapsule sustained-release
formulation and a human IgG2 monoclonal antibody
formulation targeting RANKL were continued.

A PET/CT scan six months after the first visit showed that the
tumors had disappeared. The patient was also put on sodium
FIGURE 9 | An upper gastrointestinal endoscopy showed that all tumors had disappeared.
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FIGURE 10 | His tumor marker (CEA, CA72-4) values are shown.
FIGURE 11 | (Upper) Her urine pH levels are shown. (Lower) A PET/CT scan showed that tumor had disappeared.
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bicarbonate and her urine pH increased from 6.5 on visit to 8.0
one month later (Figure 11).

(x) Female, 45 years old (at first medical examination). First
visit to Wada Clinic in January 2011.
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Postoperative breast cancer, systemic metastasis including
multiple lung and bone metastasis. Due to recurrent lung
metastasis from breast cancer, she had breathing difficulties
and started treatment at a cancer center, but the cancer did
FIGURE 12 | A PET/CT scan shows abnormal accumulations on her chest.
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not shrink. After alkalizing diet, the cancer started to shrink
(Figure 12, 13). She has not received any anti-cancer drugs for
more than 10 years. She drinks 2 liters of fruit and vegetable juice
a day. In January 2022, when her urine is alkalized by diet alone
(Figure 14), she is living her daily life in good health.

(xi) Female, 50 years old at the time of the first examination.
Postoperative recurrence of breast cancer.
Frontiers in Oncology | www.frontiersin.org 1444
Breast cancer with axillary lymph nodes recurrence first visit of
Wada Clinic on November 2016. She underwent breast cancer
surgery in 2007 and had a recurrence in the right axillary lymph
nodes (2014).We instructed her to eat an alkalizing diet, and had her
take plume terpenes (Triterpenoids, Fatty acid synthase inhibitors),
summer chrysanthemums (4) (Feverfew, NF kappa B inhibitors,
parthenolide) and bicarbonate (3 g) (80–83). 85% regression was
FIGURE 13 | CT scans reveals gradual shrinkage of the tumors.
FIGURE 14 | Her urine pH levels are shown.
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observed in spring 2017, and 100% regression and tumor
disappearance in spring 2018.
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Metabolic management of
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Glioblastoma (GBM), similar to most cancers, is dependent on fermentation

metabolism for the synthesis of biomass and energy (ATP) regardless of the

cellular or genetic heterogeneity seen within the tumor. The transition from

respiration to fermentation arises from the documented defects in the number,

the structure, and the function of mitochondria and mitochondrial-associated

membranes in GBM tissue. Glucose and glutamine are the major fermentable

fuels that drive GBM growth. The major waste products of GBM cell

fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the

microenvironment and are largely responsible for drug resistance, enhanced

invasion, immunosuppression, and metastasis. Besides surgical debulking,

therapies used for GBM management (radiation, chemotherapy, and steroids)

enhance microenvironment acidification and, although often providing a time-

limited disease control, will thus favor tumor recurrence and complications.

The simultaneous restriction of glucose and glutamine, while elevating non-

fermentable, anti-inflammatory ketone bodies, can help restore the pH balance

of the microenvironment while, at the same time, providing a non-toxic

therapeutic strategy for killing most of the neoplastic cells.

KEYWORDS

glutaminolysis, glycolysis, fermentation, succinate, lactate, glutamate, ketogenic diet,
ketogenic metabolic therapy
Abbreviations: PPP, pentose phosphate pathway; OxPhos, oxidative phosphorylation; mSLP,

mitochondrial substrate level phosphorylation; TMZ, temozolomide; D-b-OHB, D-b-hydroxybutyrate;

KD, ketogenic diet; KMT, Ketogenic metabolic therapy; ROS, reactive oxygen species.
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Introduction

Glioblastoma (GBM) has among the highest mortality rates

for primary brain tumors and remains largely unmanageable.

Despite the hype surrounding newer therapies, median life

expectancy following GBM diagnosis is only about 11-15

months with some large patient data bases reporting few

survivors beyond 30 months (1–7). The poor overall GBM

patient survival is also astonishingly consistent across many

surgical institutions Figure 1. Although remarkable advances in

science and technology have occurred over the last 100 years in

Western societies, no significant advances have been made over

this same period in improving survival for GBM patients (2, 7,

8). This abysmal lack of therapeutic progress can be due in large

part to the inability to recognize GBM as a metabolic disorder (7,

12). Acidification of the GBM microenvironment arises as a

consequence of the fermentation metabolism within the

neoplastic tumor cells and is largely responsible for therapy

failure. This review provides the evidence supporting

this statement.
Fermentation metabolism is
responsible for GBM growth

GBM, like most major cancers, is dependent on fermentation

metabolism for the synthesis of biomass and energy (ATP)

regardless of the cellular or the genetic heterogeneity observed

within the tumor (13, 14). A dependency on fermentation

metabolism is the consequence of the well-documented
Frontiers in Oncology 02
49
abnormalities in the number, the structure, and the function of

GBM mitochondria and mitochondrial associated membranes

(MAM) and shown in Figure 2, and as described previously in

detail (7, 14, 15, 17–25). In light of these structural and functional

abnormalities, it would not be possible for GBM mitochondria to

synthesize much if any ATP through OxPhos based on the

foundational principle in evolutionary biology that structure

determines function (14, 26, 27). The numerous reports

suggesting that OxPhos is either normal or not seriously

impaired in GBM cells is inconsistent with this foundational

principle (28–40). It is important to recognize that oxygen

consumption is not a reliable marker for OxPhos function in

cancer cells (see below). It is unlikely that ATP synthesis through

OxPhos could be normal in GBM cells that have documented

abnormalities in mitochondria ultrastructure and function.

Moreover, the large numbers of somatic mutations seen in GBM

and in many other cancers, for that matter, arise as down-stream

effects of OxPhos dysfunction with consequent ROS production

(12). The somatic mutations in tumor cells will prevent adaptive

versatility according to the evolutionary concepts of Darwin and

Potts, thus locking in a dependency on fermentation metabolism

for growth (41–44). It should be known, especially in the oncology

field, that nothing in either general biology or in cancer biology can

make sense except in the light of evolution (12, 45).

It is important to emphasize that a reduction in OxPhos

of ~50% would dissipate the protonmotive force causing a

reversal of the Fo-F1 ATP synthase (7). The Fo-F1 ATP synthase

generally operates in forward mode (i.e., synthesizing ATP) only

when the mitochondria are sufficiently polarized. The Fo-F1 ATP

synthase would be unable to generate ATP under a loss of electron

transport chain operation on the order of 45-50% (7). This degree

of loss would cause ATP hydrolysis, thus pumping protons out of

thematrix. Reversal of the ATP synthase is what affords glutamine-

driven mitochondrial substrate phosphorylation (mSLP) the

critical role of providing ATP directly within the matrix when

OxPhos becomes inhibited or impaired (7, 12). An inverse

relationship between OxPhos efficiency and tumor aggression has

been reported (46). A similar phenomenon has also been described

with respect to the degree of fermentation and tumor growth, i.e.,

the greater is the fermentation, the more aggressive is the cancer

(14, 47–49). GBM cells, regardless of their cellular origin or genetic

heterogeneity, are dependent on fermentation for survival due to

abnormalities in mitochondrial structure and function.

A large part of the confusion on mitochondrial dysfunction in

cancer comes from the incorrect assumption that oxygen

consumption observed in cancer cells is linked to ATP synthesis

through OxPhos (14, 28, 29, 40, 50–53). Many cancers, including

GBM, can survive in hypoxia (0.1% oxygen) or in a solution of

potassium cyanide, a Complex IV inhibitor, findings that would

exclude normal OxPhos as a source of ATP synthesis (54–57). Cells

with normal OxPhos function cannot survive for very long in

cyanide or in hypoxia. While oxygen is necessary for cholesterol

synthesis, GBM cells can obtain cholesterol from the
FIGURE 1

Kaplan-Meier plots for overall survival of GBM patients across
five (1–5), Canadian surgical institutions. Each line represents
patient survival for a particular institution as described (8). The
GBM survival statistics recorded for these Canadian institutions
are similar to those recorded in surgical institutions of other
countries (2, 9, 10). These findings support the view of no major
improvement of GBM patient survival in almost 100 years (8, 11).
Image reproduced under a Creative Commons license from (8).
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microenvironment under hypoxic conditions (54, 58). Many

normal cells and tumor cells will consume oxygen and ferment

lactic acid when grown in vitro, but only tumor cells continue to

ferment when grown in vivo (14, 47, 48).

The oxygen consumption in tumor cells is uncoupled and is

used more for ROS production than for ATP synthesis through

OxPhos (14, 23, 59–61). High-resolution oxygen consumption

measurements and extracellular flux analysis, such as produced

by Seahorse XF technology, cannot accurately measure OxPhos-

driven ATP synthesis (53). Moreover, these measurements are

highly variable in inter-laboratory settings (cell lines with exactly

the same genetic background can display opposite metabolic

profiles), are extrapolated using general, non-cancer specific

ATP/O stoichiometries, and are limited by non-physiological

and artefactual cell culture conditions (53, 62). It is not clear if

most investigators using general purpose respirometry are aware

of these facts.

Also contributing to misinformation on oxygen consumption

and ATP synthesis is the failure to recognize glutamine-driven

mSLP as a major source of energy for GBM cells (7, 14). Warburg
Frontiers in Oncology 03
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was also unaware of this linkage, as he assumed that oxygen

consumptionwas linked toOxPhos in his cancer cell preparations

(7, 47, 48). Viewed collectively, these findings indicate that oxygen

consumption alone cannot be used as a measure of OxPhos-

derived ATP synthesis in most tumor cells including GBM.
Mitochondrial substrate level
phosphorylation drives ATP
synthesis and microenvironment
acidification in GBM

Recent studies have described how mSLP at the succinyl CoA

synthetase reaction in the glutaminolysis pathway can provision

ATP synthesis in GBM (7, 14, 53, 63, 64). The glutamine nitrogen

produced from glutaminolysis is essential for the synthesis of

nucleotides and amino acids. The waste products of

glutaminolysis (primarily glutamic acid and succinic acid) would

also contribute to acidification of the GBM microenvironment (7,
B

C D

A

FIGURE 2

Morphological abnormalities seen in GBM mitochondria from the work of Deighton et al. (15). The morphology of 150 mitochondria was
assessed in six GBM samples and in seven peri-tumoral control samples using Electron Microscopy (EM). (A) Percentage of normal mitochondria
where cristae were visible throughout the mitochondria in peri-tumoral control and GBM samples (each bar represents one sample; *** p-value
= 0.0001); (B) Percentage of abnormal mitochondria where cristae were sparse and abnormal in peri-tumoral control and GBM samples;
*** p-value = 0.0001). (C, D) Representative EM images of normal and abnormal mitochondria, respectively. Cristolysis was significantly greater
in mitochondria from GBM tissue than in mitochondria from normal surrounding brain tissue. The scale bars represent 0.5 um. The authors
reported 117 mitochondrial proteins altered in GBM in association with ultrastructural mitochondrial abnormalities, similar to those described
previously by Arismendi-Morillo et al. (16). ATP synthesis through OxPhos cannot be normal in tumor cells with these abnormalities. Image
reproduced under a Creative Commons license from Deighton et al. (15).
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14, 65, 66). The catabolism of glutamine towards succinate will

generate CO2 from the oxidative decarboxylation of the alpha-

ketoglutarate dehydrogenation complex thus further acidifying the

microenvironment. Additionally, succinate can stimulate NF-kB-
driven inflammation and facilitate Hif-1a-driven glycolysis (7, 65,

67, 68). While the energetic competence of mitochondria in GBM

andmost other cancers is compromised in producingATP through

OxPhos, these mitochondria remain functional for other

biosynthetic roles and in producing sufficient ATP through

mSLP. Unlike OxPhos, however, that produces water and CO2 as

waste products, mSLP produces glutamic acid and succinate acid as

waste products that contribute to microenvironment acidification.
Fermentation metabolites acidify the
GBM microenvironment

The metabolic waste products of glucose and glutamine

fermentation (lactic acid, glutamic acid, and succinic acid) will

together acidify the GBM microenvironment. This acidification is

ultimately responsible for drug resistance, enhanced invasion,

immunosuppression, and metastasis (7, 14, 53, 69). Glucose

carbons are essential for biomass synthesis through the glycolysis

and the pentose phosphate pathways, with lactic acid and nucleic

acid precursors produced as major end products (14, 70, 71). The

pyruvate kinase M2 (PKM2) isoform, which is abundantly

expressed in most malignant cancers, produces pyruvate-derived

lactic acid withminimal ATP synthesis (14, 72–75). In other words,

most of the glucose-derived lactic acid coming from the tumor cells

is produced with little ATP synthesis through glycolysis. Some of

the lactate acid produced in cancer cells can be returned to the

tumor as glucose through the Cori cycle thus maintaining a

constant supply of glucose to the tumor (76).

Calorie restriction, which lowers blood glucose and elevates

blood D-b-OHB, reduces nuclear expression of phosphorylated

NF-kB (p65), cytosolic expression of phosphorylated IkB, total IkB,
and DNA promoter binding activity of activated NF-kB in the CT-

2A astrocytoma (77). NF-kB is a major driver of inflammation in

the GBM microenvironment. Figure 3A shows how the waste

products of glucose and glutamine fermentation are largely

responsible for the inflammation and acidification in the GBM

microenvironment. Hence, therapies that can lower blood glucose

while elevating D-b-OHB will mitigate microenvironment

inflammation and acidification through multiple mechanisms.
Current therapies could enhance
microenvironment acidity and
recurrence of GBM

The current treatment for GBM management involves

debulking surgery, radiotherapy, and temozolomide
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chemotherapy (TMZ) (1, 8, 9, 87). While the waste products of

glucose and glutamine fermentation will contribute to

microenvironment acidification and the rapid growth of

untreated GBM, the current treatments used for GBM

management could also accelerate these processes after a growth

delay following surgical debulking (1, 88, 89). It is documented

that radiotherapy produces significant necrosis and hypoxia in the

tumor microenvironment (1, 90–92). Radiotherapy disrupts the

tightly regulated glutamine-glutamate cycle in the neural

parenchyma thus increasing the levels of glutamine and

glutamic acid as described further in Figure 3A.

Glutamic acid is an excitotoxic amino acid that enhances

GBM invasion (1, 80, 81, 86, 93–96). Radiotherapy also damages

the brain microenvironment, which increases glucose and

glutamine availability to the tumor cells thus driving tumor

growth through hyperglycolysis, necrosis, and acidification.

While chemo-radiotherapy might have a role in the treatment

of low-grade non-neural tumors, these confounding variables

are ultimately responsible for GBM therapy resistance (1, 90,

97–99).
Blood glucose is linked to rapid
GBM growth

Linear regression analysis showed that blood glucose could

predict the growth rate of the CT-2A malignant mouse

astrocytoma, a stem-cell tumor (100, 101) (Figures 4A–C).

Evidence also shows that survival is lower in GBM patients

with higher blood glucose levels than in GBM patients with

lower glucose levels (1, 103–111). Although the dexamethasone

steroid is often prescribed along with standard treatments to

reduce vasogenic edema, steroids will elevate blood glucose levels

thus contributing indirectly to tumor growth (1, 112–114).

Alternatives to dexamethasone for reducing vasogenic edema

should receive consideration (115). Radiotherapy also increases

blood glucose levels and facilitates hybridizations between tumor

cells and macrophage/microglia thus producing highly invasive

metastatic cells (1, 82, 108, 116–118). As glucose-derived lactic

acid is the end product of glycolysis, GBM treatments that would

elevate blood glucose levels will contribute to elevated lactic acid,

microenvironment acidification, and tumor recurrence.

Conversely, therapeutic strategies that would reduce glucose

levels will lower lactic acid production, microenvironment

acidification, and tumor recurrence (Figure 3B). It is clear

from Figure 5 that calorie restriction, which lowers blood

glucose while elevating ketone bodies, reduces microvessel

density (angiogenesis) and increases tumor cell apoptosis in

the CT-2Amalignant astrocytoma. Hence, the dietary restriction

of blood glucose can reduce microenvironment acidification

through therapeutic effects on inflammation, angiogenesis

and apoptosis.
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FIGURE 3

Origin and management of microenvironment acidity in GBM. (A) Glucose and glutamine are the primary energy metabolites necessary for
driving rapid GBM growth. Glucose is the metabolic fuel necessary for nearly all brain functions under normal physiological conditions and is the
major source of carbons for biomass synthesis through the glycolytic and pentose phosphate pathways in tumor cells. Tumor cells metabolize
glutamine to glutamate, which is then metabolized to alpha-ketoglutarate. Significant energy is generated from the succinyl CoA ligase reaction
(substrate level phosphorylation) in the glutaminolysis pathway using alpha-ketoglutarate-derived succinyl CoA as substrate (see Figure 7). In
contrast to extracranial tissues, where glutamine is the most available amino acid, glutamine is tightly regulated in the brain through its
involvement in the glutamate-glutamine cycle of neurotransmission (1, 78, 79). Glutamate is a major excitatory neurotransmitter that must be
cleared rapidly following synaptic release in order to prevent excitotoxic damage to neurons (1, 79–81). Glial cells possess transporters for the
clearance of extracellular glutamate, which is then metabolized to glutamine for delivery back to neurons. Neurons metabolize the glutamine to
glutamate, which is then repackaged into synaptic vesicles for synaptic release (1). This cycle maintains low extracellular levels of both glutamate
and glutamine in the normal neural parenchyma. Disruption of the cycle can provide neoplastic GBM cells access to glutamine. Besides serving
as a metabolic fuel for the neoplastic tumor cells, glutamine is also an important fuel for cells of myeloid linage, which include macrophages,
monocytes, microglia, and especially the invasive mesenchymal cells in GBM (1, 13, 82–84). In contrast to the proliferative GBM stem cells, the
neoplastic GBM mesenchymal cells are thought to be derived from microglia or from microglia-stem cell fusion hybrids, which would have
immuno-suppressive properties (82, 85). As long as GBM cells have access to glucose and glutamine, the tumor will grow and acidify the
microenvironment making long-term management difficult. The current treatments for GBM (radiation and TMZ chemotherapy) will further
increase glucose and glutamine availability, creating an unnecessary metabolic storm that will enhance microenvironment acidification and rapid
tumor recurrence. The red hue is indicative of the inflammation and acidification of the tumor microenvironment (see text for further details).
(B) The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, will reduce
acidification, restore the pH balance of the microenvironment, and growth arrest or kill most of the neoplastic cells (11–13). RAC, reactive
astrocytes; TAM, tumor-associated macrophages; Gln, glutamine; Glu, glutamate. These images were modified from that in (86).
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Mesenchymal cells will contribute to
GBM acidification

Accumulating evidence shows that the highly invasive

mesenchymal cells seen in GBM are derived from neoplastic

microglia or from microglia/macrophages that hybridize with

non-invasive cancer stem cells, similar to that reported for other

highly invasive metastatic cancers (82, 118, 120–124). Indeed, up

to 60% of the cells in some GBM contain macrophage
Frontiers in Oncology 06
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characteristics (125–128). We described how the neoplastic

GBM cells with mesenchymal characteristics can be derived

from transformed macrophages/microglia (13, 82, 129–131). As

activated macrophages are immunosuppressive and acidify the

microenvironment , i t should be no surpr i se why

immunotherapies have been largely ineffective in managing

GBM (1, 132–134). The mesenchymal cells seen in GBM,

whether part of the neoplastic cell population or part of the

infiltrating cell population, will acidify the microenvironment
B

C

A

FIGURE 4

Influence of diet on the intracerebral growth of the CT-2A malignant astrocytoma. Dietary treatment was initiated 1 day after tumor
implantation and was continued for 13 days. The visual representation (A) and quantitative assessment (B) of tumor growth in C57BL/6J mice
receiving either the standard diet (SD) or ketogenic diet (KD) under either unrestricted (UR) or restricted (R) feeding. The asterisk indicates that
the dry weights of the tumours in R groups were significantly lower than those in the UR groups at P < 0.01. (C) Linear regression analysis of
plasma glucose and CT-2A-tumor growth in mice from both the SD and KD dietary groups combined (n = 34). These analyses included the
values for plasma glucose and tumor growth of individual mice from both the UR and R-fed groups. The linear regression was highly significant
at P < 0.001, indicating that blood glucose levels predict CT-2A tumor growth rate (100). The failure of the KD-UR to reduce blood glucose
levels and tumor growth could be due to insulin insensitivity in this mouse strain (102). Images reproduced under a Creative Commons license.
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through a variety of inflammation-linked mechanisms (135,

136). Some researchers also consider tumor cell-derived lactate

as a checkpoint due to its ability to block immunotherapies (69).

As lactate is derived from glucose, glucose restriction should

reduce this “so called” checkpoint inhibitor. Hence, the

mesenchymal cell populations in GBM will not only

contribute to microenvironment acidification, but will also

contribute to their own survival using glutamine as a

metabolic fuel (13, 137, 138).
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Can metabolic therapy improve
immunotherapy?

Immunotherapies have not yet been effective GBM

management, but could be effective if there is evidence showing

that they will not increase availability of glucose and glutamine in the

tumor microenvironment, enhance inflammation, or cause hyper-

progressive disease, as was documented in non-small cell lung cancer

(139). Inflammatory oncotaxis, arising from surgical resection or
FIGURE 5

Influence of calorie restriction (CR) on microvessel density and apoptosis in the CT-2A malignant astrocytoma. CR was initiated 7 days before
intracerebral tumor implantation and was continued for 11 days. H & E stained tumor sections in an ad libitum (AL) mouse (A) and in a CR
mouse (B) (100X). Factor VIII immunostaining from the tumor grown in an AL mouse (C) and in a CR mouse (D) (200X). TUNEL positive
apoptotic cells (arrows) from the tumor grown in an AL mouse (E) and in a CR mouse (F) (400X). Each stained section was representative of the
entire tumor. All images were produced from digital photography. Image reproduced under a Creative Commons license from (119).
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from biopsy of lower-grade brain tumors, could also contribute to

the transformation to high-grade secondary GBM (140–143). As the

neoplastic macrophage/mesenchymal cells seen in GBM are

dependent to a large degree on glutamine (13, 144), glutamine

restriction will be essential for targeting these cells as we recently

demonstrated (13). Recent studies show that a ketogenic diet can

enhance the efficacy of immunotherapy (145). Most importantly, the

simultaneous restriction of glucose and glutamine could improve the

therapeutic efficacy of immunotherapies.
GBM chemotherapy can contribute
to microenvironment acidification

TMZ chemotherapy can contribute to microenvironment

acidification through adverse effects on mitochondrial OxPhos

function and increased production of GBM driver mutations (1, 9,

146, 147). In addition to increasing blood glucose levels,

dexamethasone also increases glutamine levels through its

induction of glutamine synthetase activity (7, 11, 86, 113, 148,

149). Bevacizumab (Avastin) is also widely prescribed to GBM

patients to reduce angiogenesis (150–152). Bevacizumab, however,

increases tumor necrosis while selecting for the most invasive and

therapy-resistant tumor cells (153, 154). As both bevacizumab and

TMZ damage mitochondria (155), these drugs will contribute

further to tumor cell reliance on fermentation metabolism thus

increasing microenvironment acidification (7, 11). Considered

together, the current GBM chemotherapies inflict damage to the

microenvironment and facilitate availability of glucose and

glutamine to the neoplastic tumor cells, all of which will

contribute to tumor recurrence, further acidification, and rapid

progression (Figure 3A). It is not likely that overall patient survival

could be improved when using therapies that increase distal tumor

cell invasion and microenvironment acidification.

It should also be recognized that human cytomegalovirus

(HCMV) infects many GBM that would further facilitate tumor

cell use of glutamine and glucose (1, 156, 157). Recent studies show

that vaccine-targeting of the HCMV pp65 protein could increase

progression free and overall survival of some GBM patients (158). It

would be interesting to determine if this therapeutic effect resulted

in part from inhibition of the glycolysis or the glutaminolysis

pathways in GBM cells (159, 160). Glucose and glutamine are

required for synthesis of glutathione while glutamine is essential for

the action of manganese superoxide dismutase (161–163).

Consequently, the elevated use of glucose and glutamine, which

increases anti-oxidant potential, will contribute to the resistance of

GBM cells to chemotherapy and radiotherapy.

It is known that elevated aerobic fermentation (Warburg

effect) also drives the multidrug resistant (MDR) phenotype,

which protects GBM cells from toxic chemotherapy (1, 5, 41,

164). Hence, the treatment-linked increases in fermentable energy

metabolites and disruption of the tumor microenvironment can

explain in large part how overall survival remains so poor formost
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GBM patients treated with current standard of care (7, 97). The

information presented in Figure 3A describes how current

therapies can facilitate rapid GBM recurrence. It is our view

that these therapies can account in large part the remarkable

reproducibility of poor patient survival across multiple surgical

institutions as seen in Figure 1. It is unlikely that GBM patient

survival will improve significantly if therapies that increase

microenvironment acidification and are inherently ineffective

are continuously used (165).
Ketone bodies are non-fermentable
and can reduce GBM acidification

As fermentation metabolism is ultimately responsible for rapid

GBM growth and the acidification of the microenvironment, then

therapies that target fermentation metabolism should reduce

acidification and GBM growth. Metabolic therapy involves diet/

drug combinations that target the availability of glucose and

glutamine while also elevating non-fermentable, anti-inflammatory

ketone bodies (13, 41, 166–170). Most importantly, GBM and other

tumors cannot use ketone bodies for energy due to deficiencies in

SCOT; the key mitochondrial enzyme needed for ketone body

metabolism (171–173). No evidence has been presented, to our

knowledge, showing that ketone bodies can replace glucose or

glutamine in serum free media for the survival of any tumor cell.

Ketogenic diets and water-only therapeutic fasting will lower

circulating glucose levels while elevating circulating D-b-
hydroxybutyrate (D-b-OHB) levels (41, 174–176). Water-only

fasting in humans is comparable to a 40% calorie restriction in

mice due to differences in basal metabolic rate that about six times

faster inmice than in humans (177). Therapeutic strategies that lower

blood glucose while elevating blood ketone bodies are anti-

angiogenic, anti-edematous, anti-inflammatory, and pro-apoptotic.

Evidence supporting this statement was described previously (13,

178). Diets that lower glucose and elevate D-b-OHB can also reduce

circulating levels of insulin-like growth factor 1 (IGF-1), a known

driver of tumor growth (Table 1). There is no known drug that can

produce the broad range of therapeutic effects as can diets that reduce

glucose while elevating D-b-OHB.
It is important to mention that blood glucose can be reduced to

very low levels (less than 1.0 mM) in humans that are in therapeutic

ketosis (6-8 mM, D-b-OHB) without producing hypoglycemic

reactions (174, 179, 180). A whole-body transition from glucose-

driven metabolism to D-b-OHB-driven metabolism will reduce

circulating glucose levels thus reducing extracellular acidification

from lactic acid production. At the same time, this transition will also

produce metabolic stress on all neoplastic GBM cells that are

dependent on glycolysis for growth (41, 172, 174, 181). Moreover,

D-b-OHB metabolism enhances the DG’ATP hydrolysis in normal

cells from -56 kJ/mole to -59 kJ/mole, thus providing normal cells

with an energetic advantage over the fermentation-dependent tumor

cells (41). We are not familiar with any therapies, besides ketogenic
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metabolic therapy (KMT), that can enhance the energetic advantage

of normal cells over that of tumor cells (11, 41).

The energetic advantage of D−b-OHB metabolism in normal

cells is seen predominantly with D-b-OHB, and is not seen with

either the D/L- b-OHB racemic mixture or with fatty acids (174,

182, 183). On the other hand, racemic D/L-b-OHB tends to reduce

blood glucosemore through shifting redox state in the liver and can

potentially increase ROS production in tumor cells through b-
oxidation of the L-form (41). The L-b-OHB interconverts back to

D-b-OHB (in tissues) through a racemase enzyme or gets

converted to acetyl-CoA. The L-b-OHB also has greater potential

as a signaling molecule since it remains in circulation longer and

has similar effects at suppressing the NLRP3 inflammasome and

epigenetic effects (184–186). Hence, D-b-OHB and D/L-b-OHB
can stress tumor cell metabolism while enhancing the metabolism

of normal cells through a variety of mechanisms.

The therapeutic effects seenwith ketone bodies are generally best

when blood glucose levels are low (generally below 3.6mM), as little

or no therapeutic benefit is seen in either preclinical GBMmodels or

in human patients when glucose levels remain elevated (100, 171,

187). These therapeutic glucose levels could be difficult to achieve for
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manyGBMpatients, however, due to the glucose-elevating effects of

the current standard treatments used to manage GBM.We also did

notfindany therapeutic benefit of sodiumbicarbonateon thegrowth

of the VM-M3 mouse glioblastoma suggesting that alkalinization

using sodium bicarbonate was ineffective in managing this GBM

model (L. Shelton, unpublished). It is the synergistic action of low

blood glucose with elevated ketone bodies that provides the best

therapeutic strategy for slowing growth and reducing

microenvironment inflammation and acidification.

The simultaneous restriction of
glutamine and glucose will reduce
GBM growth and acidification

In addition to glucose, glutamine is the other major fuel that

drives GBM growth especially the neoplastic mesenchymal cells (14,

137, 144). We showed that the glutamine-targeting analogue, 6-

diazo-5-oxo-L-norleucine (DON), used with a calorie restricted

ketogenic diet could significantly reduce growth and improve

overall survival in preclinical models of GBM (Figure 6).
TABLE 1 Influence of diet on plasma glucose, b-OHB, and IGF-I levels in mice bearing the CT-2A intracerebral brain tumoura.

Dietb Groupsc Glucose (mmol I-I) b-OHB (mmol I-I) IGF-I (ng ml I-I)

SD UR 9.1 ± 0.9 0.6 ± 0.1 208 ± 25

R ( 7)d5.2 ± 1.1* (7)1.4 ± 0.2* (6)117 ± 36*

(6 ) (6) (6)

KD UR 11.4 ± 1.4 1.0 ± 0 .3 294 ± 30

(14) (14) (5 )

R 5.7 ± 1.5* 1.3 ± 0.6 193 ± 57*

(6) (6) (6)
aValues are expressed as means ± 95% confidence intervals. bAnimals were fed either a standard chow diet (SD) or a ketogenic diet (KD). cUR (unrestricted feeding) and R (restricted to 60%
of the SD-UR group. dNumbers in parentheses indicate the number of independent tumor-bearing mice examined in each group. The asterisks indicate that the values of the R groups
differed from those of their respective UR groups at P < 0.01. The details of these experiments are as we described (100).
FIGURE 6

Influence of diet/drug therapy on overall survival of VM/Dk mice with the VM-M3 invasive GBM. A calorie restricted ketogenic diet (KD-R) was
administered together with the glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine (DON) as we described (13). Overall survival was significantly
longer in the tumor bearing mice receiving the diet/drug combination (KD-R + DON) than in the mice receiving the standard high-carbohydrate
diet (SD-UR), the KD-R alone, or DON alone. It is important to mention that 2-3x more DON was delivered to the tumor of the mice fed the
KD-R than to the mice fed the SD-UR indicating that the KD facilitates a non-toxic delivery of small drug molecules through the blood brain
barrier (13, 188). Image reproduced under a Creative Commons license from (13).
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Moreover, we found that ketogenic diets facilitated delivery of DON

and other small molecules through the blood brain barrier (13, 188).

This delivery may be due in part to the action of the content of

caprylic acid in the diet (189). Hyperbaric oxygen therapy can also

reduce angiogenesis and microenvironment inflammation

especially in combination with therapeutic ketosis (41, 190–193).

In addition to findings in preclinical models, we also described how

the IDH1 mutation could act as a therapeutic drug that

simultaneous targets the glycolysis and glutaminolysis pathways

to improve survival in a GBMpatient (11) (Figure 7). The long term

survival of this patient, now at eight years, was attributed to a
Frontiers in Oncology 10
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combination of his younger age, his low-carbohydrate ketogenic

diet, his acquired IDH1 mutation, and finally to his avoidance of

radiation, TMZ, and steroids (11). Ketogenic metabolic therapy

involves the synergistic therapeutic action of the KD used with

drugs and procedures that restrict availability of glucose and

glutamine while providing normal cells with an energetic

advantage over tumor cells that are limited to energy generation

through fermentation (12, 41). More recent studies also support

some of these observations in younger GBM patients (199).

Persistent statements suggesting that tumor cells have a growth

advantage over normal cells make no sense in the light of
FIGURE 7

The metabolic pathways responsible for the acidification of the GBM microenvironment. GBM growth is dependent on glucose carbons for biomass
synthesis through glycolysis and glutamine carbons for ATP synthesis through glutaminolysis. The glutamine nitrogen is necessary for protein and
nucleic acid synthesis. The waste products of the glycolytic and the glutaminolysis pathways (lactic acid, glutamic acid, and succinic acid) will acidify
the GBM microenvironment. The oxygen consumption is linked to ROS production, not to ATP synthesis. Excessive ROS produce somatic mutations
and further increase inflammation and acidification of the microenvironment (7, 12, 14, 194). A calorie restricted KD will reduce glucose availability for
glycolysis while also interfering with the glutaminolysis pathway (11). Glutamine-driven mSLP in the glutaminolysis pathway is a major source of ATP
synthesis for GBM cells (7, 14). The glutaminolysis pathway (red) becomes dominant in tumor cells with inefficient OxPhos and that express the dimeric
PKM2 isoform. PKM2 is expressed in GBM and produces less ATP through glycolysis than does the PKM1 isoform (73, 75, 195, 196). The elevation of
ketone bodies (D-b-hydroxybutyrate and acetoacetate) through KD will indirectly reduce ATP synthesis through the succinate CoA ligase (SUCL)
reaction by diverting CoA from succinate to acetoacetate. The IDH1mutation could reduce ATP synthesis through mSLP by increasing synthesis of 2-
hydroxyglutarate that is derived from a-ketoglutarate and thus reduce the succinyl CoA substrate for the SUCL reaction (11, 14, 197). Besides its
potential effect in reducing glutaminolysis, 2-hydroxyglutarate can also target multiple HIF1a-responsive genes and enzymes in the glycolysis pathway
thus limiting synthesis of metabolites and one-carbon metabolism needed for rapid tumor growth (7, 14, 68, 198). The down regulation of Hif1-a-
regulated lactate dehydrogenase A (LDHA), through the action of both the KD and the IDH1mutation, will reduce extracellular lactate levels thus
further reducing microenvironment inflammation, acidification, and tumor cell invasion. Hence, the simultaneous inhibition of glycolysis and
glutaminolysis through the synergistic effects KMT and the IDH1 mutation will reduce the majority of signaling pathways necessary for rapid GBM
growth and acidification of the microenvironment. BDH, b-hydroxybutyrate dehydrogenase; FAD, flavin adenine dinucleotide; GLSc, glutaminase
cytosolic; GLSm, glutaminase mitochondrial; GLUD, glutamate dehydrogenase; GOT2, aspartate aminotransferase; KGDHC, a-ketoglutarate
dehydrogenase complex; LDHA, lactate dehydrogenase A; NME, nucleoside diphosphate kinase; OXCT1, succinyl-CoA:3-ketoacid coenzyme A
transferase 1; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase; PEP, phosphoenolpyruvate; PKM2, pyruvate kinase M2; SDH, succinate
dehydrogenase; SUCL, succinate-CoA ligase. KMT, Ketogenic metabolic therapy. Reprinted with modifications from (14).
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evolutionary theory (12). Themetabolic pathways contributing to

GBM microenvironment acidification and their management by

KMT and the IDH1 mutation are described in Figure 7.
Limitations

There are several limitations that currently prevent the

application of metabolic therapy for reducing microenvironment

acidification and the growth of GBM. First, the dosage, timing, and

scheduling of the diet/drug combinations that can best target

glucose and glutamine availability have yet to be optimized for

mostGBMpatients (1, 11, 41, 87). Second, the findings that GBM is

largely dependent on glucose and glutamine fermentation for

growth due to OxPhos deficiency is inconsistent with the current

dogmatic view that GBM and most other cancers are exceedingly

complex genetic diseases requiring complicated Rube Goldberg-

type solutions (12). Finally, the most important limitation for

adapting metabolic therapy in the clinic is the absence of a

business model that can generate sufficient replacement revenue

using cost-effective, non-toxic metabolic therapies (200–203). We

predict that major advances in overall GBM patient survival will be

realized once GBM becomes recognized as a mitochondrial

metabolic disease and when non-toxic metabolic therapies

become the standard of care for management.
Conclusions

Microenvironment acidification is largely responsible for

drug resistance, enhanced invasion, immunosuppression, and

metastasis. The acidic waste products of glucose and glutamine

fermentation metabolism (lactic acid, glutamic acid, and succinic

acid), generated within the neoplastic tumor cells, are responsible

for the acidification of the GBM microenvironment. Stated

simply: The greater is the availability of fermentable fuels, the

greater is the resistance to therapy. The cancer microenvironment

will heal itself if the origin of the acidification can be removed.

Therapeutic strategies that restrict the availability of fermentable

fuels, while increasing levels of non-fermentable ketone bodies,
Frontiers in Oncology 11
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will reduce acidification, eliminate the majority of neoplastic

tumor cells, and thus improve GBM management.
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Cancer is one of the most severe health problems worldwide accounting for

the second leading cause of death. Studies have indicated that cancers utilize

different metabolic systems as compared with normal cells to produce extra

energy and substances required for their survival, which contributes to tumor

formation and progression. Recently, the fruit fly Drosophila has been

attracting significant attention as a whole-body model for elucidating the

cancer mechanisms including metabolism. This tiny organism offers a

valuable toolkit with various advantages such as high genetic conservation

and similar drug response to mammals. In this review, we introduce flies

modeling for cancer patient genotypes which have pinpointed novel

therapeutic targets and drug candidates in the salivary gland, thyroid, colon,

lung, and brain. Furthermore, we introduce fly models for metabolic diseases

such as diabetes mellitus, obesity, and cachexia. Diabetes mellitus and obesity

are widely acknowledged risk factors for cancer, while cachexia is a cancer-

related metabolic condition. In addition, we specifically focus on two cancer

metabolic alterations: the Warburg effect and redox metabolism. Indeed, flies

proved useful to reveal the relationship between these metabolic changes and

cancer. Such accumulating achievements indicate that Drosophila offers an

efficient platform to clarify the mechanisms of cancer as a systemic disease.

KEYWORDS

cancer, Drosophila, genetics, metabolic reprogramming, drug discovery
Introduction

Cancer ranks the second leading cause of death worldwide, and its disease burden

continues to increase yearly (1). This malignant disease involves genetic alterations which

induce various cancer hallmarks such as sustaining cell proliferation and invasion to

promote cellular transformation (2). To date, preclinical studies have typically used

cultured cells and mouse models to elucidate the cancer mechanisms and to identify

numerous therapeutic agents. However, developing novel therapeutics still faces many
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challenges including low success rates in clinical trials, the high

toxicity of therapeutic candidates and even approved drugs, and

emerging resistance in patients (3). These challenges imply that it

is inevitable to introduce additional approaches to complement

the current efforts to clear the hurdles efficiently.

Here, we will introduce the fruit fly Drosophila as one of the

ideal whole-body models to this end.Drosophila has a high rate of

reproduction and low husbandry cost in laboratories. In addition,

Drosophila is well-characterized for its genome with over 70% of

disease-associated genes in humans (4, 5). Furthermore, flies show

structural and physiological conservations in tissues/organs with

mammals such as the brain, lung, heart, liver/adipose tissue,

pancreatic islets, colon, and urinary system (Figure 1A). These

similarities provide a powerful advantage in elucidating the

mechanisms of tumorigenesis in specific organs. In light of

modeling cancer genotype, flies offer a robust genetic toolkit to

achieve precise genetic manipulation, which makes them a useful

model organism in studies on cancer as a genetic disease. Indeed,

there have been multiple fly models emerging, with single or

multiple driver mutations to mimic cancer genotypes in patients

(6). These models have allowed exploring the roles of such
Frontiers in Oncology 02
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abnormalities in carcinogenesis and developing anti-cancer leads

(Figure 1B) (6).

In addition to elucidating the mechanisms of cancer and to

developing novel therapeutic strategies, flies also have

contributed to delineating unique metabolic networks within

cancer cells. Previous studies have demonstrated that tumor-

associated metabolic reprogramming led by oncogenic

mutations plays an important role in driving sustained cancer

cell proliferation hence accelerating malignant progression (7).

One of the first discoveries of such metabolic shift is aerobic

glycolysis known as the Warburg effect, the vigorous glucose

uptake to fuel glycolysis and secretion of lactate by cancer cells

even in the presence of oxygen. Cancer cells intake extra glucose

as compared with normal cells to produce extra energy and

substances required for their survival (7, 8).

Meanwhile, the overproduction of reactive oxygen species

(ROS) by dysfunctional mitochondria is another significant

metabolic alteration in cancer cells attracting much attention

these years. Excessive amounts of ROS cause cytotoxicity by

inducing intracellular oxidative stress, which accumulates over

time and ultimately leads to cell death (9). However, cancer cells
A

B

FIGURE 1

Drosophila platforms to study cancer and its metabolism. (A), Corresponding tissues/organs regarding their structures and functions between
Drosophila and humans. Each color indicates tissues/organs with similar functions among Drosophila larva (top upper left) and adult (bottom
left), and human (right). Such similarities among metabolic pathways and physiological responses allow construction of fly models for human
diseases of both cancers and metabolic disorders. (B), The GAL4/UAS system enables induction of genes of interest in target fly tissues. These
flies have allowed discovery of therapeutic targets including kinases and development of potent compounds for cancer treatment by
comprehensive screenings (top). Furthermore, flies offer a useful toolkit including reporter lines to study cancer metabolism (bottom).
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have flexible responses to produce reducing equivalents against

intracellular oxidative stress and foster cancer cell proliferation

at last (8, 10). Hence, therapeutic strategies targeting metabolic

vulnerabilities of cancer show the potential to become effective

treatments and to combat drug resistance of cancer cells (11, 12).

However, our limited knowledge has yet unraveled the metabolic

programming in cancers, which prevents us from going further

in identifying novel therapeutic candidates.

In this review, wewill first introduce flymodels for various cancer

genotypes (Section 2) and then introduce fly models for metabolic

diseases including obesity, cachexia, and diabetes mellitus (Section 3).

Lastly, we will put emphasis on fly studies that have provided

novel insights into cancer metabolism (Section 4) (Figure 2).
Fly models for various
cancer genotypes

In this section, we introduce cell type-specific fly models for

cancer genotypes (Figure 2).
Adenoid cystic carcinoma

Adenoid cystic carcinoma (AdCC) is a rare gland tumor

accounting for ~1% of all malignant tumors in the head and neck
Frontiers in Oncology 03
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region and ~10% of all salivary gland cancers (13). AdCC

generally grows slowly accompanied with perineural invasion,

and more than 60% of the patients suffer local recurrence and/or

distant metastasis (14). Such high recurrence and metastasis

rates suggest that AdCC expands beyond surgical margins,

causing hematogenous metastasis at early stages. The most

common target organs of AdCC metastasis are lungs, bones,

and livers (15).

Current treatment against AdCC includes radical surgical

resection and adjuvant radiotherapy. Furthermore, clinicians

often execute cytotoxic chemotherapy and targeted therapy

against advanced AdCC. However, it is often difficult to

confirm their therapeutic effect because AdCC responds to

these treatments slowly. Even advanced AdCC sometimes

becomes highly resistant to these treatments, which can lead

to patients’ death (13). These circumstances lead to the long-

term poor prognosis of patients. In fact, the 5-year rate of overall

survival (OS) is around 70% but the long-term OS rate drops

significantly (10- and 15-year OS: 54% and 37%, respectively).

As per mutational landscape, recent progress in genomic

sequencing revealed that over 50% of AdCC have theMYB-NFIB

fusion gene (16). This abnormality leads to overexpression of

MYB, hence its transcriptional target genes associated with

apoptosis (API5, BCL2, BIRC3, HSPA8, SET), cell cycle

(CCNB1, CDC2, MAD1L1), cell growth and angiogenesis

(MYC, KIT, VEGFA, FGF2, CD53), and cell adhesion (CD34)
FIGURE 2

A schematic of the structure of this review. Section 2 describes cell type-specific models for cancer genotypes to mimic equivalent cancers in
specific fly tissues [Adenoid cystic carcinoma (AdCC) and thyroid cancer (TC) in the fly wing disc epithelium; Colorectal cancer (CRC) in the fly
hindgut; Non-small cell lung cancer (NSCLC) in the fly trachea; Glioblastoma (GBM) in the fly brain]. In Section 3, we introduce fly models for
metabolic diseases including obesity, cachexia, and diabetes mellitus. Section 4 indicates fly models reproducing cancer metabolism which
provide novel insights into the Warburg effect and redox metabolism.
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(17). These findings suggest that MYB activation promotes

AdCC development, and products of these genes offer novel

therapeutic targets for this cancer.

Recently, several research platforms such as human AdCC

organoids and mouse models carrying patient derived xenograft

(PDX) of AdCC have emerged. These achievements significantly

contributed to revealing fundamental aspects of AdCC such as

its pathogenesis and novel therapeutic targets (18–20). However,

a high difficulty in obtaining sufficient AdCC samples due to its

low availability has made it extremely difficult to accelerate

further analyses on AdCC using these mammalian models.

To overcome this issue, Bangi et al. took a Drosophila-based

research approach for a patient with advanced AdCC (21). They

developed a patient-specific transgenic fly strain as a

‘personalized fly avatar’ that modeled the patient’s somatic

mutations. To this end, they sequenced the patient’s genome

and selected six major alterations including MYB-NFIB fusion,

NOTCH1 overexpression, and missense mutations of FAT1, 3, 4

and ERCC2. Next, they introduced into the fly avatar their fly

orthologs. RegardingMYB-NFIB, they utilized truncated human

MYB which mimicked an N-terminal product lacking the C-

terminal regulatory domain (Table 1).

To test their effects on epithelial cells, the authors drove

expression of these genes using the patched (ptc) gene enhancer/

promoter in larval wing discs which proved useful to

characterize cellular transformation (34). Upon induction of

the transgenes, this fly avatar exhibited excessive proliferation of

epithelial cells and decreased fly viability. They then conducted a

large-scale screening of all FDA-approved drugs in this avatar by

feeding them orally. Through this test they identified a three-

drug cocktail as a therapeutic candidate to increase fly viability

composed of vorinostat (the histone deacetylase inhibitor drug

for cancer), pindolol (the non-selective beta blocker drug for

high blood pressure), and tofacitinib (the JAK inhibitor drug for

rheumatoid arthritis). Indeed, this cocktail led to disease

stabilization and a partial metabolic response for 12 months in

the patient. This study demonstrated that such a personalized

approach using flies as a whole-animal platform can be useful in

developing new treatments for AdCC.
Thyroid cancer

Incidence of thyroid cancer (TC) has been increasing

worldwide. TC represents the most common endocrine

malignancy, accounting for 3.4% of all cancers diagnosed

annually in the U.S (35). In recent years, TC can be detected

in earlier stages than before because screening tests for TC have

been becoming available in the clinical practice. However,

mortality rate of TC has been increasing slightly and makes it

a significant unmet clinical need (36).

TC mainly originates from endoderm-derived follicular cells

or neural crest-derived C cells in the thyroid, and the majority of
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TC can be divided into two subtypes depending on their origins:

papillary TC (PTC) and medullary TC (MTC). PTC originating

from the former cells is the main subtype of TC accounting for

84% of all TCs, while MTC is relatively rare accounting for 4% of

all TCs (37).

In terms of genetic background, > 30% of PTC and > 50% of

MTC harbor activation of RET, a receptor tyrosine kinase (RTK)

(38). Specifically, PTC carries RET fusion genes upon a

chromosomal translocation to produce constitutively active

RET proteins (37). Especially, two RET fusions CCDC6-RET

and NCOA4-RET account for more than 90% of all PTC fusion

genes (37, 39). Regarding MTC, RET is also the most frequently

mutated gene followed by RAS mutations and RET or ALK

fusions (37). Particularly Met918 to Thr (M918T), the amino

acid substitution in the RET kinase domain, is one of the most

common mutations in MTC. This alteration leads to

conformational changes in RET protein decreasing its

autoinhibition mechanisms causing phosphorylation even in

the absence of its ligands such as brain-derived neurotrophic

factor (BDNF) (38, 40).

Despite these molecular findings, developing novel

therapeutics for PTC and MTC has been problematic due to

the lack of efficient experimental tools. Additionally, RET

inhibition turned out harmful causing severe adverse effects

(41). Also, RET inhibitors suppress other tyrosine kinases

which are structurally similar to RET resulting in unexpected

systematic reactions (38, 41).

To overcome these problems, groups including us have

developed and utilized fly models for TC genotypes,

discovering novel therapeutics efficiently. For example, Vidal

et al. introduced an active form of Drosophila Ret (dRetM955T,

analogous to the human RETM918T) to adult fly eyes to generate

Glass multimer reporter (GMR)-dRetM955T
flies (Table 1) (22).

This model displayed transformation of eye cells causing ‘rough

eye’ phenotype due to cell proliferation. Using this model, they

revealed that a tyrosine kinase inhibitor ZD6474 rescued this

abnormality upon oral administration. Eventually, ZD6474 got

approved in 2011 as the first targeted therapy vandetanib for

MTC. This suggests that flies with cancer genotypes have

potential to contribute to the development of therapeutics for

human cancers.

Focusing on discovering compounds with higher anti-tumor

effect than conventional kinase inhibitors, Dar et al. executed

comprehensive chemical and genetic screenings in another fly

model with MTC genotype (ptc>dRetM955T; Table 1) (23). Kinase

inhibitors such as RET inhibitors mentioned above typically

interact with multiple targets beside their intended targets. This

polypharmacological nature of a chemical affects various signaling

pathways to modulate its efficacy and toxicity. Therefore, the

authors attempted to optimize the polypharmacological profile of

a kinase inhibitor. To this end, they developed an original

chemical library targeting RET and other tyrosine kinases (91 in

total) and found that one of the chemicals AD57 rescued
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tumorigenic phenotypes in ptc>dRetM955T
flies efficiently. In this

study, they also found in genetic screening that transformation in

these flies was dependent largely on Raf, Src, and S6K (42). AD57

consistently inhibited these kinases, but it simultaneously
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inhibited dTor (a fly ortholog of human mTOR) which was an

effector of Phosphoinositide 3-kinase (PI3K) and a suppressor of

Raf (43). As a result of Raf deregulation hence dTor activation,

AD57 caused high toxicity beside efficacy in flies. Accordingly,
TABLE 1 Drosophila models of various cancer genotypes and drug development using these strains.

Patient Drosophila Ref.

Cancer type Genotype Genotype Phenotype Therapeutic candidates

Adenoid cystic
carcinoma (AdCC)

MYB-NFIB, NOTCH1act, FAT1/3missense,
FAT4missense, ERCC2missense

ptc>MYB-DC,
N,
KugRNAi,
ftRNAi,
XpdRNAi

Cell proliferation, cell
migration

A personalized combination therapy
with vorinostat (a histone deacetylase
inhibitor drug for cancer), pindolol (a non-
selective beta blocker drug for high blood
pressure), and tofacitinib (a JAK inhibitor
drug for rheumatoid arthritis)

(21)

Thyroid
cancer
(TC)

Medullary
TC
(MTC)

RETM918T GMR-
dRetM955T

‘Rough eye’
with partially fused and
inconsistent patterns of
ommatidia

ZD6474, approved as vandetanib by FDA as
the first targeted therapy for MTC

(22)

ptc>dRetM955T Cell proliferation, cell
migration

AD80, which was modified structure of
AD57 to reduce its toxicity

(23)

Cell proliferation, cell
migration

APS6-45, which was modified structure of
sorafenib to reduce its toxicity

(6)

Papillary
TC
(PTC)

CCDC6-RET, NCOA4-RET ptc>CCDC6-
RET,
ptc>NCOA4-
RET

Cell proliferation, cell
migration

A combination of sorafenib plus a WEE1
inhibitor AZD1775

(24)

Colorectal cancer
(CRC)

KRASG12V, TP53inact, PTENinact, APCinact,
SMAD4inact

byn>rasG12V,
p53RNAi,
ptenRNAi,
apcRNAi,
MedRNAi

Cell proliferation, EMT,
cell migration

A combination of
the proteasome inhibitor bortezomib and the
PI3K pathway inhibitor BEZ235

(25)

KRASG13A, TP53inact, APCinact FBXW7inact,
TGFBR2inact, SMARCA4inact, FAT4inact,
MAPK14inact, CDH1inact

byn>rasG12V,
p53RNAi,
apcRNAi,
agoRNAi,
putRNAi,
brmRNAi,
ftRNAi,
p38RNAi,
shgRNAi

Hindgut expansion A combination of
the MEK inhibitor trametinib and a
bisphosphonate zoledronate

(26)

KRASact, APCinact esg>rasG12V,
apcQ8/

apc2N175K

Increased tumor burden n/d (27)

Non-small cell lung
cancer (NSCLC)

KRASG12V, loss of PTEN btl>rasG12V,
ptenRNAi

Cell proliferation, fly
lethality

A combination of
the MEK inhibitor trametinib and the
HMG-CoA reductase inhibitor fluvastatin

(28)

EGFRact ppk>EgfrA877T Tracheal epithelial cell
malformation, larval
death

A combination of
the tyrosine kinases inhibitor afatinib and
the JAK/STAT signaling inhibitor
bazedoxifene

(29)

EGFRact, KRASG12D, RAFact, MAPKact,
PIK3CDact, ALKact, AKTact, CTNNB1act

ppk>EgfrA887T,
rasG12V,RafOE,
RolledOE,
Pi3K92EOE,
AlkOE,
AktOE,ArmOE

Tracheal epithelial cell
proliferation and
thickening, larval death

The MEK inhibitor trametinib (30)

Glioblastoma
multiforme (GBM)

EGFRact, PIK3CAact repo>dEGFRl,
dp110CAAX

Glial cell proliferation
and invasion

A combination of
the YAP/TAZ-TEAD transcriptional
activation inhibitor verteporfin and the
ACAT1 inhibitor K-604

(31–33)
frontie
ptc, patched; GMR, glass multimer reporter; byn, brachyenteron; esg, escargot; btl, breathless; ppk, pickpocket; repo, reversed polarity; EMT, epithelial-mesenchymal transition.
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they modified the chemical structure of AD57 to generate AD80

which did not inhibit dTor. As expected, AD80 rescued fly

lethality and cellular transformation including malformations of

wing veins and cuticles more efficiently than AD57 without

showing obvious toxicity. Of note, AD80 suppressed TC

xenograft in mice dramatically (23). Recently, AD80

demonstrated a 100- to 1000- fold higher anti-tumor effect on

TC cell lines than other multikinase inhibitors approved for RET-

dependent cancers including sunitinib, sorafenib, vandetanib, and

cabozantinib (44). These studies prove that flies provide potential

preferred and non-preferred targets of kinase inhibitors. Applying

these achievements will reveal mechanisms of adverse effects of

various anti-cancer drugs and eventually lead to establishment of

potent anti-cancer drugs with reduced toxicity.

In order to develop therapeutic compounds that preserve

their anti-tumor effect while reducing their toxicity in a more

rational manner, we established a novel method for developing

therapeutics by utilizing comprehensive chemical and genetic

modifier screens in ptc>dRetM955T
flies (Table 1) (6). We first

screened in this model all kinase inhibitor drugs approved by

FDA for cancer therapy at the time of 2016, and confirmed that

sorafenib showed the strongest but only marginal effects. In

clinical practice sorafenib has given benefits to MTC patients,

but severe adverse effects emerge such as skin damage, diarrhea,

alopecia and even fatality in patients (45, 46).

We thus attempted to determine the cause of this toxicity

through comprehensive chemical and genetic modifier screens of

the kinome network in ptc>dRetM955T
flies. First, we developed a

library of sorafenib analogs by their chemical synthesis and fed

them orally to ptc>dRetM955T
flies, finding out several derivatives

with improved efficacy measured by fly viability as a readout.

Then, we executed genetic modifier screening (199 in total,

covering more than 80% of all fly kinases) in the presence of

sorafenib or such derivatives to elucidate the mechanisms of their

efficacy and toxicity. Interestingly, inhibiting one of the sorafenib

targets Lk6 [a fly ortholog of human Mitogen-activated protein

(MAP) kinase-interacting serine/threonine-protein kinase

(MKNK)] by removing one copy of Lk6 gene in these flies

(ptc>dRetM955T,Lk6ptc>dRETM955T, Lk6−/+) caused complete

lethality in the presence of sorafenib. Control Lk6−/+ flies

presented almost 100% survival, therefore these results indicate

that sorafenib has LK6 as an ‘anti-target’ whose inhibition

accounts for its toxicity. These findings led us to derivatize

sorafenib further to generate APS6-45 which in silico modeling

predicted to have significantly reduced binding capacity with

MKNK but not RET as compared with sorafenib. As expected,

APS6-45 suppressed growth of human MTC cell line TT and its

xenograft in mice without detectable toxicity, suggesting that

APS6-45 offers a novel therapeutics for treating MTC. As such,

this ‘rational polypharmacology’ integrating multiple fly screening

platforms with computational chemistry with medicinal

chemistry can accelerate development of novel high-efficacy and

low-toxicity drugs.
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As per PTC, a previous study generated fly models for PTC

genotypes including CCDC6-RET and NCOA4-RET fusions,

both of which are frequently observed in the patients (Table 1)

(24). The authors employed these fly models to identify

compounds for PTC treatment and to validate functional

differences between two types of human RET fusions. These

flies exhibited tumorigenic phenotypes in wing discs including

cell migration and delamination. Of importance, flies with

human NCOA4-RET fusion showed more severe phenotypes

than those with human CCDC6-RET, consistent with outcome

of PTC patients carrying distinct genetic abnormalities. In this

paper, the authors revealed key roles of MAP kinase (MAPK)

signaling pathway in PTC development. Notably, they also

identified that these RET fusions activated distinct signaling

pathways; NCOA4-RET but not CCDC6-RET activated Hippo

and PI3K pathways. Furthermore, chemical screenings in these

flies for FDA drugs and experimental small molecules (55 in

total) revealed that these fusions conferred different drug

sensitivity. Specifically, sorafenib and cabozantinib rescued

lethality of NCOA4-RET flies, whereas gefitinib and

vandetanib rescued that of CCDC6-RET flies. Therefore, they

concluded that these two RET fusions activated different

signaling pathways to promote transformation and determine

distinct sensitivity to clinically relevant drugs. Their

achievements indicate that fly platforms are useful not only for

identifying therapeutic targets and chemicals against cancers but

also for analyzing functions of human genes.

Collectively, transgenic flies successfully unveiled the

fundamental effects of abnormalities in TC genome on cellular

characteristics. Generating and testing more TC models will

accelerate comprehensive determination of TC pathogenesis and

novel therapeutics.
Colorectal cancer

Colorectal cancer (CRC) is the third most diagnosed cancer

and the second leading cause of cancer death globally accounting

for 10% of total cancer cases and 935,000 deaths in 2020,

respectively (47). Our previous work based on mammalian

models has given us important insights into the CRC

mechanisms. For example, we demonstrated that PGE2-EP2

and NOTCH-ABL-TRIO-RHO pathways promote CRC

initiation and progression, respectively (48–53). Also, we

identified the invasion/metastasis-suppressing Aes gene which

inhibits NOTCH signaling (54–57).

Although plenty of previous studies including them have

deepened our understanding of cancer signaling pathways,

tackling CRC remains to be an important challenge. To solve

this, Drosophila has proven a powerful whole-body model due to

its significant similarities in both physiology and morphology of

the digestive tract to mammalians (Figure 1A) (58). The fly gut

has similar functions to its mammalian counterparts to digest
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food, absorb nutrients, and execute the first-line defense against

infection by innate immunity (59, 60). Based on their functions,

the fly gut is divided into three parts: the foregut, midgut, and

hindgut (61). Among them, the midgut is regarded as useful to

study the contribution of signaling pathways and metabolism in

CRC, because its architecture resembles digestive tracts of

mammals (58, 62).

On the other hand, CRC onset has several related signaling

pathways: WNT, SMAD4, KRAS, PIK3CA, and TP53 (63).

Inactivation of the Adenomatous polyposis coli (APC) gene, a

tumor suppressor in the WNT signaling pathway, is the most

common mutation in CRC occurring in 80-90% of patients (64).

As the second most common mutation, approximately 50% of

CRCs are homozygous for loss-of-function mutations in the TP53

tumor suppressor gene, followed by gain-of-function mutations in

the KRAS oncogene in around 40% of CRCs (65, 66). Their

identifications led to genetic manipulation of two or more of them

in combination via mouse genetics (67). Unfortunately,

genetically engineered mouse models (GEMMs) with complex

genotypes require enormous resources to generate and maintain.

In this regard, Drosophila offers advantages because modeling

multiple mutations is easy in flies. Hence, as we will state in this

section, fly models for CRC genotypes contributed to unraveling

the complexity of CRC regarding disease metabolism and drug

response complementarily with mammalian models.

Modeling recurrent mutations in CRC, a group induced five

cDNAs and knockdown siRNAs as transgenes in the fly hindgut,

including KRAS (fly ras), TP53 (p53), PTEN (pten), SMAD4

(Med), and APC (apc) by using the byn (brachyenteron)

enhancer/promoter (Table 1). These genetic modifications

resulted in cellular transformation recapitulating hallmarks of

human CRC including cell proliferation, disruption of the

epithelial architecture, EMT, migration and dissemination to

distant sites. By using these multigenic flies, the authors

identified the mechanism of resistance against a PI3K/mTOR

inhibitor BEZ235. They further discovered two-step therapy

using bortezomib (the proteasome inhibitor) and BEZ235 to

overcome this resistance in this model. This treatment was also

effective in a CRC cell line DLD1 carrying a similar mutational

signature to the multigenic flies, as well as in its xenografts in

mice. This study provided important insights into the use of flies

as a handy platform for rapid and large-scale functional

exploration of human cancer genomes as well as drug

discovery (25). Moreover, the authors published another

milestone paper where they developed a personalized fly

model of a patient with refractory metastatic CRC harboring

KRAS mutation (Table 1) (26). In FDA drug screening,

combination between trametinib [the drug targeting Mitogen-

activated protein kinase kinase (MEK)] and zoledronate (a

bisphosphonate) significantly suppressed anterior expansion of

the hindgut. This treatment gave a significant response to the

patient reducing the tumor volume by 45%. Notably, CRC

remained stable for 11 months in the patient (26).
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Following these studies, another group developed novel

high-throughput assays for quantifying tumor burden (27).

They reported two methods to evaluate proliferation of

transformed cells. One method is to use a simple software they

developed in ImageJ Fiji to automatically analyze the area that

transformed cells occupy. Another is to use luciferase as a

reporter to determine the number of transformed cells. By

these two methods, they reported increased tumor burden in a

fly model for CRC genotype carrying the esg (Escargot)-GAL4

driver to induce rasG12V and apcLOF (Loss of function) transgenes

specifically in intestinal stem cells (ISCs) (Table 1). Besides,

another study designed an in silico Drosophila model for CRC

genotype based on data of cell type-specific RNA-seq on FlyGut-

seq database (68). They constructed a computational framework

for the fly midgut, which successfully elucidated cell fate,

validated drug cytotoxicity, and devised a personalized

treatment candidate. To summarize, Drosophila is a useful

preclinical whole-animal model due to its multiple

applications in CRC studies.

Different from byn cells throughout the hindgut and a subset of

posteriorly derived visceral muscles (26), another driver esg-GAL4 is

frequently used in fly CRC studies. esg-GAL4 is active in progenitor

cells in the posterior midgut, which are also known as ISCs (27). It

has not been declared in papers that inducing transformation in fly

ISCsmimics CRC tumorigenesis derived frommutated stem cells in

patients. However, modeling CRC mutations in fly ISCs provided

important clues of metabolic reprogramming in stem cells with

tumorigenic potential (62, 69–71). Specifically, a study revealed that

activation of yorkie (yki), a fly ortholog of the human oncogene

YAP1, leads to proliferation of ISCs via upregulation of insulin/

insulin-like growth factors (IGF) signaling and glycolysis (69). In

addition, studies have shown that elevated lactate concentration

caused by Ras/Raf activation in ISCs caused Warburg effect-like

metabolic changes in transformed cells to induce proliferation of

transformed cells (62, 70). Another study showed that tumor-like

ISCs induced by Notch depletion proliferated and generated ROS,

while ISCs with reduction of both Notch and b-integrin caused

metastasis and ROS (71). Overall, these studies demonstrated that

flies are practical in mechanistic analyses and drug discovery

of CRC.
Lung cancer

Lung cancer is the top cause of global cancer mortality with a

rising incidence (72). With a large number of diagnoses each

year, reported 5-year survival remains ~15% for all patients and

less than 4% for those with distant metastasis. Unfortunately,

only minimal improvement has been made in these dismal

statistics over the past decades (73). Because of such

disappointing prognosis and significant systemic toxicities of

even approved treatment, developing novel therapies has

remained one of the major goals in lung cancer research.
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To solve this issue, Drosophila has been used to model lung

cancer genotypes to develop novel therapeutics recently (29),

breaking the long-standing underestimation of the potential of

Drosophila in lung cancer research (74). In fact, Drosophila is

devoid of lungs. However, the respiratory systems in flies and

mammals share lots of structural and physiologic similarities

(Figure 1A) (75). For example, fly models of chronic lung

diseases such as asthma and chronic obstructive pulmonary

disease (COPD) are available in the field, demonstrating the

feasibility of modeling lung diseases in flies by mimicking their

genotypes in the respiratory system (76).

Non-small cell lung cancer (NSCLC) accounts for

approximately 84% of all primary lung cancers (77). KRAS

and Epidermal growth factor receptor (EGFR) are the two most

common identifiable drivers, whose mutations cover 50%–60%

of NSCLC cases (78, 79). Based on this information, several

groups developed fly models of NSCLC genotypes and fly-based

platforms for processing high-throughput chemical screening

(28–30). For example, Levine and Cagan developed the first

Drosophila lung cancer model by targeting rasG12V alone or in

combination with PTEN knockdown to the fly tracheal system

using the breathless (btl)-GAL4 driver (Table 1). In this model,

rasG12V induced tracheal proliferation and fly lethality in the

larval or pupal stage. Using this lethality as a readout, the

authors screened the library of FDA-approved drugs and

identified inhibitors of MEK and HMG-CoA (3-hydroxy-3-

methylglutaryl coenzyme A) reductase as potential

therapeutics (28).

While, other teams used the pickpocket (ppk4)-GAL4 driver

to induce constitutive activation of EGFR in the fly trachea,

causing malformation of tracheal epithelium and larval death.

Among ~1,000 FDA-approved drugs, only tyrosine kinase

inhibitors (TKI) afatinib, gefitinib, and ibrutinib rescued

EGFR-induced larval lethality. By utilizing the fly-based whole-

animal screening, they identified synergistic anti-tumor effects of

a combination of afatinib and bazedoxifene, a novel GP130/

STAT3 pathway inhibitor. These findings suggested therapeutic

benefits by simultaneously blocking EGFR and JAK/STAT

signaling in NSCLC (Table 1) (29).

Even after establishment of such fly-based high-throughput

screening systems, it was still unclear if other driver mutations

also caused transformation. To answer this question, the authors

further developed modular Drosophila models for a larger

number of human lung cancer oncogenes including Egfr,

rasG12V, Raf, Rolled (a fly ortholog of human MAPK), Pi3K92E

(PIK3CD), Alk, Akt, and Arm (CTNNB1) (Table 1) (30). On the

other hand, they established two complementary readouts which

were simple, reliable, and adaptive to the needs of high-

throughput screening. One of the readouts was rescue of fly

lethality, and the other was reduction of a quantifiable tumor

mass (30). This workflow demonstrated a possibility of

Drosophila to provide various high-throughput screening

measures and thus novel lung cancer treatments.
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Glioblastoma

Gliomas, especially glioblastoma multiforme (GBM), is the

most common primary malignant brain tumor in adults (80).

The incidence of GBM is estimated at 3.2 per 100,000 population

in the United States per year. The 5-year relative survival rate for

this cancer is only 5%, making it one of the most deadly and

recalcitrant tumors of all malignant solid tumors (81). In

addition, even with surgical resection as the standard

treatment, patients with GBM have a poor prognosis with a

median survival of only 15 months (82). Considering such poor

prognosis, developing effective therapies for GBM treatment is

an urgent clinical need for improving clinical outcome.

According to genomic profiling including The Cancer

Genome Atlas project, the most common genetic alteration for

GBM is overexpression of EGFR (altered in 30-40% of total

cases) and PIK3CA (8-10%) (83). Undoubtedly, identification of

these key effectors involved in GBM are critical clues to develop

novel measures for diagnosis and treatment (Table 1).

There are several studies demonstrating that the

mechanisms of neural development are remarkably similar

between flies and humans (Figure 1B) (84). Combined with

the advantages of fly genetics, such similarities make flies an

effective tool to model genotypes of gliomas to delineate their

pathogenesis (85).

To investigate genetic basis and to determine novel

therapeutic targets of GBM, Read et al. developed a fly model

repo>dEGFRl,dp110CAAX based on reversed polarity (repo)-

GAL4-driven co-overexpression of active forms of Drosophila

EGFR (dEGFRl) and PIK3CA (dp110CAAX) in glia. These

alterations induced neoplasia causing proliferation and

invasion of glial cells seen in human GBM (31). Thus, this fly

model has been widely used in GBM studies and has brought

novel insights into the molecular mechanisms of GBM (Table 1)

(32, 86, 87).

Another group found that overgrowth and invasion of glial

cells happen upon overexpression of other RTKs including Pvr [a

fly ortholog of platelet-derived growth factor receptor (PDGFR)/

vascular endothelial growth factor receptor (VEGFR)], htl [a

fibroblast growth factor receptor (FGFR) ortholog], and InR (an

insulin receptor ortholog) (86). Besides, they demonstrated that

administration of the EGFR inhibitor drug gefitinib, the PI3K

inhibitor wortmannin, and the Akt inhibitor triciribine can revert

EGFR/PI3K-induced transformation (86).

After these studies, a kinome-wide genetic screening was

conducted in repo>dEGFRl,dp110CAAX flies to discover effectors

required for RTK- and PI3K-dependent neoplastic

transformation. This test clarified that overexpression of right

open reading frame (RIO) kinase driven by mTor-complex-2

(TORC2)-Akt signaling promoted cell proliferation and survival,

which gives novel therapeutic opportunities for GBM (87). In

the same model, yki was overexpressed in neoplastic glia, and its

knockdown suppressed glial proliferation (32). This finding
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raises an FDA-approved liposomal formulation of verteporfin as

a novel therapeutic option for EGFR-driven GBMs as it

suppresses transcriptional activity of YAP/TAZ which are

mammalian orthologs of fly yki (Table 1) (32). However, it is

possible that abnormalities in multiple RTKs limit efficacy of

therapies targeting a single RTK. Therefore, combining several

RTK inhibitors can offer more effective treatment for GBM than

monotherapy (88).

Accumulating evidence indicates that metabolic

reprogramming in the brain is a critical factor in the transition

from non-neoplasm to neoplasm including GBM. Therefore,

targeting essential metabolic pathways in glia may provide new

therapeutic opportunities for GBM treatment (89). In

repo>dEGFRl,dp110CAAX flies, glia-specific knockdown of four

genes essential for glial metabolism [ALDOA (Aldolase in flies),

ACAT1 (CG8112), ELOVL6 (Baldspot), and LOX (Lox)] partly

rescued glioma-induced phenotypes such as shorter lifespan and

bigger tumor size. Of these four the authors especially focused on

ACAT1 which plays a role in regulating endoplasmic reticulum-

cholesterol homeostasis and lipid metabolism. Then they found

that silencing ACAT1 maintained cholesterol homeostasis, and

prevented brain hypertrophy and glioma trait-induced shortening

of fly lifespan (Table 1) (33).

While, impaired insulin function leads to abnormal glucose

metabolism and mitochondrial dysfunction (90). Based on the

same fly model mentioned above, glioma-secreted Imaginal

morphogenesis protein-late 2 (ImpL2) was found to inhibit

insulin pathway activity, which caused synaptic loss and

consequently promoted neurodegeneration. Restoring insulin

signaling in neurons by overexpressing Rheb (activation of

insulin/TOR/S6K signaling pathway) partially rescued

neurodegeneration and mortality of the model (91).

More than using flies to identify novel therapeutic targets,

the utilization of the above-mentioned fly model verified that

mitochondrial PTEN-induced kinase 1 (PINK1), a regulator of

the Warburg effect, turned out to suppress GBM growth (92).

PINK1 overexpression attenuated GBM traits in both flies and

orthotopic xenografts of human U87 cells in mice. In summary,

these studies on flies have unraveled part of the mechanism by

which significant alterations in metabolic pathways in cancer

cells are associated with the onset and progression of GBM.
Fly models for metabolic diseases

Similarities among metabolic pathways and physiological

responses between Drosophila and humans makes flies a useful

whole-animal model for not only genetic diseases but also

metabolic disorders (93, 94). In this section, we describe fly

models to mimic metabolic disorders. In particular, we will focus

on diabetes mellitus (DM), obesity, and cachexia introducing

contributions of their fly models to understand these

diseases (Figure 2).
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Diabetes mellitus

Regarding sugar metabolism, different from mammals, flies

take up simple sugars passively from the digestive tract into the fat

body where they are converted to trehalose. Hence, trehalose is the

primary circulating sugar in insects instead of glucose (95, 96).

Despite this difference in substances, flies share functionally

similar mechanisms with mammals to regulate sugar

homeostasis through conserved pathways: Drosophila secretes

an insulin equivalent insulin-like peptides (Ilps) and a glucagon

analog adipokinetic hormone (AKH) to respond to high and low

levels of circulating sugar, respectively (97–100). These facts

generated an idea of modeling DM in flies.

Type 1 DM (T1DM) arises from the destruction of insulin-

producing b-cells of the pancreas which results in decreased or

complete loss of insulin. In flies, insulin-producing cells (IPCs)

in the brain are equivalent to the b-pancreatic islet cells in

mammals (Figure 1B). Upon ablation of IPCs, flies reproduced

T1DM-like phenotypes such as growth defects and

developmental delay (98, 99).

On the other hand, Type 2 DM (T2DM) is a disease of

insulin resistance; namely hyperglycemia persists despite the

presence of high levels of circulating insulin. Interestingly,

feeding a high-sugar diet (HSD) caused insulin resistance in

flies generating diabetic-like states such as hyperglycemia even

with high levels of Ilps (101).

Epidemiological studies have shown an increased risk of

several types of cancer in DM patients including pancreas, liver,

breast, colorectal, urinary tract, and female reproductive organs

(102). Hence, there have been studies to reveal the relationship

between DM and cancer, and flies contributed to the discovery

that HSD boosted tumor progression. One of the examples is

that feeding flies with HSD promoted EGFR-driven epithelial

neoplasia and metastasis through lactate dehydrogenase (LDH)-

dependent aerobic glycolysis (103). Therefore, flies are practical

toolkits to simultaneously reproduce tumorigenesis and systemic

metabolic disorders to explore their mutual mechanisms.
Obesity

Regarding the cause of T2DM, obesity induced by caloric

excess is a triggering factor for insulin resistance-associated

diabetes. In fact, 55% of T2DM patients are obese (104).

Consistently, a fly model for HSD-induced T2DM manifested

also obesity as determined by accumulating fat within the body

(101). In these flies, HSD also triggered alterations in insulin

signaling, lipogenesis, and gluconeogenesis. Therefore, this

model not only revealed pathological relationships between

multiple metabolic disorders but also gave rise to novel

therapeutic candidates such as Gomisin N, which relieves the

endoplasmic reticulum stress to be a potential agent for

preventing and treating obesity (105).
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So far, several epidemiological studies provided strong

evidence of an association between obesity and increased risk

of various cancers (106). To understand the interplay between

obesity and cancer, a study induced obesity by HSD in flies

modeling activation of multiple oncogenes such as Ras and Src

(107). In this study, the active form of fly ras and a null allele for

fly C-terminal Src kinase (Csk) induced tumors. Intriguingly,

HSD caused the ras1G12V;csk−/− tumors to grow more

aggressively than normal diet. Simultaneously, the authors

demonstrated that Ras/Src-activated cells efficiently responded

to nutritional signals of a SIK-Yki-Wg-InR signaling circuit and

ensured tumor growth upon nutrient-rich conditions including

obesity (107, 108). As such, studies with flies have significant

potential in elucidating the mechanisms by which obesity

influences development and progression of cancer.
Cachexia

Another cancer-related metabolic dysfunction cachexia is a

multifactorial wasting syndrome that contributes to the clinical

deterioration in patients with advanced cancer. Cachexia is

characterized by weight loss, skeletal muscle wasting, and

atrophy of the adipose tissue (109). Recently, some reports

included Drosophila to recapitulate cachexia-like systemic

wasting to obtain insights into the cachexia mechanisms

(69, 110).

For example, a study developed scrib−/−, rasG12V tumors in

flies. The authors found robust wasting of adipose and muscle

tissues in flies developing tumors, which resembled cancer

cachexia in patients (110). Another study established a model

for systemic organ wasting in adult flies by overexpressing yki

using esg-GAL4 driver active in ISCs (69). Both studies stated

that insulin signaling was impaired in transformed cells

demonstrating the central role of tumor-induced insulin

resistance in cachexia.
Metabolic diseases and cancers

In addition to these models, flies turned out to be useful in

modeling hepatic metabolic diseases, neurodegenerative

diseases, and other types of metabolic dysfunctions (94, 111).

These achievements come from high conservation of metabolic

pathways between Drosophila and mammals. Therefore, it is

possible to reproduce characteristic alterations in cancer

metabolism in fly models of cancer genotypes to elucidate

their mechanisms and their impact on each disease.

As one of such reactions in cancer, angiogenesis under

hypoxic stress is an adaptive strategy in tumor progression to

meet its metabolic needs (112). In analogy to human blood

vessels, the fly tracheal system plays similar roles in transporting

oxygen to internal organs (113). Previous studies showed that
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Drosophila transformed cells suffered from oxygen shortage

similar to human cancers. Interestingly these cells released

pro-tracheogenic factors, which led to identification of

tracheogenesis as a novel tumor hallmark in flies (112).

Therefore, Drosophila offers also a convenient whole-body

organism to determine metabolic reprogramming in cancers.

Drosophila models for metabolic disorders are not only

valuable for elucidating pathogenesis of these metabolic

disorders but also able to contribute to cancer research.

Several metabolic disorders such as obesity and DM have an

important mutual influence on specific types of cancers (102,

114, 115). Intriguingly, up to 80% of pancreatic cancer patients

are either hypoglycemic or diabetic in a presymptomatic phase.

Therefore, new-onset diabetes is a potential clue to early

diagnosis of pancreatic cancer (116). Indeed, metabolic

disorders and cancer are too complex to recapitulate in

mammalian models simultaneously. However, flies have

provided a possibility to combine two models in one organism

and have promoted understanding of the fundamental

associations between metabolic diseases and cancers as

discussed above. Moreover, flies contributed to elucidating the

cachexia mechanisms such as cancer-host interactions. To

summarize, fly studies provide us with simple and effective

ways to explore critical insights not only of cancer

development and progression but also of the connections

between metabolic diseases and cancers.
Cancer metabolism revealed by
fly studies

In this section, we present fly models for studying cancer

metabolism (Figure 2).
The Warburg effect

Glucose metabolism is essential for cells to produce

adenosine triphosphate (ATP) as an energy source to maintain

their homeostasis and activity. In the process of glucose

metabolism, normal cells break glucose into pyruvate in the

cytosol by glycolysis, putting pyruvate into the tricarboxylic acid

(TCA) cycle, also termed as Krebs cycle in mitochondria where

pyruvate further gets metabolized (oxidized) into carbon dioxide

and ATPs. It is well known that this glucose metabolism

pathway is changeable depending on oxygen. In the presence

of sufficient oxygen, most types of cells produce ATP through

the TCA cycle and further steps of glucose metabolism including

oxidative phosphorylation in mitochondria. Through this

process, cells can generate 36 ATP molecules per one glucose

molecule. Normally, cells obtain oxygen constantly from the

blood circulation. On the other hand, cells under hypoxic

conditions where oxygen is scarce largely count on glycolysis
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yielding lactate and just two ATPs per one glucose molecule.

Therefore, in light of ATP production, glycolysis is far from an

efficient strategy compared with oxidation of pyruvate through

the following process in mitochondria. Intriguingly, Warburg

discovered that cancer cells tended to employ glycolysis to

produce energy even in the presence of sufficient oxygen,

publishing his findings as the ‘Warburg effect’ (117).

In the process of the Warburg effect, LDH plays an essential

role in promoting glycolysis. Human LDH enzymes are encoded

by four distinct genes (LDHA, LDHB, LDHC, and LDHD).

Among them, LDHA primarily converts pyruvate to lactate.

Meanwhile, Drosophila has one LDH gene ImpL3, whose

product functions similarly to mammalian LDH. Therefore, it

seems reasonable to study ImpL3 in flies to effectively

understand essential functions of human LDH in tumorigenesis.

In human cells where glucose metabolism is active,

glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

generates nicotinamide adenine dinucleotide hydrogen

(NADH) from nicotinamide adenine dinucleotide (NAD+) in

glycolysis. NADH is an essential molecule for the forthcoming

process, oxidative phosphorylation, to generate additional ATPs.

In this process, reducing the amount of NAD+ results in

decelerating the glycolytic process leading to growth restriction

(118). In order to compensate for the shortage of NAD+, cancer

cells largely use NAD+ production by LDH which oxidizes

NADH and produces NAD+ in the process of converting

pyruvate into lactate (119). Therefore, human LDH is

responsible for maintaining the NAD+/NADH redox balance

in highly glycolytic cells such as cancer cells.

Intriguingly, flies have similar compensation mechanisms in

glucose metabolism as in human cells. For instance, larvae

lacking ImpL3 are still able to produce lactate by accelerating

glycerol-3-phosphate (G3P) production with increased activity

of G3P dehydrogenase 1 (GPDH1), which allows normal larval

development. Therefore, GPDH1 regulates the NAD+/NADH

redox balance and ATP level in larvae (120). Given the similar

glycolytic processes and the conserved functions between ImpL3

and LDH, we speculate that flies give us clues to understand the

fundamental mechanisms of the Warburg effect.

In recent years, several fly models for cancer genotypes have

exhibited unique cell metabolism in transformed cells that are

seen also in human cancer cells. Next, we introduce examples

which give insights into the relationship between glucose

metabolism and cancer (Table 2).

Firstly, fly models for cancer genotypes have shown to shift

their glucose metabolism toward the Warburg effect. A study

demonstrated that activation of PDGF/VEGF-receptor Pvr in

imaginal discs induced epithelial tumors with upregulated

ImpL3 and enhanced glycolysis (126). Indeed, Pvr activation

induced glucose metabolic changes through stabilization of Hifa
[a fly ortholog of human Hypoxia-inducible factor-1a (HIF-

1a)], which transcriptionally upregulated glycolytic enzymes

including ImpL3 inducing glycolysis. In this study, the authors
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employed a GFP-based enhancer trap reporter strain ImpL3-

GFP to visualize ImpL3 transcription, which enabled easy

detection of endogenous ImpL3 expression in fly tissues

(Figure 3) (136). Additionally, the authors found that multiple

oncogenic pathways inhibited activation of pyruvate

dehydrogenase (PDH) which converts pyruvate into acetyl-

CoA and is essential for driving the TCA cycle and

oxidative phosphorylation.

Another paper also revealed elevated aerobic glycolysis in

flies with misexpression of Drosophila Homeodomain-

interacting protein kinase (Hipk). These dpp>Hipk flies

displayed tumor formation, loss of epithelial integrity, and an

invasion-like phenotype in their wing discs (132). The authors

identified that Hipk triggered upregulation of dMyc in these

transformed cells. It was already reported that induction of dMyc

increased expression of glycolytic genes such as ImpL3 hence

upregulated glucose consumption as revealed in Drosophila S2

cells (137). As for Hipk-induced fly transformed cells, a study

identified thatHipk triggers robust expression of glycolytic genes

especially ImpL3 and Phosphofructokinase 2 (Pfk2, a fly ortholog

of human PFKFB). Pfk2 catalyzes the synthesis of fructose-2,6-

bisphosphate to stimulate further steps in glycolysis (122).

Intriguingly, ectopic expression of dMyc was sufficient

to increase Pfk2 expression, leading to further dMyc

accumulation in fly wing discs. These results suggest a positive

feedback loop between dMyc and aerobic glycolysis (132). In this

study, the authors monitored glucose metabolism in fly tissues

with Förster resonance energy transfer (FRET)-based glucose

sensor composed of a glucose-binding domain (GBD) combined

with cyan fluorescent protein (CFP) and yellow fluorescent

protein (YFP) to determine the intracellular glucose level

(Figure 3) (123, 138). Binding of GBD to glucose induces

GBD’s structural changes to increase the FRET efficiency (the

ratio of YFP to CFP). These papers show that flies exhibit

Warburg-like metabolic changes resulting from multiple

molecular mechanisms, which has led us to better understand

how the Warburg effect contributes to cancer cell metabolism.

Moreover, fly platforms are able to provide novel insights of

relations between signaling pathways involved in cancer and

its metabolism.

Regarding Notch signaling pathway which is one of the most

commonly mutated genes in cancer, previous papers demonstrated

that Notch-induced fly models for cancer genotypes harbor

accelerated glycolysis. One study established fly models with

ectopic expression of Drosophila Notch intracellular domain

(Nicd) in ptc>Nicd flies (139). In this paper, the authors

performed a chromatin immunoprecipitation (ChIP) assay with

antibody against Suppressor of Hairless [Su(H)], a key transcription

factor in Notch signaling (140). This assay revealed that Notch

signaling transcriptionally regulated several effectors in glycolysis

including ImpL3. In addition, the aforementioned study by

Slaninova et al. showed that knockdown of genes associated with

glucose metabolism suppressed tissue overgrowth that Notch
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induced (139). These data suggest that a shift of normal glucose

metabolism toward the Warburg effect is essential to

promote tumorigenesis.

Another study also identified a relationship between Notch

signaling pathway and the Warburg effect. The authors

demonstrated how the Warburg effect causes cell proliferation

using eye disc as a model tissue (141). They first performed genetic
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modifier screening with RNAi fly strains (109 genes in total)

against Notch-induced fly tumor models with overexpression

(OE) of Drosophila Notch ligand Delta (Dl) in eye discs [eyeless

(ey)>DIOE]. This screening revealed that COX7a (a mitochondrial

respiratory chain subunit Cytochrome C-oxidase subunit 7a) was

a key enhancer of eye cell proliferation induced by Notch

activation. Furthermore, they found that COX7a knockdown
TABLE 2 Drosophila models reproducing cancer metabolism.

Human Gene Drosophila Geno-
type

GAL4 Driver Metabolic
Phenotype

Mode of action Assessment meth-
odology

Ref.

NOTCHact Nicd ptc
(wing disc)

Upregulation
of glycolysis
associated
genes
including
ImpL3

Upregulation of N transcriptional
activity

ChIP assay with
a-Su(H) antibody, mRNA
measurement by qPCR

(121)

PDGF/VEGF
receptoract

Pvract dpp (wing disc) Upregulation
of ImpL3

Stabilization of Hifa LDH-GFP reporter (122)

HIPKact HipkOE dpp (wing disc) Upregulation
of glycolysis
associated
genes
including
ImpL3

Upregulation of dMyc mRNA measurement by
qPCR,
LDH-GFP reporter,
FRET glucose sensor

(123)

COX7Ainact COX7aRNAi ey
(eye disc)

Upregulation
of ImpL3,
Increased
glucose uptake
and level of
intracellular
lactate

Inhibition of mitochondrial ETC LDH-GFP reporter,
FRET glucose/lactate
sensor

(124)

DLG1inact dlg depletion en (wing disc) Elevated ROS Loss of cell polarity DHE, DCFH-DA (125)

FLT1act Pvract dpp (wing disc) Elevated ROS Glycolytic tumor DHE, GstD-GFP reporter (126)

KRASG12V,SCRIBinact rasG12V,scrib−/− en (eye disc) Elevated ROS Loss of cell polarity DHE, DCFH-DA (127)

n/d bratRNAi da (brain stem cells) Elevated ROS Brain stem cell tumor ROS sensor CellRox (128)

KRASG12V,SCRIBinact rasG12V,scrib−/− ey (eye disc) Elevated ROS/
Reduced ROS
under rasG12V

regulation

Loss of cell polarity MitoSOX (129)

MYCact,PI3Kact dMycOE,Pi3K92EOE hh (wing disc) Elevated ROS Field cancerisation DHE (130)

n/d bratRNAi pnt, ase (brain stem
cells)

Elevated ROS Brain stem cell tumor ROS sensor CellRox (131)

HIPKact HipkOE dpp (wing disc) Elevated ROS Accumulated hyperpolarized
mitochondria

DHE (132)

KRASG12V rasG12V esg (intestinal stem
cells)

Elevated ROS/
Reduced ROS
under rasG12V

regulation

Intestinal stem cell tumor ROS sensor RoGFP2 (70)

BRAFact Rafact esg (intestinal stem
cells)

Elevated
ROS

Intestinal stem cell tumor DHE (133)

YAP1act ykiOE GMR,ey,dpp (adult
eye)

Elevated
ROS

Cardiac dysfunction DHE (134)

NOTCHinact,
ITGB1inact

NRNAi,mysRNAi esg (intestinal stem
cells)

Elevated
ROS

Intestinal stem cell tumor DHE, MitoSOX, GstD-
GFP

(21)

NOTCHact NOE 1407 (brain) Elevated
ROS

Brain tumor DCFH-DA (135)
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Authors did not mention its ortholog in humans.
n.org

https://doi.org/10.3389/fonc.2022.982751
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.982751
attenuated the mitochondrial electron transport chain (ETC), and

this attenuation resulted in Warburg-like metabolic changes such

as upregulation of ImpL3 expression as well as the intracellular

lactate level. Moreover, they identified that upregulation of ImpL3

activity resulted in lactate accumulation, which reduced

intracellular pH level and then contributed to proliferation of

these transformed cells. Therefore, this paper demonstrated that

the Warburg effect may not only be a feature of glucose

metabolism specific to transformed cells but also be a key

promoter of cell proliferation. These papers prove that utilizing

fly genetics disclose associations between genes or signaling

pathways and the Warburg effect, which has potential to

understand the fundamental roles of glucose metabolism in

cancer cells.

Other than focusing on upregulation of ImpL3 under

oncogenic stress, a previous study demonstrated that ImpL3

itself is attributed to promotion of tumor-like phenotype in flies

(103). In this paper, they demonstrated that ImpL3 cooperated

with EGFR to induce neoplasia. Specifically, co-expression of

ImpL3 with dEGFR in apterous (ap)>dEGFR, ImpL3 flies led to

tumor-like phenotypes in wing discs accompanied with

increased level of MMP1 and loss of cell polarity. Additionally,

they used the same flies to show that HSD promoted
Frontiers in Oncology 13
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EGFR-induced neoplasia in an ImpL3-dependent manner.

Consistently, concomitant activation of LDHA and EGFR was

associated with poor patient prognosis in breast cancer, sarcoma,

and gliomas (103). Therefore, flies contribute to understanding

the molecular basis of the Warburg effect as well as prognostic

markers for cancer patients. It is interesting to speculate that

these mechanisms provide links between cancers and high sugar

conditions such as DM.

In summary, flies share regulators and processes in glucose

metabolism with humans. Thus, flies are useful for elucidating

the mechanisms of glucose metabolism and its relationship with

tumorigenesis. What makes this possible includes various

whole-body tools to monitor glucose metabolism such as

ImpL3-GFP reporter and FRET systems.
Redox metabolism

Reactive oxygen species (ROS) is a group of highly reactive

and heterogeneous molecules, including superoxide anion

(•O2
−), hydrogen peroxide (H2O2), and hydroxyl radicals

(•OH), which are reduced oxygen generated from electron-

leakage in the electron transport chain (121, 142). In a normal
FIGURE 3

Drosophila methodologies to monitor metabolic alterations in a whole-body manner. ImpL3-GFP: a GFP-based enhancer trap reporter
strain which enables easy detection of endogenous ImpL3 expression in fly tissues. Förster resonance energy transfer (FRET)-based glucose
sensor: a reporter strain carrying a glucose-binding domain (GBD), cyan fluorescent protein (CFP), and yellow fluorescent protein (YFP).
FRET sensor determines the intracellular glucose level upon binding of glucose to GBD, which in turn changes the GBD’s structure to
increase the FRET efficiency (the ratio of YFP to CFP). GstD-GFP, a GFP-based endogenous GstD expression reporter strain to monitor
oxidative stress response. DCFH-DA, 2′,7′-Dichlorofluorescin diacetate, a cell-permeable ester that can be hydrolyzed intracellularly by
esterases to become DCFH which reacts with H2O2 and turns into highly fluorescent DCF. DHE, dihydroethidium which forms a highly
fluorescent product 2-hydroxyethidium (2-OH-E+). MitoSOX, a DHE derivative with an additional triphenylphosphonium group to target
mitochondria monitoring ROS within mitochondria.
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cell, ROS homeostasis is well sustained by the balance between

ROS production and numerous detoxification processes

regulated by antioxidant enzymes (124). On the other hand,

the story is quite different in cancer cells: oxidative stress caused

by excessive amounts of ROS can lead to oxidative modification-

induced damage in intracellular macromolecules, which

accumulates over time and ultimately causes cell death (9).

Along with aerobic glycolysis shown in section 4.1 (the

Warburg effect), cancer cells also undergo reprogramming of

mitochondrial metabolism, which causes the loss of redox

homeostasis mainly by excessive production of ROS (Figure 2)

(143). Indeed, a study reported that almost all cancer cells

exhibited elevated levels of endogenous ROS (144). As such,

oxidative stress is a result of metabolic reprogramming and is

also known to be an important factor in tumor progression.

In other words, ROS is a double-edged sword for tumor

progression depending on its concentration. Namely, mild

elevation of ROS makes it a second messenger necessary for

many aspects of tumor development and progression (145). For

example, low concentration of ROS stimulated proliferation of

cultured human cells of various cancers such as breast and

ovarian cancers by directly inhibiting GDP/GTP exchange

within RAS hence activating RAS-ERK1/2 signaling through

oxidative modification (145, 146). In contrast, high

concentration of ROS is toxic to cancer cells by directly

inducing cancer cell death through senescence, apoptosis, and

ferroptosis (144, 145). Abundant ROS also inhibits cancer

progression by sensitizing drug-resistant cancer cells (144). In

addition, previous studies have revealed that exogenous H2O2

triggered cancer cell death with a high basal level of ROS in the

pancreas and brain (147–149). In pancreatic cancer cells in

particular, intracellular elevation of antioxidants derived from

increased activity of antioxidant proteins is a prerequisite for the

occurrence of tumor hallmarks including cell proliferation and

metastasis (147). However, the complexity of ROS in cancers

remains to be an important question to be addressed.

Therefore, researchers tried different ways to observe

metabolic impacts of ROS. Increasing number of fly studies

indicated that Drosophila is a well-suited model organism to

study metabolic reprogramming in the redox process. This is

because over 90% of ROS is derived from energy metabolism in

mitochondria fly regulators of which are highly conserved with

humans (150, 151). In fact, the utilization offlies as a whole-body

organism to reveal the redox process in diseases including

cancers has increased over the past few years. Previous studies

of aging (152), obesity (93), diabetic retinopathy (153, 154), and

neurodevelopmental diseases (155) have successfully modeled in

flies the oxidative stress in human diseases.

On the other hand, emerging diversity of methodologies in

flies to quantify the ROS amount also offers advantages to make

Drosophila a suitable model for understanding redox

metabolism. As mentioned above, metabolites and metabolic

pathways in flies and mammals are highly conserved. Therefore,
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many established tools for studying metabolic changes in

mammals can be directly applied to fly studies (156). So far,

there exist a variety of tools established to directly measure

intracellular ROS. For example, dihydroethidium (DHE) is one

of the most frequently used dyes which fluoresces upon

oxidation by superoxide (157). In addition, MitoSOX is used

to distinguish the sources of ROS as a modified version of DHE

with a mitochondrion-targeting group to observe ROS that

mitochondria generate (156, 158). Another widely used

fluorogenic probe for oxidative stress in mammals is 2′,7′-
Dichlorofluorescin diacetate (DCFH-DA) probe, which also

proved efficient in flies (153, 155, 159, 160). Furthermore, as a

useful genetic tool in flies, the reporter gene GstD can easily

quantify intracellular ROS levels. The fly GstD is an oxidative

stress response gene encoding for glutathione S-transferase

(161). Since expression of GstD is positively correlated with

intracellular oxidative stress, transgenic flies carrying GstD-GFP

are developed to conveniently evaluate intracellular ROS levels

in disease models (Figure 3) (71, 162).

For the past several years, an increasing number offly studies

unraveled ROS-related redox metabolic reprogramming in

cancer cells with various genotypes. Indeed, these studies

encompassed a wide range of signaling pathways (Table 2).

For example, a group established a glycolytic tumor model in

flies by activating the oncogenic Pvr (126). In this model, they

found that excess ROS produced in transformed cells functioned

as a feedback signal to consolidate glycolytic metabolic

reprogramming. Moreover, dMyc induction in wing disc

epithelium increased ROS substantially, which may transduce

pre-cancerization effect by dMyc to adjacent tissues (130). In

addition,Hipk-overexpression induced ROS in transformed cells

by inhibiting mitochondrial energetics, which exacerbated

tumors by potentiating JNK and its downstream MMP1 (132).

Strikingly, almost all tumorigenic mutations tested thus far

produced extra ROS in transformed cells regardless of tissue

types in Drosophila. Exceptions include rasG12V which

suppressed ROS production (70, 129), and this outcome is in

accordance with ROS detoxification via the RAS-RAF-NRF2

pathway (10).

Moreover, loss of cell polarity caused by elevated ROS is a

well-studied phenotype related to redox metabolism (124). The

discovery of important genes regulating cell polarity in

Drosophila makes it possible to establish fly cancer models

with loss of such regulators to unravel metabolic

reprogramming in tumor cells that had lost their polarity (125,

127, 129, 163). For example, discs-large (dlg) and scrib are two

important genes to maintain cell polarity in flies (164). Loss of

dlg in epithelial cells of larval wing discs causes overgrowth due

to loss of cell polarity. In addition, DHE staining of wing discs

demonstrated higher superoxide levels in those transformed cells

(125). Likewise, rasG12V,scrib−/− flies mimic loss of cell polarity in

the context of cellular transformation (129) (127, 163). Though

transformed cells carrying rasG12V or scrib−/− alone did not show
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intracellular oxidative stress, transformed cells with the

concurrence of rasG12V and scrib−/− produced ROS by

structurally damaged mitochondria (129). Furthermore,

another group investigated the role of ROS in signaling

pathways of transformed cells and demonstrated that rasG12V-

activated caspases increased intra- and extra-cellular ROS rather

than inducing apoptosis in transformed cells. These results

indicated that ROS promoted a caspase-triggered amplification

loop and promoted tumor progression (127).

Besides these ROS alterations under loss of cell polarity,

elevated ROS also showed up in transformed cells in flies

modeling brain cancer genotypes (128, 131, 135). A study

established a tumor model da>bratRNAi to show elevated levels

of ROS and chromosomal instability (CIN) by depleting the brain

tumor (brat) gene in the brain of third instar larvae using the

daughterless (da) driver which is active in fly neurons. Moreover,

extracellular antioxidants blocked overgrowth of brat-deleted

tumors, showing the essential role of ROS elevation in CIN-

dependent tumorigenesis. Hence, accumulated ROS can be a

vulnerability for CIN-dependent tumors that can be targeted by

metabolic intervention (128). However, whether accumulated

ROS promotes tumor cell proliferation is currently

inconclusive. In another study focusing on brain cancers,

authors developed brat-deleted tumors by using Pointed (pnt)

and Asense (ase) drivers targeting neuroblasts in larval brains of

pnt>bratRNAi and ase>bratRNAi flies. Their results showed that

scavenging ROS by antioxidant treatment did not affect the

tumor progression, though the tumors contained significantly

elevated ROS than normal larval brain. Instead of oxidative stress

by ROS, reprogrammed redox homeostasis of NAD+/NADH is

primarily required for brat-deleted tumors to become

immortalized (131). Therefore, the role of ROS elevation led by

brat-deletion in fly neuroblasts still remains unraveled needing

further investigation. On the other hand, a study induced Notch

overexpression using the 1407-GAL4 driver to develop

proliferative transformed cells in the brain of 1407>NOE
flies.

These transformed cells exhibited elevated ROS production

triggered by Notch-RET-signaling to contribute to Notch-

induced neoplastic transformation (92, 135).

With the established ISC tumors that esg-GAL4 drives in flies,

there have been multiple studies on the role of ROS under various

physiological and pathological conditions (133). For example, a

study identified an intrinsic homeostatic range of ROS in ISCs,

indicating that the intracellular redox level is a critical determinant

of cancer cell fate (71). In this study, tumor-like ISCs induced by

depletingNotch in esg>NRNAi
flies and extracellular matrix (ECM)-

deprived ISCs induced by depleting b-integrin (mys) in

esg>mysRNAi
flies exhibited proliferative phenotype under a

moderate increase of ROS. On the other hand, ISCs with both

N- and mys-reduction (esg>NRNAi,mysRNAi) displayed metastatic

phenotypes accompanied by even higher ROS levels with cytotoxic

oxidative stress (71). Additionally, another paper focused on tumor
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microenvironment regulating ROS. The authors utilized esg>Rafact

flies modeling benign gut tumors by targeting a constitutively

active form of Raf to adult intestines (133). They confirmed that

autophagy in cells around neoplasia was induced downstream of

elevated ROS and activated JNK signaling in tumor cells.

Transformed cells had significantly increased ROS, while ROS

elevation was mild in their neighboring cells. Intriguingly, sparing

expression of the antioxidase catalase gene in transformed cells

efficiently blocked autophagy in surrounding cells and inhibited

tumor proliferation (149).

Beside revealing the role of intracellular ROS in tumor cells,

there are studies using Drosophila to identify the relationship

between tumor-derived ROS and cardiac dysfunction. For

example, fly models with yki-overexpression had a systemic

increase in ROS, which resulted in compromised cardiac

function (134).

To summarize, flies share conserved redox metabolism

pathways with humans, and previous studies have provided

novel insights into cancer redox metabolism using fly models

of cancer genotypes. Emerging diversity of methodologies in flies

to evaluate redox metabolism in transformed cells provides flies

with potential in elucidating the mechanisms of cancer redox

metabolism and its relationship with carcinogenesis.
Conclusion

In this review, we highlighted Drosophila studies on cancer

demonstrating the cancer mechanisms and unique metabolism.

Recently, we have access to flies produced to carry a variety of

cancer driver mutations. These flies have surpassed the usage in

studying cancer signaling pathways and contributed to drug

discovery in a high-throughput manner. Furthermore, the broad

application of flies in metabolic disease research has

demonstrated that the high similarity between fly and human

metabolism allows for the reproduction in flies of characteristic

metabolic changes in human diseases to elucidate their

mechanisms and their impact on concurring diseases. Based

on this idea, many studies have come up with new insights into

cancer metabolism by analyzing fly models for various cancer

genotypes carrying markers. Therefore, we expect that

Drosophila keeps playing a significant role in our future

exploration of the nature of cancer as a systemic disease and

in providing candidate targets for novel therapeutics against

notorious cancers.
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Tumor acidity: From hallmark of
cancer to target of treatment

Alexey Bogdanov*, Andrey Bogdanov, Viacheslav Chubenko,
Nikita Volkov, Fedor Moiseenko and Vladimir Moiseyenko

Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care
(Oncological), Saint Petersburg, Russia
Tumor acidity is one of the cancer hallmarks and is associated with metabolic

reprogramming and the use of glycolysis, which results in a high intracellular lactic

acid concentration. Cancer cells avoid acid stress major by the activation and

expression of proton and lactate transporters and exchangers and have an inverted

pH gradient (extracellular and intracellular pHs are acid and alkaline, respectively). The

shift in the tumor acid–base balance promotes proliferation, apoptosis avoidance,

invasiveness, metastatic potential, aggressiveness, immune evasion, and treatment

resistance. For example, weak-base chemotherapeutic agents may have a

substantially reduced cellular uptake capacity due to “ion trapping”. Lactic acid

negatively affects the functions of activated effector T cells, stimulates regulatory T

cells, and promotes them to express programmed cell death receptor 1. On the other

hand, the inversion of pH gradient could be a cancer weakness that will allow the

development of new promising therapies, such as tumor-targeted pH-sensitive

antibodies and pH-responsible nanoparticle conjugates with anticancer drugs. The

regulation of tumor pH levels by pharmacological inhibition of pH-responsible

proteins (monocarboxylate transporters, H+-ATPase, etc.) and lactate

dehydrogenase A is also a promising anticancer strategy. Another idea is the oral or

parenteral use of buffer systems, such as sodium bicarbonate, to neutralize tumor

acidity. Buffering therapydoesnot counteract standard treatmentmethods andcanbe

used in combination to increase effectiveness. However, the mechanisms of the

anticancer effect of buffering therapy are still unclear, and more research is needed.

We have attempted to summarize the basic knowledge about tumor acidity.

KEYWORDS

cancer, metabolism, acidity, hallmark, treatment target
Introduction

Cancer cells have an inverted pH gradient: extracellular and intracellular pHs (pHe,

pHi) are acid and alkaline, respectively (1). The acid shift in the tumor

microenvironment (TME) is closely associated with hypoxia (2) but, more specifically,

with highly activated glycolysis in tumor cells. Even in normoxia, about 80% of all
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malignant tumors use aerobic glycolysis, described as the

Warburg effect (3), which is an integral part of metabolic

reprogramming and sustaining biosynthetic pathways in

cancer cells (4).

According to the present knowledge, the shift in the tumor

acid-base balance promotes proliferation, apoptosis avoidance,

invasiveness, metastatic potential, aggressiveness, immune

evasion, and treatment resistance (5–8). On the other hand,

inversion of the pH gradient in tumors could be a weakness that

will allow for the development of new promising therapies

(Figure 1). It is possible to create acid stress inside cancer cells

by inhibiting proton release systems or by using drugs that

decrease mitochondrial activity to increase lactate production (5,

9, 10). The acidity of the TME could be used for the drug delivery

of cytotoxic agents and/or carriers that are more active and/or

change physicochemical properties under such conditions (11–

13). It is very attractive to increase the pHe by a combination of

an alkaline diet and bicarbonate therapy (14–16) or by direct

local isolated perfusion of the tumor with bicarbonate solutions

(17, 18).

Obviously, the altered acid-base state of the tumor affects

every stage of cancer development, from dysplasia to metastatic

disease (1, 2). In this mini-review, we have attempted to

summarize the basic knowledge about tumor acidity from

hallmark of cancer to target of treatment.
Tumor acidity as a hallmark
of cancer

One of the causes of tumor heterogeneity is altered tumor

vasculature, which leads to different perfusion of nutrients and

oxygen and to the accumulation of acidic metabolites (19, 20).

Due to the reprogramming of metabolism in such conditions
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and the use of glycolysis as a major source of ATP production,

tumor cells have an acidic pHe (6.4-7.1) and an alkaline pHi

(7.1-7.8). For normal tissues, the pHe is around 7.4, and the pHi

is around 7.2 (2, 21). Large amounts of lactate produced during

glycolysis result in a significant increase in the intracellular

proton (H+) concentration. It should be noted that

glutaminolysis is another way for ATP production and an

additional source of lactate and H+ in cancer cells (21–24). In

addition, glutamine uptake and metabolism in oxidative cancer

cells can be promoted by lactate (25). However, even in the

presence of oxygen, glucose is almost completely converted into

lactate. At the same time, glutamine is not fully respired, but it is

rather fermented into lactate or pyruvate. Increased glutamine

flux can enhance aerobic glycolysis and make it optimal for

tumor proliferation (22, 26).

As acid stress triggers apoptosis (27), cancer cells use several

ways to evade it (28). Activation and expression of H+ (and

lactate) transporters and exchangers are the main mechanisms

of tumor cell adaptation to intracellular acidification and of the

inverted pH gradient phenomenon (29–32). It should be noted

that not only H+ ejection systems lead to an increase in the pHi,

but also a reduction of CO2 by decreased activity of the

tricarboxylic acid cycle (TCA) and oxidative phosphorylation

(OXPHOS) (1, 10). Carbonic anhydrases (CAs) additionally

support the pH regulation of cancer cells by catalyzing the

reversible hydration of CO2 to HCO3− and H+ (32).

Acidosis of the TME is an essential stage associated with

high rates of tumor cell proliferation (33). Numerous studies

have shown a role for tumor acidity in acquiring aggressive

cancer characteristics, so it is recognized as a hallmark of cancer

(21, 31, 34–36). For example, melanoma cells exposed to acidosis

are characterized by a high invasive potential, high resistance to

apoptosis and drug therapy, fixed independent growth, and a

phenotype of epithelial to mesenchymal transition (37). Under
FIGURE 1

Schematic representation of tumor acidity properties.
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growth factor limitations, alkaline pHi favors cancer cells

survival (38). The acid adaptation of tumor cells leads to a

gene expression response that correlates with human cancer

tissue gene expression profiles and survival (39). Acidic TME

improves the activity of regulatory T-cells and inhibits effector

T-cells (40). In view of the foregoing, acidic TME could serve as

an incubator that represses overabundant proliferation and

cultures cells with a restricted growth rate but with strong

proliferative potential (41). Clinicians should consider tumor

acidity when diagnosing and determining optimal treatment, as

it is also connected with poor cancer patients prognosis (39).

A wide range of non-invasive and minimally invasive

imaging modalities have been studied preclinically for tumor

pH monitoring, including magnetic resonance imaging (MRI)

and spectroscopy, positron emission tomography, electron

paramagnetic resonance, and optical and photoacoustic

imaging (42). To date, among the methods used, MRI appears

to be the most promising, particularly chemical exchange

saturation transfer (CEST) MRI, which has good in vivo

sensitivity for assessing tumor acidosis and changes in pH

after therapeutic treatment, with a high spatial resolution to

determine the heterogeneity of extracellular acidification. For

example, CEST MRI has been used successfully to map tumor

pH in a rabbit liver cancer model (43). In another study, tumor

acidosis assessed by CEST MRI revealed the metastatic potential

of breast cancer in mice (44). Translating the results of

preclinical studies into clinical trials is only beginning to yield

significant results. CEST MRI shows good results for measuring

pH in ovarian cancer patients (45). In addition, CEST MRI has

recently been shown to differentiate between benign and

malignant liver tumors in patients (46). However, it is still

difficult to routinely measure the pH of tumors in the clinic.

In addition to direct measurements, tumor acidity can be

assessed indirectly by determining the concentrations of

bicarbonate (47) and lactate ions in the blood and using

biopsy data (48). However, each clinical situation requires an

individual approach.
Tumor acidity and tumor resistance

Cancer cell survival strategies in acidic TME promote

resistance to radiation and chemotherapy. Radioresistance is

closely related to hypoxia. Available clinical data show that the

presence of large hypoxia areas in solid tumors is associated with

a poor prognosis in cancer patients after radiotherapy (49). The

cytotoxic effects of ionizing radiation are mainly due to damage

to genomic DNA as a result of the indirect action of generated

free radicals (50). Molecular oxygen must be present during

irradiation, which is insufficient under hypoxic conditions.

Hypoxia also prevents DNA repair and leads to the inhibition

of the G1/S cell cycle checkpoint, an increase in DNA errors, and

an increase in chromosomal instability. At the same time, the
Frontiers in Oncology 03
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alkaline pHi of tumor cells prevents mitotic arrest initiated by

activated checkpoints during DNA damage (21, 51). Thus, the

inversion of the pH gradient of the tumor is a “partner” of

hypoxia in creating conditions for radioresistance, and clinicians

should consider acidic TME in the planning of radiation therapy.

Acidic TME itself can lead to chemoresistance due to

ongoing physicochemical changes in the structure and charge

of drugs. Weak-base chemotherapeutic agents, such as

vincristine, mitoxantrone, doxorubicin, vinblastine, and

paclitaxel, may have substantially reduced cellular uptake

capacity due to neutralization or protonation [“ion trapping”

(52)]. Therefore, the cytotoxic effects of these drugs may be

reduced, resulting in a stable tumor phenotype. Interestingly,

reversing the pH gradient may increase the intracellular

concentrations of some weak-acid drugs, including

cyclophosphamide and chlorambucil (53–56). Acidic TME

induces p-glycoprotein (multiple drug resistance (MDR)

protein) activity by promoting p38 mitogen-activated protein

kinase (57–59). Tumor acidosis induces the expression of the

transcription factor SOX2 by inhibiting vitamin D receptor-

mediated transcription, which also results in drug resistance

(60). Oxidation-induced lactic acidosis increases resistance to

uprosertib, a serine/threonine protein kinase inhibitor, in colon

cancer cells (61). To obtain the maximum effect of

chemotherapy, the acidity of the TME must be considered.

Current knowledge strongly suggests that acidic TME

inhibits the antitumor immune response, although the

complication of experimentally measuring tumor acid-base

status makes it difficult to obtain direct evidence (7, 62). For

instance, a decrease in the pHe leads to a decrease in the activity

and proliferation of T cells (63, 64). In an acidic environment,

effector T cells require higher thresholds for full activation and

co-stimulatory signals (e.g., CD28) and show increased negative

regulatory signaling through upregulation of interferon gamma

receptor 2 (IFN-gR2) and cytotoxic T cell-associated protein 4

(CTLA-4) (64). Acidic extracellular conditions reduce the

expression of T-lymphocyte receptor components (65). Since

the movement of lactate between the cytosol and the

extracellular space depends on its concentration gradient, a

high concentration of extracellular lactate in the TME prevents

the export of lactate from T cells. This negatively affects the

functions of activated T-lymphocytes dependent on glycolysis

for ATP production (66). Notably, the functions of effector T-

lymphocytes could be restored after normalization of pH (65–

69), so the acidity does not have a cytotoxic effect. A significant

effect of low acidity appears to be its negative effect on effector

cytokines production by T cells, which is significantly reduced

under acidic conditions (70–72). However, receptor interactions

also play an important role. For example, in acidic TME, the V-

domain Ig suppressor of T cell activation (VISTA), which is

expressed by tumor-infiltrating myeloid suppressor cells, is

activated and suppresses effector T cells (73). The inhibitory

effect of acidic TME on dendritic cells is not related to the high
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concentration of H+, which actually stimulates antigen

presentation (74). This inhibition can be explained by the

accumulation of lactate, which modulates the dendritic cell

phenotype and causes increased production of anti-

inflammatory (e.g., IL-10) and decreased production of pro-

inflammatory (e.g., IL-12) cytokines (75, 76). An acidic pHe and

a high concentration of lactate together lead to a decrease in the

activity of natural killers, including the depletion of interferon

gamma (IFN-g) and their ability to infiltrate the tumor (71, 77,

78). At the same time, for example, an acidic environment

stimulates regulatory T cells (Tregs) activity by involving lactic

acid in metabolism (79). In addition, lactic acid promotes Tregs’

expression of programmed cell death receptor 1 (PD-1) by

absorption through monocarboxylate transporter 1 (MCT1).

Thus, the PD-1 blockade activates PD-1-rich Tregs, resulting

in treatment failure (80). Besides this, the acidity of the TME

upregulates programmed death ligand 1 (PD-L1) in tumor

cells (81).

It seems clear that the acidic conditions of the TME must be

considered in monoclonal antibodies (mAbs) anticancer therapy.

On the onehand, slightly acidic conditions areprobably optimal for

most mAbs (82), i.e., acidity in solid tumors may only slightly

influence the deterioration of the therapeutic properties of mAbs.

Ontheotherhand, thepossibilityof thedegradationofmAbsunder

such conditions cannot be excluded (7). For example, the rate of

antibodyFc fragmentoxidation andaggregation,whichdetermines

antibody-dependent cellular cytotoxicity (ADCC) and

complement-dependent cytotoxicity (CDC), has been shown to

increase with decreasing pH (83, 84). Despite the fact that cancer

immunotherapy uses immune checkpoint-blocking mAbs that are

specifically modified to eliminate interactions with Fc receptors,

fatal changes inother parts ofmAbs thatdetermine their activity are

also possible at low pH values. For example, the chemical

degradation of aspartic acid induced by acidic pH in the

complementarity-determining region (CDR) of a monoclonal

antibody against the epidermal growth factor receptor (EGFR)

causes a loss of antibody-binding activity (85). The high structural

and physicochemical affinity of mAbs to their targets is a condition

for achieving a therapeutic effect. In particular, histidine residues in

interacting sites can increase pH-mediated dissociation due to

protonation under acidic conditions, favoring electrostatic

repulsion between rigid domains in protein–protein interaction

(86). The low pHe can also greatly affect the bioavailability of

therapeuticmAbs.At the same time, the “useful” side of acidicTME

is the possibility of creating therapeutic pH-selectivemAbs (87, 88).
Tumor acidity as a target
of treatment

Tumor-targeted pH-sensitive antibodies should be screened

for low pH activity, and antibody engineering should not be

limited to finding molecules with activity over a wide pH range
Frontiers in Oncology 04
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(87). For example, despite the pH-independent affinity of CTLA-

4 for ipilimumab, an analog was developed with up to a 50-fold

affinity for CTLA-4 at pH 6.0 compared to pH 7.4 (89). A

bispecific pH-responsive anticarcinoembryonic antigen-related

cell adhesion molecule (CEACAM) 5 antibody that binds pH-

independently to CEACAM6 was generated (88). Likewise,

acidic TME allows for pH-activated molecular targets, such as

VISTA. A combination of anti-VISTA mAb with anti-PD-L1

therapy demonstrated a significant survival benefit in tumor-

bearing mice (90). Nanotechnologies also provide a good tool for

creating pH-responsible anticancer drugs based on pH-

responsible polymer nanomaterials, nanogels, etc. (91, 92). It

has recently been summarized that several types of pH-sensitive

nanoparticle conjugates with paclitaxel, doxorubicin, or others

enhance drug delivery and potentiate anticancer effects in

various experimental cancer cell lines (93).

Another approach to influencing tumor aggressiveness and/

or therapeutic response is the regulation of tumor pH levels.

First, since glycolysis is the main source of lactate and H+, would

it be possible to reduce lactate production by limiting glucose?

Also considering that hyperglycemia is known to be associated

with reduced survival rates in some types of cancer (94–97),

although this is still controversial, for example, in pancreatic

(98–100) or colorectal cancers (101–103). Indeed, glucose

restriction can reverse the Warburg effect and decrease lactate

production in vitro (104). However, cancer cells can also use

glycogenolysis, glycogen synthesis, and gluconeogenesis to

compensate for glucose starvation (105–107). Many therapies

targeting glucose metabolism (e.g., targeting glucose

transporters, glycogen phosphorylase, glycogen synthase kinase

3b, hexokinase 2, glucose-6-phosphate isomerase, etc.) have

been developed, but have not yet been successful in clinical

trials (107). Furthermore, glycolysis is the main metabolic

pathway of neutrophils, M1 macrophages, dendritic cells,

naive T cells, effector T cells, etc. (108). For example, glucose-

deficient TME limits the anaerobic glycolysis of tumor-

infiltrating T cells and thus suppresses tumor-killing effects

(109). Nutritional deficiencies in the TME, especially glucose,

impair the metabolism of NK cells and their antitumor activity

(110). It is important to note that human glucose levels may be

reduced to very low levels without causing harm (111), and

ketone bodies can be used for energy production with benefits

for the organism (112, 113). For instance, a ketogenic diet

improves the function of T cells (114, 115) and possibly

creates an unfavorable metabolic environment for cancer cells

(116, 117). However, ketone bodies utilization or formation may

be a promoter for tumor cells proliferation and metastasis (118–

121). Therefore, limiting glucose or its metabolism to reduce

lactate production can have a completely ambiguous effect.

A more optimal way to reduce lactate production seems to

be the inhibition of lactate dehydrogenase A (LDHA). This

approach provides the simultaneous restriction of lactate

synthesis from both glycolysis and glutaminolysis. Indeed, the
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inhibition of LDHA in vivo redirects pyruvate to support

OXPHOS (122, 123). To date, a large number of LDHA

inhibitors have been studied preclinically, but unfortunately,

the clinical utility of such inhibitors may be limited due to

nonselective toxicity or complex interactions with other cellular

components. Optimization of existing compounds and

continued search and development of new LDHA inhibitors

will be reasonable strategies to obtain direct antitumor effects or

enhance, for example, immunotherapy results (48, 124, 125). For

example, since the effect of immunotherapy can be prevented by

lactate (79, 80) and high LDH levels before treatment are

correlated with a poor response to immunotherapy (126, 127),

inhibition of LDHA can improve the efficacy of anti-PD-1

therapy (128).

Alternate modality to regulate tumor acidity is the

pharmacological inhibition of proteins responsible for

regulating pHi or mitochondrial activity (5, 9, 10). For

example, inhibition of mitochondrial pyruvate transporter

(MPC) works to block lactate utilization while preventing

oxidat ive g lucose metabol i sm (129) . Blocking the

monocarboxylate transporter 1 (MCT1) (used to import

lactate as an energy source in oxidative cancer cells) with the

specific MCT1 inhibitor AZD3965 prevents lactate

consumption, increases its concentration in the TME, and has

an antiproliferative effect (130–132). Conversely, the inhibition

of MCT4 (expressed to remove lactate in glycolytic tumor cells)

causes intracellular lactate accumulation, a decrease in pHi, but

also reduces tumor growth in vitro and in vivo (132, 133). The

cooperative use of MCT1/MCT4 inhibitors or nonspecific MCT

inhibitors has good therapeutic potential (125, 132, 134, 135).

Also of great importance to decrease pHi values is the

pharmacological inhibition of the proton pump H+-ATPase

(136), sodium-hydrogen antiporter 1 (NHE1) (137), and

carbonic anhydrase IX (CAIX) (138). For example, according

to the results of a phase III clinical trial (NCT01069081),

intermittent use of a high dose of the proton pump inhibitor

esomeprazole potentiates the effects of docetaxel and cisplatin

chemotherapy in metastatic breast cancer without causing

further toxicity (139). In a retrospective study, omeprazole was

found to have a synergistic effect with chemoradiotherapy and to

significantly reduce the risk of rectal cancer recurrence (140).

Other ion exchangers and transporters are involved in tumor pH

regulation, but their role in cancer progression remains

unclear (2).

Another way to affect tumor acidity is the use of buffer

systems, such as sodium bicarbonate. Preclinical and some

clinical studies suggest that “direct” tumor deacidification may

slow progression or improve therapeutic response (34). Oral

administration of sodium bicarbonate can increase the efficacy of

doxorubicin and mitoxantrone in model experiments (52, 55).

Furthermore, peroral administration of sodium bicarbonate and

other buffer solutions significantly reduced the invasion and

metastasis of various experimental (including spontaneous)
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tumors in genetically modified animals but had no effect on

the growth of primary tumors (141–146). Neutralization of

tumor acidity improved the antitumor response to anti-CTLA-

4 and PD-1 mAbs, as well as the adoptive transfer of T-

lymphocytes in experiments using the B16 melanoma model

and Panc02 pancreatic cancer in mice (69).

At the same time, the first three clinical trials of oral sodium

bicarbonate (NCT01350583, NCT01198821, NCT01846429) to

improve outcomes and reduce pain in pancreat ic

adenocarcinoma failed due to poor taste sensation and

gastrointestinal disturbances, resulting in bad compliance

(147). However, a recent clinical study successfully examined

the effect of alkalinization therapy (an alkaline diet

supplemented with oral sodium bicarbonate) in combination

with chemotherapy on the survival of patients with advanced

pancreatic cancer (UMIN 000035659). The median overall

survival rate in patients whose urine pH became high (>7.0)

after the start of therapy was significantly greater than in patients

with low urine pH (≤7.0) (16.1 vs 4.7 months; p<0.05) (14). In

another study (UMIN000043056), the combination of

alkalinization therapy with intravenous vitamin C was also

associated with favorable outcomes in patients with small cell

lung cancer (SCLC) receiving chemotherapy. The median overall

survival for the intervention group was 44.2 months vs. 17.7

months for the control group (15).

Parenteral administration of buffer systems to directly

neutralize tumor acidity is also of great importance, but it

must be done under the close supervision of medical

personnel and can have some serious side effects (148). The

use of nanoobjects to deliver buffers due to the enhanced

permeability and retention effect (EPR) can overcome such

limitations (149). For example, the administration of sodium

bicarbonate-loaded liposomes in combination with

subtherapeutic doses of doxorubicin in mice with triple-

negative breast cancer resulted in a superior therapeutic

response compared to drug administration alone (150).

Performing an isolated infusion or perfusion of the tumor

with buffer solutions is another option. In the ChiCTR-IOR-

14005319 clinical study, the efficacies of transarterial

chemoembolizat ion (TACE) with or without local

administration of 5% sodium bicarbonate solution in patients

with large-focal hepatocellular carcinoma were compared. In the

case of sodium bicarbonate, the objective response rate (ORR)

was 100% vs. 44.4% in the case of conventional TACE in a

nonrandomized cohort and 63.6% in a randomized study (151).

In a preclinical study, it was found that intraperitoneal perfusion

with 1% sodium bicarbonate solution significantly prolonged

overall survival in mice with the ascitic form of Ehrlich’s

adenocarcinoma (median survival, 24 vs. 17 days; p < 0.05)

when compared to 0.9% sodium chloride solution (18). In

another study, perfusion was performed with a 4% sodium

bicarbonate solution of rat limbs with a Pliss lymphosarcoma

graft. The median survival in the sodium bicarbonate group was
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17 days, while in the nonperfused group and in the isotonic

saline group it was 13 days (17).

The mechanisms of the anticancer effects of alkalization

(buffering) therapy remain unclear. While the improved

chemotherapeutic effect can be explained by “ion trapping”

(53, 54), the antitumor, antimetastatic, and immunotherapy-

enhancing effects of buffered therapy may be much more

complex and have been studied predominantly as a

phenomenon until now. Buffering of the TME can reduce the

optimal conditions for enzymes involved in tumor invasion,

such as cathepsins and matrix metalloproteases (MMPs) (152).

Neutralization of acidity in the TME can result in a reduction of

PD-L1 expression, which is increased at low pH through proton-

sensing G protein-coupled receptors (81). Neutralization of

lactic acid with sodium bicarbonate reactivates metabolically

altered (in an acid environment) T cells, enabling extracellular

lactate as an additional source for their energy production (153).

More research is needed on the mechanisms of the effectiveness

of sodium bicarbonate and other buffer solutions in cancer

patients. Alkalization (buffering) therapy does not conflict with

standard treatment methods but can be used in combination to

increase effectiveness (154).
Conclusion

Despite extensive studies on the acid-base status of

malignant tumors over the past decades, the mechanisms of

tumor adaptation to acidity, induction of invasion and

metastasis, and the mechanisms leading to evasion of immune

surveillance are still poorly understood. Further research in this

direction is needed, including the development of approaches

and drugs that directly or indirectly increase the pH of the TME

for use in conjunction with chemotherapy, radiation therapy,

and immunotherapy. However, it is clear that clinical options

already exist to counteract tumor acidosis in patients.

Additionally, the selectivity of acidosis in tumors versus

healthy tissues holds promise for pH-activated or pH-targeted

drugs, which are safer than traditional chemotherapy and are
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applicable to more cancers than many targeted drugs. Regardless

of the complexity of the clinical assessment of the TME acidity,

clinicians should consider acidosis in practice, and the continued

development of methods for clinical assessment of tumor pH

should allow for accurate diagnosis and selection of personalized

treatment regimens.
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One of the most unique characteristics of cancer metabolism is activated

aerobic glycolysis, which is called the “Warburg effect”, and is a hallmark of

cancer. An acidic tumor microenvironment (TME) resulting from activated

anaerobic glycolysis is associated with cancer progression, multi-drug

resistance, and immune escape. Several in vitro and in vivo studies reported

that neutralization of the acidic TME by alkalizing agents, such as bicarbonate,

resulted in the suppression of cancer progression and a potential benefit for

anti-cancer drug responses. In clinical settings, alkalizing effects were achieved

not only by alkalizing agents, but also by a following a particular diet. An

epidemiological study demonstrated that more fruits and vegetables and less

meat and dairy products are associated with an increase in urine pH, whichmay

reflect the alkalizing effect on the body. However, it remains unclear whether

alkaline dietary intervention improves the effects of cancer treatment.

Moreover, there are few clinical reports to date regarding cancer treatments

being performed on patients together with alkalization therapy. In this review,

we investigated whether alkalization therapy, which includes an alkaline diet

and/or alkalizing agents, improves cancer treatment.

KEYWORDS

cancer, cancer metabolism, tumor microenvironment, alkalization therapy, urine
pH, chemotherapy
Introduction

There are numerous lines of evidence that pH gradient reversal, intracellular

alkalization, and extracellular acidification are commonly seen in malignant tumors

and are associated with the progression, metastasis, and multidrug resistance (MDR) of

cancer cells (1–3). Activation of aerobic glycolysis, which is also known as the “Warburg

effect”, is a characteristic feature of cancer metabolism and a hallmark of cancer (4).

Cancer cells require rapid adenosine triphosphate (ATP) generation to maintain their

energy state, increase macromolecule biosynthesis, and maintain an appropriate cellular

redox state for their survival and growth. Activated aerobic glycolysis produces reduced

nicotinamide adenine dinucleotide phosphate, which is necessary to maintain redox
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balance, and also acts as an antioxidant to protect against

reactive oxygen species that are generated during rapid cancer

growth (5). Therefore, aerobic glycolysis, which is a shift from

ATP generation by oxidative phosphorylation to ATP

generation by glycolysis, is observed even under normal

oxygen concentrations (5–7). The constant increase in aerobic

glycolysis is considered to be an adaptation to the hypoxia that

occurs as precancerous lesions become increasingly distant from

the blood supply (6). However, recent reports indicate that the

glycolytic phenotype is an important component of the

metabolic reprogramming of cancer cells that occurs early in

carcinogenesis, i.e., before the development of tissue hypoxia (1,

5–7). Aerobic glycolysis can be caused by genetic instability,

mutations, abnormal gene expression, or altered signaling

pathways (1). Increased lactate production owing to increased

glycolysis leads to acidosis of the extracellular tumor

microenvironment (TME) (5, 6, 8). Moreover, the systemic

extrusion of H+ by different proton transporters, and the

neutralization of protons in cancer cells by bicarbonate anions

from the chloride bicarbonate exchanger are the main

mechanism for reversing the pH gradient in cancer cells (5, 7,

9, 10). The extrusion of H+ from cancer cells is positively

regulated by several membrane-bound proton transporters,

such as Na+/H+ exchanger 1 (NHE1), Na+/K+ ATPase pump,

vacuolar H+-ATPase (V-ATPase), H+/Cl− symporter,

monocarboxylate transporter (MCT), and carbonic anhydrase

(CA) (10).

Although emerging lines of evidence from both in vivo and

in vitro studies suggest that the reversed pH gradient of cancer

cells may be a promising new target of cancer treatment, the

mainstream treatments for advanced cancer are chemo

therapeutic drugs and molecularly targeted therapies, and

there are few strategies aiming at the pH regulation of cancer

cells in clinical settings. In this article, we aimed to summarize

the association between the acidic TME and cancer treatments,

and introduce several approaches of alkalizing the external TME

and associated treatment strategies.
An acidic TME leads to resistance to
cancer therapy

A direct cause and effect association among the degree of

MDR, decrease in external tumor pH (pHe), and increase in

internal tumor pH (pHi) has been reported, and the reversed pH

gradient of cancer cells is known as a key factor in driving the

progression of malignancy and resistance to conventional

therapies (8, 11, 12). An in vitro study of human lung tumor

cells demonstrated that a close to 2,000-fold increase in

doxorubicin resistance was observed when the pHi increases

from 7.0 to 7.4 (13). Furthermore, a decrease in pHe and

increase in pHi mediated by proton-extruding mechanisms is
Frontiers in Oncology 02
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responsible for not only the maintenance of MDR but also

protection against the induction of apoptosis (14–16). P-

glycoprotein, a drug efflux transporter, is regulated in a pH-

dependent manner, and a decrease in pH of the TME has the

potential to enhance its efflux function (17, 18). Moreover, the

uptake of weakly basic chemotherapeutic drugs by tumors is

highly affected by the pH of the TME and the ionization

properties of the drug (19). That is, an acidic TME reduces the

cellular uptake of weakly basic chemotherapeutic drugs, such as

anthracyclines (doxorubicin, daunorubicin, mitoxantrone, etc.)

because weakly basic chemotherapeutic drugs become trapped

in extracellular compartments owing to being positively charged

in acidic conditions (20–22). Characteristics of the TME, such as

having an acidic pH, being hypoxic, and lacking nutrients, are

associated with cancer stem cells that demonstrate self-renewal

and multilineage potential, leading to heterogeneity within the

tumor and contributing to treatment resistance and clinical

relapse (23). It is also known that the acidic TME is associated

with a decreased anti-cancer immune response. Lactic acid in the

TME suppresses immune cells, such as dendritic cells, natural

killer cells, cytotoxic T cells, and macrophages, resulting in the

inhibition of antitumor immune responses, and cancer immune

escape (24, 25). An in vitro study demonstrated that the acidic

TME is associated with both the suppression of T-cell responses

and a decrease in the secretion of IFN–g and TNF–a, and the

effects of anti-programmed cell death 1 therapy were reported to

be enhanced by alkalization using bicarbonate in mouse models

of melanoma (26).

In summary, reversal of the pH gradient of the TME of

cancer cells leads to MDR and reduced cancer immunity,

resulting in resistance to cancer therapy. Current cancer

treatment strategies do not consider pH changes in cancer and

its association with sensitivity to drug therapies, and treatment

approaches aiming at pH regulation of the TME may hence be a

future therapeutic strategy.
Approaches of alkalization of the
acidic TME

There are two main therapeutic approaches that target the

acidic pH of the TME. One is buffer therapy, in which alkalizing

agents are administered to neutralize protons, and the other is

the inhibition of proton efflux transporters expressed on the

cancer cell membrane (Figure 1).
Alkalizing agents

Several studies have been reported on buffer therapies that

neutralize the acidic TME of cancer cells. Alkalizing agents, such as

bicarbonate, are commonly used in in vitro and in vivo studies. A
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mathematical simulation study showed that oral bicarbonate

consumption as a systemic pH buffer increases the pH of the

external TME and inhibits tumor invasion (27). Inmousemodels of

metastatic breast cancer, it was reported that bicarbonate

administration increased the pH of the TME, resulting in the

suppression of metastasis and improvements of survival rates

(28). It was also reported that alkalization of the acidic TME

improves the anticancer immune response. As described above,

the effects of anti-programmed cell death 1 therapy in mouse

models of melanoma have been shown to be enhanced by

alkalization through bicarbonate consumption (26). A prospective

clinical trial in healthy volunteers was conducted for investigation of

the safety of the long-term consumption of sodium bicarbonate for

cancer care, and demonstrated that 90 days of sodium bicarbonate

consumption (median 0.17 g/kg/day) was feasible and safe, and an

increase in urine pH as a surrogate marker for buffering effect was

observed following bicarbonate intake (29). It has also been

reported that the oral administration of sodium potassium citrate

as an alkalizing agent increases HCO−
3 concentrations in the blood

and urine, leading to an increase in urine pH and neutralization of

the acidic TME in a pancreatic cancer xenograft model, thereby

enhancing the therapeutic effects of anticancer drugs (tegafur/

gimeracil/oteracil) (30).
Proton transport inhibitors

NHE1 inhibitors
NHE1 is known to play not only an essential role in the

survival of normal cells, but also a key role in cancer progression.

In normal cells, NHE1 is quiescent in the steady-state resting

intracellular pH, and is activated only upon cytosolic acidification.

In cancer cells, NHE1 is activated even at resting pH, and the

activation of NHE1 directly results in an increase in intracellular

pH and a decrease in extracellular pH of cancer cells (7). NHE1 is
Frontiers in Oncology 03
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a major plasma membrane pump that extrudes intracellular

protons from cells, and is associated with tumor growth and

progression (7). There are several NHE1 inhibitors, including

derivatives of amiloride, such as 5-(N-ethyl-N-isopropyl)

amiloride, 5-(N,N-dimethyl) amiloride, 5-(N,N-hexamethylene)

amiloride (HMA), and cariporide (9). In vitro and in vivo studies

using breast cancer cells have reported that cariporide improves

doxorubicin sensitivity (31). It was reported that a patient with

metastatic ovarian cancer who was treated with amiloride as a

Na+/H+ exchanger inhibitor showed a favorable outcome (32).

However, as NHE1 is widely present in many tissues and plays a

fundamental role in important physiological processes, there is a

potential risk of life-threatening side effects associated with NHE1

inhibitors. To take advantage of NHE1 inhibition in cancer

therapy, it will be important to develop drugs that selectively

target NHE1 in tumors (33).

CA inhibitors
CA acts as a catalyst to reversibly hydrate carbon dioxide to

produce bicarbonate and protons, and the overexpression of CA

isoforms IX and XII is involved in cancer progression and

metastasis (34). These enzymes contribute to acidification of

the extracellular pH of cancer cells (35). Inhibitors of CA IX and

CA XII are considered as potential anticancer agents, and several

clinical trials using these inhibitors have been conducted (34). A

study using girentuximab, a chimeric antibody against CA IX,

was reported and showed no significant effects on recurrence-

free survival in clear cell renal cell carcinoma. However,

subgroup analysis showed that patients with high CA IX

expression have significantly longer recurrence-free survival

than those with low CA IX expression (36).

MCT inhibitors
The activated glycolysis of cancer cells results in the

overproduction of lactate, which is transported out across the
FIGURE 1

Therapeutic approaches targeting the acidic pH of the TME. Alkalizing agents and proton transporter inhibitors are shown.
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cancer cell membrane via the MCT (mainly MCT1) (9, 37).

Expression of MCT1 and MCT4 has been reported to be a

characteristic of cancer cells and to contribute to tumor

invasiveness, and hence these MCTs are potential targets for

cancer treatment (37). In vivo and in vitro studies on the effects

of MCT1 inhibitors against diffuse large B-cell lymphoma and

Burkitt lymphoma reported that the accumulation of

intracellular lactate and cancer cell proliferation were reduced

by these inhibitors (38).

V-ATPase inhibitors
V-ATPase is an ATP-dependent proton transporter that

expels protons from cancer cells, and V-ATPase activation

promotes the progression of cancer. The inhibition of V-

ATPase was reported to reduce cancer cell growth and induce

apoptosis in several in vivo and in vitro studies (39). Moreover,

proton pump inhibitors (PPIs), which act as H+/K+-ATPases

and are used for the treatment of gastric ulcers and

gastroesophageal reflux, are also known to inhibit V-ATPase.

In vivo and in vitro studies have shown that PPIs induce

apoptotic cell death and lead to chemosensitization and

reversal of chemoresistance via the inhibition of V-ATPase

(40, 41). Population-based studies also reported that treatment

with PPIs may prevent the progression of breast cancer (42, 43).

Although clinical trials are limited, favorable results have been

reported in three patients with advanced colorectal cancer

treated with chemotherapy in combination with high-dose

PPIs (44). In addition, in patients with metastatic breast

cancer treated with a combination of chemotherapy and PPIs,

significantly prolonged progression-free survival (PFS) and

overall survival (OS) were observed compared with patients

treated with chemotherapy alone (45).
Can diet affect the pH regulation
of the TME?

It is known that diet is associated with cancer risk. The

World Cancer Research Fund/American Institute for Cancer

Research reported their recommendations associated with food

intake to reduce cancer risk as follows: ‘Eat a diet rich in

wholegrains, vegetables, fruit and beans’ and ‘Limit

consumption of red and processed meat’ (46). Although the

benefit of an alkaline diet on cancer risk still remains unclear, a

case-control study reported that a diet with a high acid load may

increase lung cancer risk (47). However, to our knowledge, there

are no studies to date regarding the association between food

intake and pH of the TME. On the other hand, the acid-base load

on the body can be affected by food. In a study investigating the

effects of food on urine pH, the acid and base precursors in food

were quantified and the potential renal acid load was calculated

to predict net renal acid excretion, and the potential renal acid
Frontiers in Oncology 04
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load of meat was calculated as +9.5 mEq, whereas that of fruit

was −3.1 mEq and vegetables was −2.8 mEq (48). An

epidemiological study showed that an alkaline diet consisting

of high fruit and vegetable and low meat intake had a significant

association with an increase in urine pH (49). Therefore, the

alkalizing effect of food results in an increase in urine pH;

however, further studies are required to clarify the association

between an alkaline diet and pH of the TME.
Clinical reports of alkalization
therapy for cancer

Although pH regulation of the acidic TME is considered to

be a potential target of cancer therapy, research on the effects of

alkalizing agents and proton transport inhibitors on cancer are

mainly limited to in vivo and in vitro studies, and there are few

clinical reports regarding alkalization therapy for cancer

treatment. In this section, we will introduce some retrospective

studies of alkalization therapy for cancer conducted by

our group.

First, we report on a retrospective study investigating the

effects of an alkaline diet on advanced or recurrent non-small

cell lung cancer patients with epidermal growth factor receptor

(EGFR) mutations, who were treated with EGFR-tyrosine kinase

inhibitor (TKI) (50). All patients in this study were given

instructions to follow an alkaline diet as part of their routine

clinical care. In this study, the mean urine pH (n = 11) was

significantly increased after an alkaline diet, which was defined

as that with a large amount of vegetables and fruits and minimal

amount of meat and dairy products. Although the average

dosage of EGFR-TKI administered to the patients was less

than the standard dosage (56% ± 22% of the standard dosage),

the median PFS was 19.5 (n = 11, range = 3.1–33.8) months. It is

known that the median PFS reported in publications of a similar

population treated with EGFR-TKI alone was 10.9–13.1 months

(51, 52). This was a preliminary observational study that did not

have a comparator group; however, the favorable results of these

11 cases might suggest the importance of the combination of

alkalization and EGFR-TKI therapy.

Second, a retrospective study was conducted to investigate

the effects of alkalization therapy performed concurrently with

chemotherapy on recurrent or metastatic pancreatic cancer

patients (53). A total of 28 patients with advanced pancreatic

cancer who agreed to receive alkalization therapy, were treated

with alkalization therapy, consisting of an alkaline diet with oral

sodium bicarbonate (3.0−5.0 g/day). We found that alkalization

therapy significantly increased the mean urine pH. A

significantly prolonged median OS was observed in patients

with a urine pH of higher than 7.0, compared with patients with

a urine pH of 7.0 or lower (n = 28, 16.1 vs. 4.7 months; p< 0.05).

Moreover, a retrospective case-control study was conducted to
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investigate the effects of alkalization therapy on chemotherapy

outcomes in recurrent or metastatic pancreatic cancer patients

(54). Patients in the alkalization group (alkalization therapy plus

chemotherapy, n = 36), which included patients from the above

retrospective study, were compared with patients in the control

group (chemotherapy only, n = 89). The median OS was

significantly longer in the alkalization group than in the

control group (15.4 vs. 10.8 months; p< 0.005) (Figure 2A). In

addition, the median OS of patients with an increased urine pH

(pH > 7.0) in the alkalization group (n = 13) was significantly

longer than that of the control group (n = 89) (25.1 vs. 10.8

months; p< 0.005) (Figure 2B). These studies suggest that

alkalization therapy may be associated with more favorable

outcomes in advanced pancreatic cancer patients treated with

chemotherapy. A prospective randomized study is required in

the future to clarify the effects of alkalization therapy.

Third, we conducted a retrospective study investigating the

effects of alkalization therapy combined with intravenous

vitamin C treatment on small cell lung cancer patients treated

with chemotherapy (55). Twelve patients who agreed to be

assigned to the intervention group (alkalization therapy plus

vitamin C treatment together with chemotherapy) were

compared wi th 15 pat ients in the contro l group

(chemotherapy only) who did not agree to receive

interventional treatment. Similar to our previous studies, urine

pH of the intervention group was significantly increased

compared with that of the control group (Figure 3A). A

prolonged median OS was observed in the intervention group

compared with the control group (44.2 vs. 17.7 months; p< 0.05)

(Figure 3B). Although this study was a retrospective study with a

small number of patients, alkalization therapy may be associated

with favorable outcomes in patients with small cell lung cancer
Frontiers in Oncology 05
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receiving chemotherapy, and it is speculated that supplementary

intravenous vitamin C may have also affected their treatment

outcomes. However, the effect of intravenous vitamin C

treatment in combination with alkalization therapy remains

unclear, and further investigation is needed.

As described above, we summarized our clinical studies of

alkalization therapy, consisting of an alkaline diet and alkalizing

agents, such as bicarbonate. Alkalization therapy can be used in

conjunction with any of the current standard chemotherapies,

and may improve the outcomes of standard chemotherapies.

However, these studies were not randomized, and were

retrospective studies that analyzed a small number of patients

from a single center, and hence the results should be interpreted

with caution. Moreover, these clinical studies focused on

patients with non-small cell lung cancer, pancreatic cancer,

and small cell lung cancer, and did not investigate patients

with other cancer types. In addition, our group has encountered

patients with renal cancer, malignant lymphoma, gastric cancer,

and breast cancer in whom alkalization therapy increased their

urine pH, which may have been associated with their favorable

outcomes. However, these are only case reports and require

further investigation (56).

It was reported that intestinal alkalization by bicarbonate

treatment showed a preventive effect for irinotecan-induced

diarrhea in both in vivo and in vitro studies (57). In clinical

studies investigating whether oral administration of bicarbonate

(1.8–2.0 g/day) has preventive effects for irinotecan-induced

diarrhea in patients with non-small cell lung cancer, small cell

lung cancer, and colorectal cancer, no significant differences

were observed in the effects of chemotherapy between the

bicarbonate-treated and non-treated groups (58, 59). However,

the effects of bicarbonate administration as alkalization therapy
BA

FIGURE 2

Overall survival between advanced pancreatic cancer patients who were treated with alkalization therapy plus chemotherapy and those who
were treated with chemotherapy only. Kaplan–Meier curves of the OS of the alkalization group and the control group are shown. (A) The
median OS of the alkalization group was significantly longer than that of the control group. (B) In patients with an increased urine pH (pH > 7.0),
a more prolonged median OS was observed than in the control group. [Adapted from reference (54)].
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requires further investigation, as the number of patients in these

previous studies were also small, the amount of bicarbonate

consumption was low, and urine pH was not measured. Thus,

there are not enough clinical studies to date to validate the

efficacy of alkalization therapy, and further studies focusing on

the treatment of alkalizing agents or proton transport inhibitors

are required to further clarify the effects of alkalization therapy.
Future directions of
alkalization therapy

Alkalization therapy is a buffering therapy aimed at neutralizing

the acidic TME. An animal study has shown that there is a

correlation between changes in pH of the TME and changes in

urine pH induced by alkalizing agents (30). Alkalization therapy

tended to be more effective in patients with a higher urine pH in our

clinical studies described above (50, 53–55), suggesting that urine

pHmay be an alternative indicator of the pH around cancer cells. It

should be noted that these studies have not demonstrated the

association between urine pH and tumor pHe/pHi ratio. Blood pH

is tightly regulated, and the HCO−
3 buffer system plays an important

role in maintaining blood pH homeostasis by balancing the

composition of carbonic acid, HCO−
3 and carbon dioxide. In

addition, renal filtration regulates the blood concentration of HC

O−
3 through glomerular filtration and acid secretion (60). It is

speculated that bicarbonate administration increases the blood HC

O−
3 concentration, delivering excess HCO−

3 into the tumor, where

HCO−
3 molecules traps H+ ions in the TME and form carbonic acid,

resulting in neutralization of the tumor pHe (28). However, further
Frontiers in Oncology 06
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objective evaluation of the association between urine pH and pH of

the TME is needed. Onemethod of measuring pH in tumor tissue is
31P-magnetic resonance spectroscopy (31P-MRS). It has been

reported that measurement of pH by MRS is largely standardized,

providing an accuracy of ± 0.1 pH units (61). Novel imaging probes

have been developed to assess the acidic TME. 89Zr-labeled pH-low

insertion peptide is a radiopharmaceutical imaging probe for in vivo

analysis to quantify the acidic TME using positron emission

tomography, and has potential clinical applications (62). Acido-

chemical exchange saturation transfer magnetic resonance imaging

can measure the extracellular pH of the TME using the ratio of two

pH-dependent signals, and may be useful in revealing the

association between urine pH and pH of the TME (63, 64). It is

also necessary to investigate how alkalizing therapy affects the

expression of cancer-associated genes, and whether the response

to alkalizing therapy differs depending on the gene expression

status. In addition, as regulation of pH in the body is affected by

daily diet and lifestyle, numerous factors are involved, and an

exhaustive analysis using artificial intelligence may be useful in

the future.
Conclusions

We here summarized the therapeutic approaches against

cancer targeting pH regulation. Although alkalization therapy as

a buffer therapy using alkalizing agents, and therapies inhibiting

proton transporters expressed on cancer cells are potentially

promising, their clinical applications remain still limited.

Further clinical investigations are hence needed in the future.
BA

FIGURE 3

Urine pH and overall survival of small cell lung cancer patients who were treated with alkalization therapy plus vitamin C treatment together
with chemotherapy and those who were treated with chemotherapy only. (A) Box-whisker plots of urine pH of the intervention group
(alkalization therapy plus vitamin C treatment together with chemotherapy) and of the control group (chemotherapy only) are shown. Urine pH
in the intervention group was significantly higher than that in the control group. The thick lines indicate the median values, the error bars
indicate the maximum and minimum values, and the boxes indicate the values between the upper and the lower quartiles. (B) Kaplan–Meier
curves of the OS of the intervention group and the control group are shown. The median OS of the intervention group was significantly longer
than that of the control group. [Adapted from reference (55)].
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Diverse antitumor effects of
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and the tumor
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Ascorbic acid has attracted substantial attention for its potential antitumor

effects by acting as an antioxidant in vivo and as a cofactor in diverse enzymatic

reactions. However, solid proof of its clinical efficacy against cancer and the

mechanism behind its effect have not been established. Moreover, cancer

forms cancer-specific microenvironments and interacts with various cells,

such as cancer-associated fibroblasts (CAFs), to maintain cancer growth and

progression; however, the effect of ascorbic acid on the cancer

microenvironment is unclear. This review discusses the effects and

mechanisms of ascorbic acid on cancer, including the role of ascorbic acid

concentration. In addition, we present future perspectives on the effects of

ascorbic acid on cancer cells and the CAFmicroenvironment. Ascorbic acid has

a variety of effects, which contributes to the complexity of these effects. Oral

administration of ascorbic acid results in low blood concentrations (<0.2 mM)

and acts as a cofactor for antioxidant effects, collagen secretion, and HIFa
degradation. In contrast, intravenous treatment achieves large blood

concentrations (>1 mM) and has oxidative-promoting actions that exert

anticancer effects via reactive oxygen species. Therefore, intravenous

administration at high concentrations is required to achieve the desired

effects on cancer cells during treatment. Partial data on the effect of ascorbic

acid on fibroblasts indicate that it may alsomodulate collagen secretion in CAFs

and impart tumor-suppressive effects. Thus, future studies should verify the

effect of ascorbic acid on CAFs. The findings of this review can be used to guide

further research and clinical trials.

KEYWORDS

ascorbic acid, antitumor effect, cancer, cancer-associated fibroblast, antioxidant,
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Introduction

Ascorbic acid, also known as vitamin C, is a low-molecular-

weight compound with the chemical formula C6H8O6 and a

molecular weight of 176.12 g/mol. It is an essential water-soluble

vitamin that cannot be synthesized in the human body (1).

Instead, this vitamin must be acquired by consuming food.

Inadequate provision of dietary vitamin C can lead to

deficiencies such as scurvy (2–4). Ascorbic acid acts in vivo as

an antioxidant and cofactor in various enzymatic reactions but

has also attracted substantial attention for its potential

antitumor effects (5, 6). However, the clinical efficacy of

ascorbic acid as an anticancer treatment, and the mechanism

behind its effects, have not yet been confirmed.

Cancer maintains its characteristic growth and progression

by interacting with surrounding cells, forming a cancer

microenvironment composed of various cells. Among these

cells, cancer-associated fibroblasts (CAFs) play a significant

role in cancer cell proliferation, invasion, and metastasis by

providing growth factors and nutrients to cancer cells and

reorganizing the extracellular matrix of the peri-cancer stroma

(7–11). However, the effect of ascorbic acid on the cancer

microenvironment is unclear. Moreover, the heterogeneity

phenotype of fibroblasts in the peritumoral stroma of some

carcinomas promotes tumor growth (12, 13). Therefore,

elucidation of the heterogeneity of fibroblasts is urgently

required for the effective destruction of cancer cells.

In this review, we discuss the differences between the

antioxidant and oxidant-promoting effects of ascorbic acid,

including the role of ascorbic acid concentration. Our current

understanding of the concentration-dependent actions and

processes of ascorbic acid is also explained. We then provide

future perspectives on the antitumor effects of ascorbic acid on

cancer cells and its effects on CAFs, which form a key

cancer microenvironment.
Administration route and vascular
concentration of ascorbic acid

Orally ingested ascorbic acid is absorbed by transporters of

sodium-dependent vitamin C transporters (SVCTs) and glucose

transporters (GLUTs) in the small intestine and excreted via the

kidneys (14). In vivo, ascorbic acid exists as reduced ascorbic

acid or oxidized ascorbic acid (dehydroascorbic acid (DHA)),

which are respectively taken into cells through SVCTs and

GLUTs (15–17). Rat experiments revealed variations between

the oral and intravenous administration of ascorbic acid,

whereby oral administration of 5 mg/g of body weight did not

raise blood ascorbic acid concentrations, but intravenous

administration of 5 mg/g boosted ascorbic acid concentrations

to approximately 10 mM (18). However, since mice and rats can
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synthesize ascorbic acid in their bodies (<100 mM), it is necessary

to be careful in applying the results of experiments with mice

and rats to humans, whose systems cannot synthesize ascorbic

acid. In human studies, oral administration of 400 mg or more of

ascorbic acid maintained steady-state blood concentrations of

50–80 µM (19), with oral administration of 3 g of

ascorbic acid every 4 h increasing the maximum blood

concentration to approximately 220 µM. Conversely,

intravenous administration of 50 g of ascorbic acid was

predicted to increase the maximum blood concentration to

approximately 13.4 mM (20). The half-life of ascorbic acid in

the blood is 2.0 ± 0.6 h (21). Furthermore, in a report on patients

with cancer, ascorbic acid concentrations in the blood reached

20.3–49.0 mM with intravenous administration of 60–70 g/m2

or 1.5 g/kg of ascorbic acid (21–23). In other words, blood

concentrations of ascorbic acid vary widely depending on the

route of administration. Thus, the pharmacological effects of

ascorbic acid resulting from the low concentrations achieved by

oral administration (several hundred mM) may differ from those

resulting from the high pharmacological concentrations

achieved by intravenous administration (>1 mM). As such, the

intended administration route of ascorbic acid must be

considered. Adverse effects of ascorbic acid include effects on

renal function and hemolysis caused by a deficiency of glucose-

6-phosphate dehydrogenase (G6PD). Oral doses of more than

1000 mg per day increase renal excretion of urate and oxalate

compared to lower doses, so caution should be exercised when

administering high doses (19). G6PD is required for the proper

function of glutathione peroxidase, especially in erythrocytes

(24). However, many clinical trials in which high concentrations

of intravenous ascorbic acid were administered as monotherapy

or in combination with anticancer agents have shown no serious

adverse effects (21, 25–27). Therefore, ascorbic acid is considered

a drug with very low toxicity to the human body.
In vivo effects of ascorbic acid

Recent studies have demonstrated that ascorbic acid

absorbed in vivo has both antioxidant and oxidant-promoting

effects (28, 29). Ascorbic acid also exhibits various physiological

effects by catalyzing Fe(II)- and 2-oxoglutarate-dependent

dioxygenase reactions (14).
Ascorbic acid and reactive
oxygen species

Ascorbic acid degrades reactive oxygen species (ROS) at

average blood concentrations of 40–80 mM, reducing low-

density lipoprotein oxidation associated with atherosclerosis

and lipid oxidation of cell membranes (30–32). However, high

pharmacological concentrations of ascorbic acid achieved via
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intravenous administration produce H2O2 in vivo (18, 33, 34)

and then hydroxyl radicals via the Fenton reaction (35).

Intravascularly, ROS produced by high concentrations of

ascorbic acid are degraded by catalase in serum, whereas

extravascularly, ROS accumulate without degradation by

ascorbic acid and act as a pro-oxidant. Thus, ascorbic acid is

notable for its paradoxical activity, serving as an antioxidant at

low doses and a pro-oxidant at high doses (28, 29). In addition,

oral administration of ascorbic acid does not reach the same

pharmacological concentrations as intravenous treatment (19,

20); therefore, intravenous administration of ascorbic acid is

required for pro-oxidant activity to occur. In a rat study,

intravenous administration of 0.5 mg/g of ascorbic acid

increased the H2O2 concentration in the extracellular fluid

from undetectable to 20 mM, and intraperitoneal injection of

the same dose increased H2O2 concentration to approximately 5

mM. In contrast, no increase in H2O2 concentration in the

extracellular fluid was detected after oral administration of

ascorbic acid (18). In addition, in a mouse subcutaneous

transplantation model, intraperitoneal administration of 4 mg/

g of ascorbic acid increased the H2O2 concentration in the

extracellular fluid around the tumor to approximately 150 mM
(34, 35).
Ascorbic acid as a cofactor for
dioxygenase

Members of the Fe(II) and 2-oxoglutarate-dependent

dioxygenase families catalyze many oxidation reactions

throughout biology. Ascorbic acid acts as a coenzyme that

catalyzes the reactions that produce hydroxylation products

using 2-oxoglutarate and oxygen as substrates (36).

Particularly well-known are the reactions in collagen (37) and

HIFa, which is a master regulator of the cellular hypoxia

response pathway (38). The reaction in collagen is mediated

by one of the proline hydroxylases, collagen prolyl-4-

hydroxylase (C-P4H), which hydroxylates the procollagen

proline (37). C-P4H has a high binding capacity to oxygen

and is not affected by the oxygen concentration. Conversely, in

the reactions in HIFa, ascorbic acid catalyzes two types of

reactions: PHD1-3 in proline hydroxylase (38–40) and factor

inhibiting HIF-1 (FIH-1) in asparagine hydroxylase (41–43). In

the PHD reaction, ascorbic acid degrades HIFa via

ubiquitination by pVHL proteins (44–46). In the reaction of

FIH-1, it suppresses the interaction with CBP/p300, which is a

transcriptional cofactor, and suppresses the transcriptional

activity of HIFs (42). These reactions are dependent on the

oxygen concentration; thus, ascorbic acid acts as an oxygen

sensor in the cell because the reaction is reduced in a hypoxic

environment and HIF is not degraded (36). The concentrations

of ascorbic acid necessary to sustain enzymatic activity of PHDs

and FIH-1 are 140-180 uM and 260 uM, respectively (37) and
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are well above the steady-state blood concentrations of 40–80

mM, suggesting that these reactions require sufficient blood and

tissue concentrations of ascorbic acid (14, 47). Ascorbic acid also

acts as a cofactor for ten-eleven translocations (TETs) of DNA

hydroxylases; TETs are proteins that convert 5-methylcytosine

(mC) to 5-hydroxymethylcytosine (hmC) (48, 49). Ascorbic acid

promotes DNA demethylation by accelerating the reaction of

TETs (50).
Antitumor effect of ascorbic acid

Ascorbic acid exhibits antitumor effects in various

carcinomas (5, 6, 51); however, clinical studies have not yet

produced any significant evidence of these effects (52). Ascorbic

acid exhibits antitumor effects through ROS-mediated

mechanisms and as a cofactor. The mechanisms of ascorbic

acid as a cofactor include effects on HIFa via PHDs and FIH-1

and epigenetic effects via DNA demethylases (6, 49). (Table 1)

Ascorbic acid can also modulate metabolism and epigenetic gene

expression in immune cells as well as cancer cells (64–67).

Ascorbic acid is also known to inhibit EMT of tumor cells (58,

59). Here, we discuss the known antitumor effects of

ascorbic acid.
ROS-mediated antitumor effects of
ascorbic acid

The ROS-mediated mechanism is the most well-known

mechanism of the antitumor effect of ascorbic acid in various

carcinoma. Intravenous administration of high ascorbic acid

concentrations acts as a pro-oxidant in vivo, producing ROS

through the Fenton reaction (18). H2O2, a ROS formed outside

of the cell, diffuses rapidly inside the cell (68) where it consumes

antioxidants such as reduced glutathione and NADPH. In

addition, in colorectal cancer with KRAS or BRAF mutations,

lung cancer with KRAS mutations, and pancreatic cancer,

GLUT1 expression is increased because of an accelerated

glycolytic pathway, resulting in higher DHA absorption (69–

72). ROS accumulation increases oxidative stress, such as DNA

damage, and DNA damage increases PARP activity, thereby

decreasing NAD+ levels and limiting glycolytic system processes

(73, 74). In addition, GAPDH, an enzyme of the glycolytic

system, is inhibited in its enzymatic function by the reversible

binding of oxidized glutathione to cystein152, which is reactive

to oxidative stress (75). As a result, the glycolytic pathway

produces less adenosine triphosphate (ATP), and cells suffer

apoptosis. Indeed, in a report of metabolic changes induced by

ascorbate in a colon cancer cell line with KRAS or BRAF

mutations, metabolomic analysis using LC/MS/MS showed

that upstream metabolites in the glycolytic reaction catalyzed

by NAD+ and GAPDH were accumulated, whereas downstream
frontiersin.org

https://doi.org/10.3389/fonc.2022.981547
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Maekawa et al. 10.3389/fonc.2022.981547
metabolites were reduced (74). Because of redox imbalance,

cancer cells are susceptible to ROS and the effects of ascorbic

acid (76). In conclusion, the pro-oxidant effect of high

doses of ascorbic acid induces cell death by generating ROS

in cancer cells and limiting ATP generation through the

glycolytic pathway.

Conversely, the balance of oxidative stress and antioxidant

activity plays a crucial role in tumor development and

progression. In melanoma, ROS are overproduced by

mitochondria or NADPH oxidase, which promotes tumor

development and progression through DNA damage-induced

mutation of oncogenes and signal transduction via NF-kB (77,

78). In addition, melanoma acquires metastatic potential due to

enhanced production of antioxidant enzymes such as catalase

and tolerance to oxidative stress (78, 79). Ascorbic acid has a

dual impact on melanoma, with high concentrations triggering

cell death and low amounts promoting tumor growth (80).

Despite the above reported antitumor effects of ascorbic acid

at high concentrations, the ROS-mediated antitumor effects of

ascorbic acid remain insufficient for the following reasons. First,

the Fenton reaction-mediated ROS-generating effect of ascorbic

acid, which is recognized in vitro, may be inhibited at in vivo

concentrations of Fe2+ and Fe3+ (81). Second, in vivo, iron ions

are always chelated, so the Fenton reaction may not occur (30).

Finally, the inhibitory effect of ascorbic acid on ATP synthesis,

even in the presence of PARP inhibitors in vitro, may be exerted

by ascorbic acid regardless of the reduction of NAD+ levels by

PARP (82). In conclusion, it is possible that in vitro results of the

ROS-mediated antitumor effects of ascorbic acid are not

compatible with its in vivo mode of action, suggesting that

alternative anticancer mechanisms may be involved.
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HIFa-mediated antitumor effects of
ascorbic acid as a coenzyme

HIFa, which is expressed in many tumors such as melanoma,

leukemia, and carcinomas, including colon, pancreatic, and lung

cancer (83–87), is involved in angiogenesis and regulation of the

glycolytic system, which are crucial processes for cancer growth

and progression, suggesting that HIFa may be a novel cancer

therapeutic strategy (88, 89). Ascorbic acid is a cofactor for Fe(II)-

and 2-oxoglutarate-dependent dioxygenases and has various

physiological effects, catalyzing the interaction of PHDs and

FIH-1 and degrading the HIFa activity (44–46). Ascorbic acid

concentrations in human tumor samples were negatively

connected with HIF1a expression in colon cancer, with higher

ascorbic acid concentrations associated with prolonged

recurrence-free survival (83). In human endometrial tumors,

patients with higher ascorbic acid levels in tumors had lower

protein expression of HIF1a, VEGF, and GLUT1 and lower

malignancy (90). In human pancreatic cancer cell lines, in vitro,

low ascorbic acid concentrations (25 mM) reduced HIF1a
expression and suppressed tumor growth under hypoxic

conditions (57). In a model of subcutaneous lung tumor

transplantation in rats, intraperitoneal injection of ascorbic acid

(1 g/kg) suppressed HIF1a expression in tumors and decreased

tumor growth and vascular density (91). In a mouse model of

human B cell lymphoma implanted subcutaneously, oral

treatment of ascorbic acid (5 g/L) reduced HIF1a expression

and prevented tumor development (92).

Thus, the activity of ascorbic acid as a coenzyme may

suppress HIFa expression and activity in tumor cells and may

inhibit tumor cell proliferation by inhibiting angiogenesis.
TABLE 1 The types and effects of Fe (II) and 2-oxoglutaric acid-dependent dioxygenases in which ascorbic acid acts as a cofactor.

Collagen prolyl hydroxylases (C-P4H) Proline
hydroxylases

Factor inhibiting HIF-1 DNA/histone demethylases
(TETs/JHDMs)

Effect Promotes collagen production by
stabilizing the three-dimensional
structure of procollagen through
hydroxylation of its proline.

Degrade HIFa
via

ubiquitination
by pVHL
proteins.

Inhibits the
transcriptional abilities

of HIF1a via the
interaction with CBP/

p300.

Promote DNA demethylation
and regulate epigenetic gene

expression.

Ascorbic acid
concentration
in previous
reports

100 mM (53–56) 25-1000 mM (36, 46, 57) 100-2000 mM (58–63)

Antitumor
effects

Not clear. Inhibit tumor cell proliferation by inhibiting
angiogenesis and suppressing the promotion of
glycolysis.

Reexpresses tumor suppressor genes
and suppresses oncogenes. Prevent
migration and metastasis by suppressing
EMT of tumor cells.
C-P4H, collagen prolyl-4-hydroxylases; TETs, ten-eleven translocation enzymes; JHDMs, Jumonji-domain histone demethylases; HIFa, hypoxia inducible factor a; pVHL protein, the von
Hippel-Lindau protein; CBP, CREB-binding protein; EMT, epithelial-mesenchymal transition.
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Ascorbic acid regulates
epigenomic modifications

Ascorbic acid catalyzes the reaction of DNA hydroxylase

TETs and Jumonji C domain-containing histone demethylases

(JHMDs), thereby having epigenetic antitumor effects (6, 49, 93).

TET is a member of the same family of iron- and 2-oxoglutarate-

dependent dioxygenases as PHDs, which convert 5-

methylcytosine (5mC) into 5-hydroxymethylcytosine, promoting

histone demethylation and contributing to oncogene suppression

and the re-expression of tumor suppressor genes (94). In

hematologic tumors such as acute myeloid leukemia and

myelodysplastic syndromes, loss-of-function mutations in TET2

are known to occur frequently, resulting in decreased and

hypermethylated 5hmC. In these hematologic tumors,

administration of several hundred mM ascorbic acid has a gene

reprogramming effect that restores TET function and increases

5hmC levels, suppressing cell proliferation and promoting

myeloid progenitor cell differentiation (60, 94). In malignant

melanoma, 5hmC is known to decrease as the disease

progresses, and administration of 100 mM ascorbic acid restores

5hmC via TET, induces apoptosis in tumor cells, and shows

antitumor effects (61, 62). For colon cancer, administration of 1

mM ascorbic acid has also been reported to increase 5hmC via

TET in vitro, showing antitumor effects when combined with an

inhibitor of isocitrate dehydrogenase (IDH) mutations (63).

JHDMs are histone demethylases that use Fe2 + and a-
ketoglutarate as cofactors to demethylate histones and regulate

gene expression (95). Isocitrate dehydrogenases (IDH) mutations

reduce a-ketoglutarate, a substrate for TETs and JHDMs, and

promote DNA methylation in cells with IDH mutations,

regulating gene expression that leads to carcinogenesis such as

glioma (96). Ascorbic acid is necessary for the proper activity of

JHDMs and may correct gene expression that promotes

oncogenesis by promoting histone demethylation (93, 97).

Essentially, ascorbic acid has antitumor effects by improving the

hypermethylation state observed in tumors via TETs and JHDMs,

and by reprogramming gene expression.
Ascorbic acid downregulates EMT

Ascorbic acid regulates the epithelial-mesenchymal transition

(EMT), which is important for metastatic tumor potential. In

vitro, ascorbic acid suppressed EMT in human pancreatic cancer

cells by decreasing Snail and increasing E-cadherin at

concentrations of 1-1.5 mM (98). Ascorbic acid, in conjunction

with 5-azacytidine (5-AZA), a potent DNA methyltransferase

inhibitor, regulated EMT inhibition and cell cycle progression in
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humanHCC cells in vitro by suppressing Snail expression via TET

(58). Interestingly, ascorbic acid produced two distinct reactions

in human breast cancer in vitro. A low dose (100 mM) of ascorbic

acid decreased E-cadherin and increased the mesenchymal

marker vimentin, while a high dose (2 mM) of ascorbic acid

conversely increased E-cadherin and decreased vimentin,

reversing TGF-b 1-induced EMT and, as a result, suppressing

the formation of lung metastases in vivo (59). Ascorbic acid at

concentrations of 1 mM or higher is thought to suppress EMT in

tumors, possibly by inhibiting the effect of TGF-b1 or by

regulating Snail expression by TETs.
Effects of ascorbic acid
on fibroblasts

Ascorbic acid is known to enhance collagen synthesis (99,

100) and wound healing (101), reduce UV-induced damage

(102, 103), and exhibit anti-inflammatory effects (104, 105);

however, these effects are primarily skin-confined. Recently, the

CAF cancer microenvironment has attracted considerable

attention (10, 11), although few studies have described the

effects of ascorbic acid on CAFs. Here, we describe the effects

of ascorbic acid on fibroblasts.
Ascorbic acid and dermal fibroblasts

Ascorbic acid acts as a cofactor for C-P4Hs when taken up

by human dermal fibroblasts and promotes collagen production

by stabilizing the three-dimensional structure of procollagen

through hydroxylation of its proline (4, 106, 107). In vitro, a low

concentration of ascorbic acid (100 mM) in human skin

fibroblasts increases the expression of type1,3,4 collagen and

SVCT2 at the mRNA level (53–55) as well as increasing

proliferation (56), suggesting a direct effect on fibroblasts. In

human clinical data, oral ascorbic acid intake with exercise

stimulation doubled the amino-terminal propeptide of

collagen I in the blood, indicating enhanced collagen

production (108). In addition, ascorbic acid concentrations as

low as 0.17 mM in human skin fibroblasts increase the

contractile phenotype of myofibroblasts in the presence of

TGF-b1 through enhancement of the expression of TGFb1-

responsive genes, but do not increase such a phenotype in the

absence of TGF-b1 (109). Ascorbic acid promotes collagen

production and proliferation of skin fibroblasts as a coenzyme.

Moreover, in these studies, ascorbic acid increases in collagen

synthesis and secretion occurred at concentrations as low as

several hundred mM.
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Ascorbic acid and other
fibroblast reports

According to a study on tumor stroma, intraperitoneal

administration of ascorbic acid at a high dose of 4 g/kg in an

orthotopically transplanted mouse model of human pancreatic

cancer resulted in tumor reduction, reduced metastasis, and

enhanced tumor stroma due to increased collagen secretion (98).

In the 4T1 breast cancer orthotopic model utilizing ascorbic

acid-deficient (gulonolactone oxidase knockout mouse) mice,

oral administration of ascorbic acid increased type 1 collagen to

form a capsule around the tumor, and tumor boundaries were

more clearly defined than in the control group (110). Thus,

ascorbic acid may increase collagen production in the tumor

stroma at both high and low doses. However, it is unknown

whether this effect is on tumor cells or CAFs, and further

research is needed to determine whether ascorbic acid

activates CAFs in the tumor microenvironment and increases

collagen production. In contrast, hepatic stellate cells, which are

responsible for liver fibrosis, were inhibited in vitro by low doses

of ascorbic acid (50-200 M), which decreased intracellular TGF-

1 in rat cell lines (111). In a report examining the development of

pulmonary fibrosis by paraquat treatment, intraperitoneal

administration of 150 mg/kg of ascorbic acid inhibited

pulmonary fibrosis in a mouse model by inhibiting

inflammatory cell infiltration into the bronchoalveolar lavage

fluid, suppressing apoptosis by increasing antioxidant activity in
Frontiers in Oncology 06
107
the lung, and inhibiting TGF-b in the lung (112). As a result,

ascorbic acid may inhibit fibrosis by inhibiting inflammatory cell

infiltration and reduction of TGF-b in tissues. In our study, we

also found that in vitro, human pancreatic-derived fibroblasts,

whose proliferation is promoted when co-cultured with cancer

cells, receive high doses (>1 mM) of ascorbic acid for growth

inhibition. (Figure 1) In conclusion, the effects of low and high

doses of ascorbic acid on CAFs, such as enhanced collagen

production and inhibition of fibrosis development, differ from

organ to organ or disease model to disease model and

remain unclear.
Clinical trials on ascorbic acid

In the 1970s, clinical trials involving ascorbic acid revealed

that a small sample of patients treated with intravenous and oral

ascorbic acid lived longer than a control group (113, 114). At

that time, the mechanism of the antitumor effect of ascorbic acid

efficacy remained unclear, and subsequent randomized, double-

blind, placebo-controlled trials with oral ascorbic acid failed to

demonstrate a survival benefit (115, 116). Therefore, the

antitumor effect of ascorbic acid was viewed unfavorably.

Multiple mechanisms of ascorbic acid’s antitumor effect were

subsequently proven in vitro, along with differences in ascorbic

acid blood levels between oral and intravenous administration

methods. Furthermore, the fact that blood levels of ascorbic acid
BA

FIGURE 1

Ascorbic acid reduces the proliferation of human-derived pancreatic fibroblasts (hPFs). (A) Proliferation of hPFs is increased in a co-culture with
a pancreatic cancer cell line (MIAPaCa2). ***P < 0.001 versus control, means ± SEM, n = 12. (B) Proliferation of hPFs is dose-dependently
reduced by high-dose ascorbic acid treatment. ****P < 0.0001 versus ascorbic acid 0 mM, means ± SEM, n = 6. Statistical analysis was
performed by GraphPad Prism 9 and significance was determined by Student’s t-test.
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were decreased in cancer patients (117, 118) and that the adverse

effects associated with ascorbic acid administration were

extremely low, led to the expectation that ascorbic acid could

be used for therapeutic applications. (Table 2) There were a few

scattered case reports showing tumor shrinkage with ascorbic

acid treatment (131, 153–158), and there were also reports of

antitumor effects in a small number of studies (25, 124, 159,

160). Ascorbic acid in combination with chemotherapeutic

agents has also been researched, and some reports of reduced

side effects and improved quality of life have been observed (21,

161, 162). In contrast, there have been no large-scale clinical

trials that have demonstrated an additional antitumor effect by

ascorbic acid (6, 76, 131, 163), and several ongoing clinical trials

of ascorbic acid alone or in combination with chemotherapeutic

agents for advanced colon cancer, pancreatic cancer, lung

cancer, and other malignancies are expected to provide results

in the near future (140, 148, 149, 151) (Table 2).

Discussion

Ascorbic acid is a medicine that has been widely investigated and

used for a long time; however, its beneficial effects against cancer have

not yet been proven by clinical trials. The contrasting in vivo effects of

ascorbic acid may explain this. That is, the oxidative-promoting

impact at high concentrations is detrimental to cancer cells, whereas

the antioxidant effect at low concentrations may promote cancer
Frontiers in Oncology 07
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(164). Because of this paradoxical effect, the administration route of

ascorbic acid should be carefully considered. In addition, future

research should explain the different activities of multiple dioxylases

as cofactors, such asHIFa degradation, immune cell modulation, and

epigenetic regulation of gene expression, in relation to the cancer

microenvironment (Figure 2).

Additionally, research on the effects of ascorbic acid on

CAFs implies the existence of novel therapeutic possibilities.

Since the diversity of gene expression in fibroblasts in vivo differs

among organs and pathological conditions (165), the effects of

ascorbic acid on CAFs are also expected to vary among organs

and pathological conditions. One of the potential effects of

ascorbic acid may be the inhibition of tumor-promoting CAFs.

Tumor-promoting CAFs support cancer growth by supplying

cancer cells with nutrients and growth factors (7–11). Moreover,

tumor-promoting CAFs control ECM secretion and protease

secretion, remodel the ECM, and generate invasive routes

necessary for solid tumor invasion (166, 167). Furthermore, in

tumors with a high stromal component, such as pancreatic and

breast cancer, the stromal fluid pressure in the tumor area

increases, reducing drug delivery and indicating resistance to

treatment (168, 169). Tumor-promoting CAFs promote cancer

through cross-talk functions with cancer cells, ECM remodeling

functions, and physical drug barrier functions. Ascorbic acid has

an inhibitory effect on fibroblasts through a reduction in TGF at

low doses and an inhibitory effect on cell proliferation via a
FIGURE 2

Overview of the various dose-dependent effects of ascorbic acid on cancer. ROS, reactive oxygen species; HIFa, hypoxia-inducible factor-
alpha; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; NAD+, nicotinamide adenine dinucleotide.
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TABLE 2 Clinical trials on ClinicalTrials. gov.

Studya Cancer types Phase
of

study

Design
of study

Therapy Number of
patients
(with/
without
ascorbic
acid) or
estimated
enrollment

Result or primary outcome
measures (if trials are not

reported)

Published clinical trials

NCT00954525
(25, 119)

pancreatic cancer Phase I single group
assignment

Ascorbic acid (IV 50-100 g, 3
infusions per week), gemcitabine
and erlotinib for 8 weeks per cycle

9 Seven patients were SD and 2 patients were
PD. Time to progression was 89 days
(standard deviation 77 days) and overall
survival was 182 days (standard deviation
155 days)

NCT00006021
(120, 121)

multiple myeloma Phase I/
II

single group
assignment

Ascorbic acid (IV 1 g, 5 infusions
per week) and arsenic trioxide for 5
weeks per 7 week

6 Two patients were PR, and 4 patients were
SD.

NCT00317811
(122, 123)

multiple myeloma Phase II single group
assignment

Ascorbic acid (oral 1g, days 1-4
every 2 weeks), bortezomib and
melphalan

31 Five patients were CR, 3 patients were
VCPR, 6 patients were PR, 9 patients were
MR, 6 patients were SD, and 2 patients
were PD.

NCT01049880
(124, 125)

pancreatic cancer Phase I single group
assignment

Ascorbic acid (IV 50-125 g, 2
infusions per week) and gemcitabine

9 Time to progression and overall survival
were 26 ± 7 weeks and 13 ± 2 months.
(Means ± SEM)

NCT01050621
(26, 126)

all cancer Phase I/
II

single group
assignment

Ascorbic acid (IV 1.5 g/kg, 2 or 3
infusions per week) and
chemotherapy

14 Three patients had unusually favorable
experiences that were deemed highly
unlikely to result from chemotherapy alone.

NCT01080352
(127, 128)

prostate cancer Phase II single group
assignment

Ascorbic acid (IV week 1, 5 g; week
2, 30 g; and weeks 3–12, 60 g, once
a week)

23 This treatment was not found to be
effective.

NCT01364805
(98, 129)

pancreatic cancer Phase I/
IIa

single group
assignment

Ascorbic acid (IV 75-100 g, 3
infusions per week) and gemcitabine

14 Median progression-free survival and
median overall survival were 3 months and
15.1 months.

NCT00228319
(130, 131)

ovarian cancer Phase I/
IIa

parallel
assignment,
randomized

Arm 1: carboplatin and paclitaxel
chemotherapy and ascorbic acid (IV
75-100 g, 2 infusion per week) for 6
months/Arm 2: carboplatin and
paclitaxel chemotherapy

25 (13/12) There were no statistically significant
difference in overall survival and the
median time for disease progression/relapse.

NCT02655913
(132, 133)

non-small-cell lung
cancer

Phase I/
II

parallel
assignment,
randomized

Arm 1: administration of ascorbic
acid (IV 1 g/kg, 3 infusions per
week) for total 25 times, modulated
electrohyperthermia, and supportive
care/Arm 2: supportive care

97 (49/48) Progression-free survival (3 months vs. 1.85
months, P < 0.05) and overall survival (9.4
months vs. 5.6 months, P < 0.05) were
significantly prolonged by combination
therapy compared to BSC alone.

NCT01905150
(134, 135)

pancreatic cancer Phase II parallel
assignment,
randomized

Arm 1: G-FLIP/G-FLIP-MD and
ascorbic acid (IV 75-100 g, 2
infusions per week)/Arm 2: G-FLIP/
G-FLIP-MD

26 (we could
confirm only
abstract, and
it did not
describe
details)

Ascorbic acid may avoid standard 20-40%
rates of severe toxicities.

Ongoing or unpublished clinical trials

NCT01754987
(136)

hepatocellular carcinoma Phase I/
II

parallel
assignment,
non-
randomized

Arm 1: ascorbic acid (IV 100 g, 3
infusions per week) for 16 weeks
and sorafenib/Arm 2: sorafenib only

5 (5/0) Number of participants that experience
serious adverse events. (Time Frame: 16
weeks +/- 2 weeks)

NCT03410030
(137)

pancreatic cancer Phase
Ib/II

single group
assignment

Ascorbic acid (IV ≥20 mM), nab-
paclitaxel, cisplatin, and gemcitabine

36 Disease control rate (CR+PR+SD x18
weeks) (Time Frame: approximately 63
days)

(Continued)
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TABLE 2 Continued

Studya Cancer types Phase
of

study

Design
of study

Therapy Number of
patients
(with/
without
ascorbic
acid) or
estimated
enrollment

Result or primary outcome
measures (if trials are not

reported)

Published clinical trials

NCT03964688
(138)

multiple myeloma and
lymphoma

Phase II parallel
assignment,
randomized

Arm 1: ascorbic acid (IV during
hospitalization, after oral, total 6
weeks.)/Arm 2: placebo

47 Immune recovery (Time Frame: day 14-28)

NCT02905578
(139)

pancreatic cancer Phase II parallel
assignment,
randomized

Arm 1: ascorbic acid (IV 75 g, 3
infusions per week), gemcitabine,
and nab-paclitaxel/Arm 2:
gemcitabine and nab-paclitaxel

65 Overall survival (Time Frame: Every 2
months for up to 20 years post-treatment)

NCT03146962
(140)

colorectal, lung, and
pancreatic cancer

Phase II single group
assignment

Cohort A: ascorbic acid (IV 1.25 g/
kg, 4 infusions per week) for 2-4
consecutive weeks/Cohort B:
ascorbic acid (IV 1.25 g/kg, 4
infusions per week) up to 6 months/
Cohort C: ascorbic acid (IV 1.25 g/
kg, 4 infusions per week) for 1-3
weeks and Yttrium-90
radioembolization of hepatic
metastases

78 Change in antitumor activity measured by
pathologic response based on tumor
regression grading in cohort A patients.
(Time Frame: cohort A - 8 weeks) Three-
month disease control rate will be evaluated
using RECIST v 1.1 in cohort B patients.
(Time Frame: Cohort B - 3 months)
Maximal tolerated dose of high dose
vitamin C in combination with Y90
radioembolization (Time Frame: Cohort C -
16 weeks)

NCT03418038
(141)

high grade B-cell
lymphoma with MYC
and BCL2 or BCL6
rearrangements,
recurrent diffuse large
B-cell lymphoma,
recurrent Hodgkin
lymphoma, recurrent
lymphoma, refractory
diffuse large B-cell
lymphoma, and
refractory lymphoma

Phase II parallel
assignment,
randomized

Arm A: ascorbic acid (IV) on days
1, 3, 5, 8, 10, 12, 15, 17, and 19, and
combination chemotherapy./Arm B:
placebo (normal saline) (IV) on
days 1, 3, 5, 8, 10, 12, 15, 17, and
19, and combination
chemotherapy./Arm C: ascorbic acid
(IV) on days 1, 3, 5, 8, 10, 12, 15,
17, and 19, and another
combination chemotherapy from
Arm A and B.

147 Overall response rate (Arms A and B)
(Time Frame: Up to 2 years) Overall
response rate (Arm C) (Time Frame: Up to
2 years)

NCT03433781
(142)

myelodysplastic
syndromes

Phase
Ib/IIa

single group
assignment

Ascorbic acid (continuous
intravenous infusion/24 hours 50 g,
5 infusions every 4 week)

18 Measure of serum bioavailability of ascorbic
acid in Myelodysplastic syndrome patients
with ten-eleven translocation 2 mutations
(Time Frame: 6 Months)

NCT03508726
(143)

soft tissue sarcoma Phase
Ib/II

single group
assignment

Ascorbic acid (IV 62.5 or 75 g, 3
infusions per week)

25 Tumor response as assessed by pCR rate
(Time Frame: Start of treatment up to 6
weeks after the last ascorbate infusion)

NCT03682029
(144)

myelodysplastic
syndromes, chronic
myelomonocytic
leukemia-1, and
cytopenia

– parallel
assignment,
randomized

Arm 1: ascorbic acid (oral 1000 mg,
daily) for 12 months/Arm 2:
placebo

100 Median change from baseline in variant
allele frequency at 12 months (Time Frame:
At baseline and at 12 months)

NCT03799094
(145)

non-small-cell lung
cancer

Phase I/
II

parallel
assignment,
randomized

Arm 1: ascorbic acid (IV 30 g, once
a week) and daily taking tyrosine
kinase inhibitor/Arm 2: daily taking
tyrosine kinase inhibitor

150 Progression free survival (Time Frame:
From the start date of treatment until the
date of first documented progression or
death, assessed up to 2 years)

NCT03999723
(146)

myelodysplastic
syndromes, acute
myeloid leukemia, and
chronic myelomonocytic
leukemia

Phase II parallel
assignment,
randomized

Arm 1: ascorbic acid (oral 1000 mg,
daily) and azathioprine/Arm 2:
placebo and azathioprine

196 Event-free survival (Time Frame: 0-54
months)

(Continued)
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prooxidant effect at higher doses, suggesting that it may have an

inhibitory effect on tumor-promoting CAFs.

Conversely, collagen is known to form a barrier that

physically obstructs cell migration without protease

degradation (170, 171). In a mouse model lacking -SMA-

positive fibroblasts, the tumor suppressive effects of CAFs have

been demonstrated to induce an undifferentiated tumor

phenotype and dramatically reduce survival (172). The

increase in cancer stroma, tumor shrinkage, and metastasis

inhibition effects of ascorbic acid may be attributed to the

activation of tumor suppressive fibroblasts and the formation

of collagen barriers that inhibit tumor progression.

Ascorbic acid may also affect CAFs via suppression of

HIF1a. Tumor-induced ROS-mediated “pseudo-hypoxia” in

CAFs leads to the accumulation of HIF1a and enhanced

aerobic glycolysis (173, 174). Furthermore, high expression of

HIF1a in CAFs induces protein expression in myofibroblasts in

CAFs, and inhibition or knockout of HIF1a improves their
Frontiers in Oncology 10
111
phenotype (175). Stimulation by TGF-b or PDGF also

suppresses IDH3 expression and decreases 2-oxoglutarate in

fibroblasts, resulting in HIF1a accumulation and regulating

fibroblast differentiation into CAFs (176). Ascorbic acid may

inhibit the accumulation of HIF1a by promoting the reaction of

2-oxoglutarate-dependent dioxygenases such as PHDs and FIH-

1, thereby suppressing fibroblast differentiation into CAFs. The

JAK1/STAT3 pathway is also an important pathway that

maintains actomyosin contractility and the CAF phenotype

(177), and methylation of the promoter of protein tyrosine

phosphatase non-receptor type 6 (SHP-1), which negatively

regulates the JAK/STAT pathway, allowing for sustained

signaling (167). For this epigenetic reorganization, DNA

demethylase-mediated effects such as TETs of ascorbic acid

may be exerted. However, CAFs have an enhanced glycolytic

system due to chronic hypoxia in the tumor microenvironment

and subsequent epigenetic reorganization by demethylation of

HIF1a and promoters of enzymes of the glycolytic system (178),
TABLE 2 Continued

Studya Cancer types Phase
of

study

Design
of study

Therapy Number of
patients
(with/
without
ascorbic
acid) or
estimated
enrollment

Result or primary outcome
measures (if trials are not

reported)

Published clinical trials

NCT04033107
(147)

hepatocellular cancer,
pancreatic cancer, gastric
cancer, and colorectal
cancer

Phase II single group
assignment

Ascorbic acid (IV 1.5 g/kg, D1-3,
every 2 weeks) and metformin

30 Progression-free survival (Time Frame: up
to 12 weeks)

NCT04046094
(148)

bladder cancer Phase I/
II

single group
assignment

Ascorbic acid (IV 25 g, 2 infusions
per week) for 4 weeks

21 Post treatment pathological staging (Time
Frame: 10 weeks)

NCT04516681
(149)

colorectal cancer Phase
III

parallel
assignment,
randomized

Arm 1: ascorbic acid (IV 1.5g/kg/
day, D1-3, every 2 weeks) and
FOLFOXIRI+/- bevacizumab/Arm
2: FOLFOXIRI+/- bevacizumab

400 Objective response rate (Time Frame: up to
5 years)

NCT04634227
(150)

sarcoma, soft tissue
sarcoma, unresectable
soft tissue sarcoma,
metastatic bone tumor,
and bone sarcoma

Early
Phase I

single group
assignment

Ascorbic acid (IV 20-30 mM) on
days 1, 2, 8, 9, 15 and 16 of a 28-
day cycle, and gemcitabine

20 Determine the 12 weeks progression free
survival at 12 weeks post treatment
initiation (Time Frame: 12 weeks post-
treatment)

NCT04801511
(151)

rectal cancer Phase II single group
assignment

Ascorbic acid (IV 24 g, 25 times)
with preoperative concurrent
intensity-modulated radiation
therapy and mFOLFOX6
chemotherapy, and then
preoperative mFOLFOX6
chemotherapy

60 pCR rate (Time Frame: 2 year From the
first subject underwent surgery to the last
subject underwent surgery.)

NCT02516670
(152)

prostate cancer Phase II parallel
assignment,
randomized

Arm 1: ascorbic acid (IV 25 g, 2
infusions per week) for 3 weeks and
docetaxel/Arm 2: placebo and
docetaxel

50 Terminated (insufficient clinical response
per DSMB)
aThis table describes clinical trials since 2000.
IV, intravenous injection; CR, complete response; VGPR, very good partial response; PR, partial response; SD, stable disease; PD, progressive; pCR, pathologic complete response; DSMB,
Data and Safety Monitoring Board.
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and there may be unexpected epigenetic effects of ascorbic acid

that should be clarified in the future. Ascorbic acid may have a

tumor suppressive effect by affecting CAFs and reprogramming

them into normal fibroblasts. (Figure 3) It is possible that the

antitumor effect of ascorbic acid can be improved by examining

the method of administration and adapting it to the expression

status of HIF in tumors and CAFs. Furthermore, elucidating the

effects of ascorbic acid targeting not only tumor cells but also

tumor microenvironments such as CAFs may help to reveal

further antitumor effects of ascorbic acid.
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FIGURE 3

Overview of the antitumor effects of ascorbic acid on cancer-associated fibroblasts. ROS, reactive oxygen species; HIFa, hypoxia-inducible
factor-alpha.
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29. Kaźmierczak-Barańska J, Boguszewska K, Adamus-Grabicka A, Karwowski
BT. Two faces of vitamin c-antioxidative and pro-oxidative agent. Nutrients (2020)
12:1501. doi: 10.3390/nu12051501
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treatment of both diseases
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Takashi Yokota5 and Hisataka Sabe2,6*

1Department of Lifelong Sport, School of Sports Education, Hokusho University, Ebetsu, Japan,
2Department of Molecular Biology, Hokkaido University Graduate School of Medicine,
Sapporo, Japan, 3Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu
University, Fukuoka, Japan, 4Division of Cardiovascular Medicine, Research Institute of
Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan, 5Institute of
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Accumulating clinical data have demonstrated a clear positive association

between cancer and cardiac disorders, particularly chronic heart failure

(CHF). These two diseases can be mutual drivers of each other, and hence

frequently co-occur in patients. The immune system is the core mechanism

that eliminates transformed cells from our bodies. However, immune cells

often play distinct or even conflicting roles in cancer and CHF. Moreover, CHF

alters the properties of immune cells, particularly those of regulatory T cells.

Our previous study showed that the oxidative phosphorylation capacity of

peripheral bloodmononuclear cells is impaired in CHF, leading to the increased

production of reactive oxygen species. Therefore, the co-occurrence of

cancer and CHF becomes a serious problem, affecting the treatment of both

diseases, and consequently negatively affecting patient survival rates. To date,

few methods have been identified that effectively treat both diseases at the

same time. Mitochondria activity may change in immune cells during their

activation and exhaustion, and in CHF. Mitochondria activity is also largely

affected in myocardia in CHF. We here focus on the mitochondrial

abnormalities of immune cells in cancer and CHF, and discuss possible ways

to treat cancer and CHF at the same time by targeting mitochondrial

abnormalities. Many cancer cells are inevitably produced daily in our bodies,

mostly owing to enzymatic nucleotide errors of DNA replication and repair.

Therefore, the possibility of ways to prevent cancer by preventing the onset of

heart failure will also be discussed.

KEYWORDS

immune-checkpoint inhibition, mitochondrial oxidative phosphorylation, disease
prevention, myokine, PBMC, exercise, diet, reactive oxygen species
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Introduction

Cancer and cardiac disorders, including chronic heart failure

(CHF), represent two major causes of morbidity and mortality in

developed countries (1, 2). Epidemiological studies have shown

that the risk of developing cancer in patients with CHF is

approx. four times greater than in those without CHF (3–6).

Conversely, cancer patients can be at increased risk of cardiac

disease due to deterioration of their lifestyle behaviors (e.g.,

inactivity and an unbalanced diet) (7), and also due to treatment

toxicity, as many anticancer drugs are known to cause

cardiotoxic side effects (8–11). Therefore, cancer and

cardiovascular diseases can be mutual disease drivers, and

hence co-occur frequently in patients (Figure 1). Moreover,

immune cells, particularly regulatory T (Treg) cells, play

distinct or even conflicting roles in cancer and CHF (12, 13).

Hence, the co-occurrence of cancer and cardiovascular disease is

a serious problem, affecting the treatment of both diseases, and

consequently negatively affecting survival rates (14, 15). To date,

however, treatments exist only for each disease. Mitochondria

are central to ATP production by oxidative phosphorylation

(OXPHOS) and to metabolism. To address above problems, we

here focus on the mitochondrial abnormalities of immune cells

during CHF and cancer, and discuss possible methods to treat

cancer and CHF at the same time by targeting these

mitochondrial abnormalities; and, moreover, discuss possible

ways to prevent cancer by preventing the onset of CHF.
Immune system mediates the
crosstalk between cancer and CHF

T-cell dysfunction, particularly of tumor-infiltrating

lymphocytes (TILs), is highly detrimental to antitumor

immunity and immunotherapy (16). Recently, Koelwyn et al.

reported that the adjusted relative risk of death from breast

cancer is increased by approx. 60% in the presence of a

cardiovascular event (17). They also demonstrated by using

mouse models that myocardial infarction (MI), which leads to

HF, accelerates breast cancer development (17). Molecularly, it

was shown that MI epigenetically reprogrammed Ly6Chi

monocytes, which are macrophage precursors in the bone

marrow reservoir, to an immunosuppressive state, and

increased their circulation and infiltration into tumors,

whereas their depletion abrogated tumor growth (17).

Moreover, tumors of MI mice had fewer T lymphocytes than

control mice, in which Treg cells are predominant. These

changes that occur in MI mice may be beneficial to the heart,

but they all promote tumor growth and survival (17).

Therefore, certain populations of immune cells clearly play a

central role in cross-disease communication between cancer

and CHF.
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CHF affects mitochondrial OXPHOS
of immune cells

Mitochondrial OXPHOS plays a central role in lymphocyte

activity (18). Mitochondria are also fundamental to the

development and fate determination of peripheral lymphocytes

(19, 20). Suppressed glycolysis and OXPHOS were shown to be

early drivers of CD8+ T-cell exhaustion (21). Moreover, TILs are

constantly exposed to tumor antigens, and may also experience

metabolic stress, which is thought to occur frequently in the tumor

microenvironment. A recent report demonstrated that continuous

antigen stimulation together with hypoxia impairs the

mitochondrial functions of T cells, and hence promotes terminal

T-cell exhaustion (22). Molecularly, it was shown that continuous

antigen stimulation upregulates B lymphocyte–induced

maturation protein 1, and represses peroxisome proliferator-

activated receptor gamma coactivator-1 (PGC-1), resulting in the

suppression of mitochondrial biogenesis and T-cell functions (23).

Our group has found that mitochondrial respiratory

capacity of peripheral blood mononuclear cells (PBMCs),

which are predominantly lymphocytes, declines with the

progression of CHF, with class III (i.e., moderate to severe

CHF) patients by New York Heart Association (NYHA)

criteria having 10-24% lower mitochondrial respiratory

capacity than NYHA class I/II (i.e., mild CHF) patients, in

which mitochondrial ROS production of PBMCs was

increased by 13-24% in patients with NYHA class III

compared to those with NYHA class I/II (24). Such changes

were observed even in the early stages of HF, and were closely

associated with the severity of CHF. Wemoreover found that the

capacity of complex II, but not complex I, of the mitochondrial

OXPHOS of PBMCs was specifically decreased in CHF (24). It

has been reported in monkeys that there is a close association

among the mitochondrial OXPHOS activities of circulating

monocytes, cardiac cel ls , and skeletal muscle cel ls

(25).Therefore, ROS levels in PBMCs can be a marker

indicating the onset and the severity of HF. As PBMCs mostly

consist of unprimed lymphocytes, it awaits to be clarified

whether activated lymphocytes are also affected in CHF patients.
Activating mitochondria of
immune cells improves tumor
immune therapies

Mitochondrial function of CD8+ T cells in lung cancer patients

can be a marker for determining the efficacy of anti-PD-1 immune

checkpoint inhibition therapy (26). Scharping et al. have shown

that restoration of mitochondrial activity and T-cell function by

reversing the loss of PGC-1a in tumor-specific T cells resulted in

increased antitumor immune responses (23). Yu et al.

demonstrated that administering nicotinamide riboside (NR), a
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precursor of nicotinamide adenine dinucleotide, may be able to

restore mitochondrial activity, prevent T-cell exhaustion, and

sustain the antitumor responses of T cells in tumor-bearing

mice (27). NR supplementation was moreover found to facilitate

antitumor immune activity, when used in conjunction with the

anti-PD-1 antibody (27). Vardhana et al. demonstrated that N-

acetylcysteine (NAC), which is known to increase glutathione

synthesis and neutralize ROS, reverses the metabolic defects of

exhausted T cells, and promotes their antitumor immune activity,

to act synergistically with anti-PD-L1 immunotherapy in

lymphoma and melanoma (28). Therefore, activating immune

cell mitochondria may improve the efficacy of immune checkpoint

inhibition-based tumor immunotherapy. However, it should be

noted that the administration of molecules such as NR or NAC

may also activate cancer cells to more malignant states, and it is

hence unclear whether they will be effective in the treatment of

patients. It is also well documented that the reinvigoration of T

cells, once they are deeply exhausted, might be very difficult (29).

Another way to improve the efficacy of cancer immunotherapy

would be to enhance the new production of T cells, and diversify

the T-cell receptor repertoire, as has been demonstrated with

radiation (30), but this might also be difficult in patients with CHF

because of their poor health condition.
Future perspectives

When cancer and CHF coexist, the treatment of either disease

alone is inadequate. Normalization of mitochondrial activity and
Frontiers in Oncology 03
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the function of immune cells, which are frequently impaired in

CHF, is a rational strategy to improve cancer therapeutics. For

example, identification of a molecular basis for the downregulation

of mitochondrial respiratory capacity in the PBMCs of CHF

patients, which we have shown previously (24), and if such a

mechanism occurs specifically in PBMCs but not in tumor cells,

improving mitochondrial respiratory capacity in PBMCs may be

promising for the treatment of cancer in patients who also have

CHF. Such a strategy targeting immune cells’ mitochondria may

also enhance tumor growth suppression in cancer treatment by

immune checkpoint inhibitors, although cardiac assessment with a

careful follow-up is necessary because immune checkpoint

inhibitors are known to have a cardiotoxicity with low incidence

rate (<1%) with single use of them (31). Furthermore, activation of

immune cells is beneficial for chemotherapy (32), and thus,

mitochondria-targeted treatment strategy may help

chemotherapy improve outcomes of cancer patients with or

without CHF, although robust clinical evidence is still lacking.

Lifestyle habits, such as a proper diet and daily exercise are

important preventive measures of cancer and CHF. Regarding

the molecular bases, skeletal muscles secrete various myokines,

which have positive effects on mitochondria in different organs

and tissues, and may also promote immunity (33–35). Proper

exercise by patients can also suppress tumor growth and

promote anti-tumor immunity, and may improve the

therapeutic effects of immune-checkpoint inhibitors, whereas

the types of myokines and immune cells therein involved have

been shown to differ depending on the types of cancer (36–38).

On the other hand, muscle dysfunction occurs not only in CHF
FIGURE 1

Cancer and HF mutually promote each other. An unhealthy lifestyle contributes to the development of cancer and CHF, and they are mutual
disease drivers. Anticancer drugs and regulatory T cells appear to have conflicting roles in cancer and HF. Mitochondrial function and reactive
oxygen species (ROS) production in immune cells are potential therapeutic targets in both diseases.
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(35, 39), but is also a widespread phenomenon of cancer patients

regardless of cancer type or stage (40). Therefore, the

identification of the singular point (41) before which exercise

can be effective in the treatment of cancer and CHF, along with

identification of effective exercise regimens and the related

drugs, will be the major challenge of medicine in the future.
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metabolic program in pancreatic
ductal adenocarcinoma
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Pancreatic ductal adenocarcinoma (PDAC) is the most fatal cancer in humans,

due to its difficulty of early detection and its high metastatic ability. The

occurrence of epithelial to mesenchymal transition in preinvasive pancreatic

lesions has been implicated in the early dissemination, drug resistance, and

cancer stemness of PDAC. PDAC cells also have a reprogrammed metabolism,

regulated by driver mutation-mediated pathways, a desmoplastic tumor

microenvironment (TME), and interactions with stromal cells, including

pancreatic stellate cells, fibroblasts, endothelial cells, and immune cells. Such

metabolic reprogramming and its functional metabolites lead to enhanced

mesenchymal plasticity, and creates an acidic and immunosuppressive TME,

resulting in the augmentation of protumor immunity via cancer-associated

inflammation. In this review, we summarize our recent understanding of how

PDAC cells acquire and augment mesenchymal features via metabolic and

immunological changes during tumor progression, and how mesenchymal

malignancies induce metabolic network rewiring and facilitate an immune

evasive TME. In addition, we also present our recent findings on the interesting

relevance of the small G protein ADP-ribosylation factor 6-based signaling

pathway driven by KRAS/TP53 mutations, inflammatory amplification signals

mediated by the proinflammatory cytokine interleukin 6 and RNA-binding

protein ARID5A on PDAC metabolic reprogramming and immune evasion,

and finally discuss potential therapeutic strategies for the quasi-mesenchymal

subtype of PDAC.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) originates from

epithelial cells of the exocrine pancreas, which is composed of

secretory acinar cells and ductal cells (1). PDAC patients often

have an unfavorable prognosis, and the 5-year overall survival

rate has been reported to be only 11% in the United States (2).

Only 20% of PDACs are confined to pancreatic tissue at

diagnosis, approximately 30% have metastasized to regional

lymph nodes, and more than 50% have disseminated to other

tissues, primarily the liver and lungs (3).

Four major driver mutations have been identified in PDAC,

including KRAS, TP53, CDKN2A, and SMAD4/DPC4 mutations

(4–6). Constitutive active mutations of KRAS occur in more than

90% of patients, often demonstrate oncogenic activity, and have

been shown to be involved in the initiating event of PDAC

tumorigenesis (6–9). In addition, oncogenic KRAS has been

shown to promote tumor signaling through metabolic

reprogramming (10) and stromal interactions (11) to facilitate

tumor growth. Mutations in TP53 also often result in oncogenic

activity, and are present in up to 70% of PDACs, typically

occurring at late stages of PDAC carcinogenesis, and are

frequently associated with invasive and metastatic phenotypes

(6, 12). Furthermore, TP53 mutations play an important role in

inducing platelet-derived growth factor (PDGF) receptor B

expression, which associated with reduced disease-free survival

in PDAC patients (13).

Because of the lack of effective diagnostic biomarkers for

PDAC and the absence of early symptoms, the diagnosis of

PDAC is often made at advanced, terminal stages. Current

treatment options include surgery , i f poss ible , or

chemotherapy (gemcitabine, FOLFIRINOX [fluorouracil,

leucovorin, irinotecan, and oxaliplatin], etc.), and radiation

therapy, all with limited efficiency and achieving only slightly

prolonged survival (14, 15). Immune checkpoint-based

immunotherapies have been incorporated, albeit to a limited

extent, into treatment modalities for some other cancers, but

clinical trials targeting checkpoint molecules, such as CTLA4,

PD-1/PD-L1, or their other cognate ligands have been

unsuccessful for the treatment of PDAC. So far, there have

been no successful clinical trials against PDAC, even those

targeting multiple immune checkpoints (16–18).

PDAC cells also demonstrate a poor nutritional status, high

levels of oxidative stress, inflammatory stress, extracellular

acidosis, hypoxia, and decreased angiogenesis (15, 19, 20).

Consistently, these are strong selection pressures that enable

only cells that have adapted their metabolism to these hostile

conditions to survive and proliferate. Notably, accumulating

lines of evidence suggest that these adaptations also make

PDAC cells more invasive, metastatic, stem cell-like, and

resistant to therapeutic treatments (21). Consistently, several

genome-wide gene expression profiling and genomic sequencing

approaches to elucidate the molecular landscape of PDAC have
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demonstrated that the so-called basal-like (also known as quasi-

mesenchymal-like or squamous) subtype is associated with a less

favorable prognosis than other subtypes (22–25). Importantly,

PDAC metabolite profiling and transcriptional analysis

confirmed that the quasi-mesenchymal-like subtype is

associated with the glycolytic subtype (26–28). This

reorganization of pancreatic cancer cell metabolism opens the

way for new therapeutic opportunities (20). However, the

substantial heterogeneity in gene expression and metabolic

characteristics, the plasticity of pancreatic cancer cells, and the

pathologica l changes associated with the ir l inked

physicochemical and biological changes in the tumor

microenvironment (TME) make PDAC a challenging disease

to cure (26, 27, 29).

In this review, we summarize recent studies on how gene

expression changes via intrinsic genetic mutations and

epigenetic alterations involved in the acquisition of

mesenchymal traits in PDAC cells, particularly post-

transcriptional dysregulation of expression, are linked to

metabolic reorganization associated with immunosuppressive

TME formation during the development and malignant

progression of PDAC.

Recently, PDAC has been hypothesized to be associated with

two morphologically distinct precursors, i.e., pancreatic

intraepithelial neoplasia (PanIN) and intrapapillary mucinous

neoplasia (IPMN). PanIN can progress to invasive carcinoma in

a stepwise and linear manner, which is an established

mechanism of PDAC progression (30). Multiple studies have

reported the sequential accumulation of PDAC driver gene

mutations in PanIN, with KRAS mutations being the earliest

known genetic alterations, being present in more than 90% of all

PanINs regardless of cancer grade (31). On the other hand, the

inactivation of CDKN2A is rare in low-grade PanIN, but has

been reported to occur in more than 70% of high-grade PanIN

(32). Mutations in TP53 and SMAD4 occur during the late stages

of PanIN progression, and are almost exclusively found in high-

grade PanIN and invasive PDAC. In contrast, IPMN is driven by

four driver gene mutations of pancreatic tumorigenesis similar

to PanIN, including early mutations in KRAS and late mutations

in CDKN2A, TP53, and SMAD4 (33). However, there are also

two frequently altered driver genes specific to the IPMN

pathway. Mutations in the oncogenic hotspot of GNAS are

known to occur early in IPMN tumorigenesis (33–35). In

addition, although inactivating mutations in Ring finger

protein 43 (RNF43), which encodes a ubiquitin ligase involved

in WNT signaling (often with loss of heterozygosity) are also

common in IPMNs (36), the precise timing of the occurrence of

RNF43 mutations in IPMN tumorigenesis has not yet been

clarified to date.

In addition, we present our recent findings on the intriguing

relevance of the small G protein ADP-ribosylation factor 6

(ARF6)-based signaling pathway driven by KRAS/TP53

mutations, as well as the inflammation amplifying signals
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mediated by the inflammatory cytokine interleukin 6 (IL-6) and

the RNA-binding protein AT-rich interactive domain 5a

(Arid5a) on PDAC metabolic reprogramming and immune

evasion. We will present our recent findings on the relevance

of these pathways, and finally discuss potential therapeutic

strategies for the quasi-mesenchymal subtype of PDAC.
Plasticity of adult pancreatic tissues

The pancreas is an important organ responsible for

metabolic control in the body, and is composed of two

morphologically and functionally distinct components. The

exocrine pancreas, accounting for more than 95% of total

organ mass, is composed of acinar cells, which produce

digestive enzymes, and ductal cells, which deliver these

enzymes to the intestine. On the other hand, the endocrine

islets of Langerhans consist of five different cell groups (a, b, d,
PP, and e cells) that secrete various hormones, such as insulin

and glucagon, and play crucial roles in the regulation of glucose

metabolism. The exocrine and endocrine pancreas are associated

with different diseases. Pancreatitis and pancreatic cancer,

mostly PDAC, arise from the exocrine pancreas, whereas rare

pancreatic neuroendocrine tumors arise from the endocrine

islets, and diabetes is also a result of endocrine islet

dysfunction (37). The mammalian pancreas has the capacity

for regeneration after injury even in adults, with the acinar

compartment having the highest plasticity in humans. Through

epigenetic transcriptional regulation, acinar cells can

dedifferentiate into an embryonic progenitor-like phenotype,

and commit to either insulin+ b-cells (38) or ductal cells

(known as acinar to ductal metaplasia [ADM]) (39, 40). ADM

transdifferentiation occurs in chronic pancreatitis via nuclear

factor-kB (NF-kB) activation, and is associated with pancreatic

intraepithelial neoplasia, which is a necessary step for the

generation of neoplastic precursor lesions called PanINs

(Pancreatic intraepithelial neoplasia) (41–43). Thus, it has

been speculated that the acinar cells of the exocrine pancreas

maintain plasticity to adapt to changes in the external

environment, and that their dysregulation leads to pancreatitis

and pancreatic cancer.
Heterogeneity of PDAC

To date, gene expression studies of PDAC have included

comprehensive analyses focusing on subtyping of primary tumors

obtained by surgical resection. Representative reports include the

three-group classification by Collisson et al. (classical, quasi-

mesenchymal, exocrine-like) (22), the two-group classification by

Moffitt et al. (basal-like, classical) (23), and the four-group

classification by Bailey et al. (squamous, immunogenic, pancreatic
Frontiers in Oncology 03
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progenitor, and aberrantly differentiated endocrine exocrine) (24).

Each of these classifications has been able to predict the prognosis of

patients with resected PDAC on multivariate analysis. Notably, in

about half of PDAC tumors, increased expression levels of hypoxia-

associated genes were observed by RNA sequencing (RNAseq), and

were substantially associated with basal-like subtypes, although

there was no redundancy in the identified gene sets (44).

Regarding morphology, PDACs are classified as having more or

less than 40% glandular histogenesis, and are strongly associated

with classical or basal subtypes, respectively (45). The squamous

morphology found in more than 30% of invasive tumors has also

been associated with basal-like tumors by several groups (16, 45).

However, the mechanism by which PDAC diverges into various

subtypes in the process of tumor evolution remains unclear.

Recently, it has been reported that re-categorization of PDAC

subtypes in a combined cohort of primary and metastatic tumors

using single-cell RNAseq (scRNAseq) can lead to the extension of

the two groups of basal-like and classical into five groups: “basal-like

A”, “basal-like B”, “classic A”, “classic B”, and “hybrid” (46). These

data sets, combined with cohort of patients with PDAC, enable the

broad categorization of basal-like A and basal-like B into two

disease subtypes, localized and metastatic disease, respectively.

Thus, it is suggested that PDAC proceeds as a mixture of both

expressed phenotypes, and that the behavior of the dominant

phenotype and subtype is due to plasticity in both (46). The

driver mutations for the classical and basal-like subtypes were

shown to be biallelic loss of SMAD4 with GATA6 amplification,

and biallelic loss of TP53 and/or CDKN2A with mutant KRAS allele

amplification, respectively, but none of the features were completely

exclusive (45, 46). Therefore, whereas scRNAseq analysis of

precancerous lesions to determine whether these expression

phenotypes are established in PanIN has not been performed to

date, the early acquisition of asymmetric driver gene mutations is

itself dynamic, presumably dictating PDAC behavior, suggesting

that both clonality and plasticity of PDAC cells are responsible for

the histological and biological heterogeneity.
Current diagnosis and treatment
methods of pancreatic tumors

Symptoms of PDAC and its diagnosis

Symptoms of PDAC are often vague and nonspecific, and

hence it is sometimes referred to as the ‘silent killer’; in fact, 30%

to 35% of patients are diagnosed with locally advanced stages

and 50% to 55% with metastatic stages of disease. Biomarkers for

the early detection of PDAC have not yet been identified. The

most common site of this tumor is the head of the pancreas,

which causes biliary obstruction, resulting in dark urine,

jaundice, appetite loss, fatigue, weight loss, and exocrine

pancreatic insufficiency (47).
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As early symptoms of PDAC are less frequent than those of

any other cancer, and a method for its early diagnosis has not

been established, multidisciplinary examinations are required to

detect the pancreatic tumor. The pancreas is a digestive organ

that also acts as an endocrine system, and hence has abundant

blood vessels. This feature makes PDAC easy to metastasize and

difficult to resect. There are four clinical stages in PDAC; 1) I–II

resectable (5-year survival rate, 35%–45%), 2) II–III borderline

resectable (10%–15%), 3) II–III locally advanced (10%–15%),

and 4) metastatic (< 5%). Pancreas computed tomography (CT)

angiography with chest and pelvis CT can be used for assessment

of the vascular anatomy of the pancreas. The degree of contact

between the tumor and local blood vessels is classified into three

levels; uninvolved, abutted, or encased. The difference between

abutment and encasement is the degree of circumferential

tumor-vessel involvement; existence of the tumor more than

180 degrees around the vessel implies encasement. Magnetic

resonance imaging and cholangiopancreatography are also

helpful to assess the possibility of metastasis in indeterminate

liver lesions, and are also useful for the identification of cancers

that are poorly characterized on CT imaging (47).
Conventional treatments and ongoing
notable clinical trials

Patients with nonresectable tumors are treated by

chemotherapy according to their cancer stage and Eastern

Cooperative Oncology Group (ECOG) performance status

(48). Combinations of cytotoxic chemotherapies were

developed in the previous decade and are still the basis of
Frontiers in Oncology 04
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current treatments for metastatic pancreatic cancer (Figure 1)

(49). Two multidrug regimens are now offered; FOLFIRINOX,

and gemcitabine combined with nanoparticle albumin-bound

paclitaxel (nab-paclitaxel). Gemcitabine alone is offered to

patients with ECOG performance status 2 (within the five

ECOG criteria, the groups in which patients are capable of

self-care but are unable to carry out any work activities; i.e.,

patients are up and about > 50% of their waking hours, Figure 1).

To classify patients eligible for either FOLFIRINOX or

gemcitabine plus nab-paclitaxel as first-line drugs, Knox et al.

demonstrated that a low level of GATA6, which is a

characteristic of basal-like tumors, is a useful biomarker for

selecting gemcitabine plus nab-paclitaxel in first-line therapy

(50). The PASS-01 study analyzing the usefulness of GATA6 as a

surrogate marker is now ongoing (NCT04469556).

Recent scientific advances have made incremental progress for

the treatment of specific subgroups of pancreatic tumors. The

American Society of Clinical Oncology guidelines updated in

2020 state three recommendations for pancreatic cancer; [1] early

testing of both germline and tumor cells for microsatellite

instability/mismatch repair deficiency, BRCA mutations, and

NTRK gene fusions, [2] larotrectinib or entrectinib after first-line

therapy for patients with tumors harboring NTRK fusions, and [3]

continued treatment, including chemotherapy or olaparib, for

patients with a germline BRCA1 or BRCA2 mutation who have

received first-line platinum-based chemotherapy (51).

Although oncogenic KRASmutations are observed in almost

90% of PDACs, a lack of drug-accessible pockets in the KRAS

protein has hindered the development of their inhibitors for

many years. However, X-ray crystallography identified a cryptic

pocket of KRASG12C potentially useful for drug development (52,
FIGURE 1

Conventional and updated guidelines for metastatic PDAC. Patients are classified by ECOG performance status for first-line chemotherapy. For
second-line therapy, three options are recommended in the 2020 updated guidelines. The strength of recommendation is indicated by the
number of stars.
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53). A phase 1/2 clinical trial for the clinical-grade KRASG12C

inhibitor AMG-510 (sotorasib) is currently ongoing

(NCT03600883). Other drugs targeting mutant KRAS proteins

are also being developed (54).

Clinical trials of immune checkpoint inhibitors (ICIs)

against PDAC were started with great expectations, but let

researchers down because of their limited efficacy compared

with their efficacy against other solid tumors, including

melanoma and lung cancer (16, 17). These disappointing

results were attributed to the unique characteristics of PDAC,

which are explained in the following sections. Given these facts,

ICI treatment in combination with other types of agents to

increase treatment efficacy have been widely considered for the

treatment of PDAC (54).

The concept of targeting cancer metabolism has existed for

almost a century, since Otto Warburg’s observation of aerobic

glycolysis in cancer cells and Sidney Farber’s paper describing

anti-folate-induced remission of childhood acute lymphocytic

leukemia (55, 56). Their concepts were eclipsed for some time

during which knowledge on oncogenes accumulated and

molecular-targeting therapies showed substantial effects on

patient survival. However, recent technological innovations

leading to various omics analyses have clarified the connection

between tumor-associated genes and metabolism (57).

Mitochondria, which play various roles in cancer metabolism

and malignancy, are typical targets of metabolic agents (58). The

lipoate analogue CPI-613, which inhibits pyruvate

dehydrogenase and a-ketoglutarate dehydrogenase and

therefore disrupts mitochondrial function (59), is being

evaluated in a phase III trial of metastatic PDAC

(NCT03504423) (60). In this trial, both groups (with or

without CPI-613) are treated with FOLFIRINOX, because it

has been reported that CPI-613 enhances FOLFIRINOX

cytotoxicity in some PDAC cell lines (14). Another treatment

target of PDAC is autophagy, which is activated in PDAC (61). A

clinical trial of combinatorial treatment of hydroxychloroquine,

an inhibitor of lysosomal scavenging, a MEK inhibitor, and ICIs

for PDAC patients is now ongoing (NCT04214418). As

discussed here, the paradigm of targeting not only tumor cells

but also the TME, including immune cells, could bring a bright

future to PDAC therapy.
Acquisition of mesenchymal
plasticity of PDAC cells, and clinical
implications of EMT in PDAC

TME and mesenchymal plasticity
of PDAC

A variety of stimuli, including mechanical stress, low pH,

hypoxia, innate and adaptive immune responses, changes in the
Frontiers in Oncology 05
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extracellular matrix (ECM), and treatment with antitumor drugs

can activate epithelial-mesenchymal transition (EMT) in cancer

cells (62). It has been shown in real clinical settings that EMT

plays a role in pancreatic cancer cell dissemination to distant

organs in the precancerous stage prior to and/or in parallel with

primary tumor formation in PDAC (63). The fact that almost all

patients who undergo complete surgical resection and are free of

metastases at that time eventually die within 5 years is consistent

with the early-seeding model (64–66), suggesting important

roles for EMT in PDAC progression and its contribution to

the poor outcome.

PDAC has been well documented to be a desmoplastic

stroma consisting of a dense ECM infi l trated with

heterogeneous cell populations, including immune cells,

endothelial cells, and cancer-associated fibroblasts (CAFs) (67).

The high density of the stroma limits oxygen supply to and

diffusion in the TME, leading to the creation of a hypoxic

environment. Desmoplasia is observed in the bulk of the ECM,

and contains collagen, fibronectin, laminin, and hyaluronic acid.

These ECM components are primarily produced by CAFs. CAFs

are also involved in producing various cytokines, such as

transforming growth factor b (TGF-b), IL-1, IL-6, and tumor

necrosis factor, and facilitate EMT signaling pathways (68).

PDACs are characterized by hypovascular tumors in a

hypoxic microenvironment, in which high interstitial fluid

pressure occurs owing to desmoplasia (69). However,

microvessel density (MVD) has been shown to vary

considerably among PDAC tumors with its decline being

associated with poor survival in inverse correlation with

stromal surface area (70). The hypoxic microenvironment has

broad effects on the biological behavior and malignant

phenotype of PDAC, including pathological angiogenesis and

metabolic reprogramming, synergistically contributing to PDAC

development and therapeutic resistance. Hypoxia-inducible

factors (HIFs) are essential for hypoxia-induced angiogenesis

in PDAC through transcriptional activation of various

angiogenic factors, such as vascular endothelial growth factor

(VEGF). It has been shown that under hypoxic conditions, NF-

kB activates the transcription of HIF-1a and its target gene

VEGF-A, resulting in the increased secretion of VEGF, and

enhanced angiogenesis in hypoxic pancreatic cancer cells (71).

Phosphorylated signal transducer and activator of transcription

3 (STAT3) is also a hypoxia-responsive nuclear transcription

factor that has been shown to act synergistically with HIF-1a to

regulate angiogenesis under hypoxia in pancreatic cancer cells

(72). Indeed, increased production of VEGF has been

demonstrated in human PDAC cell lines and resected PDAC

tumor tissues (73), showing that VEGF is produced under the

control of activated HIF-1a and STAT3 under conditions of

oxygen deprivation (74, 75). VEGF produced by human PDAC

cell lines has functional activity to promote endothelial cell

growth in vitro, and in large tumors in immunocompromised

mouse xenograft models (76). In addition, the anti-VEGF
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strategy was shown to markedly reduce the growth of human

PDAC cell lines orthotopically implanted into mice with a

decrease in tumor MVD (77, 78). Despite these preclinical

data suggesting that angiogenesis is important in PDAC, the

use of anti-angiogenic agents has not been clinically successful

for treating PDAC. Chronic treatment with VEGF antibodies

was found to induce hypoxia and lead to increased collagen

deposition, epithelial plasticity, and metastatic burden (79).

These results may underly the lack of success of angiogenesis

inhibitors in clinical trials of PDAC.

We previously showed that ARF6 is activated by VEGF in

endothelial cells and is required for VEGF-induced tubular

formation and migration. Furthermore, we have shown that

ARF6 signaling is involved in choroidal neovascularization,

which is a major cause of vision loss in patients with age-

associated macular degeneration. We also found that ARF6

signaling is involved in VE-cadherin recycling, and may be

involved in the sprouting process of angiogenesis associated

with VE-cadherin-based cell-cell junctions as well as cell

migration/tubular network formation activities (80). In

addition, we found that high expression of the Arf6 effector

AMAP1 is associated with the fibrosis of pancreatic cancer (81).

Treatment strategies for PDAC targeting angiogenesis have

been pointed out as a way to normalize the tumor vasculature, such

as strategies that prune immature and inefficient blood vessels,

eliminate unproductive vasculature, and enable the reliable delivery

of intravenous cancer drugs (82, 83). The inhibition of ARF6

signaling, which is important for pathological angiogenesis and

fibrosis, may contribute to therapeutic strategies for PDAC.

Recent analyses have redefined the view that cellular senescence

is the onset of the tissue remodeling that operates during normal

embryonic development and tissue damage. To this end, senescent

cells cease their own proliferation and recruit phagocytotic immune

cells to promote tissue regeneration (84). On the other hand, it is

well known that senescence is associated with cancer; in PDAC,

senescence appears to produce tumor suppressive effects at the

earliest stages. However, some lines of evidence indicate that

senescent cells in the TME can produce a senescence-associated

secretory phenotype (SASP), mediated by NF-kB and CCAAT/

enhancer-binding protein-b, including the secretion of

proinflammatory cytokines (IL-6 and IL-8), chemokines

(monocyte chemoattractant proteins [MCPs], macrophage

inflammatory proteins [MIPs], TGFb, and granulocyte–

macrophage colony-stimulating factor [GM-CSF]), and proteases

(84), and play protumorigenic roles during tumor progression (85).

SASPs have been shown to induce cell plasticity by stimulating

cancer cell proliferation, motility, and invasion, and by generating

an inflammatory TME (86). Thus, in the PDACmicroenvironment,

SASP may be involved in promoting EMT.
Frontiers in Oncology 06
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Role of EMT in PDAC metastasis

An important aspect of the EMT program in cancer biology

may be its involvement in not only facilitating cellular motility

and invasiveness, but also in orchestrating the cancer stem cell

state (CSCs) via epithelial-mesenchymal plasticity (87–89).

Mechanistically, intrinsic oncogenic mutations, epigenetic gene

expression conversion, and extrinsic inflammatory signals may

enable highly epithelial and highly mesenchymal non-CSCs to

reversibly transition to an intermediate quasi-mesenchymal

state; in the case of epithelial cells, the transition is

accompanied by EMT, whereas in the case of highly

mesenchymal cells, it is induced by mesenchymal-epithelial

transition. Presumably, similar responses might occur in

normal epithelial tissue when stem cells are lost. Thus, in the

invasion-metastatic cascade, the EMT program is thought to

enable the seeding of cells from the primary tumor into the

parenchymal layer of distant tissues, and subsequently confers

stemness, giving the disseminated tumor cells the ability to form

metastatic colonies (87–89).

Although it is clear that EMT is involved in tumor

metastasis, the exact function of EMT in cancer is still being

debated. Indeed, some studies on the effects of the EMT-

transcription factors (TFs) SNAIL and TWIST in pancreatic

cancer have questioned the role of EMT in metastasis. A study

using PDAC model KPC (Pdx1-cre; LSL-KrasG12D;Tp53R172H/+)

mice, in which TWIST and SNAIL were independently

conditionally knocked out, resulting in Pdx1-cre; LSL-

KrasG12D;Tp53R172H/+;Twist1flox/flox and Pdx1-cre; LSL-

KrasG12D;P53R172H/+;Snai1flox/flox mice, respectively, found that

although EMT was suppressed, the deficiency of SNAIL or

TWIST did not affect tumor progression, regional invasion, or

dissemination. Thus, it has been argued that EMT is not required

for invasive and metastatic activities of cancers. On the other

hand, mice bearing abrogation of EMT-transcription factor

(EMT-TF) have been shown to be correlated with

chemosensitivity to gemcitabine, indicating EMT induces

chemotherapy resistance in pancreatic cancer (90). Similar

results have been reported in breast cancer models (91).

However, other groups have shown using the same KPC

mouse PDAC model that ZEB1 conditional knockout mice

(Pdx1-cre; LSL-KrasG12D;Tp53R172H/+;Zeb1flox/flox) have

significantly reduced PanIN and PDAC formation, and

invasion and metastasis, thus clearly demonstrating a crucial

role for the EMT-TF ZEB1 in the PDAC progression (92). Taken

together, these studies indicate a trend toward the differential

functions of EMT-TF; SNAIL and TWIST do not appear to be

necessary, whereas ZEB1 conversely appears to be an important

factor that is not compensated by other EMT-TFs.
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Metabolic characteristics of PDAC

Glucose metabolism

Glucose is the principal carbon and energy source for the

growth and maintenance of mammalian cells. Glucose

catabolism occurs by two metabolic pathways; glycolysis and

the tricarboxylic acid (TCA) cycle. These pathways not only fuel

adenosine triphosphate (ATP) production, but also produce

carbon intermediates that support macromolecular

biosynthesis. One contribution of oncogenic KRAS mutations

to the oncogenesis and progression of pancreatic cancer is

oncogenic KRAS mutation-driven metabolic rewiring.

Transcriptome and metabolomic analyses indicated that the

activity of oncogenic KRAS mutations promoted the

upregulation of key metabolic enzymes involved in glucose

metabolism, including glycolysis, hexosamine biosynthesis

leading to the synthesis of uridine diphosphate N-acetyl-

glucosamine, which is a significant substrate for protein

glycosylation, and the pentose phosphate pathway producing

NADPH and ribose 5-phosphate, which are essential for nucleic
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acid synthesis (10). This analysis also indicated that oncogenic

KRAS mutations enhance glucose consumption in PDAC

through the increase in transcription of the glucose transporter

1 (GLUT1, also known as solute carrier family 2 member 1

[SLC2A1]) the enzymes hexokinase 1 and hexokinase 2 (HK1

and HK2), and lactate dehydrogenase A (LDHA) (Figure 2).

Thus, KRAS contributes to the unregulated growth of pancreatic

cancer cells, and directly targeting metabolic pathways as a

therapeutic target is a major challenge (93).

We previously showed that mutant KRAS, which is a major

driver gene in PDAC cells, acts in a eukaryotic translation

initiation factor 4A (eIF4A)-dependent manner to promote the

translation of ARF6 mRNA, which is a member of the ARF

family of GTPases with a quadruplex structure in the 5′-
untranslated region, and upregulates ARF6 protein expression

(94). Recently, it was also reported that silencing of ARF6

inhibits the Warburg effect, which is associated with aerobic

glycolytic processes, in KRAS-mutated PDAC cells (95). The

oncogene c-Myc is a transcription factor that regulates aerobic

glycolysis through the upregulation of many key glycolytic

genes, such as GLUT1, HK2, and LDHA (96, 97), and is
FIGURE 2

Metabolic characteristics of PDAC associated with the ARF6-based pathway. The tumor microenvironment (TME) in PDAC is characterized by
low vascular density, resulting in severe hypoxia and low nutrient levels. PDAC is also characterized by a dense desmoplastic stroma. In
mammals, glucose and glutamine are two of the most abundant nutrients that support cell survival and growth. Oncogenic KRAS mutations
induce metabolic reprogramming by triggering the uptake of glucose, leading to increased glycolytic flux, carbon donation to the pentose
phosphate pathway and hexosamine biosynthetic pathway, and lactate production driving acidic TME. Glutamine is also used as an energy
substrate in the TCA cycle, and maintains the intracellular redox state of PDAC cells in an oncogenic KRAS-driven manner. Double mutations of
KRAS/p53 cooperatively promote the expression and activation of the ARF6-AMAP1 pathway, and ARF6 is involved in maintaining the Warburg
effect to meet the abnormal nutritional and energy demands of PDAC cells, as well as those required for autophogosome and macropinosome
formation. Mutant p53 promotes ARF6 activation via the enhanced expression of mevalonate pathway enzymes, and also intracellular trafficking
of ARF6 mediated by geranylgeranylation of RAB11b. TCA, tricarboxylic acid; HK-1/2, hexokinase-1/2; G6P, glucose 6-phosphate; LDH-A, lactate
dehydrogenase-A; MCT, monocarboxylate transporter; CA, carbonic anhydrase; Ac-CoA, Acetyl-CoA; ACLY, ATP-citrate lyase; FASN, fatty acid
synthase; GLS, glutaminase; GLUD, glutamine dehydrogenase; BCAA, branched-chain amino acid; BCAT, branched-chain amino acid
transaminase 1; IDO, indoleamine 2,3-dioxygenase.
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associated with the transcriptional activation of ARF6. ARF6 has

also been shown to be associated with the regulation of the

expression of GLUT1, LDHA, and HK2, as well as c-Myc (95).

Thus, it is possible that ARF6 is involved in the regulation of

aerobic glycolysis via the regulation of c-Myc in PDACs.

Interestingly, in several cancers, including PDAC, the

upregulation of GLUT1 in cancer cells correlates with the low

infiltration rate of cytotoxic CD8+ T cells (98–100). This suggests

that tumor cells successfully compete for glucose, suppressing

antitumor immunity while simultaneously maintaining high

metabolic and proliferative rates (101, 102). Importantly, this

also indicates that antitumor immune cells are unable to obtain

sufficient energy, thus impairing their function.

As solid tumors progress, large areas of the tumor often

become deprived of oxygen, which interferes with ability of the

immune system to combat the tumor (103). PDAC is

characterized by a very hypoxic TME, and it has been noted

that the high malignancy and poor curative efficacy of PDAC are

mostly due to the hypoxic TME (103, 104). PDAC also shows

increased accumulation of stromal tissue, i.e., desmoplasia,

which may collapse blood vessels, and subsequently impede

perfusion and promote maintenance of the hypoxic TME.

Hypoxia and desmoplasia induce the expression of HIF-1a
and its stabilization (105). HIF-1a is a key regulator of cellular

responses to changes in oxygen concentration, and supports

tumor cell adaptation to hypoxia in an oxygen-deprived TME.

Under hypoxic conditions (usually below 3% to 5% O2), the

HIF-1a subunit stabilizes and forms a dimer with the b-subunit
aryl hydrocarbon receptor nuclear translocator (ARNT), which

translocates to the nucleus to promote O2-regulated gene

expression. HIF-1a is considered to play a crucial role in of

metabolic reprogramming (106). Several studies have confirmed

that HIF-1ameets the metabolic needs of pancreatic cancer cells

by increasing the expression of glycolysis-associated enzymes

and the production of lactate (107–110). Indeed, the stabilization

of HIF-1a has been reported to induce GLUT1 expression in a

HIF-1a -dependent manner, increasing cellular glucose uptake

and supporting aerobic glycolysis in cancer cells (111, 112). HIF-

1a is also known to enhance the expression of LDHA (113, 114)

and monocarboxylate transporter 4 (MCT4; encoded by

SLC16A3) (115). LDHA reduces the dependence on oxygen-

dependent mitochondrial oxidative phosphorylation (OXPHOS)

by converting pyruvate to lactate, and the cell preferentially uses

oxygen-independent glycolytic pathways to maintain sufficient

ATP production to meet bioenergetic requirements, whereas

MCT4 removes lactate from the cell by transporting it out of

cells. Thus, HIF-1a drives the conversion from oxidative to

glycolytic metabolism during hypoxia, which is not only

beneficial for bioenergetic homeostasis, but may also promote

tumor survival and growth.

Interestingly, it has been shown that the stabilization of HIF-

1a by di-methyl-oxaloylglycine treatment markedly increases

the level of ARF6 mRNA (116), and ARF6 activity is significantly
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promoted under hypoxia (117). As mentioned previously, ARF6

is also associated with the enhanced expression of genes involved

in glycolytic metabolism in malignant pancreatic cancer with

KRAS mutations, so hypoxia may potently promote glycolytic

metabolism through the induction of HIF-1a and ARF6, thereby

regulating the adaptive responses to a hypoxic environment.

In addition to glucose deprivation via tumor cells in the TME,

higher rates of aerobic glycolysis in tumor cells may promote the

production of lactic acid, which in turn increases the acidity of the

TME. Excess lactate produced in tumor cells can also suppress

CD8+ T and NK cell activation, and enhance the function of

immunosuppressive cells, such as myeloid subsets, and M2-

polarized macrophages to an immunosuppressive phenotype

(118, 119). This makes it difficult for immune cells to survive, but

tumor cells can often adapt, survive, and multiply despite these

harsh conditions. Tumor cells can respond to extracellular acidic

pH conditions and regulate cellular acid homeostasis by altering the

expression of proteins associated with pH regulation, such as

monocarboxylate transporters and carbonic anhydrase (CA)

(120). In in vitro models of melanoma, exposure to lactic acidosis

has been shown to induce the EMT phenotype (121). In pancreatic

cancer cells, lactate enhances the expression of IL-8 and contributes

to EMT andmetastasis (122–124), and tumor cells can use lactate as

an alternative energy fuel to promote their proliferation (125).

Indeed, high levels of lactate in PDAC have been shown to correlate

with poor patient prognosis (126). Therefore, it is strongly suggested

that the acidic environment in tumor tissue is involved in the

acquisition of mesenchymal traits, and the augmentation of an

immunosuppressive PDAC TME.
Lipid metabolism

Lipids are major components of biological molecules, and

play important roles in various processes. Lipids are composed

of thousands of different molecules, including phospholipids,

sphingolipids, fatty acids, cholesterol, cholesteryl esters, and

triglycerides. Such lipids are implicated in a variety of cellular

processes, and are important components of biological

membranes (127–132). Lipid uptake, accumulation, and

lipogenesis are increased in various cancers, including

pancreatic cancer, and provide energy for rapid tumor growth.

In the early step of de novo lipid synthesis, ATP-citrate lyase

(ACLY) catalyzes the conversion of citrate to acetyl-CoA, which

is then converted to malonyl-CoA by acetyl-CoA carboxylase.

The acyl groups of malonyl-CoA and acetyl-CoA bind to the

acyl-carrier protein domain of fatty acid synthase (FASN) in an

NADPH-dependent way to produce long-chain saturated fatty

acid (133) (Figure 2).

Expression levels of lipogenic enzymes, including ACLY, are

known to be often upregulated in PDAC (134, 135). Inhibition of

ACLY activity suppresses PDAC cell growth in xenograft tumor

models (136). Furthermore, PDAC patients, highly expressing
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FASN, have been shown to have shorter overall survival than

those expressing low levels of FASN (137). Overexpression of the

FASN gene may be correlated with resistance to radiotherapy

and gemcitabine in pancreatic cancer patients (138), and

inhibition of FASN results in high cytotoxicity of this drug. As

higher lipogenic activity has been shown in PDAC cells

compared with normal cells, genetic and pharmacological

inhibition of FASN and other lipogenic enzymes appears to be

a promising therapeutic strategy.

The mevalonate pathway (MVP) is essential for cellular lipid

metabolism, including cholesterol biosynthesis and the post-

translational prenylation of proteins (139). The rate-limiting

enzyme in this pathway, 3-hydroxyl-3-methylglutaryl-CoA

(HMG-CoA) reductase, has been considered as a prominent

target for MVP inhibition, and is increased in a KRAS-driven

PDAC mouse model (125, 140). Statins, which are reductase

inhibitors, are used for the treatment of hypercholesterolemia

(141). The anticancer effects of statins have also been analyzed in

vitro in various cancer cell lines. Several studies have reported that

simvastatin inhibits cancer cell proliferation by promoting

apoptosis and reducing cell cycle progression via several kinds

of signaling pathways, including mitochondrial apoptotic

signaling pathways and the Rho signaling pathway involved in

cell cycle arrest (142, 143). In addition, lipophilic statins

(lovastatin, simvastatin, etc.) have been shown to be potent

vaccine adjuvants via modulation of post-translational protein

prenylation. Mechanistically, statins inhibit geranylgeranylation of

the small GTPase Rab5, such as in antigen-presenting cells,

causing inhibition of endosome maturation, sustained antigen

retention, reinforced antigen presentation, and activation of T

cells (144). Therefore, the MVP pathway is a potential target for

cancer immunotherapy.

We have previously shown characteristic features that

predict responders of MVP-based cancer treatment. We found

that the Arf-GTPase ARF6, and its downstream effector AMAP1

(also called ASAP1/DDEF1), are often overexpressed in various

types of cancer, including PDAC, and closely associated with

poor patient survival (145–149). Interestingly, we found that the

MVP is crucial for ARF6 activation in breast cancer cells. In this

process, the MVP is essential for geranylgeranylation of

RAB11b, which promotes intracellular trafficking of ARF6 to

the plasma membrane where it is activated by RTKs.

Furthermore, consistent with reports that gain-of-function

mutants of p53 activate the MVP, it is clear that mutant p53 is

essential for ARF6 activation (148, 150). Our in vitro

experiments showed that the presence of statins improved the

sensitivities of breast cancer cells to various drugs. In contrast,

inhibition of MVP is ineffective when cancer cells do not

overexpress components of the ARF6-based pathway. We have

also shown that statins inhibit not only ARF6 activity and

invasive potential but also recycling of the immune checkpoint

molecule PD-L1 to the plasma membrane in pancreatic cancer

cells (94). The chemopreventive effects of statins have been
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shown in pancreatic cancer cell lines (151–153) and pancreatic

cancer model mice (154). Thus, the MVP may be crucial for

promoting cancer cell invasion, metastasis, drug resistance, and

PD-L1 recycling through the overexpressed ARF6 pathway

activated by RTKs.
Glutamine metabolism

Glutamine addiction is common in various cancers,

inc luding PDAC (155–160) . Glutamine may be a

mitochondrial substrate for synthesis of macromolecules in

cancer cells by supplying carbon to fuel the TCA cycle, and is

a major nitrogen donor for the production of nucleotides and

nonessential amino acids (155). In mitochondria, glutamine has

essential roles in the synthesis of energy in the form of ATP

through the TCA cycle and the OXPHOS process.

Mitochondrial metabolism has been demonstrated to be

important for tumor growth in several types of cancer,

including PDAC (161, 162). Glutamine is the most abundant

nonessential amino acid in the blood and plays various roles in

cell metabolism (158, 163). Glutamine is first catalyzed to

glutamate by the enzyme glutaminase. Glutamate is then

converted to a-ketoglutarate through a deamination reaction

catalyzed by glutamate dehydrogenase in the mitochondria.

Subsequently, a-ketoglutarate enters the TCA cycle to supply

metabolic intermediates, such as citrate and malate, producing

NADH and FADH2 to generate ATP. Malate is converted to

pyruvate leading to NADPH production, and then pyruvate is in

turn transformed to lactate. Glutamine can also produce

subs tan t i a l amount s o f the co fac tor NADPH by

glutaminolysis, in which malate is converted to pyruvate by

malic enzyme. Glutamine-derived a-ketoglutarate is reductively
carboxylated by mitochondrial isocitrate dehydrogenase 2

(IDH2) to isocitrate, which can then be isomerized to citrate.

Citrate produced in the mitochondrial matrix is transported to

the cytoplasm and then converted to isocitrate by aconitase in a

reversible reaction. Cytosolic isocitrate is metabolized to a-
ketoglutarate through cytosolic isoform of IDH1, which can

also produce NADPH, which may be used for lipid synthesis.

PDAC cells maintain cellular redox homeostasis, which is

necessary for cell growth, by metabolizing glutamine in

response to NADPH (157).

Circulating glutamine can be taken up via transporters, such

as alanine-serine-cysteine transporter 2 (ASCT2, also known as

SLC1A5), and can be exported or imported via large neutral

amino acid transporter 1 (LAT1, also known as SLC7A5), in

exchange for branched-chain amino acids (BCAAs; leucine,

isoleucine, and valine). BCAAs are broken down by branched-

chain amino acid transaminase 1 (BCAT1) on the cytosolic side

and BCAT2 on the mitochondrial side to produce branched-

chain a-keto acid and glutamate (Figure 2). Early-stage

pancreatic cancer driven by mutant KRAS has been shown to
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increase plasma BCAA levels (164). BCAT2, but not BCAT1, has

been shown to be highly expressed in PanIN and PDAC ductal

cells. Thus, it has been noted that the BCAA-BCAT2 axis driven

by KRAS is important for PDAC development (165). In

addition, some amino acid transporters (ASCT2 and LAT1)

are overexpressed in pancreatic cancer (166), and associated

with poor prognosis. PDAC cells are known to be highly

dependent upon glutamine for tumor growth (157, 167).

However, whereas the treatment of BPTES, a glutaminase

inhibitor to target the glutamine metabolism, significantly

inhibited PDAC proliferation, it did not affect PDAC cell

death. Glutamine deprivation has been reported to activate

macropinocytosis-associated autophagy and maintain proper

intracellular glutamine levels by regulating glutamine

metabolism. Furthermore, both glutamine deprivation and

autophagy inhibition have been shown to robustly activate

apoptotic cell death (168). Glutamine plays various roles in

PDAC metabolic processes, suggesting that therapeutic

strategies targeting the acquisition and utilization of this

amino acid may be promising. However, glutamine

deprivation was shown to promote the EMT signature in vitro

and in vivo through an increase in the EMT master regulator

Slug via ERK signaling and ATF4 activation (169). Thus,

evaluating the effects of the simultaneous inhibition of distinct

aspects of glutamine metabolism, such as the induction of

autophagy and EMT on PDAC growth and metastasis may

lead to new therapeutic approaches.

Recently, comprehensive analysis of metabolic enzymes by

large-scale targeted proteomics demonstrated an enhanced

metabolic system in malignant cancers to utilize glutamine-

derived nitrogen for DNA synthesis (a shift in glutamine

nitrogen metabolism) (170). In malignant cancer cells, the

expression level of the metabolic enzyme phosphoribosyl

pyrophosphate amidotransferase (PPAT), which transfers the

nitrogen from glutamine to nucleic acid precursors, was

markedly increased, whereas the metabolic enzyme responsible

for glutaminolysis, namely, glutaminase (GLS) was decreased,

indicating a shift toward nucleotide biosynthesis. In addition,

meta-analyses of human cancers have shown that PPAT is most

strongly associated with malignancy among the metabolic

enzymes, particularly prominent in neuroendocrine cancers,

including small cell lung cancer (SCLC) (170). Interestingly,

the hazard ratio for PPAT is high in pancreatic cancer, whereas

GLS expression does not significantly correlate with cancer

prognosis. In PDAC mouse models, GLS inhibition does not

demonstrate any anti-tumor effects in vivo, indicating an

adaptive metabolic network that sustains proliferation (171).

In cancers in which glutamine supply from the circulation is

limited, such as PDAC, glutamine synthesis mediated by

glutamate ammonia ligase, an enzyme involved in de novo

glutamine synthesis, and the associated nitrogen assimilation

and transfer to nitrogen-containing macromolecules, such as

nucleotides, has been shown to be important (172). Thus, shifts
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in glutamine nitrogen metabolism that promote nucleotide

biosynthesis via the increased expression of PPAT while

suppressing the GLS response, as demonstrated in SCLC, are

important in cancer malignancy, and may be a potential

therapeutic target for pancreatic cancer in a glutamine-

limited environment.
Autophagy/micropinocytosis

PDACs also rely upon metabolic pathways, such as

autophagy and macropinocytosis, to survive and maintain

metabolic homeostasis in harsh environments, such as those

with low nutrient levels, hypoxia, desmoplasia, and high

interstitial pressure. Autophagy is an indispensable

intracellular pathway that provides intracellular energy by

degrading unnecessary organelles and macromolecules in

response to stimuli, such as starvation and accumulation of

unfolded proteins (173). The molecular mechanism of

autophagy is strictly regulated by more than 30 autophagy-

related (ATG) proteins that are responsible for the dynamic

autophagy pathways, and can be divided into the following series

of steps: phagophore (isolation membrane) growth, closed

double-membrane vesicle (autophagosome) formation,

autophagosome-lysosome fusion, degradation within the

lysosome, and recycling of the degradation products.

One of the characteristic features of PDAC is known to be

increased autophagy. This is because owing to the tumor

microenvironment of PDAC, in which the low vascular

density results in severe hypoxia and limited nutrient

utilization (61, 174), PDAC cells must rewire their metabolism

to sustain proliferation. Indeed, the inhibition of autophagy by

the genetic or pharmacological inhibitor chloroquine (an

inhibitor of lysosomal acidification) resulted in mitochondrial

metabolic abnormalities leading to decreased OXPHOS, reduced

proliferation in vitro, and inhibited tumor growth in vivo (61).

Furthermore, the significance of autophagy in PDAC

tumorigenesis was confirmed by crossing a conditional

knockout mouse of the autophagy essential gene Atg5 with a

PDAC mouse model (175, 176). This autophagy inhibition in

mouse studies may exert anti-tumor effects by cooperating with

the TME (177). Indeed, the crosstalk between stromal cells and

tumor cells in PDAC is important, indicating that autophagy is

required for stromal cells to secrete alanine, which is then taken

up by tumor cells to support their growth (178). In a study using

a PDAC mouse model expressing a tetracycline-inducible

dominant-negative ATG4B protein which can reversibly and

acutely inhibit autophagy in fully formed tumors, the inhibition

of autophagy was shown to suppress tumor growth via intrinsic

as well as extrinsic factors in tumor cells (61). This study also

showed that the effect of inhibiting autophagy in the tumor itself

on tumor regression was partially mediated by macrophages,

indicating that induction of the immune system via autophagy
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inhibition is also important for the anti-tumor effects. This may

mean that there is autophagy-dependent metabolic crosstalk

between tumor cells and the stroma, and hence autophagy is

necessary to support the metabolism, tumorigenesis, and

survival under harsh conditions of tumors.

PDAC does not respond well to ICIs, such as anti-PD1 and

anti-CTL4A antibodies, and typical ly has a highly

immunosuppressive TME that is characterized by marked

infiltration of myeloid-derived suppressor cells (MDSCs) and

lack of active cytotoxic CD8+ T cells (179–182). Resistance to ICI

therapy is known to be associated with major histocompatibility

complex class I (MHC-I), which is essential for endogenous

antigen presentation by cancer cells (183–185). PDAC cells have

been shown to have reduced expression of MHC-I molecules on

the cell surface, and instead localize predominantly to

autophagosomes and lysosomes (186, 187). Indeed, it has been

demonstrated in human and mouse PDAC that MHC-I is

degraded by an autophagy-dependent mechanism to induce

immune evasion (188). In addition, autophagy inhibition

increased the surface levels of MHC-I, leading to the

promotion of antigen presentation, enhanced anti-tumor

activity of T-cell responses, and suppression of tumor growth

in orthotopically transplanted syngeneic mice. Systemic

autophagy inhibition by chloroquine, as well as the tumor-

specific inhibition of autophagy, in combination with ICIs,

showed synergistic effects. These findings provide a molecular

mechanism by which autophagy promotes immune evasion, and

provide a rationale for further research toward the development

of new therapies targeting the autophagy-lysosome system

in PDAC.

When glucose is deprived in PDAC cells, large amounts of

reactive oxygen species are produced to activate autophagy, and

provide the nutrients necessary for growth (189). On the other

hand, glutamine starvation increases the degree of

macropinocytosis in PDAC cells, and hence glutamine is

important for regulating the degree of macropinocytosis in

PDAC cells (190). Macropinocytosis is a process involving

membrane ruffles, which are used to internalize extracellular

materials, such as soluble molecules, nutrients, and antigens.

After the nonspecific uptake of extracellular fluids by endocytic

processes, the formation of vesicular structures, named

macropinosomes, which contain the internalized proteins fuse

with lysosomes, resulting in proteolytic degradation. The free

amino acids produced by this process support the metabolic

requirements of tumor cells (191). Thus, macropinocytosis is a

nonselective endocytotic program capable of taking up content

from extracellular fluid in a nutrient recycling and scavenging

pathway that has been recognized as a key mechanism

supporting pancreatic cancer growth (192).

PDAC cells expressing oncogenic KRAS mutation exhibited

high enhancements of basal macropinocytosis consuming

extracellular proteins for rapid tumor proliferation, which is

closely linked to autophagy (174, 193–198). It has been shown
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that autophagy is required for the micropinocytosis-mediated

degradation of extracellular proteins, and autophagy plays an

important role in the breakdown of macromolecules internalized

by macropinocytosis, to provide amino acids, particularly

glutamine, in PDAC cells (168). The dynamic balance between

glutamine metabolism and macropinocytosis-associated

autophagy may ensure PDAC cell growth. Although these

studies suggest that macropinocytosis is a potential therapeutic

target for PDAC, understanding how macropinocytosis and

autophagy cooperate is crucial for establishing treatments

for PDAC.

ARF6 has been shown to regulate autophagy and colocalize

with proteins mediating the initiation of autophagosome

formation, i.e., the formation of pre-autophagosomal

structures and phagophores (199, 200). Mechanistically,

activation of the lipid-modifying enzyme PIP5K by ARF6 may

contribute to autophagy, as PIP2 produced by PIP5K affects

membrane trafficking for phagosome formation, by regulating

plasma membrane endocytosis. Interestingly, ARF6 has been

shown to be required for macropinocytosis in HT180 cells, a

human fibrosarcoma cell line (201). In PDAC expressing high

levels of ARF6, ARF6 may be a potential target for autophagy

and micropinocytosis, and combination therapy, such as ICIs,

may lead to a new treatment for PDAC. We also demonstrated

that combination therapy with the eIF4A inhibitor silvestrol,

which inhibits ARF6 protein production, and anti-PD-1

antibodies improves the efficacy of anti-PD-1 therapy in

PDAC (202). However, it remains unclear whether ARF6

inhibition actually affects therapeutic efficacy by inhibiting

autophagy and macropinocytosis.
Other types of metabolism

Amino acid availability in the TME, particularly arginine

and tryptophan, is an important determinant of antitumor

immunity. Increased arginine levels play an important role in

T-cell activation by inducing metabolic changes, including a

shift from glycolysis to OXPHOS, and the promotion of memory

T-cell differentiation (203). Indoleamine 2,3-dioxygenase (IDO),

which catalyzes the conversion of tryptophan to kynurenine, is

often overexpressed in PDAC (204). Tryptophan depletion and

kynurenine production in TME promote the establishment of a

suppressive immune environment, and attenuate anti-tumor T-

cell responses (205).

Extracellular ATP levels may be rapidly and robustly increased

by hypoxia (206, 207). ATP, which has immunostimulatory

properties on its own, may be ultimately converted to the

nucleoside adenosine through stepwise process. Canonically, ATP

is first catalyzed to AMP via the ectonucleotidase CD39. AMP is

then dephosphorylated by CD73 and degraded into adenosine.

Adenosine can then act on purinergic receptors, such as A1, A2a,

A2b, and A3 (208), and regulates various aspects of physiology and
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pathophysiology (209, 210). A2a receptors and A2b receptors are

primarily responsible for the downstream signaling of

immunosuppression associated with intracellular cAMP

accumulation (211). In PDAC, high expression of CD73 was

demonstrated to be associated with an immunosuppressive TME

and poor survival, as well as decreased CD4+, CD8+, and CD21+

TILs (212). Therefore, CD73 may also play a significant role in

regulation of the immunosuppressive microenvironment of PDACs

and promote their tumor progression.
Immunosuppressive TME in PDACs

The emergence of cancer immunotherapy, particularly ICIs,

has offered hope tomany patients with tumors that are not curable

by conventional therapies. However, PDAC is known to be less

sensitive to ICIs than other solid tumors, such as melanoma and

lung adenocarcinoma. On the other hand, in PDAC patients,

neoantigen quality has been shown to be associated with overall

survival, suggesting that PDAC is associated with acquired

immunity (213). In particular, the preclinical success of ICI

therapy in PDAC patients with microsatellite instability (MSI

high) and mismatch repair defects, as well as the therapeutic

potential of autologous T-cell-based therapy in PDAC patients,

holds promise for adaptive immune-based treatment strategies for

PDAC (214, 215). At present, there is an ongoing study testing the

effects of ICIs in patients with MSI-high PDACs (NCT02628067),

which may provide insights into the subset of patients who

respond to immunotherapy and the underlying mechanisms

related to efficacy and resistance for ICIs. Overall, clinical results

have been disappointing, but in some cases, correlative

immunophenotypic studies have demonstrated that these

therapies elicit adaptive T-cell responses. This suggests that

immunosurveillance is operating in PDAC, however, a rational

approach to countering its highly heterogenous and plastic

immune evasiveness is needed.
TME of PDACs

Pancreatic cancer is known to have an immunologically cold

microenvironment. Overall, immunosuppressive TME in PDAC is

often associated with the presence of a tumor-promoting immune

cell population (216). Analysis of PDAC mouse models has shown

that the expression of oncogenic KRAS itself leads to robust

inflammation, and initiates the cycle of inflammation associated

with carcinogenesis (11, 179, 217, 218). Furthermore, whereas the

expression of KRAS mutant during embryogenesis is sufficient to

promote the onset of PDAC proliferation, chronic inflammation is

required for malignant transformation in adult PDAC mouse

models, indicating that oncogenic mutations alone cannot induce

PDAC malignancy (97, 219, 220). Therefore, the inflammatory

environment and oncogenic mutations work in concert to promote
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tumor progression. Thus, inflammation caused by cytokines and

chemokines released from PDAC cells that have acquired

mesenchymal traits is often associated with the infiltration of

innate immune cells that facilitate an immunologically tolerant

environment rather than an antitumor immune response (221). A

low level of T-cell infiltration correlates with mortality in PDAC

(222). Biochemical (production of chemokines and other factors in

TME) and physical (deposition of the ECM) barriers in the stroma

surrounding the TME inhibit T-cell infiltration (Figure 3).
Fibrosis

Although there are multiple factors that cause ICI treatment

resistance, one of the main possible contributors is a dense

fibrous stroma (desmoplasia) occupying 80% to 90% of the

tumor mass in PDAC (223, 224). Desmoplasia is caused by the

proliferation of a-smooth muscle actin-positive fibroblasts or

activated pancreatic stellate cells, and work as a physical barrier

against drug and immune cells. The trigger that causes these cells

to proliferate is still unknown, but the communication among

tumor cells and these cells have been identified. Two main

components constitute desmoplasia: cells including fibroblasts

and infiltrating immune cells, and noncellular proteins, such as

collagen types I, III, and IV, fibronectin, and hyaluronan. A

comprehensive review of the pancreatic cancer stroma has been

published recently (15).
Heterogeneous fibroblasts

Fibroblasts exist in every solid organ, to maintain their

morphology and function by depositing ECM proteins and

secreting soluble factors (225). For instance, TGF-b secreted

from fibroblasts is used by epithelial cells to cure skin injuries.

Histological similarities, such as mesenchymal morphology, are

maintained among fibroblasts in various organs, but their

genomic landscapes differ depending on the organ in which

they are located (226). Many studies have demonstrated that

some fibroblasts contribute to tumor initiation, progression, and

metastasis, and they are known as CAFs (227). Pancreatic cancer

has a dense fibrotic architecture, and therefore, it will be useful to

clarify the biology of CAFs in PDAC. Recent studies have

demonstrated that the functional roles of CAFs in PDAC TME

are more complicated than their expected simple tumor-

promoting role (15).

Three-dimensional in vitro coculture of pancreatic stellate

cells (PSCs) and KPC mouse-derived PDAC organoids induced

two kinds of CAFs (228). Cocultured directly, PSCs turned into

myofibroblastic CAFs (myCAFs) with highly upregulated a-
SMA expression and myofibroblastic gene profiles (228).

Although CAFs are thought to literally be ‘associated’ with

tumors, myCAFs have anti-tumor activity (229), which
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requires further investigation for elucidation of the mechanism.

On the other hand, indirect coculture transforms PSCs into

inflammatory CAFs that display inflammatory cytokines, such

as IL-6. It is thought that CAF-derived IL-6 contributes to

immune evasion (228).

scRNAseq by several investigators supported the existence of

these two populations, and moreover, identified two other

groups, namely, mesenchymal stem cell CAFs (mscCAFs) and
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antigen-presenting CAFs (apCAFs) (230, 231). MscCAFs are

characterized by the expression of previously identified

mesenchymal stem cell markers (CD44, CD49a, CD73, and

CD90), and originate from bone marrow (232). They

preferentially express GM-CSF, thus promoting macrophage

polarization towards an immunosuppressive phenotype that

results in the inhibition of CTL activity (179, 233, 234).

Coexpression of MHC class II, including CD74 and
FIGURE 3

Immunosuppressive TME in PDAC. One of the features of PDAC is dense fibrosis, which limits immune-cell filtration, drug delivery, and oxygen
supply. A variety of cells exist and compose the immunosuppressive milieu. Each type of fibroblast appears to play a key pro-tumor or anti-
tumor role. The EMT of PDAC is among the factors enhancing anti-tumor immunity through not just cell intrinsic functions, such as PD-L1
recycling, but also crosstalk with other immune cells.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1005566
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hashimoto et al. 10.3389/fonc.2022.1005566
podoplanin, a pan-CAF marker, is a signature of apCAFs (230).

It has recently been reported that apCAFs are derived from

mesothelial cells and can induce the transformation of naïve

CD4+ T cells into regulatory T cells by their direct ligation with a

specific antigen (235). This group also demonstrated that

targeting mesothelin expressed in the mesothelium may be an

effective treatment owing to the inhibition of apCAF formation

and regulatory T (Treg) cell induction (235).
T cells

T-cell exclusion in tumors is primarily mediated by CAFs

that express fibroblast activation protein, and secrete the

chemokine CXCL12 (236). Additionally, activation of integrin-

binding protein and non-receptor tyrosine kinase focal adhesion

kinase (FAK) is associated with increased collagen I deposition

and immunosuppression (237, 238). Highly phosphorylated

FAK levels in pancreatic cancer patients were associated with

decreased tumor-infiltrating CD8+ T cells and reduced

survivability (239). In addition, the expression of FAK in

patients with PDAC is associated with decreased tumor

cellularity and survival (239).

Acquiring a terminally differentiated T-cell state can

diversely impact disease outcome, either countering tumor

proliferation through antigen-limited tumor-killing immune

responses, or promoting cancer progression by actively

inducing immunosuppression (216, 240, 241). In particular,

CD8+ cytotoxic T lymphocytes and polarized CD4+ T cells

known as T helper type 1 (Th1) cells exert protective effects

against tumors in PDACmouse models, and have been shown to

be associated with prolonged survival of human PDAC patients

(242). Conversely, CD8+ T-cell deficiency, low amounts of

neoantigens, and CD4+ Th2 and Treg cells are associated with

tumor-permissive anergy (242–245). Cytokines produced by

Th2, particularly IL-4 and IL-13, can not only reduce anti-

tumor immune responses, but also can directly accelerate tumor

growth induced by KRAS transformed cells (246). PDAC tumors

are also accompanied with abundant lymphocyte infiltrates that

are typically associated with the gastrointestinal mucosa (247).

Th17 cells comprise approximately 5% of the CD4+ T cells in

PDACs. The role of Th17 cells in the TME is also context-

dependent. In PDAC, IL-17 secretion from gd T cells and Th17

cells may enhance antitumor immune responses (248).

However, early stages in PDAC carcinogenesis, IL-17 has a

direct mitogenic effect on KRAS mutation-induced PanIN cells

expressing IL-17R (218). Whereas the effects of distinct T-cell

subsets depend on the underlying immune context of the tumor

due to various physiological conditions and environments, and

may be altered during the tumor progression of PDAC, the

regulation of differentiation and function of T cells in PDAC

TMEs play crucial roles in tumor immunity.
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B cells and myeloid cells

To date, it has become clear that distinct cell populations

derived from lymphocyte and myeloid cells can act in a pro- or

anti-tumor manner, depending on the situation. B-cell subsets have

become apparent as key immunomodulators in PDAC (249–252).

Furthermore, suppressive myeloid cell programming is a major

cause of tolerogenic T-cell programming in PDAC. Macrophages

are thought to serve a major function in the induction of

immunosuppression in PDAC; IL-10+Arg1+MHCIIlo tumor-

associated macrophages (TAMs) are predominant in the PDAC

TME, and are effective in promoting Th2 cell differentiation, but

ineffective in inducing CD8+ T-cell immunity (253–257). Similarly,

immature MDSCs, collectively referred to as bone marrow-derived

Gr1hiCD11b+ granulocyte lineage MDSCs, are characterized by a

short half-life and strong suppressive effects in the TME (258).

Although endogenous normal dendritic cells (DC) in the TME can

produce anti-tumor T cells, the number of DCs in PDAC is low and

probably insufficient to sustain robust adaptive immune responses.

Furthermore, tumor-derived colony-stimulating factor 3 is found to

inhibit the development process of DC in the bone marrow (259).

Certain DC subsets have been understood as activators of immune

evasiveness in PDAC. CD11b+CD103−DCs with high expression of

IL-23 and TGF-b are predominant in PDAC, drive the

differentiation of FoxP3− tumor-promoting type I+ T cells, and

promote metastatic spread (260, 261). Moreover, it has been shown

that Treg cells directly interact with tumor-associated DCs and

suppress anti-tumor immunity by downregulation of costimulatory

ligands expression that are important for activation of CD8+ T-

cell (262).

Stimuli that recruit myeloid cells to the TME in PDAC are

only partially understood. In mouse models, tumor-derived

factors have been presented to accumulate MDSCs in the

PDAC TME. In the same way, CCL2 produced by tumor cells

and CSF1 produced by tumor-associated fibroblasts contribute

to the generation of M2-like macrophages (263, 264), and

CXCL1 production by tumor cells has been linked to increased

myeloid cell populations and decreased tumor infiltration of

cytotoxic CD8+ T cells (265). In particular, focusing on the

CSF1-CSF1R, CCL2-CCR2, and CXC chemokine-CXCR2 axes

to target in the PDAC TME may contribute to pancreatic

cancer progression.
Microbiota

The normal pancreas has long been believed to be a sterile,

protected site from bacteria. However, recent studies have shown

that the pancreas contains bacteria that invade through the Vater’s

vastus. Interestingly, it has been reported that in the inflammatory

environment of PDAC, the bacterial content of pancreatic tumor

tissue increases by approximately 1,000-fold compared with normal
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tissue (266–268). Furthermore, the bacterial species found in the

tumorigenic pancreas are different from those in the gut, and low

microbial diversity in the tumor results in a low survival rate of

patients with PDAC, whereas high tumor microbiome diversity is

associated with long-term survival (269). Mechanistically, the

primary PDAC microbiome has a potent immunosuppressive

effect on the inflammatory TME, driving the protumor

inflammatory responses of PDACs via the activation of Toll-like

receptors on bone marrow-monocyte cells, and inducing the

expansion of MDSCs and anti-inflammatory M2-polarized

macrophages. These innate immune cells with tolerogenic

functions enhance the differentiation of immunosuppressive CD4+

T-cell populations and inhibit the expansion of cytotoxic CD8+ T

cell populations (268). Consistently, microbial ablation in mice

resulted in increased infiltration of Th1-polarized CD4+ and CD8+

T cells, decreased accumulation of MDSCs, and a TAM

reprogrammed to a tumor-protective M1-like phenotype (268,

270). Potentially, targeting the microbiome by oral antibiotics

might reverse myeloid cell-mediated adaptive immunosuppression

and promote the efficacy of ICI therapy in PDAC.
Novel mechanisms bridging
mesenchymal malignancy and
immune evasiveness via rewiring of
the metabolic program of PDAC

Immune evasion is an essential characteristic of cancer.

Every day, the adult body produces mutant cells owing to

genetic mutations via various intrinsic and extrinsic factors,

and most mutant cells are detected and eliminated by the

immune surveillance system. However, in rare cases in which

mutant cells acquire traits that enable them to evade the immune

surveillance system, the cells evade attack by immune cells and

proliferate, eventually manifesting as cancer.

As mentioned above, the major immunosuppressive factors

in the TME of PDAC include hypoxia, a low-nutrient

environment, expression of immune checkpoint molecules,

accumulation of immunosuppressive cell populations, such as

Tregs and MDSCs, production of immunosuppressive cytokines,

such as TGF-b and IL-10, immunosuppressive metabolic

enzymes, such as Ido, arginase, and CD39/CD73, and

metabolites, such as lactate and kynurenine. In addition,

cancer-associated inflammation induced by IL-6, IL-1, IL-17,

IL-22, and IL-23 is not only a driver of carcinogenesis, but is also

associated with tumor progression by inducing EMT, whereby

epithelial cells acquire malignant mesenchymal properties, such

as detachment from other cells, invasion into adjacent tissues,

and accelerated metastatic spread to other distant organs (21,

271–275). Thus, it is easy to speculate that the factors involved in

the suppression of the immune environment of the TME are

diverse and complex in their mechanisms of action, as they are
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produced not only by cancer cells, but also by the various stroma

cells, including several kinds of immune cells and heterogenous

fibroblasts in the TME.

On the other hand, international cancer-related consortiums,

such as The Cancer Genome Atlas (TCGA) have promoted

comprehensive genome-wide gene expression analyses of various

cancers, but these efforts have not led to the development of effective

diagnosis and treatment methods, particularly in the case of PDAC.

There may be various reasons, such as the fact that the collected

tissue sections are bulk preparations containing not only cancer cells

but also stromal cells. Recently, the transcriptome and proteome

have been compared worldwide, and it has been shown that there is

a very poor correlation between the mRNA and protein levels of

most genes (276–280). This strongly suggests that post-

transcriptional mechanisms play an important role in the

regulation of gene expression. Here, we present our studies from

two different aspects on the molecular mechanisms linking the

acquisition of mesenchymal plasticity and immune evasion in

PDAC, with a focus on post-transcriptional mechanisms.
Functional roles of ARF6-AMAP1 axis as a
mesenchymal executioner in PDAC

ARFs, a family within the Ras superfamily of small GTPases,

are evolutionally the most ancient of the small GTPases. The

ARFs are conserved throughout eukaryotes, including in species

that branched off early, such as Giardia lamblia, in which no

members of the Ras family nor heterotrimeric G-proteins are

found (281, 282). Giardia lamblia is an anaerobic eukaryote

parasite of the gut, which is evolutionally inferred to be an

amitochondrial-type eukaryote that developed before the

creation of mitochondria (283). This implies that eukaryotic

cell features, such as nuclei and flagella, predate mitochondrial

endosymbiosis, suggesting that ARF family molecules have been

deeply involved in the maintenance of life homeostasis under

anaerobic conditions during the evolution of eukaryotes. The

human ARF family consists of six isoforms, ARF1–6, which are

classified into three classes based on sequence homology, as

follows: class I (ARF1–3), class II (ARF4–5), and class III (ARF6)

(284). Class I and class II Arfs primarily regulate vesicular

transport between the Golgi and endoplasmic reticulum (284,

285). Although ARF6, the only class III member, has virtually

identical effector-interacting domains as the other ARFs, it is the

most divergent of the ARF proteins, and predominantly localizes

to the plasma membrane and recycling endosomal

compartments, and functions in intracellular events associated

with membrane dynamics, including recycling of plasma

membrane components (including both endocytosis and

recycling-back to the plasma membrane), as well as in actin-

cytoskeletal rearrangement at the cell periphery (286–288).

We identified the ARFGAP protein AMAPs as molecules

that are induced during macrophage differentiation, bind to the
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integrin-associated protein, paxillin, and are involved in its

intracellular dynamics. Furthermore, we found that AMAPs

are ARF6-specific ARFGAP proteins that are commonly

involved in enhancement of the cell motility of macrophages

and epithelial cells (289–291). In addition, we identified a novel

mechanism of action in which AMAP functions as an effector of

activated ARF6 through steady-state binding to GTP-bound

ARF6 via its ARFGAP domain in the presence of Mg2+ (290,

291). Consistently, Wittinghofer and colleagues demonstrated

that Ca2+ spikes stimulate the ARF6-specific GAP activity of

AMAPs, but not other members of the ArfGAP family (292).

Subsequently, we identified GEP100 as a guanine-nucleotide

exchange factor that activates Arf6 in the acquisition of invasive

and metastatic traits of breast cancer cells upon activation of the

epidermal growth factor (EGF)receptor pathway (145). We also

identified the mechanism of action by which GEP100 activates

Arf6 by binding directly to the phosphotyrosine moiety of the

activated EGF receptor via the Pleckstrin-homology domain.

Furthermore, we found that the simultaneous expression of Arf6

and GEP100 in MCF7 human epithelial-like breast cancer cells

induced EGF-stimulation-dependent EMT-like changes.

Subsequently, pathological analysis demonstrated that GEP100

expression is present in approximately 80% of invasive breast

cancers (145). Our present study suggests that Arf6-based

signaling pathways play an important role in the acquisition of

invasive and metastatic traits via EMT induction in cancer cells.

In this pathway, AMAP1 binds to different proteins, such as

cortactin, and protein kinase D2 to promote cortical actin

remodeling and integrin recycling (293, 294). AMAP1 also

binds to EPB41L5 (148, 149), which shows increased

expression during TGF-b-induced EMT (295). Furthermore,

we demonstrated that the EMT-TF ZEB1 is involved in

EPB41L5 gene expression, and that high expression levels of

ZEB1 and EPB41L5 in cancer cells are associated with p53

mutations. This study demonstrated that the ARF6 pathway is

a signaling pathway responsible for advanced cancer-specific

mesenchymal traits associated with mutant p53 (296).

A series of our studies have identified that high protein levels

of ARF6, AMAP1, and EPB41L5 were associated with

invasiveness of several kinds of solid tumors, including breast

cancer, clear cell renal cell carcinoma, lung adenocarcinoma, and

PDAC and importantly that these expression levels were

statistically correlates with poor prognosis (94, 145, 146, 149).

Notably, ARF6 and AMAP1 mRNAs are both rich in G/C

content in their 5′-untranslated regions (UTRs) (74% and

88%, respectively) (297). Moreover, ARF6 mRNA contains a

G-quadruplex structure at the 5′-UTR (94), indicating that

efficient translation is dependent upon the RNA helicase

eIF4A, a member of Cap-dependent translation initiation

factors (298, 299). On the other hand, the 5′-UTR of

AMAP1 mRNA contains a 5′-terminal oligopyrimidine-like

sequence, indicating the mTOR complex 1 kinase-dependent

translation control (300, 301). We found that the eIF4A
Frontiers in Oncology 16
138
inhibitor silvestrol suppresses protein levels of ARF6 in

KRAS mutant cells, but only moderately in KRAS intact

cells (202), and the mTOR inhibitors rapamycin and Torin1

suppress AMAP1 expression in KRAS mutant cells (94).

Mechanistically, oncogenic KRAS mutations are the major

cause of the aberrant overexpression of ARF6 and AMAP1, in

which KRAS signaling enhances eIF4A-dependent ARF6

mRNA translation and eIF4E-dependent AMAP1 mRNA

translation. In addition, gain of function mutations of TP53

promoted the activation of ARF6 by PDGF via MVP-

mediated geranylgeranyl lipid modification of Rab11b in

PDAC cells (94, 148). Moreover, we revealed that the

ARF6-AMAP1 pathway is closely associated with immune

evasion in a KPC mouse model. Thus, the cooperation

between eIF4A/4E-dependent mRNA translation and MVP

has been identified as a link in which representative

pancreatic driver mutations empower an ARF6-based

pathway, activated by external ligands, to promote tumor

cell motility, PD-L1 dynamics, and immune evasion. A recent

clinical study by another group confirmed the importance of

ARF6 in this context (302). We hence propose that targeting

eIF4A, or eIF4E, as well as mutant KRAS, provides novel

methods to improve the efficacy of anti-PD-1 therapy, in

which ARF6 and AMAP1 overexpression may act as

biomarkers to identify patients with drug-resistant disease

in PDAC. Additionally, the ARF6-AMAP1 pathway was also

found to be involved in acidosis and fibrosis of the TME, both

of which are well known to be barriers against immune attack

to cancer cells (81, 303), indicating that the ARF6-AMAP1

pathway may also be a valuable target in modifying the TME

from pro-tumor, which makes PDAC resistant to treatment,

towards an anti-tumor state. Taken together, given the

importance of the ARF6-AMAP1 pathway in the

pathophysiology of PDAC, its clinical application as a

therapeutic target may broaden options for the treatment of

PDAC (Figures 2, 3).
Arid5a acts as a dual regulator in
malignant PDAC to generate an
immunosuppressive TME

Arid5a was identified as an RNA-binding protein that binds

directly to the 3′-UTR of Il6 and stabilizes Il6 mRNA (304). Recent

studies have demonstrated that Arid5a plays an important role in

innate and adaptive immune responses (305). In macrophages and

embryonic fibroblasts, stimulation by LPS, IL-1, and IL-6 induces

Arid5a expression (304, 305). Importantly, in untreated rheumatoid

arthritis (RA) patients, expression of Arid5a in CD4+ T cells is

increased, whereas treatment with the anti-IL-6 receptor antibody

tocilizumab is associated with decreased Arid5a expression (306),

indicating that the IL-6-ARID5a axis may be involved in RA

pathogenesis. Consistently, Arid5a has been shown to be involved
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in several immune-associated pathologies. For example, Arid5a

deficiency reduces IL-6 production under LPS-induced

endotoxemia. Furthermore, in an experimental autoimmune

encephalomyelitis (EAE) model, Arid5a deficiency significantly

suppresses Th17 cell differentiation and lowers IL-6 serum levels,

resulting in the reduced development of EAE (304). In addition,

Arid5a regulates the stability of mRNAs for other genes involved in

immune regulation, such as Stat3, Tbx21, Ox40, and Il17 (307–310).

In addition, IL-6 increases its own mRNA stability by increasing

Arid5a levels via a positive feedback loop (311). Consistently,

Arid5a-deficient mice show impaired LPS-stimulated Il6 and Ifng
expression, and are resistant to lethal endotoxic shock (304, 308).

Thus, Arid5a-mediated upregulation of these factors may be

involved in the enhancement of Th1 and Th17 cell polarity and

function in acute inflammatory responses and autoimmune diseases.

Several cytokines have been shown to be actively involved in

metabolic reprogramming in physiological and pathological

conditions (312). For example, during cancer cachexia, the

overproduction of cytokines significantly increases energy

expenditure and leads to weight loss (313). In particular,

circulating levels of IL-6 have been shown to positively correlate

with cachexia in cancer patients, and importantly, IL-6 levels were

found to negatively associate with their survival (314–317).

Furthermore, treatment with the humanized anti-IL-6 receptor

antibody tocilizumab increased body weight and serum levels of

triglycerides and cholesterol in human cancer patients (318). Il6-

deficient mice have been shown to develop adult-onset obesity with

impaired glucose and lipidmetabolism (319). The overexpression of

IL-6 in high-fat diet-induced obese mice reduced their body weight

and improved their obesity-induced fatty liver and insulin resistance

(320). Consistently, Arid5a−/− mice showed reduced IL-6

production; mice with long-term loss of Arid5a developed adult-

onset severe obesity. In contrast, mice with forced expression of

Arid5a are highly resistant to high-fat diet-induced obesity (321).

These results suggest that Arid5a is involved in IL-6-mediated

metabolic regulation.

Recently, we showed that Arid5a mRNA and protein

expression levels were significantly increased in mesenchymal

tumor subtypes of PDAC and colorectal cancer (CRC), such as

quasi-mesenchymal and consensus molecular subtype 4

subtypes, respectively. In addition, Arid5a expression was

enhanced in in vitro EMT models, induced by IL-6 and TGF-b
stimulation (322) (Figure 4). Furthermore, Arid5a enables

mesenchymal tumor models of PDAC and CRC to facilitate

immune evasiveness via promoting tumor infiltration of

immunosuppressive granulocytic MDSCs (gMDSCs; also

known as polymorphonuclear MDSCs (323)) and Tregs (324),

and suppressing the recruitment and activation of anti-tumor

effector T cells (322). Interestingly, Arid5a acts as a dual

regulator leading to the formation of immunosuppressive

TMEs in malignant tumors, triggering the metabolic

reprograming and recruitment of suppressive immune cells.

First, Arid5a induces the inhibitory effect of Ido1 on effector
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CD4+/CD8+ T cells via the post-transcriptional stabilization of

Ido1 mRNA by binding to its 3′-UTR, and a reduction in

intratumoral tryptophan concentration (325, 326).

Additionally, Ido1 expression in tumor tissues promotes Treg

differentiation/activation by generating kynurenine through

tryptophan catabolism, and ultimately activating aryl

hydrocarbon receptors (AhR) (327, 328), and AhR activation

extensively mobilizes gMDSCs (329). Second, Arid5a

upregulates chemokine Ccl2 expression in the TME via post-

transcriptional stabilization of its mRNA, and then Ccl2 leads to

enhancement of the infiltration of immunosuppressor cells, such

as Tregs and gMDSCs (330–333), to the TME (322).

Therefore, these findings provide insights into the molecular

basis of the acquisition of mesenchymal plasticity and immune

evasiveness by PDAC and CRC via augmentation of the RNA-

binding protein Arid5a, and indicate that Arid5a is a promising

target for tumor immunotherapy, in addition to inflammatory

diseases (Figure 4).
Conclusion and perspectives

In tumorigenesis, metabolic changes and chronic

inflammation associated with genetic mutations in normal

cells enable transformed cells to escape the homeostatic

defense mechanisms of tissues, and to reprogram their

intrinsic signaling mechanisms, as well as reprogram

populations of stromal cells within the TME and the metabolic

balance of the entire organism. In this process, tumor cell

populations that adapt to the abnormal microenvironment

form diverse, hierarchically organized colonies, and eventually

acquire mesenchymal plasticity that promotes their

dissemination, reduces the immune system’s ability to counter

tumor growth, and finally directly causes death of the organism.

Elucidating the metabolic adaptations that tumors rely on to

promote these changes and maintain growth in a metabolically

unfavorable environment, as well as the molecular mechanisms

that trigger the acquisition of mesenchymal plasticity and

immune evasion capacity, will help towards developing new

diagnostic and therapeutic approaches and dietary combinations

for the treatment of PDAC.

Increased levels of IL-6 in the serum have been associated

with poor overall survival prognosis in patients with high-grade

pancreatic cancer (334), and the increased activity of IL-6/

STAT3-mediated signaling has been reported to be associated

with poor prognosis in post-resection PDAC patients (335). IL-6

also activates STAT3 and induces the mesenchymal phenotype

in human pancreatic cancer cells via the induction of SNAI1

(336). In chronic pancreatitis, IL-6/STAT3-mediated ADM

transdifferentiation occurs and is associated with PanIN, which

is a necessary step for the generation of tumorigenic precursor

lesions (220, 337). For example, in the KRAS-induced PDAC

mouse model (220, 337), pancreatic epithelial cells with
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constitutively active KRAS mutations (KRASG12D) have been

reported to cause inflammatory activation by recruiting immune

cells. In particular, myeloid cells have been reported to promote

the production of IL-6 and soluble IL6R (sIL6R), activate STAT3

via IL-6 trans-signaling, and furthermore, the complex of IL-6

and sIL6R binds to gp130-expressing cells (220). Aberrant

STAT3 activation owing to the homozygous loss of SOCS3 in

the pancreas results in the accelerated progression of PanIN and

the development of PDAC (220). It has also been shown that

KRAS activation increases the levels of cytokines, such as IL-6

and IL-11, in epithelial cells, followed by STAT3 activation in an

autocrine manner, and that STAT3-triggered matrix
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metallopeptidase 7 is required for tumor progression but not

tumor development, and may be regulated by other STAT3

targets (337). As already mentioned, the TME of PDAC is

severely hypoxic, and nutrient availability is limited by a low

vascular density, so PDAC cells show increased autophagy that

rewires their metabolism to enable survival in a harsh

environment, and to maintain metabolic homeostasis. In a

mouse model of PDAC caused by KRAS mutations, IL-6-

induced STAT3 activation was shown to be involved in the

increase in autophagy. As a mechanism, receptors for advanced

glycation products have been reported to promote the IL-6-

driven activation of STAT3 signaling in mitochondria, bridging
B

A

FIGURE 4

Involvement of Arid5a in the acquisition of mesenchymal plasticity and immune evasiveness in PDAC (A) Arid5a expression is associated with
acquisition of the mesenchymal phenotypes of PDAC and CRC. Especially, cells showing partial EMT and mesenchymal-like cell lines show
much higher expression levels of ARID5A than epithelial-like cell lines. During TGF-b- or IL-6-induced EMT, Arid5a level is augmented in cells
that have acquired mesenchymal phenotypes. (B) Arid5a acts as a dual regulator in malignant tumors, such as the mesenchymal subtypes of
PDAC, to promote an immunosuppressive TME; Arid5a upregulates Ido1 expression via post-transcriptional stabilization of its mRNA and then
enhances the suppressive effects of Ido1 on anti-tumor immune cells, such as CD8+ T cells and CD4+ Th1 cells via a reduction in intratumoral
tryptophan concentration, and a promotion of the differentiation and activation of Treg cells. Additionally, Arid5a post-transcriptionally induces
the expression of the chemokine Ccl2 in the TME, which recruits immunosuppressive cells, such as Treg cells and gMDSCs, to the TME.
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autophagy and the IL-6/STAT3 signaling pathway (338).

Furthermore, IL-6 signaling has been implicated in the

pathogenesis of cachexia in PDAC patients, by inducing a

metabolic rewiring (339). Thus, it is clear that the activation of

IL-6/STAT3 signaling is involved in the development of PDAC

from the PanIN stage, continuing to malignant transformation.

Since its approval in 2009, tocilizumab has been shown to

inhibit IL-6/STAT3 signaling in patients with autoimmune

diseases, such as rheumatoid arthritis caused by the

overexpression of IL-6, acute inflammatory diseases caused by

chimeric antigen receptor T-cell therapy, and cytokine storms

associated with SARS-CoV-2 infection. On the other hand, in

clinical practice, few effective therapeutics have been developed

as cancer treatments targeting IL-6/STAT3 signaling (340–343).

As mentioned above, cancer is caused by a complex interplay of

diverse cell populations, which leads to malignant

transformation. Therefore, analysis of the expression and

function of molecules associated with IL-6/STAT3 activation

may enable the assessment of the local malignant potential and

steady state of cancer, but may not be sufficient to predict the

stage and detailed course of cancer. Furthermore, it has become

clear that not only IL-6/STAT3 signaling, but also various

groups of molecules are involved in cancer development. The

mode of interaction between these molecules also requires

further study.

In the future, it will be essential to introduce spatiotemporal

gene expression analysis technology that analyzes multiple cell

populations, improve detection technology to analyze the

associations among aging, inflammation, and metabolism, and

develop artificial intelligence technology to analyze cancer

development and progression, and mathematical analysis

technology to integrate these technologies. To this end, it is also

indispensable to enhance the convergence of life science, physical

science, engineering, and computational science to create the next

generation of cancer diagnostics and therapeutics.
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“Dysregulated”metabolism is a characteristic of the cancer cell phenotype. This

includes persistent use of glycolytic metabolism in normoxic environments

(Warburg effect) leading to increased acid production and accumulation of

protons in the interstitial space. Although often thought to be disordered,

altered cancer metabolism is the outcome of intense Darwinian selection

and, thus, must have evolved to maximize cancer cell fitness. In an

evolutionary context, cancer-induced acidification of the microenvironment

represents a niche construction strategy to promote proliferation. Ecological

advantages conferred on the cancer population included remodeling of the

extracellular matrix to promote local invasion, suppression of potential

competitive proliferation of fibroblasts, and suppression of host immune

response. Preclinical data demonstrates that increasing the serum buffering

capacity (through, for example, oral sodium bicarbonate and TRIS) can

neutralize the acidic tumor microenvironment with inhibition local invasion

and proliferation which can be synergistic with the effects of chemotherapy and

immunotherapy agents. Here, we describe the proton dynamics in cancer and

their influence on tumor progression and metastasis. Additionally, we will

discuss targeting the tumor acidosis with alkalizing agents including our

bicarbonate clinical trial results.

Clinical Trial Registration: clinicaltrials.gov, identifier NCT01350583,

NCT01198821 and NCT01846429.

KEYWORDS

cancer, buffer therapy, clinical trial, alkalizing, acidosis
Introduction

Due to a mis-match between glucose fermentation and perfusion the extracellular pH

(pHe) of the tumor microenvironment is profoundly acidic (1). This acidity, as first

described by the Warburg, occurs even in the presence of oxygen (2). The acid

accumulated extracellularly is removed via different proton transporting systems,
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including sodium hydrogen exchanger, monocarboxylate

transporters (3). This proton dynamics results in a decrease in

pH and increase in an intracellular pH (pHi). The extracellular

pH of a solid tumor can reach 6.5 (4). These conditions are

highly toxic to normal mammalian cells and, thus, the cancer

phenotype must evolve adaptive strategies to survive and

proliferate in acidic conditions.

While the Warburg effect (i.e., “aerobic metabolism” -

maintaining inefficient glycolytic metabolism even in the

presence of oxygen) is often described as “dysregulated”, this

view is inconsistent with the evolutionarymodel of cancer. That is,

because cancer cells are subject to constant Darwinian selection,

it’s metabolism must, in fact, represent an optimal phenotypic

state that maximizes fitness. We have proposed that excess acid

generation production represents a niche construction strategy

that confers a competitive advantage on cancer cells by killing or

suppressing the growth of potential normal cell competitors such

as fibroblasts, causing breakdown of ECM to promote invasion,

and blunting the immune response (5–7).

Functionally, cells can be classified as oxidative or

fermentative in the tumor microenvironments. Oxidative cells

will convert the lactic acid to pyruvate, that enter the TCA cycle

and oxidized yielding ATP and CO2. Carbonic anhydrase 9 or 12

(CA9, CA12) on the outside o the cell will hydrate this CO2

producing HCO3+ and H+. In fermentative cells, Glucose will

enter the cell via glucose transports 1 or 3 (GLUT-1, GLUT-3),

and enter glycolysis after phosphorylated to Glucose 6-

phosphate (G6P). The proton produced by this oxidative step

is transported by sodium/hydrogen exchanger, NHE1, as well as

CA9. The lactic acid produced via glycolysis is transported via

monocarboxylate 1 and 4 transporters (MCT1/4) (8).

The extracellular acidity can negatively affect the normal

tissue. Specifically, remodel extracellular matrix and allow tumor

cells to invade and metastasize to surrounding and distal organs

(9). It has been shown by us and others that acidity can also

suppress immunity. In vitro and in vivo studies demonstrated

that acidosis inhibits CD8 T cell function (10–12), and promote

the pro -inflammatory macrophages phenotype (M2) (13).

Beyond invasion and metastases, tumor derived acid pH is

also a knownmediator of cancer-associated pain. In recent years,

it is becoming apparent that metastasis-associated bone pain

involves the reduction of peri-tumoral pH and activation of

nociceptors, including acid-sensing ion channels, ASICs (14, 15).

The two major nociceptor ASIC are the transient receptor

potential vanilloid subtype 1, TRPV1, a.k.a. the capsaicin

receptor (16, 17) and ASIC-3 (18). The expression of these

transporters is decreased with bis-phosphonates, which have led

some to speculate that the acid is derived from tumor-associated

osteoclasts (19, 20). Osteoclasts exacerbate the tumor-derived

acidity at the bone interface through their own export of protons

via a Vacuolar type H-ATPase (21).

Although treatments to reduce intratumor acidity are often

describe as “alkalizing agents,” this represents a misnomer.
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Typically, such agents are actually physiologic buffers which

promote a pH near 7.4. Thus, they will tend to alkalinize the

acidic tumor pH in the sense that the typically increase it toward

the physiologic range. However, in normal tissue and

physiological pH, such buffers will have no effect on the acid

concentrations (22). Multiple studies have demonstrated that

tumor acidity can be significantly improved with oral buffers,

and this can reverse some of the consequences of acidity,

including invasion to the surrounding tissue, distal organ

metastasis, and modulation of immune function. For instance,

we have proved that chronic treatment of animals with 200 mM

sodium bicornate ad lib significantly decreased invasion and

metastasis in spontaneous and experimental metastasis cancer

models (23–26), and enhanced the effect of immune checkpoint

inhibitors as well as adoptive T cell transfer (12). In our

previously published work, we showed that Lysin has a pH

dependent effect on prostate tumors metastasis. Lysin with a pH

(8.0) below pka value has no effect on metastasis while Lysine

with pH (10.4), a higher pka value, significantly decreased

metastasis, clearly suggesting buffering is mediating the

antimetastatic effect (27). In another study in transgenic

prostate model (TRAMP), treating the mice before development

of the tumor (~ 4 weeks after weaning) prevented the

development of the interepithelial neoplasia (PIN), furthermore

doubling the concentration of bicarbonate treatment after the

development of the PIN lesions(~10 weeks after weaning)

prevented tumor cells metastasis (28). While the mechanisms

under the buffer therapy is still not completely revealed; we

observe by histopathology that the buffer treated tumors are less

invasive and more benign (29).

Targeting tumor acidity with buffer therapy is the most

direct approach, particularly by oral sodium bicarbonate

NaHCO3 or THAM. We have shown that mice can tolerate

orally up to 200mM sodium bicarbonate with no changes to the

systemic pH. Tumor volume at the time of the bicarbonate

treatment influence the outcome. We observed no effect of

sodium bicarbonate on large primary tumors compare to the

small tumors (19, 22).

The anti-tumor effect of alkalinizing agents may be systemic

and at the level of tumors. In fact, a milestone paper by our

group (28) showed that the oral administration of sodium

bicarbonate 100% prevented the development of prostate

cancer in TRAMP mice, denoting that a daily alkalinization

with either sodium bicarbonate or other buffers may well prevent

cancer. Still, this probably occurs through a primary effect on the

gastric pH since our stomach is not simply a digestive bug but

rather an exocrine gland that produces H+ for the whole body,

actively participating in the pH balance of our organism.

Recently, Helix BioPharma developed a target for tumor

acidosis, L-DOS47, which can serve as an alternative to sodium

bicarbonate. L-DOSE47 is a urase base extracted from Jack Bean

that targets Carcinoembryonic antigen-related cell adhesion

molecule 6(CECAM-6 antigen) overexpressed by several
frontiersin.org
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cancer types, such as lung, colon, and pancreatic (65). They

urease enzyme will convert the urea present around the tumors

to ammonia(2NH4+) and bicarbonate (1 HCO3 -) alkalizing the

tumor microenvironment. L-DOS47 is now in phase I/II clinical

trial (NCT02309892) in lung cancer (66).

Clinical trials using proton pump inhibitors remain the only

evidence-based support for an anti-acidic approach against

cancer that was reported; this includes a clinical study in

patients with osteosarcoma (30); a case-control study in

patients with metastatic breast cancer, in which an arm has

been successfully treated with PPI alone (31); a pilot study in

patients with GI cancers (32). Moreover, two clinical studies

have been performed in domestic animals with malignant

tumors, one combining standard chemotherapy with

lansoprazole (33) and the other combining metronomic

chemotherapy with lansoprazole and alkalinized water (34).

These clinical results supported the evidence-based use of

proton pump inhibitors as a new therapeutic approach, at least

in combination with chemotherapy (35). However, three

preclinical papers have shown that PPI alone had a potent

anti-cancer effect in the absence of chemotherapy or other

anti-tumor therapies in three different human tumors (36–38);

suggesting that high dosage PPI should be considered in the

future anti-cancer therapies. A clinical result partly supported

this pre-clinical evidence in the above-quoted paper, a study

performed on triple-negative breast cancer patients. In fact, at

the end of the study, one arm of patients was treated with PPI

alone compared to those left untreated, and the results showed a

significant increase in OS in PPI-treated patients (31).

Moreover, three retrospective metanalysis have proposed PPI

as an effective combined therapy with standard chemotherapy (39)

andpreventive treatment forbreast cancer (40, 41). Inaway, at least

three reviews have proposed repositioning PPI for cancer therapy

(42–44). Papers showed that alkalinization by oral administration

of either a potent buffer (45) or alkalinized water (46), respectively,

controlled the growthof a veryaggressivemelanomaandprevented

the development of prostate cancer inTRAMPmice.Moreover, the

control of melanoma growth was consistent with an increase in

tumor pH and the treatedmice’s urines, suggesting that a buffering

approach exerted its role in inducing both tumor and

systemic alkalinization.

Preclinical studies performed by us, and others suggested

that oral sodium bicarbonate can be translated to clinic. Three

clinical trials were conducted, phase I/IIa clinical trials to test the

tolerability of oral sodium bicarbonate. We calculated the

amount of sodium bicarbonate needed by comparing the

amount of sodium bicarbonate that mice consumed which is

around 4.2 mL per day (25). This was equivalent to 2.8 g/kg/d.

By inter-species allometric scaling, human dose will be around

16.3 g/d for a 70kg human (47). In a clinical trial study for

children with Sickle Cell Anemia, oral administration of 21 gm/

day was safe and complication free (48). Side effects of overdose

of sodium bicarbonate can include metabolic alkalosis,
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hypokalemia, hypernatremia, and metabolic disorders such as

hypoxia, however, side effects for our dose proposed is not

anticipated (49). Gastrointestinal irritability and discomfort, as

well as poor taste were that main causes for the low compliance

in all our three trials.
Materials and methods

Protocols

Clinical tr ia l NCT01350583, NCT01198821 and

NCT01846429 protocols are publicly available at clinicaltrials.gov.
Results

Trial 1: Pilot Study. The first of these trials was conducted

under IND106881 for powdered NaHCO3 for use in pain

management. NCT01350583 was a palliative trial opened on

08/08/2010 entitled “A Pilot Study of Oral Bicarbonate as

Adjuvant for Pain Reduction in Patients with Tumor Related

Pain”. The rationale for this study was the prior observation that

the major nociceptive (pain-sensing) receptor in cancer pain was

TRPV, which has been shown to be an acid receptor (50). Target

accrual was 28 patients for the 3 + 3 dose escalation study design.

This trial accrued two female patients and was closed on 04/03/

2012. Patient 1 completed her dose schedule of (0.5 g/kg/d) over

4 weeks. Patient 2 left voluntarily, withdrawing after 3 weeks.

One grade 1-2 limb edema was reported and one each grade 1

nausea and vomitus were also reported. Both patients died 10

and 14 months after going off study.

Trial 2: GemTABS. The second trial was for pancreatic cancer

(NCT01198821) patients being treated with gemcitabine under

IND108551, entitled “APhase I Study of Oral SodiumBicarbonate

in Patients with Unresectable Pancreatic Carcinoma Treated with

Gemcitabine (Gem-TABS)” with a 27-month projected accrual of

35 patients. Gemcitabine has complex ionization behavior with an

acid pKa of 11.65 (neutral below this value) and a base pKa of 4.47

(neutral above this value) indicating that its ionization state would

not be altered between a native tumor pH of 6.5 or the bicarbonate

treatedpHof7.0. Projecteddose levels1-4ofNaHCO3were0.3, 0.5,

0.7, 1.0 g/kg/d; with same patient dose escalation allowed after 2

weeks at dose if the patient experienced no treatment-related

adverse events. The trial was opened 08/27/2010 and closed on
TABLE 1 GemTABS adverse events.

Grade 1 Grade 2 Grade 3 Grade 4

diarrhea 1 1

vomiting 1 1

edema 2
fron
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06/22/2011. A total of eight (8) patients were accrued to this trial.

Treatment-related adverse events included diarrhea, limb edema

and vomitus (Table 1). Half of the patients reported grade 1-3

fatigue, which was not ascribed as treatment related. One patient

acquired a non-treatment related biliary tract infection, leading to

hospitalization. The first three patients completed the level 1 dose

with no grade 3 AEs. Escalation to dose level 2 was performed on

two patients, who voluntarily withdrew from the trial after 11 and

26 days. As a consequence, subsequent patients were accrued at

dose level 1. Overall Survival (OS) ranged from 44-718 days after

initiation of trial, with a median OS of 220 days after consent

(Table 2). A median OS of 170-177 days was reported in the

gemcitabinemonotherapy arms in the registration (51) and follow-

up (52) trials. The difference between OS in the treated and

bicarbonate groups was not significant.

These trials demonstrate multiple limitations of powdered

NaHCO3. First, virtually every patient complained about the

taste, which led to poor compliance. Second, there was an issue

of dosing as, upon questioning, patients experiencing GI issues

were likely taking too large of doses of NaHCO3, which is an

emetic, at a single setting. The trial was designed so that doses

were split between 3-4 equal doses throughout the day, which

may have led to GI issues, such as vomitus and diarrhea.

Trial 3: PainCAPS. To mitigate these problems, NaHCO3

was re-formulated as 940 mg capsules under IND118182.

NCT01846429 was designed as a phase I/II palliative trial

entitled “A Phase I/II Study of Oral Bicarbonate as Adjuvant

for Pain Reduction in Patients with Tumor Related Pain”. The

phase I component included 3 patients per cohort (12 total) with

escalating dose levels of 10, 20, 30 and 40 capsules taken

throughout the day. Dose level 2 included a lead-in period of 3

weeks at dose level 1 prior to escalating to dose level 2. Each dose

level was designed to last 3 weeks, after which patients were

allowed to choose to leave the trial, stay on trial at the same dose,

or escalate dose. The trial was opened on 09/10/2013 and

terminated on 10/12/2015 with a final accrual of 9 evaluable

subjects. 100% of the patients reported grade 1-2 GI disorders

including vomitus. One had grade-2 limb edema, and one

patient experienced grade 3 hypokalemia and was removed

from study (Table 3). All nine evaluable patients stayed on
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study for the planned 3-weeks, and eight of these opted to

continue at the same dose or escalate to dose level 2 following the

initial lead in (Table 4). Patients were asked to maintain a pain

diary, and tumor-related pain levels were recorded weekly on a

scale of 1 (no pain) to 10 (excruciating). Across all participants,

there was a significant (by Wilcoxon signed-rank test; trial

NCT01846429) reduction in perceived pain from the baseline

5.25 ± 1.16 to 3.62 ± 1.88 (P = 0.010) within the first 3 weeks, and

this level of significance was no different for patients who stayed

on therapy for >6 weeks: 3.86 ± 1.54 (p = 0.013). On an

individual patient basis, 4 of 9 patients had a reduction in pain

score after 3 weeks that was greater than 1 S.D. from a baseline

established over the first 3 measurements in the first 2 weeks.
Discussion

We could not increase the dose of any of the oral sodium

bicarbonate trials, because of taste, GI, and edema. Hence, we

presume that sodium bicarbonate buffer monotherapy is not

clinically feasible but there is some data to suggest the strategy of

reducing intratumoral acidosis may have a favorable effect on

cancer related pain. We suggest coupling the sodium carbonate

therapy with other treatments to enhance the efficacy, this

includes chemotherapy, and immunotherapy. As we

mentioned previously, adding buffer therapy to immune

blockade in mice increased response rates up to 3-fold (12).

A potential alternative strategy might reduce the requirement

for supplement NaHCO3 therapy be following an “alkaline diet”,

as discussed in (27, 53). One of the counteracts to the buffer

therapy benefit is western diets since it is typically acidic. Hence,
TABLE 2 GemTABS accrual.

pt # gender final dose days on Tx OS (days)

1 f 1 126 239

2 m 1 56 197

3 m 1 63 88

4 f 2 11 319

5 m 2 26 201

6 f 1 28 320

7 f 1 82 718

8 m 1 15 44
TABLE 3 PainCAPS adverse events.

Grade 1 Grade 2 Grade 3 Grade 4

hypokalemia 1

GI/vomitus 23 9

edema
fron
TABLE 4 PainCAPS accrual.

pt # gender final dose days on Tx OS (days)

1 f 1 36 NA

2 m 1 28 116

3 m 1 32 42

4 f 2 7 NA

5 f 2 15 NA

6 f 2 34 34

7 f 2 32 218

8 m 2 35 132

9 m 2 41 NA
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modifying the diet to include high protein content can add to the

buffering benefit of the sodium bicarbonate. As published

previously, this diet should contain low sulfur concentration

because its oxidation will result in increased acidity and thus

inhibit the net buffering effect. Essential amino acids have to be

added to diet since it cannot by synthetized by the body (54).

The potential renal acid load (PRAL) is an effective way to

measure the amount of acid produced by different types of food.

Measuring the urine pH that correspond to each food dose level,

coupled with the protein to potassium ratio (protein/K+) (55).

This food buffering mechanism completely differ from the

sodium bicarbonate buffering. The bicarbonate buffering

creates “compensated metabolic alkalosis”, where kidneys

secrete hydrogen ions because of the increased bold

bicarbonate levels (56), which then lead to the increase of pHe

in tumor microenvironment (57).

We have shown in multiple pre-clinical systems that oral buffers

(e.g., bicarbonate, imidazoles, Tris, lysine) explicitly increase tumor

pHwithout changing systemic pHbalance. These rarely affect growth

of large primary or metastatic tumors but do inhibit small cancers

thus preventing carcinogenesis or spontaneous metastases. To

translate these studies into the clinic we started phase I/II clinical

trials of buffer as a single agent in pain management trials

(NCT01350583/01846429) and pancreatic cancer patients

(NCT01198821). However, these trials failed to accrue due to poor

compliance because of unpleasant taste and/or GI disturbances.

However, data from one trial did show a decrease in tumor-related

pain suggesting clinical efficacy may be significant if alternative

treatment strategies can be devises. Thus, we suggest investigating

pharmacological alternatives to achieve the same result (i.e., reducing

tumor acidity). As one possible solution to this issue, we have

developed a point-based plan to achieve the same buffering with a

combination of diet, supplements and buffers (Urbase®), that will be

added to a trialwith support fromAnti-cancer Foundation (Brussels).
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Medicine, Tokyo, Japan
The tumor microenvironment (TME) is characterized by interactions among

various cells, including tumor cells, immune cells, stromal cells, and blood

vessels mediated by factors such as cytokines and metabolites. The

development of cancer immunotherapy in recent years has facilitated a more

comprehensive understanding of the TME. The TME changes with cancer type

and host immune status, as well as with therapeutic intervention. However,

studies on pH regulation of the TME have been mostly based on lactate, a

metabolite of tumor cells. Notably, the Warburg effect results in the increased

production of secreted lactate, thereby acidifying the extracellular

microenvironment and affecting the surrounding cells. Lactate inhibits the

activation and proliferation of CD8+ T cells, M1 macrophages, natural killer

(NK) cells, and dendritic cells, contributing to tumor cell immune escape. It is also

involved in angiogenesis and tissue remodeling, as well as promotes tumor

growth and invasion. In this review, we have discussed the lactate-based pH

regulation in tumor cells in the TME and its effects on the other constituent cells.

KEYWORDS

pH, Warburg effect, lactate, immune escape, tumor microenvironment
Adjustment of acid-base balance

In humans, the extracellular fluid has a slightly alkaline pH of 7.40 ± 0.02. This

corresponds to an H+ ion concentration of 40 ± 2 nEq/l and is regulated by the excretion of

volatile and non-volatile acids produced in the body. Volatile acids, such as H2CO3, are

produced as CO2 from carbohydrates and fats, and approximately 15,000 mEq/day is

discharged from the lungs. Conversely, non-volatile acids include approximately 100 mEq/

day of amino acid metabolites and 30 mEq/day of phosphoric acid, a metabolite of nucleic

acids and ATP. Approximately 70 mEq/day (approximately 1 mEq/kg body weight) of
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non-volatile acids are neutralized by the kidneys using

approximately 60 mEq/day of bases derived from the diet. The

non-volatile acids produced are promptly scavenged by buffering

substances, thereby minimizing pH alterations. The bicarbonate

buffering system accounts for 60% of the extracellular fluid, the

bone buffering system, and Hb buffering system outside the cells,

whereas the HPO2−
4 and protein buffering systems are responsible

for buffering inside the cells. However, in pathological conditions

such as ischemia, inflammation, and systemic respiratory failure,

these buffer systems are dysregulated, thereby leading to local and

occasionally systemic acidemia (1). The gastrointestinal tract

controls the physiological pH by regulating the local neutral

range. Appropriate pH adjustment for local enzyme activation

regulates digestive function, especially because the different parts

of the digestive tract have different pH ranges (stomach pH 1.5–2,

duodenal pH 3–5, small intestinal pH 6, and large intestinal pH 7)

(2). Furthermore, an appropriate pH promotes diversity in the gut

microbiota, which produces metabolites that skillfully regulate host

immunity (3).

Osteoclasts promote an acidic microenvironment during bone

resorption. Osteoclasts adhere to the bone at the sealing zone, which

consists of polymerized actin; the demineralization of the bone is

promoted by releasing acid from cells through proton pumps (4).

These instances demonstrate the mechanisms by which living

organisms maintain their functions by adequately adjusting local

acid-base balance under physiological conditions.
Acidification mechanisms in the
tumor microenvironment

The extracellular pH, which is maintained at pH 7.4 in normal

tissues, decreases to approximately pH 6.8 in tumors. Decreased

extracellular pH in tumors has been reported in epithelial tumors

such as lung cancer, breast cancer, and melanoma, as well as in non-

epithelial tumors such as sarcoma (5–10). However, tumor tissue is

not uniformly acidic, and the pH varies from near neutral to

strongly acidic (11–14). This acidic TME is primarily attributed

to hypoxia and increased lactate levels owing to increased glycolysis

in cancer cells. The TME has a lactate concentration of 10–30 mM,

whereas that under physiological conditions is approximately 1.5–

3.0 mM (15).

Hypoxia is presumed to be caused by tumor vascular

abnormalities. Endothelial cell adhesion is looser in tumor blood

vessels than in normal blood vessels, resulting in increased vascular

permeability. Furthermore, the thickness of type IV collagen, which

constitutes the vascular basement membrane, is varied and irregular

in tumors depending on the site of the blood vessel; therefore,

tumor blood vessels have varying diameters and random

vasculature; thus, tumor arteries, veins, and capillaries lack a

hierarchical structure compared with that of normal blood vessels

(16). Consequently, cancer tissues have low blood flow despite the

abundance of blood vessels, thereby creating a hypoxic

microenvironment within the tumor tissue. Increasing

dysfunctional tumor blood vessels does not improve the hypoxic
Frontiers in Oncology 02158
microenvironment but promotes tumor growth (17). The

interaction between blood vessels and cells within the tumor

further promotes angiogenesis and tumor growth, thereby

inducing a hypoxic environment (18, 19).

In the hypoxic environment, increased stability of hypoxia-

inducible factor 1 (HIF1) results in increased glycolysis and a

subsequent decrease in extracellular pH (20). HIF1 stabilization

promotes glucose uptake and metabolism by enhancing the

expression of glucose transporter type 1 (GLUT1). This metabolic

process produces ATP, which increases the levels of lactate and

protons (H+), consequently resulting in decreased intracellular pH.

To maintain a constant intracellular pH, membrane proteins such

as the Na+/H+ exchanger isoform 1 (NHE1) and ATPase and

monocarboxylate transporters 1, 4 (MCT1, 4) excrete lactate and

protons outside the cell, resulting in a decrease in external pH (21,

22). Notably, the TME lactate is presumed to increase tumor

angiogenesis by promoting CXCL8 production from vascular

endothelial cells, thereby exacerbating hypoxic conditions and

reducing the extracellular pH (23).
Adaptation of tumor cells to the
acidic tumor microenvironment

In 1924, Otto H. Warburg proposed a phenomenon known as

the Warburg effect, in which cancer cells exhibit increased lactate

production in an aerobic environment; this opposes the Pasteur

effect, which reports the suppression of lactate production by

oxygen. However, the Warburg effect does not indicate

suppression of aerobic respiration, and mitochondrial aerobic

respiration in cancer is enhanced compared with that in normal

tissue (24). Furthermore, intracellular acidification inhibits

enzymes, such as phosphofructokinase-1, involved in glycolysis;

however, decreasing the TME pH does not necessarily promote

glycolytic metabolism. Nonetheless, oxidative phosphorylation

results in the production of 36 ATP molecules per glucose

molecule, whereas glycolysis results in the inefficient production

of 2 ATP molecules. Therefore, the preference for inefficient

glycolytic metabolism in cancer cells has been actively

investigated. The Warburg effect is a bona fide phenomenon

observed in vitro and in vivo in animal models and patients with

cancer (25). Furthermore, H+ accumulation occurs in the non-

hypoxic regions of the tumors, suggesting that cancer cells

purposefully select aerobic glycolysis depending on the time and

environment (11, 12, 26). Aerobic glycolysis utilizes glycolytic

intermediates for the de novo synthesis of nucleotides, lipids, and

amino acids required for cell proliferation and, together with TCA

cycle metabolites, supports tumor growth (24, 27–29). Thus, tumor

cells increase lactate production and induce a decrease in

extracellular pH, whereas intracellular pH remains unaltered or is

slightly higher than that of normal cells.

Tumor cell pH is determined by anion exchangers (SLC4A1,

SLC4A2, and SLC4A3), proton transporter vacuolar ATPase (V-

ATPase), mono-carboxylate transporters (MCT1, MCT2, MCT3,

and MCT4), chloride/bicarbonate exchanger (SLC4A8), and the
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Na+/H+ exchanger 1 (SLC9A1), NHE1, Na+/K+ ATPase pump,

H+/Cl− symporter, and carbonic anhydrase (CA) (22, 30).

Furthermore, the transitional utilization of lactic acid has been

reported. Metastatic breast cancer cells found in bone produce

lactate, suggesting that they promote osteoclast differentiation and

metastatic niche formation (31). Furthermore, in glioma cells,

lactate stimulates transforming growth factor-b2 (TGF-b)
expression, a key regulator of cancer cell migration, invasion,

epithelial-to-mesenchymal transition, and metastatic niche

formation (32). Furthermore, as elucidated later in the text, an

acidic environment inhibits the action of anti-tumor immune cells,

including T lymphocytes, natural killer cells, and M1 macrophages.

Conversely, it activates immunosuppressive cells such as regulatory

T cells and M2 macrophages. Glycolytic selection in the aerobic

environment of tumor cells is not necessarily favorable for cancer

cell growth per se. By creating an acidic environment, acid-induced

immunosuppression is relatively beneficial and may form a

favorable tumor microenvironment for cancer.
Adaptation of T and NK cells to the
acidic tumor microenvironment

Effector T cells (CTL), which play a crucial role in anti-tumor

immune responses, differentiate and proliferate from naive CD8+ T

cells via stimulation from IL-2 produced by CD4+ T cells presented

with cancer antigens by dendritic cells. Activated CTLs kill cancer

cells by producing IFN-g and perforin. In contrast, regulatory T

cells (Treg), which are immunosuppressive, play a critical role in

immune tolerance and avoid immune responses against self while

suppressing anti-tumor immune responses by CTLs. In humans,

Tregs are mainly released from the thymus to the periphery as naïve

Tregs and transform into effector Tregs upon antigen stimulation.

Effector Tregs suppress the maturation of antigen-presenting cells,

consume IL-2, and produce inhibitory cytokines (such as TGF-b
and IL-10), thereby suppressing the activation of cytotoxic T

lymphocytes (CTLs) and CD4+ helper T cells. Kumagai et al.

reported that PD-1 inhibitor treatment benefited patients with

lung and gastric cancers and high and low PD-1 expression on

effector T cells and Tregs, respectively (33).

Extracellular acidosis suppresses T cell-mediated immunity,

and neutralization of tumor acidity reportedly improves

antitumor responses to immunotherapy. Lowering the pH of the

TME likely induces anergy in human and mouse tumor-specific

CD8+ T cells through mTORC1 inhibition, thereby reducing

cytolytic activity and cytokine production (34).

Several studies have reported on the effect of lactate on T cells,

which is the primary cause of TMEpH reduction.Many effector T cells

are inactivated by glucose depletion and elevated lactate levels triggered

by tumor cells, as their proliferation and cytokine production are

highly dependent on glycolysis (35). Inhibition of glycolysis in CD4+

helper T cells and CTLs also reduces cell motility associated with

decreased responsiveness to chemokines (36). Furthermore, the high

lactate concentration in the TME inhibits lactate efflux from T cells,

thereby reducing cytokine production and cytotoxic activity (37, 38).

In contrast, in Treg cells, the master transcription factor forkhead box
Frontiers in Oncology 03159
P3 (FOXP3) makes energy production less reliant on glycolysis and

more on oxidative phosphorylation, which improves survival and

maintains immune suppressive function in low-glucose and high-

lactate environments (39, 40). Thus, TME lactate elevation reduces

effector T cell function and attenuates anti-tumor immunity without

affecting Treg cell function. Furthermore, lactate in the TME reduces

the release of soluble granule contents such as perforin and granzyme

fromNK cells, decreases the production of cytokines such as IFN-g and
TNF-aand indirectly suppresses NK cell function by increasing

MDSCs (41–43). Moreover, the effects of the acidic TME on NK

cells are reversible: oral administration of bicarbonate to a lymphoma

mouse model and raising the TME pH to the physiological pH of 7.2–

7.5 increased the production of IFN-g by NK cells and suppressed

tumor growth (44).
Adaptation of macrophages to the
acidic tumor microenvironment

Macrophages are divided into M1 and M2 phenotypes. M1

macrophages are responsible for innate immune responses through

the secretion of inflammatory cytokines, phagocytosis of foreign

substances, and the presentation of antigens. They are involved in

Th1-type responses. Th1 cytokines such as IFNg and IL-12 and

foreign antigens such as lipopolysaccharide (LPS) induce

differentiation to the M1 phenotype. Conversely, M2 macrophages

are induced by Th2 cytokines such as IL-4, IL-10, and IL-13 and play

pivotal roles in immunosuppression, tissue remodeling, and

angiogenesis. TAMs often exhibit M2-like traits in many malignant

tumors and act as tumor promoters (45). IL-10 and TGF-b secreted

by TAMs suppress Th1, as well as induce regulatory T cells, thereby

suppressing T cell immune responses (46).

An acidic TME favors polarization to M2 macrophages in vitro

and in vivo and additionally increases angiogenic vascular endothelial

growth factor (VEGF) production (47, 48). The lactate-induced M2

macrophage polarization reportedly involves the ERK-STAT3

signaling pathway (49), HIF1a stabilization (50), and G protein-

coupled receptor 132 (GPR132) activation. Furthermore, Zhang

et al. reported that post-translational modification of histone

proteins by lactyl groups derived from lactate induces M2

polarization (51). Furthermore, lactate inhibits monocyte

differentiation into dendritic cells, and high lactate levels in the TME

may interfere with dendritic cell formation and accumulation (52).
Adaptation of myeloid-derived
suppressor cells to the acidic
tumor microenvironment

Myeloid-derived suppressor cells (MDSCs) are classified into

granulocytic/polymorphonuclear MDSCs (PMN-MDSCs) and

monocytic MDSCs (M-MDSCs) according to their origin. A

hallmark of MDSCs is their ability to inhibit immune responses,

including those mediated by T, B, and NK cells. M-MDSCs and

PMN-MDSCs share features that facilitate suppression of immune
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responses, including the activation of STAT3 expression, induction of

ER stress, expression of arginase 1, and expression of S100A8/A9.

Furthermore, PMN-MDSCs preferentially use reactive oxygen species

(ROS), peroxynitrite, arginase 1, and prostaglandin E2 (PGE2) to

mediate immunosuppression, whereasM-MDSCsmediate nitric oxide

(NO), induce immunosuppression through immunosuppressive

cytokines such as IL-10 and TGFb and immunomodulatory

molecules such as PDL1 (53).

MDSCs reportedly upregulate PD-L1 expression and PD-1-

mediated suppression of T cells through the lactate-induced HIF1a
pathway in TMEs (54). Furthermore, MDSCs may promote the

formation of tumor blood vessels by enhancing the production of

angiogenic factors such as VEGF through the lactate-induced HIF1a
pathway in TMEs, further contributing to the hypoxic conditions (43).

VISTA, an immune checkpoint molecule expressed in MDSCs, is

directly induced by acidification, resulting in immunosuppression (55).
Adaptation of cancer-associated
fibroblasts to the acidic tumor
microenvironment

In some cancers, such as breast and pancreatic cancers, cancer-

associated fibroblasts (CAFs) are the most prominent stromal cell

type, and their presence is associated with a poor prognosis. They

have various origins, including resident tissue fibroblasts educated

by primary cells, mesenchymal cells recruited from the bone

marrow to the TME, and adipocyte-derived progenitor cells. The

functions of CAFs in the TME are also diverse and participate in

promoting tumor progression, including direct cancer cell

proliferation, immunosuppression, angiogenesis, and promotion

of extracellular matrix (ECM) remodeling. These functions are

mediated by complex reciprocal signaling interactions with cancer

cells, the ECM, and infiltrating immune cells (56).

CAF directly interacts with prostate cancer cells to promote lactate

production through the expression of the glucose transporter GLUT1

and to induce TME acidification by releasing lactate via

monocarboxylic acid transporter-4 (MCT4). Simultaneously, it

induces Th1 cell suppression and Treg-induced immunosuppression

(57, 58). Thus, CAF promotes metabolic-based tumor growth with

TME acidification by interacting with tumor cells.
Approaches of alkalization of the
acidic TME

As described above, TME acidification by cancer cells is

considered to be one of the immune escape mechanisms and
Frontiers in Oncology 04160
causes poor clinical outcomes. Therefore, in addition to alkalizing

agents such as bicarbonate, inhibitors against membrane-bound

proton transporters, such as NHE1, Na+/K+ ATPase pump, V-

ATPase, H+/Cl− symporter, MCT, and CA have been attempted to

be developed as alkalizing therapy for TME (59, 60). In clinical

practice, there is a report that the prognosis was improved by

alkalizing therapy, using urinary pH as an indicator of

alkalinization (61–63). In addition, CAIX inhibitors, which are

intensively researched (64), have been reported to enhance ICI

antitumor effects in preclinical models, and clinical applications of

combined immunotherapy and alkalizing therapy are expected in

the future.
Conclusion

Tumors exploit the local acidification using lactate to interact

with the cells that constitute the TME and facilitate immune escape,

which involves the suppression of immune cells with anti-tumor

activity, activation of immunosuppressive cells, and promotion of

the malignant transformation of CAF-forming stroma and

proliferation of tumor blood vessels. The development of

therapeutics that inhibit pH-responsive proteins, such as MCT,

and the administration of buffers to adjust the pH level of the TME

may be further explored as potential therapeutic alternatives.
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