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Several studies show that statin therapy improves endothelial function by

cholesterol-independent mechanisms called “pleiotropic effects.” These are due to

the inhibition of the RhoA/ROCK kinase pathway, its inhibition being an attractive

atheroprotective treatment. In addition, recent work has shown that microRNAs,

posttranscriptional regulators of gene expression, can affect the response of statins and

their efficacy. For this reason, the objective of this study was to identify by bioinformatic

analysis possible new microRNAs that could modulate the pleiotropic effects exerted by

statins through the inhibition of ROCK kinases. A bioinformatic study was performed in

which the differential expression of miRNAs in endothelial cells was compared under two

conditions: Control and treated with simvastatin at 10µM for 24 h, using a microarray.

Seven miRNAs were differentially expressed, three up and four down. Within the up

group, the miRNAs hsa-miR-618 and hsa-miR-297 present as a predicted target to

ROCK2 kinase. Also, functional and enriched pathway analysis showed an association

with mechanisms associated with atheroprotective effects. This work shows an in-silico

approach of how posttranscriptional regulation mediated by miRNAs could modulate

the pleiotropic effects exerted by statins on endothelial cells, through the inhibition of

ROCK2 kinase and its effects.

Keywords: statins, pleiotropic effects, microRNAs, atheroprotective effects, kinases

INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. An estimated 17.9
million people died from CVDs in 2016, representing 31% of all global deaths. Of these
deaths, 85% are due to heart attack and ischemic stroke (1). Most CVDs can be prevented by
addressing lifestyle-related risk factors: tobacco use, physical inactivity, hypertension, diabetes, and
hyperlipidemia (2). The treatment of choice for hypercholesterolemia is the use of statins, which
inhibit the enzyme 3-hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase, which limits the
biosynthesis of liver cholesterol (3). Experimental and clinical studies suggest that statins may exert
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cardiovascular protective effects by mechanisms independent
of cholesterol lowering called “pleiotropic effects” (4, 5). It has
been described that the mechanism by which statins produce
their pleiotropic effects is through inhibition of the mevalonate
pathway. Mevalonate is a precursor not only of cholesterol
but also of several other isopropenoids (6). These include
farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate
(GGP), which are lipids needed for posttranslational prenylation
of Rho GTPase proteins, which act as biological switches through
signal transduction (6, 7). The inhibition of mevalonate synthesis
prevents the activation of Rho and the subsequent activation
of Rho-associated protein kinase (ROCK) (8, 9). Several
studies have reported the importance of the RhoA/ROCK
pathway in endothelial function affecting vascular tone, platelet
aggregation, smooth-muscle cell proliferation, leukocyte
adhesion, production of nitric oxide synthase (eNOS), and
bioavailability of nitric oxide (NO). The mechanisms associated
with eNOS are of great importance, since the decrease of NO
corresponds to one of the first manifestations of atherosclerosis
(10, 11). Therefore, inhibition of the RhoA/ROCK pathway
by statins influences NO signaling in endothelial cells (12).
This has been demonstrated by two mechanisms: stability of
eNOS messenger RNA (mRNA) and an increase in its activity
through activation of phosphatidylinositol 3-kinase (PI3K)/AKT
(13, 14). For this reason, inhibition of the RhoA/ROCK kinase
pathway might be an attractive atheroprotective treatment for
the development of CVD.

MicroRNAs (miRNAs) are important regulators of gene
expression that bind complementary target mRNAs and repress
their expression. The miRNAs are small non-coding RNA
molecules, evolutionarily conserved. They have approximately
22 nucleotides, and their functions are gene regulation through
posttranscriptional mechanisms. The miRNAs are involved in
a variety of biological processes (15). Over the past few years,
a total of 2,300 miRNAs have been reported in humans and
it is estimated that human mRNA information exceeds 25,000
(16, 17). For this reason, current laboratory technologies do not
allow to test globally every possible interaction between gene
and miRNAs. However, the use of bioinformatics approaches
for miRNA target prediction is used as a guide for laboratory
validation experiments to more quickly elucidate gene regulation
networks (18). The bioinformatics development combined
with diverse experiments has allowed them to be used as
potential biomarkers for diagnosis, prognosis, and personalized
treatment (19).

Several studies in the area of cancer have demonstrated
the regulation of transcriptional expression by miRNAs
of the ROCK1 and ROCK2 isoforms of the RhoA/ROCK
kinase pathway, reporting beneficial effects such as decreased
proliferation and migration by modulating the expression
of these miRNAs (20, 21). Zambrano et al. (22) showed that
treatment with atorvastatin and simvastatin at 10 micromolar
(µM) in HepG2 cells for 24 h deregulated the expression of
13 miRNAs by atorvastatin and 2 miRNAs by simvastatin.
Other studies also show that atorvastatin can lower miR-221
and miR-222 levels in cell endothelial parents of patients with
coronary disease (23). In particular, the effects observed by

statins are heterogeneous, appearing to be independent of their
chemical composition (lipophilic vs. hydrophilic) (24). It has also
been reported that miRNAs would have the ability to influence
endothelium atheroprotective effects, such as increasing nitric
NO. Cerda et al. (25) described that these miRNAs increase
the levels of NO and the expression of eNOS3 in endothelial
cells. This background reveals that statin-modulated miRNAs
influence their response and effectiveness. For this reason, the
objective of this study was to identify by bioinformatic analysis
possible new miRNAs that could modulate the pleiotropic effects
exerted by statins through the inhibition of ROCK1 and ROCK2
kinases, and also to explore the pathways associated with the
atheroprotective capacity of endothelial cells through an in-silico
approach. Therefore, a bioinformatics study was performed
comparing the differential expression of miRNAs in human
umbilical vein endothelial cells (HUVEC) under two conditions:
control and treated with simvastatin at 10 (µM) for 24 h.

MATERIALS AND METHODS

Identification of Differential Expression
miRNAs
The gene expression profile data (GSE126290, file
GSE126290_RAW.tar) was downloaded from the NCBI Gene
Expression Omnibus (GEO) database. The dataset contained the
miRNA profile of HUVEC cells treated with simvastatin 10µM
and HUVEC cells without treatment as control. The analysis
was performed using the Gene Expression Analysis Platform
version 0.3.2 (GEAP), which uses R program packages for gene
expression data processing and statistical analysis (26–30). In
this analysis, the statistical package used was “Linear models and
differential expression for microarray data” (Limma), making
the comparison between groups considering as criteria the
“false discovery rate” (FDR) p-value < 0.05 and logFC > 1 (31).
From GEAP software, volcano plot, scatter plot, and heat map
of the distances between arrays were generated. For principal
component analysis (PCA), Ggfortify (32) and ggbiplot (33) of
R Program were used. For the hierarchical clustering heat maps,
Morpheus was used.

Gene Ontology and Pathway Enrichment
Analysis
To predict the target genes of the prognostic miRNAs, we
used the mirDIP 4.1 online software that provides 152 million
predictions using 30 different resources and obtained the score
of each interaction between miRNAs and the target (34). In
addition, gene ontology (GO) and pathway enrichment analyses
of Kyoto Encyclopedia of Genes and Genomes (KEGG) were
performed with target genes of the differential miRNAs expressed
through the ShinyGO v0.61 (35) program, FDR p-value < 0.05.

Target Predictions of Upregulated miRNAs
for ROCK1 and ROCK2 Kinases
The upregulated miRNAs were evaluated for their ability to
bind to the 3′UTR of the ROCK1 and/or ROCK2 kinases using
three miRNA target predictor softwares to increase specificity
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and precision: TargetScan version 7.2, which considered as
criteria the type of seed region and the weighted context++

score (WCS) that uses 16 important characteristics for miRNA
target recognition (36); miRDB which considered as criteria the
location of the seed region in the 3′UTR and the score assigned by
the computational algorithm for target prediction, showing that
a score above 80 presents a higher probability of union (37); and
mirDIP 4.1.

RESULTS

Identification of Differentially Expressed
miRNAs Between Simvastatin-Treated
10 µM HUVEC Cells (24 h Treatment) and
Control HUVEC Cells
To determine the quality control of our analysis, two PCA
plots and a false-color heat map were generated. PCA shows

FIGURE 1 | (A) PCA based on microarrays showed that samples were grouped. The HUVEC control (GSM3595740; GSM3595741; GSM3595742) and HUVEC cells

treated with 10µM simvastatin (GSM3595743; GSM3595744; GSM3595745) were separated by PC2. (B) False color heat maps indicating distances between

matrices. 1 (Control 1); 2 (Control 2); 3 (Control 3); 4 (Simvastatin 1); 5 (Simvastatin 2); 6 (Simvastatin 3). (C) Hierarchical clustering heat maps with differentially

expressed miRNAs in both conditions: control and simvastatin treated. In the graph, the red samples represent the highly expressed values while the blue ones show

the low expressed values. The values are expressed in Log2. (D) Volcano plot of the differentially expressed miRNAs. The gray points represent genes with no

significant difference. The red points represent upregulated genes screened based on the fold change > 1.0 and a corrected p-value of < 0.05. The green points

represent downregulated genes screened based on the fold change > 1.0 and a corrected p-value of < 0.05.
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TABLE 1 | Differentially expressed miRNAs in HUVEC cells treated with 10µM simvastatin for 24 h.

miRNA_ID logFC AveExpr T p value adj. p val B Expression

hsa-miR-515-5p −1.07 10.1 −6.94 0.000662 0.0471 0.255 Downregulated

hsa-miR-18a* −1.43 9.06 −7.18 0.000559 0.0471 0.43 Downregulated

hsa-miR-640 −1.35 9.31 −7.06 0.00061 0.0471 0.34 Downregulated

hsa-miR-618 1.72 5.82 6.81 0.00073 0.0471 0.155 Upregulated

hsa-miR-363 1.64 10.7 13.4 2.2E-05 0.0191 3.48 Upregulated

hsa-miR-548h −1.19 12.9 −10.9 6.43E-05 0.0191 2.55 Downregulated

hsa-miR-297 2.1 11.7 8.53 0.000233 0.026 1.32 Upregulated

logFC, log2 fold change; AveExpr, average log2 expression; T, moderated t-statistic; p-value, raw p-value; adj. p-value, adjusted p-value; B, log-odds.

the separation of the groups in the two conditions evaluated,
simvastatin-treated HUVEC cells, and control (untreated)
HUVEC cells (Figure 1A). Along with this, the false heat
map indicates the distances between the matrices, calculated
between the mean distances between the data (Figure 1B).
Subsequently, the differential expression of miRNAs from the
GSM126290 database is shown. The criteria used were p <

0.05 and logFC > 1 (Table 1). A total of seven miRNAs were
identified as differentially expressed, three miRNAs upregulated
and four miRNAs downregulated, between the conditions: 10-
µM simvastatin-treated and control cells. This was represented
in a hierarchical clustering heat map (Figure 1C). Along with
this, the volcano plot showing the dataset and the differentially
expressed samples is shown (Figure 1D).

Functional and Pathway Enrichment
Analysis of Differentially Expressed
miRNAs
Gene Ontology and Pathway Enrichment analysis were made to
explore the biological pathways in which deregulated miRNAs
would be implicated. The first step was to determine the
target genes for differentially expressed miRNAs, using the
mirDIP 4.1 program. This program brings together 30 different
resources. A total of 4,756 target genes were found with
extremely high score. Later, the 4,756 genes were used for
ontological genes and enrichment pathways. Gene Ontology
enrichment analysis classified them into three groups, a biological
process group, a cellular component group, and a molecular
function group, which are shown in Table 2. The biological
processes that showed the highest number of genes were
regulation of biosynthetic processes (1,055 genes), regulation of
macromolecule biosynthetic processes (1,010 genes), and positive
regulation of nitrogen compound metabolic processes (819
genes). The cellular components genes are mostly associated with
nuclear part (1,060 genes), nucleoplasm (869 genes), and nuclear
lumen (976 genes). Themost presentedmolecular functions were
transcription regulator activity (543 genes), regulatory region
nucleic acid binding (301 genes), and transcription regulatory
region DNA binding (299 genes). Pathway enrichment analysis
shows miRNAs in cancer, axon guidance, and pathways in
cancer, in higher probability, which are shown in Table 3 and
Figure 2.

miRNA Target Prediction for ROCK1 and
ROCK2 Kinases
To determine the interaction between the upregulated miRNAs
hsa-miR-618, hsa-miR-363, and hsa-miR-297, with the 3′UTR
sequence of ROCK1 and ROCK2 kinases, three online
platforms were combined, TargetScan, miRDB, and mirDIP
4.1, considering the most important metrics of each program
(Figure 3 and Table 4). The strategy was to specifically target
ROCK1 and ROCK2 kinases, due to the major role these proteins
play in atherosclerotic pathology and also in the pleiotropic
effects exerted by statins. However, genes associated with
cholesterol metabolism (ABCA1, APOE, LDLR, SCAP, SREP2,
PCSK9, and VLDLR), as well as genes related to eNOS pathways
(ROCK2, PI3K, and AKT), were also evaluated. These genes are
not presented as predicted targets of miRNAs.

DISCUSSION

In the present in-silico study, we analyzed data collected from the
GEO database (GSE126290) in which the differential expression
of miRNAs between two conditions was evaluated: HUVEC cells
treated with simvastatin at 10µM and control cells (without
treatment) for 24 h. The bioinformatic analysis on differential
expression analysis of miRNAs showed the deregulation of a
group of seven miRNAs (hsa-miR-515-5p, hsa-miR-18a∗, hsa-
miR-640, hsa-miR-618, hsa-miR-363, hsa-miR-548h, and hsa-
miR-297) considering as cutoff criteria a logFC > 1 and FDR
p-value < 0.05. Among the group of seven miRNAs, four are
downregulated (hsa-miR-515-5p, hsa-miR-18a∗, hsa-miR-640,
and hsa-miR-548h) and three are upregulated (hsa-miR-618,
hsa-miR-297, and hsa-miR-363). Liang et al. (38) performed a
differential expression analysis from the same data set presented
in this paper. Their results showed that miRNA hsa-miR-652-
3p inhibits ISL1, a protein involved in the decrease of NO
bioavailability in endothelial cells. However, this miRNA is not
upregulated in our analysis. One of these differences is due to
their cutoff values considered: p-value of 0.1 and fold change
± 0.2. This would also establish a difference in the amount of
deregulated miRNAs, since they present a total of 167, in relation
to our analysis which were 7.

Our work supports previous reports on the effect of statins
on the dysregulation of miRNA expression and also proposes the
way in which statins can exert pleiotropic effects associated with
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TABLE 2 | Gene ontology enrichment analysis of differentially expressed miRNAs

was divided into three groups: biological processes, cellular components, and

molecular functions.

Functional category E. FDR N. G. S N. G. T

BIOLOGICAL PROCESS

Nervous system development 4.6E-72 696 2,474

Positive regulation of metabolic process 2.4E-60 911 3,789

Positive regulation of macromolecule

metabolic process

2.4E-60 858 3,498

Regulation of biosynthetic process 2.2E-56 1,055 4,687

Regulation of macromolecule biosynthetic

process

2.2E-56 1,010 4,426

Positive regulation of nitrogen compound

metabolic process

2.2E-56 819 3,351

Regulation of cellular biosynthetic process 6.4E-56 1,040 4,610

Neurogenesis 7.9E-56 495 1,683

Cell development 1.8E-55 604 2,230

Regulation of nucleobase-containing

compound metabolic process

6.7E-55 1,014 4,482

CELLULAR COMPONENT

Nuclear part 1.9E-44 1,060 4,966

Nucleoplasm 3.1E-44 869 3,861

Nuclear lumen 1.7E-41 976 4,545

Neuron part 2.1E-27 440 1,808

Synapse 5.5E-24 326 1,268

Axon 7.7E-21 190 639

Neuron projection 3.5E-20 333 1,371

Plasma membrane bounded cell projection 5.8E-19 481 2,214

Cell projection 8.0E-19 493 2,287

Synapse part 1.5E-18 257 1,004

MOLECULAR FUNCTIONS

Transcription regulator activity 7.5E-37 543 2,183

Regulatory region nucleic acid binding 3.1E-34 301 1,002

Transcription regulatory region DNA binding 9.6E-34 299 1,000

Sequence-specific DNA binding 1.1E-33 338 1,189

RNA polymerase II regulatory region DNA

binding

1.3E-33 260 823

DNA-binding transcription factor activity 4.9E-33 455 1,793

RNA polymerase II regulatory region

sequence-specific DNA binding

1.2E-32 256 816

Sequence-specific double-stranded DNA

binding

1.2E-31 276 920

Transcription regulatory region

sequence-specific DNA binding

1.4E-31 266 875

DNA-binding transcription factor activity, RNA

polymerase II-specific

1.4E-31 427 1,673

E. FDR, enrichment FDR; N. G. S, number of genes selected; N. G. T, number of

genes total.

the RhoA/ROCK kinase pathway. These miRNAs are modulating
various processes associated with CVDs (39, 40). We observed
that simvastatin can modulate seven miRNAs in endothelial cells,
and two that are upregulated could modify their expression
through binding to the 3′UTR region of the ROCK2 kinases.
Nowadays, there are several tools available to predict miRNA
targets based mainly on detecting the complementarity of the

TABLE 3 | Pathway enrichment analysis of differentially expressed miRNAs.

Functional category E. FDR N. G. S N. T. G.

ENRICHMENT PATHWAYS

MicroRNAs in cancer 5.5E-13 62 150

Axon guidance 1.5E-10 65 181

Pathways in cancer 5.4E-09 134 528

MAPK signaling pathway 8.4E-09 86 295

Proteoglycans in cancer 1.6E-08 64 198

Transcriptional misregulation in cancer 5.2E-08 60 186

Endocytosis 8.6E-08 72 244

PI3K-Akt signaling pathway 1.1E-07 94 353

Ubiquitin-mediated proteolysis 1.3E-07 47 135

Signaling pathways regulating pluripotency 1.3E-07 48 139

of stem cells

E. FDR, enrichment FDR; N. G. S, number of genes selected; N. G. T, number of

genes total.

miRNA sequence with the 3′UTR region of the target gene (41).
However, many of these predictions show false negatives in the
experimental validation. One strategy to maximize performance
and minimize false results in vitro and in vivo functional
experiments is the union of bioinformatics tools for miRNA-
target prediction that will allow increasing the specificity and
precision of the analysis (42). For this reason, three prediction
programs were used together: TargetScan, miRDB, and mirDIP
4.1. All three tools showed that hsa-miR-618 and hsa-mir-
297 had ROCK2 as a target. The hsa-miR-618 miRNA shows
complementarity in three regions of the 3′UTR of ROCK2.
Studies have shown that the more seed bonds it has in the 3′UTR,
the stronger the miRNA-induced regulation (43). On average,
the change in Log2 was linearly correlated with the number of
seed regions, suggesting that the effect of seeds is independent
and multiplicative (44). For this reason, we can suggest that
hsa-miR-618 would have a greater effect on the 3′UTR.

Considering that many of the pathologies associated with the
vasculature are related to morphological changes that can be
regulated by the interaction of hemodynamic forces, one of the
limitations of our work is that the database used contains data
from an in vitromodel and not from an in vivomodel. Also, in the
vasculature there is presence of different cell types that contribute
to the physiopathology. An example of this, in the adhesion
of leukocytes, is the production of inflammatory cytokines by
macrophages, etc. However, many authors agree that HUVEC
is a model of representative study of the vasculature and also it
has allowed the study of physiological and pathological effects in
isolation as in coculture with leukocytes and smooth-muscle cells
(45, 46). For this reason, it is important to consider validating
these results in vitro and in vivomodels.

ROCK2 is a 160-kDa serine/threonine kinase protein, and
its functions are the regulation of smooth-muscle contraction,
organization of the actin cytoskeleton and stress fibers, formation
of focal adhesions, and retraction of neurons and cellular
adhesions (47). Therefore, its function in different cells and
how it contributes to different pathologies through mechanisms
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TABLE 4 | Software and metrics used to determine the binding of miRNAs with ROCK2.

miRNAs Fold change Gene target TargetScan miRDB mirDIP 4.1

LogFC Expression S. T C++S S. L T. S

hsa-miR-618 1.75 Up ROCK2 7mer-A1 −0.15 306 83 X

7mer-m8 −0.04 2,139

8mer −0.01 3,066

hsa-miR-297 2.1 Up ROCK2 7mer-m8 −0.06 117 88 X

7mer-m8 −0.01 2,600

S.T, site type; C++S, context score; S.L, seed location; T.S, target score.

FIGURE 2 | Network figure showing the relationship between the enriched pathways obtained from the classification from KEGG. The nodes in green correspond to

an enriched pathway, and their size is related to a set of larger genes. MAPK signaling, PI3K-Akt signaling pathway, pathways in cancer, and proteoglycans in cancer

are connected as they share ≥ 20% of genes. Figure extracted from ShinyGO v0.61.

mediated by miRNAs have been studied. Liu et al. (48)
demonstrated that hsa-miR-122 can inhibit the proliferation
of prostate carcinoma cells due to the negative regulation
of ROCK2 expression. Furthermore, the hsa-mir-185/ROCK2
pathway was shown to have potential to improve therapies in
hepatocellular carcinoma, through metastasis inhibition (49).
However, miRNAs hsa-miR-618 and hsa-miR-297 have not been
experimentally validated as ROCK2 targets. The hsa-miR-618

has been reported to be unregulated in pathologies as epilepsy
(50) and squamous cells from head and neck carcinomas (51).
The case of hsa-miR-297 has been associated with prostate
cancer (52) and with colorectal carcinoma, specifically with drug
resistance (53).

The set of differentially expressed miRNAs and their gene
ontological analysis showed the following biological processes:
regulation of biosynthesis processes, regulation of biosynthetic
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FIGURE 3 | Presentation of complementary sites and base pairs of the miRNAs hsa-miR-618 and hsa-miR-279 with the 3′UTR sequence of the ROCK2 kinase.

These were predicted by software: TargetScan, miRDB, and mirDIP 4.1. Created with BioRender.com.

macromolecule processes, and positive regulation of nitrogen
compound metabolic processes; this last process could be related
to the gene’s enrichment involved in the mechanisms associated
with the ability of statins to increase the bioavailability of NO,
through the inhibition of ROCKs (9). The increased expression
of ROCKs reduces the expression of eNOS, and the inhibitors (Y-
27632 and fasudil) have been shown to increase eNOS (54). In the
case of the statins, the increased expression of eNOS was not due
to FPP and LDL-C; it was due to inhibition of GGP involved with
RhoA and ROCK signaling (6).

Other biological processes and cellular components
highlighted in the analysis are neurogenesis, development
of the nervous system, and cellular development. Several
studies in animal models of spontaneous intracerebral
hemorrhage that have been treated with statins have improved
neurological function, reduced cerebral edema effects, increasing
angiogenesis, and neurogenesis, and have decreased the
infiltration of inflammatory cells. This supports the possible
neuroprotective effects of statins (55–57).

Statins may also exert their pleiotropic effects through
Kruppel-like factor-2 (KLF2). Statins induced the increase in
mRNA expression of KLF2 in endothelial cells, which is necessary
for eNOS expression (58). This could be associated with the
results of molecular functions obtained like the transcription
regulator activity in ontological gene analysis.

Inside the analysis associated with the biological pathways,
the following ones might be highlighted: signaling pathways
regulating pluripotency of stem cells, axon guidance, PI3K-AKT
signaling pathways, and miRNAs in cancer. The signaling
pathways regulating pluripotency of stem cells has been
associated with the transforming growth factor (TGF-B)
superfamily, performing important functions during the
differentiation of vascular progenitor cells derived from mouse
embryonic stem cells (59). Statins can exert pleiotropic effects

by increasing the mobilization of endothelial progenitor cells.
Damaged endothelial progenitor cells are associated with
impaired endothelial function and reduced NO levels. Studies
show that prehypertension and hypertension in patients are
related to early senescence of progenitor cells and impaired
endothelial function (60). Another route mentioned is the axon
guidance, which could represent a key stage in the formation
of the neural network. This mechanism has been associated
with the Rho GTPase pathway through the reorganization of
the cytoskeleton that determines the direction that will guide
the growth cone (61). A study conducted on brain slices of
oxygen-glucose-deprived cells that were exposed to fasudil
(ROCK inhibitor) showed an improvement in neuronal viability
(62, 63). These findings could be linked to the neuroprotective
effects that statins would have on the neurovascular system.
Furthermore, the PI3K-AKT signaling pathway corresponds to
one of those affected by ROCK inhibition by statins as mentioned
above. ROCK is a negative regulator of AKT, possibly through
activation of phosphatase and the homolog of tensin (64). Also,
the regulation of AKT is known to influence the expression
of eNOS and thus an increase in the bioavailability of NO.
This effect has been shown to contribute to a decrease in the
proliferation of smooth-muscle cells, a key mechanism in the
development of atherosclerosis (65). Studies have revealed that
statins modulate miRNAs associated with influence the change
from senescent contractile phenotype to proliferative phenotype.
This could be associated with the enrichment of the miRNA
pathway in cancer (66).

Finally, in-silico analysis has shown that statins might exert
pleiotropic effects through the modulation of miRNAs that
would inhibit ROCK2 kinase and also generate atheroprotective
effects in endothelial cells (Figure 4). Although our work
proposes new miRNAs that regulate the RhoA/Rock kinase
pathway through an in-silico approach, it is necessary to

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 August 2021 | Volume 8 | Article 70417511

https://BioRender.com
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Leal et al. MicroRNAs and Effects of Statins

FIGURE 4 | Bioinformatic analysis showed that miRNAs modulated by statin treatment could exert the pleiotropic effects. These effects would occur due to the

posttranscriptional inhibition of ROCK2 kinase by the miRNAs hsa-miR-618 and hsa-miR-297. ROCK2 kinase expression has been described by two mechanisms:

stability of eNOS messenger RNA and increased activity by activation of phosphatidylinositol 3-kinase (PI3K)/AKT. The increased activity and expression of eNOS

produce an increase in the bioavailability of NO. This effect of increasing NO affects improvement in neuronal viability, mobilization of stem and progenitor cells, and

decreased proliferation of smooth muscle cells. Created with BioRender.com.

continue with the experimental validation of the miRNAs
expressed differentially in endothelial cells through in vitro
and in vivo study models. In addition, the functional role of
hsa-miR-618 and hsa-miR-297 miRNAs as inhibitors of ROCK2
gene expression and in themediation of pleiotropic effects should
be evaluated.

CONCLUSION

In this work, we report that simvastatin treatment deregulates
the expression of seven miRNAs (hsa-miR-515-5p, hsa-miR-
18a∗, hsa-miR-640, hsa-miR-618, hsa-miR-363, hsa-miR-548h,
and hsa-miR-297) in HUVEC cell culture. In-silico analysis
shows that the miRNAs hsa-miR-618 and hsa-miR-297
are upregulated, and the 3′UTR region of ROCK2, an

important protein of the RhoA/Rock kinase pathway
involved in modulation of pleiotropic effects exerted by
statins, is predicted as a potential target for both miRNAs.
In addition, functional analysis and enriched pathways
revealed an important association with the pleiotropic effects
produced by statins and with the inhibition of RhoA/ROCKs.
These results open a new way to understand how statins,
through the deregulation of the miRNA expression, might
cause an atheroprotective effect through the inhibition of
ROCK2 kinase.

In summary, our work through the use of bioinformatics tools
contributes with new potential candidates that could regulate
the pleiotropic effects in response to statin treatment. However,
the functional role of hsa-miR-618 and hsa-miR-297 miRNAs
and their mediation of pleiotropic effects must be evaluated by
validating in vitro and in vivomodels.
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Brugada syndrome (BrS) is a hereditary disorder, characterized by a specific

electrocardiogram pattern and highly related to an increased risk of sudden cardiac

death. BrS has been associated with other cardiac and non-cardiac pathologies,

probably because of protein expression shared by the heart and other tissue types. In

fact, the most commonly found mutated gene in BrS, SCN5A, is expressed throughout

nearly the entire body. Consistent with this, large meals and alcohol consumption can

trigger arrhythmic events in patients with BrS, suggesting a role for organs involved

in the digestive and metabolic pathways. Ajmaline, a drug used to diagnose BrS, can

have side effects on non-cardiac tissues, such as the liver, further supporting the idea

of a role for organs involved in the digestive and metabolic pathways in BrS. The BrS

electrocardiogram (ECG) sign has been associated with neural, digestive, and metabolic

pathways, and potential biomarkers for BrS have been found in the serum or plasma.

Here, we review the known associations between BrS and various organ systems, and

demonstrate support for the hypothesis that BrS is not only a cardiac disorder, but rather

a systemic one that affects virtually the whole body. Any time that the BrS ECG sign is

found, it should be considered not a single disease, but rather the final step in any number

of pathways that ultimately threaten the patient’s life. A multi-omics approach would be

appropriate to study this syndrome, including genetics, epigenomics, transcriptomics,

proteomics, metabolomics, lipidomics, and glycomics, resulting eventually in a biomarker

for BrS and the ability to diagnose this syndrome using a minimally invasive blood test,

avoiding the risk associated with ajmaline testing.

Keywords: Brugada syndrome (BrS), sudden cardiac death (SCD), arrhythmia, genetics, epilepsy, ajmaline, thyroid,

cancer

INTRODUCTION

Brugada syndrome (BrS) is a hereditary disorder, highly related to an increased risk of sudden
cardiac death (1), characterized by a type 1 (coved type) ST-segment elevation ≥2mm followed by
a negative T-wave in≥1 of the right precordial leads V1 to V2 on the electrocardiogram (ECG) (2),
which can occur spontaneously or after pharmacologically induced. The typical symptoms of BrS
are syncope and cardiac arrest due to ventricular fibrillation (VF) or ventricular tachycardia (VT),
in the absence of overt cardiac structural changes, typically between 30 and 50 years of age (3, 4). BrS
has been associated with several other cardiac disorders, such as early repolarization syndrome (5),
arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) (6–9), progressive cardiac
conduction defect (Lenègre syndrome) (10, 11), LQTS (12–14), Wolff-Parkinson-White (15, 16),
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hypertrophic cardiomyopathy (17, 18), atrial flutter (19), and
atrial fibrillation (20–23). In addition, BrS has also been
associated with non-cardiac pathologies, such as epilepsy, thyroid
disorders, cancer, skeletal muscle sodium channelopathies,
laminopathies, and diabetes. One reason for this may be due to
similar ion channel expression shared by the heart and other
tissue types (24–27). In fact, the most commonly found mutated
gene in BrS, SCN5A (28), is expressed throughout the entire body,
with the largest protein expression levels found in the plasma,
heart, and pancreatic juice (29). Consistent with this, large meals,
alcohol, specific drugs, and fever can trigger arrhythmic events
in patients with BrS, suggesting a role for organs involved in
the digestive and metabolic (including mitochondrial) pathways
(28, 30).

Drugs used to induced the type 1 BrS ECG pattern include
Ajmaline, Flecainide, and Procainamide, which are often thought
of as sodium channel blockers (4, 31, 32). Many centers prefer
the use of Ajmaline because of its lower false-negative rate
(33). However, several studies have highlighted the complex
mechanism of Ajmaline, which does not act solely as a sodium
channel blocker, but rather acts additionally on potassium and
calcium channels (34, 35). Ajmaline can have side effects on non-
cardiac tissues, such as the liver and mitochondria (36), further
supporting the idea of a role for organs involved in the digestive
and metabolic pathways in BrS.

In addition to cardiac, neural, digestive, and metabolic
involvement, BrS may also affect other areas of the body.
Potential biomarkers for BrS have been reportedly found in
the serum or plasma of BrS patients (37, 38), although the
conclusions are disputed (39). Indeed, a multi-omics approach
would be appropriate to study this syndrome, including not
only genetics, but also epigenomics, transcriptomics, proteomics,
metabolomics, lipidomics, and glycomics (28). Here, we review
the known associations between BrS and various systems and
demonstrate support for the hypothesis that BrS is not only a
cardiac disorder, but rather a systemic one that affects virtually
the whole body.

BRS GENE CANDIDATES AND AJMALINE
MOLECULAR TARGETS EXPRESSED IN
MULTIPLE ORGAN SYSTEMS

BrS was once viewed as a pure monogenic Mendelian disorder,
caused by a single variant in a single gene. In some families, this
may in fact still be the case. However, the view of BrS genetics
has more recently evolved to recognize, in most cases, that BrS
is an oligogenic syndrome, which can result from the combined
effect of multiple variants, even in multiple genes, that occur
in the same person (28, 40, 41). Much research is underway to
determine what genes may be involved. Candidate genes (2, 28)
commonly involve those encoding for sodium, potassium, and
calcium channels (42–46), as well as, less commonly, sarcomeric
and structural proteins (17, 18, 45, 47, 48) and mitochondrial
genes (49) (Table 1).

There are several candidate genes currently under
investigation, reviewed elsewhere (2, 28, 40). Here, we do

TABLE 1 | BrS candidate genes.

BRUGADA SYNDROME CANDIDATE GENES

ABCC9 KCNE2 SCN2B

ACTC1 KCNE3 SCN3B

AKAP9 KCNE5/KCNE1L SCN4B

ANK2 KCNH2 SCN5A

CACNA1C KCNJ2 SCN10A

CACNA2D1 KCNJ5 SEMA3A

CACNB2 KCNJ8 SNTA1

CASQ2 KCNQ1 TMEM43

CAV3 RANGFR / MOG1 TNNI3

DSC2 MYBPC3 TNNT2

DSG2 MYH7 TPM1

DSP MYL2 TRPM4

FLNC MYL3 LMNA

GPD1L PKP2 PLN

HCN4 PLN CBL

JUP NOS1AP tRNA-Ala

KCND3 RYR2 tRNA-Gln

KCNE1 SCN1B tRNA-Met

not seek to exhaustively list every single candidate gene that
exists, but rather, we focus on a selected number of them to
highlight the concept that these genes are expressed not only in
the heart, but throughout the body, and thus mutations in any of
these genes could have pathogenic effects not only on the heart,
but also on other organ systems. The most widely screened BrS
candidate genes encoding for sodium channels include SCN5A,
SCN10A, SCN1B, SCN2B, and SCN3B, while genes encoding for
potassium channels include HCN4, KCND2, KCND3, KCNE3,
KCNE5, KCNH2, and KCNJ8, and genes encoding for calcium
channels include CACNA1C, CACNA2D1, CACNB2, PLN, and
TRPM4 (2, 28, 40). These genes are expressed not only in
the heart, but also throughout the rest of the body. Figure 1
shows the organs in which the protein level encoded by certain
sodium, potassium, and calcium genes described in BrS is highly
expressed. However, many of these genes encode for proteins
that are expressed to a lesser extent in several other organs.
Despite being expressed to a lesser extent, the low expression of
these proteins in other cell types can influence disease expression
and contribute to overlap pathologies. For more details on the
organs and cell types in which these genes are expressed to a
lower extent, see GeneCards (29).

Calcium is the connection between excitation and contraction,
and in fact, arrhythmias and sudden death can occur as a result
of calcium mishandling, including altered calcium signaling
resulting from sarcomeric mutations (50). Recent studies have
suggested a possible involvement of sarcomeric mutations in BrS
(17, 45, 51) that alter calcium signaling (18, 42). BrS sarcomeric
gene candidates include TPM1, MYBPC3, DSG2, PKP2, LMNA,
MYH7, TTN, and GATA4 (17, 45, 47, 48, 52). In BrS, it has
been proposed that loss of the action potential, and consequent
reduced calcium channel current and cardiomyocyte calcium
depletion, could result in wall motion abnormalities, dilation of
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FIGURE 1 | Cell and tissue types in which sodium, potassium, and calcium channel BrS candidate genes encode for high levels of protein expression. Not pictured:

Sodium genes: SCN5A: plasma, pancreas juice. SCN10A: monocytes, neutrophil, B cells, T cells, skin. SCN2B: spinal cord, fetal heart, fetal brain. SCN3B: fetal brain.

Potassium genes: HCN4: plasma, PBMCs, fetal heart. KCND2: fetal brain. KCND3: fetal brain, bones. KCNJ8: lymph node, bone marrow, stromal cells, nasopharynx,

rectum, thyroid, adrenal, breast, gallbladder, skin, cervix, seminal vesicles Calcium genes: CACNA2D1: serum, plasma, PBMCs, lymph nodes, tonsil, bones, skin,

bone marrow, esophagus, adipocytes, fetal brain, frontal cortex, cerebral cortex, cerebral spinal fluid, spinal cord, fetal heart, oral epithelial, cardia, fetal gut, rectum,

thyroid, adrenal, gallbladder, urine, fetal ovary, fetal testis, seminal vesicles. PLN: tonsil, fetal heart, esophagus, urinary bladder, seminal vesicles. CACNB2: fetal brain.

CACNA1C: frontal cortex, fetal heart, urinary bladder. TRPM4: Spinal cord, nasal respiratory epithelium, rectum, breast (29).
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the right ventricular outflow tract (RVOT) region, and reduced
ejection fraction (EF) (31, 42, 53, 54), which have, in fact, been
recently observed clinically in patients affected by BrS (55). BrS
candidate genes encoding for proteins important in cell signaling
include AKAP9, ABCC9, and CBL (40, 45, 56), and these, like the
other BrS gene candidates, are expressed not only in the heart, but
additionally throughout the rest of the body. The cell or tissue
types in which these genes are highly expressed are shown in
Figure 2. For a more comprehensive assessment of all the tissue
types in which they are expressed even to a lesser extent, please
see GeneCards (29).

Genes identified in BrS genetics research as candidate genes
related to the mechanism of BrS are expressed throughout the
human body (Figures 1, 2), and variants identified in any one of
them could modify not only heart function, but the function of
any tissue type in which they are expressed. To what extent is
uncertain, and we summarize below studies which support the
idea that we are only seeing the tip of the iceberg in what can
be learned from BrS research, namely, the molecular connections
between multiple pathologies throughout the body.

BRUGADA SYNDROME AND THE NEURAL
SYSTEM

An overlap between cardiac arrhythmia and epilepsy has been
described, possibly because of common mutations in genes
encoding for ion channels. Several studies point toward the
possibility of co-expression of ion channels in both the heart and
brain, leading to the manifestation of both cardiac arrhythmia
and epilepsy (57–59). Many of these studies have identified gene
mutations known to cause cardiac arrhythmia syndromes such
as LQTS and BrS. For example, idiopathic epilepsy and LQTS
may be linked by mutations in the potassium channel gene,
KCNQ1 (58). Also the sodium channel gene, SCN5A, usually
associated with SCD and BrS (60–62), has been of particular
interest to understand the effects of specific mutations (63–68)
or even polymorphisms (69–73) in this gene, and their relation
with BrS, and this gene has been linked to sudden unexplained
death in epilepsy (SUDEP) (74). In fact, this gene has already
been implicated in an overlap syndrome involving both epilepsy
and BrS (24). Indeed, up to 18% of patients affected by epilepsy

FIGURE 2 | Cell and tissue types in which sarcomeric and cell signaling BrS candidate genes encode for high levels of protein expression. Not pictured: Sarcomeric

genes: TPM1: Serum, plasma, monocytes, neutrophil, B lymphocytes, CD8T cells, NK cells, PBMCs, platelets, lymph nodes, tonsils, bone marrow, fetal brain, spinal

cord, fetal heart, bone, oral epithelial, nasopharynx, esophagus, cardia, gut fetal, rectum, fetal liver, adipocytes, amniocytes, thyroid, adrenal, breast, milk, gallbladder,

urine, skin, fetal ovary, fetal testis, seminal vesicles. MYBPC3: fetal brain, fetal heart, oral epithelium, fetal liver, adrenal, fetal testis. DSG2: serum, plasma, platelets,

tonsils, fetal heart, oral epithelia, esophagus, cardia, fetal gut, rectum, fetal liver, adipocytes, synovial fluid, amniocytes, thyroid, breast, gallbladder, urine, urinary

bladder, skin, fetal ovary. PKP2: platelets, spinal cord, fetal heart, fetal gut, rectum, amniocytes, adrenal, breast, gallbladder, skin, fetal ovary, fetal testis. MYH7:

platelets, tonsil, fetal brain, spinal cord, fetal heart, esophagus, rectum, fetal liver, adipocytes, fetal ovaries, fetal testis. Cell signaling genes: AKAP9: monocytes,

PBMCs, platlets, lymph node, brain fetal, esophagus, cardia, rectum, fetal liver, adipocytes, amniocytes, adrenal, pancreatic juice, islet of Langherans, gallbladder,

ovary fetal, testis fetal. ABCC9: plasma, bone marrow, heart fetal, fetal liver (29).
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die of SUDEP (59). Unfortunately, autopsy performed on SUDEP
patients does not reveal the cause of death nor any evidence
related to pulmonary or cardiac pathology (75); however, SUDEP
and sudden cardiac death due to cardiac arrhythmia share
a few risk factors: age and sex (76). Furthermore, it has
also been shown through EEG/ECG combined studies that
patients with true epileptic seizures have a high prevalence (33–
44%) of cardiac arrhythmias (58, 77–81), including, at least,
LQTS, BrS, QT dispersion, sinus tachycardia, T-wave alternans,
bradyarrhythmia, or asystole, sometimes through common
genetic mutations (25–27, 82–88). Potential gene candidates
for SUDEP include FBN1, HCN1, SCN4A, EFHC1, CACNA1A,
SCN11A, and SCN10A (89). SCN10A is also a gene candidate for
BrS (70, 90, 91), and patients with this syndrome and variants in
this gene have been shown to have similar clinical presentations
to patients with variants in the gene SCN5A (43).

Episodes of cardiac arrhythmia in patients affected by
epilepsy may also be induced by antiepileptic drugs, such as
carbamazepine and lamotrigine, which are known to target
sodium voltage-gated channels (92–94). Carbamazepine, an anti-
epileptic drug used also to treat schizophrenia, induced the BrS
ECG pattern in a patient with schizophrenia (95). In a patient
with epilepsy and intellectual disability, the drug Lamotrigine
induced the BrS ECG pattern, possibly in conjunction with a
genetic predisposition for cardiac arrhythmia due to a variant
in the SCN9A gene, also possibly in association with a genetic
variant in the gene AKAP9 (96). The overlap between epilepsy
and cardiac arrhythmias demonstrated in several studies suggest
that patients with either of these conditions should be checked
for the other. Many of the variants thought to be responsible for
cardiac arrhythmias occur in genes that have a low expression
in the brain. However, their expression is nevertheless present,
and, as can be seen from the literature, very relevant. Thus, future
studies certainly should investigate these associations.

BRUGADA SYNDROME AND
CIRCULATING ELECTROLYTES, POISONS,
AND BLOOD

An elevated ST segment, which looks identical to the ECG
pattern used to diagnose BrS, has been described as a result of
potassium or calcium imbalances in the blood. Often, this type
of ECG pattern discovered as a result of electrolyte imbalances
is described as a BrS “phenocopy.” However, so much is not
known about the mechanism of BrS, and given the fact that BrS
has historically been defined more for what it is not than for
what it is, it may actually be premature to discount ST segment
elevations occurring in the presence of electrolyte imbalances
in the quest to unveil the mechanism of BrS (41). Several
studies have described hypokalemia (97–99), hyperkalemia (100–
104), or hypercalcemia (105–107) in association with the BrS
ECG pattern, or in association with an elevated ST segment
that appears identical to the BrS pattern. Diseases related to
these conditions, such as Gitelman syndrome, which results in
potassium depletion, usually attributed to the SLC12A3 gene,
can lend new candidate genes to the field of BrS (108). In

patients with severe hyperkalemia, the ST segment elevation,
even if described at the time as a “phenocopy,” was described
in association with malignant arrhythmias secondary to resting
potential depolarization, reduced sodium current availability,
and fibrosis at the right ventricular outflow tract (102), signs
which are now typically described also in association with “true
BrS,” whatever that is. Hypercalcaemia can be responsible for
the ST segment elevation, resembling the BrS ECG pattern,
and ventricular fibrillation, secondary to calcium-dependent
loss of sodium channel function (106). This mechanism too is
consistent with current theories about the possible mechanisms
of “true BrS.” Furthermore, hypercalcaemia is associated with
hyperthyroidism (109), which is additionally implicated in the
development of an ST segment elevation resembling the BrS
ECG pattern.

In addition to electrolyte imbalances, abnormalities of the
blood occurring even from blood transfusion can result in the BrS
ECG pattern. The type 1 BrS ECG pattern appeared after cardiac
iron overload after blood transfusion (110). Another patient
developed the BrS ECG pattern during febrile neutropenia after
undergoing high dose chemotherapy followed by autologous
peripheral blood cell transplantation (ABSCT) for acute myeloid
leukemia (111). These cases of apparent transmission of the
BrS could provide further insight into the mechanisms of the
development of the BrS ECG pattern.

Plasmic proteomic changes have been observed in patients
with BrS, including increased levels of apolipoprotein E,
prothrombin, vitronectin, complement-factor H, vitamin-D-
binding protein, voltage-dependent anion-selective channel
protein 3, and clusterin (37). Similarly, decreased protein
levels were observed for alpha-1-antitrypsin, fibrinogen, and
angiotensinogen, and post-translational modifications of
antithrombin-III were observed (37).

An elevated ST segment identical to the BrS ECG pattern
can also be elicited by environmental factors, which ultimately
act on the heart. It has been established that metals could
induce this pattern. Several studies reported the manifestation
of the BrS ECG pattern after the consumption of metal
phosphides, which are mainly found in rodenticide, insecticide,
and fumigant, and they are used as suicidal agents. These
substances, such as aluminum phosphide (ALP), zinc phosphide
(ZnP), calcium phosphide, and magnesium phosphide, are very
toxic because they release phosphine gas as soon as they
interact with hydrochloric acid in the stomach. The phosphine
gas is a non-competitive inhibitor of cytochrome c oxidase in
the mitochondria, and the mechanism of toxicity includes the
formation of highly reactive free hydroxyl radicals (112). It
can result in myocardial toxicity and cardia arrhythmia, which
eventually can lead to death (113). Moreover, the intoxication
from metal phosphides can result in several ECG abnormalities,
including ST segment elevation in leads V1-V3, like the BrS
ECG pattern. For example, three different cases of patients who
ingested rat poison containing aluminum phosphide manifested
significant abnormalities, including the ST segment elevation
in leads V1-V3 (114–116). Moreover, another case reported
a patient who intoxicated himself with rodenticide, which
contained ZnP. The ECG of the patient showed a type 1 BrS
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pattern, which then normalized after 24 h (117). Finally, a male
patient, after the ingestion of 7.5 g of Ratol paste, which is
another rodenticide, showed prolonged PR interval, prolonged
QRS duration, and the BrS ECG pattern (118). The manifestation
of the BrS ECG pattern was related to the yellow phosphorous
(YP), which is a protoplasmic poison contained in the paste, and
it can cause damage to the liver, kidney, pancreas, brain, and
heart (119). These reports about metal poisoning eliciting a BrS
ECG pattern are also consistent with the fact that metals, such
as zinc and copper, can act as endogenous regulators of sodium,
potassium, and calcium channels, including NaV1.5, the sodium
channel most implicated in BrS, through mechanisms that could
be important not only for the heart, but also for diseases such as
Alzheimer’s disease and epilepsy (120). Thus, metals could play
an important clue in understanding the various ways in which
the BrS ECG pattern can be developed.

Whether through genetics, electrolyte imbalance, blood
transfusion, poisoning, or other factors, the ECG pattern
exhibiting an elevated ST segment can be developed in a number
of different ways. However, regardless of the many initiating
factors, all these pathways ultimately converge into one: the BrS
ECG pattern, and wemust not lose sight of the fact that, whatever
we want to call it—“true BrS” or “phenocopy”—all of these
initiating factors have converged into the same life-threatening
arrhythmogenesis pathway, manifesting as the BrS ECG pattern,
and the patient is at increased risk of ventricular fibrillation
and SCD.

BRUGADA SYNDROME AND THYROID
DYSFUNCTION

Several studies have identified and described the relationship
between thyroid hormone imbalances and cardiovascular
diseases (121). It is known that thyroid hormone receptors
are expressed in many different cell types, including heart
(122), and, therefore, systemic vascular resistance, cardiac
contractility, blood pressure, myocardial oxygen consumption,
and heart rhythm can be disrupted by both hypothyroidism
and hyperthyroidism (123, 124). Indeed, both of these thyroid
dysfunctions can lead to cardiovascular disorders, including
atrial fibrillation and ventricular arrhythmia (121). These
correlations were also confirmed by cardiac electrophysiological
studies focused on the activity of multiple ion channel subunits,
transporters, and exchangers (121, 125). Moreover, a possible
overlap of hypothyroidism and BrS has been reported in
three case reports. All cases showed three men affected by
hypothyroidism with a BrS ECG pattern in leads V1-V3.
The BrS ECG pattern disappeared in all patients when the
thyroid function was normalized (126–128). Therefore, the
normalization of the ECG was considered directly related with
the restoration of thyroid hormone balance. Moreover, one of
the three patients with hypothyroidism was also affected by liver
dysfunction, which returned to normal after thyroid function
went back to normal (128). Only one of the patients underwent
genetic testing. This patient resulted positive for three common
variants in the SCN5A gene (127). Furthermore, a possible

overlap between hyperthyroidism and BrS has been reported. A
male patient suffered a cardiac arrest, and after his resuscitation,
his ECG showed a type 1 BrS pattern. The laboratory tests showed
also low K+ levels, low TSH levels, and high FT4 levels. However,
the BrS ECG pattern was only transient, it normalized after
carbimazole administration, and the patient resulted negative to
ajmaline and flecainide tests. Genetic testing was not performed
(129). Moreover, another patient with Graves’ hyperthyroidism
developed ventricular fibrillation, and she was implanted with an
ICD. An ECG that was performed after she was re-admitted for
fever and pleural effusion exhibited the type 2 BrS ECG pattern,
although the report is unclear whether she performed ECG at
the time of the actual fever. Genetic testing revealed a likely
pathogenicmutation in the SCN5A gene (130). Therefore, genetic
studies could be helpful to better understand the link between the
manifestation of the BrS ECG pattern and thyroid dysfunction.

BRUGADA SYNDROME AND CANCERS

The overexpression of voltage-gated sodium channels has been
shown to be associated with metastatic behavior in a variety
of human cancers, including breast cancer, prostate cancer,
lung cancer, colorectal cancer, cervical cancer, lymphoma, and
neuroblastoma (131, 132). Overexpression of the neonatal
isoform of the voltage-gated sodium channel, Nav1.5 (nNav1.5),
is associated with aggressive human breast cancer metastasis and
patient death (131, 133, 134). Nav1.5 overexpression increases
metastasis and invasiveness of breast cancer cells by altering
H+ efflux and promoting epithelial-to-mesenchymal transition
and the expression of cysteine cathepsin (132), possibly due to
reduced expression of salt-inducible kinase 1 (SIK1) (135). Both
neonatal and adult (aNav1.5) forms of Nav1.5 are expressed at the
messenger RNA level in colorectal cancer (136) and the SCN5A
gene encoding for the Nav1.5 channel protein is an important
regulator of the colon cancer invasion network, involving
genes that encompass Wnt signaling, cell migration, ectoderm
development, response to biotic stimulus, steroid metabolic
process, and cell cycle control (137). Therefore, in the field of
cancer, drug treatments that aim to block Nav1.5-dependent
inward currents are of interest. However, sodium channel
blockers used to treat patients with cancer may exacerbate
underlying predispositions for cardiac arrhythmias, as sodium
channel blockers, especially those targeting the Nav1.5 channel,
may provoke arrhythmias such as the BrS ECG pattern. In
fact, drugs studied for possible use in cancer therapy, such as
Ranolazine (138) or Tetrodotoxin (136), are known to act not
only on cancer cells, but on other cells in the body. Ranolazine
acts on cardiac sodium channels and sarcomeric proteins (139).
Recent studies have implicated cardiomyocyte sarcomeric
alterations as possible mechanisms of BrS (28). Tetrodotoxin,
believed to be one of the most selective inhibitors of voltage-
gated fast sodium channels, actually acts additionally on
other channels, including cardiac L-type calcium channels (140).
Calcium channels and their related proteins have been implicated
in a number of cardiac pathologies, including catecholaminergic
polymorphic ventricular tachycardia, congenital long QT
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syndrome, idiopathic ventricular fibrillation, hypertrophic
cardiomyopathy, arrhythmogenic cardiomyopathy, dilated
cardiomyopathy, heart failure, atrial fibrillation (141), and BrS
(28, 42). Thus, the possible development of cardiac arrhythmias
should be considered for any drugs used for cancer treatment.

BRUGADA SYNDROME, TESTOSTERONE,
AND PROSTATE CANCER

Although equally transmitted to both genders (142), BrS seems to
be more predominant in males (143), possibly due to hormonal
action, among other factors (42). Specifically, males with BrS
have been described to have higher testosterone, serum sodium,
potassium, and chloride levels compared to controls, after
adjusting for age, exercise, stress, smoking, and medication for
hypertension, diabetes, and hyperlipidemia (144). In the same
study, males with BrS had significantly lower body-mass index
and body fat percentage than controls (144). Thus, a link between
high levels of plasma testosterone, BrS, and prostate cancer
was suggested (145). Men with Brugada-like electrocardiogram
patterns have a higher risk of prostate cancer independent of
age, smoking habit, and radiation exposure, and thus, men
with either a Brugada-like ECG or prostate cancer should
be checked for the other (145). The BrS ECG pattern can
disappear after surgical castration for prostate cancer (146). The
hypothesis for hormonal involvement in the development of BrS
is further supported by cases in which BrS signs and symptoms
manifest only in adulthood in patients who tested ajmaline
negative in childhood (147). Moreover, healthy men are known
to have differences in the ECG, compared to healthy women,
for example, shorter and faster repolarization and a shorter
duration of QTc and JTc intervals (148), supporting the idea
that ventricular repolarization can be disrupted by androgens.
Furthermore, no sex-differences in repolarization are observed
in neonates or in children before puberty, probably due to low
levels of testosterone (149). Cases in which BrS is found in pre-
adolescent children, including also infants or when it is expected
to be the cause of spontaneous abortions, may be due to certain
genetic factors found in those families. For example, certain
SCN5A mutations are known to be so detrimental that they can
lead to sudden infant death (150), or they have been suspected
as the cause of spontaneous abortions (151). In these cases,
testosteronemay play less (if any) of a role. However, testosterone
is certainly one of the many factors that may contribute to
the development of the BrS ECG pattern in many patients.
Thus, future studies should investigate further the relationship
between testosterone levels and the development of both BrS and
prostate cancer.

MITOCHONDRIA AND BRUGADA
SYNDROME

Mitochondria influence cellular physiology in a variety of
ways (41), and are involved in many pathologies, including
epilepsy (152, 153), thyroid function (154), cancer (155–158),
diabetes (159, 160), and BrS (41), among others. Mitochondria

produce adenosine triphosphate (ATP), which is required for
protein phosphorylation, a process that is required for normal
protein function (161). Protein phosphorylation is a normal
regulatory process used by the cell to control the force-
frequency relationship (the heart beats harder and relaxes
faster to accommodate the need for higher heart rates) (162),
the length-dependent relationship (Frank-Starling relationship,
the heart beats harder when the muscle is stretched) (163),
and other necessary intracellular communications (164–168).
Proteins that are normally phosphorylated under certain
conditions include several of those known to be important
for arrhythmia development, including the sodium channel
Nav1.5 (encoded by the SCN5A gene; important for BrS) (41),
L-type calcium channels (encoded by the CACNA1C gene;
important for BrS) (28), ryanodine receptors [encoded by
the RYR2 gene; important for catecholaminergic polymorphic
ventricular tachycardia (169)], phospholamban [encoded by the
PLN gene; important for arrhythmogenic cardiomyopathy and
dilated cardiomyopathy (170)], cardiac myosin-binding protein-
C (encoded by the MYBPC3 gene; BrS candidate gene) (48),
tropomyosin (encoded by the TPM1 gene; BrS candidate gene)
(28), and other sarcomeric proteins that regulate cardiac function
(50, 163–166, 171), such as troponin I (encoded by the TNNI3
gene), myosin light chain-2 (encoded by the MLC2 gene),
and troponin T (encoded by the TNNT2 gene). Therefore,
mitochondrial dysfunction that results in ATP depletion would
alter the function of these proteins, possibly resulting in
cardiac arrhythmias (50, 172–174). Furthermore, mitochondria
are additionally responsible for the production of reactive
oxygen species (ROS), and a mutation in the GPD1-L protein,
encoded by an important BrS candidate gene (175), has been
shown to promote ROS production, which could be detrimental
to the sodium current (176). BrS has been associated with
mutations in mitochondrial transfer RNA (tRNA) genes (49)
and a specific mitochondrial DNA (mtDNA) allelic combination
and a high number of mtDNA single nucleotide polymorphisms
(SNPs) (177, 178). Thus, mitochondrial genes and function are
important for BrS. Mitochondrial products that can lead to
arrhythmias are shown in Figure 3.

BRUGADA SYNDROME AND DIABETES

Ion channel dysfunction has been associated with diabetes
mellitus (DM), leading to the development of a heart disorder
called diabetic cardiomyopathy (179, 180), characterized by
contractile dysfunction, abnormal cardiac electrical activity,
mitochondrial dysfunction, arrhythmia, and sudden cardiac
death (159, 160). Several patients affected by DM have been
reported to exhibit the BrS ECG pattern, whether it was
considered “true BrS” or a “BrS phenocopy” (104, 181–184),
although a difference between “true BrS” and “BrS phenocopy”
may not actually exist (41). A case report described a 16-year-
old boy affected by DM and a mutation in the GPD1L gene who
died suddenly during the night (185). The autopsy examination
excluded hypoglycemia as the cause of death due to a full stomach
and normal glucose levels in the vitreous humor. Indeed, the
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FIGURE 3 | Mitochondrial products that can lead to arrhythmias. ROS, reactive oxygen species; ATP, adenosine triphosphate; ADP, adenosine diphosphate.

GPD1L gene is important for BrS, and may have been the cause
of death (186). Variants in this gene have also been linked
to sudden infant death syndrome (SIDS) (187). Therefore, a
genetic link may exist between diabetes and BrS that could
result in a phenotypic overlap. However, diabetes can also be
caused by non-genetic factors, such as life style, food, persistent
organic pollutants, and the gut ecosystem (188), and diabetes can
cause fibrosis leading to diastolic heart failure with preserved
ejection fraction, which may deteriorate into the development
of arrhythmias and sudden death (189). Therefore, we cannot
rule out that disease overlap is always caused by genetic factors,
but instead the situation may be the evolution of one disease
eventually resulting in the other, or there may be no mechanistic
overlap at all in some patients (two different mutations, or
a mutation and an environmental influence). In any case, an
overlap exists between diabetes, cardiac arrhythmias, and sudden
death that will be the subject of future investigations.

BRUGADA SYNDROME, SKELETAL
MUSCLE SODIUM CHANNELOPATHIES,
AND LAMINOPATHIES

The SCN4A gene encodes for the voltage-gated sodium channel
NaV1.4, and its mutations are usually related to non-dystrophic
myotonia, periodic paralysis, and myasthenic syndrome (190).

This gene has also been implicated in overlap between BrS and
skeletal muscle sodium channelopathies (122). Indeed, several
patients with pathogenic mutations in the SCN4A gene and
cardiac electrophysiological abnormalities have been described
(191, 192). For example, a patient affected by non-dystrophic
myotonia with a mutation in the SCN4A gene resulted positive
to BrS with both flecainide and ajmaline challenges (192).
Additionally, in a different study, the authors investigated
whether BrS can be part of the clinical phenotype associated
with SCN4A variants, and whether patients with BrS present
with non-dystrophic myotonia or periodic paralysis and related
gene mutations. Three patients from families with an SCN4A-
associated non-dystrophic myotonia had also BrS. Also, the
authors found a high prevalence of myotonic features in
the families with BrS, involving other genes (191). NaV1.4
and NaV1.5 are both expressed in the skeletal muscle during
embryogenesis (193), and they have 65% sequence identity
(194). However, during the development, the relative NaV1.5
expression decreases, making NaV1.4 the most abundantly
expressed sodium channel in skeletal muscle (193, 195). Taken
together, patients with BrS or skeletal muscles channelopathies
should be evaluated for the other.

Lamin A and C are intermediate filament proteins of
the nuclear protein, and they are encoded by the LMNA
gene. Diseases associated with the LMNA gene include
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Hutchinson-Gilford Progeria Syndrome, Emery-Dreifuss
Muscular Dystrophy 2, Autosomal Dominant (29), and inherited
cardiomyopathies, such as arrhythmogenic cardiomyopathy
and dilated cardiomyopathy (125). A patient who experienced
a cardiac arrest and manifested a BrS ECG pattern resulted
positive for a variant in the LMNA gene, suggesting an overlap
between BrS and laminopathies (125). Thus, this gene could be
investigated in patients with BrS in future studies.

BRUGADA SYNDROME AND CARDIAC
DISORDERS OVERLAP

There have been several excellent studies regarding the overlap
between BrS and other cardiac pathologies, including early
repolarization syndrome (5), arrhythmogenic right ventricular
cardiomyopathy/dysplasia (ARVC/D) (6–9), progressive cardiac
conduction defect (Lenègre syndrome) (10, 11), LQTS (12–14),
Wolff-Parkinson-White (15, 16), hypertrophic cardiomyopathy
(17, 18), atrial flutter (19), and atrial fibrillation (20–23).
Therefore, whatever mechanisms that ultimately lead to the
development of the BrS ECG pattern may also be involved
in other pathways that result in other cardiac pathologies.
These mechanisms may include genetic variants, fibrosis, altered
calcium signaling, and anatomical substrate overlap.

BrS has been hypothesized to be like focal epicardial
arrhythmogenic cardiomyopathy, and the final common pathway
“reduced RVOT conduction reserve,” regardless of the genetics
or non-genetic factors that may have been responsible. In
that study, the patient’s intrinsic RVOT conduction reserve
was hypothesized to be age- and sex-dependent, with marginal
reserves able to be exposed by the use of certain drugs or altered
vagal tone (196).

Genetic Overlap
The genetics of BrS remain elusive, as the most commonly found
mutated gene, SCN5A, is only found to be mutated in a minority
of patients. However, this gene is widely studied, and is the only
one considered by some groups to have definitive evidence to
be involved in BrS, while the involvement of the other genes
is disputed (197). Since then, several other studies have been
published supporting the role of other genes, although research
is still underway to understand fully the genetic background
of patients with BrS (44). The discovery of genes involved
in BrS may be complicated by the possibility of BrS to be
transmitted as a polygenic or oligogenic disease, making the data
more complicated to interpret, and thus impeding the ability to
reclassify these variants (40).

There is already a lot of evidence for genetic overlap between
BrS and other cardiac pathologies. Overlap between BrS and
LQTS type 3 has been described (198), even sharing the
same mutation in the SCN5A gene as the likely molecular
cause (13, 199). In fact, variants in the SCN5A gene have
been described as causative for a number of other cardiac
pathologies, such as ARVC/D, atrial standstill, atrial fibrillation,
left ventricular non-compaction, dilated cardiomyopathy, LQTS,
sick sinus syndrome, idiopathic ventricular fibrillation, and heart

block (200, 201). In addition, several other genes associated
with BrS are also associated with other cardiac pathologies,
as previously reviewed elsewhere (202), such as PKP2, DSC2,
JUP, DSG2, and RYR2 in ARVC (108, 202), SCN1B and
CACNA1C in LQTS, CACNA1C, CACNA2D1, and CACNB2 in
short QT syndrome, and CACNA1C, CACNA2D1, CACNB2,
HCN4, and KCNJ8 in early repolarization syndrome (202).
Atrial fibrillation is associated with a number of genes that
have been suspected in BrS, including SCN5A, SCN1B, SCN2B,
SCN3B, SCN4B, SCN10A, ABCC9, HCN4, KCNQ1, KCNJ2,
KCNJ5, KCNJ8, KCNE1, KCNE2, KCNE3, KCNE5, KCNH2,
KCND3, RYR2, and CACNB2 (203). Therefore, genetics may
play more of a role in the overlap of these pathologies than
currently understood.

Disturbances of the connexome, the complex of structures
of the intercalated disc that connect cardiomyocytes, could be
involved in the mechanism of overlap between BrS and both
arrhythmogenic cardiomyopathy and ARVC (9, 41). In addition
to the overlap of several causative genes, the extracellular matrix
and fibrosis may play a role in the overlap of several of these
pathologies, as it is found to be present in BrS (204, 205),
early repolarization syndrome (5), ARVC/D (206), Lenègre
syndrome (207), LQTS (208–210), Wolff-Parkinson-White (211,
212), hypertrophic cardiomyopathy (213), atrial flutter and atrial
fibrillation (214, 215). Thus, disturbances of the connexome and
fibrosis can be important elements in the overlap of BrS with
other cardiac pathologies.

Arrhythmogenic Substrate and Anatomical
Overlap
There may be an effect of anatomical overlap between
BrS and other cardiac pathologies. For example, sarcomeric
alterations, which are known to cause hypertrophic or dilated
cardiomyopathy, are able to cause calcium mishandling that can
lead to sudden death (216, 217), and so, over time, overlap
may occur as the pathology progresses and affects other areas of
the cell.

An arrhythmogenic substrate (AS) is consistently identified
in all patients with BrS. This AS is commonly found in
the RVOT of the right ventricle (RV) epicardium. Ajmaline
administration reveals the full extent of the AS, which is useful
for radiofrequency ablation, which results in ECG normalization
and the patients are no longer inducible for VT/VF during
electrophysiological study (EPS) (4, 218). The size of the AS
has been independently associated with arrhythmia inducibility,
with a substrate area of greater than 4 cm2 predicting patient
inducibility to VT/VF during the EPS (219). The size of the AS
can be altered not only by ajmaline, but by also a number of
other factors, including genetics, temperature, anesthetics (220),
and other factors known to trigger syncopic episodes or the BrS
ECG sign. A larger AS is associated with reduced contractility and
mechanical dysfunction (51). Patients harboring SCN5A variants
exhibit more pronounced epicardial electrical abnormalities (60,
62), and the AS is comparable in patients with SCN10A variants
(43). The procedure of epicardial mapping together with ajmaline
challenge can be used to identify and ablate the AS in patients
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with other cardiomyopathies, thus preventing the recurrence of
VT/VF in those patients as well (48).

FUTURE DIRECTIONS

While BrS was described for decades as a simple monogenic
disease originating only as a channelopathy, more recent studies
have begun to recognize that actually BrS is an oligogenic disease
with altered metabolics (28, 40). BrS has traditionally been
described more for what it is not than for what it is, being
described as a particular ECG pattern in the absence of certain
criteria, but we believe that whenever the BrS ECG pattern
is present, the sign should be taken for what it really is: a
warning of increased risk of sudden death of the patient (41).
It does not matter how the sign arose—from a channelopathy, a
cardiomyopathy, an electrolyte imbalance, heavy meals, alcohol
intake, or even poisoning—the BrS mechanism is a particular
ECG warning of the increased risk of sudden death. Rather than
being thought of as a single disease, it should be thought of as the
final step in many pathways in many diseases or after exposure to
certain environmental situations, that ultimately manifests as the
BrS ECG pattern—a mechanism that can cause sudden death.

The BrS ECG sign does not always indicate solely cardiac
dysfunction, but, in fact, this ECG sign could be the result of a
larger systemic problem. Genetic mutations that are expressed
in multiple cell types may contribute to overlap pathologies. We
hypothesize that, with time,more overlap phenotypes will emerge
in a host of other cell types, especially since many of the genes
suspected to be involved in BrS are expressed throughout the
body. Thus, future studies may focus on the effects of these
genetic mutations in various cell and tissue types, identifying

other problems for which the patients must be treated, as well
as possible mechanisms for doing so. This could connect a
whole magnitude of other pathologies to BrS, lending further
evidence to the mechanism of BrS, arriving finally at better
therapeutic options.

Ideally, where available, whole genome sequencing should
be performed for the identification of new candidate genes.
The effects of these specific genetic mutations in specific
patients should then be assessed on a case-by-case basis to try
to understand the effects of these mutations on other tissue
types, in a move toward personalized medicine. Additionally,
a multi-omics approach would be appropriate to study this
syndrome, including not only genetics, but also epigenomics,
transcriptomics, proteomics, metabolomics, lipidomics, and
glycomics, resulting eventually in a biomarker for BrS and the
ability to diagnose this syndrome using a minimally invasive
blood test, avoiding the risk associated with ajmaline testing.
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Ajmaline is an anti-arrhythmic drug that is used to unmask the type-1 Brugada syndrome

(BrS) electrocardiogram pattern to diagnose the syndrome. Thus, the disease is defined

at its core as a particular response to this or other drugs. Ajmaline is usually described as

a sodium-channel blocker, and most research into the mechanism of BrS has centered

around this idea that the sodium channel is somehow impaired in BrS, and thus the

genetics research has placed much emphasis on sodium channel gene mutations,

especially the gene SCN5A, to the point that it has even been suggested that only the

SCN5A gene should be screened in BrS patients. However, pathogenic rare variants in

SCN5A are identified in only 20–30% of cases, and recent data indicates that SCN5A

variants are actually, in many cases, prognostic rather than diagnostic, resulting in a more

severe phenotype. Furthermore, the misconception by some that ajmaline only influences

the sodium current is flawed, in that ajmaline actually acts additionally on potassium and

calcium currents, as well as mitochondria and metabolic pathways. Clinical studies have

implicated several candidate genes in BrS, encoding not only for sodium, potassium, and

calcium channel proteins, but also for signaling-related, scaffolding-related, sarcomeric,

and mitochondrial proteins. Thus, these proteins, as well as any proteins that act upon

them, could prove absolutely relevant in the mechanism of BrS.

Keywords: Brugada syndrome (BrS), ajmaline, arrhythmias, sudden cardiac death (SCD), sodium channel,

potassium channel, calcium channel, mitochondria

INTRODUCTION

Ajmaline is used as a pharmacologic test to diagnose Brugada syndrome (BrS) and identify people
who are at higher risk of developing life-threatening arrhythmias and sudden cardiac death. Many
patients are ultimately implanted with an implantable cardioverter-defibrillator that can save their
lives. The BrS is an inherited disease characterized by a coved-type ST-segment elevation in the right
precordial leads (V1-V3) on the electrocardiogram (ECG). The true prevalence of BrS is unknown,
since many people are asymptomatic. In fact, the syndrome may not even be suspected until an
incidence of cardiac arrest. Certain “trigger situations,” such as fever, drug use, or consumption
of alcohol or large meals can elicit the BrS ECG pattern (1). Since the systematic introduction
of sodium-channel blockers to screen for the syndrome, the diagnosis, and thus the perceived
incidence, of BrS has increased (2).
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Sodium channel blockers, such as ajmaline, flecainide, or
procainamide can be used to provoke the type-1 BrS ECG
pattern, which is said to affirmatively diagnose the syndrome (3,
4). Thus, the disease is defined at its core as a particular response
to these drugs. Some clinicians prefer the use of ajmaline, which
appears to have a lower false negative rate, due to its higher
sensitivity (5, 6). This higher sensitivity of ajmaline, compared
to flecainide, may be due to flecainide’s greater inhibition of
Ito, which then renders it less effective (5). Whole-cell patch
clamp experiments demonstrated a reduced Ito total charge
with an IC50 of 216 and 15.2µM for ajmaline and flecainide,
respectively, while sodium channel current was affected similarly
by both drugs, as suggested by equivalent changes in QRS
and PQ intervals (5). However, reports have cautioned about
ajmaline’s false positive rate, stating that a positive ajmaline test
does not always mean that a patient has BrS (7–10). In fact,
ajmaline metabolism is very complex (11) for several reasons
relating to the liver metabolism, kidney metabolism, plasma
proteins binding, and variability in the expression of ajmaline-
metabolizing enzymes (12). Ajmaline undergoes some major
metabolic pathways: mono- and di-hydroxylation of the benzene
ring with subsequent O-methylation, reduction of the C-21,
oxidation of both C-17 and C-21-hydroxyl function and N-
oxidation (13). Consequently, one of the major genes controlling
ajmaline metabolism is CYP2D6, encoding for a cytochrome C
component. Thus, it is not surprising that patients harboring
variants or even polymorphisms in the CYP2D6 gene might
display a different capability to metabolize ajmaline (14). To
date, more than 70 allelic variants of the CYP2D6 gene have
been reported, and altered CYP2D6 function has been associated
with both adverse drug reactions and reduced drug efficacy (15).
This is the main reason why poor metabolizer alleles can be
important as a possible cause of false positivity during ajmaline
challenge test.

Ajmaline challenges must be conducted in specialized centers
due to the potential development of life-threatening ventricular
arrhythmias, such as polymorphic ventricular tachycardia (VT)
or ventricular fibrillation (VF) (16–18). Ajmaline infusion should
be done carefully, stopping as soon as the result is positive or
when QRS broadens to ≥130% of baseline or frequent pre-
mature ventricular complexes occur (17, 19, 20).

Ajmaline is usually described as a sodium-channel blocker
(3), and most research into the mechanism of BrS has centered
around this idea that the sodium channel is somehow impaired
in BrS (21, 22), and thus the genetics research has placed much
emphasis on sodium channel gene mutations, especially the
gene SCN5A, whereas systematic studies on other genes are

Abbreviations:AP, action potential; BrS, Brugada syndrome; Ca2+, calcium; ECG,
electrocardiogram; HEK, human embryonic kidney; HERG, human ether a-go-go
related gene; ICa−L, L-type calcium current; IK, delayed rectifier potassium current;
IK1, inwardly rectifying potassium current; IK(ATP), ATP-sensitive potassium
current; IK,end, the current measured at the end of 300ms depolarizing pulse;
IKur, ultrarapid outward potassium current; INa, sodium current; Ito, transient
outward potassium current; K+, potassium; KATP, ATP-sensitive potassium
channel; Na+, sodium; NCX, sodium-calcium exchanger; NPA, N-propyl ajmaline,
a quaternary derivative of ajmaline; PVCs, pre-mature ventricular complexes;
RV, right ventricle; Vas, ventricular arrhythmias; VF, ventricular fibrillation; VT,
ventricular tachycardia.

lacking (23). The research up until this point has focused so
much on the SCN5A gene that it has even been suggested that
only the SCN5A gene should be screened in BrS patients (23),
something that has been hotly debated (24–26), as many argue
that research is needed to understand the possible role of several
other genes in this disease (27–32). However, pathogenic rare
variants in SCN5A are identified in only 20–30% of ajmaline-
positive cases (33–36), and recent data indicates that mutations
in SCN5A are actually, in many cases, prognostic rather than
diagnostic, resulting in a more severe phenotype (26, 35, 37–
39). Furthermore, the misconception by some that ajmaline
only influences the sodium current, and thus sodium channels
should be the only channels of interest in BrS, is flawed, in that
ajmaline actually acts additionally on potassium and calcium
currents, as well as mitochondria and metabolic pathways. Thus,
potassium channels, calcium channels, mitochondrial proteins,
and metabolic pathway proteins, or factors that act upon these
proteins, could prove absolutely relevant, as their function is
directly influenced by the very drug that is used to diagnose the
disease in the first place.

MULTIPLE BINDING SITES OF AJMALINE
ON Na+, K+, AND Ca2+ CHANNELS

Ajmaline has multiple sites of action, including sodium,
potassium, and calcium channels. Plant alkaloids, including
ajmaline, act on at least six receptor sites on voltage-gated Na+

channels (40). In single intact amphibian skeletal muscle fibers,
it appeared that ajmaline has multiple sites of action, including
the positively charged S4 voltage-sensing segment of Na+ and K+

channels (40). However, ajmaline also blocks channels that do not
have a voltage sensor (e.g., KATP) (40).

In human embryonic kidney (HEK) cells, ajmaline has an
inhibitory effect on human ether a-go-go related gene (HERG)
potassium channels in the open, but not in the closed states, and
probably binds at aromatic residues Tyr-652 and Phe-656 in the
channel pore cavity (41). The inhibitory effect was stronger at
higher frequencies (41). Ajmaline is an open channel inhibitor
at therapeutic concentrations of cardiac potassium KV1.5 and
KV4.3 channels, responsible for cardiac IKur and Ito current,
respectively (42). Ajmaline potently blocks glibenclamide-
sensitive K+ channels in Xenopus oocytes in a concentration-
dependent manner (43). There is an effect of ajmaline on the
inhibition of K+ outflow from rat liver mitochondria (44). In
rat right ventricular myocytes, the decreased amplitude and time
integral of Ito by ajmaline is dependent on concentration, but not
frequency or use (45). In rat right ventricular myocytes, ajmaline
blocks the transient outward potassium current (Ito) when the
channel is in the open state and there is fast recovery from the
block at resting voltage (45).

Whole cell patch clamp technique used to determine the
effect of ajmaline on action potential (AP) and ionic current
components in rat right ventricular myocytes demonstrated an
inhibitory effect on sodium current (INa), L-type calcium current
(ICa−L), transient outward potassium current (Ito), the current
measured at the end of 300ms depolarizing pulse (IK,end), and
ATP-sensitive potassium current [IK(ATP)] (46). The inhibition
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of INa causes both the decreased rate of rise of depolarizing
phase and the lowered amplitude of AP (46). Additionally,
Ito inhibition was responsible for AP prolongation after
ajmaline administration (46). In isolated guinea pig ventricular
cardiomyocytes, ajmaline suppressed calcium currents (ICa) in
a dose-dependent manner without affecting the steady-state
inactivation kinetics and the voltage dependency of the current-
voltage relationship, inhibited inwardly rectifying potassium
current (IK1), and decreased the delayed rectifier potassium
current (IK) without altering the activation or deactivation time
courses (47). A study recording intracellular action potentials
and transmural ECG in canine RV wedge preparations suggested
that combined sodium and calcium channel block may be more
effective than sodium channel block alone in unmasking the
BrS pattern (48). The study used terfenadine to block both
sodium and calcium current, which resulted in the loss of the
epicardial AP dome, ST segment elevation, phase 2 reentry, and
spontaneous polymorphic VT/VF (48). This effect of terfenadine
was normalized with 4-aminopyridine, which inhibits Ito (48).
The drugs flecainide, ajmaline, and procainamide alone did not
generate polymorphic VT, but they did so together with the
calcium channel blocker verapamil (48).

N-propyl ajmaline (NPA) is the quaternary derivative of
ajmaline. The permanently charged NPA and protonated
ajmaline both actmainly with open channels, while unprotonated
ajmaline acts mainly on inactivated Na+ channels in frog
myelinated fibers (49). In frog myelinated fibers, sodium and
potassium currents are inhibited by ajmaline and NPA, for
sodium in both directions, but for potassium, only the outward
potassium current, not the inward potassium current (49). The
location of the binding sites have been suggested to be in the
inner mouths of Na+ and K+ channels (49). In voltage clamp
experiments using frog nodes of Ranvier, the binding site for
NPA has been described to be located in the inner mouth of the
Na+ channels, and it becomes available to the charged blocker
(NPA) only after opening of the activation gate (50). NPA in
enzymatically isolated cells of adult rats inhibits INa due to a
voltage-dependent interaction with openNa+ channels, andNPA
has similar blocking effects on Na+ channels in myocardial cells
and nerve fibers (51).

GENETICS OF CHANNELS IMPLICATED
BY FUNCTIONAL STUDIES

Functional studies have identified several molecular targets of
ajmaline. Many of these molecular targets are encoded for by
genes that have been associated with BrS in clinical studies.
Table 1 lists the known molecular targets of ajmaline and their
related genes. Figure 1 shows a schematic of ajmaline targets in
the cell, as demonstrated by functional studies.

A Unique Role for Calcium:
Excitation-Contraction Coupling in
Brugada Syndrome
Calcium signaling is responsible for connecting the electrical
signaling of the cell to the mechanical force of contraction and
relaxation of the sarcomeric proteins. Thus, calcium imbalances

in the cell could result in alterations to the force production. In
porcine epicardial shavings, excitation failure by current-to-load
mismatch was shown to cause ST segment elevation modulated
by Ito and ICaL (54). A study by Biamino et al. demonstrated a
relaxing effect of ajmaline on vascular smoothmuscle using aortic
helical strips, attributing the effect possibly to a reduction in Ca2+

and probably Na+ conductance (55). In BrS patients, ajmaline
administration results in a decrease of right ventricular ejection
fraction and minimum principal strain in the right ventricular
outflow tract and right ventricular anterior wall (56, 57). In
fact, it has been previously suggested that the electromechanical
coupling in BrS, including calcium handling and sarcomeric
alterations, should be investigated (28, 57). Reduced intracellular
calcium, which may result in a reduction of force production, has
been proposed as a possible mechanism in BrS (8, 28, 58, 59).
Additionally, administration of pharmaceuticals that act on outer
cell membrane receptors can result in signaling changes within
the cell (60, 61). It would be interesting to see in future studies
whether ajmaline affects intracellular processes, such as signaling
pathways that lead to post-translational modifications, affecting
various proteins, such as those located in the sarcoplasmic
reticulum or the myofilaments.

GENETICS OF CHANNELS IMPLICATED
BY CLINICAL STUDIES

The genetics of BrS remains a hotly debated subject. More than
20 genes are currently included in diagnostic genetic testing
panels, previously reviewed in detail elsewhere (32), although the
significance of variants in all but the SCN5A gene are disputed,
since most studies to-date have focused on understanding better
variants in the SCN5A gene, while studies on the other genes
are generally lacking (23). However, pathogenic rare variants in
SCN5A are identified in only 20–30% of ajmaline-positive cases
(33–36), and recent data indicates that mutations in SCN5A
are actually, in many cases, prognostic rather than diagnostic,
resulting in a more severe phenotype (26, 35, 37–39). Several
important studies of other genes are now available, and more
are needed to better understand the mechanism of ajmaline in
provoking the type-1 BrS ECG pattern.

Sodium channel-related genes other than SCN5A that have
been previously implicated in BrS, and they include SCN10A,
SCN1B, SCN2B, SCN3B, SCN4B, RANGRF (MOG1), andGPD1L.
Potassium-related genes previously associated in BrS include
KCND2, KCND3, KCNE1, KCNE2, KCNE3, KCNE5, KCNH2,
KCNJ2, KCNJ5, KCNJ8, KCNQ1, ABCC9, and HCN4, while
calcium-related genes previously described in BrS include
CACNA1C, CACNA2D1, CACNB2, RYR2, and TRPM4 (32, 62).
In addition, the gene PKP2 has been associated with BrS, and
studies have shown a relationship between PKP2 and both
sodium and potassium channels. For example, in a study by
Cerrone et al., loss of PKP2 caused decreased INa and NaV1.5
(63). Hong et al. demonstrated an interaction between PKP2 and
KATP channels in rat heart (64).

Sarcomeric properties have been directly linked to
arrythmogenic sudden death (61, 65), and variants in
myofilament genes, including TPM1 and MYBPC3, have
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TABLE 1 | Known molecular targets of ajmaline and potential genes that they implicate.

Protein or current described in functional studies targeted by

ajmaline

Examples of genes that these targets implicate (52)

Sodium channel current (INa) (40, 46) SCN5A, SCN10A, SCN1B, SCN2B, SCN3B, SCN4A

Potassium channel current (IK ) (46) KCNA4, KCNE4

ATP-sensitive potassium channel (KATP) (40, 46) ABCC8, ABCC9, KCNJ1, KCNJ5, KCNJ8, KCNJ11

human ether a-go-go related gene (HERG) potassium channels (41) hERG (KCNH2)

KV1.5 channels, responsible for cardiac IKur (42) KCNA5

K+ outflow from mitochondria (mitoKATP ) (44) Formed by 5 components (53):

• Mitochondrial ATP-binding cassette protein 1 (mABC1): ABCB8

• Phosphate carrier: MPCD, SLC34A1, SLC17A1, SLC17A7, SLC17A6, SLC25A26,

SLC25A3, SLC25A25, SLC37A4, SLC25A23

• Adenine nucleotide translocator: SLC25A4, SLC25A5, SLC25A6, SLC25A31, SLC25A6

• ATP synthase: ATP5PF, ATP5F1C, ATP5F1B, ATP5F1D, ATP5F1A, ATP5ME, MC5DN2,

ATP5PO, ATP5G1, ATP5G2

• Succinate Dehydrogenase: SDHC, SDHB, SDHA, SDHD, SDHAF2, SDHAF4,

SDHAF1 (2021)

KV4.3 channels and outward potassium current (Ito) (42, 45) KCND3

L-type calcium current (ICa−L ) (46) CACNA1C, CACNB2

inwardly rectifying potassium current (IK1) (47) KCNJ2, KCNJ5, KCNJ8

delayed rectifier potassium current (IK ) (47) KCNS3, KCNS1, KCNS2

FIGURE 1 | Molecular targets of ajmaline as suggested by functional studies indicated by red arrows.

been found in BrS patients (27, 66, 67). Several other genes,
encoding signaling and scaffolding proteins, including AKAP9,

ANK2, CASQ2, CAV3, CBL, DSC2, DSG2, DSP, FGF12, HEY2,
JUP, LMNA, LRRC10, NOS1AP, SEMA3A, SLMAP, SNTA1, and
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TMEM43, have been suggested as candidate genes (32, 62, 68).
The function of proteins that are affected by protein kinase A
or reactive oxygen species (ROS), such as the protein products
of many of the genes listed above, may be altered by changes
in mitochondrial function, which is responsible for ATP and
ROS production (26). In fact, studies have implicated a direct
role for mitochondria in BrS, specifically, severe cases have been
associated with a particular mitochondrial DNA (mtDNA) allelic
combination and a high number of mtDNA single nucleotide
polymorphisms (69, 70), and a role for mitochondrial transfer
RNA genes has been suggested (71). Thus, in addition to SCN5A,
various other genes have been suggested to have a role in
BrS, including other sodium channel-related genes, as well as
several potassium-related, calcium-related, signaling-related,
scaffolding-related, sarcomeric, and mitochondrial genes,
consistent with the identified molecular targets of the ajmaline
drug used to unmask and diagnosis the syndrome.

Although it is generally agreed that variants in the SCN5A
gene are involved in BrS, it is important to think of variants
even within this gene as individual variants with specific effects,
rather than thinking of all SCN5A variants collectively, as some
may be benign, while others pathogenic (26). Along these lines,
several studies have sought to understand the effect of specific
SCN5A variants (37, 72–80). It has been recently suggested that
variants in the SCN5A gene may actually be prognostic, rather
than diagnostic (35, 38, 39).

Studies to better understand the role of variants in each of
the above-mentioned genes will be an important area of future
research. A recent study by Di Mauro et al. demonstrated an
important role for CACNA1C (31), highlighting the importance
of functional studies of genes that may be involved in BrS, but
for which we currently lack the proof (81). Recent studies have
also focused on the roles of the genes SCN10A and HEY2 in BrS
(29, 82). However, much work remains to be done before we can
understand the role of each of the protein products of these genes,
as well as the role of the proteins that signal to them and alter
their function. Currently, the understanding of genetics in BrS
is in its infancy, and genetic testing alone should not be used
for diagnostic purposes, but rather, diagnosis of BrS should be
based upon an arrhythmological examination by a specialized
cardiologist (26). The presence of a variant in the SCN5A gene,
however, may be relevant for prognostic purposes (35, 38).

LIMITATIONS AND FUTURE STUDIES

Most of the studies to better understand the mechanism
of ajmaline have been performed in cellular models using

non-cardiomyocyte cell types or in animal models that are
sometimes not even mammalian. While these models give us
some insight, each model comes with its own set of advantages
and limitations (83). The functional studies performed to-
date indicate that ajmaline does not act solely on sodium
channels and suggests that clinical genetic testing could be
expanded for research purposes to include, for example,
genes that encode for potassium and calcium channels.
Thus, the mechanism of BrS could be researched from also
this clinical direction. Regarding future functional studies, it
would be interesting to quantify ajmaline signaling to, and
effects on, particular sodium, potassium, and calcium channels
and the resulting effect of sodium, potassium, and calcium
handling, to ultimately understand the mechanism behind the
altered ECG.

CONCLUSION

The misconception by some that ajmaline only influences the
sodium current, and thus sodium channels should be the
only channels of interest in BrS, is flawed, in that ajmaline
actually acts additionally on potassium and calcium currents, as
well as mitochondria and metabolic pathways. Clinical studies
have implicated several candidate genes in BrS, encoding not
only for sodium, potassium, and calcium channel proteins, but
also for signaling-related, scaffolding-related, sarcomeric, and
mitochondrial proteins. Thus, these proteins, as well as any
proteins that act upon them, could prove absolutely relevant in
the mechanism of BrS.
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Background: A 25-base pair (25bp) intronic deletion in the MYBPC3 gene enriched

in South Asians (SAs) is a risk allele for late-onset left ventricular (LV) dysfunction,

hypertrophy, and heart failure (HF) with several forms of cardiomyopathy. However, the

effect of this variant on exercise parameters has not been evaluated.

Methods: As a pilot study, 10 asymptomatic SA carriers of the MYBPC3125bp variant

(52.9 ± 2.14 years) and 10 age- and gender-matched non-carriers (NCs) (50.1 ± 2.7

years) were evaluated at baseline and under exercise stress conditions using bicycle

exercise echocardiography and continuous cardiac monitoring.

Results: Baseline echocardiography parameters were not different between the two

groups. However, in response to exercise stress, the carriers of 125bp had significantly

higher LV ejection fraction (%) (CI: 4.57± 1.93; p< 0.0001), LV outflow tract peak velocity

(m/s) (CI: 0.19 ± 0.07; p < 0.0001), and higher aortic valve (AV) peak velocity (m/s) (CI:

0.103 ± 0.08; p = 0.01) in comparison to NCs, and E/A ratio, a marker of diastolic

compliance, was significantly lower in 125bp carriers (CI: 0.107 ± 0.102; p = 0.038).

Interestingly, LV end-diastolic diameter (LVIDdia) was augmented in NCs in response to

stress, while it did not increase in 125bp carriers (CI: 0.239 ± 0.125; p = 0.0002).

Further, stress-induced right ventricular systolic excursion velocity s’ (m/s), as a marker

of right ventricle function, increased similarly in both groups, but tricuspid annular plane

systolic excursion increased more in carriers (slope: 0.008; p= 0.0001), suggesting right

ventricle functional differences between the two groups.

Conclusions: These data support that MYBPC3125bp is associated with LV

hypercontraction under stress conditions with evidence of diastolic impairment.

Keywords: MYBPC3, South Asians, hypertrophic cardiomyopathy, ventricular diastolic dysfunction, stress

echocardiography, 25bp deletion, DOSA study, myosin binding protein-C
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INTRODUCTION

Mutations in sarcomere genes are a common cause of
familial hypertrophic cardiomyopathy (HCM), a prevalent
cardiovascular genetic disorder that affects ∼1 in 200–500
asymptomatic young adults in the United States (1–11).
Mutations in MYBPC3, which encodes cardiac myosin-binding
protein-C (cMyBP-C), a thick-filament cardiac muscle protein
that regulates cardiac contractility (6, 7, 12–14), are associated
with∼40% of all HCMcases (9, 15), many of which present late in
life (16–22). HCM is characterized by asymmetric left ventricular
(LV) thickening, diastolic dysfunction, heart failure (HF), and
sudden cardiac death (SCD) (4, 23, 24). Affected individuals
can remain asymptomatic or present with symptoms, such as
dyspnea, angina, or palpitation (9), in early or late adulthood
(11, 22). Heterogeneity in the phenotypic expression of disease
from MYBPC3 genetic variation requires an understanding of
early features, optimal care, and longitudinal follow-up.

The prevalence of HCM may be affected by ancestry (4,
25), but the contribution of ancestry-based genetic variants
in the pathogenesis of the disease is not yet well-established.
Of the South Asian (SA)-specific variants, a polymorphic 25-
base pair (bp) deletion in intron 32 (125bp) of MYBPC3
is present in 4–6% (26–28) of SA individuals and a risk
allele for late-onset LV dysfunction, hypertrophy, and HF with
multiple forms of cardiomyopathy, such as HCM with an odds
ratio of ∼7 (26, 29) (Figures 1A,B). Data have shown that
asymptomatic MYBPC3125bp carriers are at risk of late-onset
disease progression (16, 22, 26). This variant was defined as
a risk allele based on a large case-control study from 6,273
individuals belonging to 107 ethnic populations across 35 Indian
states and 2,085 individuals of 63 ethnic/racial groups from 26
countries, including all five continents (26, 30). Nonetheless,
in recent studies, MYBPC3125bp was reported with incomplete
penetrance, and the presence of additional genetic or non-
genetic risk factors may predispose carriers to cardiomyopathies
(26, 27, 31). Our recent investigation has revealed no significant
difference in cardiac features between the carrier and non-
carrier (NC) cohorts at baseline (27). However, several individual
MYBPC3125bp carriers showed increased fractional shortening
at baseline, and this hyperdynamic state is often seen as
an early pathological finding in HCM (27). Harper et al.
identified an enriched haplotype in SAs with HCM with both
MYBPC3125bp and an associated variant, MYBPC3 c.1224-
52G>A (31). However, in Harper’s study, only 134 subjects
out of 5,394 HCM cases were defined as SAs, and only 17
carried the MYBPC3125bp variant. We also recently identified
a co-segregating novel variant, D389V (MYBPC3D389V). It was
observed in ∼10% ofMYBPC3125bp carriers and associated with
hyperdynamic cardiac features on baseline echocardiography
(27). These data have led to the hypothesis that the risk of
HCM is not caused by the MYBPC3125bp allele alone, but
rather conferred by additional rare, pathogenic variants present
on the MYBPC3125bp haplotype. This possible coinheritance of
additional risk alleles changes the interpretation of the role of
the MYBPC3125bp in the development of LV dysfunction and
HCM. It also means that the pathogenicity of the MYBPC3125bp

variant alone and in the presence of additional modifying risk
factors needs further investigation and correlation, considering
the growing number of SA carriers with the MYBPC3125bp

variant, predisposing them to severe adverse events, such as SCD,
even with the occult clinical phenotype (23).

MYBPC3 gene variants, such as the MYBPC3125bp, are
generally associated with late-disease onset (16, 22, 26). Herein,
we continued genetic screening of the United States (US)
SA general population for the presence of MYBPC3125bp and
additional rare risk alleles using next-generation sequencing
(NGS) technology. To determine the pathogenicity of the
MYBPC3125bp variant, we conducted an exploratory pilot
study and prospectively evaluated 10 asymptomatic male
carriers of the MYBPC3125bp variant and 10 age-matched
NCs for the changes in cardiac function under exercise stress
using submaximal bicycle stress exercise echocardiography
(BSE) and continuous cardiac monitoring. We hypothesized
that asymptomatic MYBPC3125bp SA carriers have detectable
subclinical risk factors under exercise stress conditions that
predispose this group to develop LV hypercontractility and
impaired relaxation. Our results suggest that MYBPC3125bp is
consistent with its role as a risk allele for LV dysfunction and
cardiomyopathy in SAs.

METHODS

Enrollment of Study Subjects: Prevalence
and Genotype-Phenotype
This research study was reviewed and approved by the
Institutional Review Board (IRB) of Loyola University Chicago
and University of Cincinnati and was conducted in accordance
with the Declaration of Helsinki. Subjects 18 years of age
and older from US SA descendants from 9 countries, namely,
India, Pakistan, Bangladesh, Sri Lanka, Nepal, Bhutan, Maldives,
Afghanistan, and Myanmar, participated in the prevalence
study (Loyola University Chicago IRB# LU207815 and 207359,
Chicago, Illinois and University of Cincinnati IRB# 2016-
7580, Cincinnati, OH, USA) and provided either blood or
saliva samples through sample collection outreach events for
detection of MYBPC3125bp variants. Additionally, carriers of
MYBPC3125bp variants and age- and gender-matched NCs were
recruited in the follow-up genotype-phenotype study (University
of Cincinnati IRB# 2016-4948, Cincinnati, OH, USA) to perform
ECG tracing and baseline transthoracic echocardiography (TTE)
and BSE.

Sample Collection and Genetic Screening
of the Human MYBPC3125bp Variant
After giving written consent, blood or saliva samples
of the US SA subjects were collected in community
outreach events and initially screened for the detection of
MYBPC3125bp variants. Blood samples (10ml) were collected
in ethylenediaminetetraacetic acid (EDTA) vacutainers (Catalog
No. 367862; BD Bioscience, Woburn, MA, USA), and saliva
samples (1–2ml) were collected in sterile screw-cap transport
5-ml tubes. Saliva samples were transported in ice and stored at
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FIGURE 1 | MYBPC3125bp genotyping and prevalence. (A) Schematic diagram of the MYBPC3 gene that includes the location of MYBPC3125bp variant in Intron 32.

Exon 33 is highlighted in blue as a potential skipped exon and altered splicing exon when the MYBPC3125bp variant is pathogenic. (B) cMyBP-C domains are drawn

with interacting partners, proline-alanine (Pro-Ala)-rich region, phosphorylation motif, and potential C10 domain that could be modified if exon 33 is altered (DC10). (C)

Agarose gel electrophoresis of PCR-based genotyping of the MYBPC3125bp variant. (D) MYBPC3125bp distribution of 3,432 South Asian participants. Among carriers

of the MYBPC3125bp variant, 6.61% of carriers (227, red color sector) were heterozygous (Het), and 0.14% of carriers (5, blue color sector) were homozygous (Homo).

NCs, non-carriers.

−20◦C. Blood and saliva samples were used for human genomic
DNA isolation using the QIAmp DNA Blood Mini Kit (Catalog
No. 51106; Qiagen, Germantown, MD, USA). The polymerase
chain reaction was used for genotyping of the MYBPC3125bp

(rs36212066) variant with the forward 5′-GTT TCC AGC CTT
GGG CAT AGT C-3′ and reverse 5′-GAG GAC AAC GGA
GCA AAG CCC-3′ primer sequences on 2.5% agarose gel (27).
After initial genotyping, we recruited carriers and NCs of the
MYBPC3125bp variant for the follow-up genotype-phenotype
study (27). After giving written consent, the recruited subjects
provided an additional 10-ml blood sample for genotype
confirmation and NGS analysis (27).

Clinical and Cardiac Function Evaluation at
Baseline and Under Exercise Stress
Carriers of the MYBPC3125bp variant and age- and gender-
matched NCs 18 years of age and older of US SA descendants
were invited to participate in the follow-up genotype-phenotype
study to undergo ECG and baseline TTE and BSE, as monitored
by a team cardiologist (Figure 2). Recruited subjects for the
follow-up study had no uncontrolled comorbidities and no
significant differences in the frequency of hypertension, diabetes
mellitus, dyslipidemia, and obesity between the two groups. The

subjects were instructed to abstain from alcoholic, caffeinated,
tobacco products, and drugs, such as β-blockers (if applicable),
for 24 h prior to stress testing. Echocardiographic images were
captured by two cardiac sonographers of similar level and length
of experience. Both subjects and observers, i.e., sonographers
and team cardiologists, were blinded to MYBPC3125bp genotype
results. Medical, medication, social, habit, and family history
information of all participants were collected using a comorbidity
questionnaire after giving written consent on the test day. Two
additional forms, a prerecruitment questionnaire (PRQ) and
a pre-procedural questionnaire (PPQ), were used for subjects
who were scheduled for BSE. Before scheduling subjects for
BSE testing, past medical and medication history was collected
using the PRQ. Completed PRQs were then reviewed by a team
cardiologist for any possible contraindications or medication
modification. On the test day, subjects’ compliance with BSE test
instructions was evaluated using the PPQ.

Cardiac electrical activity was recorded using a standard 12-
lead ECG with rhythm strips, and a Vivid E9 GE Healthcare
instrument was used for TTE and BSE imaging using the 2-
dimensional method in conjunction with color Doppler flow
examination. Exclusion criteria for performing BSE included (1)
acute myocardial infarction in the last 3 months; (2) ongoing
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FIGURE 2 | Flow chart depicting the recruitment process, employed questionnaires, and echocardiography and clinical data analyses for the genotype-phenotype

study. (A) Carriers of MYBPC3125bp variant and age- and gender-matched non-carriers 18 years of age and older of US SA ancestry were recruited. Then, past

medical and medication history was collected using a prerecruitment questionnaire, and, if no contraindication, subjects were scheduled to perform an exercise stress

test using a bicycle ergometer. (B) On the test day, informed consent was obtained; then, a comorbidity questionnaire was used to collect comprehensive medical,

medication, social, habit, and family history information from all participants. To look for other genetic modifiers via NGS testing, a 10-ml blood sample was collected.

Compliance with exercise stress test instructions was evaluated via a pre-procedure questionnaire. Cardiac function was evaluated by ECG and TTE at rest and by

bicycle ergometer during exercise stress testing for any detectable underlying risk factor. (C) While blinded, two observers independently measured echocardiography

variables. Statistical significance (p < 0.05) was calculated using two-way ANOVA and simple linear regression, and the results were reported as mean ± SEM. SA =

South Asian, NGS = next-generation sequencing. TTE, transthoracic echocardiography.

unstable angina; (3) known obstructive left main coronary
artery stenosis; (4) recent stroke or transient ischemic attack in
the last 3 months; (5) acute pulmonary embolism, pulmonary
infarction, or deep vein thrombosis in the last 3 months; (6)
moderate-to-severe aortic stenosis with velocity over 3 m/s; (7)
hypertrophic obstructive cardiomyopathy with severe resting
gradient of over 3 m/s; (8) uncontrolled cardiac arrhythmia
with hemodynamic compromise; (9) advanced heart block;
(10) decompensated HF; (11) active endocarditis; (12) acute
myocarditis or pericarditis; (13) physical disability that would
preclude safe and adequate testing; (14) pregnancy; (15) mental
impairment with limited ability to cooperate; (16) history of
severe hypertension (resting systolic blood pressures >200 or
diastolic blood pressures 110mm Hg) or uncontrolled diabetes
mellitus; and (17) uncorrected anemia, electrolyte imbalance or
hyperthyroidism. Subjects were provided with the instructions
for BSE preparation prior to the test that included (1) fasting for
4 h, (2) refraining from caffeinated and decaffeinated coffee and
tea, colas, soft drinks, and chocolate for 24 h, and (3) refraining
from smoking and other nicotine-containing products for 12 h.

Moreover, target heart rate (THR) was calculated for BSE as
220 – (0.85 × subject’s age). Then, the subjects began cycling
at a resistance of 15 Watts (W), increasing every 3min by
additional resistance of 15 W until the endpoint. Heart rate
(HR), blood pressure, and oxygen saturation were monitored
and documented at each minute of exercise. Endpoints of
the test were one of the following: (1) achievement of THR;
(2) significant angina; (3) significant shortness of breath; (4)
significant ischemic changes, such as ST-segment elevations in
ECG; (5) hypertension (>240mmHg systolic blood pressure/ 120

mmHg diastolic blood pressure); (6) hypotension >15 mmHg
decline in systolic blood pressure from baseline; (7) significant
arrhythmia/aortic valve (AV) block; (8) new or worsening wall-
motion abnormalities; (9) drop of oxygen saturation below 90%;
(10) intolerable symptoms; (11) upon subject’s request to stop; or
(12) development of dynamic LV outflow tract (LVOT) gradient
of >4.5 m/s.

Finally, two observers independently measured
echocardiography variables under the guidance of team
cardiologists. The measurements of one observer were used for
the analysis in this study, except LV ejection fraction (LVEF) for
which the average value measured by two observers was used.
The Biplane Simpson method was used to measure LVEF and LV
fractional shortening.

Next-Generation Sequencing
A panel of 174 genes related to cardiovascular diseases was DNA
sequenced to identify the presence of any genetic variants using
the TruSight Cardio Kit (Catalog No. FC-141-1011; Illumina,
San Diego, CA, USA) on an Illumina MiSeq with 150-base pair
paired-end reads, as described previously (27). Burrows-Wheeler
alignment (BWA) and Genome Analysis Toolkit haplotype
caller were applied as described in MegaSeq generate variant
call files (VCFs) (32). Variants were excluded if they met
any of the following criteria: biallelic balance >0.75; quality
score <30; depth of coverage >360; strand bias more than
−0.01, and mapping quality zero reads ≥10. Variant ranking
and prioritization: variants were annotated using SnpEFF.
HIGH and MODERATE variants were scored using Polyphen,
Genomic Evolutionary Rate Profiling, and Sorting Intolerant
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From Tolerant, to predict pathogenicity. All variants were
ranked by minor allele frequency (MAF) based on data from
public databases (ExAc). All variants were crosschecked against
ClinVAR. The American College of Medical Genetics guidelines
(ACMG) were used for determining pathogenicity (33). Sanger
sequencing was applied for validation using individual primers.

Statistical Analyses
The prevalence of genotype results was reported as a percentage.
Descriptive statistics were reported in frequency tables to
compare cardiac phenotype outcomes by genetic variants and
by demographics. The chi-square statistics and unpaired t-test
were used for categorical parameters and numerical variables at
baseline, respectively. Regression analysis was used to compare
differences in slopes between the groups, and a two-way
ANOVA was performed to estimate the effect of exercise stress
and genotype on cardiac phenotype continuous outcomes. All
analyses were reported as mean ± SEM at a significance level of
0.05, and 95% CIs and p-values were reported using GraphPad
Prism (version 8.4.3).

RESULTS

Increased Prevalence of MYBPC3125bp

Variant Among US SAs
We previously reported the frequency of MYBPC3125bp variant
carriers to be 6% among the US SA population (27). Cumulative
screening to date, which could be subject to ascertainment
bias, estimated a slightly higher prevalence of MYBPC3125bp

at 6.75%. Of 3,432 participants, 232 (6.75%) were carriers of
the MYBPC3125bp variant, i.e., 227 (6.61%) heterozygous and 5
(0.14%) homozygous (Figures 1C,D).

Absence of Second Genetic Variants by
NGS
To assess the presence of any additional pathogenic variants,
apart from the MYBPC3125bp variant, NGS was performed on
a 172 gene cardiovascular panel (TruSight Cardio Sequencing
Kit, Illumina), and no pathogenic, or likely pathogenic, variants
were identified in the present cohort (27). None of the 20
subjects included in the current study was found to carry the
previously reported, potentially pathogenic MYBPC3−52 allele
(c.1224-52G>A) (31) or the novel MYBPC3D389V variant (27).
We also did not identify any additional modifying loci in
MYBPC3 as no other rare variants were identified in the coding
region that occurred in more than one cohort subject. Lastly,
among the 172 genes of the TruSight Panel, we only identified one
pathogenic variant in one subject who carried an APOA4 variant
in one of the 10 variant carriers.

MYBPC3125bp Was Associated With
Hypercontraction Under Exercise
To test the hypothesis that asymptomatic MYBPC3125bp US SA
carriers have detectable subclinical risk factors under exercise
stress conditions, we conducted an exploratory pilot study to
evaluate asymptomatic MYBPC3125bp US SA carriers compared
to controls for subclinical cardiac changes under exercise stress

conditions (Figure 2). We prospectively studied 20 male subjects
of US SA ancestry, including 10 carriers of the MYBPC3125bp

variant (52.9 ± 2.14 years) and 10 age- and gender-matched
NCs (50.1 ± 2.7 years), for any changes in cardiac function at
baseline prior to exercise and under exercise stress using bicycle
exercise echocardiography and continuous cardiac monitoring
(Tables 1, 2). The two groups (MYBPC3125bp carriers and NCs)
showed no significant difference in body surface area, body
mass index, and baseline mean arterial pressure (MAP) and
HR, and no difference in the frequency of comorbidities, such
as hypertension, diabetes mellitus, and dyslipidemia (Table 1).
Similarly, monitored exercise MAP and HR were similar in
both groups (Table 2). All 20 subjects were able to complete at
least 15min of exercise at 75W equivalent to 4.9 METs, while
4 subjects completed 30min of exercise at 150W equivalent
to 8.5 METs.

While baseline echocardiography parameters were not
different between the two groups (MYBPC3125bp carriers and
NCs) (Table 1), significant differences came to light under
exercise stress condition in the following parameters: LV end-
diastolic diameter (LVIDdia), LVEF, LVOT and AV peak velocities
(pv), and the ratio of early to late ventricular filling velocity (E/A
ratio) (Table 2, Figures 3, 4). Stress-induced LVIDdia augmented
in NCs, while it did not increase in MYBPC3125bp carriers with
a significant difference between the two groups (CI: 0.239 ±

0.125; p= 0.0002), indicative of impaired relaxation and diastolic
impairment. Strikingly, the estimated effect of exercise stress and
genotype showed that MYBPC3125bp carriers had significantly
higher LVEF (%) (CI: 4.57 ± 1.93; p < 0.0001), higher LVOT pv
(m/s) (CI: 0.197 ± 0.069; p < 0.0001), and higher AV pv (m/s)
(CI: 0.103 ± 0.081; p = 0.01) in comparison to NCs. This was
consistent with the findings that stress-induced LVIDdia increase
was significantly muted in carriers during exercise, as compared
to NCs (CI: 0.239 ± 0.125; p = 0.0002). Further, E/A ratio,
a marker of ventricular diastolic compliance, was significantly
lower in carriers as compared to NCs (CI: 0.107 ± 0.102; p =

0.038) and the ratio of early transmitral peak velocity flow to
early diastolic mitral annulus velocity (E/e’ ratio), which showed a
non-significant difference between the groups (CI: 0.738± 0.795;
p = 0.068). Although stress-induced right ventricular systolic
excursion velocity (s’) was increased similarly in both groups,
tricuspid annular plane systolic excursion (cm) increased more
in carriers (slope: 0.008; p= 0.0001) from the baseline, consistent
with right ventricle functional differences. These findings are
indicative of LV hypercontractility among asymptomatic carriers
of the MYBPC3125bp variant under exercise stress conditions
and evidence of diastolic impaired relaxation at high workloads,
suggesting that MYBPC3125bp is an independent risk allele with
subclinical pathology prior to late-onset LV dysfunction (16, 22)
in the US SA population.

DISCUSSION

The present study evaluated the exercise response in
asymptomatic MYBPC3125bp SA carriers to determine the
presence of any subclinical features. Overall, our findings
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TABLE 1 | Demographics, baseline echocardiography parameters, and clinical characteristics of 20 South Asian subjects who participated in a bicycle exercise study.

Variable Total n NC n MYBPC3125bp n P-value

n (%), mean ± SEM n (%), mean ± SEM n (%), mean ± SEM

Male (%) 20(100) 20 10(100) 10 10(100) 10 -

Age (years) 51.50 ± 1.71 20 50.1 ± 2.70 10 52.90 ± 2.14 10 0.427

BMI (kg/m2 ) 26.15 ± 0.611 20 26.23 ± 0.58 10 26.06 ± 1.11 10 0.893

BSA (m2) 1.95 ± 0.037 20 1.98 ± 0.04 10 1.91 ± 0.06 10 0.301

MAP (mmHg) 101.1 ± 2.00 20 98.70 ± 2.78 10 103.5 ± 2.82 10 0.244

HR (bpm) 74.65 ± 1.96 20 76.90 ± 2.42 10 72.40 ± 3.03 10 0.262

Echocardiographic parameters

LVIDdia (cm) 4.06 ± 0.10 20 3.97 ± 0.15 10 4.16 ± 0.13 10 0.376

LVIDs (cm) 2.78 ± 0.08 20 2.69 ± 0.10 10 2.87 ± 0.14 10 0.331

LVEF (%) 53.65 ± 1.38 20 53.59 ± 1.81 10 53.70 ± 2.17 10 0.969

LVFS (%) 31.38 ± 0.99 20 31.55 ± 0.91 10 31.21 ± 1.82 10 0.867

IVS (cm) 0.94 ± 0.04 20 0.96 ± 0.07 10 0.93 ± 0.03 10 0.71

LVPW (cm) 0.88 ± 0.03 20 0.93 ± 0.03 10 0.83 ± 0.04 10 0.111

IVS/LVPW ratio 1.09 ± 0.05 20 1.04 ± 0.08 10 1.14 ± 0.05 10 0.351

LAV 4C Mod 31.75 ± 2.95 18 30.25 ± 4.69 8 32.95 ± 3.94 10 0.663

LVOT peak velocity (m/s) 0.79 ± 0.03 19 0.76 ± 0.05 9 0.82 ± 0.03 10 0.424

AV peak velocity (m/s) 0.98 ± 0.03 19 0.96 ± 0.06 9 1.01 ± 0.04 10 0.551

E/A ratio 1.15 ± 0.08 20 1.10 ± 0.13 10 1.20 ± 0.11 10 0.596

Average E/e’ ratio 7.18 ± 0.46 20 7.20 ± 0.49 10 7.16 ± 0.82 10 0.973

Average e’/a’ ratio 1.01 ± 0.08 20 0.90 ± 0.10 10 1.13 ± 0.13 10 0.204

RV s’ (m/s) 0.097 ± 0.003 20 0.094 ± 0.004 10 0.09 ± 0.004 10 0.458

LV s’ average (m/s) 0.07 ± 0.002 20 0.07 ± 0.003 10 0.07 ± 0.003 10 0.437

TAPSE (cm) 2.21 ± 0.12 19 2.40 ± 0.23 9 2.04 ± 0.10 10 0.166

Clinical characteristics

HTN (%) 5(25) 20 2(20) 10 3(30) 10 >0.999

DM (%) 5(25) 20 3(30) 10 2(20) 10 >0.999

DLP (%) 8(40) 20 4(40) 10 4(40) 10 >0.999

Statistical significance (p < 0.05) was calculated using unpaired t-test for numerical variables and Fisher’s exact test for categorical variables.

The results were reported as mean ± SEM. NCs, non-carriers; MYBPC312bp, A 25-base pair deletion in cardiac myosin-binding protein C3; SEM, standard error of mean; BMI, body

mass index; BSA, body surface area; MAP, mean arterial pressure; HR, heart rate; LVIDdia, left ventricular internal diameter in diastole; LVIDs, left ventricular internal diameter in systole;

LVEF, left ventricular ejection fracture; LVFS, left ventricular fractional shortening; IVS, interventricular septum; LVPW, left ventricular posterior wall; LAV 4C Mod, left atrial volume four-

chamber method of disc; LVOT, left ventricular outflow tract; AV, aortic valve; E/A ratio, ratio of early diastole transmitral peak velocity flow to late diastole peak velocity flow; E/e′ ratio,

ratio of early transmitral peak velocity flow to early diastolic mitral annulus velocity; e′/a′ ratio, ratio of early diastolic mitral annulus velocity to late diastolic mitral annulus velocity; RV,

right ventricle; s′, peak systolic annular velocity; LV, left ventricle; TAPSE, tricuspid annular plane systolic excursion; HTN, hypertension; DM, diabetes mellitus; DLP, dyslipidemia.

determined the presence of hyperdynamic manifestations
under exercise conditions in asymptomatic MYBPC3125bp

variant carriers of US SA ancestry as compared to NCs who
were presented with significantly higher EF, LVOT, and AV
peak velocities, and impaired relaxation presented with a
significant difference in the LVIDdia and E/A ratio, but the non-
significant difference in the average E/e’ ratio. Hyperdynamic
features and evidence of cardiac dysfunction were detected by
echocardiography in MYBPC3125bp carriers. These findings are
also in line with the phenotype of genotype-positive individuals
at stage 1 or those with non-hypertrophic HCM. These
individuals can remain asymptomatic or present with subtle
echocardiographic phenotype, such as diastolic dysfunction (34–
36). In stage 2, however, individuals present with hypertrophy
and LV hyperdynamic status (36), whereas MYBPC3125bp

variant carriers in the current study were non-hypertrophic, but
did show hyperdynamic phenotype under exercise conditions.

As shown in the regression lines, NCs and carriers responded
differently to the stress stage, the independent variable, as
resistance increased. Starting at 75W equiv. 4.9 METs, the
regression line showed no increase in EF% in NCs after 15min
of exercise. This finding can be explained by the Frank-Starling
law, which holds that an increase in workload and venous
returns stretches myocardial muscle fibers and increases preload
(end-diastolic volume), stroke volume, and, ultimately, cardiac
output until maximum capacity is reached. However, the weak
increase in LVIDdia from the baseline, as indicated in the
regression line for carriers (Figure 4A), could be a contributing
factor in maintaining an upward trend in EF% in carriers after
75w since lower LVIDdia can contribute to lower LV diastolic
volume (LVEDV) as resistance augments. However, further
studies with an adequate number of subjects are needed to
decisively explain this observed phenotypic feature. Collectively,
then, these data suggest that exercise stress itself, as a secondary
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TABLE 2 | Clinical and bicycle exercise echocardiography parameters of 20 South Asian subjects.

Stress stage (W) 0 15 30 45 60 75 90 105 120

Variables Mean ± SEM n Mean ± SEM n Mean ± SEM n Mean ± SEM n Mean ± SEM n Mean ± SEM n Mean ± SEM n Mean ± SEM n Mean ± SEM n P-value

MAP (mmHg) NC 98.70 ± 2.78 10 107.93 ± 2.37 10 110.1 ± 3.55 10 110.03 ± 3.73 10 109.2 ± 3.74 10 114.43 ± 2.94 10 114.75 ± 3.56 8 119.62 ± 4.96 8 117.33 ± 7.19 6 0.412

MYBPC3125bp 103.46 ± 2.82 10 109.92 ± 3.44 9 108.77 ± 2.74 9 112.53 ± 3.40 10 111.66 ± 4.34 10 112.76 ± 5.89 10 113.14 ± 6.31 9 123.44 ± 5.89 6 121.13 ± 4.57 5

HR (bpm) NC 76.90 ± 2.42 10 92.5 ± 1.8 10 98 ± 2.04 10 105.2 ± 2.4 10 112.5 ± 2.6 10 118 ± 2.02 10 125.75 ± 3.39 8 137.12 ± 4 8 146.83 ± 5.38 6 0.21

MYBPC3125bp 72.40 ± 3.03 10 91.2 ± 2.56 10 96.7 ± 2.92 10 103.5 ± 2.60 10 111.3 ± 3.34 10 119.5 ± 3.25 10 125.11 ± 3.63 9 132.83 ± 4.93 6 143.66 ± 4.69 6

LVIDdia (cm) NC 3.97 ± 0.15 10 4.4 ± 0.08 9 4.52 ± 0.11 9 4.56 ± 0.11 9 4.29 ± 0.12 9 4.59 ± 0.15 7 4.57 ± 0.1 6 4.59 ± 0.12 5 4.44 ± 0.13 4 0.0002

MYBPC3125bp 4.16 ± 0.13 10 4.14 ± 0.13 10 4.17 ± 0.09 10 4.15 ± 0.08 9 4.18 ± 0.12 9 4.34 ± 0.15 7 4.32 ± 0.07 7 4.31 ± 0.16 6 4.01 ± 0.21 4

LVIDs (cm) NC 2.69 ± 0.1 10 2.81 ± 0.07 9 2.77 ± 0.1 9 2.65 ± 0.09 9 2.47 ± 0.08 9 2.67 ± 0.05 7 2.53 ± 0.09 6 2.45 ± 0.09 5 2.36 ± 0.07 4 0.06

MYBPC3125bp 2.87 ± 0.14 10 2.68 ± 0.1 10 2.63 ± 0.07 10 2.48 ± 0.05 9 2.37 ± 0.1 9 2.54 ± 0.07 7 2.39 ± 0.07 7 2.39 ± 0.07 6 2.24 ± 0.12 4

LVEF (%) NC 53.59 ± 1.81 10 55.26 ± 1.60 10 58.14 ± 2.09 10 59.99 ± 2.17 10 61.53 ± 2.12 10 64.03 ± 2.27 10 62.86 ± 2.83 7 61.83 ± 3.05 7 61.37 ± 3.39 5 <0.0001

MYBPC3125bp 53.7 ± 2.17 10 58.26 ± 1.62 10 60.76 ± 1.69 10 63.07 ± 1.63 10 65.91 ± 1.71 10 67.65 ± 1.09 9 68.82 ± 1.48 8 70.19 ± 0.75 7 71.43 ± 0.58 4

LVFS (%) NC 31.55 ± 0.91 10 35.75 ± 0.95 9 38.79 ± 1.13 9 42.02 ± 1.03 9 42.19 ± 1.55 9 42.9 ± 1.81 7 44.62 ± 1.29 6 45.83 ± 2.33 5 46.39 ± 2.66 4 0.218

MYBPC3125bp 31.2 ± 1.82 10 35.98 ± 1.68 10 36.98 ± 1.41 10 40.15 ± 1.39 9 43.44 ± 2.14 9 41.24 ± 1.71 7 44.51 ± 1.9 7 43.72 ± 2.03 6 43.93 ± 1.53 4

LVOT peak

velocity (m/s)

NC 0.76 ± 0.05 9 0.94 ± 0.06 9 0.91 ± 0.04 9 0.97 ± 0.06 10 1.00 ± 0.07 10 1.06 ± 0.04 8 1.13 ± 0.03 6 1.18 ± 0.04 5 1.33 ± 0.11 4 <0.0001

MYBPC3125bp 0.82 ± 0.03 10 1.12 ± 0.06 10 1.08 ± 0.06 9 1.17 ± 0.06 10 1.34 ± 0.08 10 1.29 ± 0.07 10 1.36 ± 0.08 9 1.39 ± 0.07 7 1.49 ± 0.14 4

AV peak

velocity (m/s)

NC 0.96 ± 0.06 9 1.15 ± 0.06 9 1.09 ± 0.08 10 1.23 ± 0.09 9 1.30 ± 0.09 9 1.35 ± 0.07 8 1.43 ± 0.07 6 1.41 ± 0.13 4 1.61 ± 0.14 3 0.012

MYBPC3125bp 1.01 ± 0.04 10 1.2 ± 0.06 10 1.25 ± 0.08 8 1.31 ± 0.07 10 1.38 ± 0.07 10 1.45 ± 0.07 10 1.49 ± 0.08 8 1.6 ± 0.06 8 1.75 ± 0.07 4

E/A NC 1.10 ± 0.13 10 1.16 ± 0.06 10 1.15 ± 0.08 10 0.97 ± 0.06 9 1.10 ± 0.06 10 0.96 ± 0.09 9 1.05 ± 0.03 6 1.10 ± 0.04 6 1.15 ± 0.20 3 0.03

MYBPC3125bp 1.2 ± 0.11 10 0.9 ± 0.05 9 1.00 ± 0.09 9 1.01 ± 0.07 10 1.00 ± 0.1 9 0.96 ± 0.07 7 0.89 ± 0.09 5 0.77 ± 0.05 3 1.03 ± 0.27 2

E/e’ average NC 7.20 ± 0.49 10 7.01 ± 0.50 9 7.31 ± 0.56 10 6.86 ± 0.63 8 7.25 ± 0.31 10 7.84 ± 0.63 7 8.38 ± 0.72 5 7.52 ± 0.40 6 8.81 ± 0.53 2 0.068

MYBPC3125bp 7.16 ± 0.82 10 7.44 ± 0.98 9 6.27 ± 0.74 7 7.32 ± 0.80 9 7.58 ± 0.87 7 6.84 ± 0.92 6 6.19 ± 0.89 4 6.62 ± 0.47 3 6.11 ± 0.84 2

RV s’ (m/s) NC 0.095 ± 0.004 10 0.107 ± 0.007 10 0.109 ± 0.007 10 0.121 ± 0.006 8 0.130 ± 0.01 10 0.139 ± 0.009 9 0.16 ± 0.009 7 0.158 ± 0.01 7 0.172 ± 0.009 6 0.35

MYBPC3125bp 0.1 ± 0.005 10 0.12 ± 0.004 8 0.117 ± 0.005 8 0.131 ± 0.005 8 0.132 ± 0.008 8 0.139 ± 0.009 8 0.152 ± 0.009 6 0.157 ± 0.01 5 0.175 ± 0.014 3

LV s’ average

(m/s)

NC 0.07 ± 0.004 10 0.08 ± 0.003 10 0.08 ± 0.004 10 0.08 ± 0.003 9 0.09 ± 0.003 10 0.101 ± 0.004 9 0.101 ± 0.006 8 0.114 ± 0.009 5 0.118 ± 0.014 3 0.557

MYBPC3125bp 0.07 ± 0.003 10 0.08 ± 0.002 9 0.08 ± 0.003 9 0.09 ± 0.004 9 0.09 ± 0.003 8 0.103 ± 0.005 9 0.106 ± 0.005 7 0.107 ± 0.004 6 0.112 ± 0.006 4

TAPSE (cm) NC 2.40 ± 0.23 9 2.34 ± 0.19 9 2.31 ± 0.13 9 2.42 ± 0.14 9 2.47 ± 0.16 9 2.53 ± 0.22 7 2.63 ± 0.13 6 2.44 ± 0.15 5 2.53 ± 0.13 4 0.065

MYBPC3125bp 2.04 ± 0.1 10 2.27 ± 0.13 10 2.38 ± 0.16 9 2.55 ± 0.13 10 2.68 ± 0.21 9 2.81 ± 0.1 7 2.52 ± 0.18 3 2.81 ± 0.23 6 3.71 ± 0.00 1

Statistical significance (p < 0.05) was calculated using two-way ANOVA. The results were reported as mean ± SEM. NCs, non-carriers; MYBPC3125bp, A 25-base pair deletion in cardiac myosin binding protein C3; SEM, standard error

of mean; MAP, mean arterial pressure; HR, heart rate; LVIDdia, left ventricular internal diameter in diastole; LVIDs, left ventricular internal diameter in systole; LVEF, left ventricular ejection fracture; LVFS, left ventricular fractional shortening;

LVOT, left ventricular outflow tract; AV, aortic valve; E/A ratio, ratio of early diastole transmitral peak velocity flow to late diastole peak velocity flow; E/e′ ratio, ratio of early transmitral peak velocity flow to early diastolic mitral annulus

velocity; RV, right ventricle; s′, peak systolic annular velocity; LV, left ventricle; TAPSE, tricuspid annular plane systolic excursion.
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FIGURE 3 | Spectral Doppler data depict LVOT peak velocity. Representative apical five-chamber view at baseline, 45 (W), and 105 (W) in a NC (upper panel) subject

and a MYBPC3125bp variant carrier (lower panel). NC, non-carriers.

risk factor, potentially triggered hyperdynamic phenotype in
asymptomatic MYBPC3125bp carriers, as compared to NCs,
considering that the hemodynamic parameters of MAP and HR
did not differ between the two groups (MYBPC3125bp variant
carriers and NCs).

Previous studies have examined the distribution (26, 27, 37,
38) and clinical correlations (26, 27, 31, 39) of theMYBPC3125bp

variant, noting, importantly, that most of these studies were
conducted in individuals of SA ancestry. In the first report (2003),
the MYBPC3125bp variant was initially detected in two affected
Indian families. Then, it was reported in 16 of 229 unrelated
healthy SA individuals and present in 3.8% of the general
population, confirming variability in disease penetrance (29).
In the next case-control study with a multi-ethnic population
of 6,273 individuals in the SA Diaspora, the carrier frequency
of the MYBPC3125bp variant was reported to be 4% (26).
Simonson et al. (38) and Bashyam et al. (37) reported 8 and
6%, respectively, in their studies. In 2018, we determined 6%
prevalence in a sample taken from individuals of SA ancestry
living in the United States (27). However, MYBPC3125bp is
largely associated with incomplete penetrance and delayed onset
(26, 27, 29). In the current study, we identified a slightly higher
prevalence at 6.75%, but given the nature of our study, this
result may have been influenced by ascertainment. Collectively,
these data support that MYBPC3125bp is a common variant
and that its distribution is associated with ethnicity (4, 25).
Furthermore, our interpolation indicates that a prevalent SA-
specific MYBPC3125bp variant predisposes an estimated ∼100

million people of SA ancestry worldwide (26) to such adverse
cardiac events as cardiomyopathies, arrhythmias, HF, and SCD.

Previously, we reported no significant difference in clinical
characteristics, ECG, or echocardiographic parameters between
US SA carriers of the MYBPC3125bp variant and NCs at rest,
except for LV fractional shortening (27), which was slightly
higher in carriers as compared to NCs (p = 0.04), suggesting a
minimal effect of theMYBPC3125bp variant on the development
of HCM phenotype. Compared to the current study, prior
analyses included more individuals (n = 47 carriers) who were
younger (47.6 years) and, importantly, included both men and
women (27). Both sex inclusion and age may have reduced
the ability to detect a hyperdynamic state, which we discovered
upon exercise stress. Many affected individuals could also remain
asymptomatic until late adulthood (16, 22). Therefore, early
detection of any subtle clinical phenotype and/or secondary
contributing risk factors triggering symptoms in the carrier
population, as we have suggested in our findings, is potentially
relevant clinically. In the prior study, we also identified a second
co-segregating novel variant (D389V) identified in ∼10% of
MYBPC3125bp carriers associated with hyperdynamic cardiac
features on echocardiogram as a potential secondary modifying
factor for HCM (27). In this current investigation, however, no
MYBPC3125bp subjects with the D389V variant were included,
meaning that the findings herein cannot be attributed to
D398V. As previously noted, Harper et al. separately identified a
haplotype in SAs with HCMwith both theMYBPC3125bp variant
and a potentially pathogenic variant, MYBPC3 c.1224-52G>A
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FIGURE 4 | Prevalent South Asian-specific MYBPC3125bp variant is associated with hypercontraction and impaired relaxation under exercise stress (10 NCs vs. 10

MYBPC3125bp carriers). (A) A significant difference in LVIDdia is observed between carriers of the MYBPC3125bp variant and NCs (Two-way ANOVA, p = 0.0002; CI:

0.239 ± 0.125). In response to stress, LVIDdia increases significantly from baseline in NCs, whereas it does not significantly change in MYBPC3125bp carriers. (B) The

graph depicts a non-significant difference between MYBPC3125bp variant carriers and NCs in LVIDs in response to stress (Two-way ANOVA, p = 0.061; CI: 0.09 ±

0.09). In addition, carriers of the MYBPC3125bp variant show significantly higher (C) ejection fraction (CI: 4.57 ± 1.93) and (D) LVOT peak velocity (CI: 0.197 ± 0.069)

compared to NCs (Two-way ANOVA, p < 0.0001, both). (E) With exercise, the average E/A ratio shows a significant difference between MYBPC3125bp carriers and

NCs (Two-way ANOVA, p < 0.038; CI: 0.107 ± 0.102). (F) The graph depicts significantly higher aortic valve peak velocity in MYBPC3125bp variant carriers compared

to NCs (Two-way ANOVA, p < 0.012; CI: 0.103 ± 0.081). LVIDdia, left ventricular internal diameter in diastole; LVIDs, left ventricular internal diameter in systole; LVOT,

left ventricular outflow tract; NC, non-carriers.

(31). None of the members of our MYBPC3125bp cohort were,
in fact, found to carry the variant identified by Harper et
al. Altogether, we propose that MYBPC3125bp is still a valid
risk variant in the etiology of HCM and that it arises from a
secondary risk factor, namely, exercise stress, and manifests as
hypercontraction and impaired relaxation associated with late-
onset LV dysfunction.

Exercise stress echocardiography is a standard clinical
assessment and diagnostic armamentarium of HCM to assess

exercise-induced LVOT obstruction in patients with resting
LVOT gradient <50mm Hg (40). The only limitation is that
not all patients with HCM and controls are able to perform
stress exercises. Patients with HCM usually present with dynamic
LVOT gradient, arrhythmias, and mitral regurgitation. However,
for asymptomatic carriers with pathogenic sarcomere mutations,
the exercise stress test is potentially an advantageous method for
unmasking subclinical diseases, such as impairment in diastolic
function and dynamic outflow tract obstruction in the absence
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of a pathologically hypertrophied LV. The exercise stress test
results presented here seem to have to accurately detect early
changes in cardiac function, and the testing procedure was
shown to be safe for enhancing and visualizing mid-range
changes in cardiac function in variant carriers (41). Based on the
results, asymptomatic MYBPC3125bp carriers do have sublevel
phenotype during exercise, which is masked under baseline
conditions. These data further indicate that exercise testing may
assist in risk stratification for the presence of any cardiac events
as previously described (41–43).

Hypertension, diabetes mellitus, coronary artery disease,
and other comorbid conditions were known to confound the
phenotypic effects of cardiomyopathy and cardiac dysfunction.
Initial studies have shown that the MYBPC3125bp variant is
associated with HCM (29), but then it was also determined to be
associated with dilated and restrictive cardiomyopathies and HF
(26). Later, it was determined that MYBPC3125bp is significantly
associated with LV dysfunction secondary to coronary artery
disease (39, 44). After myocardial infarction, results from these
studies have suggested that patients with MYBPC3125bp show
poor cardiac remodeling and recovery from the damage. This
could be explained in several ways. First, cMyBP-C is sensitive
to proteolysis during myocardial infarction and could be a
potential earlier biomarker for heart attack (45–47). Thus,
patients with MYBPC3125bp may not have enough wild-type
cMyBP-C turnover, resulting in haploinsufficiency (48). The
failure to compensate for the loss of wild-type during myocardial
infarction finally results in poor cardiac remodeling. Second,
whenMYBPC3125bp carriers undergo myocardial infarction, it is
possible that initial damage hinders quick recovery by the poison
polypeptide effect (49). In the present study, we provided subjects
with a questionnaire asking for information pertaining to their
demographics, family history, medical history, and current and
past medications. Using this as our guide, we then excluded any
MYBPC3125bp carriers who were presented with such secondary
risk factors, thus eliminating them from participation in the stress
echo study. This means that the outcome of the stress echo was
based solely on the presence of MYBPC3125bp and its effects
on cardiac function. Collectively, results from the present study
suggest LV hypercontractility under exercise stress conditions
with evidence of diastolic stiffening and impairment among
male asymptomatic MYBPC3125bp carriers. As such, these
results also suggest the presence of some subclinical pathology
in MYBPC3125bp carriers under exercise stress conditions.
Based on the presence of HCM in transgenic mice expressing
MYBPC3125bp mRNA (49) and subclinical cardiomyopathy
phenotype in carriers (26), MYBPC3125bp can, therefore, be
considered a potential risk allele for abnormal diastolic function
and cardiomyopathy.

Complementary DNA sequencing of mRNA isolated from
the biopsy of an MYBPC3125bp-positive patient confirmed the
presence of exon 33 skipping in vivo (26, 29). Exon 33 skipping
results in the loss of 62 amino acids, resulting in a modified C10
domain of cMyBP-C (13). Exon 33 skipping also moves the stop
codon to the 3′ untranslated region (UTR), adding a novel 55
amino acids in this newly modified C10 domain at the carboxyl
terminus (cMyBP-C1C10) (49). However, if the C10 domain is

modified, or truncated, then cMyBP-C will not properly localize
in the sarcomere (50–52). The repercussions of this event can
involve pathogenicity with the onset of HCM.

In fact, we have previously demonstrated that the presence
of the MYBPC3125bp variant could lead to exon 33 skipping
during transcription (26, 29). We next determined that the
MYBPC3125bp variant in the presence of exon 33 skipping
is pathogenic, both in vitro (46) and in vivo (49). Using a
transgenic mouse model, we demonstrated that the expression
of cMyBP-C1C10 is sufficient to cause HCM. Based on this
observation, we propose that haploinsufficiency increases the
disordered relaxed state (DRX) and decreases the super relaxed
state (SRX) of myosin, leading to hypercontraction and HCM
(53, 54). However, the molecular mechanism underlying these
phenomena is yet to be validated in a humanized knock-in
MYBPC3125bp mouse model that shows normal cardiac function
under baseline conditions (55). Thus, future studies will involve
defining the pathogenicity of MYBPC3125bp in a humanized
knock-in mouse model in the presence of a comorbidity or
acute insult.

Study Limitation
This study is limited by its single-center nature, small cohort
size, and inclusion of only men. Although HCM has equal
distribution in both sexes (4, 56), women are more likely to
remain undiagnosed (4); therefore, including female carriers and
evaluating gender-specific manifestations under exercise stress
conditions are strongly recommended. However, among those
contacted for this study, male subjects were more willing to
perform TTE and/or BSE, accounting for the disparity. We
were also limited by the coronavirus disease-2019 (COVID-19),
which resulted in a delay in recruitment and the need to follow
health and safety protocols, such as wearing a mask during
stress exercise. While the present study is valuable for its novel
outcome, it is, by design, only a pilot study, so further, larger
studies are needed.
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We presented the current data at the American Heart
Association Scientific Sessions on November 12, 2020 (abstract
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Necroptosis contribute to the pathogenesis of myocardial ischemia/reperfusion (MI/R)
injury. Ginsenoside Rg2 has been reported to have cardioprotective effects against
MI/R injury; however, the underlying mechanism remains unclear. This work aimed to
investigate the effect of ginsenoside Rg2 on necroptosis induced by MI/R and to explore
the mechanism. In this study, hypoxia/reoxygenation (H/R) injury model was established
in H9c2 cells. In vivo, male C57/BL6 mice were subjected to myocardial ischemia
30 min/reperfusion 4 h. Rg2 (50 mg/kg) or vehicle was intravenously infused 5 min
before reperfusion. Cardiac function and the signaling pathway involved in necroptosis
were investigated. Compared with H/R group, Rg2 significantly inhibited H/R-induced
cardiomyocyte death. Rg2 treatment effectively inhibited the phosphorylation of RIP1,
RIP3, and MLKL in H/R cardiomyocytes, and inhibited RIP1/RIP3 complex (necrosome)
formation. In mice, Rg2 treatment manifested significantly lower ischemia/reperfusion
(I/R)-induced myocardial necroptosis, as evidenced by decrease in phosphorylation
of RIP1, RIP3, and MLKL, inhibited lactate dehydrogenase (LDH) release and Evans
blue dye (EBD) penetration. Mechanically, an increased level of tumor necrosis factor
α (TNFα), interleukin (IL)-1β, IL-6, and MCP-1 were found in MI/R hearts, and Rg2
treatment significantly inhibit the expression of these factors. We found that TNFα-
induced phosphorylation of RIP1, RIP3, and MLKL was negatively correlated with
transforming growth factor-activated kinase 1 (TAK1) phosphorylation, and inhibition
of TAK1 phosphorylation led to necroptosis enhancement. More importantly, Rg2
treatment significantly increased TAK1 phosphorylation, enhanced TAK1 binding to
RIP1 while inhibiting RIP1/RIP3 complex, ultimately reducing MI/R-induced necroptosis.
These findings highlight a new mechanism of Rg2-induced cardioprotection: reducing
the formation of RIP1/RIP3 necrosome by regulating TAK1 phosphorylation to block
necroptosis induced by MI/R.
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INTRODUCTION

As terminally differentiated cells, cardiomyocytes have highly
limited ability to regenerate. Excessive death of cardiomyocytes
induced by injury stress and their pathological effects leads
to a variety of cardiovascular diseases, such as myocardial
infarction (MI), malignant arrhythmia, heart failure (HF), and
sudden cardiac death (1). Ischemic heart disease (IHD) is
the leading cause of death and disability worldwide (2). The
best way to prevent myocardial ischemic injury is to restore
myocardial blood flow, i.e., reperfusion. However, reperfusion
elicits further damage to the heart, which is called myocardial
ischemia/reperfusion (MI/R) injury. Therefore, elucidating the
mechanism of cardiomyocyte death and determining the
intervention measures are of great significance for the prevention
and treatment of IHD.

In the past, most of the studies on cardiomyocyte death
focused on apoptosis, which is usually considered as programmed
cell death. Necrosis is initial considered to be an unregulated
process. In 1988, studies pointed out that tumor necrosis
factor α (TNFα) can trigger a kind of cell death with necrotic
morphological features (3). With the discovery of necroptosis
by Degterev et al. (4), death receptor stimulation under
the condition of apoptosis defect (i.e., caspase inhibition)
can still trigger cell death with morphological features of
necrosis in some cell types, which supported the existence of
programmed cell death and provided a new mechanism for
the intervention of cell death. Necroptosis, a regulated form
of necrosis, is mediated by death receptors such as tumor
necrosis factor receptor 1(TNFR1), and is executed through
the induction of the RIP1–RIP3 necroptotic complex (5). As a
death receptor-mediated caspase-independent cell death model,
necroptosis has further completed cell death mechanism theory.
Meanwhile, necroptosis inhibitors showed significant preventive
and therapeutic effects in a variety of stress injury models,
indicating that blocking necroptosis may become a new strategy
for the prevention and treatment of stress-related injuries.
Necroptosis plays an important role in IHD. It has been reported
that RIP3 knockout or the use of Necrostatin-1 (RIP1 inhibitor)
can significantly improve MI/R injury, which confirmed that
inhibition of necroptosis is an effective cardioprotection against
MI/R injury (6, 7).

Ginsenosides are the main components of ginseng, which
exert a variety of pharmacological effects, such as vasodilation,
anti-tumor, anti-diabetes, anti-inflammation, anti-oxidation, and
so on. Ginsenoside Rg2 is one of the compounds in the
protopanaxatriol group (8). Studies have shown that Rg2 can
significantly improve myocardial ischemia injury and reduce
MI area by increasing myocardial oxygen utilization, enhancing
superoxide dismutase (SOD), scavenging free radicals, and so
on. Rg2 can increase the mRNA expression of endothelial
nitric oxide synthase gene (eNOS), which is also studied in
ginsenoside Rb1 and Re (9) protect cardiomyocytes, reduce
the content of malondialdehyde (MDA), the metabolite of
lipid peroxidation, and reduce MI (10). Previous studies have
reported that ginsenoside Rg2 has a protective effect on
hydrogen peroxide-induced cardiomyocyte injury and apoptosis

in rats (11, 12). Rg2 with a variety of biological activities
and pharmacological effects, has the potential value for the
treatment of cardiovascular diseases. However, whether Rg2 can
inhibit myocardial necroptosis during MI/R and the underlying
mechanism remains unknown.

Transforming growth factor-activated kinase 1 (TAK1, also
known as map3k7), as a node regulator of apoptosis and
necrosis, plays an important role in regulating the formation of
RIP1–FADD–Caspase8 and RIP1–RIP3 necrotic complex (13).
Studies have shown that TAK1 phosphorylation is essential to
the interaction of RIP1 and TAK1. At the same time, TAK1
phosphorylation can also block the formation of RIP1–FADD–
Caspase8 cell death complex induced by TNF receptor (14).
There is a potential regulatory relationship between TAK1 and
RIP1, and RIP3 is involved in the necroptosis-related pathway.
The relationship between Rg2, TAK1, and necroptosis in MI/R
settings has never been determined in vivo.

Here, we demonstrated that Rg2 treatment promotes the
phosphorylation of TAK1 and enhances its binding to RIP1,
thereby inhibiting the RIP1/RIP3 complex formation, and
ultimately preventing MI/R-induced necroptosis.

MATERIALS AND METHODS

Animals
All animal experiments were approved by the Animal Ethical
Experimentation Committee of the Fourth Military Medical
University. Male C57BL/6 mice at age of 12 weeks weighting
22–25 g were used. All animals were breed with regular pellet
diets ad libitum in conventional facility on conditions of 12:12-h
light/dark cycle.

Materials
Evans blue was purchased from Sigma-Aldrich (St. Louis,
MO, United States). The antibody against RIP1 (3493), RIP3
(95702), MLKL (37705), phosphor-MLKL (91689), phosphor-
RIP1 (31122), phosphor-TAK1 (9339S), TAK1 (5206S), and β-
tubulin (15115) were obtained from Cell Signaling Technology
(Beverly, MA, United States), phosphor-RIP3 (AF7443) were
obtained from Affinity. TNF-α was purchased from Novoprotein
and caveolin 3 (CaV3) (ab2912) was obtained from Abcam
(Cambridge, MA, United States). The level of serum lactate
dehydrogenase (LDH) was detected by the kit purchased
from Genesource.

Cells Culture and Treatment
The H9c2 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) with 10% fetal bovine serum and 1%
Penicillin–Streptomycin Solution. To establish the hypoxia-
reoxygenation cell model in vitro, the cells were added DMEM
without sugar and serum upon reaching 70–80% confluence, and
then were placed in an anoxic box, and replaced the air in the
anoxic chamber with 95% N2, 5% CO2 mixed gas until the oxygen
concentration was less than 1%, and cultured in the incubator
at 37◦C for 9 h (15). After the hypoxia, time was reached; the
cells were replaced with high glucose DMEM medium (complete
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medium) and treated with Rg2. Finally, the cells were cultured
and incubate at 37◦C 5% CO2, respectively, for 2 h.

Cell Counting Kit-8 Assay
Cell viability was detected using a Cell Counting Kit-8 (CCK8)
assay. H9c2 cells were cultured in 96-well plates at about
2 × 104/well. After incubating in 5% CO2 incubator at 37◦C
for 1 h, CCK8 assay solution (10 µl) contained water-soluble
tetrazolium salt (WST8) was then added to each well and the
cells were incubated for 1 h. The optical density of each well was
measured using a microplate reader at 450 nm.

Detection of Lactate Dehydrogenase
Lactate dehydrogenase determination kit (rate method)
produced by Shanghai Kean Science and Technology Company
uses continuous monitoring method to determine the activity
of LDH, liquid A and liquid B are mixed into working reagent
according to the ratio of 1:5. In vitro, the supernatant culture
medium 40 µl after H/R added with 200 µl working reagent
was ready to detect relative LDH release. In vivo, blood samples
were collected from control and MI/R (30 min ischemia/4 h
reperfusion) mice subjected to vehicle or Rg2 and centrifuged for
10 min at 3,000 r.p.m. to obtain serum. The serum 2 µl plus 38 µl
double distilled water and then the working reagent of 200 µl
was added to detect.

Establishment of Myocardial
Ischemia/Reperfusion Model in Mice
The procedure of MI/R injury model was built as previously
described (15). In short, animals were anesthetized with
pentobarbital (65 mg/kg, i.p.). After tracheostomy, ventilation
was sustained on the Harvard rodent respirator. A left thoracic
incision was performed, and the left anterior descending
coronary artery was blocked by placing a 7-0 silk suture slipknot.
The slipknot was released after 30 min. Reperfusion was sustained
for 4 h in acute ischemia/reperfusion (I/R) injury (for western
blot analysis, immunohistochemistry). Electrocardiogram was
connected to monitor ST-segment changes during ischemia
period. Rg2 (50 mg/kg) or vehicle was administered to mice
randomly via caudal tail injection 5 min before reperfusion (16),
then obtained the heart and picked up the white infarct zone for
western blotting.

Myocardial Necroptosis Measurement
Mice were injected intraperitoneally Evans blue dye (EBD)
dissolved in saline (10 mg/ml) 12 h before MI/R operation.
The heart was excised to separate the ventricular myocardium,
then embedded it in optimal cutting temperature (OCT)
compound, and immediately froze it in liquid nitrogen, finally
cut into 5 µm cryosections. The Cav-3 antibody was performed
to label viable cardiomyocytes while EBD-labeled necroptosis
as previously described (15). The image was pictured by a
fluorescence microscope.

Immunohistochemistry Analysis of TNFα
The heart was obtained in control, MI/R (30 min ischemia/2 h
reperfusion) group and MI/R + Rg2 group, fixed in 4%

paraformaldehyde for 24 h and embedded in paraffin. The tissue
was cut into 5 µm slices, and incubated with TNF-α antibody
overnight at 4◦C, then the second antibody was incubated at 37◦C
for 1 h, finally observed under microscope.

Echocardiographic Measurement and
Infarct Size
Ejection fraction (EF) and fractional shortening (FS) were
measured as previously described (15). To evaluate the extent
of myocardial necrosis hearts were excised and stained 3 days
after MI/R induction. Hearts were sectioned into 1-mm slices
and imaged using a Leica microscope. Viable cardiac tissue in
the ischemic area was red-stained with 2,3,5-triphenyltetrazolium
(TTC) and myocardium in non-ischemic area was blue-stained
with the Evan’s blue, and infarcted tissues were white or light
yellow. The infarct size was calculated as infarct area divided by
area at risk (IF/AAR) (17).

Enzyme-Linked Immunosorbent Assay
Serum levels of TNFα were measured in control and MI/R
(30 min ischemia/2 h reperfusion) mice subjected to vehicle or
Rg2 according to instructions (Beyotime.PT512).

Western Blot
Total protein was extracted quantitatively, and separated by 10%
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) (30 g/lane), then transferred to PVDF membrane. The
membranes were blocked with 5% slim milk with TBST and
incubated with the primary antibody at 4◦C overnight, then
washed with TBST and incubated with second antibody for 1 h
at room temperature. β-tubulin was used as the loading control.

Statistical Analysis
Quantitative data were analyzed by Prism 8.0, and were expressed
as mean ± SEM. double-tailed unpaired Student’s t-test and
one-way ANOVA with Turkey’s test correction were applied to
analyze significance between two groups, statistical significance
was considered at p < 0.05.

RESULTS

Rg2 Inhibits
Hypoxia/Reoxygenation-Induced
Cardiomyocytes Death
By observing the effect of Rg2 concentration on cell survival rate
by CCK8 assay, the results showed that Rg2 at a concentration
of 1–10 µM has no effect on survival rate of H9c2, although
an excessively high concentration of Rg2 (20–100 µM) will
inhibit cell survival (Figure 1A). Next, to determine cell viability
after H/R treatment, after hypoxia for 9 h, H9c2 cell viability
was determined after various exposure times to reoxygenation
time (1, 2, 3, 4, 5, and 6 h). The results showed that the cell
survival rate decreased significantly at 3 h of reoxygenation
(50.6 ± 2.5%) (Figure 1B). Therefore, a direct effect of Rg2 on
H/R cardiomyocytes was assessed. H9c2 cardiomyocytes were
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FIGURE 1 | The Rg2 inhibits hypoxia/reoxygenation (H/R)-induced cardiomyocytes death. (A) The effect of gradient concentration of Rg2 (1, 5, 10, 20, 50, and
100 µM) on the viability of cardiomyocytes was detected by cell counting kit-8 (CCK8). (B) The effect of 1, 2, 3, 4, 5, and 6 h reoxygenation time after hypoxia 9 h on
the viability of H9C2 cells was detected by CCK8. (C) Cell injury as assessed by LDH release after H/R (hypoxia 9 h and reoxygenation 3 h) with Rg2 treatment (1
and 10 µM). The values are the means ± SEM, n = 6 per group, ∗p < 0.05 vs. the control group.

treated with 1 and 10 µM Rg2 under hypoxia 9 h followed
by reoxygenation 3 h. The results revealed that H/R treatment
significantly increased H9c2 cell death evidenced by LDH release,
while Rg2 administration significantly inhibited H/R-induced
cardiomyocytes death in a dose-dependent manner (Figure 1C).
In subsequent H/R experiments, hypoxia 9 h followed by
reoxygenation 3 h is used. The results showed that Rg2 inhibits
H/R-induced cardiomyocytes death.

Rg2 Inhibits
Hypoxia/Reoxygenation-Induced
Cardiomyocytes Necroptosis
To determine whether there is a relationship between Rg2
and H/R-induced necroptosis in cardiomyocytes, RIP1, RIP3,
and MLKL phosphorylation was determined. Compared with
the control group, H/R significantly increased the RIP1, RIP3,
and MLKL phosphorylation (Figures 2A–D) combined with
increased LDH release (Figure 2E), suggesting activation of
necroptotic pathway. Treatment with 10 µM Rg2 effectively
inhibited H/R-induced necroptosis, as evidenced by reduced
RIP1, RIP3, and MLKL phosphorylation and LDH release. Co-
immunoprecipitation assays revealed that H/R-induced cardiac
RIP1–RIP3 interaction was suppressed by Rg2 treatment
(Figure 2F), which was similar to the effect of Nec-1 (a
pharmacological inhibitor of RIP1 that blocks the RIP1–RIP3
interaction and inhibits necroptosis (18)). The above results
confirmed that ginsenoside Rg2 can effectively inhibit H/R-
induced cardiomyocytes necroptosis.

Rg2 Attenuates Myocardial
Ischemia/Reperfusion-Induced
Necroptosis
To further explore the effect of Rg2 on MI/R injury in vivo,
mice were subjected to 30 min ischemia followed by 4 h or
4 weeks reperfusion in vivo with vehicle or Rg2 treatment.
The results demonstrated that Rg2 markedly reduced the I/R-
induced myocardial infarct size to the area at risk, although
the groups had comparable areas at risk (Supplementary
Figure 1A). Furthermore, MI/R-induced (30 min ischemia/4

week reperfusion) cardiac contractile dysfunction (as indicated
by decreases in EF) was rescued by Rg2 treatment (Figure 3A).
We found that MI/R-induced (30 min ischemia/4 h reperfusion)
cardiac necroptosis was markedly suppressed by Rg2 treatment,
as evidenced by reductions in EBD penetration (Figure 3B) and
LDH release (Figure 3C) in hearts. Accordingly, MI/R-induced
myocardial RIP1, RIP3, and MLKL phosphorylation were
effectively inhibited by Rg2 (Figures 3D–G). Thus, the in vivo
data indicated that Rg2 attenuates MI/R-induced necroptosis.

Rg2 Reduces TNFα and Ameliorates
Myocardial Inflammation
Evidence shows that TNFα-induced necroptosis was involved
in MI/R injury, myocardial TNFα level, and associated
inflammatory factors were detected in MI/R (30 min ischemia/2 h
reperfusion) myocardium. Myocardial TNFα level was markedly
increased by MI/R injury, which was effectively mitigated by
Rg2, as evidenced by enhanced TNFα IHC staining (Figure 4A),
which is collaborated with plasma TNFα level (Figure 4B).
Furthermore, Rg2 treatment significantly inhibited the MI/R
induced increase in TNFα, IL-1 β, IL-6, and MCP-1 mRNA
levels (Figure 4C), indicating that ginsenoside Rg2 can inhibit
the activation of myocardial inflammation-related pathways
induced by MI/R.

Inhibition of Transforming Growth
Factor-Activated Kinase 1
Phosphorylation Aggravates
TNFα-Induced Necroptosis
In order to further clarify how Rg2 regulates TNFα-induced
necroptosis, H9c2 cardiomyocytes were stimulated by TNFα

(10 ng/ml) to induce necroptosis. The results showed that 2 h
after TNFα exposure, the RIP1 and RIP3 phosphorylation levels
increased significantly (Figure 5A) associated with increased cell
death (Figure 5F), while the phosphorylation of TAK1 decreased
(Figure 5A), suggesting a negative relationship between the two.
Furthermore, pre-treatment with 5Z-7-OX (2 µM, 1 h), a TAK1
phosphorylation inhibitor (19, 20), followed by TNFα exposure
2 h further enhanced the TNFα-induced RIP1, RIP3, and MLKL

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 March 2022 | Volume 9 | Article 82465755

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-824657 March 16, 2022 Time: 14:54 # 5

Li et al. Ginsenoside Rg2 Inhibits Myocardial Necroptosis

FIGURE 2 | The Rg2 inhibits H/R-induced cardiomyocytes necroptosis. (A) Representative western blots in control, H/R group, and H/R + Rg2 group. (B) The
averaged data for p-RIP1 level. (C) The averaged data for p-RIP3 level. (D) The averaged data for p-MLKL level. (E) Lactate dehydrogenase (LDH) release was
detected to assess cardiomyocytes injury. (F) The Co-IP was conducted to detect the formation of RIP1/RIP3 necrosome. The values are the means ± SEM, n = 3
per group, ∗p < 0.05 vs. the control group, #p < 0.05 vs. the H/R group.

FIGURE 3 | The Rg2 attenuates myocardial ischemia/reperfusion (MI/R) in vivo induced necroptosis. (A) Representative echocardiographic images in control and
MI/R (30 min ischemia/4 weeks reperfusion) subjected to vehicle or Rg2. Left ventricular ejection fraction (EF) (LVEF)% was measured. (B) Representative
photomicrographs from myocardial EBD uptake and viable cardiomyocytes labeled by caveolin 3 (CaV3) antibody in control, MI/R (30 min ischemia/4 h reperfusion),
and MI/R + Rg2 group. (C) Myocardial injury as assessed by LDH release (30 min ischemia/4 h reperfusion). (D–G) Representative western blots in control, MI/R
(30 min ischemia/4 h reperfusion) group and MI/R + Rg2 group and averaged data for p-RIP1, p-RIP3, and p-MLKL level. The values are the means ± SEM, n = 6
per group, ∗p < 0.05 vs. the control group, #p < 0.05 vs. the MI/R group.
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FIGURE 4 | The Rg2 reduces tumor necrosis factor α (TNFα) and ameliorates myocardial inflammation. (A) Representative photomicrographs of myocardial TNFα

(30 min ischemia/2 h reperfusion) demonstrated by IHC. (B) Plasma TNF-α concentration was evaluated after reperfusion for 2 h by ELISA assay. (C) The mRNA
levels of TNFα, interleukin (IL)-1β, IL-6, and MCP-1 among control, MI/R, and MI/R + Rg2 group (30 min ischemia/2 h reperfusion). The values are the
means ± SEM, n = 3 per group, ∗p < 0.05 vs. the control group, #p < 0.05 vs. the MI/R group.

phosphorylation (Figures 5B–E) and cell death (Figure 5F). The
above results confirm that inhibition of TAK1 phosphorylation
further enhances TNF-induced necroptosis.

Rg2 Enhances Transforming Growth
Factor-Activated Kinase 1
Phosphorylation to Inhibit Necroptosis
Based on the above in vitro experiments, we further clarify
whether Rg2 can regulate myocardial necroptosis through
phosphorylation of TAK1. Indeed, TAK1 phosphorylation was
markedly decreased in H/R injury H9c2 cells. However,
compared with the H/R group, Rg2 effectively enhanced TAK1
phosphorylation (Figure 6A). In line with this notion, we also
found that, in the TNFα-induced H9c2 necroptosis model,
the protective effect of Rg2 can be blocked by 5Z-7-OX, as
evidenced by enhanced RIP1, RIP3, MLKL phosphorylation and
cell death (Figures 6B–D). More importantly, corresponding
to the enhancement of TAK1 phosphorylation by Rg2, Co-IP
results directly show that Rg2 treatment can enhance the binding
ability of TAK with RIP1, and competitively inhibit the RIP1 and

RIP3 binding to combine to form Necrosome (Figure 6E). The
above data confirm that Rg2 inhibits myocardial Necroptosis by
enhancing the phosphorylation of TAK1 (Figure 6F).

DISCUSSION

Our findings delineate that Rg2 treatment repressed myocardial
necroptosis against MI/R injury both in vitro and in vivo.
We have also identified Rg2 treatment effectively inhibited the
inflammatory factors production in MI/R hearts, among which
TNFα is an important factor in inducing necroptosis. The
results of this study indicate that TAK1 phosphorylation leads
to necroptosis inhibition. Rg2 enhanced TAK1 phosphorylation
inhibits the RIP1 and RIP3 combination, and also inhibits
myocardial necroptosis signal activation, and ultimately reduces
MI/R injury. Our research provides new insights into the
cardioprotective mechanism of Rg2.

In the past, most studies have focused on cardiomyocyte
apoptosis, and it is believed that apoptosis is the only
regulated form of cell death. However, necrosis, as the main
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FIGURE 5 | Inhibition of transforming growth factor activated kinase 1 (TAK1) phosphorylation aggravates TNFα-induced necroptosis. (A) Levels of p-RIP1, p-RIP3,
and p-TAK1 in H9C2 cells with different treatment time of TNFα (10 ng/ml). (B) Levels of p-RIP1, p-RIP3, and p-MLKL in H9c2 cells treated with TNF-α (10 ng/ml,
2 h) with or without 5Z-7-OX (TAK1 inhibitor, 2 µM, pre-treatment 1 h) were detected by western blots. (C–E) p-RIP1, p-RIP3 and p-MLKL relative levels in H9c2
cells treated with TNF-α with or without 5Z-7-OX. (F) Cell viability was assessed by CCK8. The values are the means ± SEM, n = 3 or 6 per group, ∗p < 0.05 vs. the
control group, #p < 0.05 vs. the TNFα group.

pathological feature of various cardiac pathological conditions,
has been completely ignored. Necrosis is considered to be
an uncontrollable and passive mode of death. However, this
view has since been challenged (21, 22). According to genetic
and biochemical analysis, depending on the death initiating
stimulus, necrosis is orchestrated and executed by appropriate
mechanisms, rather than simply representing a disorganized
breakdown of the cell. Nowadays, many studies have proved that
necrosis also occurs in a regulated way and is closely related to the
physiology and pathology in many organs, including the heart. As
a regulated cell death form, necroptosis usually shows necrotic
morphological characteristics depending on the interaction of
RIP1, RIP3, and MLKL. Myocardial necroptosis can be activated
by myocardial I/R, and the goal of treating myocardial I/R injury
is to save ischemic myocardium, that is, to reduce myocardial cell
death and reduce infarct size. Therefore, it is of important clinical
and basic research significance to further clarify the potential
mechanism of myocardial necroptosis in myocardial I/R injury
and to find effective prevention and treatment strategies. Death
receptor ligands such as TNF receptors can trigger a variety
of cell responses, such as cell survival, apoptosis, and necrosis,
depending on the type of cell stimulation (13). TNFR1 ligand
binding leads to plasma membrane binding signal complex,
called complex I, which consists of TNF receptor associated

with death domain protein (TRADD), TNF receptor associated
protein 2 (TRAF2), RIP1 and apoptosis inhibitor protein 1
and 2 (cIAP1 and cIAP2). Complex I recruits and activates
the complex of TAK1 and I-receptor kinase (IKK), which leads
to the activation of NFκB, which drives the transcription of
pro-survival genes. Under certain conditions, complex I was
disassociated from the membrane and transformed into an
apoptosis-inducing complex, called complex II, and further
recruited FADD (Fas-related protein and death domain) and
caspase8. In addition, a complex composed of RIP1 and RIP3
(called necrosome) can be induced, which is very important
for the initiation of necroptosis (23). Although some progress
has been made recently, the precise molecular mechanisms
that determine different cellular biological modes responding to
TNFR1 have not been fully elucidated. In this study, it was found
that Rg2 could inhibit myocardial necroptosis induced by TNF-
α in myocardium subjected to I/R injury, promote the TAK1
phosphorylation and alleviate myocardial I/R injury.

Ginsenosides are the main components of Panax ginseng.
Previous studies have shown that ginsenosides have myocardial
protective effects. However, the potential mechanism of different
types of ginsenosides on myocardial I/R injury remains unclear,
which limits its clinical application. Ginsenoside Rg2 belongs to
protopanaxatriol compounds. It has the effects of anti-tumor,
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FIGURE 6 | The Rg2 enhances TAK1 phosphorylation to inhibit necroptosis. (A) Levels of p-TAK1 and TAK1 in H/R with or without Rg2-treated H9c2 cells was
detected by western blots. (B) Levels of p-RIP1, p-RIP3, and p-MLKL in H9c2 cells treated with TNF-α with or without Rg2 and 5Z-7-OX were detected by western
blots. (C) Relative levels of p-RIP1, p-RIP3, and p-MLKL. (D) Cell viability was assessed by CCK8. (E) Co-IP was performed to detect the interaction between RIP1
and RIP3 or TAK1 in H9c2 cells treated with TNF-α with or without Rg2 and 5Z-7-OX. (F) Summary of this study. The values are the means ± SEM, n = 3 or 6 per
group, ∗p < 0.05 vs. the TNFα or TNFα + Rg2 group.
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anti-diabetes, anti-inflammation, anti-oxidation, and so on.
Related studies have shown that Rg2 can inhibit cell apoptosis by
activating SIRT1 and activating PI3K/AKT pathway, and has a
protective effect on myocardial I/R injury in rats (11). However,
about 70% of the cardiomyocytes death induced by H/R cannot
be inhibited by zVAD (pan-caspase inhibitor), indicating that the
cell death induced by H/R is mainly mediated by necrosis, and
this kind of necrosis can be regulated (15, 24). However, it has
not been reported whether ginsenoside Rg2 has regulatory effect
on necroptosis, the dominant cell death in myocardium subjected
to I/R. The study confirmed that ginsenoside Rg2 had obvious
inhibitory effect on MI/R-induced necroptosis both in vivo and
in vitro, and could attenuate myocardial inflammation, which
further clarified the myocardial protective mechanism of Rg2 and
provided a theoretical basis for the clinical application of Rg2.

Transforming growth factor activated kinase 1 is essential
for regulating many important biological processes, such as
immune cell activation, inflammation, cell differentiation, and
cardiac hypertrophy. Previous studies have reported the role of
TAK1 in regulating cardiomyocyte apoptosis and necroptosis
(25). TAK1 regulates and maintains myocardial homeostasis and
prevents cardiac remodeling by controlling cardiac programmed
cell death (26, 27). Cardiac specific knockout of TAK1 induces
spontaneous apoptosis and necroptosis of cardiomyocytes,
followed by poor remodeling and heart failure (13). The related
studies have reported that TAK1 plays a role in cardiotoxicity
induced by DOX. The expression of TAK1 is decreased in
cardiotoxicity induced by DOX in vivo and in vitro, and
TAK1 inhibition by TAK1 phosphorylation inhibitor 5Z-7-
OX would further aggravate cardiomyocyte apoptosis and
necroptosis induced by DOX (28). TAK1 phosphorylation is
very important for its catalytic activity (29). Previous studies
have shown that the inactivation of TAK1 in cardiomyocytes
eliminates the phosphorylation of c-Jun-N-terminal kinase
(JNK) induced by TNFα and the degradation of IKκB, thus
inhibiting the activation of JNK and NFκB pathway, indicating
that TAK1 phosphorylation is essential for the activation of
pro-survival pathway induced by TNFα (13). And the study
initially targeting TAK1 phosphorylation was performed on
non-alcoholic fatty liver disease (NAFLD) (30). At present,
related studies have revealed the biological role of TAK1 in
regulating myocardial survival/death and cardiac homeostasis.
However, the protective mechanism of TAK1 has not been
determined yet. In this study, it confirmed that there was an
antagonistic relationship between TNFα-induced necroptosis
and TAK1 phosphorylation. Rg2 could play a cardioprotective
role via enhancing the phosphorylation of TAK1, and promote
the interaction between TAK1 and RIP1. Thus, Rg2 prevents
the formation of RIP1/RIP3 necrosome inhibiting necroptosis.
This study suggests a new mechanism of cardioprotection for
Rg2 and further reveals the role of TAK1 phosphorylation
in regulating TNFα-induced myocardial necroptosis. However,
whether Rg2 promotes TAK1 phosphorylation directly or
indirectly to inhibit necroptosis needs to be further studied.
In addition to TAK1 phosphorylation, whether it is related to
other modifications, such as ubiquitin, TAK1 as a molecular
switch of programmed cell death, whether the activation time

of TAK1 phosphorylation will alter its inhibitory effect on
necroptosis, such as whether hyperphosphorylation will reverse
the inhibitory effect of necroptosis. These problems need to be
further discussed. Some studies have shown that regulator of
G protein signaling 5 (RGS5) can directly interact with TAK1
to inhibit its hyperphosphorylation and thus inhibit c-JNK/P38
signaling pathway, thus effectively alleviating the progression
of NAFLD (31). Meanwhile, RGS5 can inhibit cardiomyocyte
apoptosis in myocardial I/R injury (30). However, whether the
protective mechanism of Rg2 in I/R myocardial necroptosis
induced by TNFα via regulating TAK1 is related to the activation
of RGS5 and the interaction between RIP1-TAK1-RGS5 remains
to be further elucidated. In addition, due to the limitations of the
H9c2 cell line, more in vitro experiments are needed to determine
the generality of our findings, such as using the human-
induced Pluripotent Stem Cell derived cardiomyocytes (hiPSC-
CMs).

CONCLUSION

In conclusion, based on in vivo and in vitro experiments,
the study demonstrates that TAK1 phosphorylation plays an
important role in regulating myocardial necroptosis induced
by TNFα. Rg2 enhances TAK1 phosphorylation to inhibit
necroptosis. This research is important in furthering our
understanding of Ginsenoside-induced cardioprotection.
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Aims: This study aimed to evaluate the causal association between obesity and

hypertension disorders in pregnancy.

Methods: Two-sample Mendelian randomization (MR) study was conducted based on

the data obtained from the GIANT (n = 98,697 participants) consortium and FinnGen

(n = 96,449 participants) consortium to determine the causal effect of obesity on the

risk of hypertension disorders in pregnancy. Based on a genome-wide significance,

14 single-nucleotide polymorphisms (SNPs) associated with obesity-related databases

were used as instrumental variables. The random-effects inverse-varianceweighted (IVW)

method was adopted as the main analysis with a supplemented sensitive analysis of the

MR-Egger and weighted median approaches.

Results: All three MR methods showed that genetically predicted obesity causally

increased the risk of hypertension disorders in pregnancy. IVW analysis provided obesity

as a risk factor for hypertension disorders in pregnancy with an odds ratio (OR) of 1.39

[95% confidence interval (CI) 1.21–1.59; P = 2.46 × 10−6]. Weighted median and MR

Egger regression also showed directionally similar results [weighted median OR = 1.49

(95% CI, 1.24–1.79), P = 2.45 × 10−5; MR-Egger OR = 1.95 (95% CI, 1.35–2.82),

P = 3.84 × 10−3]. No directional pleiotropic effects were found between obesity and

hypertension disorders in pregnancy with both MR-Egger intercepts and funnel plots.

Conclusions: Our findings provided directed evidence that obesity was causally

associated with a higher risk of hypertension disorders in pregnancy. Taking measures to

reduce the proportion of obesity may help reduce the incidence of hypertension disorders

in pregnancy.

Keywords: genetic susceptibility, obesity, hypertension disorders in pregnancy, two-sample, Mendelian

randomization
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FIGURE 1 | Schematic representation of an MR analysis. We selected SNPs which associated with obesity and the corresponding effect for these SNPs was

estimated based on the risk of HDP obtained from a large cohort of the European population.

INTRODUCTION

Hypertension disorders in pregnancy (HDP) are defined as
elevated office blood pressure ≥140/90 mmHg during the
pregnancy (1), which is the most common complication of
gestation, affecting up to 10% of pregnant women all over
the world (2). HDP is also the major cause of morbidity and
mortality in maternal, fetal, and neonatal and is associated with
an increased risk of multiple organ failure, placental disruption,
disseminated intravascular coagulation, major cardiovascular
events, and death for the mother, and a higher risk of the fetus
and newborn in intrauterine growth retardation, intrauterine
death, stillborn, premature delivery, neonatal death (3, 4).
Therefore, it is of practical significance to explore modifiable
risk factors of HDP and make early predictions such that
interventions can be carried out in advance to reduce the adverse
effect brought by HDP. Many studies have shown that there is an
observational correlation between obesity and the risk of HDP
(5, 6). Since previous studies have only described that obesity can
increase the risk of HDP, but how much risk can be increased,
there is no relevant research data. Meanwhile, these observational
studies were susceptible to reverse causality and confounding
risk factors. As a consequence, whether the observed associations
between obesity and HDP are causal is unclear.

Mendelian Randomization (MR) is a recent emerging
technique that applies single-nucleotide polymorphisms (SNPs)
associated with risk factors as instrumental variables (IVs) to
determine whether the observational association between a risk
factor and a specific disease is causal (7–9). Although a MR
study was performed retrospectively, it is similar to prospective
randomized controlled trials (RCT) conceptually (Figure 1).
Since all the germline hereditary genetic variants start with the
formation of a zygote as a result of the fertilization of an oocyte,
which occurs before the disease onset. Therefore, the potential
bias of confounding or non-differential measurement error can
be avoided in a MR study (10).

In this study, we aimed to explore the causal association
between obesity and the risk of HDP from published genome-
wide association studies (GWAS) correlation data by using two-
sample MR analysis.

MATERIALS AND METHODS

Study Design
In this study, we performed a two-sample MR (11, 12)
to investigate the causal association between obesity with
increased risk of HDP. Thus, our study does not require
further sanction since the published studies were used for
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the data extraction, which has been approved by their
respective institutional review committee and the informed
consent of the participants has been obtained in their
original research.

Data Sources
Study Exposure: Obesity
Summary-level genetics were acquired from published GWAS,
the Genetic Investigation of Anthropometric Traits (GIANT)

TABLE 1 | List of genetic instruments for obesity and log odds ratios of hypertension disorders in pregnancy risk by each instrumental SNP (GWAS significance with P <

5× 10−8 and linkage disequilibrium threshold with R2
< 0.001).

No SNP Gene Chr EA OA EAF.obesity EAF.HDP Obesity β(SE) HDP β(SE)

1 rs987237 TFAP2B 6 A G 0.10 0.79 0.13 −0.06

2 rs13393304 _ 2 G A 0.89 0.84 0.18 0.06

3 rs13130484 _ 4 C T 0.42 0.52 0.11 −0.03

4 rs7138803 _ 12 A G 0.44 0.38 0.08 0.04

5 rs527248 _ 1 A G 0.26 0.82 0.11 −0.06

6 rs887912 _ 2 T C 0.62 0.25 −0.08 −0.01

7 rs10182181 _ 2 A G 0.50 0.58 0.07 0.03

8 rs9816226 _ 3 T A 0.85 0.85 0.11 0.06

9 rs2307111 POC5 5 T C 0.43 0.58 −0.07 −0.02

10 rs4929923 TRIM66 11 T C 0.73 0.34 0.08 −0.04

11 rs8028313 MAP2K5 15 G C 0.78 0.22 −0.10 −0.06

12 rs11075989 FTO 16 C T 0.44 0.41 0.21 −0.09

13 rs523288 _ 18 T A 0.62 0.29 0.13 0.03

14 rs29939 _ 19 A G 0.22 0.67 0.07 0.01

Chr. indicates chromosome; EA, effect allele; OA, other allele; EAF, effect allele frequency. A total of 14 genetic instruments were included in the present MR analysis, located in four

genes (POC5, TRIM66, MAP2K5, and FTO) and 12 chromosomes (1, 2, 3, 4, 5, 6, 11, 12, 15, 16, 18, and 19) with an effect allele frequency (EAF) of 0.1–0.9 in SNPs of obesity and

0.2–0.9 in SNPs of hypertension disorders in pregnancy.

FIGURE 2 | Scatter plot to visualize the causal effect of obesity on the risk of hypertension disorders in pregnancy (HDP). Each black point representing an SNP is

plotted in relation to the effect size of the SNP on obesity (x-axis) and on the risk of HDP (y-axis) with corresponding standard error bars. The slope of each line

corresponds to the causal estimate using different MR methods. IVW indicates inverse-variance weighted; and MR, Mendelian randomization.
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FIGURE 3 | Forest plot to visualize the causal effect of every single SNP on the risk of hypertension disorders in pregnancy.

consortium, which included 32,858 obesity patients and 65,839
controls from Europe. The IVs we selected satisfy the following
criteria: (1) The obesity-associated SNPs with a genome-wide
significance (P < 5 × 10−8). (2) For avoiding bias caused
by strong linkage disequilibrium among SNPs, the linkage
disequilibrium of obesity-associated SNPs must satisfy the r2

< 0.001 and window size = 10,000 kb. (3) We selected the
SNPs with F statistic >10 to avoid the effect of weak IVs. F
statistic = (β/SE)2. Totally, 14 obesity-associated SNPs were
obtained as IVs, and the details of IVs were presented in
Table 1 (13, 14).

Study Outcome: Pregnancy Hypertension
We obtained the GWAS summary data of HDP from the
FinnGen project, which was acquirable at https://gwas.mrcieu.
ac.uk/datasets/finn-a-HYPTENSPREG/. Our project contained
3,363 pregnancy hypertension cases and 93,136 controls.
Totally, 14 SNPs were correspondingly found in the database.
Consequently, the final MR analysis was finished based on all the
SNPs found in the exposure.

Statistical Analysis
Due to no individual-level GWAS data available in our study,
we leveraged two-sample MR analyses, as mentioned previously
(15, 16), to assess the causal association between obesity and
HDP. Horizontal pleiotropy is that the outcome may be exposed

by other pathways but not only the exposure, which violates the
assumption of MR and can bias causal estimates. To prevent
this, we use three different analysis methods in the present
MR analysis. Each statistical approach conducted is based on
different horizontal pleiotropy models. To make our results more
reliable, we compared the consistency of all results in three
different statistical approaches (17), including inverse-variance
weighted (IVW) method, MR-Egger and weighted median MR
methods. The “mRnd” tool was used to calculate the power
of the present MR analysis. All of the statistical analysis was
finished based on the MR software packages version 0.5.6 and
R version 4.1.2 (2021-11-15) (18).

RESULTS

Genetic Instruments of Obesity
All genetic instrumental variables related to obesity and HDP
were shown in Table 1. Totally, 14 genetic instruments, which
located in four genes (POC5, TRIM66, MAP2K5, and FTO)
and 12 chromosomes (1, 2, 3, 4, 5, 6, 11, 12, 15, 16, 18, and
19), were included in the present MR analysis. The effect allele
frequency (EAF) of SNPs in obesity ranged from 0.1 to 0.9 and
the EAF of SNPs in HDP ranged from 0.2 to 0.9. The risk of each
genetic variant associations with obesity and HDP is presented
in Figures 2, 3.
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FIGURE 4 | Forest plot to visualize the causal effect of obesity on the risk of hypertension disorders in pregnancy by three methods. IVW indicates inverse-variance

weighted; and MR, Mendelian randomization.

MR for HDP
Three MR methods including IVW, MR-Egger, and weighted
median regression, were used to investigate the causal effects
of obesity on the risk of HDP (Figures 2, 4). IVW method
showed that genetically predicted obesity was causally associated
with a higher risk of HDP [IVW odds ratio (OR) = 1.39;
95%CI, 1.21–1.59); P = 2.46 × 10−6]. Besides, the MR power is
88% in the present study by using the “mRnd” tool. Weighted
median and MR Egger regression also presented similar directed
estimates [weighted median OR = 1.49 (95% CI, 1.24–1.79), P
= 2.45 × 10−5; MR-Egger OR = 1.95 (95% CI, 1.35–2.82), P
= 3.84 × 10−3]. The consistency in the results of all three MR
approaches suggested that genetically predicted obesity causally
reliably increased the risk of HDP.

Horizontal Pleiotropy Analysis
The asymmetry of funnel plots with individual Wald ratios
of each SNP that plotted according to its precision represents
directional horizontal pleiotropy. However, it is difficult to
investigate the symmetry of a funnel plot when using a small

number of IVs (Figure 5). Therefore, theMR-Egger intercept was
used to further explore the directional horizontal pleiotropy. And
no evidence of directional pleiotropy was shown between obesity
and HDP in the present MR analysis (P = 0.07).

The Effects of Individual Genetic
Instruments Correlated With HDP
The leave-one-out approach was selected for a sensitivity analysis
to confirm the effect of each SNP on the overall causal estimate.
When individual SNP was systematically removed and MR
analyses were repeated. No substantial difference was observed
in estimated causality and the findings have important credibility
(Figure 6). Consequently, the estimated effects couldn’t be
interpreted by any single genetic instrument.

DISCUSSION

In this two-sample MR study, we firstly assessed the causal
association between obesity and HDP based on the European
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FIGURE 5 | Funnel plots to visualize overall heterogeneity of Mendelian randomization (MR) estimates for the effect of obesity on the risk of HDP. The black point

representing an SNP is plotted in relation to the effect size of the SNP on hypertension disorders in pregnancy (x-axis) and reciprocal of the standard errors (y-axis) in

the inverse-variance weighted Mendelian randomization. The asymmetry of funnel plots represents directional horizontal pleiotropy, with individual Wald ratios of each

SNP that plotted according to its precision.

ancestry population. Our findings suggested a causal association
between genetically determined obesity and the increased risk
of HDP, with an increase in obesity by 1 SD resulting in a
39% increased risk of HDP, which was consistent with previous
observational studies (5, 6).

Compared with MR analysis, reverse causation or
confounding factors are more susceptible to bias the results
of traditionally observational epidemiological studies. MR study
relies on a natural random allocation of genetic variation during
meiosis, resulting in a random distribution of genetic variation
in populations. Since obesity-associated genetic variants are
randomly assigned at birth, which occurred before the onset of
HDP. Therefore, MR analysis may provide the best evidence for
assessing the causal association between obesity and HDP. Our
result suggests that obesity itself can causally increase the risk
of HDP, which can be interpreted from the genetic perspective
in our MR analysis. The result of this MR was consistent with
the findings of previous studies, supporting obesity as a risk
predictor for HDP (5, 6). We used three different methods to
estimate the causal association to minimize potential pleiotropy
in the current sensitivity analysis, including IVW, MR-Egger,
and weighted median regression. IVW analysis provided obesity
as a risk factor for HDP with an OR of 1.39 (95% CI, 1.21–1.59;
P = 2.46 × 10−6). Weighted median and MR Egger regression
also showed directionally similar results [weighted median OR
= 1.49 (95% CI, 1.24–1.79), P = 2.45 × 10−5; MR-Egger OR
= 1.95 (95% CI, 1.35–2.82), P = 3.84 × 10−3]. In our MR

analysis, all three methods give similar statistically significant
results to confirm the reliability of our causal association
between obesity and HDP. Previous observational studies
have shown obesity is correlated with an increased risk of
gestational hypertension, cesarean section rates, and the risk
of anesthesia. These emphasize the potential benefit of weight
loss among obese women of childbearing age (6). Hence, our
results highlight the importance of weight control in pregnant
women and provide genetic evidence for future elucidating the
pathogenesis of hypertension formation during pregnancy. Gene
analyses of lifestyle and environment interaction have suggested
that our increasingly obesogenic environment may increase
the genetic risk of obesity, but those risks could be reduced
by increasing physical activity and avoiding specific dietary
components. Exploring a causal association of obesity with HDP,
which could be preventable through weight-loss interventions
has clinical significance. In other words, verifying the causal
detrimental impact between obesity and HDP risk has a great
social significance and clinical value.

It has been reported that several genes significantly associated
with the increase of obesity risk, which also played an important
role in the appetite regulation of hypothalamus (19). rs987237
located in the chromosome 6 transcription factor AP-2 beta gene
(TFAP2B) has been related to obesity defined by body mass
index (BMI), and waist circumference (20), and has been shown
interaction with the dietary fat-to-carbohydrate ratio, which has
an impact on weight loss. The transcription factor encoded
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FIGURE 6 | The leave-one-out plot to visualize the causal effect of obesity on the risk of hypertension disorders in pregnancy when leaving one SNP out.

by TFAP2B is mainly expressed in adipose tissue, where its
regulation of adipocyte function and expression of adipokine is
considered to be the functional link to obesity (21, 22), to provide
a mechanistic basis for the genetic correlation of TFAP2B and
obesity. HDP is influenced by environmental factors and a variety
of genetics which is a complex disease (23). Epidemiological
research has recently examined the correlation between a history
of HDP and future risks of other diseases. These studies have
reported associations between HDP history and risk of stroke,
coronary heart disease, diabetes, heart failure, hypertension, and
dysrhythmia. Therefore, reducing the risk of HDP contributes to
reducing the risk of diseases for pregnant women. Observational
studies have shown a correlation between obesity and HDP,
but it is unclear whether the observed associations are causal
or caused by confounding bias or reverse causation. Besides,
no genetic variants correlated with obesity were reported in
HDP, suggesting that the causal correlation between obesity and
HDP is independent of the known genetic variants. The most
important implication is through public health interventions to
reduce the incidence of obesity in pregnant women can make
the incidence of high blood pressure in pregnant women during
pregnancy lower.

This study has many advantages. We used a two-sample MR
design, which minimized confounding and reverse causal bias,
to assess the causal association between obesity and increased
risk of HDP. To the best of our knowledge, this study is the
first MR analysis to investigate the causal association between

obesity and the risk of HDP. Besides, several key measures were
implemented to meet the basic assumptions of two-sample MR
analysis: (1) We only included the SNPs which were correlated
with obesity at a GWAS significant level to guarantee an effective
correlation between SNPs and risk factors (obesity) in the present
MR; (2) All the included GWAS data was finished in the ancestral
populations of Europe to reduce the impact of race/ethnicity.
Thus, the potential confounding factor is small in this study; (3)
MR Egger and weighted median were conducted for the sensitive
analysis to guarantee the reliability of our analysis. This study
has important clinical implications for predicting HDP risk in
clinical practice, which will help rationalize weight-loss strategies
to reduce the risk of HDP.

However, the study still had some limitations. First, these
data adopted to infer the correlation between obesity and
HDP risk factors came mainly from European ancestry,
therefore, subsequent studies need to test other regions and
races to determine whether the correlation is consistent in
other populations (24). Second, we are not able to further
explore subgroup analysis on the interest covariates because
we just adopted the summary data rather than individual
patient data (25).

CONCLUSION

In summary, after adopting a two-sample MR analysis, we found
a causal correlation between obesity and hypertension disorders
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in pregnancy. Taking measures to reduce the proportion of
obesity may help reduce the incidence of hypertension disorders
in pregnancy.
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Recent advances have steadily increased the number of proteins and pathways known

to be involved in the development of cerebral cavernous malformation (CCM). Our ability

to synthesize this information into a cohesive and accurate signaling model is limited,

however, by significant gaps in our knowledge of how the core CCM proteins, whose

loss of function drives development of CCM, are regulated. Here, we review what is

known about the regulation of the three core CCM proteins, the scaffolds KRIT1, CCM2,

and CCM3, with an emphasis on binding interactions and subcellular location, which

frequently control scaffolding protein function. We highlight recent work that challenges

the current model of CCM complex signaling and provide recommendations for future

studies needed to address the large number of outstanding questions.

Keywords: CCM, vascular malformations, scaffolding protein, subcellular localization, signaling

INTRODUCTION

Cerebral cavernous malformation (CCM) is a disease characterized by the formation of
microvascular lesions primarily in the brain. These lesions derive from highly proliferative
endothelial cells with poor barrier function (1–3). A consequence of this perturbed endothelial
behavior is the formation of large vascular “caverns” lacking surroundingmural cells and astrocytes,
as well as altered extracellular matrices surrounding the endothelial cells (2, 4). CCM occurs in
the general population at a rate of ∼0.5% (5), and may be hereditary (familial CCM) or occur
sporadically. A genetic component for the development of CCM was first described in 1995 (6, 7).
Further study revealed this gene to encode the protein Krev-Interaction Trapped 1 [KRIT1, also
called CCM1; (8–10)], which had been previously identified as a binding partner of the small
GTPase Rap1 (11), making KRIT1 the first protein linked to CCM pathogenesis. In 1998 two
other genetic components were found (12), and by the mid 2000s these proteins were identified:
CCM2/malcavernin (13) and the apoptosis-related protein, CCM3/PDCD10 (14, 15). Loss of
function mutations in any of these three genes is sufficient to induce CCM lesion development,
and have also been found in some sporadic CCMs (16). Recent studies have discovered other genes
involved in CCM development, i.e., PIK3CA (17) and Cdc42 (18), but mutations in KRIT1, CCM2,
or CCM3 remain the most commonly identified genetic basis for CCM.

The three core CCM proteins (i.e., KRIT1, CCM2 and CCM3) can bind directly to each other
under normal physiological conditions (19–21) forming what is referred to as the CCM signaling
complex. All three CCM proteins are scaffolding proteins, and each member of this complex
has a unique set of binding partners that allow it to affect a wide range of cellular functions.
Based on studies in human tissues, cell culture, and animal models, the CCM complex appears
to promote endothelial quiescence by stabilizing cell-cell contact, limiting inflammatory and
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angiogenic signaling, and constraining proliferation (2, 4, 22–
25). These abilities have been strongly linked to the regulation
of mitogen activated protein kinase kinase kinase 3 (MEKK3),
which binds to CCM2 (26, 27). However, how CCM2 curbs the
activation of MEKK3 and its downstream signaling has not been
established, nor has it been shown how loss of KRIT1 or CCM3
lead to activation of MEKK3 in cells that still maintain CCM2
expression. Moreover, studies using KRIT1 or CCM2 deficient
cell or animal models have shown highly similar phenotypes
(28), but loss of CCM3 causes more severe and acute CCM
development both in animal models and human patients (29, 30),
suggesting that the pathophysiology and progression of CCM
lesion development is a complex process that is influenced by the
specific gene affected.

These questions lay bare a significant gap in our current
knowledge, that is, what mechanisms regulate the function of
the CCM proteins and the CCM complex? Scaffolding proteins,
such as the CCM proteins, are a functionally defined set of
proteins which are able to bring together (at a minimum)
two proteins in a relatively stable conformation and promote
signaling between these target proteins. Scaffolding proteins
function to organize cellular signaling, making possible the
specific and temporal regulation of the vast array of signaling
information that cells must continuously process. Regulation of
scaffolding proteins depends, to some extent, on their domain
composition and on the pathways in which they operate.
Notably, scaffolding proteins must be localized to the same
subcellular compartment as their target proteins, and relatedly,
can promote the localization of their targets to specific cellular
locations. Thus, protein expression and alternative splicing and
control of location are common features in the regulation of
scaffolding proteins. In addition, the interaction of scaffolding
proteins with their targets can be regulated by post-translational
modification (phosphorylation, ubiquitination, etc.) as well as
autoinhibitory interactions between domains of the scaffolding
protein itself. Indeed, the ERM family of scaffolding proteins,
to which KRIT1 is structurally similar, are regulated by a
well-characterized mechanism involving the interaction of the
N-terminal ERM associate domain with sequences in the C-
terminal ERM associate domain (31). In order to fully understand
CCM pathogenesis, we need to know how the CCM proteins
individually, and CCM complex formation as a whole, are
regulated. In this review, we will examine what is currently
known about how KRIT1, CCM2, and CCM3 are regulated,
with an emphasis on binding interactions and sub-cellular
localization, and discuss how that regulation may affect the
function of the CCM complex.

DOMAIN STRUCTURE AND BINDING
INTERACTIONS OF CCM PROTEINS

Krev-Interaction Trapped 1, KRIT1
KRIT1 is an 84kDa protein containing multiple protein-
interacting domains (Figure 1). At the N-terminus (residues
1–170), Liu et al. identified a Nudix-like fold by structural
homology (32). Nudix hydrolases are a superfamily of

hydrolytic enzymes capable of cleaving nucleoside diphosphates,
but the homologous domain in KRIT1 lacks catalytic activity.
The remainder of the N-terminal half of KRIT1 is relatively
unstructured, but contains three NPXY/F motifs (19, 32, 33)
which are recognition sites for phospho-tyrosine binding (PTB)
domains. The integrin regulatory protein ICAP1α binds to the
first NPXY/F motif [NPAY, residues 192–195, (32)], while CCM2
is thought to bind to the second or third NPXY motifs (19, 34).
The cytoplasmic sorting nexin adaptor protein sorting nexin
17 (SNX17) binds to the second NPXY motif (NPLF, residues
231–234). In the center of the protein are four ankyrin repeats
[residues 259–422, (11, 35)] that putatively promote association
with lipid membranes. The C-terminal half of KRIT1 is folded
into a triple-lobed Band 4.1, ezrin, radixin, moesin (FERM)
domain, which contains 3 subdomains (F1, F2, and F3) featuring
a ubiquitin-like fold, a four-helix bundle, and a phospho-tyrosine
binding domain, respectively (35–38). Co-crystallization of
KRIT1 with the small GTPase Rap1 demonstrated that Rap1
binds to KRIT1 via an interaction with both the F1 and F2
subdomains (36), whereas the transmembrane orphan receptor
Heart of Glass (HEG1) binds to an interface involving the FERM
F1 and F3 subdomains (39). The C-terminal PTB domain (F3) of
KRIT1 could theoretically interact with several NPXY-containing
proteins, however the only defined interaction of this domain
is an intermolecular interaction with a NPXY motif of KRIT1
itself. This interaction, between the C-terminal PTB domain and
the first NPXY motif (40) is highly similar to the autoinhibitory
self-interaction seen in other ERM family proteins (31). In
addition, KRIT1 contains a nuclear localization sequence [NLS,
residues 46–51, (41–44)], which may also be important for
binding of KRIT1 to microtubules. Finally, while KRIT1 contains
several predicted nuclear export sequences (43, 44), none have
been confirmed to regulate subcellular trafficking of KRIT1.

CCM2
CCM2 is a 49 kDa protein that contains a N-terminal PTB
domain (13), which binds to KRIT1 (19, 44) and the cell
death receptor TrkA (45) (Figure 1). A single point mutation
in the CCM2 PTB, F217A, blocks the interaction of KRIT1 and
CCM2 and is sufficient to cause CCM (21). CCM2 also contains
a leucine-rich aspartate (LD)-like domain (residues 223–238),
which binds to CCM3, and a C-terminal harmonin-homology
domain (HHD) (residues 283–379), which is structurally similar
to the N-terminal domain of the Usher syndrome protein
harmonin (46). Interestingly, harmonin binds directly to the
cell adhesion protein cadherin 23, expressed specifically in
neurosensory epithelial cells, via two domains: its N-terminal
domain and a PDZ domain (47). However, direct interaction of
CCM2 with cadherins has not been reported. CCM2 also binds
to the respective upstream kinases mitogen-activated protein
kinase kinase 3 (MKK3) and MEKK3 (26, 48). One of the first
studies of CCM2 identified it as an osmo-sensing scaffold for the
MAP kinase MKK3 (48), a key mediator of p38 inflammatory
signaling (49). Later studies demonstrated that CCM2 was a
regulator of MEKK3, an upstream activator of big mitogen-
activated protein kinase/extracellular signal regulated kinase 5
(BMK1/ERK5). Destabilization of the complex with MEKK3
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FIGURE 1 | Domain structure of the CCM proteins KRIT1, CCM2 and CCM3. ARD- ankyrin repeat domain; FERM- Band 4.1, ezrin, radixin, moesin domain; F1, F2,

and F3, globular subdomains of the FERM domain; PTB, protein tyrosine binding domain; LD, leucine-rich aspartate domain; HHD, harmonin homology domain; DD,

dimerization domain; FAT-H, focal adhesion targeting domain; STK, sterile kinase. Green bars indicate nuclear localization sequences/microtubule binding sites.

Residue numbers (from human proteins) are noted below the domain diagram.

through loss of any of the CCM proteins is a potent driver of
CCM through perturbations of several pathways (26).

CCM3
CCM3 (25kDa) is the most recently identified member of
the CCM complex, and binds directly to CCM2 (Figure 1).
CCM3 contains an N-terminal dimerization domain (50) which
mediates interactions with the germinal center kinase III group of
protein kinases, including sterile-kinases 24 and 25, forming part
of the striatin interacting phosphatase and kinase (STRIPAK)
signaling complex (51). CCM3 also contains a C-terminal focal
adhesion targeting-homology (FAT-H) domain (50). Sequences
within the FAT-H domain bind to the LD-like domain of CCM2
(21, 52), and also mediate interaction with the focal adhesion
protein paxillin (50, 53).

REGULATION OF CCM PROTEIN
LOCALIZATION

All three CCM proteins have been shown to localize to
the plasma membrane (particularly at cell-cell contacts), the
cytoplasm, and the nucleus (Figure 2). While several studies have
investigated the formation of the tripartite complex using co-
immunoprecipitation, few have examined complex formation at
the subcellular level. However, what evidence there is suggests
that KRIT1•CCM2 and CCM2•CCM3 interactions can occur at
or near the plasmamembrane (50, 54). Alternatively, it is possible
that some or all of the CCM proteins could function individually
in unique locations. For example, CCM3, which associates with
the STRIPAK complex at the Golgi (55) (Figure 2), also has been
found at the apical epithelial membrane during excretory canal
development in C. elegans (56), and in focal adhesions in cancer
associated fibroblasts, where it regulates integrin-dependent

adhesion and mechano-transduction (53). The relevance of
these interactions to CCM pathogenesis or, more specifically,
endothelial/epithelial barrier function is unknown. Indeed, only
the KRIT1•CCM2 association has been directly implicated in the
stabilization of endothelial barrier function, as a point mutation
of the PTB domain of CCM2 (F217A) results in a primarily
cytoplasmic distribution of both proteins and loss of barrier
function (54). Immunofluorescence imaging has also shown that
KRIT1 and CCM2 colocalize at cell peripheries in COS-7 cells
after osmotic shock (34), suggesting that the localization of this
complex could be regulated by external signals. Consequently,
subcellular localization is expected to play a key role in the
regulation of CCM proteins and the function of the CCM
complex, thus it is critical that we understand the mechanisms
involved. In the next sections, we will review what is known about
how the localization of CCM proteins are regulated and how that
relates to the function of the CCM complex.

CCM Complex Localization to Cell-Cell
Contacts
Several studies have associated the localization of the CCM
complex to sites of cell-cell contact with the ability of this
complex to stabilize endothelial barrier function, suggesting that
subcellular localization is critical to the functional consequence
of active CCM complex signaling. Indeed, several mechanisms
have been suggested to regulate localization of the CCM
complex to the plasma membrane in general, and to adherens
junctions specifically.

In vitro binding assays have shown that KRIT1, CCM2, and
CCM3 can directly interact with cellular membranes. KRIT1
can bind phosphatidylinositol (4,5) bisphosphate (PIP2) via its
FERM domain [residues 208–736, (40)], CCM2 preferentially
interacts with phosphatidylinositol monophosphates (52), and
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FIGURE 2 | Proposed localization of the CCM complex. (1) The CCM complex is known to co-localize with β-catenin at adherens junctions (AJ) and to associate with

the Heart of Glass (HEG1) orphan transmembrane receptor at the plasma membrane. (2) The CCM complex (at least KRIT1), regulates ICAP1α interactions with

integrins. CCM3 can also bind to paxillin, a focal adhesion protein. (3) CCM3 is a member of the STRIPAK signaling complex which regulates cell polarity and Golgi

assembly. (4) KRIT1 can bind to the endosomal trafficking protein sorting nexin-17 (SNX17). (5) All three CCM proteins can localize to the nucleus, but whether they

have a nuclear function is unknown. (6) The CCM complex is also distributed in the cytoplasm, where KRIT1 can bind to microtubules. Created with Biorender.com.

CCM3 binds phosphatidylinositol (3,4,5) triphosphate [PIP3,
(57)], potentially indicating that all CCM proteins can associate
directly with membranes. While these direct interactions
support the ability of the CCM complex to localize with
membranes enriched in specific phospholipids, it has not
been determined whether these interactions are sufficient for
membrane localization of the complex.

In contrast, the ability of specific protein-protein interactions
to regulate membrane localization of the CCM proteins,
particularly KRIT1, has been more extensively studied. KRIT1
was first identified as an interacting partner of the small GTPase
Rap1 in a yeast two-hybrid screen (11). Subsequent studies
validated KRIT1 as a Rap1 effector that preferentially binds active
(GTP-bound) Rap1 (24, 36, 37, 40). Binding of active Rap1
promotes the localization of KRIT1 to points of cell-cell contact
where it associates with adherens junction proteins (24, 37), while
co-expression of KRIT1 and RapGAP reduces the association
of KRIT1 with β-catenin (24) (Figure 2). Binding of Rap1 to
KRIT1 blocks the co-sedimentation of KRIT1 with microtubules,
and reduces co-localization of KRIT1 with tubulin in baby
hamster kidney (BHK) cells (40), suggesting that Rap1 activation

could promote trafficking of KRIT1 from the cytoplasm to
the plasma membrane. In vitro binding assays using KRIT1
peptide fragments initially revealed that Rap1 binds to the C-
terminal FERM domain (24, 40, 42). One such study suggested
a role for the F3 lobe of the FERM domain using yeast two-
hybrid analysis (42). However, X-ray crystallography studies have
definitively demonstrated that Rap1 binds KRIT1 at the interface
of the F1 and F2 lobes (36). This supports prior reports that
the KRIT1 FERM domain fragment could localize to adherens
junctions, but mutation or deletion of the F1 lobe ablates this
effect (24, 37). Furthermore, a charge switch mutation in this
binding interface (R452E) results in a significant reduction in
Rap1-binding affinity (37). As a result, KRIT1-R452E is unable
to localize to adherens junctions. However, we recently reported
that Rap1 binding, though a key regulator of KRIT1 junctional
localization, was not absolutely required for the ability of KRIT1
to stabilize barrier function (58). In this study, we expressed
various mutated forms of KRIT1 at replacement levels in KRIT1
shRNA expressing human pulmonary artery endothelial cells.
Compared to wildtype KRIT1, KRIT1 containing amutated Rap1
binding site (KRIT1-R452E) is unable to localize to adherens
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FIGURE 3 | Hypothetical role of the N- to C- terminal self-interaction of KRIT1 in the regulation of barrier function. (A) Rap1 or ICAP1α binding to wildtype KRIT1

inhibits the N- to C-terminal interaction, leading to enhanced junctional localization (due to Rap1 binding) and stabilization of endothelial cell-cell contacts. (B) Mutation

of the Rap1 binding interface (R452E) ablates junctional localization and barrier stabilization, likely due to a reduction in the proportion of the “open” conformation. (C)

KRIT1 containing mutations in both the Rap1 binding interface (R452E) and the first NPXY motif (APAA) stabilizes cell junctions even though it remains cytoplasmic.

Mutation of the PTB domain (*) has the same effect as mutating the NPXY motif, indicating that ICAP1α binding is not required for this effect. Created with

Biorender.com.

junctions and does not rescue barrier function of KRIT1 deficient
cells. However, when we added an additional mutation of
the first NPXY motif (APAA), which would block binding of
ICAP1α or the N- to C-terminal self-interaction, we restored
barrier function but not junctional localization. Furthermore,
mutation of the KRIT1 PTB, which blocked the self-interaction
but not ICAP1α association, also restored barrier function in
the absence of junctional localization (58) (Figure 3). These data
suggest that Rap1 binding may regulate KRIT1 in two distinct
ways, first, it promotes junctional localization through an as
yet undefined mechanism, and second, it negatively regulates
the N- to C-terminal interaction, the latter of which appears
critical for the function of KRIT1 and the CCM complex. This
novel finding, while possibly controversial, may explain why the
transmembrane protein HEG1 is not a necessary component
of the CCM complex, despite the fact that it binds to KRIT1.
HEG1 binds to KRIT1 at the interface of the F1 and F3
lobes of the KRIT1 FERM domain. Ablation of this interaction
by mutation of KRIT1 (L717A,721A) disrupts localization of
KRIT1 to endothelial junctions (39), suggesting that HEG1
may be important for anchoring KRIT1 at junctions (Figure 2).
However, knockout of HEG1 in vivo failed to lead to the
formation of CCM (59), suggesting that this binding interaction
is dispensable for normal vascular development. Clearly, much
remains to be understood about how the localization of the CCM

complex to the plasma membrane, or more specifically cell-cell
contacts, is regulated, which is critical to our ability to understand
how this localization affects the functional outcome of CCM
complex signaling.

Cytoplasmic Localization of the CCM
Complex
As mentioned above, the CCM proteins are often observed in
the cytoplasm. KRIT1 can bind to microtubules, as demonstrated
by co-sedimentation with tubulin in BHK fibroblast lysates. In
vitro binding assays indicated that this interaction is mediated
by regions in both the N- (residues 46–51) and C-termini
(residues 569–572) of KRIT1. Binding of Rap1 or ICAP1α to
KRIT1 inhibits KRIT1 binding to microtubules. Activation of
Rap1 with non-hydrolysable GTPγS reduces co-sedimentation
with tubulin. Similarly, over-expression of constitutively active
Rap1 (RapV12) prevents co-localization of YFP-KRIT1 with
fluorescently-tagged tubulin in cell culture (40). That Rap1
may regulate the interaction of KRIT1 with microtubules in
some contexts was also supported by Liu et al. who showed
that the KRIT1-R452E mutation reduces co-sedimentation
with tubulin in human osteosarcoma epithelial cells [U2OS,
(37)]. However, others have not observed co-localization of
KRIT1 with the microtubule cytoskeleton in confluent human
or bovine aortic endothelial cells (24, 58), which calls into
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question the ubiquity of this interaction. In addition, the
microtubule binding domain in the N-terminus of KRIT1
overlaps with the reported nuclear localization sequence, thus
studies to determine the relevance of the microtubule binding to
KRIT1 function would be complicated by possible alteration of
nucleocytoplasmic trafficking.

Another possible mediator of cytoplasmic localization of
the CCM complex is the protein sorting nexin 17 (SNX17,
Figure 2). Yeast two-hybrid screens as well as GST-trapping
assays previously identified KRIT1 as an interacting partner of
SNX17 and defined an interaction between the N-terminus of
KRIT1 and the SNX17 FERM domain (60). Crystallography
studies further confirmed this interaction, and pointed to the
particular importance of KRIT1’s second NPXY motif in this
interaction (33) (Figure 1). Sorting nexins are involved in a
variety of endocytic and endosomal processes, with SNX17
playing a role in endosomal recycling, particularly of integrins
(61). Thus, it is possible that the presence of SNX17 on
endosomal membranes could recruit the CCM complex away
from the plasma membrane. Furthermore, based on the fact that
both CCM2 and SNX17 bind to the second NPXY sequence
on KRIT1, SNX17 could compete with CCM2 for binding
to KRIT1, thus altering the composition of the signaling
complex in a location specific manner. The implications of the
interaction of KRIT1 with SNX17 are intriguing, and should be
investigated further.

The interaction of KRIT1 with CCM2 has also been
reported to promote cytoplasmic localization of both proteins.
Zawistowski et al. first reported that co-expression of KRIT1
and CCM2 led to the cytoplasmic localization of both proteins
in sub-confluent COS-7 cells. This paper also reported that
ICAP1α can form a tertiary complex with KRIT1 and CCM2
(34). As is discussed in depth in the next section, ICAP1α
expression promotes the nuclear localization of KRIT1. Thus
together, these data suggest that the relative binding of ICAP1α
and CCM2 to KRIT1 may control the distribution of the CCM
complex. Indeed, Francalanci et al. found that the nuclear
accumulation of ICAP1α and KRIT1 was lost in the presence
of CCM2 (42), which could suggest that CCM2 binding retains
KRIT1 in the cytoplasm or promotes nuclear export. CCM2
may also promote the cytoplasmic localization of CCM3,
as over-expressed CCM3 exhibits more nuclear localization
when the FAT domain is mutated and it no longer binds
to CCM2 (50).

The cytoplasmic localization of KRIT1 could also be regulated
by post-translational modification, such as phosphorylation.
To this point, we recently demonstrated that activation of
PKC, particularly PKCα, led to a predominantly cytoplasmic
distribution of KRIT1 and blocked localization of KRIT1 to the
nucleus in both sub-confluent and confluent endothelial cells.
Pre-treatment with the antioxidant N-acetyl-cysteine reversed
the ability of PKC activation to promote localization of KRIT1
to the cytoplasm, but did not go so far as to promote nuclear
localization (62). Work is ongoing to determine the target(s)
of PKCα which regulate KRIT1 nuclear-cytoplasmic shuttling,
but these data raise the question of why the shuttling of KRIT1
(and potentially the CCM complex) between the cytoplasm and

nucleus is so highly regulated, and what effect it might have on
complex function or CCM pathogenesis.

Nuclear Localization of the CCM Complex
Finally, the CCM proteins have been consistently observed in
the nucleus (Figure 2). While CCM2 and CCM3 lack established
nuclear localization or export sequences, KRIT1 has been
reported to have both (41). Full-length KRIT1 partially localizes
to the nucleus, as does the KRIT1 FERM domain [residues
409–736, (24)]. Truncating the FERM domain to eliminate
the F1 subdomain eliminates this nuclear localization (24), as
does mutating/deleting the F3 subdomain (42). Interestingly,
compared to full-length KRIT1, a truncated KRIT1 construct
containing the ankyrin repeats and the FERM domain (residues
207–736) is retained in the nucleus and is insensitive to PKC
activation (62). These observations have led to the conjecture that
KRIT1 contains two nuclear localization sequences, one in its N-
terminus (residues 46-KKKRKK-51); and one in the C-terminus
(residues 569-KKHK-572). Several studies have shown that
mutation of the N-terminal KRIT1 NLS is sufficient to decrease
localization of KRIT1 to the nucleus (42, 43), while mutation
of the second NLS in full-length KRIT1 is insufficient (43),
suggesting that the N-terminal NLS is functionally dominant
and that the nuclear localization of the FERM domain may be
driven by some other mechanism. Complicating matters, an N-
terminal fragment (residues 1–207), though it contains the NLS,
was shown to have a cytoplasmic distribution in transfected HeLa
cells (42).

Recently, Draheim et al. reported that KRIT1 nuclear
localization can be driven by its interaction with ICAP1α,
even in the absence of the KRIT1 NLS. Mutation of either
ICAP1α’s NLS or KRIT1’s ICAP1α binding site significantly
inhibited KRIT1 nuclear localization (43). This agrees with
early reports that demonstrated that co-expression of exogenous
KRIT1 and ICAP1α in COS-7 cells induced the complete
nuclear localization of both proteins (41). ICAP1α binding
to KRIT1’s first NPXY motif also sterically hinders KRIT1’s
association withmicrotubules, similar to what has been suggested
of the KRIT1•Rap1 interaction (40). Interestingly, the sequence
through which KRIT1 likely binds to microtubules is the same
stretch of lysines that form the KRIT1 NLS. Thus, changes
in the accessibility of this sequence, whether through ICAP1α
binding or through Rap1 binding, could cause dissociation from
microtubules and also allow for nuclear localization.

While the mechanism(s) governing trafficking of KRIT1 into
the nucleus appear clear, the shuttling of KRIT1 out of the
nucleus is much less well understood. Sequence prediction has
led to several papers proposing that KRIT1 has a nuclear export
sequence in the C-terminal FERM domain [residues 551–559,
(42, 44)]. However, when this sequence was mutated in a recent
study, it failed to lead to enrichment of KRIT1 in the nucleus
(43), suggesting that it is not a functional NES. Our recent
study suggests that export could be regulated by PKC activity
(62), but additional work will be necessary to fully characterize
the mechanism. Intriguingly, Zhang et al. reported in 2007 that
treatment with leptomycin B, an inhibitor of exportin 1, led to
accumulation of KRIT1 and CCM2 in the nucleus (44), leaving
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the possibility open that, if KRIT1 does not contain a functional
NES, perhaps CCM2 does.

In sum, it is clear that localization of the CCM proteins
is dynamically regulated by several potential mechanisms. The
current models of CCM signaling in the literature alternatively
obfuscate where in the cell the CCM complex is active (though
they restrict the possibilities to cytoplasm or membrane) or point
to membrane localization as being important- and imply that
cytoplasmic localization of the CCM complex acts to sequester
the complex away from the plasma membrane. The available
evidence supports both models, as we lack the direct evidence
needed to resolve these possibilities. However, in order to fully
understand the link between loss of function mutations in the
CCM proteins and CCM pathogenesis, future work will need
to address this gap in knowledge and illuminate how these key
binding interactions are segregated in time and place, and how
they collectively determine the location and function of the
CCM complex.

ROLE OF SUBCELLULAR LOCALIZATION
IN REGULATING THE SIGNALING
DOWNSTREAM OF THE CCM COMPLEX

At the Membrane: Adherens Junctions,
Tight Junctions, and Integrins
The early finding that KRIT1 localizes to points of cell-cell
contact (24) led to the development of a broadly accepted
working model in which junctional localization of the CCM
signaling complex is required to maintain endothelial and
vascular homeostasis. Conversely, loss of junctional localization
of KRIT1, such as after treatment with thrombin, correlated with
down-regulation of VE-cadherin adhesion and loss of barrier
function (24). Conspicuously, most of the studies supporting this
concept have focused on KRIT1, though CCM2 and CCM3 are
assumed to co-localize with KRIT1 in order to form a functional
signaling complex. In confluent endothelial cells, KRIT1 co-
immunoprecipitates with the integral adherens junction proteins
β-catenin and p120-catenin (24), and stabilizes the interaction
of β-catenin with VE-cadherin (63), a classical indication of
mature adherens junctions (64). Additionally, CCM lesions from
both human patients and mouse models exhibit a reduction in
TJ protein expression (4, 65, 66). In particular, claudin-5, the
major claudin isoform in endothelial cells, is downregulated after
loss of KRIT1 (65, 66). While the mechanism by which loss
of CCM protein expression leads to reduced barrier function
remains undefined, KRIT1 appears to affect cell-cell contacts
by stabilizing β-catenin association with adherens junction
complexes. Accordingly, loss of KRIT1 expression induces
phosphorylation of β-catenin at Y654, a key residue regulating
the cadherin•β-catenin interaction (67), leading to translocation
of β-catenin to the nucleus and changes in β-catenin mediated
TCF/LEF transcriptional activity, including increased expression
of cyclinD1 and Vegf-a (63). Claudin-5 transcription is
also under the control of a β-catenin•FoxO1•Tcf4 repressor
complex, thus increased β-catenin signaling in the nucleus
negatively regulates claudin-5 gene transcription (68). Though

the total effect of increased β-catenin transcriptional activity
on CCM pathogenesis has not been examined, Distefano et al.
demonstrated that increased expression of VEGF in KRIT1
deficient endothelial cells formed a feed-forward mechanism that
promoted several CCM-related changes in endothelial phenotype
(63). Furthermore, blocking the activation of the VEGF receptor
VEGFR2 limited lesion formation and bleeding in a mouse
model of CCM (69), suggesting that down-regulation of the
β-catenin•VE-cadherin complex may be a critical signal in
CCM pathogenesis.

Another potential mechanism reliant on the localization of
CCM proteins to cell-cell contacts lies downstream of HEG.
Mutating the binding sites for HEG1 or Rap1 on KRIT1
inhibits KRIT1 localization to endothelial junctions and disrupts
junctional VE-cadherin (39). Additionally, in vitro binding and
immunofluorescence data indicate that the Rap1 effector Rasip1
also appears to be anchored at cell-cell contacts by HEG1 (70),
suggesting that HEG1 is an important focus for Rap1 signaling.
The Rap1•Rasip1 interaction appears to inhibit Rho signaling
through activation of the RhoGAP ArhGAP29 (71). Though
HEG1 does not regulate the Rap1•Rasip1 or Rasip1•ArhGAP29
interactions, because KRIT1 and Rasip1 both bind HEG1 at
cell-cell contacts (70), HEG1 may be an important center point
for regulation of a balance between Rap1 and RhoA signaling
necessary for junctional homeostasis. Interestingly, Castro et al.
reported that postnatal deletion of Cdc42, a downstream target
of Rap1 signaling, also leads to formation of CCM-like lesions
(18). This further suggests that CCM pathogenesis may be
linked to activation/inactivation of specific signals downstream
of Rap1 signaling.

KRIT1 also plays a role in regulating β1-integrin activity
through its interaction with ICAP1α (Figure 2). KRIT1 competes
with the β1-integrin cytoplasmic domain to bind ICAP1α, and
can promote β1-integrin activation (32, 43). However, recent
examination of these signaling mechanisms by Lisowska et al.
suggests that KRIT1 or CCM2 depletion triggers enhanced
development of centrally localized β1-integrin-dependent focal
adhesions (72), which runs contrary to expectations based
on a competitive mechanism. This study also found that
activation of β1-integrin correlated with increased RhoA
signaling and remodeling of fibronectin ECM structure after
loss of either KRIT1 or CCM2 (72). The finding that loss of
KRIT1 or CCM2 upregulates β1 integrin activity corroborates
previous work by Faurobert and colleagues, who proposed
that KRIT1 depletion in HUVEC destabilized the ICAP1α
protein leading to ICAP1α degradation and subsequent increased
β1-integrin activation (73). The contradictory results may be
explained by the observation that the EA.hy926 cell line
used in the studies which demonstrated competitive inhibition
of the ICAP1α•integrin interaction by KRIT1 express more
ICAP1α and KRIT1, but significantly less β1-integrin compared
to HUVECs (32, 73).

Another potential explanation for increased β1-integrin
activation after KRIT1 depletion may lie in changes in
Rap1 signaling. Studies have established that Rap1 is major
regulator of integrin activation, particularly β1-integrin (74),
likely via interaction with the integrin-activating protein talin
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(75–77). Following this line of thought, it is possible that
depletion of KRIT1 would free Rap1 to bind to other
effectors. Excess free Rap1 could then promote talin-mediated
activation of β1-integrin, leading to the development of focal
adhesions, stress fibers, and other phenotypes associated with
β1-integrin activation.

As described earlier in this review, our recent study challenges
the idea that the physical localization of KRIT1 at the plasma
membrane is required for cell contact stability. Mutant KRIT1
in which the Rap1 binding domain is disrupted and in which
the N- to C-terminal interaction is blocked by mutation of
the first NPXY motif or the PTB domain rescues β-catenin
localization and restores barrier function of KRIT1-depleted
endothelial cells. Notably, these mutants have a predominantly
cytoplasmic localization, and are not present at cell-cell contacts
nor at the basal membrane. Thus, membrane localization appears
dispensable for the ability of KRIT1 to stabilize endothelial cell-
cell contacts (Figure 3). Interestingly, we found that stabilization
of cell-cell contacts does correlate with the capacity of KRIT1 to
regulate integrin signaling, and specifically to limit β1 integrin
activation. As previously reported, we observed that loss of
KRIT1 increased β1 integrin activity. This increase could be
rescued by expression of wildtype KRIT1 or KRIT1 in which
the N- to C-terminal self-interaction was ablated by mutation
of either the first NPXY motif or the PTB domain. However,
KRIT1 containing the R452E mutation failed to reverse the
activation of β1 integrin and cells expressing this construct
exhibited large centralized β1-dependent focal adhesions similar
to KRIT1 shRNA alone (58). Thus, these data suggest a
potential connection between the regulation of cell-cell contact
and cell-matrix contact by the CCM complex that should be
explored further.

In the Cytoplasm: Kinase Cascades
The effect of cytoplasmic localization on the function of the
CCM complex has not yet been extensively tested. However, the
CCM proteins, particularly CCM2 and CCM3, bind to several
protein partners with a presumed cytoplasmic distribution.
CCM2 binds to MKK3 and MEKK3, which regulate activation
of p38 MAPK in response to stress and inhibit BMK1/ERK5
activation respectively (26, 48). CCM3 binds to the STRIPAK
complex, which is found in the cytoplasm and at the membrane
and has several functions, including regulation of cell polarity
and Golgi assembly (51) (Figure 2). While the interaction of
CCM2 and CCM3 with these larger complexes has been well
documented, it is unknown whether the organization or function
of these complexes is affected by specific subcellular localization
of the CCM proteins. Precedent for such regulation exists,
as there are many examples of scaffolding proteins regulating
MAPK signaling cascades, including the classic scaffolds Ste5 and
KSR which control MAPK pathway localization (i.e., membrane
anchoring) and signaling efficiency (78). In this manner, the
CCM complex could target or anchor these signaling complexes
to the appropriate cellular location to receive incoming signals,
and/or control the flow of signaling information to specific
downstream processes.

In the Nucleus: A Blank Page
Lastly, despite the widespread presence of KRIT1, CCM2 and
CCM3 in the nucleus, only one publication has investigated a
possible function for the CCM proteins in the nucleus. Using
ultrastructural immunocytochemistry, Marzo et al. showed that
KRIT1 localized to perichromatin fibrils, which are markers of
transcriptional activity (79), as well as to the dense fibrillar
component of the nucleolus which contains pre-ribosomal RNA
(80), which hints at a possible role in transcriptional regulation.
This, combined with the presence of a Nudix domain in KRIT1,
makes it tempting to hypothesize that KRIT1 could bind directly
to nucleic acids and regulate transcription or RNA stability, as
do several of members of the Nudix protein superfamily (81).
This could provide another mechanistic link between expression
of the CCM proteins and changes in gene expression, which have
been widely reported (22, 82). In addition, it has been proposed
that KRIT1 and ICAP1α regulate each other by sequestering the
other partner inside the nucleus, thus preventing interaction with
cytoplasmic or membrane proteins. This idea is supported by the
positive influence that the KRIT1 NLS exerts on ICAP1α nuclear
localization (43), which would theoretically diminish the ability
of ICAP1α to suppress β1 integrin activation. Accordingly, one
could propose several mechanisms by which the localization of
the CCM proteins in the nucleus could regulate CCM complex
function, however it is still unclear whether, and how, this
would occur.

DISCUSSION

Loss of function mutations in KRIT1, CCM2 or CCM3 lead
to the development of CCM, a process that has been shown
to involve major changes in endothelial function and behavior.
The CCM proteins suppress cell division and inflammatory
signaling by regulating the p38-MEKK3-KLF2/4 signaling axis
(26, 83–85) while also regulating oxidative stress responses (22,
86–89), autophagy (23), apoptosis (87) and cell contractility
(54, 72) (in addition to stabilizing cell-cell contacts). However,
most of these disease-mediating mechanisms have only been
tied to the expression of the CCM proteins, not to their
localization or function. Thus, how CCM protein localization
fits in the context of CCM pathology is unclear. What’s more,
many, if not the majority, of the CCM-causing mutations
described in the literature are nonsense mutations which lead
to premature termination of translation (90, 91). CCM may
develop as the result of nonsense-mediated mRNA decay of
CCM protein transcripts (91–93) or due to degradation of the
truncated protein products via the unfolded protein response.
This implies that CCM develops due to the complete lack of
expression of one CCM protein, rather than the presence of
non-functional, truncated proteins. However, as the three CCM
proteins form a tripartite complex (52, 94), loss of one CCM
protein could result in perturbation of the localization and
function of the remaining complex members, which is indeed
the case. This could eventually explain why, for example, patients
with CCM3 mutations display earlier and more severe disease
(30). By continuing to advance our knowledge of themechanisms
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regulating the individual CCM proteins and the CCM signaling
complex, we can not only discover more about the mechanisms
that underlie CCM pathogenesis, but potentially identify new
therapeutic targets and perhaps expand our understanding of
other endothelial pathologies.

At the risk of sounding like a broken record, it is clear that
much work remains to be done in order to fully understand
how the CCM complex is regulated, whether by binding
interactions, subcellular localization, or other mechanisms.
Current knowledge is not only incomplete, but complicated
by differences in cell type, cell density, and expression level
between studies, making it difficult to form solid conclusions.
This is a critical need, as only by being able to fully understand
and manipulate the components and interactions of the CCM
complex will we be able to answer such questions as: what is the
function of the CCM complex in the nucleus, does the CCM
complex generate differential downstream signals depending
on its location, and how does loss of just one CCM complex
protein lead to the development of CCM? This will require
both a fuller understanding of the CCM interactome as well as
cutting-edge approaches to track protein location and binding
(potentially in real time). To make these future studies the
most effective, it will be important to consider effects of the
level of protein expression (i.e., over-expression vs. replacement

studies), as well as issues caused by differences in cell type (i.e.,
epithelial vs. endothelial) and cell culture conditions (i.e., sub-
confluent vs. confluent). The recent interest in structure-function
relationships, particularly in regard to KRIT1, is encouraging,
but we still know relatively little about these relationships in
CCM2 and CCM3. These gaps in knowledge will need to be filled
if we are to someday understand how disrupting the balance of
protein-protein interactions in the greater CCM complex (either
by mutation, manipulating expression, or post-translational
modification) contribute to endothelial dysfunction and
CCM pathology.
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SR9009 improves heart function
after pressure overload
independent of cardiac REV-ERB
Hui Li1†, Shiyang Song2†, Chih-liang Tien1, Lei Qi1,
Andrea Graves1, Eleni Nasiotis1, Thomas P. Burris3,
Yuanbiao Zhao1, Zheng Sun2,4* and Lilei Zhang1*
1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,
United States, 2Division of Diabetes, Department of Medicine, Endocrinology and Metabolism,
Baylor College of Medicine, Houston, TX, United States, 3Genetics Institute, University of Florida,
Gainesville, FL, United States, 4Department of Molecular and Cellular Biology, Baylor College
of Medicine, Houston, TX, United States

The core clock component REV-ERB is essential for heart function. Previous

studies show that REV-ERB agonist SR9009 ameliorates heart remodeling

in the pressure overload model with transverse aortic constriction (TAC).

However, it is unknown whether SR9009 indeed works through cardiac REV-

ERB, given that SR9009 might target other proteins and that REV-ERB in

non-cardiac tissues might regulate cardiac functions indirectly. To address

this question, we generated the REV-ERBα/β cardiac-specific double knockout

mice (cDKO). We found that REV-ERB cardiac deficiency leads to profound

dilated cardiac myopathy after TAC compared to wild-type (WT) control

mice, confirming the critical role of REV-ERB in protecting against pressure

overload. Interestingly, the cardioprotective effect of SR9009 against TAC

retains in cDKO mice. In addition, SR9009 administered at the time points

corresponding to the peak or trough of REV-ERB expression showed similar

cardioprotective effects, suggesting the REV-ERB-independent mechanisms

in SR9009-mediated post-TAC cardioprotection. These findings highlight that

genetic deletion of REV-ERB in cardiomyocytes accelerates adverse cardiac

remodeling in response to pressure overload and demonstrated the REV-ERB-

independent cardioprotective effect of SR9009 upon pressure overload.

KEYWORDS

circadian clock, REV-ERB, SR9009, TAC, heart disease

Introduction

Most living organisms’ behavior and physiological processes oscillate in day/night
cycles. Disruption of the circadian rhythm has been well associated with cardiovascular
disease, as exemplified by studies of shift workers (1, 2). In mammalian systems, the
central clock exists in the suprachiasmatic nucleus (SCN) of the brain, while peripheral
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clocks outside the SCN exist and function in almost all cell
types throughout the body. The function of the peripheral
clocks, including those in the heart, has been increasingly
appreciated from murine studies using tissue-specific peripheral
clock deletion models (3–5).

The molecular clock is comprised of a transcriptional-
translational feedback loop with the conserved core
clock factors, including the transcription activators
BMAL1/CLOCK and transcription repressor CRY/PER.
REV-ERBα/REV-ERBβ are nuclear receptors with heme
as the physiological ligand (6, 7), which stabilize and
enhance the core clock. They are thought to act primarily
as transcriptional repressors due to their lack of an
activation domain, although recent work has shown that
they may "tether" with other transcription factors for target
recognition (8, 9).

The function of REV-ERB in the heart was initially
established by a series of works using a pharmacological tool
drug, SR9009. REV-ERB agonist was shown to protect cardiac
function after pressure overload and myocardial infarction
(10–12). Recently, we and others have demonstrated the
physiological function of cardiac REV-ERB by constructing
REV-ERBα/β double cardiac knockout mice (cDKO) that
present progressive dilated cardiomyopathy (13, 14).
In addition, we have shown that an abnormal temporal
pattern of clock gene expression correlates with the severity
of cardiac dilation in patients with idiopathic dilated
cardiomyopathy (14).

It remains undetermined to what degree the
cardioprotective effect of SR9009 is dependent on cardiac
REV-ERB, considering that SR9009, like many small
molecules, has off-target effects (15). The relative functional
importance of REV-ERBα vs. REV-ERBβ in the heart is
also unclear. REV-ERBα and REV-ERBβ are encoded
by two different genes with a high homology (16, 17).
Previous literature suggests that in most systems Nr1d1 is
dominant with some overlapping functions between the two
(17–19).

Here we show that mice with REV-ERBα/β cardiac-
specific double deletion (cDKO) are exquisitely sensitive
to pressure overload and display a rapid onset of lethal
dilated cardiomyopathy upon TAC as compared to the
wild-type (WT) control. In comparison, REV-ERBβ single
KO mice show a very mild phenotype, suggesting that
REV-ERBα is dominant or there is significant functional
redundancy between REV-ERBα and REV-ERBβ. We have
found that SR9009 remains cardioprotective in cDKO
mice compared to WT mice, indicating that cardiomyocyte
REV-ERB is not required for the cardioprotection effect
of SR9009. We also show that anti-phasic administration
of SR9009 has similar effects to phasic administration,
suggesting its effect is unlikely through REV-ERB in other cell
types in the heart.

Materials and methods

Animals

Wild-type C57BL/6J mice were purchased from the Jackson
Laboratory at the age of 7 weeks and allowed to acclimate in the
Baylor College of Medicine for 2 weeks prior to the experiments
described below. REV-ERBα and β floxed mice were previously
described (Rev-erbαloxP (Nr1d1TM1.2Rev, MGI ID 5426700) and
Rev-erbβloxP (Nr1d2TM1.1Rev, MGI ID 5426699) (14). They were
crossed to generate the double floxed mouse line (Nr1d1/2fl/fl).
Exons 3 and 4 of Nr1d1 were floxed, which leads to an in-frame
deletion of the DNA binding domain upon Cre recombinase
cleavage (20). Exon 4 of Nr1d2 was floxed,1 which led to
a frameshift deletion and nonsense-mediated decay of the
transcript upon Cre recombinase cleavage (20). All the animal
procedures were approved by the Institutional Animal Care and
Use Committee at Baylor College of Medicine.

Preparation and administration of
SR9009

SR9009 was synthesized and purified in the laboratory of
Thomas Burris (Department of Pharmacology and Physiology,
St. Louis University, St. Louis, MO, United States) as previously
published (13). For in vivo experiments, SR9009 was dissolved
in 5% DMSO/10% Cremophor EL (Sigma-Aldrich, C5135)/85%
PBS in a working solution at 10 mg/ml. Mice were injected at a
dose of 100 mg/kg/day given i.p. once daily at zeitgeber time 6
or 18 (ZT6 and ZT18) as indicated. The diluent without SR9009
of the same volume was used as the control.

Pressure overload (TAC)

All mice were C57BL/6J littermate males aged 9 weeks
at the start of the experiment. Mice were anesthetized with
1% inhalational isoflurane, mechanically ventilated (Harvard
apparatus), and subjected to thoracotomy. The aortic arch was
constricted between the left and right carotid arteries using a 7.0
silk suture and a 27 gauge needle as previously described (20).
Pre-surgical and post-surgical analgesics with buprenorphine
(0.05 mg/kg, Sigma-Aldrich) and meloxicam (5 mg/kg, Sigma-
Aldrich)were administered.

Echocardiography

For transthoracic echocardiography, mice were anesthetized
with 1% inhalational isoflurane and imaged using the Vevo

1 http://www.informatics.jax.org/allele/MGI:5426699
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2100 High-Resolution Imaging System (Visual Sonics Inc.) with
the MS-550 40 MHz probe. Measurements were obtained from
M-mode sampling, and integrated EKV images were taken in
the LV short axis at the mid-papillary level.

Histological analysis

Short-axis heart sections from the mid ventricle were
fixed in PBS/4% paraformaldehyde and embedded in paraffin.
Fibrosis was visualized using Gomori’s Trichrome staining
kit (Sigma-Aldrich) with quantification of the fibrotic area
using ImagePro software. The cardiomyocyte cross-sectional
area was determined by staining with WGA Alexa 488
(Invitrogen W11261) and analyzed using ImageJ (National
Institutes of Health).

Cell isolation from mice heart

Mouse cardiomyocytes isolation was performed by
langendorff perfusion method, which was described in details
previously (21). Cardiac fibroblast and endothelial cell isolation
was performed using MACS cell separation (Miltenyi Biotech)
following the manufacturer’s instructions. Briefly, the mouse
heart was dissected and minced into small pieces. Collagenase
type I (Worthington LS004196) was used for digestion in 37◦C
for 1 h. After 1 h incubation, a strainer was used to remove large
particle and undigested tissues. RBC lysis buffer (ab204733)
was used to remove red blood cells. Next, CD45 microbeads
(Miltenyi Biotec, 130-052-301) and MS column (Miltenyi
Biotec, 130-042-201) were used to remove leukocytes. To
isolate cardiac fibroblast, CD90.2 microbeads (Miltenyi Biotec,
130-049-101) and MS were used. CD90.2 positive cells were
collected from MACS column. CD31 microbeads (Miltenyi
Biotec, 130-097-418) and MS column were used to isolate
endothelial cells from flow through samples. The enrichment of
the target cells was validated by qRT-PCR.

Reverse transcription and quantitative
real-time PCR

Total RNA was extracted using RNeasy Mini Kit (Qiagen
74106) according to the manufacturer’s protocol. The
concentration was measured by a microplate reader (FLUOstar
Omega, BMG LABTECH, Ortenberg, Germany). cDNA was
synthesized using a reverse transcription supermix (iScript,
BIO-RAD 1708841, CA, United States). Quantitative real-time
PCR was performed on QuantStudio 5 Dx Real-Time PCR
Systems (Applied Biosystems, Thermo Fisher Scientific, Inc.)
with 2× qPCRBIO Probe Blue Mix Lo-ROX (PCR Biosystems
Inc.) and TaqMan universal probes (Roche). All primers used

in this manuscript are listed in Supplementary Table 1. Ppib
was used as a reference for normalization. The relative mRNA
expression was calculated by the 11Ct method.

Statistical analysis

Data were shown as means ± SEM. Comparisons were
analyzed by Student’s t-test, one-way or two-way analysis of
variance (ANOVA). Multiple comparisons were taken into
account when necessary. All statistical analysis was performed
on IBM SPSS Statistics 22.0 (Armonk, NY, United States) or
GraphPad Prism (San Diego, CA, United States). P < 0.05 was
considered statistically significant.

Results

Double deletion of REV-ERBα/β in
cardiomyocytes led to severe cardiac
dysfunction and ventricular dilation
after pressure overload

We generated cardiomyocyte-specific REV-ERBα/β double
knockout mice, referred to as cDKO, by crossbreeding
Nr1d1/2fl/fl mice (Nr1d1TM1.2Rev, MGI ID 5426700 and
Nr1d2TM1.1Rev, MGI ID 5426699) with the αMHC-Cre line (22).
Cre negative Nr1d1/2fl/fl littermates were used as WT controls.
cDKO mice develop age-dependent dilated cardiomyopathy,
as we recently reported. However, the cardiac stress response
and pathological remodeling after pressure overload have not
been studied in these mice (13, 14). cDKO mice did not show
significant ventricular dilation or contractile dysfunction before
the age of 20 weeks. Therefore, we performed the transverse
aortic constriction (TAC) from 9 to 13 weeks of age when
the cardiac structure and function were indistinguishable to
the controls (Supplementary Figures 1A–I). We show that
the cDKO mice were highly sensitive to pressure overload
and had a significant drop in ejection fraction (EF) as early
as 2 weeks after the surgery, with an average EF of 20.9 vs.
53.5% in WT controls (Figure 1A); this is accompanied by
a significant left ventricle dilation at 5.02 vs. 3.33 mm in
the controls (Figure 1B). The left ventricular (LV) dimension
(LVID;d) was also increased in cDKO mice compared to WT
controls, with no change for LV wall thickness (Figure 1C).
We had to terminate the experiment at 4 weeks after surgery,
as the cDKO mice showed a significant drop in body weight
(21.0 g in cDKO vs. 28.6 g in WT controls) and reached
the humane endpoint (Figure 1D). Histology with trichrome
staining showed significantly increased fibrosis in cDKO
compared to the WT mice (Figures 1E,F). WGA staining
analysis of the cross-section area of muscle fiber did not
reveal obvious changes in cDKO vs. WT mice, which supports
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FIGURE 1

Deficiency of REV-ERBα/β or REV-ERBβ in cardiomyocytes exacerbates heart failure upon pressure overload. (A–C) Echocardiography analysis
of ejection fraction (EF), LVID;d (left ventricle internal diameter; end-diastole), and LVPW;d (left ventricle posterior wall thickness; end-diastole)
at __ weeks after TAC. (D) Body weight in WT, cDKO, and Nr1d2 cKO mice. (E,F) Representative images and quantification of fibrosis area by
Masson’s trichrome staining at 4 weeks after TAC. WT n = 10, cDKO n = 6, Nr1d2 cKO n = 5. Data are shown as mean ± S.E.M. ##p < 0.01,
###P < 0.001, ####P < 0.0001, ∗∗p < 0.01, ∗∗∗P < 0.0001 by two-way ANOVA, ∗ indicates comparison to WT, # indicates comparison to cDKO.
Tukey’s test was used for multiple comparison corrections.

eccentric hypertrophy or dilated cardiomyopathy as opposed
to concentric hypertrophy (Supplementary Figures 1N,O).
Thus, cardiac REV-ERB is essential for cardiac stress response
and remodeling upon pressure overload since cDKO mice are
highly susceptible to dilated cardiomyopathy in response to
pressure overload.

Single deletion of REV-ERBβ in
cardiomyocytes showed mild cardiac
dysfunction after pressure overload

To distinguish the functional significance between REV-
ERBα and REV-ERBβ, we used a similar strategy to generate
REV-ERBβ single cardiac deletion (Nr1d2f /f : α-MHC-cre),

referred to as Nr1d2 cKO. In contrast to cDKO, Nr1d2
cKO showed a modest reduction in EF (36.2% in cKO vs.
20.9% in cDKO) at 4 week after TAC (Figure 1B). cKO
mice did not show significant chamber dilation or LV wall
thinning compared to WT mice (Figures 1C,D). Consistent
with echocardiography analysis, Nr1d2 cKO mice were able to
maintain their body weight and normal activities on physical
exams during the entire experiment (Figure 1A). However,
trichrome staining showed significantly increased fibrosis in
cKO heart compared to WT (Figures 1E,F), indicating that
REV-ERBβ has an indispensable role on its own during
pressure overload. The mild phenotypic changes in Nr1d2
cKO mice suggest that REV-ERBα and REV-ERBβ could
have largely redundant roles or REV-ERBα is the dominant
isoform in the heart.
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SR9009 alleviates pressure
overload-induced heart failure in the
absence of cardiac REV-ERBs

SR9009 is a widely used REV-ERB agonist that targets
both REV-ERBα and REV-ERBβ. We have shown that SR9009
is cardioprotective in WT mice after pressure overload
when administered at Zeitgeber time 6 (ZT6), a time point
immediately before REV-ERB peak expression in the heart
(10). To test if the SR9009 effects are through REV-ERB,
we administered SR9009 to cDKO mice one day after TAC
at ZT6. SR9009 still protected the cDKO mice from cardiac
dysfunction, just as in the WT mice (Figures 2A–C and
Supplementary Figures 2A–D). EF was normalized from
20.9% in the vehicle-treated group to 53.8% in the SR9009
ZT6 group at 4 weeks after TAC (Figure 2A). SR9009
also prevented the dilation of the left ventricle in cDKO
hearts (LVID; d 5.06 mm with SR9009 vs. 3.74 mm with
a vehicle in cDKO) (Figure 2B). The LV wall thickness
also improved (LVPW;d 0.98 mm with SR9009 vs. 0.62 mm
with a vehicle in cDKO) (Figure 2C). Trichrome staining
revealed a reduction in cardiac fibrosis after SR9009 in
cDKO mice (Figures 2D,E). Thus, SR9009 retains the
full cardioprotective capacity in cDKO mice after TAC,
demonstrating that the cardioprotective effect of SR9009
against pressure overload is not dependent on REV-ERB
in cardiomyocytes.

SR9009 alleviates pressure
overload-induced heart failure
similarly at different times of the day

As a core component of the circadian clock, REV-ERBα

expression in the heart oscillates robustly, this was validated
by our RNA sequencing result in the mouse heart (14) as
well as an independent previously published microarray study
(GSE36407) (Supplementary Figures 3A–D). REV-ERBβ has
a similar phase to REV-ERBα with a smaller amplitude of
oscillation (Supplementary Figures 3A–D). We examined the
expression of REV-ERBα and β in each of the main cell types
in the adult mouse heart, including cardiomyocytes, cardiac
fibroblasts, and cardiac endothelial cells at baseline and TAC
conditions. The robust oscillatory pattern of REV-ERB was
retained in all cell types tested, with ZT6 close to the expression
peak and ZT18 close to the expression trough (Figure 3).
While TAC does not change REV-ERB expression in the heart
globally, when we examined each individual cell types, REV-
ERBα expression is reduced by about 50% in cardiac fibroblasts
and endothelial cells but not the cardiomyocytes (Figures 3A–
C and Supplementary Figures 3A,B). So, the bulk RNA
expression in the heart primarily reflects gene expression in
the cardiomyocytes. At ZT18, REV-ERBα expression is at 1–2%
compared to ZT6 for cardiac fibroblasts or cardiac endothelial
cells and about 20% compared to ZT6 for cardiomyocytes
(Figures 3A–C), which is comparable to what can be achieved

FIGURE 2

SR9009 rescues post-TAC cardiac dysfunction in REV-ERB deficient mice. (A–C) Echocardiography of WT and cDKO after vehicle or SR9009
treatment at ZT06. WT-vehicle n = 10, cDKO-vehicle n = 5, WT-SR9009 n = 5, and cDKO-SR9009 n = 6. (D,E) Representative images and
quantification of fibrosis area by Masson’s trichrome staining at 4 weeks after TAC for cDKO mice treated with SR9009 at ZT06. Data are shown
as mean ± S.E.M. ##p < 0.01, ###P < 0.001, ####P < 0.0001, ∗p < 0.05, ∗∗∗p < 0.001, ∗∗∗∗P < 0.0001 by two-way ANOVA, ∗ indicates
comparison to WT-vehicle, # indicates comparison to cDKO-vehicle. Tukey’s test was used for multiple comparison corrections.
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FIGURE 3

The rhythmic expression of REV-ERB in the major cell types of the heart. (A–C) Relative mRNA expression levels of Nr1d1 and Nr1d2 in major
cell types in the heart (CM-cardiomyocytes, CF-cardiac fibroblasts and Endo-endothelial cells) isolated from mouse hearts at 6 weeks after TAC
or sham surgery at ZT6 or ZT18. #p < 0.05, ∗P < 0.05, ∗∗p < 0.01, ∗∗∗P < 0.001 by two-way ANOVA. Tukey’s test was used for multiple
comparison corrections. n = 3. (D) Diagram of the SR9009 treatment schemes. Mice receive daily SR9009 injection post-TAC at ZT06 or ZT18
for 6 weeks. ****P < 0.0001.
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by Cre deletion or siRNA knockdown. REV-ERBβ also shows
a significant reduction pattern in the baseline condition of all
cell types detected at ZT18 (Figures 3A–C). Thus, ZT18 is a
time point when REV-ERB expression is sufficiently low in all
major cardiac cell types that it creates a transient de facto KO or
knockdown condition in the entire heart. Given the short half-
life of SR9009 (2 h), we hypothesized that if SR9009 has a major
effect on other non-myocyte cell types in the heart, its effects
may be diminished when administered at a different time point
(ZT18). In fact, a previous report showed the cardioprotective
effect of SR9009 upon myocardial infarction was only evident at
ZT6 and not evident at ZT18, which supports this notion (11).

We then performed TAC surgery in WT mice and treated
them with daily SR9009 at ZT18 (Figure 3D), when REV-ERB
expression is very low in all cardiac cell types. Surprisingly, the
effects of SR9009 at ZT18 were comparable to those at ZT6 as
we had previously published (10). SR9009 given at ZT18 rescued
TAC-induced cardiac dysfunction to a similar degree as SR9009
given at ZT6 (Figure 4A). Both showed EF in the normal range
after 6 weeks of TAC (52.0 and 60.6% individually), significantly
higher than the vehicle-treated group at 38% (Figure 4A).
SR9009 did not seem to alter the chamber size or wall thickness
of left ventricle (Figures 4B,C and Supplementary Figures 4A–
D), but ameliorated fibrosis drastically (Figures 4D,E). The
similar cardioprotective effects of SR9009 administrated at the
peak and trough of REV-ERB expression suggest a REV-ERB-
independent mechanism of SR9009 in counteracting pressure
overload-mediated contractile dysfunction.

Discussion

The cardioprotective function of REV-ERB was first
established using the pharmacological tool drug SR9009
(10, 11). Although SR9009 can have non-specific targets
(15), the essential role of REV-ERB in the heart was
confirmed by more recent reports using two independent
REV-ERB cardiac-specific knockout murine models (13,
14). To specifically investigate the role of REV-ERB
in cardiac disease remodeling processes, we challenged
REV-ERB cardiac-specific knockout mice (cDKO) with
pressure overload. Our results from the genetic model
demonstrated the key protective role of REV-ERB in
cardiac pressure overload in addition to maintaining normal
physiological homeostasis.

Nr1d1 and Nr1d2 genes that encode REV-ERBα and
REV-ERBβ, respectively, share a high degree of homology
(16, 17). Nr1d1 has been demonstrated to be the dominant
isoform in most systems studied to date, with partially
redundant functions between the two (17–19). To investigate
the contribution of REV-ERBα and REV-ERBβ in the heart,
we studied the Nr1d2 single cardiac cKO and compared it
to cDKO. We found that Nr1d2 cKO mice only show mild
dysfunction when compared to the cDKO mice under TAC
stress, indicating that Nr1d2 alone is dispensable for cardiac
protection upon pressure overload. Therefore, Nr1d1 is the
dominant isoform in the heart, or the two isoforms have largely
redundant roles.

FIGURE 4

Post-TAC SR9009 treatment at ZT6 or ZT18 is equally cardioprotective. (A–C) Echocardiography analysis of time-dependent effect of SR9009
on cardiac functions in WT TAC mice. WT-vehicle n = 10, WT-SR9009 ZT06 n = 6, WT-SR9009 ZT18 n = 5. Data are shown as mean ± S.E.M.
##p < 0.01 by two-way ANOVA comparing to the WT-SR9009 ZT18 group, ∗P < 0.05, ∗∗p < 0.01, ∗∗∗P < 0.001 by two-way ANOVA comparing
to the WT vehicle group. Tukey’s test was used for multiple comparison corrections. (D,E) Representative images and quantification of fibrosis
area by Masson’s trichrome staining at 6 weeks after TAC. ∗P < 0.05, ∗∗p < 0.01 by one-way ANOVA. Tukey’s test was used for multiple
comparison corrections.
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Considering the potential off-target effects of SR9009, we
set out to evaluate its target specificity in the heart. We
used the same regime we previously treated WT mice with,
and found, SR9009 retains the full cardioprotective capacity
in cDKO mice. The Nr1d1 deletion allele results in an in-
frame deletion of the DNA binding domain and a mutant
protein, which may be able to "tether" to other transcription
factors for target recognition (9). The Nr1d2 deletion allele is
a complete loss of function frameshift allele where no protein
is expressed. One could argue that the truncated REV-ERBα

might mediate the SR9009 effects. However, another cardiac
REV-ERBα/β double KO mouse line with a frameshift Nr1d1
deletion and a complete loss-of-function allele has an almost
identical phenotype to the cDKO mice used in this study (13,
14), suggesting that the truncated REV-ERBα unlikely has a
cardiac function.

As SR9009 is systemically administered, the effect of SR9009
may depend on REV-ERB in other cell types, as cardiomyocytes
account for 30–50% of the number of cells in a healthy heart
(23) and probably even lower proportion in a heart with
fibrosis or inflammation. By carefully isolating various major
cell types in the heart, we found that all cell types tested have
the same phase for the oscillatory REV-ERB expression. This
allowed us to administer SR9009 at a time when REV-ERB
expression nadirs in all cell types. As our previous experiments
were designed to administer SR9009 to match the peak of
REV-ERB and capture the maximum target availability, we
chose to also administer SR9009 at ZT18 when minimum
REV-ERB is expressed. We found that SR9009 is equally
effective at ZT6 or ZT18 despite the huge difference of REV-
ERB expression levels between these two time-points in all
major cell types in the heart. Therefore, SR9009 can have
cardioprotective effects independent of REV-ERB. We realized
that we have only examined 2 time points (the peak and
the nadir of REV-ERB), additional time points in a 24-h
day and increased number of animals may allow detection of
more subtle differences in the timing of SR9009 treatment.
Given its robust cardioprotective effects in multiple disease
models, it will be interesting to explore the genuine targets of
SR9009 in the future.

In conclusion, we demonstrate the cardioprotective
role of the core circadian clock component REV-ERB in
the pressure overload disease model. REV-ERVβ is largely
dispensable in this process. SR9009 likely protects the heart
through REV-ERB independent mechanisms, which warrants
further investigations.
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SUPPLEMENTARY FIGURE 1

Echocardiography parameters and histology analysis in WT, cDKO, and
Nr1d2 cKO mice in Sham and TAC groups. (A–H) Echocardiography
analysis of EF, FS (fractional shortening), LVID;s (left ventricular internal
dimension end-systole), LVID;d (left ventricle internal diameter;
end-diastole), LVPW;s (left ventricle posterior wall thickness; end
systole), LVPW;d (left ventricle posterior wall thickness; end-diastole), LV
Mass AW (corrected) (corrected left ventricular mass) and Body weight
in WT. (I) Representative images and quantification of fibrosis area by
Masson’s trichrome staining of Sham animal hearts at 13 weeks. WT
n = 3, cDKO n = 3. (J–M) Echocardiography analysis of FS (fractional
shortening), LVID;s (left ventricular internal dimension end-systole), LV
Mass AW (corrected) (corrected left ventricular mass), and LVPW;s (left
ventricle posterior wall thickness; end systole) in WT, cDKO and Nr1d2
cKO mice after TAC. WT n = 10, cDKO n = 6, Nr1d2 cKO n = 5. Data are
shown as mean ± S.E.M. #p < 0.05, ##p < 0.01, ####P < 0.0001,
∗∗p < 0.01, ∗∗∗∗P < 0.0001 by two-way ANOVA, ∗ indicates comparison
to WT, # indicates comparison to cDKO. Tukey’s test was used for
multiple comparison corrections. (N,O) Representative images and
quantification of cross-section area by WGA (Wheat Germ Agglutinin)
staining n = 4.

SUPPLEMENTARY FIGURE 2

Echocardiography analysis of post-TAC cardiac protective effect of
SR9009 in WT TAC and cDKO mice. (A–D) Echocardiography analysis of
cardiac protective effect of SR9009 in WT and cDKO mice before and
after TAC. FS, LVID;s, LV Mass AW (corrected) and LVPW;s were shown.
WT-vehicle n = 10, cDKO-vehicle n = 5, WT-SR9009 ZT06 n = 5, and
cDKO-SR9009 ZT06 n = 6. Data are shown as mean ± S.E.M.

∗∗∗p < 0.001, ∗∗∗∗P < 0.0001, ##p < 0.01, ###P < 0.001,
####P < 0.0001, ∗∗p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗P < 0.0001 by two-way
ANOVA, ∗ indicates comparison to WT-vehicle, # indicates comparison
to cDKO-vehicle. Tukey’s test was used for multiple
comparison corrections.

SUPPLEMENTARY FIGURE 3

Nr1d1 expression from GSE36407. (A,B) Relative mRNA expression levels
of Nr1d1 and Nr1d2 in mouse hearts at multiple Zeitgeber times (ZTs) in
Sham (Curve shows in Black) and TAC (Curve shows in Red) conditions.
Raw data is from GSE36407 in GEO (Gene Expression Omnibus)
∗P < 0.05, ∗∗∗P < 0.001, by two-way ANOVA, ∗ indicates comparison to
sham group. (C,D) Relative mRNA expression levels of Nr1d1 and Nr1d2
in mouse hearts at multiple Zeitgeber times (ZTs) with data from
previous RNAseq study (14). (E) Relative mRNA expression levels of
cardiomyocytes (Myh6), cardiac fibroblasts (Col1a1), and cardiac
endothelial (CDH5) marker genes in the isolated cells from mice hearts.
∗P < 0.05, ∗∗p < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001, by one-way
ANOVA, ∗ indicates comparison between cell types.

SUPPLEMENTARY FIGURE 4

Echocardiography analysis of the role of SR9009 on post-TAC cardiac
protection when administered at different time points. (A–D)
Echocardiography analysis. FS, LVID;s, LV Mass AW (corrected), and
LVPW;s after TAC were shown. WT-vehicle n = 10, WT-SR9009 ZT06
n = 6, WT-SR9009 ZT18 n = 5. Data are mean ± S.E.M. ∗P < 0.05,
∗∗p < 0.01, ∗∗∗P < 0.001 by two-way ANOVA, ∗ indicates comparison to
WT vehicle group. Tukey’s test was used for multiple
comparison corrections.
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The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the

ankyrin family of proteins, whose name is derived from the Greek word for

anchor. ANKB was originally identified in the brain (B denotes “brain”) but has

become most widely known for its role in cardiomyocytes as a sca�olding

protein for ion channels and transporters, as well as an interacting protein for

structural and signaling proteins. Certain loss-of-function ANK2 variants are

associated with a primarily cardiac-presenting autosomal-dominant condition

with incomplete penetrance and variable expressivity characterized by a

predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic

cardiomyopathy, congenital and adult-onset structural heart disease, and

sudden death. Another independent group of ANK2 variants are associated

with increased risk for distinct neurological phenotypes, including epilepsy

and autism spectrum disorders. The mechanisms underlying ANKB’s roles

in cells in health and disease are not fully understood; however, several

clues from a range of molecular and cell biological studies have emerged.

Notably, ANKB exhibits several isoforms that have di�erent cell-type–,

tissue–, and developmental stage– expression profiles. Given the conservation

within ankyrins across evolution, model organism studies have enabled the

discovery of several ankyrin roles that could shed important light on ANKB

protein-protein interactions in heart and brain cells related to the regulation

of cellular polarity, organization, calcium homeostasis, and glucose and fat

metabolism. Alongwith this accumulation of evidence suggesting a diversity of

important ANKB cellular functions, there is an on-going debate on the role of

ANKB in disease. We currently have limited understanding of how these cellular

functions link to disease risk. To this end, this review will examine evidence for

the cellular roles of ANKB and the potential contribution of ANKB functional

variants to disease risk and presentation. This contribution will highlight the

impact of ANKB dysfunction on cardiac and neuronal cells and the significance

of understanding the role of ANKB variants in disease.

KEYWORDS

sca�olding protein, cellular morphology, calcium homeostasis,

excitation-contraction coupling, arrhythmia, sudden cardiac death, seizure, autism

spectrum disorders
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Introduction

Loss-of-function variants in the ANK2 gene are associated

with a wide range of electrical and structural heart disease.
Reported cardiac phenotypes include arrhythmia, corrected

QT interval prolongation (sometimes referred to as long QT

type 4), and sudden cardiac death. A prolonged QT interval
on an electrocardiogram corrected for heart rate (QTc) is

a predictor of ventricular arrythmias and sudden cardiac

death (1, 2). At least 15 congenital long QT syndromes

(LQTS) have been described, associated with genes encoding
for ion channels, ion channel modulatory subunits, signaling

proteins, and cytoskeleton-associated proteins (3). One of

the first identified ANK2 variants, p.E1458G, was associated
with prolonged QTc, and this QTc prolongation has since

been associated with other ANK2 variants (4–7). Notably,

a prolonged QTc is not observed in all patients harboring

cardiac phenotype- associated ANK2 variants. In fact, there is

minimal evidence of a prolonged QTc in individuals under

the age of 25 (7). Additional reported cardiac manifestations
include bradycardia, sinus arrhythmia, idiopathic ventricular

fibrillation, and catecholaminergic polymorphic ventricular

tachycardia (5, 8). Separately, ANK2 is also emerging as a gene

of interest in neurological disorders. ANK2 has been identified

as a key risk gene for autism spectrum disorders (ASD) (9, 10)

and as a candidate gene for epilepsy (11).

The protein produced from the ANK2 gene, ankyrin-B

(ANKB), is a large scaffolding protein that has become known

as a key regulator of cardiac physiology (4, 12). There are three

mammalian ankyrin protein family members, including ANKB,

ankyrin-R (ANKR, ANK1 gene), and ankyrin-G (ANKG, ANK3

gene). ANKR is primarily expressed in erythrocytes (13) while

ANKB and ANKG are co-expressed in a variety of cell types

and tissues (14–16). Ankyrins, including ANKB, are composed

of four domains: a membrane binding domain comprised of

24 ANK repeats that interacts with membrane proteins such

as ion channels and transporters, a spectrin binding domain

responsible for interacting with βII spectrin, a death domain

of which the function has not yet been identified but in other

proteins is key for signal transduction cascades resulting in

apoptosis and inflammation (17), and a C-terminal domain. The

death domain and C-terminal domain comprise the regulatory

domain which is named due to its ability to directly bind the

membrane binding domain and play a role in inhibition (15).

As this review is focused on ANKB, the following information is

specific to ANKB, except where information about other ankyrin

family members provides key insight.

ANK2 has critical roles for cardiac and neuronal physiology

as indicated by loss-of-function variants and studies usingmodel

organisms. ANKB’s structure and different isoforms allow for

a diverse array of protein-protein interactions within a variety

of different cell types. As such, dysfunction in ANKB can lead

to a wide range of cellular impacts. There are different groups

of variants associated with different phenotypes; one group of

ANK2 variants is primarily associated with a broad cardiac

phenotype, another is associated with neurological diseases

including ASD and epilepsy, and others are linked to metabolic

perturbations. The ANK2 variant-associated clinical phenotypes

inform investigation of ANKB cellular roles, including key

potential protein-protein interactions and cellular processes that

could, in turn, help to develop new therapeutic strategies. To

this end, we first highlight certainANK2 variants associated with

disease and then discuss the potential underlying mechanisms

garnered from cell biological studies using a variety of model

organisms. These studies have revealed key cellular roles for

ANKB in the localization and spatial organization of ion

channels and transporters, signaling molecules, and structural

proteins involved in variety of cellular processes, including

development of cellular morphology, calcium homeostasis, and

glucose and fat metabolism. By linking ANKB’s emergent

cellular roles with phenotypes associated with ANK2 variants, a

picture of ANKB’s many contributions to cardiac, neurological,

andmetabolic health and disease begins to emerge.Making these

links is key to translating this knowledge into the clinical setting

and helps understand disease risk and presentation.

Tissue- and cell-type-specific
expression of ANKB isoforms across
development

There are several ANKB isoforms which exhibit cell-type–,

tissue–, and developmental stage–specific expression patterns.

While the 220 kDaANKB isoform is the primary isoform in both

the heart and brain [as well as other cells and tissues, such as

skeletal muscle, thymus, pancreas, and adipose tissue (18, 19)

certain isoforms exhibit tissue-specific expression. The initial

discovery of ANK2 (and its product ANKB) resulted from a

series of studies characterizing ankyrin cDNA enriched in non-

erythroid cells (20, 21). After the identification of a 440 kDa

isoform, consisting of a large insertion (exon 40) between the

regions encoding for the spectrin binding domain and death

domain (20, 22), transcript and protein level characterization

showed that 440 kDa ANKB was detectable at birth, with

expression levels peaking at postnatal day 10 and decreasing

progressively in the adult rat brain (down to 30% of peak levels)

(22). Meanwhile, the 220 kDa ANKB transcript and protein

levels were found to increase progressively through development

into adulthood (20, 23). In addition to the 220 kDa isoform,

additional ANKB isoforms have been detected in the heart: a 188

kDa isoform that, similarly to 220 kDa ANKB isoform, when

knocked down results in altered expression and localization of

the sodium calcium exchanger, a 212 kDa isoform which is

localized to striated muscle and the cardiac M-line (24), and a

160 kDa isoform that is highly expressed in mouse hearts along

with the 220 kDa isoform (25).
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TABLE 1 Spectrum of cardiac features associated with ANK2 variants in humans.

E1458Ga

N = 25

R990Q

N = 2

V3634Db

N = 4

S646F

N = 15

E1813Kc

N = 3

Q1283H

N = 1

T1404I

N = 1

M1988T

N = 5

T3744Nd

N = 10

R3906We

N = 2

I3437T

N = 1

W1535R

N = 6

46,XX,t

(4;9)

(q25;q31.1)

N = 5

Variant type Missense Missense Missense Missense Missense Missense Missense Missense Missense Missense Missense Missense LOF

Location SBD SBD DD MBD CTD SBD SBD CTD CTD CTD Disordered DD n/a

Arrhythmia LQTS X X X X X X

Drug-induced

LQTS

X X X X

CPVT X X

Atrial Fibrillation X X X

Cardiac arrest X X X

SCD X X X X

Bradycardia X X X X X X

VT X X X X

Other arrhythmia Recurrent VF Type 1

brugada

pattern

SVT Late potential

on SAECG

Torsades de

pointes

Torsades de

pointes, VF,

BrS

Conduction

abnormalities

WPW X

SND X X

Other Heart block

Symptoms Syncope X X X X X X X X X X X

Palpitations X

Structural HCM X X X

DCM X

ARVC X X

Other structural LV

dysfunction,

cardiomegaly

Congenital Heart

Defect

X X

Other Seizures X X

(Continued)

F
ro
n
tie

rs
in

C
a
rd
io
v
a
sc
u
la
r
M
e
d
ic
in
e

fro
n
tie

rsin
.o
rg

93

https://doi.org/10.3389/fcvm.2022.964675
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


York et al. 10.3389/fcvm.2022.964675

T
A
B
L
E
1

C
o
n
ti
n
u
e
d

E
1
4
5
8
G
a

N
=
2
5

R
9
9
0
Q

N
=
2

V
3
6
3
4
D
b

N
=
4

S
6
4
6
F

N
=
1
5

E
1
8
1
3
K
c

N
=
3

Q
1
2
8
3
H

N
=
1

T
1
4
0
4
I

N
=
1

M
1
9
8
8
T

N
=
5

T
3
7
4
4
N
d

N
=
1
0

R
3
9
0
6
W

e

N
=
2

I3
4
3
7
T

N
=
1

W
1
5
3
5
R

N
=
6

4
6
,X
X
,t

(4
;9
)

(q
2
5
;q
3
1
.1
)

N
=
5

G
n
om

A
D

0.
00
05
34
6

0.
00
00
19
71

0.
00
20
51

N
ot

ob
se
rv
ed

0.
00
22
86

N
ot

ob
se
rv
ed

N
ot

ob
se
rv
ed

N
ot

ob
se
rv
ed

0.
00
07
36
3

0.
00
09
33
7

N
ot

ob
se
rv
ed

0.
00
00
13
14

N
/a

C
lin

va
r
C
la
ss
ifi
ca
ti
on

(#
la
bs
)

L
P
(3
)

V
U
S
(4
)

L
B
(2
)

V
U
S
(3
)

V
U
S
(2
)

L
B
(5
)

B
(1
)

P
(1
)

V
U
S
(1
)

L
B
(5
)

B
(5
)

V
U
S
(1
)

V
U
S
(4
)

L
B
(7
)

V
U
S
(1
)

L
B
(6
)

B
(1
)

L
P
(1
)

V
U
S
(1
)

C
lin

V
ar

ID
V
C
V
00
00

18
05
6.
18

V
C
V
00
0

19
05
60
.9

V
C
V
00
00

67
59
9.
12

V
C
V
00
0

19
05
52
.2

V
C
V
00
00

18
06
0.
14

V
C
V
00

13
41
73
2.
1

V
C
V
00
00

18
05
7.
26

V
C
V
00
00

18
05
9.
23

V
C
V
00
00

67
59
6.
4

R
ef
er
en
ce

(4
,4
4)

(6
,4
3)

(8
)

(7
)

(1
30
)

(9
5)

(8
)

(4
4)

(5
)

(5
)

(4
0)

(4
6)

(3
9)

SB
D
,
Sp
ec
tr
in

B
in
di
n
g
D
om

ai
n
;
D
D
,
D
ea
th

D
om

ai
n
;
M
B
D
,
M
em

br
an
e
B
in
di
n
g
D
om

ai
n
;
C
T
D
,
C
-T
er
m
in
al

D
om

ai
n
;
L
Q
T
S,

L
on

g
Q
T
Sy
n
dr
om

e;
C
P
V
T,

C
at
ec
ho

la
m
in
er
gi
c
P
ol
ym

or
ph

ic
V
en
tr
ic
ul
ar

Ta
ch
yc
ar
di
a;
SC

D
,
Su

dd
en

C
ar
di
ac

D
ea
th
;
V
T,

V
en
tr
ic
ul
ar

Ta
ch
yc
ar
di
a;
V
F,
V
en
tr
ic
ul
ar

Fi
br
ill
at
io
n
;S
V
T,

Su
pr
av
en
tr
ic
ul
ar

Ta
ch
yc
ar
di
a;
SA

E
C
G
,S
ig
n
al
A
ve
ra
ge
d
E
C
G
;B

rS
,B

ru
ga
da

Sy
n
dr
om

e;
W
P
W
,W

ol
ff
P
ar
ki
n
so
n
W
hi
te
;S
N
D
,S
in
us

N
od

e
D
ys
fu
n
ct
io
n
;H

C
M
,H

yp
er
tr
op

hi
c
C
ar
di
om

yo
pa
th
y;

D
C
M
,D

ila
te
d
C
ar
di
om

yo
pa
th
y;
A
R
V
C
,A

rr
h
yt
h
m
og
en
ic
R
ig
ht

V
en
tr
ic
ul
ar
C
ar
di
om

yo
pa
th
y;
P,
P
at
ho

ge
n
ic
;L
P,
L
ik
el
y
pa
th
og
en
ic
;V

U
S,
V
ar
ia
n
to
fU

n
ce
rt
ai
n
Si
gn

ifi
ca
n
ce
;L
B
,L
ik
el
y
be
n
ig
n
;B
,B
en
ig
n
.a
P
re
vi
ou

sl
y
E
14
25
G
;b
P
re
vi
ou

sl
y
V
15
16
D
;c
P
ro
ba
n
d

al
so

ca
rr
ie
d
va
ri
an
ti
n
K
C
N
H
2-
H
56
2R

,o
n
ly
th
e
ph

en
ot
yp
e
in

th
os
e
ca
rr
yi
n
g
th
e
A
N
K
2
E
18
13
K
va
ri
an
ta
lo
n
e
de
sc
ri
be
d
in

ta
bl
e.
Se
e
te
xt

fo
r
de
sc
ri
pt
io
n
of

th
e
co
m
bi
n
ed

K
C
N
H
2
an
d
A
N
K
2
ph

en
ot
yp
e;

d
P
re
vi
ou

sl
y
T
16
26
N
;e

P
re
vi
ou

sl
y
R
17
88
W
.

Newer transcriptomics studies and databases of the

developing human heart show that ANK2 is differentially

expressed in human embryonic ventricular and atrial

cardiomyocytes, with high transcript levels also detected

in fibroblast-like cells associated with vascular development

and cardiac neural crest cells (https://spatialtranscriptomics3d.

shinyapps.io/Developmental_heart_explorer/) (26). ANK2

transcript levels peak during early mid-fetal human

development (and mouse Ank2 transcript levels peak

during late embryonic development) to eventually plateau

during later developmental stages (https://hbatlas.org/

mouseNCXtranscriptome/, https://hbatlas.org/pages/hbtd)

(26–29). In the 1-week-old mouse brain, Ank2 transcript

levels are enriched in astrocytes, neurons, and oligodendrocyte

progenitors (https://www.brainrnaseq.org/) (30). At the single

RNA-seq level, ANK2 transcript levels are slightly enriched in

inhibitory and excitatory neuron populations [Allen Cell Type

Database – “M1 - 10X GENOMICS (2020)”; https://portal.

brain-map.org/atlases-and-data/rnaseq] (31). Consideration

of this ANKB enrichment in select cell types, tissues, and

developmental stages could help provide important clues to the

clinical impacts of ANK2 variants. In the next section, we will

highlight several ANK2 variants and associated phenotypes that

provide important areas of focus for investigation of ANKB’s

cellular roles.

ANK2 variants and risk for disease

Consistent with enriched ANKB expression in heart and

brain, a number of ANK2 variants have been associated with

a range of cardiac phenotypes while others are associated with

neurological or metabolic phenotypes.

ANK2 variants associated with (primarily)
cardiac phenotypes

Certain ANK2 loss-of-function variants are associated with

a broad spectrum of cardiac phenotypes including arrhythmia,

conduction abnormalities, and cardiomyopathy (Table 1) (4,

8, 32). Amino acid changes produced by these variants are

present in all four domains of ANKB and are associated

with autosomal dominant inheritance, reduced penetrance,

and variable expressivity (Figure 1) (32). Initially described

as LQTS type 4, QTc prolongation is commonly linked with

cardiac-phenotype associated ANK2 variants, although the role

in QT prolongation has been since debated (33) (Table 1).

ANKB p.E1458G (previously p.E1425G), the result of an amino

acid substitution in the spectrin binding domain, was among

the first ANK2 variants identified. It was found in a French

kindred with LQTS associated with atrial fibrillation and sinus

node dysfunction (4). There was a family history of sudden
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FIGURE 1

ANK2 variants are associated to cardiac arrhythmias and autism spectrum disorders (ASD). Diagram of canonical human ANKB (UniProtKB

Q01484-4, 3,957 aa) showing ANKB regions and domains. Canonically, ANKB can be divided into 4 main domains: an initial membrane binding

domain, a spectrin binding domain, a death domain, and a C-terminus domain. The ANKB membrane binding domain contains 24 consecutive

ankyrin (ANK) repeats and associates with ion channels and transporters; the spectrin binding domain contains highly conserved ZU5-ZU5-UPA

domains and associates with βII-spectrin and the B56α subunit of PP2A; and the regulatory domain comprised of the death domain and

C-terminus domain comprised is unstructured and highly variable between species. Orange and cyan dots represent the main cardiac and ASD

variants discussed in the main text. Functional variants have been identified in each of ANKB’s domains.

death, including an 18 and 12 y.o. The variant demonstrated

incomplete penetrance in one out of 23 carriers. Age related

effects were also observed, affected children had sinus node

abnormalities (diagnosed in utero) whereas atrial fibrillation

was present only in adults (4). Of note, the p.E1458G variant

has also been identified in a healthy Danish exome cohort

without evidence of QTc prolongation and has a frequency of

0.11% (41/35360) in the Latino population according to the

Genome Aggregation Database (gnomAD) (34, 35). Similarly,

while two ANK2 variants p.E1458G and p.V3634D (initially

reported as p.V1516D) were over-represented in a private

cohort from an inherited heart rhythm clinic, most patients

carrying ANK2 variants that were referred to this clinic

showed no symptoms or had electrocardiographic findings

of unknown significance; however, their genetic ancestry

composition and clinical and epidemiological information is

not publicly available (36). Another variant associated with

prolonged QTc and ventricular tachyarrhythmias is the ANK2

p.L1622I variant, found with higher frequency in individuals

of African ancestry (minor allele frequency: 0.03, 850/24964,

gnomAD) (5, 37).

ANKB p.S646F, the first identified variant located in the

membrane binding domain, also came to attention due to

LQTS. This variant was found in two large multigenerational

Gitxsan families identified because of LQTS in the context

of a known high community prevalence of KCNQ1-mediated

LQTS. The probands in each family did not carry the known

KCNQ1 variant (38), but instead, carried the p.S646F variant

(7). As with the p.E1458G variant, QTc prolongation was not

the only associated feature. The variant was identified in one

individual who died suddenly due to dilated cardiomyopathy,

another carrier had a history of Wolf-Parkinson-White (WPW)

syndrome, and this individual’s daughter was born with a

congenital heart defect (total anomalous pulmonary venous

return). Age related effects were observed, with limited

evidence of QTc prolongation in those under 25 years

(7). Congenital heart defects were also reported in a fetus

carrying a duplication of 4q25-ter and 9pter-q31.1 with

breakpoints in chromosome four transecting ANK2; the fetus

was born with multiple cardiac malformations including a large

atrioventricular septal defect (39). However, it is unclear whether

the congenital heart defects may be related to the duplications

or whether ANK2 haploinsufficiency played a role. Carriers

of the balanced translocation, which includes breakpoints

transecting ANK2, did not have congenital heart defects but

other cardiac features including bradycardia, ventricular ectopy,

sinus node dysfunction, and mild left ventricular dysfunction

(Table 1).
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LQTS is not the only phenotype associated with loss

of ANKB function. Over time, several other arrhythmias

and conduction anomalies have been associated with

ANK2 variants including catecholaminergic polymorphic

ventricular tachycardia (CPVT), bradycardia, and

WPW. An occurrence of CPVT in carriers of an

ANK2 variant has been reported in a small number of

cases, with a recent report by Song et al. (40) of a 20

y.o. man with diagnosis of CPVT and non-ischemic

cardiomyopathy who was found to carry the p.I3437T

variant located in the disordered domain of ANKB

(8, 41). WPW has been suggested to be another feature

of Ankyrin-B syndrome. In addition to the one individual

with WPW carrying the p.S646F variant previously

mentioned, two rare de novo and one inherited variant

in ANK2 were identified in a cohort of patients with

WPW (7, 42).

Beyond inherited arrhythmias, loss-of-function variants in

ANK2 have also been associated with cardiomyopathy, such

as hypertrophic cardiomyopathy, dilated cardiomyopathy, and

LV dysfunction (7, 39, 43). In a cohort of patients with

HCM, rare variants in ANK2 showed a statistically significant

association with greater maximal mean left ventricular wall

thickness, contributing to more severe LV hypertrophy (43).

Recently, the role of ANK2 in arrhythmogenic right ventricular

cardiomyopathy (ARVC), a condition characterized by fibrofatty

replacement of the myocardium, ventricular arrhythmias, and

sudden cardiac death has come to attention. The previously

reported p.E1458G variant was identified in an individual who

died suddenly while running and was found to have ARVC on

autopsy. A secondANK2 variant was identified in a family where

the proband died suddenly during exercise and was also found

to have ARVC on autopsy. Post-mortem genetic testing was

carried out and identified a novel p. M1988T variant, which is

located in the C-terminal domain. Additional family members

were identified through cascade screening to have definite or

borderline diagnoses of ARVC (44).

With the emergence of a broad spectrum of features

linked to ANK2 variants came the term “Ankyrin-B syndrome,”

which at the time more fully captured the complexity of

the range of associated phenotypes (8, 32). Although the

origin of Ankyrin-B syndrome is associated solely with

cardiac phenotypes (8, 45), through the investigation and

identification of new variants, it has become apparent that

ANKB dysfunction is not exclusive to cardiac phenotypes

but underlies neurological ones as well. Thus the term,

Ankyrin-B syndrome, does not fully capture the broad

spectrum of ANKB dysfunction across all cell types and

variants. The pleiotropic nature of ANK2 is highlighted by

individuals that experience seizures in combination to the

cardiac manifestations (7, 46), as well as unique ANK2 variants

associated with ASD (47–49) of which we will discuss in the

next section.

ANK2 variants associated with
neurological phenotypes

Beyond the heart, ANK2 is emerging as an important
gene in neurological conditions, including ASD and epilepsy.

It is important to note that the variants associated with

Ankyrin-B syndrome (cardiac-phenotype associated ANKB

variants) are distinct from those reported in association with
ASD, and a combination of cardiac and ASD phenotypes

has not been reported. Rare variants in ANK2 including

missense, frameshift, non-sense, and copy number variants

have been identified in individuals with ASD (Table 2) (10,

47–50). ANK2 is classified as a high-confidence gene clearly
implicated in ASD by the Simons Foundation Autism Research

initiative due to the reports of at least three de-novo loss-of-

function variants in the literature and meeting the threshold

false discovery rate of <0.1 (https://gene.sfari.org/database/

human-gene/ANK2). ASD-associated ANK2 variants are largely

non-syndromic and typically not associated with intellectual

disability (Table 2) (51). While some variants are present within

both the 220-kDa and 440 kDa ANKB proteins, certain variants

are unique to the 440-kDa giant ANKB isoform. For instance,

a knock-in mouse model carrying ANKB p.P2580fs (analogous

to the human p.R2608fs), which expresses a truncated giant

ANKB polypeptide, demonstrated ASD-like behaviors including

repetitive behavior, decreased ultrasonic vocalization, reduced

territory marking, and superior executive functioning. Of note,

mice homozygous and heterozygous for the p.P2580fs variant

exhibited the same behaviors, supporting that haploinsufficiency

ofANK2 could contribute to risk for ASD (51). Using amultiplex

network that characterized modules of epilepsy and ASD genes

sharing similar phenotypes and protein-protein interactions,

ANK2 has also been identified as a novel candidate gene for

epilepsy (11). Similarly, in a workflow using the random walk

with restart algorithm in addition to permutation and functional

association tests ANK2 was also predicted as a novel gene for

epilepsy (52).

Notably, independent of the connection between ANK2

variants and risk for epilepsy, seizures were reported in

association with cardiac-phenotype associated ANK2 variants.

A history of seizures was reported in eight of eighteen carriers

of the ANKB p.S646F variant, and in two out of six patients

carrying the ANKB p.W1535R variant (7, 46). In a study which

sequenced cases of epilepsy-related sudden unexpected death for

inherited heart disease related genes, one individual was found

to carry two variants in ANK2 (p.Ser105Thr, p.Glu1934Val).

Of note, this death occurred by drowning, and the individual

was reported to have mildly prolonged QTc (53). Given that

seizures can be linked to cardiac arrhythmias (54) and the fact

that some cardiac-associated ANK2 variants are linked with

seizures (7, 46) it would be worth investigation to determine

if the seizures are a result of the arrhythmia or independent

and owed to dysfunction in the brain. Furthermore, with the
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TABLE 2 ANK2 variants associated with autism spectrum disorder.

Variant Type Location ASD Intellectual

disability

Other gnomAD Clinvar ID Reference

Affect only giant ANKB (440 kDa) isoform

P1843S Missense Disordered X 0.000003979 (134)

E3429V Missense Disordered X Absent (48)

R2608fs Frameshift Disordered Pervasive

developmental

disorder

Absent (135)

Affect giant ANKB (440 kDa) and 220 kDa isoform

R990* Nonsense ZU5-1 Asperger’s disorder Absent VCV000450028.2 (10)

Q1589Kfs Frameshift X X Sensorimotor

neuropathy, facial

dysmorphism

Absent VCV000235896.1 (50)

4:113593803_113967887dup Duplication X n/a VCV000236353.1 (47)

4:114077690_118094709dup Duplication X n/a VCV000236354.1 (47)

4: 114225715-114429181del Deletion X n/a VCV000236355.1 (47)

Table adapted from Yang et al. (51); ASD, Autism Spectrum Disorder.

link to epilepsy in neurological-associated ANK2 variants (11)

it raises the question of how ANKB dysfunction is impacting

neuronal mechanisms.

ANK2 variants associated with metabolic
phenotypes

ANK2 variants have also been implicated in the regulation

of fat and glucose metabolism. In particular, the ANK2

p.R1788W variant, which is associated to cardiac phenotypes

(Table 1), was enriched in individuals of white and Hispanic

descent diagnosed with type 2 diabetes in the American

Diabetes Association GENNID cohort. Moreover, the

ANK2 p.L1622I variant, associated with a less severe

cardiac phenotype, is the most frequent ANK2 variant

(7.5%) in African Americans who carry up to a 2-fold

increased risk for type 2 diabetes (19, 55, 56). Whether

other primarily cardiac or neuronal ANK2 variants also

result in global or local metabolic disturbances remains to

be investigated.

Fundamental research studies revealing the many roles

of ANKB within cells have provided insights into possible

mechanisms behind the various phenotypes associated with

ANK2 variants. ANKB is implicated in different pathways, as

it is a scaffolding protein for ion channels and transporters

as well as a link for structural and signaling proteins,

some of which are outlined below and summarized in

Table 3.

Insights on the cellular role(s) of
ANKB from model organism studies

Given their sequence similarity, it is possible to understand

the biological role ofANK2 (and its homologs) through studying

model organisms. Mouse Ank2 is comprised of exons exhibiting

considerable homology to those found in human ANK2 and

exhibits similar tissue-specific isoform expression patterns (24,

25). In mice, global Ank2 knockout causes neonatal death

(57), while conditional Ank2 knockout in the heart and brain

results in significant electrical and structural impairments and

death (44, 51, 58, 59). Heterozygous Ank2 knockout (Ank2+/−)

mice model haploinsufficiency (i.e., expression of a single

wildtype Ank2 allele fails to produce a wildtype phenotype),

are relatively viable, and therefore used in many preclinical

studies. Ank2+/− mice display increased susceptibility to atrial

and catecholamine-induced ventricular arrhythmias and sudden

death, as well as, premature senescence and reduced lifespan

(4, 8, 45). These cardiac manifestations have been associated

with decreased presence of the sodium calcium exchanger,

the sodium potassium ATPase subunits 1 and 2, and the

inositol 1,4,5-trisphosphate receptor at the T-tubules of cultured

primary cardiomyocytes (4, 60) (Figure 2). Mice with complete

global loss of Ank2 (Ank2−/−) display severe structural brain

defects, such as hypoplasia of white matter tracts, dilated

ventricles, and degeneration of the optic nerve (57). As several

developmental signaling pathways are strongly intertwined

with the homeostasis of ions, such as calcium (61–63), the

severe structural phenotypes observed in the context of ANKB
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TABLE 3 ANKB interacting partners.

Domain Classification Interacting partner Cell type interaction confirmed in References

MBD Ion channels/ Transporters Inositol 1,4,5-trisphosphate receptor Cardiac and Neuronal (4, 5, 14, 60, 103, 136)

CaV1.3 Cardiac (136, 137)

CaV2.1 Neuronal (101, 102)

CaV2.2 Neuronal (101)

CaV3.1 Neuronal (138)

CaV3.2 Neuronal (138)

Kir6.2 Cardiac (139, 140)

Sodium Calcium Exchanger Cardiac and Neuronal (4, 5, 24, 60, 103, 137)

Sodium Potassium ATPase (a1 and a2) Cardiac and Neuronal (4, 5, 60, 103, 137, 140,

141)

Erythrocyte anion channel Neuronal (12)

Structural EHD1-4 Cardiac (142)

Structural/ Signaling Beta-catenin Cardiac (44)

Cell adhesion L1CAM Neuronal (51, 120, 143)

Dystrophin Cardiac (144, 145)

SBD Motor movement Dynactin-4 Cardiac and Neuronal (144–146)

Structural βII-spectrin Cardiac and Neuronal (6, 59, 103, 147)

Signaling Phosphatidylinositol 3-phosphate Neuronal and Fibroblast (146, 148)

PP2A B56α Cardiac (95, 149, 150)

Giant insertion Enzyme Ndel1 Neuronal (151)

DD Signaling RABGAP1L Fibroblast (148)

CTD Chaperone HSP40 Cardiac (69)

Signaling Obscurin Cardiac (24, 152)

Regulatory Ankyrin-B MBD Cardiac (15)

Unknown Signaling SadA/SadB Neuronal (153)

Chaperone UNC-119 Neuronal (80)

FIGURE 2

ANKB interactions in cardiomyocytes implicates ANKB in a variety of cellular processes. Diagram of ANKB interacting partners and their

localization allowing for proper cardiac function. ANKB interactions at the (A) t-tubule (B) intercalated disc and (C) sarcomere allow for proper

cell functions. Kir6.2, inward rectifier potassium channel; NCX, sodium calcium exchanger; NKA, sodium potassium ATPase; CaV1.3,

voltage-gated calcium channel; IP3R, Inositol 1,4,5-trisphosphate receptor; PP2A, protein phosphatase 2A; RYR2, ryanodine receptor 2; L1CAM,

L1 cell adhesion molecule; PI3P, phosphatidylinositol 3-phosphate; CaV1.3, voltage-gated calcium channel; TCF/LEF, T cell factor/lymphoid

enhancer factor transcription factors.
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dysfunction (or haploinsufficiency) may be related to ANKB

regulatory roles in ion homeostasis and cytoskeletal proteins.

Analysis of the molecular evolution of ankyrins has revealed

a single ankyrin gene in Caenorhabditis elegans (unc-44), two

ankyrin genes in Drosophila melanogaster (Dank1, Dank2),

and three mammalian ankyrin genes (ANK1, ANK2, ANK3)

that likely originated from a single ankyrin ancestor gene

in Ciona intestinalis (64, 65). Moreover, these analyses have

also demonstrated a closer evolutionary relationship between

ANK2 and ANK3, which despite their high sequence and

structural similarity localize to different cellular compartments

and associate with different proteins (66, 67). In most cases,

ankyrins do not have the ability to compensate for each other

(68, 69). However, previous studies from the Rasband lab

have shown that in the central nervous system ANKB can

partially compensate for loss of paranodal ANKG and ANKR

can compensate ANKG’s role in sodium channel clustering at

nodes of Ranvier (70, 71). While each ankyrin protein appears to

have different roles they share some protein-protein interactions

and can provide insight into each other’s roles in cells.

The use of model organisms can help unravel the

mechanisms behind the clinical phenotypes associated

with ANK2 variants. Insights from model organisms have

elucidated ANKB’s essential roles in regulating cellular

morphology, polarization, calcium homeostasis, and glucose

and fat metabolism, as outlined below and summarized in

Tables 3–5 and Figures 2, 3.

ANKB regulates cellular morphology and
polarization

As cells develop, migrate, and mature, cytoskeletal

rearrangements lead to the specification of a directionality

axis resulting in well-organized regions that support motility,

cell-to-cell contacts, and surfaces for secretion or absorption

(72). This spatiotemporal phenomenon is known as cell polarity

and it is what influences the shape, motility, and trafficking and

signaling domains in cells, as well as their ability to respond

and adapt to extracellular and intracellular signals (72, 73). In

the mouse heart, for example, cell polarization allows round

embryonic ventricular cardiomyocytes to postnatally adopt

the shape of a rod and direct their junctional proteins to the

ends of the now elongated cells to form the intercalated disc, a

specialization for cell-to-cell communication (74, 75). In other

cell types, such as neurons, cell polarization defines specialized

compartments for receiving (dendrites) and sending (axons)

electrochemical signals (76). Insights from studies using model

organisms have shown ANKB’s essential role in neuronal

development which raises the question of how ANKB may play

a role in cardiomyocyte development as well.

Although it is yet unclear whether ANKB plays a role in

the morphological development of cardiomyocytes and other

cardiac cell-types in which it is expressed, there is evidence of

ANKB’s roles in neuronal development. Studies using the model

organism C. elegans have demonstrated that ANK2’s ortholog

unc-44/ankyrin is a known master regulator cell polarization

and axonal neurite outgrowth in this roundworm’s sensory

neurons (77–80). Mutations affecting unc-44/ankyrin function

result in abnormal neural development, locomotor defects,

and microtubule networks with mixed polarity in axons and

dendrites leading to abnormal protein sorting and trafficking

into these compartments (77–79, 81–83). Unc-44/ankyrin,

along with unc-33/crmp (an actin and microtubule associating

protein) and unc-116/kinesin-1 (a motor protein) help establish

neuronal polarity by regulating the organization of dendritic

and axonal microtubule networks (79, 81). Furthermore, unc-

44/ankyrin acts upstream of unc-33/crmp and vab-8/kinesin-like

protein to regulate the removal of gap junction channels (84)

which allow for the direct electrical communication between

cells and play a key role in development (85, 86). In Drosophila

melanogaster, Dmel\ank2, which has a short and long/ giant

isoform localized to different sub-cellular compartments (cell

body and axon, respectively) supports the stabilization and

remodeling of the synaptic microtubule network (87, 88). Loss

of Dmel\ank2 results in retraction of synaptic boutons, collapse

of the pre-synaptic active zones, reduction of the terminal

size, and altered neuromuscular junction morphology (88, 89).

While the role of ANK2 in cardiomyocyte polarization during

heart development remains to be investigated, some of the

ANK2 variants listed above have been associated with cardiac

malformations suggesting that ANKB dysfunction results in an

impact to the structural development of these cells (7, 39).

Recent organ-specific ANK2 conditional knockouts further

underscore the important role of ANK2 in the structural

development of cardiomyocytes and neurons. Specifically, the

beta-catenin/Wnt signaling pathway is important in both

cardiac and neuronal cell fate determination, axis patterning

and polarity, and proliferation (90–92). This pathway is initiated

by the accumulation of beta-catenin in the nucleus leading

to the transcription of Wnt responsive genes (92). Evidence

underlying ANKB’s role in cell proliferation and survival

has been highlighted by the p.S646F variant. In H9c2 cells,

a cell model with similar traits of primary cardiomyocytes

(93), expression of the p.S646F variant resulted in decreased

cellular viability and proliferation (94). Using a cardiac-specific

conditional knockout model, Roberts et al. found that loss

of Ank2 in the heart leads to severe cardiac remodeling

resulting in ventricular dilation, fibrosis, bradycardia, QTc

prolongation, and increased susceptibility to catecholamine-

induced ventricular arrythmias (44). Associated with decreased

protein expression and altered localization of beta-catenin

away from the intercalated disk, this cardiac-specific ANK2

knockout phenotype recapitulates what has been observed
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TABLE 4 Summary of ANKB’s cellular roles identified using model organisms.

Model organism Biological process Elucidated roles and implications Reference

Mus Ank2−/− (Ank2 null) N/a Global knockout is deadly (57)

musculus Ank2+/− (Models

haploinsufficiency)

Cardiomyocyte structural

development

Cardiac malformations imply role in structural

development

(4, 8, 45)

Calcium homeostasis and signaling Localization and expression of the

sodium/calcium exchanger, inositol trisphosphate

receptor, and voltage-gated calcium channels

L-type channels; Cav1.3 expression (SAN

isolated cells and atrial cardiomyocytes)

P/Q-type channels; Cav2.1 and Cav2.2

expression (cortex, cerebellum,

and brainstem)

(4, 60, 101,

136, 137)

Regulation of RYR2-mediated sarcoplasmic

reticulum calcium leak via PP2A (cardiomyocytes)

(104)

Regulation of calcium homeostasis affects calcium

cycling dynamics (calcium transients, sparks) and

delayed afterdepolarizations

(4, 5, 95, 104)

Glucose and fat metabolism Downstream effects on oral glucose tolerance (114)

shAnkB knockdown Calcium homeostasis and signaling Localization and expression of T-type channels

Cav3.2 expression (hippocampal neurons)

(138)

Cardiac-specific conditional

knockout

Cardiomyocyte structural

development

Cardiac remodeling implies structural role (44)

Involved in Beta-catenin localization and

expression; possible implications on

beta-catenin/Wnt signaling

Brain-specific knockout

(brain-specific ANKB 440-kDa

isoform not expressed)

Neuronal structural development Synaptic signaling and synapse excitability (51)

Axon branching and connectivity (linked to Ank2

involvement in microtubule bundle formation)

Abnormal social behavior. Impaired

communicative behavior. Enhanced executive

function.

Excitatory neuron-specific

knockout (ANKB 220-kDa and

440-kDa are not expressed in

excitatory neurons)

Calcium homeostasis and signaling Regulation of Cav2.1 expression (decreased Cav2.1

expression in whole cortex homogenates)

(102)

Adipose tissue-specific conditional

knockout

Glucose and fat metabolism Adiposity (117)

Pancreatic islet size

Insulin resistance

ANK2 p.R1788W knock-in Glucose and fat metabolism Abnormal insulin secretion. Insulin resistance (19)

Increased peripheral glucose uptake (increased cell

surface GLUT4)

Adiposity

Caenorhabditis elegans: unc-44 Neuronal development and

polarization

Regulating organization/ polarization neurite

microtubule networks

(79, 81)

Drosophila melanogaster: Dank2 (Dmel\ank2) Neuronal development and

polarization

Supporting stabilization and remodeling of

synaptic microtubule network

(87, 88)
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TABLE 5 Summary of primary biological functions a�ected by ANKB dysfunction/loss-of-function.

Biological function Level Heart Brain

Structural development and

cell polarization

Cellular Trafficking and distribution of ion channels and

exchangers along T-tubules and beta-catenin at the

intercalated disc

Definition of axonal and dendritic compartments in

neurons

Trafficking of proteins to axonal and

dendritic compartments

Tissue/Organ Dilated cardiomyopathy

Ventricular wall fibrosis

White matter tract defects

Increased axonal connectivity

Calcium homeostasis and

signaling

Cellular Increased calcium transient amplitude (putatively,

increased intracellular calcium concentration)

Increased calcium sparks (calcium release events

from the sarcoplasmic reticulum)

Decreased calcium transient frequency

Decreased spontaneous contraction rate

Increased miniature excitatory postsynaptic potentials

Decreased excitability

Decreased action potential firing rate

Tissue/Organ Increased contractility

Increased rate of delayed afterdepolarizations

Decreased expression of calcium voltage gated channels

(CaV2.1 and CaV2.2)

in arrhythmogenic cardiomyopathy phenotypes as well as in

patients carrying predicted loss-of-function ANK2 variants and

their respective knock-in mouse models (Figure 2) (4, 37, 95).

It is worth noting that cardiomyocytes with Ank2 loss do not

show altered expression nor mislocalization of intercalated disc

proteins such as plakoglobin, plakophilin 2, connexin 43, N-

cadherin, desmoplakin, and desmoglein 2 (44). Further insights

regarding the involvement of ankyrin proteins in this context

may be drawn from ANKG, which also interacts with beta-

catenin. Loss of ANKG results in a comparable decrease in

beta-catenin localization at themembrane and increased nuclear

levels leading to an increase in neural progenitor proliferation in

mice via Wnt signaling (96). Given ANKB also plays a role in

organizing beta-catenin localization and expression, it is worth

future investigations to determine if ANKB leads to any effects

onWnt signaling. In parallel, another ANKB interacting partner,

protein phosphatase 2A (PP2A), is also a regulator of Wnt

signaling (97). With ANKB’s potential involvement at two stages

of the Wnt signaling pathway, future studies should explore

the implications of ANKB dysfunction on the latter as well as

concomitant developmental processes.

In the case of loss of brain-specific giant ANKB 440-kDa,

which primarily localizes to axons, mice display ectopic axon

branching and connectivity, transient increase in excitatory

synapses, and neurodevelopmental disorder-like behaviors such

as stereotype movements and impaired social behavior (51). The

impairment on axonal connectivity has been linked to ANK2’s

role in regulating the formation of microtubule bundles in the

axon and reducing branching points enriched with F-actin by

promoting growth cone collapse in response to semaphorin

3A signaling (58, 98) (Figure 3). While brain specific Ank2

knockout mice do not exhibit impairments in memory and

learning (51), the identified structural and connectivity changes

recapitulate some of the morphological features observed in

neurodevelopmental disorders, such as ASD (51, 99, 100). The

identification of giant ANKB-specific roles in critical aspects of

neuronal structural development warrants further exploration

in the heart and its intrinsic nervous system. Furthermore,

given that ANKB is associated with several critical steps in the

development of cells and the establishment of their polarity,

studies aiming to elucidate the role that ANK2 plays during

early heart and cardiac conduction system development will be

crucial to understand the various phenotypes associated with

ANK2 variants.

ANKB regulates calcium homeostasis

With its role in proper localization of the calcium the

sodium/calcium exchanger, the inositol trisphosphate receptor,

and calcium voltage-gated channels, ANKB is a key hub for

regulation of calcium homeostasis in excitable cells (14, 101–

103). In mouse cardiomyocytes, complete and partial loss of

Ank2 leads to abnormal calcium dynamics as summarized

in Tables 4, 5 (4, 5, 104). Using global and partial loss of

Ank2 knockout mouse models, it has been demonstrated

that ANK2 variants identified in cardiogenetic studies have

differential effects on cardiomyocyte calcium dynamics in vitro,

with some variants (namely: p.G1406C, p.R1450W, p.L1503V)

rescuing calcium transient amplitude defects, while others

(namely: p.E1425G, p.L1622I, p.T1626N, p.R1788W, p.T1404I,

p.V1516D, p.T1552N, p.V1777M, and p.E1813K) fail to rescue

calcium and spontaneous activity abnormalities (8). These in

vitro experimental findings are in line the variable expressivity

and penetrance observed in individuals carrying ANK2 variants

(4, 7).

ANK2 regulates calcium homeostasis in excitable cells

through various potential mechanisms, some of which still
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FIGURE 3

ANKB interactions in neurons implicates ANKB in a variety of cellular processes. Diagram of ANKB interacting partners and their localization

allowing for proper neuronal function. (A) cell body (B) synapse and (C) axon allow for proper cell functions. NCX, sodium calcium exchanger;

NKA, sodium potassium ATPase; IP3R, Inositol 1,4,5-trisphosphate receptor; CaV, voltage-gated calcium channels; PP2A, protein phosphatase

2A; RYR2, ryanodine receptor 2; L1CAM, L1 cell adhesion molecule; PI3P, phosphatidylinositol 3-phospate; Sema 3A, semaphorin 3A; Nrp1,

semaphorin 3A receptor neuropilin 1.

require additional in-depth characterization. Loss of ANK2 or

ANK2 dysfunction (as in the case of pathogenic ANK2 variants)

leads to the mis-localization of channels and transporters

involved in calcium handling (sodium/calcium exchanger,

inositol trisphosphate receptor, and calcium voltage-gated

channels) (4, 7, 95, 105). Furthermore, lack of ANK2 (and

in some cases, ANK2 dysfunction) leads to decreased protein

expression of the sodium/calcium exchanger and L-type, T-type,

and P/Q-type voltage gated calcium channels in cardiomyocytes

and neurons (7, 101, 102, 104). Specifically, two clinically

relevant ANKB variants, p.E1458G and p.S646F, differentially

modulate levels of CaV2.1, the pore forming subunit of P/Q-type

voltage gated calcium channels, in HEK293T cells (102). The

p.E1458G variant was found to decrease surface CaV2.1 levels

while the p.S646F variant increased intracellular CaV2.1 levels.

Another variant, p.Q879R, which to our knowledge has not

yet been associated with disease, is located at the linker region

required for proper ANKB localization. Expression of p.Q879R

increased the surface level expression of CaV2.1 in the presence

of the CaV accessory subunits (102). Additionally, ANKB may

also regulate the key intracellular calcium release channel,

ryanodine receptor 2 (RYR2). RYR2 hyperphosphorylation in

the mouse Ank2 knock-in model harboring the p.Q1283H

variant suggests ANKB’s interaction with the regulatory subunit,

B56α, of the protein phosphatase PP2A, of the protein

phosphatase PP2A (PPP2R5A) is necessary for PP2A activity

on RYR2 (Figure 2) (95). Abnormal calcium handling associated

with ANKB variant expression is a plausible pathophysiological

mechanism underlying the increase in frequency of delayed

afterdepolarizations and susceptibility for cardiac arrhythmias

observed with ANK2 cardiac variants (104, 106), as well as a

possible mechanism for the increased susceptibility to epileptic

seizures associated with some ANK2 variants.

PP2A is a key regulator inmost signal transduction pathways

and cellular processes (107, 108). Other targets of PP2A and

the resulting impact of ANKB dysfunction has not yet been

investigated and should be an area of research in the future. Of

the many PP2A targets some include other ANKB interactors

such as the inositol trisphosphate receptor (109) and the

sodium potassium ATPase (110) of whose phosphorylation and

therefore function may also be altered as a result of ANKB

dysfunction. In neuronal cells PP2A is one of the major enzymes

associated with regulating microtubules, neurofilaments, and

the actin cytoskeleton (111–113). While ANKB’s interaction

with PP2A in neurons has not yet been confirmed, this likely

regulation of signaling events has key implications to the

functioning and development of neuronal cells as well.

ANKB functions in glucose and fat
metabolism regulation

ANKB has also been linked to regulating glucose and fat

metabolism. An earlier study by Healy et al. (114) described

that mice with partial global loss of Ank2 (Ank2+/−)

exhibit impaired oral glucose tolerance likely secondary to
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decreased expression of the inositol trisphosphate receptor in

pancreatic islets, which mediates the signaling for augmented

glucose-induced insulin secretion after parasympathetic

stimulation (115, 116). Knock-in mice harboring the type-2

diabetes-associated ANK2 p.R1788W variant exhibit decreased

insulin secretion following parasympathetic stimulation and

increased peripheral glucose uptake (coupled with increased

plasma membrane density of the glucose co-transporter 4 in

skeletal muscle and adipose tissue) (19). Notably, older ANK2

R1788W mice had increased adiposity and showed insulin

resistance (19). The increase in adiposity is also observed in

adipose tissue-specific Ank2 knockout mice, which develop

progressive pancreatic islet dysfunction, accumulation of fat

with age or high fat diet, and insulin resistance associated with

impaired glucose co-transporter clathrin-mediated endocytosis

(117). Importantly, a subset of ANK2 variants associated with

cardiac arrhythmias failed to rescue the metabolic defects in

Ank2−/− adipocytes (117), calling to attention additional

cardiovascular risk considerations for individuals with known

ANK2 cardiac arrhythmia variants. A knock in ANK2 p.L1622I

model exhibited a measurable and distinct cardiac phenotype,

reduced ANKB expression, and even developed insulin

resistance and age-dependent increases in adiposity (19).

Discussion

Variants in ANK2 are associated primarily to complex

cardiac phenotypes; however, some functional ANK2 variants

also have neurological or metabolic manifestations. Cardiac

phenotypes associated with ANK2 functional variants are

characterized by a predisposition to arrhythmias, conduction

anomalies, and congenital and adult-onset structural heart

disease, and in some cases, seizure (Table 1). Other ANK2

variants may contribute to risk for ASD and epilepsy

(Table 2). With type 2 diabetes also linked to specific ANK2

antecedents, the putative compounding effects of metabolic

perturbation on cardiac and neurological phenotypes may

pose additional risk to individuals carrying ANK2 variants.

The diversity of manifestations associated with ANK2 variants

could result, in part, from complex ANKB protein interaction

networks involving critical proteins that regulate cellular

structure and function (Table 3). Overall, improved knowledge

of ANKB cellular roles and regulation is now needed to

advance understanding of clinical phenotypes associated with

ANK2 variants and, ultimately to develop improved, targeted

therapeutic approaches.

As there is such diversity in features reported across

ANK2 variants with cardiac phenotypes, further studies are

required to better understand which features are truly linked

to Ankyrin-B syndrome. For example, congenital heart defects

have been described in association with only one variant to

date, p.S464F (7), and a structural chromosomal re-arrangement

involving breakpoints in ANK2 (39). Whether congenital heart

defects are part of the ANKB spectrum of manifestations or

just isolated events remains to be determined. In favor of

the notion that ANK2 functional variants can also contribute

to structural heart disease, a British study on hypertrophic

cardiomyopathy reported that the proportion of patients with a
maximum left ventricular wall thickness >30mm (i.e., extreme

wall thickness) was higher in carriers of ANK2 variants (43).

This effect was still present when restraining the analysis to

patients carrying sarcomeric protein variants (43), suggesting

that ANK2 might play a role of a disease modifier in

cases of hypertrophic cardiomyopathy (43, 118, 119). Further

population and laboratory studies are required to fully elucidate
the connection between ANK2 variants and hypertrophic

cardiomyopathy, which could involve ANKB interactions with
structural/cytoskeletal elements within cardiac cells.

Given the cases of structural malformations it is also

important to investigate the potential role of ANKB in cardiac

cell development. Of note, the p.S6464F variant is less stable
and experiences reduced expression only in undifferentiated

H9c2 cells suggesting this variant’s impact to cells occurs during

their development (94) and provides some additional rationale

behind investigating ANKB’s roles during cardiac development.

As seen in patients with both the p.S646F (7) and p.E1458G (4)

variants there appears to be an age-related effect. This implies

that not only is ANKB function important in early development

but also over a lifespan. Some possible mechanisms behind

ANKB’s role in cardiac development include its interactions

with beta-catenin, PP2A, and ion channels. Understanding the

developmental expression of ANKB and the impact of variants

may provide insight into the cardiac dysfunction observed in

patients over their lifetime.

While ANKB’s link to neuronal development has been

better pieced together through studies with model organisms,

we have highlighted key knowledge gaps and areas of future

investigations. Early observations revealed neuroanatomical

defects in the global Ank2 knockout mouse (57) and model

organisms have highlighted homologous ankyrin roles in

neuronal polarization (79). Other mainly in vitro studies point

to a role for ANKB in GABAergic synaptic development

(120), axonal branching (51, 58, 98), and voltage-gated calcium

channel trafficking (101, 102) (Figure 3). These studies suggest

ANKB regulates neurodevelopmental processes and could help

explain its putative role in risk for ASD, as well as its association

with epilepsy and seizure. Given the important roles of giant

ANKB in the development of the nervous system, future

studies aiming to elucidate the roles of giant ANKB in the

development of the heart and conduction system are warranted.

Moreover, recent single cell transcriptomics surveys identifying

several non-myocyte cells that contribute to heart development,

such as cardiac neural crest cells, neuronal cells, and glial-like

cells (all with detectable ANK2 transcripts levels) (26, 121–

123) open the door to novel lines of research investigating
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ANK2’s functions within these cells and their impact in shaping

heart development. Notably, many studies in the brain have

focused primarily on the giant isoform of ANKB, the putative

central nervous system-specific, neonatal isoform (51, 58, 98);

however, the roles of the smaller, more prominent 220 kDa

isoform are vastly understudied. ANKB’s roles at themammalian

synapse are yet to be studied even though ANKB is not only

enriched at synapses, but also seems to associate with multiple

postsynaptic scaffolding proteins (124, 125). Given ANKB’s

interactions with ion channels, βII-spectrin, and components of

the cytoskeleton (126), it is possible that ANKB plays important

roles in regulating the shape of postsynaptic structures and

protein sorting therein contributing to maturation of synapses

and establishment of neuronal circuits.

Recently, disease associations of ANK2 variants and LQTS

and CPVT have been debated in part due to the population

frequency of certain previously reported variants (34–36, 127).

Although the minor allele frequency is certainly a useful

predictive tool (128), an elevated minor allele frequency may

not completely eliminate a role for the variants in disease.

For example, while the ANK2 p.L1622I variant is associated

with prolonged QTc and ventricular tachyarrhythmias, which

is modeled in a knock-in homozygous mouse, the study was

limited by the use of juvenile homozygous mice. This cardiac

phenotype likely exceeds that of the carriers in the general

population, who are most likely heterozygous for the ANK2

p.L1622I variant (37). It is possible that ANK2 variants are

part of an oligogenic/polygenic disease (129). Such a possibility

is seen with the p.E1813K variant which has been shown

to aggravate the cardiac phenotype of an individual carrying

KCNH2 p.H562R variant (130). In isolation, the p.E1813K

variant was associated with age-related conduction disease, and

the individual carrying only the KCNH2 p.H562R variant was

asymptomatic.ANK2 is a gene that appears to tolerate mutations

well as seen by the allele frequencies of many variants. This

variant toleration may be a result of a compensatory mechanism

to protect the overall function of the protein given its apparent

importance in cellular biology. Overall, this evidence highlights

the importance of integrating allele frequency, genetic ancestry,

and environmental and genetic factors in the analysis and

determination of cardiovascular gene-disease associations of

ANK2 variants.

Insights from model organism studies have highlighted

the significance of ANKB’s many roles within cells. ANK2

variants are linked with cardiac, neurological, or metabolomic

phenotypes consisting of electrical, structural, and signaling

impacts. The mechanisms behind ANK2 variant dysfunction

can be explained in part due to ANKB’s protein interactions

and cellular partners outlined within the review. With many

interactions in both signaling and cytoskeletal components,

ANKB can easily be implicated in a variety of cellular events

and basic functions. Furthermore, interactions identified and

studied within one cell type could hold relevance across multiple

cell types in which ANKB is expressed. With the large number

of ANKB protein-protein interactions the phenotype associated

with one particular variant could be anticipated to be vastly

different from another depending on the amino acid location

and the degree of conservation (chemical similarity). A variant

located within the membrane binding domain is likely to have a

different phenotype than a variant located within the spectrin

binding domain as an ion channel disruption will result in

altered signaling compared to losing a structural interaction.

Improved understanding of ANKB cellular roles and

the effects of variant expression at a mechanistic level is

needed to advance the identification possible therapeutic

targets and biomarkers for individuals with ANK2 variants.

Comprehensive characterization of ANKB’s interacting and

signaling partners would facilitate the design of small molecule

modulators or repurposing of compounds to mitigate cellular

pathology associated with ANKB variants. For example,

inhibition of CamKII with KN-93 was able to mitigate RYR2

hyperphosphorylation and subsequent excessive calcium release

in Ank2+/− pro-arrhythmogenic mouse hearts, resulting in

a net reduction of RYR2 phosphorylation, calcium spark

frequency, and delayed afterdepolarizations (95, 131, 132). More

recently, inhibition of the GSK-3β pathway with SB-216763

(resulting in a net activation of the Wnt/beta-catenin signaling

cascade) was effective in ameliorating cardiac remodeling

in mice presenting with arrhythmogenic cardiomyopathy

associated with cardiac specific loss of ANKB (44). However,

given ANKB expression in other excitable tissues and the

important roles linked to signaling pathways in which ANKB

directly or indirectly participates, it is paramount to continue

advancing the understanding of ANKB’s role in cells and

molecular pathways before defining and launching ANKB-

targeting therapeutic programs. This is particularly important

given the limited mechanistic appreciation of neurological

phenotypes associated with ANK2 variants, such as seizure

and white matter abnormalities. By exploiting the relatively

conserved amino acid sequence and biological functions of

ANKB and the availability of experimental model organisms,

high-throughput cellular and molecular characterization of

variants can bridge the gap to improved clinical understanding

and development of targeted, specific therapeutic interventions.

The variability of clinical phenotypes associated with

ANK2 variants poses challenges for treatment. At present, the

understanding of the source of this variability is incomplete

but could be partly due to the pleiotropic effects of ANKB, as

well as surreptitious layering of variants in related pathways

and/or environmental factors. The complexity and incomplete

mechanistic understanding of ANKB cellular roles and

regulation pose significant challenges for development of

precise therapeutic interventions. As technological advances

in personalized and precision medicine continue to expand,

successful therapeutic strategies will arise from testing and

modeling ANK2 variants directly on induced pluripotent
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stem cells derived from affected individuals themselves

(133). A combination of experimental approaches, including

personalized and precision medicine methods such as in vitro

studies using patient-derived induced pluripotent stem cells, and

model organism approaches will help to bridge the gaps to the

identification of key pathways and therapeutics that target them

safely and effectively. Current clinical efforts should therefore

focus on monitoring carriers of ANK2 functional variants for

arrhythmia and cardiomyopathy, along with symptomatic and

treatment and control of co-morbidities (106).

Highlighted within this review are a variety of ANK2

variants and the different disease-linked phenotypes that arise

as a result of their expression. Bringing together studies

from model organisms and laboratory findings this review

identifies potential mechanisms underlying ANKB dysfunction

and possible contributions to disease. Investigating mechanisms

underlying this link to disease will not only aid in our

understanding of cellular pathways and ANKB’s roles within

them but will provide insight into disease risk and presentation.

Understanding ANKB’s roles in health and disease will advance

the ability to translate this information into clinic and provide

insights into developing treatments and therapies.
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There is growing evidence that sex and gender di�erences play an important

role in risk and pathophysiology of type 2 diabetes (T2D). Men develop T2D

earlier than women, even though there is more obesity in young women than

men. This di�erence in T2D prevalence is attenuated after the menopause.

However, not all women are equally protected against T2D before the

menopause, and gestational diabetes represents an important risk factor for

future T2D. Biological mechanisms underlying sex and gender di�erences

on T2D physiopathology are not yet fully understood. Sex hormones a�ect

behavior and biological changes, and can have implications on lifestyle; thus,

both sex-specific environmental and biological risk factors interact within a

complex network to explain the di�erences in T2D risk and physiopathology

in men and women. In addition, lifetime hormone fluctuations and body

changes due to reproductive factors are generally more dramatic in women

than men (ovarian cycle, pregnancy, and menopause). Progress in genetic

studies and rodent models have significantly advanced our understanding of

the biological pathways involved in the physiopathology of T2D. However,

evidence of the sex-specific e�ects on genetic factors involved in T2D is still

limited, and this gap of knowledge is even more important when investigating

sex-specific di�erences during the life course. In this narrative review, we will

focus on the current state of knowledge on the sex-specific e�ects of genetic

factors associated with T2D over a lifetime, as well as the biological e�ects

of these di�erent hormonal stages on T2D risk. We will also discuss how

biological insights from rodent models complement the genetic insights into

the sex-dimorphism e�ects on T2D. Finally, we will suggest future directions

to cover the knowledge gaps.

KEYWORDS

genetics, type 2 diabetes, sex-specific e�ect, sex-dimorphism, gestational diabetes,
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Introduction

Type 2 diabetes (T2D) is a metabolic disorder characterized

by a combination of insulin resistance, (especially in adipose

tissue, skeletal muscles and the liver), and relative insulin

secretion deficiency (1). A wide variety of lifestyle factors,

including excess body weight, smoking, and a sedentary

lifestyle increase the risk of developing T2D (2). Globally,

over 422 million individuals are affected by T2D worldwide

and over 1.5 million deaths are annually attributed to T2D,

ranking it among the top ten leading causes of mortality (3).

Notably, epidemiological studies show that men develop insulin

resistance and T2D earlier thanwomen and at a lower BMI (4, 5).

Premenopausal women have a reduced risk of developing T2D,

compared to men or postmenopausal women (4, 6), but when

women reach menopause, the risk becomes similar to that of

men (7, 8).

Sex and gender differences play an important role in

pathophysiology of T2D (4). Sex differences refer to biological

differences, which are caused by differences in sex chromosomes,

sex-specific gene expression, sex hormones, and their effects on

organ systems. Gender differences refer to the effect of identities,

expressions and societal roles and their implications on lifestyles.

Both sex- and gender-specific biological and behavioral risk

factors interact within a complex network to explain the

differences in T2D risk and physiopathology in men and

women. Polycystic ovary syndrome, gestational diabetesmellitus

(GDM), and the age of menopause are three major woman-

specific risk factors of T2D. For instance, women diagnosed

with polycystic ovary syndrome typically have significant insulin

resistance, regardless of body weight (9). Of women who

had a history of GDM and were not given metformin or

provided lifestyle interventions, almost 50% developed T2D

within 10 years (10). T2D risk increases for women entering

menopause before the age of 40, with a 30% increase in risk

of T2D vs. women entering menopause from 50 to 54 years

old (11). Moreover, women with T2D face an increased risk for

cardiovascular disease that is at least two to four fold higher than

the increase in cardiovascular disease risk seen in men with T2D

(12). Premenopausal women without T2D are at a lower risk

for cardiovascular disease than men without T2D of the same

age, and much of this protection from cardiometabolic risk is

thought to be due to the effects of estrogen, including estrogen

receptor-mediated effects on lipid and glucose metabolism,

endothelial function, and fat deposition (13). Estrogen appears

to be cardioprotective unless T2D is present, but after the

menopause, the protective effects are lost as estrogen deficiency

develops (12).

From a biological perspective, T2D pathophysiology is

partially driven by genetic factors (14). Thereby, progress in

genetic studies have facilitated the identification of more than

300 loci associated with glucose-related variables and T2D.

These studies have led to a better understanding of the biological

pathways involved, as well as the common underlying biological

mechanisms linking polycystic ovary syndrome and T2D (15),

or GDM and T2D (16). Several rodent models of diabetes

exhibiting an exaggerated form of sexual dimorphism have

also been useful to delineate the mechanisms underlying the

protection against T2D conferred by estrogens.

In this narrative review, we will focus on the current state of

knowledge on the sex-specific effects of genetic factors associated

with glucose-related traits, insulin resistance and T2D during

the life course. Given that sex hormones dramatically change

during a women’s lifetime (e.g., ovarian cycle, pregnancy, and

menopause), we will discuss the biological effects of these

different hormonal stages on type 2 diabetes risk.We will further

discuss how rodent models provide evidence on the effects of

sex-dimorphism on type 2 diabetes risk. We will finally suggest

future directions to cover the current knowledge gaps.

Genetic evidence for sexual
dimorphism in type 2 diabetes

Regulatory differences in blood glucose and insulin levels

are both heritable traits. When estimated separately, the single

nucleotide polymorphism (SNP)-based heritability (17) for T2D

is significantly higher in men than in women (18), which

suggests differences in the underlying genetic determinants

of T2D risk due to sex-dimorphic effects in specific genes

(or loci).

Given the complex nature of T2D related traits, Genome

wide association studies (GWAS) have been one of the most

powerful approaches used to identify new loci. While the

methodology has essentially remained unchanged since the

publication of the first T2D GWAS (19), the list of associated

genes has considerably expanded due to the increase in sample

size, and the inclusion of samples of multiple ancestries (20,

21). However, the proportion of variance in glucose related

traits is still not fully explained by the currently known loci,

and gene × gene and gene × environment interactions are

thought to contribute to this missing heritability, with gene

× sex interactions being one of these modulators. Three main

statistical approaches have been used to date to investigate sex-

dimorphic effects. The first approach involves performing sex-

stratified analysis, followed by a heterogeneity test of effect

between the two sexes at each genetic locus. The second

approach consists in performing a single analysis with sex and

SNP × sex interaction terms in the statistical model tested

(22). The third, referred to as a sex-differentiated test, combines

data for both sexes in a single analysis, includes the number

of X-chromosome copies (1 or 2) as an independent variable

in the model and allows for testing heterogeneity of allelic

effects between males and females at the cost of one degree
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of freedom (22). Each one of these approaches have their

own limitations as to the ability and power to detect sex-

dimorphic effects (19, 20). However, one major advantage of

the first approach is the possibility of testing for sex-related

heterogeneity using summary statistics of publicly available sex-

stratified data, while the other two methods require individual

level data.

The spectrum of sex-dimorphic effects varies from (i)

different (significant) direction of effects between males and

females, (ii) similar (significant) direction of effects with

differences in magnitude of the effect between sexes (e.g., larger

effect sizes in one of the two sexes), to (iii) sex-specific effects

whereby the association is significantly observed in one of the

sexes only; this last case scenario being an extreme example of

the second. It is important to note that the distinction between

these three cases heavily relies on the statistical method, power,

and parameters used to determine the significance of a SNP-

T2D association in each sex. Hence, intermediary/inconclusive

scenarios that do not clearly fit in the above-mentioned

categories can often be observed (e.g., a SNP with a GWAS

significant association (p-value < 5 x 10−8) in one sex and

suggestive association only (p-value < 1 × 10−6) in the other.

Therefore, balanced sample sizes in the two sex groups (and

hence a comparable statistical power) is a crucial component for

sex-comparison analyses.

Human genes/loci with
sex-dimorphic e�ects on glucose
related-traits

Primary evidence of sex-specific effects in glucose

metabolism-related genes/loci are rare, and replication

attempts are even more sparse, due to the lack of power

concomitant to the sex-stratified or the sex-interaction analyses.

A large proportion of genes contributing to sex-dimorphic

effects on FG and FI were described in a recent study lead

by Lagou et al. (23). The authors conducted genome wide

association studies (GWAS) in over 140,000 (for FG) and 98,000

(for FI) adult normoglycemic men and women (separately)

of European ancestry from the Meta-Analyses of Glucose and

Insulin-related traits Consortium (MAGIC). GWAS results

were subsequently meta-analyzed and the heterogeneity of

allelic effects between the two sexes was estimated (23). A

targeted analysis for 36 and 19 previously established FG and FI

loci that aimed to detect sex-dimorphic effects in these loci, was

also conducted. To date, this study is largest one to investigate

the modulating effect of sex on the genetic determinants of

glucose-related traits on a genome wide level, complemented

with genetic correlations and gene expression analysis. The

absence of replication data represents the main limitations of

this study.

Given the lack of replication studies and the weak

significance of the associations in most studies, we investigated

the sex-dimorphic effects of the autosomal genes/loci described

in the literature with glucose-related traits [e.g., fasting glucose

(FG), fasting insulin (FI), T2D], other correlated anthropometric

traits including body mass index (BMI), waist to hip ratio

(WHR), and GDM, using publicly available data from large

genetic consortia, in order to identify the candidate genes with

the most robust evidence of sex-dimorphic effect (spanning

across multiple phenotypes). The list and description of

genes/loci with the strongest evidence of sexual dimorphism

across multiple traits is presented in Table 1. Results of an

assessment of the sex-specific effects for each gene/locus

on anthropometric and glucose-related traits is presented in

Tables 1, 2.

Genes identified in childbearing women

Autosomal genes

COBLL1/GRB14 locus

The locus which includes growth factor receptor bound

protein 14 (GRB14) and cordon-bleu WH2 repeat protein

like 1 (COBLL1) genes, has the strongest evidence of sexual

dimorphism across multiple traits. GRB14 encodes for a

protein that binds to insulin, inhibiting its signaling activity

(24). The biological function of COBLL1’s protein is unclear

beyond its possible involvement in the Wnt/PCP pathway

regulation in mammals (that regulates crucial aspects of cell fate

determination, cell migration, cell polarity, neural patterning

and organogenesis during embryonic development) (25), and

its association to multiple metabolic traits and tumor types.

SNPs in this gene displayed nominal evidence of sex-differences,

with an association with FI observed in females only (23). The

FI increasing allele of the lead SNP described by Lagou et al.

(23) (rs10195252) was also significantly associated with a lower

BMI and WHR in women only (effect of the same SNP in men

was weaker and nominal) (Table 1). The same FI increasing

allele (T) was associated with an increased risk of T2D in

a female-specific manner (Table 1). Sex-differences influencing

WHR (23–25), triglycerides (26) and T2D (27) at this locus have

also been described in the literature. Finally, gene expression

of COBLL1 was higher in women’s gluteal fat, abdominal fat

and whole blood, while men had a higher expression than

women in the liver (23). Levels of GRB14 were nominally

higher in women’s gluteal fat. Levels of GRB14 in abdominal

fat were similar between men and women (23). Given all these

results, it is possible that an effect of variants within/near to

COBLL1 and GRB14 could influence glucose metabolism via

adipose tissue and body fat distribution differences between

men and women. More studies are needed in order to establish

this link.
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TABLE 1 Associations of sex dimorphic e�ects of most important genes identified to date on type 2 diabetes and related phenotypes.

Gene/locus Reported

lead SNP

with sex-

dimorphism

Effect

/other

allele

Primary

phenotype

Direction of association for

primary phenotype

Secondary

phenotypes

tested

Direction for secondary phenotype # other SNPs

with nominal

sex

heterogeneity

r2 range with

reported lead

SNP

COBLL1/GRB14 rs10195252 T/C FI Association with FI in women only

Women: Beta= 0.02, SE= 0.004,

P = 1.23× 10−6

Men: Beta= 0.007, SE= 0.004,

P = 0.07

Sex heterogeneity (Cochran’s Q-test)

P = 0.03

BMI T allele associated with lower BMI in women

Women: Beta= −0.01, SE= 0.002, P = 9.58× 10−10

Men: Beta= 0.006, SE= 0.002, P = 0.01 Sex

heterogeneity (Cochran’s Q-test) P = 0.02

32 0–1.00

T2D T allele associated with higher T2D in women

Women: Beta= 0.08, SE= 0.01, P = 4.20× 10−15

Men: Beta= 0.05, SE= 0.009, P = 4× 10−8

Sex heterogeneity (Cochran’s Q-test) P = 0.02

77 0–1.00

WHR T allele associated with higher WHR in women

Women: Beta= 0.06, SE= 0.002, P = 6.35× 10−149

Men: Beta= −0.005, SE= 0.003, P = 0.05

Sex heterogeneity (Cochran’s Q-test) P = 1.81× 10 −78

120 0.4–1

FG NS-Cochran’s Q-test P = 0.59 7 0–0.28

ADCY5 rs11708067 A/G FG Stronger effect on FG in women

Women: Beta= 0.03, SE= 0.003,

P = 5.01 x 10−16

Men: Beta= 0.02, SE= 0.004,

P = 2.19 x 10−6

Sex heterogeneity (Cochran’s Q-test)

P = 0.04

BMI NS-Cochran’s Q-test P = 0.18 0 NA

T2D NS-Cochran’s Q-test P = 0.28 21 0.17–0.21

WHR NS-Cochran’s Q-test P = 0.69 14 0.04–0.27

FI NS-Cochran’s Q-test P = 0.52 25 0.17–0.18

(Continued)
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TABLE 1 (Continued)

Gene/locus Reported

lead SNP

with sex-

dimorphism

Effect

/other

allele

Primary

phenotype

Direction of association for

primary phenotype

Secondary

phenotypes

tested

Direction for secondary phenotype # other SNPs

with nominal

sex

heterogeneity

r2 range with

reported lead

SNP

PROX1 rs340874 C/T FG Stronger effect on FG in women

Women: Beta= 0.02, SE= 0.003,

P = 1.69× 10−13

Men: Beta= 0.01, SE= 0.003,

P = 4.81× 10−4

Sex heterogeneity (Cochran’s Q-test)

P = 0.01

BMI NS-Cochran’s Q-test P = 0.36 2 0.03–0.11

T2D NS-Cochran’s Q-test P = 0.28 9 0.02–0.04

WHR C allele associated with higher WHR in women

Women: Beta= 0.009, SE= 0.002, P = 0.0001

Men: Beta= −0.0001, SE= 0.002, P = 0.97

Sex heterogeneity (Cochran’s Q-test) P = 0.009

9 0.09–0.65

FI NS-Cochran’s Q-test P = 0.63 1 0.1

RGS17 rs1281962 C/G FG Stronger effect on FG in women

Women: Beta= 0.01, SE= 0.003,

P = 2.60× 10−7

Men: Beta= 0.006, SE= 0.003,

P = 0.04

Sex heterogeneity (Cochran’s Q-test)

P = 0.04

BMI NS-Cochran’s Q-test P = 0.33 7 0.00–0.11

T2D NS-Cochran’s Q-test P = 0.12 103 0.00–0.37

WHR NS-Cochran’s Q-test P = 0.85 19 0.05–0.42

FI NS-Cochran’s Q-test P = 0.71 0 NA

Beta, mean change in primary phenotype per risk allele; SE, standard error for Beta; P, p-value of association between primary phenotype and risk allele; NA, not applicable; NS, not significant; #, number; r2 , Linkage disequilibrium between SNPs.
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TABLE 2 Summary of cross-phenotype sex-heterogeneity tests in BMI, WHR, T2D, FG, and FI consortium data at genetic loci with previously

known sex-dimorphism.

Gene/locus Phenotype

with known

sex-

dimorphism

New

phenotype

tested for

heterogeneity

# SNPs tested

in gene/locus

# SNPs with P

< 5 × 10−6*
# SNPs with P

< 5 × 10−6*

and PHet<0.05

# SNPs with P

< 5 × 10−6*

and PHet <

PHet Bonferroni

ADCY5 Fasting glucose Type 2 Diabetes 750 60 3 0

WHR 98 9 9 4

Fasting insulin 92 0 - -

BMI 92 0 - -

COBLL1/GRB14 Fasting insulin BMI 168 30 22 0

Fasting glucose 103 0 - -

Type 2 Diabetes 922 51 41 0

WHR 154 105 105 98

RGS17 Fasting glucose Fasting insulin 109 0 - -

Type 2 Diabetes 631 124 88 0

WHR 145 3 2 2

BMI 154 0 - -

DSCAM Fasting glucose BMI 980 13 1 0

WHR 863 0 - -

Fasting insulin 440 0 - -

Type 2 Diabetes 5,542 0 - -

PROX1 Fasting glucose BMI 30 0 - -

WHR 17 6 6 2

Fasting insulin 6 0 - -

Type 2 Diabetes 218 0 - -

*# , number of SNPs with a suggestive association (P < 5 x 10−6) with the phenotypes in males only, females only, or both. A total of 22 autosomal loci (Table 3) were tested for association

in 5 different consortia, for a phenotype other than the one for which the sex-dimorphism was originally described. This table only includes only loci with at least 1 SNP with P < 5 ×

10−6* and PHet < 0.05 in at least one of the test consortia (BMI, WHR, FG, FI or T2D).

ADCY5 gene

In sex-combined studies, SNPs in the adenylate cyclase

5 (ADCY5) gene are associated with multiple T2D-related

traits including FG (23, 28–32), FI (21), glycated hemoglobin

(33), HOMA-B (i.e., index of insulin secretion) and T2D

(34–43), anthropometric and body fat distribution traits, such

as WHR (44, 45), body fat percentage (46), BMI (47),

inflammation phenotypes such as C-reactive protein (48), early

life factors including gestation duration (49), birth weight (50–

56), blood lipid levels, including total cholesterol (57, 58),

HDL-cholesterol, apolipoprotein A1 (59), and blood pressure

measures (60). SNPs in the vicinity of ADCY5 showed sex-

dimorphic effects in association to FG. The lead SNP associated

with FG described by Lagou et al. (23) (rs11708067) did not

show evidence for sexual dimorphism when tested for FI,

T2D, WHR or BMI (Table 1). Nevertheless, another variant

in this gene likely independent from the aforementioned

SNP (rs3934729), shows nominal sex-dimorphic effect with a

stronger effect in women (Table 1). The sex-dimorphic effect

of rs11708067 on T2D risk was also previously described

in the literature (27). In a gene expression analysis, ADCY5

SNPs were associated with levels of sex hormone binding

protein (SHBG) (61), which provides a possible clue as to

the mechanisms and pathways involved in ADCY5’s sex-

specific effects.

PROX1 gene

The prospero homeobox 1 (PROX1), which encodes for the

Prospero homeobox protein 1 transcription factor plays a key

role in embryonic cellular development and differentiation in

multiple organs of complex organisms including Drosophila,

mice and humans (62, 63). On a molecular level, PROX1 was

mostly studied for its prominent role in lymphatic endothelial

cell fate determination of which it is generally considered as the

master regulator (64). Mutations in PROX1 have been associated

with multiple forms of cancer. In human adult GWASs, PROX1

genetic variants have been overwhelmingly associated with

glycemic traits overall (65), blood glucose levels (23, 30, 31,

66, 67), glycated hemoglobin levels, HOMA-B, T2D (32, 34–

37, 39, 43), and to a lesser extent to birth weight (51), and
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other cardiometabolic traits such as triglycerides (68) or WHR

(suggestive association only) (45). As an established FG locus,

Lagou et al. (23) tested and observed nominal evidence for sex

heterogeneity in multiple PROX1 genetic variants on FG, where

the associations were stronger in women. This potentially sex-

dimorphic FG SNP described by Lagou et al. (23) (rs340874)

did not show evidence for association with BMI but nominal

association with FI in both sexes, with no significant sex-

related heterogeneity. However, the FG increasing allele (T) was

associated with higher WHR in women only, with a significant

heterogeneity. Multiple other SNPs located next to this locus

showed nominal sex-dimorphic effects on WHR (Table 1).

Possible clues as to how PROX1 could influence glycemic traits

in a heterogenous manner between men and women come

from other GWASs. Indeed, SNPs in the vicinity of PROX1

and its neighboring non-protein coding PROX1 Antisense RNA

1 (PROX1-AS1) genes have been shown to be associated with

SHBG levels in both men and women (61, 69). However, the

sex-dimorphic SNP in PROX1 (rs1281962) described by Lagou

et al. (23) was not associated with SHBG levels and more

investigations are required in order to establish a connection

between sexual dimorphism for SNPs near PROX1, SHBG,

and FG. PROX1 SNPs were also associated with testosterone

levels at a GWAS-significance level in men, but not in women,

which could suggest a sex-dimorphic effect (61). Whether the

PROX1 plays a differential role in glucose related traits through

its regulation of SHBG and testosterone levels remains to

be determined.

RGS17 gene

The regulator of G protein signaling 17 (RGS17) gene

and its corresponding RGS17 protein are involved in the

regulation of multiple G protein-coupled receptor signaling

cascades (70). SNPs in RGS17 displayed strong associations

with HDL-cholesterol (32, 57–59), triglycerides, apolipoprotein

A1, FG (21, 23, 31), glycated hemoglobin, T2D (34), WHR

(45), BMI (39, 44, 47, 71, 72), diastolic blood pressure (60), and

C-reactive protein. Multiple SNPs in the RGS17 gene revealed

larger effects on FG in women at nominal significance (23). The

FG-increasing allele in the lead SNP was associated with higher

BMI in a GWAS meta-analysis with larger effects in women

(45). The lead SNP (rs1281962) did not show evidence for sexual

dimorphism on BMI, T2D, FI or WHR (Table 1). However,

two other SNPs in RGS17 gene (rs3910736, rs514784) showed a

weak association with WHR in women only (Table 1). However,

these sex-dimorphic effects were not significant after correction

for multiple hypothesis testing. No significant interaction

was detected at this locus (72). A nominally significant

heterogeneity effect was observed against T2D (Table 3). Given

its pleiotropic role on cardio-metabolic traits, the mechanisms

by which RGS17 might differentially affect phenotypes

remains unclear.

Genes on chromosome X

Only few GWASs of glucose- and T2D-related traits have

analyzed and identified chromosome X genetic variants (32,

34, 43, 81–83). This is partially due to the difference in the

number of copies of sex chromosomes between men and

women, which requires them to be analyzed separately from

the autosomes. However, given the male heterogamety nature

of sex determination in humans, and that the genes coding

for some major regulators of sex steroids levels are located on

this chromosome [e.g., sex hormone binding globulin (SHBG)

and androgen receptor (AR)], loci on Chr X are candidates for

gene × sex interactions. Among the studies that identified and

validated the largest number of chromosome X variants directly

associated with T2D, there was an analysis lead by Vujkovic et al.

(34). This study included participants from multiple ancestries

and identified a total of ten T2D loci on chromosome X (34).

Among these, SNPs at the AR/OPHN1 locus which displayed

male-specific effects (non-significant in females) on T2D risk

(Table 3). AR is an interesting biological candidate since this

codes for the steroid hormone and transcription factor androgen

receptor implicated in the expression of multiple male sexual

development and differentiation genes under the control of

testosterone (84). SNPs in AR have been associated with fasting

insulin levels, and with baldness in males (34). The mechanism

by which the AR gene indirectly influences results in sex-

dimorphic phenotypes in relation to glucose metabolism still

needs to be investigated.

Genes identified during pregnancy

Given the female-specific aspect of pregnancies, genes

associated with GDM during the unique physiological state

of pregnancy can be considered as sex-dimorphic. GDM is

thought to be closely related to T2D from a genetic perspective.

T2D polygenic risk score has been strongly associated with

risk of GDM, although only a few GDM GWASs have

been performed (16, 78, 85). The following genes have

been identified.

HKDC1 gene

Although the majority of GDM associated genetic loci

were previously known for their association with T2D or

glycemic traits (86, 87), two GWASs reported hexokinase

domain containing 1 (HKDC1) SNPs to be associated with

GDM (78), and 2h-post load glucose test (16). HKDC1 also

appears to influence other early life factors, including maternal

genetic effect on birth weight (51). This locus was not known

for association with glycemic traits or T2D in non-gravid

populations except for glycated hemoglobin (31). However,

SNPs in HKDC1 were significantly associated with SHBG

levels in sex-combined and women only groups, but not in
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TABLE 3 Genes/loci with suggestive evidence of sexual dimorphism on type 2 diabetes and related phenotypes.

Gene/locus Chr Phenotype with evidence of

sex-dimorphism

Stronger sex-specific

effect

Other evidence of

sex-dimorphism

European populations

IRS1 2 FI (23) Men WHR (72), body fat

percentage

COBLL1/GRB14 2 FI (23, 72) Women WHR (72), TG (26, 73–75)

PROX1 1 FG (23) Women

ADCY5 3 FG (23) Women

PCK1 20 FG (23) Women

SLC30A8 8 FG (23) Women

COL26A1 (EMID2) 7 FG (76) Women

ZNF12 7 FI (23) Women

RGS17 6 FG (23) Women BMI (45)

HKDC1 10 GDM (16) Women

MC4R 18 T2D (77) Women

DGKB 7 T2D (27) Men

BCAR1 16 T2D (27) Men

KCNQ1 11 T2D (27) Men

CCND2 12 T2D (27) Men

MTNR1B 11 GDM (16), 2-h plasma glucose (78) Women

BCL11A 2 T2D (27) Men

BCLAF3/MAP7D2 X T2D (34) Men

SPIN2A/FAAH2 X T2D (34) Men

AR/OPHN1 X T2D (34) Men

CCNQ/DUSP9 X T2D (34) Men

BACE2 21 fasting C-peptide (pregnancy) (78) Women

NKX2-6 8 FI, FG (72) Women WHR (72)

LY86 6 FG (72) Women WHR (72)

EYA1 8 T2D, FG (72) Women WHR (72)

KLF14 7 T2D (27), FI (72) Women WHR (72)

NMU 4 FI (72) Women WHR (72)

PIGU 20 HOMA-B, HOMA-IR (72) Women WHR (72)

IQGAP2 5 FI (72) Men WHR (72)

Non- European populations

DSCAM 21 FG (79) Women (Koreans)

SIRT1 10 T2D (80) Women (Pima Indians)

males (61). Other traits associated with HKDC1 are mostly

related to multiple blood cell count phenotypes (32, 88–91) and

liver function [e.g., alanine aminotransferase (31, 92, 93), and

aspartate aminotransferase].

MTNR1B gene

The melatonin receptor 1B (MTNR1B) gene is a well-

established T2D locus with significant associations with multiple

glucose-related traits including FG (21, 23, 28–30, 67, 94–101),

glycated hemoglobin (31–33, 102, 103), insulin levels, insulin

disposition index and insulin secretion rates (104, 105), acute

insulin response, HOMA-B (21), and T2D (27, 34, 35, 37–

40, 42, 43, 106, 107). The gene is also associated with various

sleep and circadian rhythm-related phenotypes (108, 109). Given

the strong association with T2D, it is not surprising that this

gene has also been associated with GDM in several GWASs

(16, 110). Despite the absence of evidence of sex-dimorphic

effects in MTNR1B, this locus is of particular interest given

that the effect size of MTNR1B SNPs are higher in GDM than

T2D (16), which suggests a female-specific effect of this locus

during pregnancy.
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Insights from genetic studies in
rodents

The use of rodent models in the study of human disease

is an important component of translational knowledge. It has

the dual function of either confirming what was observed in

human genetic studies or provide more information on the

mechanisms by which specific genes can be associated with

the development of T2D. Although wild type rodent models

do not spontaneously develop diabetes, the condition can be

induced genetically or chemically. Examples of human genes

whose functional implication in T2D has been validated in mice

are numerous. For instance, a human GWAS analysis showed

that SLC30A8’s SNPs are associated with susceptibility to T2D.

Subsequent studies showed that the deletion its mouse homolog

Slc30a8 induced defects in insulin secretion and an overall

impairment in glucose homeostasis (111).

The implication of genetics factors in diabetes-related

sex-dimorphic effects in rodents is evidenced by the fact that

different strains, with different genetic backgrounds, display

different sex-dimorphic phenotypes in otherwise similar

environments. The characteristics of the different models

that display sex-dimorphism phenotypes are provided in

Table 4. Models with monogenic forms of diabetes provide

direct evidence of the involvement of a gene in these sex-

dimorphic outcomes. A clear illustration of this is the

Zucker Diabetic Fatty (ZDF) rats, a widely used model

of obesity caused by the mutation of the leptin receptor

gene (Lepr, also known as Fa) (123). Male ZDF develop

hyperglycemia, hyperinsulinemia, impaired glucose tolerance,

while females are normoglycemic (124) (Table 4). This

highlights the differential involvement of the Lepr gene and

the Leptin/Melanocortin pathway in the development of

diabetes between males and females. Another interesting rodent
model is the aromatase-knockout (Arko) mice, which result

from a targeted disruption of Cyp19A1, a gene that encodes
for the aromatase, an enzyme involved in the production

of endogenous estrogen (113). Cyp19A1 knock down mice
display a range of sex-dimorphic phenotypes as a result. Among

these, male ArKO mice show signs of insulin resistance and

impaired glucose homeostasis, whereas females develop glucose

intolerance, but not insulin resistance (113). The importance

of estrogen and all actors involved in its metabolism will be

discussed below.

Rodent models of polygenic forms of diabetes also exist,
with some models displaying more sex-dimorphic traits than
others (Table 4). However, like human studies, the identification
of the genes involved in sex-dimorphic phenotypes in these
polygenic and more complex forms of diabetes is more difficult
and has been poorly studied in rodents. However, given the
recent advances in gene editing and other functional genomic

tools, several new models have been specifically developed for

the study the genetic causes of sex-dimorphic traits (124, 125).

Among the most interesting candidates is a mouse for which

the sex determining region of Chr Y (Sry locus) involved in

male sex determination is transferred from chromosome Y to

chromosome 3 in a male mouse, therefore detaching gonadal

development from sex chromosomes (126). Male mice with

this manipulation are then crossed with female mice carrying

two X chromosomes. The resulting offspring can be an XY or

XX carrying Sry in chromosome 3 (corresponding to a model

where the effects of sex hormones are independent from the

gonadal status), or XY and XX without this manipulation (126).

In a recent study, these mice underwent gonadectomy and were

subsequently supplemented with either estrogen, testosterone,

or a blank control (126). It was observed that in these mice,

estrogen and testosterone decrease the gonadal regulation of

gene expression in the liver, whereas they enhance it in the

adipose tissue. Furthermore, the effect of estrogen is more

prominent than that of testosterone. It was also observed that

sex chromosomes seem to regulate the expression of the Hccs

gene, which is involved in the regulation of multiple metabolic

pathways. Additionally, the study showed that genes affected

by sex hormones in the adipose tissue are highly enriched

with variants associated with cardiometabolic diseases and

traits (126).

The study just described is an example of how rodent

models can be used to decipher the mechanisms by which

various sex-related components can individually affect gene

expression at the basis of sexual dimorphism observed in

glucose-related traits.

E�ects of sex hormones on glucose
and T2D-related traits

In humans

Although there is no study conducted in humans to

investigate the interaction of circulating sex hormone levels

with genetic factors on T2D risk, overall evidence shows

that circulating levels of sex-hormones directly or indirectly

modulate the effects of the genetic susceptibility for T2D,

through different pathways and mechanisms. First, estrogen

regulates body composition and fat distribution. In women,

high estrogen level is usually associated with less ectopic

fat deposition, more favorable lipid profile, and less insulin

resistance than in men (6). Premenopausal women store

fat primarily in gluteofemoral depots, which are considered

benign or metabolically beneficial, whereas men tend to store

fat in abdominal depots (6). In addition, estradiol has a

beneficial impact to decrease visceral adipose tissue and increase

brown adipose tissue (127). During female-specific age-related

transitions, estrogen loss leads to decreased physical activity,

increased adiposity with redistribution of fat to abdominal

depots (128), and decreased muscle mass, whereas estrogen
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TABLE 4 Genetically and chemically induced rodent models of T2D showing sexual dimorphism in glucose homeostasis.

Rodent model Methods to induce

diabetes

Phenotype Genetic background

Zucker Diabetic Fatty (ZDF)

rats

Genetically induced, monogenic Males develop hyperglycemia,

hyperinsulinemia, impaired

glucose tolerance

Females are normoglycemic

Mutation (fa/fa) in the leptin hormone receptor

(112)

ArKO mice Genetically induced, monogenic Males are insulin resistant and have

impaired glucose homeostasis.

Females are glucose intolerant, but

not insulin resistant

Mice lack the Cyp19A1 gene which encodes

aromatase, an enzyme involved in producing

endogenous estrogen (113)

Otsuka Long-Evans

Tokushima Fatty (OLETF)

rats

Genetically induced, polygenic Males develop late onset diabetes

Females are normoglycemic

Development of hyperglycemia is associated with

three loci (Dmo1, Dmo2, Dmo3) situated in

Chromosomes 1, 7, 14, respectively (114).

Additionally, another gene (ODB-1) associated

with the development of hyperglycemia is located

in the X-chromosome (115)

TALLYHO/JngJ mice Genetically induced, polygenic Males are obese and develop

insulin resistance and

hyperglycemia

Females are obese

and normoglycemic

Hyperglycemia in the TALLYHO/JngJ mice is

associated with a recessive non-insulin dependent

diabetes mellitus locus, Tanidd1, situated in

chromosome 19. This locus can interact with other

loci such as Tanidd2 (chromosome 13), Tanidd3

(chromosome 15), TallyHo-associated fat pad,

Tafat (chromosome 6), TallyHo-associated body

weight, Tabw1 (chromosome 7) (116–118)

New Zealand Obese (NZO)

mice

Genetically induced, polygenic Both males and females are obese

and present with impaired glucose

tolerance, however only males

develop overt T2D

Zfp69 is likely the gene involved in the

susceptibility locus Nidd/SJL on Chromosome 4

and is associated with the development of severe

hyperglycemia, hypoinsulinemia, as well as beta

cell degeneration. Other genes involved in the

development of the diabetic phenotype are Pctp,

Nob3 (119)

Streptozotocin-injected

rodent (STZ),

Alloxan-injected rodent

Chemically induced (STZ and

alloxan have selective toxicity to

pancreatic beta cells)

Female rodents require higher

doses and/or more frequent

injections of these chemicals to

induce diabetes, compared to

males (120–122)

Diabetes can be induced by STZ and alloxan on

any rodent model

replacement reverses these changes (6). Second, excess of

androgens and lower levels of SHBG have a direct effect on

insulin resistance and T2D (129). Interestingly, sex hormones

differentially modulate glycemic status and risk of T2D in

men and women. High testosterone levels are associated with

higher risk of T2D in women but with lower risk in men; the

inverse association of SHBG with risk seems to be stronger in

women than in men (130). Moreover, in women, low SHBG

levels predict higher T2D risk, regardless of BMI and age

(130). However, the causal relationships between low SHBG

levels and T2D risk have been reported similarly in both

sexes (131), though an effect on insulin resistance (132).

Interestingly, lower estradiol level in men predicts lower risk of

T2D (133).

Evidence on the effects of sex hormones on overall

genetic susceptibility for T2D also comes from the usage of

hormone replacing therapies (HRT) administered to prevent

consequences of menopause including vasomotor/genitourinary

symptoms and osteoporosis (134). Several clinical studies have

demonstrated that HRT is beneficial for glucose homeostasis

(135–138). Evidence provided by the North American

Menopause Society/American College of Cardiology/American

Heart Association, suggest that in women of <60 y-old, within

10 years after menopause onset, menopausal hormone therapy
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with estrogens (combined or not with progestogen) may be

beneficial for the prevention of coronary disease and may also

reduce the incidence of T2D (139). In post-menopausal women

with T2D, menopausal hormone therapy improves glycemic

control, and insulin sensitivity (139), by improving β-cell insulin

secretion and insulin sensitivity (137).

The study of transgender individuals also provides a

unique opportunity to determine which metabolic functions are

modulated by the prevailing milieu of sex steroids, because the

chromosomal configuration remains unchanged (140). Usage

of estrogen therapy in transgender women, as a feminizing

hormonal therapy for individuals assigned male sex at birth,

showed a significant effect on body composition within 12

months and these changes persist over the time, such as

transgender women on estrogen lost lean mass and gained

fat mass (141). Estrogen and antiandrogen therapy seemed

to be associated with an increase in the absolute amount

of visceral fat and subcutaneous fat, but a reduction in the

ratio of visceral to subcutaneous fat (142). Effects on insulin

sensitivity are controversial. Although transfeminine people

may be at higher risk for T2D compared with cisgender

women, the corresponding difference relative to cisgender men

was not discernable in the STRONG cohort (143). There

was little evidence that T2D occurrence in either transgender

women or transgender men was attributable to gender-affirming

hormone therapy use (143). Data from another large gender

identity study suggested that both transgender men and women

exhibited higher incidence of T2D than the general population

(144), with a higher CV mortality rate among transwomen

but not among transgender men. Despite receiving similar

estrogen therapy, transgender women who elected orchiectomy

had improved metabolic health compared with transgender

women who retained their testes. Furthermore, data suggest

that suppression of endogenous testosterone in transgender

women appears to improve insulin sensitivity and reduce

hepatic steatosis (145). Thus, the implications for long-term

T2D incidence or cardiovascular health are still unclear, due

to a paucity of long term prospective controlled studies. It

should also be noted that most of the participants in these

studies are of white European ethnicity, which limits the

generalizability of the findings to transgender individuals of

other ethnic groups.

In rodents

A wide variety of interventions have been used to study

the impact of hormonal changes on sex differences in the

presence of T2D in rats and mice, with overall results that

validate and strengthen the observations made from human

studies. Both chemical and surgical approaches can be used

to mimic menopause in any rodent model of choice (146).

Chemically induced menopause can be attained by exposing

rodents to the chemical 4-vinylcyclohexene diepoxide (VCD),

which gradually depletes ovarian follicles and therefore mimics

the perimenopausal and menopausal stages (147). It has been

shown that the loss of ovarian function is associated with an

increase in insulin resistance, the development of metabolic

syndrome, and T2D (148). Interestingly, another study in

VCD mice showed that hyperglycemia was significantly more

severe in VCD female mice post-ovarian failure, compared to

cycling females (149). Surgical menopause through ovariectomy,

which induces immediate estrogen depletion, is the most used

models to induce menopause in rodents. The detrimental

effects of ovariectomy on glucose homeostasis have been

analyzed in several mouse models of diabetes. For instance,

female normoglycemic ZDF rats, showed impaired glucose

homeostasis after ovariectomy (123). Ovariectomized female

New Zealand obese (NZO) mice, who otherwise rarely

develop diabetes (150), display severe hyperglycemia with a

significantly higher prevalence compared to sham operated

controls (151). Similar observations can be made in Wistar

rats and C57BL/6J mice, two other rodent models that are

typically normoglycemic, but where ovariectomy can impair

their glucose homeostasis.

Estrogen supplementation, another commonly used

chemical procedure in rodents, has been shown to restore

glucose homoeostasis in ovariectomized female ZDF rats (123),

and improve glucose tolerance and fasting blood glucose levels

in males (152). Estrogen replacement reversed insulin resistance

and visceral fat accumulation, and improved insulin sensitivity

in the skeletal muscle (when combined with high fat diet)

in ovariectomized female Wistar rats (153, 154). Estrogen

supplementation in ovariectomized female C57BL/6J mice

significantly improved blood glucose levels, glucose-stimulated

insulin secretion as well as insulin content in pancreatic beta

cells (155) and improved insulin sensitivity in the hepatic tissue

(156). Finally, in the ArKO mice, estrogen replacement also

significantly improved glucose tolerance and insulin sensitivity

in both males and females, further indicating the protective role

of estrogen in glucose homeostasis (113).

Of note, rodent studies show that the impact of sex

hormones, combined to the exposure to environmental

risk factors can lead to sexual dimorphic phenotypes as

early as in utero. For example, in Sprague-Dawley rats,

a multipurpose rodent model typically used in studies of

metabolism and diabetes, male offspring born to mothers

with diet-induced GDM had altered expression of genes

associated with pancreatic growth, reduced beta cell expansion

and differentiation, and impaired insulin secretion (157).

Sex differences in glucose homeostasis of offspring born

to C57BL/6J mice with diet-induced GDM have also been

observed (158). Specifically, male offspring were more insulin

resistant, had higher plasma insulin levels, and had smaller

pancreatic islets compared to female offspring. Additionally,

the expression of PDX-1 which is involved in pancreatic
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beta cell maturation was significantly reduced in males,

compared to female offspring. These data show that estradiol

might exert protective effects in the metabolic homeostasis of

female offspring.

Taken together, these studies illustrate how rodent models

can help to recapitulate and pinpoint the mechanistic effects at

the basis of sexual dimorphism as well as how they can be a

valuable and complemental tool to inform genetic analysis on

this specific area of research.

Gender-specific genetic
determinants for T2D risk

Gender-specific lifestyle behaviors including unhealthy diet,

low physical activity and smoking are well-recognized risk

factors for T2D that differ between gender (4), yet studies

on interaction between gender-specific lifestyle behaviors and

genetic determinants on T2D risk are still lacking, for the main

reason that such studies need a very large sample size to reach the

power required to detect significant effects. It has been shown

that men are more likely to smoke than women (159, 160);

women are more likely to consume a healthy diet (161, 162),

but are less active than men [global average 32% for inactive

women vs. 23% for inactive men (163, 164)]. Diets enriched

in ultra-processed foods and sugar-sweetened beverages are

associated with an increased risk of developing T2D (165), while

diets enriched in fruits, whole grains, and dairy products are

associated with a decreased risk of T2D (166). Moreover, the

influence of lifestyle factors may exert their effects differently

along the life stages.

Knowledge gaps and conclusions

Most of GWASs studying the sex-dimorphic effects of

genes on T2D risk have been conducted on populations of

European ancestry. To date, the list of genes displaying sex

dimorphic effects in non-European populations is extremely

limited and includes SIRT1, identified in a population of Pima

Indians (80), and DSCAM in Koreans (Table 3). However,

the replication of sex-dimorphic effects at these loci is still

needed, and larger, more diverse studies are still needed in

order to identify more sex-dimorphic loci and increase our

understanding on the interplay between genes, sex and the risk

of diabetes.

Sex and gender consideration in research studies has

improved over the last 20 years, but preclinical research is still

primarily done using male rodent models and male-derived

cells, with the result that many conclusions are made based

on incomplete and sex-biased data (167). Although sex-specific

data can improve disease prevention, diagnosis, and treatment

as well as reduce inequities, research to address the important

FIGURE 1

Recap figure depicting sex-specific genetic determinants of type

2 diabetes and glucose-related traits, and their interaction with

endogenous/exogenous sex hormones, sex hormone binding

protein, and gender-specific lifestyle factors. Hereby are

presented the genes with sex-dimorphic e�ect on risk of T2D

and/or GDM and/or FG and/or FI; genes in bold also have

sex-dimorphic e�ect on BMI or WHR.

goal of understanding key sex differences in cardiometabolic

disease across the lifetime is still lacking. More studies are

required to identify the mechanisms responsible for the sex-

specific increase in cardiometabolic risk and to develop therapies

that are safe and effective in women. Such research should take

into account biological and behavioral factors that differ between

women and men, including unique exposures in women, such

as hormonal fluctuations across the life time from conception

through aging (167) (Figure 1). Critical gaps and research

priorities should include elucidation of themechanisms whereby

sex hormones regulate body composition, fat distribution and

how they interact with diet and age, how are sex differences and

race/ethnicity interrelated with T2D what are the mechanisms

underlying the apparent paradox of effects of sex hormones

in premenopausal women vs. postmenopausal women vs. men,

what are the sex differences in therapeutic treatments and effects

of T2D drugs, cardiovascular disease outcomes, and what are

the metabolic impacts of hormonal replacement therapy, and

of androgen and estrogen use in the context of biologically

different sex. Previously published reviews on T2D genetics

did not address the sex-specific differences on T2D genetic

susceptibility. Our review is the first to synthesize the data on sex

differences in relation to its effects with genetic variants on T2D

and related traits. These offer a solid basis for future research in

this field. Ultimately, expanding our understanding on why risk

of T2D differs between men and women during life course could

Frontiers inCardiovascularMedicine 12 frontiersin.org

121

https://doi.org/10.3389/fcvm.2022.964743
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Lamri et al. 10.3389/fcvm.2022.964743

lead to the identification of new therapeutic targets to prevent

T2D more effectively in both women and men.
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Background: Molecular biomarkers are widely used for disease diagnosis and

exploration of pathogenesis. Pulmonary arterial hypertension (PAH) is a rapidly

progressive cardiopulmonary disease with delayed diagnosis. Studies were

limited regarding molecular biomarkers correlated with PAH from a broad

perspective.

Methods: Two independent microarray cohorts comprising 73 PAH samples

and 36 normal samples were enrolled in this study. The weighted gene co-

expression network analysis (WGCNA) was performed to identify the key

modules associated with PAH. The LASSO algorithm was employed to fit a

diagnostic model. The latent biology mechanisms and immune landscape

were further revealed via bioinformatics tools.

Results: The WGCNA approach ultimately identified two key modules

significantly associated with PAH. For genes within the two models, differential

expression analysis between PAH and normal samples further determined

nine key genes. With the expression profiles of these nine genes, we initially

developed a PAH diagnostic signature (PDS) consisting of LRRN4, PI15, BICC1,

PDE1A, TSHZ2, HMCN1, COL14A1, CCDC80, and ABCB1 in GSE117261 and

then validated this signature in GSE113439. The ROC analysis demonstrated

outstanding AUCs with 0.948 and 0.945 in two cohorts, respectively. Besides,

patients with high PDS scores enriched plenty of Th17 cells and neutrophils,
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while patients with low PDS scores were dramatically related to mast

cells and B cells.

Conclusion: Our study established a robust and promising signature PDS for

diagnosing PAH, with key genes, novel pathways, and immune landscape

offering new perspectives for exploring the molecular mechanisms and

potential therapeutic targets of PAH.

KEYWORDS

pulmonary arterial hypertension, weighted gene co-expression network analysis,
functional analysis, machine learning, diagnostic model, immune infiltration

Introduction

Pulmonary arterial hypertension (PAH) is a rapidly
progressive and fatal cardiopulmonary disease, and its
incidence is about one–two in a million per year (1, 2). The
development and progression of PAH are closely associated
with structural and functional abnormalities of the pulmonary
vasculature. Pulmonary vascular remolding involves intimal
injury, middle hypertrophy, adventitia proliferation and
fibrosis, and perivascular inflammatory cell infiltration, leading
to progressive stenosis and occlusion of the pulmonary artery
lumen. Consequently, increased pulmonary vascular pressure
results in right heart failure and even death, ultimately, and
PAH is characterized by high mortality (3). The gold-standard
test for diagnosing PAH is the right heart catheterization
(RHC), but the severe complication rate was 1% (4). Although
echocardiography is recommended in current guidelines (5), a
meta-analysis had elucidated that the pooled sensitivity was 88%
(84–92), and specificity was 56% (46–66) for the diagnosis of
PAH (6). Besides, the mechanisms of PAH are not understood,
especially at the molecular level. Therefore, it is necessary to
explore a novel perspective for diagnosing patients with PAH
and gaining deeper insights for understanding the biological
mechanisms of PAH.

Recently, the rapid development in bioinformatics
facilitated the detection of potential biomarkers and the
exploration of latent disease mechanisms in PAH. Large-scale
research confirmed that the mutations in BMPR2, ACVRL1,
ENG, SMAD9, TBX4, KCNK3, and EIF2AK4 in adult-onset
patients were related to specific PAH (7). Mutations of
multiple genes and aberrant gene expression are involved in
the pathogenesis of PAH via promoting the proliferation and
reducing apoptosis of pulmonary vascular cells. Nevertheless,
based on the available discovery, existing biomarkers lack
sufficient sensitivity and specificity on account of heterogeneity
and confounding factors of samples and the simplicity of the
analytical method. Overall, the previous studies are insufficient
to interpret the mechanistic pathways of PAH susceptibility
and disease progression, and thus, it is essential to detect

biomarkers by integrative and insightful analysis between
patients with PAH and normal.

In our study, two independent microarray cohorts were
generated from the Gene Expression Omnibus (GEO).1 In
addition, the weighted gene co-expression network analysis
(WGCNA), the functional enrichment analysis, and the
differentially expressed gene (DEG) analysis were performed
to screen the hub genes. Subsequently, the LASSO algorithm
was employed to construct a reliable and individualized PAH
diagnostic signature (PDS) for diagnosing PAH and evaluating
the immune landscape. In addition, the results might shed light
on the clinical application and molecular mechanism of PAH.

Materials and methods

Data generation and preprocessing

The keyword “pulmonary hypertension” in GEO’s gene
expression profile was searched. Two datasets met the inclusion
criteria: (i) the datasets contained complete transcriptome data
of PAH and normal lung tissues and (ii) the number of samples
was more than ten in each group. The GSE117261 dataset
contained total RNA gene expression microarray data from 58
PAH and 25 normal lung tissues (Supplementary Table 1).
GSE113439 contains total RNA gene expression microarray
data from 15 PAH and 11 normal lung tissues (Supplementary
Table 2). They were based on the same platform, GPL6244. The
data processing procedure of the research was illustrated in the
workflow (Figure 1).

Co-expression network analysis

The weighted gene co-expression network analysis
(WGCNA) was conducted to screen potential modules of high

1 http://www.ncbi.nlm.nih.gov/geo/
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relationship with PAH based on the gene expression profiles
via the “WGCNA” R package. The expression of genes was
ranked via standard deviation. Then the top 5,000 genes were
picked for the next step of analysis. Next, the hierarchical
cluster analysis was used to exclude outlier samples. We
calculated the Pearson correlation value between each gene
pair to obtain a gene similarity matrix. Then, the formula,
aij (adjacency matrix between gene i and j) = | Sij (similarity
matrix of all gene pairs)| × β (the soft threshold), was used to
construct the adjacency matrix. The optimal β was picked by
the “pickSoftThreshold” function in the “WGCNA” R package
to meet the scale-free distribution. The adjacency matrix was
transformed into a topological overlap matrix (TOM) and a
1-TOM, reflecting the similarity and dissimilarity between
genes, separately. Ultimately, the genes were divided into
different modules using hierarchical clustering methods. The
module eigengene (ME) was calculated, representing the gene
expression profile of each module. Therefore, modules highly
correlated with PAH were selected as key modules for further
analysis. The soft threshold was β = 7, minModuleSize = 50,
deep Split = 2, and MEDissThres = 0.3.

Functional enrichment analysis

The “clusterProfiler” R package was used to further describe
potential biological functions and obtain pathways of genes
in the WGCNA key gene modules via Gene Ontology (GO)
enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis. The false
discovery rate (FDR) was further computed according to the
Benjamini–Hochberg procedure (Benjamini and Hochberg, (8).
The FDR < 0.05 was considered as statistically significant.

Construction of protein–protein
interaction (PPI)

To identify the hub genes and PPI network in the
key modules, genes within the key modules were further
uploaded to the Search Tool for the Retrieval of Interacting
Genes (STRING)2 for constructing PPI network. The medium
confidence score of the PPI network was 0.400. Then the
“MCODE” algorithm with default parameters was implemented
in the Cytoscape software (version: 3.8.2).

Differentially expressed gene analysis

The differentially expressed genes (DEGs) between PAH
and normal lung tissue were identified through the “limma”

2 https://string-db.org/

R package. P-adjusted value < 0.05 and |log2 fold change
(FC)| > 2/3 were set as the threshold of DEGs.

Identification of key regulatory genes

The intersection of the most positive correlation module
in the WGCNA and upregulated genes significantly in the two
datasets is known as upregulated key genes of PAH. Similarly,
the intersection of the most negative correlation module in
the WGCNA and downregulated genes significantly in the two
datasets is known as downregulated key genes of PAH.

Machine learning

The least absolute shrinkage and selection operator
(LASSO) is a machine-learning algorithm to obtain a robust
predictive performance model and is applied to select the best
predictive gene for the diagnosis of PAH. This process was
achieved through the “glmnet” R package. The performance
of PDS was assessed by the area under the receiver operator
characteristic (ROC) curve.

Gene set enrichment analysis

The normalized enrichment score (NES) was calculated
for PAH on GO and KEGG pathways in the Molecular
Signature Database (MSigDB) via all GO gene sets
(c5.go.v7.4.symbols.gmt) and KEGG gene sets as gene symbols
(c2.cp.kegg.v7.4.symbols.gmt), respectively. | NES| > 1.50,
FDR < 0.01, and adjusted P-value < 0.01 were set as
cutoff criteria.

Evaluation of immune cell infiltration

To describe the differences in immune cell infiltration
between the high-score and low-score groups, we used single-
sample gene set enrichment analysis (ssGSEA), which is an
extension of GSEA that generates enrichment scores for
individual samples. The abundance of infiltrating immune cells
was calculated and visualized through the “GSVA” R package
(v1.42.0). Furthermore, we evaluated correlation coefficients
between PDS scores of samples and immune cell abundance to
investigate the main immune cells engaged in the PAH.

Statistical analysis

The data processing, statistical analysis, and plotting
were conducted in R 4.1.0 software. Pearson’s correlation
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FIGURE 1

Flowchart of this study.

coefficient was assessed for correlations between two continuous
variables. The chi-square tests were used to compare categorical
variables, while the Wilcoxon rank sum test or t-test was
used to compare continuous variables. The “survminer”
R package was fitted to determine the optimal cutoff

value. The LASSO was fitted by “glmnet” R package. The
“pROC” R package utilized ROC and the area under the
ROC curve (AUC). P < 0.05 was determined using the
“pROC” R package. It was determined that P < 0.05 was
statistically significant.
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Results

Identification of key modules in
pulmonary arterial hypertension via
weighted gene co-expression network
analysis

The GSE117261 dataset was used as a training dataset to
recognize the key genes associated with PAH. First, two outlier
samples were removed, and the 81 samples and the top 5,000
genes were used to obtain the gene similarity matrix. Then,
the gene similarity matrix was constructed as an adjacency
matrix according to the formula. Second, the soft-thresholding
power was set to seven by the “pickSoftThreshold” function
for the analysis of a scale-free network (Figures 2A,B). Third,
the adjacency matrix was converted to the TOM. We clustered
MEs based on calculating the dissimilarity of MEs and using the
“mergeCloseModules” function and then 14 MEs were identified
(Figures 2C,D). Ultimately, data were visualized in regard to
the module–trait relationships based on the Pearson correlation
coefficient between the MEs and the disease (Figure 2E). Among
these, the salmon module was the top positive module (r = 0.441,
P < 0.0001) with PAH including 646 genes (Figure 2F), and the
red module was the top negative module (r = –0.718, P< 0.0001)
including 176 genes (Figure 2G).

Enrichment analyses and
protein–protein interaction
construction of key modules

To acquire a deep understanding of the function of
genes in positively and negatively related modules, salmon
and red module genes were analyzed through enrichGO
and enrichKEGG function in the “clusterProfiler” R package,
respectively. Genes of the red module were significantly
enriched in “neutrophil activation,” “neutrophil activation
involved in immune response,” “neutrophil degranulation,” and
“neutrophil mediated immunity,” all of which were terms
about neutrophil, as shown in Figure 3A. The KEGG pathway
terms were related to “Osteoclast differentiation,” “Neutrophil
extracellular trap formation,” and “B cell receptor signaling
pathway,” which might play essential roles in PAH (Figure 3B).
Meanwhile, the top three GO terms were enriched by genes
of the salmon module, including “Extracellular structure
organization,” “Extracellular matrix organization,” and “External
encapsulating structure organization,” which were mainly
associated with the extracellular organization (Figure 3C). The
KEGG pathways suggested that the “ECM–receptor interaction”
and “protein digestion and absorption” might be potential
pathways of PAH (Figure 3D). The lists of genes involved in
the GO and KEGG enrichment analysis in red and salmon

modules can be found in Supplementary Tables 3–6. These
results indicated that inflammation and immune cells played a
significant role in the process of PAH.

To screen the hub gene of positive and negative correlation
modules with PAH, the PPI network was established through
the STRING database, including 852 nodes and 5,841 edges.
Then the network was processed in the Cytoscape software,
and the possible 38 essential genes ranked by node degree
were visualized using the MCODE plugin. The top 10 highest
degrees of genes were screened, including ITGAM, CYBB, SPL1,
FCGR3A, CD86, ITGB2, LILRB2, CCR1, 1L10RA, and CSF1R
(Figure 3E).

Identification of differentially
expressed genes in two pulmonary
arterial hypertension datasets

The DEGs in lung tissue between the patients with PAH
and normal controls were excavated by the “limma” R package.
Consequently, in the GSE113439 dataset, 1,355 significantly
upregulated genes and 483 significantly downregulated genes
were defined. Similarly, in the GSE117261 dataset, we identified
120 significantly upregulated genes and 99 significantly
downregulated genes. These DEGs are shown as a volcano plot
and heatmap in Figures 4A–D.

Determination of the key genes

The core downregulated gene was screened through the
intersection of the genes in the red module of WGCNA and
the significantly downregulated genes in two datasets, including
LRRN4 (Figure 5A). Likewise, the key upregulated gene was
screened through the intersection of the genes in the salmon
module of WGCNA and the significantly upregulated genes
in the two datasets, including PI15, BICC1, PDE1A, TSHZ2,
HMCN1, COL14A1, CCDC80, and ABCB1 (Figure 5B). The
expression levels of nine key genes are verified in the two
datasets shown in Figures 5C,D.

Construction of a diagnosis model via
least absolute shrinkage and selection
operator algorithm

The nine key genes were developed as a reliable and
individualized PAH diagnostic signature (PDS) by applying the
LASSO algorithm to diagnose patients with PAH. The optimal
lambda was 0.002116 when the LASSO regression partial
likelihood deviation was minimized (Figure 6A). Consequently,
nine key genes with non-zero LASSO coefficients were regarded
as the diagnostic model’s main variables (Figure 6B). The nine
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FIGURE 2

Detection of weighted gene co-expression network and modules. (A) Scale-free topological indices at various soft-thresholding powers.
(B) The correlation analysis between the soft-thresholding powers and mean connectivity of the network. (C) Gene clustering diagram based on
hierarchical clustering under optimal soft-thresholding power. (D) The heatmap of the eigengene adjacency. (E) Correlations between gene
modules and PAH. (F) The correlation between the salmon module memberships and the gene significance. (G) The correlation between the
red module memberships and the gene significance.

genes were COL14A1, TSHZ2, CCDC80, BICC1, HMCN1,
LRRN4, PDE1A, ABCB1, and PI15, and their coefficients
were 0.1522, 0.1191, –0.1084, –0.0963, 0.0785, –0.0676, –
0.0545, –0.0452, and –0.0292, respectively. The ROC analysis
demonstrated outstanding AUCs with 0.948 and 0.945 in two
cohorts for evaluating the power of the PDS to differentiate

the PAH (Figures 6C,D). Therefore, we established an
optimal diagnostic signature PDS with the formula: PDS
score = 0.1522 × Exp COL14A1 + 0.1191 × Exp TSHZ2 -
0.1084 × Exp CCDC80 - 0.0963 × Exp BICC1 + 0.0785 × Exp
HMCN1 - 0.0676 × Exp LRRN4 - 0.0545 × Exp PDE1A –
0.0452 × Exp ABCB1 - 0.0292 × Exp PI15 + 0.7037.
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FIGURE 3

Enrichment analysis and protein–protein interaction construction of key modules. (A) GO enrichment analysis of genes in the red module.
(B) KEGG pathway analysis of genes in the red module. (C) GO enrichment analysis of genes in the salmon module. (D) KEGG pathway analysis
of genes in the salmon module. (E) The protein–protein network of two modules.

Exploration of biological mechanisms
via gene set enrichment analysis
(GSEA)

First, we calculated the PDS scores and gene expression
correlations for gene sequencing. Subsequently, GSEA
was performed to detect potential mechanisms for PAH.
Figures 7A,B illustrate the most important GO terms and
the KEGG pathways. Among these, Figure 7C depicts the top

five positively relevant GO terms, including “Regulation
of cholesterol metabolic process,” “Sterol biosynthetic
process,” “Sterol metabolic process,” “Odorant binding,” and
“Oxidoreductase activity acting on CH-OH group.” Figure 7D
depicts the top five negatively relevant GO terms, comprising
“Collagen fibril organization,” “Basement membrane,” “Collagen
binding,” “Extracellular matrix structural constituent,” and
“Extracellular matrix structural constituent conferring.” On the
contrary, Figure 7E describes the top five positively correlated
the KEGG pathways, consisting of “Glutathione metabolism,”
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FIGURE 4

Differential expression analysis of the PAH datasets. (A) The volcano plot of DEGs in GSE117261. (B) The heatmap of DEGs in GSE117261. (C) The
volcano plot of DEGs in GSE113439. (D) The heatmap of DEGs in GSE113439.

“Pathogenic Escherichia coli infection,” “Pyruvate metabolism,”
“Steroid biosynthesis,” and “Terpenoid backbone biosynthesis.”
Likewise, Figure 7F describes the top five negatively
correlated KEGG pathways, consisting of “Arrhythmogenic
right ventricular cardiomyopathy ARVC,” “ECM-receptor
interaction,” “Intestinal immune network for IgA production,”
and “Systemic lupus erythematosus.” Notably, “ECM–receptor
interaction” was enriched once again which was enriched
in the salmon KEGG pathway. It can be concluded that the

"extracellular matrix organization" may play an essential
role in PAH.

Immune landscape of PAH diagnostic
signature

We assumed that the two PDS score groups had different
immunological characteristics since inflammation and immune
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FIGURE 5

Selection and validation of key regulatory genes. (A) Venn diagram to indicate one downregulatory gene from the red module and DEGs.
(B) Venn diagram to indicate eight upregulatory genes from the salmon module and DEGs. (C) Validation of key regulatory genes in the dataset
GSE117261. (D) Validation of key regulatory gene in the dataset GSE113439.

cells are essential in the PAH process. To probe the
discriminating immune landscape of patients with PAH,
the ssGSEA algorithm was used to estimate the infiltration
abundance of 24 types of immune cells among the GSE117261
dataset. The fraction of 24 types of immune cells in GSE117261
samples is depicted as a heatmap in Figure 8A. The relative

expression is portrayed as a boxplot in Figure 8B. We can see
that a superior abundance of Th17 cells, neutrophils, effective
memory T cell (tem), and eosinophils was the immune feature
of the high-score group, whereas high infiltration of mast cells,
B cells, Th2 cells, interdigitating cell (iDC), Th1 cells, and T
cells was the immune feature in the low-score group. Figure 8C
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FIGURE 6

Screening and validation of the genes. (A) Determination of the optimal lambda was obtained when the partial likelihood deviance reached the
minimum value and further generated the key gene with non-zero coefficients. (B) LASSO coefficient profiles of the candidate gene for PDS
construction. (C) The ROC curve of the modeling dataset (GSE117261). (D) The ROC curves of validation datasets (GSE113439).

shows the heatmap of correlations between immune cells. The T
cells and B cells showed the strongest positive correlation, and
the neutrophils and T helper cells showed the strongest negative
correlation. Subsequently, we probed the correlation between
the PDS score and immune infiltration. As shown in Figure 8D,
the infiltration level of Th17 cells (r = 0.467, P < 0.0001),
neutrophils (r = 0.394, P = 0.0003), tem (r = 0.335, P = 0.0023),
and eosinophils (r = 0.250, P = 0.0249) was positively correlated
with the PDS score; the infiltration level of mast cells (r = –0.470,
P < 0.0001), B cells (r = –0.381, P = 0.0005), Th2 cells

(r = –0.376, P = 0.0006), iDC (r = –0.355, P = 0.0012), Th1 cells
(r = –0.354, P = 0.0012), and T cells (r = –0.284, P = 0.0103) was
negatively associated with the PDS score.

Discussion

Pulmonary arterial hypertension is a disorder characterized
by a progressive increase in pulmonary vascular stress
and significant pulmonary vascular remodeling, resulting in

Frontiers in Cardiovascular Medicine 10 frontiersin.org

136

https://doi.org/10.3389/fcvm.2022.940894
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-940894 November 29, 2022 Time: 8:24 # 11

Duo et al. 10.3389/fcvm.2022.940894

FIGURE 7

Gene Set Enrichment Analysis (GSEA). (A) The ridge plot of the top 20 GO terms with ranked genes of the modeling dataset. (B) The ridge plot of
the top 20 KEGG pathways with ranked genes of the modeling dataset. (C,D) The positive and negative top five GO terms with ranked genes of
the modeling dataset. (E,F) The positive and negative top five KEGG pathways with ranked genes of the modeling dataset.

hypertrophy and remodeling of the right ventricle (9–11).
If a patient with pulmonary hypertension is not diagnosed
promptly, the probability of death due to right ventricular failure
is drastically increased (9). As a rapidly evolving approach,
molecular analysis is utilized to comprehend the latent pathways
in the context of human disease. The notion is recognized that

PAH is actuated by a comprehensive network of molecular
processes (12–15). Measurement of RNA expression is one of the
high-throughput unbiased techniques in the Omics approach,
which provides a snapshot of the transcriptome aspect (13).
These insights provide new perspectives for predicting potential
pathogenesis and therapeutic aspects. Therefore, it is of great
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FIGURE 8

Analysis of immune landscape associated with PAH. (A) The heatmap of the immune infiltration in high- and low-score groups. (B) The boxplot
of the 24-type immune infiltration in high- and low-score groups. *P < 0.05, **P < 0.01, and ***P < 0.001. (C) The heatmap of the correlations
between different immune cells. (D) Relationship between the PDS score and immune infiltration. H: high score; L: low score. aDC: activated
dendritic cell; DC: dendritic cell; iDC: interdigitating cell; NK cells: natural killer cells; pDC: plasmacytoid dendritic cells; Tcm: central memory T
cell; Tem: effector memory T cell; TFH: T follicular helper cell; Tgd: gamma delta T cells; TReg: T regulatory cells.

significance to explore molecular biomarkers and to construct
a diagnostic model for the diagnosis of PAH.

The WGCNA, as a bioinformatics approach, explicitly
exploits the relationship between gene co-expression modules
and disease to further explore the pathogenesis of diseases.

Our study screened out 11 modules associated with PAH via
WGCNA. Among the 11 modules screened, the genes in the
salmon module are the most positively correlated with PAH and
those in the red modules are the most negatively correlated with
PAH. In the salmon modules, genes were mainly concentrated
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in extracellular structure organization, extracellular matrix
(ECM) organization, and external encapsulating structure
organization in GO terms and gathered in the KEGG pathway
of ECM–receptor interaction and PI3K–Akt signaling pathway.
As mentioned in the literature review, ECM remodeling
triggers pulmonary arterial smooth muscle proliferation and
pro-inflammatory response in the endothelial cells resulting
in increased stiffness of the proximal and distal pulmonary
arteries in PAH (16, 17). Meanwhile, the PI3K–Akt signaling
pathway is an essential nexus of pulmonary artery smooth
muscle cell (PASMC) proliferation and hypoxia-induced
pulmonary vascular remodeling (18, 19). Conversely, in the
red modules, genes were mainly concentrated in GO terms
related to neutrophil and immune response. Besides, genes
were gathered in the B-cell receptor signaling pathway and
neutrophil extracellular trap (NET) formation in the KEGG
pathway. The release of neutrophil elastase is part of neutrophil
activity. NE, which is found in PASMCs and neointimal lesions
of PAH, is thought to cause vascular remodeling by causing
the release of growth factors, aggregation and activation of
their receptors, and subsequent migration and proliferation
of smooth muscle cells and fibroblasts through extracellular
matrix degradation (20–22). NETs, formed from chromatin
decondensation provoked by reactive oxygen species (ROC),
can trigger the inflammatory activation of lung endothelial
cells and stimulate endothelial angiogenesis through myelo-
peroxidase/H2O2/NFkB/TLR4-dependent signaling. These
results confirm the findings of extensive previous work
demonstrating the potential pathological relevance between
NETs and inflammatory angiogenesis, a disturbance of vascular
homeostasis in PAH (23). In summary, the comprehensive
bioinformatics analysis perceived that neutrophil activation
and immune response played a considerable role in disease
pathogenesis and the process of PAH. On the contrary, the
complexity of cytokine, cellular immunity, and autoantibody
changes indicated that PAH might be an autoimmune and
inflammatory disease, which was consistent with previous
reports (11, 24–26).

From a broad perspective, the development of PDS for
clinical application is of great significance. Previous studies
have examined key genes by DEG analysis between PAH
lung specimens and normal lung specimens solely based on
the public database in the GEO (27–29). The presence of
heterogeneity of the disease and confounding factors reduces
the sensitivity and specificity of DEGs as biomarkers for PAH.
In addition, redundant key genes limited the clinical practice of
the clinical application. In our study, the essential biomarkers
relevant to the PAH were filtrated by combining the results
of the WGCNA and the DEGs. Further analysis identified
nine robust PDS by the application of the LASSO algorithm,
including COL14A1, TSHZ2, CCDC80, BICC1, HMCN1,
LRRN4, PDE1A, ABCB1, and PI15. The PDS demonstrated high
discriminatory power with outstanding AUCs in the two cohorts

separately. Phosphodiesterase 1 (PDE1), encoded by three genes,
namely PDE1A, 1B, and 1C, is a sub-family of enzymes.
Some animal studies have shown that the inhibition of PDE1A
treats pulmonary arterial hypertension by reversing pulmonary
vascular remodeling and right heart hypertrophy (30, 31).
The basement membrane collagen COL4A5 was significantly
upregulated in the intima and media of the IPAH patient cohort,
indicating improved vascular stiffness via stabilizing existing
collagen fibers (32). PI15 belongs to the CAP superfamily of
proteins and is a trypsin inhibitor (33). Against extracellular
matrix proteins, trypsin has high protease activity. PI15 has
been hypothesized to perform a protective role in elastic tissues
against proteolytic damage and a role in controlling extracellular
matrix changes (34). LRRN4, also known as leucine-rich repeat
neuron protein-4, is a member of the LRRN family and linked to
a range of pathological events, including cardiac remodeling (35,
36). BICC family RNA-binding protein 1 (BICC1) is an RNA-
binding protein that modulates protein translation to control
gene expression. BICC1 can influence biological processes
including proliferation and apoptosis. Furthermore, abnormal
BICC1 expression has been linked to immune cell infiltration
during disease progression (37). Hemicentin-1 (HMCN1) is an
ECM fibulin protein that is thought to be required for stable
cell-to-cell interactions and ECM structure stability and may
interact with receptors on the cell surface, either directly or
indirectly, providing a mechanism for cell behavior modulation
(38, 39). Taken together, exploring the underlying mechanisms
in PAH of key genes contained in PDS might facilitate the
clinical translation and application of the diagnostic model.

The PDS score-based GSEA indicated that immune-
related pathways were enriched between high and low groups.
Hence, deciphering the exact mechanisms of immune cells in
pulmonary vessels might lead to a wide range of potential
attractive therapeutic targets for PAH therapy. We further
estimated the fraction of 24 immune cells between the two
groups via the ssGSEA algorithm. We discovered that the
Th17 cells, neutrophils, tem, and eosinophils were at high
expression in the high-score subgroup compared to the low-
score subgroup, while mast cells, B cells, Th2 cells, iDC,
Th1 cells, and T cells presented low infiltration levels in the
low-score group. Th17 cells, a subpopulation of effector T
cells that produce IL-17, are highly pro-inflammatory and are
widely involved in inflammatory diseases (40). It has been
shown that IL-17 is of significance in chronic inflammation-
associated pulmonary hypertension, where it correlates with
disease severity in SSc-associated pulmonary hypertension.
Neutrophils release NE, present in PASMCs of PAH, which can
lead to vascular remodeling through aggregation and activation
of growth factors and their receptors, and degradation of the
smooth muscle cell and fibroblast migration and proliferation
(21). In addition, there is growing evidence that eosinophil
infiltration of the pulmonary vasculature is an important,
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influential factor in the pathological changes of all types of PAH
(41). Eosinophils stimulate pulmonary vascular remodeling
by releasing granular content and stimulating intravascular
PASMC proliferation. Combined with previous studies, we
further confirmed that abnormal immune cell expression was
critical in the pathogenesis of vascular remodeling and might be
potential targets for PAH treatment.

Although advanced bioinformatics techniques and
machine-learning algorithms are combined to identify
candidate genes and construct diagnostic models for PAH,
several limitations should be noticed. First, the relevant genes
and pathways screened are not experimentally validated.
Fundamental study validation is required for better clinical
application in further studies. Second, the PDS needs to be
validated with a larger sample size. Last, the dataset lacked
comprehensive information on clinical aspects.

In summary, our study constructed a nine-gene diagnostic
model of PAH and PDS, through comprehensive bioinformatics
analysis. Two modules significantly associated with PAH were
identified, and key genes and novel mechanistic pathways
were identified. In addition, the inflammatory and immune
landscapes of patients with PAH were depicted. Overall, the
key genes, novel pathways, and immune landscape may shed
light on exploring the molecular mechanisms and potential
therapeutic targets of PAH.
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Background: The role of multidisciplinary clinics for psychosocial care is
increasingly recognized for those living with inherited cardiac conditions (ICC).
In Canada, access to healthcare providers differ between clinics. Little is known
about the relationship between access to specialty care and a patient’s ability to
cope with, and manage their condition.
Methods: We leveraged the Hearts in Rhythm Organization (HiRO) to conduct a
cross-sectional, community-based survey of individuals with ICC and their
family members. We aimed to describe access to services, and explore the
relationships between participants’ characteristics, cardiac history and self-
reported health status and self-efficacy (GSE: General Self-Efficacy Scale) and
empowerment (GCOS-24: Genetic Counseling Outcome Scale).
Results: We collected 235 responses from Canadian participants in 10 provinces and
territories. Overall, 63% of participants reported involvement of a genetic counsellor in
their care. Access to genetic testing was associated with greater empowerment [mean
GCOS-24: 121.14 (SD=20.53) vs. 105.68 (SD=21.69); p=0.004]. Uncertain genetic
test results were associated with lower perceived self-efficacy (mean GSE: uncertain=
28.85 vs. positive=33.16, negative=34.13; p=0.01). Low global mental health scores
correlated with both lower perceived self-efficacy and empowerment scores, with only
11% of affected participants reporting involvement of psychology services in their care.
Conclusion:Differences in resource accessibility, clinical history and self-reportedhealth
status impact the perceived self-efficacy and empowerment of patients with ICC. Future
research evaluating interventions to improve patient outcomes is recommended.

KEYWORDS

cardiogenetics, genetic counselling, self efficacy, empowerment, patient engagement
Abbreviations

LQTS, long QT syndrome; ARVC, arrhythmogenic right ventricular cardiomyopathy; ACM, arrhythmogenic
cardiomyopathy; CPVT, catecholaminergic polymorphic ventricular tachycardia; BrS, Brugada syndrome;
HCM, hypertrophic cardiomyopathy; UCA, unexplained cardiac arrest; ICC, inherited cardiac condition;
HiRO, hearts in rhythm organization; GSE, general self efficacy; GCOS, genetic counselling outcome scale.
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Introduction

Inherited cardiac conditions (ICC) include, long QT syndrome

(LQTS), short QT syndrome (SQTS) arrhythmogenic

cardiomyopathies (ARVC/ACM), catecholaminergic polymorphic

ventricular tachycardia (CPVT), early repolarization syndromes

(ERS) and Brugada syndrome (BrS). These conditions can result

in sudden unexpected death, typically in a seemingly healthy

child or young adult before the condition can be recognized and

treated (1–3). In recent years, advances in genomic technologies

have markedly improved the ability to identify those at risk for

premature sudden cardiac death due to an arrhythmia, and

facilitated the implementation of preventive strategies.

The psychological impact of undergoing screening and/or

living with an ICC is also increasingly recognized, with past

research demonstrating high levels of patient anxiety, depression

and poor adjustment to their diagnosis (4–8). Identifying those

struggling to adapt and cope with their ICC is important,

particularly given that low self-efficacy and low empowerment

are known barriers to engage in risk prevention strategies, such

as medication adherence or screening recommendations, critical

for reducing risk of sudden cardiac death (9, 10). Further, a

positive correlation between empowerment and uptake of cardiac

screening in first-degree relatives has been reported (11).

Together, this growing evidence underlines the importance of

implementing strategies to improve patient self-efficacy and

empowerment in cardiogenetic care delivery.

Expert consensus guidelines for the management of families

with ICC have highlighted the importance of multidisciplinary

clinics, including access to genetic counsellors and psychology

resources, to support families cope with and manage the

psychological impacts of ICCs (12–15).

In contrast to these recent recommendations, families report

differences in both delivery of cardiogenetics care and access to

providers across Canada. While access to specialty ICC clinics is

covered under the public health system, these clinics are typically

located within major urban centres, and the logistics and/or cost

of travel for families in rural areas can be a significant barrier to

accessing care providers. Further, not all specialty ICC clinics in

Canada have a genetic counsellor embedded within the

cardiology department, with some requiring patients to be

referred to different clinics for a separate genetic counselling

appointment, which can often have long waitlists.

Little is known regarding the relationship between access to

care services and a patient’s ability to cope and manage their

ICC. We conducted a cross-sectional survey to explore

relationships between patient characteristics, health status and

access to care services with perceived self-efficacy and

empowerment of ICC patients and their family members in

Canada. The main objectives of this study were to (1)

understand the current state of care provider access for patients

with ICC in Canada and (2) explore relationships between access

to certain care providers and perceived self-efficacy and

empowerment. Secondary objectives included establishing

baseline measures of self-efficacy and empowerment in the ICC

population and exploring sub-populations with lower self-efficacy
Frontiers in Cardiovascular Medicine 02143
and empowerment to aid in the design of future interventions to

improve patient-reported outcomes for ICC patients and their

relatives.
Methods

This study was approved by the UBC Providence Health Care

research ethics board (H17-01894).
Recruitment and community engagement

The National Hearts in Rhythm Organization (HiRO) is a

group of clinicians, researchers, patients and families working

together to improve detection and treatment of inherited

arrhythmia and cardiomyopathy disorders in Canada (16). In

addition to leading a national research registry, HiRO has

numerous working groups dedicated to improving clinical care

and supporting patient advocacy efforts. We leveraged this

national network to form the HiRO Patient-Oriented Research

Working Group, bringing together members interested in

working alongside patient partners to conduct research to

contribute novel evidence and improve psychosocial outcomes

for patients living with ICC in Canada. Patient partners co-led

framework development, study design and funding applications

of this first working group project.

Patients with an ICC or unexplained cardiac arrest, their first-

degree family members and their caregivers over the age of 18, were

invited to complete an anonymous survey administered

electronically through a university-affiliated online survey tool.

Participants were recruited from families followed at nine HiRO

clinics in five provinces across Canada. We provided clinical

teams with business cards to distribute to families containing the

online survey link at the time of their clinic visit. Additionally,

families who were already participating in the National HiRO

Registry [including Cardiac Arrest Survivors with Preserved

Ejection Fraction Registry (CASPER), National ARVC registry

and National Long QT Syndrome registry] at these centers who

had previously consented to be re-contacted for research

purposes received a letter of invitation. The online survey link

was also available from the HiRO website (www.heartsinrhythm.

org) and social media accounts (@heartsinrhythm). Additionally,

the Canadian Sudden Arrhythmogenic Death Syndrome (SADS)

Foundation partnered with the HiRO research team to promote

survey recruitment on their online platforms, and increase the

awareness of the survey outside of major care centers.

Study framework and survey design
This study was grounded in a framework developed by the

HiRO Patient-Oriented Research Group based on current

evidence, clinician expertise and the input of people with lived

experience. We hypothesized four domains (personal

demographics, cardiac history and risk profile, self-reported

health status, and resource accessibility) that drive patients’

capacity for self-efficacy and empowerment (Figure 1).
frontiersin.org

http://www.heartsinrhythm.org
http://www.heartsinrhythm.org
)
https://doi.org/10.3389/fcvm.2023.955060
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 1

Framework of the HiRO patient-oriented research working group.
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The constructs of general self-efficacy and empowerment were

selected as key patient-reported outcome measures for the

psychological well-being of ICC patients and their relatives. Both

have previously been associated with health-related quality of life

and adherence to risk-prevention measures, making these

outcomes well-suited to measure impact of future interventions

(9–11, 17–21). Self-efficacy is defined as the belief that one can

perform a novel or difficult task, or cope with adversity (22).

Self-efficacy is considered a key component of patient self-

management of their disease, and has been found to positively

correlate with self-esteem and optimism and negatively correlate

with anxiety (22). While there have been differing definitions of

patient empowerment in the literature, most agree that it relates

to a patient’s ability to take control of their wellbeing, play an

active role in their healthcare and integrate their diagnosis within

their self-identity (23, 24). Measures of patient empowerment

have been found to correlate positively with constructs of

perceived personal control, and decisional conflict and negatively

with depression (25). While some have previously described an

empowered patient as one who has “mastered” self-efficacy, there

is general consensus that measures of self-efficacy fail to capture

the broader psychosocial components of patient empowerment,

particularly the emotional and cognitive domains (23, 24, 26). In

2018, a study by Kohler at el evaluated both patient

empowerment and general self-efficacy in patients with coronary

heart disease, and found the relationship between the two

variables to be weak (r = 0.38) (27). The study concluded that
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patient empowerment and general self-efficacy are not

interchangeable and should both be taken into consideration

with designing healthcare to maximize health-related quality of

life (27).

Survey design
An electronic survey (Supplementary Appendix S1) was designed

to collect candidate variables in each of these four predicted

domains, and was available in both English and French. Patient

demographics, cardiac history and risk profile (including history

of cardiac arrest & ICD shocks), and access to resources were

captured by a survey designed by the research team. Self-

reported health status was collected from three validated

measures: 10-item Global Health PROMIS scale, 4-item Anxiety

PROMIS 4a Scale, and 12-item Multidimensional Scale of

Perceived Social Support (MSPSS). The Global Health PROMIS

Scale is a measure of overall health-related quality of life which

generates a physical and emotional health score with high

internal reliability scores (r = 0.81 and 0.86) (28–31). Participants’

emotional distress was captured with the Anxiety PROMIS 4a

Scale, the short form version that is well correlated (r = 0.90) to

the extensively validated PROMIS Anxiety 8a (α = 0.93; r = 0.79)

(32). Lastly, the domain of social health status was measured

with the Multidimensional Scale of Perceived Social Support

(MSPSS), designed to assess global perceived support from

family, friends and significant others. This validated measure has

good internal reliability (α = 0.85–0.91) and factor analysis
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TABLE 1 Demographics of HiRO survey participants.

Demographics n (%)
Responses 235

Survey language

English 226 (96%)

French 9 (4%)

Sex

Female 156 (66%)

Male 75 (32%)

Davies et al. 10.3389/fcvm.2023.955060
between each sub-group has been shown to correlate with different

sources of support (33–35). Each of the PROMIS and MSPSS scales

have been validated in both English and French.

Participants’ level of confidence in managing their condition was

measured using the General Self-Efficacy Scale (GSE), which has

strong internal reliability and concurrent validity with numerous

positive emotions and optimism and has been validated in both

English and French (17, 36). Lastly, the Genetic Counselling Outcome

Scale (GCOS-24) was used to measure patient empowerment (25). In

this study, empowerment was defined based on the contributions of

McAllister et al. as the belief that one can make important life

decisions (decisional control), has sufficient information about their

family’s condition (cognitive control), can manage one’s feelings

(behavioural control), can make effective use of the healthcare system

(emotional regulation), and has hope for the future (hope) (25). The

scale has been shown to have high internal consistency, test-retest

reliability and construct validity with the measurement of health locus

of control, satisfaction with life and depression. While this scale has

yet to be validated in French, the feasibility of translation and cultural

consistency has been demonstrated by recent validation of the scale in

both Danish and Spanish populations (37, 38). The English version of

this survey was professionally translated to French and reviewed by a

bilingual study team member for use in this study.

Other 1 (0%)

No answer 3 (1%)

Age

18–34 37 (16%)

35–54 96 (41%)

55 and up 72 (31%)

No Answer 30 (12%)

Province/Territory

Western Canada 115 (49%)

Prairies 29 (12%)

Ontario 56 (24%)

Quebec 19 (8%)

Eastern Canada 14 (6%)

No answer 1 (0%)

Primary language

English 202 (86%)

Another language 25 (11%)

No answer 8 (3%)

Highest education

High school 25 (11%)

Some post-secondary 83 (35%)

Undergraduate degree or more 122 (52%)

Other 1 (0%)

No answer 4 (2%)

Main activity

Employed 158 (67%)

Not employed 68 (29%)

Other 7 (3%)

No answer 2 (1%)

Annual household income

Less than $69,999 65 (28%)

More than $70,000 143 (61%)

No answer 27 (11%)

Relationship status

In a relationship 178 (76%)

Not in a relationship 48 (20%)

No answer 9 (4%)
Statistical analysis

Categorical variables are reported as total responses and

percentages. Continuous variables are listed as means and

standard deviations. Each of the validated instruments were

scored according to the reference scoring guides to provide an

overall score (15–18).

Part 1: Demographic variables are reported as total response

and percentages (Table 1). Single variable analysis was

performed to identify the relationship between each predictor

variable and general self-efficacy and empowerment. Unpaired t-

tests were used to compare mean outcome scores between those

who reported access to each care provider versus those who did

not (Table 2). Analysis of variance (ANOVA) tests were

performed to test the interaction between cardiac history

variables with more than two groups with mean outcome scores

reported. Tukey HSD tests were performed if ANOVA was

significant (Supplementary Tables S1–S6). Bivariable linear

regression was performed to identify the relationship between

self-reported health status scores and outcome variables (Table 3

and Supplementary Table S7). For all statistical tests, level of

significance was considered 0.05 and t-tests were one-tailed.

Part 2: Predictor variables identified to have a p-value less than

or equal 0.2 on single variable analysis for each outcome variable

were then entered into a multiple linear regression model for

each general self-efficacy and patient empowerment. Separate

models were calculated for (1) affected patients (Tables 4, 5) and

(2) unaffected relatives and/or caregivers (Supplementary Tables

S8, S9). For each model, coefficients and 95% confidence

intervals were reported.
Frontiers in Cardiovascular Medicine 04145
All statistical tests were performed in R-statistic (Version

1.2.1335). Survey participants who selected “no answer” or did

not provide a response were excluded from analysis utilizing

those variables. Only participants who provided answers to each

of the applicable predictor variables were included in the

multivariable analyses.
Results

In total, 235 survey responses were completed between January

2018 and March 2021 (Table 1). Incomplete data for one of GSE or
frontiersin.org
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TABLE 2 Self-efficacy and empowerment scores by health care provider (HCP) accessed for ICC care.

HCP Accessed for
ICC care:

Affected (n = 160) Unaffected relative/partner (n = 51)

n (%) Mean GSE
score (SD)

Mean GCOS
score (SD)

n (%) Mean GSE
score (SD)

Mean GCOS
score (SD)

YES NO p YES NO p YES NO p YES NO p
Heart rhythm specialist 152

(95%)
32.87
(5.36)

29.25
(5.70)

0.12 118.71
(20.52)

111.89
(30.68)

0.53 30
(59%)

30.89
(6.05)

34.41
(3.61)

0.02* 114.33
(9.81)

120.00
(24.22)

0.46

Genetic counsellor 100
(63%)

32.96
(5.17)

32.18
(5.85)

0.42 120.46
(20.47)

114.35
(22.29)

0.12 19
(37%)

30.22
(6.63)

33.56
(4.21)

0.07 114.76
(19.87)

117.33
(22.59)

0.70

Psychologist 17
(11%)

30.92
(7.55)

32.86
(5.15)

0.37 114.92
(18.86)

118.61
(21.56)

0.52 4 (8%) 22.67
(13.01)

32.90
(4.12)

0.31 94.67
(18.61)

117.97
(20.74)

0.15

Family doctor 116
(73%)

32.41
(5.71)

33.39
(4.51)

0.29 117.82
(22.16)

119.36
(18.96)

0.69 22
(43%)

30.45
(6.59)

33.64
(4.03)

0.07 116.25
(18.44)

116.29
(24.15)

0.99

Pharmacist 45
(28%)

32.52
(5.38)

32.73
(5.47)

0.83 119.26
(17.87)

117.82
(22.62)

0.70 3 (6%) 23.50
(19.09)

32.63
(4.38)

0.62 123.00
(36.77)

115.92
(20.95)

0.83

Social worker 11 (7%) 32.40
(7.21)

32.69
(5.30)

0.90 111.80
(14.39)

118.77
(21.70)

0.18 5
(10%)

26.75
(3.60)

32.76
(5.38)

0.03* 100.25
(17.84)

118.00
(21.10)

0.14

Physical therapist 10 (6%) 29.00
(6.24)

32.94
(5.29)

0.08 110.50
(19.50)

118.88
(21.36)

0.22 0 (0%) NA 32.22
(5.49)

NA NA 116.27
(21.29)

NA

Pediatrician 3 (2%) 29.33
(5.13)

32.74
(5.43)

0.37 103.67
(12.22)

118.58
(21.35)

0.16 5
(10%)

33.00
(4.08)

32.15
(5.65)

0.72 120.75
(19.47)

115.78
(21.67)

0.66

Trauma counsellor 6 (4%) 35.33
(4.13)

32.56
(5.46)

0.17 113.17
(9.97)

118.48
(21.66)

0.27 1 (2%) 31.00
(NA)

32.25
(5.55)

NA 144.00
(NA)

115.58
(21.08)

NA

Research coordinator 41
(26%)

32.23
(5.50)

32.84
(5.41)

0.55 120.53
(21.16)

117.32
(21.36)

0.43 10
(20%)

31.00
(3.81)

32.53
(5.84)

0.35 114.22
(11.38)

116.84
(3.45)

0.64

HCP, healthcare provider; ICC, inherited cardiogenetic condition; GSE, general self-efficacy score; GCOS, genetic counselling outcome score. Six affected participants did

not answer which HCPs they accessed for ICC care and were excluded from this analysis.

*Denotes statistical significance (p < 0.05).

Davies et al. 10.3389/fcvm.2023.955060
GCOS scores was reported in 59 cases (25.1%). Overall, 66% of

respondents identified as female, 41% were between the ages of

34–54 years, and 86% of participants reported English as their

primary language.

166 (71%) respondents had a personal diagnosis of an ICC or

experienced an unexplained cardiac arrest, 44 (19%) were

unaffected first-degree relatives, 7 (3%) identified as a spouse/

partner or close friend, and 18 (7%) declined to answer this

question (Supplementary Table S1).
Part 1

Participant’s education, main activity, relationship status and

income were associated with statistically significant differences

for both general self-efficacy (GSE) and patient empowerment

(GCOS-24).

Overall, unaffected first-degree relatives and partner/spouses of

someone with an ICC had similar mean perceived self-efficacy

(GSE) and empowerment (GCOS-24) compared to those living
TABLE 3 Self-efficacy and empowerment scores by self-reported health statu

Self-reported health status: General self-efficacy (GSE

B 95% CI F-Statisti
Global health—physical −0.78 −2.50 0.95 0.788

Global health—mental 4.69 3.32 6.07 45.45

Perceived social support 1.20 0.63 1.76 17.36

*Denotes statistical significance (p < 0.05).
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with a diagnosis [GSE: 28.51 (SD = 3.58) (unaffected relative) vs.

29.17 (SD = 1.17) (partner/spouse) vs. 28.52 (SD = 2.62) (affected

proband) vs. 28.93 (SD = 2.46) (affected relatives); p = 0.80];

[GCOS: 115.53 (SD = 20.98) (unaffected relative) vs. 121.60 (SD

= 25.32) (partner/spouse) vs. 117.91 (SD = 21.09) (affected

proband) vs. 118.71 (SD = 21.71) (affected relative); p = 0.81]

(Supplementary Table S1). There were no statistically significant

differences in general self-efficacy or patient empowerment in

those with a different ICC diagnoses (Supplementary Table S2).

Access to healthcare providers
Among participants with a personal diagnosis of an ICC, 95%

(n = 152) reported access to a heart rhythm specialist and 63% (n

= 100) had access to a genetic counsellor (Table 2). The majority

of participants had access to both these care providers (59%; n =

98), whereas 36% (n = 59) had access to a heart rhythm specialist

only; 2 participants (1%) had access to a genetic counsellor only

and 4% (n = 7) reported access to neither. A lower proportion

of unaffected first-degree relatives or partners reported access to

a heart rhythm specialist (59%; n = 30) or genetic counsellor
s in affected patients.

) Patient empowerment (GCOS-24)

c p B 95% CI F-Statistic p
0.38 −4.51 −11.59 2.57 1.59 0.21

<0.001* 14.57 8.38 20.75 21.73 <0.001*

<0.001* 4.69 2.16 7.22 13.43 <0.001*
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TABLE 4 Multiple linear regression model for general self-efficacy (gse):
affected patients.

Affected patients (n = 125): B 95% CI
Highest education: (High
School)

Some post-secondary
education

1.68 −1.17 4.52

Bachelor’s degree or higher 2.26 −0.57 5.09

Main activity (Employed
or Student)

Not currently employed −0.78 −2.53 0.98

Relationship (Not in a
relationship)

In a relationship 1.39 −1.07 3.84

Income (No Answer) Under $69,000 per year 2.26 −1.19 5.72

More than $70,000 per year 2.83 −0.59 6.25

Healthcare providers Heart rhythm speciality 3.16 −0.19 6.51

Physical therapist −3.24 −6.34 −0.13
Trauma counsellor 2.66 −1.24 6.56

GT result: (Not
applicable)

Positive −0.58 −2.56 1.41

Negative −0.13 −2.63 2.38

The results were unclear −3.52 −6.60 −0.44
Exercise restrictions:
(No restrictions)

Yes—Worried about cardiac
risk

−3.95 −6.32 −1.58

Yes—Physical limitations 1.31 −2.66 5.27

Yes—Healthcare provider
recommendations

−1.33 −5.30 2.64

Yes—Other 1.20 −0.90 3.30

ICD Shock Yes (No) −1.32 −3.88 1.23

Hx anxiety or depression Yes (No) −0.22 −2.04 1.60

Global health—mental 2.44 0.74 4.15

MSPSS −0.01 −0.66 0.65

Variables in brackets denotes the variable used as reference. GT, genetic testing;

MSPSS, multidimensional scale of perceived social support. 41 of 166 affected

participants did not provide an answer for at least one of the predictor variables

are were excluded from this analysis (n= 125).

TABLE 5 Multiple linear regression model for patient empowerment
(GCOS-24): affected patients.

Affected patients (n = 115) B 95% CI
Highest education:
(High School)

Some post-secondary
education

5.66 −6.78 18.10

Bachelor’s degree or higher 10.37 −2.07 22.81

Main activity
(Employed or Student)

Not currently employed −4.32 −12.73 4.09

Relationship (Not in a
relationship)

In a relationship 5.82 −4.18 15.83

Income (No answer) Under $69,000 per year −0.49 −23.27 22.30

More than $70,000 per year −0.13 −22.76 22.50

Healthcare providers Genetic counsellor −2.88 −12.67 6.92

Social worker 6.92 −7.60 21.43

Pediatrician −7.74 −34.66 19.18

Genetic testing Yes (No) 16.41 5.99 26.82

Exercise restrictions:
(No restrictions)

Yes—Worried about cardiac
risk

−25.25 −34.85 −15.64

Yes—Physical limitations −1.47 −19.77 16.83

Yes—Healthcare provider
recommendations

−3.58 −18.24 11.08

Yes—Other 1.32 −8.70 11.33

Sudden cardiac arrest Yes (No) −4.94 −15.13 5.26

ICD Yes (No) 4.67 −4.61 13.94

Shocks Yes (No) −8.51 −20.65 3.64

Hx anxiety or
depression

Yes (No) −1.46 −9.58 6.66

Global health—mental 11.37 3.90 18.85

MSPSS 0.53 −2.45 3.52

Variables in brackets denotes the variable used as reference. MSPSS,

multidimensional scale of perceived social support. 51 of 166 affected

participants did not provide an answer for at least one of the predictor variables

are were excluded from this analysis (n= 115).
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(37%; n = 19). Access to psychologists was low amongst both

affected patients and their relatives/partners [affected:11% (n =

17); relatives: 8% (n = 4)].

Overall, affected participants whose ICC team included a heart

rhythm specialist reported greater self-efficacy scores (GSE) [32.87

(SD = 5.36) vs. 29.25 (SD = 5.70); p = 0.12] whereas those who

reported access to a genetic counsellor had greater empowerment

scores [120.46 (SD = 20.47) vs. 114.35 (SD = 22.29); p = 0.12],

however neither of these findings were statistically significant

(Table 2). In unaffected relatives, those who reported access to a

heart rhythm specialist had significantly lower self-efficacy scores

[heart rhythm specialist: mean GSE: 30.89 (SD = 6.05) vs. 34.41

(SD = 3.61); p = 0.02].

Clinical history
Affected participants who had genetic testing performed

reported significantly higher empowerment (GCOS-24),

regardless of the findings, compared to those who were not

tested [121.14 (SD = 20.53) vs. 105.68 (SD = 21.69); p = 0.004]

(Supplementary Table S3). However, participants with an

unclear genetic test result (i.e., variant of uncertain significance)

had lower self-efficacy scores compared to those with either a

positive [28.85 (SD = 5.32) (VUS) vs. 33.16 (SD = 5.31) (positive);

p = 0.04] or negative genetic test result [28.85 (SD = 5.32) (VUS)

vs. 34.13 (SD = 4.40) (negative); p = 0.02] (Supplementary

Table S4). In unaffected relatives/spouses, those whose family
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members had genetic testing performed also had higher

empowerment scores, however this was not statistically

significant [118.22 (SD = 22.08) vs. 103.71 (SD = 18.27); p = 0.22]

(Supplementary Table S6).

Affected participants who restricted exercise based on their

ICC diagnosis had significantly lower empowerment (GCOS-24)

scores compared to those whose exercise habits were not

changed [112.03 (SD = 21.22) vs. 123.76 (SD = 19.90) p = 0.001]

(Supplementary Table S3). Participants who reported self-

restricting exercise due to worry it may increase risk of cardiac

arrest or ICD shock had significantly lower empowerment

(GCOS-24) scores compared to those who reduce exercise due to

physical limitations [95.71 (SD = 15.07) vs. 117.86 (SD = 17.86);

p = 0.03], healthcare provided advice [95.71 (SD = 15.07) vs.

124.75 (SD = 14.11); p = <0.001] or other reasons [95.71 (SD =

15.07) vs. 121.32 (SD = 20.95); p = <0.001] (Supplementary

Table S5). Affected participants with a prior history of anxiety or

depression prior to receiving a diagnosis of an ICC had both

lower perceived self-efficacy [31.20 (SD = 6.06) vs. 33.58 (SD =

4.92); p = 0.01] and empowerment scores [114.30 (SD = 22.59) vs.

120.54 (SD = 20.39); p = 0.05] (Supplementary Table S3).

Additionally, unaffected relatives/partners whose family member

experienced a sudden cardiac death reported lower empowerment

scores [109.21 (SD = 20.33) vs. 123.65 (SD = 21.00); p = 0.04]

(Supplementary Table S6).
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Self-reported health status
Lower scores on both the mental health component of the

PROMIS Scale v1.2—Global Health survey and the

Multidimensional Scale of Perceived Social Support (MSPSS)

were associated with lower perceived self-efficacy (GSE) (Global

Health—Mental: B = 4.69, p = <0.001; MSPSS: B = 1.20, p =

<0.001) and empowerment (GCOS-24) (Global Health—Mental:

B = 14.57, p = <0.001; MSPSS: B = 4.69; p = <0.001) in affected

participants (Table 3). In unaffected relatives/partners, higher

scores on the mental health component of the PROMIS Scale

v1.2—Global Health survey was associated with higher self-

efficacy (B = 5.32; p = <0.001), whereas higher scores on the

Multidimensional Scale of Perceived Social Support (MSPSS)

were associated with higher empowerment (B = 5.64; p = 0.01)

(Supplementary Table S7).
Part 2

All variables identified in Part 1 to correlate with general self-

efficacy (GSE) or patient empowerment (GCOS-24) at a

significance level of 0.2 or less were then entered to multivariable

linear regression models for both affected patients (Tables 4, 5)

and unaffected relatives/partners (Supplementary Tables S8, S9).
Affected patients
In the multiple linear regression model, uncertain genetic test

results (VUS) (B =−3.52), exercise restrictions due to worry

about cardiac risk (B =−3.95) and PROMIS Global Health—

Mental Health scores (B = 2.44) were correlated with general self-

efficacy (Table 4). Access to genetic testing (B = 16.41), exercise

restrictions due to worry about cardiac risk (B =−25.25) and

PROMIS Global Health—Mental Health scores (B = 11.37) were

correlated with patient empowerment (Table 5).
Unaffected relatives and partners
PROMIS Global Health—Mental Health scores (B = 5.69)

correlated with general self-efficacy in unaffected relatives or

partners (Supplementary Table S8).
Discussion

This study makes novel contributions to better understand the

needs of individuals and families affected by ICC. Our unique focus

on exploring the complex drivers of living well with ICC provide

innovative insights to strengthen patient-oriented research. We

identified clinical history and self-reported health status variables

associated with general self-efficacy and empowerment in a

cohort of patients at increased risk of sudden death. In

partnership with people with lived experience and community

partners, we sought to capture diverse perspectives. Access to

specialized care, including availability of genetic testing was

associated with higher patient empowerment, whereas receiving

uncertain genetic test results was associated with lower general
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self-efficacy. Lower self-reported mental health scores were

associated with lower perceived self-efficacy and empowerment.

Despite lower cardiac risk profiles, no significant differences in

self-efficacy and empowerment scores were found between

affected patients and their unaffected relatives.
Access to speciality care

Overall, 95% of ICC patients reported access to a heart rhythm

specialist and 63% reported access to a genetic counsellor, with 59%

reporting access to both healthcare professionals. Genetic

counselling for inherited cardiac disorders has previously been

associated with greater patient empowerment (39). Our study

identified a similar trend, with mean patient empowerment

scores being greater in affected patients who reported access to a

genetic counsellor, although this was not statistically significant

(p = 0.12). The benefits of receiving multidisciplinary care in

specialized cardiogenetics clinics is also becoming increasingly

recognized, including improved access to genetic testing,

identified to be a predictor of greater patient empowerment in

this study (13, 39–41). In this model of health service delivery,

genetic counsellors may also be involved in the care of patients

over time, allowing for the development of a therapeutic

relationship and greater involvement in psychosocial care after

initial diagnosis. Recently, a study by Murray et al. reported an

association between strength of genetic counsellor-patient

relationship and patient empowerment, further supporting the

added value of this model of care (42). Continued efforts should

be made to improve access to both genetic counselling and

genetic testing for ICC patients in Canada via the establishment

of multidisciplinary clinics. Barriers to creating multidisciplinary

clinics in Canada include identifying funding to support genetic

counsellor salary, in addition to recruitment challenges given the

small genetic counsellor workforce.
Clinical history and risk profiles

Multiple studies have previously explored patients’ motivations

to pursue genetic testing in the cardiac context, with a common

theme being the desire to reduce uncertainty surrounding their

diagnosis (43, 44). However, for those whose result includes a

variant of uncertain significance (VUS), the finding may instead

add to the burden of uncertainty. A study by Predham et al.,

evaluated patients’ perspective of receiving inconclusive genetic

test results in LQTS, and highlighted that some patients were

disappointed by the lack of conclusive findings. In some cases,

this led to patients questioning their clinical diagnosis (45). A

similar finding was reported by Burns et al. in 2017 who

identified patients with hypertrophic cardiomyopathy (HCM)

who received a VUS often questioned the validity of their

diagnosis and struggled to effectively communicate the familial

implications of uncertain genetic test results (46). Further,

genetic variants may be re-classified over time, which can also

add to the burden of uncertainty for patients (47, 48). Our study
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adds to this evidence by demonstrating that patients with an

uncertain genetic test result have lower perceived self-efficacy

compared to those with either positive or negative results.

Genetic counsellors are well-suited to support patients’ ability to

cope with the complexity and uncertainty of genetic testing

results, but are often limited to only one post-test session with

patients. The opportunity to meet with a genetic counsellor

during follow-up appointments to review their genetic testing

results over time may also serve as an intervention to improve

self-efficacy. Further research on additional interventions to

mitigate the impact of receiving uncertain results on perceived

self-efficacy is warranted.

The psychological impact of exercise restrictions has previously

been well-described for patients living with inherited cardiac

conditions and was further supported by this study (49, 50). ICC

clinics should be proactive in identifying those self-limiting

exercise due to fear of cardiac symptoms and facilitate access to

additional support when needed. Further, care teams are

encouraged to use a share-decision making model when

discussing exercise restrictions, incorporating the patient’s

perceived value of exercise to their physical, emotional and social

well-being when developing a safe-exercise plan (10, 51).
Self-reported health-status

In this study, self-reported, mental health scores were

associated with perceived self-efficacy and empowerment. Given

general self-efficacy and empowerment have previously been

correlated with constructs such as anxiety, depression, optimism

and shyness, these findings are not particularly surprising, but

support the importance of identifying patients with low health

status score(s) in order to assess whether any interventions to

improve perceived self-efficacy and empowerment are available

(17, 25). Systematic psychosocial screening via pre-appointment

questionnaires have previously been implemented in other out-

patient cardiology settings, and may be a useful tool to identify

ICC patients and family members with low mental health scores

(52). This provides an opportunity to address low score(s) with

the families during their appointment, and identify willingness

and appropriateness of available interventions, such as referral to

psychology services. In this study, only 11% of affected

participants and 8% of unaffected relatives reported involvement

of a psychologist as part of their care. Improving pathways for

patients and their relatives to access these services is

recommended for ICC clinics, either by embedding psychology

services within a multidisciplinary model or establishing referral

process to a psychologist familiar with issues faced by ICC

families (53). In Canada, additional barriers to accessing

counselling services include financial burden and excessive wait-

times, and avenues to reduce these barriers should be considered

for ICC patients (52). In addition to psychology services, past

research has demonstrated informal peer support opportunities

to be desired by cardiology patients, with some evidence

supporting this as an effective intervention to improve both self-

efficacy and empowerment (54, 55).
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Unaffected relatives and partners

This study found no significant differences in self-efficacy and

empowerment scores between affected patients and their

unaffected relatives or partners, suggesting family members of

those with an ICC may also experience negative psychosocial

impacts. Interestingly, access to a heart rhythm specialist was

associated with significantly lower self-efficacy scores in

unaffected relatives. This finding suggests the act of undergoing

cardiac screening and/or being evaluated in an ICC may in of

itself reduce general self-efficacy in relatives, even when the

results are reassuring. Interestingly, a recent study by Fusco et al.

found more than half of ICC relatives (54%) of who tested

negative for a familial variant continued to undergo longitudinal

cardiac surveillance, which may extend the negative psychological

impact of cardiac evaluation (56). Future research evaluating

longitudinal psychosocial outcomes in unaffected relatives and

interventions to mitigate undue distress is warranted.
Study limitations

The conduct of community-based research presents significant

challenges. Despite best efforts to engage patients and families

across Canada, participants from select provinces were over-

represented. Therefore, these exploratory results may not be

generalizable across all Canadian ICC patients. Participants’

clinical and risk profiles, including genetic test results, were self-

reported and not confirmed with clinical records. Survey

participants were primarily female (68%), and well-educated,

with over 70% reporting post-secondary education, suggesting a

potential response bias and a failure to capture important social

determinants. Additionally, it’s possible participants with greater

self-efficacy and empowerment were more likely to respond to

the survey, which may have resulted in biased estimates of self-

efficacy and empowerment. Importantly, given the cross-sectional

design of this project, we’re unable to determine directionality of

the relationship between candidate variables and outcome

measures. Lastly, associations between time since diagnosis or

last follow-up visit and perceived self-efficacy and empowerment

are unknown and were not evaluated as part of this study.
Conclusion

This study identified differences in resource availability, clinical

history and self-reported health status impact the perceived self-

efficacy and empowerment of patients with ICC and their

unaffected relatives. Based on a developed conceptual framework,

this HiRO Patient-Oriented Research project was strengthened by

utilizing a community-based approach with support from patient

partners and advocacy groups. Further efforts to increase access

to genetic testing via multidisciplinary clinics should be made,

given the association with patient empowerment. Development of

interventions to mitigate the negative impact of uncertain genetic
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test results on perceived self-efficacy is warranted. Finally, we

recommend ICC clinics develop processes to identify patients

and their family members at risk of low self-efficacy and

empowerment in order to offer interventions, including

establishing pathways to access psychology services.
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