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Editorial on the Research Topic
Volume II: Tumor microenvironment in cancer hallmarks and therapeutics

Cancer biomarkers have many important applications in oncology, including risk
assessment, diagnosis, prognosis, prediction of treatment response, and disease
progression (Sarhadi and Armengol, 2022). In the past, cancer biomarkers were mainly
focused on the discovery of mutated genes occurring in cancer cells themselves (Jahangiri
and Aghi, 2012; Ganguly et al., 2019). However, tumor cells live in the immunosuppressed
tumor microenvironment, and the immune response is also critical to the prognosis of
patients. Therefore, there is an urgent need to explore new cancer biomarkers, which could
not only indicate prognosis, but also guide tumor therapy, especially tumor immunotherapy
(Wu and Dai, 2017; Liu et al., 2022).

This Research Topic is dedicated to publishing new prognostic and therapeutic
biomarkers, especially those related to tumor microenvironment (TME), based on large
databases and large sample analyses, which will be more beneficial for tumor screening and
treatment. A total of 13 articles are included in this Research Topic.

Five articles are devoted to single gene database analysis. Du et al. used the database for
somatic mutation analysis and found that FRAS1 Related Extracellular Matrix 2 (FREM2)
was one of the genes with the highest mutation frequency in patients with colorectal
adenocarcinoma and was closely associated with poor prognosis. Meanwhile, the random
forest method was used to construct a prognosis model with good predictive function based
on FREM2 mutation. The prediction accuracy was high (83.9%), and a total of 13 prognostic
pattern characteristic genes related to overall survival were identified. These results suggest
that FREM2 mutation may be a potential prognostic marker for colon cancer. Another
research found that collagen triple helix repeat containing 1 (CTHRC1), a glycosylated
protein, was significantly expressed in cancer tissues of colorectal adenocarcinoma patients
and was associated with poor patient outcomes. More importantly, authors found that
CTHRC1 expression was positively correlated with a variety of immune cell infiltration,
including CD8+ T cells, CD4+ T cells, neutrophils, macrophages, and dendritic cells, which
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may provide a theoretical basis for the development of new
immunotherapeutic targets based on CTHRC1. Liu et al. found
that interleukin-1 receptor-associated kinases1 (IRAK1), an active
kinase that plays a key role in the IL-1/TLR signaling pathway, is
upregulated in more than two dozen cancers. And the expression
level of IRAK1 is closely related to the efficacy of anti-PDL1, which
may be a reliable marker for predicting the efficacy of tumor
immunotherapy. In addition, pan-cancer analysis of targeted type
2 mannose receptor C (MRC2) suggested significant associations
with immune cell infiltration, immunomodulators, and
immunotherapeutic markers, particularly in patients with
metastatic melanoma and advanced urothelial carcinoma. Bai
et al. also found that the expression of laminin subunit gamma 1
(LAMC1) in different types of renal cancer was completely opposite
to the prognosis, and database analysis suggested that this might be
closely related to the different tumor immune microenvironment.

Another five papers are devoted to multigene database analysis. A
retrospective study of breast cancer samples by Zhu et al. showed that
the Systemic Inflammation Index (SIRI) can independently predict
breast cancer survival. Lower SIRI predicted increased disease-free
survival and overall survival. In addition, Sun et al. developed a
considerable nomogram. Trp-related immune gene (TRIG) scores
were negatively correlated with immune activation and overall
survival. At the same time, TRIG score was also significantly
correlated with immune cell infiltration and immune checkpoint
expression in TME, which might provide new strategies for
prognosis assessment and tumor immunotherapy in lung
adenocarcinoma patients. Ephrin family genes (EFNs) and the
prognostic and immunological characteristics of liver cancer patients
were analyzed in another research. The authors found that EFNA3,
EFNA4 and EFNB1 were independent prognostic factors and were
closely related to tumor immunity. Zhou et al. conducted a
comprehensive analysis of the relationship between genes related to
single carbon metabolism and prognosis, chemotherapy resistance and
immunotherapy in patients with lung adenocarcinoma. According to
the expression of 7 prognostic related genes in 497 LUAD samples, the
authors divided the sample into two clusters, and pointed out that
cluster 1 had worse prognosis and stronger chemotherapy resistance,
but cluster 1 had more significant immunotherapy efficacy, providing a
theoretical basis for immunotherapy in LUADpatients. In a study of the
association between cuproptosis-related genes and papillary renal cell
carcinoma (PRCC) development, prognosis, and treatment, authors
created and validated a risk score for predicting overall survival,
indicating that the lower the risk score, the better the tumor
immune microenvironment, the longer the overall survival, and the
stronger the sensitivity to chemotherapy drugs.

In addition, Liu et al. analyzed the tumor immune
microenvironment and found that the survival rate of cervical

cancer patients with low immune level in tumor was lower than
that of patients with high immune level, which may be related to the
reduced level of immune infiltration caused by the high methylation
level in the TME. This finding is of great significance for hierarchical
management of patients and precise targeted therapy.

Finally, two reviews are included in this Research Topic. One
paper summarized the role of cytokines most associated with EMT
in tumor progression, invasion, migration, and metastasis formation
of bladder cancer. The other provides a comprehensive discussion of
exosomes and their role in various aspects of cancer biology. Both
these cytokines and exosomes might serve as new biomarkers for
efficient diagnosis.

In conclusion, recent studies have used large databases and other
state-of-art technologies to accurately analyze the significance of one
or more genes that are misregulated in a specific TME for tumor
diagnosis, prognosis, and treatment. These studies have greatly
expanded our current understanding of tumor biomarkers and
will facilitate further development.
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Genemutations play an important role in tumor progression. This study aimed to identify genes
that were mutated in colorectal cancer (CRC) and to explore their biological effects and
prognostic value in CRC patients. We performed somatic mutation analysis using data sets
from The Cancer Genome Atlas and International Cancer Genome Consortium, and identified
that FREM2 had the highest mutation frequency in patients with colon adenocarcinoma
(COAD). COADpatients were divided into FREM2-mutated type (n= 36) and FREM2-wild type
(n = 278), and a Kaplan-Meier survival curve was generated to perform prognostic analysis. A
FREM2-mutation prognosis model was constructed using random forest method, and the
performance of the model was evaluated using receiver operating characteristic curve. Next,
the random forest method and Cox regression analysis were used to construct a prognostic
model based on the gene expression data of 36 FREM2-mutant COAD patients. The model
showed a high prediction accuracy (83.9%), and 13 prognostic model characteristic genes
related to overall survival were identified. Then, the results of tumormutation burden (TMB) and
microsatellite instability (MSI) analyses revealed significant differences in TMB and MSI among
the risk scores of different prognostic models. Differentially expressed genes were identified
and analyzed for functional enrichment and immune infiltration. Finally, 30 samples of CRC
patients were collected for immunohistochemical staining to analyze the FREM2 expression
levels, which showed that FREM2 was highly expressed in tumor tissues. In conclusion, CRC
patients had a high level of FREM2 mutations associated with a worse prognosis, which
indicated that FREM2 mutations may be potential prognostic markers in CRC.

Keywords: Frem2, gene mutation, colorectal cancer, prognosis, biomarker
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INTRODUCTION

Colorectal cancer (CRC) is one of the most common malignant
tumors that seriously endanger human health nowadays (Sung
et al., 2021). In recent years, changes in dietary structure and
living habits have been accompanied by an increase in the
incidence and mortality of CRC patients in China (Feng et al.,
2019). Nonetheless, the prognosis of CRC patients remains
remarkably poor, highlighting the need for further
understanding the molecular mechanism of the
development of CRC and the identification of new
prognostic biomarkers. The pathogenesis of CRC is
complex and involves genetic and environmental factors.
Previous studies have found that gene mutations leading to
abnormal cell signal transduction are closely related to the
occurrence and development of CRC (Nakayama and Oshima,
2019).

FRAS1 Related Extracellular Matrix 2 (FREM2), located on
13q13.3, encodes an integral membrane protein that contains a
large amount of chondroitin sulfate proteoglycan element
repeats and Calx-beta domains (Yu et al., 2018), which
confer it with sodium-calcium exchanger activity,
permitting this protein to export calcium from the cell.
Additionally, FREM2 forms part of the FREM2-FRAS1-
FREM1 protein complex, which plays an important role in
epidermal-dermal interactions (Kiyozumi et al., 2006).
Previous studies have found that FREM2 is related to the
development of the eye (Zhang et al., 2019) and kidney
epithelium (Al-Hamed et al., 2021). Recently, it has been
found that FREM2 is highly expressed in gliomas and that
patients with high expression levels of FREM2 show a better
prognosis (Jovcevska et al., 2019). However, the role of FREM2
in CRC has not been investigated to date.

In the study, we performed somatic mutation analysis using
The Cancer Genome Atlas (TCGA) and International Cancer
Genome Consortium (ICGC) databases and we found that
FREM2 had the highest mutation frequency. First, prognostic
analysis revealed that CRC patients with FREM2 mutations
had a worse prognosis. Subsequently, a prognostic model was
constructed based on the gene expression data of 36 FREM2-
mutant CRC patients, the efficacy of the model was evaluated,
and 13 prognostic model characteristic genes related to OS
were identified. Next, the tumor mutation burden (TMB) and
microsatellite instability (MSI) were compared between the
risk scores of different prognostic models. The genes
differentially expressed between FREM2-mutant type and
FREM2-wild type were identified, and functional
enrichment and immune infiltration analysis were
performed. Finally, the FREM2 protein expression levels
were detected using immunohistochemical staining in 30
CRC patient tissues. In conclusion, FREM2 was highly
expressed in CRC and showed a higher level of mutation in
CRC patients than in healthy controls. The presence of FREM2
mutations was associated with a worse prognosis in CRC
patients, indicating that FREM2 mutation may be a
potential prognostic biomarker for CRC.

MATERIALS AND METHODS

Data Processing
Gene somatic mutation data (MAF files) were downloaded from
the colon adenocarcinoma (COAD) project of TCGA (http://
cancergenome.nih.gov/) (Tomczak et al., 2015) and COAD-CN
cohorts of ICGC (www.icgc.org). RNAseq data in level 3 HTSeq-
FPKM format was downloaded from TCGA-COAD. The
RNAseq data in fragments per kilobase per million (FPKM)
format was converted into transcripts per million reads (TPM)
format and log2 conversion was performed for subsequent
analysis. The main goal of the ICGC database is to
comprehensively study the genomic changes in a variety of
cancers that contribute to the global burden of human disease.
It comprises data on about 50 different cancer types (or subtypes),
including information about abnormal gene expression, somatic
mutations, epigenetic modifications, and clinical data among
others. In total, 25,000 tumor genomes are compiled in the
ICGC. The corresponding clinicopathological characteristics,
such as gender, age, stage, etc., and prognostic information of
TCGA-COAD patients were downloaded from the UCSC Xena
website (http://xena.ucsc.edu/). RNA sequencing data (count
value) of 399 samples (TCGA-COAD) with corresponding
mutation and survival data were obtained from TCGA
database for subsequent analysis. The GRCh38 version of the
genome in the Ensembl database (ftp://ftp.ensembl.org/pub/
current_gtf) was used for annotation (Howe et al., 2021). In
addition, copy number variation (CNV) data were downloaded
from TCGA database. The clinical characteristics of the patients
are shown in Supplementary Table S1.

Mutation Analysis
With the development of tumor genomics, the mutation
annotation format (MAF) is being widely accepted and used
to store detected somatic mutations. In this study, the maftools
package (Mayakonda et al., 2018) and the GenVisR package
(Skidmore et al., 2016) were used to visualize the somatic
mutation data downloaded from TCGA. The somatic
mutation data of COAD patients from the ICGC were
visualized using the GenVisR package. The G3viz package
(Guo et al., 2020) was used to visualize the FREM2 mutations.
In addition, to check whether the CNVs of this gene were
associated with COAD, GISTIC2.0 of the Genepattern (https://
cloud.genepattern.org/) cloud analysis platform was used to
analyze the CNV data obtained from TCGA database (Reich
et al., 2006).

Analysis of the Effects of FREM2 Mutations
on the Prognosis of Patients With COAD
According to the gene expression data of COAD patients
downloaded from TCGA, the patients were divided into
mutation group (n = 36) and wild type group (n = 278)
according to the FREM2 mutation status. Survival analysis was
performed to study the prognostic difference between the
mutation and the wild type groups based on the information
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about the prognosis of patients with COAD. Additionally, all
patients with COAD, whose gene expression data was available,
were randomly divided into training (n = 266) and test (n = 90)
sets at a ratio of 3:1. A robust model of FREM2 mutation
prediction was constructed on the training set using the
random forest (RF) method (Yperman et al., 2020). The
performance of the model was evaluated using the receiver
operating characteristic (ROC) curve.

Construction of the Prognostic Model
The gene expression data of 36 FREM2-mutant COAD patients
with clinical information were used to construct a prognostic
model. First, a univariate Cox regression analysis was performed
to initially identify the genes related to OS (p value <0.05). Next, a
prognostic risk model was established using the RF method and
multivariate Cox regression analysis. The risk score calculation
formula was:Risk score = exp gene 1 * β gene 1 + exp gene 2 * β
gene 2 + exp gene 3 * β gene 3 +. . . exp gene n * β gene n (exp gene
n: the expression level of gene n; β gene n: the regression
coefficient of the multivariate Cox regression analysis of gene
n). Next, correlation analysis of FREM2 mRNA expression levels
with risk scores and the expression levels of characteristic genes in
the model were conducted.

Evaluation of the Efficacy and Clinical
Relevance of the Prognostic Models
According to the median risk score, FREM2-mutant COAD
patients with clinical information were divided into high-risk
and low-risk groups. Kaplan–Meier (K–M) survival curve
analysis and time-dependent ROC were used to analyze overall
survival (OS) to evaluate the prediction accuracy of the model.
Next, among COAD patients with FREM2 mutations, univariate
and multivariate Cox regression analyses were performed using
clinicopathological variants, such as age, gender, clinical stage, and
tumor stage, as well as risk score of patients. Lastly, the correlation
between the risk score and clinical characteristics was analyzed.

Analysis of TMB and MSI
Considering that different types of FREM2 mutations may have
different roles in tumorigenesis, the expression data of COAD
patients were divided into inactivating mutation subgroups and
other non-silent mutation subgroups. K–M survival curve and
time-dependent ROC were used to analyze the prognosis of the
two subgroups.

TMB refers to the total number of somatic mutations in the
exon coding region of the genome that have substitutions,
insertions, or deletions per Mb base in a tumor sample. The
TMB score of each sample depicts the total number of somatic
mutations (including non-synonymous point mutations,
insertions, and deletions in the exon coding region)/target area
size, and the unit is mutations/Mb (Chan et al., 2019). A
microsatellite is segment of tandem repeats in the human
genome, such as single nucleotide repetitions or dinucleotide
repetitions. MSI refers to the change of any length of
microsatellite caused by the insertion or deletion of repeat
units in tumor tissues compared to normal tissues (Hile et al.,

2013). MSI is calculated as the number of insertions or deletions
in gene repeats. In his study, we separately analyzed the
relationship between the risk score of the prognosis model
with TMB and MSI.

Identification of Differentially Expressed
Genes
To investigate the effects of FREM2mutation on the gene expression
levels, samples in TCGA data set were divided into FREM2-mutant
type and FREM2-wild type according to their mutation status. Then,
the R package limmawas used to analyze the differences between the
groups (Ritchie et al., 2015). The thresholds for considering a gene as
differentially expressed were set as |log fold change (logFC)| > 0.5
and p value < 0.05. Genes with logFC >0.5 and p value <0.05 were
considered to be differentially up-regulated and those with logFC <
−0.5 and p value < 0.05 were considered to be differentially down-
regulated. The results of this analysis were displayed using heat map
and volcano plot.

Gene Function and Pathway Enrichment
Analysis
Gene Ontology (GO) enrichment analysis is a common method
for large-scale functional enrichment studies of genes in different
dimensions and at different levels, generally from three levels:
biological process, molecular function, and cellular component
(Ashburner et al., 2000). Kyoto encyclopedia of genes and
genomes (KEGG) (Kanehisa and Goto, 2000) is a widely used
database that contains information about genomes, biological
pathways, diseases, and drugs. We used the R software package
clusterProfiler (Yu et al., 2012) to perform GO function
annotation and KEGG biological pathway enrichment analysis
on differentially expressed genes to identify significantly enriched
biological processes and pathways. p value <0.05 was considered
statistically significant.

Gene Set Enrichment Analysis (GSEA) and
Gene Set Variation Analysis (GSVA)
GSEA is a n method used to determine whether a set of predefined
genes show statistical differences between two biological states. It is
generally used to estimate changes in pathway and biological process
activity in expression data sets (Subramanian et al., 2005). In order to
study the differences in the biological processes of genes between the
FREM2-mutant and the FREM2-wild type groups, the reference gene
sets “C5.go.v7.4.symbols.gmt” and “c2.cp.kegg.v7.4. symbols. gmt”
were downloaded from the MSigDB database (Liberzon et al., 2015).
The R package “clusterProfiler” was used to perform GSEA on
TCGA-COAD gene expression profile data. p value <0.05 was
considered statistically significant.

GSVA (Liberzon et al., 2015) is a non-parametric
unsupervised analysis method that relies on converting the
expression matrix of genes between different samples into the
expression matrix of gene sets between samples to evaluate the
gene set enrichment results of the transcriptome, and to further
evaluate whether different metabolic pathways are enriched in
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different samples. In order to study the biological process that
were altered in the FREM2-mutant group compared to the
FREM2-wild type group, GSVA was performed using the R
package “GSVA” (Hanzelmann et al., 2013). The reference
gene set “h.all.v7.4.symbols.gmt” from the MSigDB database
was downloaded to calculate the enrichment score of each
sample in the data set in each pathway. Finally, the correlation
between the GSVA results and the risk score was analyzed.

Immune-Cell Infiltration Analysis
The immune microenvironment is a complex integrated system
mainly composed of immune cells, inflammatory cells,
fibroblasts, interstitial tissues, and various cytokines and
chemokines. Analysis of immune cell infiltration in tissues is
an important tool in understanding the pathological mechanisms
of a disease and guiding prognosis prediction.

ESTIMATE is an algorithm that quantifies the immune
infiltration level in tumor samples based on gene expression
data, which can reflect the diversity of the stroma and
immune cells. In this study, the estimate package in R
(Yoshihara et al., 2013) was used to estimate the content of
stromal cells and immune cells in TCGA-COAD. The correlation
between the characteristic genes of the prognosis model and the
expression levels of FREM2 and the ESTIMATE score were
analyzed.

CIBERSORT is an algorithm that deconvolves the expression
matrix of immune cell subtypes based on the principle of linear
support vector regression using RNA-Seq data to estimate the
abundance of immune cells in the tissue. In this study, the
proportion of 22 immune cell subtypes in TCGA-COAD
immune microenvironment was evaluated using the
CIBERSORT algorithm (Newman et al., 2019) in R software.
The number of permutations was set to 1,000, and a p value <0.05
was considered be representative of an accurate sample for
calculating the content of immune cells. Using Pearson
correlation analysis, the correlation between the expression of
characteristic genes of the prognostic model and the expression
levels of FREM2 and 22 types of immune cells in COAD was
calculated.

To examine the biological processes and cell signaling
pathways that the characteristic genes of the prognostic
model may participate in, the immune gene set from the
ImmPort database (Bhattacharya et al., 2014) (https://www.
immport.org) was downloaded and the relationships between
characteristics genes of the prognostic model and FREM2 and
the immune genes were analyzed. Major histocompatibility
complex (MHC) is expressed on the cell surface of all
nucleated cells, and the human MHC is collectively referred
to as human leukocyte antigen (HLA). HLA is a key molecule in
antigen presentation and antigen recognition by immune cells.
The relationships between the expression levels of members of
the HLA family and the risk score of the prognostic model was
also analyzed.

Patients Tissue Specimens
A total of 30 patients fulfilling the inclusion criteria (histologically
confirmed stage II or III or IV melanoma) at The First People’s

Hospital of Foshan between 2019 and 2021 were included in the
present study (Supplementary Table S2). The exclusion criteria
were as follows: 1) Incomplete previous medical history,
immunohistochemistry (IHC) information, and follow-up
information; 2) cancer recurrence post-surgery; 3) patients
with multiple tumors; 4) patients who received radiotherapy/
chemotherapy before surgery. Patient-informed consent was
obtained and approved by The First People’s Hospital of
Foshan Subject Review Board.

IHC Staining and Analysis
IHC staining was performed as previously described elsewhere
(Yang et al., 2021). Briefly, specimens were incubated with
individual primary antibodies (anti-FREM2, 1:50, Atlas
Antibodies; anti-Ki-67,1:100, Abcam) and then washed and
incubated with horseradish peroxidase–conjugated secondary
antibody (goat anti-rabbit, 1:500, Cell Signaling Technology).
Colorimetric reaction was using diaminobenzidine (DAB).

All specimens were examined using the cross-product (H
score) of the percentage of tumor cell staining at each of the
three staining intensities. The intensity of immunopositivity
was scored as follows: none, 0; weak, 1; moderate, 2; and
strong, 3. For example, a particular tumor may have 50% cell
staining at intensity = 1 and 50% of cell staining at intensity =
3, it would have a combined H score of 200 [(50 × 1) + (50 × 3)
= 200], with a range from 0 to 300. The final score was graded
by H score as follows: Low, H score 0–100; Moderate, H score
101–200; and High, H score 201–300. All IHC sections were
scored blindly by three independent pathologists. The IHC
score were agreed upon by at least two out of three
pathologists.

Expression Levels of FREM2 in Pan-Cancer
and COAD
UALCAN (http://ualcan.path.uab.edu/index.html) is an effective
online analysis and mining website for cancer data, mainly based
on the relevant cancer data in TCGA database (Chandrashekar
et al., 2017). UALCAN database was used to analyze the
expression levels of FREM2 in pan-cancer and COAD. The
Human Protein Atlas (HPA, https://www.proteinatlas.org/) is a
comprehensive database that provides the protein expression
profiles for a large number of human proteins, presented as
immunohistological images from most human tissues. The
HPA database was used to detect the expression of FREM2 in
COAD tissues.

Statistical Analysis
All data calculation and statistical analysis were performed using
R (https://www.r-project.org/, version 4.1.0). Benjamini-
Hochberg was used for multiple test correction, and false
discovery rate was used in multiple tests to correct for
multiple testing. For the comparison of two groups of
continuous variables, normally distributed variables were
analyzed using independent Student’s t test, and non-normally
distributed variables were analyzed using Mann-Whitney U test
(Wilcoxon rank sum test). The survival package of R (Durisova
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FIGURE 1 | Somatic mutation and copy number variation analysis in colon adenocarcinoma (COAD) patients. (A) The 68 genes with the highest mutation frequency
in COAD patients from The Cancer Genome Atlas (TCGA). (B) The mutations of 68 genes in the International Cancer Genome Consortium (ICGC) database. In the two
waterfall charts, the left panel shown genes with high frequency mutations arranged according to their mutation frequency and the right panel shows different types of
mutations represented by various color modules. (C) The mutations of FREM2 in TCGA cohort and (D) in the ICGC cohort. (E,F) Identification the amplification and
deletion of FREM2. The mRNA located at the focal copy number alteration peak was related to COAD. The false discovery rate (Q value) and the change score of
GISTIC2.0 (x-axis) correspond to the position of the genome (y-axis). The dotted line indicates the centromere. The green line represents the 0.25 Q value cutoff point for
determining significance.
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and Dedik, 1993) was used for survival analysis, the K–M survival
curve was used to show the difference in survival, and the log-
rank test was used to evaluate the significance of the difference in
survival time between the two groups. Univariate and
multivariate Cox analyses were used to determine independent
prognostic factors. pROC and ROCR packages were used to
construct the ROC curve (Sing et al., 2005; Robin et al., 2011),
and the area under the curve (AUC) was used to evaluate the
accuracy of prognosis estimated by the risk score. All p values
were two-sided, and p value <0.05 was considered statistically
significant.

RESULTS

Identification of the FREM2 Mutation
Frequency in COAD
We identified 68 genes with somatic mutation data in TCGA-
COAD patients obtained from TCGA (Figure 1A). Additionally,
these 68 genes were also identified in the data downloaded from
the ICGC database (Figure 1B). As shown in Figures 1C,D, the
mutation frequency of FREM2 was relatively high, and the
mutation of FREM2 was visualized. We used GISTIC 2.0 to
identify genes that exhibited significant amplification or deletion
using the CNV data in TCGA. FREM2 did not show significant
amplification or deletion (Figures 1E,F).

Construction of FREM2Mutation Prediction
Model
Survival analysis was performed according to the FREM2
mutation and prognostic information of patients with COAD.
The results showed that FREM2mutations significantly impacted
the prognosis and survival of patients with COAD (Figure 2A).
In the training set, the RF method was used to construct a FREM2
mutation prediction model based on the mRNA data (Figures
2B,C). The ROC curve and the AUC were used to evaluate the
performance of the model. An AUC value close to 1 indicates that
the model has a high sensitivity at a very low false-positive rate.
The AUC value of the model in the training cohort was 1.00, and
the AUC value in the validation cohort was 84.4% (Figure 2D),
indicating that the performance of the model was sufficient to
effectively predict FREM2 mutations in other cohorts.

Construction of a Prognostic Model
Using the gene expression data of 36 FREM-mutant COAD
patients with clinical information, univariate Cox regression
analysis was performed to initially identify 20 genes related to
OS (p-value <0.05) (Figure 3A). Next, we used the RF method to
select the most important genes related to prognosis. The results
identified a total of 13 genes: FOXC1, PRRG3, USP29, CCDC116,
LRRC52, CTLA4, TCF23, CA7, TM4SF4, SP7, C8G, EFCAB5, and
PKHD1L1 (Figure 3B). Next, multivariate Cox regression
analysis clarified the correlation between these 13 genes and

FIGURE 2 | FREM2mutation survival analysis and model construction. (A) The effect of FREM2mutation on the overall survival time of the patients. Blue indicates
FREM2-wild type, and red indicates FREM2-mutant type. (B,C) Random Forest method to construct FREM2mutation model. (D) Performance of the FREM2mutation
model in the test set.
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FIGURE 3 | Prognosis model of FREM2mutation. (A) The forest plot of the top 20 prognosis-related genes obtained by univariate Cox regression analysis. The left
side of the vertical dashed line shows the protective gene, and the right-side shows the risk gene. (B) The 13 important features selected based on random forest. Risk
score, survival status and characteristic gene expression analysis of FREM2-mutant type (C) and FREM2-wild type (D). (E) Scatter plot of the correlation between
FREM2 expression and risk score. (F) Correlation between the expression levels of FREM2 and characteristic genes. The size of the dot represents the strength of
the correlation between FREM2 and the characteristic gene; the larger the dot, the stronger the correlation, and vice versa. The color of the point represents the p value.
The greener the color, the smaller the p value, and the pinker the color, the larger the p value. p value <0.05 was considered statistically significant.
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FIGURE 4 | Prognostic model analysis and clinical model construction. The effect of risk score on overall survival of FREM2-mutant type (A) and FREM2-wild type
(B) patients. Blue indicates low risk score, and green indicates high risk score. Correlation analysis of risk score with age (C), gender (D), and tumor stage (E). (F) The
receiver operating characteristic curve of the clinical prediction model in 36 FREM2-mutant samples.
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OS. The Cox regression coefficients of the 13 characteristic genes
were calculated and used to estimate the risk score of each sample,
which was calculated as the sum of the expression levels of each
characteristic gene multiplied by their regression coefficients.

We evaluated the predictive performance of the prognostic
model using the FREM2-mutant and FREM2-wild type groups.
Based on the prognostic model, the risk scores of COAD patients
were calculated and sorted, and the survival status of each patient
was displayed on a dot plot (Figures 3C,D). The correlation
between FREM2 expression levels and risk score and
characteristic genes expression levels was analyzed. The
expression level of FREM2 was positively correlated with the risk
score (Figure 3E). Additionally, the expression level of FREM2 was
significantly positively correlated with that of PRRG3 (r = 13.651),
USP29 (r = 56.206), CCDC116 (r = 11.403), LRRC52 (r = 44.466),
TCF23 (r = 9.083, TM4SF4 (r = 0.003), SP7 (r = 8.531), and EFCAB5
(r = 5.282), and negatively correlated with that of FOXC1 (r =
−10.22), CTLA4 (r = −5.152), CA7 (r = −11.705), C8G (r = −2.951),
and PKHD1L1 (r = −20.17) (Figure 3F).

Evaluation of the Prognostic Model
According to the median risk score, FREM2-mutant COAD
patients with clinical information were divided into high-risk

and low-risk groups. The results of survival analysis showed that
there was a significant difference in OS between the two risk
groups in which the 36 FREM2-mutant samples had been divided
(Figure 4A). However, there was no significant difference in OS
between the high- and low-risk groups in which the 278 FREM2-
wild type samples were divided (Figure 4B). The correlation
analysis between the risk score and the clinical characteristics of
the 36 FREM2-mutant samples showed that there were no
significant differences in risk scores across different ages,
genders, and tumor stages (Figures 4C–E). According to the
age, gender, tumor stage, and risk score of COAD patients with
FREM2 mutations, univariate Cox analysis and multivariate Cox
analysis were performed to construct a clinical prediction model.
The efficacy of the model in 36 FREM2-mutant samples was
83.9% (Figure 4F).

Analysis of TMB and MSI
Considering that different FREM2 mutation types may have
different roles in the occurrence of rectal cancer, we divided
the 36 FREM2-mutant COAD patients into two subgroups:
patients with inactivating mutations (n = 27, including non-
sense mutations and silent mutations), and patients with other
non-silent mutation (n = 55).

FIGURE 5 | Evaluation of risk score. The impact of risk scores on overall survival in the subgroup of inactivating mutations (A) and other non-silent mutations
subgroups (B). Blue indicates low-risk scores, and green indicates high-risk scores. Correlation analysis between tumor mutation burden (C) andmicrosatellite instability
(D) and risk scores. Pink is used to represent the group with high risk, whereas green represents the group with low risk.

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 9 | Article 8396179

Du et al. FREM2 Mutation in Colorectal Cancer

15

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


FIGURE 6 | Functional enrichment analysis of differentially expressed genes. (A) Volcano plot of differentially expressed genes. The red nodes indicate up-
regulation, blue nodes indicate down-regulation, and gray nodes indicate non-significant expression changes. (B) Heat map of differentially expressed genes. Red
represents high gene expression levels, blue represents low gene expression levels, green annotation bars indicate FREM2-mutant samples, and red annotation bars
indicate FREM2-wild type samples. The result of Gene Ontology functional enrichment analysis of differentially expressed genes (C), and the results of molecular
function (D) and cell compartment (E) terms enrichment analysis are displayed. Blue indicates down-regulation of expression, red indicates up-regulation of expression,
the middle quadrilateral indicates the effect of the gene on the enriched Gene Ontology terms, light color indicates inhibition, and dark color indicates activation. (F) The
top five pathways of Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes.
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FIGURE 7 | Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA). GSEA biological function enrichment analysis shows activation of the
immune response (A) and adaptive immune response (B). GSEA biological pathway enrichment analysis results show cytokine-cytokine receptor interaction (C) and
adaptive immune response (D). (E) Heat map of significant hallmarks analyzed using GSVA. Scatter plot of correlation between significant hallmark and risk score:
reactive_oxygen_species_pathway (F), spermatogenesis (G), and uv_response_dn (H).
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The prognosis of the low-risk group was significantly better
than that of the high-risk group, and limited by the insufficient
sample size, we only performed a 1-year time-dependent ROC
analysis (Figures 5A,B). We obtained TMB scores based on the
total number of mutations and calculated the relationship
between TMB and the risk scores. Significant differences
were shown in TMB between samples with different risk
scores (p value <0.05) (Figure 5C). Next, the risk score and
MSI were analyzed, and there were also significant differences in
MSI between samples with different risk scores (p value <0.05)
(Figure 5D).

Identification of Differentially Expressed
Gene and Functional Enrichment Analysis
To identify the differentially expressed genes in FREM2-mutant
and FREM2-wild-type samples, we used the limma R package.
Based on the gene expression profile data of 36 FREM2-mutant
samples and 278 FREM2-wild type samples in TCGA-COAD, we
found four up-regulated genes (p value <0.05, logFC > 0.5) and
16 down-regulated genes (p value <0.05, logFC < −0.5).
Differentially expressed genes were visualized using a volcano
plot and a heat map (Figures 6A,B).

To determine the functions of the differentially expressed
genes, we analyzed the biological processes, cell components,
and molecular functions in which they were involved according
to GO enrichment analysis (Figure 6C and Supplementary
Table S3). GO analysis results showed that the 20
differentially expressed genes were significantly enriched in
calcium channel complex, L-type voltage-gated calcium
channel complex, cation channel complex, mitochondria-
associated endoplasmic reticulum membrane, AMPA
glutamate receptor complex, ion channel complex,
transmembrane transporter complex, organelle membrane
contact site, and other cellular components (Figure 6D).
Additionally, these genes were involved in molecular
functions, such as calcium channel activity, protein binding,
calcium ion transmembrane transporter activity, serine-type
endopeptidase activity, caspase binding, acetylcholine receptor
regulator activity, serine-type peptidase activity, and
neurotransmitter receptor regulator activity (Figure 6E).
Finally, using KEGG enrichment analysis, we also analyzed the
pathways in which the 20 differentially expressed genes were
involved (Supplementary Table S4). According to the results,
these genes were involved in pathways such as mineral
absorption, salivary secretion, cardiac muscle contraction, and
hypertrophic cardiomyopathy (Figure 6F).

GSEA and GSVA
GSEA on the genes differentially expressed in FREM2-mutated
and FREM2-wild type patients showed that the genes were
significantly enriched in biological functions, such as the
activation of immune response and adaptive immune response
(Figures 7A,B and Supplementary Table S5), and enriched in
pathways such as the cytokine-cytokine receptor interaction and
graft versus host disease (Figures 7C,D and Supplementary
Table S5).

Next, we analyzed the genes differentially expressed in
FREM2-mutated and FREM2-wild type patients to analyze the
role of these genes using GSVA. The results showed that 17
hallmark pathways were differentially enriched in FREM2-
mutated and FREM2-wild type patients (Figure 7E). Among
them, spermatogenesis was positively correlated with risk score,
while reactive_oxygen_species_pathway and uv_response_dn
were negatively correlated with risk score. Other correlations
were not significant (p value < 0.05) (Figures 7F–H).

Immune Cell Infiltration Analysis
We analyzed the relationship between the expression levels of
FREM2, FOXC1, PRRG3, USP29, CCDC116, LRRC52, CTLA4,
TCF23, CA7, TM4SF4, SP7, C8G, EFCAB5, and PKHD1L1 and
the abundance of immune cells and stromal cells (Figures 8A,B).
Stromal cell abundance was significantly positively correlated
with the expression levels of PRRG3, CTLA4, TCF23, PKHD1L1,
FOXC1, and SP7, and significantly negatively correlated with the
expression levels of EFCAB5 andC8G. The abundance of immune
cell types was significantly positively correlated with the
expression levels of FOXC1, PRRG3, CTLA4, TCF23, and
PKHD1L1, and significantly negatively correlated with the
expression levels of FREM2 and EFCAB5 (p < 0.05). FREM2
expression levels were significantly related with the expression
levels of immune genes such as TAC1, NFYA, and CCL26;
PKHD1L1 was significantly related with the expression levels
of the immune genes ITGAL and NFYA; FOXC1 was significantly
related with the expression levels of the immune gene CCL26 (p
value < 0.05) (Figure 8C). FREM2 and PKHD1L1 gene expression
levels were significantly correlated with the infiltration rate of 12
types of immune cells; FOXC1 gene expression levels were
significantly correlated with the infiltration rate of 10 immune
cells (p value < 0.05) (Figure 8D). The expression value of HLA-
DOA differed in the two different risk groups (Figure 8E).

FREM2 Protein Level Analysis
We used the UALCAN database to analyze the expression levels
of FREM2 in pan-cancer and found that FREM2 was mainly
highly expressed in COAD, glioblastoma multiforme (GBM),
stomach adenocarcinoma (STAD), and uterine corpus
endometrial carcinoma (UCEC) (Figure 9A). Further analysis
of COAD tissue samples showed that FREM2 was highly
expressed in tumor tissues compared to normal tissues
(Figure 9B). In addition, the expression levels of FREM2 in
COAD tissues was analyzed using the HPA database, and it was
found that FREM2 was highly expressed in tumor tissues
(Figure 9D). Next, we evaluated FREM2 and Ki-67 expression
levels in 30 CRC tissues using histochemistry staining. As shown
in Figure 9E, histological scoring and analysis revealed that
FREM2 and Ki-67 were highly expressed in tissue specimens
from CRC patients, which was consistent with the results of the
previous analysis. Finally, we examined the role of FREM2
molecular function. PDCD1, CD274, CTLA4, LAG3, TIGIT,
and HAVCR2 are important immune checkpoints responsible
for tumor immune escape. Given the regulatory role of FREM2 in
COAD, the relationship of FREM2 to PDCD1, CD274, CTLA4,
LAG3, TIGIT, and HAVCR2 was assessed. As shown in
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FIGURE 8 | Immune correlation analysis. Correlation of the expression levels of FREM2 and characteristic genes with the stromal cells (A) and the abundance of
immune cells (B). (C) Correlation between FREM2 and characteristic genes and immune genes. (D) Correlation between FREM2 and characteristic gene expression
levels and immune cell infiltration. (E) Correlation between members of the HLA family expression levels and risk score.
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Figure 9C, FREM2 expression was significantly correlated with
that of PDCD1, CD274, CTLA4, LAG3, TIGIT, and HAVCR2.
These results suggested that FREM2 was highly expressed in
COAD and that tumor immune escape may be involved in
FREM2-mediated COAD carcinogenesis.

DISCUSSION

With the wide application of endoscopy technology and the
yearly increase in the number of physical examinations, more
and more patients with colon cancer are detected early, which
increases the chances of a favorable outcome after surgery.
Although with the maturity of laparoscopic surgery technology
and the development of neoadjuvant chemotherapy have

contributed to improve the survival rate of CRC patients after
surgery, the 5-year survival rate is still less than 65%. Therefore, it
is necessary to identify new prognostic biomarkers in CRC
patients. The occurrence of CRC is a multi-step process,
including chromosomal abnormalities, gene mutations, and
epigenetic changes. These abnormalities may be associated
with patient survival. For example, while KRAS mutations
generally occur relatively early in the evolution of CRC,
mainly during the transformation of small to neutral
adenomas, mutations in TP53 often occur in later stages.
Additionally, previous studies have shown that the number of
somatic mutations is positively correlated with the response to
immunotherapy (Link and Overman, 2016).

FREM2 is located at 13q13.3 and forms an independent and
complete ternary complex structure (FREM2-FRAS1-FREM1)

FIGURE 9 | FREM2 expression analysis. Expression of FREM2 in pan-cancer, using UALCAN database (A). The expression of FREM2 in colon adenocarcinoma
(COAD), using the data from The Cancer Genome Atlas database (B). Correlation analysis of FREM2 and immune checkpoints, displayed using a heat map (C). Analysis
of FREM2 expression levels in COAD tissues, using the Human Protein Atlas (HPA) database (D). High expression levels of Ki-67 and FREM2 were presented in
colorectal cancer tissues (n = 30) by immunohistochemistry (IHC) staining. (E) Histogram of the results of analysis of IHC staining. Original magnification is ×100
(inset: IHC stain, DAB, original magnification is ×400).
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between the extracellular epithelium and the mesenchyme
(Kantaputra et al., 2021). The functions of this complex are
similar to those of Collagen VII, and each component of the
complex is essential to maintain the stability of the complex
structure (Dalezios et al., 2007).

In humans, FREM2 gene mutations can cause Fraser
syndrome, a rare autosomal recessive genetic disease (Jadeja
et al., 2005). Additionally, recent studies have shown that
FREM2 mutations cause metabolic reprogramming of mouse
embryos during cryptographic development (Zhang et al.,
2020), and that loss of function mutations of FREM2 can
disrupt the morphogenesis of the eye (Zhang et al., 2019).
Additionally, loss of FREM2 function is an important cause of
blood-related kidneys (Al-Hamed et al., 2021), and FREM2 has
been suggested to be a candidate prognostic marker in glioma
(Vidak et al., 2018).

In this study, we found that FREM2 had a high mutation
frequency in CRC and that FREM2mutation was associated with
poor prognosis in patients. To further explore the prognostic
value of mutations, we divided 36 FREM2-mutated patients into
high- and a low-risk groups based on the risk scores, constructed
a prognostic model, and evaluated its performance. The results
suggested that in 36 FREM2-mutant patients with CRC, the
model showed a higher efficiency, reaching a prediction
accuracy of 83.9%. Additionally, we found significant
differences in TMB and MSI between the groups with
different risk scores. Next, functional enrichment analysis of
differentially expressed genes revealed significantly enrichment
of genes involved in cytokine-cytokine receptor interaction,
immune response, and other pathways. Then, immune
infiltration analysis revealed that FREM2 gene expression was
significantly related to the infiltration of 12 immune cell types.
Finally, we analyzed the protein expression of FREM2 in pan-
cancer and COAD using UALCAN and HPA databases and
found that FREM2 was highly expressed in COAD, which was
consistent with the results of immunohistochemistry. In addition,
since FREM2 mutation was associated with immune infiltration,
we analyzed its association with the expression levels of PDCD1,
CD274, CTLA4, LAG3, TIGIT, and HAVCR2, which are
important immune checkpoints responsible for tumor immune
escape. FREM2 was significantly correlated with immune
checkpoints, which further suggested that FREM2 may
regulate immune processes in COAD.

The results of this study should be viewed in light of its
limitations. Most of the conclusions were drawn from

bioinformatics analysis, and only a small amount of them
were validated using clinical samples. In the future, we will
continue to further study the functional role of FREM2 in
COAD. Moreover, this study was based on a single omics
study, and the understanding of gene function was not
comprehensive enough, highlighting the need of more in-
depth research in the future. In conclusion, through
comprehensive analysis and experimental verification, our
results demonstrate that FREM2 mutations may be prognostic
markers for CRC patients.
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There is a close relationship between inflammatory cells and tumors, but the pathways that
connect the two remain unclear. This research explores the clinical and prognostic value of
the systemic inflammation response index (SIRI) in breast cancer patients. The study
included 477 breast cancer patients who underwent neoadjuvant chemotherapy and 308
breast cancer patients who did not in our center between January 1998 and December
2016. Optimal SIRI threshold values were determined using the receiver operating
characteristic curve (ROC). Patients were then reclassified as SIRI ≥0.80 group (High
SIRI group) and SIRI <0.80 group (Low SIRI group). The outcomes were analyzed by
statistical methods. The univariate and multivariate analyses demonstrated that SIRI
independently predicted survival in breast cancer. The disease-free survival (DFS) and
overall survival (OS) in patients with low SIRI scores were significantly longer in contrast to
those with high SIRI scores (41.50 vs. 37.63 months, and 64.57 vs. 58.42months). Further
subgroup analyses revealed that low SIRI score patients who also had either early breast
cancer, advanced breast cancer, or different molecular subtypes also possessed longer
mean survival time of DFS and OS in contrast to those with high SIRI levels (χ2 = 2.379, p =
0.123, and χ2 = 5.153, p = 0.023; χ2 = 11.080, p = 0.0009 and χ2 = 15.900, p < 0.0001;
χ2 = 16.020, p < 0.0001 and χ2 = 22.050, p < 0.0001, respectively). SIRI serves as an
easily accessible, replicable, and minimally invasive prognostic tool in breast cancer
patients. Lower SIRI scores were predictive of a longer DFS and OS after surgery in
breast cancer patients. SIRI may serve as a marker to guide clinical management and
prognostication of breast cancer.

Keywords: breast cancer, neoadjuvant chemotherapy, systemic inflammation response index (SIRI), prognosis,
disease-free survival (DFS), overall survival (OS)

INTRODUCTION

Breast cancer is among the most frequently diagnosed cancers in females. This malignancy exerts a
deleterious effect on patient quality of life and is a significant public health issue (Dan et al., 2020).
The GLOBOCAN 2018 Research reports that there are more than 2 million new cases of breast
cancer annually, with more than 600,000 deaths due to breast cancer occurring each year. There is a
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concerning trend towards a younger age of the first diagnosis,
along with an overall higher number of breast cancer cases (Bray
et al., 2020). Recent data in China shows a marked rise in breast
cancer incidence, especially in its developed coastal cities. Experts
predict that breast cancer incidences in China are expected to
reach a staggering 100 cases per 100,000 postmenopausal women
in the future (Li et al., 2019). Despite the comprehensiveness of
current treatment modalities of breast cancer that includes
surgery, adjuvant chemotherapy, radiotherapy, targeted
therapy, immunotherapy, and Chinese medicine treatment,
patient outcomes are still unsatisfactory (Chen et al., 2017).

The tumor microenvironment, which includes the extracellular
matrix, stromal cells, lymphatic and blood vessels, as well as resident
immune cells, has been found to be a key determinant in dictating
tumor behavior. Of interest is the role of inflammation, which is
postulated to be influential in tumor progression and metastasis
(Singh et al., 2019). Recent studies have confirmed that various
markers of the systemic inflammatory response, for example, the
C-reactive Protein (CRP), Platelet to Lymphocyte Ratio (PLR),
Lymphocyte to Monocyte Ratio (LMR), and Neutrophil to
Lymphocyte Ratio (NLR), all correlate to the prognosis of a
myriad of tumors such as high-grade glioma (He et al., 2021b),
colorectal cancer (Dagmura et al., 2021), head and neck cancer
(Saroul et al., 2021), oral squamous cell cancer (Yamagata et al.,
2021), and gastric cancer (Liu et al., 2021). The latest evidence also
suggests that a similar tumor-inflammation relationship exists for
breast cancer, indicating that quantifying the inflammatory
response may be useful in treating and prognosticating breast
cancer (Dong et al., 2021). Common blood indices, including
platelets (P), monocytes (M), neutrophils (N), hemoglobin (Hb),
total red blood cell count (R), total white blood cell count (WBC),
and serum albumin (ALB), along with its derivatives, NLR, MLR,
LMR, PLR, D-NLR, prognostic nutritional value [PNI, 10 × serum
ALB (g/dL) + 0.005 × total lymphocyte count], and SIRI
(Neutrophil × Platelet/Lymphocyte) may all be reflective of
malignant tumor states (Mantovani et al., 2008). Breast cancer is
currently diagnosed by a combination of pathological assessments
of tissue samples taken via core needle biopsy (CNB) and various
imaging modalities including breast ultrasound, mammography,
and magnetic resonance imaging (MRI) (Al-Hattali et al., 2019).
Nevertheless, the concept of being able to prognosticate breast
cancer based on routine peripheral blood examinations is attractive
given the ease of access, replicability, and lower cost. This
investigation seeks to determine the utility of common
inflammatory markers in the context of breast cancer.

MATERIALS AND METHODS

Study Population
Our study comprised 785 breast cancer patients. Of these, 477
underwent surgery and received neoadjuvant chemotherapy
(NACT) in our center between January 1998 to December
2016 were included in our study. The control cohort
comprised308 breast cancer patients who received surgical
treatment only at the same center and during the same
timeframe. All participants underwent routine examination

and examination on admission, a comprehensive assessment
of their condition, and provided written informed consent
prior to study inclusion. All patients were diagnosed by CNB
or histopathology. TNM staging was carried out in accordance
with the eighth edition AJCC (American Joint Committee on
Cancer) and the Union for International Cancer Control (UICC)
(Weigelt and Reis-Filho, 2009; Cserni et al., 2018).

Inclusion and Exclusion Criteria
The inclusion criterion was as follows: 1) Breast cancer was
confirmed by CNB or pathological examination; 2) Zubrod-
Ecog-WHO (ZPS) between 0 and 2 and Karnofsky
Performance Scores (KPS) ≥80; 3) Expected to survive more
than 3 months; 4) Patients did not receive anti-tumor treatment
before admission, including chemotherapy, radiotherapy,
immunotherapy, interventional therapy, and traditional
Chinese medicine treatment; 5) Surgery was performed after
the completion of NACT; 6) Admission examination showed
no obvious abnormalities in liver, kidney, lung, heart, brain, and
bone marrow; 7) Inpatient medical records and postoperative
follow-up data were complete.

The following was our exclusion criteria: 1) The possibility of
distant organ metastasis was not able to be excluded on imaging
examinations such as abdominal B-ultrasound, chest Computed
Tomography (CT), and breast MRI, or the breast tumor was not
able to be resected due to the definite presence of metastasis; 2)
Patients received anti-tumor therapy, such as radiotherapy,
chemotherapy, and targeted therapy; 3) The presence of
serious comorbidities that were refractory to treatment such as
hypertension, heart disease, and diabetes; 4) Advanced breast
cancer, including breast cancer ulcers, inflammatory breast
cancer, and infected tumors; 5) Blood transfusion history
within 1 month before receiving NACT; 6) Patients who were
poorly compliant and not cooperative with treatment.

Chemotherapy Regimen
The NACT treatment regimen included anthracyclines and/or
taxanes. Protocols used included the AC regimen, ACF regimen,
CT regimen, ACT regimen, AT regimen, and TP regimen.

Peripheral Venous Blood Collection Method
All patients took an early morning fasting peripheral venous
blood sample of 2–5 ml. Peripheral venous blood specimens were
obtained within 7 days before surgery in patients without
neoadjuvant chemotherapy. And others were obtained within
7 days before neoadjuvant chemotherapy. WBC, neutrophils,
hemoglobin, lymphocytes, monocytes, platelets, eosinophils,
basophils, and other hematological parameters in peripheral
venous blood were evaluated using the XE-2100 hematology
analyzer (Sysmex, KOBE, Japan). SIRI was calculated based on
the following formula:
(neutrophils × monocytes)/lymphocyte count.

Evaluation Assays
The size of the tumor, invasion depth, and the degree of lymph
node metastasis were determined by breast ultrasound,
mammography, and MRI. Tumor diameters were taken as
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their largest measurable diameter. The eighth edition of AJCC
guided TNM staging (Weigelt and Reis-Filho, 2009; Cserni et al.,
2018). The main pathological types of breast cancer were invasive
lobular carcinoma, invasive ductal carcinoma, and other types.
Molecular classification of breast cancer were triple-negative
breast cancers, HER2 overexpressing tumors, Luminal B/HER-
2-negative, Luminal B/HER2-positive, and Luminal A types (He
et al., 2021a). The Miller and Payne histological grade (MPG)
allowed for evaluation of the reduction of tumor cells after NACT
and is divided into five grades (Therasse et al., 2000). The efficacy
of NACT on tumor lesions after treatment was done in
accordance with the 2000 RECIST criteria (Amat et al., 2002).
The histological classification of breast cancer is based on the
Nottingham Joint Histological Classification (Elston and Ellis
modification of the Scarff-Bloom-Richardson grading protocol)
(Kaba et al., 2004). NACT toxicity and adverse effects were
assessed based on the National Cancer Institute Common
Toxicity Criteria (NCI-CTC) (Diakos et al., 2014).

Follow-Up
Follow-upwas performed according to the NCCN (2020) guidelines:
1) every 3 months for 1–2 years postoperatively, 2) every 6months
for 3–5 years postoperatively, and 3) every year after 5 years until
death. Disease-Free Survival (DFS) was the duration between
postoperative day 1 until tumor recurrence, distant metastasis, or
death from other causes. The duration between postoperative day 1
until the last follow-up or death was defined asOverall Survival (OS).
The duration between postoperative day 1 until death or the last
follow-up was deemed as survival.

Statistical Methods
SPSS 17.0 (version 17.0; SPSS Inc., Chicago, IL, United States) and
GraphPad Prism Software (Version 8.0; GraphPad Inc., La Jolla, CA,
United States) were used to carry out all statistical analyses. The
critical optimal threshold values of related variables were identified
utilizing receiver operating characteristic curves (ROC), while the
area under the curve (AUC) valuewas used to evaluate the prognostic
accuracy. Qualitative data was depicted in terms of the number of
cases (%), with intergroup comparisons carried out via the χ2 test or
Fisher’s exact test. OS was determined via the Kaplan-Meier test. The
survival rate between the two groupswas contrastedwith the log-rank
method. Univariate and multivariate Cox proportional hazards
regression models were used to discern potential prognostic
factors. The association between various parameters and breast
cancer prognosis was determined using hazard ratios (HRs) and
95% confidence intervals (CIs). A two-tailed p value of less than 0.05
was interpreted as achieving statistical significance.

RESULTS

SIRI is Predictive of Clinical Outcomes in
Breast Cancer Before Neoadjuvant
Chemotherapy
We applied the ROC curve to confirm that the optimal SIRI
threshold was 0.80. Based on the optimal threshold, two SIRI

groups were formed: SIRI <0.80 group (Low SIRI group) and SIRI
≥0.80 group (High SIRI group). All enrolled patients were female
between ages 22–82 years. The average age of 47 ± 10 years, and
the median age of 47 years 756 patients (96.31%) were married,
and 29 patients (3.69%) were unmarried. BMI ranged from 16.36
to 38.19, with a median BMI of 24.00 and a mean BMI of 24.45 ±
3.55. 292 patients were postmenopausal (37.20%), and 493
patients were premenopausal (62.80%). ABO blood group
distribution showed that there were 214 patients with type A
(27.26%), 262 patients with type B (33.38%), 234 patients with
type O (29.81%), and 75 patients with type AB (9.55%). All
patients received surgical treatment, among which 606 cases
(77.20%) underwent total resection of breast cancer and 179
cases (22.80%) underwent breast-conserving surgery. There were
758 cases of ductal carcinoma (96.56%), 13 cases of lobular
carcinoma (1.66%), and 14 cases of other types of breast
cancer (1.78%). The histological classification of breast cancer
included 133 cases of grade I (16.94%), 431 cases of grade II
(54.90%), and 221 cases of grade III (28.15%). There were 516
cases (65.73%) who received postoperative chemotherapy and
269 cases (34.27%) who did not receive postoperative
chemotherapy. 483 cases (61.53%) received endocrine therapy
after breast cancer surgery, and 302 cases (38.47%) did not receive
endocrine therapy. 202 cases (25.73%) received targeted therapy
after breast cancer surgery, while 583 cases (74.27%) did not
receive targeted therapy. The clinical data of 785 breast cancer
patients are depicted in Table 1.

1) In all breast cancer patients, there were 484 cases in the low
SIRI group and 301 cases in the high SIRI group. Statistical
analysis showed that BMI (χ2 = 4.801, p = 0.028), clinical T
stage (χ2 = 19.137, p = 0.0007), clinical N stage (χ2 = 14.841,
p = 0.005), clinical TNM stage (χ2 = 12.114, p = 0.002),
postoperative chemotherapy regimen (χ2 = 16.590, p = 0.005),
postoperative chemotherapy (χ2 = 10.404, p = 0.001),
postoperative chemotherapy times (χ2 = 13.066, p =
0.0003), and postoperative targeted therapy (χ2 = 9.697,
p = 0.002) demonstrated statistically significant differences
between the two SIRI groups.

2) In the NACT group (477 patients), there were 267 cases in the
low SIRI group and 210 cases in the high SIRI group.
Statistical analysis showed that clinical T stage (χ2 =
10.284, p = 0.036), neoadjuvant chemotherapy regimen (χ2
= 46.320, p < 0.0001), postoperative chemotherapy (χ2 =
9.882, p = 0.043), postoperative chemotherapy times (χ2 =
5.320, p = 0.021) and postoperative targeted (χ2 = 4.153, p =
0.042) were statistically significant.

3) In the non-NACT group (308 breast cancer patients), there
were 217 cases in the low SIRI group and 91 cases in the high
SIRI group. Statistical analysis showed that postoperative
chemotherapy (χ2 = 13.250, p = 0.021) was statistically
significant.

Hematological Parameters
Breast cancer patient nutritional statuses were evaluated using
several parameters, with their median values shown in brackets:
ALB (45.2 g/L), blood glucose (GLU) (5.33 mmol/L), alkaline
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TABLE 1 | Demographic and clinicopathologic characteristics of 785 patients with breast cancer.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p
value

Low
SIRI 267

High
SIRI 210

χ2 p value Low
SIRI 217

High
SIRI 91

χ2 p
value

Age (years) 0.193 0.660 0.054 0.816 1.504 0.220
<47 386

(49.17%)
235

(48.55%)
151

(50.17%)
230

(48.22%)
130

(48.69%)
100

(47.62%)
156

(50.65%)
105

(48.39%)
51

(56.04%)
≥47 399

(50.83%)
249

(51.45%)
150

(49.83%)
247

(51.78%)
137

(51.31%)
110

(52.38%)
152

(49.35%)
112

(51.61%)
40

(43.96%)
Marital status 0.117 0.732 0.690 0.406 3.013 0.083
Married 756

(96.31%)
467

(96.49%)
289

(96.01%)
457

(95.81%)
254

(95.13%)
203

(96.67%)
299

(97.08%)
213

(98.16%)
86

(94.51%)
Unmarried 29 (3.69%) 17 (3.51%) 12 (3.99%) 20 (4.19%) 13 (4.87%) 7 (3.33%) 9 (2.92%) 4 (1.84%) 5 (5.49%)

Occupation 3.276 0.194 0.133 0.936 7.681 0.022
Mental worker 358

(45.61%)
226

(46.69%)
132

(43.85%)
238

(49.90%)
135

(50.56%)
103

(49.05%)
120

(38.96%)
91

(41.94%)
29

(31.87%)
Manual worker 125

(15.92%)
83

(17.15%)
42

(13.95%)
66 (13.84%) 37

(13.86%)
29

(13.81%)
59

(19.16%)
46

(21.20%)
13

(14.29%)
Others 302

(38.47%)
175

(36.16%)
127

(42.19%)
173

(36.27%)
95

(35.58%)
78

(37.14%)
129

(41.88%)
80

(36.87%)
49

(53.85%)
Weight (kg) 1.014 0.314 0.677 0.411 0.465 0.495
<62.00 383

(48.79%)
243

(50.21%)
140

(46.51%)
235

(49.27%)
136

(50.94%)
99

(47.14%)
148

(48.05%)
107

(49.31%)
41

(45.05%)
≥62.00 402

(51.21%)
241

(49.79%)
161

(53.49%)
242

(50.73%)
131

(49.06%)
111

(52.86%)
160

(51.95%)
110

(50.69%)
50

(54.95%)
Height (m) 1.696 0.193 0.036 0.850 2.244 0.134
<1.60 337

(42.93%)
199

(41.12%)
138

(45.85%)
218

(45.70%)
121

(45.32%)
97

(46.19%)
119

(38.64%)
78

(35.94%)
41

(45.05%)
≥1.60 448

(57.07%)
285

(58.88%)
163

(54.15%)
259

(54.30%)
146

(54.68%)
113

(53.81%)
189

(61.36%)
139

(64.06%)
50

(54.95%)
BMI 4.801 0.028 2.674 0.102 3.186 0.074
<24.00 391

(49.81%)
256

(52.89%)
135

(44.85%)
245

(51.36%)
146

(54.68%)
99

(47.14%)
146

(47.40%)
110

(50.69%)
36

(39.56%)
≥24.00 394

(50.19%)
228

(47.11%)
166

(55.15%)
232

(48.64%)
121

(45.32%)
111

(52.86%)
162

(52.60%)
107

(49.31%)
55

(60.44%)
Menarche age (year) 1.076 0.300 0.484 0.487 0.246 0.620
<14 308

(39.24%)
183

(37.81%)
125

(41.53%)
196

(41.09%)
106

(39.70%)
90

(42.86%)
112

(36.36%)
77

(35.48%)
35

(38.46%)
≥14 477

(60.76%)
301

(62.19%)
176

(58.47%)
281

(58.91%)
161

(60.30%)
120

(57.14%)
196

(63.64%)
140

(64.52%)
56

(61.54%)
Menopause 1.119 0.290 2.674 0.102 0.083 0.773
No 493

(62.80%)
297

(61.36%)
196

(65.12%)
280

(58.70%)
148

(55.43%)
132

(62.86%)
213

(69.16%)
149

(68.66%)
64

(70.33%)
Yes 292

(37.20%)
187

(38.64%)
105

(34.88%)
197

(41.30%)
119

(44.57%)
78

(37.14%)
95

(30.84%)
68

(31.34%)
27

(29.67%)
ABO blood type 2.449 0.654 4.406 0.354 2.856 0.582

A 214
(27.26%)

129
(26.65%)

85
(28.24%)

132
(27.67%)

68
(25.47%)

64
(30.48%)

82
(26.62%)

61
(28.11%)

21
(23.08%)

B 262
(33.38%)

168
(34.71%)

94
(31.23%)

145
(30.40%)

83
(31.09%)

62
(29.52%)

117
(37.99%)

85
(39.17%)

32
(35.16%)
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TABLE 1 | (Continued) Demographic and clinicopathologic characteristics of 785 patients with breast cancer.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p
value

Low
SIRI 267

High
SIRI 210

χ2 p value Low
SIRI 217

High
SIRI 91

χ2 p
value

O 234
(29.81%)

146
(30.17%)

88
(29.24%)

146
(30.61%)

90
(33.71%)

56
(26.67%)

88
(28.57%)

56
(25.81%)

32
(35.16%)

AB 75 (9.55%) 41 (8.47%) 34
(11.30%)

54 (11.32%) 26 (9.74%) 28
(13.33%)

21 (6.82%) 15 (6.91%) 6 (6.59%)

Tumor site 0.049 0.824 1.404 0.236 2.417 0.120
Right 369

(47.01%)
226

(46.69%)
143

(47.51%)
233

(48.85%)
124

(46.44%)
109

(51.90%)
136

(44.16%)
102

(47.00%)
34

(37.36%)
Left 416

(52.99%)
258

(53.31%)
158

(52.49%)
244

(51.15%)
143

(53.56%)
101

(48.10%)
172

(55.84%)
115

(53.00%)
57

(62.64%)
Clinical T stage 19.137 0.001 10.284 0.036 3.161 0.531
T1 168

(21.40%)
113

(23.35%)
68

(22.59%)
65 (13.63%) 43

(16.10%)
22

(10.48%)
103

(33.44%)
70

(32.26%)
33

(36.26%)
T2 413

(52.61%)
269

(55.58%)
132

(43.85%)
226

(47.38%)
133

(49.81%)
93

(44.29%)
187

(60.71%)
136

(62.67%)
51

(56.04%)
T3 131

(16.69%)
71

(14.67%)
59

(19.60%)
115

(24.11%)
62

(23.22%)
53

(25.24%)
16 (5.19%) 9 (4.15%) 7 (7.69%)

T4 73 (9.30%) 31 (6.40%) 42
(13.95%)

71 (14.88%) 29
(10.86%)

42
(20.00%)

2 (0.65%) 2 (0.92%) 0 (0.00%)

Clinical N stage 14.841 0.005 0.665 0.956 5.613 0.230
N0 299

(38.09%)
210

(43.39%)
90

(29.90%)
73 (15.30%) 44

(16.48%)
29

(13.81%)
226

(73.38%)
166

(76.50%)
60

(65.93%)
N1 233

(29.68%)
135

(27.89%)
97

(32.23%)
164

(34.38%)
90

(33.71%)
74

(35.24%)
69

(22.40%)
45

(20.74%)
24

(26.37%)
N2 160

(20.38%)
88

(18.18%)
72

(23.92%)
151

(31.66%)
84

(31.46%)
67

(31.90%)
9 (2.92%) 4 (1.84%) 5 (5.49%)

N3 93
(11.85%)

51
(10.54%)

42
(13.95%)

89 (18.66%) 49
(18.35%)

40
(19.05%)

4 (1.30%) 2 (0.92%) 2 (2.20%)

Clinical TNM stage 12.114 0.002 1.930 0.381 0.555 0.758
I 92

(11.72%)
66

(13.64%)
26 (8.64%) 14 (2.94%) 10 (3.75%) 4 (1.90%) 78

(25.32%)
56

(25.81%)
22

(24.18%)
II 382

(48.66%)
248

(51.24%)
134

(44.52%)
168

(35.22%)
97

(36.33%)
71

(33.81%)
214

(69.48%)
151

(69.59%)
63

(69.23%)
III 311

(39.62%)
170

(35.12%)
141

(46.84%)
295

(61.84%)
160

(59.93%)
135

(64.29%)
16 (5.19%) 10 (4.61%) 6 (6.59%)

Neoadjuvant
Chemotherapy
Chemotherapy

regimen
46.320 <0.0001

EC/ECF 28 (5.87%) 21 (7.87%) 7 (3.33%)
CT/ECT 27 (5.66%) 21 (7.87%) 6 (2.86%)
ET 223

(46.75%)
131

(49.06%)
92

(43.81%)
TP 141

(29.56%)
61

(22.85%)
80

(38.10%)
Others 58 (12.16%) 33

(12.36%)
25

(11.90%)
(Continued on following page)
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TABLE 1 | (Continued) Demographic and clinicopathologic characteristics of 785 patients with breast cancer.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p
value

Low
SIRI 267

High
SIRI 210

χ2 p value Low
SIRI 217

High
SIRI 91

χ2 p
value

Chemotherapy times 3.407 0.065
<6 134

(28.09%)
84

(31.46%)
50

(23.81%)
≥6 343

(71.91%)
183

(68.54%)
160

(76.19%)
Response 1.326 0.857
CR 7 (1.47%) 6 (2.25%) 1 (0.48%)
PR 312

(65.41%)
169

(63.30%)
143

(68.10%)
SD 151

(31.66%)
86

(32.21%)
65

(30.95%)
PD 7 (1.47%) 6 (2.25%) 1 (0.48%)

Miller and Payne grade 9.371 0.053
1 22 (4.61%) 11 (4.12%) 11 (5.24%)
2 126

(26.42%)
70

(26.22%)
56

(26.67%)
3 177

(37.11%)
112

(41.95%)
65

(30.95%)
4 62 (13.00%) 26 (9.74%) 36

(17.14%)
5 90 (18.87%) 48

(17.98%)
42

(20.00%)
Pathological response 0.024 0.876
pCR 72 (15.09%) 40

(14.98%)
32

(15.24%)
non-pCR 405

(84.91%)
229

(85.77%)
176

(83.81%)
Post-chemotherapy
regimen

16.590 0.005 6.457 0.264 13.250 0.021

EC/ECF 125
(15.92%)

88
(18.18%)

37
(12.29%)

43 (9.01%) 25 (9.36%) 18 (8.57%) 82
(26.62%)

63
(29.03%)

19
(20.88%)

CT/ECT 125
(15.92%)

75
(15.50%)

50
(16.61%)

30 (6.29%) 20 (7.49%) 10 (4.76%) 95
(30.84%)

55
(25.35%)

40
(43.96%)

ET 97
(12.36%)

71
(14.67%)

26 (8.64%) 37 (7.76%) 25 (9.36%) 12 (5.71%) 60
(19.48%)

46
(21.20%)

14
(15.38%)

TP 61 (7.77%) 37 (7.64%) 24 (7.97%) 39 (8.18%) 23 (8.61%) 16 (7.62%) 22 (7.14%) 14 (6.45%) 8 (8.79%)
Others 108

(13.76%)
68

(14.05%)
40

(13.29%)
81 (16.98%) 48

(17.98%)
33

(15.71%)
27 (8.77%) 20 (9.22%) 7 (7.69%)

NO 269
(34.27%)

145
(29.96%)

124
(41.20%)

247(51.78%) 126
(47.19%)

121
(57.62%)

22 (7.14%) 19 (8.76%) 3 (3.30%)

Type of surgery 0.082 0.775 0.037 0.848 0.654 0.419
Mastectomy 606

(77.20%)
372

(76.86%)
234

(77.74%)
406

(85.12%)
228

(85.39%)
178

(84.76%)
200

(64.94%)
144

(66.36%)
56

(61.54%)
Breast-conserving

surgery
179

(22.80%)
112

(23.14%)
67

(22.26%)
71 (14.88%) 39

(14.61%)
32

(15.24%)
108

(35.06%)
73

(33.64%)
35

(38.46%)
Tumor size (cm) 0.785 0.675 0.512 0.774 0.016 0.992

(Continued on following page)
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TABLE 1 | (Continued) Demographic and clinicopathologic characteristics of 785 patients with breast cancer.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p
value

Low
SIRI 267

High
SIRI 210

χ2 p value Low
SIRI 217

High
SIRI 91

χ2 p
value

≤2 cm 437
(55.67%)

267
(55.17%)

170
(56.48%)

263
(55.14%)

144
(53.93%)

119
(56.67%)

174
(56.49%)

123
(56.68%)

51
(56.04%)

＞2 and <5 cm 299
(38.09%)

189
(39.05%)

110
(36.54%)

172
(36.06%)

100
(37.45%)

72
(34.29%)

127
(41.23%)

89
(41.01%)

38
(41.76%)

≥5 cm 49 (6.24%) 28 (5.79%) 21 (6.98%) 42 (8.81%) 23 (8.61%) 19 (9.05%) 7 (2.27%) 5 (2.30%) 2 (2.20%)
Histologic type 1.481 0.477 0.906 0.636 3.556 0.169
Ductal 758

(96.56%)
470

(97.11%)
288

(95.68%)
461

(96.65%)
258

(96.63%)
203

(96.67%)
297

(96.43%)
212

(97.70%)
85

(93.41%)
Lobular 13 (1.66%) 6 (1.24%) 7 (2.33%) 7 (1.47%) 3 (1.12%) 4 (1.90%) 6 (1.95%) 3 (1.38%) 3 (3.30%)
Others 14 (1.78%) 8 (1.65%) 6 (1.99%) 9 (1.89%) 6 (2.25%) 3 (1.43%) 5 (1.62%) 2 (0.92%) 3 (3.30%)

Histologic grade 3.881 0.144 3.327 0.190 5.327 0.070
I 133

(16.94%)
76

(15.70%)
57

(18.94%)
108

(22.64%)
54

(20.22%)
54

(25.71%)
25 (8.12%) 22

(10.14%)
3 (3.30%)

II 431
(54.90%)

279
(57.64%)

152
(50.50%)

244
(51.15%)

146
(54.68%)

98
(46.67%)

187
(60.71%)

133
(61.29%)

54
(59.34%)

III 221
(28.15%)

129
(26.65%)

92
(30.56%)

125
(26.21%)

67
(25.09%)

58
(27.62%)

96
(31.17%)

62
(28.57%)

34
(37.36%)

Pathological TNM classification
Pathological T stage 4.021 0.403 2.050 0.727 1.824 0.768
Tis/T0 92

(11.72%)
50

(10.33%)
42

(13.95%)
88 (18.45%) 46

(17.23%)
42

(20.00%)
4 (1.30%) 4 (1.84%) 0 (0.00%)

T1 302
(38.47%)

187
(38.64%)

115
(38.21%)

190
(39.83%)

108
(40.45%)

82
(39.05%)

112
(36.36%)

79
(36.41%)

33
(36.26%)

T2 326
(41.53%)

208
(42.98%)

118
(39.20%)

149
(31.24%)

85
(31.84%)

64
(30.48%)

177
(57.47%)

123
(56.68%)

54
(59.34%)

T3 45 (5.73%) 29 (5.99%) 16 (5.32%) 34 (7.13%) 21 (7.87%) 13 (6.19%) 11 (3.57%) 8 (3.69%) 3 (3.30%)
T4 20 (2.55%) 10 (2.07%) 10 (3.32%) 16 (3.35%) 7 (2.62%) 9 (4.29%) 4 (1.30%) 3 (1.38%) 1 (1.10%)
Pathological N stage 2.054 0.726 1.523 0.823 1.628 0.804
N0 326

(41.53%)
201

(41.53%)
125

(41.53%)
176

(36.90%)
96

(35.96%)
80

(38.10%)
150

(48.70%)
105

(48.39%)
45

(49.45%)
N1 175

(22.29%)
115

(23.76%)
60

(19.93%)
101

(21.17%)
62

(23.22%)
39

(18.57%)
74

(24.03%)
53

(24.42%)
21

(23.08%)
N2 122

(15.54%)
71

(14.67%)
51

(16.94%)
77 (16.14%) 42

(15.73%)
35

(16.67%)
45

(14.61%)
29

(13.36%)
16

(17.58%)
N3 162

(20.64%)
97

(20.04%)
65

(21.59%)
123

(25.79%)
67

(25.09%)
56

(26.67%)
39

(12.66%)
30

(13.82%)
9 (9.89%)

Pathological TNM
stage

2.384 0.666 1.795 0.773 1.621 0.805

Tis/T0 74 (9.43%) 43 (8.88%) 31
(10.30%)

71 (14.88%) 40
(14.98%)

31
(14.76%)

3 (0.97%) 3 (1.38%) 0 (0.00%)

I 157
(20.00%)

96
(19.83%)

61
(20.27%)

83 (17.40%) 44
(16.48%)

39
(18.57%)

74
(24.03%)

52
(23.96%)

22
(24.18%)

II 262
(33.38%)

171
(35.33%)

91
(30.23%)

118
(24.74%)

72
(26.97%)

46
(21.90%)

144
(46.75%)

99
(45.62%)

45
(49.45%)

III 292
(37.20%)

174
(35.95%)

118
(39.20%)

205
(42.98%)

111
(41.57%)

94
(44.76%)

87
(28.25%)

63
(29.03%)

24
(26.37%)

(Continued on following page)
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TABLE 1 | (Continued) Demographic and clinicopathologic characteristics of 785 patients with breast cancer.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p
value

Low
SIRI 267

High
SIRI 210

χ2 p value Low
SIRI 217

High
SIRI 91

χ2 p
value

Total lymph nodes 0.204 0.652 2.866 0.091 0.047 0.829
<21 391

(49.81%)
238

(49.17%)
153

(50.83%)
202

(42.35%)
104

(38.95%)
98

(46.67%)
189

(61.36%)
134

(61.75%)
55

(60.44%)
≥21 394

(50.19%)
246

(50.83%)
148

(49.17%)
275

(57.65%)
163

(61.05%)
112

(53.33%)
119

(38.64%)
83

(38.25%)
36

(39.56%)
Positive lymph nodes 0.103 0.749 0.175 0.676 0.109 0.742
<1 329

(41.91%)
205

(42.36%)
124

(41.20%)
179

(37.53%)
98

(36.70%)
81

(38.57%)
150

(48.70%)
107

(49.31%)
43

(47.25%)
≥1 456

(58.09%)
279

(57.64%)
177

(58.80%)
298

(62.47%)
169

(63.30%)
129

(61.43%)
158

(51.30%)
110

(50.69%)
48

(52.75%)
Postoperative

complications
0.002 0.968 0.017 0.898 0.375 0.540

No 728
(92.74%)

449
(92.77%)

279
(92.69%)

449
(94.13%)

251
(94.01%)

198
(94.29%)

279
(90.58%)

198
(91.24%)

81
(89.01%)

Yes 57 (7.26%) 35 (7.23%) 22 (7.31%) 28 (5.87%) 16 (5.99%) 12 (5.71%) 29 (9.42%) 19 (8.76%) 10
(10.99%)

Postoperative
chemotherapy

10.404 0.001 5.120 0.024 2.881 0.090

No 269
(34.27%)

145
(29.96%)

124
(41.20%)

247
(51.78%)

126
(47.19%)

121
(57.62%)

22 (7.14%) 19 (8.76%) 3 (3.30%)

Yes 516
(65.73%)

339
(70.04%)

177
(58.80%)

230
(48.22%)

141
(52.81%)

89
(42.38%)

286
(92.86%)

198
(91.24%)

88
(96.70%)

Postoperative
chemotherapy times

13.066 0.0003 5.320 0.021 1.473 0.225

<4 374
(47.64%)

206
(42.56%)

168
(55.81%)

340
(71.28%)

179
(67.04%)

161
(76.67%)

34
(11.04%)

27
(12.44%)

7 (7.69%)

≥4 411
(52.36%)

278
(57.44%)

133
(44.19%)

137
(28.72%)

88
(32.96%)

49
(23.33%)

274
(88.96%)

190
(87.56%)

84
(92.31%)

Postoperative
radiotherapy

0.496 0.481 0.118 0.732 2.750 0.097

No 196
(24.97%)

125
(25.83%)

71
(23.59%)

119
(24.95%)

65
(24.34%)

54
(25.71%)

77
(25.00%)

60
(27.65%)

17
(18.68%)

Yes 589
(75.03%)

359
(74.17%)

230
(76.41%)

358
(75.05%)

202
(75.66%)

156
(74.29%)

231
(75.00%)

157
(72.35%)

74
(81.32%)

Postoperative
endocrine therapy

1.927 0.165 0.059 0.808 1.563 0.211

No 302
(38.47%)

177
(36.57%)

125
(41.53%)

206
(43.19%)

114
(42.70%)

92
(43.81%)

96
(31.17%)

63
(29.03%)

33
(36.26%)

Yes 483
(61.53%)

307
(63.43%)

176
(58.47%)

271
(56.81%)

153
(57.30%)

118
(56.19%)

212
(68.83%)

154
(70.97%)

58
(63.74%)

Postoperative
targeted therapy

9.697 0.002 4.153 0.042 2.753 0.097

No 583
(74.27%)

378
(78.10%)

205
(68.11%)

332
(69.60%)

196
(73.41%)

136
(64.76%)

251
(81.49%)

182
(83.87%)

69
(75.82%)

Yes 202
(25.73%)

106
(21.90%)

96
(31.89%)

145
(30.40%)

71
(26.59%)

74
(35.24%)

57
(18.51%)

35
(16.13%)

22
(24.18%)
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TABLE 2 | The correlations between nutritional parameters/blood parameters and SIRI.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p value Low
SIRI 267

High
SIRI 210

χ2 p value Low
SIRI 217

High
SIRI 91

χ2 p value

ALT (U/L) 0.820 0.365 0.071 0.791 1.699 0.192
<15 370

(47.13%)
234

(48.35%)
136

(45.18%)
208

(43.61%)
115

(43.07%)
93

(44.29%)
162

(52.60%)
119

(54.84%)
43 (47.25%)

≥15 416
(52.99%)

250
(51.65%)

166
(55.15%)

269
(56.39%)

152
(56.93%)

117
(55.71%)

147
(47.73%)

98
(45.16%)

49 (53.85%)

AST (U/L) 0.092 0.762 0.153 0.696 0.444 0.505
<18 378

(48.15%)
231

(47.73%)
147

(48.84%)
211

(44.23%)
116

(43.45%)
95

(45.24%)
167

(54.22%)
115

(53.00%)
52 (57.14%)

≥18 407
(51.85%)

253
(52.27%)

154
(51.16%)

266
(55.77%)

151
(56.55%)

115
(54.76%)

141
(45.78%)

102
(47.00%)

39 (42.86%)

LDH (U/L) 4.337 0.037 3.509 0.061 0.056 0.813
<167 376

(47.90%)
246

(50.83%)
130

(43.19%)
193

(40.46%)
118

(44.19%)
75

(35.71%)
183

(59.42%)
128

(58.99%)
55(60.44%)

≥167 409
(52.10%)

238
(49.17%)

171
(56.81%)

284
(59.54%)

149
(55.81%)

135
(64.29%)

125
(40.58%)

89
(41.01%)

36 (39.56%)

GGT (U/L) 2.314 0.128 1.413 0.235 0.084 0.772
<17 366

(46.62%)
236

(48.76%)
130

(43.19%)
203

(42.56%)
120

(44.94%)
83

(39.52%)
163

(52.92%)
116

(53.46%)
47 (51.65%)

≥17 419
(53.38%)

248
(51.24%)

171
(56.81%)

274
(57.44%)

147
(55.06%)

127
(60.48%)

145
(47.08%)

101
(46.54%)

44 (48.35%)

ALP (U/L) 0.273 0.601 2.149 0.143 1.369 0.242
<64 377

(48.03%)
236

(48.76%)
141

(46.84%)
227

(47.59%)
135

(50.56%)
92

(43.81%)
150

(48.70%)
101

(46.54%)
49 (53.85%)

≥64 408
(51.97%)

248
(51.24%)

160
(53.16%)

250
(52.41%)

132
(49.44%)

118
(56.19%)

158
(51.30%)

116
(53.46%)

42 (46.15%)

GLU (mmol/L) 0.093 0.761 0.002 0.962 0.013 0.909
<5.33 391

(49.81%)
239

(49.38%)
152

(50.50%)
247

(51.78%)
138

(51.69%)
109

(51.90%)
144

(46.75%)
101

(46.54%)
43 (47.25%)

≥5.33 394
(50.19%)

245
(50.62%)

149
(49.50%)

230
(48.22%)

129
(48.31%)

101
(48.10%)

164
(53.25%)

116
(53.46%)

48 (52.75%)

ALB (g/L) 3.817 0.051 0.007 0.933 9.576 0.002
<45.2 392

(49.94%)
255

(52.69%)
137

(45.51%)
235

(49.27%)
132

(49.44%)
103

(49.05%)
157

(50.97%)
123

(56.68%)
34 (37.36%)

≥45.2 393
(50.06%)

229
(47.31%)

164
(54.49%)

242
(50.73%)

135
(50.56%)

107
(50.95%)

151
(49.03%)

94
(43.32%)

57 (62.64%)

CRP (mg/dl) 17.198 <0.0001 2.475 0.116 11.798 0.001
<0.02 384

(48.92%)
265

(54.75%)
119

(39.53%)
187

(39.20%)
113

(42.32%)
74

(35.24%)
197

(63.96%)
152

(70.05%)
45 (49.45%)

≥0.02 401
(51.08%)

219
(45.25%)

182
(60.47%)

290
(60.80%)

154
(57.68%)

136
(64.76%)

111
(36.04%)

65
(29.95%)

46 (50.55%)

CA125 (U/ml) 5.051 0.025 2.956 0.086 0.784 0.376
<13.35 392

(49.94%)
257

(53.10%)
135

(44.85%)
221

(46.33%)
133

(49.81%)
88

(41.90%)
171

(55.52%)
124

(57.14%)
47 (51.65%)

≥13.35 393
(50.06%)

227
(46.90%)

166
(55.15%)

256
(53.67%)

134
(50.19%)

122
(58.10%)

137
(44.48%)

93
(42.86%)

44 (48.35%)

CA153 (U/ml) 0.236 0.627 0.723 0.395 2.060 0.151
(Continued on following page)
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TABLE 2 | (Continued) The correlations between nutritional parameters/blood parameters and SIRI.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p value Low
SIRI 267

High
SIRI 210

χ2 p value Low
SIRI 217

High
SIRI 91

χ2 p value

<11.63 392
(49.94%)

245
(50.62%)

147
(48.84%)

208
(43.61%)

121
(45.32%)

87
(41.43%)

184
(59.74%)

124
(57.14%)

60 (65.93%)

≥11.63 393
(50.06%)

239
(49.38%)

154
(51.16%)

269
(56.39%)

146
(54.68%)

123
(58.57%)

124
(40.26%)

93
(42.86%)

31 (34.07%)

CEA (ng/ml) 2.025 0.155 2.025 0.155 2.174 0.140
<1.66 392

(49.94%)
232

(47.93%)
160

(53.16%)
212

(44.44%)
111

(41.57%)
101

(48.10%)
180

(58.44%)
121

(55.76%)
59 (64.84%)

≥1.66 393
(50.06%)

252
(52.07%)

141
(46.84%)

265
(55.56%)

156
(58.43%)

109
(51.90%)

128
(41.56%)

96
(44.24%)

32 (35.16%)

D-D (mg/L) 0.147 0.702 0.039 0.844 5.007 0.025
<0.29 387

(49.30%)
236

(48.76%)
151

(50.17%)
200

(41.93%)
113

(42.32%)
87

(41.43%)
187

(60.71%)
123

(56.68%)
64 (70.33%)

≥0.29 398
(50.70%)

248
(51.24%)

150
(49.83%)

277
(58.07%)

154
(57.68%)

123
(58.57%)

121
(39.29%)

94
(43.32%)

27 (29.67%)

FIB (g/L) 14.320 0.0002 11.241 0.001 1.468 0.226
<2.85 388

(49.43%)
265

(54.75%)
123

(40.86%)
216

(45.28%)
139

(52.06%)
77

(36.67%)
172

(55.84%)
126

(58.06%)
46 (50.55%)

≥2.85 397
(50.57%)

219
(45.25%)

178
(59.14%)

261
(54.72%)

128
(47.94%)

133
(63.33%)

136
(44.16%)

91
(41.94%)

45 (49.45%)

INR 4.218 0.040 0.884 0.347 0.425 0.515
<0.93 365

(46.50%)
239

(49.38%)
126

(41.86%)
177

(37.11%)
104

(38.95%)
73

(34.76%)
188

(61.04%)
135

(62.21%)
53 (58.24%)

≥0.93 420
(53.50%)

245
(50.62%)

175
(58.14%)

300
(62.89%)

163
(61.05%)

137
(65.24%)

120
(38.96%)

82
(37.79%)

38 (41.76%)

FDP (ug/ml) 4.691 0.030 0.300 0.584 2.025 0.155
<1.40 367

(46.75%)
241

(49.79%)
126

(41.86%)
137

(28.72%)
74

(27.72%)
63

(30.00%)
230

(74.68%)
167

(76.96%)
63 (69.23%)

≥1.40 418
(53.25%)

243
(50.21%)

175
(58.14%)

340
(71.28%)

193
(72.28%)

147
(70.00%)

78
(25.32%)

50
(23.04%)

28 (30.77%)

White blood cell (W)
(×109/L)

75.436 <0.0001 57.819 <0.0001 20.949 <0.0001

<6.01 389
(49.55%)

299
(61.78%)

90
(29.90%)

239
(50.10%)

175
(65.54%)

64
(30.48%)

150
(48.70%)

124
(57.14%)

26 (28.57%)

≥6.01 396
(50.45%)

185
(38.22%)

211
(70.10%)

238
(49.90%)

92
(34.46%)

146
(69.52%)

158
(51.30%)

93
(42.86%)

65 (71.43%)

Red blood cell (R)
(×1012/L)

7.107 0.008 5.283 0.022 1.887 0.170

<4.40 389
(49.55%)

258
(53.31%)

131
(43.52%)

235
(49.27%)

144
(53.93%)

91
(43.33%)

154
(50.00%)

114
(52.53%)

40 (43.96%)

≥4.40 396
(50.45%)

226
(46.69%)

170
(56.48%)

242
(50.73%)

123
(46.07%)

119
(56.67%)

154
(50.00%)

103
(47.47%)

51 (56.04%)

Hemoglobin (Hb)
(×109/L)

7.361 0.007 4.887 0.027 4.100 0.043

<132 382
(48.66%)

254
(52.48%)

128
(42.52%)

243
(50.94%)

148
(55.43%)

95
(45.24%)

139
(45.13%)

106
(48.85%)

33 (36.26%)

≥132 58 (63.74%)
(Continued on following page)
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TABLE 2 | (Continued) The correlations between nutritional parameters/blood parameters and SIRI.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p value Low
SIRI 267

High
SIRI 210

χ2 p value Low
SIRI 217

High
SIRI 91

χ2 p value

403
(51.34%)

230
(47.52%)

173
(57.48%)

234
(49.06%)

119
(44.57%)

115
(54.76%)

169
(54.87%)

111
(51.15%)

Neutrophil (N)
(×109/L)

142.491 <0.0001 98.716 <0.0001 42.839 <0.0001

<3.68 392
(49.94%)

323
(66.74%)

69
(22.92%)

229
(48.01%)

182
(68.16%)

47
(22.38%)

163
(52.92%)

141
(64.98%)

22 (24.18%)

≥3.68 393
(50.06%)

161
(33.26%)

232
(77.08%)

248
(51.99%)

85
(31.84%)

163
(77.62%)

145
(47.08%)

76
(35.02%)

69 (75.82%)

Lymphocyte (L)
(×109/L)

7.843 0.005 1.884 0.170 4.817 0.028

<1.76 391
(49.81%)

222
(45.87%)

169
(56.15%)

258
(54.09%)

137
(51.31%)

121
(57.62%)

133
(43.18%)

85
(39.17%)

48 (52.75%)

≥1.76 394
(50.19%)

262
(54.13%)

132
(43.85%)

219
(45.91%)

130
(48.69%)

89
(42.38%)

175
(56.82%)

132
(60.83%)

43 (47.25%)

Monocyte (M)
(×109/L)

124.109 <0.0001 100.469 <0.0001 26.521 <0.0001

<0.35 367
(46.75%)

302
(62.40%)

65
(21.59%)

216
(45.28%)

175
(65.54%)

41
(19.52%)

151
(49.03%)

127
(58.53%)

24 (26.37%)

≥0.35 418
(53.25%)

182
(37.60%)

236
(78.41%)

261
(54.72%)

92
(34.46%)

169
(80.48%)

157
(50.97%)

90
(41.47%)

67 (73.63%)

Eosinophils (E)
(×109/L)

3.395 0.065 0.041 0.839 6.697 0.010

<0.06 356
(45.35%)

207
(42.77%)

149
(49.50%)

241
(50.52%)

136
(50.94%)

105
(50.00%)

115
(37.34%)

71
(32.72%)

44 (48.35%)

≥0.06 429
(54.65%)

277
(57.23%)

152
(50.50%)

236
(49.48%)

131
(49.06%)

105
(50.00%)

193
(62.66%)

146
(67.28%)

47 (51.65%)

Basophils (B)
(×109/L)

9.429 0.002 2.588 0.108 9.248 0.002

<0.02 224
(28.54%)

157
(32.44%)

67
(22.26%)

136
(28.51%)

84
(31.46%)

52
(24.76%)

88
(28.57%)

73
(33.64%)

15 (16.48%)

≥0.02 561
(71.46%)

327
(67.56%)

234
(77.74%)

341
(71.49%)

183
(68.54%)

158
(75.24%)

220
(71.43%)

144
(66.36%)

76 (83.52%)

Platelet (P) (×109/L) 13.231 0.0003 8.329 0.004 3.482 0.062
<243 388

(49.43%)
264

(54.55%)
124

(41.20%)
224

(46.96%)
141

(52.81%)
83

(39.52%)
164

(53.25%)
123

(56.68%)
41 (45.05%)

≥243 397
(50.57%)

220
(45.45%)

177
(58.80%)

253
(53.04%)

126
(47.19%)

127
(60.48%)

144
(46.75%)

94
(43.32%)

50 (54.95%)
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TABLE 3 | Survival analyses based on univariate and multivariate Cox regression methods for predicting breast cancer patient DFS and OS.

DFS OS

Univariate
analysis

Multivariate
analysis

Univariate
analysis

Multivariate
analysis

Parameters

Hazard ratio
(95%CI)

p value Hazard ratio
(95%CI)

p value Hazard ratio
(95%CI)

p value Hazard ratio
(95%CI)

p value

Menopause 0.011 0.001 0.007 0.014
No 1 (reference) 1 (reference) 1 (reference) 1 (reference)
Yes 1.598

(1.113–2.295)
1.487

(1.180–1.873)
1.392

(1.094–1.771)
1.344

(1.063–1.700)
GLU (mmol/L) 0.003 0.006 0.013 0.018
<5.33 1 (reference) 1 (reference) 1 (reference) 1 (reference)
≥5.33 0.662

(0.502–0.872)
0.732

(0.585–0.915)
0.692

(0.518–0.924)
0.749

(0.590–0.952)
CA125 (U/ml) 0.013 0.026 0.018 0.049
<13.35 1(reference) 1 (reference) 1 (reference) 1 (reference)
≥13.35 1.395

(1.073–1.813)
1.295

(1.032–1.624)
1.330

(1.050–1.685)
1.261

(1.001–1.589)
CA153 (U/ml) 0.073 0.002 0.012
<11.63 1 (reference) 1 (reference) 1 (reference)
≥11.63 1.291

(0.976–1.708)
1.554

(1.171–2.063)
1.331

(1.065–1.664)
Neutrophil (N)×109/L 0.482 0.278

<3.68 1 (reference) 1 (reference)
≥3.68 0.875

(0.603–1.269)
0.806

(0.545–1.190)
Lymphocyte (L)×109/L 0.481 0.412

<1.76 1 (reference) 1 (reference)
≥1.76 0.898

(0.668–1.209)
1.133

(0.840–1.527)
Monocyte (M)×109/L 0.004 <0.0001 <0.0001 <0.0001

<0.35 1 (reference) 1 (reference) 1 (reference) 1 (reference)
≥0.35 1.419

(1.118–1.799)
1.627

(1.275–2.078)
1.869

(1.396–2.503)
1.637

(1.269–2.110)
Eosinophils (E)×109/L 0.015 0.008 0.001 0.010

<0.06 1 (reference) 1 (reference) 1 (reference) 1 (reference)
≥0.06 0.717

(0.548–0.937)
0.740

(0.592–0.925)
0.636

(0.483–0.839)
0.744

(0.594–0.932)
Platelet (P)×109/L 0.137 0.304

<243 1 (reference) 1 (reference)
≥243 0.839

(0.666–1.058)
0.874

(0.678–1.128)
Systemic inflammation response
index (SIRI)

0.016 0.013 <0.0001 <0.0001

<112 1 (reference) 1 (reference) 1 (reference) 1 (reference)
≥112 1.461

(1.074–1.988)
1.475

(1.085–2.005)
1.970

(1.431–2.712)
1.637

(1.269–2.110)
Clinical stage
Clinical N stage 0.230 0.001 <0.0001
N0 1 (reference) 1 (reference) 1 (reference)
N1 0.934

(0.622–1.401)
1.532

(1.101–2.132)
1.371

(1.053–1.786)
N2 0.883

(0.439–1.777)
1.704

(1.010–2.934)
1.400

(1.010–1.942)
N3 1.476

(0.689–3.160)
3.525

(1.852–6.708)
3.034

(2.080–4.427)
Histologic type 0.021 0.028 0.002 0.017
Ductal 1 (reference) 1 (reference) 1 (reference) 1 (reference)
Lobular 2.581

(1.129–5.899)
2.495

(1.096–5.683)
3.006

(1.255–7.198)
1.943

(1.064–4.019)
Others 2.046

(1.083–4.537)
1.987

(1.115–4.405)
2.948

(1.332–6.522)
2.357

(1.140–4.870)
Pathological TNM classification

Pathological N stage 0.014 <0.0001 0.0002 <0.0001
N0 1 (reference) 1 (reference) 1 (reference) 1 (reference)

(Continued on following page)
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TABLE 3 | (Continued) Survival analyses based on univariate and multivariate Cox regression methods for predicting breast cancer patient DFS and OS.

DFS OS

Univariate
analysis

Multivariate
analysis

Univariate
analysis

Multivariate
analysis

Parameters

Hazard ratio
(95%CI)

p value Hazard ratio
(95%CI)

p value Hazard ratio
(95%CI)

p value Hazard ratio
(95%CI)

p value

N1 2.901
(1.031–8.668)

1.518
(1.148–2.008)

2.001
(1.493–5.981)

1.330
(1.004–1.776)

N2 3.928
(1.004–15.47)

1.499
(1.077–2.086)

6.029
(1.702–21.35)

1.495
(1.061–2.105)

N3 6.219
(1.574–24.56)

1.897
(1.420–2.535)

10.24
(2.861–36.69)

2.006
(1.465–2.748)

Pathological TNM stage 0.255 0.006 0.012
Tis/T0 1 (reference) 1 (reference) 1 (reference)
I 2.662

(0.732–9.671)
2.600

(1.399–9.454)
1.986

(1.126–3.503)
II 3.251

(0.862–12.26)
3.626

(1.043–13.70)
2.236

(1.098–4.844)
III 1.998

(0.418–9.555)
2.532

(1.337–4.796)
2.645

(1.428–4.899)
Positive lymph nodes 0.306 0.725
<1 1 (reference) 1 (reference)
≥1 0.509

(0.140–1.853)
0.788

(0.210–2.959)
Postoperative pathology (IHC)
Molecular subtype 0.018 0.029 0.097
Luminal A 1 (reference) 1 (reference) 1 (reference)
Luminal B HER2+ 0.395

(0.216–0.724)
0.391

(0.213–0.716)
0.259

(0.093–0.722)
Luminal B HER2- 0.535

(0.330–0.868)
0.468

(0.287–0.763)
0.535

(0.307–0.933)
HER2 enriched 0.357

(0.193–0.662)
0.429

(0.233–0.790)
0.287

(0.096–0.853)
Triple negative 0.534

(0.309–0.924)
0.455

(0.262–0.790)
0.557

(0.271–1.145)
ER status 0.105 0.725
Negative 1 (reference) 1 (reference)
Positive 0.658

(0.397–1.090)
0.913

(0.551–1.512)
PR status 0.257 0.155
Negative 1 (reference) 1 (reference)
Positive 1.253

(0.847–1.854)
1.306

(0.903–1.887)
HER2 status 0.101 0.182
Negative (0--++) 1 (reference) 1 (reference)
Positive (+++) 2.115

(0.864–5.178)
1.826

(0.754–4.420)
Ki-67 status 0.003 0.005 0.004 0.010
Negative (≤14%) 1 (reference) 1 (reference) 1 (reference) 1 (reference)
Positive (＞14%) 1.687

(1.190–2.391)
1.650

(1.167–2.333)
1.662

(1.172–2.356)
1.576

(1.116–2.225)
CK5/6 status 0.011 0.001 0.017 <0.0001
Negative 1 (reference) 1 (reference) 1 (reference) 1 (reference)
Positive 1.786

(1.142–2.792)
1.752

(1.265–2.426)
1.769

(1.107–2.825)
1.919

(1.386–2.659)
E-cad status 0.279 <0.0001 <0.0001
Negative 1 (reference) 1 (reference) 1 (reference)
Positive 1.212

(0.855–1.719)
2.379

(1.622–3.490)
2.320

(1.709–3.150)
Lymph vessel invasion 0.040 <0.0001 0.012 0.004
Negative 1 (reference) 1 (reference) 1 (reference) 1 (reference)
Positive 1.406

(1.016–1.945)
1.636

(1.285–2.083)
1.523

(1.097–2.114)
1.458

(1.131–1.880)
Postoperative chemotherapy <0.0001 <0.0001 <0.0001 0.004
No 1 (reference) 1 (reference) 1 (reference) 1 (reference)
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phosphatase (ALP) (64.00 U/L), γ-glutamyl transpeptidase
(GGT) (17.00 U/L), lactate dehydrogenase (LDH) (167.00 U/L),
alanine aminotransferase (ALT) (15.00 U/L), and aspartate
aminotransferase (AST) (18.00 U/L).

The following are other parameters obtained with their
respective median values shown in brackets: CRP (0.20 mg/dl),
carbohydrate antigen 125 (CA125) (13.35 U/mL), carbohydrate
antigen (CA15-3) (11.63 U/mL), carcinoembryonic antigen
(CEA) (1.66 ng/ml), plasma D-dimer (D-D) (0.29 mg/L),
fibrinogen (FIB) (2.85 g/L), international standardized ratio of
prothrombin time (INR) (0.93), fibrinogen degradation products
(FDP) (1.40 µg/mL), and W (6.01 × 109/L), R (4.40 × 1012/L), Hb
(132 g/L), N (3.68 × 109/L), L (1.76 × 109/L), M (0.35 × 109/L), E
(0.06 × 109/L), B (0.02 × 109/L), and P (243 × 109/L).

1) In all breast cancer patients, the parameters of LDH (χ2 =
4.337, p = 0.037), CRP (χ2 = 17.198, p < 0.0001), CA125 (χ2 =
5.051, p = 0.025), FIB (χ2 = 14.320, p < 0.0001), p = 0.0002,
INR (χ2 = 4.218, p = 0.040), FDP (χ2 = 4.691, p = 0.030), W (χ2

= 75.436, p < 0.0001), R (χ2 = 7.107, p = 0.008), Hb (χ2 = 7.361,
p = 0.007), N (χ2 = 142.491, p < 0.0001), L (χ2 = 7.843, p =
0.005), M (χ2 = 124.109, p < 0.0001), B (χ2 = 9.429, p = 0.002),
P (χ2 = 13.231, p < 0.0001), L (χ2 = 7.843, p < 0.0001), p =
0.0003 were statistically significant between high and low SIRI
groups. The results are shown in Table 2.

2) In the NACT group (477 patients), FIB (χ2 = 11.241, p =
0.0008), W (χ2 = 57.819, p < 0.0001), R (χ2 = 5.283, p = 0.022),
Hb (χ2 = 4.887, p = 0.027), N (χ2 = 98.716, p < 0.0001), M (χ2 =
100.469, p < 0.0001) and P (χ2 = 8.329, p = 0.004) were
statistically significant.

3) In the non-NACT group (308 breast cancer patients), ALB (χ2

= 9.576, p = 0.002), CRP (χ2 = 11.798, p = 0.0006), D-D (χ2 =
5.007, p = 0.025), W (χ2 = 20.949, p < 0.0001), Hb (χ2 = 4.100,
p = 0.043), N (χ2 = 42.839, p < 0.0001), L (χ2 = 4.817, p =
0.028), M (χ2 = 26.521, p < 0.0001), E (χ2 = 6.697, p = 0.010)
and B (χ2 = 9.248, p = 0.002) were statistically significant.

Survival Analysis Based on Univariate and
Multivariate Cox Regression Survival
Analyses
Through univariate analysis, we found that menopausal status,
GLU, CA125, M, E, SIRI, histological type, pathological N stage,
molecular type, Ki-67, CK5/6, lymph vessel invasion (LVI),
postoperative targeted therapy, postoperative endocrine
therapy, and postoperative chemotherapy were independent
factors for improving DFS and OS. After multivariate analysis,
we found that menopausal status, blood glucose, CA125, CA153,
M, E, SIRI, histological grade, clinical N stage, pathological N and
TNM stages, Ki-67, CK5/6, E-cadherin (E-cad), LVI,
postoperative chemotherapy, and postoperative targeted
therapy were independent factors for improving DFS and OS.
Table 3 depicts all of the above results.

Disease-Free Survival and Overall Survival
SIRI was found to be an independent factor that improved DFS
and OS on both univariate and multivariate analyses, and the
optimal threshold value for SIRI was 0.80. Univariate analysis
demonstrated that low SIRI significantly improved DFS and OS
(HR: 1.461, 95% CI: 1.074–1.988, p = 0.016 and HR: 1.475, 95%
CI: 1.085–2.005, p = 0.013). Multivariate analysis showed that a
low SIRI significantly improved DFS and OS (HR: 1.970, 95% CI:
1.431–2.712, p < 0.0001 and HR: 1.637, 95% CI: 1.269–2.110, p <
0.0001). Patients with low SIRI scores had mean survival times of
DFS and OS of 41.50 months (3.10–238.00 months) and
64.57 months (6.43–260.00 months), respectively. The average
DFS and OS survival time of SIRI in the high group was
37.63 months (3.13–238.00 months) and 58.42 months
(10.77–256.40 months), respectively. The log-rank analysis
shown that the average DFS and OS survival time of SIRI in
the low group were remarkably longer in contrast to that of SIRI
in the high group (χ2 = 14.290, p = 0.0002, and χ2 = 20.690, p <
0.0001), as shown in Figure 1.

TABLE 3 | (Continued) Survival analyses based on univariate and multivariate Cox regression methods for predicting breast cancer patient DFS and OS.

DFS OS

Univariate
analysis

Multivariate
analysis

Univariate
analysis

Multivariate
analysis

Parameters

Hazard ratio
(95%CI)

p value Hazard ratio
(95%CI)

p value Hazard ratio
(95%CI)

p value Hazard ratio
(95%CI)

p value

Yes 2.182
(1.489–3.198)

1.636
(1.285–2.083)

2.000
(1.359–2.942)

1.458
(1.131–1.880)

Postoperative radiotherapy 0.183 0.089
No 1 (reference) 1 (reference)
Yes 1.254

(0.898–1.751)
1.348

(0.955–1.901)
Postoperative endocrine

therapy
0.015 0.032 0.080

No 1 (reference) 1 (reference) 1 (reference)
Yes 1.544

(1.088–2.190)
1.388

(1.029–1.874)
1.301

(0.969–1.747)
Postoperative targeted therapy <0.0001 <0.0001 0.004 <0.0001
No 1 (reference) 1 (reference) 1 (reference) 1 (reference)
Yes 2.608

(1.799–3.781)
2.105

(1.638–2.706)
1.709

(1.188–2.456)
1.791

(1.397–2.296)
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The Association Between SIRI Scores and
Tumor Node Metastasis (TNM) Stage
The N stage was an independent predictor of DFS and OS, as
revealed by univariate and multivariate analyses. The pathological
TNM stage is an independent factor of OS. The ability of SIRI to
determine breast cancer prognosis was further assessed by
examining the relationship between SIRI and the TNM stage.
Early breast cancer was determined to be pathological stages Tis/
T0 and I, while advanced breast cancer was pathological stages II and
III. Both early and advanced forms of breast cancer were subjected to
log-rank analysis to determine their respective DFS and OS.

Early breast cancer patients and low SIRI scores had notably
longer DFS andOS in contrast to those high SIRI score patients (χ2 =

2.379, p = 0.123, and χ2 = 5.153, p = 0.023), as shown in Figure 2A
and Figure 2B. 2). Similarly, patients with advanced breast cancer
and low SIRI scores also had remarkably longer average DFS andOS
in contrast to patients with elevated SIRI scores (χ2 = 11.080, p =
0.0009 and χ2 = 15.900, p < 0.0001), as shown in Figure 2C and
Figure 2D. The DFS and OS of SIRI and TNM stage of the NACT
and non-NACT cohorts are shown in Figures 2E–L, respectively.

The Association Between Systemic
Inflammatory Response Index Scores and
Breast Cancer Molecular Subtype
We found that the molecular subtype of breast cancer was an
independent risk factor of DFS based on univariate and

FIGURE 1 | DFS and OS of breast cancer patients. DFS and OS of breast cancer patients. (A) Kaplan-Meier analysis of DFS for the SIRI of all patients with breast
cancer. (B) Kaplan-Meier analysis of OS for the SIRI of all patients with breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer (NACT
group). (D) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (NACT group). (E) Kaplan-Meier analysis of DFS for the SIRI of patients with breast
cancer (non-NACT group). (F) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (non-NACT group).
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multivariate analyses. Of the 785 patients with breast cancer, 171
cases were triple-negative type, 98 cases were Luminal B HER2-
positive type, 325 cases were Luminal B HER2-negative type, 62
cases were Luminal A type, and 129 cases were HER2-
overexpressing type. Table 4 shows the detailed information of
the molecular type of breast cancer.

1) In all breast cancer patients, HER2 (χ2 = 8.077, p = 0.005),
E-cad (χ2 = 21.406, p < 0.0001), epidermal growth factor
receptor (EGFR) (χ2 = 6.339, p = 0.012), topoisomerase
(DNA) II alpha (TOP2A) (χ2 = 5.595, p = 0.018), and LVI
(χ2 = 4.403, p = 0.036). were statistically significant.

2) In the NACT group (477 patients), there were no significant
statistically between them.

3) In the non-NACT group (308 breast cancer patients), HER2
(χ2 = 5.660, p = 0.017), E-cad (χ2 = 14.686, p = 0.0001), EGFR

(χ2 = 6.983, p = 0.008), TOP2A (χ2 = 8.526, p = 0.004) and LVI
(χ2 = 11.377, p = 0.007) were statistically significant.

The relationship between SIRI and molecular type of breast
cancer was assessed to ascertain the prognostic value of SIRI
(shown in Figure 3, Figure 4, Figure 5). The log-rank analysis
demonstrated that the average DFS and OS in the low SIRI group
was drastically longer in contrast to patients with high SIRI scores.

The Association Between Systemic
Inflammatory Response Index Scores and
Lymph Vessel Invasion
LVI was found to be an independent factor of DFS and OS based
on univariate and multivariate analyses. Of the 785 cases of breast
cancer, 227 cases were associated with LVI, and 558 cases were

FIGURE 2 | DFS and OS based on SIRI scores of patients with breast cancer of different pathological stage. DFS and OS based on SIRI scores of patients with breast
cancer of different pathological stage. (A)Kaplan-Meier analysis of DFS for the SIRI of patients with early breast cancer. (B)Kaplan-Meier analysis of OS for the SIRI of patients
with early breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of patients with advanced breast cancer. (D) Kaplan-Meier analysis of OS for the SIRI of patients with
advanced breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with early breast cancer (NACT group). (F) Kaplan-Meier analysis of OS for the SIRI of
patients with early breast cancer (NACT group). (G) Kaplan-Meier analysis of DFS for the SIRI of patients with advanced breast cancer (NACT group). (H) Kaplan-Meier
analysis of OS for the SIRI of patients with advanced breast cancer (NACT group). (I)Kaplan-Meier analysis of DFS for the SIRI of patientswith early breast cancer (non-NACT
group). (J) Kaplan-Meier analysis of OS for the SIRI of patients with early breast cancer (non-NACT group). (K) Kaplan-Meier analysis of DFS for the SIRI of patients with
advanced breast cancer (non-NACT group). (L) Kaplan-Meier analysis of OS for the SIRI of patients with advanced breast cancer (non-NACT group).
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TABLE 4 | The relationship between SIRI scores and molecular breast cancer subtype.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p value Low
SIRI 267

High
SIRI 210

χ2 p
value

Low
SIRI 217

High
SIRI 91

χ2 p
value

Core needle biopsy (N = 477)
Molecular

subtype
3.520 0.475

Luminal A 25 (5.24%) 15 (5.62%) 10 (4.76%)
Luminal B HER2+ 67

(14.05%)
31 (11.61%) 36 (17.14%)

Luminal B HER2- 186
(38.99%)

105
(39.33%)

81 (38.57%)

HER2 enriched 91
(19.08%)

51 (19.10%) 40 (19.05%)

Triple negative 108
(22.64%)

65 (24.34%) 43 (20.48%)

ER status 0.042 0.838
Negative 191

(40.04%)
108

(40.45%)
83 (39.52%)

Positive 286
(59.96%)

159
(59.55%)

127
(60.48%)

ER status 0.929 0.920
0–25% 228

(47.80%)
129

(48.31%)
99 (47.14%)

26–50% 42 (8.81%) 26 (9.74%) 16 (7.62%)
51–75% 33 (6.92%) 18 (6.74%) 15 (7.14%)
76–100% 174

(36.48%)
94 (35.21%) 80 (38.10%)

PR status 0.964 0.326
Negative 189

(39.62%)
111

(41.57%)
78 (37.14%)

Positive 288
(60.38%)

156
(58.43%)

132
(62.86%)

PR status 2.467 0.651
0–25% 286

(59.96%)
165

(61.80%)
121

(57.62%)
26–50% 67

(14.05%)
35 (13.11%) 32 (15.24%)

51–75% 45 (9.43%) 21 (7.87%) 24 (11.43%)
76–100% 79

(16.56%)
46 (17.23%) 33 (15.71%)

HER2 status 1.743 0.187
Negative (0--++) 313

(65.62%)
182

(68.16%)
131

(62.38%)
Positive (+++) 164

(34.38%)
85 (31.84%) 79 (37.62%)

Ki-67 status 1.455 0.118
Negative (≤14%) 84

(17.61%)
52 (19.48%) 32 (15.24%)

Positive (＞14%)
(Continued on following page)
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TABLE 4 | (Continued) The relationship between SIRI scores and molecular breast cancer subtype.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p value Low
SIRI 267

High
SIRI 210

χ2 p
value

Low
SIRI 217

High
SIRI 91

χ2 p
value

393
(82.39%)

215
(80.52%)

178
(84.76%)

Ki-67 status 1.218 0.875
0–25% 161

(33.75%)
92 (34.46%) 69 (32.86%)

26–50% 189
(39.62%)

109
(40.82%)

80 (38.10%)

51–75% 88
(18.45%)

45 (16.85%) 43 (20.48%)

76–100% 39 (8.18%) 21 (7.87%) 18 (8.57%)
Postoperative pathology (IHC)
Molecular

subtype
8.634 0.125 5.449 0.364 12.370 0.030

Luminal A 62 (7.90%) 41 (8.47%) 21 (6.98%) 41 (8.60%) 22 (8.24%) 19 (9.05%) 21 (6.82%) 19 (8.76%) 2 (2.20%)
Luminal B HER2+ 98

(12.48%)
52 (10.74%) 46 (15.28%) 61

(12.79%)
28 (10.49%) 33 (15.71%) 37

(12.01%)
24 (11.06%) 13

(14.29%)
Luminal B HER2- 325

(41.40%)
211

(43.60%)
114

(37.87%)
166

(34.80%)
96 (35.96%) 70 (33.33%) 159

(51.62%)
115

(53.00%)
44

(48.35%)
HER2 enriched 129

(16.43%)
70 (14.46%) 59 (19.60%) 96

(20.13%)
53 (19.85%) 43 (20.48%) 33

(10.71%)
17 (7.83%) 16

(17.58%)
Triple negative 171

(21.78%)
110

(22.73%)
61 (20.27%) 113

(23.69%)
68 (25.47%) 45 (21.43%) 58

(18.83%)
42 (19.35%) 16

(17.58%)
ER status 0.465 0.495 0.286 0.593 1.884 0.170
Negative 296

(37.71%)
178

(36.78%)
118

(39.20%)
195

(40.88%)
112

(41.95%)
83 (39.52%) 101

(32.79%)
66 (30.41%) 35

(38.46%)
Positive 489

(62.29%)
306

(63.22%)
183

(60.80%)
282

(59.12%)
155

(58.05%)
127

(60.48%)
207

(67.21%)
151

(69.59%)
56

(61.54%)
ER status 3.061 0.548 0.530 0.971 6.402 0.171
0–25% 375

(47.77%)
232

(47.93%)
143

(47.51%)
235

(49.27%)
134

(50.19%)
101

(48.10%)
140

(45.45%)
98 (45.16%) 42

(46.15%)
26–50% 66 (8.41%) 41 (8.47%) 25 (8.31%) 31 (6.50%) 16 (5.99%) 15 (7.14%) 35

(11.36%)
25 (11.52%) 10

(10.99%)
51–75% 48 (6.11%) 24 (4.96%) 24 (7.97%) 27 (5.66%) 14 (5.24%) 13 (6.19%) 21 (6.82%) 10 (4.61%) 11

(12.09%)
76–100% 296

(37.71%)
187

(38.64%)
109

(36.21%)
184

(38.57%)
103

(38.58%)
81 (38.57%) 112

(36.36%)
84 (38.71%) 28

(30.77%)
PR status 1.168 0.280 0.007 0.933 1.720 0.190
Negative 315

(40.13%)
187

(38.64%)
128

(42.52%)
210

(44.03%)
118

(44.19%)
92 (43.81%) 105

(34.09%)
69 (31.80%) 36

(39.56%)
Positive 470

(59.87%)
297

(61.36%)
173

(57.48%)
267

(55.97%)
149

(55.81%)
118

(56.19%)
203

(65.91%)
148

(68.20%)
55

(60.44%)
PR status 6.924 0.140 1.764 0.779 2.296 0.682
0–25% 502

(63.95%)
301

(62.19%)
201

(66.78%)
335

(70.23%)
187

(70.04%)
148

(70.48%)
167

(54.22%)
114

(52.53%)
53

(58.24%)
26–50% 90

(11.46%)
57 (11.78%) 33 (10.96%) 48

(10.06%)
28 (10.49%) 20 (9.52%) 42

(13.64%)
29 (13.36%) 13

(14.29%)
(Continued on following page)
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TABLE 4 | (Continued) The relationship between SIRI scores and molecular breast cancer subtype.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p value Low
SIRI 267

High
SIRI 210

χ2 p
value

Low
SIRI 217

High
SIRI 91

χ2 p
value

51–75% 55 (7.01%) 29 (5.99%) 26 (8.64%) 38 (7.97%) 18(6.74%) 20 (9.52%) 17 (5.52%) 11 (5.07%) 6 (6.59%)
76–100% 138

(17.58%)
97 (20.04%) 41 (13.62%) 56

(11.74%)
34 (12.73%) 22 (10.48%) 82

(26.62%)
63 (29.03%) 19

(20.88%)
HER2 status 8.077 0.005 1.824 0.177 5.660 0.017
Negative (0--++) 557

(70.96%)
361

(74.59%)
196

(65.12%)
320

(67.09%)
186

(69.66%)
134

(63.81%)
237

(76.95%)
175

(80.65%)
62

(68.13%)
Positive (+++) 228

(29.04%)
123

(25.41%)
105

(34.88%)
157

(32.91%)
81 (30.34%) 76 (36.19%) 71

(23.05%)
42 (19.35%) 29

(31.87%)
Ki-67 status 0.423 0.516 0.072 0.788 2.802 0.094
Negative (≤14%) 219

(27.90%)
139

(28.72%)
80 (26.58%) 153

(32.08%)
87 (32.58%) 66 (31.43%) 66

(21.43%)
52 (23.96%) 14

(15.38%)
Positive (＞14%) 566

(72.10%)
345

(71.28%)
221

(73.42%)
324

(67.92%)
180

(67.42%)
144

(68.57%)
242

(78.57%)
165

(76.04%)
77

(84.62%)
Ki-67 status 5.107 0.277 4.227 0.376 1.436 0.838
0–25% 342

(43.57%)
215

(44.42%)
127

(42.19%)
233

(48.85%)
134

(50.19%)
99 (47.14%) 109

(35.39%)
81 (37.33%) 28

(30.77%)
26–50% 257

(32.74%)
163

(33.68%)
94 (31.23%) 139

(29.14%)
81 (30.34%) 58 (27.62%) 118

(38.31%)
82 (37.79%) 36

(39.56%)
51–75% 137

(17.45%)
83 (17.15%) 54 (17.94%) 70

(14.68%)
38 (14.23%) 32 (15.24%) 67

(21.75%)
45 (20.74%) 22

(24.18%)
76–100% 49 (6.24%) 23 (4.75%) 26 (8.64%) 35 (7.34%) 14 (5.24%) 21 (10.00%) 14 (4.55%) 9 (4.15%) 5 (5.49%)
AR status 1.209 0.272 0.018 0.892 0.040 0.841
Negative 666

(84.84%)
416

(85.95%)
250

(83.06%)
362

(75.89%)
202

(75.66%)
160

(76.19%)
304

(98.70%)
214

(98.62%)
90

(98.90%)
Positive 119

(15.16%)
68 (14.05%) 51 (16.94%) 115

(24.11%)
65 (24.34%) 50 (23.81%) 4 (1.30%) 3 (1.38%) 1 (1.10%)

AR status 1.665 0.797 3.144 0.534 0.021 0.885
0–25% 688

(87.64%)
424

(87.60%)
264

(87.71%)
383

(80.29%)
209

(78.28%)
174

(82.86%)
305

(99.03%)
215

(99.08%)
90

(98.90%)
26–50% 25 (3.18%) 13 (2.69%) 12 (3.99%) 25 (5.24%) 13 (4.87%) 12 (5.71%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
51–75% 29 (3.69%) 20 (4.13%) 9 (2.99%) 29 (6.08%) 20 (7.49%) 9 (4.29%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
76–100% 43 (5.48%) 27 (5.58%) 16 (5.32%) 40 (8.39%) 25 (9.36%) 15 (7.14%) 3 (0.97%) 2 (0.92%) 1 (1.10%)
CK5/6 status 1.336 0.248 0.940 0.332 0.003 0.954
Negative 684

(87.13%)
427

(88.22%)
257

(85.38%)
406

(85.12%)
231

(86.52%)
175

(83.33%)
278

(90.26%)
196

(90.32%)
82

(90.11%)
Positive 101

(12.87%)
57 (11.78%) 44 (14.62%) 71

(14.88%)
36 (13.48%) 35 (16.67%) 30 (9.74%) 21 (9.68%) 9 (9.89%)

E-cad status 21.406 <0.0001 3.593 0.058 14.686 0.0001
Negative 353

(44.97%)
249

(51.45%)
104

(34.55%)
170

(35.64%)
105

(39.33%)
65 (30.95%) 183

(59.42%)
144

(66.36%)
39

(42.86%)
Positive 432

(55.03%)
235

(48.55%)
197

(65.45%)
307

(64.36%)
162

(60.67%)
145

(69.05%)
125

(40.58%)
73 (33.64%) 52

(57.14%)
EGFR status 6.339 0.012 0.494 0.482 6.983 0.008
Negative 589

(75.03%)
378

(78.10%)
211

(70.10%)
335

(70.23%)
191

(71.54%)
144

(68.57%)
254

(82.47%)
187

(86.18%)
67

(73.63%)
Positive 90 (29.90%) 76 (28.46%) 66 (31.43%) 30 (13.82%)
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TABLE 4 | (Continued) The relationship between SIRI scores and molecular breast cancer subtype.

Parameters N SIRI 785 N SIRI 477 N SIRI 308

Cases (n) 785 Low
SIRI 484

High
SIRI 301

χ2 p value Low
SIRI 267

High
SIRI 210

χ2 p
value

Low
SIRI 217

High
SIRI 91

χ2 p
value

196
(24.97%)

106
(21.90%)

142
(29.77%)

54
(17.53%)

24
(26.37%)

P53 status 0.642 0.423 0.303 0.582 0.528 0.467
Negative 395

(50.32%)
249

(51.45%)
146

(48.50%)
243

(50.94%)
139

(52.06%)
104

(49.52%)
152

(49.35%)
110

(50.69%)
42

(46.15%)
Positive 390

(49.68%)
235

(48.55%)
155

(51.50%)
234

(49.06%)
128

(47.94%)
106

(50.48%)
156

(50.65%)
107

(49.31%)
49

(53.85%)
P53 status 1.755 0.781 3.412 0.491 0.082 0.960
0–25% 576

(73.38%)
362

(74.79%)
214

(71.10%)
353

(74.00%)
204

(76.40%)
149

(70.95%)
223

(72.40%)
158

(72.81%)
65

(71.43%)
26–50% 80

(10.19%)
49 (10.12%) 31 (10.30%) 45 (9.43%) 25 (9.36%) 20 (9.52%) 35

(11.36%)
24 (11.06%) 11

(12.09%)
51–75% 108

(13.76%)
61 (12.60%) 47 (15.61%) 58

(12.16%)
26 (9.74%) 32 (15.24%) 50

(16.23%)
35 (16.13%) 15

(16.48%)
76–100% 21 (2.68%) 12 (2.48%) 9 (2.99%) 21 (4.40%) 12 (4.49%) 9 (4.29%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
TOP2A status 5.595 0.018 0.101 0.750 8.526 0.004
Negative 299

(38.09%)
200

(41.32%)
99 (32.89%) 165

(34.59%)
94 (35.21%) 71 (33.81%) 134

(43.51%)
106

(48.85%)
28

(30.77%)
Positive 486

(61.91%)
284

(58.68%)
202

(67.11%)
312

(65.41%)
173

(64.79%)
139

(66.19%)
174

(56.49%)
111

(51.15%)
63

(69.23%)
TOP2A status 4.005 0.405 1.690 0.793 15.817 0.003
0–25% 575

(73.25%)
366

(75.62%)
209

(69.44%)
354

(74.21%)
200

(74.91%)
154

(73.33%)
221

(71.75%)
166

(76.50%)
55

(60.44%)
26–50% 158

(20.13%)
90 (18.60%) 68 (22.59%) 88

(18.45%)
45 (16.85%) 43 (20.48%) 70

(22.73%)
45 (20.74%) 25

(27.47%)
51–75% 49 (6.24%) 26 (5.37%) 23 (7.64%) 33 (6.92%) 21 (7.87%) 12 (5.71%) 16 (5.19%) 5 (2.30%) 11

(12.09%)
76–100% 3 (0.38%) 2 (0.41%) 1 (0.33%) 2 (0.42%) 1 (0.37%) 1 (0.48%) 1 (0.32%) 1 (0.46%) 0 (0.00%)
Lymph vessel

invasion
4.403 0.036 0.048 0.826 11.377 0.001

Negative 558
(71.08%)

357
(73.76%)

201
(66.78%)

320
(67.09%)

178
(66.67%)

142
(67.62%)

238
(77.27%)

179
(82.49%)

59
(64.84%)

Positive 227
(28.92%)

127
(26.24%)

100
(33.22%)

157
(32.91%)

89 (33.33%) 68 (32.38%) 70
(22.73%)

38 (17.51%) 32
(35.16%)

Neural invasion 0.0004 0.984 0.470 0.493 0.059 0.808
Negative 670

(85.35%)
413

(85.33%)
257

(85.38%)
384

(80.50%)
212

(79.40%)
172

(81.90%)
286

(92.86%)
201

(92.63%)
85

(93.41%)
Positive 115

(14.65%)
71 (14.67%) 44 (14.62%) 93

(19.50%)
55 (20.60%) 38 (18.10%) 22 (7.14%) 16 (7.37%) 6 (6.59%)
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not. The relationship between SIRI and LVI was analyzed to
determine the prognostic value of SIRI. The average DFS and OS
in patients who did not have LVI were 50.96 and 79.65 months,
respectively. The average DFS and OS in patients who had LVI
were 28.97 and 53.37 months, respectively. Patients without LVI
had notably longer mean DFS and OS in comparison to patients
who had LVI (χ2 = 20.940, p < 0.0001 and χ2 = 26.540, p < 0.0001),

as shown in Figure 6A and Figure 6B. Among the 558 patients
without LVI, patients who had low SIRI scores hadmeanDFS and
OS of 46.40 and 69.37 months, respectively; The average DFS and
OS of high SIRI score patients were 30.00 and 54.43 months,
respectively. Similarly, low SIRI group patients had notably
longer mean DFS and OS in contrast to those with high SIRI
scores, as evaluated using log-rank analysis (χ2 = 16.020, p < 0.0001

FIGURE 3 | DFS and OS based on SIRI scores in patients with breast cancer of various molecular subtypes. DFS and OS based on SIRI scores in patients with
breast cancer of various molecular subtypes. (A) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal A breast cancer. (B) Kaplan-Meier analysis of OS for
the SIRI of patients with luminal A breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal B HER2-positive breast cancer. (D) Kaplan-Meier
analysis of OS for the SIRI of patients with luminal B HER2-positive breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal B HER2-
negative breast cancer. (F)Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-negative breast cancer. (G) Kaplan-Meier analysis of DFS for the SIRI
of patients with HER2-enriched breast cancer. (H) Kaplan-Meier analysis of OS for the SIRI of patients with HER2-enriched breast cancer. (I) Kaplan-Meier analysis of
DFS for the SIRI of patients with triple-negative breast cancer. (J) Kaplan-Meier analysis of OS for the SIRI of patients with triple-negative breast cancer.

FIGURE 4 | DFS and OS based on SIRI scores in patients with breast cancer of various molecular subtypes (NACT group). DFS and OS based on SIRI scores in
patients with breast cancer of various molecular subtypes (NACT group). (A) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal A breast cancer. (B)
Kaplan-Meier analysis of OS for the SIRI of patients with luminal A breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal B HER2-positive
breast cancer. (D) Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-positive breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of
patients with luminal B HER2-negative breast cancer. (F) Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-negative breast cancer. (G) Kaplan-
Meier analysis of DFS for the SIRI of patients with HER2-overexpressing breast cancer. (H) Kaplan-Meier analysis of OS for the SIRI of patients with HER2-
overexpressing breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with triple-negative breast cancer. (J) Kaplan-Meier analysis of OS for the SIRI of
patients with triple-negative breast cancer.

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 9 | Article 85606421

Zhu et al. SIRI in Breast Cancer

43

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


and χ2 = 22.050, p < 0.0001). Among the 227 patients with LVI, the
mean DFS and OS were much longer in those with low SIRI scores
in contrast to the high SIRI score group (χ2 = 0.257, p = 0.612, and
χ2 = 0.705, p = 0.401), as shown in Figures 6C–F. The DFS and OS
of SIRI and LVI of the NACT and non-NACT cohorts are shown
in Figure 7 and Figure 8, respectively.

The Association Between Systemic
Inflammatory Response Index Scores and
Neoadjuvant Chemotherapy/Postoperative
Chemotherapy
In the NACT group, 141 patients underwent TP neoadjuvant
chemotherapy, 28 patients received AC/ACF neoadjuvant
chemotherapy, 223 patients received AT neoadjuvant
chemotherapy, 27 patients received CT/ACT neoadjuvant
chemotherapy, and 58 patients received other neoadjuvant
chemotherapy regimens. All 477 patients received surgical
treatment after neoadjuvant chemotherapy. 247 patients were
not treated with postoperative chemotherapy, while 230 patients
did. Of the 230 who received postoperative chemotherapy, 39
patients received TP chemotherapy, 37 patients received AT
chemotherapy, 30 patients were treated with CT/ACT
chemotherapy, 43 patients received AC/ACF chemotherapy,
and 81 patients received other chemotherapy regimens. The
clinical benefit rate (CR + PR + SD) was 98.53% (470/477),
and the clinical objective response rate (CR + PR) was 66.88%
(319/477). The MPG grade system was used to evaluate the
pathological response of neoadjuvant chemotherapy. There
were 22 MPG 1 cases (4.61%), 126 MPG 2 cases (26.42%), 177
MPG 3 cases (37.11%), 62 MPG 4 cases (13.00%), and 90 MPG 5
cases (18.87%). 72 cases (15.09%) achieved pCR, while 405 cases
(84.90%) did not. The relationship between SIRI and MPG grade

was analyzed to determine the prognostic value of SIRI. Log-rank
analysis showed that mean DFS and OS were significantly
different among various MPG grades (χ2 = 18.290, p < 0.0001
and χ2 = 18.020, p < 0.0001), as shown in Figure 9.

We further scrutinized how SIRI was related to response to
neoadjuvant chemotherapy was scrutinized to determine the
prognostic value of SIRI. Log-rank analysis demonstrated the
average DFS and OS among different response groups were
statistically significant (χ2 = 12.540, p = 0.006 and χ2 = 10.820,
p = 0.013), as shown in Figure 10.

The Association Between Systemic
Inflammatory Response Index Scores and
Chemotherapy Toxicity and Adverse Effects
Toxicity and adverse effects experienced by patients who received
two cycles of NACT were evaluated. In the NACT group,
common chemotherapeutic side effects included anorexia,
alopecia, oral ulcers, diarrhea, vomiting, nausea, other
gastrointestinal reactions, hepatic dysfunction,
myelosuppression, thrombocytopenia, neutropenia, leucopenia,
anemia, and peripheral neurotoxicity. There were no
chemotherapy-related deaths during treatment. The degree of
liver dysfunction was statistically different between the two
groups (χ2 = 7.146, p = 0.028) (Table 5).

DISCUSSION

Breast cancer is a very common female malignancy whose
incidence has surpassed that of lung cancer (Siegel et al.,
2020). According to the 2020 World Health Organization
(WHO) and International Agency for Research on Cancer

FIGURE 5 | DFS and OS based on SIRI scores in patients with breast cancer of various molecular subtype (Non-NACT group). DFS and OS based on SIRI scores in
patientswith breast cancer of variousmolecular subtype (Non-NACTgroup). (A)Kaplan-Meier analysis of DFS for the SIRI of patientswith luminal A breast cancer. (B)Kaplan-
Meier analysis of OS for the SIRI of patients with luminal A breast cancer. (C)Kaplan-Meier analysis of DFS for the SIRI of patients with luminal B HER2-positive breast cancer.
(D)Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-positive breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal
B HER2-negative breast cancer. (F)Kaplan-Meier analysis of OS for the SIRI of patientswith luminal B HER2-negative breast cancer. (G)Kaplan-Meier analysis of DFS for the
SIRI of patients with HER2-overexpressing breast cancer. (H) Kaplan-Meier analysis of OS for the SIRI of patients with HER2-overexpressing breast cancer. (I) Kaplan-Meier
analysis of DFS for the SIRI of patients with triple-negative breast cancer. (J) Kaplan-Meier analysis of OS for the SIRI of patients with triple-negative breast cancer.
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(IARC) research, 19.29 million additional breast cancer cases are
diagnosed every year. There are currently 2.26 million breast
cancer cases worldwide, exceeding the 2.2 million cases of lung
cancer (Siegel et al., 2020). Similar proportions are reported by
the China National Cancer Center, which shows that China
diagnoses 420,000 new female breast cancer patients every
year, with 120,000 women dying from the disease. Patients are
being diagnosed at an increasingly younger age, with mortality
also increasing every year in spite of the current comprehensive
breast cancer management protocols that involve surgery,
supplemented by a combination of radiotherapy,
chemotherapy, targeted therapy, and endocrine therapy
(Tufano et al., 2021). At present, individualized treatment

based on tumor characteristics, patient characteristics, and
treatment response has emerged as the preferred means of
treatment. These methods have greatly reduced patient
mortality. Nevertheless, breast cancer is a heterogeneous
disease with not all subtypes amenable to current therapies,
cementing the position of this disease as the primary instigator
of malignancy-associated mortalities in females around the
world. NACT is an important part of systemic management of
breast cancer, and is effective in reducing tumor size, clinical
stage, improve surgical treatment outcomes while having an
aesthetic effect (Colomer et al., 2019).

With the development of the field of tumor biology, several
investigations have discovered that inflammation is involved in

FIGURE 6 | DFS and OS based on the presence of lymph vessel invasion in breast cancer patients. DFS and OS based on the presence of lymph vessel invasion in
breast cancer patients. (A) Kaplan-Meier analysis of DFS for the SIRI of all patients with breast cancer. (B) Kaplan-Meier analysis of OS for the SIRI of all patients with
breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of breast cancer patients without lymph vessel invasion. (D) Kaplan-Meier analysis of OS for the SIRI of
breast cancer patients without lymph vessel invasion. (E) Kaplan-Meier analysis of DFS for the SIRI of breast cancer patients with lymph vessel invasion. (F) Kaplan-
Meier analysis of OS for the SIRI of breast cancer patients with lymph vessel invasion.
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the initiation, development, and metastasis of tumors. Peripheral
platelets, monocytes, lymphocytes, and neutrophils, are
associated with the initiation and degree of inflammation (Xie
et al., 2018). Many inflammatory markers have been used to
predict the occurrence, progression, stage, and prognosis of
tumors (Zhu et al., 2018). The reason may be that tumor
tissues stimulate the proliferation of inflammatory cells in
peripheral blood by secreting a number of pro-inflammatory
substances (Li et al., 2018). Studies have confirmed cancer
progression and recurrence are more likely to occur when the
numbers of inflammatory cells such as neutrophils and
monocytes in peripheral blood are relatively increased, and the

numbers of immune cells such as lymphocytes andmonocytes are
relatively decreased (Qi et al., 2021). Inflammation directly brings
about changes in the tumor microenvironment that directly
promotes and augments malignant cellular transformation,
invasion, and metastasis. A number of studies have shown
that inflammatory markers in the tumor microenvironment
can predict how breast cancer progresses along with its
prognosis, with the inflammatory response representing an
important marker of breast cancer outcomes. This carries
significant implications regarding the role of inflammation in
clinical disease assessment and treatment strategy formulation
(Chen et al., 2020; Hua et al., 2020). Therefore, it is of great

FIGURE 7 | DFS and OS based on the presence of lymph vessel invasion in breast cancer patients (NACT group). DFS and OS based on the presence of lymph
vessel invasion in breast cancer patients (NACT group). (A)Kaplan-Meier analysis of DFS for the SIRI of all patients with breast cancer. (B)Kaplan-Meier analysis of OS for
the SIRI of all patients with breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of breast cancer patients without lymph vessel invasion. (D)Kaplan-Meier analysis
of OS for the SIRI of breast cancer patients without lymph vessel invasion. (E) Kaplan-Meier analysis of DFS for the SIRI of breast cancer patients with lymph vessel
invasion. (F) Kaplan-Meier analysis of OS for the SIRI of breast cancer patients with lymph vessel invasion.
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research significance to actively dissect the relationship between
common peripheral blood markers and breast cancer patient
prognosis.

Several cancers have demonstrated evidence of a systemic
inflammatory response, although the exact cause of this
phenomenon has not been completely reported (Topkan
et al., 2020). Various inflammatory cells comprising of
lymphocytes, monocytes, and neutrophils correlate to the
prognosis of many tumors (Galdiero et al., 2018).
Neutrophils augment tumor progression primarily by
promoting the production of interleukin-6 (IL-6), arginase-
1 (Arginase-1), and vascular endothelial growth factor (VEGF)

(Corbeau et al., 2020). Lymphocytes are critical in tumor
immune surveillance and are able to inhibit tumor
progression and metastasis and directly kill tumor cells by
stimulating natural killer cells (NK cells) and macrophages
(Morrow et al., 2019). On the other hand, neutrophils inhibit
lymphocytes, thereby inhibiting the anti-tumor immune
response (Oba et al., 2021). Monocytes can differentiate
into TAMs, and tumors secrete chemokines to recruit
TAMs in the microenvironment. Some TAMs secrete
growth factors and cytokines, promote angiogenesis, and
facilitate immune escape, thus accelerating tumor
progression (Olingy et al., 2019).

FIGURE 8 | DFS and OS based on the presence of lymph vessel invasion in breast cancer patients (non-NACT group). DFS and OS based on the presence of
lymph vessel invasion in breast cancer patients (non-NACT group). (A) Kaplan-Meier analysis of DFS for the SIRI of all patients with breast cancer. (B) Kaplan-Meier
analysis of OS for the SIRI of all patients with breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of breast cancer patients without lymph vessel invasion. (D)
Kaplan-Meier analysis of OS for the SIRI of breast cancer patients without lymph vessel invasion. (E) Kaplan-Meier analysis of DFS for the SIRI of breast cancer
patients with lymph vessel invasion. (F) Kaplan-Meier analysis of OS for the SIRI of breast cancer patients with lymph vessel invasion.
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SIRI is an effective indicator of the immune status of
malignant tumors that is established on peripheral venous
lymphocyte, monocyte, and neutrophil counts (Wang et al.,
2021). Research has revealed SIRI as an independent
prognostic factor in several malignancies (Wei et al., 2020;
Zhang et al., 2020). Hua et al. (2020) reported that SIRI was
prognostic for postmenopausal breast cancer patients who
undergo surgery, with patients with higher SIRI scores
experiencing worse OS. Wang et al. (2020) used SIRI,
histological grading, TNM stage, and a number of other
indicators to build models that were able to predict 5-years

and 10-years breast cancer survival rates. They found that the
changes in SIRI scores 4 weeks after breast cancer surgery were
correlated to survival. Breast cancer patients with more varied
SIRI scores had worse overall survival (Wang et al., 2020).
However, research on SIRI in breast cancer patients who
undergo NACT treatment are scarce. Therefore, this study
retrospectively studied the impact of SIRI on the survival and
prognosis of breast cancer patients undergoing NACT.

This investigation outlines the relationship between SIRI and
clinical pathology in breast cancer patients. A low SIRI score
significantly influenced clinicopathological characteristics of

FIGURE 9 | DFS and OS based on Miller and Payne grade (MPG) in breast cancer patients who received NACT. DFS and OS based on Miller and Payne grade
(MPG) in breast cancer patients who received NACT. (A) Kaplan-Meier analysis of DFS based on MPG for the SIRI of patients with breast cancer. (B) Kaplan-Meier
analysis of OS based onMPG for the SIRI of patients with breast cancer. (C) Kaplan-Meier analysis of DFS based onMPG1 for the SIRI of patients with breast cancer. (D)
Kaplan-Meier analysis of OS based onMPG1 for the SIRI of patients with breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer
(MPG2). (F) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG2). (G) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer
(MPG3). (H) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG3). (I) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer
(MPG4). (J) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG4). (K) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer
(MPG5). (L) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG5).

FIGURE 10 | DFS and OS derived from response to neoadjuvant chemotherapy in breast cancer patient who received NACT. DFS and OS derived from response
to neoadjuvant chemotherapy in breast cancer patient who received NACT. (A)Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (B)Kaplan-Meier
analysis of OS for the SIRI of patients with breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (D) Kaplan-Meier analysis of OS for
the SIRI of patients with breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (F) Kaplan-Meier analysis of OS for the SIRI of
patients with breast cancer. (G) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (H) Kaplan-Meier analysis of OS for the SIRI of patients with
breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (J) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer.
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patients, such as clinical data (BMI, US tumor size, US-LNM,
clinical N, T, and overall TNM stages, postoperative
chemotherapy regimen, operative time, postoperative
chemotherapy and the frequency of treatment, postoperative
targeted therapy), as well as nutritional and hematological
parameters (LDH, CRP, CA125, FIB, INR, FDP, W, R, HB,
N, L, M, B, and P). Univariate and multivariate analyses
revealed that menopausal status, GLU, CA125, M, E, SIRI,
histological grade, pathological N stage, Ki-67, CK5/6, LVI,
postoperative chemotherapy, and postoperative targeted

therapy were independent predictors of improved DFS and
OS. The optimal threshold value for SIRI was 0.80, as
determined using a ROC curve. The average DFS and OS
survival times of those with low SIRI scores were notably
prolonged (achieving statistical significance) compared to
those with high SIRI scores.

We also scrutinized the association between SIRI scores and
the pathological TNM stage. Data analyses revealed that the
average DFS and OS in both early breast cancer and advanced
breast cancer were longer in those in the low SIRI group in

TABLE 5 | Correlation between SIRI and toxicity assessment.

Parameters N SIRI 477

Cases (n) Low SIRI 267 High SIRI 210 χ2 p value

Decreased appetite 1.825 0.177
No 70 (14.68%) 34 (12.73%) 36 (17.14%)
Yes 407 (85.32%) 233 (87.27%) 174 (82.86%)

Nausea 1.982 0.159
No 59 (12.37%) 28 (10.49%) 31 (14.76%)
Yes 418 (87.63%) 239 (89.51%) 179 (85.24%)

Vomiting 3.391 0.066
No 234 (49.06%) 121 (45.32%) 113 (53.81%)
Yes 243 (50.94%) 146 (54.68%) 97 (46.19%)

Diarrhea 0.286 0.593
No 444 (93.08%) 250 (93.63%) 194 (92.38%)
Yes 33 (6.92%) 17 (6.37%) 16 (7.62%)

Mouth ulcers 1.398 0.237
No 463 (97.06%) 257 (96.25%) 206 (98.10%)
Yes 14 (2.94%) 10 (3.75%) 4 (1.90%)

Alopecia 0.767 0.381
No 222 (46.54%) 129 (48.31%) 93 (44.29%)
Yes 255 (53.46%) 138 (51.69%) 117 (55.71%)

Peripheral neurotoxicity 2.559 0.110
No 390 (81.76%) 225 (84.27%) 165 (78.57%)
Yes 87 (18.24%) 42 (15.73%) 45 (21.43%)

Anemia 0.526 0.769
Grade 0 257 (53.88%) 144 (53.93%) 113 (53.81%)
Grade 1–2 215 (45.07%) 121 (45.32%) 94 (44.76%)
Grade 3–4 5 (1.05%) 2 (0.75%) 3 (1.43%)

Leukopenia 1.138 0.566
Grade 0 138 (28.93%) 72 (26.97%) 66 (31.43%)
Grade 1–2 233 (48.85%) 134 (50.19%) 99 (47.14%)
Grade 3–4 106 (22.22%) 61 (22.85%) 45 (21.43%)

Neutropenia 1.714 0.425
Grade 0 143 (29.98%) 76 (28.46%) 67 (31.90%)
Grade 1–2 179 (37.53%) 107 (40.07%) 72(34.29%)
Grade 3–4 155 (32.49%) 84 (31.46%) 71 (33.81%)

Thrombocytopenia 0.553 0.758
Grade 0 372 (77.99%) 210 (78.65%) 162 (77.14%)
Grade 1–2 98 (20.55%) 54 (20.22%) 44 (20.95%)
Grade 3–4 7 (1.47%) 3 (1.12%) 4 (1.90%)

Gastrointestinal reaction 1.485 0.476
Grade 0 38 (7.97%) 18 (6.74%) 20 (9.52%)
Grade 1–2 433 (90.78%) 245 (91.76%) 188 (89.52%)
Grade 3–4 6 (1.26%) 4 (1.50%) 2 (0.95%)

Myelosuppression 0.357 0.836
Grade 0 90 (18.87%) 50 (18.73%) 40 (19.05%)
Grade 1–2 175 (36.69%) 101 (37.83%) 74 (35.24%)
Grade 3–4 212 (44.44%) 116 (43.45%) 96 (45.71%)

Hepatic dysfunction 7.146 0.028
Grade 0 371 (77.78%) 196 (73.41%) 175 (83.33%)
Grade 1–2 105 (22.01%) 70 (26.22%) 35 (16.67%)
Grade 3–4 1 (0.21%) 1 (0.37%) 0 (0.00%)
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contrast to the high SIRI group, especially in advanced breast
cancer. Similar findings were also seen in the NACT group,
although the variability between the two cohorts was not
significant. We also analyzed the relationship between SIRI
and breast cancer molecular subtypes. There were differences
in DFS and OS between high and low SIRI groups across all the
analyzed molecular subtypes. While these differences were
statistically significant in the three subtypes of Luminal B
HER2-negative, HER2-overexpressed, and triple-negative
breast cancer, no statistical significance was gained for the
Luminal A type and Luminal B HER2-positive types.

Studies have pointed out that lymphatic vessel density and
lymphatic infiltration are related to the prognosis of malignant
tumors, with a higher degree of vascular infiltration conferring
poorer patient prognosis (Wesch et al., 2014). Yamagata et al.
(2021). reiterated that the presence of LVI was a crucial
prognosticator in lymph node-positive breast cancer patients
(Yamano et al., 2020). Our study also demonstrated that the
DFS and OS of breast cancer patients with LVI were lower in
contrast to those without LVI. Therefore, this study aimed to
establish the association between SIRI and LVI. We found that
the mean DFS and OS in breast cancer patients without LVI were
longer in those with low SIRI scores compared to those with high
SIRI scores. However, there was no significant variability between
the two SIRI groups of breast cancer patients with LVI. For
patients with LVI who received NACT, there was also no
significant variability between in SIRI groups. We further
assessed the relationship between SIRI, MPG, and response to
chemotherapy. In different MPGs, the average DFS and OS
survival times in patients with low SIRI scores were longer in
contrast to those with high SIRI scores, although these differences
failed to achieve statistical significance. In different responses, the
average DFS and OS of the low SIRI group were longer compared
to the high SIRI group (statistically significant). At the same time,
we also analyzed the relationship between SIRI and the toxic side
effects of NACT. Low SIRI scores correlated to improved liver
function.

Many studies have described a robust inflammatory
response to tumor occurrence and development. Quantifying
the inflammatory response appears to be significant in clinical
diagnosis as the degree of inflammation dictates the occurrence,
progress, and outcomes of diseases. Neutrophils and monocytes
both result from macrophage progenitor differentiation and
possess similar roles in the inflammatory process. Both release a
myriad of inflammatory mediators that includes the tumor
necrosis factor, epidermal growth factor, and vascular
endothelial growth factor; both promote tumor cell
proliferation and blood vessel formation; both can inhibit
the activity of T lymphocyte-mediated tumor escape from
immune surveillance. Lymphocytes are also critical
regulators of the tumor immune response and modulate the
ability of tumors to hide from immune detection. The increase
in the absolute value of neutrophils and monocytes and the
decrease in the absolute value of lymphocytes in peripheral
blood is associated with the occurrence, proliferation, and
progression of tumors. SIRI takes into consideration
peripheral blood neutrophils, lymphocytes, and monocytes

to reflect the body’s inflammatory response. Therefore, SIRI
can be used as a practical clinical indicator of tumor
progression and prognosis. We previously noted that SIRI is
not widely used as a prognostic indicator in breast cancer
patients treated with neoadjuvant chemotherapy. China faces
a problem of rising numbers of breast cancer patients. Coupled
with the unequal distribution of healthcare resources in the
country, the discovery of a commonly used, reproducible, and
minimally invasive prognostic parameter that can also guide
clinical management would greatly benefit breast cancer
patients.

In conclusion, this investigation outlines the relationship
between SIRI and breast cancer. Lower SIRI scores appear to
confer a better prognosis in breast cancer. Nevertheless, our study
is limited due to its small sample size and single-center origin.
Future studies would benefit from multicenter patient data
collection. The optimal threshold value of SIRI is related to
the number of patients included and pathological conditions.
Further studies are required to verify the SIRI threshold value of
0.80 that was obtained in this study.
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Application Potential of CTHRC1 as a
Diagnostic and Prognostic Indicator
for Colon Adenocarcinoma
Chen Pang1, Hongwei Wang1, Chengcheng Shen2* and Houjie Liang1*

1Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical
University), Chongqing, China, 2Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China

Colon adenocarcinoma (COAD), ranking third in incidence and second in mortality, is one
of the most common cancer types in the world. The initial stages of COAD usually show no
obvious clinical symptoms; moreover, effective screening or diagnostic indicators with high
sensitivity and specificity are lacking, which often leads to missed treatment opportunities.
Collagen triple helix repeat containing 1 (CTHRC1) is a glycosylated protein secreted
during tissue repair, which reduces collagen matrix deposition and promotes cell
migration. Under physiological conditions, the expression of CTHRC1 is conducive to
wound healing; however, the pathological overexpression of CTHRC1 promotes tumour
growth and proliferation. In this study, we evaluated the application potential of CTHRC1
as an early diagnosis and prognostic survival monitoring biomarker for COAD in addition to
unravelling its molecular mechanism in the development of COAD and exploring new
therapeutic targets. Therefore, various tumour databases were used to investigate the
expression ofCTHRC1 in COAD at the mRNA and protein levels.CTHRC1 expression was
found to be significantly increased in COAD, regardless of clinical cancer stage, age, sex or
race. Moreover, CTHRC1 expression was significantly correlated with poor prognosis and
positively correlated with CD8+ T cell, CD4+ T cell, neutrophil, macrophage and dendritic
cell infiltration. The relevant function pathways and neighbouring proteins to CTHRC1 in
COAD were identified as ROR2, VAPA, LY6E and several collagen family proteins.
Therefore, this study suggests that CTHRC1 is a potential diagnostic and prognostic
biomarker for patients with COAD.

Keywords: collagen triple helix repeat containing 1 (CTHRC1), colon adenocarcinoma (COAD), diagnosis, prognosis,
immune infiltration, function pathway

INTRODUCTION

A recent study by the American Cancer Society reported that colorectal cancer has the third highest
(10.0%) incidence rate after female breast cancer (11.7%) and lung cancer (11.4%) (Sung et al., 2021).
The incidence rate of colorectal cancer in developed countries is approximately four times higher
than that in developing countries (Fidler et al., 2016). Based on the current prediction models, the
global incidence of colorectal cancer has been estimated to reach approximately 2.2 million new
cases/year by 2030, accounting for 20% of all patients with cancer (Araghi et al., 2018). Colorectal
carcinoma has the second-highest death rate of 9.4% after lung cancer. The official statistics on the
prognosis of patients with colorectal cancer published by the American Cancer Society report that
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the 5 year survival rate is approximately 64% (Sung et al., 2021).
Specifically, early diagnosis or detection of colorectal cancer at
stage I, stage IIA or IIB increases the 5 years survival rate to
approximately 90%; however, delayed diagnosis decreases the
survival rate of patients with pathological stage IV tumour to
approximately 14% (Pilonis et al., 2020). Although the current
screening of colorectal cancer has been strengthened, resulting in
a slight decrease in late diagnosis case numbers, up to 90% of
cases are diagnosed after symptoms appear (Vanessa and Karen,
2016).

The occurrence of colorectal cancer is attributed to complex
genetic and environmental factor interactions, involving multiple
genes at different stages. The main pathways include the
chromosomal instability pathway, CpG island methylator
phenotype pathway, microsatellite instability pathway and the
serrated pathway (Harrison and Benziger, 2011). Colon
adenocarcinoma (COAD) is the main manifestation of
colorectal cancer, with more than 80% of colorectal cancers
being diagnosed as COAD (Li and Gu, 2005). The initial stage
of COAD usually shows no obvious clinical symptoms, and the
lack of effective screening or highly sensitive and specific
diagnostic indicators often lead to missed treatment
opportunities (Garborg et al., 2013). Therefore, it is crucial to
establish an effective screening mechanism to improve the early
diagnosis rate.

Collagen triple helix repeat containing 1 (CTHRC1) protein
was first identified in the injured arteries of rats as an extracellular
secretory protein, which is expressed in the injured part and
smooth muscle cells of neointima, mainly promoting the growth
and proliferation of newly generated cells (Leclair and Lindner,
2007). CTHRC1 regulates the occurrence and development of
cervical, pancreatic and liver carcinoma by participating in cell
proliferation, cell migration, type I collagen synthesis and
damaged vascular repair (Tameda et al., 2014). Studies have
shown that promoting CTHRC1 expression increased the
migration and invasion of primary gastrointestinal stromal
tumour cells, whereas silencing CTHRC1 expression inhibited
the epithelial–mesenchymal transformation of glioblastoma cells
(Ma et al., 2014). CTHRC1 promotes the proliferation of
colorectal cancer by activating the Wnt/PCP signalling
pathway (Yang et al., 2015). Additionally, CTHRC1 plays an
important role in the pathogenesis of systemic lupus
erythematosus and other diseases (Wu et al., 2018).

This study, therefore, aimed to evaluate the application
potential of CTHRC1 as an early diagnosis and prognostic
survival monitoring biomarker for COAD. Additionally, the
molecular mechanism of COAD occurrence and development
along with various novel therapeutic targets were explored.
Therefore, the expression of CTHRC1 in COAD at the mRNA
and protein levels was investigated using various tumour
databases. By evaluating the expression of CTHRC1 in
patients with COAD under different physiological and
pathological conditions, the application potential of CTHRC1
as a diagnostic indicator was determined. Moreover, the effects of
different expression levels and genetic mutations of CTHRC1 on
COAD survival rate was analysed, including the immune
infiltration of CTHRC1 in COAD. Further, the associated

proteins and pathways of CTHRC1 in tumorigenesis are also
discussed.

MATERIALS AND METHODS

Oncomine Analysis
The Oncomine platform (https://www.oncomine.org/) is a
publicly accessible, online tumour-related gene microarray
database that collects disease-related gene expression profiles
and relevant clinical information. The expression level of
CTHRC1 in different cancers was investigated via Oncomine.
When compared to corresponding normal tissues, the
transcriptional levels were considered statistically significant at
fold change >1.5 and p-value < 0.001. The threshold value of gene
rank was set to “top 10%”, and the data type was set to “mRNA”
(Rhodes et al., 2004).

TIMER 2.0 Analysis
TIMER 2.0 (http://timer.comp-genomics.org/) was employed to
investigate the expression levels of CTHRC1 in various tumour
tissues. Additionally, data of 32 tumour types from more than
10,000 samples were collected from the TCGA database and used
for immune infiltration analysis via TIMER 2.0, which ascertains
the abundance of tumour infiltrates based on gene expression
levels. CTHRC1 was chosen as the input and tumour cells were
detected under the Immune Association module. B cells, CD8+

T cells, CD4+ T cells, neutrophils, macrophages and dendritic
cells were selected as the test types based on the study by Li et al.
and Danaher et al. (Li et al., 2016; Danaher et al., 2017). Gene
expression values were converted to Log2 RNA-Seq by
Expectation-Maximization values.

Human Protein Atlas Analysis
The Human Protein Atlas (https://www.proteinatlas.org) is an
online dataset that collects the expression characteristics of
various functional proteins via immunohistochemistry from
tumours and corresponding normal tissues (Asplund et al.,
2012). The Human Protein Atlas was used to compare the
expression of CTHRC1 proteins in normal and COAD tissues
using the images of immunohistochemical staining.

UALCAN Analysis
UALCAN (http://ualcan.path.uab.edu) is an open-access web
platform that contains cancer-related clinical data, which can
be obtained from the TCGA database. This was used to compare
the CTHRC1 expression levels between the COAD and normal
tissues, along with the relationship between gene expression and
pathologic features in these tissues (Chandrashekar et al., 2017).
In the website, TCGA was chosen, and the corresponding tumour
type was selected. The student’s t-test was used to compare the
transcription levels of CTHRC1 between the tissue types, and p <
0.05 was considered statistically significant.

GEPIA Analysis
GEPIA (http://gepia.cancer-pku.cn/index.html) was used to
analyse the relationship between CTHRC1 expression and
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overall survival (OS) or disease-free survival (DFS) prognosis in
patients with COAD based on the parameters of hazard ratios and
log-rank p-values. After logging onto the database, Single Gene
Analysis was firstly chosen. After entering CTHRC1, “survival
plots” was selected. Survival analysis was performed using the
following parameters: Group Cut-off: Median; Hazards Ratio:
Yes; 95% Confidence Interval: Yes (Tang et al., 2017).

cBioPortal Analysis
cBioPortal (http://www.cbioportal.org/) was used to analyse the
alteration frequency of CTHRC1 gene mutations. Putative copy-
number calls on 478 cases were determined using GISTIC 2.0. In
the module Comparison/Survival, the influence of the alterations
on prognostic survival in patients with COADwas analysed using
default parameters (Gao et al., 2013).

Functional Analysis
GeneMANIA was used to identify the physical interaction and
co-expression of CTHRC1 with 20 related proteins using the
Homo sapiens datasets with default parameters (Mostafavi et al.,
2008). GO enrichment and KEGG pathway analyses (FDR cutoff
<0.05) of related gene were conducted using ShinyGO v0.741
(http://bioinformatics.sdstate.edu/go/).

RESULTS

Expression of CTHRC1 in COAD
RNA-seq data extracted from TCGA database showed a consistent
trend of abnormally highCTHRC1 expression inmore than 16 types
of tumour tissues compared with the corresponding normal tissues,
such as COAD, breast invasive carcinoma and stomach
adenocarcinoma (Figure 1A). Similarly, Oncomine analysis of the

pathological samples showed that the transcriptional levels of
CTHRC1 mRNA were significantly up-regulated in various
cancer types including colorectal cancer (Figure 1B). Further
comparison of the expression levels of CTHRC1 protein between
the normal and COAD tissue using immunohistochemical data
from the Human Protein Atlas dataset showed that CTHRC1
protein expression in COAD was consistent with the mRNA
detected (Figure 2). These findings strongly suggest the positive
role of CTHRC1 in COAD tumorigenesis.

Expression of CTHRC1 in Patients With
COAD Under Different Physiological or
Pathological States
UALCAN analysis showed that the expression level of CTHRC1was
significantly higher in the patients with primary COAD than that in
normal tissues (Figure 3A). Notably, this abnormally high
expression pattern is generally applicable to patients with
different clinicopathological characteristics, such as clinical cancer
stage, age, sex or race. However, no significant difference in
expression level was observed among patients diagnosed with
different states, apart from the high expression in patients aged
21–40 years (Figures 3B–F). Importantly,CTHRC1 showed a strong
abnormal expression in patients with early stage COAD, i.e.,
CTHRC1 has shown significant high expression in stage I
COAD, which substantiates the potential role of CTHRC1 as an
early diagnostic biomarker for COAD.

Prognostic Value of CTHRC1 Expression in
Patients With COAD
The GEPIA dataset was employed to assess the prognostic value of
CTHRC1 expression in patients with COAD. CTHRC1 proves to be

FIGURE 1 | Expression levels of CTHRC1 in different types of tumour tissues. (A) CTHRC1 expression in various tumour tissues via TIMER analysis. (B) CTHRC1
expression in different cancer types via Oncomine analysis (*p < 0.05; **p < 0.01; ***p < 0.001).
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a promising prognostic indicator due to the high expression level of
CTHRC1, which indicates poor OS and DFS prognosis with a same
high hazard ratio of 1.8 (Figure 4). Investigation of the alteration
frequency of CTHRC1 using the TCGA database revealed

approximately 7.1% gene alteration in 634 colorectal cancer cases
(Figure 5A,B). However, these mutations did not significantly affect
the OS and DFS of patients (Figure 5C,D), indicating that CTHRC1
has considerable stability as a prognostic indicator.

FIGURE 2 | Analysis of CTHRC1 protein expression in colon adenocarcinoma tissue collected from the Human Protein Atlas dataset. (A) The control (normal) tissue
with low staining; (B) The colon adenocarcinoma tissue with medium staining. Primary antibody: HPA059806.

FIGURE 3 | Analysis of CTHRC1 expression in patients with colon adenocarcinoma (COAD) under different physiological or pathological states using UALCAN.
(A–F) CTHRC1 expression in COAD patients of various physiological and pathological states (* denotes 0.01 < p < 0.05, ** denotes p < 0.01).
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Correlation Analysis Between CTHRC1
Expression and Immune Cell Infiltration in
COAD Tissue
TIMER 2.0 was used to analyse the correlation between CTHRC1
expression and immune cell infiltration levels, including B cells,
CD8+ T cells, CD4+ T cells, neutrophils, macrophages and
dendritic cells. CTHRC1 expression was significantly positively
correlated with all the test immune cells except B cells (p =
0.0644). Among them, macrophages had the strongest correlation
with CTHRC1, with a high partial correlation coefficient of 0.608
and a p-value of 3.36e−42 (Figure 6). To clarify the immune
response mechanism induced by CTHRC1 and develop new
immunotherapeutic targets, the expression correlation between
CTHRC1 and immune cell subsets was investigated. CTHRC1was
significantly correlated with most of the corresponding
biomarker genes of the test immune cell subsets
(Supplementary Table S1).

Co-Expression and Interaction Analysis of
CTHRC1 in COAD Tissue
CTHRC1 was co-expressed with ROR2, VAPA, LY6E and several
collagen family proteins via GeneMANIA analysis (Figure 7).
These associated molecules are mainly involved in collagen fibril,
extracellular matrix/structure and external encapsulating
structure organisations of biological processes; the collagen
type I trimer, fibrillar collagen trimer and banded collagen
fibril of cellular component construction; the platelet-derived
growth factor binding, FFAT motif binding, extracellular
matrix structural constituent conferring tensile strength and
Wnt-protein binding of molecular function. Moreover, KEGG
analysis using ShinyGO showed that CTHRC1 and its related
proteins were predominantly enriched in the signalling pathways
of AGE-RAGE, Relaxin and Pl3K-Akt; the pathological processes

of small cell lung cancer, amoebiasis and human papillomavirus
infection; and the physiological functions of protein digestion and
absorption, ECM-receptor interaction, focal adhesion and
platelet activation (Figure 8).

DISCUSSION

Biomarkers are key tools for early diagnosis, prediction of survival
and prognosis, and evaluation of treatment responses. Effective
biomarkers benefit clinical decision-making and improve the
patient’s survival rate and life quality (Ogunwobi et al., 2020).
With the development of omics technology, many potential
indicator genes have been screened for various diseases, such
as adenomatous polyposis, transforming growth factor β and
several tumour suppressors, which are widely used in the
auxiliary diagnosis of tumorigenesis (Fodde et al., 2001;
Gyorffy et al., 2013; Seoane and Gomis, 2017). However, the
clinical application of these indicator genes is limited due to the
lack of sufficient systematic research.

CTHRC1 is a glycosylated protein secreted during tissue repair,
which functions by reducing the collagen matrix deposition, thereby
promoting cell migration. The expression of CTHRC1 under
physiological conditions promotes wound healing; however, the
pathological overexpression of CTHRC1 promotes tumour cell
growth and invasion (Cheng et al., 2019). Studies have shown
that CTHRC1 promotes colorectal cancer metastasis by inducing
the Wnt/PCP signal transduction (Yang et al., 2015). In
hepatocellular carcinoma, supressing CTHRC1 expression can
inhibit integrin β, and thereby inhibiting cell migration and
invasion and inducing apoptosis (Zhou et al., 2019). Additionally,
CTHRC1 promotes the invasion of human epithelial ovarian cancer
cells by activating the epidermal growth factor receptor signalling
pathway (Ye et al., 2016). In short, the tumour promoting
mechanism of CTHRC1 involves multiple targets.

FIGURE 4 |Correlation analysis between CTHRC1 expression and prognostic survival in patients with colon adenocarcinoma (COAD) using GEPIA. (A)Correlation
analysis between CTHRC1 expression and overall survival in patients with COAD; (B) Correlation analysis between CTHRC1 expression and disease free survival in
patients with COAD.
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The occurrence and development of COAD have the common
characteristics of tumorigenesis. It promotes the massive
proliferation of cells by avoiding growth inhibitory factors and
apoptosis-related genes and the production of tumour blood
vessels to induce tumour development. Tumorigenesis
mechanisms are also attributed to unstable gene expression,
tumour microenvironment change, genetic diversity and
inflammatory factor activation (Goubran et al., 2014). To
understand the mechanism of CTHRC1 in COAD and
evaluate its potential as a diagnostic and prognostic indicator
in patients with COAD, various online public databases were used
to systematically investigate CTHRC1 expression profiles in
COAD tissue, its impact on patient survival and immunity,
and its related functional pathways and associated proteins.
The consistently high expression of CTHRC1 in patients with
COAD under different physiological and pathological states
reflects its stability as a diagnostic indicator. Moreover,
CTHRC1 was highly expressed in at least 16 tumour types
(Tang et al., 2006), which broadened the application of
CTHRC1 in early disease detection. Tumours usually have the
characteristics of high metastasis tendency. Hence, patients aged
21–40 years and/or with Stage I COAD are more likely to obtain

satisfying treatment responses; however, they are not easily
diagnosed at the early stages. Notably, CTHRC1 was obviously
highly-expressed in these patients, which further highlights its
value as an indicator gene. Further analysis of the prognostic
value revealed that the characteristics of the high hazard ratio of
CTHRC1 expression and significant differences in prognostic
survival indicate the superiority of CTHRC1 as a prognostic
biomarker, even the high mutation frequency would not offset
its indicating effect on prognosis. Therefore, these data emphasise
the high value of CTHRC1 as a diagnostic and prognostic
indicator for patients with COAD.

During tumorigenesis, due to the intervention of non-coding
RNA, such as microRNA, the expression level of mRNA may be
inconsistent with that of the associated protein (Macfarlane and
Murphy, 2010). Taking this into account, the gene and protein
levels were detected separately, revealing that in transcriptional
and translational level, CTHRC1 was both highly expressed in
COAD tissues. Since the time-consuming, laborious and
expensive method of protein level detection, the follow-up
investigation is mainly based on the analysis of mRNA level,
which ensures the effectiveness and improves the convenience of
CTHRC1 for future clinical research and application.

FIGURE 5 | Alteration frequency analysis of CTHRC1 and its influence on prognosis in patients with colorectal cancer using cBioPortal. (A) Alteration frequency of
CTHRC1 in patients with colorectal cancer. (B) Effect of CTHRC1 alteration on the overall survival of COAD patients. (C) Effect of CTHRC1 alteration on the disease free
survival of COAD patients. (D) Effect of CTHRC1 alteration on the disease free survival of COAD patients.
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FIGURE 6 | Correlation between CTHRC1 expression and immune cell infiltration levels in colon adenocarcinoma tissue analysed via TIMER 2.0. (A–G) The
correlation between CTHRC1 expression and immune cell infiltration in COAD patients (n = 458).

FIGURE 7 | Interaction network analysis of CTHRC1 and its most similar proteins using GeneMANIA.
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The response mechanism of the immune system in
tumorigenesis has always been a popular research topic. The
fluctuation of the tumourmicroenvironment is strongly related to
the progress and treatment of the tumour. Understanding the
tumour microenvironment provides an insight into tumour
diagnosis, therapeutic targets and prognostic biomarkers
(Goubran et al., 2014). The correlation analysis between
CTHRC1 level and B cell infiltration showed no significant
correlation, which suggests that COAD avoided the immune
effect of B cells. However, this observation needs further
verification by deeper and profound studies. CTHRC1 showed
a close correlation (>0.5) with the infiltration levels of
macrophages, neutrophils, dendritic cells and immune cell
biomarker genes, which could be used as early screening
targets for immunotherapy.

Through the enrichment analyses of GO and KEGG, the
mechanism of CTHRC1 in biological processes, not only its
cellular components and molecular function were defined, but
also the specific regulatory pathways (such as AGE-RAGE,
Relaxin and Pl3K signalling pathways) and action targets
(including protein digestion and absorption, ECM-receptor
interaction, focal adhesion and platelet activation) were identified,
most of which are classical regulatory models that promote
tumorigenesis or are involved in tumour development (Feng
et al., 2009; Bao et al., 2019; Waghela et al., 2021). Therefore,
unravelling the tumour promoting mechanism of CTHRC1could
narrow the scope of further research and drug screening.

The promoting effect of CTHRC1 on tumour metastasis and
proliferation could be considered a contributing factor to its

abnormal high expression in various cancers including COAD.
After systematic analysis, this study recommends CTHRC1 as a
biomarker gene for the early diagnosis and prognostic monitoring
of COAD. This study aims to provide a base for future research,
regarding the molecular mechanism and therapeutics
development for COAD. However, verification of the clinical
applications is still lacking although this study uses many
databases for comprehensive analyses and comparison.
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Identification of Tumor
Microenvironment and DNA
Methylation-Related Prognostic
Signature for Predicting Clinical
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Background: Tumor microenvironment (TME) has been reported to have a strong
association with tumor progression and therapeutic outcome, and epigenetic
modifications such as DNA methylation can affect TMB and play an indispensable role
in tumorigenesis. However, the potential mechanisms of TME and DNAmethylation remain
unclear in cervical cancer (CC).

Methods: The immune and stromal scores of TME were generated by the ESTIMATE
algorithm for CC patients in The Cancer Genome Atlas (TCGA) database. The TME and
DNAmethylation-related genes were identified by the integrative analysis of DNA promoter
methylation and gene expression. The least absolute shrinkage and selection operator
(LASSO) Cox regression was performed 1,000 times to further identify a nine-gene TME
and DNA methylation-related prognostic signature. The signature was further validated in
Gene Expression Omnibus (GEO) dataset. Then, the identified signature was integrated
with the Federation International of Gynecology and Obstetrics (FIGO) stage to establish a
composite prognostic nomogram.

Results: CC patients with high immunity levels have better survival than those with low
immunity levels. Both in the training and validation datasets, the risk score of the signature
was an independent prognosis factor. The composite nomogram showed higher accuracy
of prognosis and greater net benefits than the FIGO stage and the signature. The high-risk
group had a significantly higher fraction of genome altered than the low-risk group. Eleven
genes were significantly different in mutation frequencies between the high- and low-risk
groups. Interestingly, patients with mutant TTN had better overall survival (OS) than those
with wild type. Patients in the low-risk group had significantly higher tumor mutational
burden (TMB) than those in the high-risk group. Taken together, the results of TMB,
immunophenoscore (IPS), and tumor immune dysfunction and exclusion (TIDE) score
suggested that patients in the low-risk group may have greater immunotherapy benefits.
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Finally, four drugs (panobinostat, lenvatinib, everolimus, and temsirolimus) were found to
have potential therapeutic implications for patients with a high-risk score.

Conclusions: Our findings highlight that the TME and DNA methylation-related
prognostic signature can accurately predict the prognosis of CC and may be
important for stratified management of patients and precision targeted therapy.

Keywords: tumor microenvironment, DNA methylation, prognostic model, drug response, immunotherapy
response, cervical cancer

INTRODUCTION

Cervical cancer (CC) is the fourth leading cause of cancer-related
death in women, with more than 300,000 deaths worldwide each
year (Cohen et al., 2019), of which adenocarcinoma, squamous
cell carcinoma, and adenosquamous carcinoma are common
pathological types (Small et al., 2017). The incidence of CC is
gradually declining due to the identification of HPV as a causative
factor and the introduction of specific vaccines into clinical
practice (Wakeham and Kavanagh, 2014; Herrero et al., 2015;
Ogilvie et al., 2018). Although goals have been achieved in
preventing CC, when patients are diagnosed at an advanced
stage, the prognosis is extremely poor, with 5-year overall
survival (OS) less than 40% (Lin et al., 2010). Currently,
immunotherapy is one of the best treatment strategies for
patients with advanced CC (Wendel Naumann and Leath,
2020). However, tumor heterogeneity makes it difficult to
accurately assess the prognosis of each patient after
immunotherapy, which is also a shortcoming of the
Federation International of Gynecology and Obstetrics (FIGO)
stage system (Wright et al., 2019). Therefore, accurate molecular
predictors are needed to improve the prediction of CC prognosis
and guide the individual evaluation of immunotherapy, especially
those at high risk of recurrence or death.

Tumor microenvironment (TME) is defined as the
environment surrounding the tumor, including various
immune cells, stromal cells, extracellular matrix molecules,
and cytokines, among which immune cells and stromal cells
are closely related to tumor progression and treatment outcome
(Hanahan and Coussens, 2012; Binnewies et al., 2018), and the
genetic and epigenetic modifications acquired by the TME also
play important roles in tumorigenesis and lead to uncontrolled
growth of tumor cells (Sharma et al., 2010). Among all epigenetic
modifications, DNA methylation is a stable change in gene
structure and is one of the most studied mechanisms involved
in regulating gene expression (Bird, 2007). DNA
hypermethylation in the promoter region of genes encoding
inhibitory immune checkpoints, tumor suppressors, and
suppressive cytokines can lead to impaired activation of anti-
tumor immunity, immune escape, drug resistance, tumor growth,
and TME dyshomeostasis and significantly promote the
development and progression of cancer (Easwaran et al., 2014;
Ali et al., 2017).

In this study, we calculated immune and stromal scores based
on the ESTIMATE algorithm to estimate the TME status of each
CC patient and found that the immune scores were associated

with patients’ prognoses. We correlated epigenetic characteristics
and TME status by analyzing the multi-omics data (RNA
sequencing and DNA methylation array) across different
immune groups and identified the TME and DNA
methylation-related prognostic signature. We then used
microarray data from the Gene Expression Omnibus (GEO)
database for validation. Both the developed signature and the
nomogram based on the signature and FIGO stage showed high
potential for individual risk stratification and prognosis
prediction. Furthermore, we sought to understand the
relationship between the signature and tumor mutation status,
genetic variants, and pathway activation. Finally, we not only
identified four agents for these high-risk score patients but also
assessed the role of this signature in identifying immune
responders to immunotherapy. The results gathered from this
study may be valuable in predicting patients’ prognosis and
facilitating the individualization of immune treatment
strategies for CC.

MATERIALS AND METHODS

Data Acquisition and Processing
The Cancer Genome Atlas (TCGA) RNA-seq data, Illumina 450k
DNA methylation data, somatic mutation data, copy number
variation data, and clinical datasets of 306 CC patients were
downloaded from Genomic Data Commons Data Portal (https://
portal.gdc.cancer.gov/). FPKM values were transformed into
transcripts per kilobase million (TPM) values. Quantile
normalized microarray gene expression data and clinical
annotations of GSE44001 were obtained from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). All samples with
a survival time of 0 or duplicates were deleted, and TCGA 291
samples and GEO 283 samples were used for further analysis.
Expression profile data of human cancer cell lines (CCLs) were
obtained from the Broad Institute Cancer Cell Line Encyclopedia
(CCLE) project (https://portals.broadinstitute.org/ccle/) (Ghandi
et al., 2019). The sensitivity data were obtained from the Cancer
Therapeutics Response Portal (CTRP v.2.0, released October
2015, https://portals.broadinstitute.org/ctrp) and PRISM
Repurposing dataset (19Q4, released December 2019, https://
depmap.org/portal/prism/), respectively. In the two datasets,
drug sensitivity is measured using the area under the curve
(AUC) value and a lower AUC value indicates increased
treatment sensitivity. The compounds with more than 20% of
missing data were removed, and K-nearest neighbor (k-NN)
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imputation was used to impute the missing AUC values (Yang
et al., 2021).

Differential Expression Genes (DEGs) and
Differential Methylation Genes (DMGs)
Analysis
Limma analysis (Ritchie et al., 2015) was carried out to identify
DEGs between low- and high-immune score groups. The genes
meeting the |log2FC| > 1.0 and adjusted p-value < 0.05 were
considered as DEGs. DNA methylation level for each gene was
estimated by calculating the average beta value of probes in
promoter regions including TSS200, 1stExon, TSS1500, and
5′UTR (Jiao et al., 2014). An unpaired t-test was performed to
identify DMGs between low- and high-immune score groups.
The p-value was adjusted by the Benjamini Hochberg method.
DMGs were defined by |log2FC| > 0.1 and the false discovery rate
corrected p-value < 0.05.

Correlation Analysis Between DNA
Promoter Methylation and Genes
The Pearson correlation (r) was calculated between the mean β
values of the DNA promoter region and the normalized
expression values of the corresponding genes to examine the
effect of DNA methylation in the promoter region on gene
expression levels. Cut-off for significant correlations was set at
|r| > 0.3 and p-value < 0.05 (Piao et al., 2012).

Identification of the Prognostic Genes and
Calculation of the Risk Score
Robust prognostic genes in TCGA CC samples were identified
using multi-step processes. First, univariate Cox regression
analysis was performed to screen prognosis-related genes, and
genes with p-value less than 0.05 were selected for further
analysis. Next, we used the least absolute shrinkage and
selection operator (LASSO) Cox regression analysis to assess
the correlation between the gene expression and prognosis.
This procedure was repeated 1,000 times, and the genes with
100 repetitions were kept for the next step analysis. Further, the
concordance index (C-index) was calculated of each possible
threshold from one to the number of genes, and the one (k) genes
were selected that could reach the largest C-index in the TCGA
cohort as the appropriate threshold of the signature. Then, the
selected genes were used to perform multivariate Cox regression.

The risk score was calculated by the formula risk score = Σ
βi*Expi, where βi is the coefficient of each gene in the multivariate
Cox model and Expi represents the normalized expression value
of each gene transformed by log2 and z-score. Patients were
divided into high- and low-risk groups using the median risk
score as the cut-off.

Construction of Nomogram
Based on the multivariate analysis results, we integrated the FIGO
stage and risk signature to construct a composite prognostic
model using the Cox proportional hazard regression in the TCGA

cohort. Then, the R package “rms” was utilized to generate the
nomogram. The consistency between the predicted and actual
survival outcomes was assessed using the calibration curves.
Moreover, time-dependent C-index and the decision curve
analysis (DCA) were performed to compare the predictive
accuracy of the nomogram, prognostic signature risk model,
and FIGO stage.

Enrichment Analysis and Tumor Immune
Signature Analysis
Differentially expressed genes in CC patients between different
risk score groups were analyzed by limma. The log2FC value of
each gene was used as an input to carry out gene set enrichment
analysis (GSEA) (Subramanian et al., 2005). The adjusted p < 0.05
was considered significantly enriched. Meanwhile, gene set
variation analysis (GSVA) was performed to find significantly
associated pathways, and adjusted p < 0.01 was considered
statistically significant. The gene set “h.all.v7.2.symbols.gmt”
was selected as the reference gene set.

Signature-related gene modules in the TCGA expression file
were identified by weighted gene co-expression network analysis
(WGCNA) (Langfelder and Horvath, 2008). The basic set
parameters of the program included setting the scale-free
topological fit index (R2) > 0.85, the minimum cluster size to
30, and the merge threshold function to 0.3. Gene modules with
biweight midcorrelation coefficient (r) ≥ 0.5 and p-value < 0.05
were defined as signature-related gene modules.

Immune signatures were evaluated from the gene expression
levels of immune checkpoints and human leukocyte antigen
(HLA) genes (De Simone et al., 2016; Johnston et al., 2019)
and the levels of immune cells infiltrating. The infiltrating
immune cells levels were calculated by CIBERSORT (Newman
et al., 2015), TIMER (Li et al., 2016), and MCP-counter (Becht
et al., 2016) algorithms.

Somatic Variants Analysis and Copy
Number Variation Analysis
Logistic regression analysis was performed to adjust for the
influence of other clinical pathological features to identify
differential mutation patterns, and genes with p < 0.05 were
defined as significantly mutant genes. Genes with more than five
mutations in at least one group were analyzed. The R package
“maftools” (Mayakonda et al., 2018) was used to create the
visualization of the mutations.

Genomic identification of significant targets in cancer
(GISTIC) analysis was used to analyze the copy number
variation data and identify the significant amplification and
deletion regions and all gene’s discrete copy number status
between different risk groups, which was performed by the
GISTIC 2.0 pipeline (GenePattern, https://genepattern.
broadinstitute.org/).

Drug Response Prediction
The CTRP and PRISM datasets were utilized to construct
predictive models of drug response. Before subsequent
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analysis, more than 20% of the compounds containing NAs in the
samples were excluded. ISOpure algorithm was utilized to reduce
the impact of non-tumor components on analysis results (Anghel
et al., 2015). A built-in ridge regression model of the
“pRRophetic” package was used to estimate the AUC value of
each compound in each patient by inputting TCGA purified
expression profile and drug sensitivity data.

Immunotherapeutic Response Prediction
The Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm (Fu et al., 2020) and immunophenoscore (IPS)
(Charoentong et al., 2017) were leveraged to predict the
clinical response to immunotherapy of different risk groups
based on the gene expression profile of TCGA CC samples.
Patients with higher IPS and lower TIDE scores responded
better to immunotherapy.

Statistical Analysis
All statistical tests were performed in R statistical software
(v3.6.3). Unless otherwise noted, a comparison of a
continuous variable in two or more than two groups was
performed using Wilcoxon rank-sum test or Kruskal–Wallis
test. The correlation between two continuous variables was
measured by either Pearson’s (r) correlation coefficient or
Spearman’s rank-order correlation. Immune and stromal
scores were estimated to the TCGA cohort using the
ESTIMATE algorithm (Yoshihara et al., 2013). Kaplan–Meier
(KM) survival analysis was used to assess prognosis between
different groups by the log-rank test in the “survival” R package.
The time-dependent AUC was performed using the “timeROC”
R package. The time-dependent C-index was performed using
the “pec” R package. The p-value is two-sided, and p < 0.05 was
considered statistically significant.

FIGURE 1 | Identification of the TME and DNA methylation-related prognostic signature. (A) Scatter plot of promoter mean methylation difference and gene
expression levels change. hyper-up, hypermethylated-upregulated; hyper-down, hypermethylated-downregulated; hypo-up, hypomethylated-upregulated; hypo-
down, hypomethylated-downregulated. (B,C) Venn diagrams showing the intersection between DEGs and hypermethylated genes (top) and between DEGs and
hypomethylated genes (bottom). (D) The C-index of different genes combinations in the signature. (E) The nine genes included in the signature. Corresponding
coefficients are depicted by horizontal bars.
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RESULTS

Overview of Workflow
The whole workflow of this study was delineated in
Supplementary Figure S1, including the identification of
hypermethylated-downregulated genes; development and
validation of the prognostic signature; the construction of the
nomogram; and the analyses of signature-associated immune
signature, function enrichment, and genetic features.

Analysis of the Correlation of Immune and
Stromal Scores With Clinical Features
The detailed clinical information of patients in the TCGA
cohort is shown in Supplementary Table S1. Immune scores
ranged from −1,203.5 to 3,430.4, and stromal scores of these
patients ranged from −2,433.1 to 812.7. The median cut-off
values of immune scores and stromal scores were applied to
stratify CC patients into high- and low-immune groups and
high- and low-stromal groups. KM analysis result showed that
the OS of patients in the high-immune group was better than
that of the low-immune group, but there was no difference in
OS between the high- and low-stromal groups
(Supplementary Figures S2A,B). We also found a strong
negative correlation between immune score and tumor
purity (Supplementary Figure S2C). However, immune
scores were not associated with the FIGO stage
(Supplementary Figure S2D) and the tumor node
metastasis (TNM) stage (Supplementary Figures S2E–G).

Identification of DEGs and DMGs Between
High- and Low-Immune Groups
Wemapped the average β value of the DNA promoter region to
genes, and 14,932 genes were obtained (Figure 1A).
Differential methylation and expression analyses were
carried out between high- and low-immune groups. A total
of 2,819 DMGs were detected, with 764 hypermethylated genes
and 2,055 hypomethylated genes. A total of 1,046 DEGs were
detected, with 364 upregulated genes and 682
downregulated genes.

The integrative analysis of gene expression and DNA
promoter methylation in CC patients was performed by
identifying the intersection between the DEGs and DMGs.
Of the 764 hypermethylated genes, 13 genes were
upregulated and 189 genes were downregulated (Figure 1B).
Among the 2,055 hypomethylated genes, 84 genes were
upregulated and 32 genes were downregulated (Figure 1C).
Then, we focused on the hypermethylated-downregulated
genes and used the Pearson correlation analysis to examine
the impact of DNA promoter methylation on gene expression.
Among the 189 hypermethylated-downregulated genes, 111
genes revealed significantly negative correlations
(Supplementary Table S2), and mRNA expression of these
genes is shown in Supplementary Figure S3.

Identifying Prognostic Genes and
Development of the Risk Score
A total of 291 TCGA CC patients with available clinical
information were used to recognize the prognostic signature.
We first used univariate Cox proportional hazards regression
analysis and identified 55 genes correlated with OS (p < 0.01)
(Supplementary Table S3). After a 1,000-time LASSO Cox
regression analysis, we identified nine genes (CCR7, CD6,
POU2AF1, TMC8, PLAC8, RARRES3, BIN2, DNASE1L3, and
IL12RB2) that were stably associated with prognosis over 100-
time iterations (Supplementary Table S4).

For all possible thresholds from 1 to 9, a nine-gene set with the
largest C-index (0.728) was considered prognosis-associated
genes (Figure 1D, Supplementary Table S5). All nine genes
showed a high negative correlation betweenDNA promoter mean
methylation and gene expression (Supplementary Figure S4).
Furthermore, we estimated the risk score based on the linear
combination of the nine-gene expression levels weighted by their
multivariate Cox regression coefficients (Figure 1E): risk score =
(−0.147) ✕ CCR7 + (−0.097) ✕ CD6 + (−0.139) ✕ POU2AF1 +
(−0.039)✕ TMC8 + (−0.179)✕ PLAC8 + (−0.250)✕ RARRES3 +
(−0.038)✕ BIN2 + (−0.126)✕DNASE1L3 + (−0.150)✕ IL12RB2.
Then, according to the median risk score, CC patients were
divided into low-risk (n = 145) and high-risk groups (n = 146).

The Prognostic Value of Risk Score
A heatmap of expression levels of the nine identified genes and
the scatterplot of OS with a corresponding risk score are
illustrated in Supplementary Figure S5A. We explored the
distribution of the risk score with histological type, TNM
stage, and FIGO stage. Patients with a higher M stage and T
stage had a higher risk score, and patients in the squamous
subtype had a significantly lower risk score than those in other
subtypes (Figure 2A). We next found that patients with low-risk
scores were significantly associated with better OS compared with
patients with high-risk scores (Figure 2B). Moreover, the
accuracy of the risk score in OS prediction was evaluated
using the AUC, as shown in Figures 2C,D. The AUCs of the
risk score model at 1, 3, and 5 years were 0.812, 0.716, and 0.703,
respectively.

To confirm that the risk score had a stable prognostic value across
different datasets, we corroborated this association in an external
validation GEO (GSE44001) dataset. A heatmap of the signature
consisting of nine genes and the scatterplot of disease-free survival
(DFS) time with corresponding risk score in GEO (GSE44001) are
shown in Supplementary Figure S5B. Consistent with the above
TCGA results, patients with high-risk scores in GSE44001 had a
significantly poorer DFS than those with low-risk scores (Figure 2E),
and AUCs at 1, 3, and 5 years were 0.476, 0.575, and 0.645,
respectively (Figures 2F,G). The result showed that the risk score
did not show high accuracy in predicting the prognosis of CC
patients in the validation dataset (GSE44001), which may be caused
by the CC patients in the early stage (stages I-II).

The results of univariate and multivariate Cox regression
analysis further showed that risk score could be an
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independent predictor of survival outcome in CC patients after
being adjusted for the clinicopathological features (Figure 3),
suggesting that the TME and DNA methylation-related genes
might be involved in CC occurrence and development and could
serve as potential therapeutic targets. Meanwhile, we also found
that the tumor FIGO stage could be used as an independent
predictor.

Construction of Nomogram
To find a more effective method to strongly predict the prognosis
of CC patients, we combined tumor FIGO stage and risk score to
establish a complete evaluation signature. A nomogram was
created to predict the 1-, 3-, and 5-year prognostic survival
probabilities of patients with CC (Figure 4A). The calibration
curve was used to assess the consistency between the actual
survival status and the predicted outcomes of CC patients
(Figure 4B). The result revealed that based on the FIGO stage

and risk score, the nomogram could effectively predict the
prognosis. Then, we calculated the C-index to confirm this
(Figure 4C). These results suggested that the ability of the
nomogram to predict the prognosis of CC patients is more
reliable than a single independent factor. Moreover, the DCA
diagram showed that the net benefits of the nomogram were
significantly higher than the risk score and FIGO stage, indicating
the good clinical applicability of the nomogram (Figure 4D).

Risk Score Was Associated With Immune
Signature
To elucidate the interrelation of the risk score and immune
signature, we examined the correlation between the risk score
and immune and stromal scores, HLA family genes, immune
checkpoints, and infiltrating immune cells. The results showed
that immune and stromal scores were significantly positively

FIGURE 2 | Validation of the prognostic value of the risk score. (A) Difference analysis of the distribution of risk scores in different FIGO stages, TNM stages, and
histological types. (B) Kaplan–Meier curves for differential detection of patients in the TCGA cohort by the log-rank test. (C) ROC curves of risk scores used to predict 1-
year, 3-year, and 5-year survival in the TCGA cohort. (D) Time-dependent ROC curves of the risk score in the TCGA cohorts. (E) Kaplan–Meier curves for differential
detection of patients in the GSE44001 cohort by the log-rank test. (F) ROC curves of risk scores used to predict 1-year, 3-year, and 5-year survival in the
GSE44001 cohort. (G) Time-dependent ROC curves of the risk score in the GSE44001 cohorts. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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correlated with risk scores. Patients in the low-risk score group
had higher immune and stromal scores than those in the high-
risk score group, and patients in the low-risk score group had
lower tumor purity (Figures 5A−C). We next found that the gene

expression levels of 20 HLA family genes and 41 immune
checkpoints were significantly different between the high- and
low-risk groups (Figures 5D,E, Supplementary Table S6), and
the risk score was significantly negatively correlated with the

FIGURE 3 | Forest plot of the univariate and multivariate Cox regression analysis in TCGA and GSE44001 cohorts.

FIGURE 4 |Construction of a nomogrammodel. (A)Nomogram constructed in conjunction with the risk score and FIGO stage for the TCGA cohort. (B)Calibration
plot of the nomogram. (C) C-index curves of the FIGO stage, risk score, and nomogram. (D) Decision curve analysis for evaluating the net benefits of FIGO stage, risk
score, and nomogram.
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expression levels of 20 HLA genes and 43 immune checkpoints,
such as HLA-DOA, HLA-DPB1, IDO2, BTLA, and CD27
(Figure 5F, Supplementary Table S7). TIMER, CIBERSORT,
and MCP-counter were performed to estimate the distribution of

infiltrating immune cells between the low- and high-risk score
groups. Most immune cells and stromal cells were infiltrated
more frequently in the low-risk score group. However, antigen
presenting cells such as macrophage M0 and T cell regulatory

FIGURE 5 | The immune signature between the high- and low-risk groups in the TCGA cohort. (A–C) Association between immune score, stromal score, tumor
purity, and risk score and their distribution in different risk groups. (D,E) Differential analysis of gene expression levels of HLA family genes and immune checkpoints in
different risk groups. (F) Correlation analysis for the risk score and the gene expression levels of HLA family genes and immune checkpoints. (G) The heatmap showing
the immune and stromal cell infiltration levels and differences in distribution between different risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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(Tregs) increased in the high-risk score group (Figure 5G,
Supplementary Table S8). These results indicate that the
suppression of stromal and immune components in the tumor
microenvironment likely contributes to the worse prognosis in
high-risk patients.

Function Analysis of Genes Related to the
Risk Score
To explore the underlying mechanisms that lead to different
outcomes between the high- and low-risk score groups, we
carried out GSEA using annotations of hallmark gene sets.
Significantly enriched pathways with adjusted p-value < 0.05
are shown in Figure 6A. Genes involved in glycolysis, Myc
targets v1, and E2F targets signaling pathway were enriched in
the high-risk score group, while genes related to apoptosis, KRAS
signaling up, inflammatory response, and p53 signaling pathway
were enriched in the low-risk score group.

Furthermore, we performedWGCNA to get the signature-related
modules. Based on the median absolute deviation (MAD), the top
5,000 genes with the most variation were selected and the gene
expression file of these genes was inputted into the WGCNA. When

the lowest soft threshold power was four, the scale-free R2 reached
0.85 (Supplementary Figure S6). We constructed a cluster
dendrogram with the adjacency matrix; eight-color modules (blue,
yellow, red, turquoise, green, black, brown, and grey) were identified
(Figure 6B). Next, we analyzed the module-trait relationships and
found that the brownmodule was highly significantly correlated with
the signature risk score (|r| > 0.5) (Figure 6C). We then performed
GSEA using the annotations of the KEGG gene set to explore the
biological functions of genes in different modules. For brownmodule
genes, the top enriched terms were Th1 and Th2 cell differentiation,
T cell receptor signaling pathway, primary immunodeficiency, and
PD-L1 and PD-1 checkpoint pathway in cancer, indicating that genes
in the brown module are involved in regulating immune system
function (Figure 6D).

Differences in Genetic Variation and
Pathway Activation Between High- and
Low-Risk Groups
Tumor mutation burden (TMB) is largely attributed to genomic
instability and can indirectly reflect the ability and degree of
tumor production of neoantigens and predict the

FIGURE 6 | Function analysis of genes correlated with the risk score. (A) GSEA enrichment plots showing enriched gene sets against to hallmark dataset in high-
and low-risk groups. NES, normalized enrichment score. (B) A dendrogram of the top 5,000 genes with the most variation clustered based on the topological overlap
together. (C) The heatmap showing the association between gene modules and the signature risk score. (D) GSEA annotated by KEGG gene sets for the brown
module genes.
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immunotherapy efficacy of various tumors. We found that TMB
was significantly higher in the low-risk score group than in the
high-risk score group (Figure 7A). We further investigated the
somatic mutations across CC patients. Logistic regression
analysis showed that 11 genes mutation frequencies were
significantly different between high- and low-risk score groups,
including CENPF, EPHA2, GON4L, HLA-B, IGSF10, KMT2C,
PLXNA1, PSD, RYR1, TTN, andUBR5 (Figure 7B). Themutation
frequencies of these genes are shown in Figure 7C, and there were
significant co-occurrences among mutations of these genes
(Figure 7D). We also found that patients with mutant TTN
were significantly associated with better OS compared with wild-

type patients (Figure 7E), suggesting that the TTN may be a
potential immunotherapy target.

The GSVA also identified significant differences in biological
functions between the high- and low-risk groups (Figure 7F,
Supplementary Table S9). Consistent with the GSEA results, the
direct comparison revealed that E2F targets, G2M checkpoint,
glycolysis, and DNA repair pathways were significantly enriched
in the high-risk group. Comparatively, apoptosis, KARS signaling
up, and inflammatory response pathways were significantly
enriched in the low-risk group. Subsequently, copy number
variation analysis showed different patterns of chromosomal
alteration between the high- and low-risk groups (Figure 7G).

FIGURE 7 | Identification differences of the genetic variation and pathway activation between high- and low-risk groups. (A) Tumor mutation burdens were
compared among distinct risk groups. (B) Forest plot of genes with differences inmutation frequencies between the low- and high-risk groups. (C)Waterfall plot of the 11
mutant genes with significant frequency differences between low- and high-risk groups. (D) Interaction of differentially mutated genes. (E) Kaplan–Meier curve showing
that patients with mutant TTN have a better OS than those with wild type. (F) Differential analysis of GSVA scores among distinct risk groups. (G) Copy number
alteration gains (red) and losses (blue) between the low- and high-risk groups. (H) Differential analysis of altered, lost, and gained genome fractions (%) between the low-
risk and high-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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A larger proportion of genomic loss and gain were detected in the
high-risk group (Figure 7H). Our analysis indicated that
activation of tumor-related pathways, production of
neoantigens, and amplification and deletion of certain tumor
suppressor genes might cause differences in survival between
high- and low-risk score groups.

Identification of Potential Agents and
Prediction of Immunotherapeutic Effect
Based on the CTRP and PRISM-derived drug response datasets, we
used two approaches to identify potential agents for CC patients.
First, we performed a differential drug response analysis between
high-risk (upper decile) and low-risk (lower decile) groups to
identify drugs with significantly different AUC values (log2FC >
0.01, p < 0.05). Next, the Spearman correlation between the risk
score and the AUC value was conducted to screen out agents with a
significantly negative correlation coefficient (r < −0.20 for CTRP
and r < −0.40 for PRISM, p < 0.05). Finally, we determined two
CTRP-derived compounds (panobinostat, lenvatinib) (Figures
8A,B) and two PRISM-derived compounds (everolimus,
temsirolimus) (Figures 8C,D) as the potential agents for CC
patients with high-risk scores. Moreover, we also calculated the
TIDE score and IPS based on the TCGA gene expression profile to
determine the immunotherapeutic response in CC patients. We
found that patients in the low-risk group had lower TIDE scores
and higher IPS (Figures 8E,F), suggesting that patients in the low-
risk group were more likely to respond to immunotherapy than
those in the high-risk group.

DISCUSSION

In this study, the ESTIMATE algorithm was performed to
calculate the immune score and the stromal score to estimate
the TME infiltration pattern of each CC patient in the TCGA
cohort. Because the OS of patients in the high-immune group is
better than that of patients in the low-immune group, the TME
and DNA methylation-related genes were identified by the
integrative analysis of DEGs and DMGs between the low- and
high-immune score groups. Based on multiple LASSO Cox
regression analysis, we constructed a nine-gene TME and
DNA methylation-related prognostic signature to predict
prognosis for stratified CC patients and performed external
validation for its performance. Then, the signature was
combined with the FIGO stage to generate a composite
prognostic nomogram that reliably demonstrated the accurate
prognosis prediction for patients with CC. Furthermore, we
identified the tumor immune signature, function enrichment,
genetic variants, and pathway activation associated with the
prognostic signature. Finally, we predicted patients’
immunotherapy responses by the TIDE score and IPS and
provided four potential agents for patients with high-risk scores.

The fundamental role of TME is the dynamic interaction of
immune and stromal cells with malignant cells and can influence
tumor growth, metastasis, and patient prognosis (Hanahan and
Coussens, 2012). Many epigenetic studies have shown that DNA
methylation plays a key role in promoting cellular responses to
stimuli and regulating immune cell differentiation (Sørensen
et al., 2010; Smith and Meissner, 2013). Thus, it is generally

FIGURE 8 | Identification of potential agents and prediction of immunotherapeutic effect. (A,B) Differential drug response analysis of the selected agents for CC
patients between the higher and lower risk score groups based on the CTRP dataset and Spearman’s correlation analysis of CTRP-derived agents and risk score. (C,D)
Differential drug response analysis of the selected agents for CC patients between the higher and lower risk score groups based on the PRISM dataset and Spearman’s
correlation analysis of PRISM-derived agents and risk score. (E,F) The TIDE score and IPS were compared between the high- and low-risk groups. *p < 0.05; **p <
0.01; ***p < 0.001; ns, not significant.
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accepted that DNA methylation has a very complex regulatory
role on the TME, especially during the development of immune
and stromal cells. For example, one study has found that different
methylation patterns exist in myeloid and lymphoid lineages in
cancer tissues. During the differentiation and activation of
macrophages, the global methylation level increased, while it
decreased in both T and B lymphocytes (Schuyler et al., 2016).
Most importantly, DNA methylation can influence not only the
expression levels of genes important for immune cell
development but also the tumor immune response in the
TME. One study suggested that Th1/Th2 differentiation may
be mediated by methylation and demethylation of the FN-γ in
naive CD4+ T lymphocytes (Janson et al., 2008). Another report
revealed that hypermethylation of genes (LAX1, SIT1, and
UBASH3A) leads to enhanced anti-tumor T-cell responses in
breast cancer (Dedeurwaerder et al., 2011). Moreover, a previous
study showed that in non-small-cell lung cancer, demethylation
of the FOXP3 gene promoter could reduce the activity of DNMTs
in Tregs CD4+ lymphocytes and downregulate immune responses
in the TME (Ke et al., 2016).

In the present study, we have observed that CC patients
with low immunity levels have worse survival than those with
high immunity levels, which may be due to a decrease in the
immune infiltration levels caused by hypermethylation in the
promoter region of immune-related genes affecting gene
expression levels. To predict CC patient survival, we
constructed a nine-gene TME and DNA methylation-related
prognostic signature. In the training and validation datasets,
the risk score of the signature was an independent prognosis
factor and had a good predictive effect. Among the nine genes
included in the signature, their coded proteins correlate with
the immune system, such as CCR7, which coded protein
belonging to the CCR7 chemokine axis. The axis is involved
in the trafficking of effector cells for many immune responses
and controls the migration and metastasis of tumor cells to the
lymphatic system (Salem et al., 2021). CD6 is one kind of type I
transmembrane glycoprotein on the lymphocyte surface and is
involved in the development and differentiation of
lymphocytes (Santos et al., 2016). As a B cell
transcriptional coactivator, POU2AF1 regulates the
expression of B cell maturation factor TNFRSF17 and
stimulates the growth of myeloma cells (Zhao et al., 2008).
DNASE1L3 is a kind of deoxyribonuclease and is involved in
neutrophil activation and acute inflammatory responses
(Jiménez-Alcázar et al., 2017). IL12RB2 is the interleukin-
12 receptor. A study found that IL12RB2 knockout (KO) mice
develop autoimmunity, lymphoid proliferation, and B-cell
tumors and suggested IL12RB2 functions physiologically in
inhibiting aberrant B-cell activation (Airoldi et al., 2005).
Moreover, we established a composite nomogram based on
the FIGO stage and the signature to guide the prognosis
prediction of CC patients more effectively. The composite
nomogram demonstrated higher accuracy of prognosis and
greater net benefits than the FIGO stage and the signature.

Furthermore, our study results showed that the stromal and
immune scores were negatively correlated with the risk score, and
patients in the high-risk group had lower immune scores and

were more likely to be immunosuppressed. More seriously,
patients in the high-risk group had a lower immune activity,
including lower immune cell infiltration such as T cell CD4+,
T cell CD8+, and downregulation of HLA family genes and
immune checkpoints expression such as HLA-A, HLA-B, PD1,
and CTLA4, which contributed to immunosuppression and
tumor immune escape. We further analyzed GSEA pathway
enrichment in high- and low-risk groups and found that
proliferation-specific pathways were significantly enriched in
the high-risk group, such as the Myc targets v1 and E2F
targets pathway, while apoptosis, KRAS signaling up, and
inflammatory response pathway were significantly enriched in
the low-risk group.

Compared to other malignancies, immunotherapy plays an
even more important role in cervical cancer. For example, in
precancerous abnormalities and early tumors of cervical
cancer, restoring the immune response to cancer cells and
strengthening immune system function to HPV may stop
further progression (Lee et al., 2016). TMB measures the
number of nonsynonymous mutations of cancers, and more
mutations could generate more neo-antigens, thereby
activating the patient’s immune system and benefiting
cancer immunotherapy (Jardim et al., 2021). Therefore,
many studies have suggested that TMB could be a good
predictive biomarker of immunotherapy response (Chalmers
et al., 2017; Büttner et al., 2019). We found that patients in the
low-risk group had higher TMB than those in the high-risk
group. Taken together, the results of TMB, IPS, and TIDE
scores suggested that patients with lower risk scores may
benefit more from immunotherapy. In addition, somatic
mutations analysis revealed that the mutation frequency of
11 genes was significantly different between the high- and low-
risk groups. There were co-mutations in these genes,
suggesting that they may synergistically affect the regulation
of TME. Interestingly, patients with mutant TTN had better OS
than those with the wild type and TTN may be a potential
immunotherapy target. We also determined that the genetic
variants were significantly different between the high- and low-
risk groups. The high-risk group had a significantly higher
fraction of genome altered than the low-risk group, indicating
that patients with high-risk scores had more unstable genomes,
and some tumor-promoting pathways were activated, leading
to poor prognosis.

Immunotherapy has a demonstrable synergistic activity to
alter or enhance the immune system when combined with
radiotherapy, chemoradiotherapy, and targeted drugs (Dyer
et al., 2021). To identify drugs that synergize with
immunotherapy for high-risk patients and facilitate
personalized treatment decisions, we identified four potential
agents for high-risk CC patients by interaction analysis between
the risk signature and drug responses. Among the four
candidate agents, lenvatinib is a multikinase inhibitor of
receptor tyrosine kinases. Panobinostat is a nonselective
HDAC inhibitor. Both everolimus and temsirolimus are
inhibitors of mTOR kinase, which is part of the signaling
pathway associated with cell growth and proliferation. Many
studies have found that the destruction of mTOR leads to the
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suppression of the cell cycle and angiogenesis, thereby
inhibiting the development of cervical cancer. These studies
also validated the reliability of our results (Bossler et al., 2019;
Sun et al., 2020; Yang et al., 2020).

Our study has its limitations. First, although our signature is
beneficial in evaluating prognosis and conducting therapies for
CC patients, it does not yield a satisfactory result in the validation
set as their patients are in the early stage of CC. It should be
prospectively validated in other datasets. Second, because there
are no expression data for CC patients receiving immunotherapy,
we only used bioinformatics analysis to predict the effect of
immunotherapy in CC patients in the TCGA dataset, and
there is no actual immunotherapy benefit of immunotherapy
for patients with different risk scores. Third, drug clinical trials
and experimental exploration are needed to validate our drug
prediction results. In summary, our study highlights the value of
the TME and DNA methylation-related signature in predicting
prognosis and immune response.
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Identification of TRP-Related
Subtypes, Development of a
Prognostic Model, and
Characterization of Tumor
Microenvironment Infiltration in Lung
Adenocarcinoma
Sibo Sun, Yu Wang, Min Li and Jianqing Wu*

Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China

The TRP (transient receptor potential) superfamily, as cation channels, is a critical
chemosensor for potentially harmful irritants. Their activation is closely related not only
to tumor progression and prognosis but also to tumor therapy response. Nevertheless, the
TRP-related immune gene (TRIG) expression of the tumor microenvironment (TME) and
the associations with prognosis remain unclear. First, we represented the transcriptional
and genetic variations in TRIGs in 535 lung adenocarcinoma (LUAD) samples as well as
their expression patterns. LUAD samples were divided into two distinct subtypes based on
the TRIG variations. Significant differences had been found in prognosis, clinical features,
and TME cell-infiltration features between the two subtypes of patients. Second, we
framed a TRIG score for predicting overall survival (OS) and validated the predictive
capability of the TRIG score in LUAD patients. Accordingly, to enhance the clinical
applicability of TRIG score, we developed a considerable nomogram. A low TRIG
score, characterized by increased immunity activation, indicated favorable advantages
of OS compared with a high TRIG score. Furthermore, the TRIG score was found to have a
significant connection with the TME cell-infiltration and immune checkpoint expressions.
Our analysis of TRIGs in LUAD showed their potential roles in prognosis, clinical features,
and tumor-immune microenvironments. These results may advance our knowledge of
TRP genes in LUAD and show a new light on prognosis estimation and the improvement of
immunotherapy strategies.

Keywords: TRP superfamily, lung adenocarcinoma, tumor-immune microenvironment, overall survival,
immunotherapy

INTRODUCTION

The TRP (transient receptor potential) superfamily of cation channels, at the very beginning, plays a
crucial role in sensory physiology (Venkatachalam and Montell 2007). Mainly regulated by
temperature, osmotic pressure, pH values, mechanical force, some endogenous and exogenous
ligands, and intracellular signal molecules (Vay et al., 2012), TRP channels have been found to be
expressed and functioned in smooth muscle cells of the bronchi, the pulmonary epithelium, the

Edited by:
Na Luo,

Nankai University, China

Reviewed by:
Emanuele Giurisato,

University of Siena, Italy
Maria Beatrice Morelli,

University of Camerino, Italy

*Correspondence:
Jianqing Wu

jwuny@njmu.edu.cn

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 24 January 2022
Accepted: 30 March 2022
Published: 10 May 2022

Citation:
Sun S, Wang Y, Li M and Wu J (2022)

Identification of TRP-Related
Subtypes, Development of a

Prognostic Model, and
Characterization of Tumor

Microenvironment Infiltration in
Lung Adenocarcinoma.

Front. Mol. Biosci. 9:861380.
doi: 10.3389/fmolb.2022.861380

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 8613801

ORIGINAL RESEARCH
published: 10 May 2022

doi: 10.3389/fmolb.2022.861380

76

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.861380&domain=pdf&date_stamp=2022-05-10
https://www.frontiersin.org/articles/10.3389/fmolb.2022.861380/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.861380/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.861380/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.861380/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.861380/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.861380/full
http://creativecommons.org/licenses/by/4.0/
mailto:jwuny@njmu.edu.cn
https://doi.org/10.3389/fmolb.2022.861380
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.861380


vasculature, and pulmonary endothelial cells (Taylor-Clark
2016). Nowadays, TRP channels receive potentially harmful
irritants in addition to receiving sensory stimulation (Steinritz
et al., 2018). When exposed to toxic matters, chemosensory TRP
channels, as an important chemosensor for potentially harmful
irritative substances, participate in cellular defense mechanisms,
thereby affecting cell survival by regulating apoptosis. Toxic
inhaled substances involved in lung cancer, such as acrolein,
nicotine, nitric oxide, and other components in cigarette smoke,
are recognized as TRP channel activators. They further activate
Akt andMAPK signaling pathways through TRP channels (Buch
et al., 2018). Also, increased cellular resistance to oxidative stress
in lung cancer spheroids is linked to the high expression of
TRPA1, which is a member of the TRP family (Takahashi et al.,
2018).

As the primary subtype of lung cancer, non-small-cell lung
cancer (NSCLC) constitutes over 80% of all lung cancers, with
lung adenocarcinoma (LUAD) as its primary histological
subtype. Despite clinical applications of targeted therapy and
immunotherapy, the 5-year overall survival (OS) of LUAD
patients remains at 16% as usual (Wood et al., 2016; Bray
et al., 2018). Importantly, immunotherapies, whose responses
are often durable and come with light toxicity in most people, are
now given importance in cancer. However, the responses from
people with similar tumors can vary considerably (Zou et al.,
2016). Therefore, developing specific prognostic methods for
LUAD patients is vital in finding new therapeutic targets so as
to improve survival and quality of life. The TRP channel, TRPV3,
is reported to be overexpressed on NSCLC tissues, compared with
para-carcinoma lung tissues. In addition, the overexpression of
TRPV3 is associated with worse survival (Li et al., 2016), and its
Ca2+ signaling is important to T-cell activation and
differentiation (Majhi et al., 2015). However, there is a lack of
studies regarding the impact of the TRP family on immunity and
the prognostic potential for LUAD patients.

In this study, we obtained a comprehensive intratumoral
immune landscape by fully assessing the expression of TRP
channels. First, 21 TRP genes were extracted by gene
differential expression analysis between LUAD and normal
lung tissues. A total of 535 LUAD patients were divided into
two subtypes according to these differentially expressed TRP
genes. Second, patients were then stratified into two risk
groups according to differentially expressed genes (DEGs) and
differentially expressed immunity genes (DEIGs) based on the
two TRP-related subtypes. Finally, a nomogram was set up to
characterize the immune infiltration and predict OS of LUAD,
which might prognose patient responses to immunotherapy and
outcomes.

MATERIALS AND METHODS

Datasets
The RNA sequencing (RNA-seq) data of 59 normal human lung
samples, along with 535 LUAD patients and their clinical
information, were obtained from The Cancer Genome Atlas
(TCGA) database, https://portal.gdc.cancer.gov/. We obtained

the validation cohort RNA-seq data and clinical features from
the Gene Expression Omnibus (GEO) database, https://www.
ncbi.nlm.nih.gov/geo/ (ID: GSE3141, GSE31210, GSE30219,
GSE37745). Patients lacking survival information were
eliminated for further analysis.

Identification of Differentially Expressed
TRP Genes
A total of 28 TRP genes were selected from prior reviews
(Venkatachalam and Montell 2007). Before comparison, we
normalized the TCGA data to fragment per kilobase million
(FPKM) values and identified 21 differentially expressed TRP
genes by the “limma” package with a p value <0.05. The
“maftools” package was used to show the mutation landscape.
A PPI (Protein–protein Interaction) network of the 21 TRP genes
was formed into Search Tool for the Retrieval of Interacting
Genes (STRING), version 11.0. https://string-db.org/ [Accessed
30 July, 2021].

Development of the TRP-Related Gene
Molecular Subtypes
Consensus unsupervised subtyping analysis was applied to sort
the LUAD samples out into two distinct subtypes by R package
“ConsensusClusterPlus” based on TRP gene expression. To
identify the clinical value of the two subtypes, we used the
Kaplan–Meier analysis to draw the survival curve by “survival”
and “survminer” R packages. The Log-rank test was applied to
compare the difference between the survival curves. To
investigate the differences in the two TRP-related gene
subtypes in biological processes, gene set variation analysis
(GSVA) was performed with the hallmark gene set (c2.
cp.kegg.v7.2) derived from the MSigDB database. We assess
the immune, stromal, and estimate scores and the fractions of
22 human immune cell subsets of LUAD patients by the
Estimation of STromal and Immune cells in MAlignant
Tumour tissues using Expression data (ESTIMATE) and the
CIBERSORT algorithm. In addition, the ingle-sample gene set
enrichment analysis (ssGSEA) algorithm was used to determine
the levels of immune cell infiltration in the tumor
microenvironment (TME).

Development and Validation of the
Prognostic TRIG Score
A total of 2,483 immune genes were obtained from the ImmPort
Resorce website, https://www.immport.org/shared/genelists.
DEGs and DEIGs between the two TRP-related gene
molecular subtypes were obtained by the R “limma” package (|
log2FC| ≥ 1 and FDR < 0.05). The TRP-related immune genes
(TRIGs) between DEGs and DEIGs based on TRP-related
subtypes assessed by the R “Venn” package were applied to
estimate the prognostic features. The least absolute shrinkage
and selection operator (LASSO)-Cox regression analysis was used
to consider the kernel prognostic TRIGs by the R “glmnet”
package. Also, the penalty parameter (λ) value was filtered by
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the lowest partial likelihood deviance with 10-fold cross-
validation. The TRIG score for patients was calculated by the
following formula:

Risk score = (−0.00384*CCL17 expression) +
(−0.20651*CD40LG expression) + (−0.09076*CIITA
expression) + (0.095940*STC1 expression) +
(−0.01538*SCGB3A1 expression) + (−0.13689* GDF10
expression).

We divided the TCGA LUAD samples into two groups via the
median risk scores and compared OS time through Kaplan–Meier
analysis. Principal component analysis (PCA) and the
t-distributed stochastic neighbor embedding (t-SNE) algorithm
were assessed respectively by the “prcomp” function in the “stats”
and “Rtsne” R package. The “time-ROC”, “survival”, and
“survminer” R packages were applied to perform the time-
dependent receiver operating characteristic (ROC) curve analysis.

To validate this prognostic TRIG score, we employed four
LUAD GEO cohorts (GSE31210, GSE3141, GSE30219, and
GSE37745). TRIG expressions were normalized by the “scale”
function. Then, we calculated TRIG scores through the exact
formula before. In these four GEO datasets, samples were
separated into two risk groups for comparison to validate the
TRIG score.

Clinical Associations and Stratification
Analyses of the TRP-Related Prognostic
Model
Univariate and multivariable Cox regression models are used to
assess the distinctive character of the TRIG score and clinical
features (age, gender, and TNM stage). Moreover, we used the
stratified analysis to identify whether the TRIG score was able to
maintain the predictive capability in distinct groups (age, gender,
and TNM stage).

According to these TRIGs, we estimated the content of tumor-
infiltrating immune cells (TIICs) in TME and explored the
correlations between the six genes in the TRIG score and
portions of 22 TIICs as well as the differential immune
checkpoint expression levels between low- and high-risk
groups by boxplots.

Foundation and Validation of a Nomogram
A predictive nomogram was formed by extracting clinical
features along with TRIG score in accordance with the
results of the independent prognosis analysis, and then,
time-dependent ROC curves for 1-, 3-, and 5-year survivals
were applied to estimate the nomogram. Moreover, we also
used calibration plots to show the prognostic value between the
1-, 3-, and 5-year survivals predicted by the nomogram and
clinical results.

Statistical Analyses
We used the Mann–Whitney test to compare the immune cell
infiltration and immune checkpoints expression between the two
groups. R version 4.1.0. Statistical significance was set at p < 0.05
in all statistical analyses.

RESULTS

Expression Variations and Genetic Changes
of TRP Genes in LUAD
The expression levels of the 28 TRP genes (TRPs) were compared
with The Cancer Genome Atlas (TCGA) data from 59 normal
lung tissues and 535 tumor tissues, and 21 differentially expressed
TRP genes were identified (p < 0.01). The RNA expressions of
these differentially expressed TRP genes were shown with
heatmaps (Figure 1A, red: high expression; blue: low
expression). Meanwhile, 21 TRP gene mutations were
presented in 211 of the 535 samples (about 39.4%) at the genetic

expression level. TRPA1 and TRPC4 displayed the highest
mutation frequency (Figure 1B). Copy number variations
(CNVs) of all the 21 TRP genes were detected, and most TRP
genes were gathered on copy number amplification (Figure 1C).
Alterations of the 21 TRP genes with CNVs on the chromosome
were also identified (Figure 1D). To explore the interactions of 21
TRP genes, a protein–protein interaction (PPI) analysis was
conducted (Figure 1E). The value of 0.9 (the highest
confidence) was set as the minimum required interaction score
of the PPI analysis. TRPC1, TRPC3, TRPC4, TPRC6, TRPM2, and
TRPM3were considered as hub genes. The correlation network of
the 21 TRP genes was also detected (Figure 1F, red: positive
correlations; blue: negative correlations). The results indicated
that CNV changes might lead to abnormal gene expression. Also,
the expression levels of TRP genes were linked with LUAD,
suggesting that they might consider different characteristics in
patients.

Identification of Two Subtypes of LUAD
Based on the 21 TRP Genes
Considering the important functions of the TRP family, we
conducted the consensus clustering of the 535 LUAD samples
based on the TRP family to explore new biological functions. We
increased the clustering variable (κ) from 2 to 9 and found that
when κ = 2, the intergroup correlations were the lowest and
intragroup correlations were the highest, indicating that the 535
LUAD patients could be compartmentalized into two subtypes
according to the 21 TRP genes (Figure 2A). Between the two
subtypes, most TRP gene expression levels were higher in subtype
1 (Supplementary Figure S1). Meanwhile, survival benefit of
subtype 1 was higher than that of subtype 2 (HR = 1.53, 95% CI:
1.32–2.05. Figure 2B). We presented a heatmap of the gene
expression profile, along with the clinical features. High
expression levels of most TRP genes were identified in subtype
1. Also, subtype 1 was found to have a lower degree of tumor
invasion, lymph node metastasis, and distant metastasis. Also,
clearly, subtype 2 represented a later stage compared with those in
subtype 1. Furthermore, most TRP gene expression levels were
higher in subtype 1 (Figure 2C). We performed GSVA
enrichment analysis to consider the variations in biological
behavior between these two subtypes (Figure 2D). Subtype 1,
compared with subtype 2, demonstrated the enrichment in
respect of pathways linked with activation of the immune
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system (Barclay 2003; Lord et al., 2003; Olivier et al., 2005; Akdis
et al., 2016). The results revealed that the two subtypes could be
distinguished by the 21 TRP genes, and the lower survival
advantage of subtype 2 is mainly related to disorders of the
immune system.

TME Infiltration of the Two TRP-Related
Subtypes
To explore the immunological features of the two subtypes, 535
LUAD samples of the TCGA cohort were analyzed by ssGSEA
analysis with 29 immune gene sets. The TME is considered as the
complex multicellular environment in tumor development. It
comprises immune cells, including T- and B-lymphocytes,
tumor-associated macrophages (TAMs), dendritic cells (DCs),
natural killer (NK) cells, neutrophils, myeloid-derived suppressor
cells (MDSCs), stromal cells, the extracellular matrix (ECM) and
other secreted molecules, and the blood and lymphatic vascular
networks (Junttila and de Sauvage 2013). Between them, the
immune cells in the TME play vital roles in possessing tumor-
antagonizing or tumor-promoting functions (Quail and Joyce
2013).TME features of these two subtypes were identified using
the ESTIMATE algorithm. The outcomes demonstrated that
subtype 1 had higher expressions of all TME scores, while
subtype 2 had lower expressions of these scores (Wilcox test,

p < 0.001) (Figure 3A). Next, we explored immune cell
infiltrations by implementing the CIBERSORT algorithm.
Subtype 1 showed the enrichment of the activated innate
immune cell infiltration, comprising the presence of CD8 T
and activated CD4 cells, M1 macrophages, memory B-cells,
and resting dendritic cells, thus meeting a significant survival
benefit. Subtype 2 was abundant with naive B-cells, plasma cells,
M0 macrophages, and activated dendritic cells (Figure 3B). We
drew to the conclusion that these two subtypes had entirely
different human leukocyte antigen (HLA) infiltration
characteristics. HLAs are highly polymorphic alloantigens that
encode the product of a gene cluster encoding the human major
histocompatibility complex (MHC) (D.S. Chen and Mellman
2017). Neoantigens produced by tumors must first be
presented on HLAs and recognized by peptide-specific
receptors. Then, HLAs and the peptide-specific receptors form
the MHC-antigen peptide-specific receptor complex,
participating in regulating the immune response of the body
(Kalaora et al., 2021). All the HLA gene expression levels were
significantly higher in subtype 1 but lower in subtype 2 (Wilcox
test, p < 0.05), indicating that subtype 1 was inclined to generate
protective immunity (D.S. Chen andMellman 2017) (Figure 3C).
Besides, to presume the tumor purity of the two subtypes, TME
scores (stromal score, immune score, and estimate score) of the
two subtypes were investigated through the ESTIMATE package.

FIGURE 1 | Expressions and correlations of 28 TRP genes in LUAD. (A). Heatmap (red: high expression; blue: low expression) of the TRP genes between normal
lung tissues (N, blue) and LUAD tissues (T, red). p values were demonstrated as **p < 0.01; ***p < 0.001. (B). Mutation frequencies of TRP genes in LUAD patients from
the TCGA cohort. (C). Locations of CNV variations in TRP genes on 23 chromosomes. (D). Frequencies of CNV, non-CNV and gain and loss CNV, among TRP genes.
(E). PPI network demonstrating the interactions of the TRP genes (interaction score = 0.9). (F). TRP gene correlation network (red string: positive correlation; blue
string: negative correlation. The shades of the colors represent the correlation strength).
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For TME scores, the higher stromal scores or immune scores, the
higher contents of stromal cells or immunocytes in the TME, and
estimated scores represented the comprehensive scores of stromal
or immune scores in the TME (Han et al., 2022; W.; Chen et al.,
2021) (Figure 3D). Our outcomes proved that subtype 1
possessed higher TME scores.

Development of a Prognostic TRIG Score in
the TCGA Cohort
Based on those two TRP-related subtypes, we explored the
features of tumor-immune interactions and their prognostic
potential for LUAD samples. First, 1,469 DEGs were identified
with the two subtypes (Figure 4A). Subsequently, 1,793 genes
were considered as DEIGs according to the ImmPort database
(Figure 4B). The 367 intersect genes between DEGs and DEIGs
were applied to estimate the prognostic features (Figure 4C). In
order to build a prognostic TRIG score to evaluate each patient,
we extracted six of the 367 TRP-related genes by utilization of the
LASSO-Cox regression model along with a minimum of λ
(Figures 4D,E). The formula was identified as follows: risk
score = (−0.00384*CCL17 expression) + (−0.20651*CD40LG
expression) + (−0.09076*CIITA expression) + (0.095940*STC1
expression) + (−0.01538*SCGB3A1 expression) + (−0.13689*
GDF10 expression). We used the formula to calculate the
median score, according to which two risk groups were then
separated from 535 patients (Figure 5A). Dimensionality
reduction algorithms of PCA (Figure 5B) and t-SNE

(Figure 5C) were used to show discernible dimensions
between the low- and high-TRIG-score groups. PCA and
t-SNE analysis revealed significant differences between the two
subtypes. We performed survival analysis for two risk groups by
Kaplan–Meier curves. The high-risk group showed a poorer
survival time than the low-risk group (HR = 1.63, 95% CI:
1.21–2.21. Figure 5D). We identified a significant variation in
survival times and survival statuses of the two groups by the
Kaplan–Meier curves. The distribution plot of the risk of TRIG
score demonstrated that the survival times decreased, while
mortality increased with an increased TRIG score (p < 0.001,
Figure 5E). In addition, we used time-dependent ROC analysis to
estimate the predictive efficacy of the TRIG score. The area under
the ROC curve (AUC) reached 0.671 for 1-year survival, 0.660 for
2-year survival, and 0.630 for 3-year survival (Figure 5F).

Validation of the Prognostic TRIG Score in
the GEO Cohorts
Aiming to confirm the reproducibility and stability of prognostic
TRIGs of LUAD, we derived the TRIG expression levels and
LUAD samples’ clinical record from four independent LUAD
cohorts from GEO databases (GSE3141, GSE31210, GSE30219,
and GSE37745). We calculated the LUAD patients’ TRIG scores
in the four GEO databases by the median risk score gained before.
Kaplan–Meier survival analysis demonstrated that the OS in the
low-risk group was significantly better than that of the high-risk
group of the four GEO databases (HR = 3.37, 95% CI: 1.69–6.71.

FIGURE 2 | TRP-related subtypes and their clinicopathological features and biological pathways. (A). Consensus matrix heatmap identifying two subtypes (κ = 2).
(B). Kaplan–Meier OS curves of the two subtypes. (C). Variations in clinicopathologic characteristics and TRP gene expression levels between the two distinct subtypes.
(D). Biological pathways to two distinct subtypes via GSVA (red: activated pathways; blue: inhibited pathways).
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Figure 6A; HR = 2.05, 95% CI: 1.08–3.87. Figure 6B; HR = 1.92,
95% CI: 1.39–2.63. Figure 6C; HR = 1.72, 95% CI: 1,14–2.59.
Figure 6D). Meanwhile, ROC curve analysis made clear that the
prognostic TRIG score had good predictive efficacy
(Figures 6E–H).

Independent Prognostic Value of the
Prognostic TRIG Score
In the TCGA cohort, the univariate Cox regression analysis
showed that the TRIG score was a prognostic factor for LUAD
patients (HR = 3.213, 95% CI: 2.003–5.154. Figure 7A).
Meanwhile, the multivariate analysis indicated that the
TRIG score was an independent factor of survival
prediction (HR: 3.008, 95% CI: 1.813–4.990. Figure 7B).
We still estimated the relationship between TRIG score and
clinical traits, including age, gender, and TNM stage in the
TCGA cohort (Figures 7C–H). All these clinical features,
except instance metastasis, were linked with TRIG score.
The results indicated that advanced LUAD samples had a
higher TRIG score than early LUAD samples. Together,
these outcomes indicated that the TRIG score was positively
associated with tumor stages, suggesting that TRIG score
showed the potential as a clinical indicator to assess the
LUAD patient survival rates.

Interrelation of the TRIG Score and Immune
Activity
We investigate the variations in the gene functions as well as
pathways between the two risk groups. The outcomes of Gene
Ontology (GO) enrichment analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis based on 367
TRIGs demonstrated that TRIGs were mainly linked with the
immune response, chemokine-mediated signaling pathways, and
inflammatory cell chemotaxis (Figures 8A,B). Next, we explored
the correlations between the TRIG score and immune cell
infiltration, TMB (tumor mutational burden), tumor
transcription factors (TFs), and immune checkpoints. On one
hand, we explored the correlations between the prognostic TRIG
score and the enrichment of TIICs by the Pearson correlation
analysis, which referred to the infiltrating immune cells that
could be isolated from the tumor tissue when immune cells
moved from the blood to the tumor tissue. The infiltration of
immune cells in tumors was closely related to clinical prognosis,
and immune cells infiltrated in tumors were most likely to serve
as immunotherapy targets (Domingues et al., 2016). We found
that most TIICs were linked with the six genes (Figure 8C). On
the other hand, we extracted immune checkpoint genes from
prior reviews (Kraehenbuehl et al., 2022; He and Xu 2020; Pardoll
2012) to evaluate their relationships with the TRIG score with the
purpose of investigating whether the TRIG score was able to

FIGURE 3 | TME infiltration in two subtypes. (A). Immunological characteristics of the two subtypes. (B). Correlations of the immune cell infiltration level between
two subtypes. (C). Correlations of HLA gene expression level between two subtypes (*p < 0.05, **p < 0.01, ***p < 0.001). (D). Correlations of Stromal-score, Immune-
score, ESTIMATE-Score, and TME score between two subtypes.
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predict the benefits of immune checkpoint inhibitors of LUAD
patients via the CIBERSORT algorithm. The results
demonstrated that besides CD276, all the immune checkpoint
expressions were negatively linked with the TRIG score
(Figure 8D), indicating that TME suppression might be
linked with the poor prognosis of high-TRIG patients. TMB
was defined as the total number of somatic gene coding errors,
base substitutions, and gene insertion or deletion errors detected
per megabase and is considered as a biomarker for evaluating the
efficacy of PD-1 antibody therapy (Cristescu et al., 2018). Based
on the Kruskal–Wallis rank-sum test, the “ggpubr” package in
the R language was run to explore the relationship between TMB
score and risk groups. We found that the high-risk group showed
higher TMB, compared with the low-risk group (Figure 8E). We
combined the TRIG score and TMB to improve the efficiency of
predictive prognosis and stratified all the patients into high TMB/
low-risk, high TMB/high-risk, and low TMB/high-risk groups.
Significant differences were detected among four groups (Log-
rank test, p < 0.001). TMB was considered to be a biomarker that
could predict the immune checkpoint inhibitors’ efficacy, and
immune checkpoint inhibitors were proved to be more efficient
in the TMB-high subgroup in LUAD (Sha et al., 2020), consistent
with our findings that patients in the low TMB/high-risk group

showed the worst prognosis compared to the high TMB/high-risk
group. There was no significant difference between high TMB/
high risk and low TMB/low risk (Figure 8F). To explain the role
of the immune molecule regulatory network in the process of
LUAD, we assessed the relationships between LUAD
development-related TFs and the six TRIGs. TFs related to
tumorigenesis and the development of LUAD were obtained
from the CISTROME project. Then, we extracted the
differentially expressed TFs from the intersect genes between
DEGs and DEIGs and used Pearson’s correlation coefficient
analysis to construct the regulatory network of the TFs and
the six TRIGs. |r| > 0.3 and FDR < 0.01 were set as the
cutoffs for a significant correlation. Four of six TRIGs were
linked with the corresponding 19 TFs (Figure 8G). Therefore,
it is reasonable to conclude that immune cell infiltration was
significantly linked with the TRIG scores, which might affect the
LUAD patient prognosis.

Advancement of a Nomogram to Predict
Survival
Finally, we formed a nomogram to expand the scope of the
TRIG score clinical application in predicting OS in LUAD

FIGURE 4 | DEG and DEIG expressions and establishment of the prognostic TRIG score in the TCGA cohort. (A,B). Heatmaps of DEGs and DEIGs between two
subtypes. (C). TRIGs between two subtypes. (D). LASSO regression of the six TRIGs. (E). Cross-validation of parameter selection of the LASSO regression.
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patients (Figure 9A). According to the gender, age, risk (“low
risk” represented “low TRIG score”; “high risk” represented
“high TRIG score”), and stage, the total point values of every
patient were calculated by prognostic parameters. With the
increase of the patient total points, the clinical prognosis

became worse. The ROC curve supported the good
predictive value of the nomogram (Figure 9B). Moreover,
the calibration plot indicated that the nomogram had a
similar performance compared with an ideal model
(Figure 9C).

FIGURE 5 | Establishment of the prognostic TRIG score in the TCGA cohort. (A). Spread of survival status and risk scores of the TCGA cohort. (B,C). Variations in
the distribution of different TRIGs risk groups. (D). Kaplan–Meier survival curve of OS of LUAD samples in the high- and low-risk groups. (E). Survival status for each
patient in low-risk and high-risk populations. (F). AUC of time-dependent ROC curves showed the predictive efficiency of the TRIG score.

FIGURE 6 | Validation of the prognostic TRIG score in various GEO cohorts of LUAD. (A-D). Kaplan–Meier survival curves of OS in four GEO cohorts. (E-H). Time-
dependent ROC curves for four GEO cohorts. (A,E). GSE31210 (n = 226). (B,F). GSE3141 (n = 111). (C,G). GSE30219 (n = 289). (D,H). GSE37745 (n = 196).
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FIGURE 7 | (A,B). Univariate and multivariate Cox regression analysis of the prognostic TRIG score in the TCGA cohort. (C-H). Connections between clinical
features and the risk groups.

FIGURE 8 | Functional analysis and evaluation of immune activity between the two groups. (A). GO analysis of TRIGs between various risk groups. (B). KEGG
analysis of TRIGs between various risk groups. (C). Relationship between TRIG score and immune cell types. (D). Expression of immune checkpoints in the high- and
low-risk groups. (E). Comparison of TMB between high- and low-risk groups. (F). Comparison of four groups stratified by combining the TMB and risk groups. (G).
Regulatory network of the TRIGs and TFs.
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DISCUSSION

Plenty of research studies have disclosed that the TRP channels
played an indispensable role in anti-tumor immune effects
(Santoni and Farfariello 2011; Parenti et al., 2016). Most of
their major focuses, however, were on a single TRP gene. The
total effect and immune infiltration features intervened by the
multiple TRP genes have not been fully illustrated. Our study
showed variations in TRP genes at the genetic and transcriptional
levels in LUAD. According to the differently expressed TRP
genes, we classified patients into two subtypes. Between them,
subtype 2 patients showedmore severe clinical features and worse
survival rates. Furthermore, the differences in TME features
between two distinct subtypes were significantly linked with
immune-related biological pathways, and subtype 1 was
identified by a significant immune activation. Therefore, our
studies showed that TRP genes might assume the role of a
predictor for estimating the immunotherapy response and
clinical outcome of LUAD. We further classified LUAD
samples in the TCGA into two risk groups based on the DEGs
and DEIGs between the two TRP-related subtypes. Moreover, we
formed the prognostic TRIG score and revealed its predictive
capability. Next, we explored the six TRIG score gene expression
levels in LUAD. Patients with low and high TRIG scores were
represented, respectively, as immune stimulation and
suppression. Moreover, they showed significant differences in
prognosis and clinical characteristics, also in the expressions of
TME, TMB, and immune checkpoints. Last, by combining the
clinical features and TRIG score, we set up a nomogram to

facilitate the clinical use of the TRIG score. The prognostic
TRIG score will be able to promote a better understanding of
the LUAD molecular mechanism as well as provide new
inspirations for anti-cancer therapies.

TME is a compound of tumor cells and their ambient cells,
primarily composed of TIICs, the tumor vasculature, ECM,
lymphocytes, cancer-associated fibroblasts, and bone marrow-
derived inflammatory cells. Tumor development, progression,
and therapeutic resistance were also reported to be significantly
impacted by TME (Quail and Joyce 2013). Immune cells, as
significant cellular elements of TME, were engaged in multiple
immune activities and responses. For instance, the tumor-related
inflammation that can prevent tumor progression is regulated by
the immune system (Ribeiro Franco et al., 2020). Cytotoxic T-cell
activation in the TME is considered to play vital roles in
possessing tumor-antagonizing or tumor-promoting functions
(Pardoll 2012). B-cells have been reported to both suppress and
support T-cell functions, leading to differential effects on
tumorigenesis (Ammirante et al., 2010). Moreover, B-cells
have also been shown to promote tumor progression by
enhancing pro-tumoral inflammation (Nelson 2010). Mast cell
recruitment is related to tumorigenesis and angiogenesis
(Coussens et al., 1999; Mantovani and Sica 2010). TAMs can
also affect tumor progression depending on their polarization
(Yang et al., 2008). LUAD patients are response heterogeneity to
immunotherapy; particularly, those with highly expressed tumor
neoantigens, tumor-infiltrating lymphocytes, and checkpoints
tend to have a poor prognosis (Rosenberg et al., 2011; Rizvi
et al., 2015; Verdegaal et al., 2016; Berner et al., 2019; Arrieta et al.,

FIGURE 9 |Construction and validation of a nomogram. (A). Nomogram for predicting the 1-, 3-, and 5-year OS of LUAD patients. (B). ROC curve and AUC of the
predictions for 1-, 3-, and 5-year OS in the TCGA cohort. (C). Calibration curves of the nomogram for the TCGA cohort.
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2020), showing the essential role of TME in LUAD. The TRP
channel, TRPV1, is proven to be a major Ca2+ channel. In
addition, Ca2+ ions, which contributed the important inter-
and intracellular messengers to the TME, have been
investigated elsewhere (Bong and Monteith 2018; Roberts-
Thomson et al., 2019). In this study, the TRP pattern
identified by immune suppression showed a higher TRIG
score, while, on the contrary, the pattern featured by immune
activation was linked with a lower TRIG score. Hence, we
discovered that TME features, including the relative
abundance of 22 TIICs, varied significantly from two subtypes
and different TRIG scores, indicating the key role of TRP genes in
LUAD progression.

The tumor-infiltrating T-cell enrichment in LUAD tissues is
higher compared with those in normal tissues, and higher
enrichment of tumor-infiltrating T-cells indicates a good
prognosis (Guo et al., 2018; Stankovic et al., 2018). CD4+

T cells are crucial to driving not only the antibody but also
cytotoxic CD8+ T cell response. Moreover, they promote an
inflammatory environment that favors antitumor immunity
(Tran et al., 2014). Among them, memory CD4+ T cells are
reported to play a crucial role in anti-tumor responses to LUAD
(Dieu-Nosjean et al., 2016). In this study, the low-risk group and
the low TRIG score, accompanied by a higher survival rate,
revealed higher resting memory CD4+ T cell expression. At
the first time, resting memory CD4+ T cells are extracted from
activated T-cells, and then they encounter antigens, followed by
multiplying to produce a stronger and faster immune response to,
in the second response, the experienced antigens. It has been
proved that resting memory CD4+ T cells can regulate tumor
growth (McKinstry et al., 2010), which corresponds to our
findings. Therefore, we assume that a high percentage of
resting memory T-cells can strongly activate effector T-cells
and thus favors an ideal result. In addition, the proportion of
resting memory CD4+ T cells increased in LUAD patients
younger than 65 years old and non-smoking. Nevertheless,
resting memory CD4+ T cells can be partitioned into at least
five subsets of cells, and which subtypes of memory CD4+ T cells
are linked with LUAD prognosis is yet to be found.

B-cells are also proved to participate in the immune response.
Evidence showed that enrichment of tumor-infiltrating B-cells is
the most powerful prognostic factor of prolonged survival and is
strongly linked to PD-1 blockade responses in soft-tissue
sarcomas (Petitprez et al., 2020). Furthermore, tumor-
infiltrating B-cells are detected at low levels, accompanied by a
poor prognosis in advanced NSCLC (J. Chen et al., 2020; Germain
et al., 2014). Meanwhile, higher expressions of B-cell-related
genes IGLL5, MZB1, and JCHAIN are identified in patients
with responding immune checkpoint blockade than those in
non-responders (Helmink et al., 2020). In this study, no
significant difference in native B-cell infiltration was found
between the two risk groups, while the enrichment of memory
B-cells in the low-TRIG-score group with longer OS was
significantly higher than those in the high-TRIG-score group.
The generation of memory B-cells is reported as a key
characteristic of the adaptive immune system. Memory B-cells
can activate T-cells and regulatory B-cells, which have been

defined as tumor-promoting effects (Wang et al., 2019). Thus,
B-cell infiltration restrained tumor progression of LUAD, in
accordance with the results of previous studies (J. Chen et al.,
2020; Germain et al., 2014).

Macrophages, also named tumor-associated macrophages
(TAMs), are the richest immune cell population of tumor
tissues. M0 macrophages, the inactive TAMs, can polarize into
inhibit-cancer-progression M1 macrophages or promote-cancer-
progression M2 macrophages. M1 macrophages generate type I
pro-inflammatory cytokines and possess anti-tumor functions.
Meanwhile, M2 macrophages promote the matrix-remodeling
through immunosuppression and thus favor tumor progression
(Qian and Pollard 2010). In LUAD cells, M0 macrophages
internalize tumor-derived exosomes and polarize into the M2
phenotype (Pritchard et al., 2020). Meanwhile, in LUAD tissues,
M0macrophages showed a significant infiltration in patients with
poor prognosis (Liu et al., 2017; Mo et al., 2020). In our study,
neither M1 nor M2 had a significant prognosis for LUAD
patients. However, the correlation between poor prognosis and
M0 macrophages was observed. In fact, M1 and M2 phenotypes
present two extremes of a spectrum of functional states rather
than certainly different cell types. Thus, our findings may reflect
the polarizing function.

Dendritic cells are essential for the initiation and regulation of
both innate and adaptive immune responses. As such, a number
of approaches have been advanced to target dendritic cells to
improve immunotherapy, such as antigens with
immunomodulators that assemble and activate endogenous
dendritic cells, as well as dendritic cell-based vaccines (Wculek
et al., 2020). In LUAD patients, the lack of resting dendritic cells
in tumor tissues is linked with worse anti-PD-(L)1 response,
leading to a poor prognosis (Leader et al., 2021). Mast cells are
also critical to tumor angiogenesis as well as metastases (Paolino
et al., 2019). Mast cells are considered key regulators of the cancer
stroma and coordinators of anti-tumor immunity and have been
involved in tumor cell innate characteristics. Therefore, mast cells
are an under-recognized but very promising target for cancer
immunotherapy (Lichterman and Reddy 2021). In LUAD, high
mast cell infiltration is considered an indicator of a good
prognosis (Welsh et al., 2005; Carlini et al., 2010; Shikotra
et al., 2016). These findings are consistent with our study that
resting dendritic cells and mast cells were enriched in the low-
TRIG-score group, indicating that they might benefit from
immunotherapy.

In our study, the immune checkpoint gene expressions are also
considered to differ between the two subtypes. Our study formed a
model featuring six TRG (CCL17, CD40LG, CIITA, GDF10,
SCGB3A1, and STC1) and identified that it could forecast OS in
LUAD patients. Four of the six TRG (CCL17, CD40LG, CIITA, and
STC1) are reported to be linked with immune checkpoints. Immune
checkpoint blockades, such as sole and dual CTLA-4 and PD-1/PD-
L1 blockades, have already represented a clinical benefit for several
cancers including LUAD (Skoulidis et al., 2018; de Miguel and
Calvo 2020). Chemokine (C–C motif) ligand 17 (CCL17), also
named T(H)2-attracting chemokine (TARC), can recruit regulatory
T-cells to TME. Regulatory T-cell accumulation in TME is reported
to reduce anti-tumor immune response and is considered to be an
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essential driver of tumor immune evasion (Robles et al., 2020).
Meanwhile, patients treated with combined immune checkpoint
inhibitors represent the lowest expression of CCL17 (Fiegle et al.,
2019). In advanced melanoma patients treated with dendritic cell-
based therapy, high serum levels of CCL17 are related to improved
progression-free survival (Cornforth et al., 2009). The CD40
receptor and its ligand CD40L, widely expressed in various cells,
is one of the master molecular pairs of the stimulatory immune
checkpoint. The CD40/CD40L-targeted therapies show promising
clinical efficacy in LUAD (Tang et al., 2021). The class II trans-
activator (CIITA) is the most crucial regulator of the major
histocompatibility complex (MHC) gene expression. In LUAD,
loss of CIITA reduced cancer cell-specific MHCII and
transformed LUAD from anti-PD-1-sensitive to anti-PD-1-
resistant (Johnson et al., 2020). Expression of tumor
stanniocalcin 1 (STC1) is reported to be related to
immunotherapy efficacy and is negatively linked with patient
survival in LUAD by tumor immune evasion and
immunotherapy resistance. In murine tumor models, a gain of
STC1 favors tumor progression and allows tumor resistance to
checkpoint blockade (Lin et al., 2021). All these studies correspond
to our observations that high expression of CCL17, the CD40
receptor-ligand gene (CD40LG), and CIITA and low expression
of STC1 are found in the low-TRIG-score group, indicating that
patients in the low-TRIG-score group might benefit from
immunotherapy. Another two TRIGs in this model, SCGB3A1
(alias HIN-1) and GDF10, are both considered as tumor
immune suppressors, which are correlated with
clinicopathological variables (Garcia-Baquero et al., 2013; Cheng
et al., 2016). These are consistent with our observations that high
expressions of SCGB3A1 and GDF10 are identified in the low-
TRIG-score group. Combined with our findings, these two TRIGs
might have the potential to respond to immune checkpoint
inhibitors.

Our study still had some limitations. First, all analyses were
based on data from public databases. Thus, the results might have
an innate case selection bias. Reliable in vitro and in vivo
experiments along with large-scale prospective clinical trials
are required to confirm our findings. Moreover, data on
several critical clinical variables, including neoadjuvant
chemotherapy, surgery, chemotherapy, targeted therapy, and
immunotherapy, were unavailable in most datasets, which may
have exerted an influence on the prognosis of immune responses.
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IRAK1 is an active kinase which plays a critical role in IL-1/TLR signaling pathway involved
in inflammation and innate immune response. Recently, increasing evidence supports a
potential role of IRAK1 in cancer progression. However, no immunological pan-cancer
analysis of IRAK1 is available. We aimed to explore the prognostic value and the
immunological functions of IRAK1. A series of datasets including The Cancer Genome
Atlas, GEPIA2, cBioPortal, HPA, TIMER2.0 were performed to explore the oncogenic and
immunological roles of IRAK1, including the relationship between IRAK1 and prognosis,
genetic mutation, GO and KEGG enrichment pathway analysis, immune state of different
tumors, The results showed that IRAK1 levels were upregulated in more than 20 types of
cancers compared to the normal tissues. IRAK1 expression was associated with poorer
prognosis in different cancer types. For the most frequent DNA alteration of IRAK1 is
amplification. And the result of the enrichment analysis suggested that IRAK1 related to
immune checkpoint pathway in cancer. IRAK1 inhibitor pacritinib inhibit proliferation and
upregulate PD-L1 expression in different cancer cell lines. Moreover, the patients who
receiving anti-PD-L1 therapy with low IRAK1 expression had a better prognosis, and the
objective response rate to anti-PD-L1 therapy was higher in the low IRAK1 group than in
the high IRAK1 group in IMvigor210 cohort. Our study reveals that IRAK1 can function as a
prognostic marker in various malignant tumors. And pacritinib upregulated PD-L1
expression in several cancer cell lines, which indicating that IRAK1 can be used as a
reliable marker to predict the efficacy of immunotherapy.

Keywords: IRAK1, pan-cancer analysis, PD-L1, prognosis, immunotherapy

INTRODUCTION

Cancer is a complex disease with tumor heterogeneity and regulated by tumor immune
microenvironment (Hanahan and Weinberg 2011). As an alternative to traditional anticancer
therapies, emerging immune checkpoint inhibitors (ICIs) have been shown to be effective in multiple
cancer types (12), such as anti-CTLA-4, anti-PD-L1, and anti-PD-1 (Galluzzi et al., 2020; Vaddepally
et al., 2020). Anti-PD-1 inhibitors such as pembrolizumab, toripalimab, and nivolumab have been
approved as first-line therapies for patients with unresectable melanoma, non-small cell lung cancer
and kidney cancer (Khoja et al., 2015; Keam 2019; Zhao et al., 2020). Existing clinical studies have
shown that only part of patients can benefit. Although studies have shown that tumor mutation
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burden (TMB), tumor microsatellite instability (MSI), tumor
copy-number alterations (CAN) and PD-L1 expression level
can be used to predict the prognosis of ICIs (Dudnik et al.,
2018; Davis and Patel 2019; Samstein et al., 2019; Lu et al., 2020).
However, these biomarkers exhibited certain limitations, for
example, the expression levels of PD-L1 cannot be uniform at
different tumor. Therefore, it is urgent to identify new markers to
find more people suitable for ICIs.

Interleukin-1 receptor-associated kinases comprise a class of
serine-threonine kinases, including IRAK1, IRAK2, IRAK3, and
IRAK4 (Flannery and Bowie 2010; Rhyasen and Starczynowski
2015). Previous studies suggested that the IRAK family is key to
regulating inflammatory, innate immunity, and metabolic
diseases (Su, Xu, and Huang 2020). IRAK1 is an active kinase
that plays a critical role in the IL-1/TLR signaling pathway
involved in inflammation and innate immune responses
(Vollmer et al., 2017; Singer et al., 2018). In recent years,
IRAK1 expression or alteration has been reported in several
cancers. For instance, Wee et al. (Wee et al., 2015) reported
that IRAK1 is overexpressed in breast cancers and that IRAK1
inhibition reduces cancer proliferation and metastasis. In
addition, Liu et al. showed that IRAK1 contributed to
chemoresistance in nasopharyngeal carcinoma through the
IRAK1-S100A9 axis (Liu et al., 2021). Interestingly, IRAK1
overexpression was also observed in hepatocellular carcinoma,
augmenting cancer stemness and drug resistance (Cheng et al.,
2018). Given the potential role of IRAK1 in tumorigenesis, it is
essential to conduct a pan-cancer analysis of it.

Moreover, existing papers have not fully elucidated the role of
IRAK1 in adaptive immune responses. Thus, our study
investigated the potential molecular and immune-related
pathways of IRAK1 in various cancer types. We found that
IRAK1 is related to immune pathways, including the PD-L1
and PD-1 checkpoint pathway in cancer. Furthermore, inhibitors
of IRAK1 pacritinib upregulated PD-L1 expression in several
cancer cell lines, indicating that the pharmacological inhibition of
IRAK1 could be synergistic with immunotherapy in the future.

METHODS

Data Processing and Expression Analysis
All original data were downloaded from The Cancer Genome
Atlas (TCGA) (http://cancergenome.nih.gov/).We used GEPIA
database to evaluate the expression of tumor tissues and the
normal control of the TCGA data. The violin plots of the IRAK1
expression in different pathological stages were also obtained in
the GEPIA database. Additionally, the correlation between the OS
and PFS survival and the expression of IRAK1 was evaluated
through the “Survival Analysis” module of GEPIA2. The cut-off
valued was determined automatically (high expression (50%) vs.
low expression (50%)). A log p-value < 0.05 was considered
statistically significant.

The total protein expression of IRAK1 in tumor and normal
tissues were explored in the UALCAN portal (http://ualcan.path.
uab.edu/analysis-prot.html). The datasets of breast cancer,
ovarian cancer, clear cell RCC, UCEC and LUAD are available.

The immunohistochemistry (IHC) images of IRAK1 protein
expression in normal tissues and tumors tissues, including breast
cancer, colorectal cancer, low-grade glioma and ovarian cancer,
were downloaded from the HPA (http://www.proteinatlas.org/).

Genetic Mutation Analysis
The frequencies of IRAK1 copy number alterations and
mutations were identified in the cBioPortal (http://cbioportal.
org), which is an open-access resource. The correlation of IRAK1
mutations and the survival in LSCC was also obtained.

IRAK1- Related Genes Enrichment Analysis
IRAK1 binding proteins related genes were obtained on the STRING
website (http://string-db.org/). IRAK1 correlated genes were obtained
through the GEPIA2. Then the top five genes which exhibited the
most significant correlation were determined and the TIMER2 was
used to display the heatmap between the selected five genes and the
IRAK1 expression across the pan-cancer types. The partial
correlation and p-value was adjusted in the purity spearman’s
rank correlation test.

The GO and KEGG enrichment pathway analysis were applied to
the “clusterProfiler”Rpackage by using the R software (3.6.3 version).
Moreover, we used the “ggplot2” R packages for visualization.

Immune-Infiltration Analysis and the IRAK1
Expression Data With Immunotherapy
The heatmaps of correlation between immune-suppressive genes
and IRAK1 expression levels were shown by TIMER2.0. The CD274
and IRAK1mRNA expression correlation was evaluated in different
cancer types from the TCGA database using the TIMER2.0 tool.
CIBERSORT and TIMER algorithms calculated the putative
proportion of the different immune cells and correlated with
IRAK1 expression in pan-cancer types. We analyzed IRAK1
expression in different immune subtypes in TISIDB (http://cis.
hku.hk/TISIDB/index.php). To determine whether IRAK1
expression predicts the benefits of immunotherapy, we
downloaded the IMvigor210 information from the http://research
pub.gene.com/IMvigor210CoreBiologies, which include 298 patients
with complete clinical data for urothelial carcinoma.

Cell Culture
All cell lines, includingMDA-MB-231, U251, Hep3B, Kyse30 and
A498 were purchased from ATCC. MDA-MB-231, U251 and
Hep3B cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum.
Meanwhile, Kyse30 and A498 cells were cultured in RPMI
1640 supplemented with 10% fetal bovine serum.

RESULTS

IRAK1 Expression in Pan-Cancer From the
TCGA Database
We analyzed IRAK1 mRNA expression in tumor and normal tissue
samples across 33 pan cancers from the TCGA database. The results
indicated that IRAK1 levels upregulated in BLCA, BRCA, CESC,
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FIGURE 1 | Expression level of IRAK1 in different cancer and pathological stages. (A) IRAK1 expression in different cancer types from the TCGA database analyzed
by the TIMER database. *p < 0.05; **p < 0.01; ***p < 0.001. (B) IRAK1 expression in the cancer type of ACC, DLBC, LGG, LAML, OV, TGCT from TCGA database
analyzed by GEPIA database, and the normal tissues were included as controls. **p < 0.01. (C) The expression level of IRAK1 total protein between normal tissue and
primary tissue of lung adenocarcinoma, clear cell RCC, ovarian cancer, UCEC and breast cancer were analyzed from the CPTAC dataset. ***p < 0.001. (D) The
expression of IRAK1 based on the different pathological stages were analyzed in ACC, LIHC, KICH, KIRP, KIRC, THCA, OV in the TCGA database. (E) Representative
immunohistochemical staining of IRAK1 in breast cancer, colorectal cancer, low grade glioma and ovarian cancer from the HPA (http://www.proteinatlas.org/).
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CHOL, COAD, ESCA, GBM, HNSC, KICH, KIRC, KIRP, LIHC,
LUAD, LUSC, PRAD, READ, STAD, UCEC, DLBC, and LGG
compared to their corresponding normal tissues (p < 0.05) (Figures
1A,B). However, IRAK1 expressions downregulated in THCA and
LAML compared to those in normal tissues. We further evaluated
the total protein levels of IRAK1 from theCPTACdataset; the results
revealed higher expressions in the primary tumor of LUAD, clear cell
RCC, UCEC, and breast cancer than in normal tissues (Figure 1C).
In addition, through GEPIA2.0, we found that IRAK1 levels were
significantly different in different pathological cancer stages,

including ACC, LIHC, KIRP, KIRC, THCA, and OV
(Figure 1D). Specifically, higher expressions correlated with
higher stages in ACC, KICH, KIRP, and KIRC.

Then, we investigated IRAK1 protein expressions from the
HPA database, which provided the IHC results of IRAK1
expression in tumor and normal tissues. The analysis showed
that normal breast, colon, cerebral cortex, and ovary tissues
exhibited a negative or weak staining of IRAK1, while in the
corresponding tumor tissues, such expressions displayed
moderate or strong staining (Figure 1E). Altogether, these

FIGURE 2 | Kaplan-Meier overall survival curve of pan-cancers with high and low expression of IRAK1. Correlations between IRAK1 gene expression and overall
survival from TCGA database are showed. The GEPIA2 tool was used to show the survival map and perform the survival curves.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 9049594

Liu et al. IRAK1 in Pan-cancer

93

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


results indicated that IRAK1 might play a significant role in
different cancers.

IRAK1 as a Prognostic Biomarker in
Multiple Cancers
The prognostic value of IRAK1 in most human cancers remained
unknown. Thus, we aimed to evaluate the prognostic role by
analyzing the TCGA cohort using GEPIA2.0. We found that
IRAK1 expression was associated with a poorer overall survival

(OS) in ACC (p = 0.015, HR (high) = 2.6), BRCA (p = 0.029, HR
(high) = 1.4), HNSC (p = 0.037, HR (high) = 1.3), KICH (p = 0.024,
HR (high) = 5.1), LGG (p < 0.01, HR (high) = 2), LIHC (p = 0.0042,
HR (high) = 1.7), andUVM(p= 0.0072,HR (high) = 3.4) (Figure 2).

Moreover, the analysis of DFS data revealed associations between
high IRAK1 expression and poor prognosis among patients with
ACC (p = 0.0097, HR (high) = 2.4), DLBC (p = 0.048, HR (high) =
3.6), KICH (p = 0.075, HR (high) = 3.2), LGG (p = 0.001, HR (high)
= 1.7), MESO (p = 0.028, HR (high) = 1.9), PAAD (p = 0.015, HR
(high) = 1.7), PRAD (p = 0.019, HR (high) = 1.6), and UVM (p =

FIGURE 3 | Kaplan-Meier disease-free survival curve of pan-cancers with high and low expression of IRAK1. Correlations between IRAK1 gene expression and
disease-free survival from TCGA database are showed. The GEPIA2 tool was used to show the survival map and perform the survival curves.
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0.042, HR (high) = 2.6) (Figure 3). We further conducted analysis of
DSS and PFS data across different cancers by showing forest plots
(Supplementary Figure S1). The above data indicated IRAK1 as a
potential prognostic biomarker in multiple cancers.

Frequencies of IRAK1 Alteration in Multiple
Cancers
We then curated a pan-cancer analysis of IRAK1 genetic alteration.
In the TCGA pan-cancer panel, the most frequent DNA alteration
was amplification. Mutations were likewise distributed in multiple
cancers, including STAD, ESCA, UCEC, LSCC, and SKCM
(Figure 4A). The most frequent mutation was Q180H/*, situated
in the Pkinase site. Another frequent mutation was G224E (Figures
4B). We then determined the correlation between mutations and

prognosis in LSCC. We found that cases with altered IRAK1
depicted a better prognosis in overall survival (p = 0.311) and
exhibited a trend of prognostic value in progression-free survival
(p = 0.114), disease-free survival (p = 0.143), and disease-specific
survival (p = 0.116) compared to cases without altered IRAK1
(Figure 4C). These results indicated that a high IRAK1
expression in tumor tissue might be due to gene amplification.
Additionally, IRAK1 mutation might reduce its role in cancer,
requiring further exploration.

Association of IRAK1 With Immune-Related
Pathways Through Enrichment Analysis
We attempted to investigate the molecular mechanism of IRAK1
through analyzing the related and binding genes, then performed

FIGURE 4 | Genetic aberration of IRAK1 in human pan-cancers from TCGA database. (A) Display of genetic aberration of IRAK1 by using the cBioportal tool. The
alteration frequency was 2.8% (10,953 patients/10967 samples in 32 studies from TCGA pan-cancer panel). (B) All mutation sites of IRAK1 were distributed using
cBioPortal. The most frequent mutation was Q180H/* in Pkinase site. Another mutation named G224E was also displayed. (C) Correlations of mutation status and
different survival status of LSCC are shown using cBioPortal.
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the enrichment analysis. As shown in Figure 5A, the interactions
of IRAK-binding proteins were depicted using the STRING tool.
We identified the top five related genes (DKC1, FAM58A,
NAA10, SLC10A3, UBL4A) that mostly correlated with
IRAK1 by GEPIA2.0; the heatmap displayed the correlation in

pan-cancers (Figure 5B). In the TCGA pan-cancer cohort,
IRAK1 expression positively correlated with DKC1 (R = 0.54),
FAM58A (R = 0.51), NAA10 (R = 0.54), SLC10A3 (R = 0.55), and
UBLA4 (R = 0.62) (Figure 5C). Notably, the KEGG and GO
enrichment analysis of IRAK1 correlated genes suggested that

FIGURE5 | IRAK1-related gene enrichment analysis. (A) IRAK1 binding proteins were determined by using STRING tool. (B) Top 100 IRAK1 correlated genes were
analyzed by using GEPIA2 tool and the correlation of IRAK1 and top five genes (DKC1, FAM58A, NAA10, SLC10A3, UBL4A) were shown. (C) The correlation map of
IRAK1 and top five correlated genes in TCGA pan-cancer panel was analyzed by using TIMER2.0. (D)GO-KEGG pathways analysis was performed based on the IRAK1
correlated genes. (E) GO-KEGG pathways analysis was performed based on the IRAK1 binding genes.
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IRAK1 was related to immune pathways, including PD-L1 and
PD-1 checkpoint pathway in cancer, Toll-like receptor signaling
pathway, interleukin-1 receptor binding, and innate immune
response-activating signal transduction (Figures 5D,E).

Correlations Between IRAK1 and Immune
Checkpoint-Associated Genes and TME
Previous studies have demonstrated that immune checkpoint
genes significantly influence tumor microenvironment and
response to immunotherapy. Thus, we investigated the
associations of IRAK1 expression and 20 primary immune
checkpoint genes. The results exhibited strong positive
relations with IRAK1 expression in multiple cancer types,
including BLCA, BRCA, GBM, KIRC, KIRP, LGG, PCPG, and
UVM, suggesting that a high IRAK1 expression might predict the
better therapeutic efficacy of immunotherapy in targeting
immune checkpoint genes (Figure 6A). KEGG and GO
enrichment analysis of IRAK1 correlated genes suggested that
IRAK1 was related to immune pathways, including PD-L1 and
PD-1 checkpoint pathways. We further explored the potential
relationship between PD-L1 (CD274) and IRAK1 gene
expression in diverse cancer types of TCGA. A positive
statistical correlation existed in ACC, BLCA, BRCA, KIRC,
GBM, KIRP, LGG, LUAD, LUSC, OV, PCPG, STAD, UCEC,
and UVM (Figure 6B).

After defining the associations with ICPs, we examined the
relationship between IRAK1 and tumor-infiltrating immune cells
in cancers using the CIBERSORT algorithm. The results revealed
that IRAK1 expression negatively correlated with T cell CD8+ in
seven cancer types, but a positive relationship in UVM.
Conversely, a statistically positive relationship existed with
myeloid dendritic cells activated in five cancer types,
macrophage M2 in eight cancer types, and macrophage M1 in
ten cancer types (Figure 7A). The TIMER algorithm analyzed the
relationship between IRAK1 and immune-infiltrating cells for
further validation. We further found a strong positive
relationship with myeloid dendritic cells and macrophages in
multiple cancers from TCGA (Figure 7A).

Afterward, we explored the IRAK1 mRNA levels in various
immune subtypes using TISDB. Immune subtypes had six types,
including C1 (wound healing), C2 (IFN-gamma dominant), C3
(inflammatory), C4 (lymphocyte depleted), C5 (immunologically
quiet), and C6 (TGF-b dominant). IRAK1 expression differed
significantly in immune subtypes in BLCA, BRCA, LGG, LUAD,
LUSC, PARD, STAD, and UCEC (Figure 7B). However, no
significant difference existed in other cancer types (data not
shown). Altogether, these results suggested that IRAK1
significantly influenced the tumor microenvironment and
might be a potential target for PD-1 antibody immunotherapy.

IRAK1 Inhibitors Inhibit Proliferation and
Upregulate PD-L1 Expression in Different
Cancer Cell Lines
Then, we evaluated the effect of IRAK1 inhibitor pacritinib on the
growth and proliferation of different cancer lines by the MTT

assay, includingMDA-MB-231, U251, Hep3B, Kyse30, and A498.
The results suggested that pacritinib inhibited the proliferation in
different cancer lines. Themean IC50 values ranged from 0.789 to
2.612 μM (Supplementary Figure S2A). Additionally, the colony
formation assay revealed the inhibitory effect of pacritinib in a
dose-dependent manner (Supplementary Figure S2B). Finally,
to further explore the relationship between the treatment of
IRAK1 inhibitor and PD-L1 expression in cancer, we
performed a flow cytometry assay to detect PD-L1 levels in
different cancer types. The results indicated that pacritinib
treatment significantly upregulated protein expressions of PD-
L1 in MDA-MB-231, U251, Hep3B, and Kyse30 (p < 0.001).
However, the expression of PD-L1 in A498 had not significantly
changed post-treatment (Figure 8A).

The Role of IRAK1 in the Prediction of
Immunotherapeutic Benefits
In subsequent analyses, we examined the utility of IRAK1
expression the prediction of immunotherapeutic benefits. For
the purposes of the study, patients receiving anti-PD-L1
immunotherapy in the IMvigor210 cohort were assigned high
or low IRAK1. Notably, in the IMvigor210 cohort, patients with
low IRAK1 had significantly better outcomes than those with
high IRAK1 (p = 0.036). In the IMvigor210 cohort, the objective
response rate to anti-PD-L1 therapy was higher in the low IRAK1
group than in the high IRAK1 group (27 vs. 18%, p = 0.041)
(Figure 8B). Overall, these results indicate that the level of IRAK1
in cancer which could be significant biomarker both for
predicting cancer survival and immunotherapy response in
ACC, KICH, BRCA, LGG, and UVM.

DISCUSSION

IRAK1 plays a vital role in oncogenesis and tumor progression in
multiple cancers and is shown to contribute to the progression of
various cancers, including hepatocellular carcinoma (Chen et al.,
2020), breast cancer (Wee et al., 2015), endometrial cancer (Wang
et al., 2018), non-small cell lung cancer (Behrens et al., 2010) and
melanoma (Boukerche et al., 2004; Srivastava et al., 2012). However,
the systematic analysis in pan cancer and the relationship with
immune system has not been investigated in detail.

In our study, we initially used GEPIA2, TIMER, and HPA
databases to determine the mRNA, protein expression level of
IRAK1 in cancers compared normal tissues, and found that its
expression was significantly higher in 20 tumours. In addition,
the expression level of IRAK1 was positively correlated with
tumor stage in ACC, KICH, KIRP, and KIRC, suggesting that
IRAK1 plays an important role in predicting tumor
malignancy and aggressiveness. Then, the relationship
between IRAK1 expression and prognosis were explored.
The OS analysis indicated that IRAK1 is a risk factor for
patients with ACC, BRCA, HNSC, KICH, LGG, LIHC and
UVM. And for DFS, the results revealed that IRAK1 acts as a
risk factor for patients with ACC, DLBC, KICH, LGG, MESO,
PAAD, PRAD and UVM. These results indicated that IRAK1 is
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a potential prognostic biomarker and promotes oncogenesis
and tumor progression in various cancer types, especially in
the ACC and KICH.

We then presented the genetic alteration of IRAK1 across all
cancer types in the TCGA cohort, depicting that the most
frequent alteration was amplification. Although IRAK1

expression has been reported in several cancers to date, its
amplification had not been examined before.

However, the relationship between IRAK1 and immune
cells or immune pathways in tumors remains unclear.
Therefore, we found that IRAK1 is related to a variety of
immune signaling pathways in tumors, including toll-like

FIGURE 6 | IRAK1 expression is associated with immune checkpoint-associated genes in pan-cancers. (A) Heatmap representation of the correlation between
IRAK1 expression and immune checkpoint-associated genes across pan-cancer types. (B) IRAK1 expression was positive associated with CD274 expression in ACC,
BLCA, BRCA, KIRC, GBM, KIRP, LGG, LUAD, LUSC, OV, PCPG, STAD, UCEC and UVM analyzed by using TIMER2.0.
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receptor signaling Pathway, interlekin-1 receptor binding and
innate immune response-activating signal transduction and
immune checkpoint signaling. The relationship between
IRAK1 and autoimmunity has been explored. For example,
some studies have examined the potential associations of SNPs
in IRAK1 and miRNA-146 and the development of arthritis
(Chatzikyriakidou et al., 2010a; Chatzikyriakidou et al., 2010b;
Song et al., 2015). Moreover, evidence suggested that anti-
IRAK1 exhibited unusual activity in a murine arthritis model
(Madan et al., 2012). Another study identified the genetic
association between IRAK1 SNPs and the increased risk
factors for SLE (Jacob et al., 2009). On the other hand, it
has been reported that IRAK1 regulates immune cells to

control excessive inflammatory responses in vivo and induce
chronic inflammation by participating in TLR and Interlekin-1
receptor signaling pathways (Wang et al., 2020; Hu et al.,
2021). Further analysis of the relationship between IRAK1 and
tumor immune-infiltrating cells showed that IRAK1 was
positively correlated with M2 macrophage cells and
negatively correlated with CD8+T cells in multiple tumors.
It is well-known that M2 tumor-associated macrophages
inhibit immune cells against tumor immune responses,
leading to the formation of tumor immunosuppressive
microenvironment and promoting tumor proliferation and
metastasis (Yang et al., 2020). In addition, IRAK1 have
reported that promotes the progression of hepatocellular

FIGURE 7 | Correlation analysis between IRAK1 expression and tumor-infiltrating immune cells. (A) Correlation analysis of IRAK1 mRNA expression with different
immune cells from TCGA database by CIBERSORT and TIMER. (B) The relationship between IRAK1 expression in pan-cancer immune subtypes. C1 (wound healing);
C2(IFN-gamma dominant); C3 (inflammatory); C4 (lymphocyte depleted); C5 (immunologically quiet); C6 (TGF-b dominant).
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carcinoma by participating in the chronic inflammation
mediated by macrophages, which is consistent with the
positive correlation between IRAK1 and macrophage
expression in liver cancer found in this study (Li et al., 2015).

To our knowledge, as anti- PD-1/PD-L1 had attained considerable
clinical efficacy in various cancer types, the relationship between
IRAK1 and PD-1/PD-L1 axis remains unknown, whichmotivated us
to explore the role of IRAK1 in PD-L1 regulation. To understand fully
the role of IRAK1 in the regulation of PD-L1 protein expression, we
investigated the associations of IRAK1 expression and PD-L1 and
other main immune checkpoint genes. The results indicated that
strong positive relationships with PD-L1(CD274) and IRAK1 gene
expression in diverse cancer types of TCGA. Using IMvigor210 to
evaluate patients receiving anti-PD-L1 therapy, we found that
patients with low IRAK1 expression had a better prognosis, and
the objective response rate of patients with low IRAK1 expressionwas
higher than that of patients with high IRAK1 expression, indicating
that IRAK1 can be used as a reliable marker to predict the efficacy of

immunotherapy. Overall, this suggests that immunotherapy may
benefit patients with low IRAK1 expression.

Although IRAK1 has been proved to play an important role in
tumor malignant proliferation, metastasis and drug resistance
acquisition in a variety of tumors, the clinical usefulness of IRAK1
inhibitor has not been clarified in clinical studies (Jain,
Kaczanowska, and Davila 2014; Wee et al., 2015; Meng et al.,
2020). Pacritinib, an IRAK1 inhibitor, which has been shown to
be effective in myelofibrosis, and acute myeloid leukemia (Hart
et al., 2011; Mesa et al., 2017). We used pacritinib to treat five
different tumor cell lines, including esophageal cancer, liver
cancer, glioma, breast cancer and kidney cancer, and found
that pacritinib effectively inhibited tumor proliferation,
suggesting that pacritinib may be a potential anti-pan cancer
inhibitor. In addition, pacritinib has also been reported to reduce
chemotherapy resistance in nasopharyngeal carcinoma, mainly
by regulating the phosphorylation level of IRAK1, thereby
inhibiting the expression of S100A9 and reducing the patients

FIGURE 8 | IRAK1 expression predicts the benefits in the immunotherapeutic treatments. (A) MDA-MB-231, U251, Hep3B, Kyse30 and A498 cells treated with
DMSO control and IRAK1 inhibitors pacritinib (0.5µM, 1 µM) for 48 h were subjected to FACs analysis for cell surface PD-L1 expression. Quantification of PD-L1 is
shown. Every experiment was run in three independent experiments. *<0.05, **<0.01, ***p < 0.001. (B) Patients receiving anti-PD-L1 immunotherapy in the IMvigor210
cohort were assigned high or low IRAK1. Notably, in the IMvigor210 cohort, patients with low IRAK1 had significantly better outcomes than those with high IRAK1
(p = 0.036). In the IMvigor210 cohort, the objective response rate to anti-PD-L1 therapy was higher in the low IRAK1 group than in the high IRAK1 group (27 vs. 18%, p =
0.041). The IMvigor210 dataset was downloaded from a freely available, fully documented software and data package, under the Creative Commons 3.0 license that can
be downloaded from http://research-pub.gene.com/IMvigor210CoreBiologies. A total of 298 urothelial cancer cases with complete clinical information, were analyzed
to determine the immunotherapy response.
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with nasopharyngeal carcinoma resistance to paclitaxel (Liu et al.,
2021). In order to verify the relationship between PD-L1 and
IRAK1, we used flow cytometry to detect PD-L1 expression in
tumor cells treated with different concentrations of pacritinib and
found that the level of PD-L1 upregulated, suggesting that IRAK1
correlated with PD-1/PD-L1 axis and mediated
immunosuppression. Thus, inhibiting the expression level of
IRAK1 in the tumor microenvironment may improve anti-
tumor immune responses. In addition, the combination of
IRAK1 inhibitor with immunotherapy is expected to be a
feasible treatment for patients with cancer with high IRAK1
expression. Pacritinib, a IRAK1 inhibitor which also dual
affects the expression of JAK2 and FLT3. And JAK2 and FLT3
have been proved to be important molecules involved in the
regulation of PD-L1 in different kind tumors (Prestipino et al.,
2018; Brodská et al., 2019). Therefore, there may be differences in
the detail mechanism of its regulating PD-L1 in different tumors,
which needs to be validated by further research.

Although we performed a comprehensive and systematic
analysis on IRAK1 and utilized different databases for
verifying the role of IRAK1, there are some limitations in this
study. First, the sequencing data from the different databases
exhibited differences and lacked granularity and specificity,
which might entail systematic bias. Second, in vivo and
mechanistic experiments are necessary to prove our results on
the potential functions of IRAK1, which can increase our research
credibility. Finally, the mechanisms by which IRAK1 participates
in immune regulation remain unknown, and the exact pathways
require further study.

To conclude, more specific and clinical samples are necessary
to identify the benefits of anti-IRAK1 in cancer survival.
Therefore, prospective studies on targeting IRAK1 to anti-
tumor immunotherapy are vital.
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GLOSSARY

ACC adrenocortical carcinoma

BLCA bladder urothelial carcinoma

BRCA breast invasive carcinoma

CAN tumor copy-number alterations

CESC cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL cholangiocarcinoma

COAD colon adenocarcinoma

DMEM dulbecco’s modified eagle medium

DLBC lymphoid neoplasm diffuse large B-cell lymphoma

ESCA esophageal carcinoma

GBM glioblastoma multiforme

HNSC head and neck squamous cell carcinoma

ICIs immune checkpoint inhibitors

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma

LGG brain lower grade glioma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

MESO mesothelioma

MSI tumor microsatellite instability

OV ovarian serous cystadenocarcinoma

PRAD prostate adenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG pheochromocytoma and paraganglioma

RCC renal carcinoma

READ rectum adenocarcinoma

STAD stomach adenocarcinoma

TCGA the cancer genome atlas

TMB tumor mutation burden

THCA thyroid carcinoma

UVM uveal melanoma

UCEC uterine corpus endometrial carcinoma
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Exosomes, a subtype of the class of extracellular vesicles and nano-sized

particles, have a specific membrane structure that makes them an alternative

proposition to combat with cancer through slight modification. As constituents

of all most all the primary body fluids, exosomes establish the status of

intercellular communication. Exosomes have specific proteins/mRNAs and

miRNAs which serve as biomarkers, imparting a prognostic tool in clinical

and disease pathologies. They have efficient intrinsic targeting potential and

efficacy. Engineered exosomes are employed to deliver therapeutic cargos to

the targeted tumor cell or the recipient. Exosomes from cancer cells bring

about changes in fibroblast via TGFβ/Smad pathway, augmenting the tumor

growth. These extracellular vesicles are multidimensional in terms of the

functions that they perform. We herein discuss the uptake and biogenesis of

exosomes, their role in various facets of cancer studies, cell-to-cell

communication and modification for therapeutic and diagnostic use.

KEYWORDS

exosome, targeted delivery, exosome mimetics, biomarker, therapeutics

Introduction

Exosomes are recognized as a subtype of the class of Extracellular vesicles (EVs).

These nano-sized particles appear as small, flattened hemispheres with a diameter of

40–150 nm and a density of 1.13–1.21 g/ml (Kalluri, 2016; Gilligan and Dwyer, 2017;

Kalimuthu et al., 2018; You et al., 2018; Głuszko et al., 2019; Zhao and Xie, 2019). The

orientation of the surrounding lipid bilayer membrane can be regarded unique as it serves
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as a reflection of the intrinsic cell from which the exosomes have

originated (Kalluri, 2016; Kalimuthu et al., 2018; Głuszko et al.,

2019; Zhao and Xie, 2019). The structural specificity of the

membrane confers properties, proving to be useful in cancer

treatments through selection of preferably modified exosomes

(You et al., 2018).

Exosomes are remarkable constituents of all the major body

fluids, including plasma, saliva, urine, cerebrospinal fluid (Zhao

and Xie, 2019) and are also present as secretions or discharges of

cells such as red blood cells, platelets, lymphocytes, dendritic cells

and cancer cells (Głuszko et al., 2019). Nucleic acids like RNA

[mRNAs, microRNAs (miRNA) and long noncoding RNA

(IncRNA)] (Głuszko et al., 2019; Zhao and Xie, 2019), cellular

proteins and lipids represent the contents of exosomes (Kalluri,

2016; Gilligan and Dwyer, 2017; Kalimuthu et al., 2018; You et al.,

2018). Noteworthy, the presence of DNA in the exosomes is

considered rather contradictory. It is thought to share a relation

with the source of the exosomes in consideration (Fais et al.,

2013). These contents are protected from degradation and are

taken up via fusion by the target cell acting as receiver, thus

establishing the status of exosomes as means of intercellular

communication (Kalluri, 2016; You et al., 2018; Głuszko et al.,

2019).

Majority of exosomal proteins are universal and are referred to

as “exosome markers” (Głuszko et al., 2019). These include

TSG101, ALIX and ESCRT complex (exosome biogenesis),

RabGTPases and annexins (exosome delivery and membrane

fusion), heat shock proteins (HSP70, HSP90), integrins,

tetraspanins (CD9, CD63, CD81 and CD82), MHC class II

proteins, epithelial cell adhesion molecules (EpCAM) and

members of the human epidermal receptor (HER) family (Fais

et al., 2013; Kalluri, 2016; Głuszko et al., 2019). Apart from the

signature molecules present within them, there are certain specific

proteins and nucleic acids acquired by the exosomes from their

native cell types, which can serve as biomarkers for the

identification of various diseases including cancer (Fais et al.,

2013). Numerous genes and proteins have been identified in

lung cancer cells and tissues that can serve as exosomal

biomarkers for lung cancer. ZEB1, TRAF4, and TGF-β1 are

involved in lung cancer metastasis by EMT proteins while PD-

L1, EGFR, TLR7 and TLR8 are involved in inhibiting the immune

system. Like other cancers, exosomes derived from breast cancer

cells are enriched with certain miNAs that are not abundant in

healthy cells. miR-372, miR-101 and miR-373 were not found in

significantly higher proportions in exosomes from breast cancer

cells. Certain nucleic acid molecules and proteins may also serve as

diagnostic biomarkers of colorectal cancer (CRC). Among

miRNAs, around 7 to 11 molecules have been identified to be

differentially expressed in CRC patients. Similarly, in colorectal

Cancer, the cell surface proteoglycan Glyptican1 (GPC1) serves as

the most prominent biomarker of pancreatic cancer.

Ovarian cancer cells derived exosomes include membrane

proteins, Rab proteins, annexin proteins, tetraspanins, heat shock

proteins etc. can be used to potentially identify the malignancy early

in its development. Besides,Helicobacter pylori infection is the most

common factor that predisposes a person to develop gastric cancer

by transporting the virulence factor CagA (mediator of gastric

disorders) to epithelial cells and mesenchymal-epithelial

transition factor (MET) protein to macrophages. The exosomes

are enriched in lipids such as cholesterol, sphingomyelin,

hexosylceramides, phosphatidylserine, phosphatidylcholine,

phosphatidylethanolamines and saturated fatty acids (Figure 1)

(Fais et al., 2013; Kalluri, 2016). Moreover, presence of lipid-raft

like domains (due to membrane associated lipid-raft proteins) and/

or phospholipid scramblase (responsible for translocating

phospholipids of membrane leaflets) have also been consistently

reported (Fais et al., 2013).

Exosomes are found to be enriched with the presence

numerous classes of RNAs encompassing various expressed

and significantly matured miRNAs and mRNAs. They are

known to have eminent effects on physiological and

developmental aspects of growth, development and regulation

of expression in the recipient cell (Kalluri, 2016; Głuszko et al.,

2019). Interestingly, recent studies have established a strong

notion governing the fact that exosomes are acting as

molecular vehicles by showing the presence of placental

specific miRNA in the maternal blood exported via mature

trophoblast, imparting the ability to modify genetic

expressions (Fais et al., 2013).

Exosomes: Biogenesis

Exosomes are constitutively produced by cells through the

inward budding of the plasma membrane leading to the

formation of intracellular endosomes, which further fold in to

form multivesicular bodies (MVBs). These MVBs contain nano-

sized vesicles which after fusing with the plasma membrane

release their contents to the extracellular space leading to the

release of exosomes (Fais et al., 2013; Kalluri, 2016).

Exosomes are predominantly generated by the aid of

endosomal sorting complexes required for transport

complexes (ESCRT complexes) (Figure 2). ESCRT is

composed of four complexes namely ESCRT-0, ESCRT-I,

ESCRT-II and ESCRT-III along with several associated

accessory proteins (ALIX, VPS4, Tsg101, VTA1) which sort

ubiquitinated cargo proteins on the inner leaflet of the

endosomal membrane and caused subsequent scission

thereby releasing the exosomes (Kalluri, 2016; Yue et al.,

2020).

Biogenesis begins with endocytosis, enclosing bioactive

molecules, forming endosomes. Endosomal membrane further

undergoes inward budding, enclosing the molecules and forming

multivesicular bodies (MVBs). Exosomes form from these

MVBs, either through ESCRT-dependent or ESCRT-

independent pathways.
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FIGURE 1
Ultrastructure of exosome showing its composition.

FIGURE 2
Scheme of exosome biogenesis and secretion.
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Based on recent studies, a key system has been elucidated

called the Syndecan-syntenin pathway which is responsible for

controlling the generation of endosomal vesicles that release

exosomes as well as delivering cargo inside these vesicles.

Syntenin bound to syndecans with the help of extracellular

heparansulphate chains communicate with a myriad of

signaling and adhesion moieties including ALIX protein which

links the Syndecan-syntenin pathway with the ESCRTmachinery

(Fares et al., 2017; Hessvik and Llorente, 2018).

Remarkably, numerous studies have also indicated the

presence of an ESCRT-independent pathway for exosome

biogenesis and loading which is mediated by lipids and

associated proteins. Proteins such as A2, RAB5/7/27,

TSG101 have been identified to play important roles in

exosome biogenesis (Kalluri, 2016). Several transmembrane

proteins of tetraspanin family such as CD9, CD63, CD82,

Tspan8 are also involved in ESCR-independent exosome

generation. Another protein namely small integral membrane

protein of the lysosome/late endosome (SIMPLE) has also been

shown to positively influence the release of exosomes. Apart from

proteins, various lipids such as Phosphatidic acid, ceramide,

glycosphingolipids, lyso-phospholipid are also inducers of

exosomebiogenesis (Hessvik and Llorente, 2018; Yue et al., 2020).

ESCRT-dependent or ESCRT-independent mechanisms are

not entirely exclusive. Exosome biogenesis is instead a

coordinated and synergistic outcome of these mechanisms

wherein their presence or absence in a particular cell type

and/or cellular homeostasis manipulates intraluminal vesicle

number and size in addition to cargo sorting and loading

(Yue et al., 2020). Moreover, exosome secretion is eminently

regulated by the conditions of the cellular microenvironment. In

tumor cells, stressful conditions arise due to several factors such

as chemotherapeutics, irradiation, starvation and most notably

hypoxia which together lead to increased production of exosomes

(Głuszko et al., 2019).

Exosomes uptake

Exosomes from the extracellular space can adhere to the cell

in its proximity nonspecifically (Tian et al., 2013) or be attached

via a specific ligand-receptor complex (Ohno et al., 2013). They

can either exert their functional effects by direct activation of a

signaling pathway (Al-Nedawi et al., 2008; Cossetti et al., 2014;

Patel et al., 2016) or be internalized to transfer their cargo inside

the cell, via endosomal maturation: the endosomal-lysosomal

degradative pathway (Nakase and Futaki, 2015). Non-specific

internalization of exosomes has been shown to occur in both

normal and transformed cell lines (Svensson et al., 2013). The

uptake depends on the recipient cell and not on the origin of the

exosomes (Horibe et al., 2018). It is an energy dependent process,

as evidenced by attenuation of the uptake when incubated at 4°C

or with compounds interfering with cell function (Morelli et al.,

2004). It has been shown that low pH conditions, a consequence

of hypoxia in the cell interstitium and a characteristic of tumor

microenvironment lead to rupture of the exosomal membrane

and subsequent uptake of its cargo through macropinocytosis

(Joseph et al., 1996; Gatenby and Gillies, 2004; Taraboletti et al.,

2006; Parolini et al., 2009). The two most frequently reported

ways of exosomal uptake by cancer cells are Lipid-raft mediated

endocytosis and macropinocytosis.

Clathrin-independent endocytosis (CIE) is reported to

occur through membrane proteins, CAV-1, flotillin-1 and

RhoA that are known to be components of lipid-rafts: the

microdomains of plasma membrane that contain high

cholesterol and glycosphingolipid concentration, involved in

endocytosis (Costa Verdera et al., 2017). Local disruption of

actin network and inhibition of dynamin recruitment to plasma

membrane: both of which are important in CIE, decreased

exosomal uptake, suggesting its role in endocytosis (Tian T.

et al., 2014). Although, in a study, CAV1 knock-out cells

showed increased uptake of exosomes, in most of them, CAV-

1 has been shown to play important role in CIE, as described

above (Feng et al., 2010; Chaudhary et al., 2014).

Clathrin-dependent endocytosis (CDE) although shown to

be taking part in uptake in some cancer cells, is majorly non-

existent (Tian T. et al., 2014).

Macropinocytosis (MP) is another widely discussed pathway

of exosomal uptake by cancer cells. Exosomes can themselves

induce MP, thus facilitating their uptake (Yan-Liang et al., 2014).

EGFR expression has been shown in many tumors, when

activated by EFG, enhanced uptake through MP via activation

of Rac, leading to cytoskeletal organization and subsequent

induction of MP (Nakase et al., 2015).

Role of exosomes in mitigating
cancer metastasis

Exosomes and their contents function together as a unit,

facilitating the promotion of malignancy and tumorigenic

effects, aiding the ability of native epithelial cells. Serving as an

alternative to conventional cell-based therapies, exosomes are

currently being engineered to deliver therapeutic cargos to the

targeted recipient or tumor cells (Gilligan and Dwyer, (2017); You

et al., 2018; Głuszko et al., 2019). Furthermore, the most

presumptuous property of cancer i.e. metastasis is governed by

the localized impression of exosome-mediated signaling. The

influence is diverse and can be either due to site-production of

exosomes or through uptake by a distant recipient cell (Kalluri,

2016). The mediators proffered between tumor and their

microenvironments are under constant modulation and are

known to play a key role in cancer immunotherapy. Tumor-

derived exosomes (TEXs) are one such modification, suitable for

imparting chemotherapeutic resistance, influenced by various

other strategies, survival time and tumor growth (You et al., 2018).
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A study in 2018 accorded for observing induced apoptosis

along with a combined outcome of reduced metastasis and

prolonged survival when exosomal cargo, siKrasG12D-1, in the

donor cells of Bone marrow MSCs-derived exosomes (BM-

MSC), was electroporated with pancreatic cancer as the tumor

model (Melo et al., 2014; Mendt et al., 2018; You et al., 2018). The

most talked about are the cancer cell-derived exosomes that have

been found accountable for the transformation of benign

epithelial cells into malignant cells (Kalluri, 2016). Melo SA

et al. demonstrated how cancer exosomes differ from normal

exosomes as the former possesses the capability of independent

transcription of miRNA through a Dicer-dependent pathway

(Melo et al., 2014; Kalluri, 2016). It was reported that breast

cancer associated exosomes enriched in miRNA exhibit the

presence of RISC-Loading Complex (RLC), thus efficiently

mediating the process of silencing and miRNA biogenesis

(Mendt et al., 2018).

Additionally, a research study in 2015 investigated the

chemo-sensitive resistance in tumors displayed by patients

with Hepatocellular carcinoma (HCC). A cumulative effect of

metastasis, inadequate prognosis and loss of miR-122

encapsulated within exosomes caused the patients to develop

a resistance to chemotherapies involving agents such as 5-

fluorouracil (5-FU) and doxorubicin (Lou et al., 2015). A

subsequent observation was made, while testing, whether a

modification revolving around Adipose-derived MSCs

(AMSCs) can prove helpful in restoring the lost

chemosenstivity via expression of miR-122. Reduction in the

tumor mass and volume was observed when the engineered

exosomes administered intra-tumoral to BALB/c nude mice

with HepG2 tumors, combined with sorafenib treatment, thus

increasing the HCC cell sensitivity (Lou et al., 2015; Gilligan and

Dwyer, 2017).

Likewise, Tumor-derived exosomes (TEXs) regulate the

process of tumor formation due to release of

immunosuppressive molecules such as Fas-ligand (FasL), the

expression of which contributes to resistance and malignant

niche selection. Expression of exosomal secretions can also be

traced to the responses and correlated levels of Tumor necrosis

factor-related apoptosis-inducing ligand (TRAIL), interleukin 10

(IL-10), programmed death-ligand 1 (PD-L1), neo-angiogenesis

factors and several other microenvironment conditioning factors,

e.g., transforming growth factor β1 (TGF-β1), prostaglandin E2

(PGE2) and ecto-enzymes engaged in the adenosine pathway

(CD39 and CD73) (Głuszko et al., 2019).

The current cancer therapeutics deal with targeted

destruction of both cancer stem cells (CSCs) alias cancer-

initiating cells (CICs) as well as the non-CSCs. Several

investigative experiments suggest that the CSC population is

not static, and can be effectively reconfigured. The

transformation of non-CSCs to CSCs results in regaining or

acquiring stemness phenotype in the non-CSC tumor

microenvironment which can be achieved by CSC-derived

exosomes (Lin et al., 2013; Hu et al., 2015; Donnarumma

et al., 2017).

The progressive inter-conversion establishes an equilibrium

between the exosomal derived CSCs and non-CSCs, involving

various cellular signaling pathways, bio-active cell cargo,

molecular sorting and transport. Thus, a prospective scheme

can be developed concerning possible mechanisms like cancer

initiation, progression, metastasis, relapsing and resistance to

therapies by modifying exosome contents in the cancer

surrounding. A controlled and regulated interaction between

CSCs and non-CSCs can be accomplished, which will prove to be

a more beneficial and novel therapeutic strategy (Sun B. et al.,

2018).

Role of exosomes in cancer: Signaling

Exosomes are capable of acting as transporters for different

molecules aided by several types of signaling mechanisms and

pathways that can operate over varying distances (Whiteside,

2017). Significantly, they play important roles in maintaining

cancer-related functions such as metastasis, angiogenesis and

regulating tumor micro-environment (Rachel et al., 2017;

Whiteside, 2017; Sun Z. et al., 2018). Exosomes generated

from Cancer Stem Cells (CSCs) are believed to induce

stemness in non-CSCs thereby maintaining a state of

equilibria in the tumor-microenvironment (Sun Z. et al.,

2018). The ability of exosomes to act as communication

vehicles is due to the presence of diverse signaling molecules

on their surface derived from their parent cell as well as the

presence of various nucleic acids, enzymes and factors inside

them, thereby making them capable of acting as efficient

mediators of cancer metabolism (Whiteside, 2017). Studies

have elucidated that EVs from glioblastoma (GBM) under

hypoxic conditions produce growth factors and cytokines

which in turn activate directed pericyte movement and

PI3K/AKT signaling and induce angiogenesis (Matarredona,

2020). Such EVs carry molecules like VEGF-A which

straightaway promote angiogenesis (Are, 2016; Kalluri, 2016;

Tomasetti et al., 2017). ECS have also shown enhanced

sprouting and bifurcation of vessels after being delivered the

components of the Notch pathway via exosome (Whiteside,

2017).

Exosomes from cancer cells have also been noted to bring

about changes in fibroblasts via the TGFβ/Smad pathway.

Cancer-Associated Fibroblasts (CAFs) can augment or

inhibit tumor growth driven by tumor-derived exosomes

(Whiteside, 2017; Sun Z. et al., 2018). Another study showed

that the transfer of CRE mRNA to normal cells via EVs had

pronounced immunosuppressive character (Are, 2016). The

oncogenic potential of tumor cells is retained by the removal

of tumor suppressor miRNAs via exosomes. Ras-MEK network

is involved in maintaining the RNA-Induced Silencing
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Complex (RISC) which in turn leads to the release of miRNA in

exosomes (Rachel et al., 2017). The uptake and attachment of

exosomes in target cells are mediated by protein interactions via

several adhesion molecules like integrins and ICAMs whereas

heparin sulphate proteoglycans, carbohydrate/lectin receptors,

T-cell immunoglobinmucin-binding phosphatidylserines, etc.

are crucial for their entry inside the cells (Tomasetti et al.,

2017). In another tumor microenvironment, the exosomes of

prostate cancer cells were rich in H-Ras and K-Ras signaling

mechanisms. They contained miRNAs and Rab proteins, which

led to aggressive tumors in the recipient target cells. Likewise,

cancer-cell derived exosomes having copious presence of Ras

and other kinases in the MAP kinase pathway, phosphorylated

EGFR, and other growth factors led to an increased longevity of

tumor monocytes. It has further been demonstrated that the

capability of tumor cells to manipulate healthy distant cells

involving exosomes is via a mechanism needing Rho GTPase

effectors Rac1/PAK2 which possibly is the basis of metastatic

spread of tumors (Rachel et al., 2017). The exosomal signaling is

not only dependent on growth factors and cytokines but several

metabolites as well, which include lactate, proteins, ketone

bodies, etc. (Whiteside, 2017).

As a new and potent method to combat cancer, targeting the

precise signaling pathway of exosomes is an exceedingly

promising and emergent aspect of cancer therapy (Sun Z.

et al., 2018). Refined manipulation of exosomes, for instance

by protein fused to a ligand that allows the targeted delivery of

exosomes to neuronal cells is one such successful attempt at

modifying and channeling the exosomal signalingmechanism for

a noble use of therapeutics (Kalluri, 2016).

Role of exosomes in cancer:
Biomarkers

The diverse cargo of exosomes consisting of circulating

RNAs, proteins with membrane and cell functions are proving

to be recent research tools as potential biomarkers. A number of

recent studies are looking into the insights of exosomal release

as indicative of patho-physiological conditions and not merely

riddance of undesirable components (Lin et al., 2015). The

results have been suggestive of superior rates of sensitivity and

specificity involving diagnosis of various metabolic and

infectious diseases and cancer tumors by exosomal cargo

biomarkers (Lin et al., 2015; Wong and Chen, 2019). This

ability is credited to potentiate and better coordination of

intercellular communication exhibited by exosomes, amongst

a deck of other responses such as oncogenic growth, tumor

progression and signaling pathways (Ruivo et al., 2017; Batista

and Melo, 2019; Mathew et al., 2020). Challenges and

shortcomings of existing biomarkers such as invasive and

predictive nature, limited responsiveness and incompetency

of genomic biomarkers in efficiently determining adaptive

immune responses (Conway et al., 2018; Mathew et al.,

2020); have paved way for development of novel diagnostic

tools: the exosomal engineered biomarkers. Islet

autoantibodies, like GAD65, IA-2 also known as ICA512,

accurately predict development of type 1 diabetes mellitus;

likely reduce with the disease progression and the antibodies

gets exhausted as soon as insulin therapy is initiated (Towns

and Pietropaolo, 2011; Garcia-Contreras et al., 2017). The

cytokine stimulated ß-cells releasing EXOs are hence being

utilized for TID diagnosis involving analysis of specific proteins

and RNAs preceding isolation by using a surface marker

(Palmisano et al., 2012; Garcia-Contreras et al., 2017).

In 2009, a study reported elevated levels of CD63+

(scaffolding membrane protein) exosomes in plasma isolated

from melanoma patients; qualifying as a tumor-associated

marker based on western blot and flow-cytometric analysis

(Logozzi et al., 2009; Lin et al., 2015). The tetraspanin family

member was also found helpful in carrying out comparison of

various human cancers; when quantification data showed lower

levels of CD63 in exosomes derived from non-cancer cells. In

addition, they also proposed reliability of CD9 and CD81 as

marker proteins based on the fact that both of them were

profoundly found in all the (four prostate and five breast) cell

lines, that they utilized (Yoshioka et al., 2013; Lin et al., 2015).

Several other exosomal proteins have also found their place as

suitable prognostic tools in clinical and disease pathologies.

Findings of Taylor et al. regarding exosomal associated

eight miRNAs (miR-21, -141, -200a, -200b, -200c, -203,

-205, -214) are suggestive of the applications in diseases like

ovarian cancer as substitute biomarkers; involving plasma

biofluid and are reported to overcome the invasive isolation

and profiling of biopsy samples (Taylor and Gercel-Taylor,

2008; Lin et al., 2015). In this regard, cell culture medium

biofluids; have found predictive use in metastatic gastric

cancers. Let-7 family miRNAs enriched extracellular

fractions indicated by signal intensity data, confirming the

possibility of selective secretion, and consequently revealed a

new disease marker (Ohshima et al., 2010; Lin et al., 2015).

Thus, exosomal nucleic acids also possess great potential as

biomarkers for cancer diagnosis.

Such expositions by researchers are satisfactory and are

coaxing others to take this descriptive nature of the published

accounts to a further expanded diagnostic setting, particularly

development of ideal biomarkers (Tables 1, 2).

Lung cancer

Multiple genes and proteins have been identified in lung

cancer cells and tissues that can serve as exosomal biomarkers

for lung cancer. The most prominent ones are the proteins

(ZEB1, TRAF4, TGF-β, etc.) involved in lung cancer metastasis

by EMT, proteins (PD-L1, EGFR, TLR7, TLR8) involved in
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inhibiting the immune system, and several Wnt proteins

(Wnt5b, Wnt3a) and Interleukins (IL-6, IL-8, IL-10) that

allow invasion and proliferation of the tumor (Jiang et al.,

2021). A number of miRNAs that are an integral part of the

exosomal cargo of the lung cancer cells have also been noted.

They include miR-660-p5, miR-29a, miR-21 and miR494

(promote proliferation of lung cancer cells), miR-5100, miR-

9, miR-23a (promote metastasis), miR-21, miR-29 (promote

angiogenesis), and miR-23a (involved in immunomodulation)

(Xu et al., 2021).

Breast cancer

As seen with other cancers, exosomes derived from breast

cancer cells are enriched with certain miNAs that are not

TABLE 1 Exosomal proteins as biomarkers for diagnosing cancer from serum and plasma.

Type of tumor Protein biomarker(s) Prospective use(s)

Lung cancer NY-ESO-1 (Sandfeld-Paulsen et al., 2016a) Prognosis

EGFR, KRAS, Claudins, RAB-family proteins (Clark et al., 2016) Diagnosis

CD151, CD171, tetraspanin (Sandfeld-Paulsen et al., 2016b) Diagnosis

Breast cancer Her2 (Ciravolo et al., 2012) Diagnosis

Fibronectin (Moon et al., 2016a) Early Diagnosis

Glypican-1 (Melo et al., 2015) Diagnosis

Breast cancer resistance protein (BCPR) (Chen et al., 2015) Prognosis

Periostin (Vardaki et al., 2016) Diagnosis

Del-1 (Moon et al., 2016b) Prognosis

Colorectal cancer CD147 (Tian et al., 2018) Diagnosis

CEA (Huber et al., 2005) Diagnosis

Hsp60 (Campanella et al., 2015) Diagnosis/Therapy

TSAP6/CEA (Silva et al., 2012) Prognosis/Diagnosis

Copine III (Sun Z. et al., 2018) Diagnosis

Prostate cancer ephrinA2 (Zhu et al., 2018) Diagnosis

surviving (Khan et al., 2012) Diagnosis

PTEN (Gabriel et al., 2013) Diagnosis

PSA (Logozzi et al., 2017) Early Diagnosis

CA IX (Logozzi et al., 2020) Diagnosis

Pancreatic cancer CD44v6, CD104, Tspan 8, EpCAM (Madhavan et al., 2015) Prognosis/Diagnosis

Gastric cancer TRIM3 (Fu H. et al., 2018) Diagnosis

GKN1 (Yoon et al., 2018) Prognosis/Diagnosis

HER-2neu, EMMPRIN, MAGE-1, C-MET (Baran et al., 2010) Diagnosis

Ovarian cancer TGF-β1, MAGE3/6 (Szajnik et al., 2013) Prognosis/Diagnosis/Therapy Tracking

EpCAM, CD24, CA-125 (An et al., 2015) Diagnosis

Melanoma of skin Hsp70, Hsp90 (Peinado et al., 2012) Prognosis

Caveolin-1 (Logozzi et al., 2009) Diagnosis

(phospho)Met (Peinado et al., 2012) Diagnosis

Hematological malignancies CD9, CD13, CD19, CD30, CD38, CD63 (Caivano et al., 2015) Diagnosis
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abundant in healthy cells. miR-372, miR-101, and miR-373

were found in significantly higher proportions in exosomes

from breast cancer cells. Further, these miRNA are also

indicative of metastasizing cancer while miR-373 is a

marker of the highly aggressive triple-negative

phenotype of breast cancer (Joyce et al., 2016). Expression

levels of proteins such as ER (estrogen receptor), Ki67 (a

marker of proliferation Ki-67), PR (progesterone receptor),

and HER2 (member of the epidermal growth factor receptor

family which is involved in the regulation of cell growth,

survival, and differentiation via targeting multiple

signal transduction pathways) can serve as important

biomarkers for breast cancer prognosis and diagnosis

(Jafari et al., 2018).

Colorectal cancer

Certain nucleic acid molecules and proteins may also serve as

diagnostic biomarkers of colorectal cancer (CRC). Among

miRNAs, around 7–11 molecules have been identified to be

differentially expressed in CRC patients out of which miR-

23a, miR-1246, and miR-21 are considered better markers.

Several lncRNAs (colorectal neoplasia differentially expressed-

h (CRNDE-h), breast cancer anti-estrogen resistance 4 (BCAR4),

mRNA keratin-associated protein 5-4 (KRTAP5-4), and mRNA

melanoma antigen family A3 (MAGEA3) have also been found

in higher amounts in serum exosomes, thus increasing the scope

of using them as predictive as well as diagnostic molecules.

Upregulation and downregulation of specific proteins may

TABLE 2 Exosomal nucleic acids as biomarkers for diagnosing Cancer from serum and plasma.

Type of tumor Nucleic acid biomarker(s) Prospective use(s)

Lung cancer miR-151a-5p, miR-30a-3p, miR-100, miR-629 (Cazzoli et al., 2013) Early Diagnosis

let-7-g-5p, miR-24-3p, miR-223-3p, miR-7-5p, miR-424-5p (Rodríguez et al., 2014) Diagnosis

Breast cancer miR-101, miR-30a-3p, miR-373 (Eichelser et al., 2014) Diagnosis

miR-1246, miR-21 (Hannafon et al., 2016) Diagnosis

Colorectal cancer miR-19 (Matsumura et al., 2015) Prognosis

miR-21 (Tsukamoto et al., 2017) Prognosis

miR-221 (Liu et al., 2018) Prognosis

miR-4772-3p (Liu et al., 2016) Prognosis for recurrent stages II and III

let-7a, miR-1246, miR-150, miR23a (Ogata-Kawata et al., 2014) Early Diagnosis

Prostate cancer miR-141 (Li et al., 2016) Diagnosis

miR-1290, miR-375 (Huang et al., 2015) Prognosis

Pancreatic cancer miR-17-5p, miR-21 (Que et al., 2013) Prognosis/Diagnosis

circ-IARS (RNA) (Li et al., 2018) Diagnosis

miR-1246, miR-4644, miR-3976, miR-4306 (Madhavan et al., 2015) Diagnosis

miR-451a (Takahasi et al., 2018) Prognosis

miR-191, miR-21, miR451a (Goto et al., 2018) Diagnosis

Gastric cancer miR-423-5p (Yang et al., 2018) Prognosis/Diagnosis

LncRNA HOTTIP (Zhao et al., 2018) Diagnosis

Circ-KIAA1244 (Tang et al., 2018) Diagnosis

Ovarian cancer miR-373, miR-200a, miR-200b, miR-200c (Meng et al., 2016) Prognosis/Diagnosis

miR-21, miR-214, miR-203, miR-205, miR-141 (Taylor and Gercel-Taylor, 2008) Prognosis/Early Diagnosis

miR-21, miR-100, miR-200b, miR-320 (Pan et al., 2018) Diagnosis

Hepatocellular carcinoma miR-718 (Sugimachi et al., 2015) Prognosis/Diagnosis/Recurrence

miR-18a, miR-221, miR-222, miR-224 (Sohn et al., 2015) Diagnosis

LINC00161 (Xu et al., 2018) Diagnosis
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serve as another method to screen CRC patients. Heat shock

protein 60 (a chaperonin involved in tumorigenesis), glypican-1,

and the transmembrane protein CD147 are increasingly

expressed in Colorectal Cancer, hence could be potential

candidates for diagnosis (Balacescu et al., 2018; Xiao et al., 2020).

Pancreatic cancer

Similar to Colorectal Cancer, the cell surface proteoglycan

Glyptican1 (GPC1) is the most prominent biomarker of

pancreatic cancer. Exosomes enriched in GPC1 are known to

positively regulate cancer and thereby serve as the best biomarker

for detecting pancreatic cancer (Melo et al., 2015). Further, based

on the study of exosomes isolated from pancreatic cancer cell

lines and plasma isolated from patients, miRNAs such as miR-

196a, miR-1246, miR-191, miR-21, miR-451a, miRNA-483-3p,

miR-155, miR-196a, etc. are present in ample amount in the

pancreatic cancer tumor microenvironment and may be

effectively used to diagnose the same (Gabriel et al., 2020).

Ovarian cancer

Ovarian cancer cells derived exosomes are extracted from

either ascites or serum of patients and contain a concoction of

specific signature molecules which help in the progress of the

tumor. It includes membrane proteins (Alix, TSG 101), Rab

proteins, annexin proteins, tetraspanins (CD9, CD82, CD63 and

CD81), heat shock proteins (Hsp90, Hsp70), antigens (MHC I

and II), Nanog and enzymes (phosphate isomerase,

peroxiredoxin, aldehyde reductase, fatty acid synthase), which

can be used to potentially identify the malignancy early in

itsdevelopment (Feng et al., 2019). Since ovarian cancer is

highly lethal yet lacks any early screening test, therefore using

exosomalmiRNA biomarkers (miR-100, miR-200b, miR-320,

miR-21, miR-362-5p, and miR-1274a etc.) for diagnosis and

prognosis of ovarian cancer would be of great clinical utility

(Yoshida et al., 2020).

Gastric cancer

Helicobacter pylori infection is the most common factor that

predisposes a person to develop gastric cancer. Interestingly,

studies have found the role of exosomes inH. pylori infection and

tumorigenesis by transporting the virulence factor CagA

(mediator of extragstric disorders) to epithelial cells and

mesenchymal-epithelial transition factor (MET) protein to

macrophages, thus aiding in disease progression (Tang et al.,

2021). Other signature molecules that form a part of the

exosomes cargo from GC cells include proteins (UBR2,

TRIM3, Apolipoprotein E), miRNAs (miR-423-5p, miR-155-

5p, miR-27a, etc.), IncRNA (ZFAS1, LINC00152), and

circRNA (ciRS-133, circ-KIAA1244) which may be utilized as

characteristic biomarker for early diagnosis of gastric cancer (Fu

et al., 2019).

Exosomes as therapeutic targets

Modification of exosome content

By default, exosomes are generally engineered under the

control and governance of various cellular mechanisms;

however, an accelerating number of successful researches are

presently being done that involve exploring possibilities of

exosomal content modification. The biocompatible traits of

exosomes, with several appropriate changes, can trigger the

steadiness and efficacy of cellular uptake and prove to be an

effective step in improving the picture of current therapeutics.

The cognizance of this subject matter is to summarize

perspective, passive and lively approaches to unique exosome

changes, and examples of the transport molecules (Luan et al.,

2017).

Exosomal cargos such as nucleic acid components, heat

shock proteins, and various ligand molecules, for example,

miR-425-3p, TGF- β, miR-100–5p, and Survivin, are found to

be effectively involved with various targeted cells such as TGF- β
is with NK cells. These modified exosomes, due to the

incorporation of desirable components can prove to be an

efficient vehicle in dealing with advancing cases of cancers

such as AML, Lung cancers, Hepatocellular cancers, etc. A

platinum-based chemotherapeutic approach was carried out to

monitor a Lung cancer model, utilizing exosomal content

modification and miR-425 as the cargo component. It was

rendered ineffective resulting in a resistive response to NSCLC

which was an outcome of autophagy due to AKT1 inhibition.

Similarly, NK cell-mediated suppression controlled by tumor-

derived vesicles proved to be therapeutic in instances of AML

accompanied by the opposition of suppression by interleukin-15.

The study outcome in the case of A549 cells involved DDP

resistance and was observed in resident cancer cells due to

modulation of mTOR expression. In another study, Exosomes

purified from HeLa Cervical Carcinoma cells exhibited revised

survival rates due to assistance from IAP and HSPs (Refer to the

table).

One such critical group of derived exosomes comes beneath

the mega-group of Tumor-derived exosomes. There are an array

of attractive components that contributes to the usage of tumor-

derived exosomes for the transport of therapeutics and vaccines

for immunotherapy. A stage 1 medical trial has recently been

accomplished on the discharge of tumor exosomes, which had

been earlier presumed to undergo tumor specificity via antigens

equipped for presentation to immune cells and stimulating the

immune structures of glioma sufferers to achieve pure and
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ultimate tumor cells after resection (Thomas Jefferson

University, 2000).

For example, for the determination of tumor cells and tumor

exosomes in excessive numbers in malignant effusions, it has

been established that tumor exosomes convey tumor-related

antigens unique to the tumors from which they may be

derived, in addition to MHC I molecules. A supply of

antigens to dendritic cells by tumor exosomes can result in a

T-cellular-mediated immune reaction towards tumor cells

(Wolfers et al., 2001). In addition, tumor-focused on selective

drug transport involves tumor-derived exosomes and has been

proposed as an opportunity due to their unique expression of

tetraspanins, which preferentially engage with ligands in specific

tissues (Rana et al., 2012). Proteases, including urokinase

plasminogen activator, which promotes tumor cellular

invasion, and cathepsin D, and adhesion modulators,

including vimentin, galectin 3-binding protein, and annexin

A1, have additionally been determined in tumor-derived

exosomes (Harris et al., 2015); miRNAs and different nucleic

acids, that may result in malignant adjustments in target cells,

had been identified in tumor cellular exosomes (Melo et al.,

2014). An account of exosomal alterations manifested as

therapeutic and restorative in specific cancer treatments is

enlisted below in Table 3.

Modification of exosome surface
Exosomal surface proteins (ligands) can be modified to aid

targeted drug delivery. It is carried out to image and track

them, make them better adapted to the target cells vis-à-vis

anchorage and uptake, increase their therapeutic value, and

TABLE 3 An account of exosomal alterations manifested as therapeutic and restorative in specific cancer treatments.

Exosomal
cargos

Targeted cell Cancer
model

Study outcome Reference

miR-425-3p PC-9 and SPCA1 cells Lung Cancer AKT1 inhibition triggers autophagy, conferring resistance to
NSCLC; observed as decrease in clinical response to
platinum-based chemotherapy

Zhao and Xie, (2019), Yuwen et al.
(2019)

miR-100–5p A549 cells (Rapamycin
signaling pathway)

Lung Cancer DDP resistance was observed in other cancer cells due to
modulation of mTOR expression

Qin et al. (2017), Zhao and Xie,
(2019)

miR-222 MCF-7/S (Phosphatase
and tensin homolog)

Breast Cancer Exosomes were found to be acting as MDR arbitrators that
transferred Adriamycin-and Docetaxel resistance from
donor cells to recipient MCF-7 breast cancer cells

Chen et al. (2014), Zhao and Xie,
(2019)

miR-122 andmiR-
32-5p

HepG2 cells (Sensitive
HCC cell)

Hepatocellular
cancer

Delivery of miR-122 into HepG2 cells followed by its negative
regulation expression; aids the sensitivity of HCC cells to
chemotherapeutic agents. miR-32-5p facilitates the
activation of PI3K/Akt pathway thus providing MDR to
sensitive cells.

Lou et al. (2015), Xiao Fu et al. (2018),
Zhao and Xie, (2019)

lnc-ROR and lnc-
VLDLR

HepG2 or PLC-PRF5
HCC cells

Hepatocellular
cancer

Upregulatory response in HCC cells, reduction in
chemotherapy-induced cell death and increased expression
level of linc-ROR; and ABCG2.

Takahashi et al. (2014a), Takahashi
et al. (2014b), Zhao and Xie, (2019)

TGF- β NK Cells AML NK cell mediated suppression mediated by tumor-derived
vesicles which proved to be therapeutic in instances of AML
and the fact that interleukin-15 can oppose this suppression,
was also established

Szczepanski et al. (2011), Whiteside,
(2016)

Hsp72 MDSC Colon CA Suppression in the activity of the MDSCs via activation of
Stat3 triggered by TDE-associated Hsp72 in a TLR2/MyD88-
dependent manner via autocrine production of IL-6. MDSC
expansion was triggered by TDSFs following activation of Erk

Chalmin et al. (2010), Zhao and Xie,
(2019)

Survivin Cervical CA cells Cervical CA Exosomes purified from HeLa Cervical Carcinoma cells
demonstrated increased survival rates due to assistance to
IAP and HSPs

Khan et al. (2011), Zhao and Xie,
(2019)

αvβ6 Integrin Prostate CA cells Prostate CA EVs were derived from PCa cell lines and human plasma
samples, characterized as to contain ds-gDNA fragments
which appears to be an able candidate for cancer biomarker;
exhibiting certain specific migration mutations

Lázaro-Ibáñez et al. (2014), Zhao and
Xie, (2019)

FasL Activated T cells Ovarian CA An increased immune-suppression of T-cell receptor/CD3-
zeta followed by T-cell apoptosis due to modified Fas ligand-
containing exosomes obtained from ovarian tumors

Taylor et al. (2003), Matsumura et al.
(2015)

ABCG2, ATP-binding cassette sub-family G member 2; AML, acute myeloid leukemia; CA, carcinoma; DDP, Cisplatin [cis-diamminedichloroplatinum(II)]; HCC, hepatocellular

carcinoma; Hsp, Heat Shock Protein; IAP, Inhibitor of apoptosis; lnc-ROR, Long Non-coding RNA Reprogramming; lnc-VLDLR, Long Non-coding very low density lipoprotein receptor;

MDR, Multi-drug resistance; MDSC, myeloid-derived suppressor cells; miR, micro RNA; mTOR, Mammalian target of rapamycin; NSCLC, Non-small cell lung cancer; NK, natural killer

cells; TDE, Tumor derived exosomes; TGF-β, transforming growth factor β; TDSF, Tumor derived Suppressor factor.
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give them other possible advantages over unmodified

exosomes (Sandfeld-Paulsen et al., 2016a). This specific

modification is beneficial in terms of more effective drug

delivery, more retention in circulation and more stability.

Furthermore, since it augments the targeted delivery, a lesser

quantity of exosomes is required for the same effect, thus

reducing the need for high yield from parent cells (Zhang

et al., 2020).

These modifications are done through various methods,

depending upon the requirement, including genetic

engineering of parent cells, nanoparticle technology,

hydrophobic cargo loading in the lipid bilayer, fusion with

liposomes, etc. (Xu et al., 2020). Table 4 summarizes a list of

practical changes carried out on exosomal surfaces to

assist their involvement in promoting advancements and

therapies.

The prospects of exosome mimetics

The role of exosomes in multiple cancer types and their

potential utility as targeted therapeutics by its alteration or

through exosome-mimetics has been widely discussed in this

paper. Additionally, since exosomes are functionally involved

and produced by almost all types of cells, their application is

also omnipresent and is witnessed throughout various

ailments. Apart from cancer, exosomes have been studied

as ideal vehicles for drug delivery for several

neurodegenerative diseases like Alzheimer’s disease and

Parkinson’s disease, cardiovascular disorders,

musculoskeletal diseases, Kidney ailments, diabetes, etc.

(Antimisiaris et al., 2018; Jiang et al., 2019). A

revolutionary aspect of exosomes is their ability to act as

nanocarriers for the delivery of therapeutic agents in brain to

treat disorders pertaining to the CNS (Antimisiaris et al.,

2018). Neuron-derived exosomes (NDEs) have also been

implied to contain distinguishing biomarkers for HIV-

associated neurological disorders (HAND) and Alzheimer’s

Disease (AD) (Pulliam et al., 2019).

Studies have also been performed to show how circulating

EVs might have a functional role in the pathophysiology of

several vascular disorders such as Acute Chest Syndrome (ACS)

and Sickle Cell Disease (Lapping-Carr et al., 2020).

Experimentally, it has been demonstrated that Mesenchymal

Stem Cell Derived-Exosomes (MEX) suppresses lung infection

by regulating the lung tissue therefore, thereby lies a possible

remedial for Pulmonary Arterial Hypertension (Willis et al.,

2018). Urinary exosomes as well give an insight into diverse

biomarkers that are pointers to different drug-induced kidney

toxicities. Furthermore, this aspect can be scaled up after

TABLE 4 A list of practical changes carried out on exosomal surfaces to assist their involvement in promoting advancements and therapies.

Source of
exosome

Molecule involved in
expression

Loading and
labeling

Consequences and aftermath Reference

HEK293 GE11 peptide and microRNA
Let-7a

Xenolight DiR Binding of GE11 to EGFR caused the delivery of exosomes
to epithelial originated tumors; increase three-fold and
assisting in tumor suppressive target delivery

Ohno et al. (2013), Gilligan
and Dwyer, (2017)

Murine immature
dendritic cells

Membrane protein Lamp2b fused
with αγ integrin-specific iRGD
peptide

Dox Delivery of encapsulated Dox with 20% efficacy
significantly inhibited tumor growth; demonstrating a
prospective approach of modifying exosomes by delivery
target of ligand molecules

Yanhua Tian et al. (2014),
Gilligan and Dwyer, (2017)

HEK293T cells IL3-Lamp2B (Lamp2B conjugated
with IL3-receptor)

Imatinib or BCR-
ABL siRNA

CML infected mice exhibited improved tumor targeting
due to exosomal surface modification. IL3-R is
overexpressed in CML blasts therefore appearing as a
potential receptor to be utilized in drug deliveries;
involving cancer cases. Additionally, in cases involving
Imatinib group, a slight reduction in tumor growth was
observed

Bellavia et al. (2017),
Gilligan and Dwyer, (2017)

AuNP coated
exosome particles

Lamp2b fusion protein and a
neuron-targeted short peptide
of RVG

DiI AuNPs encapsulated with RVG-targeted exosomes,
reported elevation in their targeting ability in both in vitro
as well as in vivo blood-brain barrier systems. This could
prove beneficial in drug delivery pathway and diagnosis
revolving around CNS disorders such as Alzheimer’s
disease, Parkinson’s disease and incidents of brain cancers

Khongkow et al., 2019

CD63-GFP-
exosomes

GALA Peptide in cytosol Dextran, Saponin Combination of cationic lipids and a pH-sensitive
fusogenic peptide caused a substantial increase in cellular
uptake and cytosolic release of exosomal contents; without
any cytotoxic effects

Nakase and Futaki, (2015),
Zhang et al. (2020)

AuNPs, Gold nanoparticles; CML, Chronic Myelogenous Leukemia; DiI, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate dye; DiR, 1,10-dioctadecyltetramethyl

indotricarbocyanine Iodide; Dox, Doxorubicin; EGFR, Epidermal Growth Factor Receptor; GFP, Green fluorescent protein; HEK, Human Embryonic Kidney cell line; RVG, Rabies virus

glycoprotein.
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subsequent research for large-scale drug trials (Griffin et al.,

2020).

Preclinical research has displayed the ability of MSC-derived

exosomes as an alternative form of therapy for Acute Respiratory

Distress Syndrome (ARDS). Furthermore, MSC-derived

exosomes behave as silencing complexes; hence they can

induce some epigenetic changes in the expression of their

cellular receptors, eventually leading to the inability of

infection of many RNA viruses like Hepatitis-C, Influenza and

Coronavirus. This is suggestive of the underlying aptitude of

MSC-derived exosomes to treat COVID-19 infection (Gupta

et al., 2020).

\Although the role of exosomes as curative agents is highly

promising, there are quite a few limitations that need to be

tackled first to unleash its extensive utility. The shortcomings of

exosomes therapeutics include scanty yield of exosomes from

cells, difficulty in loading drugs and engineering the vesicles,

potential unwanted effect at non-target sites, systemic dilution

before reaching the target site, change in the conformation of

membrane protein (thus affecting organotropism),

questionable stability of the engineered-vesicles etc.

(Antimisiaris et al., 2018; Hu et al., 2020). Thus, the use of

exosomes-mimetics, which are membrane-coated

nanoparticles having the same functional characteristics and

efficacy as endogenous exosomes appear more promising for

the same therapeutic purpose. Additionally, it can be quickly

produced, engineered and loaded with our desired drug in a

reproducible and relatively cost-effective manner (Hu et al.,

2020).

Conclusion

This article has comprehensively discussed exosomes and

their quintessential involvement in various facets of Cancer

Biology. Firstly, there is enough substantial evidence that

solidifies the role of exosomes in cell-to-cell communication

and signaling and regulation of tumor micro-environment.

Secondly, exosomes aid in malignancy of the disease by

promoting metastasis and tumor progression. Moreover, they

can be characterized to act as biomarkers for efficient diagnostic

applications. Thus, these extra-cellular vesicles are

multidimensional in terms of the functions that they perform

and have thereby emerged as a highly promising niche for cancer

therapeutics. It is remarkable to note their efficient, intrinsic

targeting potential, biocompatibility, efficacy and physiological

stability.

However, numerous aspects, such as purification,

administration, standardization and long-term safety effects,

require to be studied and monitored. The current studies also

lack clinical trials on human models, which are essential to

further advancements in this area. Despite their expanded hopes

of applications, more advanced and robust technologies are required

to isolate surplus exosomes to counter the scanty yield from the

current methods. Also, a scalable and economical method for

loading drugs/nucleic acids and modifying the surface of

exosome mimetics is awaited that also preserves the integrity and

innate characteristics of these engineered vesicles.

We have partly unraveled the search for the perfect, fool-proof

tool for the cancer treatment, but the quest is yet incomplete until the

abovementioned voids are filled. Conclusively, exosomes undeniably

carry a plethora of possibilities to revolutionize and significantly

optimize Cancer therapeutics and diagnostics. Even, a multitude of

research still needs to be performed and analyzed to apply the pre-

clinical proof of concept studies to fruition.
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Background: Ephrins, a series of Eph-associated receptor tyrosine kinase

ligands, play an important role in the tumorigenesis and progression of

various cancers. However, their contributions to hepatocellular carcinoma

(HCC) remain unclear. Thus, we aimed to explore their prognostic value and

immune implications in HCC.

Methods: Multiple public databases, such as TCGA, GTEx, and UCSC XENA,

were used to analyze the expression of ephrin genes across cancers. Kaplan-

Meier analysis and Cox regression were used to explore the prognostic role of

ephrin genes in HCC. A logistic regression model was utilized to evaluate the

association between ephrin gene expression and clinical characteristics. Gene

set enrichment analysis (GSEA) was conducted to elucidate their potential

biological mechanisms. Various immune algorithms were utilized to

investigate the correlation between ephrin genes and tumor immunity. We

also analyzed their association with drug sensitivity, and genemutations. Finally,

RT–qPCR was performed to validate the expression of ephrin family genes in

HCC cells and clinical tissues.

Results: The expression of EFNA1, EFNA2, EFNA3, EFNA4, EFNB1, and

EFNB2 was upregulated in most cancer types, while EFNA5 and EFNB3 was

downregulated inmost cancers. In HCC, the expression levels of EFNA1, EFNA3,

EFNA4, EFNB1, and EFNB2 were significantly higher in tumor tissues than in

normal tissues. High expression of EFNA3, EFNA4, and EFNB1 was associated

with tumor progression andworse prognosis in HCCpatients. The expression of

EFNA3 and EFNA4 was negatively associated with the stromal/ESTIMATE

scores, while EFNB1 was positively correlated with the immune/stromal/

ESTIMATE scores. Moreover, these ephrin genes were closely relevant to the

infiltration of immune cells, such as B cells, CD4+ T cells, CD8+ T cells,

neutrophil cells, macrophage cells, and dendritic cells. EFNB1 expression

was positively associated with most immune-related genes, while EFNA3/

EFNA4 was positively related to TMB and MSI. In addition, EFNA3, EFNA4,

and EFNB1 were related to drug sensitivity and affected the mutation

frequency of some genes in HCC.
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Conclusion: EFNA3, EFNA4, and EFNB1 are independent prognostic factors for

HCC patients and are closely correlated with tumor immunity, which may

provide a new direction for exploring novel therapeutic targets and biomarkers

for immunotherapy.

KEYWORDS

ephrin family, prognosis, immune, biomarker, hepatocellular carcinoma

Introduction

Hepatocellular carcinoma (HCC) is one of the most

prevalent malignant tumors and ranks fourth among the most

common causes of cancer-related death worldwide (Yang J. D.

et al., 2019). Several factors, including chronic hepatitis B and

hepatitis C, cirrhosis, alcohol abuse, nonalcoholic fatty liver

disease and exposure to dietary toxins such as aristolochic

acid and aflatoxins, remarkably increase the occurrence risk of

HCC (Yang J. D. et al., 2019; Kulik and El-Serag, 2019; Llovet

et al., 2021). Early-stage HCC can be treated curatively by

surgical excision, local ablation, or liver transplantation.

However, the majority of HCC patients are diagnosed at an

advanced stage and are unsuitable for curative treatments

(Fitzmaurice et al., 2017). Multiple kinase inhibitors and

immune checkpoint inhibitors (ICIs) have been proven to be

effective treatment options for advanced-stage HCC in recent

years. The prognosis of HCC remains unsatisfactory, with

cancer-specific mortality still increasing in many countries

and an overall 5-year survival rate of only approximately 18%

(Galle et al., 2021). The poor prognosis and high mortality of

HCC patients are mainly attributed to molecular heterogeneity

and the lack of early and effective indictive markers (Yang J. D.

et al., 2019; Kulik and El-Serag, 2019). Thus, exploring reliable

prognostic biomarkers and effective therapeutic targets is

critically important to improve the clinical outcomes of HCC

patients.

Erythropoietin-producing hepatocellular carcinoma (Eph)

and Eph receptor interacting ligands (ephrins, EFNs) are the

largest family of membrane-bound receptor tyrosine kinases,

which consist of fourteen Eph receptors and eight ephrin ligands

(Kullander and Klein, 2002). Ephs and ephrins are widely

expressed on the surface of various cells. Characteristic

bidirectional signaling is induced through Eph–ephrin

interactions in receptor- and ligand-expressing cells; Eph

receptors activated by ephrin ligands are referred to as

“forward signaling,” resulting in phosphorylation of the

receptors and activation of downstream signaling molecules,

while “reverse signaling” is defined as Eph receptor-mediated

activation of ephrin ligands (Héroult et al., 2006; Lin et al., 2021).

The Eph-ephrin complexes are involved in a wide spectrum of

physiological and pathological processes and affect cell biological

functions during development, such as neurogenesis and

angiogenesis, cell proliferation and differentiation, cell

segregation, cellular motility and adhesion (Brückner and

Klein, 1998; Shu et al., 2016). The Eph-ephrin signaling

system promotes cell migration by regulating the

reorganization of the actin cytoskeleton and increasing

intercellular adhesiveness (Pasquale, 2008), suggesting that the

common characteristics and molecular mechanisms of cancer

cells can be modulated by them. Therefore, the Eph-ephrin

complex can be used as a new diagnostic biomarker and

potential molecular therapeutic target in cancers.

Ephrin ligands are divided in A-subclass (ephrin-A1-A5) and

B subclass (ephrin-B1-B3) groups based on their sequence

conservation. Ephrin-As are glycosyl phosphatidyl inositol

(GPI)-anchored molecules and are usually bound by EphA

receptors, while ephrin-Bs are transmembrane proteins with

an extracellular binding domain for EphB receptors and

cytoplasmic SAM/PDZ-binding motif (Kullander and Klein,

2002). Ephrin ligands have been extensively studied in

morphogenesis and neural development. Recently, increasing

attention has been given to its significance in the

tumorigenesis and progression of various cancers. Substantial

evidence indicates that ephrins play a vital role in tumor

angiogenesis, invasion, metastasis, and tumor stemness

maintenance (Lodola et al., 2017). Many ephrin ligands have

been shown to be upregulated in multiple tumors and associated

with poor prognosis, such as lung adenocarcinoma (Deng et al.,

2021), breast cancer (Kaenel et al., 2012), colorectal cancer

(Papadakos et al., 2022), prostate cancer (Zhao et al., 2021),

bladder cancer (Mencucci et al., 2020), and other cancers

(Surawska et al., 2004). Lin et al. (2021) reported that

EFNA4 is highly expressed in cancer tissues and leads to poor

prognosis in patients with HCC. In addition, recent studies have

highlighted important roles of Eph-ephrin signaling in the tumor

microenvironment (TME) and tumor immunity (Janes et al.,

2021). The ephrin ligand members are widely expressed on

diverse immune cell types and participate in regulating cell

adhesion, migration, and activation of B and T lymphocytes

(Jin et al., 2011; Mori et al., 2013). Moreover, they also recruit

immunosuppressive cells such as myeloid-derived suppressor

cells (MDSCs) and tumor-associated macrophages (TAMs) to

the TME, inhibit the activity of cytotoxic T cells, and, thus,

support tumor survival (Hanahan and Coussens, 2012). A recent

study suggested that EFNA3 acts as an independent prognostic

factor and correlates with immune cell infiltration in gastric

cancer and lung adenocarcinoma (Deng et al., 2021; Zheng et al.,
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2021). However, the expression level and prognostic value of

ephrin family genes and their association with tumor immunity

have been less explored in HCC.

In this study, we performed a comprehensive analysis of

ephrin family genes in HCC based on The Cancer Genome Atlas

(TCGA), Genotype-Tissue Expression dataset (GTEx), Tumor

Immune Evaluation Resource (TIMER) database, and some

online bioinformatics analysis websites. We first explored the

expression patterns of ephrin genes among 31 human cancer

types. Then, the prognostic role of ephrin genes was discussed in

HCC patients, and the association between prognosis-related

ephrin genes and the TME, immune cell infiltration, immune

subtypes, immune checkpoint biomarkers, gene mutation

landscape, and drug response in HCC was further highlighted.

Moreover, the differential expression of ephrins was validated in

multiple HCC cell lines and 40 paired clinical tissue samples

using RT–qPCR. The results of this study revealed the potential

role of ephrin family genes as predictive biomarkers of prognosis

and immunotherapy in patients with HCC, which warrants

further in-depth study.

Materials and methods

Clinical tissue samples and ethics approval

In total, 40 paired fresh HCC tumorous and adjacent tissues

were collected from the Second Affiliated Hospital of Nanchang

University (Nanchang, China) between January 2021 and

December 2021. The tissue samples were immediately frozen

in liquid nitrogen after surgical resection and stored at −80°C

until further analysis. The usage of tumor and adjacent normal

tissues in this study was approved by The Second Affiliated

Hospital of Nanchang University Medical Research Ethics

Committee. All of the patients enrolled in this study provided

written informed consent in accordance with the Helsinki

Declaration and related guidelines.

Public data acquisition and processing

RNA-seq data in the TPM (transcripts per million reads)

format of pan-cancer datasets were downloaded from the UCSC

XENA (https://xenabrowser.net/datapages/), which were

processed by the Toil process (Vivian et al., 2017), and the

samples were derived from the TCGA and GTEx datasets. All

expression data were normalized on a log2 (TPM +1) scale. The

cancer types with fewer than 3 samples were removed, and we

ultimately obtained the expression data of 15,521 samples from

31 cancer types. Meanwhile, transcriptome profiling data of HCC

projects harmonized to TPM were downloaded from TCGA

(https://portal.gdc.cancer.gov/), including 374 tumor tissues

and 50 normal samples. Furthermore, we also obtained

clinical information and prognostic outcomes of HCC from

the UCEC database, which was derived from a prognostic

study of the TCGA dataset (Liu et al., 2018), including age,

sex, histological grade, pathological stage, vascular invasion

status, overall survival (OS), progression-free interval (PFI),

and disease-specific survival (DSS).

Expression patterns of ephrin genes in
pan-cancer and their diagnostic value
in HCC

Ephrin gene expression between tumor tissues and unpaired

normal tissues in pan-cancer was analyzed and visualized using

the Sangerbox online platform (http://sangerbox.com/) based on

TCGA targeted GTEx datasets. The differential expression

analysis of EFNs in HCC tissues compared with paired

normal tissues was conducted in TCGA datasets by using the

“limma” and “ggplot2” packages of R 4.0.5 software (http:///

www.r-project.org/). TheWilcoxon rank sum test was applied for

statistical analyses, and a value of p < 0.05 was considered to be

statistically significant.

Receiver operating characteristic (ROC) curves and the area

under the ROC curve (AUC) were employed to estimate the

diagnostic ability of ephrin family genes, and “pROC” and

“ggplot2” of R packages were used for visualization and

analysis. An AUC of 0.5–0.7 indicates a lower level of

diagnostic accuracy, an AUC of 0.7–0.9 suggests moderate

accuracy, and an AUC above 0.9 indicates higher diagnostic

accuracy.

Subsequently, we explored the correlation among ephrin

genes at the mRNA expression level with Pearson’s correlation

analysis, in which the “corrplot” R package was used to calculate

the correlation coefficient (Pearson’s R), and Pearson’s R >
0.3 was considered statistically significant.

Prognostic values and clinical feature
correlation analyses of ephrin genes
in HCC

First, we integrated the mRNA expression data of ephrin

genes with clinical information based on the HCC project from

the TCGA database. After removing the samples with incomplete

follow-up information, the remaining patients were divided into

high- and low-expression groups based on the best cutoff values

of the expression of each ephrin gene. Kaplan-Meier analysis was

performed to explore the relationship between EFN gene

expression and prognostic indicators, including OS, PFI, and

DSS. The “survminer” and “survival” R packages were used for

statistical analysis and data visualization. The statistical

significance was obtained with the log-rank test. In addition,

independent prognostic factors for OS were identified by
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univariate and multivariate Cox regression analyses, integrating

the following clinical features: age, sex, histological grade, and

pathological stage. The results are presented as a hazard ratio

(HR) and 95% confidence interval (CI), and statistical

significance was defined as p < 0.05. The ephrin genes that

significantly and independently affected OS were chosen for

further analyses.

To further investigate the correlation between ephrin ligand

genes and clinicopathological parameters, we compared the

expression levels of ephrin genes with different clinical T

stages, pathological stages, histological grades, and vascular

invasion status in HCC patients. Student’s t test or one-way

ANOVAwas used to verify expression differences. Moreover, the

binary logistic regression model was utilized to evaluate the

association between ephrin gene expression and clinical

characteristics, such as age (>60 vs. ≤ 60), sex (male vs.

female), T stage (T3&T4 vs. T1&T2), N stage (N1 vs. N0), M

stage (M1 vs. M0), pathological stage (stage III& IV vs. stage

I&II), histological grade (G3&G4 vs. G1&G2), vascular invasion

status (yes vs. no), AFP (ng/ml) (>400 vs. ≤400), and Child–Pugh
grade (B&C vs. A). The patients were divided into high- or low-

expression groups according to the median expression value of

ephrin genes, and the expression grouping was used as the

independent variable. The clinical characteristics were

dependent variables, and the right factors in parentheses were

used as references. The results are presented with odds ratios and

p values, and a p value of less than 0.05 (p < 0.05) was considered

significant.

Protein interaction and gene set
enrichment analysis

The GeneMANIA online website (http://www.genemania.

org) was applied to explore the interaction network of ephrin

ligand members (EFNA3, EFNA4, and EFNB1), in which a large

number of genomic and proteomic data were used to identify

interactional genes with similar functions (Franz et al., 2018).

The website mainly provides protein–protein interaction (PPI)

predictions, including physical interaction, co-expression, co-

localization, sharing of protein domains, genetic interactions,

and signaling pathways. Furthermore, we also used the STRING

database (https://string-db.org/) to clarify the interactive

relationships among ephrin family genes and displayed the

50 most relevant proteins that interact with ephrin genes.

To investigate the biological role and uncover the potential

biological mechanisms of ephrin genes in HCC, we conducted

GSEA based on GSEA v.4.1.0 software (http://www.gsea-msigdb.

org/gsea/index.jsp) and “c2. cp.kegg.v7.4. symbols.gmt,” which

was downloaded from MSigDB (http://www.gseamsigdb.org/

gsea/msigdb/collections.jsp). Gene sets with a p value < 0.

05 and a false discovery rate (FDR) of q-value < 0.25 were

considered significantly enriched pathways.

Correlation of ephrin genes with the
tumor microenvironment and tumor
immunity

Previous studies have indicated that ephrin ligands and the

Eph receptor signaling pathway significantly affect immune cell

infiltration and change the tumor microenvironment (TME) (Yu

et al., 2004; Yu et al., 2006; Lu et al., 2017). Thus, in this study, we

explored the correlation between the expression of ephrin genes

and TME and tumor immune cell infiltration. First, immune and

stromal scores were calculated by the ESTIMATE algorithm

using the “estimate” R package, which represents the

infiltration levels of immune and stromal cells in different

tumors, respectively. ESTIMATE scores are the sum of

immune and stromal scores and show an inverse correlation

with tumor purity. Then, Spearman correlation analysis was

performed to analyze the correlation between the expression

of ephrin ligand genes and immune scores, stromal scores,

ESTIMATE scores, and tumor purity. The results are

presented with scatterplots, and p < 0.05 was considered

statistically significant.

Thereafter, the Tumor Immune Evaluation Resource

(TIMER) database (http://timer.comp-genomics.org/), an

online platform for comprehensive analysis of the specific

gene(s) associated with tumor immune infiltrating cells

(TIICs), was used to evaluate the association between the

expression of ephrin family members and the infiltration

levels of various immune cells in HCC samples. TIMER2.

0 provides multiple immune infiltration estimations, including

the TIMER, XCELL, QUANTISEQ, MCPCOUNTER, EPIC,

CIBERSORT-ABS, and CIBERSORT algorithms. In this study,

we selected the “Gene” module and used Spearman correlation

analysis in TIMER 2.0, with a focus on exploring the association

of ephrin genes with the infiltration levels of B cells, CD4+ T cells,

CD8+ T cells, neutrophil cells, macrophage cells, and dendritic

cells. A p value < 0.05 was considered statistically significant. The

results are presented with scatterplots. In addition, we

downloaded immune cell infiltration estimates for all TCGA

tumor samples from the TIME2.0 database, which included

immune cell infiltration levels in each HCC sample based on

the XCELL, QUANTISEQ, MCPCOUNTER, EPIC,

CIBERSORT-ABS, and CIBERSORT algorithms. We further

integrated the immune cell infiltration data and ephrin gene

expression to comprehensively analyze the correlation between

ephrin gene expression and tumor immunity in HCC tissues by

using the “scales,” “ggplot2,” and “ggtext” R packages. Spearman

correlation coefficients were calculated tomeasure the strength of

the statistical correlation between two variables. The results with

p < 0.05 were considered significant and are presented with

bubble plots.

Immune subtypes in cancers could effectively reflect

intratumoral immune states. Six immune subtypes have been

identified based on immune expression signatures and represent
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different immune functions, including C1 (wound healing), C2

(IFN-gamma dominant), C3 (inflammatory), C4 (lymphocyte

depleted), C5 (immunologically quiet), and C6 (TGF-beta

dominant) (Thorsson et al., 2018). To identify the relationship

between the expression of ephrin genes and immune subtypes in

HCC, we used the online TISIDB web portal (http://cis.hku.hk/

TISIDB/) and the Kruskal–Wallis test to compare the expression

of ephrin genes between different immune subtypes. P < 0.05 was

considered statistically significant.

Correlation analysis of ephrin family genes
with immune checkpoint inhibitors (ICIs)
biomarkers

Gene expression profiling within the tumor

microenvironment could assess active innate and adaptive

immune responses and may identify robust biomarkers for

predicting the clinical benefit of checkpoint inhibitor

strategies (Gibney et al., 2016). Thus, we utilized Spearman

correlation analysis to assess the co-expression relationship

between ephrin ligand genes and 47 immune checkpoint-

related genes in HCC. The R packages “limma,” “reshape2”

and “RColorBrewer” were used to conduct the co-expression

analysis. The results are displayed with a

heatmap. Furthermore, we thoroughly analyzed the

expression connection between ephrin genes and four key

immune-related genes: PDCD1 (PD-1), CTLA4, CD274 (PD-

L1), and PDCD1LG2 (PD-L2). The results are presented with

scatter plots, and a p value less than 0.05 (p < 0.05) indicated a

significant correlation.

Tumor mutation burden (TMB) is defined as the total

number of mutations per million bases detected in each tumor

sample, including gene coding errors, base substitution, gene

insertion or deletion errors. Microsatellite instability (MSI) is

a hypermutator phenotype with hypermutability of short

repetitive sequences in the genome and impaired DNA

mismatch repair (MMR) in tumors (Cortes-Ciriano et al.,

2017). Increasing studies have indicated that TMB and MSI

are primary drivers of tumor immune responses and have

been proven to be predictive biomarkers for ICIs (Lengyel,

2021; McGrail et al., 2021). In our study, we explored the

correlation of ephrin family genes with TMB and MSI in HCC.

First, gene mutation data in “varscan 2” format were

downloaded from the TCGA database and then

transformed to TMB data using Perl 5.30.0 software

(https://www.perl.org/). MSI data of HCC patients were

directly acquired from previous studies (Hause et al., 2016;

Yang G. et al., 2019). Then, we compared EFN gene expression

between the high- and low-TMB/MSI subgroups and further

explored their association using Spearman correlation

analysis. The “limma,” “ggpubr” and “reshape2” R packages

were used for data analysis and visualization.

Prediction of response to chemotherapy
and targeted therapy

To date, chemotherapy and antiangiogenic targeted therapy

are the main treatments for advanced HCC patients. Thus, we

investigated the role of ephrin genes in predicting the sensitivity

of HCC patients to chemotherapies and targeted drugs. In our

study, six commonly used chemotherapeutic and targeted agents

of HCC were selected, namely, camptothecin, cisplatin,

doxorubicin, mitomycin C, gemcitabine, and sorafenib. First,

the pRRophetic algorithm and “pRRophetic” R package were

used to calculate the drug half-maximal inhibitory concentration

(IC50) of common chemotherapy and targeted therapy drugs

based on the Cancer Genome Project (CGP) cell lines data

(Geeleher et al., 2014). Then, we compared the drug

sensitivity of the six common drugs in HCC between the

high- and low-expression subgroups of ephrin family

members. Statistical significance was determined as a p value

less than 0.05.

Associations between the expression of
ephrin family genes and mutational
landscape genes

Single nucleotide polymorphisms (SNPs) refer to DNA

sequence polymorphisms caused by variation in a single

nucleotide at the genome level and widely exist in human

genomic DNA. Abnormal SNPs promote the occurrence and

development of tumors and contribute to treatment resistance. In

our study, we analyzed the correlation between ephrin gene

expression and SNPs in HCC. First, the format (MAF) file of

somatic mutation information of HCC was obtained from the

TCGA database, which was previously processed by the

“varscan” method. The gene mutation frequency was

calculated with the “maftools” R package. The top 15 genes

with the highest mutation frequency were selected for

comparison between the high- and low-expression groups of

ephrin genes. We compared the genes and the mutational

incidence rate between the two subgroups using the chi-

squared test. p < 0.05 served as the significance threshold.

Cell lines and cell culture

Five HCC cell lines (HCC-LM3, MHCC97-H, SMMC7721,

Huh7, and HepG2) were purchased from Procell Life Science &

Technology Co. Ltd. (Wuhan, China). The normal liver cell Line

L02 was previously acquired from the Chinese Academy of

Science. All cells were cultured in Dulbecco’s modified Eagle

medium (DMEM; Solarbio, Beijing, China) supplemented with

10% FBS (Gibco, Grand Island, NY, United States), 100 µg/ml

streptomycin and 100 U/ml penicillin sodium (Biotechnology,
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Beijing, China) in a humidified cell incubator containing 5% CO2

at 37°C. Subsequently, the mRNA levels of EFNs in each cell line

were detected using real-time reverse transcription-quantitative

polymerase chain reaction (RT–qPCR). The L-02 cell line served

as a control.

RNA extraction and RT–qPCR

Total RNA isolation from HCC cells and tissue samples was

carried out by using TRIzol Reagent (Invitrogen, Carlsbad, CA,

United States) according to the product manual. Subsequently,

the RNA was reverse transcribed to complementary DNA

(cDNA) using EasyScript® One-Step gDNA Removal and

cDNA Synthesis SuperMix (AE311-03, TransGen Biotech,

Beijing, China). Then, real-time quantitative PCR (qPCR) was

performed using TB Green® Premix Ex Taq™ II (RR820A,

TaKaRa, China). Glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) was used as the endogenous control. The relative

gene expression of HCC cells was calculated according to the

2−ΔΔCT method, and 2−ΔCT was used to determine the mRNA

expression in HCC tissues. qPCR assays were performed in

triplicate. The gene primers for qPCR are listed in Table 1.

Statistical analysis

R software (https://www.r-project.org/, version 4.0.4) and

Perl 5.30.0 software (https://www.perl.org/) were applied to

conduct bioinformatics analyses. Student’s t test, one-way

ANOVA, or the Wilcoxon rank sum test was used to assess

the differences between groups. The log-rank test and Cox

regression analysis were used for survival analysis. Spearman

correlation was used in the correlation analyses. The differential

gene expression in HCC cells or tissue samples was analyzed with

Student’s t test or one-way ANOVA using GraphPad Prism 9.

0 software (GraphPad Prism Software, Inc., La Jolla, CA,

United States). All experiments were repeated in triplicate to

calculate the mean ± standard deviation (SD). All statistical tests

were two-sided, and statistical significance was set at p < 0.05.

Results

Ephrin family ligands are aberrantly
expressed in pan-cancer

Based on the expression analysis of eight ephrin ligand genes

(EFNA1, EFNA2, EFNA3, EFNA4, EFNA5, EFNB1, EFNB2,

EFNB3) in 15,521 samples of 31 cancer types from TCGA

and GTEx datasets, we found that EFNA1 expression was

upregulated in 21 cancer types, including GBM, LGG, UCEC,

BRCA, CESC, LUAD, ESCA, STES, COAD, PRAD, STAD,

HNSC, KIRC, LIHC, BLCA, OV, PAAD, TGCT, ALL, LAML,

and CHOL. In contrast, EFNA1 expression was downregulated in

LUSC, WT, SKCM, THCA, and KICH (Supplementary Figure

S1A). The mRNA expression of EFNA2 in tumor tissues of GBM,

LGG, UCEC, BRCA, CESC, LUAD, ESCA, STES, KIRP, COAD,

PRAD, STAD, KIRC, LUSC, WT, SKCM, BLCA, THCA, OV,

PAAD, TGCT, UCS, ALL, LAML, PCPG, and ACC was higher

than that in corresponding normal tissues. Significant

downregulation of EFNA2 was observed in LIHC, READ, and

KICH (Supplementary Figure S1B). EFNA3 was upregulated in

most cancer types, except for GBM, SKCM, and KICH

(Supplementary Figure S1C). The expression level of

EFNA4 was higher in 27 tumor tissues than in corresponding

normal tissues, including GBM, LGG, UCEC, BRCA, CESC,

LUAD, ESCA, STES, KIRP, COAD, PRAD, STAD, HNSC,

LUSC, LIHC, WT, BLCA, THCA, READ, OV, PAAD, TGCT,

UCS, ALL, LAML, ACC, and CHOL (Supplementary Figure

S1D). EFNA5 gene expression was found to be upregulated in

13 tumor tissues but downregulated in 15 cancer types

(Supplementary Figure S1E). EFNB1 was significantly

distinctly expressed in 26 cancer types, with higher expression

TABLE 1 Primers for RT-qPCR analysis targeting ephrin genes.

Gene name Sequences (59—39)

EFNA1 F: TCAGGCCCATGACAATCCAC; R: GTGACCGATGCTATGTAGAACC

EFNA2 F: TACGCCGTCTACTGGAACC; R: GAGCCTCGTACAGGGTCTC

EFNA3 F: CATGCGGTGTACTGGAACAG; R: AGATAGTCGTTCACGTTCACCT

EFNA4 F: CTC CGCCACGTAGTCTACTG; R: TACAAAGCAAACGTCTCGGGG

EFNA5 F: CGCTACGCTGTCTACTGGAAC; R: TTCTGGGACGGAGTCCTCATA

EFNB1 F: CGTGTTGGTCACCTGCAATAG; R: CAGGCTTCCATTGGATGTTGA

EFNB2 F: TATGCAGAACTGCGATTTCCAA; R: TGGGTATAGTACCAGTCCTTGTC

EFNB3 F: CTCGGCGAATAAGAGGTTCCA; R: GTGAAGCGGAGATCCAGGTC

GAPDH F: GGAGCGAGATCCCTCCAAAAT; R: GGCTGTTGTCATACTTCTCATGG

qRT-PCR, quantitative real-time reverse transcription polymerase chain reaction.

F, forward primer; R, reverse primer.
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in cancer tissues observed in GBM, LGG, CESC, ESCA, STES,

COAD, STAD, HNSC, LIHC, WT, OV, PAAD, UCS, ALL,

LAML, and CHOL and lower expression observed in UCEC,

BRCA, LUAD, KIRP, PRAD, KIRC, SKCM, THCA, PCPG, and

KICH (Supplementary Figure S1F). EFNB2 was aberrantly

expressed in 26 cancer types (Supplementary Figure S1G).

The expression of EFNB3 was downregulated in multiple

cancer types, including LIHC (Supplementary Figure S1H).

The expression levels and diagnostic
significance of ephrin family genes in HCC

Based on the TCGA datasets related to HCC, the mRNA

expression levels of EFNs were detected in 50 paired tumor

tissues and corresponding normal samples. As shown in Figures

1A–H, the expression of EFNA1, EFNA3, EFNA4, EFNB1, and

EFNB2 was significantly increased in tumor tissues compared

with normal tissues. EFNB3 expression was evidently decreased

in tumor tissues, and no significant difference was observed in

EFNA2 and EFNA5 expression between tumor and normal

tissues. The differential expression results in paired HCC

tissues of EFNA1, EFNA3, EFNA4, EFNB1, EFNB2, and

EFNB3 coincided with the above pan-cancer analysis.

According to the expression levels of ephrin genes, we further

evaluated the diagnostic accuracy of EFNs by calculating the

AUC values of ROC curves. The results indicated that EFNA3

(AUC = 0.922) and EFNA4 (AUC = 0.963) showed higher

diagnostic accuracy; EFNB1 (AUC = 0.701), EFNB2 (AUC =

0.723), and EFNB3 (AUC = 0.898) exhibited moderate diagnostic

FIGURE 1
The expression levels and diagnostic significance of ephrinmembers in HCC tissues based on TCGA database. (A–H) The differential expression
of EFNs (EFNA1, EFNA2, EFNA3, EFNA4, EFNA5, EFNB1, EFNB2, EFNB3) in tumor tissues compared with paired normal tissues in HCC. ns: no
significance; ***p < 0.001; (I,J) The diagnostic role of EFNs identified by receiver operating characteristic (ROC) curves. (K) Correlation analysis of
each EFN member based on Pearson’s correlation analysis. The bold values represent significant correlations between the EFN members.
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performance; and EFNA2 and EFNA5 exhibited a lower level of

diagnostic accuracy, with an AUC <0.7 (Figures 1I,J).

Moreover, we also investigated the co-expression correlation

among the eight ephrin genes using Pearson’s correlation

analysis. The results (Figure 1K) showed that the expression

of EFNA1 was positively correlated with EFNA3 (R = 0.53) and

EFNA4 (R = 0.38); EFNA3 showed a positive correlation with

EFNA4 (R = 0.49); EFNA5 expression was positively associated

with EFNB1 (R = 0.37); and EFNB1 was related to

EFNB2 expression (R = 0.3). However, the expression of

EFNA2 and EFNB3 was not significantly associated with other

ephrin genes.

The association of ephrin genes with
prognosis and clinical characteristics
in HCC

We found that ephrin family genes were differentially

expressed in patients with HCC. To further explore the

prognostic influence of the eight EFNs on OS, PFI, and

DSS in HCC patients, the Kaplan-Meier method and log-

rank test were performed in patients with HCC. For OS

(Figure 2), the results suggested that the patients in the

high-expression groups of EFNA1 (p < 0.001), EFNA3 (p <
0.001), EFNA4 (p < 0.001), EFNA5 (p < 0.001), and EFNB1

(p = 0.006) showed worse OS than those in the low-expression

groups, while there was no significant correlation between the

expression of EFNA2, EFNB2, EFNB3 and OS. We next

explored the effect of ephrin genes on PFI. As shown in

Supplementary Figure S2A, higher EFNA3 and

EFNA4 expression was related to shorter PFI (p =

0.006 and p = 0.008, respectively), while the opposite result

was observed for EFNA2 (p = 0.047) and EFNB3 (p = 0.007);

the expression of EFNA1, EFNA5, EFNB1, and EFNB2 was

not significantly associated with PFI. The DSS results of

Kaplan-Meier analysis indicated that the expression of

EFNA1 (p = 0.002), EFNA3 (p = 0.001), EFNA4 (p =

0.001), EFNA5 (p = 0.027), and EFNB1 (p = 0.004) was

negatively correlated with DSS in patients with HCC

(Supplementary Figure S2B). Subsequently, univariate and

multivariate Cox regression analyses were performed to

identify the prognostic factors for OS by integrating the

EFN expression and clinical factors (age, sex, histological

grade, and pathological stage). Univariate Cox analysis

suggested that the expression of EFNA3, EFNA4, and

EFNB1 and pathological stage were risk factors for OS (p <
0.05; Figure 3A). Remarkably, these factors were proven to be

independent prognostic factors for OS in HCC based on

multifactor Cox regression analysis (Figures 3B–D). In

brief, these results showed that EFNA3, EFNA4, and

EFNB1 could serve as effective prognostic predictors in

patients with HCC. We therefore focused on EFNA3,

EFNA4, and EFNB1 for our subsequent analysis.

To address how the ephrin genes affect survival outcomes, we

further investigated the relationship between prognosis-related

genes and clinicopathology features in HCC, including T stages,

pathological stages, histological grades, and vascular invasion

FIGURE 2
Correlation of ephrin genes expression with overall survival (OS) in patients with HCC based on Kaplan-Meier analysis (A–H).
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status. The results indicated that patients with more advanced T

stages and pathological stages tended to have higher expression

levels of EFNA3 and EFNA4 (Figures 4A,B,E,F). Similarly, the

expression of EFNA3 and EFNA4 was positively correlated with

histological grade (Figures 4C,G). We also found that patients

with vascular invasion showed higher expression of EFNA3

(Figure 4D), but no significant difference was observed in

EFNA4 (Figure 4H). However, there was no significant

difference in EFNB1 expression among different T stages,

pathological stages, histological grades, and vascular invasion

statuses (Figures 4I–L). In addition, binary logistic regression

analysis was used to explore the association between EFNs

expression and different clinical characteristics. As shown in

Table 2, we found that the patients in the high EFNA3 expression

group exhibited a higher T stage (T3&T4 vs. T2&T1, p < 0.001)

and pathological stage (Stage III& IV vs. Stage I& II, p < 0.001)

and vascular invasion (Yes vs. No, p = 0.005) than those in the

low EFNA3 expression group. The patients with high

EFNA4 expression were associated with a higher histological

grade (G3&G4 vs. G1&G2, p < 0.001) and AFP levels (>400 ng/
ml vs. ≤400 ng/ml, p < 0.011). Similarly, high expression of

EFNB1 tended to correlate with higher tumor size (T3&T4 vs.

T1&T2, p = 0.034) and advanced TNM stage (Stages III & IV vs.

Stages I & II, p = 0.028). However, the expression of EFNA3,

EFNA4, and EFNB1 showed no significant difference between

age subgroups (>60 vs. ≤60), sex subgroups (male vs. female), N

stages (N1 vs. N0), M stages (M1 vs. M0), and Child–Pugh grades

(B&C vs. A).

Protein interactions and gene set
enrichment analysis of prognosis-related
ephrin genes in HCC

To explore the interactional proteins of prognosis-related

ephrin genes (EFNA3, EFNA4, and EFNB1), protein–protein

interaction networks were constructed by using STRING. The

network diagram in Figure 5A shows the 50 proteins most

correlated with EFNA3, EFNA4, and EFNB1 and their

interaction network based on the STRING database.

GeneMANIA is available to explore gene interactions, and

the results displayed the top 20 genes with the most relevance

to EFNA3, EFNA4, and EFNB1 in accordance with physical

interactions, co-expression, co-location, genetic interaction,

pathway, and shared protein domains (Figure 5B). We found

that both in the gene and protein levels, the prognosis-related

FIGURE 3
Univariate andmultivariate Cox regression analyses of EFNmembers and clinicopathological parameters in HCC displayed with forest plots. (A)
Univariate Cox regression analysis of EFNs and clinicopathological parameters. (B–D) Multivariate Cox regression analysis of ephrin members with
significant prognostic significance.
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EFNs were mainly associated with Eph receptors, such as

EPHA3, EPHA1, EPHA4, EPHA10, and EPHA2. Gene

function prediction suggested that these genes were mostly

involved in ephrin receptor activity, neuron projection

guidance, protein kinase activity, axonogenesis, and

peptidyl-tyrosine modification (Figure 5B).

FIGURE 4
Correlation between prognosis-related ephrins and tumor stage, pathological stage, histological grade, and vascular invasion status in HCC.
(A–D) The differential expression of EFNA3 associated with different tumor stages (A), pathological stages (B), histological grades (C), and vascular
invasion (D). (E–H) The expression levels of EFNA4 for different tumor stages (E), pathological stages (F), histological grades (G), and vascular
invasion (H). (I–L) The correlation between EFNB1 expression and tumor stage (I), pathological stage (J), histological grade (K), and vascular
invasion (L). ns: no significance; *p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 2 The correlation between prognosis-related ephrin genes expression and clinicopathology characteristics.

Characteristics Total(N) EFNA3 EFNA4 EFNB1

Odds ratio p-value Odds ratio p-value Odds ratio p-value

Age (>60 vs. ≤ 60) 373 0.73 (0.49–1.10) 0.132 0.93 (0.62–1.39) 0.719 0.80 (0.53–1.20) 0.275

Gender (Male vs. Female) 374 0.80 (0.52–1.24) 0.320 0.93 (0.60–1.43) 0.740 0.69 (0.45–1.07) 0.098

T stage (T3&T4 vs. T1&T2) 371 2.78 (1.70–4.63) <0.001 1.44 (0.90–2.33) 0.128 1.67 (1.04–2.71) 0.034

N stage (N1 vs. N0) 258 2.64 (0.33–53.85) 0.402 2.83 (0.36–57.36) 0.373 NA 0.994

M stage (M1 vs. M0) 272 2.58 (0.33–52.59) 0.414 0.87 (0.10–7.37) 0.894 1.14 (0.14–9.65) 0.894

Pathologic stage (Stage III & IV vs. Stage I& II) 350 2.94 (1.78–4.98) <0.001 1.41 (0.87–2.30) 0.161 1.72 (1.06–2.82) 0.028

Histologic grade (G3&G4 vs. G1&G2) 369 2.94 (1.90–4.60) <0.001 2.37 (1.54–3.68) <0.001 0.96 (0.63–1.47) 0.860

Vascular invasion (Yes vs. No) 318 1.97 (1.24–3.16) 0.005 1.51 (0.95–2.41) 0.082 1.46 (0.92–2.33) 0.111

AFP (ng/ml) (>400 vs. ≤ 400) 280 1.53 (0.88–2.70) 0.137 2.10 (1.19–3.78) 0.011 0.89 (0.50–1.55) 0.674

Child-Pugh grade (B&C vs. A) 241 0.50 (0.18–1.23) 0.144 0.61 (0.24–1.48) 0.285 0.60 (0.22–1.48) 0.282
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Furthermore, we conducted GSEA to further investigate the

potential biological mechanisms of ephrin genes in HCC. The

results suggested that high expression of EFNA3 was positively

related to 43 gene sets at p value < 0.05 and FDR <0.25. The most

significant pathways enriched in the high EFNA3 group were

“cell cycle,” “DNA replication,” “base excision repair,”

“mismatch repair,” and “nucleotide excision repair”

(Figure 5C). High expression of EFNA4 was distinctly

positively correlated with the “cell cycle,” “DNA replication,”

“thyroid cancer,” “NOTCH signaling pathway,” and “WNT

signaling pathway” (Figure 5D). The GSEA results of

EFNB1 showed that “JAK/STAT signaling pathway,” “MAPK

signaling pathway,” “NOTCH signaling pathway,” “chemokine

signaling pathway,” “chemokine and chemokine receptor

interaction,” and “leukocyte trans-endothelial migration” were

enriched in the EFNB1 high-expression group (Figure 5E).

Ephrin familymembers are correlatedwith
TME and tumor immunity in HCC

To further discuss the potential correlation between ephrin genes

and the tumor immune microenvironment, we applied the

ESTIMATE algorithm to calculate immune and stromal scores for

each HCC sample and then analyzed the association of ephrin genes

(EFNA3, EFNA4, and EFNB1) with immune scores, stromal scores,

ESTIMATE scores, and tumor purity by using the Spearman

correlation method. As shown in Figure 6, the expression of

EFNA3 was evidently negatively related to stromal scores

(R = −0.27, p = 2.1e-07) and ESTIMAT scores (R = −0.13, p =

0.0099) but positively related to tumor purity (R = 0.13, p = 0.0099) in

HCC (Figures 6A–D). Analogously, EFNA4was negatively correlated

with stromal scores (R = −0.24, p = 2.4e-06) and ESTIMAT scores

(R = −0.16, p = 0.0015) but positively correlated with tumor purity

(R = 0.16, p = 0.0015) (Figures 6E–H). The immune scores (R = 0.31,

p = 1.3e-09), stromal scores (R = 0.36, p = 1.4e-12), and ESITIMAT

scores (R = 0.35, p = 4.1e-12) showed a significantly positive

correlation with EFNB1 expression, while EFNB1 expression was

negatively correlated with tumor purity (R = −0.35, p = 4.1e-12) in

HCC (Figures 6I–L).

Moreover, the TIMER database and Spearman correlation

analysis were used to explore the correlation of ephrin family

genes (EFNA3, EFNA4, EFNB1) with the infiltration levels of

immune cells in HCC by using TIMER algorithms. The results

indicated that EFNA3 was notably positively associated with

tumor purity (Rho = 0.137, p = 1.1e-02), B cells (Rho = 0.226,

FIGURE 5
Protein interactions and gene set enrichment analysis (GSEA) of prognosis-related ephrin members (EFNA3, EFNA4, and EFNB1). (A)
Protein–protein interactions (PPIs) based on the STRING database. (B) Interaction network for ephrin members based on the GeneMANIA database.
(C–E) Gene set enrichment analysis (GSEA) of prognosis-related ephrin members, including EFNA3 (C), EFNA4 (D), and EFNB1 (E).
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p = 2.26e-05), CD4+ T cells (Rho = 0.191, p = 3.55e-04),

neutrophil cells (Rho = 0.202, p = 1.55e-04), macrophage cells

(Rho = 0.219, p = 4.11e-05), and dendritic cells (Rho = 0.304, p =

8.24e-09) in HCC (Figure 7A). The expression of EFNA4 showed

positive associations with tumor purity (Rho = 0.184, p = 5.9e-

04), B cells (Rho = 0.297, p = 1.87e-08), CD4+ T cells (Rho = 0.192,

p = 3.25e-04), neutrophil cells (Rho = 0.334, p = 2.0e-10),

macrophage cells (Rho = 0.195, p = 2.72e-04), and dendritic

cells (Rho = 0.385, p = 2.59e-12) (Figure 7B). However, no

correlation was observed between EFNA3/EFNA4 expression

and the infiltration levels of CD8+ T cells (Figures 7A,B).

EFNB1 was found to have a statistically significant negative

correlation with tumor purity (Rho = −0.247, p = 3.3e-06) and

a positive correlation with B cells (Rho = 0.171, p = 1.45e-03),

CD4+ T cells (Rho = 0.334, p = 2.02e-10), CD8+ T cells (Rho =

0.157, p = 3.45e-03), neutrophil cells (Rho = 0.342, p = 6.73e-11),

macrophage cells (Rho = 0.433, p = 3.44e-17), and dendritic cells

(Rho = 0.427, p = 9.29e-17) (Figure 7C). In addition, we applied

other algorithms, such as XCELL, QUANTISEQ,

MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT,

to comprehensively analyze the association of prognostic ephrin

genes with tumor immunity. The results showed that

EFNA3 expression was evidently correlated with most immune

cells, such as hematopoietic stem cells (XCELL, Rho = −0.394, p =

3.06E-15), endothelial cells (XCELL, Rho = −0.39, p = 6.36E-15),

and common lymphoid progenitors (XCELL, Rho = 0.311, p =

8.53E-10) (Supplementary Figure S3; Supplementary Table S1).

Similarly, there were significant associations between

EFNA4 expression and various immune cells (Supplementary

Figure S4; Supplementary Table S2). We also found that the

expression of EFNB1 was positively related to most immune

and stromal cells in HCC tissues, such as cancer-associated

fibroblasts, myeloid dendritic cells, and M2 macrophages

(Supplementary Figure S5; Supplementary Table S3).

FIGURE 6
Correlation between the expression of prognostic ephrin genes and the tumormicroenvironment based on the ESTIMATE algorithm. (A–D) The
correlation between EFNA3 expression and immune/stromal/ESTIMATE/tumor purity scores. (E–H) The correlation between EFNA4 expression and
immune/stromal/ESTIMATE/tumor purity scores. (I–L) The correlation between EFNB1 expression and immune/stromal/ESTIMATE/tumor purity
scores. R: Spearman’s rank coefficient.
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In addition, we further investigated the potential relevance

between ephrin family genes (EFNA3, EFNA4, EFNB1) and

different immune subtypes of HCC, and the results revealed

that the expression of EFNA3 and EFNA4 was prominently

correlated with immune subtype (p = 5.23e-05, p = 1.68e-04,

respectively). EFNA3 and EFNA4 were highly expressed in the

C1 subtype but expressed at low levels in the C3 subtype (Figures

7D,E). This finding indicated that EFNA3 and EFNA4 may be

more involved in wound healing but less involved in

inflammatory processes. However, no significant association

was observed between EFNB1 expression and immune

subtype (Figure 7F).

Relationship between ephrin gene
expression and ICIs

It was reported that immune checkpoint-related genes, TMB,

and MSI can serve as effective predictors for ICIs. Thus, we

assessed the latent correlations of prognosis-related ephrin genes

(EFNA3, EFNA4, EFNB1) with these ICIs biomarkers in HCC. A

multigene correlation heatmap of gene co-expression analyses

showed that EFNA3 expression was significantly related to

24 immune checkpoint-related genes, EFNA4 was significantly

correlated with 23 immune-related genes, and there was a highly

positive correlation between EFNB1 expression and immune-related

FIGURE 7
Correlation of significant prognostic ephrin genes with tumor-infiltrating immune cells and immune subtypes in HCC using TIMER algorithms.
(A) EFNA3; (B) EFNA4; and (C) EFNB1. Tumor purity is shown in the panels on the left. (D–F) The correlation between prognostic ephrin genes (EFNA3,
EFNA4, and EFNB1) expression and immune subtypes in HCC using TISIDB. Rho, Spearman’s rank coefficient; Pv, p value; C1, wound healing; C2,
IFN-gamma dominant; C3, inflammatory; C4, lymphocyte depleted; C5, immunologically quiet; C6, TGF-b dominant.
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genes (Figure 8A). We highlighted the association between

ephrin genes expression and four key immune checkpoint-

related genes (PDCD1, CTLA4, CD274, and PDCD1LG2)

using Spearman correlation analysis. The scatter plots showed

that the expression of PDCD1 and CTLA4 was positively

correlated with EFNA3 expression (r = 0.11, p = 0.033; r =

0.205, p < 0.001), while no association was found between

EFNA3, CD274 and PDCD1LG2 (Figure 8B).

EFNA4 exhibited a significant positive correlation with

PDCD1 (r = 0.131, p = 0.011) and CTLA4 (r = 0.139, p =

0.007) but a negative correlation with PDCD1LG2 (r = –0.119,

p = 0.021) (Figure 8C). Remarkably, EFNB1 expression was

significantly positively associated with PDCD1 (r = 0.334, p <
0.001), CTLA4 (r = 0.305, p < 0.001), CD274 (r = 0.273, p <
0.001), and PDCD1LG2 (r = 0.305, p < 0.001) (Figure 8D).

Furthermore, we performed an investigation to analyze the

association of ephrin genes with TMB and MSI by integrating

gene expression and TMB/MSI data. We found that HCC

patients with a high TMB highly expressed EFNA3 (p =

0.046) and EFNA4 (p = 0.048) (Figures 9A,B), and Spearman

correlation analysis also indicated that TMB levels were

positively correlated with the expression of EFNA3 (R = 0.13,

p = 0.015) and EFNA4 (R = 0.15, p = 0.0039) (Figures 9D,E).

However, there was no significant association between

EFNB1 expression and TMB scores (Figures 9C,F). Similarly,

HCC patients with high MSI exhibited higher EFNA3 (p =

0.0046) and EFNA4 (p = 0.004) expression than those with

low MSI (Figures 9G,H), and the expression levels of EFNA3

(R = 0.14, p = 0.0075) and EFNA4 (R = 0.15, p = 0.003) were

significantly positively related to MSI scores based on Spearman

correlation analysis (Figures 9J,K). No significant relationship

was observed between EFNB1 expression and MSI status

(Figures 9I,L).

Ephrin genes predict the response to
chemotherapy and targeted therapy
in HCC

To probe the correlation between prognosis-related ephrin

genes (EFNA3, EFNA4, and EFNB1) and drug sensitivity to

chemotherapy and targeted therapy, we compared the

FIGURE 8
Relationship between significant prognostic ephrin members and immune checkpoint-related genes in HCC. (A) Heatmap displaying the
coexpression relationship between prognosis-related ephrins and 47 immune checkpoint-related genes. (B–D) Scatterplots displaying the
association of EFNA3 (B), EFNA4 (C), and EFNB1 (D) expression with four key immune checkpoint-related genes (PDCD1, CTLA4, CD274, and
PDCD1LG2) with Spearman correlation analysis. r: Spearman’s rank coefficient; *p < 0.05; **p < 0.01.
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IC50 values of six commonly used drugs (camptothecin,

cisplatin, gemcitabine, doxorubicin, mitomycin C, and

sorafenib) in the high- and low-EFNs expression subgroups

using pRRophetic algorithm. As shown in Figures 10A–R, a

lower IC50 of cisplatin (p = 0.0092), doxorubicin (p = 0.0025),

gemcitabine (p = 3.1e-11), and mitomycin C (p = 1.4e-10) was

present in the high EFNA3 expression group compared with the

low expression group, indicating that HCC patients with high

FIGURE 9
Association of prognosis-related ephrins with tumor mutation burden (TMB) and microsatellite instability (MSI) in HCC. (A–C) The differential
expression of EFNA3, EFNA4, and EFNB1 in the low- and high-TMB groups. (D–F) Scatterplots displaying the association between TMB scores and
EFNA3 expression (D), EFNA4 expression (E), and EFNB1 expression (F). (G–I) The differential expression of EFNA3, EFNA4, and EFNB1 in the low- and
high-MSI groups. (J–L) Scatterplots displaying the association between MSI scores and EFNA3 expression (J), EFNA4 expression (K), and
EFNB1 expression (L). r: Spearman’s rank coefficient.
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EFNA3 expression appeared to be more susceptible to these

drugs. However, no significant difference was observed between

camptothecin and sorafenib (Figures 10A–F). The expression of

EFNA4 was also significantly related to the IC50 of cisplatin (p =

0.0075), doxorubicin (p = 7e-07), gemcitabine (p = 2.4e-16), and

mitomycin C (p = 3.2e-14), showing that the high-expression

populations were more sensitive to these drugs, but the IC50 of

camptothecin and sorafenib was not evidently different in the

high- and low-expression groups (Figures 10G–L). Regarding the

correlation between EFNB1 and drug sensitivity, we found that

HCC patients with high EFNB1 expression exhibited a better

drug response to doxorubicin (p = 0.0001), gemcitabine (p =

1.91e-8), and mitomycin C (p = 1e-05) than those with low

EFNB1 expression, while the opposite results were discovered for

cisplatin (p = 0.049) and sorafenib (p = 1e-06) (Figures 10M–R).

In brief, the results indicated that EFNs expression may

contribute to evaluating the response to chemotherapy and

targeted therapy in patients with HCC. Regrettably, the

IC50 of immune checkpoint inhibitors is currently not

available in GDC cell lines, thus we could not predict the

response to ICIs by using “pRRophetic” R package.

Correlation between ephrin gene
expression and gene mutational
landscape

In the HCC project of TCGA database, a total of 369 samples

were included for detecting genetic mutations. Then, we integrated

the gene expression and mutation data and further compared gene

mutational frequency in high- and low-expression groups of ephrin

genes (EFNA3, EFNA4, and EFNB1). The results are highlighted in

Supplementary Figure S6. The top 15 genes with the highest

mutational frequency are presented in the Waterfall plots. The

mutational frequency of the 15 genes showed significant

differences in the high- and low-expression groups of EFNA3,

including TP53 (p = 8.6e-04), ABCA13 (p = 5.4e-04), RB1 (p =

0.04), DCHS2 (p = 0.03), HELZ (p = 0.04), DOCK10 (p = 0.04),

MICAL3 (p = 0.02), COL3A1 (p = 0.02), ITGAD (p = 0.02),

DENND4A (p = 0.02), CHSY3 (p = 0.04), ADGRB1 (p = 0.04),

FAM65B (p = 0.04), BNC2 (p = 0.04), and FAM205A (p = 0.04)

(Supplementary Figure S6A). With regard to EFNA4, we found that

gene mutations were more common in the high expression group

compared with the low expression group, such as TP53 (p = 8.6e-

04), CTNNB1 (p = 5.3e-03), MUC4 (p = 0.04), RYR2 (p = 0.02),

HMCN1 (p = 0.04), PREX2 (p = 0.03), MUC5B (p = 0.01), TDRD5

(p= 8.7e-03), SVEP1 (p= 0.04), ROBO1 (p= 0.03), EP300 (p= 0.04),

and ARFGEF3 (p = 0.02), while higher mutation of IL6ST, DMBT1,

and DOCK8 was observed in low EFNA4 expression group

(Supplementary Figure S6B). The association between

EFNB1 expression and the gene mutational landscape indicated

that themutational frequency of the tenmutated genes was higher in

the high EFNB1 expression group, while the other five gene

mutations occurred more commonly in the low expression group

(Supplementary Figure S6C). In brief, it can be concluded that high

expression of EFNA3, EFNA4, and EFNB1may be relevant to more

gene mutations and, thus, drive oncogenesis and tumor progression

of HCC.

FIGURE 10
The IC50 values of six commonly used drugs (camptothecin, cisplatin, doxorubicin, gemcitabine, mitomycin C, and sorafenib) were compared
between high- and low-expression subgroups of prognostic ephrin genes in HCC. (A–F) EFNA3, (G–L) EFNA4, and (M–R) EFNB1.
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Expression levels of ephrin genes in HCC
cells and clinical tissues were identified by
qPCR

In the above bioinformatics analysis based on the TCGA

dataset, we found that some ephrin genes (EFNA1, EFNA3,

EFNA4, EFNB1, EFNB2) were significantly upregulated in

HCC tissues, and EFNB3 was downregulated in HCC tissues,

while EFNA2 and EFNA5 showed no significant differences

between cancer tissues and adjacent normal tissues. To

validate the results of the bioinformatics analysis, RT-qPCR

was applied to detect mRNA expression in five HCC cell lines

FIGURE 11
Ephrin family genes are abnormally expressed in HCC cell lines and HCC tissues. (A–H) RT–qPCR analysis of the mRNA expression of ephrin
genes in five HCC cell lines (HCC-LM3, MHCC97-H, SMMC 7721, Huh-7, and HepG2) and a normal liver cell line (LO2). EFNA1 (A), EFNA2 (B),
EFNA3 (C), EFNA4 (D), EFNA5 (E), EFNB1 (F), EFNB2 (G), and EFNB3 (H). (I–P) The mRNA expression of ephrin genes in 40 pairs of HCC tissues and
adjacent para-carcinoma tissues was evaluated using qPCR. EFNA1 (I), EFNA1 (I), EFNA2 (J), EFNA3 (K), EFNA4 (L), EFNA5 (M), EFNB1 (N),
EFNB2 (O), and EFNB3 (P). GAPDH was used as an internal control. Error bars represent the means ± SEM (triplicate experiments). *p < 0.05; **p <
0.01; ***p < 0.001.
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(HCC-LM3, MHCC97-H, SMMC 7721, Huh-7, and HepG2) and

40 paired HCC tissues. The results suggested that the mRNA

expression of EFNA1, EFNA3 and EFNA4 was evidently higher

in five HCC cell lines (HCC-LM3, MHCC97-H, SMMC 7721,

Huh-7, and HepG2) (p < 0.05) (Figures 11A,C,D) and tumor

tissues (p = 0.0362, p = 0.0021 and p = 0.0032, respectively)

(Figures 11I,K,L) than in a normal liver cell line (L-02) and paired

para-cancerous tissues. EFNA2 and EFNA5 were highly

expressed in certain cell lines (Figures 11B,E) and showed no

significant differences between cancer tissues and adjacent

normal tissues (Figures 11J,M). The expression of EFNB1 was

significantly increased in HCC-LM3, MHCC97-H, SMMC 7721,

and HepG2 cells compared with the normal liver cell line (L-02),

while EFNB1 expression was decreased in Huh-7 cells compared

with the L-02 control (p < 0.05) (Figure 11F). Similarly,

EFNB1 expression was significantly higher in cancer tissues

than in paired adjacent normal tissues (p = 0.0012)

(Figure 11N). The expression of EFNB2 was obviously higher

in HCC cell lines (HCC-LM3, MHCC 97-H, SMMC 7721) but

lower in Huh7 and HepG2 compared to the expression in normal

liver cell line (L-02) (Figure 11G). Moreover, EFNB2 had a higher

expression level in cancer tissues than in para-carcinoma tissues

(p = 0.0458) (Figure 11O). In addition, the level of EFNB3 in the

HCC cells and cancerous tissues was significantly reduced

compared with the normal liver cell line L-02 (p<0.05)
(Figure 11H) and the para-carcinoma tissues (p < 0.0001)

(Figure 11P). These experimental results were consistent with

those of the bioinformatics analysis.

Discussion

The Eph/ephrin bidirectional signaling system is composed

of a family of tyrosine kinase receptors and their plasma

membrane-bound ligands (ephrins), which act as vital

regulators for a variety of physiological and biological

activities, such as axon guidance, cell–cell interactions, cell

migration, and angiogenesis. Recently, an increasing number

of studies have focused on its role in tumorigenesis and

metastatic potential as related to tumor growth and survival.

Aberrant ephrin expression is closely correlated with

tumorigenicity, tumor vasculature, invasion, and metastasis in

many types of human cancers, including HCC (McCarron et al.,

2010). Thus, our study emphasized exploring the expression

pattern, prognostic value and potential function of ephrin family

genes in HCC, which may play a crucial role in the discovery of

novel inhibition targets and therapeutic strategies for patients

with HCC.

The ephrin ligands are aberrantly expressed in a variety of

tumors and have been implicated in tumor progression,

malignancy, and prognosis (Ieguchi and Maru, 2019). In

HCC, for example, the expression level of EFNA1 is positively

related to microscopic portal invasion after curative resection

(Wada et al., 2014). EFNA2 was significantly upregulated in HCC

cell lines and tissue samples, and its overexpression was

associated with more aggressive tumor behaviors (Feng et al.,

2010). EFNA3 was upregulated in HCC tissues, and its

overexpression was associated with more aggressive tumor

behaviors (Husain et al., 2022). EFNA4 is highly expressed

and leads to poor prognosis in patients with HCC (Lin et al.,

2021). The expression of EFNB1 is significantly higher in HCC

tissues than in nontumor tissues and contributes to tumor

progression in vivo by promoting neovascularization in HCC

(Sawai et al., 2003). Although ephrin family genes have been

extensively studied, the role of ephrins in cancers is not yet

understood, as some tumors present with elevated levels of

ephrin expression, while others demonstrate decreased

expression (McCarron et al., 2010). In our study, the

expression levels of ephrin members were comprehensively

analyzed in 31 human cancer types based on TCGA and

GTEx datasets. We found that the expression of EFNA1,

EFNA2, EFNA3, EFNA4, EFNB1, and EFNB2 was

upregulated in the tumor tissues of most cancers compared

with corresponding normal tissues. EFNA5 and

EFNB1 showed low expression in most cancers. In addition,

this study focused on investigating the expression levels of ephrin

genes and their relationship to prognosis in HCC. We found that

the expression of EFNA1, EFNA3, EFNA4, EFNB1, and

EFNB2 was significantly higher in HCC tissues than in paired

normal tissues, and higher expression of EFNA1, EFNA3,

EFNA4, EFNA5, and EFNB1 was associated with worse

overall survival in patients with HCC. Whereas

EFNB3 showed low expression in cancerous tissues,

EFNA2 and EFNA5 expression showed no evident difference

between tumor and normal tissues. Moreover, we have validated

this differential expression results of bioinformatic analysis via

performing RT-qPCR in HCC cell lines and clinical tissue

samples. Besides, all the ephrin genes except EFNA2 and

EFNA5 presented high disease diagnostic performance for

HCC, with AUC>0.7. Cox regression analysis indicated that

EFNA3, EFNA4, and EFNB1 were independent prognostic

factors for OS and were defined as prognosis-related ephrin

genes. We also discovered a significant correlation between

the expression of EFNA3, EFNA4, and EFNB1 and T stage,

pathological stage, histological grade, and vascular invasion. In

short, these findings suggest that some ephrin genes (EFNA3,

EFNA4, and EFNB1) are closely related to malignant biological

behavior, such as tumor growth, vascular invasion and distant

metastasis, and, thus, could be used as promising diagnostic and

prognostic biomarkers in patients with HCC.

It has been reported that ephrins are abnormally

expressed in multiple tumors and implicated in tumor

development and metastasis, but their specific mechanism

is still unclear. In this study, we focused on analyzing the

protein–protein correlation and potential biological

mechanisms of prognostic ephrin genes (EFNA3, EFNA4,
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and EFNB1) in HCC. The PPI network indicated that the

three ephrins were mainly associated with Eph receptors and

participated in ephrin receptor activity, protein kinase

activity, neuron projection guidance, axonogenesis, and

peptidyl-tyrosine modification, which was consistent with

the results reported in previous work (McCarron et al.,

2010). Furthermore, the potential biological mechanisms

of EFNA3, EFNA4, and EFNB1 in HCC exhibit large

variation based on GSEA. High EFNA3 expression was

mainly involved in the following pathways: “cell cycle,”

“DNA replication,” “base excision repair,” “mismatch

repair,” and “nucleotide excision repair.” EFNA4 may

affect tumor progression by changing pathways such as

the “cell cycle,” “DNA replication,” “thyroid cancer,”

“NOTCH signaling pathway,” and “WNT signaling

pathway.” EFNB1 mainly participates in cancer-related

pathways, such as the “JAK/STAT signaling pathway,”

“MAPK signaling pathway,” and “NOTCH signaling

pathway,” as well as immune regulation processes,

including the “chemokine signaling pathway,” “chemokine

and chemokine receptor interaction,” and “leukocyte

transendothelial migration.” A previous study reported

that suppression of EFNA3 expression promotes cell

proliferation, migration, and invasion and regulates EMT

in oral squamous cell carcinoma via the PI3K/AKT signaling

pathway (Wang et al., 2020). In contrast, EFNA3 contributes

to tumor cell self-renewal, proliferation and migration in

HCC under hypoxia via SREBP1/ACLY-mediated metabolic

rewiring in HCC (Husain et al., 2022). EFNA4 influences the

proliferation and migration of HCC cells by promoting

EphA2 phosphorylation at Ser897, activating the PIK3R2/

GSK3β/β-catenin signaling pathway loop (Lin et al., 2021). A

novel anti-EFNA4 drug (PF-06647263) binds specifically to

EFNA4-expressing cells and subsequently induces DNA

cleavage and apoptosis/cell death in triple-negative breast

and ovarian tumors (Damelin et al., 2015; Garrido-Laguna

et al., 2019). In general, during the process of tumor

progression, ephrins may play critical roles through

different mechanisms, which can vary among different

genes or cancer types. Therefore, further experiments are

needed to elucidate the specific molecular mechanisms of

prognosis-related ehprins in HCC.

The tumor microenvironment has crucial roles in the

development and progression of HCC, and distinct immune

features, such as inflamed and noninflamed classes of HCC,

and different genomic signatures are correlated with the

immune therapy response (Llovet et al., 2022). Emerging

evidence indicates that the Eph/ephrin signaling system

plays a pivotal role in remodeling the tumor

microenvironment and regulating immune cell infiltration

(Janes et al., 2021). Unique microenvironments caused by

cancer cells in turn induce the abnormal expression of the

Eph/ephrin complex (Iwasaki et al., 2018; Husain et al.,

2022). For example, EFNB1, which is widely expressed on

T cells, B cells, and monocytes/macrophages, has been

proven to mediate various immune events, such as

lymphocyte activation and adhesion, T-cell differentiation

and survival, regulation of acquired immune responses, and

cytokine production (Yu et al., 2004; Luo et al., 2011).

EFNB1 and two Eph receptors (EPHB6 and EPHB4)

collaborate to repulsively control follicular T-helper cell

retention in the germinal center and promote interleukin

21 (IL-21) production by T cells locally (Lu et al., 2017). All

previous studies are consistent with the results of functional

enrichment analysis in our study showing that EFNB1 is

closely involved in immune regulation. However, the

function of other EFNs in the tumor immune response is

limited. In our study, we systematically analyzed the

correlation between EFNs expression and TME scores,

tumor immune cell infiltration, and immune subtypes

using different immune algorithms. Our results suggest

that EFNA3 and EFNA4 were negatively related to

stromal and ESTIMATE scores but positively associated

with tumor purity in HCC, which is consistent with the

results obtained by Deng et al. (2021) in lung

adenocarcinoma that EFNA3 is negatively associated with

immunity and stromal infiltration. Moreover, EFNA3 and

EFNA4 were positively associated with immune cell

infiltration of B cells, CD4+ T cells, neutrophils,

macrophages, and DCs but were not related to CD8+

T cells. We also discovered that EFNB1 was positively

correlated with immune, stromal, and ESTIMATE scores

but negatively correlated with tumor purity. Furthermore,

we found a significant positive association between

EFNB1 and different immune response cells toward

cancer, such as B cells, CD4+ T cells, CD8+ T cells,

neutrophils, macrophages, and DCs. These findings

revealed that high expression of EFNA3, EFNA4, and

EFNB1 in HCC tissues is not only related to tumor

progression and poor prognosis but also promotes

immune cell infiltration, which may improve antitumor

immune responses.

In the past decade, antitumor responses have achieved

unprecedented rates of long-lasting tumor responses in

patients with a variety of cancers, including HCC, which can

be realized by antibodies blocking the CTLA-4 or PD-1 pathway,

either alone or in combination (Ribas and Wolchok, 2018). In

HCC, tremelimumab plus durvalumab yields superior overall

survival versus sorafenib (Kelley et al., 2021). The combination of

atezolizumab and bevacizumab improves overall survival relative

to sorafenib, which has already gained FDA approval for use in

patients with HCC (Qin et al., 2021). Despite these major

advances, more than half of HCC patients still do not

respond to ICIs. Moreover, no reliable predictive biomarker of

response to immunotherapy is available to guide personalized

treatment and improve survival. Several potential biomarkers,
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such as PD-L1 expression, TMB, and specific genomic

alterations, have been proposed based on exploratory end

points in HCC trials (Pinter et al., 2021). The combined PD-

L1 positivity score was associated with response to

pembrolizumab and PFS in patients with HCC (Zhu et al.,

2018). Patients with higher MSI and TMB may be more

sensitive to ICIs based on previous studies in non-small-cell

lung cancer and colon cancer (Samstein et al., 2019; Schrock

et al., 2019). However, TMB is generally low and MSI is rare in

HCC, which may limit their utility as biomarkers to predict ICI

outcomes. Based on the current evidence, the incorporation of

several predictive factors, such as genetic, TMB, MSI, and

microenvironmental factors, may be more likely to estimate

the response to ICIs than a single biomarker. Therefore, we

performed a comprehensive correlation analysis between EFNs

expression and previous biomarkers of ICIs, including immune

checkpoint-related genes, TMB, and MSI. The results indicated

that EFNA3 and EFNA4 were significantly related to some

immune-related genes, TMB, and MSI in HCC; EFNB1 was

positively associated with most immune-related genes, such as

PD-1, CTLA4, PD-L1, and PD-L2, but unrelated to TMB and

MSI scores. These findings suggest that EFNs may be used as

integrated biomarkers to predict the therapeutic efficacy of ICIs

in HCC. Nevertheless, studies on immunotherapy are still far

from mature, especially in the aspect of sensitivity to ICIs, and

the IC50 of ICIs has not been included in GDC database, which

restricted our analyses to immunotherapy sensitivity via EFNs

genes expression.

In this study, we found the expression levels of

prognosis-related ephrin genes (EFNA3, EFNA4, and

EFNB1) were associated with certain drugs sensitivity to

chemotherapy and targeted therapy, the patients with

higher expression of EFNA3, EFNA4, and EFNB1 may be

more susceptible to these drugs. However, the high EFNA3/

EFNA4 expression associated with worse overall survival in

patients with HCC. How to explain this discrepancy? Firstly,

our study is a retrospective data based on a public database,

the treatment drugs for these patients was not available in

TGCA database, which means the patient with high EFNs

expression and poor prognosis probably did not use sensitive

drugs. Secondly, in the drugs sensitivity analysis, we used

pRRophetic algorithm to compared the IC50 values of

common drugs in the high- and low-EFNs expression

subgroups, which was based on expression matrix and

drug information of the Cancer Genome Project (CGP)

cell lines. The clinical roles of this analysis may guide

drugs selection and predict drugs response in certain

EFNs expression populations. Furthermore, the EFNs

expression is associated to other prognostic factors, such

as gene mutational landscape and tumor immune

microenvironment. In brief, the patient with high EFNs

expression exhibiting a better response to certain drugs

does not mean a better prognosis.

In summary, we conducted comprehensive analyses of

ephrin family members in HCC to explore their expression

patterns and prognostic values using multiple databases. We

discovered that EFNA3, EFNA4, and EFNB1 were highly

expressed in HCC tissues compared with normal samples,

and the high expression of these genes was associated with

tumor progression and vascular invasion and, thus, led to

poor prognosis in patients with HCC. Moreover, we found

that prognosis-related EFNs were closely related to the TME,

immune cell infiltration, immune subtypes, and biomarkers

of ICIs, which may provide a new direction for the discovery

of novel therapeutic targets and predictive biomarkers for

immunotherapy.
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The expression levels of ephrin family genes in 31 cancer types based on
TCGA and GTEx datasets . (A–H) *p < 0.05; **p <0.01; ***p < 0.001.

SUPPLEMENTARY FIGURE S2
Association of ephrin expression with progression-free interval (PFI) (A)
and disease-specific survival (DSS) (B) in HCC based on Kaplan–Meier
analysis.

SUPPLEMENTARY FIGURE S3
Correlation between EFNA3 and tumor-infiltrating immune cells in HCC
based on the XCELL, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-
ABS, and CIBERSORT algorithms.

SUPPLEMENTARY FIGURE S4
Correlation between EFNA4 and tumor-infiltrating immune cells in HCC
based on the XCELL, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-
ABS, and CIBERSORT algorithms.

SUPPLEMENTARY FIGURE S5
Correlation between EFNB1 and tumor-infiltrating immune cells in HCC
based on the XCELL, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-
ABS, and CIBERSORT algorithms.

SUPPLEMENTARY FIGURE S6
Correlation between prognosis-related ephrin gene expression and
gene mutational landscapes. (A) EFNA3; (B) EFNA4; and (C) EFNB1.
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Glossary

HCC hepatocellular carcinoma

Eph Erythropoietin-producing hepatocellular carcinoma

Ephrins Eph receptor interacting ligands

EFNs Eph receptor interacting ligands

TME tumor microenvironment

TCGA the Cancer Genome Atlas database

GTEx Genotype-Tissue Expression database

TIMER Tumor Immune Evaluation Resource

TPM transcripts per million reads

TMB tumor mutation burden

MSI microsatellite instability

OS Overall Survival

DSS Disease-Specific Survival

PFI Progression Free Interval

ROC Receiver Operating Characteristics

AUC Area Under the ROC Curve

PPI protein-protein interaction

GSEA gene set enrichment analysis

ICIs immune checkpoint inhibitors

SNP Single nucleotide polymorphisms

RT-qPCR real-time reverse transcription-quantitative

polymerase chain reaction

qPCR Quantitative Real-time Polymerase Chain Reaction

ACC Adrenocortical carcinoma

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical

adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid neoplasm diffuse large B cell lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and neck squamous cell carcinoma

KICH Kidney chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute myeloid leukemia

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and paraganglioma

PRAD Prostate adenocarcinoma;

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

TGCT Testicular germ cell tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine corpus endometrial carcinoma

UCS Uterine carcinosarcoma

UVM Uveal melanoma
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Background: The type 2 mannose receptor C (MRC2) is involved in tumor

biological processes and plays a new role in the remodeling of the extracellular

matrix turnover. Previous studies have demonstratedMRC2 expression profiling

and prognostic relevance in some tumor types. However, the clinical and

immunotherapeutic value of MRC2 in pan-cancers remains controversial.

Our study aimed to evaluate MRC2 expression pattern, clinical

characteristics and prognostic significance in 33 cancers, explore the

relationship between MRC2 and immune-related characteristics, and assess

the prediction of MRC2 for the immunotherapeutic response.

Methods: Transcriptional and clinical data of 33 cancers were downloaded

from The Cancer Genome Atlas database (TCGA) database and two

independent immunotherapeutic cohorts were obtained from GSE67501 and

the IMvigor210 study. Next, patients stratified by MRC2 expression levels were

displayed by Kaplan-Meier plot to compare prognosis-related indexes.

Meanwhile, immune infiltrates of different cancers were estimated by tumor

immune estimation resources (TIMER) and CIBERSORT. The ESTIMATE

algorithm was used to estimate the immune and stromal scores in tumor

tissues. MRC2 expression and immunological modulators, including immune

inhibitors, immune stimulators, and MHC molecules, were screened through
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the TISIDB portal. Gene-set enrichment analysis analyses were performed to

explore the underlying biological process of MRC2 across different cancers. The

immunotherapeutic response prediction was performed in two independent

cohorts (GSE78220: metastatic melanoma with pembrolizumab treatment and

IMvigor210: advanced urothelial cancer with atezolizumab intervention).

Results:MRC2 is expressed differently in many cancers and has been shown to

have potential prognostic predicting significance. MRC2 was significantly

associated with immune cell infiltration, immune modulators, and

immunotherapeutic markers. Notably, the immunotherapeutic response

group was associated with lower MRC2 expression in metastatic melanoma

and advanced urothelial carcinoma cohort.

Conclusion: This study demonstrated that MRC2 could be a prognostic

indicator for certain cancer and is critical for tumor immune

microenvironments. MRC2 expression level may influence and predict

immune checkpoint blockade response as a potential indicator.

KEYWORDS

mannose receptor C type 2 (MRC2), pan-cancer, immunotherapy, immune response,
prognosis

Introduction

More recently, although immune checkpoint blockade

therapy is considered a promising strategy for cancers,

literature has emerged that less than one-third of the patients

who received immunotherapy have significant therapeutic effects

(Wang et al., 2019). Except for the antigenicity and mutational

burden of cancer, the response to immunotherapy is affected by

many factors, such as the composition of the tumor-associated

extracellular matrix (ECM) (Madsen and Bugge, 2015).

Degradation of the surrounding ECM could promote tumor

invasion and destroy the normal tissues. Regarding

immunotherapy, ECM could hinder tumor immune

infiltration and act as ligands for immune inhibitory receptors

(Mariathasan et al., 2018). Consequently, the tumor-associated

ECM regulation is expected to provide a novel sight for

optimizing the immunotherapeutic strategies and improving

the prognosis of cancer (He et al., 2021).

The mannose receptor C type 2 (MRC2), also known as

uPARAP/Endo180, plays a pivotal role in the remodeling of

the extracellular matrix turnover, such as collagen binding and

internalization (Honardoust et al., 2006; Rohani et al., 2014).

Meanwhile, MRC2 has an impact on cell migration and

invasion involved in tissue repair, cancer progression

(Melander et al., 2015; Jurgensen et al., 2020), and more

pathological lymphangiogenesis (Engelholm et al., 2001;

Durre et al., 2018). It has previously been observed that the

expression of MRC2 is aberrantly upregulated in a variety of

cancers and associated with poor prognosis, upregulated in

including breast cancer, prostate cancer, hepatocellular

carcinoma, as well as head and neck cancer (Sulek et al.,

2007; Wienke et al., 2007; Kogianni et al., 2009; Palmieri

et al., 2013; Gai et al., 2014). However, little systematic

research has been focused on the MRC2 expression features

and prognosis in pan-cancers. Besides, though extensive

research has been carried out on the relationship between

immune therapy and ECM, no related study clarified the

immune-related characteristics and immunotherapeutic

prediction of MRC2 in different cancers.

In our study, we evaluated the MRC2 expression and

prognosis-related significance across 33 cancer types based on

Cancer Genome Atlas (TCGA) data. Furthermore, the

associations between MRC2 and tumor-infiltrating immune

cells, immune-related modulators, tumor mutation burden,

and microsatellite instability in the tumor microenvironments

were analyzed. Additionally, the therapy response with different

MRC2 expression levels to immunotherapies for melanoma and

urothelial carcinoma was further investigated according to the

public immunotherapeutic cohorts.

Methods and materials

Data sources

RNA sequencing data and the corresponding clinical

information of 33 cancer types were downloaded from

TCGA by using the UCSC cancer genome browser (https://

tcga. xenahubs.net, accessed April 2020). Totally, 11,007 cases

were evaluated in the final analysis and the abbreviations of

33 cancers were summarized in Table 1. Two independent

immune therapy cohorts were obtained in this research: The

IMvigor210 cohort (advanced urothelial cancer with

atezolizumab intervention) was collected from the website
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based on the Creative Commons 3.0 license (http://research-

pub.Gene.com/imvigor210corebiologies) (Mariathasan et al.,

2018), and the GSE78220 (metastatic melanoma with

pembrolizumab treatment) was downloaded from the Gene

Expression Omnibus database (GEO, https://www.ncbi.nlm.

nih.gov/geo/).

Clinical features and prognosis associated
significance of MRC2 in 33 cancers

Gene expression profiles and corresponding clinical

information of 33 tumor types was extracted from TCGA.

The univariate Cox model was applied to calculate the

associations between MRC2 expression levels and patient

survival to compare overall survival (OS), disease-free

survival (DFS), disease-specific survival (DSS), and

progression-free survival (PFS) across the 33 cancer types.

Patients stratified by MRC2 expression levels were evaluated

by log-rank test and visualized by Kaplan-Meier (KM) curves.

MRC2 activity was generated by single-sample gene-set

enrichment analysis (ssGSEA), which was utilized to

quantify the enrichment scores of immune cells and

immune functions for each cancer types. The difference in

MRC2 activity between normal and tumor groups was further

investigated. To evaluate differences in MRC2 expression at

the protein level, IHC images of MRC2 protein expression in

normal tissues and tumors tissues, were downloaded from the

TABLE 1 Abbreviation of 33 human cancers.

Abbreviation Full name

ACC Adrenocortical carcinoma

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and neck squamous cell carcinoma

KICH Kidney chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute myeloid leukemia

LGG Brain lower grade glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

TGCT Testicular germ cell tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine corpus endometrial carcinoma

UCS Uterine carcinosarcoma

UVM Uveal melanoma
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HPA (http://www.proteinatlas.org/) and analyzed. To evaluate

differences in MRC2 expression at the protein level, IHC

images of MRC2 protein expression in normal tissues and

tumors tissues, were downloaded from the HPA (http://www.

proteinatlas.org/) and analyzed. p < 0.05 was regarded as a

statistical significance.

MRC2 and immune-associated
characteristics in 33 cancers

The tumor immune estimation resources (TIMER,

https://cistrome.shinyapps.io/timer/) and

CIBERSORT((http://cibersort.stanford.edu/) were carried

FIGURE 1
The clinical correlation and activity of MRC2. (A) The differential expression analysis between tumor and normal groups of MRC2 in 33 cancers;
(B) The different activity analysis between tumor and normal groups of MRC2 in 33 cancers; (C) The correlation between age and MRC2. (D); The
correlation between gender and MRC2; (E) The correlation between stage and MRC2. “**” indicates p < 0.01 and “***” indicates p < 0.001.
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out to estimate the tumor immune infiltration in different

cancers, respectively (Li et al., 2017; Newman et al., 2019).

ESTIMATE algorithm was performed to calculate the

immune and stromal scores, as well as the correlation

with MRC2 expression in tumor tissues. The associations

between MRC2 expression and tumor-infiltrating

immunocyte related markers were further investigated

(Cristescu et al., 2018). The potential relationship between

MRC2 expression and immunological modulators, including

immune inhibitors, immune stimulators, and MHC

molecules, was screened through the TISIDB website

(http://cis.hku.hk/TISIDB/index.php). The four most

relevant results were then highlighted and presented in

plots. The somatic mutation data of all TCGA patients

were downloaded (https://tcga.xenahubs.net) and TMB

scores and MSI scores were calculated.

Functional enrichment analysis of MRC2

Subsequently, the expression and activity averages of

MRC2 were calculated and ranked for 33 cancers to explore

the potential characterization of MRC2 expression and activity.

To explore the biological functions of MRC2 in cancers with

overall survival prognosis, gene-set enrichment analysis (GSEA)

analyzes were performed in BRCA, KIRC, LGG, and UVM,

respectively.

Immunotherapeutic response analysis
MRC2

As mentioned above, data obtained from two related

independent immunotherapeutic cohorts were analyzed in

current study. Patients in complete remission (CR) or partial

response (PR) were classified as responders and the remaining

cases with stale disease (SD) and progressive disease (PD) were

classified as non-response.

Statistical analysis

In this study, the Wilcox log-rank test was adopted to

determine the presence or absence of a markedly increased

sum of gene expression z-scores in cancer tissues compared

with adjacent normal tissues. Differences in

MRC2 expression were also compared in the

Kruskal–Wallis test. Survival rates were analyzed using the

KM curves, log-rank tests, and Cox proportional hazard

regression model models. The Spearman test for

correlation analysis. R Language (Version 4.1.1; R

Foundation) is available for analysis and the difference of

p < 0.05 was statistically significant.

Results

Clinical profile of MRC2 expression

As shown in Figure 1A, MRC2 is differentially expressed

between tumor and normal tissues in 14 of 33 cancers (Highly

expressed in CHOL, GBM, HNSC, and THCA, whereas lowly

expressed in BLCA, CESC, KICH, KIRC, KIRP, LUAD, LUSC,

PCPG, PRAD, and UCEC). According to the ssGSEA of

MRC2 between normal and tumor groups, MRC2 activity

was significantly increased in the tumor group of CHOL,

ESCA, GBM, HNSC, KIRC, LUAD, and STAD, while

decreased in the tumor group of BLCA, CESC, KICH,

KIRC, KIRP, PRAD, and UCEC (Figure 1B). Compared to

the younger patients (≤65 years old), MRC2 expression

decreased in the tumor of elderly patients (>65 years old) in
the group of BRCA, KIRP, LAML, SKCM, and UCEC, while

the expression pattern was reversed in the THYM group

(Figure 1C). With regard to gender, the female group has

the higher MRC2 expression in the KRIP and LUAD tumors,

while the lower MRC2 level in the SARC tumor (Figure 1D).

Besides, MRC2 was positively correlated with the tumor stage

of BLCA, KIRC, TCGT, and THCA (Figure 1E). To further

explore the differential expression patterns of MRC2 in pan-

cancers between tumor and normal tissues, we obtained the

related data from the Human Protein Atlas (HPA, https://

www.proteinatlas.org). We found that MRC2 was mainly

expressed in the tumor stroma, and combined with

morphological features, we considered that fibroblasts

might be the largest. For tumor cells, we found moderate to

strong cytoplasmic positivity was observed in papillary

adenocarcinomas of thyroid; a few cases of malignant

gliomas, breast, ovarian, endometrial and skin cancers

exhibited weak to moderate staining, and remaining

malignant cells were mainly negative, which was consistent

with our results from pan-cancer analysis (Supplementary

Figure S10).

Correlation of MRC2 expression level and
prognosis in 33 cancers

Furthermore, high-level MRC2 expression was an

unfavorable prognostic indicator for OS in ACC, BLCA,

GBM, KICH, KIRC, LAML, LGG, OV, and UVM, as

demonstrated in Figure 2A and Supplementary Table S1. In

terms of DFS, the higher level of MRC2 was associated with

worse outcomes in LGG and PAAD (Supplementary Figure

S2A; Supplementary Table S2). Regarding DSS, MRC2 was a

risk factor for BLCA, GBM, KICH, KIRC, LGG, OV, PAAD,

and UVM (Supplementary Figure S3A; Supplementary Table

S3). MRC2 expression was positively correlated with PFS in

COAD, KICH, KIRC, PAAD, and UVM and only negatively
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FIGURE 2
The forest plots of univariate Cox regression analyses for overall survival (OS). (A) The highlight items mean that MRC2 expression was
significantly correlated with prognosis in these cancer types (p < 0.05). Items with hazard ratio greater than 1 indicated that theMRC2 expression was
a promoting factor of death. The Kaplan–Meier curves were plotted to visualize the OS of MRC2 expression levels in different cancers (B–E).
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correlated with DLBC (Supplementary Figure S4A;

Supplementary Table S4). Taken all together,

MRC2 expression was negatively associated with survival in

many tumor types, including ACC, BLCA, GBM, KICH, KIRC,

LAML, LGG, OV, and UVM.

The Kaplan–Meier (KM) curves were performed to

visualize the prognostic value of MRC2 expression levels in

above cancers. High levels of MRC2 expression indicated

unfavorable OS in BLCA (p = 0.042), LGG (p < 0.001),

KIRC (p = 0.006), and UVM (p < 0.001), which was shown

in Figures 2B–E. Meanwhile, lower MRC2 was associated with

worse DFS in LGG (p = 0.013) and PAAD (p = 0.036)

(Supplementary Figures S2A,C), worse DSS in BLCA (p =

0.029), LGG (p < 0.001), KIRC (p = 0.003), and UVM (p <
0.001) (Supplementary Figures S3B–E), worse PFS in COAD

(p = 0.014), KIRC (p < 0.001), LGG (p < 0.001), and UVM (p <
0.001), and better PFS in only DLBC(p = 0.016)

(Supplementary Figures S4B–F).

Correlation between MRC2 expression
level and immune-related characteristics

ESTIMATE algorithm was used to estimate the stromal score

and immune score, with the threshold of p < 0.001 and |R| > 0.5.

Remarkably, as can be seen fromFigure 3, theMRC2 expression was

FIGURE 3
The correlation of MRC2 expression with Stromal Score. The correlation filter was set as p < 0.001 and |R| > 0.5 (A–V).
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positively correlated with the stromal scores for most the cancer

types (BLCA, BRCA, CHOL, COAD, ESCA, HNSC, KICH, KIRC,

LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ,

SKCM, STAD, TGCT, THYM, and UVM). Relatively, MRC2 is

associated with immune scores for BLCA, KICH, LGG, LIHC,

PCPG, PRAD, and UVM (Figure 4; Supplementary Table S5).

Regarding immune infiltrates (Supplementary Figure S5;

Supplementary Table S6), MRC2 expression was positively

correlated with the abundance of macrophage M1 and T cells

CD8, while negatively with dendritic cells activated in ACC. In

TCGT, MRC2 expression was positively correlated with

M2 macrophage and negatively associated with B cell naïve and

T cells CD4 memory activated. It is also worth mentioning that the

MRC2 tended to be correlated to T cells CD8.

To further investigate the underlying mechanisms of

MRC2 immune inhibition, the TIMER database was taken to

compare MRC2 expression with multiple checkpoint markers

across different cancer types (Figure 5A). Notably,

MRC2 expression in BLCA, COAD, READ, PAAD, and UMV

was positively correlated with LAG3, NRP1, CTLA4, PDCD1 (PD-

1), CD274 (PD-L1), and PDCD1LG2(PD-L2). To explore the

potential of MRC2 to regulate immunomodulators, the

relationship between MRC2 and immunomodulators was

analyzed by TISIDB. In immune inhibitors, MRC2 was positively

FIGURE 4
The correlation of MRC2 expression with Immune Score. The correlation filter was set as p < 0.001 and |R| > 0.5 (A–G).
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FIGURE 5
(A) Correlation of MRC2 expression with expression of immune checkpoint genes calculated by TIMER. Red indicates positive correlation,
whereas blue indicates negative correlation. “*” indicates p < 0.05, “**” indicates p < 0.01 and “***” indicates p < 0.001. (B) Correlations between
MRC2 expression and TMB. (B,C) Correlation between MRC2 and MSI. (D–E) Correlations between MRC2 and immunotherapeutic response in
immunotherapeutic cohorts.
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associated with PDCD1 in BLCA, CSF1R and PDCD1LG2 inKICH,

and TGFBR1 in PRAD (Supplementary Figure S6). In immune

stimulators analysis, MRC2 expression was positively correlated

with CD86 and TNFSF13B in KICH, TMEM173 in LIHC, and

C10orf54 in PRAD (Supplementary Figure S7). Meanwhile,

MRC2 expression was positively associated with HLA-DOA,

HLA-DPB1, HLA-DQA1 and HLA-DRB1 in KICH

(Supplementary Figure S8).

Analysis of MRC2 immunotherapy
response

The correlation between MRC2 expression and TMB as well

as MSI was investigated. As demonstrated in Figure 5B,

MRC2 has a positive correlation with TMB in LGG and

THYM and is negatively correlated with TMB in BLCA,

BRCA, ESCA, HNSC, LIHC, LUAD, LUSC, PAAD, PRAD,

SKCM, STAD, UCEC, and UVM. In terms of MSI analysis,

MRC2 was positively associated with MSI in COAD, ESCA, and

KIRC, but negatively correlated with DLBC, HNSC, LUSC,

PRAD, SKCM, and USC (Figure 5C). Intriguingly, when

analyzing the immunotherapeutic response in a cohort of

GSE78220 and IMvigor210, the response group proved the

lower MRC2 expression level in metastatic melanoma with

pembrolizumab (p = 0.071, Figure 5D) and advanced

urothelial cancer with atezolizumab (p = 0.0046, Figure 5E).

Functional analysis by GSEA

To explore the biological functions of MRC2 in cancers with

overall survival prognosis, gene-set enrichment analysis (GSEA)

analyzes were performed in BRCA, KIRC, LGG, and UVM,

FIGURE 6
GO enrichment analysis of MRC2 in BLCA (A), KIRC (B), LGG (C), and UVM (D).
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respectively. Gene Ontology (GO) analysis indicated that

MRC2 was mainly enriched to the activation of the immune

response, adaptive immune response, and calcium ion transport

(Figure 6; Supplementary Table S9). According to Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis

demonstrated in Supplementary Figure S9, MRC2 was

enriched in many functions or pathways including chemokine

signaling pathway, cytokine receptor interaction, focal adhesion,

antigen processing and presentation, and calcium signaling

pathway.

Discussions

There is also increasing research on ECM regulation in

cancer immunity, but there is still some confusion. The

components of ECM play a critical role in regulating each

step of the cancer immunity cycle, which also highlights the

potential of targeting tumor-associated ECM to improve cancer

immunotherapy. The “hot tumors” characterized by molecular

markers of T cell infiltration and immune activation were highly

responsive to immunotherapies such as anti-programmed death-

ligand 1 (PD-L1)/PD-1 treatment, while “cold tumors” exhibited

significant T cell deletion or exclusion (Gajewski, 2015; Zemek

et al., 2019). The MRC2, which is involved in homeostatic

maintenance and ECM remodeling, plays a role in

physiological (embryonic development, wound healing, tissue

repair) and pathological conditions (cancer, inflammation) (Lu

et al., 2011). Current research has focused on the relationship

between MRC2 and tumor immune response and critically

analyzed the role of MRC2 in cancer immunity and its

potential combination with cancer immunotherapy.

MRC2 expression levels were altered in a variety of cancers.

MRC2 expression was highly expressed in the tumor group of

CHOL, GBM, HNSC, and THCA, whereas lowly expressed in

BLCA, CESC, KICH, KIRC, KIRP, LUAD, LUSC, PCPG, PRAD,

and UCEC. There have been accumulating studies reporting that

MRC2 expression is increased aberrantly in a variety of cancers.

In GBM, MRC2 is upregulated in tumor tissues and mediates

tumor cell invasion through collagen-containing stroma

(Huijbers et al., 2010; Takahashi et al., 2011). Sulek et al.

found that MRC2 expression increased in HNSC tumor

compared to adjacent tumors and was positively associated

with poor differentiation (Sulek et al., 2007). Previous studies

also suggest that in most solid tumors of epithelial origin,

expression of MRC2 is reported to be predominantly

restricted to cancer-associated fibroblasts (CAFs) with little or

no expression by the tumor cells (Sulek et al., 2007; Sulek et al.,

2007; Schnack Nielsen et al., 2002; Curino et al., 2005; Koikawa

et al., 2018). There is extensive functional evidence implicating

CAFs in tumor progression, via their ability to deposit and

remodel the extracellular matrix, to secrete pro-tumorigenic

factors and by modulating the immune compartment. Besides,

there is also evidence that CAFs can play a role in restraining

tumor growth, by acting as a desmoplastic barrier to tumor cell

invasion and by the recruitment of anti-tumor immune cells.

Therefore, MRC2 may play a similar function in tumorigenesis

by regulating CAFs.

Previous studies confirmed that downregulation of

MRC2 expression reduced the tumor migration and collagen

invasion, suggesting active involvement of MRC2 in glioma cell

invasion (Huijbers et al., 2010; Takahashi et al., 2011). There is

increasing evidence that MRC2 interferes with lymphatic

endothelial cells VEGFR-2 and VEGFR-3, which are

associated with cancer progression and metastasis to lymph

nodes and distant organs (Cady, 2007; Paupert et al., 2011;

Durre et al., 2018). Meanwhile, the genetic ablation of

MRC2 affects the contractility and viability of cancer

associated fibroblasts, limiting tumor growth and metastasis.

Based on the above evidence, we suppose that

MRC2 expression may contribute to the selection of clinical

strategies for certain cancer types. Interestingly, MRC2 suggests

poor PFS in multiple tumors, but better PFS in DLBC alone. In

most solid tumors of epithelial origin, expression of MRC2 is

reported to be predominantly restricted to CAFs with little or no

expression by the tumor cells. CAFs play a role in promoting

tumorigenesis, metastasis, and drug resistance. Previous studies

have confirmed that CAFs generally indicate poor tumor

prognosis. However, as a hematological tumor, the roles of

MRC2 and CAFs in DLBC may be quite different from those

of conventional solid tumors, so there are differences in the

predictive prompts.

Next, we investigated the relationship between MRC2 and

immune-related characteristics. The MRC2 expression was

positively correlated with the stromal scores in 22/33 tumor

types, which is consistent with MRC2 as an extracellular matrix

remodeling gene. This is possibly because that CAFs play an

important role as a component of tumor stroma, and

MRC2 expresses predominantly in fibroblasts. In the

meantime, MRC2 is correlated to immune scores for BLCA,

KICH, LGG, LIHC, PCPG, PRAD, and UVM by ESTIMATE

algorithm, which may be due to the fact that CAFs affects the

tumor microenvironment in some types tumors. There is also

evidence that CAFs can play a role in the recruitment of anti-

tumor immune cells (LeBleu and Kalluri, 2018). In addition, the

study found that MRC2 expression was correlated with

infiltrating levels of macrophage M1 and T cells CD8 in ACC,

M2 macrophage, B cell naïve, and T cells CD4 memory activated

in TCGT. In addition, the study found thatMRC2 expression was

correlated with infiltrating levels of macrophage. GSEA also

points out that the biological processes of MRC2 in different

types of cancer are involved in the activation of immune response

and adaptive immune response. Subsequently, using the TIMER

and TISIDE databases, we found that MRC2 is associated with

important immunomodulatory molecules in multiple tumors.

There are a number of known or ongoing immunotherapy-
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related drug targets, including CD274 (PD1), PDCD1 (PD-L1),

PDCD1LG2 (PD-L2), CTLA4, and LAG3. Emerging evidence

suggests that components of ECM and its proteolytic remodeling

products regulate immune responses and act as immune

modulators (Pao et al., 2018). Based on the previous research

about the linkage between ECM and the immune

microenvironment, the collagens might be the different

primary components of ECM between “cold” and “hot”

tumors (Pao et al., 2018). Moreover, MRC2 mainly acts on

tumor-associated fibroblasts, and affects the characteristics of

the tumor microenvironment by regulating extracellular matrix

remodeling and secreting cytokines. Previous study confirmed

that of epithelial origin, expression of MRC2 is reported to be

predominantly restricted to CAFs with little or no expression by

the tumor cells in most solid tumors. Likewise, we obtained

similar results with the HPA database. However, we found that

the expression of MRC2 in certain tumors is related to immune

cells, and we consider this to be related to the function of CAFs.

In previous studies, CAFs can act on the tumor

microenvironment in various ways to produce immune

suppression effects, which may include inhibiting the

maturation of dendritic cells, abnormal differentiation of

T cells, and secreting cytokines to inhibit tumor cell activity.

Therefore, the high expression of MRC2 may have an

immunosuppressive effect through the function of CAFs,

thereby affecting the enrichment of immune cells. All above,

targeting MRC2 combined with immune checkpoint blockade

therapy may modulate the tumor’s immune status and

potentially influence the immunotherapeutic response.

Notably, we investigated the predictive role ofMRC2 expression

in immunotherapy efficacy in two PD-1 treated immunotherapy

cohorts. The results elucidated the potential immunotherapeutic

response prediction function of MRC2 inmetastatic melanoma and

advanced urothelial carcinoma. In previous studies, CAFs can act on

the tumor microenvironment in various ways to produce immune

suppression effects, which may include inhibiting the maturation of

dendritic cells, abnormal differentiation of T cells, and secreting

cytokines to inhibit tumor cell activity (LeBleu and Kalluri, 2018).

Therefore, the high expression of MRC2 may have an

immunosuppressive effect through the function of CAFs, thereby

affecting the efficacy of immunotherapy. In follow-up studies, it is

necessary to validate the prognostic role of this gene for immune

checkpoint therapy in cohorts of other tumor types and larger

samples. In follow-up studies, it is necessary to validate the

prognostic role of this gene for immune checkpoint therapy in

cohorts of other tumor types and larger samples. It is also worth

investigating whether inhibition of MRC2 expression can improve

the efficacy of immunotherapies. Combination inhibition of

MRC2 and immune checkpoints to improve immunotherapeutic

efficacy is also a direction for future exploration.

As an article based on public database analysis, this study has

certain limitations. The first point is that there is no private data

or independent cohort for validation. Second, this study found

the associations between MRC2 and CAFs, which may affect the

biological functions and characteristics of immunotherapy

efficacy. Therefore, it also requires further in-depth study of

the function of MRC2 in vivo and in vitro experiments. Third, all

studies in this study were based on bulk sequencing. The research

team also consulted the current tumor-related single-cell

sequencing database, but it is difficult to meet the evaluation

at the pan-cancer level. Therefore, further analysis at the single-

cell level in one or several cancer types may be performed in the

future, followed by a more in-depth analysis of MRC2.

Conclusion

In conclusion, we found that MRC2 could be a

prognostic indicator for certain cancer and is critical for

tumor immune microenvironments. Further exploration of

the function of MRC2 might provide influence and predict

immune checkpoint blockade response as a potential

biomarker.
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SUPPLEMENTARY FIGURE S1
(A) The mean expression of MRC2 in 33 cancers (from high to low); (B)
The mean activity of MRC2 in 33 cancers (from high to low). “**”
indicates p < 0.01 and “***” indicates p < 0.001.

SUPPLEMENTARY FIGURE S2
The forest plots of univariate Cox regression analyses for disease-free
survival (DFS). The highlight items mean that MRC2 expression was

significantly correlated with prognosis in these cancer types (p <
0.05). Items with hazard ratio greater than 1 indicated that the
MRC2 expression was a promoting factor of death. The Kaplan–Meier
curves were plotted to visualize the DFS of MRC2 expression levels in
different cancers.

SUPPLEMENTARY FIGURE S3
The forest plots of univariate Cox regression analyses for disease-
specific survival (DSS). The highlight items mean that
MRC2 expression was significantly correlated with prognosis in
these cancer types (p < 0.05). Items with hazard ratio greater than
1 indicated that the MRC2 expression was a promoting factor of
death. The Kaplan–Meier curves were plotted to visualize the DSS of
MRC2 expression levels in different cancers.

SUPPLEMENTARY FIGURE S4
The forest plots of univariate Cox regression analyses for progression-
free survival (PFS). The highlight items mean that MRC2 expression was
significantly correlated with prognosis in these cancer types (p < 0.05).
Items with hazard ratio greater than 1 indicated that the MRC2 expression
was a promoting factor of death. The Kaplan–Meier curves were plotted
to visualize the PFS of MRC2 expression levels in different cancers.

SUPPLEMENTARY FIGURE S5
The correlation of MRC2 expression with immune infiltration level in ACC,
DLBC, LAML, TGCT, andUVM. The correlation filterwas set asp<0.001 and
|R| > 0.5.

SUPPLEMENTARY FIGURE S6
Expression correlation betweenMRC2 expression and immune inhibitors.
The top four immune inhibitors with the correlation coefficient of
MRC2 expression level were displayed via dot plots.

SUPPLEMENTARY FIGURE S7
Expression correlation between MRC2 expression and immune
stimulators. The top four immune stimulators with the correlation
coefficient of MRC2 expression level were displayed via dot plots.

SUPPLEMENTARY FIGURE S8
Expression correlation between MRC2 expression and MHC molecules.
The top four MHC molecules with the correlation coefficient of
MRC2 expression level were displayed via dot plots.

SUPPLEMENTARY FIGURE S9
KEGG enrichment analysis of MRC2 in BLCA (A), KIRC (B), LGG (C), and
UVM (D).

SUPPLEMENTARY FIGURE S10
Comparison of MRC2 gene expression immunohistochemistry images
in normal (left) and tumor (right) between normal and tumor tissues.
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Background: Laminin subunit gamma 1 (LAMC1) protein is associated with

tumor cell invasion and metastasis. However, its role in kidney cancer remains

unclear. In this work, we sought to probe the expression as well as its

carcinogenic mechanisms of LAMC1 in kidney renal papillary cell carcinoma

(KIRP) and kidney renal clear cell carcinoma (KIRC).

Methods: Public databases including TIMER, Oncomine, UALCAN, TISIDB,

TCGA, Kaplan–Meier plotter, UCSC Xena, cBioPortal, SurvivalMeth, KEGG,

GeneMANIA, Metascape, GSCALite and GDSC were adopted, and the

expression, clinical pathological correlation, prognostic signatures, dominant

factors influencing LAMC1 expression, DNAmethylation levels, genemutations,

copy number variations, functional networks, and drug sensitivity were

analyzed. Expression of LAMC1 protein in clinical KIRP and KIRC was

validated using tissue array.

Results: LAMC1 expression in KIRP and KIRC were significantly higher than

those in normal tissues. High LAMC1 expression indicated poor overall survival

in KIRP patients and better overall survival in KIRC patients. Through the

univariate and multivariate Cox analysis, we found that high LAMC1

expression was a potential independent marker for poor prognosis in KIRP,

however it implied a better prognosis in KIRC by univariate Cox analysis. In

addition, the LAMC1 expression in KIRP and KIRCwas negatively correlated with

methylation levels of LAMC1 DNA. Interestingly, LAMC1 expression was

positively correlated with the infiltration of CD8+ T cells, dendritic cells and

neutrophils in KIRP; however, it was positively correlated with the infiltration of

CD4+ T cells, macrophages and neutrophils but negatively correlated with

B cells in KIRC. Moreover, high level of CD8+ T cells is beneficial for KIRC

prognosis but opposite for KIRP. LAMC1 may participate in signaling pathways

involved in formation of adherens junction and basement membrane in KIRP
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and KIRC, and the high expression of LAMC1 is resistant to most drugs or small

molecules of the Genomics of Drug Sensitivity in Cancer database.

Conclusion: Enhanced LAMC1 expression suggests a poor prognosis in KIRP

while a better prognosis in KIRC, and these opposite prognostic signatures of

LAMC1 may be related to different immune microenvironments.

KEYWORDS

kidney renal papillary cell carcinoma (KIRP), kidney renal clear cell carcinoma (KIRC),
LAMC1, expression, prognosis

Introduction

The morbidity of renal cell carcinoma (RCC) has grown by

2% per year globally over the past 20 years (Ljungberg et al.,

2019). In 2020, there were 73,750 new cases and 14,830 deaths of

RCC patients reported in the United States (Ljungberg et al.,

2019; Siegel et al., 2020). Kidney renal clear cell carcinoma

(KIRC) and kidney renal papillary cell carcinoma (KIRP)

account for 70%–85% and 10%–15% of all RCC patients,

respectively, and KIRC is the most common pathological type

of RCC. About 20%–30% of KIRC patients are diagnosed with

advanced clinical stages (Escudier, 2007; Oudard et al., 2007).

Approximately 30% of KIRC patients develop recurrence and

progression despite surgical resection of the primary tumor

(Ferlay et al., 2013; Hsieh et al., 2017). For non-metastatic

KIRC, the recurrence rate is still as high as 20%–40% after

partial or radical nephrectomy (Frank et al., 2003).

Furthermore, KIRC is a chemo- and radio-resistant neoplasia

and alternative treatment options are limited (Geissler et al.,

2015). Clinical practice demonstrated that only a small

percentage of patients with KIRC can benefit from targeted

therapy and immunotherapy (Topalian et al., 2012; Motzer

et al., 2015), and the clinical prognosis and treatment of KIRP

are limited. Therefore, the identification of new prognostic and

therapeutic biomarkers has important clinical significance.

In clinical practice, cancer biomarkers can be used for the

purpose of diagnosis or prognosis in personalized medicine.

With the deepening of the understanding of the molecular

etiology of RCC, several effective targeted therapies have been

applied in clinical treatment, including immunotherapies, and

use of multiple kinase inhibitors (Hsieh et al., 2017). However,

most RCC patients still die from their diseases because of

resistance to these therapies (Linehan and Ricketts, 2014).

Current studies on renal cancer biomarkers are mainly

focusing on the identification of molecular markers of

prognostic signatures and the prediction of the metastatic

potential of individual tumors (Tunuguntla and Jorda, 2008;

Eichelberg et al., 2009). Cell-matrix adhesion is an important

pathological process in the malignant progression of tumor cells.

As one of the main components of cell-matrix adhesion

molecules, laminin uses the C-terminal LG1-3 domain and

the LG4-5 domain as binding sites, connects the extracellular

matrix to intracellular components by binding to

transmembrane receptors (including integrin receptors and

non-integrin receptors), and mediates various signaling

(Sonnenberg et al., 1988; Aumailley, 2013). Members of

laminin family are composed of three chains named α chain

(α1-5), β chain (β1-3) and γ chain (γ1-3). LAMC1, which

encoding the laminin γ one chain, is widely expressed in the

basement membrane and is related to tissue development

(Engbring and Kleinman, 2003; Schéele et al., 2007; Gritsenko

et al., 2012; Aumailley, 2013). The overexpression of LAMC1 is

related to tumor progression and poor prognosis in cancers such

as endometrial carcinoma (Kunitomi et al., 2020), hepatocellular

carcinoma (Zhang et al., 2017), gastric cancer (Han et al., 2021)

and meningioma (Ke et al., 2013), highlighting the significance of

molecular targeting LAMC1 in cancer treatment. However, the

roles and mechanisms of LAMC1 in RCC remain unclear.

In this investigation, we adopted several publicly accessible

databases to analyze LAMC1 expression and its association with

the clinical characteristics and prognosis in KIRP and KIRC.

Then, a prognostic signature for KIRP and KIRC patients was

constructed. We also focused on the relation of LAMC1

expression to immune cells infiltration and the

immunomodulator-related molecules expression. Furthermore,

we explored how LAMC1may participate in signaling pathways,

biological processes, and drug resistance. Our results revealed the

expression status and prognostic signature of LAMC1 in KIRP

and KIRC, and uncovered the impacts of LAMC1 on immune cell

infiltration, and immunomodulator-related molecules in RCC.

Materials and methods

Analysis of LAMC1 gene expression

The Oncomine database (https://www.oncomine.org/), a

publicly available microarray database, was used to analyze

the mRNA expression level of the LAMC family in different

cancers (Rhodes et al., 2007). Tumor tissue was compared with

normal controls for the LAMC family members applying

t-statistics based on the thresholds of p-value = 0.0001 and

fold change (FC) ≥ 2. The tumor immune estimation resource

(TIMER) database (https://cistrome.shinyapps.io/timer/) is a
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comprehensive resource for the systematic analysis of immune

infiltrates across diverse cancer types by using the Wilcoxon test

based on the thresholds of p-value < 0.05 (Li et al., 2017). The

LAMC1 mRNA and protein expression levels were compared

between RCC and normal tissues using the DiffExp module of

TIMER. We used the University of Alabama Cancer database

(UALCAN, http://ualcan.path.uab.edu/), containing RNA

sequences and clinical information from 33 types of tumors to

assess the correlation between LAMC1 gene expression levels and

clinicopathological features in KIRP and KIRC patient

(Chandrashekar et al., 2017). Differences with a p-value < 0.

05 were considered statistically significant. The functions and

purposes of using various public online databases in this study

were detailed in Supplementary Table S1.

Tissue microarray and immunochemistry
staining

The tissue microarray was obtained from Shanghai Outdo

Biotech Co.,LTD. Statistical cases include 10 normal kidney

tissues and 168 tumor tissues samples (KIRC:138; KIRP: 30).

The immunochemistry staining (IHC) was performed using

DAKO automatic immunohistochemistry instrument with the

programs of “Autostainer Link 48 Usage Guide”. The array was

incubated with primary antibodies against LAMC1 (Cat:

ABP55085, Abbkine, Wuhan, China) at 1:25 dilution for

overnight at 4°C. Antigenic sites were visualized using a DAB

kits. The scores of LAMC1 were calculated as follows: 0, negative;

1, weak; 2, moderate; or 3, strong. The percentage of positive cells

was scored as follows: 1, 0–25% positive cells; 2, 26–50% positive

cells; and 3, 51–75% positive cells, and 4, 76–100% positive cells.

The total immunoreactive scores were determined by nuclear

staining score plus cytoplasm membrane staining score, and the

IHC scores were determined independently by two pathologists

who were blinded to the patients’ clinical data and original

pathology reports.

TCGA data collection and Cox regression

The expression data and mRNA expression profiles of

patients with KIRP and KIRC and the clinical information

related to survival time were retrieved from Genomic Data

Commons data portal of The Cancer Genome Atlas (TCGA,

https://portal.gdc.cancer.gov/repository) (KIRP, 321 cases

including 32 normal samples; KIRC, 604 cases including

72 normal samples; workflow type, HTSeqCounts) (Weinstein

et al., 2013). We used block diagrams to visualize the differences

in discrete variable expressions. The HTSeq count data of RNA-

Seq gene expression in 289 KIRP and 532 KIRC patients were

used for further analysis. Wilcoxon symbolic rank test and

logistic regression were used to evaluate the association

between clinical factors and LAMC1 expression. Multivariate

Cox regression and Kaplan-Meier methods were used to

determine the role of LAMC1 expression related to the overall

survival (OS) of RCC patients and clinical features, including age,

gender, grade, stage, characteristics of the primary tumor (T) and

distant metastasis (M). The low and high expression groups were

distinguished by the median risk score for LAMC1 expression

level as the cutoff value.

The correlation analysis between LAMC1
expression and immunity, neoantigen and
tumor mutational burden

We evaluated the correlation between LAMC1 expression in

the RCC samples and the six kinds of infiltrating immune cells

including B cells, CD4+ T cells, CD8+ T cells, neutrophils,

macrophages, and dendritic cells using “Immune-Gene”

module in TIMER2 database. Then we explored the effects of

the infiltration immune cell levels on the prognosis of KIRP and

KIRC by using the TIMER platform. In addition, the relationship

between LAMC1 expression level and immunoinhibitors and

immunostimulators were further studied by the TISIDB database

(http://cis.Hku.hk/TISIDB/), a public database for analyzing

immune cell and immunoregulatory molecule in different

tumors (Ru et al., 2019). The Kaplan–Meier plotter database

(http://kmplot.com/analysis/) can be quick and intuitive for

prognostic analysis (Nagy et al., 2021), which contains

survival data on 54,675 genes from 10,461 cancer samples. We

then used this database for prognostic analysis based on LAMC1

expression levels in related enriched or decreased immune cell

subsets including B cells, CD4+ memory T cells, CD8+ T cells,

macrophages, natural killer (NK) T cells, regulatory T (Treg)

cells, Type 1 T-helper (Th1) cells, and Type 2 T-helper (Th2)

cells (grouping conditions: auto select best cutoff). According to

the degree of immune infiltration levels, the ESTIMATE

algorithm was used to calculate immune scores, stromal scores

and estimate immune scores (the sum of immune score and

stromal score) for each tumor sample (Yoshihara et al., 2013).

We visualized the correlation between LAMC1 gene expression

and these scores using the R software packages “estimate” and

“limma”. Neoantigen encoded by a mutated gene in tumor cells,

coming from biological events such as point mutations, deletion

mutations, and gene fusions. The number of neoantigens per

tumor sample was calculated by SCANNEO algorithm (Wang

et al., 2019). Tumor mutational burden (TMB), as a quantifiable

biomarker, can be used to reflect the number of mutations

contained in a tumor cell, which was visualized with R

software packages “ggstatsplot” (Jardim et al., 2021). In

addition, Spearman’s rank correlation coefficient was applied

to analyze the relationship of LAMC1 gene expression and tumor

immunity, neoantigens and TMB of each tumor sample. These

results presented as scatter plots.
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Scoring of anti-cancer immunity

With the widespread use of immune checkpoint blockade

agents in clinical practice, tumor immunity has been widely

concerned in recent years and has received a good clinical

response, pointing out a new direction for the treatment of

cancer patients. The Cancer-Immunity Cycle can be roughly

divided into seven steps (Chen and Mellman, 2013). These seven

steps finely modulate the overall direction of antitumor activity.

The scores of anti-cancer immunity were calculated by using

ssGSEA algorithm with R package “GSEABase” based on specific

gene set. The median value of LAMC1 were used as the cutoff

value and our cohort were divided into high expression group

and low expression. These results were presented with boxplot

with the assistance of online web-Sangerbox 3.0 (http://vip.

sangerbox.com/home.html) with t-test.

Analysis of copy number variation and
DNA methylation

To investigate the possible factors influencing LAMC1

expression, the California Santa Cruz Cancer Genomics

Browser (UCSC Xena, http://xena.ucsc.edu/) database was

used (Goldman et al., 2020). In addition, to confirm the

prognostic value of LAMC1 methylation and copy number

variation (CNV) in KIRP and KIRC, UCSC Xena databases

was searched to investigate the effects of LAMC1 methylation

and CNV on OS. The alteration frequency and CNV of the

LAMC1 gene was also analyzed via the cBioPortal database

(http://www.cbioportal.org/). We used SurvivalMeth database

(http://bio-bigdata.hrbmu.edu.cn/survivalmeth/) to study the

differences in LAMC1 DNA methylation in region of whole

gene between normal kidney tissues and KIRP and KIRC

tissues (Method: t-test, Threshold Value: 0.01, Grouping

Strategy: Maxstate) (Zhang et al., 2021).

Pathway, Co-expression network, and
functional enrichment analyses

To explore whether LAMC1 gene and a set of genomes with

the highest correlation are differentially expressed (high or low

groups were distinguished by the median value of LAMC1

expression level), we used GSEA algorithm analysis (https://

www.gsea-msigdb.org/gsea/index.jsp) based on TCGA data of

KIRP and KIRC (Subramanian et al., 2005). Gene sets with

p-value < 0.05 and false discovery rate (FDR) Q-value < 0.

25 were considered the thresholds. The results of gene

enrichment analysis were plotted using R packages such as

“ggplot2” and “grid” in R software (https://www.R-project.org,

Version 4.0.4). We obtained the gene interacting with LAMC1

through the GeneMANIA network (http://genemania.org/),

which could establish genetic interactions, protein–DNA

interactions, and protein–protein interactions (PPI) (Warde-

Farley et al., 2010). When the gene mane “LAMC1” was typed

in the search interface, GeneMANIA automatically searches

related public databases to establish a co-expression network.

In addition, we carried out Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) functional

enrichment analysis of the interacting genes using the

Metascape portal (http://metascape.org/gp/index.html) (Zhou

et al., 2019).

Gene set enrichment and drug resistance
analysis

GSCALite database (http://bioinfo.life.hust.edu.cn/web/

GSCALite/) offers multiple types of cancer gene set analyses,

including mRNA expression, single nucleotide variation (SNV),

methylation, cancer-related pathways, and miRNA networks

(Liu et al., 2018). We analyzed the effect of LAMC1 in cancer-

related signaling, the expression of some genes of interest, and

the miRNA network between them. In addition, we analyzed the

correlation between LAMC1 expression and drug sensitivity

based on the Genomics of Drug Sensitivity in Cancer (GDSC)

database by Spearman correlation analysis. If the correlation

result is positive, the high expression of this gene is associated

with specific drug resistance. Drug module correlation analyses

for all cancer cell lines and other analyses were performed using

the KIRP and KIRC TCGA dataset.

Statistical analysis

All statistical analyses were performed using R software

(Version 4.0.4). Receiver operating characteristic (ROC)

curves were established to evaluate the diagnostic significance

of LAMC1 expression using the “pROC” package of R, and the

area under the ROC curve (AUC) indicated the magnitude of

diagnostic efficiency. AUC >0.7 indicated good accuracy.

Unpaired and paired Student t-test were performed to analyze

the statistical difference of LAMC1 gene expression in normal

and tumor tissues. The associations between clinical features and

LAMC1 expression were evaluated using the Wilcoxon signed-

rank test and logistic regression. Clinical features related to

overall survival (OS) in KIRP and KIRC patients were

identified using Cox regression and the Kaplan-Meier method.

Univariate and multivariate Cox analyses were used to explore

the independent prognostic significance of LAMC1 expression

level and clinical features on OS in KIRP and KIRC patients. The

correlations of LAMC1 expression with immune cells infiltration

were evaluated using Spearman’s correlation analysis. The

thresholds were referenced the related methods section. All

p-values were adjusted by false discovery rate (FDR)
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calculated using the Benjamini–Hochberg method, and 5% FDR

(q-value <0.05) was set as the threshold.

Results

Expression levels of LAMC gene family in
kidney cancer patients

Using the Oncomine database, we compared the differential

expression levels of LAMC family members between cancers and

its related normal tissues. Of the three members of the LAMC

family, LAMC1 and LAMC2 were upregulated in kidney cancers,

while LAMC3 was downregulated in kidney cancers (Figure 1A).

The significant changes to the expression of the LAMC family in

different types of kidney cancer and normal kidney tissue are

detailed in Supplementary Table S2. Furthermore, expression of

LAMC1mRNA was found to be significantly higher in KIRP and

KIRC samples based on the TIMER database (FDR <0.01,
Figure 1B). LAMC1 mRNA was also upregulated in many

other types of tumors besides KIRP and KIRC

(Supplementary Figure S1). We further used TCGA database

to analyze the expression profile of LAMC1 in KIRP and KIRC.

Our results suggested that the data were of high quality, as the

area under the ROC curve was 0.763 (95% CI, 69.5%–83.2%,

FDR <0.01) for KIRP (Figure 2A) and 0.750 (95% CI, 69.7%–

80.2%, FDR <0.01) for KIRC (Figure 2D). There was significantly

enhanced LAMC1 expression in KIRP compared with normal

tissues (FDR = 5.32e-06, Figure 2B), and the result for paired

samples also supported this trend (FDR = 8.19e-08,

Figure 2C). Similarly, as shown in Figures 2E,F, higher

LAMC1 mRNA expression was also found in KIRC

compared with normal tissues (FDR <0.001). We used

tissue microarray to validate the LAMC1 protein expression

in clinical samples. Three representative images of tissue

microarray results are shown in Figure 2G. The analysis of

IHC staining data showed that LAMC1 was positively

expressed in the nucleus or cytoplasm in renal cancer

tissues, and LAMC1 protein staining was stronger in KIRP

and KIRC tissues compared with normal renal tissues,

indicating higher expression of LAMC1 protein in RCC

servers certain pathophysiological role (Figures 2G,H).

Additionally, Figure 2H showed that the total

immunoreactive scores for different tumor grades in KIRC.

We consequently explored the expression of LAMC1 in

different clinicopathological parameters of KIRP and KIRC,

including age, gender, nodal metastasis status, and cancer

stage, based on the UALCAN database. As shown in Figure 3,

FIGURE 1
The expression levels of LAMC1 across human cancers atmRNA level. (A) The expression levels of Laminin C (LAMC) familymembers in different
types of cancers based on Oncomine database. The number in each cell represents significance datasets of genes up-regulated or down-regulated
in a particular cancer. Red box represents high expression in tumors, blue box represents low expression in tumors and white box represents no
difference in tumors and normal tissues. (B)Differential expression levels of LAMC1 in KIRP and KIRC between tumor groups and normal groups
based on TIMER database.
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FIGURE 2
LAMC1mRNA and protein expression levels in two types of renal carcinoma. (A,D) The receiver operating characteristic (ROC) curve for LAMC1
expression in normal kidney tissue and kidney cancer was built based on data downloaded from TCGA database. (B–C,E–F) The mRNA level of
LAMC1 in kidney cancer and normal tissues. (B–C), KIRP. (B): N: T = 32:289; (C)N: T = 31:31, (E–F), KIRC; (E)N: T = 72:532, (F)N: T = 72:72; The figure
represents the number of the normal(N) or tumor(T) cases; B and E, unpaired t-test; C and F, paired t-test. (G) Three representative images of
tissue microarray results are used here. Positive immunostaining was located in the nucleus or cytoplasm. Validation of protein expression of LAMC1
in kidney cancer and normal tissues based on tissue microarray staining data. (H) The immunoreactive score of LAMC1 IHC staining presented by
boxplot with Student’s t test or one-way analysis of variance (ANOVA).
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patients that showed higher LAMC1 expression in KIRP were

20–40 years old, female, of advanced nodal metastasis status

and advanced stages of cancer (stage 3–4). Patients that

showed higher LAMC1 expression in KIRC were

20–40 years old and in the early stages of cancer (stage 1–2).

Survival outcomes and multivariate
analysis

TCGA database was retrieved for further survival analysis.

High expression of LAMC1 was closely associated with poor OS

FIGURE 3
The relation of LAMC1 expression to the clinicopathological features including age, gender, nodal metastasis status, and individual cancer stage
in KIRP and KIRC.
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of KIRP patients (FDR = 6.75e-03, Figure 4A) and better OS of

KIRC patients (FDR = 1.27e-02, Figure 4C). According to the

“survival” package of R calculation, the five-year survival rate of

KIRP and KIRC patients with high expression of LAMC1 was

64.8% and 66.8%, respectively, and the five-year survival rate of

KIRP and KIRC patients with low expression of LAMC1 was

86.8% and 52.9%, respectively (Supplementary Table S3). Using

univariate and multivariate Cox analysis, the prognostic

signatures of LAMC1 and other clinical parameters for KIRP

and KIRC were analyzed (Supplementary Table S4). The

prognostic signatures of LAMC1 and other clinical parameters

in the multivariate Cox analysis model were presented as the

forest plots (Figures 4B,D). For KIRP, the LAMC1 expression

level and stage were independent prognostic indicators in both

univariate and multivariate Cox analysis models. Considering

that the HR values of T classification fluctuates greatly in

univariate and multivariate Cox analysis, we did not consider

it to be statistically significant in KIRP. For KIRC, age, stage, and

grade were the independent prognostic indicators in both

univariate and multivariate Cox analysis models, and LAMC1

lost its independent prognostic signature in KIRC in the

multivariate Cox analysis model.

Correlation of LAMC1 expression, immune
infiltration and survival in RCC

Considering that tumor-infiltrating immune cells (TIICs) are

potential therapeutic targets for cancer treatment progression

(Sanmamed and Chen, 2018), we thus aimed to determine the

composition of TIICs in RCC and further reveal the prognostic

values. We used the TIMER database to analyze the correlation of

LAMC1 level with immune cell infiltration levels in RCC. For

KIRP, LAMC1 expression was positively correlated with CD8+

T cells (R = 0.201, FDR = 2.83e-03), myeloid dendritic cells (R =

0.259, FDR = 1.10e-04) and neutrophils (R = 0.217, FDR = 1.35e-

03) (Figure 5A). For KIRC, the LAMC1 level showed a positive

correlation with infiltrating levels of CD4+ T cells (R = 0.311,

FIGURE 4
The prognostic signatures of LAMC1 and clinical parameters in KIRP and KIRC patients. Correlation of different expression of LAMC1 with
survival (OS) of KIRP (A) and KIRC (C) patients. Survival data were analyzed using Kaplan-Meier method. High or low LAMC1 expression level was
determined in relation to its median expression value. The prognostic signatures of LAMC1 expression and clinical parameters in KIRP(B) and KIRC(D)
patients in the multivariate Cox analysis model presented as the forest plots.
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FDR = 7.93e-11), macrophages (R = 0.475, FDR = 8.18e-26), and

neutrophils (R = 0.336, FDR = 1.43e-12) and a negative

correlation with B cells (R = −0.237, FDR = 1.51e-06)

(Figure 5B). Similarly, the correlation between LAMC1 and

45 immunostimulators in RCC is shown in Figure 5C, and

the correlation between LAMC1 and 24 immunoinhibitors in

RCC is shown in Figure 5D. We noticed some

immunomodulator-related genes with strong or significantly

differential correlation with LAMC1 expression, including

TGFB1, CD276, NT5E and KDR. We used the GSCALite

FIGURE 5
Correlation analysis of LAMC1 expression and immune cell infiltration levels and immunoregulators in KIRP and KIRC. (A,B)Correlation between
LAMC1 expression and tumor immune cells in KIRP and KIRC samples identified using the TIMER algorithm. (C) Relationships between expression of
LAMC1 and 45 types of immunostimulators in human KIRP and KIRC using TISIDB database. Red color indicates positively related and blue color
indicates the negatively related immunostimulators. (D) Relationships between expression of LAMC1 and 24 types of immunoinhibitors in
human KIRP and KIRC samples identified using TISIDB database. Red color indicates positively related and blue color indicates the negatively related
immunoinhibitors.
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database to further explore the expression and prognosis of

LAMC1 and above genes, and provided a potential miRNA

regulatory mechanism for gene expression (Supplementary

Figure S2, Supporting file 6). Predicted by database analysis,

the miR-29 and miR-200 families are prominent in targeting the

above-mentioned gene expression. Since microRNAs play

important roles in cancer progression, follow-up experimental

validation is still required.

Prognostic potential of LAMC1 expression
in RCC based on immune cell infiltration

Given that the LAMC1 levels are related to TIICs in KIRP and

KIRC (Figures 5A,B), we speculated that LAMC1 may affect the

prognosis of KIRP and KIRC patients partly through mediating

immune cell infiltration. We examined the prognostic value of

tumor infiltrating immune cells in KIRP and KIRC using Cox

proportional hazard model by TIMER. The results indicated that

B cells (HR = 378.414, FDR = 2.92e-02) and CD8+ T cells (HR =

275289.087, FDR = 0.00) were significantly correlated with

clinical prognosis in KIRP (Table 1). Besides, CD8+ T cells

(HR = 0.143, FDR = 2.34e-02) and Macrophage (HR = 0.006,

FDR = 2.65e-02) were significantly correlated with clinical

prognosis in KIRC (Table 1). Kaplan–Meier survival curves

for RCC patients with differential LAMC1 expression were

constructed based on immune cells enrichment (Figure 6) or

decrease (Figure 7). As shown in Figure 6, high LAMC1 levels in

the KIRP cohorts enriched with B cells (HR = 3.34, FDR = 1.73e-

03), CD4+ memory T cells (HR = 3.28, FDR = 4.34e-02),

macrophages (HR = 3.13, FDR = 2.04e-03), NK T cells (HR =

2.57, FDR = 2.92e-02), Treg cells (HR = 4.27, FDR = 5.57e-03),

and Th1 cells (FDR = 2.20e-02) had a poor OS. Surprisingly, high

expression of LAMC1 had a poor OS in KIRC enriched with

Th1 cells (HR = 3.94, FDR = 2.20e-02), but a better OS in CD8+

T cells (HR = 0.56, FDR = 2.24e-03). Similarly, as shown in

Figure 7, high LAMC1 expression in KIRP had a poor OS in the

cohorts decreased with CD4+ memory T cells (HR = 3.53, FDR =

1.40e-02), CD8+ T cells (HR = 4.88, FDR = 7.38e-04), Th1 cells

(HR = 3.35, FDR = 1.20e-03) and Th2 cells (HR = 2.64, FDR =

6.17e-03). However, high LAMC1 expression in KIRC had a

better OS in the cohorts decreased with CD4+ memory T cells

(HR = 0.36, FDR = 1.13e-03), macrophages (HR = 0.23, FDR =

9.60e-04), Treg cells (HR = 0.54, FDR = 2.48e-03), Th1 cells

(HR = 0.63, FDR = 9.75e-03) and Th2 cells (HR = 0.57, FDR =

1.91e-03). These results supported our prediction that a high

LAMC1 expression level in KIRP and KIRC affected prognosis

partly because of the different TIIC infiltration levels.

The relationships between LAMC1
expression and immunity, neoantigen
and TMB

To further evaluate association of LAMC1 and immune

microenvironment in RCC, we analyzed the relation of LAMC1

expression to the Cancer-Immunity Cycle, immune neoantigens

appearance and tumor mutational burden (TMB). The activities of

Cancer-Immunity Cycle can be roughly divided into seven steps.

Our results showed that most of activities of Cancer-Immunity

Cycle were higher in high LAMC1 expression groups in KIRC and

only just a few steps showed higher immunoactivity in KIRP

(Supplementary Figure S3, Supporting file 7). In addition, the

ability to recruit CD8+ T cells was significantly enhanced in the

KIRC groupwith highLAMC1 gene expression.We usedGSEABase

analysis to evaluate immune, stromal and estimates scores in two

types of RCC, depending on LAMC1 expression. Then we found

LAMC1 gene expression had a weak negative correlation with

immune scores in KIRP (R = −0.181, FDR = 4.72e-03) and a

moderate positive correlation with stromal scores in KIRC (R =

0.441, FDR = 2.52e-25) (Figures 8A,B). The estimate immune scores

also showed a positive correlation in KIRC (R = 0.172, FDR = 2.65e-

04) (Figure 8C). Then, we performed the analysis for the association

of LAMC1 expression and the number of immune neoantigens,

which showed a weak positive correlation in KIRC (R = 0.101,

FDR = 6.89e-02) (Figure 8D). However, LAMC1 gene expression

had no significant correlation with TMB in both types of renal

cancer (Figure 8E).

TABLE 1 The Cox proportional hazard model of six tumor-infiltrating immune cells in KIRP and KIRC.

Cell type KIRP KIRC

Coefficient HR 95% CI FDR value Coefficient HR 95% CI FDR value

B cell 5.94 378.41 3.01–47528.65 2.92e-02 −0.89 0.41 0.02–9.31 6.34e-01

CD8+ T cell 12.53 275289.09 1212.18–62518734.86 0.00e+00 −1.95 0.14 0.03–0.66 2.34e-02

CD4+ T cell 6.04 419.18 0.27–641305.31 1.48e-01 −0.18 0.84 0.06–11.01 9.20e-01

Macrophage −3.99 0.02 0.00–2.89 1.66e-01 −2.87 0.06 0.01–0.57 2.65e-02

Neutrophil −3.95 0.02 0.00–7620.69 6.12e-02 4.17 64.50 1.32–3147.94 5.82e-02

Dendritic −4.47 0.01 0.00–0.78 6.01e-02 1.56 4.73 0.85–26.37 1.12e-01

Bold texts indicate statistically significant according to threshold
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Mutation, CNV andmethylation analysis of
LAMC1 gene

To assess the cause of elevated LAMC1 levels in KIRP and

KIRC, we used the cBioPortal, UCSC Xena and SurvivalMeth

databases to probe the LAMC1methylation level, mutations, and

CNV status. The results from the cBioPortal dataset showed that

LAMC1 expression was negatively correlated with methylation in

KIRP (R = −0.22, FDR = 9.63e-04) and KIRC (R = −0.31, FDR =

1.31e-06) (Supplementary Figure S4A,B, Supporting file 8).

FIGURE 6
Kaplan–Meier survival curves for RCC patients with differential LAMC1 expression were constructed based on immune cells enrichment in RCC
tumors.
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FIGURE 7
Kaplan–Meier survival curves for RCC patients with differential LAMC1 expression were constructed based on immune cells depletion in RCC
tumors.
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Among the subgroups with different CNV, diploid was the

dominant type for both KIRP and KIRC (Supplementary

Figure S4C,D, Supporting file 8). We studied 831 samples

from TCGA database and showed that the mutation rate of

LAMC1 in KIRP and KIRC was very low (<1%) (Supplementary

Figure S4E, Supporting file 8). Heat map of LAMC1 mRNA

expression, methylation and copy number in patients with RCC

and normal tissues were showed in Figures 9A,B. We found that

LAMC1 DNA was only locally methylated. Even that the

correlation between LAMC1 expression and methylation may

be influenced by few outliers (Supplementary Figure S4B,

Supporting file 8), the results of SurvivalMeth database further

displayed the lower methylation level of LAMC1 in both KIRP

and KIRC (FDR <0.001, Figures 9C,D). Therefore, we concluded
that DNA methylation of LAMC1 was reduced in KIRP and

KIRC tissues compared with that in normal tissues. According to

UCSC Xena database, methylation of LAMC1 was not associated

with OS prognosis of KIRP and KIRC (FDR >0.1, Figures 9E,F),
while high CNV of LAMC1 indicated poor OS in both KIRP and

KIRC (FRD <0.05, Figures 9G,H).

LAMC1-associated signaling pathways,
Co-expression network, functional
enrichment, and drug sensitivity in RCC

To screen for differentially activated signaling pathways in

KIRP and KIRC, we compared high and low LAMC1 expression

datasets by GSEA analysis. According to the normalized

enrichment scores, significantly enriched signaling pathways

were identified. Adherens junctions, extracellular matrix

receptor interaction, the MAPK (mitogen-activated protein

kinase) signaling pathway, the TGF-β (transforming growth

factor beta) signaling pathway, and the Wnt signaling

FIGURE 8
The relationships between LAMC1 expression and tumor immune microenvironment, neoantigens appearance and TMB. (A) Correlation
analysis between LAMC1 expression and immune scores in KIRP and KIRC. (B) Correlation analysis between LAMC1 expression and stromal scores in
KIRP and KIRC. (C) Correlation analysis between LAMC1 expression and estimate immune scores in KIRP and KIRC. (D) Correlation analysis between
LAMC1 expression and the number of neoantigens in KIRP and KIRC. (E)Correlation analysis between LAMC1 expression and TMB scores in KIRP
and KIRC. TMB, Tumor mutational burden.
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FIGURE 9
Mutation, CNV, and methylation of LAMC1 and prognostic value of the LAMC1 gene expression. (A,B) Heatmap showing the correlations
between LAMC1 mRNA and somatic mutations, CNV, and methylation in KIRP (A) and KIRC (B) using UCSC Xena database. (C,D) Comparison of
LAMC1 DNA methylation between normal kidney tissues and KIRP (C) and KIRC (D) tissues using survivalMeth database. (E,F) Relationship between
LAMC1 DNA methylation and OS in KIRP (E) and KIRC(F) using UCSC Xena. (G,H) Relationship between LAMC1 CNV and OS in KIRP(G) and
KIRC(H) using UCSC Xena. OS: overall survival; CNV: copy number variation.

Frontiers in Molecular Biosciences frontiersin.org14

Bai et al. 10.3389/fmolb.2022.988777

170

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.988777


pathway were differentially associated with the high LAMC1

expression phenotype. At the same time, gene sets related to

oxidative phosphorylation, Huntington’s disease, and

Parkinson’s disease were differentially associated with the low

LAMC1 expression phenotype (Figures 10A,B). In addition, the

functional networks between LAMC1 and other genes were

assessed by GeneMANIA, and LAMA5 displayed the most

complex connection with LAMC1 (Figure 10C). Additionally,

biological processes (BP) and pathways of LAMC1-interacting

genes enriched in GO and KEGG were evaluated by Metascape.

We found that the basement membrane formation was the most

significantly enriched BP, and signaling initiated by

ECM–receptor interaction and focal adhesions formation were

the most significant pathways (Figure 10D). We also evaluated

FIGURE 10
LAMC1-associated signaling pathways, co-expression network and functional enrichment. (A,B) A pathway enrichment analysis of a rank-
ordered gene list using the GSEA software for the high and low LAMC1 expression in KIRP (A) and KIRC (B). (C) The co-expression network of LAMC1
constructed by GeneMANIA. The node size represents the strength of interactions, and the line color represents the types of interactions. (D) Effect
of LAMC1 on the biological processes. The histograms show the main biological processes in which LAMC1 interacting genes (as predicted by
the GO and KEGG enrichment analyses) are involved, constructed using the Metascape portal (enrichment conditions: min overlap, three; p-value
cutoff, 0.01; min enrichment, 1.5). (E) Effect of LAMC1 on the key pathways in cancers detected using GSCALite database. Red represents promotion;
green represents inhibition.
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the role of LAMC1 in the activity of cancer-related pathways and

drug sensitivity in RCC by GSCALite. We found that the

epithelial–mesenchymal transition (EMT) process was mainly

activated while Hormone AR signaling pathway was most

inhibited in RCC (Figure 10E). Finally, when considering the

drug sensitivity associated with LAMC1 expression, RCCs with

high LAMC1 expression were resistant to sets of drugs or small

molecules such as phenformin, NPK76-II-72-1, vorinostat, and

PIK93, whereas RCCs with lower levels of LAMC1 expression

were resistant to small sets of drugs or small molecules including

XAV939, 17-AAG, docetaxel, and bleomycin (Figure 11).

Discussion

LAMC1 is mainly expressed in the basement membrane and

participates in several biological and pathological processes,

including adhesion, invasion, and migration (Aumailley, 2013;

Ke et al., 2013). In addition, LAMC1 may participate in some

signaling pathways that affect cell proliferation and migration by

activating intracellular downstream effectors (Ke et al., 2013).

Interestingly, the LAMC gene family is also involved in kidney-

related growth, development, and disease. An early report

showed that LAMC1 interacts with nidogen to induce ureteric

bud protrusion from the Wolffian duct in mammalian renal

development (Willem et al., 2002). Besides, increased

LAMC1 protein was also detected in glomerular basement

membrane of kidney samples from chronic kidney disease

(CKD) patients (Setty et al., 2012). A LAMC1 epitope

fragment, LG1M, is a marker of remodeling and degradation

of the glomerular and tubular basement membrane, and is related

to disease progression and mortality in CKD (Holm Nielsen

et al., 2018). Furthermore, a gene expression profile analysis

identified the LAMC1 gene as up-regulated in aggressive KIRC

and as a candidate gene that differentiate aggressive from

indolent KIRC phenotypes (Lane et al., 2009). In line with

FIGURE 11
Analysis of drug resistance based on IC50 drug data from the GDSC database (GSCALite). A positive Spearman correlation (red) means that high
gene expression correlates with drug resistance, a negative Spearman correlation (blue) means that low gene expression correlates with drug
resistance.
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these early reports, it appears that high expression of LAMC1

may be involved in the progression of kidney disease, including

cancer. However, the correlation between LAMC1 expression

and the clinicopathological characteristics of RCC, as well as the

prognostic significance of LAMC1 expression for RCC have not

been well studied.

In this study, bioinformatics analyses of high-throughput

RNA sequencing data from TCGA revealed significantly

increased LAMC1 expression in RCC compared with the

adjacent normal renal tissues, and the LAMC1 protein levels

in RCC were also increased compared with the normal tissues

based on tissue microarray data. Our results summarized for the

first time the data on LAMC1 expression in RCC. To explore the

role of high expression of LAMC1 in RCC, we further evaluated

its effect on prognosis. According to the results of the KIRP

survival analysis, patients with high LAMC1 expression had

worse survival than those with low expression, whereas in

KIRC, high LAMC1 expression predicted better survival.

Univariate and multivariate Cox analysis of the TCGA

database showed that LAMC1 expression is a potential

independent marker of poor prognosis in KIRP. Interestingly,

KIRC showed the opposite result. The association between

LAMC1 expression and the clinical characteristics of RCC

patients also confirmed this observation. These results

suggested that LAMC1 could be used as a marker of the

cancer process to distinguish RCC patients from the normal

persons; besides, the high expression of LAMC1 in KIRP and

KIRC has completely different clinicopathological significance

and prognostic value.

Given that high LAMC1 expression has significantly

different prognostic value in KIRP and KIRC, we next tried

to discover its potential regulatory mechanism. By analyzing

the correlation between the LAMC1 gene and immune cells,

we found that LAMC1 expression in KIRP was positively

correlated with CD8+ T cells, myeloid dendritic cells and

neutrophils. For KIRC, the LAMC1 expression level showed

a positive correlation with infiltrating levels of CD4+ T cells,

macrophages, and neutrophils and a negative correlation with

B cells. It is known that immune cells infiltrating the tumor,

including macrophages, Treg cells, and CD8+ T cells can

influence the outcome of RCC treatment (Desar et al.,

2011; Cros et al., 2016; Zhu et al., 2019). Thus, the

difference in immune cell types present in KIRP and KIRC

probably affects the prognosis. In our study, high LAMC1

expression in the cohort of KIRP patients with enriched Treg

cells correlated with worse survival, whereas no such

correlation was observed in the cohort of KIRP patients

with fewer Treg cells. One of the mechanisms of tumor

immune escape is that Treg cells produce

immunosuppressive cytokines and receptors, which inhibit

T cell activation and anti-tumor response (Sakaguchi et al.,

2010; Speiser et al., 2016). The protective role of high levels of

activated CD8+ T cells in various tumors have been proposed

(Youngblood et al., 2017; Yao et al., 2018). In our study, we

found that high LAMC1 expression in the cohort of KIRC

patients with enriched CD8+ T cells correlated with good

survival, which was not significant for KIRP patients with

high LAMC1 expression; in contrast, high LAMC1 expression

in the cohort of KIRP patients with reduced CD8+ T cells

correlated with poor survival, which was not significant for

KIRC patients; on the opposite, LAMC1 high expression in

decreased CD8+ T cells cohort of KIRP showed a well OS but

not in KIRC. This result suggests that LAMC1 overexpression

has different prognostic significance in KIRP and KIRC

patient cohorts depending on CD8+ cell levels. Notably,

KIRP patients with high LAMC1 expression and reduced

numbers of CD4+ memory T cells, Th1 cells, and Th2 cells

had a worse prognosis, in contrast to similar cohorts in KIRC.

These results indicate the potential functionality of assessing

LAMC1 expression and immune cell infiltration in the

prognosis of RCC and treatment efficacy. Thus, KIRP and

KIRC have different immune responses. The relationship

between this complex immune cell infiltration and LAMC1

expression affects the prognosis for RCC patients, but the

underlined mechanism remains to be clarified, and the single-

cell RNA sequencing may provide a potential solution to this

problem.

Apart from the immune cells, immune factors also contribute

to cancer progression. Using the TIMER database, we identified

some of the immunoinhibitors and immunostimulators

associated with LAMC1 in KIRP and KIRC. The biological

function of the insertion domain kinase receptor (KDR) is to

regulate normal/pathological angiogenesis (Hoeben et al., 2004;

Takahashi and Shibuya, 2005; Shibuya, 2010). Using the

GSCALite database, we tested the correlation of KDR with

prognosis in KIRC and KIRP, and showed that KDR is

associated with poor survival in KIRP and better survival in

KIRC. Our results are consistent with earlier reports suggesting

that high KDR levels are significantly associated with poor

prognosis for patients with KIRP (Kroeze et al., 2010).

However, the positive association of KDR expression with

survival in patients with KIRC requires further elucidation.

Correlation analysis of expression between LAMC1 and

immunostimulators showed that CD276 (B7-H3) and NT5E

had a higher correlation with KIRP and KIRC. As a member

of the B7 family of immunoregulatory ligands, CD276 (B7-H3)

plays a role in regulating the immune response (Picarda et al.,

2016). High expression of B7-H3 protein correlates with poor

outcome in patients with various types of cancer. We also

observed that CD276 is significantly associated with the poor

prognosis of two kinds of RCC. Ecto-5′-nucleotidase (NT5E/

CD73) mediates the sequential dephosphorylation of

extracellular ATP to adenosine (Zimmermann, 1992).

Increased signaling initiated by adenosine promotes the

proliferation of Treg cells, the accumulation of intracellular

cAMP, and the differentiation of tumor-associated
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macrophages, thereby reducing the anti-tumor immune response

(Vigano et al., 2019). The correlation between LAMC1 expression

and these molecules suggests a possible mechanism, signaling

pathway, and prognostic value for LAMC1 in tumor immunity.

The current study also showed that tumor neoantigens

appearance and TMB have no or very weak association with

KIRP and KIRC; we therefore focused on the immune scores,

stromal scores and estimate scores in KIRP and KIRC. However,

only the results of stroma scores assessment showed KIRC to be

moderately positive. These results suggested that the high

expression of LAMC1 in KIRC may be accompanied by a

better immune microenvironment. The above results may

help to explain the correlation between high LAMC1 gene

expression and the better prognosis in KIRC.

DNA methylation is one of multiple epigenetic marks that

regulate gene expression in cells (Ehrlich, 2002). Hypomethylation

of the gene body leads to the high expression of oncogenes (Yang

et al., 2014). Our study found that hypomethylation of LAMC1 in

two kinds of RCC is related to high expression of the LAMC1 gene.

In the present work, we not only confirmed the hypomethylation of

LAMC1 in KIRC suggested by others (Wu et al., 2018), but

additionally found the hypomethylation in the LAMC1 gene in

KIRP. However, LAMC1 hypomethylation in KIRP and KIRC

weakly correlates with prognosis in cancer patients. Thus,

although LAMC1 hypomethylation in KIRP and KIRC is

associated with high LAMC1 expression, alone, it does not

contribute significantly to the prognosis of RCC patients. Copy

number variations (CNV) influences gene expression in

carcinogenesis (Hudler, 2012). In our study, we found that

higher CNV values correlated with lower survival in both KIRP

and KIRC. Therefore, the CNV of the LAMC1 gene can be used as a

prognostic tool in KIRP and KIRC.

To further evaluate the role of LAMC1 in KIRP and KIRC,

we performed Gene Set Enrichment Analysis (GSEA) using

TCGA data. GSEA analysis showed that genes involved in

adherens junctions, extracellular matrix receptor interaction,

MAPK signaling pathway, TGF-β signaling pathway, and Wnt

signaling pathway were differentially associated with the

LAMC1 high expression phenotype. In addition, the mTOR

pathway (Motzer et al., 2008) and the VEGF signaling

pathway (Turner, 2004; Yildiz et al., 2004) involved in the

pathogenesis of renal cancer were also enriched in our current

study (data not shown). The results of using two major

processes to examine groups of genes involved in common

biological activities, Gene Ontology (GO) and KEGG

enrichment analyses, using the Metascape portal to identify

LAMC1-interacting genes, were similar to those of the GSEA

analysis. Finally, drug sensitivity analysis revealed that cases

with high LAMC1 expression were resistant to most drugs or

small molecules in the GDSC database. These results

suggested that expression of LAMC1 is a potential

biomarker for drug screening and might provide a basis for

drug-targeted therapy.

In conclusion, we have explored the expression, prognosis,

and potential carcinogenic mechanism of LAMC1 in KIRP

and KIRC patients. Enhanced expression of LAMC1 indicates

a poor prognosis in KIRP and a better prognosis in KIRC.

These opposite prognostic features of LAMC1 overexpression

in the two types of renal carcinoma may be related to different

tumor immune microenvironments and immunomodulator-

associated molecules. The results of our study will help

clinicians to assess the prognosis and guide treatment of

patients with KIRP and KIRC. However, future analysis of

an independent patient cohort based on other data sources

and experimental validation of the biological significance of

LAMC1 expression in RCC is needed.
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Cuproptosis patterns in papillary
renal cell carcinoma are
characterized by distinct tumor
microenvironment infiltration
landscapes

Chiyu Zhang†, Ruizhen Huang† and Xiaoqing Xi*

Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China

Cuproptosis is a novel kind of programmed cell death that has been linked to

tumor development, prognosis, and responsiveness to therapy. Nevertheless,

the precise function of cuproptosis-related genes (CRGs) in the tumor

microenvironment (TME) remains unknown. We characterized the genetic

and transcriptional changes of CRGs in papillary renal cell carcinoma (PRCC)

samples and analyzed the expression patterns in two separate cohorts. We

observed that two unique cuproptosis-related subgroups and three separate

gene subgroups were connected with clinicopathological, prognostic, and TME

features of patients. Then, a risk score for predicting overall survival (OS) was

created and validated in patients with PRCC. To make the risk score more

clinically useful, we created a nomogram that was very accurate. A lower risk

score, which was associated with higher tumor mutation burden, and immune

activity, suggested a better prognosis for OS. Additionally, the risk score was

shown to be substantially linked with the drug’s susceptibility to

chemotherapeutic agents. Our extensive research of CRGs in PRCC

identified possible roles for them in the TME, clinicopathological features,

and overall survival. These findings may help advance our knowledge of

CRGs in PRCC and pave the way for improved prognosis and the creation of

more effective immunotherapy therapies.

KEYWORDS

cuproptosis, papillary renal cell carcinoma, tumor microenvironment, drug sensitivity,
prognostic model

Introduction

Renal cell carcinoma (RCC) is the most common kind of renal tumor, accounting for

up to 80% of cases; papillary renal cell carcinoma (PRCC) is the second most prevalent

type of RCC, accounting for around one-fifth of all instances (Mendhiratta et al., 2021;

Rysz et al., 2021). Patients with localized PRCC have a reported 5-year overall survival rate

of 70%, whereas patients with advanced PRCC do not have any feasible therapy choices at

this time (Akhtar et al., 2019; Steward et al., 2021; Chan et al., 2022). Currently, an
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increasing number of clinical investigations have been conducted

on individuals with clear cell RCC and have identified many

efficacious treatment targets, including VEGFR and mTOR

(Erlmeier et al., 2022; Labaki et al., 2022). Nevertheless, these

strategies were less effective in PRCC patients, which may be due

to the fact that PRCC carcinogenesis involves distinct genetic

alterations and molecular pathways from clear cell RCC

tumorigenesis (Paner et al., 2022). As a result, new precise

biomarkers and effective treatment techniques for PRCC are

required.

Copper (Cu) is a necessary cofactor for all species, but it

becomes hazardous when quantities reach a homeostatic

threshold (Ruiz et al., 2021). Nevertheless, the mechanism by

which excess copper causes cell death is uncertain. In human

cells, Tsvetkov et al. demonstrated that Cu-dependent, controlled

cell death is unique from other known cell death processes and

requires mitochondrial respiration (Tsvetkov et al., 2022). It

established that copper-dependent mortality occurs as a result

of copper’s direct binding to lipoylated tricarboxylic acid (TCA)

cycle components. This leads to the aggregation of lipoylated

proteins and the loss of iron-sulfur cluster proteins, which causes

a lot of stress on the body and eventually cell death. They

demonstrated that copper toxicity is unique from all other

known processes of controlled cell death, such as apoptosis,

ferroptosis, pyroptosis, and necroptosis (Tsvetkov et al., 2022).

As a result, they suggest the name “cuprotosis” for this hitherto

uncharacterized cell death process. Despite this, a number of

associations between illness and Cu have been discovered. Cu

levels have been shown to be greater in several cancers than in

normal tissues in various investigations (Stepien et al., 2017;

Aubert et al., 2020; Saleh et al., 2020; Michniewicz et al., 2021).

Cu deposition has been linked to increased proliferation and

growth, as well as angiogenesis and metastasis (Oliveri, 2022). Cu

dyshomeostasis is clearly important in cancer, although scientists

disagree over whether it is a cause or a result of carcinogenesis.

The tumor microenvironment (TME) is a complex and ever-

changingmilieu that mostly consists of stromal cells and immune

cells (Hinshaw and Shevde, 2019). Cancer develops and

progresses in conjunction with changes in the surrounding

stroma (Wu and Dai, 2017). Through the production of

different cytokines, chemokines, and other substances, cancer

cells may effectively design their microenvironment (Vitale et al.,

2019). This results in the surrounding cells’ being reprogrammed,

allowing them to play an important part in the proliferation of

cancer cells (Kochetkova and Samuel, 2022). Immune cells are

essential components of the tumoral microenvironment and are

required for this process to occur. The growing body of evidence

indicates that when innate and adaptive immune cells interact in

the TME, they promote tumor development (Hedrick and

Malanchi, 2022). The interaction of cancer cells and their

proximal immune cells eventually leads to an environment

conducive to tumor development and spread (Burrello and de

Visser, 2022). Trying to figure out how this interaction works

could lead to better medicines that can affect many parts of the

TME at the same time, which could lead to better patient

treatment results (Bader et al., 2020).

We conducted a detailed analysis of cuproptosis-related

genes and their relationship to the progression, prognosis, and

immune response of PRCC in detail. We identified distinct

cuproptosis patterns in PRCC using The Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets

and assessed the clinical features, prognostic significance, and

immune infiltration degree of the resultant cuproptosis clusters.

Additionally, we created a cuproptosis score that accurately

predicted patients with PRCC’s prognosis and therapy

responsiveness. These results may aid in the development of

successful immunotherapies for PRCC.

Materials and methods

Obtaining and processing raw data

The transcriptional mRNA sequences (fragments per

kilobase of transcript per million, FPKM) and

clinicopathological data for PRCC samples were obtained

from TCGA and GEO databases. For the following analyses,

data from the Cancer Genome Atlas’s kidney renal papillary cell

carcinoma (TCGA-KIRP) dataset and the Gene Expression

Omnibus Series 2748 (GSE 2748) dataset were collected. We

used the raw “CELL” files to modify the backdrop and normalize

the quantiles. The FPKM values of TCGA-KIRP were converted

to transcripts per kilobase million (TPM) and were thought to be

equivalent to those from microarray data (Zhao et al., 2021). The

batch effects from nonbiological technical biases in the two

datasets were removed using the ComBat algorithm from the

“SVA” package (Leek et al., 2012). The TCGA database was used

to get data on somatic mutations and copy number

variation (CNV).

Unsupervised clustering study of
cuproptosis-related genes

Thirteen cuproptosis-related genes (CRGs) were extracted

from prior studies, including FDX1, LIPT1, LIAS, DLD, DBT,

GCSH, DLST, DLAT, PDHA1, PDHB, SLC31A1, ATP7A, and

ATP7B(Cobine et al., 2021; Tsvetkov et al., 2022). To categorize

individuals into discrete molecular subgroups based on

cuproptosis-related gene (CRG) expression, the R package

“ConsensusClusterPlus” was used for consensus unsupervised

clustering analysis (Wilkerson and Hayes, 2010). This grouping

was carried out using the following standards: To begin, the

cumulative distribution function (CDF) curve steadily and gently

expanded in magnitude. Secondly, there were no small sample

sizes in any of the categories. Finally, following clustering, the
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correlation inside groups grows and the correlation between

groups diminishes. The research was conducted a total of

1000 times to confirm its accuracy as a clustering tool. We

investigated the connections between genetic subclusters and

clinicopathological features to determine the clinical utility of the

two subgroups determined by consensus clustering. Additionally,

we utilized Kaplan–Meier curves generated by the R tools

“survival” and “survminer” to assess differences in overall

survival (OS) among distinct subclusters (Lv et al., 2021).

Correlations between subclusters and the
tumor microenvironment

To get a better understanding of the biological roles within

distinct CRG subclusters, we utilized the “GSVA” R package to

conduct gene set variation analysis (GSVA) analyses on each

CRG subcluster (Hänzelmann et al., 2013). The immunological

and stromal scores of each patient were calculated using the

ESTIMATE method. Additionally, the CIBERSORT method was

used to compute the percentages of 23 human immune cell types

in each PRCC sample (Chen et al., 2018; Zhang et al., 2021).

Additionally, we estimated the levels of immune cell infiltration

in the tumor microenvironment using a single-sample gene set

enrichment analysis (ssGSEA) approach (Mao et al., 2022).

Identification of DEGs

The R tool “limma” was used to compare differentially expressed

genes (DEGs) amongst CRG subclusters (Ritchie et al., 2015). Then,

GeneOntology (GO) enrichment analysis was used to assess biological

functions, and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis was used to evaluate regulatory pathways (Gene

Ontology Consortium, 2015; Kanehisa et al., 2017).

The calculation of risk scores

A scoring system was developed to measure the cuproptosis

gene alteration patterns in each PRCC patient. To begin, DEGs

were screened across several CRG subclusters, with crossing

DEGs maintained for further research. To assess the

aforementioned intersecting DEGs and to filter for genes

linked with PRCC prognosis, we employed univariate Cox

regression techniques. Following that, we employed an

unsupervised clustering technique to divide PRCC patients

into distinct subclusters for a full systematic analysis based on

prognosis-related genes. Additionally, we used Principal

Component Analysis (PCA) to identify genes strongly linked

with prognosis in order to develop cuproptosis-relevant gene

signatures. The PCA approach enabled the scores to be

concentrated on highly associated gene modules and

downscaled for modules with modest contributions or

correlations. Finally, we established cuproptosis scores for

each PRCC patient using a mechanism identical to that used

to rate gene expression. The following equation was used to get

the risk score: Risk score = Σ (Expi * Coefi) (Coefi denotes the risk

coefficient and Expi the gene expression).

Developing and validating a nomogram-
based scoring system

Based on the conclusion of the independent prognosis study,

we utilized the clinical parameters and risk score to build a

prediction nomogram using the “rms” software. Each variable

was assigned a score in the nomogram scoring method, and the

overall score was calculated by summing the scores for all

variables for every subject. The nomogram was evaluated

using time-dependent receiver operating characteristic (ROC)

curves for survivals (Obuchowski and Bullen, 2018). The

nomogram’s calibration plots were utilized to illustrate the

prognostic validity between expected survival events and

practically actual outcomes.

Analyses of mutations and drug
susceptibility

The “maftools” R package was used to construct the mutation

annotation format (MAF) from the TCGA in order to compare

the somatic mutations of PRCC patients in two subgroups

(Mayakonda et al., 2018; Ferrer-Bonsoms et al., 2021). The

tumor mutation burden (TMB) score for each patient with

PRCC in the two groups was also computed. To examine

whether there were any differences in the therapeutic effects

of chemotherapeutic medications in the two subgroups, we

utilized the “pRRophetic” package to determine the semi-

inhibitory concentration (IC50) values of chemotherapy

agents routinely used to treat PRCC (Geeleher et al., 2014;

Wang et al., 2021).

Statistical analysis

The Wilcoxon rank-sum test was used to make comparisons

between two groups. The Kruskal-Wallis test was used for

comparisons of three or more groups. Survival studies

including risk scores were carried out using the Kaplan-Meier

technique. The log-rank test was used to examine the difference

in survival statistics. The function “surv-cutpoint” was used to

determine the best cut-off for the cohort in order to categorize

patients into high and low-risk score subgroups. The Univariate

and multivariate Cox regressions were used to assess the

prognostic significance of the risk score. R software version
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4.2.0 was used for all data analysis. A statistically significant

p-value of 0.05 was defined.

Results

Cuproptosis-related genes genetic
variation landscape in papillary renal cell
carcinoma

The TCGA dataset was used to investigate the landscape of

genetic variants in 13 CRGs in PRCC, including somatic

mutation and CNV. Genetic variations in CRGs were found

in 15 out of the 281 samples (5.34 percent), with the majority of

the variants being missense mutations (Figure 1A). The most

often mutated gene was ATP7B, followed by DBT, DLD, and

ATP7A, but PDHB, PDHA1, DLST, GCSH, LIPT1, FDX1,

SLC31A1, DLAT, and LIAS did not mutate in PRCC samples.

Following that, we examined somatic CNVs in these CRGs and

determined that they were widespread in 11 CRGs (Figure 1B).

DLD and PDHA1 exhibited increased CNV frequency, but DBT,

PDHB, SLC31A1, ATP7B, DLST, LIPT1, FDX1, DLAT, GCSH,

and GCSH all had decreased CNV frequency. Each chromosome

in Figure 1C has been colored in to illustrate where each CRG has

a copy number variation. We also analyzed the transcriptional

level of CRGs in PRCC and normal tissues, and discovered that

FIGURE 1
Cuproptosis-related genes (CRGs) genetic variation landscape in papillary renal cell carcinoma (PRCC). (A)The frequency of CRGs mutations in
281 patients with PRCC. On the right, the number indicated the mutation frequency of the CRGs. (B)The CRGs’ copy number variation (CNV)
frequency. The column indicated the frequency of variation. Red: gain frequency. Green: loss frequency. (C)The chromosomal location of the CRGs
with a CNV. (D) Analysis of the mRNA expression of CRGs in normal and PRCC tissues. Blue: normal renal tissue. Red: tumor tissue. (*p < 0.05;
***p < 0.001).
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FIGURE 2
Identification of cuproptosis subclusters in PRCC. (A) Interactions among CRGs in PRCC. Greater PRCC predictive influence is shown by larger
circles. The protective factor is represented by green, and the risk prognostic factor by the dark blue within the circle. (B) Consensus clustering
cumulative distribution function (CDF) curve when K = 2–9. (C) The consensus clusteringmatrix for CRGmodification patterns. At K = 2, the samples
are partitioned with reasonable stability. (D) Principal component analysis (PCA) of two clusters. Blue indicates CRG cluster A, whereas orange
represents CRG cluster B. (E) The heatmap depicts the expression of CRGs and clinicopathologic characteristics in different subclusters. Red denotes
high CRG expression and blue, low CRG expression.
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FIGURE 3
Correlations between the microenvironment of tumor immune cells and two PRCC subclusters. (A) Gene set variation analysis (GSVA) of
biological pathways divided into two separate subclusters, with red denoting active pathways and blue denoting inhibited pathways, respectively. (B)
The degrees of tumor microenvironment immune cell infiltration between the two CRG clusters. Blue symbolizes cluster A, whereas orange
represents cluster B. Themedian value is indicated by the thick line, and the interquartile range by the bottom and top of the box. The dispersed
dots signify anomalies. (*p < 0.05; **p < 0.01; ***p < 0.001).
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the transcriptional levels of most CRGs were positively linked

with the incidence of CNV. CNV-deficient CRGs, including

FDX1, DLAT, DLST, PDHB, SLC31A1, ATP7A, and DBT,

were expressed at lower levels in PRCC samples than in renal

samples, suggesting that CNVs may regulate CRG mRNA

expression (Figure 1D). As a result, the genomic and

transcriptome landscape in CRGs is critical for controlling the

onset and development of PRCC.

Identification of cuproptosis subclusters
in papillary renal cell carcinoma

The TCGA-PRCC and GSE2748 were combined to create

a meta-cohort. Each dataset comprised comprehensive

clinicopathological information and survival data. The

network depicted a full panorama of the CRGs’ expression

levels, correlations, and prognostic significance in PRCC

patients (Figure 2A). These findings suggest that cross-talk

between CRGs is crucial for the development of cuproptosis

patterns in individuals. To understand more about the CRGs’

expression properties in PRCC, we used a consensus

clustering approach to identify patients with PRCC based

on their transcriptional levels (Figures 2B,C). According to

our results, the optimal option for subdividing the whole

cohort into subclusters A (n = 199) and B (n = 122) is k =

2. At K = 2, the samples are partitioned with reasonable

stability. The cuproptosis transcriptional patterns of the

two subclusters differed significantly according to PCA

analysis (Figure 2D). Furthermore, evaluating the

clinicopathological characteristics of different CRG

subclusters revealed significant differences in CRG

transcription and pathological stage. Additionally, we

detected substantial changes in CRG expression across

various cuproptosis patterns, with all CRGs being

downregulated in CRG cluster B and upregulated in CRG

cluster A (Figure 2E).

Following that, we examined the molecular biological

characteristics associated with the two cuproptosis clusters.

The GSVA analysis revealed that CRG cluster A was

significantly enriched in tumor-associated pathways, including

the renal cell carcinoma pathway, pancreatic cancer pathway,

endometrial cancer pathway, and colorectal cancer pathway

(Figure 3A). Using the CIBERSORT method, we examined the

correlations between the two subclusters and 23 human immune

cell subtypes of each PRCC sample to explore the involvement of

CRGs in the TME of PRCC. According to our findings, the

infiltration of most immune cells differed significantly between

the two subclusters (Figure 3B). Subcluster B had significantly

more activated B cells, CD4 T cells, CD8 T cells, activated

dendritic cells, CD56bright natural killer cells, CD56dim

natural killer cells, MDSC, Macrophage, and natural killer

T cells than subcluster A.

Gene classification based on differentially
expressed genes

We used the “limma” R package to search for

3977 cuproptosis subcluster-related DEGs, identified as CRG

signature genes, to better understand the probable biological

roles across distinct CRG clusters (Figure 4A). The

“ClusterProfile” R package was then used to conduct GO

functional and KEGG pathway enrichment studies to annotate

and show DEGs’ biological functions. DEGs were found to be

significantly overrepresented in cellular metabolism-associated

pathways. In biological processes, DEGs were enriched in Golgi

vesicle transport, establishment of organelle localization, and

positive regulation of catabolic process. In cellular components,

DEGs were highly abundant in focal adhesion, cell−substrate

junction, and cell leading edge. DEGs were considerably enriched

in ubiquitin−like protein transferase activity, transcription

coregulator activity, and ubiquitin−protein transferase activity

throughout molecular function processes (Figure 4B). DEGs

were also highly enriched in tumor-associated pathways in

KEGG analyses: proteoglycans in cancer, prostate cancer,

pancreatic cancer, chronic myeloid leukemia and renal cell

carcinoma (Figure 4B).

Following that, we used univariate Cox regression to assess

the prognostic value of 3977 subcluster-related genes and

identified 739 genes linked with OS time for further analysis

(p < 0.05). We conducted an unsupervised cluster analysis on the

739 DEGs associated with prognosis to group PRCC patients into

three distinct gene subclusters: gene subcluster A, gene subcluster

B, and gene subcluster C (Figures 5A,B). At K = 3, the samples are

partitioned with reasonable stability. Patients with gene

subcluster B had the poorest overall survival, while patients in

gene subcluster A had the best OS (p < 0.001, Figure 5C). CRG

expression differed significantly amongst the three cuproptosis

gene subclusters, as predicted based on the cuproptosis patterns

(Figure 5D). This indicated that greater CRG expression may be

associated with a better prognosis for individuals with PRCC.

Additionally, the heatmap of gene expression indicated that these

differentially expressed genes associated with prognosis were

strongly expressed in gene cluster B (Figure 5E).

Developing the prognostic risk score

To begin, we used the R package “caret” to randomly

assign patients to one of two subgroups: training (n = 158) or

testing (n = 157). The optimum predictive signature for

739 cuproptosis subcluster-related DEGs was further

refined using least absolute shrinkage and selection

operator (LASSO) regression and multivariate Cox

regression analysis. Following LASSO regression analysis,

the least partial likelihood deviance revealed that 5 OS-

related genes remained (Figures 6A,B). Then, using the
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FIGURE 4
Functional enrichment analysis. (A) Bubble plot for Gene Ontology (GO) function enrichment analysis. BP: biological processes; CC: cellular
components; MF: molecular function. (B) Bubble plot for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The
y-axis shows pathway terms, whereas the x-axis denotes gene ratio. The size of each circle represents the number of genes. The hue of the circles
symbolizes various q values.
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FIGURE 5
Gene classification based on differentially expressed genes. (A) For K = 2–9, the relative change in the area under the CDF curve. (B)Heatmap of
the consensus matrix identifying two clusters (k = 3) and the region of their correlation. At K = 3, the samples are partitioned with reasonable stability.
(C) Kaplan–Meier curves for the overall survival of the gene subclusters. Blue indicates gene cluster A, orange cluster B, and red cluster C. Log-rank
p < 0.001, suggesting a substantial difference among the three gene clusters in terms of overall survival. Cluster B’s overall survival was much
worse than clusters A andC’s (D)CRG expression differences between gene subclusters. An interquartile range of the data was indicated by the upper
and lower ends of the boxes. The boxes’ lines indicated the median value. (one-way ANOVA test: ***p < 0.001). (E) A heat map of the clinical-
pathologic correlations between the two gene clusters. Alternate annotations are provided for age, gender, pathologic staging, and gene clusters.
Blue denotes low gene expression whereas red denotes high gene expression.
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Akaike information criterion (AIC) value, we did multivariate

Cox regression analysis on 5 OS-related genes to yield three

significant genes (APEH, ZNF844, and CLYBL). The DEGs

linked with the subclusters were used to generate the risk

score. The distribution of patients into two CRG subclusters,

three gene subclusters, and two risk score subgroups is shown

in Figure 6C. More crucially, CRG cluster B showed a

considerably higher risk score than CRG cluster A

(Figure 6D). Between gene subclusters, we discovered a

substantial variation in risk score. The risk score for gene

subcluster A was the lowest, while that for gene subcluster B

was the highest, suggesting that a low-risk score is likely to be

FIGURE 6
Developing the prognostic risk score. (A,B) Least absolute shrinkage and selection operator (LASSO) regression and partial likelihood deviance
on prognostic genes. (C) Distributions of various CRG clusters, gene clusters, risk scores, and survival outcomes are shown in alluvial plots. (D)
Differences in risk scores between two CRG clusters. The Wilcoxon rank-sum test revealed that the differences between the two clusters were
statistically significant (p < 0.001). (E)Differences in risk scores among three gene clusters. The Kruskal-Wallis test (p < 0.001) was used to assess
the differences between the three gene clusters. (F) Histogram of mRNA expression of CRG between high-risk and low-risk score groups. (G)
Heatmap of three significant genes across different risk scores. (H,I)Distribution of risk scores and patient survival status as shown by dot and scatter
plot.
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associated with immunological activation-related

characteristics, whilst a high-risk score is likely to be

associated with stromal activation-related characteristics

(Figure 6E). It was discovered that all CRGs were

considerably overexpressed in the low-risk subgroup

(Figure 6F). Similarly, as seen in the heatmap, the three

genes included in the score were significantly expressed in

the low-risk subgroup (Figure 6G). The distribution plot

demonstrated that as risk scores climbed, survival times

were reduced and recurrence rates increased (Figures 6H,I).

FIGURE 7
The construction of a nomogram for survival prediction. (A–C) Overall Survival analysis using the Kaplan–Meier method in all, training, and
testing sets. (D–F) Time-dependent receiver operating characteristic (ROC) curves to estimate the sensitivity and specificity of survival in all, training,
and testing sets based on the risk score. (G) Nomogram for predicting overall survival in patients with PRCC. (H) The nomogram’s calibration curves
for predicting overall survival. *p < 0.05, **p < 0.01.
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FIGURE 8
Comparative analysis of tumor microenvironment in various risk categories. (A–I) Relationship between the risk score and the kind of immune
cells. R represents the correlation coefficient, and when it is positive, it means that immune cell infiltration is positively correlated with the risk score,
and vice versa. (J) Relationship between immune cell abundance and three genes included in the suggested model. Red represents a positive
correlation between immune cell infiltration and gene expression, and blue represents a negative correlation. The darker the color, the greater
the correlation. (K) Relationship between risk score and both immune and stromal scores. A greater risk score was shown to be substantially
associated with a higher immunological score, stromal score, and ESTIMATE score.
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The construction of a nomogram for
survival prediction

We computed risk scores across testing and training sets to

confirm the risk score’s predictive performance. According to the

methodology used for the whole set, the patients were likewise

divided into two risk categories. Survivability studies showed that

patients in the lower-than-normal risk category had a considerably

better prognosis (Figures 7A–C). The AUC values for the risk score

at 1, 3, and 5 years were 0.819, 0.684, and 0.678, respectively, in the

all set (Figure 7D). There were 0.719, 0.694, and 0.696 AUC values

for the risk score at 1, 3, and 5 years in the testing set (Figure 7E).

Similarly, the training group’s AUC values are 0.932, 0.673, and

0.669, correspondingly (Figure 7F). One, three, and five-year

prognostic efficiency AUC values for the risk score were

demonstrated to be quite high, indicating that the risk score had

a remarkable ability to predict the life expectancy of people with

PRCC. Because the risk score is difficult to apply in practice, we

created a nomogram that combines the risk score with

clinicopathological variables to estimate patient survival time. As

predictors of the nomogram, we used the risk score, gender, age,

tumor metastasis, and cancer stage as variables to consider

(Figure 7G). In particular, the calibration plots revealed that the

nomograms we developed functioned in a manner comparable to

the ideal model, particularly when it came to the one-year survival

period (Figure 7H).

A comparative analysis of the tumor
microenvironment in various risk
categories

We employed the CIBERSORT technique to assess the

connection between the risk score and immune cell

abundance. As demonstrated in the scatter graphs, the risk

score was positively linked with B cells, M1 Macrophages,

Plasma cells, CD8 T cells, follicular helper T cells, and

CD4 memory activated T cells but negatively associated with

M0 Macrophages, M2 Macrophages, and CD4 memory resting

T cells (Figures 8A–I). We identified a substantial association

between the majority of immune cells and three genes, including

APEH and M0 Macrophages, CLYBL and M2 Macrophages, and

ZNF844 and CD4 memory resting T cells (Figure 8J). A greater

risk score was also shown to be substantially associated with a

higher immunological score, stromal score, and ESTIMATE

score (Figure 8K).

Analyzing genetic mutations and drug
susceptibility

According to accumulating research, due to their large

amounts of mutant antigens, people with a high TMB may

react better to immunotherapy than those with a low TMB.

As a further step, we compared the somatic mutation distribution

across two risk score subgroups (Figures 9A,B). The Spearman

correlation analysis showed that the risk score and tumor

mutational burden were linked in a negative way (R = -0.16,

p = 0.0074; Figure 9C). Our examination of the mutation datasets

revealed that the higher-risk category had a lower TMB than the

lower-risk category, suggesting that the lower-risk category may

benefit from immunotherapy (Figure 9D). The top twenty

mutated genes were similar in both groups, but the majority

of genes in the lower-risk subgroup had a higher mutation rate,

including TTN, MUC16, MET, MUC4, KMT2D, LRP2, and

PCLO. This finding is consistent with previous analyses of

gene mutation burden, implying that the lower-risk subgroup

may be more responsive to immunotherapy. Following that, we

chose medications presently used to treat cancer and assessed

their susceptibility in various risk categories (Figure 9E–N).

Interestingly, we discovered that patients with a high-risk

score had lower IC50 values for the majority of drugs,

including A-770041 (Lck targeted inhibitor), ABT-888 (small-

molecule inhibitors of PARP, veliparib), AG-014699 (PARP

inhibitors, rucaparib), AICAR (5-aminoimidazole-4-

carboxamide ribonucleotide), and AMG-706 (a multikinase

inhibitor, motesanib). Certain medications’ IC50 values were

considerably lowered in individuals with low-risk scores,

including AKT inhibitors and AS601245 (a selective JNK

inhibitor). When these findings are combined, they imply that

CRG is linked with medication sensitivity.

Discussion

Although several targeted agents have recently been

introduced in clinical applications for patients with high-grade

RCC, the evidence for their efficacy in PRCC is not yet strong

enough (Motzer et al., 2015; Choueiri and Kaelin, 2020). There

are very few cases of PRCC, so the results of genetic tests and

randomized control trials are often not included or only make up

a very small part of the results of RCC (Courthod et al., 2015).

Furthermore, since PRCC is distinct from clear cell RCC, the

relevant study findings for clear cell RCC do not apply to PRCC

(Massari et al., 2019). As a result, it is important to look into the

molecular processes that cause these diseases and to find new

biomarkers for targeted therapy. Tsvetkov et al. found that

FDX1 and protein acylation (LIPT1, LIAS, DLDDLAT,

PDHA1, and PDHB) were the main regulators of copper

ionophore-induced cell death, and the knockout of seven

genes prevented the killing of two copper ion carriers

(Tsvetkov et al., 2022). We began by examining the gene

mutation and expression of cuproptosis-related genes using

data from the TCGA-PRCC and GSE2748 datasets. CNV-

deficient CRGs, such as FDX1, DLAT, and DPT, were

expressed at lower levels in PRCC samples than in normal
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FIGURE 9
Analyzing genetic mutations and drug susceptibility. (A,B) The waterfall plot depicting the somatic mutation characteristics associated with
various risk scores. The numbers on the graph show the frequency of mutation. The fraction of mutation types is shown by the box on the right. (C)
Spearman correlation study of risk score and tumormutational burden. R represents the correlation coefficient, and when it is negative, it means that
the tumor burdenmutation is negatively correlated with the risk score. (D) Tumor mutational burden in several risk score categories. (E–N) The
relationship between risk score and drug sensitivity. Red represents the high-risk group and blue represents the low-risk group. The lower the half
maximal inhibitory concentration (IC50) value, the more sensitive the group of patients to the drug.
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renal samples, suggesting that CNV regulates CRG mRNA

expression. As a result, the genomic and transcriptome

landscape in CRGs is critical for controlling the onset and

development of PRCC. CNV are somatic mutations in the

DNA sequence that during the course of malignancy. The

altered chromosomal structures are produced by an increase

or decrease in the copy number of DNA segments, which is

common in many types of cancer. In PRCC, somatic CNV

identified three distinct tumor groupings. One grouping was

often characterized by numerous gains of chromosomes 7p and

17p, deletion of the Y chromosome, and further gains; the

majority of these cancers were type 1 and of low grade (Ren

et al., 2018). Somatic mutations are non-heritable changes to the

human genome that arise in somatic cells on their own accord

(Futreal et al., 2004). Linehan et al. indicated that METmutations

are mostly found in type 1 cancers and in the tyrosine kinase

domain.

Following that, we grouped PRCC patients according to their

expression of cuproptosis-related genes, resulting in two unique

pyroptotic patterns. Furthermore, evaluating the

clinicopathological characteristics of different CRG subclusters

revealed significant differences in CRG transcription and

pathological stage. Additionally, we detected substantial

changes in CRG expression across various cuproptosis

patterns, with all CRGs being downregulated in CRG cluster

B and upregulated in CRG cluster A. The GSVA analysis revealed

that CRG cluster A was significantly enriched in tumor-

associated pathways. According to our findings, the

infiltration of most immune cells differed significantly

between the two subclusters. Activated B cells, activated

CD4 T cells, and natural killer T cells were infiltrated in

much greater numbers in subcluster B than in subcluster A.

Cellular metabolism-associated pathways were found to be

significantly overrepresented by DEGs. Using a combined

study of mutation and CNV, numerous pathways were

identified as often dysregulated in PRCC. Wnt, Notch, TGF-,

and Hedgehog signaling pathways were shown to be enhanced in

type 1 PRCC (Saleeb et al., 2018). Additionally, when type

1 tumor tissue is compared to normal renal tissue, numerous

intriguing pathways have been found, including adherens

junction, focal adhesions, TGF signaling, Wnt signaling, and

MAP kinase signaling. We conducted an unsupervised cluster

analysis on the 739 DEGs associated with prognosis to group

PRCC patients into three distinct gene subclusters. Patients with

gene subcluster B had the poorest overall survival, while patients

in gene subcluster A had the best OS. CRGs expression differed

significantly amongst the three cuproptosis gene subclusters, as

predicted based on the cuproptosis patterns. We computed risk

scores across testing and training sets to confirm the risk score’s

predictive performance. Survivability studies showed that

patients in the lower-than-normal risk category had a

considerably better prognosis. Mei et al. (2022) constructed a

cuproptosis-related signature that was used to classify clear cell

renal cell carcinoma patients into distinct risk clusters, with low-

risk patients having a much better prognosis. Because the risk

score is inconvenient to apply in practice, we created a

nomogram that combines the risk score with

clinicopathological variables to estimate patient survival time.

As demonstrated in the scatter graphs, the risk score was

positively linked with B cells, M1 Macrophages, and

CD4 memory activated T cells. We identified a substantial

association between the majority of immune cells and three

genes, including APEH and M0 macrophages, CLYBL and

M2 macrophages, and ZNF844 and CD4 memory resting

T cells. A greater risk score was also shown to be substantially

associated with a higher immunological score, stromal score, and

ESTIMATE score. Our examination of the mutation datasets

revealed that the higher-risk category had a lower TMB than the

lower-risk category, suggesting that the lower-risk category may

benefit from immunotherapy. In recent years, renewed interest in

immunotherapy has been sparked by the discovery that PD-1

and its ligand PD-L1 are expressed in the majority of RCC

(Choueiri and Motzer, 2017). In addition to T- and B-cells,

natural killer cells, and macrophages, the PD-1 receptor is found

in other immune cells as well. Various malignancies cells may

express it, even though it is seldom expressed in healthy cells

(Johnson et al., 2018). One study indicated that after initiating

therapy with nivolumab in multiple patients with advanced

PRCC, computed tomography scans around half a year later

revealed a considerable decrease in the size and quantity of

systemic metastases (Adrianzen Herrera et al., 2017).

Following that, we chose medications presently used to treat

cancer and assessed their susceptibility in various risk categories.

Interestingly, we discovered that patients with a high-risk score

had lower IC50 values for the majority of drugs, including A-

770041 (Lck targeted inh ibitor) and AMG-706 (a multikinase

inhibitor, motesanib). Certain medications’ IC50 values were

considerably lowered in individuals with low-risk scores,

including AKT inhibitors and AS601245 (a selective JNK

inhibitor). When these findings are combined, they imply that

CRG is linked with medication sensitivity. In a phase II trial50,

Foretinib, a dual MET/VEGFR2 inhibitor, was recently assessed

in 74 participants with PRCC (Choueiri et al., 2013). Five out of

ten (50%) of these participants had a RECIST partial response,

whereas the remaining individuals achieved stable disease as their

best response. There are no conventional medicines that have

been shown to be effective in the treatment of metastatic PRCC.

A clinical experiment at the National Cancer Institute is now

evaluating one method that aims to exploit these cancers’ reliance

on aerobic glycolysis and a high glucose flow (Chen et al., 2019).

Indeed, there is growing evidence that copper is a dynamic

signaling molecule that exerts significant control over a varied

array of activities, including lipolysis, cellular proliferation,

autophagy, and brain activity (Tsang et al., 2020). Copper’s

growing involvement in maintaining or restoring homeostasis

emphasizes the critical nature of controlling its biological
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availability both within and outside the cell (Ackerman and

Chang, 2018). It is thought that mutations in the ATP7A/B

family, which are identical enzymes, cause the hereditary copper

transport diseases Menkes and Wilson illness (Kaler, 2013).

Genetic investigations have shown unequivocally that export

is the primary mechanism of protection against copper

toxicity, since cells lacking ATP7A are substantially more

susceptible to excess copper than those lacking

metallothioneins (Gudekar et al., 2020). Current antineoplastic

drugs have significant off-target consequences because they often

target fundamental characteristics of cells that are shared by all

rapidly reproducing cells (Oliveri, 2022). The goal of developing

new therapeutic medicines should be to improve selectivity and

thereby minimize adverse effects. Additionally, these drugs

should overcome resistance to tumor cells and specifically

target tumor stem cells. There are some copper ionophores

that have shown promise in this field because they are

naturally good at causing cuproptosis in tumor cells instead of

healthy ones. Disulfiram (DSF) and other copper ionophores

have been looked at as antitumor drugs that can cause

cuproptosis (Ge et al., 2022). It has been useful in treating

alcoholism for over half a century as a commonly used

aldehyde dehydrogenase inhibitor. Since it has various

biological functions, it’s becoming more popular to repurpose

DSF as an anticancer drug (Ekinci et al., 2019). DSF’s inexpensive

cost, great availability, safety profile, and antitumor efficacy have

piqued the curiosity of researchers (Kannappan et al., 2021). A

number of cancer cell lines have shown DSF to be an antitumor

drug in recent years (Li et al., 2020). Additionally, previous

research has shown that co-administration of DSF with

copper greatly enhances its antitumor activity since DSF’s

active form is a copper complex of DTC. DSF’s toxic effects

seem to be directly connected to the intracellular buildup of

copper that DSF promotes (Cen et al., 2004). Despite DSF’s good

outcomes in vitro and in vivo, clinical trials in malignancy

sufferers were unsuccessful (Kannappan et al., 2021). This

discouraging result might be explained by the quick

degradation of DSF and its active component or by the use of

a distinct route of administration for DSF and copper. It’s worth

mentioning that long-term use of copper-binding drugs, such as

copper ionophores, might disrupt vital metal homeostasis,

resulting in significant adverse effects in individuals

undergoing the medication. Whereas copper ionophores have

demonstrated inherent selectivity against tumor cells, as stated

above, their therapeutic window has to be expanded for safer use.

As a result, current research has concentrated on establishing

logical methodologies and innovative therapeutic modalities to

improve tumor cell targeting.

Conclusion

To summarize, the cuproptosis-related gene signature is

important for the definition of the TME and the predication

of PRCC prognosis. The risk score of a single tumor may help us

better understand the peculiarities of TME invasion and aid in

the development of more effective immunotherapy tactics.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.

Author contributions

CZ wrote the paper and analyzed the data. RH edited the

paper. XX made the images out. Each author contributed to the

paper and approved the final version submitted for publication.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ackerman, C. M., and Chang, C. J. (2018). Copper signaling in the brain and
beyond. J. Biol. Chem. 293 (13), 4628–4635. doi:10.1074/jbc.R117.000176

Adrianzen Herrera, D. A., Fleisig, S. B., and Gartrell, B. A. (2017). Impressive and
durable response to nivolumab in a patient with metastatic type 2 papillary renal cell
carcinoma: On-label but without evidence. Invest. New Drugs 35 (5), 665–668.
doi:10.1007/s10637-017-0469-5

Akhtar, M., Al-Bozom, I. A., and Al Hussain, T. (2019). Papillary renal cell
carcinoma (PRCC): An Update. Adv. Anat. Pathol. 26 (2), 124–132. doi:10.1097/
pap.0000000000000220

Aubert, L., Nandagopal, N., Steinhart, Z., Lavoie, G., Nourreddine, S., Berman, J.,
et al. (2020). Copper bioavailability is a KRAS-specific vulnerability in colorectal
cancer. Nat. Commun. 11 (1), 3701. doi:10.1038/s41467-020-17549-y

Frontiers in Molecular Biosciences frontiersin.org16

Zhang et al. 10.3389/fmolb.2022.910928

192

https://doi.org/10.1074/jbc.R117.000176
https://doi.org/10.1007/s10637-017-0469-5
https://doi.org/10.1097/pap.0000000000000220
https://doi.org/10.1097/pap.0000000000000220
https://doi.org/10.1038/s41467-020-17549-y
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.910928


Bader, J. E., Voss, K., and Rathmell, J. C. (2020). Targeting metabolism to improve
the tumor microenvironment for cancer immunotherapy. Mol. Cell 78 (6),
1019–1033. doi:10.1016/j.molcel.2020.05.034

Burrello, C., and de Visser, K. E. (2022). Pulling the Strings of the tumor
microenvironment. Cancer Immunol. Res. 10 (1), 4. doi:10.1158/2326-6066.Cir-
21-0977

Cen, D., Brayton, D., Shahandeh, B., Meyskens, F. L., Jr., and Farmer, P. J. (2004).
Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human
melanoma cells. J. Med. Chem. 47 (27), 6914–6920. doi:10.1021/jm049568z

Chan, E., Stohr, B. A., Butler, R. S., Cox, R. M., Myles, J. L., Nguyen, J. K., et al.
(2022). Papillary renal cell carcinoma with Microcystic Architecture is strongly
associated with Extrarenal invasion and metastatic disease. Am. J. Surg. Pathol. 46
(3), 392–403. doi:10.1097/pas.0000000000001802

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A.
(2018). Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol.
Biol. 1711, 243–259. doi:10.1007/978-1-4939-7493-1_12

Chen, Q., Cheng, L., and Li, Q. (2019). The molecular characterization and
therapeutic strategies of papillary renal cell carcinoma. Expert Rev. Anticancer Ther.
19 (2), 169–175. doi:10.1080/14737140.2019.1548939

Choueiri, T. K., and Kaelin, W. G., Jr. (2020). Targeting the HIF2-VEGF axis in
renal cell carcinoma.Nat. Med. 26 (10), 1519–1530. doi:10.1038/s41591-020-1093-z

Choueiri, T. K., and Motzer, R. J. (2017). Systemic therapy for metastatic renal-
cell carcinoma. N. Engl. J. Med. 376 (4), 354–366. doi:10.1056/NEJMra1601333

Choueiri, T. K., Vaishampayan, U., Rosenberg, J. E., Logan, T. F., Harzstark, A. L.,
Bukowski, R. M., et al. (2013). Phase II and biomarker study of the dual MET/
VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J. Clin.
Oncol. 31 (2), 181–186. doi:10.1200/jco.2012.43.3383

Cobine, P. A., Moore, S. A., and Leary, S. C. (2021). Getting out what you put in:
Copper in mitochondria and its impacts on human disease. Biochim. Biophys. Acta.
Mol. Cell Res. 1868 (1), 118867. doi:10.1016/j.bbamcr.2020.118867

Courthod, G., Tucci, M., Di Maio, M., and Scagliotti, G. V. (2015). Papillary renal
cell carcinoma: A review of the current therapeutic landscape. Crit. Rev. Oncol.
Hematol. 96 (1), 100–112. doi:10.1016/j.critrevonc.2015.05.008

Ekinci, E., Rohondia, S., Khan, R., and Dou, Q. P. (2019). Repurposing Disulfiram
as an Anti-cancer agent: Updated review on Literature and Patents. Recent Pat.
anticancer. Drug Discov. 14 (2), 113–132. doi:10.2174/
1574892814666190514104035

Erlmeier, F., Bruecher, B., Stöhr, C., Herrmann, E., Polifka, I., Agaimy, A., et al.
(2022). cMET: a prognostic marker in papillary renal cell carcinoma? Hum. Pathol.
121, 1–10. doi:10.1016/j.humpath.2021.12.007

Ferrer-Bonsoms, J. A., Jareno, L., and Rubio, A. (2021). Rediscover: an R package
to identify mutually exclusive mutations. Bioinformatics 38, 844–845. doi:10.1093/
bioinformatics/btab709

Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., et al.
(2004). A census of human cancer genes. Nat. Rev. Cancer 4 (3), 177–183. doi:10.
1038/nrc1299

Ge, E. J., Bush, A. I., Casini, A., Cobine, P. A., Cross, J. R., DeNicola, G. M., et al.
(2022). Connecting copper and cancer: From transition metal signalling to
metalloplasia. Nat. Rev. Cancer 22 (2), 102–113. doi:10.1038/s41568-021-00417-2

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R package for
prediction of clinical chemotherapeutic response from tumor gene expression
levels. PLoS One 9 (9), e107468. doi:10.1371/journal.pone.0107468

Gene Ontology Consortium (2015). Gene Ontology Consortium: Going forward.
Nucleic Acids Res. 43, D1049–D1056. doi:10.1093/nar/gku1179

Gudekar, N., Shanbhag, V., Wang, Y., Ralle, M., Weisman, G. A., and Petris, M. J.
(2020). Metallothioneins regulate ATP7A trafficking and control cell viability
during copper deficiency and excess. Sci. Rep. 10 (1), 7856. doi:10.1038/s41598-
020-64521-3

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: Gene set variation
analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/
1471-2105-14-7

Hedrick, C. C., and Malanchi, I. (2022). Neutrophils in cancer: Heterogeneous
and multifaceted. Nat. Rev. Immunol. 22 (3), 173–187. doi:10.1038/s41577-021-
00571-6

Hinshaw, D. C., and Shevde, L. A. (2019). The tumor microenvironment innately
Modulates cancer progression. Cancer Res. 79 (18), 4557–4566. doi:10.1158/0008-
5472.Can-18-3962

Johnson, D. B., Bordeaux, J., Kim, J. Y., Vaupel, C., Rimm, D. L., Ho, T. H., et al.
(2018). Quantitative Spatial profiling of PD-1/PD-L1 interaction and HLA-DR/
IDO-1 predicts improved outcomes of Anti-PD-1 therapies in metastatic

melanoma. Clin. Cancer Res. 24 (21), 5250–5260. doi:10.1158/1078-0432.Ccr-18-
0309

Kaler, S. G. (2013). Inborn errors of copper metabolism.Handb. Clin. Neurol. 113,
1745–1754. doi:10.1016/b978-0-444-59565-2.00045-9

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017).
KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids
Res. 45 (D1), D353–D361. doi:10.1093/nar/gkw1092

Kannappan, V., Ali, M., Small, B., Rajendran, G., Elzhenni, S., Taj, H., et al.
(2021). Recent advances in repurposing Disulfiram and Disulfiram Derivatives as
copper-dependent anticancer agents. Front. Mol. Biosci. 8, 741316. doi:10.3389/
fmolb.2021.741316

Kochetkova, M., and Samuel, M. S. (2022). Differentiation of the tumor
microenvironment: Are CAFs the organizer? Trends Cell Biol. 32 (4), 285–294.
doi:10.1016/j.tcb.2021.11.008

Labaki, C., Van Allen, E. M., and Choueiri, T. K. (2022). Linking a Trio of
molecular features in clear-cell renal cell carcinoma. Cancer Immunol. Res. 10 (3),
274. doi:10.1158/2326-6066.Cir-22-0058

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012). The
sva package for removing batch effects and other unwanted variation in high-
throughput experiments. Bioinformatics 28 (6), 882–883. doi:10.1093/
bioinformatics/bts034

Li, Y., Chen, F., Chen, J., Chan, S., He, Y., Liu, W., et al. (2020). Disulfiram/copper
induces antitumor activity against both Nasopharyngeal cancer cells and cancer-
associated Fibroblasts through ROS/MAPK and ferroptosis pathways. Cancers
(Basel) 12 (1), E138. doi:10.3390/cancers12010138

Lv, X., Jin, Y., Zhang, D., Li, Y., Fu, Y., Wang, S., et al. (2021). Low Circulating
Monocytes is in Parallel with Lymphopenia which predicts poor outcome in Anti-
melanoma Differentiation-associated gene 5 Antibody-positive Dermatomyositis-
associated Interstitial lung disease. Front. Med. 8, 808875. doi:10.3389/fmed.2021.
808875

Mao, J., Zhang, Q., Wang, Y., Zhuang, Y., Xu, L., Ma, X., et al. (2022). TERT
activates endogenous retroviruses to promote an immunosuppressive tumour
microenvironment. EMBO Rep. 23, e52984. doi:10.15252/embr.202152984

Massari, F., Di Nunno, V., Santoni, M., Gatto, L., Caserta, C., Morelli, F., et al.
(2019). Toward a genome-based treatment landscape for renal cell carcinoma. Crit.
Rev. Oncol. Hematol. 142, 141–152. doi:10.1016/j.critrevonc.2019.07.020

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: Efficient and comprehensive analysis of somatic variants in cancer.
Genome Res. 28 (11), 1747–1756. doi:10.1101/gr.239244.118

Mei, W., Liu, X., Jia, X., Jin, L., Xin, S., Sun, X., et al. (2022). A cuproptosis-related
gene model for predicting the prognosis of clear cell renal cell carcinoma. Front.
Genet. 13, 905518. doi:10.3389/fgene.2022.905518

Mendhiratta, N., Muraki, P., Sisk, A. E., Jr., and Shuch, B. (2021). Papillary renal
cell carcinoma: Review. Urol. Oncol. 39 (6), 327–337. doi:10.1016/j.urolonc.2021.
04.013

Michniewicz, F., Saletta, F., Rouaen, J. R. C., Hewavisenti, R. V., Mercatelli, D.,
Cirillo, G., et al. (2021). Copper: An intracellular Achilles’ Heel allowing the
targeting of Epigenetics, kinase pathways, and cell metabolism in cancer
therapeutics. ChemMedChem 16 (15), 2315–2329. doi:10.1002/cmdc.202100172

Motzer, R. J., Hutson, T. E., Glen, H., Michaelson, M. D., Molina, A., Eisen,
T., et al. (2015). Lenvatinib, everolimus, and the combination in patients with
metastatic renal cell carcinoma: A randomised, phase 2, open-label,
multicentre trial. Lancet. Oncol. 16 (15), 1473–1482. doi:10.1016/s1470-
2045(15)00290-9

Obuchowski, N. A., and Bullen, J. A. (2018). Receiver operating characteristic
(ROC) curves: Review of methods with applications in diagnostic medicine. Phys.
Med. Biol. 63 (7), 07tr01. doi:10.1088/1361-6560/aab4b1

Oliveri, V. (2022). Selective targeting of cancer cells by copper ionophores: An
Overview. Front. Mol. Biosci. 9, 841814. doi:10.3389/fmolb.2022.841814

Paner, G. P., Chumbalkar, V., Montironi, R., Moch, H., and Amin, M. B. (2022).
Updates in grading of renal cell carcinomas beyond clear cell renal cell carcinoma
and papillary renal cell carcinoma. Adv. Anat. Pathol. 29, 117–130. doi:10.1097/pap.
0000000000000341

Ren, Q., Wang, L., Al-Ahmadie, H. A., Fine, S. W., Gopalan, A., Sirintrapun, S. J.,
et al. (2018). Distinct genomic copy number alterations Distinguish Mucinous
Tubular and Spindle cell carcinoma of the kidney from papillary renal cell
carcinoma with Overlapping Histologic features. Am. J. Surg. Pathol. 42 (6),
767–777. doi:10.1097/pas.0000000000001038

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015).
Limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Frontiers in Molecular Biosciences frontiersin.org17

Zhang et al. 10.3389/fmolb.2022.910928

193

https://doi.org/10.1016/j.molcel.2020.05.034
https://doi.org/10.1158/2326-6066.Cir-21-0977
https://doi.org/10.1158/2326-6066.Cir-21-0977
https://doi.org/10.1021/jm049568z
https://doi.org/10.1097/pas.0000000000001802
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1080/14737140.2019.1548939
https://doi.org/10.1038/s41591-020-1093-z
https://doi.org/10.1056/NEJMra1601333
https://doi.org/10.1200/jco.2012.43.3383
https://doi.org/10.1016/j.bbamcr.2020.118867
https://doi.org/10.1016/j.critrevonc.2015.05.008
https://doi.org/10.2174/1574892814666190514104035
https://doi.org/10.2174/1574892814666190514104035
https://doi.org/10.1016/j.humpath.2021.12.007
https://doi.org/10.1093/bioinformatics/btab709
https://doi.org/10.1093/bioinformatics/btab709
https://doi.org/10.1038/nrc1299
https://doi.org/10.1038/nrc1299
https://doi.org/10.1038/s41568-021-00417-2
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1038/s41598-020-64521-3
https://doi.org/10.1038/s41598-020-64521-3
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1038/s41577-021-00571-6
https://doi.org/10.1038/s41577-021-00571-6
https://doi.org/10.1158/0008-5472.Can-18-3962
https://doi.org/10.1158/0008-5472.Can-18-3962
https://doi.org/10.1158/1078-0432.Ccr-18-0309
https://doi.org/10.1158/1078-0432.Ccr-18-0309
https://doi.org/10.1016/b978-0-444-59565-2.00045-9
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.3389/fmolb.2021.741316
https://doi.org/10.3389/fmolb.2021.741316
https://doi.org/10.1016/j.tcb.2021.11.008
https://doi.org/10.1158/2326-6066.Cir-22-0058
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.3390/cancers12010138
https://doi.org/10.3389/fmed.2021.808875
https://doi.org/10.3389/fmed.2021.808875
https://doi.org/10.15252/embr.202152984
https://doi.org/10.1016/j.critrevonc.2019.07.020
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.3389/fgene.2022.905518
https://doi.org/10.1016/j.urolonc.2021.04.013
https://doi.org/10.1016/j.urolonc.2021.04.013
https://doi.org/10.1002/cmdc.202100172
https://doi.org/10.1016/s1470-2045(15)00290-9
https://doi.org/10.1016/s1470-2045(15)00290-9
https://doi.org/10.1088/1361-6560/aab4b1
https://doi.org/10.3389/fmolb.2022.841814
https://doi.org/10.1097/pap.0000000000000341
https://doi.org/10.1097/pap.0000000000000341
https://doi.org/10.1097/pas.0000000000001038
https://doi.org/10.1093/nar/gkv007
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.910928


Ruiz, L. M., Libedinsky, A., and Elorza, A. A. (2021). Role of copper on
mitochondrial function and metabolism. Front. Mol. Biosci. 8, 711227. doi:10.
3389/fmolb.2021.711227

Rysz, J., Franczyk, B., Ławiński, J., and Gluba-Brzózka, A. (2021). Characteristics
of clear cell papillary renal cell carcinoma (ccpRCC). Int. J. Mol. Sci. 23 (1), 151.
doi:10.3390/ijms23010151

Saleeb, R. M., Plant, P., Tawedrous, E., Krizova, A., Brimo, F., Evans, A. J., et al. (2018).
Integrated Phenotypic/Genotypic analysis of papillary renal cell carcinoma subtypes:
Identification of prognostic Markers, cancer-related pathways, and implications for
therapy. Eur. Urol. Focus 4 (5), 740–748. doi:10.1016/j.euf.2016.09.002

Saleh, S. A. K., Adly, H. M., Abdelkhaliq, A. A., and Nassir, A. M. (2020). Serum
levels of Selenium, zinc, copper, Manganese, and iron in prostate cancer patients.
Curr. Urol. 14 (1), 44–49. doi:10.1159/000499261

Stepien, M., Jenab, M., Freisling, H., Becker, N. P., Czuban, M., Tjønneland, A.,
et al. (2017). Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk
in the European Prospective Investigation into Cancer and Nutrition cohort.
Carcinogenesis 38 (7), 699–707. doi:10.1093/carcin/bgx051

Steward, J. E., Kern, S. Q., Cheng, L., Boris, R. S., Tong, Y., Bahler, C. D., et al.
(2021). Clear cell papillary renal cell carcinoma: Characteristics and survival
outcomes from a large single institutional series. Urol. Oncol. 39 (6),
370.e21–370.370.e25. doi:10.1016/j.urolonc.2021.02.003

Tsang, T., Posimo, J. M., Gudiel, A. A., Cicchini, M., Feldser, D. M., and Brady, D. C.
(2020). Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung
adenocarcinoma. Nat. Cell Biol. 22 (4), 412–424. doi:10.1038/s41556-020-0481-4

Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M.,
et al. (2022). Copper induces cell death by targeting lipoylated TCA cycle proteins.
Science 375 (6586), 1254–1261. doi:10.1126/science.abf0529

Vitale, I., Manic, G., Coussens, L. M., Kroemer, G., and Galluzzi, L. (2019).
Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30 (1),
36–50. doi:10.1016/j.cmet.2019.06.001

Wang, Z., Wang, Y., Yang, T., Xing, H., Wang, Y., Gao, L., et al. (2021). Machine
learning revealed stemness features and a novel stemness-based classification with
appealing implications in discriminating the prognosis, immunotherapy and
temozolomide responses of 906 glioblastoma patients. Brief. Bioinform. 22 (5),
bbab032. doi:10.1093/bib/bbab032

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: A class
discovery tool with confidence assessments and item tracking. Bioinformatics 26
(12), 1572–1573. doi:10.1093/bioinformatics/btq170

Wu, T., and Dai, Y. (2017). Tumor microenvironment and therapeutic response.
Cancer Lett. 387, 61–68. doi:10.1016/j.canlet.2016.01.043

Zhang, A. Z., Yuan, X., Liang, W. H., Zhang, H. J., Li, Y., Xie, Y. F., et al. (2021).
Immune infiltration in Gastric cancer microenvironment and its clinical
significance. Front. Cell Dev. Biol. 9, 762029. doi:10.3389/fcell.2021.762029

Zhao, Y., Li, M. C., Konaté, M. M., Chen, L., Das, B., Karlovich, C., et al.
(2021). TPM, FPKM, or normalized Counts? A Comparative study of
Quantification measures for the analysis of RNA-seq data from the NCI
patient-Derived models Repository. J. Transl. Med. 19 (1), 269. doi:10.1186/
s12967-021-02936-w

Frontiers in Molecular Biosciences frontiersin.org18

Zhang et al. 10.3389/fmolb.2022.910928

194

https://doi.org/10.3389/fmolb.2021.711227
https://doi.org/10.3389/fmolb.2021.711227
https://doi.org/10.3390/ijms23010151
https://doi.org/10.1016/j.euf.2016.09.002
https://doi.org/10.1159/000499261
https://doi.org/10.1093/carcin/bgx051
https://doi.org/10.1016/j.urolonc.2021.02.003
https://doi.org/10.1038/s41556-020-0481-4
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1016/j.cmet.2019.06.001
https://doi.org/10.1093/bib/bbab032
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1016/j.canlet.2016.01.043
https://doi.org/10.3389/fcell.2021.762029
https://doi.org/10.1186/s12967-021-02936-w
https://doi.org/10.1186/s12967-021-02936-w
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.910928


Comprehensive analyses of
one-carbon metabolism related
genes and their association with
prognosis, tumor
microenvironment,
chemotherapy resistance and
immunotherapy in lung
adenocarcinoma

Ning Zhou1,2†, Quanying Tang1,2†, Haochuan Yu1,2†, Tong Li1,2,
Fan Ren1,2, Lingling Zu1,2, Gang Chen1,2, Jun Chen1,2* and
Song Xu1,2*
1Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China,
2Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer
Institute, Tianjin Medical University General Hospital, Tianjin, China

Background: Lung adenocarcinoma (LUAD) is the most common type of lung

cancer and is a global public health concern. One-carbon (1C)metabolism plays

a crucial role in the occurrence and development of multiple cancer types.

However, there are limited studies investigating 1C metabolism in LUAD. This

study aims to evaluate the prognostic value of 1C metabolism-related genes in

LUAD and to explore the potential correlation of these genes with gene

methylation, the tumor microenvironment, and immunotherapy.

Methods: We identified 26 1C metabolism-related genes and performed a

Kaplan-Meier and Cox regression analysis to evaluate the prognostic value of

these genes. Consensus clustering was further performed to determine the 1C

metabolism-related gene patterns in LUAD. The clinical and molecular

characteristics of subgroups were investigated based on consensus

clustering. CIBERSORT and ssGSEA algorithms were used to calculate the

relative infiltration levels of multiple immune cell subsets. The relationship

between 1C metabolism-related genes and drug sensitivity to

immunotherapy was evaluated using the CellMiner database and

IMvigor210 cohort, respectively.

Results: The expression levels of 23 1C metabolism-related genes were

significantly different between LUAD tumor tissues and normal tissues.

Seventeen of these genes were related to prognosis. Two clusters (cluster

1 and cluster 2) were identified among 497 LUAD samples based on the

expression of 7 prognosis-related genes. Distinct expression patterns were

observed between the two clusters. Compared to cluster 2, cluster 1 was
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characterized by inferior overall survival (OS) (median OS = 41 vs. 60months,

p=0.00031), increased tumormutation burden (15.8 vs. 7.5 mut/Mb, p < 0.001),

high expression of PD-1 (p < 0.001) and PD-L1 (p < 0.001), as well as enhanced

immune infiltration. 1C metabolism-related genes were positively correlated

with the expression of methylation enzymes, and a lower methylation level was

observed in cluster 1 (p = 0.0062). Patients in cluster 1 were resistant to

chemotherapy drugs including pemetrexed, gemcitabine, paclitaxel,

etoposide, oxaliplatin, and carboplatin. The specific expression pattern of 1C

metabolism-related genes was correlated with a better OS in patients treated

with immunotherapy (median OS: 11.2 vs. 7.8 months, p = 0.0034).

Conclusion: This study highlights that 1C metabolism is correlated with the

prognosis of LUAD patients and immunotherapy efficacy. Our findings provide

novel insights into the role of 1C metabolism in the occurrence, development,

and treatment of LUAD, and can assist in guiding immunotherapy for LUAD

patients.

KEYWORDS

one-carbon metabolism, immune cell infiltrate, chemotherapy resistance,
immunotherapy, lung adenocarcinoma

Introduction

Lung cancer remains one of the most prevalent cancer types

and the most lethal cancer type worldwide (Siegel et al., 2022).

Lung cancer is divided into two main forms: non-small cell lung

cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC is

the most common type of lung cancer and accounts for 85% of all

cases (Duma et al., 2019; Wang et al., 2019). Lung

adenocarcinoma (LUAD) is the major histopathological

subtype of NSCLC and accounts for approximately half of all

lung cancer-related deaths (Travis et al., 2015; Behrend et al.,

2021). Although several treatments have been confirmed effective

in recent years, platinum-based chemotherapy, such as

pemetrexed, remains the principal therapeutic for NSCLC

(Schiller et al., 2002; Tan et al., 2016).

One-carbon (1C) metabolism, also known as folate

metabolism, is involved in multiple physiological processes,

such as biosynthesis, amino acid homeostasis, epigenetic

maintenance, and redox defense (Ducker and Rabinowitz,

2017). It has been identified that 1C metabolic enzymes are

upregulated in numerous cancer types (Mehrmohamadi et al.,

2014). MTHFD2 expression is associated with poor prognosis in

hepatocellular carcinoma and colorectal cancer (Liu et al., 2016;

Ju et al., 2019). SHMT2 has also been identified to play a role in

colorectal and lung cancer progression (DeNicola et al., 2015; Liu

et al., 2021). In addition, TYMS is overexpressed in several

cancers and is closely associated with a poor prognosis (Sasaki

et al., 2013; Fu et al., 2019; Agulló-Ortuño et al., 2020; Song S.

et al., 2021). Because of the essential role of 1C metabolism in

cancer, inhibition of folate metabolism is regarded as an

important therapeutic strategy in cancer. Several drugs

targeting 1C metabolic enzymes have been successfully

developed, such as methotrexate and pemetrexed (Ducker and

Rabinowitz, 2017).

It has been shown that 1C metabolism can affect the function

of immune cells, especially the activation of T cell (Ducker and

Rabinowitz, 2017). Immune cells play an important role in the

tumor microenvironment (TME). The TME includes diverse cell

types, including cancer cells, noncancerous cells, as well as many

other cellular and noncellular components (Duan et al., 2020).

The immune and non-immune cells within the TME have been

observed to regulate the proliferation, differentiation, and death

of tumor cells (Mu and Najafi, 2021). In recent years, numerous

studies have shown the effectiveness of targeting components

within the TME alone or in combination with other therapies,

including chemotherapy, radiotherapy, and immunotherapy

(Hirata and Sahai, 2017; Ozpiskin et al., 2019; Liu et al., 2020).

1C metabolism can support methylation reactions by

generating 1C units (also known as methyl groups). DNA

and RNA methylation has been widely considered to be the

best-characterized epigenetic modifications, and play an

important role in the occurrence and development of

tumors. DNA methylation occurs at the 5-position of

cytosine (5 mC), and transcriptionally regulates the

expression of target genes (Robertson and Jones, 2000).

RNA methylation mainly includes three types: N6-

methyladenosine (m6A), 5-methylcytosine (m5C), and N1-

methyladenosine (m1A) (Song P. et al., 2021). Methylation is a

reversible modification that is regulated by special enzymes,

including methyltransferase (writer), demethylase (eraser),

and methylation-dependent binding protein (reader) (Dai

et al., 2021).

Although 1C metabolism has been shown to have important

functions in the process of methylation and the resistance to
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pemetrexed, its role in the occurrence, development, and

treatment of LUAD remains unclear. In the present study, we

found that 1C metabolism is associated with the prognosis of

LUAD and the effect of immunotherapy. 1C metabolism-related

genes are potential biomarkers of prognosis of LUAD and can

help to guide immunotherapy in LUAD patients.

Materials and methods

Dataset source

RNA-seq profiles (Counts and FPKM format), somatic

mutation, DNA methylation, and phenotype data from The

Cancer Genome Atlas (TCGA) LUAD cohort were

downloaded from the UCSC Xena database (https://

xenabrowser.net/datapages/) (Goldman et al., 2020). Six

GSE datasets were downloaded from GEO database

(https://www.ncbi.nlm.nih.gov/geo/), including GSE3141,

GSE29013, GSE31219, GSE31210, GSE37745, and

GSE50081. After normalizing the datasets and removing

batch effects, the expression profile data was used for the

subsequent analysis.

One-carbon metabolism-associated gene
collection

Based on the findings of previous studies, 26 1C metabolism-

associated genes were identified (Sasaki et al., 2013;

Mehrmohamadi et al., 2014; DeNicola et al., 2015; Liu et al.,

2016; Ducker and Rabinowitz, 2017; Fu et al., 2019; Ju et al., 2019;

Agulló-Ortuño et al., 2020; Liu et al., 2021; Song S. et al., 2021).

These genes were used for further analysis, including PHGDH,

PSAT1, PSPH, FTCD, SHMT1, SHMT2, MTHFD2L, MTHFD2,

MTHFD1L, MTHFD1, GCAT, SARDH, DMGDH, GNMT,

BHMT, ALDH7A1, CHDH, TYMS, MTR, MTHFR, GART,

ATIC, ALDH1L1, ALDH1L2, DHFR, and MTFMT.

Gene expression and prognostic analysis

The expression level differences of 1C metabolism-associated

genes between 509 LUAD samples and 58 adjacent normal

tissues were tested using a Student’s t-test. A Kaplan-Meier

analysis based on the optimal cutoff point was performed

using R packages (“survival” and “survminer”) to evaluate the

clinical relevance of 1C metabolism-associated genes. A

univariate Cox proportional hazard regression analysis was

performed to identify the risk factors among these genes.

Genes with p < 0.05 in the Kaplan-Meier analysis or

univariate Cox proportional hazard regression analysis were

considered prognosis-related genes.

One-carbon metabolism-associated
gene-based clustering and least absolute
shrinkage and selection operator
regression

According to the results of the Kaplan-Meier analysis and

univariate Cox proportional hazard regression analysis,

7 prognostic genes in univariate analysis were actually

selected based on p-value and hazard ratios, including

TYMS, DHFR, MTHFD1L, MTHFD1, ATIC, GNMT, and

CHDH. K-means consensus clustering with these 7 genes

was performed to identify subgroups in TCGA cohort.

Consensus clustering was employed using the R package

“ConsensusCluster” (Yu et al., 2012). The details of this

process were set as follows: the number of repetitions =

1,000 bootstraps; resample rate = 0.8. LUAD patients were

gathered into cluster 1 (n = 248) and cluster 2 (n = 249).

Similarly, consensus clustering was also performed in GEO

cohort, and patients were divided into two clusters, including

cluster 1 (n = 397) and cluster 2 (n = 437). Kaplan-Meier

analysis was used to assess OS differences between the two

subgroups in TCGA cohort and GEO cohort, respectively.

The least absolute shrinkage and selection operator (LASSO)

regression was performed to identify the prognostic genes of 1C

metabolism. According to the result of LASSO regression,

7 prognostic genes were finally selected, including TYMS,

DHFR, MTHFD2L, MTHFD1, ATIC, GNMT, and CHDH. The

risk score of each patient was calculated through the equation:

risk score = sum of coefficients × expression level of prognostic

genes. The LUAD patients were identified as two subgroups

based on the median risk score, including high-risk group and

low-risk group.

Gene set enrichment analyses

To determine the different biological processes between the

two subtypes, a gene set enrichment analyses (GSEA) was

conducted in the Hallmark gene set “c5.all.v7.0.entrez.gmt” of

MSigDB using the R package “ClusterProfiler” (Yu et al., 2012).

The parameters were set as follows: number of permutations =

1,000 and p-value cutoff = 0.05.

Immune infiltrate analysis

The infiltration level of immune cells was calculated through

cell type identification by estimating relative subsets of RNA

transcripts (CIBERSORT) and single-sample gene set

enrichment analysis (ssGSEA) (Hänzelmann et al., 2013;

Newman et al., 2015). CIBERSORT (http://cibersort.stanford.

edu/) was used to assess the abundances of 22 immune cell types

based on the RNA-seq profile of LUAD. The relative abundance
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of 28 distinct leukocyte subsets was also calculated through

ssGSEA using the R package “GSVA”. In addition, the

immunoscore of each patient was also calculated through the

R package “estimate”.

Somatic mutations and DNA methylation
analysis

To assess somatic mutations between the different subtypes,

the somatic mutation profile of LUAD patients was downloaded

from the UCSC Xena Database (Goldman et al., 2020). The

somatic mutation data were further analyzed with the “maftools”

R package. Similarly, the DNA methylation profiles were also

downloaded from the UCSC Xena Database and analyzed with

the “limma” R package to identify differential methylation sites

(Goldman et al., 2020).

Drug sensitivity analysis

Drug sensitivity analysis was performed using the CellMiner

Database (Reinhold et al., 2012). The RNA-seq and compound

activity data from the DTPNCI-60 dataset was downloaded from

the CellMiner Database (https://discover.nci.nih.gov/cellminer/

home.do) and was further analyzed with R Software (version 4.1.

2). The correlation between 1C metabolism-associated genes and

drug sensitivity was calculated. The following selection criteria

were used: Food and Drug Administration approval of the

therapeutic or inclusion of the therapeutic in clinical trials,

and p < 0.05.

One-carbon metabolism-associated
gene-based immunotherapy response
prediction

To validate the value of 1C metabolism-associated genes in

immunotherapy prediction, the IMvigor210 cohort was used to

investigate the relationships between 1C metabolism-associated

genes and immunotherapy response (Mariathasan et al., 2018).

Data from 348 patients who were diagnosed with urothelial

cancer and treated with atezolizumab were downloaded from

the IMvigor210 cohort.

Statistical analysis

Statistical tests were carried out with R (version 4.1.2), SPSS

22.0 (IBM, NY, United States), and GraphPad Prism 9.0. For

quantitative data, statistical significance for normally- and

nonnormally-distributed variables were estimated using a

Student’s t-test and Wilcoxon rank-sum test, respectively.

Two-sided Fisher’s exact tests were performed to analyze

contingency tables. Survival analyses were performed using

the Kaplan-Meier method, and the log-rank test was used to

evaluate the difference between groups. A correlation analysis

was performed using a Pearson correlation test. Multivariate

analyses were conducted using a Cox regression model to identify

the independent risk factors. A p-value < 0.05 was considered

statistically significant.

Results

Expression of one-carbon metabolism-
associated genes

To evaluate the biological function of 1C metabolism-

associated genes in the occurrence and development of

LUAD, the expression pattern of 26 1C metabolism-associated

genes was assessed in LUAD and adjacent normal tissues.

Significant differences were observed in the expression levels

of 23 genes between LUAD and adjacent normal tissues

(Figure 1A). The expression level of 20 genes was upregulated,

including PSAT1, PSPH, FTCD, SHMT1, SHMT2, MTHFD2L,

MTHFD2, MTHFD1L, MTHFD1, GCAT, DMGDH, ALDH7A1,

CHDH, TYMS, GART, ATIC, ALDH1L1, ALDH1L2, DHFR and

MTFMT (Figure 1B). GNMT and MTHFR were significantly

reduced in LUAD compared to adjacent normal tissues

(Figure 1B). These results suggest that 1C metabolism-

associated genes have important biological roles in LUAD

development.

Prognostic value of one-carbon
metabolism-associated genes

We further investigated the prognostic significance of 1C

metabolism-associated genes in patients of LUAD in TCGA

cohort. The Kaplan-Meier analysis based on an optimal cutoff

shows that 17 genes were associated with OS, while nine genes

were unrelated to prognosis (Figures 2A–C). The nine genes

were identified as risk factors and included ATIC, GART,

MTHFD1, MTHFD1L, MTHFD2, PSPH, SHMT2, DHFR, and

TYMS (Figure 2A). Several other genes were considered

protective factors, such as CHDH, GCAT, GNMT,

MTHFD2L, MTHFR, MTR, SARDH, and SHMT1

(Figure 2B). A univariate Cox regression analysis was also

performed and 10 genes had a significant prognostic

correlation with OS. MTHFD2, MTHFD1L, MTHFD1,

TYMS, DHFR, and ATIC were risk factors, while SARDH,

CHDH, GNMT and MTHFR were protective factors

(Figure 2D). In GEO cohort, the Kaplan-Meier analysis

which was based on the optimal cut-off revealed that

23 genes were related to OS, including 13 risk factors and
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10 protective factors (Supplementary Figures S1A–C).

Univariate Cox regression analysis was also performed and

11 genes were observed associated with OS (Supplementary

Figure S1D). In addition, ROC curves were drawn to assess the

specificity and sensitivity of 1C metabolism related-genes. The

results indicated that the value at 1-, 5- and 10-year were 0.63,

0.67 and 0.74 in TCGA cohort, respectively (Supplementary

Figure S2A). The AUC value of 1-year, 5-year and 10-year in

GEO cohort were 0.64, 0.65 and 0.63 respectively

(Supplementary Figure S2B).

One-carbon metabolism-associated
gene-based consensus clustering

Consensus clustering was performed to investigate the

heterogeneity of 1C metabolism-associated gene in TCGA

cohort. A total of 497 patients with LUAD were clustered into

two subtypes. Cluster 1 (n = 248) was characterized by a high

expression of high-risk genes while cluster 2 (n = 249) was

identified by a high expression level of protective genes

(Figure 3A). These two clusters exhibited the opposite

FIGURE 1
Expression levels of one-carbon metabolism associated genes in normal and tumor samples. (A) Heatmap of one-carbon metabolism
associated genes expression level in each sample; (B) The expression difference of one-carbon metabolism associated genes between tumor and
normal samples. * means p < 0.05; ** means p < 0.01; *** means p < 0.001; ns means no significant difference.
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expression pattern. Cluster 1 was characterized by high

expression of PHSH, SHMT2, MTHFD2, MTHFD1L,

MTHFD1, TYMS, GART, ATIC, and DHFR, as well as low

expression of SHMT1, SARDH, GNMT, CHDH, MTR and

MTHFR (Figures 3B,C). A Kaplan-Meier analysis showed that

patients who were divided into the cluster 1 subgroup suffered

inferior OS (median OS: 41 vs. 60 months, p = 0.0003;

Figure 3D). Clinical characters between the two clusters were

also investigated. Tumor metastasis (p = 0.016), advanced stage

(p = 0.036), and smoking status (p < 0.001) were more frequently

observed in cluster 1 (Table 1). Similar results were also observed

according to LASSO regression and risk score model

(Supplementary Figure S3A–H). In addition, consensus

clustering was also performed in GEO dataset, and two

clusters were identified, including cluster 1 (n = 397) and

cluster 2 (n = 437) (Supplementary Figure S4A). Compared

with TCGA cohort, similar expression patterns in two clusters

were observed in GEO dataset (Supplementary Figures S4B,C).

Kaplan-Meier analysis also revealed that cluster 1 subgroup

exhibited an inferior OS in GEO cohort (median OS: 69 vs.

132 months, p < 0.0001; Supplementary Figure S4D).

Consensus clustering-based genetic
landscape and gene set enrichment
analyses

To further investigate the genetic landscape differences

between the two subtypes, somatic mutation data in LUAD

patients were used. In cluster 1, TP53 was the most

FIGURE 2
Kaplan-Meier survival curves and Univariate Cox regression analysis of one-carbon metabolism associated genes. (A) Kaplan-Meier survival
curves of nine genes associated with inferior OS; (B) Kaplan-Meier survival curves of eight genes associated with superior OS; (C) Kaplan-Meier
survival curves of nine genes not associated with OS; (D) Univariate Cox regression analysis of 26 one-carbon metabolism associated genes.
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commonly mutated gene—with a frequency of 63%—

followed by TTN, CSMD3, MUC16, and RYR2

(Figure 4A). In cluster 2, the top five mutated genes with

a relatively low mutation rate were TTN, TP53, MUC16,

KRAS, and RYR2 (Figure 4B). Although TP53 was one of the

most frequently mutated genes in both groups, the mutation

rate was significantly different between cluster 1 and cluster 2

(63% vs. 33%; Figure 4C). In addition, different mutation

frequencies of the same gene between the two clusters were

also observed for TTN, CSMD3, LRP1B, ZFHX4, and XIRP2

(Figure 4C), and the tumor mutation burden (TMB) of

cluster 1 was significantly higher than in cluster 2

(Figure 4D). GSEA analysis was used to investigate the

transcriptomic alterations between these two groups. The

most prominent gene ontology terms in cluster 1 were cell

cycle, cell cycle procession, chromosome segregation, mitotic

cell cycle, and nuclear chromosome segregation (Figure 4E).

Consensus clustering-based immune
infiltrate analysis

The infiltration level of immune cells in the TME has been

confirmed to play an important role in tumor progression and

immunotherapy. To evaluate the difference in immune cell

infiltration between the two subgroups, CIBERSORT and

ssGSEA were performed in TCGA cohort. The CIBERSORT

analysis showed that CD8+ T cells, activated CD4 T cells,

M0 macrophages, and M1 macrophages were significantly

upregulated in cluster 1, while memory B cells, CD4 memory

resting T cells, regulatory T cells, and monocytes were

downregulated (Figure 5A). The ssGSEA analysis revealed that

activated CD4 T cells, activated CD8 T cells, NK cells, effector

memory CD4 T cells, memory B cells, natural killer T cells, and

Type 2 T helper cells were significantly upregulated, and Type

17 T helper cells were significantly downregulated, in cluster 1

FIGURE 3
Consensus clustering for one-carbonmetabolism associated genes in LUAD patients. (A) The consensusmatrix shows patients with two distinct
one-carbon metabolism statuses; (B) Heatmap of one-carbon metabolism associated genes expression level in two clusters; (C) The expression
difference of one-carbon metabolism associated genes in two clusters; (D) Kaplan-Meier curves for overall survival in two clusters (Log-rank test). *
means p < 0.05; ** means p < 0.01; *** means p < 0.001; ns means no significant difference.
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(Figure 5B). Moreover, the expression of PD-1 and PD-L1 was

also upregulated in cluster 1 (Figures 5C,D). The correlation of

immune cells with 1C metabolism related-genes was also

evaluated, and we found that the infiltration level of

CD4 T cells was positively related to those genes

(Supplementary Figures S5A,B). However, there was no

difference was observed between the two clusters on the

immune score (Supplementary Figures 6A–D). CIBERSORT

and ssGSEA were also performed in GEO cohort. It showed

that the infiltration level of immune cells in cluster 1 was higher

than in cluster 2 (Supplementary Figures S7A,B).

Correlation analysis of methylation
enzymes with one-carbon metabolism-
associated genes

1C metabolism supports the biosynthesis and methylation of

DNA and RNA by transferring 1C units. To explore the

involvement of methylation with 1C metabolism-associated

genes, 49 methylation enzymes were selected from previous

studies (Zhang and Jia, 2018; Bohnsack et al., 2019; Chen and

Zhang, 2020; Zhang C. et al., 2021). In addition, we further

evaluated the correlation of methylation enzymes with 1C

metabolism-associated genes. The results revealed that the

expression of methylation enzymes was significantly positively

associated with 1C metabolism-associated genes, such as TYMS,

MTR, MTHFR, SHMT2, MTHFD2L, MTHFD2, MTHFD1L,

MTHFD1, GART, ATIC, PSAT1, PSPH, DHFR, and FTCD

(Figure 6A). We also investigated the difference in DNA

methylation levels between the two groups and observed a

significant downregulation of DNA methylation in cluster 1

(Figure 6B). In addition, a further differential analysis revealed

that hypermethylation of SEPT9 and KLF13 was found in cluster

1, and hypomethylation of HNRNPR was also observed

(Figure 6C).

One-carbon metabolism-associated
gene-based drug sensitivity analysis

To investigate the potential correlation between 1C

metabolism-associated genes and drug sensitivity in multiple

human tumor cell lines, a correlation analysis was performed in

FIGURE 4
Genomic alterations and Gene set enrichment analysis between cluster 1 and cluster 2. (A) Landscape of mutation profiles in cluster 1; (B)
Landscape of mutation profiles in cluster 2; (C) The six genes with the greatest variation in mutation frequency between cluster 1 and cluster 2; (D)
The difference of tumor mutation burden between cluster 1 and cluster 2; (E) Top fivemost significant altered KEGG pathways in cluster 1 compared
with cluster 2. *** means p < 0.001.
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the CellMiner™ database. Cells with the expression pattern of

cluster 1 were negatively associated with drug sensitivity to

gemcitabine, oxaliplatin, obatoclax, imiquimod, and vorinostat

(Figures 7Aa–e), and positively correlated to drug sensitivity to

6-mercaptopurine, vandetanib, copanlisib, AT-9283 and

byproducts of CUDC-305 (Figures 7Af–g). Cells with the

expression pattern of cluster 2 were negatively correlated

with drug sensitivity to etoposide, lapatinib, tepotinib, 6-

thioguanine, and uracil mustard (Figures 7Ba–e), but were

positively correlated with drug sensitivity to paclitaxel,

carboplatin, okadaic acid, pazopanib and alisertib (Figures

7Aa–e). Patients in cluster 1 were also insensitive to

paclitaxel and carboplatin, suggesting that patients in cluster

1 are likely resistant to gemcitabine, paclitaxel, oxaliplatin, and

carboplatin treatment.

One-carbon metabolism-associated
genes are positively correlated with
immunotherapy sensitivity

According to the results above, cluster 1 in the LUAD cohort is

resistant to chemotherapy but may be sensitive to immunotherapy.

We therefore explored the relationship between 1C metabolism-

associated genes and immunotherapy in the IMvigor210 cohort.

Consensus clustering was also performed, and two clusters (cluster

1 and cluster 2) were identified among patients in the

IMvigor210 cohort (Figure 8A). A Kaplan-Meier analysis showed

that for patients treated with immunotherapy, cluster 1 had a

superior OS compared with cluster 2 (median OS: 11.2 vs.

7.8 months, p = 0.0034; Figure 8B). The expression pattern of

cluster 1 in the IMvigor210 cohort was similar to that of cluster

FIGURE 5
Immune profile alterations between cluster 1 and cluster 2. (A) The difference of 22 immune cell types between cluster 1 and cluster 2; (B) The
difference of 28 immune cell types between cluster 1 and cluster 2; (C) The difference of PD-1 expression level between the cluster 1 and cluster 2;
(D) The difference of PD-L1 expression level between cluster 1 and cluster 2. * means p < 0.05; ** means p < 0.01; *** means p < 0.001; ns means no
significant difference.
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1 in the LUAD cohort (Figures 8C,D). A Kaplan-Meier analysis

revealed that high expression of DHFR, TYMS, GART, MTHFD2

and SHMT1 were correlated with a superior OS (Figure 8E). In

addition, the expression levels of TYMS, GART, and MTHFD2 in

patients with a complete or partial response were higher than for

patients with stable or progressive disease (Figure 8F). In addition,

ROC curves were drawn to assess the specificity and sensitivity of 1C

metabolism related-genes with the value of 0.69 (Supplementary

Figure S2C).

Discussion

1C metabolism has been shown to play a role in the

occurrence, development, and treatment of multiple cancers.

Many 1Cmetabolic enzymes have been observed upregulated in

cancer tissues compared with adjacent normal tissues, and are

closely associated with cancer prognosis. However, the

literature on 1C metabolism in LUAD patients is sparse. In

the present study, we evaluated the expression levels of 1C

metabolism-related genes and the correlation with LUAD

prognosis. Unsupervised clustering analysis was performed

to classify the samples into cluster 1 and cluster 2. We found

that cluster 1 was characterized by inferior OS, increased TMB,

high PD-1 and PD-L1 expression, as well as enhanced immune

infiltration. In addition, 1C metabolism-related genes were

positively correlated with the expression of methylation

enzymes, and lower methylation levels were observed in

cluster 1. Patients in cluster 1 were also resistant to

chemotherapy drugs, including pemetrexed, gemcitabine,

FIGURE 6
Correlation of one-carbonmetabolism associated genes withmethylation. (A)Correlation of 26 one-carbonmetabolism associated geneswith
49 methylation enzymes; (B) The difference of methylation level between cluster 1 and cluster 2; (C) Differential analysis of methylation sites
between cluster 1 and cluster 2. ** means p < 0.01.
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paclitaxel, etoposide, oxaliplatin, and carboplatin. We also

found that 1C metabolism-related genes were positively

correlated with immunotherapy sensitivity.

In our study, 1C metabolism-related genes were selected

according to previous studies. The expression levels of these

genes were evaluated, and twenty genes were upregulated in

FIGURE 7
Drug sensitivity analysis of one-carbon metabolism associated genes. (A) Drug sensitivity analysis based on Cluster 1 expression pattern. (a–e)
Five drugs with negatively related sensitivity, (f–j) Five drugs with positively related sensitivity; (B) Drug sensitivity analysis based on Cluster 2
expression pattern. (a–e) Five drugs with negatively related sensitivity, (f–j) Five drugs with positively related sensitivity.
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FIGURE 8
Association of one-carbon metabolism related genes with immunotherapy. (A) The consensus matrix shows patients with two distinct one-
carbon metabolism statuses; (B) Kaplan-Meier curves for overall survival in two clusters (Log-rank test); (C) Heatmap of one-carbon metabolism
associated genes expression level in two clusters; (D) The expression difference of one-carbon metabolism associated genes in two clusters; (E)
Kaplan-Meier survival curves of five genes associated with superior OS; (F) The expression difference of three one-carbon metabolism
associated genes between CR/PR group and SD/PD group. * means p < 0.05; ** means p < 0.01; *** means p < 0.001; ns means no significant
difference.
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tumor tissues, while two genes were downregulated. The

upregulated genes included PSAT1, PSPH, FTCD, SHMT1,

SHMT2, MTHFD2L, MTHFD2, MTHFD1L, MTHFD1, GCAT,

DMGDH, ALDH7A1, CHDH, TYMS, GART, ATIC, ALDH1L1,

ALDH1L2, DHFR, and MTFMT, while the downregulated genes

included GNMT andMTHFR. A Kaplan-Meier analysis revealed

that 17 genes were associated with prognosis. Among these genes,

nine genes were identified as risk factors while the other eight

genes were considered protective factors. A univariate Cox

regression analysis identified six risk-associated genes and four

protective genes. Consensus clustering was performed, and

497 LUAD patients were classified into two clusters. We

found that, compared with cluster 2, cluster 1 exhibited the

opposite expression pattern and a worse OS.

The genetic landscape of these two groups was also

investigated. We observed that somatic mutations were more

frequent in the high-risk group. The mutation rates of TP53,

TTN, CSMD3, LRP1B, ZFHX4 and XIRP2 were significantly

higher in the high-risk group compared with the low-risk

group. In addition, a heavier TMB was also observed in the

high-risk group. Furthermore, the GSEA results suggested that

the pathways, which were associated with cell cycle and

chromosome segregation, were significantly enriched in the

high-risk group. TP53 (p53) is one of the most common

tumor suppressor genes in human cancers. The p53 protein

plays an antitumor role by repairing DNA damage, regulating

metabolism, normalizing reactive oxygen species levels,

modulating expression of non-coding RNAs, and promoting

autophagy or ferroptosis (Duffy et al., 2017). TP53 mutations

were also positively correlated with PD-L1 expression, TMB, and

clinical benefit of PD-1 inhibitors (Dong et al., 2017). In addition,

mutant TTN, CSMD3, LRP1B was also positively correlated with

response rate to immunotherapy (Jia et al., 2019; Brown et al.,

2021; Lu et al., 2021). Therefore, LUAD patients in cluster 1 may

benefit from immunotherapy treatment.

To investigate the difference in the TME between these two

groups, CIBERSORT and ssGSEA were performed. The results

revealed that CD8+ T cells, CD4+ T cells, NK cells, Type

2 T helper cells and M1 macrophages were significantly

upregulated in the high-risk group, while regulatory T cells

were downregulated. Furthermore, the expression of PD-1 and

PD-L1 was significantly upregulated. The TME is closely related

to the occurrence and progression of tumors, and influences

immunotherapy efficacy (Dai et al., 2021). A previous study

suggests that CD8+ T cells, CD4+ T cells, NK cells and

M1 macrophages influence the clinical benefit of

immunotherapy, while Treg cells impair the immunotherapy

efficacy (Petitprez et al., 2020). In addition, PD-1 and PD-L1 have

also been considered as protective biomarkers for

immunotherapy (Petitprez et al., 2020). Previous studies

suggested that 1C metabolism was associated the development

of immune system (Ducker and Rabinowitz, 2017). The

activation of immune cells, especially T cells, required an

ample supply of 1C units (Ron-Harel et al., 2016). Therefore,

we speculated that 1C metabolism related genes may contribute

to the accumulation of folate in TME, which may support the

development and activation of immune cells. On the other way, it

also may be an underlying competitive absorption of 1C units

between the tumor cells and immune cells. Based on these results,

we speculate that patients in cluster 1 may benefit from

immunotherapy.

1C metabolism generates 1C units to support methylation

reactions. To investigate the relationship between 1C

metabolism and DNA and RNA methylation, we calculated

the correlation of enzymes in the 1C metabolism pathway

with 49 methylation enzymes, and the results suggested that

1C metabolism genes are generally positively correlated with

methylation enzymes, such as “writers”, “readers”, and

“erasers”. A previous review suggests that RNA

TABLE 1 Clinicopathological characteristics of subgroups.

Cluster 2 Cluster 1 P

Age 0.384

≥70 year 85 75

<70 year 160 167

Gender 0.262

Male 108 120

Female 141 128

Race 0.590

White 192 192

Black 27 24

Other 30 32

Stage 0.036

I 146 121

II 55 63

III 36 44

IV 7 18

T stage 0.070

T1 95 71

T2 119 148

T3 23 20

T4 10 8

N stage 0.079

N0 169 152

N1–N3 73 92

M stage 0.016

M0 167 164

M1 6 18

Smoking status <0.001
Non-smoker 47 24

Current smoker 44 74

Reformed smoker 152 142
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modifications, including m6A, m1A and m5C, plays an

important role in the occurrence and development of lung

cancer (Teng et al., 2021). Considering the function of DNA

methylation enzymes, we further evaluated the DNA

methylation levels between two subgroups and found low

methylation levels in the high-risk group. DNA

hypomethylation promotes the development of cancer

partly by activating oncogenic potential genes (Van

Tongelen et al., 2017). A differential analysis suggests that

hypermethylation occurs in SEPT9 and KLF13, while

hypomethylation occurs in HNRNPR. SEPT9 and KLF13

have been shown to be antitumor genes in previous studies

(Jiao et al., 2019; Yao et al., 2020). The hypermethylation of

these genes impairs expression and promotes tumor

development. HNRNPR contributes to the proliferation

and metastasis of gastric cancer (Chen et al., 2019),

whereby HNRNPR hypomethylation leads to tumor

proliferation and metastasis. According to these findings,

we speculated that 1C metabolism may play an important

role in both methylation and demethylation. On the one

hand, the high expression level of 1C metabolism related

genes accelerate the generation of 1C units in tumor cells. The

abundant methyl groups provide the needs of the methylation

of DNA, RNA and proteins, which have been proved by

numerous studies (Robertson and Jones, 2000; Van

Tongelen et al., 2017; Chen et al., 2019; Jiao et al., 2019;

Yao et al., 2020; Dai et al., 2021; Song P. et al., 2021). On the

other hand, high expressing 1C metabolism related genes can

absorb redundant methyl groups generated by

demethylation, thereby promoting the demethylation

process. Thus, we speculated that 1C metabolism related

genes may contribute to the redistribution of 1C units, by

which the important biological processes are influenced. In

addition, previous studies indicate that patient tumors with

low levels of DNA methylation and high expression of RNA

methyltransferases respond better to immunotherapy

(Emran et al., 2019; Zhang et al., 2021b). We therefore

hypothesized that patients in cluster 1 may benefit from

immunotherapy.

We further explored the potential correlation between 1C-

related gene expression and drug sensitivity in the CellMiner

database. Based on the expression pattern of cluster 1, tumor

cells exhibited lower sensitivity to gemcitabine and

oxaliplatin, but a higher sensitivity to 6-mercaptopurine.

However, tumors with a cluster 2 expression pattern were

sensitive to paclitaxel and carboplatin, while resistant to

etoposide and lapatinib. Gemcitabine, paclitaxel, etoposide,

oxaliplatin, and carboplatin are common drugs for the

treatment of NSCLC, however, only a subset of patients

benefit from these drugs (Hu et al., 2016; Cui et al., 2020;

Esim et al., 2020; Zhang et al., 2021a). Lapatinib is a dual

tyrosine kinase inhibitor that has been shown to have

promising antitumor effects in NSCLC (Huijberts et al.,

2020). 6-mercaptopurine is also an antitumor drug, and the

achievement of its therapeutic activity requires the enzymatic

conversion to thio-GMP to displace thio-GTP in RNA and

DNA (Karran and Attard, 2008). Pemetrexed plays an

important role in the treatment of LUAD and has a

response rate of 30% (Postmus, 2002). Pemetrexed’s

antitumor function is achieved by inhibiting three key

enzymes in the 1C metabolism pathway: thymidylate

synthase (TYMS), dihydrofolate reductase (DHFR), and

glycinamide ribonucleotide formyltransferase (GART). A

recent study indicates that MTHFD2 overexpression is

involved in resistance to pemetrexed (Yao et al., 2021). We

found these four genes to be significantly upregulated in

tumor tissues, especially in cluster 1, and were associated

with a poor prognosis. Therefore, we can reasonably deduce

that LUAD patients with high expression levels of 1C

metabolism-related genes may be inherently insensitive to

pemetrexed treatment. Likely as a result of the opposite

expression pattern of 1C metabolism-related genes in these

two groups, the opposite drug sensitivity pattern existed

among these two clusters. Patients in cluster 1 were

resistant to chemotherapeutic drugs, including pemetrexed,

gemcitabine, paclitaxel, oxaliplatin, and carboplatin. Thus,

patients in cluster 1 may benefit from immunotherapy.

We speculated that patients in cluster 1 could benefit from

immunotherapy. We therefore investigated the relationship

between 1C metabolism-related genes and immunotherapy in

the IMvigor210 cohort. DHFR, TYMS, GART, MTHFD2 and

SHMT1 were correlated with a superior OS to immunotherapy.

The expression levels of TYMS, GART, and MTHFD2 were also

higher in patients with a complete or partial response compared

with patients who had stable or progressive disease. Thus, we

speculated that 1C metabolism-related genes may play a role in

immunotherapy response and lead to a clinical benefit from

immunotherapy.

Several limitations exist in our study. Although the results

were substantiated in both TCGA and the IMvigor210 cohort,

they were not confirmed in LUAD patients who were treated

with immunotherapy because of the insufficient

transcriptome data from clinical trials. Consequently,

different data sets were used in this study. To reduce bias,

external validation in larger cohorts is required to validate

these findings. Lastly, in vivo and in vitro experiments are

needed to explore the potential mechanisms.

Taken together, our study demonstrates that 1C metabolism-

related genes possess potential as therapeutic targets as well as

biomarkers of prognosis of immunotherapy in LUAD. Based on

the expression pattern of 1C metabolism-related genes, LUAD

patients can be classified into two subtypes. Specific subtype

characteristics provide information for LUAD clinical

management and decision-making. Our findings provide new

insight into the mechanisms associated with poor LUAD

prognosis, predict efficacy of several therapeutic drug, as well
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as assist in identifying biomarkers for immunotherapy in LUAD

patients.
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SUPPLEMENTARY FIGURE S1
Kaplan-Meier survival curves and Univariate Cox regression analysis of
one-carbon metabolism associated genes. (A) Kaplan-Meier survival
curves of 13 genes associatedwith inferior OS; (B) Kaplan-Meier survival
curves of 10 genes associated with superior OS; (C) Kaplan-Meier survival
curves of 3 genes not associated with OS; (D) Univariate Cox regression
analysis of 26 one-carbon metabolism associated genes.

SUPPLEMENTARY FIGURE S2
ROC curves of 1C metabolism related-genes in TCGA, GEO, and
IMvigor210 cohort. (A) The 1-year, 5-year, and 10-year ROC curve in
TCGA cohort; (B) The 1-year, 5-year, and 10-year ROC curve in GEO
cohort; (C) The ROC curve in IMvigor210 cohort.

SUPPLEMENTARY FIGURE S3
Lasso regression and the establishment of risk score model. (A,B) Lasso
regression for 1Cmetabolism related-genes in LUAD patients; (C,D) The
establishment of risk score model in LUAD patients; (E) The expression
difference of one-carbonmetabolism associated genes in high- and low-
risk groups; (F) Kaplan-Meier curves for overall survival in two subgroups
(Log-rank test). * means p < 0.05; ** means p < 0.01; *** means p <
0.001; ns means no significant difference.

SUPPLEMENTARY FIGURE S4
Consensus clustering for one-carbon metabolism associated genes in
LUAD patients. (A) The consensus matrix shows patients with two
distinct one-carbon metabolism statuses; (B) Heatmap of one-carbon
metabolism associated genes expression level in two clusters; (C) The
expression difference of one-carbon metabolism associated genes in
two clusters; (D) Kaplan-Meier curves for overall survival in two clusters
(Log-rank test). * means p < 0.05; **means p < 0.01; *** means p < 0.001;
ns means no significant difference.

SUPPLEMENTARY FIGURE S5
Correlation of one-carbon metabolism associated genes with immune
cells. (A) Correlation of 26 one-carbon metabolism associated genes
with 22 immune cells; (B) Correlation of 26 one-carbon metabolism
associated genes with 28 immune cells.

SUPPLEMENTARY FIGURE S6
ESTIMATE analysis between cluster 1 and cluster 2. (A) The ESTIMATE
score between cluster 1 and cluster 2; (B) The Tumor purity between
cluster 1 and cluster 2; (C) The immune score between cluster 1 and
cluster 2; (D) The stromal score between cluster 1 and cluster 2. ns means
no significant difference.

SUPPLEMENTARY FIGURE S7
Immune profile alterations between cluster 1 and cluster 2. (A) The
difference of 22 immune cell types between cluster 1 and cluster 2; (B)
The difference of 28 immune cell types between cluster 1 and cluster 2.
* means p < 0.05; ** means p < 0.01; *** means p < 0.001; ns means no
significant difference.
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Bladder cancer (BlCa) is a highly immunogenic cancer. Bacillus Calmette-

Guérin (BCG) is the standard treatment for non-muscle invasive bladder

cancer (NMIBC) patients and, recently, second-line immunotherapies have

arisen to treat metastatic BlCa patients. Understanding the interactions

between tumor cells, immune cells and soluble factors in bladder tumor

microenvironment (TME) is crucial. Cytokines and chemokines released in

the TME have a dual role, since they can exhibit both a pro-inflammatory

and anti-inflammatory potential, driving infiltration and inflammation, and also

promoting evasion of immune system and pro-tumoral effects. In BlCa disease,

70–80% are non-muscle invasive bladder cancer, while 20–30% are muscle-

invasive bladder cancer (MIBC) at the time of diagnosis. However, during the

follow up, about half of treated NMIBC patients recur once ormore, with 5–25%

progressing to muscle-invasive bladder cancer, which represents a significant

concern to the clinic. Epithelial-mesenchymal transition (EMT) is one biological

process associated with tumor progression. Specific cytokines present in

bladder TME have been related with signaling pathways activation and EMT-

related molecules regulation. In this review, we summarized the immune

landscape in BlCa TME, along with the most relevant cytokines and their

putative role in driving EMT processes, tumor progression, invasion,

migration and metastasis formation.
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tumormicroenvironment (TME), bladder cancer, cytokines/chemokines, immune cells,
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Introduction

Urothelial cell carcinoma is the most frequent type of bladder

cancer (BlCa), corresponding to approximately 90% of the total

cases (Cao et al., 2019). 70–80% of the cases are non-muscle

invasive bladder cancer (NMIBC), while the remaining 20–30%

are muscle-invasive bladder cancer (MIBC) at the time of

diagnosis (Yun and Kim, 2013; Chandrasekar et al., 2018).

After receiving surgical treatment, almost half of NMIBC

patients experience recurrences once or more, with 5–25% of

these patients eventually developing to MIBC, the most severe

form of the disease (Kamat et al., 2017). Also, a fraction of

patients can show metastases at the time of diagnosis, or develop

metastatic disease during follow-up, mainly to the bone (Stellato

et al., 2021), distant lymph nodes, lung (Dong et al., 2017) and

liver (Wang et al., 2020).

BlCa has the highest cumulative treatment cost, compared to

other types of cancers (Bryan, 2015). The standard treatment for

NMIBCs, except for carcinoma in situ (CIS), is transurethral

resection of bladder tumor (TURBT). After TURBT, intravesical

immunotherapy Bacillus Calmette-Guérin (BCG) is usually

applied in order to reduce the risk of recurrence and

progression (Kamat et al., 2017; Chandrasekar et al., 2018).

BCG has a dual role, since it promotes the activation of the

immune system and can directly kill tumor cells (Han et al.,

2020). Although the mechanisms of BCG-induced

immunotherapy are still incompletely understood (Song et al.,

2019), it is known that the immune system is triggered when

pathogen-associated molecule patterns (PAMPs), located at the

bacterium cell wall, are recognized by pattern recognition

receptors (PRRs) expressed by antigen-presenting cells (APCs)

and bladder tumor cells. This binding promotes

MyD88 signaling pathway stimulation, resulting in nuclear

factor kappa-B (NF-kB) activation that promotes cytokine

transcription (Han et al., 2020). Additionally, BCG-activated

skin dendritic cells (DCs) migrate to the draining lymph

nodes to activate adaptive CD4+ and CD8+ T cells, and

activation of B cells leads to the production of antibodies and

memory cells in response to the presence of BCG antigens

(Covián et al., 2019).

When tumors progress or are diagnosed as localized MIBC,

the recommended treatment is cisplatin-based neoadjuvant

chemotherapy (NAC) followed by radical cystectomy (Yafi

and Kassouf, 2009; Chandrasekar et al., 2018). Moreover,

cisplatin-based chemotherapy is the suggested treatment for

individuals who have metastases at the time of diagnosis or

develop later on (Chandrasekar et al., 2018). However, most of

the times, patients do not respond (Galsky et al., 2012; Minoli

et al., 2020) or present several comorbidities impeding the usage

of neoadjuvant or adjuvant chemotherapy (Inman et al., 2017).

This, alongside with the fact that BlCa is considered as an

immunogenic cancer, due to its high tumor mutation burden

(TMB) and neoantigens (Hu et al., 2021), led to the Food and

Drug Administration (FDA) approving several forms of

immunotherapy as second-line treatments for metastatic BlCa

patients who had not responded to cisplatin-based chemotherapy

(Wołącewicz et al., 2020; Du et al., 2021a). Immune checkpoint

blockade (ICB) therapies against PD-L1 (such as atezolizumab,

durvalumab and avelumab) or against PD-1 (nivolumab and

pembrolizumab) are increasingly promising targets in BlCa

(Song et al., 2019; Wołącewicz et al., 2020).

Tumor microenvironment (TME) in
BlCa

Bladder tumor microenvironment (TME) has a crucial role

in immunotherapy responses (Du et al., 2021a). TME comprise

non-cellular components, such as extracellular matrix (ECM)

and soluble biological factors or mediators, as cytokines/

chemokines, and cellular components, including tumor cells,

endothelial cells, stromal cells, and tumor-infiltrating immune

cells (TIICs) (Du et al., 2021a; Liu et al., 2021). According to the

ESTIMATE algorithm (Yoshihara et al., 2013), patients with high

immune score had better prognosis, while patients with high

stromal score were associated with shorter survival (Liu et al.,

2021). The development of new immunotherapeutic strategies or

an improvement in their effectiveness may be aided by a greater

comprehension of the bladder TME (Nair et al., 2020).

TME immune cells in BlCa

Macrophages are one the most abundant immune cells in the

TME, including in BlCa (Miyake et al., 2016; Du et al., 2021b).

Tumor-associated macrophages (TAMs) secrete several soluble

molecules, such as cytokines and chemokines, that directly

influence tumor growth, metastasis, and drug resistance

(Hanada et al., 2000; Pan et al., 2020). In BlCa, higher

amounts of CD68+ (pan-macrophage marker) cells, were

associated with higher grade and advanced tumors (Huang

et al., 2020; Harras and Abo Safia, 2021). Specifically, TAMs

(CD68+) number was significantly higher in MIBCs comparing

with NMIBCs (Hanada et al., 2000; Viveiros et al., 2022) and

higher amounts of CD68+ cells were significantly associated with

poorer disease specific survival (DSS) in bladder peritumoral

regions and with worse overall survival (OS) and DSS in bladder

intratumoral regions (Viveiros et al., 2022). Co-cultures between

macrophages and BlCa cell lines showed an increase in colony

formation, cell migration and cell invasion (Huang et al., 2020).

TME influence macrophage polarization and, consequently,

macrophage function (Miyake et al., 2016). Macrophages can

be classified in anti-tumor/proinflammatory (M1) and pro-

tumor/anti-inflammatory (M2) (Miyake et al., 2016).

M2 macrophages (CD163+) are associated with tumorigenesis,

tumor growth, angiogenesis, inhibition of immunosurveillance
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and ECM degradation (Miyake et al., 2016; Du et al., 2021b;

Harras and Abo Safia, 2021). TAMs usually display a bias

towards an M2-like phenotype (Takeuchi et al., 2016), as

observed in BlCa (Viveiros et al., 2022). Indeed, higher ratio

of CD163+/CD68+ macrophages was correlated with advanced

BlCa stage and grade (Takeuchi et al., 2016) and higher amounts

of CD163+ were significantly associated with worse DSS and OS

(Viveiros et al., 2022).

Fibroblasts are one of the most abundant and active cells in

the stroma, performing tissue repair functions (Miyake et al.,

2016). Cancer-associated fibroblasts (CAFs) contribute to tumor

growth, angiogenesis and treatment resistance by secreting

specific cytokines (Miyake et al., 2016). Additionally, CAFs

secrete several factors, such as collagen, matrix

metalloproteinases (MMPs), chemokines and proteases

(Miyake et al., 2016; Du et al., 2021b). Du Y et al.

demonstrated, in silico, that CAFs were abundant in bladder

TME. Moreover, the authors showed that higher CAF levels

enhanced BlCa progression and were associated with lower OS

Du et al. (2021b). Other study demonstrated that co-culture

between fibroblasts and BlCa cell lines (UMUC3, T24 and 5637)

improved tumor cell invasion (Yeh et al., 2015) and have been

associated with cisplatin resistance (Long et al., 2019).

Overall T cells (CD3+) were significant increase in MIBC

tumors, comparing with high-grade NMIBCs, although no

differences were found in bladder peritumoral areas (Viveiros

et al., 2022). It was shown that CD3+ in tumor infiltrating

lymphocytes (TILs) were related with poor outcome in BlCa

patients (Russo et al., 2022). However, Viveiros N et al. proved

that an enrichment of CD3+ cells, in the intratumoral area,

significantly associated with higher disease-free survival (DFS)

(Viveiros et al., 2022) and Sjödahl G et al. showed that infiltrating

CD3+ cells were significantly associated with good prognosis in

the MIBC cases (Sjödahl et al., 2014).

In silico, cytotoxic CD8+ T cells correlated with better patient

outcome, being observed a decrease of CD8+ levels in higher BlCa

stages (Cao et al., 2019; Zhang et al., 2020). In patient tissues,

Zhang S et al. and Jóźwicki W et al. reported that CD8+ TILs was

found mostly in pTa-pT1, comparing with pT2 tumors Jóźwicki

et al. (2016), Zhang et al. (2017). Specifically, in Zhang S et al.

study, higher CD8+ was associated with better OS in non-organ

confined disease, but with worse OS in organ-confined disease

patients, suggesting that cytotoxic T cells might have anti-

tumor activity in non-organ confined disease and a pro-

tumor activity in organ-confined disease Zhang et al.

(2017). Viveiros N et al. observed that MIBC patients

presented higher CD8+ expression, comparing with NMIBC

high-grade, but, specifically, MIBC tumors with high

intratumoral CD8 expression demonstrated higher DFS and

OS Viveiros et al. (2022). Additionally, it was shown that poor

CD8+ T cell expression, along with type I IFN signature and

IFN-inducible inhibitory factors, characterize a non-T cell

inflamed bladder TME (Trujillo et al., 2018), usually

correlated with poor prognosis and resistance to

immunotherapies (Sweis et al., 2016).

In silico, Cao J et al. observed that CD4+ memory resting cells

decreased with higher BlCa stage, while CD4+ memory activated

T cells increased Cao et al. (2019). Zhang Y et al. showed, in silico,

that activated memory CD4+ cells were significantly associated

with better outcome, while resting memory CD4+ cells were

associated with poor outcome in BlCa patients Zhang et al.

(2020). In BlCa tissues, CD4+ levels were significantly higher

in pTa-pT1 patients, comparing with most aggressive tumors

(Jóźwicki et al., 2016; Viveiros et al., 2022). However, stratifying

the tumoral areas, it was observed that CD4+ cells were

significantly enriched in high-grade NMIBCs in peritumoral

area, while CD4+ levels were significantly abundant in MIBCs

in intratumoral area (Viveiros et al., 2022).

Regulatory T (Treg) cells are a subpopulation of CD4+ T cells,

characterized by the expression forkhead box protein P3

(FOXP3) transcription factor (Winerdal et al., 2011; Ariafar

et al., 2020). Tregs are known to trigger several

immunosuppressive mechanisms, both by contact-dependent

manner, or indirectly through the secretion of several

cytokines, capable of promoting tumor progression (Ariafar

et al., 2020). Ariafar A et al., detected a Treg population

(CD4+CD25+FOXP3+CD127low/neg) in lymph nodes from BlCa

patients, representing about 10% of all CD4+ T cells Ariafar et al.

(2020). In this study, Treg cells were significantly higher in

patients with at least one involved node, comparing with

negative-node patients, although no impact was observed in

the survival time (Ariafar et al., 2020), suggesting that Tregs

might play a role in tumor metastasis formation (Ariafar et al.,

2020). Viveiros N et al. observed that Treg cells were significantly

lower in the peritumoral area in more advanced stages (pT3 and

pT4), but were significantly higher in the intratumoral areas in

pTa-pT1 (Viveiros et al., 2022). Moreover, higher Treg amounts

in intratumoral areas of high-grade NMIBCs were associated

with poor OS and DSS (Viveiros et al., 2022). Jóźwicki W et al.

showed that Treg amounts were significantly higher in BlCa

patients peripheral blood before the surgery, comparing with

after surgery (Jóźwicki et al., 2016).

In BlCa, NK cells have been proved to be important in BCG-

treatment (Brandau et al., 2001; Esteso et al., 2021), however less

is known regarding the role of NK cells in bladder tumor immune

surveillance (Sun et al., 2021a). Krpina K et al. demonstrated that

NMIBC patients with recurrent disease presented significantly

higher levels of stromal NK cells, compared with NMIBC

patients without recurrence disease (Krpina et al., 2014).

Additionally, NMIBC patients with recurrent pTa tumors,

recurrent smaller tumors, and recurrent single tumors,

presented significantly higher levels of stromal NK cells, than

no reccurent NMIBC patients (Krpina et al., 2014). NK cells can

be divided in CD56dim NK cells (CD3−CD56dimCD16+),

presenting higher cytolytic activity, and in CD56bright NK cells

(CD3−CD56brightCD16−), presenting immunoregulatory function
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through abundant cytokine production (Lin et al., 2004; Poli

et al., 2009; Moretta, 2010). In BlCa patients, it was demonstrated

that most NK cells were dim NK cells and the proportion of

intratumoral dim NK cells were significantly higher in most

advanced stages (Mukherjee et al., 2018). Furthermore, higher

amounts of CD56bright NK cells were significantly associated with

better OS and cancer-specific survival (CSS) (Mukherjee et al.,

2018).

DCs are specialized APCs that comprise a rare immune cell

population in tumors and in lymphoid organs (Gallo and

Gallucci, 2013; Wculek et al., 2020). DCs are essential in

trigging antigen-specific immunity and tolerance, since present

antigens to T cells and produce immunomodulatory signals by

cytokines and cell-cell contacts (Wculek et al., 2020). DCs can be

stratified in plasmacytoid (pDC) and in myeloid (mDC) DCs

(Martin-Gayo and Yu, 2019). Although DCs are in very low

amounts in peripheral blood, Rossi R et al. showed a significant

decrease of mDCs and pDCs levels in NMIBC patients peripheral

blood before TURBT, comparing with healthy donors (Rossi

et al., 2013). Also, the authors showed a significant decrease of

mDCs in low-grade NMIBC patients before TURBT, compared

with high-grade NMIBC patients, while for pDCs no significant

differences were observed (Rossi et al., 2013). Patients who

received BCG instillations showed peripheral blood evidence

of mDC recovery, especially from the third instillation until

the completion of the treatment, but no appreciable

alterations were detected for pDCs (Rossi et al., 2013). While

urine samples did not present mDCs or pDCs before, from third

week of BCG instillations mDCs were detected (Rossi et al.,

2013). DC cells previously co-cultured with the pumc-91 BlCa

cell line resulted in an impaired induction of T cell proliferation.

Additionally, a decrease in the levels of T cell-derived cytokines

(IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL-17A) was observed,
compared to control DCs (Xiu et al., 2016), indicating that BlCa

cells might induce DC dysfunction, failing to induce T cell

responses (Xiu et al., 2016). In patient tissues, high-grade

NMIBC and MIBC patients showed similar mature DCs

(CD83+) levels in bladder peritumoral area and absent

expression in intratumoral area (Viveiros et al., 2022).

B cells are important molecules in the adaptive immune

response capable of produce both pro- and anti-

inflammatory cytokines (Magatti et al., 2020). In silico

analysis demonstrated that naive B cells were significantly

lower in BlCa tumors than in control samples (Zhang et al.,

2020). However, Ou Z et al. demonstrated that BlCa tissues

had more B cells (CD20+), than the adjacent normal tissue

samples (Ou et al. 2015). Considering high-grade NMIBC

and MIBC patients, B cells were only present in bladder

peritumoral areas (Viveiros et al., 2022). B cells were

significanlty increased in MIBCs, and higher B cell levels

were statistically associated with poor DSS (Viveiros et al.,

2022). Moreover, Ou Z et al. showed that BlCa cell lines’

migration and invasion significantly increase after co-culture

with B cells and in vivo, tumor infiltrating B cells could

promote BlCa metastasis Ou et al. (2015).

Immune cells are major cytokines/chemokine producers,

playing a role in initiating and triggering immune responses

and recruitment of other cell populations to the tumor site. Thus,

dysregulations in immune populations in the tumor, can then

reflect in the cytokine production in the TME. Those alterations

will not only impact in the recruitment and shaping of other

immune cells, but also in shaping tumor cells. The impact of

TME on driving tumor cell mechanisms that lead to evasion will

define tumor development.

Epithelial-mesenchymal transition
(EMT) in BlCa

Epithelial-mesenchymal transition (EMT) is a process

involved in tumor progression. EMT can be divided in three

different types, according to the biological context (Kalluri and

Weinberg, 2009). EMT type 1, occurs during embryogenesis,

while EMT type 2 relates with inflammation process, wound

healing and tissue regeneration (Kalluri and Weinberg, 2009;

Yun and Kim, 2013). EMT type 3 is usually associated with tumor

progression, particularly in NMIBC to MIBC progression

(Kalluri and Weinberg, 2009; Cao et al., 2020). Traditional

EMT involves cellular transdifferentiation, which causes

changes in desmosomes, adherens junctions, and tight

junctions in epithelial cells. A change in the actin cytoskeletal

architecture during this phase results in phenotypical changes

where front-rear polarity replaces apical-basal polarity. (Koo

et al., 2010; Lu and Kang, 2019). Molecularly, it occurs a

decrease in epithelial-related genes, such as CDH1, TJP1,

CLDN1 and specific cytokeratin genes, and an increase in

mesenchymal-related genes, such as VIM, CDH2, ITGB1 and

ITGB2 (Koo et al., 2010; Lu and Kang, 2019). Additionally, cells

exhibiting EMT characteristics can degrade the extracellular

matrix by MMPs (Xu et al., 2009; Lu and Kang, 2019). As a

result, these cells increase motility, develop resistance to

apoptosis, and become isolated, which culminates in cell

invasion and migration (Xu et al., 2009; Koo et al., 2010).

According to in silico analysis, EMT signaling pathways were

shown to be significantly activated fromNMIBCs to MIBCs (Cao

et al., 2020). In this same study, low-risk score patients (based on

EMT-related gene signature) showed significantly higher OS and

DFS rates than high-risk score, and MIBC samples showed a

higher risk-score, comparing with NMIBC patients (Cao et al.,

2020). Indeed, in BlCa patient samples, CDH1 and TP63

transcript levels were significantly higher in superficial tumors,

comparing with MIBCs, while in the most aggressive tumors,

VIM, ZEB1, ZEB2, MMP2 and MMP9 transcript levels were

significantly enhanced (Choi et al., 2012).

It is becoming increasingly evident that cells can undergo

rather a partial EMT, exhibiting hybrid epithelial and
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mesenchymal features (Lu and Kang, 2019). EMT plasticity

involves several epigenetic and genetic alterations, resulting in

alterations in the expression of epithelial and mesenchymal

markers (Sinha et al., 2020). Cells under partial EMT

demonstrate several advantages, comparing with cells with

complete EMT phenotypes, such as higher survival

mechanisms, tumor-initiating and metastatic potential, which

might enhance immune-resistance and chemo-tolerance and

increase tumor aggressiveness (Jolly et al., 2015). Indeed, it

was shown that there is a “cadherin modulation” in advanced

BlCa, where the epithelial marker E-cadherin is expressed at

lower levels, simultaneously with high levels of mesenchymal-

associated P-cadherin and/or R-cadherin (Martins-Lima et al.,

2022).

According to the literature, partial EMT is maintained by

phenotypic stability factors (PSFs) and several EMT-inducing

transcription factors (EMT-TFs) (Bocci et al., 2019; Sinha et al.,

2020). The most well-known EMT-TFs are the zinc-finger-

binding transcription factors Snail and Slug, the basic helix-

loop-helix (bHLH) factor TWIST1, and the zinc-finger E-box-

binding homeobox factors ZEB1 and ZEB2 (Kalluri and

Weinberg, 2009; Jolly et al., 2015). Usually, these EMT-TFs

are responsible for CDH1 repression and CDH2 expression

(Wendt et al., 2009). There are specific signaling pathways

related with EMT induction, such as transforming growth

factor β (TGF-β), bone morphogenetic protein (BMP), Notch,

Wnt, hepatocyte growth factor (HGF), epidermal growth factor

(EGF), fibroblast growth factor (FGF), platelet-derived growth

factor (PDGF), sonic hedehog (Shh), and integrin signaling (Xu

et al., 2009; Gonzalez and Medici, 2014; Jolly et al., 2015; Lu and

Kang, 2019).

TME cytokines/chemokines in BlCa
and impact in EMT modulation

TME has been described to have an important role, not only

in EMT induction, but also in the reversion process,

mesenchymal-epithelial transition (MET), in distant metastasis

(Sinha et al., 2020). Immune cells, besides playing fundamental

direct anti-tumoral and pro-tumoral roles, can also display their

function through the secretion of cytokines (Zhang and An, 2007;

Shelton et al., 2021). Moreover, other types of cells, as endothelial

cells, tumor cells, and fibroblasts, are able to produce cytokines

(Dunlop and Campbell, 2000; Zhang and An, 2007; Van Linthout

et al., 2014). Cytokines are small secreted proteins that participate

in cell-cell interaction and communication (Zhang and An,

2007). Cytokine-target cells can be cells that secrete them, in

an autocrine action, or the distant cells, in an endocrine action

(Zhang and An, 2007). Several cytokines can display both anti-

inflammatory and pro-inflammatory potential (Ramesh et al.,

2013). Although cytokines participates in tissue damage control

and repair (Suarez-Carmona et al., 2017), these soluble molecules

can also modulate the TME and, consequently, shape tumor

biology (Morizawa et al., 2018), promoting tumor cell survival,

proliferation, angiogenesis and immunosuppression (Suarez-

Carmona et al., 2017). According to their function and

structure, cytokines can be stratified into interferons (IFNs),

interleukins (ILs), tumor necrosis factor-alpha (TNFs),

transforming growth factors (TGFs), chemotactic cytokines

(chemokines), and colony-stimulating factors (CSFs)

(Kartikasari et al., 2021).

Chemokines play important roles in inflammatory responses,

promoting the recruitment of immune cells responsible for

innate and adaptive immune responses (Miyake et al., 2013).

There are four chemokine groups, based on two cysteine residue

positions, XC, CC, CX3C and CXC (Sokol and Luster, 2015;

Kohli et al., 2022). CXC chemokine family can be stratified based

on the presence of three amino acid residues (Glu-Leu-Arg; ELR

motif), comprising CXCL1, CXCL2, CXCL3, CXCL5, CXCL6,

CXCL7, and CXCL8, which are powerful angiogenic molecules

and presenting neutrophils chemoattraction abilities (Kawanishi

et al., 2008). On the other hand, CXCL4, CXCL9 and CXCL10 are

chemokines without ELR motif, displaying chemoattraction

capacities for mononuclear cells and can inhibit angiogenesis

(Addison et al., 2000; Kawanishi et al., 2008). Chemokines can be

cleaved by several molecules, such as, MMPS, cathepsins,

thrombin, plasmin and elastase (Hughes and Nibbs, 2018).

Chemokines and their receptors can play anti-tumor roles,

since these molecules are responsible for the recruitment of

immune cells to TME, such as CD8+ T cells, T helper cells

and NK (Chow and Luster, 2014; Bule et al., 2021; Kohli et al.,

2022). However, chemokine ligands and receptors can play pro-

tumoral roles, namely by recruiting pro-tumorigenic immune,

such as tumor-associated neutrophils (TAN), TAMs and Treg

cells (Bule et al., 2021). Thus, cytokines might also be implicated

in the tumor initiation, growth, progression and involved in

metastasis formation (Chow and Luster, 2014; Burnier et al.,

2015; Kohli et al., 2022).

According to the literature, specific cytokines have been

described to be responsible for the transcriptional activation

of several genes, including EMT-related genes (Sistigu et al.,

2017), consequently contributing to promote BlCa progression,

invasion, migration, metastasis formation and angiogenesis

(Inoue et al., 2000; Mian et al., 2003; Tsui et al., 2013; Goulet

et al., 2019; Zou et al., 2019). Herein, we will focus on some of the

most relevant cytokines/chemokines described to be involved in

BlCa tumorigenesis and progression and their putative roles in

driving EMT processes.

IL-8/CXCL8

IL-8, also known as CXCL8, is an angiogenic factor

associated with inflammation and tumorigenesis and it is

considered a pro-inflammatory cytokine (Urquidi et al., 2012;
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Yao et al., 2020). This chemokine has a powerful leukocyte

chemoattraction (Koçak et al., 2004; Jovanović et al., 2010),

specially neutrophils attraction (Jovanović et al., 2010).

Indeed, in inflammatory regions, IL-8 is responsible to

attract and activate neutrophils (Bickel, 1993).

Additionally, IL-8 promotes the adhesion of monocytes

and neutrophils to endothelial cells, facilitating

translocation to inflamed tissues (Gonzalez-Aparicio and

Alfaro, 2018). IL-8 can be secreted by lymphocytes,

neutrophils, macrophages and by several types of tumor

cells (Ou et al., 2015). Furthermore, IL-8 plays an

important role in promoting angiogenesis, since

contributes to the growth and survival of endothelial cells

(Tseng-Rogenski and Liebert, 2009). CXC chemokine

receptor 1 (CXCR1) and CXC chemokine receptor 2

(CXCR2), also known as interleukin-8 receptor type beta

(IL8RB), are IL-8 receptors, usually expressed in

neutrophils and granulocytic myeloid-derived suppressor

cells (GR-MDSC) (Miyake et al., 2019; Teijeira et al.,

2020). When IL-8 binds to CXCR1 and CXCR2 activates

serine/threonine kinases, protein tyrosines and Rho-

GTPases, stimulating the expression of proteins related

with cell proliferation, survival and cell invasion

(Escudero-Lourdes et al., 2012).

In silico GSE32894 database, lower IL8 levels were associated

with improved DSS (Chen et al., 2022). However, in The Cancer

Genome Atlas (TCGA) database, it was demonstrated that higher

IL8 levels were significantly associated with basal subtype

(usually associated with advanced stage tumors and metastatic

disease), comparing with luminal subtype (predominantly

associated with papillary histopathological features)

(McConkey and Choi, 2018; Chen et al., 2022) (Table 1).

IL-8 urinary protein concentration was found to be

significantly higher in bladder tumor patients, comparing with

healthy controls (Urquidi et al., 2012; Al-biaty, 2015; Kumari

et al., 2017). Furthermore, a significant IL-8 increase was assessed

in higher grade and in MIBC tumors, where recurrent disease

showed higher IL-8 protein levels, compared with healthy control

or newly diagnosed patients (Al-biaty, 2015; Kumari et al., 2017)

(Table 1).

Reis ST et al. demonstrated that the majority of bladder

tumors tissues underexpressed IL-8, comparing with controls

(Reis et al., 2012). However, a significant association was

established between high-grade tumors and higher IL8 levels

(Reis et al., 2012). Moreover, pT1 and pT2 showed higher IL8

levels expression than pTa tumors, and recurrent disease patients

demonstrated significant higher IL8 levels, compared to patients

that not recurred (Reis et al., 2012) (Table 1).

It was also demonstrated in vitro that IL-8 is actually

expressed by normal urothelial cells and promotes not only

cellular growth, through AKT pathway, but also cellular

survival in normal urothelial cells (Tseng-Rogenski and

Liebert, 2009). Additionally, IL8/IL-8 levels were significantly

higher in BlCa cell lines (J82 and TCCSUP) after co-culture with

macrophages (Huang et al., 2020). Furthermore, studies in vitro

suggest a relationship between IL-8 and BCG treatment, since

this treatment promotes Ca2+ signaling stimulation and NF-kB

activation, being responsible for an increase of IL-8 secretion

(Ibarra et al., 2019) (Table 1).

According to the literature, in serum samples, IL-8

expression was significantly associated with poor CSS and

shorter OS (Morizawa et al., 2018) (Table 1).

In vivo studies demonstrated that IL-8 is able to regulate BlCa

tumorigenicity and metastasis formation, and higher IL-8

expression was correlated with higher tumor-induced

neovascularization (Inoue et al., 2000). Furthermore, when

nude mice implanted with 253J B-V and UMUC3 cell lines in

the bladder cell wall were treated with ABX-IL8, an inhibitor of

IL-8, it was observed a significant suppression in tumor growth

(Mian et al., 2003) (Table 1).

Since IL-8 is upregulated in MIBC tumors (Al-biaty, 2015),

and seems to promote tumor growth (Mian et al., 2003) and

metastasis formation (Inoue et al., 2000), it suggests that it might

play a crucial role in driving EMT. Until now, there are some

studies focusing on how deregulation of IL-8 in BlCa might

promote alterations in EMT-related molecules and which

signaling pathways might be involved in BlCa. It is established

that arsenic (As) exposure is a risk factor of BlCa (Escudero-

Lourdes et al., 2012). UROtsa, an urothelial cell line, exposed to

the arsenic metabolite monomethylarsonous [MMA (III)]

undergo malignant transformation. MMA (III) exposure

induced IL8/IL-8 overexpression, followed by an increase of

CCND1, BCL2 and MMP9 (Escudero-Lourdes et al., 2012). In

vivo, IL8 silencing induced a significant decrease of cell

proliferation and of tumor formation, while, in vitro, was

observed a downregulation of CCND1, BCL2 and MMP9

(Escudero-Lourdes et al., 2012). Furthermore, SVHUC1, a

non-malignant BlCa cell line, demonstrated

HER2 overexpression and an IL8/IL-8 activation upon

exposure to As (Zhou et al., 2021). Consequently, IL-8

promoted extracellular signal-regulated kinase (ERK), AKT,

and signal transducer and activator of transcription (STAT) 3

signaling activation, resulting in an evident influence in EMT,

since the E-cadherin decreased, while Vimentin, Snail, Slug and

Twist increased (Zhou et al., 2021). It was shown that a tight

junction protein family member, occludin, regulated

angiogenesis by controlling IL-8/STAT3 signaling pathway by

STAT4 activation (Yang et al., 2022). Retz MM et al. showed that

co-culture of B cells with the BlCa cell lines, TCCSUP, T24 and

J82, increased bladder cell invasion and migration (Ou et al.,

2015). The authors suggested that infiltrating B cells can promote

IL-8 increase and, consequently, an increase of androgen

receptor (AR), leading to MMP-1 and MMP-13 increase (Ou

et al., 2015). Corroborating these findings, in vivo experiments

showed that infiltrating B cells could increase BlCa cell invasion

via increasing AR signal (Ou et al., 2015). Furthermore, it was
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TABLE 1 Cytokines/chemokines levels are deregulated during BlCa progression, growth, invasion, and metastases formation.

IL-8/CXCL8 CCL2 CXCL1 CXCL12 IL-6 TGF-β1

Receptors CXCR1; CXCR2/IL8RB (Miyake et al., 2019;

Teijeira et al., 2020)

CCR2; CCR4 (Zhang et al., 2010; Gao et al.,

2019)

CXCR2 (Kawanishi et al., 2008) CXCR4; CXCR7 (Shen et al., 2013; Zhang et al., 2018) IL-6R (Andrews et al., 2002) TGF-βRI; TGF-βRII (Kim et al., 2001)

Major

producing

cells

Tumor cells; Lymphocytes; Neutrophils;

Macrophages (Ou et al., 2015)

Tumor cells; Macrophages; Fibroblasts;

Lymphocytes; Vascular Smooth Muscle

(Amann et al., 1998)

Macrophages; Mast cells (De Filippo et al.,

2013)

Cancer associated fibroblasts (Du et al., 2021c) T lymphocytes; Macrophages; Tumor cells;

Endothelial cells; Epithelial cells; Muscle cells

(Andrews et al., 2002; Rossi et al., 2015;

Schuettfort et al., 2022)

Regulatory T cells; Cancer-associated fibroblasts; M2

macrophages; MDSC (Ao et al., 2007; Yu et al., 2014;

Yeh et al., 2015; Groth et al., 2019; Efiloğlu et al.,

2020; Horibe et al., 2021)

Urine ↑ in BlCa patients than controls (Urquidi

et al., 2012; Al-biaty, 2015; Kumari et al.,

2017); ↑ in MIBC tumors (Al-biaty, 2015);

↑ in undifferentiated tumors (Al-biaty, 2015;

Kumari et al., 2017); ↑ in recurrent disease

(Al-biaty, 2015; Kumari et al., 2017)

↑ in pT2-pT4 than pT1 (Amann et al., 1998) ↑ in BlCa patients than controls (Kawanishi

et al., 2008; Burnier et al., 2015); ↑ in pT1-

pT4 than pTa (Kawanishi et al., 2008)

↓ CXCL12A in lower grade (Gosalbez et al., 2014);

↑ CXCL12B in higher grade (Gosalbez et al., 2014);

CXCL12G was not detected (Gosalbez et al., 2014)

↑ in pT3-pT4 than patients with early stages or

than non-malignant disease (Chen et al., 2013);

↑ IL-6 in lower grades (Kumari et al., 2017);

↑ IL-6 associated with ↓ OS (Morizawa et al.,

2018)

↑ in BlCa patients than controls or chronic cystitis

disease (Helmy et al., 2007)

In vitro IL-8 promotes cellular growth and cellular

survival in normal urothelial cells (Tseng-

Rogenski and Liebert, 2009)

↑ in high-grade BlCa cell lines (Chiu et al.,

2012); ↓ in low-grade BlCa cell lines (Chiu et
al., 2012)

↑ in most aggressive BlCa cell lines

(Kawanishi et al., 2008); ↑ CXCL1 increases

invasive abilities of BlCa cell lines

(Kawanishi et al., 2008; Miyake et al., 2019);

↑ CXCL1 increases angiogenesis abilities of

BlCa cell lines (Miyake et al., 2019)

Regulates BlCa cell invasion abilities (Shen et al.,

2013); Regulates BlCa cell migration abilities (Retz

et al., 2005)

IL-6 was associated with BlCa cell line invasion

(Yeh et al., 2015); IL-6 was associated with BlCa

cell line growth/proliferation (Okamoto et al.,

1997; Miyake et al., 2019)

TGF-β1 was associated ↑ BlCa cell line

proliferation; TGF-β1 was associated ↑ BlCa cell
line colony formation; TGF-β1 was associated

↑ BlCa cell line invasion; TGF-β1 was associated

↑ BlCa cell line migration (Bian et al., 2013;

Zhang et al., 2016; Zou et al., 2019)

Patient tissues ↓ in BlCa patients (Reis et al., 2012);

↑ in undifferentiated tumors (Reis et al., 2012);

↑ in pT1-pT2 than pTa (Reis et al., 2012);

↑ in recurrent disease (Reis et al., 2012)

↑ in BlCa patients than normal/adjacent

tissues (Wang et al., 2017); ↑ in

undifferentiated tumors (Gao et al., 2019);

↑ in higher stage tumors (Gao et al., 2019);

↑ in lymph node metastasis (Gao et al.,

2019); In MIBC patients, ↑ CCL2 in tumor

cells was associated with ↓ OS, ↓ DSS and

↓RFS (Eckstein et al., 2020)

Normal or benign tissues did not express

CXCL1 (Kawanishi et al., 2008; Miyake

et al., 2013); ↑ in undifferentiated tumors

(Miyake et al., 2013); ↑ in higher stage

tumors (Kawanishi et al., 2008; Miyake

et al., 2013); ↑ CXCL1 was associated with ↓
OS (Miyake et al., 2013); ↑ CXCL1 was

associated with ↓ DSS (Miyake et al., 2013)

↑ in BlCa patients (Yang et al., 2015) vs. ↓ in BlCa

patients (Du et al., 2021c);

↑ in undifferentiated tumors (Batsi et al., 2014); ↑ in

higher stage tumors (Batsi et al., 2014); ↑ in recurrent

disease (Batsi et al., 2014); Normal tissue did not

express CXCL12 (Yang et al., 2015)

↑ IL-6/IL6 in BlCa patients than normal tissues

or cystitis patients (Chen et al., 2013); ↑ in early

stages than non-malignant disease (Chen et al.,

2013); ↑ was mostly associated in MIBC tissues

(Chen et al., 2013); IL-6 is expressed in non-

malignant tissues (Chen et al., 2013)

↓ in normal urothelium (Yang et al., 2018; Zou et al.,

2019); ↑ in higher stage tumors (Kim et al., 2001;

Yang et al., 2018; Stojnev et al., 2019; Zou et al., 2019);

↑ in undifferentiated tumors (Zou et al., 2019; Stojnev

et al., 2019); ↑ was correlated with ↑ cancer-specific

death (Stojnev et al., 2019)

vs.

↑ TGFB1 in lower stage tumors (Miyamoto et al.,

1995); ↑ TGFB1 in well-differentiated tumors

(Miyamoto et al., 1995); ↑ TGF-β1 in BlCa tumors

than normal tissues (Miyamoto et al., 1995)

In silico ↓ IL8 was associated with ↑ DSS (Chen et al.,

2022); ↑IL8 was associated with basal subtype

(Chen et al., 2022)

↓ CCL2 in BlCa patients than the controls

(Li et al., 2021); ↑ CCL2 associated with

better DFS (Li et al., 2021)

↑ CXCL1 in BlCa tumors than controls (Sun

et al., 2021b); ↑ CXCL1 was associated with

↓ OS (Sun et al., 2021b)

↓ CXCL12 in BlCa tumors than controls (Sun et al.,

2021b; Du et al., 2021c)

vs.

In tumors, ↑ CXCL12 was associated with ↑ stage (Sun
et al., 2021b; Liu et al., 2021); In tumors, ↑ CXCL12

was associated with ↑ lymph node (N2 than N0) (Liu

et al., 2021); In tumors, ↑ CXCL12 was associated with
↓ prognosis (Sun et al., 2021b; Liu et al., 2021)

↑ in undifferentiated tumors (Goulet et al.,

2019); ↑ in advanced tumors (Goulet et al.,

2019)

↑ TGFB1 in MIBCs, comparing with NMIBCs (Zou

et al., 2019); ↑ TGFB1 was associated with ↑ risk of

death (Zou et al., 2019); ↑ TGFB1 was associated with
↓DFS (Zou et al., 2019); ↑ TGFB1was associated with
↓ OS (Zou et al., 2019)

In vivo IL-8 regulates tumor growth (Mian et al.,

2003); IL-8 regulates BlCa tumorigenicity

(Inoue et al., 2000); IL-8 regulates metastasis

formation (Inoue et al., 2000); IL-8 regulates

neovascularization (Inoue et al., 2000)

Not reported CXCL1 promotes tumor growth (Miyake

et al., 2016); CXCL1 promotes bladder

tumor cells attachment to the bladder wall

(Miyake et al., 2016); CXCL1 influences

proliferation (Miyake et al., 2019);

CXCL1 influences angiogenesis (Miyake

et al., 2019); CXCL1 influences apoptosis

(Miyake et al., 2019)

Influences BlCa cell growth (Zhang et al., 2018) IL-6 was associated with tumor growth/

proliferation (Chen et al., 2013); IL-6 was

associated with tumor invasion (Chen et al.,

2013); IL-6 was associated with angiogenesis

(Chen et al., 2013)

TGF-β1 was associated with ↑ tumor size (Zou et al.,

2019); TGF-β1 was associated with ↑ tumor weight

(Zou et al., 2019)

(Continued on following page)
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TABLE 1 (Continued) Cytokines/chemokines levels are deregulated during BlCa progression, growth, invasion, and metastases formation.

IL-8/CXCL8 CCL2 CXCL1 CXCL12 IL-6 TGF-β1

Serum IL-8 expression was associated with ↓ CSS

(Morizawa et al., 2018); IL-8 expression was

associated with ↓ OS (Morizawa et al., 2018)

Not reported Not reported Not reported ↑ IL-6 in recurrent patients than non-recurrent

patients (Kumari et al., 2017); ↑ IL-6 in poor

RFS (Kumari et al., 2017); IL-6 was associated

with ↓ CSS (Morizawa et al., 2018); ↓ T2-T4

patients than Ta-T1 patients and controls

(Yang et al., 2017)

↑ TGF-β1 related with ↓ risk tumor progression

(Efiloğlu et al., 2020); ↓ TGF-β1 in pT4 than

superficial and invasive tumors (pT2-pT3)

(Eder et al., 1996)

vs.

↑ TGF-β1 related with ↑ tumor grade and

aggressiveness (Eder et al., 1997); ↑ TGF-β1 related

with superficial tumors (pTa-pT1) than normal

samples (Eder et al., 1997)

Plasma Not reported Not reported Not reported Not reported ↑ IL-6/IL-6sR median levels in advanced

patients (Andrews et al., 2002; Schuettfort et al.,

2022); ↑ IL-6/IL-6sR median levels in lymph

vascular invasion (Andrews et al., 2002;

Schuettfort et al., 2022); ↑ IL-6/IL-6sR median

levels in lymph node metastasis (Andrews et al.,

2002; Schuettfort et al., 2022); ↑ IL-6/IL-6sR

median levels in recurrent disease (Schuettfort

et al., 2022); ↑ IL-6/IL-6sR median levels in

patients who deceased from BlCa (Schuettfort

et al., 2022); ↑ IL-6/IL-6sR median levels

associated with ↓ OS, ↓ RFS and ↓CSS
(Schuettfort et al., 2022); ↑ IL-6 in BlCa patients
than healthy patients (Andrews et al., 2002)

↑ in MIBC patients (Shariat et al., 2001); ↑ in MIBC

patients with regional and distant lymph node

(Shariat et al., 2001); ↑ related with ↑ risk of disease

recurrence (Shariat et al., 2001); ↑ related with ↑
mortality (Shariat et al., 2001)

EMT-related

molecules

IL8 silencing promoted ↓ MMP9 (Escudero-

Lourdes et al., 2012); IL-8 treatment

suppresses E-cadherin, while ↑ Vimentin, ↑
Snail, ↑ Slug and ↑ Twist (Zhou et al., 2021); ↑
IL-8 promoted ↑ MMP-1 and ↑ MMP-13 (Ou

et al., 2015); IL-8 regulates MMP9/MMP-9

and MMP-2 (Inoue et al., 2000; Mian et al.,

2003)

↑ CCL2 promoted ↑ MMP-9, ↑ N-cadherin,

↑ Twist, ↑ Snail and ↑ Vimentin (Rao et al.,

2016)

Overexpression of CXCL1 in TAMs and

CAFs, promoted ↓ E-cadherin and ↑MMP-

2 (Miyake et al., 2016); A significant

correlation was established between CXCL1

and MMP-13 (Kawanishi et al., 2008)

Inhibition of CXCR4 promoted ↓ β-catenin, ↓ MMP-

2 and ↓ c-Myc and ↑ E-cadherin levels (Zhang et al.,

2018); CXCL12/CXCR4 inhibition promoted ↓ E-

cadherin and ↑ c-Myc (Zhang et al., 2018); CXCL12/

CXCR4 seems to be important in β-catenin regulation

(Zhang et al., 2018)

↑ IL6 promoted ↓ N-cadherin and ↓ Vimentin

levels (Tsui et al., 2013);

↓ IL6 led to ↓ E-cadherin, but ↑N-cadherin and

↑ Vimentin levels (Tsui et al., 2013)

vs.

↓ IL6 led to ↑ E-cadherin, but ↓ MMP9 (Chen

et al., 2013)

↑ TGF-β1 levels promoted ↓ E-cadherin (Chen et al.,

2014, Zou et al., 2019), ↓ miR-200b (Chen et al.,

2014), ↑ N-cadherin (Chen et al., 2014), ↑ Vimentin

(Chen et al., 2014, Zou et al., 2019), ↑ MMP-2

(Zou et al., 2019), ↑MMP-9 (Zou et al., 2019), ↑ Snail
(Zou et al., 2019), and ↑MMP-16 (Chen et al., 2014)

EMT-related

signaling

pathways

Overexpression of IL-8 promoted ERK, AKT

and STAT3 pathways activation (Zhou et al.,

2021); IL-8 regulates the expression of MMPs

by NF-kB (Mian et al., 2003)

CCL2-CCR2 interaction may facilitate

migration by phosphorylating paxillin y118

through a protein kinase C (PKC)-

dependent mechanism (Chiu et al., 2012)

Not reported CXCL12/CXCR4 promotes STAT3 phosphorylation,

resulting in BlCa invasion (Shen et al., 2013)

EMT-player alterations, induced by IL-6, might

be regulated by STAT3 signaling pathway

activation (Chen et al., 2013);

TGF-β1 promoted an increase in p-Smad2/3 levels

(Geng et al., 2014)

E-cadherin expression might be inhibited by

IL6-STAT3 signaling pathways (Chen et al.,

2020);

IL-6-induced STAT3 activation, being able to

target TWIST promoter (Yao et al., 2020)
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demonstrated that IL-8 regulates MMP9 expression in 253J-P

and 253J-BV cells lines (Inoue et al., 2000). Indeed, Mian BM el

al. showed, in vitro, that IL-8 neutralization resulted in a decrease

of MMP-2 and MMP-9 expression, in part, through NF-kB, and,

consequently, promoted cell invasion decrease (Mian et al., 2003)

(Table 1).

CCL2

Monocyte chemoattractant protein -1/chemokine (C-C

motif) ligand 2 (MCP-1/CCL2) plays a crucial role in immune

responses, regulating infiltration and migration of several

immune cells (Xu et al., 2021). CCL2 is a potent

chemoattractant for monocytes/macrophages (Li and Tai,

2013) and can activate dendritic cells, memory T cells and

basophils (Chiu et al., 2012; Xu et al., 2021). CCL2 is secreted

by activated macrophages, fibroblasts, vascular smooth muscle,

lymphocytes, and tumor cells (Amann et al., 1998). Usually binds

to C-C chemokine receptor type 2 (CCR2), but it also binds to

CCR4 (Zhang et al., 2010; Gao et al., 2019). CCL2 expression can

be activated by several growth factors and cytokines, such as

platelet-derived growth factor (PDGF), TNF-α, IL-1β and IFN-γ
(Li and Tai, 2013). Overall, according to the literature, CCL2 in

the TME seems to mainly contributes for tumor progression and

metastasis formation (Jin et al., 2021).

In silico data analysis showed that CCL2 expression was

significantly lower in BlCa patients than the controls (Li et al.,

2021). Additionally, higher CCL2 levels were associated with

better DFS (Li et al., 2021). In patient tissues, CCL2/CCL2 was

described to be significantly higher in tumors, compared with

normal and adjacent tissues (Wang et al., 2017). Considering

NMIBC and MIBC patients, higher CCL2 levels significantly

correlated with higher grade, stage and lymph node metastasis

(Gao et al., 2019). Particularly, considering only MIBC patients, a

positive CCL2 expression in tumor cells was associated with poor

mean OS, DSS and recurrence-free survival (RFS), while

expression of CCL2 in immune cells, was associated with

longer OS, DSS, and RFS (Eckstein et al., 2020). The role of

CCL2 in immune cells is dependent on the lymph node patient’s

status, as CCL2 in N0 was linked to a good prognosis while

N1+N2 was associated with poor prognosis (Eckstein et al., 2020)

(Table 1).

In urine samples from BlCa patients, advanced stages

(pT2-pT4) presented three to fourfold higher mean

concentration, comparing with pT1 stage tumors (Amann

et al., 1998) (Table 1).

In vitro, it was demonstrated that higher CCL2 levels were

associated with high-grade BlCa cell lines (T24 and J82), while low-

grade BlCa cell lines (SVHUC1, RT4 andTSGH8301), showed lower

CCL2 levels (Chiu et al., 2012). In addition, higher CCL2 levels were

produced in MB49 and MBT-2 cisplatin-resistant cells lines,

comparing with parental BlCa cell lines (Takeyama et al., 2020).

So far, there is a lack of information about CCL2 expression in

plasma, in in vivo and in serum of BlCa patients (Table 1).

Besides, in BlCa, the knowledge about the impact of CCL2 in

EMT induction and the signaling pathways activated by

CCL2 promoting EMT, is still poor, although some studies have

been arising. Co-culture of mast cells (HMC-1) with the BlCa cell

lines, T24 and 647V, resulted in an increase of the estrogen receptor

beta (ERβ) levels and of CCL2 levels in both cell types (Rao et al.,

2016). After co-culture, higher CCL2 levels promoted EMT, driving

stimulation of MMP-9 expression and enhanced N-cadherin, Twist,

Snail and Vimentin expression levels, resulting in higher BlCa cell

lines invasion abilities (Rao et al., 2016) (Table 1). Long noncoding

RNA Lymph Node Metastasis Associated Transcript 1 (LNMAT1),

overexpressed in BlCa tissues comparing with normal adjacent

tissues, can directly interact with heterogeneous nuclear

ribonucleoprotein L (hnRNPL), resulting in an increase of the

H3 lysine four trimethylation (H3K4me3) of the CCL2 promoter

(Chen et al., 2018). CCL2 overexpression resulted in increased TAM

recruitment. Macrophage activation resulted in secretion of

lymphangiogenic growth factor (VEGF-C) to the bladder TME,

promoting lymphangiogenic and lymphatic metastasis (Chen et al.,

2018). In mouse BlCa cell line MBT2, CCL2-CCR2 interaction may

facilitate migration by phosphorylating paxillin y118 through a

protein kinase C (PKC)-dependent mechanism (Chiu et al., 2012).

CXCL1

CXCL1, also known as MGSA, is a powerful neutrophil

chemoattractant chemokine (De Filippo et al., 2013; Boro and

Balaji, 2017), interacting with the CXCR2 receptor (Kawanishi

et al., 2008). CXCL1 plays a double role in immune responses,

since it can recruit and activate neutrophils to the infection area,

but can also activate the release of several proteases and reactive

oxygen species (ROS) that will result in cell death (Sawant et al.,

2016). This chemokine plays important roles in several tumor

models, promoting cell migration and invasion (Cheng et al.,

2011; Wang et al., 2018). Mast cells, alongside with macrophages

are able to produce CXCL1 (De Filippo et al., 2013).

In silico, UALCAN analysis showed higher CXCL1 transcript

levels in BlCa samples compared with normal bladder mucosa

tissues, and, according to GEPIA and GEO database analysis,

higher CXCL1 was significantly associated with shorter OS (Sun

et al., 2021b) (Table 1).

While benign or normal bladder tissues showed absent

CXCL1 levels, higher CXCL1 levels were significantly

associated with more undifferentiated tumors and MIBC

(Kawanishi et al., 2008; Miyake et al., 2013). Consequently,

high amounts of CXCL1 contributed to poor DSS and poor

OS (Miyake et al., 2013). Additionally, increased CXCL1 levels in

the tumors promoted the recruitment of CAFs and were

associated with higher number of TAMs (Miyake et al., 2016)

(Table 1).
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In in vitro studies, higher CXCL1 expression was observed in

the most aggressive BlCa cell lines (UMUC3, 5637 and T24)

(Kawanishi et al., 2008). Moreover, CXCL1 could enhance the

invasive ability of BlCa cell lines (Kawanishi et al., 2008; Miyake

et al., 2019). Additionally, CXCL1 influenced the angiogenesis

process and tumor vasculature, since tube structures were

significantly lower after treatment with conditioned media

from CXCL1-knockdown T24 cells (Miyake et al., 2019).

Furthermore, higher CXCL1 amounts were obtained with

MB49, MBT-2 and T24 cisplatin-resistant cells lines, in

comparison with parental BlCa cell lines (Takeyama et al.,

2020) (Table 1).

In vivo, it was shown that CXCL1 secreted by TAMs and

CAFs enhanced bladder tumor cell attachment to the bladder

wall, consequently inducing tumor growth (Miyake et al., 2016).

Moreover, by using T24 cell xenografts treated with HL2401, a

CXCL1 inhibitor, it was observed a significant increase in the

apoptotic index, but a significant decrease in microvessel density

and a reduction in proliferation (Miyake et al., 2019).

In liquid biopsies, CXCL1 urinary protein concentrations

were significantly higher in BlCa patients comparing with

patients without BlCa (Kawanishi et al., 2008; Burnier et al.,

2015). Importantly, a significant increase was obtained in stages

pT1-pT4, comparing with pTa (Kawanishi et al., 2008) (Table 1).

Information regarding CXCL1 expression in serum and in

plasma of BlCa patients is still lacking (Table 1). Also, the role

that CXCL1 might have in driving EMT is little explored, as well

as the signaling pathways activated by CXCL1 to induce EMT in

BlCa. However, it is known, that in vivo, overexpression of

CXCL1 by TAMs and CAFs, promoted alterations in BLCa

EMT, decreasing E-cadherin membrane expression, while

increasing MMP-2 expression (Miyake et al., 2016) (Table 1).

Furthermore, in tissues, a significant correlation was established

between CXCL1 and MMP-13 (Kawanishi et al., 2008) (Table 1).

In silico analysis, using LinkedOmics database, also showed that

microRNA (miR)-200a, an important hallmark in EMT (Adam

et al., 2009), interacts with CXCL1 (Sun et al., 2021b) (Table 1).

CXCL12

CXCL12, also known as stromal cell-derived factor 1 (SDF-

1), or pre-B cell stimulating factor (PBSF) (Yang et al., 2015),

interacts with CXCR4 and CXCR7 receptors (Shen et al., 2013;

Zhang et al., 2018). CAFs are able to secrete CXCL12, being

essential for CD8+ T cells recruitment (Du et al., 2021c). This

chemokine participates in the homeostatic regulation of

leukocyte trafficking and tissue regeneration (Barinov et al.,

2017). CXCL12 is also described to be involved in tumor

growth, angiogenesis and tumor cell intravasation (Chang

et al., 2020).

in silico analyses (GEO, TCGA, ONCOMINE andUALCAN)

showed that CXCL12 was significantly decreased in BlCa

samples, comparing with the controls (Sun et al., 2021b; Du

et al., 2021c). On the other hand, higher CXCL12 expression was

significantly associated with more advanced stages, worse

prognosis, and more lymph node metastasis (N2 showed

higher CXCL12 than N0) (Sun et al., 2021b; Liu et al., 2021).

In accordance with in silico data, Du Y et al. showed a

CXCL12 reduction in BlCa patient tissues comparing with the

normal tissues Du et al. (2021c), while Yang DL et al. showed a

significantly higher expression of CXCR4/CXCL12 in BlCa

tissues and no expression in normal tissues Yang et al. (2015).

It was demonstrated that CXCL12 positively associated with

tumor grade and stage in BlCa patient tissues, being

CXCL12 expression more intense in recurrent patients (Batsi

et al., 2014). Moreover, Yang DL et al. showed that CXCR4/

CXCL12 levels strongly associated with tumor progression and

invasion, and CXCL12 transcript levels in tumor tissues increased

with tumor aggressiveness.

There are several CXCL12 mRNA variants depending on

alternative splicing (Gosalbez et al., 2014; Chang et al., 2020).

CXCL12-α, CXCL12-β and CXCL12-γ are some of the variants,

presenting the same first three exons (Chang et al., 2020).

According to the literature, CXCL12-α has the strongest

affinity to CXCR4, followed by CXCL12-β and CXCL12-γ
(Chang et al., 2020). By qPCR, it was demonstrated that

CXCL12-α and CXCL12-β levels were higher in metastatic

patient tissues compared to non-metastatic patient tissues

(Gosalbez et al., 2014). Moreover, only CXCL12-β was

significantly higher in tumor patients than normal samples

(Gosalbez et al., 2014). In urine, CXCL12-γ was not detected,

but CXCL12-α levels were significantly lower in patients with

low-grade compared to controls, while CXCL12-β levels were

significantly higher in high-grade than the controls (Gosalbez

et al., 2014).

There is no information regarding CXCL12 expression in

plasma and in serum, similarly to CCL2 and CXCL1 (Table 1).

Up till now, CXCL12 has been described to have an important

role in regulating some EMT-related molecules in BlCa.

Additionally, studies on the signaling pathways that might

be activated by this chemokine started to arise. In vitro, it

was shown that CXCL12 was involved in cell invasion and

migration (Retz et al., 2005; Shen et al., 2013). CXCR4 and

CXCL12 binding drives the induction of

STAT3 phosphorylation (Shen et al., 2013), an important

molecule in promoting BlCa growth and survival, and able

to work as a transcription factor regulating EMT (Chen et al.,

2008; Jin, 2020) (Table 1). This alteration in migration might

occur due to an association of CXCR4/CXCL12 with

cytoskeletal reorganization, specifically, with a redistribution

of F-actin stress fibers (Retz et al., 2005). A study from Zhang T

et al. reinforced these findings, since SW780 treated with

AMD34635, a CXCR4 inhibitor, exhibited growth and

colony formation supression, as well as, inhibiton on

migration and invasion (Zhang et al., 2018). In addition, in
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vivo, it was demonstrated that tumors with AMD3465-

treatment showed slower growth and lower weight than

tumors treated with the vehicle (Zhang et al., 2018).

Additionally, in vitro, it was also demonstrated that

molecular alterations occurred, with a decrease of β-catenin,
MMP-2 and c-Myc expression and with an increase in

E-cadherin levels (Zhang et al., 2018) (Table 1). However,

the effect of AMD3465 was reversed when CXCL12 was

added, inducing E-cadherin downregulation and c-Myc

upregulation (Zhang et al., 2018) (Table 1). Moreover,

SW780 cells treated with FH535, a β-catenin antagonist,

also decrease cell proliferation, colony formation,

migration and invasion, being these effects once again

reverse by CXCL12 treatment. Thus, suggesting that

CXCR4/CXCL12 play an important role in regulated β-
catenin expression in BlCa progression (Zhang et al., 2018)

(Table 1).

IL-6

IL-6 is a pro-inflammatory interleukin (Chen et al., 2013;

Morizawa et al., 2018) known to play a major role in

inflammatory responses (Chen et al., 2013; Yao et al., 2020),

as well as in the maturation of B cells (Andrews et al., 2002;

Miyake et al., 2019). IL-6 binds to the receptor IL6-R, present in

the extracellular membrane, or secreted in a soluble form (IL-

6sR) (Andrews et al., 2002). IL-6 is mainly produced by tumor-

infiltrating immune cells, such as T cells and macrophages, by

tumor cells, by healthy endothelial tissues, by epithelial cells and

by muscle cells (Andrews et al., 2002; Rossi et al., 2015;

Schuettfort et al., 2022).

In tissues, Chen MF et al. showed that IL-6/IL6 expression

was higher in BlCa tissues, comparing with non-malignant

tissues (Chen et al., 2013). The authors demonstrated that

non-malignant tissues exhibited IL-6 expression, but in lower

levels, compared to early stages, while IL-6 higher levels were

mostly associated with MIBC tissues (Chen et al., 2013)

(Table 1).

In silico analysis, revealed that IL6 transcript levels were

significantly increased in higher stages (stages III and IV),

comparing with lower stages (stages I and II) (Goulet et al.,

2019). Moreover, IL6 was significantly enhanced in high-grade

patients, comparing with low-grade patients (Goulet et al., 2019)

(Table 1).

In urine samples, IL-6 levels were significantly higher in

advanced stage patients (pT3-pT4), comparing with patients

with early stage tumors or non-malignant samples (Chen

et al., 2013). Kumari N et al. showed that higher IL-6

concentration was significantly associated with lower disease

grade Kumari et al. (2017). Furthermore, it was demonstrated

that IL-6 levels in urine were associated with shorter OS

(Morizawa et al., 2018) (Table 1).

Using preoperative plasma samples, Schuettfort VM et al.

and Andrews B et al. demonstrated that IL-6 and IL-6sR were

significantly higher in patients with advanced stages, lymph

vascular invasion and lymph node metastasis Andrews et al.

(2002), Schuettfort et al. (2022). Dmytryk V et al. also observed

significantly higher IL-6 leveles in pT3-pT4 samples, comparing

with control samples Dmytryk et al. (2020). Moreover, patients

with recurrent disease or patients who deceased due to BlCa

disease presented higher IL-6 and IL-6sR levels (Schuettfort et al.,

2022). Higher IL-6 and IL-6sR levels were associated with poor

RFS, CSS and OS (Schuettfort et al., 2022). Andrews B et al.

showed that plasma IL-6 levels were significantly higher in BlCa

than in healthy patients, however IL-6sR levels did not present

statitiscal differences bteween the two groups (Andrews et al.,

2002) (Table 1).

In serum BlCa samples, collected prior to surgery, IL-6 levels

were significantly higher in recurrent patients, comparing with

non-recurrent patients and were significantly associated with

poor RFS (Kumari et al., 2017). Similar to IL-8, IL-6 expression

was significantly associated with shorter CSS (Morizawa et al.,

2018). However, Yang G et al. described a descrease of IL-6 levels

in T2-T4 patient samples, comparing with Ta-T1 samples and

healthly controls (Yang et al., 2017) (Table 1).

Regarding the literature, BlCa cell lines produced high IL-6

levels, while normal cell lines expressed only low IL-6 levels

(Okamoto et al., 1997). Upon IL-6 treatment, BlCa cell lines

(253J, RT4 and T24) presented enhanced cellular growth,

comparing with normal cell lines (Okamoto et al., 1997).

Moreover, the cell growth was significantly inhibited upon

anti-IL-6 neutralizing antibody treatment, suggesting that IL-6

provides autocrine growth advantages to the BlCa cell lines

(Okamoto et al., 1997). Additionally, Yeh CR et al. suggested

that, in vitro, ERα overexpression in fibroblasts may increase

BlCa cell invasion through IL-6 expression in BlCa cells (Yeh

et al., 2015). Miyake M et al. demonstrated, in vivo and in vitro,

that CXCL1 had an important impact in BlCa tumor growth,

since promoted IL-6 induction and repressed tissue inhibitor of

metalloproteinase 4 (TIMP4) inhibition Miyake et al. (2019).

Chen MF et al. showed that IL6 silencing contributed to a

decrease in tumor invasion and tumor growth/proliferation,

both in vivo and in vitro (HT1197 and HT1376 cell lines)

Chen et al. (2013).

Overall, IL-6 has been described to be upregulated in

advanced BlCa patients (Chen et al., 2013; Goulet et al., 2019)

and in lymph node metastasis (Andrews et al., 2002; Schuettfort

et al., 2022). Thus, the association between IL-6 and EMT

induction starts to be studied in BlCa, along with which

signaling pathways can be activated by IL-6. Indeed, IL6

overexpression in HT1376 cells promoted a decrease in

N-cadherin and Vimentin levels, while the IL6 knockdown in

T24 cells led to a decrease in E-cadherin, but an increase in

N-cadherin and Vimentin levels (Tsui et al., 2013) (Table 1).

However, it was demonstrated that IL6 silencing was able to
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increase E-cadherin levels, but decreased MMP-9 levels and

attenuated angiogenesis, since it led to a decrease of

CD31 and vascular endothelial growth factor (VEGF) levels

(Chen et al., 2013) (Table 1). EMT-player alterations, induced

by IL-6, might be regulated by STAT3 signaling pathway

activation (Chen et al., 2013) (Table 1). In patient tissues, it

was demonstrated a significant positive correlation between

p-STAT3 Y705 and IL-6, and a significant negative correlation

between p-STAT3 Y705 and E-cadherin, suggesting that

E-cadherin expression might be inhibited by IL6-STAT3

signaling pathway (Chen et al., 2020). In vitro, it was

demonstrated that IL-6-induced STAT3 is able to target

TWIST promoter, modulating EMT and BlCa cell invasion

(Yao et al., 2020).

TGF-β1

TGF-β1 is the most well studied isoform and its receptors are

membrane serine-threonine kinase receptors I and II (TGF-βRI
and TGF-βRII) (Kim et al., 2001). This cytokine has been

described as playing a dual role in tumorigenesis, displaying a

tumor suppressor role in normal cells or in early tumor stages,

inducing cell cycle arrest and apoptosis, while in late stages can

promote cell motility and invasion (Eder et al., 1997; Jakowlew,

2006; Lebrun, 2012; Stojnev et al., 2019). Overall, TGF-β1 is

mainly released by regulatory T cells (Efiloğlu et al., 2020) and

CAFs (Ao et al., 2007; Yu et al., 2014; Yeh et al., 2015),

M2 macrophages (Horibe et al., 2021) and MDSC (Groth

et al., 2019). TGF-β1 can activate both SMAD-dependent or

SMAD-independent signaling (Hata and Chen, 2016). TGFRβII
point mutations have been reported, not only in the BlCa cell line

T24, but also in BlCa patients, being associated with higher

pathologic T category and tumor grade (Bian et al., 2013).

In silico analysis, it was demonstrated that TGFB1 is

upregulated in MIBC compared to NMIBC and patients with

higher TGFB1 expression presented higher risk of death, lower

DFS and lower OS (Zou et al., 2019) (Table 1).

In BlCa patient samples, TGF-β1 is expressed in normal

urothelium, although at lower levels (Yang et al., 2018; Zou et al.,

2019). Within tumors, higher TGF-β1 levels were significantly

associated with higher tumor stage and grade and correlated with

cancer-specific death (Kim et al., 2001; Yang et al., 2018; Stojnev

et al., 2019; Zou et al., 2019). On the other hand, although

Miyamoto H et al. also found that TGFB1 transcript levels were

higher in tumor tissues, than in normal samples, TGFB1

transcript levels were significantly associated with low-grade

and stage Miyamoto et al. (1995) (Table 1).

In BlCa patient serum samples, Efiloğlu Ö et al. described that

higher TGF-β1 was associated with a low risk of tumor progression

(Efiloğlu et al., 2020). Indeed, Eder IE et al., using serum samples,

mentioned that TGF-β1 levels were significantly lower in T4 tumors

than superficial and invasive (T2-T3) tumors Eder et al. (1997).

However, Eder IE et al. demonstrated that superficial tumors (Ta-T1)

had significantly TGF-β1 higher levels, than normal samples (Eder

et al., 1997). Another study from Eder IE et al.mentioned that serum

TGF-β1 were elevated in themost aggressive BlCa cases compared to

controls, and in the most undifferentiated tumors, than with lower

grade tumors (Eder et al., 1996) (Table 1).

Also in preoperative plasma, TGF-β1 levels were significantly
higher in MIBC patients with regional and distant lymph node,

comparing with non-metastatic MIBC and controls (Shariat

et al., 2001). An increase of TGF-β1 was found in MIBC,

comparing with less aggressive tumors, with patients with

higher TGF-β1 demonstrating increased risk of disease

recurrence and mortality (Shariat et al., 2001). On the other

hand, no significant differences were found between controls and

patients with early stages (Shariat et al., 2001) (Table 1).

In urine samples, it was observed a significantly higher

number of BlCa samples expressing TGF-β1 comparing with

chronic cystitis disease cases or the control group (Helmy et al.,

2007) (Table 1).

In vivo, it was observed an increase of, not only in tumor size,

but also in tumor weight (Zou et al., 2019) when the 5637 cell line

overexpressing TGF-β1 was transplanted into mice, compared

with the parental cell line (Zou et al., 2019) (Table 1).

As mentioned above, TGF-β1 is an important inducer and

regulator of EMT (Stojnev et al., 2019). EMT-related molecules

regulated by TGF-β1 and the signaling pathways activated by this

cytokine have been well described in several models, including in

BlCa. Both in vitro and in vivo, an increase of TGF-β1 reflected in

an upregulation of EMT-related molecule levels, such as Slug,

Vimentin, Snail, MMP-2, MMP-9 and E-cadherin (Zou et al.,

2019). Additionally, TGF-β1 has been associated with

proliferation, colony formation, migration and invasion in BlCa

cell lines (Bian et al., 2013; Zhang et al., 2016; Zou et al., 2019).

HTB9 and T24 cell lines treated with TGF-β1 resulted in

E-cadherin/CDH1 decrease, and a N-cadherin/CDH2 and

Vimentin/VIM increase (Chen et al., 2014). Upon TGF-β1
treatment, it was shown miR-200b downregulation and MMP-16

upregulation, due to miR-200b targeting of MMP-16 (Chen et al.,

2014). TGF-β1 treatment of T24 and BIU87 BlCa cell lines resulted

in increased fascin1 levels, an important molecule in tumor

migration and invasion (Zhang et al., 2016). Finally, AY-27, a

rat cell line, treated with TGF-β1 resulted in alterations in

morphology, with the increase of spindle shaped cells, while the

polygonal shaped cells decreased, as well as cell-to-cell contact (Koo

et al., 2010). In Smad-dependent signaling, it occurs recruitment

and phosphorylation of SMAD2 and SMAD3 (Heldin et al., 2012;

Gonzalez and Medici, 2014; Papageorgis, 2015; Gupta et al., 2016).

Then, SMAD4 is recruited, forming a trimeric complex capable to

be translocated to the nucleus (Bian et al., 2013; Gonzalez and

Medici, 2014; Gupta et al., 2016). In BlCa samples, Smad2 and

Smad4 expression were associated with low-grade and superficial

tumors, and better overall survival of the patients (Stojnev et al.,

2019). However, it was observed an increase of p-SMAD2 in
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invasive bladder tumors (Gupta et al., 2016). Knockdown of

PPM1A, an antagonist of TGF-β signaling by dephosphorylating

TGF-β-activated Smad2/3, resulted in an increase in p-Smad2/

3 levels upon TGF-β1 treatment, in 5637 and T24 cell lines (Geng

et al., 2014).

Conclusion

In this review, we focused on the dysregulation of several immune

cells, and of key cytokines/chemokines in the bladder cancer TME. In

BlCa, IL-6, CCL2, CXCL1, CXCL12, IL-8 and TGF-β1 play putative
roles in promoting tumor progression, growth, invasion, and

metastases formation (Figure 1). The cytokine-driven modulation

of the transcription of specific EMT-relatedmolecules in BlCa starts to

be unravel (Figure 1). However, the mechanisms involved in the axis

TME-EMT signaling pathway activation inBlCa remains to be further

exploited. Therefore, finding novel cytokines/chemokines present in

bladder TME driving EMT induction and, simultaneously, decipher

crucial players involved in BlCa tumorigenesis and progression.
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microenvironment is comprised by tumor cells and several tumor-infiltrating immune cells, such as, M1 and M2 macrophages, dendritic cells,
regulatory T cells, cytotoxic T cells, helper T cells, B cells and NK cells. Furthermore, TME includes stromal cells, like fibroblasts, and non-cellular
components, including soluble biological factors or mediators, as cytokines/chemokines. Cytokines/chemokines are mainly produced by
several immune cells and fibroblasts, but they also can be produced by tumor cells. Tumor cells present several cytokine/chemokine receptors. IL-8
binds to CXCR1/CXCR2 receptors, CCL2 binds to CCR2/CCR4 receptor, TGF-β1 binds to TGF-βRI/II receptors, CXCL1 binds to CXCR2 receptor,
CXCL12 binds to CXCR4/7 receptors and IL-6 binds to IL-6R receptor. Cytokine/receptor binding on tumor cells can drive the deregulation of
specific molecules, including the triggering of EMT signaling pathways. Here, are depicted the most relevant signaling pathways involved in driving
EMT that have been described to be deregulated in BlCa upon cytokine binding. JAK-STAT, RAS-RAF-ERK and AKT signaling pathways and TGF-β
SMAD-dependent pathway are described to play roles in the activation of EMT-related molecules, driving EMT processes in tumor cells. Bladder
tumor cells presenting partial EMT demonstrate a higher survival mechanism and a higher tumor-initiating and metastatic potential. In this way,
bladder tumor cells are able to metastasize to the bones, lungs and liver (Created with BioRender.com).
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