Purpose: Non-invasive non-obtrusive continuous and real-time monitoring of core temperature (Tc) may enhance pacing strategies, the efficacy of heat mitigation measures, and early identification of athletes at risk for heat-related disorders. The Estimated Core Temperature (ECTemp™) algorithm uses sequential heart rate (HR) values to predict Tc. We examined the validity of ECTemp™ among elite athletes exercising in the heat.
Methods: 101 elite athletes performed an exercise test in simulated hot and humid environmental conditions (ambient temperature: 31.6 ± 1.0°C, relative humidity: 74 ± 5%). Tc was continuously measured using a validated ingestible telemetric temperature capsule system. In addition, HR was continuously measured and used to compute the estimated core temperature (Tc−est) using the ECTemp™ algorithm.
Results: Athletes exercised for 44 ± 10 min and n = 5,025 readouts of Tc (range: 35.8–40.4°C), HR (range: 45–207 bpm), and Tc−est (range: 36.7–39.9°C) were collected. Tc−est demonstrated a small yet significant bias of 0.15 ± 0.29°C (p < 0.001) compared to Tc, with a limit of agreement of ±0.45°C and a root mean square error of 0.35 ± 0.18°C. Utilizing the ECTemp™ algorithm as a diagnostic test resulted in a fair to excellent sensitivity (73–96%) and specificity (72–93%) for Tc−est thresholds between 37.75 and 38.75°C, but a low to very-low sensitivity (50–0%) for Tc−est thresholds >39.0°C, due to a high prevalence of false-negative observations.
Conclusion: ECTemp™ provides a valuable and representative indication of thermal strain in the low- to mid-range of Tc values observed during exercise in the heat. It may, therefore, be a useful non-invasive and non-obtrusive tool to inform athletes and coaches about the estimated core temperature during controlled hyperthermia heat acclimation protocols. However, the ECTemp™ algorithm, in its current form, should not solely be used to identify athletes at risk for heat-related disorders due to low sensitivity and high false-negative rate in the upper end of the Tc spectrum.
Introduction: Training intensity and nutrition may influence adaptations to training performed in hypoxia and consequently performance outcomes at altitude. This study investigates if performance at simulated altitude is improved to a larger extent when high-intensity interval training is performed in normobaric hypoxia and if this is potentiated when combined with chronic dietary nitrate (NO3−) supplementation.
Methods: Thirty endurance-trained male participants were allocated to one of three groups: hypoxia (13% FiO2) + NO3−; hypoxia + placebo; and normoxia (20.9% FiO2) + placebo. All performed 12 cycling sessions (eight sessions of 2*6 × 1 min at severe intensity with 1 min recovery and four sessions of 4*6*10 s all-out with 20 s recovery) during a 4-week period (three sessions/week) with supplementation administered 3–2.5 h before each session. An incremental exhaustion test, a severe intensity exercise bout to exhaustion (Tlim) and a 3 min all-out test (3AOT) in hypoxia (FiO2 = 13%) with pulmonary oxygen uptake ( O2), O2 kinetics, and changes in vastus lateralis local O2 saturation (SmO2) measured were completed by each participant before and after training.
Results: In all tests, performance improved to the same extent in hypoxia and normoxia, except for SmO2 after Tlim (p = 0.04, d = 0.82) and 3AOT (p = 0.03, d = 1.43) which were lower in the two hypoxic groups compared with the normoxic one. Dietary NO3− supplementation did not bring any additional benefits.
Conclusion: Performance at simulated altitude was not improved to a larger extent when high-intensity interval training was undertaken in normobaric hypoxic conditions, when compared with normoxic training. Additionally, dietary NO3− supplementation was ineffective in further enhancing endurance performance at simulated altitude.
Frontiers in Physiology
Physiological and Pathological Responses to Hypoxia and High Altitude, Volume III