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Editorial on the Research Topic

Computational argumentation: a foundation for human-centric AI

1 Introduction

What is an appropriate foundation for building Human-centric AI (HCAI) systems?

What foundation would allow AI to draw elements from several disciplines to synthesize

coherent solutions to the many challenges posed by HCAI?

This research topic stipulates that a foundation for HCAI needs to be at the level of a

new underlying logical (reasoning) framework, in an analogous way that Classical Logic

is the foundation or Calculus for Computer Science. Resting on the thesis that such a

logical framework should be built on a solid understanding of human cognitive reasoning,

and acknowledging the natural link of argumentation with human cognitive reasoning

and human decision making at large, the present research topic explores the proposal of

Argumentation as the foundation or Calculus for Human-Centric AI (Dietz et al.).

2 Call for papers: aim and scope

The aim of this call and its suggestion for the foundational role of argumentation in

Human-Centric AI was to help bring together the wide variety of work on argumentation—

ranging from argumentation in Philosophy and Ethics to the pragmatics of argumentative

discourse in human debates—to understand how to synthesize a viable and robust basis for

the development and use of HCAI systems. Systems that would meet their cognitive and

ethical requirements, and integrate symbiotically, as expert or peer companions, within the

human society, by complementing and enhancing the natural intelligence of humans.

3 Research Topic contributions

In addition to the paper that sets the scene for this Research Topic (Dietz et al.), another

eight papers were accepted, ranging from results in theoretical work, presentation of own

frameworks and setting the context of their work in relation to human-machine interaction

in general or with respect to expert domains. Several of the papers have developed own
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empirical studies serving as an evaluation metric for their

frameworks (Albini et al., Kilic et al., Straßer and Michajlova).

Two distinct research directions can be identified among the

contributing papers: a direction focusing on theoretical frameworks

and development of own empirical studies (Albini et al., Bringsjord

et al., Cramer and van der Torre, Straßer and Michajlova), and a

direction focusing on the aspects of human-machine interaction

and applications to expert domains (such as the medical domain or

law) (Bikakis et al., Castagna et al., Kilic et al., Rotolo and Sartor).

Yet, all contributions have in common that they agree on the

importance of argumentation as foundations for human-centric AI.

3.1 Theoretical frameworks and
development of own empirical studies

Albini et al. discuss properties of explanations in the context of

descriptive accuracy. This implies that explanation contents need

to be in correspondence with the internal working of the explained

system. The authors provide a formal definitions of naive, structural

and dialectical descriptive accuracy using the family of probabilistic

classifiers as the context of their analysis. They evaluate their

notions by several explanations methods and conduct studies with

a varied selection of concrete probabilistic classifiers. Finally, the

authors demonstrate how descriptive accuracy could be a critical

component in achieving trustworthy and fair systems.

Bringsjord et al. present a new cognitive calculus, in which

the central aspect concerns arguments that compete non-

monotonically through time. Their framework captures well the

three use-case studies, the Monty Hall problem, PERI.2 and the

cognitive architecture ARCADIA. Finally, the authors specify seven

desiderata for their framework.

Cramer and van der Torre introduce the naive-based

argumentation semantics SCF2 and prove that it satisfies two

new principles, which are not simultaneously satisfied by any

argumentation semantics in the literature. Motivated by findings

from empirical studies, these principles seem to correspond well to

what humans consider a rational judgment on the acceptability of

arguments.

Straßer andMichajlova present a framework for reasoning with

higher-order uncertainty. This system integrates with deductive

argumentation and can be adjusted to perform well under the so-

called rationality postulates of formal argumentation. The authors

provide several notions of argument strength, studied both meta-

theoretically and empirically by discussing an own empirical study

on evaluating argument strength in the context of higher-order

uncertainty.

3.2 Human-machine interaction and
application to expert domains

Bikakis et al. present a visionary paper on the problem of

opinion overload in which they argue that it is possibly solvable by

exploiting the structure of realistic arguments and understanding

an arguer’s intentions. The authors identify the main challenges

and technological directions, ranging from understanding and

formalizing realistic arguments and debates, and developing

appropriate models and methods to augmenting Web technologies

with the ability to automatically process online arguments. They

propose that the realization of this vision will revolutionize Web

experience.

Castagna et al. develop EQR (Explanation-Question-Response)

argument schemes to generate explanations for treatment advice

given to patients in the medical domain using the chatbot, EQRbot.

No machine learning algorithm is used, but EQRbot depends on

a dynamic knowledge base which is constantly updated with the

patient’s data.

Kilic et al. focus on expectations and perceptions regarding the

role of interaction behavior of a digital companion (with experts

and non-experts) in the health domain. They present an empirical

requirement elicitation study for an argumentation-based digital

companion to support behavior change. The results show that the

extent to which a digital companion challenges or supports a user’s

attitude argumentatively (based on argumentation schemes) can

influence the user acceptance and the interaction itself.

Rotolo and Sartor show how explainable AI and legal theory

can be modeled in an argumentation framework with structured

arguments. The authors review literature of formal models

of legal argumentation and investigate the formal connection

between argumentation and explanation in law. Their core

contribution is the clarification of the structure in normative

reasoning of the concepts of justification and explanation through

formal argumentation. They argue that the distinction between

justification and explanation is pragmatical rather than structural.
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This paper aims to expose and analyze the potential foundational role of

Argumentation for Human-Centric AI, and to present the main challenges

for this foundational role to be realized in a way that will fit well with the

wider requirements and challenges of Human-Centric AI. The central idea set

forward is that by endowing machines with the ability to argue with forms of

machine argumentation that are cognitively compatible with those of human

argumentation, we will be able to support a naturally e�ective, enhancing and

ethical human-machine cooperation and “social” integration.

KEYWORDS

argumentation, position paper, human-centric approach, Artificial Intelligence,

formal foundations, learning, reasoning, cognition

1. Introduction

AI started as a synthesis of the study of human intelligence in Cognitive Science

together with methods and theory from Computer Science.1 The general aim was to

formulate computational models of human intelligence, and implement systems based

on these models to emulate the natural form of intelligence. This original motivation

was placed on the side lines in most of the middle years (1980–2010) of AI, with

the emphasis shifting to super-intelligent AI (Bostrom, 2014) that could go beyond

the ordinary human problem-solving capabilities within specific application domains,

such as large-scale Planning (Bonet and Geffner, 2001), Data Analysis, and Data

Mining (Nisbet et al., 2018).

The last decade has witnessed a return to the early AI goal of understanding and

building human-like intelligent systems that operate in a cognitively-compatible and

synergistic way with humans.2 This is largely driven by a growing market demand for AI

systems that act as (expert) companions or peers of their human users. The reemergence

of “old AI,” now called Human-Centric AI (HCAI), aims to deliver services within the

realm of natural or commonsense intelligence to support and enhance the users’ natural

capabilities in tasks ranging from organizing their daily routine, to ensuring compliance

1 The Dartmouth workshop (http://raysolomono�.com/dartmouth/), where the term Artificial

Intelligence was introduced, was a joint meeting between scientists from the forming disciplines of

Computer Science with Cognitive Science and other related areas.

2 The recent book by Lieto (2021) describes the evolution of AI from the perspective of its link to

human cognition, from its birth to today’s developments.
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TABLE 1 Major characteristics of HCAI systems.

HCAI Characteristics Description

Human in the loop At the level of design,

development, and deployment of systems

Human-friendly behavior Within the sphere of human-like

modalities of interaction

Cognitive compatibility At the different levels of its various

groups of human users

Synergistic accountability Explainable, contestable, and

debatable operation and behavior

Embodiment of systems In the physical, mental, and

emotional human environment

Body-mind-like model Of operation to sense,

recognize, think, and act

Developmental nature Of systems through a continuous process

of learning and adapting from experience

Social integration Transparently within the human society

with legal or policy requirements, or to acquiring a first self-

appreciation of a potentially troublesome medical condition.3

This ambitious vision for HCAI sets a challenging list of

desiderata on the high-level characteristics that HCAI systems

should exhibit. Table 1 gives an overview of a list of these

characteristics.

But perhaps the most important desired characteristic of

HCAI systems, overseeing all others, is: Adherence to human

moral values promoting the responsible use of AI.

These vital characteristics for the development of HCAI

systems attest to the need for a multi-disciplinary approach

that would bring together elements from different areas,

such as Linguistics, Cognitive Psychology, Social Science, and

Philosophy of Ethics, and would integrate those into viable

computational models and systems that realize a natural

human-like continuous cycle of interacting with an open,

dynamic, complex, and possibly “hostile” environment, and

naturally enhance and improve their performance through

their experience of operation and their evolving symbiotic

relationship with their human users.

Building such HCAI systems necessitates a foundational

shift in the problem-solving paradigm that moves away from the

strictness and absolute guarantees of optimal solutions that are

typically adopted for conventional computing, which are often

brittle and break down completely when new information is

acquired. Instead, HCAI would benefit by adopting satisficing

solutions that strike an acceptable balance between a variety

3 Today there are several centers dedicated to HCAI, such as https://

www.humane-ai.eu/, https://hai.stanford.edu/, https://human-centered.

ai/, https://humaine.info.

of criteria, are tolerant to uncertainty and the presence of

incompatible alternatives, are robust across a wide range of

problem cases, and are elastic in being gracefully adapted when

they are found to have become inappropriate or erroneous in the

face of new information.

This realization that intelligent solutions require the

flexibility of accepting the possibility that errors can occur has

been stated by Alan Turing, a forefather of Artificial Intelligence,

at his lecture to the London Mathematical Society on 20th of

February 1947 (Turing, 1947):

“[...] if a machine is expected to be infallible, it cannot

also be intelligent.”

Accepting this realism of sub-optimal performance, HCAI

systems would then use problem instances where they have

experienced the fallibility of their current solutions to gradually

adapt and improve the satisficing nature of those solutions.

The nature of HCAI systems under a new paradigm of

accepting and tolerating reasonably-good solutions suggests new

perspectives on the Learning and Reasoning processes, which

operate together in synergy to produce intelligent behavior:

a new reasoning perspective as a method of analyzing the

acceptability of possible alternative solutions; a new learning

perspective as a process of generating knowledge that can resolve

the ambiguity in the data, rather than knowledge that draws

definite predictions or defines concepts.

Although we have described these as new perspectives, they

have essentially been present in AI for some time. The new

reasoning perspective of not always arriving at conclusive or

best conclusions is implicitly assumed by the areas of Non-

Monotonic Reasoning and Belief Revision, proposed from the

very start of AI, as essential elements of reasoning that would

need to differ from formal classical reasoning. Similarly, the

new learning perspective underlies, for example, the Probably

Approximately Correct (PAC) Learning theory, where it is

explicitly recognized that one can typically only approximate

what one learns.

The inability of the new forms of learning and reasoning to

reach a definitive answer is compensated inHCAI systems by the

provision of explanations of the satisficing alternatives, which

offer an account of the lack of (or inability to reach) best answers.

This explanation-based interaction needs to be cognitively

compatiblewith the human users and developers of the systems,

in order to facilitate the integration of the various processes and

entities that exist within the application environment.

To help us place a human-centric perspective in today’s

terrain of AI research let us consider a typical high-level

architecture of AI systems as shown in Figure 1. In this,

learning and reasoning are tightly interconnected and both

have a central role within the architecture. Learning is

a continuous process that occurs throughout the life and

operation of the system.Machine learning is used, e.g., in Deep
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FIGURE 1

A high-level architecture of AI systems.

Neural Learning, to generate structures for direct prediction,

typically lower-level akin to system 1 (Kahneman, 2011) in

human reasoning. This could be identifying or recognizing

some property of the current state of the environment to

be combined with the general knowledge of the system or

indeed to output a predictive classification directly to the

user. Machine learning is also used at the symbolic level

to learn the structure of and populate the knowledge of

the system that is to be used for higher-level, akin to

system 2, cognitive reasoning by the system. Recently, there

is a strong interest in the integration of sub-symbolic and

symbolic learning so that through such methods we have an

emergent concept formation process of identifying and forming

high-level cognitive concepts on top of the sub-symbolic

learned structures.

Together with learning we can also use methods of

knowledge elicitation from experts and/or users of the system

to build the knowledge of a system and the general structure

that we want the knowledge to have for our system. This is

particularly useful at the initial stages of the development of a

system and helps us to steer the development along a general

form that we desire. For example, knowledge elicitation can

be used to provide the basic guidelines for moral and ethical

behavior of the system, which could then be continuously

refined and adapted during its operation from its experience of

interaction with the outside environment of users and the society

in which it operates.

The system’s interaction with its environment, which

includes its developers and users, goes beyond simply providing

the answers of its reasoning or prediction. It engages into a

dialogue based on explanations of the system’s answer at a

level compatible with the way the human users (to which the

explanations are addressed) themselves reason about the task.

In order to have such meaningful interfaces, the knowledge

structure of many AI systems is often connected to some

structured form of Natural Language, so that its processing by

the system can be linked to the human interpretation of the

associated natural language form.

The development of an AI system is continuous with the

feedback from its environment providing information to either

revise and adapt the current state of its knowledge or to generate

new data for further learning. For this development to be smooth

it needs to take place under the prism of the current knowledge

of the system. Hence, the results of reasoning by the system

need to be explainable in terms of the current knowledge so that

useful and meaningful feedback can be given to the system by

its environment. Similarly, new experiences, that would drive

new possibilities of learning, can first be interpreted under the

current knowledge of the system to form suitable new data for

further learning so that the new knowledge produced can fit

naturally within the existing knowledge structure to which the

system is committed. The development of the central element

of the knowledge of an AI system is thus a matter of smooth

evolution rather than a sequence of disconnected learning and

adaptation processes.

Paper position: What is then an appropriate foundation

for building HCAI systems with this variety of behavior

characteristics and design features; a foundation that would give

unity to the field and allow it to draw elements from several

disciplines in order to synthesize coherent solutions to the

challenge posed by HCAI?

We propose that such a foundation needs to be at the

level of a new underlying logical framework, in an analogous

way that Classical Logic is the foundation or Calculus for
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Computer Science (Halpern et al., 2001). Resting on the thesis

(or hypothesis) that this logical framework should be built

on a solid understanding of human cognitive reasoning, and

acknowledging the natural link of argumentation with human

cognitive reasoning and human decision making at large, this

paper proposes Argumentation as the foundation or Calculus

for Human-Centric AI.

The aimof this paper and its suggestion for the foundational

role of argumentation in Human-Centric AI is to help bring

together the wide variety of work on argumentation — ranging

from argumentation in Philosophy and Ethics to the pragmatics

of argumentative discourse in human debates — in order

to understand how to synthesize a viable and robust basis

for the development and use of HCAI systems. Systems that

would meet their cognitive and ethical requirements, and

integrate symbiotically, as expert or peer companions, within the

human society, by complementing and enhancing the natural

intelligence of humans.

The rest of the paper is organized as follows. Section 2

presents the general features of argumentation in support of

the position of the paper. Section 3 gives a brief overview

of the main components of computational argumentation,

formalization and pragmatics, and illustrates the role of

argumentation in HCAI systems with two example systems.

Section 4 analyzes the main challenges that would need to

be faced by any logical foundation of HCAI, linking to these

challenges the features of argumentation that would be relevant

in addressing them. Finally, Section 5 concludes by briefly

discussing the importance of an interdisciplinary approach

to HCAI.

2. Why argumentation as a logical
foundation?

We ground the proposal for argumentation as a suitable

logical foundation of HCAI on two observations about

argumentation and their connection with the historical

development of Cognitive Science and Logic-based AI.

The first such observation is the strong cognitive support

for argumentation and its link to different cases of human

thinking. This stems from many studies in Cognitive Science

and Psychology, and based on experiments and theories

that have widely compared human informal reasoning with

classical formal reasoning (Evans, 2010). The early motivation

of these works was to examine how rational, i.e., how

close to strict logic, human reasoning is, and to record its

deviation from the valid formal logical reasoning. In recent

years, the paradigm changed from such normative theories,

of how humans “ought to reason,” to descriptive theories, of

how humans “actually reason.” Despite significant differences

between the observed informal reasoning and the strictly

valid formal reasoning, most humans are convinced that their

way of reasoning is correct. Diverging from valid formal

reasoning is often necessary to make intelligent decisions in

everyday life!

An analogous shift can also be observed in Economics,

from assuming the human as being “homo economicus,” i.e., an

idealized rational agent in Neoclassical Economics, to accepting

the bounded rationality of humans in Behavioral Economics,

where the interest is in understanding how and why humans

make decisions (Kahneman and Tversky, 1979; Paglieri and

Castelfranchi, 2010) rather than modeling optimal choices.

Decisions taken by people at large have been observed to deviate

from logically strict or rational reasoning, and rather follow a

heavily biased form of reasoning. Given the limited memory

resources and time constraints of humans, the use of “efficient

reasoning shortcuts,” such as biases or heuristics, are not only

reasonable but necessary.

There is now strong evidence in various studies from

Cognitive Psychology, brought together in the work of Mercier

and Sperber (2011), that humans arrive at conclusions and

justify claims by using arguments. With repeated experimental

studies, Mercier and Sperber came to the conclusion that

humans engage inmotivated thinking through argumentation in

order to defend their positions. In other words, argumentation

is the “means for human reasoning.” Within the dual-process

theory of human reasoning (Kahneman, 2011), with a system

1 fast and intuitive process and a system 2 slow and reflective

process, Mercier and Sperber argue that “all arguments must

ultimately be grounded in intuitive judgments that given

conclusions follow from given premises,” in contrast to the usual

assumption that system 2 is unbiased and rather normative.

While in Cognitive Psychology and Behavior Economics

the link to argumentation is examined following the scientific

method of observation and theory formation, within the

Humanities and particularly in Philosophy, scholars have been

equating human informal reasoning with argumentation for

centuries now. The entry on Informal Logic in the Stanford

Encyclopedia of Philosophy (https://plato.stanford.edu/entries/

logic-informal/) states:

“Though contributions to informal logic include

studies of specific kinds or aspects of reasoning, the

overriding goal is a general account of argument which

can be the basis of systems of informal logic that

provide ways to evaluate arguments. Such systems may

be applied to arguments as they occur in contexts of

reflection, inquiry, social and political debate, the news

media, blogs and editorials, the internet, advertising,

corporate and institutional communication, social media,

and interpersonal exchange. In the pursuit of its goals,

informal logic addresses topics which include, to take only a

few examples, the nature and definition of argument, criteria
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for argument evaluation, argumentation schemes, [...,] and

the varying norms and rules that govern argumentative

practices in different kinds of contexts.”

Clearly, from the point of view of Humanities and

other disciplines, human informal reasoning is a matter

of argumentation.

The second main observation in support of argumentation

concerns its relation and comparison with Classical Logic.

The alternative of retaining Classical Logic, which has served

conventional computing well over the decades, as the logical

foundation for HCAI fails to capture fully certain forms of

human reasoning that are well-outside the realm of formal

classical logic. From the very early days of AI, the goal

to address this discrepancy resulted in the search for and

development of new logics for AI, such as non-monotonic

logics, probabilistic, or fuzzy logics. In particular, a plethora

of non-monotonic logics (Reiter, 1980; Shoham, 1987; Marek

and Truszczyński, 1991) were proposed as candidates for the

logical foundations of commonsense reasoning, starting with the

logic of Circumscription for formalizing the Situation Calculus,

a system for commonsense reasoning about the effects of

actions and the change they bring about (McCarthy, 1968).

These new logics aimed to capture the non-monotonicity

feature of human reasoning, recognizing that, in contrast

to formal Classical Logic, inferences should be flexible to

missing or ambiguous information, and tolerant to (apparently)

contradictory information, and should be possibly abandoned in

the face of new relevant information.

Nevertheless, these new logics remained bound to the

same formal and strict underpinning of Classical Logic making

it difficult to deliver on their promise of “AI systems with

commonsense” and human-like natural intelligence. On the

other hand, the study of argumentation in AI, which was

grounded on work in Philosophy and Cognitive Science

(Toumlin, 1958; Perelman and Olbrechts-Tyteca, 1969; Pollock,

1987), showed that it was possible to reformulate (and in some

cases extend) most, if not all, such non-monotonic AI logical

frameworks (Bondarenko et al., 1997). Furthermore, it was

recently shown that, within this AI approach to Computational

Argumentation, it is possible to reformulate even Classical

Logic reasoning as a special boundary case of argumentation,

hence presenting argumentation as a universal form of informal

and formal reasoning (Kakas et al., 2018; Kakas, 2019). These

results together with the many links that Computational

Argumentation has formed, over the last decades, with studies of

argumentation in several other disciplines (see e.g., the journal

of Argument and Computation4), have given a maturity to the

field of Argumentation that allows it to serve as a candidate for

the logical foundations of Human-Centric AI.

4 https://www.iospress.com/catalog/journals/argument-computation

3. Computational argumentation: An
overview

In this section we present a brief overview of

(Computational) Argumentation, highlighting its elements

that are most relevant to its possible foundational role

for Human-Centric AI systems. This overview is built by

considering elements drawn from the large corpus of work on

Argumentation in AI over the last few decades.5 It concentrates

on the essential elements of argumentation as a general logical

system of human cognitive reasoning (or thought), avoiding

technical details that may vary over different approaches and

that are not crucial for understanding the central link of

argumentation and reasoning.

Argumentation is a process of debating the alternative

positions that we can take on somematter, with the aim to justify

or refute a certain standpoint (or claim) on the matter. It can

take place socially within a group of entities, with each entity

typically taking a different standpoint and arguing its case, or

within a single entity that contemplates internally the various

standpoints in order to decide on its own stance. The process

is dialectic, where in the social context it is carried out via an

argumentative discourse within Natural Language in a debate

between the different entities, whereas in the individual case

this is done within an introspective internal debate within the

thinking entity.

The dialectic process of argumentation takes place by (i)

starting with some argument(s) directly supporting the desired

standpoint, then (ii) considering the various counter-arguments

against the initial argument(s), and (iii) defending against these

counter-arguments, typically with the help of other arguments as

allies of the initial arguments. The process repeats by considering

further counter-arguments against these new allied defending

arguments. We therefore have an “argumentation arena,” where

arguments attack and defend against each other in order to

support their claims, and the aim is to form a coalition (or

case) of arguments that collectively supports “well” a desired

standpoint. In forming such a coalition, we may need to include

arguments that do not refer directly to the primary matter in

question, but refer to secondarymatters that have come into play

through the initial stages of the argumentation process.

This arena of argumentation can be captured by a formal

argumentation framework, which in an abstract form is a

triple 〈Args,Att,Def 〉, where Args is a set of arguments, Att

is an attack (or counter-argument) binary relation between

arguments, and Def a defense (or defeat) binary relation

5 Work in the area of Computational Argumentation can be found in the

journal of Argument and Computation and the International Conference

on Computational Models of Argument (COMMA). Other sources for

review material of the area include (Bench-Capon and Dunne, 2007;

Simari and Rahwan, 2009; Atkinson et al., 2017; Vassiliades et al., 2021).
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between arguments. Typically, the defense relation Def is a

subset of the attack relation Att capturing some notion of the

relative strength between the attacking arguments. Hence when

(a1, a2) ∈ Def the argument a1 is strong enough to defend

against (or defeat) a2.

In practice, abstract frameworks are realized by structured

argumentation frameworks (Kakas and Moraitis, 2003; Gracía

and Simari, 2004; Prakken, 2010; Modgil and Prakken, 2013),

expressed as triples of the form 〈As, C,≻〉, where As is a

set of (parameterized) argument schemes (Walton, 1996),

instances of which form the arguments, C is a conflict relation

between argument schemes (and between their arguments),

and ≻ is a priority (or preference or strength) relation

between argument schemes (and between their arguments).

A structured argumentation framework, 〈As, C,≻〉 forms a

knowledge representation framework, where knowledge is

represented in a structured form, and on which the dialectic

argumentation process of attack and defense can be performed.

Argument schemes6 in As are parameterized named

statements of association between different pieces of

information. They can be represented in the simple form

of As = (Premises � Position), associating the information

in the Premises with the statement of the Position. Hence,

given the information in the Premises we can construct an

argument (or reason) supporting the Position (or Claim)

based on the link from the Premises to the Position in the

argument scheme. The attack relation between arguments

is constructed directly from the conflict relation C, which

normally stems from some expression of incompatibility, e.g.,

through negation, in the underlying language of discourse. The

defense relation is built using the priority relation ≻, where,

informally, an argument defends against another argument if

and only if they are in conflict and the defending argument

is not of lower priority than the argument it is defending

against. Importantly, and in contrast to the conflict relation

which is static, the priority relation is context-sensitive, and

depends crucially on (how we perceive) the current state of the

application environment.

In computational argumentation, we impose a normative

condition on which argument coalitions are considered

acceptable as a valid case of support for their corresponding

standpoints. This normative condition of acceptability stems

directly from the dialectic argumentation process to examine

and produce cases of support. Informally, an acceptable

6 Argument schemes are central to argumentation. They have been

extensively studied, starting with Aristotle in his books of Topics, in

various contexts of human argumentation. In recent times they are

several important works that aim to standardize their form (Toumlin, 1958;

Walton, 1996; Walton et al., 2008). In the work of Wagemans (2018) a

periodic table for classifying the di�erent arguments used by people is

proposed.

argument coalition is one that can defend against all its counter-

arguments while not containing an internal attack between

(some of) the arguments within the coalition7. In other words,

attacking (or counter) arguments should be defended against,

but in doing so we cannot introduce an internal attack between

the arguments of the coalition.

This normative condition of acceptability of arguments

gives a logical structure to argumentation. In comparison

with Classical Logic, the Logic of Argumentation replaces the

underlying structure of a truth model with that of an acceptably

valid case of arguments. Logical conclusions are drawn in terms

of the valid cases of arguments that support a conclusion. When

a valid case supporting a conclusion exists we say that this is

a plausible or possible conclusion. If, in addition, there are

no valid cases for any contrary conclusion, then we have a

definite conclusion.

Clearly, definite conclusions are closer to logical conclusions

of formal logical reasoning systems, like that of Classical

Logic. When they exist, definite conclusions are based on clear

winning arguments in the argumentation arena, which ensure

the strict and absolute consequence of the conclusion. This,

then, corresponds to the strict rationality form of formal logical

reasoning. For example, in the context of a decision problem

where we require from the logic to identify rational choices

for our decision, these definite conclusions would correspond

to optimal choices. The Logic of Argumentation allows, in

addition, a softer form of Dialectic Rationality, where several,

typically opposing, conclusions (e.g., decisions) are considered

rational as they are reasonably justified by an argument case

that is valid. We thus have a more general form of rationality

where the absolute guarantees of classical strict rationality are

replaced by the accountability of dialectic rationality via the

provision of a justification for the conclusion or choice. These

justifications contain, in a transparent and explicit way, the

different arguments that would render a conclusion reasonable.

Dialectic rationality depends on the relative importance

we place on the various requirements of the problem at hand

and the relative “subjective” value we give to the relevant

information. Thus, a decision can be accepted as rational when

it is reasonable under some set of standards or requirements,

including the subjective preferences or biases that we might

have for a specific standpoint. Concerns about a specific

choice and the beliefs that underlie this are addressed in the

dialectic argumentation process that has produced the argument

coalition supporting that choice. Importantly, if new concerns

are raised, e.g., by the dynamic application environment, then

these should be addressed, and if the argument coalition for

the choice cannot be adapted to address these concerns, i.e.,

to defend against the counter-arguments they raise, then the

7 More generally, an acceptable argument coalition is one that once

adopted can render all its counter-arguments non-acceptable.

Frontiers in Artificial Intelligence 06 frontiersin.org

11

https://doi.org/10.3389/frai.2022.955579
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Dietz et al. 10.3389/frai.2022.955579

rationality of the choice is lost and as a consequence the

suitability of the solution is lost.

3.1. Pragmatic considerations of
argumentation

The feature of the Logic of Argumentation to naturally

provide a justification for its conclusions is very useful within

the social context of application of systems, as the justification

can be turned into, and presented as, an explanation for the

conclusion. The issue of providing explanations for the results of

AI systems is today considered to be amajor requirement for any

AI system, and forms the main subject matter of Explainable

AI. Explanations of conclusions, or taken decisions, serve well

their social role of interaction when they give the basic reasons of

support (attributive), they explain why a conclusion is supported

in contrast to other opposing conclusions (contrastive), and they

provide information that guides on how to act following the

conclusion (actionable) (Miller, 2019).

Argumentation is naturally linked to explanation the recent

surveys of Čyras et al. (2021) and Vassiliades et al. (2021)

as well as the proceedings of the recent, first, International

Workshop onArgumentation for Explainable AI (ArgXAI)8 give

a thorough exposition of this link and its potential significance

in AI. The arguments justifying a decision can form the basis

of an explanation to another party. The argumentative dialectic

reasoning process and the acceptable coalition of arguments

that it constructs can be unraveled to give an explanation. Such

explanations extracted from an acceptable argument coalition

have an attributive element coming from the initial arguments

that support the conclusion, while the defending arguments

against the counter-arguments will provide a contrastive

element of the explanation. These arguments also point toward

taking (further) actions to confirm or question their premises,

particularly when these relate to subjective beliefs or hypotheses.

As described above, the theoretical notion of computation

that stems from the Logic of Argumentation, is that of the

(iterative) dialectic argumentation process of considering

arguments for and against an initial conclusion and other

subsidiary conclusions that help to defend the arguments

supporting the initial conclusion. During this dialectic

process we have (at least) three choices that can render the

process computationally intensive and highly complex. These

complexity points are: the choice of initial argument(s), the

choice of counter-arguments, and finally the choice of the

defending arguments. The consideration of the pragmatics of

argumentation (van Eemeren and Grootendorst, 2004) thus

becomes an important issue when argumentation is applied in

the real world. This includes questions of how are arguments

8 https://people.cs.umu.se/tkampik/argxai/2022.html

activated and brought to the foreground of the argumentative

process, and similarly how is the relative strength of arguments

affected by the changing state of the external environment in

which the process takes place.

To address this issue of the pragmatics of argumentation,

we can draw from the large body of work on Human

Argumentation, which studies how humans argue and how

this results in the effectiveness that we observe in human

reasoning. This study starts from Aristotle in the books of

Topics, where he attempts to systemize argumentation and

give detailed prescriptions of good practices for the way

one can argue for or against a position. Recently, over the

past decades, several works have set out detailed methods

for formulating and understanding human argumentation

from various different perspectives: philosophical, linguistic,

cognitive, and computational; see the work of van Eemeren

et al. (2014) for a comprehensive review. These include studies

of understanding the various types of argument schemes that

humans use in their argumentative discourse (Toumlin, 1958;

Walton, 1996; Walton et al., 2008), or how the process of human

argumentation relates to human reasoning (Pollock, 1987),

and how human argumentation discourse can be regulated by

pragmatic considerations that can help lead to agreement or a

resolution of different standpoints in a debate (van Eemeren and

Grootendorst, 2004).

Cognitive principles can then be drawn from these studies

and from the study of human reasoning more generally, to be

used as “cognitive guidelines” within the formal computational

frameworks of argumentation to give a form of Cognitive

Machine Argumentation that would be cognitively compatible

with the argumentation and reasoning of humans (Saldanha

and Kakas, 2019; Dietz and Kakas, 2021). This can then

support an effective human-machine interaction via compatible

forms of argumentation between machine systems and their

human users.

Human argumentation is typically carried out in a social

setting, as an argumentative discourse in Natural Language. It

is, therefore, important to be able to recognize and extract the

argumentation structure from the natural language discourse

(Hinton, 2019, 2021). This includes the ability to recognize

which parts of text are indeed argumentative, to identify the

quality of the arguments that are extracted from the text, and,

more generally, to extract the argumentative structure of support

and attack between arguments extracted from various parts of

some piece of text under consideration.

Argument mining is an area of study of argumentation

which has strong links both with computational argumentation

and with the study of human argumentation. It aims to

automate the process of extracting argumentative structure

(Lippi and Torroni, 2016; Lawrence and Reed, 2019) from

natural language. It combines elements from the various

different studies of human argumentation with methods from

computational linguistics in order to turn unstructured text into
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structured argument data. This is typically carried out using an

ontology of concepts relevant to some specific area of (human)

argumentative discourse that we are interested in. Then applying

argument mining on corpora of textual information related

to a particular problem domain forms an important method

to populate a computational argumentation framework for a

corresponding application domain of interest.

Having described the basic idea behind Computational

Argumentation and certain important connections to relevant

lines of work, let us now illustrate, through two examples

of candidate AI systems, how the Logic of Argumentation

connects with Human-Centric AI. How would the Logic of

Argumentation provide the basis for formulating and solving a

Human-Centric AI problem?

3.2. Everyday assistants: Cognitive
consultation support

Let us first consider the class of Cognitive Review

Consultation Assistants, and more specifically a Restaurant

Review Assistant, whose main requirement is to help human

users to take into account the online reviews available on the

various options in some decision problem. For simplicity, we

will concentrate on how the logic of argumentation can help us

use the information in the reviews for one particular restaurant

in order to form a personal opinion about this restaurant.

The problem of the assistant is to evaluate, but not necessarily

to decide, whether the restaurant in question is a reasonable

choice or not for a personal user of the system. A solution is

an informed explanation of why the restaurant is a reasonable

choice or not for the user based on the information on the

reviews. Furthermore, we are not interested in identifying if a

restaurant is an optimal best choice for us to dine out but rather

a satisficing choice.

How canwe represent this problem of the Restaurant Review

Assistant in terms of an argumentation framework 〈As, C,≻〉?

The argument schemes or arguments for and against a restaurant

can be built using as premises the different types of information

that the reviews contain. We will consider a simple form of

argument schemes where these consist of a named association

between a set of premises and an atomic statement of the

supported position. To start with, the overall score of the reviews

provides the premise for the basic arguments for the deliberation

of the assistant: if the overall score is above some (personal) high

threshold this will form an argument in favor of the restaurant,

and if it is below some (personal) low threshold this will form an

argument against the restaurant:

As1 = (HighScore� Favorable)

As2 = (LowScore� Non_Favorable).

HighScoremeans that the score is above the high threshold, and

LowScore that it is below the low threshold. Furthermore, when

the overall score is in between these thresholds then we can

have another two basic arguments, one supporting the position

Favorable, and the other supporting Non_Favorable:

As3 = (MiddleScore� Favorable)

As4 = (MiddleScore� Non_Favorable).

To complete the representation of the problem, we

include in the conflict relation the obvious conflict between

arguments that support the incompatible positions Favorable

and Non_Favorable, and we leave the priority relation between

these four arguments empty. In fact, the mutual exclusivity of

the premises between most of the pairs of arguments, except

between As3 and As4, makes the need to consider possible

relative priorities essentially unnecessary. For the pair of As3

and As4, it is natural not to assign a relative priority between

them. Hence, all conflicting arguments attack and defend against

each other.

In general, the reviews will refer to, and comment positively

or negatively on, properties that we usually consider relevant

in evaluating the suitability of a restaurant: “service,” “cost,”

“quality or quantity of food,” “atmosphere,” etc. Each such review

would thus generate arguments for and against the suitability of

the restaurant according to argument schemes of the following

general form:

As+ve(Review(Id)) = (Positive(Property)� Favorable)

As−ve(Review(Id)) = (Negative(Property)� Non_Favorable).

The premises of the resulting arguments are the positive

or negative opinions that a review expresses on some of these

relevant properties.

In general, the priority relation between these arguments

would be mostly affected by the personal preferences of the

human user, as communicated to their customized personal

assistant, possibly through Natural Language guidelines, such as:

I prefer to avoid expensive restaurants, but I like to eat quality

food. With this statement, the user has identified the properties

of “cost” and “quality” of food to be of particular relevance and

importance, giving corresponding priority to arguments that are

built with premises referring to these properties. Hence, a review

that considers the restaurant expensive will give an argument

built from As−ve(Review(Id)) higher priority than (some of

the) other arguments for the position Favorable. But, as the

guideline indicates, this argument will not have higher priority

than arguments built using the schemeAs+ve(Review(Id)) from

reviews that stress the high quality of the food.

Given the aforementioned arguments, the dialectic

argumentative reasoning simulates a debate between the

various reviews (or possibly only a subset of the reviews chosen

according to some criteria) and their positive and negative

comments. Regardless of whether the assistant reaches a definite
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conclusion or remains with a dilemma on being favorable

or not toward a given restaurant, the assistant will be able to

provide an explanation based on the supporting arguments

and the dialectic debate that has resulted in the acceptability

of the argument according to the wishes of the user. These

explanations will be very useful in the process of the assistant

gaining the trust from its human user.

Cognitive Review Consultation Assistants are quite focused

on very specific topics of interest. At a more varied level, we may

want to build HCAI systems of “Search Assistants” to help us

in getting a reliably balanced understanding on a matter that we

are interested in. Eventually, Search Assistants should extract the

arguments for and against the matter that we are interested in,

together with their relative priorities, presenting to us a balanced

view of the dialectic debate between these arguments. Tools

and techniques from argument mining are directly applicable

on, and a natural fit for, this extraction task, as one seeks to

understand the argumentative discourse expressed in Natural

Language, be that in the statements made by the human user

in communicating their search parameters and preferences, or

in the text or reviews that are being searched. For example,

in the Reviews Assistant case, argument mining can be used

(Cocarascu and Toni, 2016) to extract from the text of the

reviews the arguments they are expressing, as well as the relative

strength between these arguments, in support of positive or

negative statements on the various features that are relevant for

the user who is consulting the system.

3.3. Expert companion: Medical diagnosis
support

Let us now consider another example class of Human-

Centric AI systems, that of Medical Diagnosis Support

Companions. This class of problems differs from the previous

example of Everyday Assistants in that these systems are

based on expert knowledge, on which there is large, but

not necessarily absolute, agreement by the expert scientific

community. Furthermore, these systems are not personalized to

individual users, but they can have different groups of intended

users. Their general aim will then depend on their user group.

For example, if the user group is that of junior doctors in some

specialization who need to train and gain practical experience

in their field, then, within the framework of Human-Centric AI,

these systems can have the general overall aim to:

“Support clinicians feel more confident in making

decisions, helping to avoid over-diagnosis of common diseases

and to ensure emergency cases are not missed out.”

Medical diagnostic knowledge that associates

diseases with their observable symptoms can be

represented in terms of argument schemes of the

general form:

As = (Symptoms� Disease).

Hence, based on the premise that the information in

Symptoms holds, we can build an argument that supports a

certain disease (as the cause of the symptoms). For different

sets of symptoms we would then have argument schemes that

would provide arguments that support different diseases. These

associations are expertly known and are treated as arguments,

which means that they are not understood as definitional

associations that must necessarily follow from the symptoms.

Rather, for the same set of symptoms we can have argument

schemes supporting different diseases, rendering each one of

these diseases as plausible or suspicious under the same set of

premises.

To complete the representation of the problem knowledge

within an argumentation framework 〈As, C,≻〉, we would

need to specify, in addition to these argument schemes, the

conflict and priority relations. The conflict relation would simply

capture the information of which diseases do not typically

occur together. The priorities of arguments can come by

following the diagnostic process followed by doctors in their

practice of evidence-based medicine: Argument schemes as

above apply on initial symptoms, e.g., the presenting complaints

by a patient. Then the doctors have contextual knowledge of

further symptoms or other types of patient information that

allows them to narrow down the set of suspected diseases.

This can be captured within the argumentation framework in

terms of giving relative priority between the different basic

argument schemes, where the priority is conditional on some

extra contextual information.

In fact, one way to capture this contextual priority is in terms

of preference or priority argument schemes, which support the

preference of a basic argument for one disease over another basic

argument for another disease, of the form:

Asprefer = (Context � (As1 ≻ As2)),

where As1 and As2 are argument schemes supporting different

diseases based on the same or overlapping premise information

of symptoms and patient record.

Typically, the dialectic argumentation process would start

between basic arguments supporting the alternative possible

diseases, but then this is entangled with other dialectic

argumentative processes arguing for the priorities of those basic

arguments, and thus their ability to attack and defend, and so

on. Hence, depending on the extra contextual information that

is received by, or actively sought from, the environment, and the

preference arguments that are enabled as a result, some of the

diseases which were acceptably supported at the basic (general)

level will not be so any more, if they are attacked by arguments

supporting other diseases but with no defense available as before.
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Therefore, the set of suspicious diseases will be reduced, and the

overall result will be that the diagnosis is further focused by this

extra contextual information.

Another type of knowledge that can focus the result of

the diagnostic process is contra-indication information, which

supports the exclusion of some specific diagnosis. Such contra-

indication information is typically strong and overrides other

contextual information that would render a specific disease as

being suspicious. This can be captured within argumentation in

a similar way as above, by argument schemes that give priority

to arguments against a specific diagnosis.

It is natural to compare this argumentation-based approach

to medical diagnosis support systems with that of medical expert

systems (Buchanan and Shortliffe, 1984) that were popular in

the early days of AI. The knowledge in those early systems

had to be carefully crafted by the computer scientists in

terms of strict logical rules. Those rules, like the argument

schemes we have described above, linked the symptoms to

diseases9. The difference, though, with the argumentation-

based representation, is that expert systems try to represent

the knowledge in terms of logical definitions of each disease, a

task which is very difficult, if not impossible, exactly because of

the contextual differences that such definitions must take into

account. For example, as definitions those rules would need

complete information, and would need to ensure that there is

no internal conflict or inconsistency among them.

The argumentation-based representation, on the other hand,

can be incrementally developed bymodularly adding new expert

knowledge or by taking into consideration the feedback. This

more flexible approach to knowledge representation is linked

to the different perspective of HCAI systems, away from the

expert systems perspective of reproducing and perhaps replacing

the human expert, and toward the perspective of keeping the

“human in the loop,” where the systems aim to complement and

strengthen the human expert’s capabilities.

4. Major challenges for
Human-Centric AI

We now continue to describe some of the major challenges

for the underlying logical foundations of Human-Centric AI

and comment on how argumentation, in its role as a candidate

for these foundations, relates to these challenges. We focus

on presenting challenges at the underlying theoretical level

of Human-Centric AI that would provide the basis for the

principled development of systems, while we acknowledge

9 Note that this non-causal direction of association between symptoms

and disease is the natural one when the knowledge is used in the

practice ofmedicine, where doctors carry out the diagnostic process. The

causal direction of association from a disease to symptoms is the natural

direction when we are studying the underlying medical scientific theory.

that many other, more particular, technological challenges,

would also need to be addressed to achieve the goals of

Human-Centric AI.

The challenges for Human-Centric AI are not new for AI,

but they reappear in a new form adapted to the human-centric

perspective of HCAI. Overall, the main challenge for HCAI, and

for AI more generally, is to acquire an understanding of human

intelligence that would guide us to form a solid andwide-ranging

computational foundation for the field. In particular, we need to

understand thoroughly Human Cognition, accepting that the

process of cognition, and its embodiment in the environment,

form the central elements of intelligence.

This understanding of human cognition includes the

following three important aspects: (1) how cognitive knowledge

is organized into concepts and associations between them at

different levels, and how cognitive human reasoning occurs

over this structured knowledge, (2) how cognitive knowledge

is acquired and learned, and how the body of knowledge

is improved or adapted through a gradual and continuous

development process, and (3) how the internal integrated

operation of cognition, from low-level perception to increasingly

higher levels of cognition, is supported by an appropriate

architecture, and how an individual’s cognition is integrated with

the external physical and social environment. Below we will

analyze separately these main challenge areas and discuss the

inter-connections between them.

4.1. Knowledge and inference

Human-Centric AI systems are knowledge intensive. As

in the case of human cognition, they will need to operate

on large and complex forms of knowledge. To achieve

this we need a framework for representing and organizing

knowledge in structures that would facilitate appropriate types

of inference and decision making. From one point of view (the

anthropomorphic design and operation of AI systems), the task

is to match the main features of Human Cognitive Knowledge

and Reasoning, including their context-sensitive nature and

the multi-layered knowledge structure into concepts and

associations between them at different levels of abstraction.

The need for these characteristics of knowledge and

reasoning had been identified from the early stages of AI,

with various knowledge structures being proposed to capture

them. For example, the structure of frames (Minsky, 1981)

aimed to capture the context sensitive nature of knowledge.

Similarly, inheritance networks (Horty et al., 1990) were

used to capture the different cognitive levels of knowledge

and a form of contextual inference based on hierarchical

generalizations. Another such structure, that of scripts (Schank

and Abelson, 1975), aimed to capture the context-sensitive

nature of commonsense reasoning with the knowledge of

stereotypical sequences of events, and the change over time
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that these events bring about. This approach of defining

explicitly cognitive knowledge structures was replaced, over

several decades up to the start of the 21st century, to a

large degree by the search for non-monotonic logics. The

emphasis was shifted away from suitable explicit structures in

knowledge and the cognitive nature of the process of inference

to that of rich semantics for these logics that would capture

the intended forms of human cognitive reasoning. Intelligent

reasoning would follow from the correctness of choice of the rich

logical formalism.

Essentially, all these approaches were concerned with

the major problem of the necessary adaptation of inference

over different possible contexts. This challenge, named the

qualification problem, was concerned with the question of

how to achieve context-sensitive inference without the need

for a complete explicit representation of the knowledge in

all different contexts, and how this is linked to the desired

inferences in each one of these explicitly represented general

and specialized contexts. To address this problem of knowledge

and reasoning qualification in non-monotonic logics, we would

typically include some form of modalities and/or some semantic

prescription in a suitable higher-order logic, typically over

classical logic. The practical problem of turning the logical

reasoning into a human-like cognitive inference in an embodied

environment was considered to be of secondary difficulty by

most of these approaches with some notable exceptions, e.g., in

that of McDermott (1990).

Our proposal of argumentation as the logical calculus

for Human-Centric AI assumes that an appropriate cognitive

structure of knowledge can be captured within structured

argumentation frameworks. This structure is given by the

priority relation amongst the individual argument schemes,

which expresses in the first place a direct and local form

of qualified knowledge. This then induces implicitly a global

structure on the knowledge via the attack and defense relations

of argumentation that emerge from the locally expressed

strength and conflict relations. The dialectic argumentative

reasoning over this structure gives the qualification of inference

over the various different and complex contexts. Indeed,

Computational Argumentation, with its new approach to logical

inference, was able to offer a unified perspective on these

central problems of context-sensitive and qualified inference,

by reformulating (and in many cases extending) most, if not

all, known logical frameworks of non-monotonic reasoning in

AI (Bondarenko et al., 1997).

The challenge for argumentation is to build on this, and

understand more concretely the argumentative structure of

cognitive knowledge, and how to use it to match the practical

efficacy of human cognitive reasoning. For example, how do we

recognize the context in which we are currently in so that we

can debate among alternatives that are available in this context?

Similarly, how do we recognize that there is insufficient current

information that would lead to a reasonable inference? For

example, there might be too many different conclusions that are

equally supported, and hence we seamlessly recognize that it is

not worth examining the inference, and it is better to wait for

further information. This is akin to what humans naturally do

in understanding narratives, where we leave empty pieces in the

picture or model of comprehension, waiting for the author to

reveal further information.

Another challenge related to the cognitive structure of

knowledge is the need for a natural link to explanations for

the inferences drawn at different cognitive levels of abstraction.

In the organization of knowledge we can distinguish concepts

that typically need explanation and those which do not —

a separation that is also context sensitive depending on the

purpose of the explanation and on the audience receiving the

explanation. For example, the recognition of an image as a case

of some abstract concept, e.g., of Mild Cognitive Impairment,

can be explained in terms of some lower level features of the

image, e.g., small HIP volume, which normally do not require (or

for which one does not normally ask for) explanation. Perhaps

one could ask for an explanation of “small” and be given this

by some numerical threshold, in which case the even lower level

feature of being less than the threshold is unlikely to be further

questioned for an explanation. In any case, explanations need to

be cognitively compatible with the user or process to which they

are addressed, i.e., expressed at the same level of understanding

and within the same language of discourse.

Argumentation has a natural link to explanation. Premises

of arguments directly provide an attributive element of an

explanation, while the structure of the dialectic argumentative

process can be used to form a contrastive part of the

explanations, i.e., explain why some other inference or decision

was not made. This link of argumentation to explanation and the

general area of Explainable AI has recently attracted extensive

attention by the computational argumentation community

(Kakas and Michael, 2020; Čyras et al., 2021; Vassiliades et al.,

2021). The challenge is how to turn argumentation into the

language of explanation in a way that the explanations are

provided at an appropriate cognitive level and are of high

quality from the psychological and social point of view, e.g., they

are naturally informative and non-intrusively persuasive (Miller,

2019). Argumentative explanations can help the receiving

process or human to take subsequent rationally-informed

decisions, based on transparent attributive reasons for the

rationality of a choice, while at the same time not excluding the

freedom of considering or deciding on other decisions that are

alerted to by the contrastive elements of explanations.

The high-level medium of human cognition, as well as the

intelligent communication and interaction between humans,

is that of Natural Language. The above challenges on the

Structure and Organization of Knowledge and Reasoning

need also to be related and linked with Natural Language as

the medium of Cognition and Intelligence. Computational

Linguistics and comprehension semantics and processes that
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are context-sensitive, such as the distributed semantics of

Natural Language, are important in this respect to guide the

development of AI. At the foundational level, the challenge is

to understand cognitive reasoning on the medium of Natural

Language. How is the process of human inference grounded

in Natural Language, as it is studied, for example, in Textual

Entailment (Dagan et al., 2009)? Several argumentation-

based approaches study this question by considering how

argumentative knowledge (arguments and strength) are

extracted or mined from natural language repositories (Lippi

and Torroni, 2016; Lawrence and Reed, 2019), i.e., how

argument schemes are formed out of text (Walton, 1996), or

how we can recognize good quality arguments (Hinton, 2019,

2021) from their natural language expression. The foundational

challenge for argumentation is to understand how, in practice,

the process of dialectic argumentation relates to and can be

realized in terms of a human-like argumentative discourse in

Natural Language.

4.2. Developmental nature

The recognition of the central role that knowledge plays

in Human-Centric AI systems comes with the challenge of

how that knowledge comes about in the first place, and how it

remains current and relevant across varying contexts, diverse

users interacting with the systems, and shifting and dynamic

circumstances in the environment within which the systems

operate. And all these, while ensuring that the knowledge is in

a suitably structured form to be human-centric. Depending on

the eventual use of knowledge, different ways of acquiring that

knowledge might be pertinent.

In terms of a first use of knowledge, Human-Centric AI

systems need to have access to background knowledge, through

which they reason to comprehend the current state of affairs,

within which state they are asked to reach a decision. Such

knowledge can be thought to be of a commonsensical nature,

capturing regularities of the physical or social world. Trying to

fit empirical observations into a learned structured theory would

be akin to trying to cover a circle with a square. The language

of learning needs to be flexible enough to accommodate for the

fact that not all empirical observations can be perfectly explained

by any given learned theory. As obvious as this might sound,

the majority of modern machine learning approaches implicitly

ignore this point, and rather proceed on the assumption that the

learned theory is a total mapping from inputs to outputs. As a

result, these learning approaches are forced to consider richer

and richer representations for learned theories (e.g., in the form

of deep neural networks with millions of learning parameters to

tune) that can, in principle, fit perfectly the learned data, losing

at the same time the structure that one would wish to have in the

learned theories, and opting for optimal rather than satisficing

accuracy in their predictions at the expense of sub-par rather

than satisficing efficiency.

An argumentation-based learned model, on the other hand,

explicitly acknowledges that the learned theory only partially

captures, in the form of sufficient conditions, whatever structure

might be revealed in the empirical observations, choosing to

abstain from predictions when these sufficient conditions are not

met (e.g., for the areas of the circle that our outside the square).

This is taken a step further, with these sufficient conditions not

being interpreted strictly, but being defeasible in the presence

of evidence to the contrary effect. Additional arguments in the

learned model can thus override and fine-tune the conditions of

other arguments (e.g., by pruning the corners of the square that

might fall outside the circle).

By acknowledging the unavoidable incompleteness

of a learned theory, a further related challenge emerges:

the ability of a partially-good theory to be gracefully

extended to a better one, without having to undertake a

“brain surgery” on the existing theory. This elaboration

tolerance (McCarthy, 1968) property allows one to adopt

a developmental approach to learning, spreading the

computationally demanding process of learning across time,

while ensuring that each current version of the theory remains

useful, usable, and easily improvable. An argumentation-

based learned model can meet these requirements, as it can

be gracefully extended with additional arguments, whose

inclusion in the learned model is handled by the semantics

of argumentation, without the need to affect the pre-existing

theory. In case the extended part of the learned model

comes in conflict with the original part, argumentation

records that as a dilemma, and gives the learning process

additional time to resolve this dilemma, even guiding the

learning process on where it should focus its attention to be

most effective.

In terms of a second use of knowledge, Human-Centric

AI systems need to have access to decision-making knowledge,

through which they reason to reach a decision on how to

act in the current state of affairs, after comprehending that

state with the aid of background knowledge. Such knowledge

can be thought to be domain- and user-specific, capturing the

preferences of the users of the system. It is expected, then, that

such knowledge can be acquired by interacting with the users

themselves whose preferences one wishes to identify.

In such an interaction, the system needs to employ a learning

process that acknowledges the nature of human preferences, and

the mental limitations of humans when communicating their

preferences. Preferences might be expressed in a hierarchical

manner (e.g., stating a general preference of red wine over

white wine), with more specific preferences overriding the

general preferences in certain contexts (e.g., when eating

fish). Any preferences communicated by humans should,

therefore, be taken as applicable in the absence of other

evidence, but need to support their flexible overriding
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in the presence of exceptional circumstances or specific

contexts.

At the same time, the preferences expressed by a human

undertaking the role of a coach for the learner (Michael, 2019)

should support their juxtaposition against social norms, ethical

principles, expert knowledge, and applicable laws. Irrespective

of whether such norms, principles, and laws are learned or

programmed into a Human-Centric AI system, it should be easy

to integrate them with the user’s preferences that are passively

learned or more directly provided by the user to the learner.

Since humans communicate most often in natural language,

either with the explicit aim of offering their knowledge to a

specific individual, or as part of supporting their position against

another in a dialectical setting (e.g., in a debate in an online

forum), the process of knowledge acquisition should be able to

account for natural language as a prevalent source of knowledge.

Techniques from argument mining (Lippi and Torroni, 2016;

Lawrence and Reed, 2019) can be used to extract arguments

directly from human discourse expressed in natural language.

This discourse could represent the dialogue that a human has

with the machine, in the former’s effort to communicate their

preferences to the latter. Equally importantly, the discourse can

be undertaken in a social context among multiple humans.

Mining arguments from such a discourse could help identify

arguments in support and against diverging opinions on a

matter, commonly agreed upon norms or principles, and, at

a more basic level, the concepts that are deemed relevant

in determining the context within which a decision should

be made.

Fairness should be supported by the learning process by

allowing the acquired knowledge to identify possible gaps, which

might lead to biased inferences, so that the learning process

can be further guided to fill these gaps and resolve the biases,

by seeking to identify diverse data points from which to learn,

and ones that would get learning outside any filter-bubbles.

Relatedly, transparency should be supported by the learning

process by ensuring that learned knowledge is represented in a

form and structure that is compatible with human cognition.

Argumentation can identify gaps in knowledge, and sources

of potential biases, by acknowledging that individual data

points can form very specific and strong arguments that defeat

the general arguments based on highly-predictive features, by

having arguments dispute other arguments that rely on socially

or ethically inappropriate features, and by supporting dilemmas

in case the evidence for and against a certain conclusion might

not be fully statistically supported. In all cases, the arguments

in favor and against a certain inference can be made explicit to

users, so that they can deliberate, for example, on the merits of

high-accuracy coming through some rules, vs. the dangers of

introducing biases.

A last, by major, overarching challenge for the process of

knowledge acquisition is its meaningful integration with the

process of reasoning. Learned knowledge does not exist in a

vacuum, and it cannot be decoupled from how it will be reasoned

with. Rather, during the learning process one has to reason with

learned knowledge, so that its effects can be taken into account

for the learning of further knowledge (Michael, 2014, 2016). This

challenge is aligned with the challenge of learning structured and

hierarchical knowledge, and the incremental nature of learning

this knowledge. Once the bottom layers of knowledge are

learned, they need to be used to draw intermediate inferences,

so that the top layers of the knowledge can be learned to map

those drawn intermediate inferences to higher inferences.

Not all layers of knowledge need to be represented as

connections between identifiable concepts. At the lowest levels

of learned knowledge, where inputs come in the form of

unstructured (subsymbolic) data, neural architectures can play

a meaningful role. As one moves from mapping those low-

level inputs into identifiable concepts, one can then employ a

representation that is based on symbols, enhancing the neural

architecture with symbolic or cognitive layers of knowledge

on top (Artur S. d’Avila Garcez, 2014; Tsamoura et al., 2021).

Argumentation can take on the role of the language in which

these cognitive layers of knowledge can be represented, allowing

the necessary flexibility in mapping neural inputs to higher

order concepts.

The developmental nature of learning, important in the

context of building HCAI systems, has been studied in works

on never-ending learning (Mitchell et al., 2015), curriculum

learning (Bengio et al., 2009) and continual learning (De Lange

et al., 2022), among others. Such works attempt to address the

challenge that most current ML approaches face due to their

batch-mode learning. If new data becomes available, previously

trained knowledge is lost and the training process needs to

start from scratch again. This process seems inefficient and

improvable, in particular when we consider how humans learn

over time. Mitchell et al. (2015) illustrate their suggested never-

ending learning paradigm with the case of the Nevel-Ending

Language Learner (NELL). NELL has continuously learned

from the Web to read, and invents new relational predicates

that extend the ontology to infer new beliefs. Bengio et al.

(2009) take a different approach, what they call curriculum

learning, but yet, similarly their motivation is inspired by human

learning. They suggest to formalize training strategies, which

define training orders, to reach faster training in the online

setting and guide the training toward better regions in the

parameter space to improve the overall quality of learning for

deep deterministic and stochastic neural networks. Continual

learning is yet another concept, where (De Lange et al., 2022)

suggest to focus on artificial neural networks that can gradually

extend knowledge without catastrophic forgetting.

Adopting argumentation as the target language of learning

fits well with such attempts to develop continual learning

processes (e.g., Michael, 2016). First, the take of argumentation

on not producing definite conclusions in all cases is an

explicit acknowledgment that any learned knowledge is never
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complete, and that learning is a never-ending process. When

new data arrives, this can lead to new arguments, which

can be seamlessly integrated into existing knowledge learned

from previously available data. If the new data statistically

support arguments in conflict with those previously learned, the

semantics of argumentation handles the conflict by producing

dilemmas, without leading to the catastrophic forgetting of

previously learned knowledge. In addition, these dilemmas

can naturally direct, through a form of self-driven curriculum

learning, the learning process to seek additional data to resolve

those dilemmas.

4.3. Internal architecture

The previously described challenges of how knowledge is

organized to facilitate context-sensitive inferences and at the

same time is naturally acquired such that knowledge adapts

across domains and time, raises the question of how this is

achieved, or wired, into the human mind.

For the classification of human experience and information

processing mechanisms, Newell (1990) established the four

bands of cognition, consisting of the biological band, the

cognitive band, the rational band and the social band. These

are characterized by the timescales of twelve different orders of

magnitude. As an example, the time span of processes in the

cognitive band can occur in 100 ms, whereas the time span of

processes within the rational band ranges fromminutes to hours.

Newell was probably right when stating that any theory which

only covers one aspect of human behavior “flirts with trouble

from the start” (Newell, 1990), and therefore he suggested the

development of architectures of cognition as formal structures in

which different cognitive processes can be simulated and interact

as modules.

At a general level, such Cognitive Architectures need

to provide (i) a specification of the structure of the brain,

(ii) the function of the mind and (iii) how the structure

explains the function (Anderson, 2007). They are required to

unify different information processing structures within one

system that simulates the processes organized as modular

entities and that are coordinated within one environment thus

simulating human cognition and eventually predict human

behavior. Over the decades, many cognitive architectures such

as ACT-R (Anderson, 2007) or SOAR (Laird, 2012) have

been proposed, which have had a significant contribution on

providing formal methodologies and have been applied to

various levels of cognition by including both symbolic and

subsymbolic components. Laird et al. (2017) suggest a baseline

model, the ‘standard model of the mind’ (or ‘common model

of cognition’), in order to ‘facilitate shared cumulative progress’

and align theories on the architectural level.

However, even after 50 years, Newell’s criticism that the

scientific community does not “seem in the experimental

literature to put the results of all the experiments

together” (Newell, 1973) still seems to hold. Interestingly,

this missing convergence toward unified theories of cognition

persists across and within the bands of cognition (Newell, 1990).

Bridging the gap between Newell’s bands of cognition still exists

as a problem and the main challenge remains. How do we

organize the internal processes of a system at different levels

such that they can operate internally linking perception and

high-level cognition, by facilitating their meaningful integration

with other systems and the external human participating

environment? This is a question not only on how theories are

embedded across levels, but also on which ones are adequate

theories at the individual levels, and, in particular, on how

organizational models are generated from theories across

task domains.

The intention of HCAI to take the human perspective into

account from the beginning of the system’s development, in

order to support and enhance the human’s way of working,

requires that its systems are judged not in terms of their

optimization according to current AI performance criteria,

but rather in terms of a holistic evaluation in comparison

with the human mind and behavior. Laird, Lebiere and

Rosenboom (Laird et al., 2017) emphasize that for human-like

minds, the overall focus needs to be on ‘the bounded rationality

hypothesized to be central to human cognition (Simon, 1957;

Anderson, 1990)’. Accordingly, as we have stated several times

in this paper, HCAI systems need to provide solutions that are

not necessarily optimal in the strict rational sense but cognitively

plausible across different levels. One way to address the above

requirements is to build HCAI systems that have an internal

representation of the current state of the human mind (Theory

of Mind). This representation reflects the human’s awareness

of their environment from which plausible behavior in the

given context can be ascertained. The system can consider the

human perspective and generate their plausible decisions, if it

has the ability to simulate the human’s mind functions and

their interaction with the simulated environment. Yet, the main

challenge remains: How to organize the internal processes of a

system at different levels such that they can operate internally

in a coherent way and facilitate their meaningful integration

with other systems and the external human participating

environment. What is an adequate internal representation, and

at which levels does the system need to be implemented? How

are these levels organized internally?

Can Cognitive Argumentation help to address these

challenges? Cognitive Argumentation has its foundations in

Computational Argumentation and thus, at some level, its

process of building arguments and the dialectic process of

reasoning can be described and understood symbolically. Yet,

the actual processes of building, choosing, and deciding which

arguments are plausible or winners can be heavily guided by

biases or heuristics which stem from lower level, e.g., statistical,

components. These components might account for lower levels
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of cognition such as situation awareness or associative memory.

Their connection with higher-level processes, such as the

relative strength relation between arguments, can thus provide

a vehicle of integration between internal system processes

(e.g., Dietz, 2022). Cognitive Argumentation might therefore

be considered as a good candidate for the internal integration,

within appropriate cognitive architectures, of the processes at

different cognitive levels of HCAI systems.

4.4. Social integration

Argumentation in practice is often a social activity, carried

out through a dialogue or debate among (groups of) different

individuals. Similar to a multi-agent system, where independent

entities are understood as agents (passive, active, or cognitive),

in an argumentation environment agents can be (groups of)

individuals holding to or against a certain position. Multi-agent

systems in their traditional sense have been used to study the

dynamics of complex systems (e.g., economic systems) and

the influence of different interactive behaviors among agents.

Usually, the optimal outcome is computed with respect to a

rational agent’s behavior, i.e., an agent who selects an action that

is expected to maximize its performance measure. In the case

of Human-Centric AI systems, operating in such an optimality-

seeking mode is not realistic. Yet, the different systems or

agents need to operate within the same environment, either

in a cooperative or competitive mode, as the case may be.

The important challenge for this joint and social operation is

sustainability, in the sense that individual systems can continue

to provide their separate services while the ecosystem in which

they belong continues to support their individual roles.

How can the logical foundation of argumentation facilitate

achieving this goal of social sustainability? Argumentation can

be understood as a multi-agent system where each agent (or

group of agents) is a representative for supporting a certain

position. The overall system might contain various (groups of)

agents holding to different, possibly conflicting, positions. As in

multi-agent systems, such an argumentation environment can

have a notion of cooperation and competition. Cooperation can

be understood as agents holding to the same position, where

their joint goal is to defend their position or to convince others

about their position. Competition is the case where agents have

opposing positions and try to defeat the other’s arguments,

while defending their own arguments. Interaction among these

(groups of) individual systems occurs through the arguments

that defend their own positions or defeat the positions of others.

This then can reflect the overall system’s dynamics, which might

either converge toward one position or stabilize to various

(strong) positions that conflict with each other.

Another view on argumentation as a multi-agent system,

following the work of Mercier and Sperber (2009), is to cast

one agent as a communicator and other agents as the audience.

The exchange of information happens dynamically through

the persuasiveness of the communicator and the epistemic

vigilance of the audience. In some sense this is the original

context of the study of argumentation going back all the way

to Aristotle who stages the process of dialectic argumentation

between a Questionnaire and an Answerer. The motivation is

to understand how to regulate the process of communication,

e.g., exposing unreasonable positions and harmful rhetoric. In

today’s explosion of media and social networks this is particularly

important in helping to enhance the quality of dialogue and

interaction on these platforms (Heras et al., 2013; Gurevych

et al., 2017). Recently, the center of Argument Technology

(https://arg-tech.org/) has released a video exposing the dangers

of harmful rhetoric, arguing that argumentation technology

can help address this problem, e.g., with systems that support

“reason checking” of the premises and validity of a position

promoted on the media and social cyberspace.

In all cases, the approach needs to be strongly guided

by cognitive heuristics (e.g., ‘bias by authority’, or heuristics

concerned with the ethical aspects). The overall major challenge

then remains the same. How can HCAI systems be socially

integrated within an application environment for dialogue

and debates? How can argumentation and the argumentative

structure of knowledge facilitate such an integration?

4.5. Ethical compliance

The ethical requirement of HCAI systems is of paramount

and unique importance. Its importance is reflected by the

unprecedented interest and proactive actions that organizations

and governments are taking in order to safeguard against

possible unethical effects that AI can have on people’s lives.10

One such EU initiative is the publication of “Ethics

Guidelines for Trustworthy AI”11, prepared by a “High-Level

Expert Group onAI,” suggesting that AI systems should conform

to seven different requirements in order to be ethical and

trustworthy (see also Floridi, 2014; Russell, 2019). At the

systemic operational level, one of these requirements is that

of the “Transparency: Including traceability, explainability and

communication” of the system. This requirement alludes to the

importance of AI systems being able to enter into a dialogue and

a debate with human users or other such systems, and for this to

be meaningful the system should be able to explain and account

for its decisions and position. This will ensure some level of

ethical behavior as through these processes of dialogue, dispute,

10 The EU is continuously releasing documents of guidelines and

regulatory or legal frameworks on AI Ethics, e.g., https://digital-strategy.

ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-r

ules-artificial-intelligence.

11 https://www.aepd.es/sites/default/files/2019-12/ai-ethics-guideline

s.pdf
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and debate we will be able to identify ethical weaknesses and take

action to remedy or mitigate the problem. The challenge then

for any logical foundation of AI is to facilitate these processes

and allow in a modular and natural way the adaptation of the

systems with the results of the debate, either at the level of its

knowledge, or at the level of its internal operation.

Transparency and other such requirements provide an

operational approach to the problem. They do not touch,

though, on the underlying foundational difficulty of what is good

ethical behavior and how we can endow AI systems with it.

The inherent difficulty in achieving the, otherwise simply stated,

challenge of “AI systems that adhere to human moral values”

lies in the fact that even if we are clear about the moral values

by which we generally want to regulate our systems, in many

circumstances we might have different moral values that are in

conflict with each other.

The problem is not new. It is as old as Philosophy, where

it was recognized that within ethical reasoning we can often

have moral dilemmas of being unable to decide clearly what

is the correct ethical decision or action to take. Socrates from

the very early days of Philosophy raises this concern of morally

difficult and unclear decisions depending on the particular

context at hand, and Aristotle aims to give prescriptions for

ethical reasoning in his Practical Syllogisms. Recently, in the

context of AI, the Moral Machine project (Bonnefon et al., 2016)

draws from the miners dilemma in Philosophy, in an attempt

to gather data on the moral values of people and the relative

importance they place on them, albeit within a very specific “AI

context” that is directly relevant to the increasing prevalence

of autonomous cars.12 The project confirms that decisions in

ethical reasoning are not always clear and that they can vary

between different people.

From this theoretical point of view it appears that the

essential difficulty in this challenge for ethical decisions is that of

capturing the context-sensitive nature of the reasoning involved.

This is, therefore, the same problem described in Sections 4.1

and 4.2, where we have considered the nature of reasoning and

learning in Human-Centric AI systems.

The flexibility of the Logic of Argumentation is well

suited for the ethical guidelines, which although strong, they

cannot be absolute, as situations can arise with genuine moral

dilemmas (Verheij, 2016).13

In general, as we consider the challenge of how to develop

the ethical quality within our AI systems, it would be useful

to be able to judge the current degree of achieving this, i.e.,

what we could call the current level of ethicacy of a system.14

12 https://www.moralmachine.net/

13 Also consider https://www.ai.rug.nl/~verheij/publications/oratie/

oratie_Bart_Verheij.pdf, https://www.argnet.org/ethics-of-arg.

14 Ethicacy: the e�cacy in achieving ethical behavior; a measure of the

ability to operate ethically to a satisfactory or expected degree.

The form that this ethicacy measure would have depends

on the logical perspective that we adopt about the ethical

requirements, e.g., whether these are normative directives or

guidelines to follow based on some descriptive principles. The

normative view would point toward “ethics by design,” whereas

the descriptive view would point toward an “evolutionary

process.” Adopting the more flexible descriptive perspective, as

argumentation would allow — instead of appealing to either

ethics experts to prescribe, or supervised learning techniques

to induce, the ethical principles — can support also a process

of gradual acquisition of these principles. This process would

resemble how young children learn from their parents and social

surroundings: by being coached in an online and developmental

manner as a reaction to their ethical transgressions

(Michael, 2019, 2020).

Such a process of “ethics coaching,” be it by the user being

assisted by the system, or by ethics experts acting on behalf of

some community, or indeed special Ethics Coaching AI systems,

can react to contest the decision of the system and possibly

help to resolve the dilemma under some specified conditions.

Critical in this interaction is that it is the justifications being

evaluated, and not only the inferred conclusion, and that the

reaction comes in the form of ethical counterarguments that do

not completely nullify the system’s current ethical principles, but

complement them in an elaboration tolerant manner. Hence the

ethical dimension of a system can start with some, pre-populated

by design (by ethics experts) broad generally-accepted, ethical

principles to guarantee some minimally-viable version of the

system. Then, every time the system is faced with an ethically-

driven dilemma on its material choices, the ethics coaching

process will help the system, through a coaching dialogue

on the justification of the alternatives, develop higher levels

of ethicacy.

Argumentation, as a logical foundation supporting an

ethical behavior, would allow machines to make transparent

the reasons in favor and against the options available,

and make transparent the ways in which these reasons

are further developed and refined over time. Exposing the

reasoning in one’s decisions would seem to be the primary

desideratum for an ethical system, over and above what

the actual decision might end up being. At the end of

the day, different people (or a system and a user) might

disagree on their ethical principles. At the very least,

argumentation can help expose the fundamental premises on

which interlocutors disagree, even if it cannot help them

reconcile their divergent views.

In his inaugural lecture,15 Verheij proposes not to regulate

AI by enforcing human control or by the prohibition of

‘killer robots’, but through the use of argumentation systems

15 https://www.ai.rug.nl/∼verheij/publications/oratie/oratie_Bart_Verh

eij.pdf
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which provide us with good arguments. You cannot force

good ethical behavior, you can only hope that you can

form such behavior through exposure to the arguments for

the alternatives.

4.6. Summary of HCAI challenges

We can summarize these challenges by regrouping them into

three main groups of different type of “technical requirements”

expected from the logical foundations of HCAI systems

and connecting to each one of these the main feature of

argumentation that is appropriate to meet these requirements.

Table 2 shows these three groups of requirements: Openness to

capture the open nature of operation and development of the

systems, Humanly to give the systems a human-like compatible

behavior, and Ethicacy to capture the need for these systems to

be effectively regulated by human moral values. In the second

column of this table, we have the main corresponding features of

argumentation that can help in addressing these requirements:

The flexible and non-strict nature of argumentative logical

inference together with the online process of argumentation are

directly relevant in addressing the needs of the first group. For

the second group of the requirements we note that the inference

of argumentation is naturally human-like: human cognition

and reasoning is naturally carried out through argumentation.

The dialectic process of argumentation occurs in a framework

of inner contemplation or debate between alternative points

of view. This together with the natural link of arguments as

justifications or explanations for supporting a view against

TABLE 2 Summary of technical challenges of HCAI, expected to be

supported by its logical foundations and appropriate general

properties of argumentation.

HCAI Technical Challenges Argumentation

Properties

Openness Context-sensitive inference

Online and adaptive inference Flexibility of

Continuous and adaptive learning argumentation logic

Tolerance of inference to incompleteness

and conflicting information

Humanly Cognitively compatible

system-human interaction Argumentation-based

Personalization of inference human cognition

Responsiveness to users feedback

Socially-driven inference

Ethicacy Cognitive explainability and transparency

Contestable dialogues and debates Dialectic nature

Corrective moral/ethical coaching of argumentation

Osmotic learning of ethical behavior

others, can form the basis on which to build the required

processes in the third group of the ethicacy requirements.

5. Conclusions

We have proposed Argumentation as a candidate for the

logical foundations of Human-Centric AI. This position is based

on the close and natural link of argumentation with human

cognition. Argumentation as a formal system of reasoning could

provide the underlying framework for computational models

of human-like intelligent faculties for AI systems. The overall

idea is that by allowing machines to argue, and by bringing

their form of argumentation close to human argumentation, we

can facilitate a smooth machine-human interaction that offers

an enhancement of people’s general intelligent capabilities in a

natural way that is ethical and humane.

Whatever logic we choose, and no matter how appropriate

we judge it to be, as a logical foundation for HCAI, this can only

be the first step toward developing HCAI systems. Intelligence,

whether human or artificial, is not a matter of pure logic

as we are reminded by Kant and McDermott in their works

“Critique of Pure Reason” (McDermott, 1990; Kant, 1998). A

logical foundation needs to enable and facilitate the use of

extra-logical cognitive information (or cognitive principles), in

order to turn the underlying reasoning and learning that are

supported by the logic into cognitive processes. Logic is not

applied in isolation, but needs to be “aware” of a cognitive

operational framework that affects and regulates its application.

This cognitive embodiment would require the synthesis of

knowledge from a wide range of disciplines that study the

different aspects of human thought in its full generality.

We are thus presented with an additional epistemological

challenge, on top of the other technical challenges, of addressing

the need for an interdisciplinary synthesis of the various studies

FIGURE 2

Overview of disciplines that study argumentation.
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of human argumentation under the perspective of Human-

Centric AI. How can we draw from these different fields to

form a foundation where machine argumentation is brought

cognitively close to human argumentation? What empirical

studies of human intelligence in these fields will help us

understand its link with machine intelligence and particularly

with computational argumentation, in a way useful for building

HCAI systems? What elements of these fields are needed

to allow the development of Human-Centric AI as a truly

interdisciplinary field? For the case of argumentation, we are

fortunate to have a wide ranging study of argumentation

within several disciplines, such as Cognitive Psychology, Critical

Thinking, Debate and Rhetoric, Argumentative Discourse in

Natural Language, and studies of Practical Argumentation in

different human contexts (see Figure 2). We can then draw from

these studies to help us in addressing the interdisciplinary nature

of HCAI.

Ideally, we would want this interdisciplinary synthesis to be

so strong that Human-Centric AI would generate feedback into

these other disciplines and become itself part of the general effort

to understand human thought and intelligence. Can Human-

Centric AI give a focus for pulling together the different efforts

to comprehend human intelligence, and function as a new

“laboratory space” for evaluating and further developing our

understanding of the many different facets of human thought?
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Argument-based human–AI
collaboration for supporting
behavior change to improve health

Kaan Kilic*, Saskia Weck, Timotheus Kampik and Helena Lindgren

Department of Computing Science, Umeå University, Umeå, Sweden

This article presents an empirical requirement elicitation study for an

argumentation-based digital companion for supporting behavior change, whose

ultimate goal is the promotion and facilitation of healthy behavior. The study was

conducted with non-expert users as well as with health experts and was in part

supported by the development of prototypes. It focuses on human-centric aspects,

in particular user motivations, as well as on expectations and perceptions regarding

the role and interaction behavior of a digital companion. Based on the results of

the study, a framework for person tailoring the agent’s roles and behaviors, and

argumentation schemes are proposed. The results indicate that the extent to which

a digital companion argumentatively challenges or supports a user’s attitudes and

chosen behavior and how assertive and provocative the companion is may have a

substantial and individualized e�ect on user acceptance, as well as on the e�ects of

interacting with the digital companion. More broadly, the results shed some initial

light on the perception of users and domain experts of “soft,” meta-level aspects of

argumentative dialogue, indicating potential for future research.

KEYWORDS

formal argumentation dialogues, behavior change, digital companion, value-based

argumentation, argumentation schemes, user-modeling, Human-Centered Artificial

Intelligence, health promotion

1. Introduction

Artificially intelligent agents in the form of digital assistants, or companions (Torous

et al., 2018), are to an increasing extent being developed for supporting individuals with

improving health by changing unhealthy behavior. However, each individual has different

motives for attempting a change of behavior and different reasons for why they do not achieve

the desired behavior. These motives and reasons can be formulated as arguments, which can

potentially be used as the basis for argument-based dialogues between an individual and a digital

companion. Moreover, users may have different perceptions of how an agent could collaborate

and provide support in the process, which may affect how argument-based dialogues with a

digital companion can unfold.

Although there are plenty of examples of behavior change support applications, few apply

computational argumentation frameworks as the foundation for organizing motives in favor

and against what to do to promote health and in the reasoning in deliberative dialogues between

the human and a digital agent.
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The purpose of the research presented in this article is to explore

from a user’s perspective and from the perspectives of experts on

behavior change a digital companion with which the user can have

argument-based dialogues in the process of behavior change, which

the user can tailor to adhere to their expectations regarding roles

and types of support in the dialogues. The aim is to provide the user

with means to collaborate with the digital agent to ultimately become

empowered and supported in their pursue of their goals to improve

their health. Research presented, in this article, is consequently an

example of Human-Centered Artificial Intelligence (HCAI), which is

defined by Nowak et al. (2018) as AI that collaborates with a human,

“enhancing their capabilities, and empowering them to better achieve

their goals.”

Our study explores the following research questions:

• What are people’s expectations of a digital coach or companion

in terms of roles and behaviors, and argument-based support?

• How can the agent’s roles and behavior, and the argument-

based dialogue promoting health be tailored to individuals’

expectations and level of readiness for the change?

The main contributions to the field of HCAI are (i) increased

knowledge about how people view argument-based support

through digital companions for promoting healthy lifestyles, (ii)

an argumentation-based framework for tailoring a digital agent’s

roles and behaviors, and (iii) a novel application of argumentation

schemes for tailoring a digital companion’s role and behavior and

for switching between or merging roles. The article exemplifies how

computational argumentation provides the foundation for HCAI for

supporting behavior change to improve health.

The remainder of the article is organized as follows. First, the

conducted research is contextualized and an overview of related work

in computational argumentation and human–computer interaction is

provided in section 2. Next, the methodology applied in the studies

conducted is presented in section 3. The results are provided in

section 4 and are discussed in section 5. Conclusion is provided in

section 6.

2. Background and related work

The research presented in this article is conducted as a part of a

research project exploring digital companions as social actors related

to managing stress, and the research program STAR-C, which aims to

develop a digital coach for promoting healthy lifestyle habits targeting

physical activity, nutrition, alcohol consumption, tobacco use, and

stress (Lindgren et al., 2020; Ng et al., 2021). The STAR-C program

builds on and extends the Västerbotten Health Intervention Program

(VIP) in which the population in the healthcare regions are invited

to a health checkup that includes motivational interviewing with

a specially trained nurses when turning 40, 50, and 60 years old

(Hörnsten et al., 2014). The VIP is successful in reducing premature

cardiovascular diseasemortality and extending a healthy life in a cost-

effective manner and has become a health promotion model also for

other regions (Blomstedt et al., 2015; Lindholm et al., 2018).

The concept of digital companions for maintaining a healthy

lifestyle and goal achievement is increasingly gaining attention; it is,

for example, applied and studied in the context of professional work

support, education, stress management, healthcare, and behavior

change (Jang and Kim, 2020; Braun et al., 2021; Spirig et al., 2021;

Weber et al., 2021; Manning et al., 2022). All the facets, however,

converge on similar topics, such as assessing the user’s context or

learning more about the user’s habits in the interest of providing

personalized support to address a specific problem. Such knowledge

about the user is then embedded in a user model, which guides

the system in tailoring its behavior to an individual’s needs and

preferences (Kobsa, 1990). Increasingly, the importance of building

an artificial theory of mind (ToM) in digital and robotic companions

similar to what humans do about others in order to understand

and predict others’ behaviors and intentions, has been pointed

out, recently as being one of three grand challenges for human–

AI interaction (Yang et al., 2018) that is instrumental to human-

centered AI (Nowak et al., 2018). To achieve this, models are required

that integrate different aspects such as episodic memory, empathy,

hierarchical models of activity, and tasks to advance the capabilities

(Steels, 2020).

The person-tailored argumentation-based decision-support

system developed as a part of this research rests on complementary

theoretical frameworks developed within different fields of research

to encompass the human-centric approach: (i) on human activity

(Kaptelinin and Nardi, 2006; Lindgren and Weck, 2022), (ii)

motivation and behavior change (Ryan and Deci, 2000; Prochaska

et al., 2015; Lindgren and Weck, 2021), (iii) argumentation theory

(Walton and Krabbe, 1995; Bench-Capon, 2002; Walton et al., 2008),

and (iv) formal argument-based dialogues for reasoning about health

(Atkinson et al., 2006; Lindgren et al., 2020; Guerrero and Lindgren,

2021a,b).

Goal setting is one of the most important personalization feature

for promoting behavior change (op den Akker et al., 2014). Using

goal setting along with feedback for motivational effectiveness is a

very simple yet potent approach to induce a sense of accomplishment

and behavior change in users (Locke and Latham, 1984; Lunenburg,

2011). It also leads to a better performance in the attempts to

complete the goals and gain motivation (Latham and Locke, 1991).

According to Locke and Latham (1984), introducing challenging but

specific and achievable goals lead to clearer expectations of what a

person must do for behavior change. According to Ryan and Deci

(2000), motivation is “to be moved to do something” and a need

for autonomy, competence and relatedness are the attributes that

need to be satisfied in order to bring about intrinsic motivation

in a person or, possibly, cause an orientation shift in those who

were initially not intrinsically motivated. Internalization and the

accommodation of the three attributes of motivation are important

for user acceptance, sustainable behavior change, and obtaining goal

commitment, which are heavily related to contextual and informed

feedback communicated to the individual (Locke and Latham, 1984;

Ryan and Deci, 2000; Jang and Kim, 2020).

Activity theory guides in this study the organization of arguments

based on their content, in addition to providing the framework for

understanding the human in interaction with AI systems. Activity

theory defines purposeful human activity as being directed by a

motive, responding to a human’s underlying needs (Kaptelinin and

Nardi, 2006), and composed of an hierarchy of goal-directed actions.

At the lowest level, the operational tasks are found, those that are

internalized and conducted without cognitive effort. Large part of

a human’s habits are governed at this level, without consciously

deliberating on why or how to do a particular task (walking, taking

the elevator instead of the stairs, sitting down, taking the car to
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work, etc.). In setting goals and deliberating on what to do to

promote healthy habits, e.g., in motivational dialogues with a nurse

or in argument-based dialogues with a digital companion, moving

between the levels of the activity hierarchy is necessary to find the

grounds for why doing a particular action or activity, to formulate

themotivating arguments relevant and importance for the individual.

The connection between needs, long-term goals, and short-term goals

was explored by Lindgren and Weck (2022), and a model of activity

encompassing the building blocks for arguments across the levels of

activity was defined. Furthermore, to identify the factors affecting an

individual’s motivation to change behavior, a model of the behavior

change progress was built based on the most influential theories on

motivation and behavior change (Lindgren and Weck, 2021). These

two models build the basis for a user model, or ToM, for the digital

companion to use in dialogues with the individual in this study.

Argumentation theory and its application in machine reasoning

is an established research field encompassing formal frameworks

for constructing, analyzing, and evaluating arguments, typically

organized in argumentative dialogues for different purposes, e.g., for

generating new knowledge, deliberating on what to do, or to persuade

another agent (Walton and Krabbe, 1995). A notable foundational

work on computational argumentation is Dung’s study on abstract

argumentation, in which arguments and conflicts between them are

modeled as directed graphs—so-called argumentation frameworks

(Dung, 1995).

In order to embed various factors affecting natural dialogues,

formal frameworks have been developed which handle values

(Bench-Capon, 2002), preferences (Amgoud and Cayrol, 2013),

and audiences (Bench-Capon et al., 2007). Bench-Capon (2002)

introduced value-based argumentation frameworks by adding a

set of values that can be associated with arguments. The idea

in using value-based argumentation was to have attacks between

arguments failing or succeeding based on the importance of certain

values that are referenced by conflicting arguments. Traditionally,

computational argumentation has been a primarily formal field of

study, but recently, its potential for facilitating human–machine

interaction has led to increasingly applied for work, notably in the

context of explainable AI (Čyras et al., 2021; Vassiliades et al., 2021)

and persuasive technologies (Hadoux et al., 2018; Donadello et al.,

2022). Beyond that, researchers have started to ask foundational

questions about the integration of formal argumentation with

cognitive perspectives, e.g., to study to what extent non-experts find

the behavior of different abstract argumentation semantics intuitive

(Guillaume et al., 2022) and to model “extra-logical” cognitive

reasoning (i.e., reasoning that may be considered irrational from a

classical logic point of view) using formal means (Dietz and Kakas,

2021).

Although there are plenty of examples of behavior change support

applications, few apply computational argumentation frameworks

as a foundation for organizing motives in favor and against what

to do to promote health, and in the reasoning in deliberative

dialogues between the human and a digital agent. Among the few

examples that have used argumentation frameworks for behavior

change, an early example in the nutrition domain is provided

by Grasso et al. (2000), who explored dialectical argumentation

embedding the transtheoretical model of change (TTM) (Prochaska

et al., 2015). De Boni et al. (2006) used argumentation through a

therapy system in order to change behavior in exercise. Their goal

was to apply their system to a specific issue in exercise behavior

and to assess the automation capabilities of this system in future

studies by improving the argumentation capabilities of the system

through personalizing the language used while conversing with the

client. Baskar et al. (2017) explored multipurpose argument-based

dialogues through a team of agents taking on different roles pursuing

different goals in order to address an individual’s various sometimes

conflicting motives. Roles and an agent’s arguments were connected

to argumentation schemes (Walton et al., 2008), to provide weight

on how reliable the argument may be based on the source of the

argument.

Chalaguine et al. (2019) and Hadoux and Hunter (2019)

investigated how the concerns of the users affect the strength of

arguments in dialogue, similar to Baskar et al. (2017). For instance,

a user who is not too interested in, say, quitting smoking might

become interested if the persuader suggests improvements that

quitting can bring out in other aspects of life that the user is more

inclined toward, such as social relations and physical activity. Some

individuals are more predisposed to act based on their values rather

than persuasion through facts (Chalaguine et al., 2019). Atkinson and

Wyner (2013) define values as “social interests that a person/agent

wishes to promote.” Values are relatively scalable to other values and

are important for digital companions in helping a user achieve their

goals because values describe desirable goals people want to achieve

(van derWeide, 2011). In fact, Perelman andOlbrechts-Tyteca (1969)

outlined how people do not use facts but rather their opponents’

values and opinions to justify their argument.

The complementary roles of a team of digital coaches to support

an individual were outlined by Baskar et al. (2017) for the purpose

of managing potentially conflicting motives and needs. A similar

approach is presented by Kantharaju et al. (2019); the authors

integrate argumentation in a virtual multi-coach platform, in which a

group of multiple coaches with their own respective field of expertise

and behaviors jointly try to promote healthy behavior in a user.

In their study, the authors relate their work to the argumentation

schemes Argument from Expert Opinion (Walton et al., 2008), and

their method of presenting these arguments is implemented through

a dialogue game building platform. Some key challenges are listed

such as differences in users and how their multi-coach platform

can overcome disagreements between the virtual coaches themselves.

Kantharaju et al. (2019) also delve into the usage of persuasive social

agents for behavior change and which action should be taken by the

virtual coaches based on success or failure in abstract argumentation.

Another approach undertaken was by Nguyen and Masthoff

where they directed their focus on the effectiveness of motivational

interviewing (MI) as opposed to argumentation to persuade the users

in their study (Nguyen and Masthoff, 2008). They found that, in

some instances, MI is more persuasive than argumentation and that

the difference between tailored and non-tailored persuasive dialogue

systems are negligible. Miller and Rollnick (2012) described MI as

"using a person’s own reasons for change within an atmosphere of

acceptance and compassion.” The use of MI was also studied by

Hörnsten et al. (2014), where the primary healthcare nurses use

MI during their health dialogues with patients in order to have a

richer and empathy building communication. Hörnsten et al. (2014)

conducted 10 interviews with the primary healthcare nurses in the

VIP and studied their strategies in their dialogues. Several main

themes arose after the interviews, such as “guiding vs. pressuring
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patients,” “adjusting vs. directing the conversation with the patients”

to “inspiring confidence vs. instilling fear.” It is concluded in their

study that patient-centered care is preferable, and one key finding in

the study is that ideal consultations between the nurse and the patient

require empowering words, whereas consultations that include a

non-willing patient for behavior change might necessitate pressure,

demands for responsibility and challenge.

The need for both supportive and challenging arguments

for increasing motivation suggests that a bi-polar argumentation

framework is suitable to capture both the aspects of challenging

the human to change behavior using arguments on the one hand,

while also embedding the advantages of MI’s sense of acceptance

and compassion on the other hand. A bi-polar argumentation

framework embeds both arguments in favor and against, for instance,

an activity to be conducted (Amgoud et al., 2008). Furthermore,

embedding values representing the strength of an argument would

allow for comparing arguments (Bench-Capon, 2002). While the

atmosphere of acceptance and compassion may be promoted by

providing supporting arguments, an emotional parameter expressed

as friendliness or empathy is typically expected in inter-human

dialogues and has been shown to be also expected in human–robot

dialogues, e.g., by Tewari and Lindgren (2022).

To summarize, one of the challenges of this study is to

acknowledge the ethical concerns related to evoking cognitive

dissonance and potential fear in the individual when challenging their

unhealthy choices on the one hand, and on the other hand, providing

acceptance and compassion as in MI. The unavoidable human

emotional component of arguments and argumentation relating to

an individual’s choices affecting health is in the following addressed

by eliciting the user’s preferences regarding the agent’s behavior.

These preferences are treated as agreements between the user and the

agent on how the user expects the agent to perform argument-based

dialogues and can be considered a kind of social norm.

3. Methods

The research presented in this article applies a constructive,

participatory design methodology, and a mixed-methods approach

combining qualitative and quantitative research methods. The

research was conducted through the following steps:

1. Study 1: Purposed to study perceptions of behavior change in

five domains and of digital companions as social actors and

collaborators promoting health (40 participated, aged 29–60, see

Section 3.1). Based on the results, a framework for designing agent

roles and behavior was developed, and a set of argument-based

dialogue scenarios were built;

2. Study 2: Extended Study 1 to explore readiness for change in

relation to agent roles and behaviors, and perceptions of agent

behavior based on the framework (82 participated, aged 29–60).

Based on the results a prototype was further developed containing

adjusted argument-based dialogue scenarios and a method for

tailoring the agent’s behavior and roles; and

3. Study 3: Purposed to evaluate the results from studies 1

and 2 in a formative user study of the prototype involving

nine experts (public health, nutrition, epidemiology, nursing,

and ethnology): The framework, adaptation methods and

argument-based dialogues were introduced, evaluated, and further

developed.

For data collection in study 1, a questionnaire was developed

and applied in English, which was composed based on a set of

baseline assessment questions translated from Swedish, drawn from

the prototype applications developed as a part of the research project

for behavior change addressing:

• General motives for an activity as value directions: questions

about the importance, capability, and satisfaction;

• Areas of activities targeted for behavior change: physical activity,

stress, alcohol consumption, and tobacco use; and

• Roles of a digital agent in relation to supporting the change of

behavior toward healthier habits.

The data collection in study 2 was also done through a

questionnaire, which was again conducted in English, which

contained a subset of questionnaire 1, limited to only the domains,

physical activity and stress. Questionnaire 2 included, in addition,

a set of nine dialogue scenarios between a digital agent and two

different tentative users. For each of the dialogues, the participant

rated the agent’s behavior, and what role or roles they thought it was

enacted in the scenario.1

The data collected using the questionnaires were analyzed

quantitatively to find patterns of preferences among roles and

behaviors, and qualitatively using thematic analysis for finding

themes among open-ended questions regarding activities/goals, roles,

and motivations for the agent’s preferred behaviors.

The qualitative and formative user study (study 3) was conducted

as a part of a participatory design process of the digital coach

application for promoting behavior change, divided into three

occasions. Study 3 was conducted in Swedish using the Swedish user

interface of the STAR-C application. For the sake of readability of

the article, terms from the study have been translated into English.

Ten domain experts were invited to participate, and nine participated

in total.

Four participated in the initial individual session in which they

used the prototype, containing five adapted dialogue scenarios in

addition to the baseline questions, functionality allowing them to

set short-term and long-term goals with related arguments and

motives, and the set of questions for adapting the coach’s role and

behavior. These questions were revised based on the results from the

questionnaire study. The participants were interviewed and observed

while using the prototype.

A workshop was organized as the second session, where eight

domain experts including the four who participated in individual

sessions, participated. They were divided into pairs, where the first

four participants were paired with each other to start on the same

level of knowledge about the system. They were given the task to

select activities as goals for behavior change, along with the motives

(arguments) for why they want to change, then setting their preferred

role or roles and behaviors of the agent. After this, they conducted

five dialogues (same as in the individual session). The pairs were

instructed to discuss and reflect on the things they experienced

and provided examples of how the dialogues ideally would unfold

based on their expertise in supporting behavior change. After the

sessions in pairs, aspects were discussed with all eight participants.

The participants were asked to take notes during the session and were

partially observed.

1 The two questionnaires are found in the Supplementary material.
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The results of the second session were used for further modifying

dialogues implemented in the dialogue demonstrator, and the new

versions were evaluated at a third session in a group with seven

domain experts participating, including a ninth expert who had not

participated in the earlier sessions. The results were also used for

further developing the architecture and the generation of argument-

based micro-dialogues.

3.1. Participants

A total of 40 anonymous participants located in Scandinavia

were recruited in study 1 through the Prolific service, and 82

participants in study 2, and 122 participants in total. There was an

even gender distribution (58 women, 61men, and three other) among

the participants. The participants’ age range was between 29 and 60

years (for age distribution, see Table 1). The age range was chosen

based on the most prevalent in stress rehabilitation clinics and the

age groups participating in the VIP.

Study 3 was conducted as a part of the participatory design

process employed in the research program STAR-C, and engaged nine

participants (three women and six men) who had been contributing

to earlier versions of the prototype in three different sessions (four

participated in session 1, eight in session 2, and seven in session

3). The participants had a broad range of expertise, including

epidemiology, public health, nutrition, nursing, social work,

and ethnology.

3.2. Role and behavior of the digital agent

We defined and exemplified four roles that the participants could

relate to and choose from in studies 1 and 2. They could also

suggest other roles if the roles proposed did not fit their needs. The

participants were asked what role or roles they envisioned digital

support could take on among the following:

1. An assistant that keeps track of your information and reminds you

about what you want to be reminded about;

2. A coach, similar to a personal trainer who challenges and

encourages you to do things;

3. A kind of health expert, which informs about the current state of

knowledge and gives advice; and

4. A companion that is more like a friend, keeping you company and

is on your side.

The participants were then asked to provide a scenario and

motivate the previous answers.

TABLE 1 Age of participants.

Age Study 1 Study 2 Study 3

Below 30 1 (2%) 1 (1%) 0

30–39 21 (53%) 60 (74%) 0

40–49 12 (30%) 11 (14%) 4

50+ 6 (15%) 9 (11%) 5

Summary 40 81* 9

*One participant who provided erroneous information about age was excluded in the overview.

In study 2, the participants could also assign behaviors to their

preferred type of coaching agent along the following: how brief, how

fact-based, how challenging, how emphatic, and how friendly. The

participants could select a value on a four-item scale ranging between

very and not particularly in the first three, and the scale had a middle

value for the last two labeled neutral. This way, a participant could

choose a value corresponding to “un-friendly" if they found the agent

behaving this way.

After the participants had provided their own wishes for a digital

coach, they applied these roles and behaviors to assess the agent’s

behavior in the argument-based dialogue scenarios.

3.3. Framework for adapting the agent’s
behavior

A framework for adapting the agent’s behavior was developed

based on study 1 and was further refined based on the subsequent

studies. Statements describing the agent’s preferred behavior and

roles were thematically analyzed and clustered into themes of

behaviors and roles. As there were differences among the 40

participants, which seemed to relate to which stage they are in the

process of changing behavior, more specific questions to categorize

a participant into one of the stages of the transtheoretical model

of behavior change (TTM) (Prochaska et al., 2015) were added

in study 2.

TTM was first introduced by Prochaska and Di Clemente in the

late 1970s and was constructed by six stages of behavior change:

Precontemplation, Contemplation, Preparation, Action, Maintenance,

andTermination. Persons in the Precontemplation stage do not intend

on taking action, in our case within the next 3months.When it comes

to people in theContemplation phase of the stages of behavior change,

they are ambivalent toward changing their behavior. The Preparation

stage is where some people are trying to change and have intentions

of changing within the next month. Action is when the person has

been practicing the new behavior for a short period of time, usually

between 3 and 6 months. People in theMaintenance stage are already

motivated and committed to the behavior change and have been

doing the activity for longer than 6 months.

The framework is outlined in Figure 1. Some comments provided

by participants in the first study are exemplified, along with roles, and

stages of change based on two complementary dimensions: One is the

extent of empathy and friendliness, and the second is the extent of

emotional challenge. This framework was used for designing the nine

dialogue scenarios in study 2 and the five scenarios in study 3. An

analysis of the data collected in study 2 was conducted for exploring

to what extent the choice of agent behavior and role related to what

stage of change the participant was in. Furthermore, the roles were

further evaluated qualitatively from a user experience perspective in

study 3. In the following section, the dialogue scenarios are presented.

3.3.1. Dialogue scenarios in studies 2 and 3
The dialogue scenarios were designed based on the behaviors of

preferred coaching agents described by the participants in study 1.

The dialogues were engineered with the intent of illustrating how

brief, facts-based, challenging, or empathic/friendly an agent can be

during the scenarios. Dialogue scenarios containing two characters,
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FIGURE 1

Framework for mapping behaviors of a digital agent along two dimensions: emotional support (horizontal) and emotional challenge (vertical); to roles

(blue) and to stages in the transtheoretical model for behavior change (TTM) (green), mapped out based on the results of study 1. The framework was

applied and evaluated in studies 2 and 3. The arrows represent desirable transitions between TTM stages ending in a stable state of maintenance; there

are also potential transitions between roles with a switch to the tough coach and back. The color scheme is inspired by compassion-focused therapy,

which uses green to represent rest and comfort (soothing), blue for energy and action (drive), and red as a state of conflict (threat) (Gilbert, 2009). Desired

actions provided by participants are exemplified.

Jim and Kim, during different parts of the day/days were authored

based on the tentative answers the characters could provide on the

baseline questions of the behavior change application, also embedded

in studies 1 and 2. The two characters differed, where Jim was more

focused on increasing physical activity, and Kim was more focused

onmanaging stress (Figure 2). The nine dialogue scenarios contained

between two and 13 statements, 74 in total, with an average of eight

statements.

In Example 1b, given in Figure 2, a deliberative dialogue is

taking place between the digital agent and user Jim, mutually trying

to reach a solution through finding common action. By holding

Jim accountable through reminding later in the day and being not

completely neutral with respect to emotional challenge and support,

the agent portrays characteristics of a brief, superficially friendly,

mainly challenging coach (1b in Table 2).

Different types of argumentation dialogue were assigned to

different scenarios while maintaining uniformity with the framework

in Figure 1. The dialogue types used in the scenarios are Information-

seeking, Deliberative (deciding about what to do), and Persuasive

(changing the attitude or behavior of the other agent), as defined

by Walton and Krabbe (1995). We complemented these types with

a type suitable for the application in focus, which we call Supportive

to elicit arguments primarily aimed at providing emotional support

embedding empathy.

An outline of the characters and types of dialogues with respect to

the scenarios can be seen in Table 2. As can be seen, most dialogues

consist of elements from different dialogue types.

The five characters applied in the five micro-dialogue scenarios

in study 3 were defined based on the model in Figure 1 and on other

results of study 2. The characters were named using gender-neutral

terms—we chose the Spanish words for numbers (Table 6)—and their

characters are illustrated in Figure 3.

3.4. STAR-C prototype applied in study 3

The prototype applied in study 3 is a mobile application covering

the behavior change domains’ physical activity, stress management,

nutrition, and alcohol and tobacco consumption. The application

contains the following:

• A baseline assessment based on the VIP health assessment

consisting of a set of questions, of which a subset was used in

studies 1 and 2.

• Goal setting by defining activities to be performed within

the coming days/week(s), related to behavior change domains,

partly also embedded in studies 1 and 2.

• Setting the roles and behaviors of the digital agent, also

embedded in study 2.

• Dialogue demonstrator for evaluating five digital agent

characters for the purpose of study 3.

The development of content and structure of the application is

done using the content management system ACKTUS, which is a

platform for knowledge engineering and design (Lindgren and Yan,

2015). ACKTUS contains a core ontology stored in a graph database

(RDF4J2) based on the World Health Organization’s International

2 https://rdf4j.org/
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FIGURE 2

Example of two scenarios: Jim having a short dialogue at lunchtime (1b), and Kim initiating a dialogue at dinner time (2a).

Classification of Function, Ability, and Health (ICF),3 which is

extended with specific and relevant sub-concepts in the class Personal

Factors and in the class Activity and Participation. Other classes are

Body Function and Structures, and Environment, containing social

relations and support. ICF is complemented with the class Diseases

and Syndromes for capturing medical and health conditions.

The ACKTUS ontology also embeds a modified version of the

AIF, developed for the purpose to exchange arguments over the web

(Chesñevar et al., 2006). An argument (scheme node) is a composite

structure consisting of a set of premise nodes (information nodes or

i-nodes) connected to a conclusion node (i-node) in the graphical

database. A premise node relates to information obtained from the

user when using the application in the baseline assessment, when

setting goals, assessing progress, or in dialogues with the agent. An

i-node in ACKTUS is typically linked to a value, which can be any

that the content modeler decides. Examples of key values in this

application supporting behavior change are importance, satisfaction,

how fun, how confident, and how prepared a user is to change

3 https://www.who.int/standards/classifications/international-

classification-of-functioning-disability-and-health

behavior. Furthermore, the node is also linked to a concept, e.g., an

activity (process) in the Activity and Participation class (e.g., physical

activity), or to objects, such as body functions and structures, diseases,

or relationships. The concept informs about what topic is at focus in

a dialogue. In a deliberation dialogue, the topic is related to the class

Activity and Participation, while in an inquiry dialogue, which has

the purpose to build new knowledge it relates to a class of objects.

Consequently, a conclusion of an argument can be related to an

activity (about what to do), an object (about what we know), or an

advice.

In ACKTUS, the conclusion node can be of three types: (i)

a decision, such as in the case of a medical diagnosis, with a

value; (ii) an activity, in the form of an assessment protocol

for what to do next (e.g., a set of follow-up questions); or

(iii) an advice, or piece of information. These correspond to

the argumentation dialogue types mentioned earlier (i) inquiry

dialogue; (ii) information seeking or deliberation dialogue; and

(iii) persuasive or supportive dialogue. Each composition of

premise nodes and a conclusion is associated to an argumentation

scheme, which is also modeled in ACKTUS. At the time of

conducting study 3, all arguments were associated with the

scheme argument from expert opinion since the application at
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TABLE 2 Scenarios.

Persona Scenario Time Character Dialogue type

Jim

1a Morning Neutral assistant Deliberation

1b Lunch Brief, superficially friendly, mainly challenging coach Persuasion and deliberation

1c Next morning Friendly, challenging factual expert Persuasion and deliberation

1d Lunch Non-challenging, brief, friendly and empathic companion Information-seeking, supportive and deliberation

1e Next morning Non-brief, challenging expert Persuasion and deliberation

Kim

2a Dinner Non-brief, challenging expert Persuasion and deliberation

2b Next morning Factual, Friendly and empathic companion Information-seeking, supportive, and deliberation

2c Dinner Factual neutral assistant wrt emotional support Information-seeking, supportive, and persuasion

2d Next morning Brief coach, challenging by goal-reminders, and holding accountable Information-seeking, deliberation

that point contained only knowledge engineered by medical

domain experts.

The dialogue demonstrator contained a short description of the

Jim scenario, on which the five characters’ dialogues were built.

The dialogues were modeled using ACKTUS. In the initial step, the

user was given three answering alternatives: positive, neutral, and

negative for each statement provided by the agent. The next statement

posed by the agent depended on the response made by the user.

The participants were instructed to select the response based on how

they experienced the statement, e.g., liked the statement, or agreed

with the statement, or not. Focus was on their experiences and on

exploring different ways to respond to the agent’s behavior, role,

and attitude. Based on the participating domain experts suggestions,

the dialogues were modified to encompassing different kinds of

responses, which were evaluated by domain experts in a third session.

4. Results

The results are organized as follows. In the following section, the

readiness levels based on TTM assessed in study 2 are summarized,

and the participants’ views on motives and barriers for changing

behavior. The participants’ own expectations of a digital coach or

companion in terms of roles and behaviors, and their relation to TTM

levels summarized in Section 4.2. The participants’ perceptions of the

exemplified agents taking on roles and behaviors in the scenarios are

presented in section 4.3.

The results from the three studies feed into ongoing work

on further developing the architecture and argumentation process

for generating person-tailored argument-based micro-dialogues. The

argumentation process is introduced and exemplified in section 4.4.

4.1. Participants’ view on motives for
changing behavior related to physical
activity and stress

Among the 82 participants in study 2, 19% had always been

physically active, and 24% had always been able to manage their

stress levels. We consider these being in the maintenance stage of

the TTMmodel (Table 3). For physical activity, a vast majority (75%)

is considering changing their behavior within the coming month or

within 3 months. A difference is seen in changing behavior to reduce

stress, where 30% is planning to make a change. While 23% have a

good balance for managing stress, and another 20% has no plans for

change coming 3months, asmany as 23% expects an increase in levels

of stress (Table 3).

The participants’ motives relating to a value direction serve as

arguments on the needs level of human activity, which is connected

to an activity set as goal in the studies (Table 4). The motives were

crossing over the two domains for behavior change, such as physical

activity was motivated for some as recovery activity from stress which

was noticeable in how the participants defined other reasons than

those suggested. Furthermore, arguments motivating the choice of

value direction, as well as barriers, are captured (Table 5).

A low proportion of the participants chose social motivators for

their chosen baby-step activity to increase physical activity, social

motivators being others’ expectations, keeping up with society, and

nurturing relationships with friends and family (Table 4). A similar

pattern is seen for the baby-step activity to reduce stress, where

nurturing relationships with immediate family motivated 22% of the

participants. An interesting observation is that the participants seem

to have chosen baby-step activities that they find being fun and/or

entertaining to a large extent for mitigating stress (63%).

When analyzing the motivators based on gender for their chosen

baby-step activity, the answers given were similar in the amount of

male and female participants in physical activity as well as for stress.

The most apparent reasons for doing their chosen physical activity

were physical wellbeing (79% of women and 85% of men), emotional

wellbeing (59% of women and 69% of men), and it gives energy (62%

of women and 52% of men).

4.2. Expectations related to the digital
coach’s role and behaviors in dialogues

The participants in studies 1 and 2 were asked what role or roles

they envisioned digital support could take on among the following

(proportion of participants in parentheses) (Table 3): (i) an assistant
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FIGURE 3

A total of five characters interpreted in the framework for mapping behaviors of a digital agent, Uno is colored green, Dos is gray, Tres and Cuatro are

blue, and Cinco is orange. The arrows represent desirable transitions between TTM stages ending in a stable state of maintenance, there are also potential

transitions between roles with a switch to the tough coach and back. The color scheme of the agents follows the colors of the compassion-focused

therapy as in Figure 1, with the complementary color gray for the neutral assistant.

TABLE 3 Study 2 participants’ stage of change (TTM), related to what role they preferred, and summary of all 122 participants’ choices of roles.

TTM Stage Number/Stage Assistant Coach Expert Companion

Physical activity n = 82

Precontemplation

No plans for coming 3 months 4 (4.9%) 25% 0% 50% 0%

Contemplation

Plan to change within 3 months 32 (39%) 69% 50% 34% 28%

Preparation

Plan to change within 4 weeks 30 (36.6%) 67% 63% 53% 20%

Action

Have started to change N/A N/A N/A N/A N/A

Maintenance

Change since more than 6 months 15 (18.3%) 40% 60% 27% 20%

Stress n = 82

Precontemplation 17 (20.1%) 50% 31% 31% 19%

Contemplation 9 (11%) 44% 67% 22% 22%

Preparation 21 (25.6%) 67% 67% 33% 29%

Action N/A N/A N/A N/A N/A

Maintenance 19 (23.2%) 63% 58% 58% 21%

Termination-risk for relapse 19 (23.2%) 69% 56% 44% 25%

All in study 1 and 2 n = 122 73 (61%) 68 (57%) 45 (39%) 28 (23%)

(61%), (ii) a coach (57%), (iii) a kind of health expert (39%), and (iv)

a companion (23%), and two participants preferred it to not having a

role at all.

The participants were also asked to provide a scenario and

motivate the previous answers. An overview of the themes that

emerged is shown in Figure 4. Two major purposes emerged that
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TABLE 4 Motivations in terms of value directions (vd) for the participant’s

chosen baby-step activity to increase physical activity or decrease stress.

I do the activity
because

Physical
activity
n = 122

Stress
n = 122

vd1 . It gives energy 68 (56%) 50 (41%)

vd2 . It’s fun. entertaining 47 (38%) 77 (63%)

vd3 . Rest and recover 29 (34%) 91 (75%)

vd4 . Others’ expectations 10 (8.2%) 3 (2.5%)

vd5 . Obligations 15 (12.3%) 3 (2.5%)

vd6 . Improve physical wellbeing 101 (83%) 44 (36%)

vd7 . Nurture relationships with

immediate family

10 (8.2%) 27 (22%)

vd8 . Nurture relationships with

friends and social network

16 (13%) 14 (11.5%)

vd9 . Keep up with society 7 (5.7%) 8 (6.5%)

vd10 . Improve emotional wellbeing 76 (62%) 64 52%)

vd11 . Other: improve appearance.

feel more comfortable.

escapism. investment in physical

and mental health

6 (5%) 4 (3.3%)

related to either the digital companion more as a neutral assistant or

health expert, or as an engaging coach or companion.

The digital assistant would help track and summarize

accomplishments and failures and provide reminders for the

person to adhere to their goals. This was also perceived as task for a

digital coach. The digital assistant was viewed mostly in comparison

to a fitness tracker that is available through smartwatches and mobile

applications in the market today. The three main themes that appear

under the digital assistant umbrella are simple informer, reminder

companion, and fitness tracker. Uses for the digital assistant in the

views of the participants were activities related to such as tracking of

sleep and calories but also informing and reminding of the to-dos.

Although few similar expectations were summarized under the

digital coach and the digital assistant roles, variance of participants’

expectations between the two roles is clearly apparent. The digital

coach themes were challenging coach, authority figure, professional

trainer, and goal-setter, and it was expected to hold the participant

accountable and keep its user on track toward his/her goal through

challenge and encouragement. Some participants also wanted the

digital coach to embed steps on how to conduct certain tailored

physical activities depending on the user’s situation.

As for the digital health expert, it would provide personally

relevant information and new knowledge, including fearful facts

about the consequences if changes are not made to improve health.

Themain themes that appear in a digital health expert are advisor and

monitor of health status and diagnostics. The advisor health expert,

in views of the participants, would apprise and recommend for, for

instance, preemptive actions against mood dips and adapt to the

needs of the user’s status related to injury and rest time.

The other categories of purposes related to personal and

emotional support are then delivered by a digital coach or

companion. Purposes include keeping company, encouragement,

motivation, giving inspiration, maintaining reasonable expectations,

maintaining discipline, challenge, holding one accountable, telling

what to do, and pushing to do activities. Moreover, it could add

some fun.

The digital companion role mostly encompassed emotional

support and company. The companion was envisioned to be a relief

from stressful events and a replacement for human partners in the

case of them not being available. The participants also expected the

digital companion to be adaptable and unbossy while maintaining its

pushy-friendly behaviors.

Furthermore, the relationship between the stages of the TTM and

preferred roles (assistant, health expert, coach, and companion) and

behaviors (how brief, how fact-based, how challenging, how emphatic,

and how friendly) was explored. This was done to see if the preference

for a certain type of behavior or role was dependent on the stages of

change (Table 3).

A combination of roles was selected by 56%. The most frequently

selected role was assistant (61%) and coach (57%), the expert role

was selected by 39%, and the least frequently selected was the

companion (23%). The assistant role was less preferred by people

in the contemplation stage for managing stress, and people in the

maintenance stage for physical activity, compared to how often the

role was selected by people in other stages. The companion role

seemed to be slightly more interesting to people in the contemplation

stage for physical activity, and in the preparation stage for managing

stress than compared to people in other stages. Moreover, people

rating high importance to change behavior to decrease stress

preferred a digital companion over other roles.

Figure 5 shows how the preference for empathetic and

challenging behavior is distributed over the stages of change.

Approximately 10% across the stages wished the agent to be very

empathic, while between 40 and 60% wished it to be not particularly

empathic (Figure 5). The rest desired a neutral digital agent, with

respect to empathy. About half of the participants wanted the agent

to be challenging to a different extent, half to not be particularly

challenging. A difference was seen between physical activity and

stress, in which participants who wanted the agent to be challenging

leaned more toward preferring the agent to be more challenging

when supporting behaviors relating to stress than physical activity.

4.3. Participants’ perceptions of the agents’
behaviors and roles

The results of study 2 showed that the participants, in some cases,

perceived the agent to express more empathy and friendliness than

what they were designed to express, which was the main discrepancy

in the cases, the participants had a different perspective on characters

and roles (characters in scenarios 1e, 2a, and 2c in Table 6). Due to

this, the subsequent characters in study 3 were designed to express

more clearly friendliness/empathy, neutrality, and absence thereof

(“non-friendliness/non-empathy”), respectively.

4.3.1. The participating experts’ views
The participants in study 3 reflected on the roles and behaviors

of the digital agent in the context of promoting health, while using

the prototype application. An overview of their perception of the five

example characters is shown in Table 6. While they agreed on the

intended characters, roles, and behaviors, what they liked and did not
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TABLE 5 Participants’ arguments in favor and against changing behavior to increase physical activity.

I want to exercise or do other physical activity because n = 122 Type of motivator

m1 . I want to improve my health 114 (93%) Introjected regulation

m2 . Research shows that physical activity prevents many diseases 71 (58%) Introjected regulation

m3 . I want to reduce pain 35 (29%) Introjected regulation

m4 . It is relaxing 30 (25%) Intrinsic motivation

m5 . It makes me feel good 81 (66%) Intrinsic motivation

m6 . It gives energy 68 (56%) Identified regulation

m7 . It is a social thing 11 (9%) Identified regulation

m8 . I have to because I sit still all day at work 35 (29%) Introjected regulation

m9 . I have always done it, it is a habit 10 (8,2%) A-motivation

m10 . Other: reduce weight (3), kids to be active, reduce stress,

improve cognition, mental health, sense of accomplishment,

feel stronger, treat physical condition

13 (11%) Misc

I don’t exercise/or do physical activity because Type of barrier

b1 . I have never done it regularly, it is not a habit 44 (36%) Personal: habitual

b2 . I cannot find the time for it 44 (36%) Personal: organizational

b3 . I do not think that it is fun 34 (28%) Personal: emotional

b4 . I have too much pain, or other physical condition that stops me 26 (21%) Physical

b5 . The weather is not good 31 (25%) Environmental

b6 . It is too expensive to do the things I want to do 15 (12,3%) Socio-economic

b7 . I would like to do it with others, who are not available 17 (14%) Social

b8 . Other: depression (2), not enough energy (2), lack of discipline,

long distance, fear of falling, others’ judgment, laziness,

have a baby

16 (13%) Misc

like varied. Uno was preferred by one who found it to be encouraging

and “here and now.” The most preferred character was Tres, the

empathic and challenging coach/expert, followed by Cinco, the non-

friendly and challenging coach. Those who preferred Cinco found it

intriguing, “a little evil,” and fun, compared to the other examples,

and as a way to “push.” They found it being good that it is straight to

the point and good for the memory to be reminded.

Those who liked Tres the most, also disliked Cinco the most,

using words like “terrible,” “not acceptable.” One of the participants

who preferred Tres and disliked Cinco motivated this by wanting

a digital companion or coach who could provide a basic sense of

comfort, safety, and trust, which would not work with Cinco. On

the other hand, when the basic foundation of trust and comfort is

established, the agent could in some moment turn into the Cinco

character to provoke/challenge the participant’s attitude: “...then it

can be ok with more harsh comments as a kick in the butt.” More

comments on that a variation in behavior and a mix of attitudes were

preferred, both “soft, compassionate but could be firm.”

General comments concerned the amount of information about

health in the statements provided by the digital agent. Shorter, to-

the-point statements about health were desired; better to be more

briefer than too facts-based and lengthy in arguing why changing

behavior is desired. Suggestions of dialogue elements included ending

with a question that the person can respond to, which also works as a

challenge, something to think about.

Alternative ways for the user to respond to arguments were

suggested, partly to make the user reflect and collect the user’s

view on the argument, partly to lead the reasoning process forward

toward a positive conclusion about what to do. In addition to

information-seeking purposes, the following three general responses

were identified:

1. (i) to state confirm, reject (potentially moving forward in time), or

undecided (expressing ambivalence);

2. (ii) confirm, reject, or undecided as in previous but also including a

reason for this among barriers or motivators identified as relevant

to the individual (pose a supporting or attacking argument); or

3. (iii) to reason about what emotional support or challenge the

individual needs in the current moment (change topic to how to

act).

Examples were embedded in new versions of the five dialogue

scenarios and discussed at a follow-up session with the experts. While

confirming that their perspectives and suggestions were embedded

in the new versions, they also highlighted the cultural aspects

concerning how to express things in dialogue with different people.

4.4. Person-tailored argument-based
micro-dialogues

The application STAR-C used in the study is being developed

to embed a digital coach, which utilizes value-based argumentation

embedding supporting and challenging arguments.When developing
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FIGURE 4

Resulting themes based on study 2 participants’ views on the agent’s behavior and roles. The blue layer outlines the envisioned companion roles

participants have described, whereas the turquoise layer describes the sub-roles the companion can play. The orange layer describes reasons for

choosing a sub-role or actions participants would want a companion to execute.

A B

C D

FIGURE 5

Preferred behaviors of a digital coach, for the di�erent stages of the TTM, for physical activity (A, C) and stress (B, D). To be noted: For physical activity,

four were in the precontemplation stage, and only one participant was in the termination stage and was therefore omitted in the overview, see Table 3.
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TABLE 6 Comparison of defined and perceived character and roles.

Char.
(Scen.)

Defined character Perceived character Comment

Study 2

(1a) Neutral assistant Also bit friendly/empathic Agreement

(1b) Bit friendly, challenging coach Same Agreement

(1c) Friendly, challenging expert Also coach Agreement

(1d) Non-challenging, friendly/empathic companion Same Agreement

(1e) Challenging expert Neutral coach Difference*

(2a) Challenging expert More coach/companion Difference*

(2b) Non-challenging, friendly/empathic companion Same Agreement

(2c) Neutral assistant More companion Difference*

(2d) Challenging coach Also friendly/empathic Agreement

Study 3

Uno Friendly/empathic companion Empathic, caring, too friendly Agreement

Dos Brief neutral assistant Less empathic, focus numbers Agreement

Tres Friendly/empathic, challenging coach/expert Comforting, safe Agreement

Cuatro Friendly/empathic companion/coach/expert More rehab Agreement

Cinco Challenging, non-friendly/empathic coach Little evil, fun; horrific Agreement

the STAR-C coach module further based on the results of the studies

presented in this article, we explore how argumentation schemes can

be utilized. The STAR-C mobile application uses the knowledge base

embedded in the ACKTUS platform (Lindgren and Yan, 2015), as

introduced in Section 3.4. The user’s information that is collected at

baseline and in daily use will be used by the system for tailoring short

dialogues (micro-dialogues) to the individual. In this section, a high-

level description of the construction, evaluation, and the application

of arguments in dialogues with a user is presented. Furthermore,

the findings presented from studies are applied in an example case

based on one of the participants. The purpose is to exemplify the

adaptation of roles and behaviors to the individual’s preferences, goals

and values, and the argumentation process. Also, the different types

of responses in the dialogues are exemplified.

4.4.1. Representing generic knowledge and
knowledge about the user

The following is an example of how an argumentation between a

digital agent and one of the participant from our study, Jane (alias),

could play out based on Jane’s value directions, actions, motives, and

preferences regarding the digital agent.

Jane wants to increase physical activity to improve health,

which she rates most important, and lose weight. She also wants

to reduce stress, which she rates as very important. She has a goal

of walking her dog for 30 min per day and has stated to the digital

companion that walking her dog is the best method for dealing with

stress, as recovery activity, and that she has to do it. Therefore, Jane

wants her digital agent to be a companion with some empathy, but

also a "Tough Coach/Alter Ego" to challenge her and be pushy at

times to support her to reach her goal.

The main barriers Jane faces is that she lacks energy, thinks

exercising is not fun and the weather where she lives is usually bad.

Moreover, she often does not have the time.

At baseline, our example user Jane had assessed what behaviors

(bhi) she prioritized to change and selected increasing physical

activity (bh1) and activities to decrease stress (bh2). For each of these,

she assessed how important, how prepared she is to make a change,

how confident she is to succeed, and how satisfied she is with the

current situation. We will, in the following example, apply only the

importance value and assume she is in the preparation stage of TTM,

aiming to take action within the coming weeks. At baseline, she had

also assessed what is motivating her to change behavior relating to

physical activity:m1 (improve health),m10a (reduce stress), andm10b

(reduce weight); and barriers (i.e., counter arguments) for changing

behavior: b2, b5, and b8 (Table 5).

At run-time, when defining an activity meeting a short-term goal,

the user selects which behavior the activity aims to change (e.g., too

little physical activity and/or stress), what they aim to do (Jane in our

example is walking her dog 30min four times per day) how important

(value) the activity is and how fun she expects it to be (value), and

with whom they would like to do the activity with (in our example,

Jane selected her pet for her walk with the dog). Furthermore, motives

related to value directions (vdi) for taking a walk with the dog are

captured (vd3, vd4 in Table 4), as well as the social parameter with

whom or what the activity is planned to be done, which in our

example, also tells who may be disappointed if this activity will not

be done. The goal is set to do the activity for 30 min four times

per day.

In addition to person-specific knowledge, the agent has general

knowledge applicable in Jane’s case, which it can retrieve from

its knowledge base (Figure 8). General knowledge is formulated
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as generic arguments (ga). Each argument is associated with an

argumentation scheme (as). Two schemes defined by Walton et al.

(2008) were applied: argument from expert opinion (as1) and

argument from position to know (as2), as exemplified as follows:

ga1 Physical activity increases energy levels (argument from expert

opinion).

ga2 Recovery activities are necessary to decrease stress levels

(argument from expert opinion).

ga3 Humans and other animals become happy when socializing

and unhappy when opportunities are missed socializing

(argument from position to know).

ga4 A happy state increases energy and decreases stress levels

(argument from position to know).

ga5 Increased energy levels make one a better worker (argument

from position to know).

The first two statements are asserted to be true by experts

in the domain of stress management; subject domain is, in this

case, psychology. The following three are generic assumptions from

positions to know, which can be seen as examples of statements by

a person sharing their own experiences with others. Consequently,

arguments associated with the different argumentation schemes

are ranked differently reliable for instance, an argument from

the expert opinion grounded in relevant clinical experiences

can be considered stronger than an argument from position to

know (Lindgren and Yan, 2015). However, to an individual, the

argument that the dog will be happy may be a more personally

relevant and, therefore, stronger argument than one based on

expert opinion.

The studies presented, in this article, explored argumentation

from the additional positions providing emotional support for

the purpose of providing a sense of being on their side and

challenge, which may increase cognitive dissonance and tension.

These purposes are different from the purposes information seeking,

inquiry, deliberation, and persuasion dialogues as defined by

Walton et al. (2008). Therefore, to encompass argumentation with

purposes other than those defined by Walton et al. (2008), two

argumentation schemes were defined: argument from position to

support (as3) (Figure 6) and argument from position to create tension

(as4) (Figure 7).

A barrier b is identified as something preventing the person (ag2)

from doing a desired activity and can be viewed as an argument for

why a person would not pursue his/her goal G (Figure 6). In the

situation when the person’s argument for not doing the intended

activity that would pursue the goal (e.g., being too tired to do physical

exercise) is questioned (attacked or undercut) by the digital agent or

other (e.g., physical activity gives you energy), the agent complying

with the argument from the position to support scheme would take

the supporting position and state, for example, the following:

ga6 There are good reasons not to conduct the planned activity

targeting the desired goal, so based on the highlighted

circumstances; it is better not to do it at this point (argument

from position to support).

On the other hand, if the agent would instead comply with the

argument from position to create tension, knowing that the person

wants to be challenged by the agent, then the agent is allowed

(permitted) to create tension evoking some cognitive dissonance or

other emotional engagement to overcome the barrier. However, if

the person has stated that challenging behavior is not desired, the

agent is not permitted to create tension even if the agent assesses

this to be the best strategy based on other factors. The following is

an example:

ga7 Weather should not prevent people from conducting activities

since people are not made of sugar (argument from position to

create tension).

These argumentation schemes can be used by the agent to adapt

its reasoning to a situation, and reason from which position (role and

character) the agent takes on expert, coach, companion, and assistant

or the challenging alter ego, this is based on a mutual agreement on

the social norms to be applied in the dialogue.

4.4.2. Building and using arguments
The following is a brief overview of the process of constructing

and applying arguments in a dialogue, as shown in Figure 8. The

approach was inspired by Ballnat and Gordon (2010) argumentation

process and the sufficient condition scheme based on Walton and

Krabbe (1995), which was extended by Atkinson et al. (2006) to

embed values. The blue arrows in the figure follow the argument to

be constructed. The green arrows follow the path to a dialogue with

the user.

When the dialogue is activated by the user or the agent,

this triggers the Construct Arguments module which fetches the

relevant goals, values, activities, and arguments connected to the

user. The module puts this information into the relevant contextual

information fetched from the Knowledge Base confirms adherence

to rules and guidelines, and construct arguments utilizing the

information. After the construction of the arguments, the Formulate

Argumentsmodule translates the arguments into a culturally adapted

format suitable for a dialogue (e.g., language, language suitable for

subgroups in society). The arguments are then recorded with the

Record Argumentsmodule to be sent into the repository for utilization

in future dialogues and arguments.

The arguments, after being recorded in the database, are referred

to the Evaluate Arguments module to be used in dialogue with

the user. The evaluated arguments are then dispatched to the

Compute Position module. The Compute Position module takes on

the important duty of combining the behavior and role of the

coach, depending on the situation of the user (explained in more

detail with examples below) but also is the module which sends the

supporting argument or counterargument to be displayed to the user

for the continuation of the dialogue. There is always the possibility

of the user having something that does not allow them to do the

activity suggested or reminded about by the digital companion. The

Argument Left to be Made component in the digital companion ends

the dialogue in a proactive manner, as shown in the dialogue with Jim

in Figure 2, if that is the case or when there are no more arguments to

be made. If there is room to propose additional supportive arguments

or counterarguments into the dialogue with the user, the green arrow

dialogue loop continues.

To represent the argumentation-based process in a formalized

manner, the extension of Walton’s (1996) sufficient condition scheme

laid out by Atkinson et al. (2006) is adopted as the general scheme
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FIGURE 6

Argument from Position to Support.

FIGURE 7

Argument from Position to Create Tension.

for the agent, which can embed arguments from different positions

rooted in other argument schemes. Argumentation schemes function

as templates for reasoning, in this example, embedding a positive

prediction of the effects of performing the activity the user had

planned, both on the action and value-direction levels of activity. The

scheme in Atkinson et al. (2006) is given as follows:

as5: In the current circumstances R, we should perform action A,

which will result in new circumstances S, which will realize goal G,

which will promote some value V.

Since contextual knowledge, such as domain knowledge, is

essential when reasoning about health, we further extended this

scheme regarding current circumstances by specifying different

categories of circumstances. In our example, the agent has the

following information about Jane’s situation, interpreted in terms

of the argumentation scheme and available relevant knowledge

retrieved from the knowledge base. Relevance is determined by the

domain of behavior change and which role the agent is taking on

based on the user’s preferences and stage of change:

R: (Current Circumstances)

• AgentPreferences = (lunch-time is a preferred moment to

interact with the agent; empathic, challenging companion);

• Goal= (walk the dog 30 min);

• Motives = (bh1: increase physical activity (importance-value:

most); m1: improve health; m10a: reduce stress, m10b: reduce

weight; for the chosen activity vd3: rest and recover; vd5: obliged

to walk the dog);

• Barriers = (b8: may be lacking energy, b2: may be lacking time,

b5: rainy weather);

• GenericKnowledge= (ga1 - ga7);

A: (Actions)Walk the dog for 30 min

S: (New Circumstances)More energy, Jane and the dog are happy

G: (Achieved Goals)Walked the dog for 30 min

V: (Values) Increased physical activity is most important, reduced

stress very important, improved health, reduced weight, and

increased energy level.

To continue with our example, at lunch time, the digital

companion initiates a dialogue with Jane according to her

preferences, with a set of constructed arguments, which are updated

during the argument process based on new circumstances provided

by the user and with the following set of potential actions, including

the activity Jane has specified as the target activity:

1. Walk Dog 30 min: The action that follows Jane’s plan to increase

physical activity,

2. Walk Dog 15 min: The action that partially follows Jane’s plan to

increase physical activity,

3. Let Dog out in the backyard while having lunch working: The action

that barely follows Jane’s plan to increase physical activity but may

follow Jane’s plan to decrease stress, and
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FIGURE 8

Process of construction, evaluation, and application of arguments. The blue arrows follow the argument to be constructed while the green arrows follow

the dialogue path with the user.

4. Do Nothing: The dog is not cared for, so this is not an option due

to her obligations.

The dialogue is initiated by the agent, based on the

argumentation scheme as4; it poses Argument arg1 focusing

Barrier b8, see Figure 9 to see how the dialogue could unfold. One

decision point is whether to select a more challenging or more

supportive attitude in step 3. Since Jane brings up another barrier

(Barrier b2), the agent follows up in the next step, addressing

this barrier.

When Jane brings up yet another barrier, the weather

condition (Barrier b5), the digital agent decides to use the

harsher counterarguments, adopting the pushy character

as per Jane’s choice for persuading her to do it and hold

her accountable.

Jane has three alternative responses in the example; in the

second alternative, Jane picks up on the potential “loving boot

effect” (Blakey and Day, 2012), a stimulation that “kicks” Jane to

achieve higher performance, leading the agent to follow-up the walk

choose the question about how happy she is afterward. The third

alternative is an example when Jane may chose to counteract by

changing the topic toward what she needs, rather than what to

do (Figure 9).

4.4.3. Evaluating and selecting arguments
The agent starts off with selecting a subject domain to target,

i.e., topic, based on which assumptions are generated about current

circumstances based on the available information and contextual

information, such as time of the day.

The order in which the action A is selected relates to

the potential options that are available to the agent, the user’s

selected goals and activities, their assessments of importance and

accomplishments so far, and the roles and behaviors preferred by

the user.

The agent would rank the set of potential actions based on utility

in the value functions (importance and physical activeness in this

example since increasing physical activity was ranked highest before

reducing stress) and to what extent the action would fulfill the user’s

short-term goal. The agent would then begin with the option with the

highest value, then after evaluating the response from the user and

potentially revise the list, go down the list until there is a reason to

end the dialogue. Based on the responses of the user and the barriers

they have, the agent computes position to be supportive or provoking,

along with a re-evaluation of the order of actions.

The subject domain is a factor when evaluating arguments

from the agent’s perspectives as there are multiple domains in
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FIGURE 9

Attacking (challenging) (red arrow) and supporting (green arrow) arguments posed by the agent (blue) and Jane (green). The agent can choose between a

supportive argument or a challenging argument as a response to Jane’s first argument, which could lead to di�erent outcomes. The arguments arg4b *

and arg6b * indicate the desired outcome.

which the user might want to change behavior. Therefore, varying

roles and behaviors might be necessary for certain domains (e.g.,

a user might be in one TTM stage for increasing physical

activity but might be on a different stage when it comes to

reducing stress as in this example), while it might not be of the

essence in other domains. One strategy the agent can apply is

to broaden the subject domain to include more topics (e.g., in

our example, also reducing stress) to strengthen the values of

conducting an activity when it could serve more than one goal or

value direction.

When the user attacks an argument put forth by the agent,

the agent must distinguish the barrier that is holding the user

from achieving their goal G. This is achieved through the ToM

the agent has constructed about the user, in combination with the

current situation, e.g., weather conditions and time of the day.

The counterarguments presented by the user are saved into the

repository to be analyzed for future reference and usage in arguments

to come.

5. Discussion

The purpose of the research presented, in this article, is

to use AI systems to empower individuals to progress in

their pursuit of improving health and physical and emotional

wellbeing through a change of behavior. This aligns very

well with the definition by Nowak et al. (2018) of HCAI as

AI that focuses on “collaborating with humans, enhancing

their capabilities, and empowering them to better achieve

their goals.”

In the notion of collaboration, there is a social aspect embedded

relating to coordination and agreeing on goals and a division of

tasks, typically relating to what roles the actors are enacting. In

the studies presented in this article, the digital agent’s roles and

behaviors as a social actor are explored from the viewpoints of

potential users and domain experts, which is discussed in the

following section.

Furthermore, when coordinating and agreeing on goals and the

division of tasks in an envisioned collaborative journey of the agent

teaming up with the user, instruments for the agent to apply are key.

Natural argumentation allowing the user to respond in any way

they like would allow the user to express themselves freely and with

the language they usually use. However, in this study, structured

dialogues are used for the purpose of allowing domain experts

to evaluate and verify the agent’s behavior, as well as to obtain

structured information from the user for feedback and research

purposes. The STAR-C application provides some freedom to define

their activities and goals, motivators, and barriers, along with the

structured alternatives. The structured parameters are embedded to

find themes of concerns, activities targeted for behavior change, and

for measuring outcomes and trajectories of change from a public

health perspective. The purpose is also to generate supporting and

challenging arguments based on momentary assessments, as well as

analyzes of activities over time.

The exploration of participants’ views on roles and behaviors

of a digital agent in the context of supporting behavior change

for improving health generated the framework for outlining an

agent’s emotional support and challenge in relation to the agent’s

role and the user’s stage of change. We exemplify how the agent

can take on behaviors and roles and shift between these by using
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argumentation schemes. To encompass also the emotional support

and challenge, two schemes for the purpose were defined to

complement the schemes outlined by Walton et al. (2008). We built

new schemes for the two and showed their usage through an example.

In connection with the two new schemes, two new positions,

Position to Support and Position to Create Tension, were introduced.

While support and challenge is embedded in the argumentation

frameworks’ attack and support relations, there is currently no

usage of such argumentation schemes through a multi-charactered

digital companion for improving health, as far as we are aware

of. This approach allows for managing arguments that have both

emotion-based grounds and knowledge-based grounds, for instance,

medical knowledge.

Our approach provides means to reason also about the

ethical aspects in a dialogue situation which may trigger cognitive

dissonance, which in turn, for some individuals, may increase anxiety

and stress (Tengland, 2016). Guided by the domain experts’ and

participants’ perspectives, the user’s preferences are embedded in

the two argumentation schemes as the representation of the mutual

agreement on how the collaborative relationship should be actuated

in terms of support and challenge creating tension. Furthermore,

allowing the user to raise the topic of how to act as the third

type of response paves also ways to allow the user to challenge the

agent’s behavior.

From a foundational argumentation perspective, it is worth

highlighting that the results hint at the relevance of “soft” and

informal behavioral and interactive properties of argumentation-

augmented agents. In particular, our study results indicate that

the preferred properties, e.g., regarding how challenging an agent

is (which can, in our context, be interpreted as how consequent

and with which attitude an agent will attempt to persuade with

rational arguments), are subjective. Although these observations are

not particularly surprising in their preliminary nature, it is worth

noting that very little is known about human attitudes regarding

the behavior of agents that have been augmented with (formal)

argumentative capabilities. Even on object level, when assessing the

inference results provided by abstract argumentation semantics, a

recent study shows that the expectations of non-expert humans are

not aligned with the behavior of many argumentation semantics

that is popular in the research community (Guillaume et al., 2022).

There seems to be little work that systematically studies how

meta-level properties of computational argumentation, such as the

way arguments or argumentation-based inferences are rendered to

human users by a user interface, affect credibility, persuasiveness,

and engagement. Considering the widespread success of choice

architecture (Thaler et al., 2013) (also referred to as nudging), i.e.,

the rendering of information in a way that maximizes the intended

impact on information consumers, this raises the question whether

future approaches to argumentation for human–AI interaction

can potentially benefit from fusing formal (“hard”), object-level

argumentation with informal (“soft”), meta-level optimization,

and personalization.

To summarize, our approach using computational

argumentation and argument schemes provides transparency

with respect to the agent’s roles, behaviors, and sources of its

arguments. Future user studies will explore how the user relates to

the roles and positions of the agent in situated activities and the

agent’s support in the pursuit of improved health in these situations.

5.1. Participants’ perceptions of emotional
support vs. challenge

Since the results did not provide clear patterns of preferences

among roles and behaviors relating to which TTM stage a user may

be in, we choose to rely on the individual user’s preferences, together

with suggestions provided by the domain experts on how to address

individuals in different stages of readiness for change.

An interesting observation was that the participants perceived

neutral behavior as friendly and empathic in the situation when the

human expressed distress due to overload at work. This occurred

when the persona in the scenario shifted from the first one focusing

on physical activity to the persona dealing with stress and worries.

Their perception of the neutral agent as being empathic and friendly

may be due to this kind of behavior is expected in such situations, and

consequently, the participants interpret the agent’s neutral behavior

as such. One could also expect that the participants would have

experienced a lack of empathy in this situation, as some participants

expressed in a study on humans interacting with a robot (Tewari

and Lindgren, 2022). However, as argued by Pulman (2010): “... a

Companion which behaved in the same way whatever our emotional

state would be thought of as insufficiently aware of us. But this may

not mean that the Companion itself has to express emotions: all that

is necessary to achieve this is the ability to recognize our own displays

of emotion.”

In the three cases when there was a difference between the

intended character and behavior and how the participants rated

the agent’s behavior, the difference mainly consisted in that the

participants rated the agent’s empathy and friendliness higher than

was intended, which also led to classifying these agents being

companions to a larger extent. This we interpret as a cultural aspect;

the participants were located in Scandinavia, where the way to

express empathy and friendliness may differ from other places, a

phenomenon which has been recently studied from an affective

agents’ perspective (Taverner et al., 2020). We plan to broaden our

subsequent studies to include participants of various backgrounds to

test our interpretation’s validity.

People rate the high importance of changing behavior to decrease

stress and tended to prefer a digital companion over other roles.

This aligns with the expectation of a more empathic response in the

exemplified dialogue on managing stress.

An outcome from the responses obtained from the participants

for the question of which agent role they preferred in studies

1 and 2 was that more than 75% of them did not choose the

companion role. On the other hand, the domain experts, although

few, who experienced the dialogues with the digital agent through

the prototype preferred the friendly and empathic role more than

the other roles. The participants in studies 1 and 2 answered this

question before they had encountered the scenarios and may have

had a different view after evaluating the scenarios or if they had

experienced the dialogues as the participating experts did through

the prototype. Future studies will provide hands-on experiences of

the different roles, which is expected to provide more reliable results.

The group of participants contained a large proportion of 30–39-

year-old people in studies 1 and 2. It would be interesting to further

analyze the data to explore whether the preferences that the group

as a whole differ when studying the aspects from the perspective of

age groups.
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Studies on preferences regarding agent characters have shown

that age is a deciding factor when it comes to choosing a digital

companion. For instance, in Hurmuz et al. (2022), older adults

preferred personalized content when interacting with a digital

companion. Furthermore, when looking at the features of a digital

companion in terms of friendliness, expertise, reliability, authority,

and involvement, the general and elderly population preferred a

gendered digital companion, specifically a young female (ter Stal

et al., 2019). As for the type of messages, users would like to receive

from such technologies, it has been found that reports about progress,

sent at the right time, rather than something educational, is preferable

(Klaassen et al., 2013). It is important to highlight, however, that there

is currently a lack of studies on the preferences of roles and behaviors

of digital companions in the domain of behavior change. Our ongoing

and future study includes extending and implementing tailored

dialogue capabilities of the digital companion. User studies will be

conducted to further explore how participants in different stages

of change and with different preferences relate to the digital agent

in real-life settings. Furthermore, the effects of having argument-

based dialogues with the digital companion on users’ attitudes toward

and actual changes of behavior, as well as wellbeing, will be studied

in a randomized control trial over 6 months and continued use

additional 6 months.

6. Conclusion

The studies presented in this article have explored the roles that

digital companions can play in supporting behavior changes, and

the attitudes that users, as well as domain experts from different

disciplines, have toward them. A focus was placed on argumentative

approaches, both conceptually, i.e., expectations and perceptions

regarding the argumentation-related behavior and interaction, and

practically, in the forms of argumentation-based system architecture

and an early-stage prototype. The findings provide initial quantitative

and qualitative insights that highlight the importance of “soft”

non-formal behavioral aspects of argumentation-augmented agents

in human–AI interaction scenarios but also indicate that some

of the desirable properties of these aspects can be subjective

and context-dependent.

Assuming that a major purpose of computational argumentation

is the facilitation of human–machine interaction, we hence conclude

that a nascent, high-potential research focus of the human-centered

AI community in general, and the argumentation community in

particular, could be the integration of “rational” argumentation-based

reasoning by computational means with human-centered approaches

regarding the presentation of arguments and argumentation-

based inference results. To advance this research direction,

results and methods from adjacent disciplines, such as behavioral

economics and psychology, need to be incorporated. In turn, these

disciplines can potentially—given that such an integration succeeds—

benefit from the computational tools that the argumentation

community provides.
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In abstract argumentation theory, many argumentation semantics have been

proposed for evaluating argumentation frameworks. This article is based on the

following research question: Which semantics corresponds well to what humans

consider a rational judgment on the acceptability of arguments? There are two

systematic ways to approach this research question: A normative perspective

is provided by the principle-based approach, in which semantics are evaluated

based on their satisfaction of various normatively desirable principles. A descriptive

perspective is provided by the empirical approach, in which cognitive studies

are conducted to determine which semantics best predicts human judgments

about arguments. In this article, we combine both approaches to motivate a

new argumentation semantics called SCF2. For this purpose, we introduce and

motivate two new principles and show that no semantics from the literature

satisfies both of them. We define SCF2 and prove that it satisfies both new

principles. Furthermore, we discuss findings of a recent empirical cognitive study

that provide additional support to SCF2.
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1. Introduction

The formal study of argumentation is an important field of research within AI (Rahwan

and Simari, 2009), in particular in the area of knowledge representation and reasoning, and

in the area of multiagent systems. Argumentation as inference provides a general framework

for non-monotonic reasoning, and argumentation as dialogue provides a general framework

for agent interaction (Prakken, 2018). Argumentation-based approaches are assumed to

be better suited for modeling human reasoning than traditional logical methods used in

knowledge representation and reasoning, including reasoning in the context of conflicting

information and dealing with fallacies and other errors in human reasoning. Formal

argumentation is a kind of argument reasoning and is often contrasted with other recent

developments in computational argumentation in AI (Van Eemeren and Verheij, 2018), such

as approaches based on argument mining (Budzynska and Villata, 2018; Lawrence and Reed,

2020), argument assessment, argument generation, and cognitive modeling (Lauscher et al.,

2021).

A central focus of the modern development of formal argumentation has been the idea

of Dung (1995) that under some conditions, the acceptance of arguments depends only

on a so-called attack relation among the arguments, and not on the internal structure of

the arguments. Dung called this approach abstract argumentation and called the directed

graph that represents the arguments and the attack relation between them an argumentation

framework (AF). Whether an argument is deemed acceptable depends on the decision about
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other arguments. Therefore, the basic concept in abstract

argumentation is a set of arguments that can be accepted

together, called an extension. Crucially, there may be several of

such extensions, and these extensions may be incompatible. An

extension-based argumentation semantics takes as input an AF and

produces as output a set of extensions.

Traditionally, two classes of extension-based argumentation

semantics have been studied (Baroni et al., 2018). Dung

introduced several examples of so-called admissibility-based

semantics, formalizing the idea that an argument is acceptable in

the context of an extension if the extension defends the argument,

i.e., attacks all the attackers of the argument. In this article, we

consider his grounded, complete, preferred, and stable semantics.

Moreover, we consider the admissibility-based semantics known

as semi-stable semantics (Verheij, 1996; Caminada et al., 2012).

The other kind of extension-based argumentation semantics is

naive-based semantics, which is based on the idea that acceptable

argument sets are specific maximal conflict-free sets. In this article,

we consider the naive, stage, CF2 and stage2 semantics and develop

a new naive-based semantics called SCF2. More recently, some

semantics have been introduced that are neither admissibility based

nor naive based (Dvorák et al., 2022); see the related work section

of this article for further details.

Abstract argumentation has various potential

applications (Rahwan and Simari, 2009), and the choice of

semantics depends on the envisioned application. In this article,

we focus on the following research question: Which semantics

corresponds well to what humans consider a rational judgment on

the acceptability of arguments?

There are two systematic ways to approach this research

question: A normative perspective is provided by the principle-

based approach (Baroni and Giacomin, 2007; van der Torre

and Vesic, 2018), in which semantics are evaluated based on

their satisfaction of various normatively desirable principles. A

descriptive perspective is provided by the empirical approach

(Rahwan et al., 2010), in which cognitive studies are conducted to

determine which semantics best predicts human judgments about

arguments. In this article, we combine both approaches.

Two recent empirical cognitive studies on argumentation

semantics (Cramer and Guillaume, 2018b, 2019) showed CF2 to be

better predictors of human argument evaluation than admissibility-

based semantics like grounded and preferred. This finding sheds

some doubt on principles that are only satisfied by admissibility-

based semantics, e.g., admissibility, defense, and reinstatement, as

surveyed by van der Torre and Vesic (2018). For this reason, in this

article, we focus on other existing principles (e.g., directionality)

and introduce new ones.

The first new principle we consider is irrelevance of Necessarily

Rejected Arguments (INRAs). Informally, INRA says that if an

argument is attacked by every extension of an AF, then deleting this

argument should not change the set of extensions. The idea, here,

is that an argument that is attacked by every extension would be

rejected by any party in a debate and hence would never be brought

up in a debate. Hence, it should be treated as if it did not even exist.

The second principle that we consider is Strong Completeness

Outside Odd Cycles (SCOOCs). Informally, SCOOC says that if

an argument a and its attackers are not in an odd cycle, then an

extension not containing any of a’s attackers must contain a. The

principle is based on the idea that it is generally desirable that an

argument that is not attacked by any argument in a given extension

should itself be in that extension. While it is possible to ensure

this property in AFs without odd cycles, this is not the case for

AFs involving an odd cycle. The idea behind the SCOOC principle

is to still satisfy this property as much as possible, i.e., whenever

the argument under consideration and its attackers are not in an

odd cycle.

We show that of the nine common semanticsmentioned earlier,

the only ones that satisfy INRA are grounded, complete and naive

semantics. In addition, we show that a variant of CF2 that we

call nsa(CF2) and that consists of first deleting all self-attacking

arguments and then applying CF2 semantics also satisfies INRA.

Furthermore, we show that of these 10 semantics (the nine

mentioned at the beginning and nsa(CF2)), the only one that

satisfies SCOOC is the stable semantics. However, stable semantics

satisfies neither directionality nor INRA. The fact that none of

the considered existing semantics satisfies both new principles

introduced in this article raises the question whether these two

principles can be satisfied in conjunction. We answer this question

positively by defining a novel semantics called SCF2 semantics that

satisfies both of them.

Finally, we discuss the findings of a recent cognitive study by

Cramer and Guillaume (2019) and observe that SCF2 explains the

judgments of participants in this study better than any existing

semantics. This provides additional support for our claim that SCF2

corresponds well to what humans consider a rational judgment on

the acceptability of arguments.

This article is an extended version of a workshop

article (Cramer and van der Torre, 2019). Compared to the

workshop article, here, we give more background on the relation

to human-centric AI and consider much more principles from

the abstract argumentation literature: While in the workshop

article, we focused on three principles, this article evaluates the

new semantics against 37 principles. Furthermore, unlike in the

workshop article, we give full proofs for all theorems that we

present.

1.1. Relation to human-centric intelligence

Humans use arguments both as a means to persuade others

in a dialogue and as a way to make decisions and draw tentative

conclusions by comparing arguments for and against various

positions. In order for AI technology to interact meaningfully with

humans, argumentation as practiced by humans, therefore, needs

to be taken into account.

Argumentation and dialogue have been studied in many

fields. In artificial intelligence, a distinction can be made between

formal argumentation and computational argumentation, where

formal argumentation is concerned both with argumentation as

inference studied in knowledge representation and reasoning and

argumentation as dialogue studied in multiagent systems (Prakken,

2018). Since the work of Dung (1995), these approaches are studied

not only at a logical or structured level but also at an abstract level.
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Formal argumentation can be seen as a natural successor of

logic-based approaches studied in the previous century (Prakken,

2018; Van Eemeren and Verheij, 2018). Approaches to human

reasoning based on classical logic have little to say in case of conflict.

However, humans need to reason about conflict all the time, for

example, when receiving contradictory or false information or

when dealing with opposing opinions. Formal argumentation goes

beyond classical logic by presenting distinct rational viewpoints

in case of conflict and by incorporating methods from non-

monotonic logic to resolve some of these conflicts. They do

this by modeling facts as assumptions and modeling rules as

defeasible inferences. On the other hand, formal argumentation

builds on traditional logical methods by representing the structure

of individual arguments themselves in a logical way. Each extension

of a set of acceptable arguments may be seen as a coherent

viewpoint.

In the current article, the focus is on argumentation as inference

and on abstract argumentation, the study of the relation among

arguments with a focus on how the attack relation between

arguments (when one argument is a counterargument to another)

can serve as a basis for judgments about the acceptability of

arguments. It can be seen as the study of a dialogue state at a single

moment in time. Even when an argument is not accepted in any

extension and thus can be ignored according to the INRA principle,

the same argument can play a role later in the dialogue when the

framework has changed.

Dung’s theory is based on the assumption that the acceptance

of arguments depends only on the attack relation among the

constructive arguments, not on their internal structure. Dung’s

theory can be defended in different ways. Suppose the assumption

is false, i.e., one of the dialogue participants believes that due

to the internal structure of argument A, it cannot be accepted.

Now suppose that another dialogue participant disagrees with this

position and claims that the internal structure of the argument

is completely fine. In this disagreement, we can model this

disagreement with arguments B and C and the relation between

arguments A and B with an attack from B to A. In general, the fact

that in abstract argumentation, everything has to be modeled by an

argument can be interpreted as the statement that every criticism

can be criticized itself as well.

The methods of abstract argumentation are also relevant for

the study of the internal structure of arguments and the dynamics

of dialogue scenarios. When the internal structure of arguments is

made explicit, and the arguments are attributed to the agents that

put them forward, one can address how arguments are generated

in light of other arguments and how that can lead to a resolution

of conflicts and paradoxes. In such cases, the argumentation

framework can change over time due to agent interaction.

Human reasoning is inherently non-monotonic: It often

happens that one draws a conclusion from certain given

information but later gives up that conclusion due to novel

information speaking against it. This non-monotonicity of human

reasoning cannot be modeled in classical monotonic logic. For this

reason, non-monotonic logic has been designed since the 1980s.

Since its inception in the early 1990s, formal argumentation has had

a strong connection to non-monotonic logic. The idea, here, is that

novel information allows us to construct new arguments, some of

which may attack previously accepted arguments and lead to their

rejection. Thus, formal argumentation can often be viewed as a tool

for making the inference process of non-monotonic logics explicit,

concrete, and close in nature to actual human reasoning.

While some of the research in formal argumentation is

somewhat detached from the human practice of argumentation,

there are also many researchers who aim at building a

bridge between human reasoning and formal argumentation by

studying how various formalisms and semantics from formal

argumentation relate to actual human reasoning. For example,

formal argumentation has been combined with approaches based

on natural language processing and argument mining (Budzynska

and Villata, 2018). Furthermore, as detailed in Section 6, multiple

cognitive studies have been conducted to investigate the relation

between human reasoning and argumentation formalisms.

With the help of such interdisciplinary research, formal

argumentation is becoming more relevant to the endeavor of

human-centric AI. This article aims to contribute to this research

by studying which argumentation semantics (i.e., which method

for evaluating the acceptability of arguments based on the attack

relation between the arguments) is a good model for rational

human evaluation of arguments. For this, two approaches are

combined as follows:

• A normative perspective is provided by the principle-based

approach, in which semantics are evaluated based on their

satisfaction of various normatively desirable principles.

• A descriptive perspective is provided by the empirical

approach, in which cognitive studies are conducted to

determine which semantics best predicts human judgments

about arguments.

In this article, we argue that the SCF2 semantics is a reasonable

choice from both points of view. It may thus be better suited for

human-centric AI than other argumentation semantics proposed

in the literature.

2. Preliminaries

In this section, we define required notions from abstract

argumentation theory Dung (1995) and Baroni et al. (2018). In

addition, we define three principles from the literature on principle-

based argumentation (Baroni and Giacomin, 2007; van der Torre

and Vesic, 2018) and present an argument for the case that the

directionality principle is a desirable property for a semantics

designed to match what humans would consider a rational

judgment on the acceptability of arguments.

DEFINITION 1. An argumentation framework (AF) F = 〈Ar, att〉

is a finite directed graph in which the setAr of vertices is considered

to represent arguments and the set att of edges is considered to

represent the attack relation between arguments, i.e., the relation

between a counterargument and the argument that it counters.

DEFINITION 2. An att-path is a sequence 〈a0, . . . , an〉 of

arguments where (ai, ai+1) ∈ att for 0 ≤ i < n and where aj 6= ak
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for 0 ≤ j < k ≤ n with either j 6= 0 or k 6= n. An odd att-cycle is an

att-path 〈a0, . . . , an〉 where a0 = an and n is odd.

DEFINITION 3. Let F = 〈Ar, att〉 be an AF, and let S ⊆ Ar. We

write F|S for the restricted AF 〈S, att ∩ (S × S)〉. The set S is called

conflict-free iff there are no arguments b, c ∈ S such that b attacks

c (i.e., such that (b, c) ∈ att). Argument a ∈ Ar is defended by S

iff for every b ∈ Ar such that b attacks a there exists c ∈ S such

that c attacks b. We say that S attacks a if there exists b ∈ S such

that b attacks a, and we define S+ = {a ∈ Ar | S attacks a} and

S− = {a ∈ Ar | a attacks some b ∈ S}.

• S is a complete extension of F iff it is conflict free, it defends all

its arguments, and it contains all the arguments it defends.

• S is a stable extension of F iff it is conflict free, and it attacks all

the arguments of A \ S.

• S is the grounded extension of F iff it is a minimal with respect

to set inclusion complete extension of F.

• S is a preferred extension of F iff it is a maximal with respect to

set inclusion complete extension of F.

• S is a semi-stable extension of F iff it is a complete extension,

and there exists no complete extension S1 such that S ∪ S+ ⊂

S1 ∪ S+1 .

• S is a stage extension of F iff S is a conflict-free set, and there

exists no conflict-free set S1 such that S ∪ S+ ⊂ S1 ∪ S+1 .

• S is a naive extension of F iff S is a maximal conflict-free set.

CF2 semantics was first introduced by Baroni et al. (2005). The

idea behind it is that we partition the AF into strongly connected

components and recursively evaluate it component by component

by choosing maximal conflict-free sets in each component and

removing arguments attacked by chosen arguments. We formally

define it following the notation of Dvořák and Gaggl (2016). For

this, we first need some auxiliary notions:

DEFINITION 4. Let F = 〈Ar, att〉 be an AF, and let a, b ∈ Ar. We

define a ∼ b iff either a = b or there is an att-path from a to b,

and there is an att-path from b to a. The equivalence classes under

the equivalence relation∼ are called strongly connected components

(SCCs) of F. We denote the set of SCCs of F by SCCs(F). Given

S ⊆ Ar, we define DF(S) : = {b ∈ Ar | ∃a ∈ S :(a, b) ∈ att∧ a 6∼ b}.

If F = 〈∅, ∅〉, we consider ∅ to be an SCC of F; else ∅ is not an

SCC.

The simplified SCC-recursive scheme used for defining CF2

and stage2 is a function that maps a semantics σ to another

semantics scc(σ ):

DEFINITION 5. Let σ be an argumentation semantics. The

argumentation semantics scc(σ ) is defined as follows. Let F =

〈Ar, att〉 be an AF, and let S ⊆ Ar. Then S is an scc(σ )-extension

of F iff either

• |SCCs(F)| ≤ 1 and S is a σ -extension of F, or

• |SCCs(F)| > 1 and for each C ∈ SCCs(F), S ∩ C is an

scc(σ )-extension of F|C\DF(S).

CF2 semantics is defined to be scc(naive), and stage2 semantics

is defined to be scc(stage).

Apart from the function scc, we introduce a further function—

called nsa—that also maps a semantics to another semantics.

Informally, the idea behind nsa(σ ) is that we first delete all self-

attacking arguments and then apply σ . To define nsa formally, we

first need an auxiliary definition:

DEFINITION 6. Let F = 〈Ar, att〉 be an AF. We define the non-

self-attacking restriction of F, denoted by NSA(F), to be the AF FAr′ ,

where Ar′ : = {a ∈ Ar | (a, a) /∈ att}.

DEFINITION 7. Let σ be an argumentation semantics. The

argumentation semantics nsa(σ ) is defined as follows. Let F =

〈Ar, att〉 be an AF, and let S ⊆ Ar. We say that E is an nsa(σ )-

extension of F iff E is a σ -extension of NSA(F).

We now define the directionality principle introduced by

Baroni and Giacomin (2007). For this, we first need an auxiliary

notion:

DEFINITION 8. Let F = 〈Ar, att〉 be an AF. A set U ⊆ Ar is

unattacked iff there exists no a ∈ A \ U such that a attacks some

b ∈ U.

DEFINITION 9. A semantics σ satisfies the directionality principle

iff for every AF F and every unattacked setU; it holds that σ (F|U ) =

{E ∩ U | E ∈ σ (F)}.

The directionality principle corresponds to an important

feature of the human practice of argumentation, namely that

if a person has formed an opinion on some arguments and is

confronted with new arguments, they will only feel compelled to

reconsider their judgment on the prior arguments if one of the

new arguments attacks one of the prior arguments. Apart from

our own intuition, we can also refer to the results of an empirical

cognitive study on argumentation that shows that humans are

able to systematically judge the directionality of attacks between

arguments (Cramer and Guillaume, 2018a). Thus, we consider the

directionality principle crucial for the goal that we focus on in

this article.

We define two further principles from the literature on

principle-based argumentation (Baroni and Giacomin, 2007;

van der Torre and Vesic, 2018) that are relevant for getting a better

picture of the behavior of a semantics and can be used to derive

multiple further principles proposed in the literature.

DEFINITION 10. A semantics σ satisfies the naivety principle if

and only if for every AF F, for every E ∈ σ (F), E is a maximal with

respect to set inclusion conflict-free set in F.

DEFINITION 11. Given an argumentation framework F =

(Ar, att) and sets S,E ⊆ Ar, we define UF(S,E) : = {a ∈ S

|6 ∃b :(b, a) ∈ att, b 6∼ a, and E does not attack b}.

DEFINITION 12. A binary function BF is called a base function iff

for every AF F = (Ar, att) such that |SCCs(F)| = 1 and every set

C ⊆ Ar, BF(F,C) ⊆ P(Ar).

Here the notationP(Ar) denotes the powerset of Ar, i.e., the set

of all subsets of Ar.
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DEFINITION 13. Given a base function BF, an AF F = (Ar, att)

and a set C ⊆ Ar, we recursively define GF(BF, F,C) ⊆ P(Ar) as

follows: for every E ⊆ Ar, E ∈ GF(BF, F,C) iff

• in case |SCCs(F)| = 1, E ∈ BF(F,C),

• otherwise, for all S ∈ SCCs(F), (E ∩ S) ∈ GF(BF,

F|S\DF(E),UF(S,E) ∩ C).

DEFINITION 14. A semantics σ satisfies the SCC-recursiveness

principle iff there is a base function BF such that for every AF

F = (Ar, att) we have σ (F) = GF(BF, F,Ar).

3. Two new principles

In this section, we define and motivate the two new principles

introduced in the article. Let us first look at the principle that we

call Irrelevance of Necessarily Rejected Arguments (INRAs). The idea

behind this principle is that in order for an argument to be relevant

in a debate, there must be a coherent standpoint according to which

this argument is accepted or at least not clearly rejected. If an

argument is attacked by an extension, it would be clearly rejected by

any rational person whose standpoint is described by the extension

in question. So, if an argument is attacked by every extension, it

is clearly rejected in light of every rational standpoint and would,

therefore, never be brought up in a debate between rational people.

For the purpose of evaluating the acceptability of arguments, it,

therefore, makes sense to treat such an argument as if it did not even

exist. Talking in the language of extensions, this can be formulated

as follows: If an argument a is attacked by every extension of an AF,

then deleting a should not change the set of extensions.1

In order to formally define the INRA principle, we first need to

define a notation for an AF with one argument deleted:

DEFINITION 15. Let F = 〈Ar, att〉 be an AF and let a ∈ Ar be an

argument. Then F−a denotes the restricted AF F|Ar\{a}.

DEFINITION 16. Let σ be an argumentation semantics. We

say that σ satisfies Irrelevance of Necessarily Rejected Arguments

(INRA) iff for every AF F = 〈Ar, att〉 and every argument a ∈ Ar, if

every E ∈ σ (F) attacks a, then σ (F) = σ (F−a).

We now illustrate the definition through an example of the

preferred semantics:

EXAMPLE 1. Consider the argumentation framework F1 depicted

in Figure 1. The only preferred extension of F1 is {a}. This extension

attacks b. So, b is attacked by every extension of F1. If we remove

argument b from F0, we are left with the AF F−b
1 consisting only

of a and c attacking each other. F−b
1 has two preferred extensions,

1 Note that the deletion of arguments mentioned in this principle only

concerns the procedure for deciding which arguments are accepted

according to the SCF2 argumentation semantics. In applications of the SCF2

semantics to structured argumentation or to the formal study of dialogues,

the deletion of arguments would not happen at the level of argument

construction but only at the level of argument evaluation. So, even arguments

that are rejected by everyone could influence the dynamics of argument

construction by participants of a dialogue.

FIGURE 1

Argumentation framework F1.

{a} and {c}. So, when removing an argument (namely b) that was

attacked by every extension, the set of extensions changed. Thus,

this example constitutes a violation of the INRA principle. We

have, therefore, established that the preferred semantics does not

satisfy INRA.

The second principle that we consider is Strong Completeness

Outside Odd Cycles (SCOOC). Informally, SCOOC says that if an

argument a and its attackers are not in an odd cycle, then an

extension not containing any of a’s attackers must contain a.

In order to formally define the Strong Completeness Outside

Odd Cycles principle, we first need to define a notation for the set

of all attackers of an argument and the auxiliary notion of a set of

arguments being strongly complete outside odd cycles.

DEFINITION 17. Let F = 〈Ar, att〉 be an AF, and let A ⊆ Ar.

We say that A is strongly complete outside odd cycles iff for every

argument a ∈ Ar, the following condition holds: If

• no argument in {a} ∪ {a}− is in an odd att-cycle, and

• A ∩ {a}− = ∅,

then a ∈ A.

DEFINITION 18. Let σ be an argumentation semantics. We say

that σ satisfies Strong Completeness Outside Odd Cycles (SCOOC)

iff for any AF F, every σ -extension of F is strongly complete outside

odd cycles.

Before motivating the SCOOC principle, we first illustrate it

with an example of a violation of the principle in the CF2 semantics.

EXAMPLE 2. Consider the argumentation framework F2 depicted

in Figure 2. It is a simple six-cycle. One of the CF2 extensions of F2
is E = {a, d}. F2 contains no odd cycle, so in particular b and c are

not in an odd cycle. Since {c}− = {b}, this means that no argument

in {c} ∪ {c}− is in an odd cycle. Moreover, E ∩ {c}− = ∅. Thus,

for E to be strongly complete outside odd cycles, it would have to

contain c. However, c /∈ E, so E is not strongly complete outside

odd cycles. We have, therefore, established that the CF2 semantics

does not satisfy SCOOC.

The SCOOC principle is related to the property of strong

completeness: An extension E is strongly complete iff every argument

not attacked by E is in E. We call this property strong completeness

as it is a strengthening of completeness, which states that every

argument defended by E is in E.
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FIGURE 2

Argumentation framework F2.

The stable semantics is the only widely studied argumentation

semantics that satisfies strong completeness. More precisely, the

stable semantics can be characterized by the conjunction of conflict

freeness and strong completeness. In other words, one can say that

the stable semantics is motivated by the idea that a violation of

strong completeness constitutes a paradox and should therefore

be avoided.

The stable semantics satisfies strong completeness at the price

of allowing for situations in which there are no extensions, and

hence no judgment can bemade on any argument whatsoever. Such

cases are always due to odd att-cycles. So, we can say that odd

att-cycles—unless resolved through arguments attacking the odd

cycle—cause paradoxical situations. The idea of most semantics

other than stable semantics is to somehow contain these paradoxes,

so that they do not affect our ability to make judgments about

completely or sufficiently unrelated arguments.

The idea of the SCOOC principle is that while in odd cycles

we may not be able to avoid paradoxical judgments about the

arguments, i.e., a judgment in which an argument is not accepted

even though none of its attackers is accepted, such paradoxical

judgments should be completely avoided outside of odd cycles.

How does that differ from the containment of paradoxical

situations provided by existing semantics? Admissibility-based

semantics do not allow for any judgment about an argument in an

unattacked odd cycle; however, this undecided status is not limited

to odd cycles but carries forward to arguments that are not in an

odd cycle but that are att-reachable from an odd cycle.

Naive-based semantics like CF2, stage, and stage2 allow for

judgments about arguments in an unattacked odd cycle but also at

the cost of affecting the way arguments that are not in odd cycles are

interpreted. For example, as established in Example 2 earlier, CF2

allows for a six-cycle to be interpreted in a doubly paradoxical way

despite the fact that it is an even cycle that can be interpreted in a

non-paradoxical manner. This behavior of CF2 was also considered

problematic by Dvořák and Gaggl (2016), who used this example to

motivate their stage2 semantics, but as we will show in Figure 6,

stage2 also fails to avoid paradoxical judgments about arguments

that are not themselves involved in an odd cycle.

The SCOOC principle was designed to systematically identify

whether a semantics suffers from this problem. As it turns out,

all the standard semantics other than stable do suffer from the

problem, i.e., do not satisfy SCOOC.

We will now look at which semantics satisfy or do not satisfy

each of the two principles that we have defined.

THEOREM 1. The grounded, complete, naive, and nsa(CF2)

semantics satisfy INRA.

Before we can prove the theorem, we first need some auxiliary

definitions and lemmas.

DEFINITION 19. A semantics σ is called SCC-rich iff for every AF

F = 〈Ar, att〉 such that |SCCs(F)| = 1 and every argument a ∈ Ar,

there is an extension E ∈ σ (F) such that E does not attack a.

DEFINITION 20. A semantics is called semi-rich iff for every AF

F = 〈Ar, att〉 and every argument a ∈ Ar such that (a, a) /∈ att,

there is an extension E ∈ σ (F) such that E does not attack a.

DEFINITION 21. A semantics is called SCC-semi-rich iff for every

AF F = 〈Ar, att〉 such that |SCCs(F)| = 1 and every argument

a ∈ Ar such that (a, a) /∈ att, there is an extension E ∈ σ (F) such

that E does not attack a.

LEMMA 1. Naive semantics is semi-rich and thus also SCC-semi-

rich.

PROOF. Let F = 〈Ar, att〉 be an AF and let a ∈ Ar be an

argument such that (a, a) /∈ att. Let E be a naive extension of

F|Ar\({a}∪{a}+∪{a}− . Then, E∪{a} is a naive extension of F and E∪{a}

does not attack a.

LEMMA 2. Grounded and complete semantics are SCC-rich.

PROOF. Let F = 〈Ar, att〉 be an AF such that |SCCs(F)| = 1 and

let a ∈ Ar. We distinguish two cases:

1. att = ∅. In this case, Ar is the only grounded and complete

extension of F, and Ar does not attack a.

2. att 6= ∅. Since |SCCs(F)| = 1, this implies that every argument

is attacked by some argument. Thus ∅ is a grounded and

complete extension of F. Since ∅ does not attack a, the required

condition is satisfied.

The following lemma has a very technical proof that we

provide in Appendix 1. Here, we just sketch the main idea of the

proof and then discuss what is the main difficulty in making the

argument rigorous.

LEMMA 3. Let σ be an SCC-rich or SCC-semi-rich semantics.

1. If σ is SCC-rich, then scc(σ ) satisfies INRA.

2. If σ is SCC-semi-rich, then nsa(scc(σ )) satisfies INRA.

PROOF SKETCH. First, we observe that for showing that

nsa(scc(σ )) satisfies INRA, it is enough to consider AFs without

self-attacking arguments. However, in such AFs, SCC-richness,

and SCC-semi-richness coincide. So, we can actually assume SCC-

richness for both parts of the lemma.

We consider an argument a that is attacked by every extension

and need to show that removing that argument from the AFwill not

result in the emergence of new extensions or the disappearance of

any previous extensions. Due to the SCC-richness of σ , a cannot be

in an initial SCC. Instead, a must be in a position where, whatever

happens in the SCCs that come before a, some argument attacking
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a will be accepted. Thus, the SCC-recursive scheme removes a

from the computation of the semantics at that step. Since that

is the case, removing a from the AF will make no difference

because what happens in the SCCs that preceded a will not be

affected by the initial removal of a, and starting at the SCC that

(originally) contains a, it makes no difference whether a is initially

removed from the framework or removed from the computation

by the SCC-recursive scheme due to having an attacker from a

previous SCC.

Themain difficulty inmaking this proof sketch a rigorous proof

is that the removal of a may change the structure of the SCCs, as

the SCC containing a may be split up into multiple SCCs. That

complicates the argument significantly, but the rigorous proof in

Appendix 1 spells out in detail how the argument works to cover

this case.

PROOF OF THEOREM 1. By Lemmas 1, 2, and 3 and the fact

that grounded = scc(grounded), complete = scc(complete), and

nsa(CF2) = nsa(scc(naive)), it directly follows that grounded,

complete and nsa(CF2) satisfy INRA.

We now show that naive semantics satisfies INRA. Let F =

〈Ar, att〉 be an AF and let a ∈ Ar be an argument such that for

every E ∈ naive(F), E attacks a. By the semi-richness of the naive

semantics (Lemma 1), it follows that (a, a) ∈ att.

We need to show that naive(F) = naive(F−a). Let S ∈ naive(F).

As a /∈ S, S ⊆ Ar \ {a}. S is conflict free, and as S is maximal with

this property in F, it is also maximal with this property in F−a. So

S ∈ naive(F−a), as required.

Now, let S ∈ naive(F−a). S is conflict free. Since (a, a) ∈ att,

S ∪ {a} is not conflict free. Together with the maximality of S in

F−a, this implies that S is a maximally conflict free subset of Ar, i.e.,

S ∈ naive(F), as required.

THEOREM 2. Stable, preferred, semi-stable, stage, stage2, andCF2

semantics violate INRA.

PROOF. The fact that the preferred semantics violates INRA

was already established in Example 1 with reference to the

argumentation framework F1. The same argumentation framework

also constitutes a violation of INRA for the stable, semi-stable,

stage, and stage2 semantics, as these semantics coincide with the

preferred semantics on F1 and F−b
1 . A counterexample of CF2

semantics is shown in Figure 3, as explained in the caption of

the figure.

THEOREM 3. Stable semantics satisfies SCOOC.

PROOF. Consider an AF F, a stable extension E of F and an

argument a ∈ Ar, such that E ∩ {a}− = ∅. Then, by definition

of stable semantics, we have a ∈ E. Consequently, E is strongly

complete, and in particular, E is strongly complete outside odd

cycles.

THEOREM 4. Complete, grounded, preferred, semi-stable, naive,

stage, CF2, stage2, and nsa(CF2) semantics violate SCOOC.

FIGURE 3

Argumentation framework F3. It shows that CF2 semantics violates

INRA since both extensions ({a} and {b}) attack c, but after removing

c, {b} is no longer an extension.

FIGURE 4

Argumentation framework F4. It shows that complete, grounded,

preferred, and semi-stable semantics violate SCOOC since E = {} is

an extension, but E is not strongly complete outside odd cycles: b

and c are not in an odd cycle, {c}− = {b}, but E does not contain c.

FIGURE 5

Argumentation framework F5. It shows that stage and naive

semantics violate SCOOC since E = {b} is an extension, but E is not

strongly complete outside odd cycles: a is not in an odd cycle,

{a}− = {}, but E does not contain a.

PROOF. The counterexample of CF2 was already presented in

Example 2. The argumentation framework F2 from that example

(the simple six-cycle) also constitutes a counterexample of naive

and nsa(CF2), as they agree with CF2 on the simple six-cycle.

A counterexample of complete, grounded, preferred, and semi-

stable is shown in Figure 4, and a counterexample of naive and stage

is shown in Figure 5, and a counterexample of stage2 is shown in

Figure 6.

Note that for a framework that does not contain any odd cycles

at all, the preferred, and semi-stable extensions coincide with the

stable extensions, so that in this special case, the SCOOC principle

is also satisfied for the preferred and semi-stable semantics.

4. SCF2 semantics

In this section, we define and study the new semantics

SCF2, which satisfies both of the new principles introduced in

the previous section and the three principles defined in the

preliminaries. Furthermore, we will motivate the design choices
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FIGURE 6

Argumentation framework F6. It shows that stage2 semantics

violates SCOOC since E = {a,d} is an extension, but E is not strongly

complete outside odd cycles: b and c are not in an odd cycle,

{c}− = {b}, but E does not contain c.

in the definition of SCF2 by looking at how semantics defined in

a similar way as SCF2 fail to satisfy at least one of directionality,

INRA or SCOOC.

4.1. Definition of SCF2 and examples

We have seen in the previous section that nsa(CF2) satisfies

INRA but does not satisfy SCOOC. The idea behind the definition

of SCF2 is that we modify the definition of nsa(CF2) by already

enforcing SCOOC at the level of the single SCCs considered in the

SCC-recursive definition of nsa(CF2). For this, we define a variant

of naive semantics called SCOOC-naive semantics.

DEFINITION 22. Let F = 〈Ar, att〉 be an AF, and let A ⊆ Ar. We

say that A is an SCOOC-naive extension of F if A is subset-maximal

among the conflict-free subsets of Ar that are strongly complete

outside odd cycles.

Recall that CF2 is defined to be scc(naive), i.e., nsa(CF2) =

nsa(scc(naive)). To define SCF2, we just replace naive semantics by

SCOOC-naive semantics in this definition.

DEFINITION 23. SCF2 semantics is defined to be

nsa(scc(SCOOC-naive)).

In other words, SCF2 works by first deleting all self-attacking

arguments and then applying the SCC-recursive scheme that is also

used in the definition of CF2, but applying SCOOC-naive semantics

instead of naive semantics to each single SCC.

The computation of the SCF2 extensions of a given

argumentation framework F can be described through the

following non-deterministic algorithm:

1. Delete all self-attacking arguments from F.

2. Assign E := ∅.

3. Divide F into strongly connected components (SCCs).

4. Choose some initial SCC C of F.

5. Choose a maximal conflict-free subset A of C that satisfies the

SCOOC principle.

6. Assign E := E ∪ A.

7. Delete all arguments in C and all arguments attacked by A from

F.

8. If F still contains arguments, go to step 3.

9. Return E.

EXAMPLE 3. Consider the argumentation framework F7 depicted

in Figure 7A. We describe how the four SCF2 extensions of F7 can

be computed using the above algorithm. First, we delete the self-

attacking argument i. Then, we divide the resulting AF into SCCs

as depicted in Figure 7B. The only initial SCC is {a, b, c, d, e, f }, so in

step 4 of the algorithm, we choose C to be this SCC. Now in step 5,

we have two choices:

• We can choose A = {b, d, f }. In this case, we delete arguments

a, b, c, d, e, f , and j from F7. We return to step 3, an divide the

AF into SCCs, as depicted in Figure 7C. There are two initial

SCCs, {g} and {k}. No matter which one we choose first, in the

next step, we will have to chooseA to be the completely chosen

SCC. We then have onemore iteration, in which we choose the

set from {g} and {k} that we did not choose previously. Finally,

the set E is {b, d, f , g, k}.

• We can choose A = {a, c, e}. In this case, we delete arguments

a, b, c, d, e, f , and g from F7. We return to step 3, an divide

the AF into SCCs, as depicted in Figure 7D. Now there are

two initial SCCs, {h} and {j, k, l}. Again, it does not matter in

which order we choose them. Suppose we first choose h. Then,

h gets added to E and deleted. In the final iteration, we need to

choose the SCC {j, k, l}. Here, we can choose A to be {j}, {k}, or

{l}. This gives rise to three possible values for the constructed

extension, {a, c, e, h, j}, {a, c, e, h, k}, and {a, c, e, h, l}.

In order to allow readers to develop an intuition for how the

SCF2 semantics behaves and how it differs from other semantics,

we present in Table 1 the extensions of all example AFs considered

in Section 3 according to the SCF2 semantics and all semantics

introduced in Section 2.

4.2. Principle-based motivation for SCF2

As we will show below, SCF2 satisfies directionality, INRA,

and SCOOC, which we have argued to be desirable principles

when evaluating a semantics designed to correspond well to what

humans would consider a rational judgment on the acceptability

of arguments. The somewhat complex definition of SCF2 raises

the question whether a simpler definition could also be enough to

satisfy these three principles.

To approach this question systematically, we would like to

point out that the definition of SCF2 contains three features that

distinguish it from naive semantics: It starts by deleting all self-

attacking arguments (the function nsa), it proceeds by applying

the SCC-recursive scheme (the function scc), and within each

SCC, it applies SCOOC-naive rather than naive semantics. If

we consider each of these three features a switch that we can

switch on or off, we have eight definitions of semantics, namely,

naive, nsa(naive), SCOOC-naive, nsa(SCOOC-naive), scc(naive),

nsa(scc(naive)), scc(SCOOC-naive), and nsa(scc(SCOOC-naive)).

One can easily see that naive = nsa(naive), so these eight

definitions define only seven different semantics, whose properties

we now study in order to show that only SCF2 satisfies all three

principles directionality, INRA, and SCOOC.
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A B

C D

FIGURE 7

(A) Argumentation framework F7. (B–D) Intermediary steps in the computation of the SCF2 extensions of F7. Dashed lines indicate SCCs. Arguments

in dotted circles have already been chosen to be included in the extension and are no longer part of the AF under consideration.

TABLE 1 Extensions of example AFs according to SCF2 and the semantics introduced in Section 2.

Semantics F1 F2 F3 F4 F5 F6

SCF2 {a}, {b}, {c} {a, c, e}, {b, d, f } {a} {b} {a} {a, c}

CF2 {a}, {b}, {c}
{a, d}, {b, e}, {c, f },

{a, c, e}, {b, d, f }

{a}, {b} {b} {a}
{a, c}, {a, d},

{b, d}

Naive {a}, {b}, {c}
{a, d}, {b, e}, {c, f },

{a, c, e}, {b, d, f }

{a}, {b} {b}, {c} {a}, {b}
{a, c}, {a, d},

{b, d}

Stage2 {a} {a, c, e}, {b, d, f } {a} {b} {a}
{a, c}, {a, d},

{b, d}

Stage {a} {a, c, e}, {b, d, f } {a} {b} {a}, {b}
{a, c}, {a, d},

{b, d}

Complete ∅, {a} ∅, {a, c, e}, {b, d, f } ∅, {a} ∅ {a} ∅

Stable {a} {a, c, e}, {b, d, f } {a} − − −

Grounded ∅ ∅ ∅ ∅ {a} ∅

Preferred {a} {a, c, e}, {b, d, f } {a} ∅ {a} ∅

Semi-stable {a} {a, c, e}, {b, d, f } {a} ∅ {a} ∅

Furthermore, we also consider naivety and SCC-recursiveness,

as these principles are important for getting a better picture of the

behavior of SCF2 and allow us to conclude that SCF2 also satisfies

several other principles studied in the literature, as we will discuss

at the end of this section.

Table 2 shows which of these seven semantics satisfies which of

these five principles (we use the standard name CF2 for scc(naive)

and use the short name SCF2 to refer to nsa(scc(SCOOC-naive))).

Note that SCF2 satisfies all five principles, while no other of these

seven semantics satisfies all five principles or even just the three

principles directionality, INRA, and SCOOC.

Thus, the complexity of the definition of SCF2 is not arbitrary

but is required in the sense that all three differences between

the SCF2 semantics and the naive semantics (which has a

much simpler definition) are needed to satisfy the considered

principles. In other words, removing any non-empty subset of

these three differences from the definition of the semantics

would result in a semantics that does not satisfy all the

considered principles.

We will now prove that every AF has an SCF2 extension and

that the SCF2 semantics satisfies the five principles listed in Table 2.

Concerning the other entries of Table 2, the results for CF2 and

naive in the first three rows have been established in the literature

(Baroni and Giacomin, 2007; van der Torre and Vesic, 2018), some

of the results concerning INRA and SCOOC have been shown in

Section 3, and the remaining results are proven in Appendix 1.
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TABLE 2 Properties of SCF2 and six semantics that are related to it with respect the five principles considered in this article.

Naivety Directionality SCC-recursiveness INRA SCOOC

naive = nsa(naive) X × × X ×

SCOOC-naive X × × × X

nsa(SCOOC-naive) X × × × X

CF2 X X X × ×

nsa(CF2) X X X X ×

scc(SCOOC-naive) X X X × X

SCF2 X X X X X

First we need a lemma, whose rather long and technical proof

can be found in Appendix 1.

LEMMA 4. SCOOC-naive semantics is SCC-semi-rich.

THEOREM 5. Every AF has at least one SCF2 extension.

PROOF. Lemma 4 implies that every single-SCC AF has a

SCOOC-naive extension. This, together with the definition of

the SCC recursive scheme, implies that every AF has at least

1 s (SCOOC-naive)-extension, and hence at least one SCF2

extension.

The proof of the following two theorems are in the appendix.

THEOREM 6. SCF2 satisfies naivety.

THEOREM 7. SCF2 satisfies directionality.

THEOREM 8. SCF2 satisfies SCC-recursiveness.

PROOF. From the definition of SCF2 it is immediately that

SCF2 = scc(SCF2) and that, therefore, SCF2 is SCC-recursive with

base function BFS(F,C) : = SCF2(F).

THEOREM 9. SCF2 satisfies SCOOC.

PROOF. Consider an AF F, an SCF2 extension E of F, and an

argument a ∈ Ar such that no argument in {a} ∪ a− is in an odd

cycle and E ∩ a− = ∅. Then by definition of SCF2 semantics, the

moment the SCOOC-naive function is applied to a sub-framework

of F containing a, we have a ∈ E. Consequently, E is strongly

complete outside odd cycles.

THEOREM 10. SCF2 satisfies INRA.

PROOF. By Lemma 4, SCOOC-naive semantics is SCC-semi-rich.

So, by Lemma 3 and the definition of SCF2 it follows that SCF2

satisfies INRA.

Concerning the other principles studied in the literature, SCF2

has almost the same properties as CF2, the only exception being

the succinctness principle (van der Torre and Vesic, 2018). This is

proven in Appendix 3. Most of the positive results follow directly

from the results established above using logical relationships

between principles that have been established in the literature

(van der Torre and Vesic, 2018) – here, naivety and SCC-

recursiveness play a crucial role.

5. Empirical cognitive studies

Rahwan et al. (2010) argued that artificial intelligence research

will benefit from the interplay between logic and cognition and that;

therefore, “logicians and computer scientists ought to give serious

attention to cognitive plausibility when assessing formal models

of reasoning, argumentation, and decision making.” Based on the

observation that in the previous literature on formal argumentation

theory, an example-based approach and a principle-based approach

were used to motivate and validate argumentation semantics, they

propose to complement these approaches by an experiment-based

approach that takes into account empirical cognitive studies on

how humans interpret and evaluate arguments. They made a first

contribution to this new approach by presenting and discussing the

results of two such studies that they conducted in order to test the

cognitive plausibility of simple and floating reinstatement (Rahwan

et al., 2010).

While the argumentation frameworks used in Rahwan et al.’s

studies could not distinguish between preferred semantics and

naive-based semantics like CF2, twomore recent studies by Cramer

and Guillaume (2018b, 2019) addressed this issue. Both of these

studies made use of a group discussion methodology that is known

to stimulate more rational thinking. According to the results of

the first study (Cramer and Guillaume, 2018b), CF2, SCF2, stage,

and stage2 semantics are significantly better predictors for human

judgments on the acceptability of arguments than admissibility-

based semantics like grounded, preferred, complete or semi-stable

(all p-values< 0.001), but this study did not involve argumentation

frameworks that allow distinguishing between CF2, SCF2, stage,

and stage2 semantics.

According to the results of the second study (Cramer and

Guillaume, 2019), SCF2, CF2, and grounded semantics are better

predictors for human judgments on the acceptability of arguments

than stage, stage2, preferred or semi-stable semantics (all p <

0.001). In addition, the results suggest that SCF2 is a better

predictor than CF2 and grounded semantics, but the results are not

significant.2 We will now explain these results in more depth.

2 While the SCF2 semantics had not yet been proposed at the time when

this study and the two studies mentioned before were conducted, the design

of the studies was such that they were not specifically tailored toward the

semantics that the results were compared to in the articles about the studies.

In other words, the results of the studies can be equally compared to any

argumentation semantics whatsoever. Here, we compare them to the SCF2
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As explained in Section 3, Dvořák and Gaggl (2016) critique a

feature of CF2 semantics, namely, that in the case of a six-cycle,

as depicted in Figure 2, CF2 allows two opposite arguments (e.g., a

and d) to be accepted together. The second study by Cramer and

Guillaume (2019) confirms that this criticism is in line with human

judgments of argument acceptability. We briefly summarize the

data on which this judgment is made (a more detailed explanation

can by found in Cramer and Guillaume, 2019): Based on the overall

responses of the participants in the study, Cramer and Guillaume

pointed out that 12 of the 61 participants of their study have a high

frequency of incoherent responses, so that they disconsider them

from the further analysis. Among the remaining 49 participants,

22 follow a simple cognitive strategy of marking arguments as

Undecided whenever there is a reason for doubt (in line with

the grounded semantics), while 27 participants do not follow this

strategy. Cramer and Guillaume called these 27 participants the

coherent non-grounded participants.

In the case of 11 out of the 12 argumentation frameworks

considered in the study, the majority of these 27 coherent non-

grounded participants make judgments that are in line with

CF2 semantics. The only exception to this is an argumentation

framework involving a six-cycle, in which only 33% of the coherent

non-grounded participants make a judgment in line with CF2

semantics, while 60%make a judgments that are similar in line with

SCF2, stage2, preferred and semi-stable semantics.

Dvořák and Gaggl (2016) themselves had used this criticism

against CF2 to motivate their stage2 semantics, but in the study

by Cramer and Guillaume (2019), stage2 performed worse than

CF2, as all other AFs in which stage2 and CF2 had different

predictions were evaluated by most participants (including most

coherent non-grounded participants) more in line with CF2 than

with stage2.

In combination with the principle-based argument for SCF2

presented in the previous two sections, this provides additional

support for our claim that SCF2 corresponds well to what humans

consider a rational judgment on the acceptability of arguments.

6. Related work

The principle-based analysis of argumentation semantics was

initiated by Baroni and Giacomin (2007) to choose among the

many extension-based argumentation semantics that have been

proposed in the formal argumentation literature. The handbook

chapter of van der Torre and Vesic (2018) gives a classification

of 15 alternatives for argumentation semantics using 27 principles

discussed in the literature on abstract argumentation. Dvořák

and Gaggl (2016) introduced stage2 semantics by showing how it

satisfies various desirable properties, similar to how we motivate

SCF2 semantics in this article.

Moreover, additional extension-based argumentation

semantics and principles have been proposed by various authors.

For example, Besnard et al. (2016) introduced a system for

specifying semantics in abstract argumentation called SESAME.

Moreover, many principles have been proposed for alternative

semantics of argumentation frameworks, such as ranking

semantics in addition to the semantics already considered in the original

articles about the studies.

semantics (Amgoud and Ben-Naim, 2013), and for extended

argumentation frameworks, for example, for abstract dialectical

frameworks (Brewka et al., 2018).

The principle of Irrelevance of Necessarily Rejected Arguments

is closely related to the well-studied area of dynamics of

argumentation, in which also various principles have been

proposed which are closely related to INRA. Cayrol et al.

(2008) were maybe the first to study revision of frameworks

using a principle-based analysis, and they have been related to

notions of equivalence (Baumann, 2012; Oikarinen and Woltran,

2011). (Boella et al., 2009) defined principles for abstracting (i.e.,

removing) an argument, and (Rienstra et al., 2015) defined a

variety of persistence and monotony properties for argumentation

semantics. Our INRA principle is inspired by and closely related

to the skeptical IO monotony principle they define. The difference

is that their principle considers adding an attack rather than

removing an argument.

After the INRA principle was proposed in the workshop article

(Cramer and van der Torre, 2019) on which the current article

is based, Cramer and Spörl (2021) studied the INRA principle in

connection with the notion of admissibility and developed a new

admissibility-based semantics—the choice-preferred semantics—

that satisfies INRA.

The study of semantics and principles for abstract

argumentation remains an active area of research. During

the past few years, various new semantics have been proposed

that are neither admissibility based nor naive based (Dvorák

et al., 2022). These semantics were mainly motivated by the idea

that self-attacking arguments should not affect the acceptance

of other arguments, which has been called ambiguity blocking

or undecidedness blocking. For these and other semantics, it

remains to be checked whether they satisfy the INRA and SCOOC

principles introduced in this article.

In addition to the cognitive studies on formal argumentation

that are already mentioned in Section 5, several other such studies

have been conducted. Cerutti et al. (2021) give an overview

of empirical cognitive studies about formal argumentation.

Concerning investigations into the relation between argumentation

semantics from abstract argumentation on the one hand and

human argument evaluation on the other, this overview article only

lists the articles already mentioned in Section 5. The remaining

articles mentioned in the overview article by Cerutti et al. are

concerned with argumentation formalisms from other areas of

formal argumentation like structured argumentation [e.g., Cerutti

et al. (2014) and Yu et al. (2018)] as well as probabilistic and

bipolar argumentation (e.g., Polberg and Hunter, 2018). Since these

studies are about other areas of formal argumentation, they are

not directly relevant to the research question addressed in this

article. Concerning studies on abstract argumentation, there is also

a recent article by Guillaume et al. (2022) that gives a more detailed

analysis of the results from the study first presented in Cramer and

Guillaume (2018b).

7. Conclusion and future work

Motivated by empirical cognitive studies on argumentation

semantics, we have introduced a new naive-based argumentation
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semantics called SCF2. A principle-based analysis shows that it has

two distinguishing features:

1. If an argument is attacked by all extensions, then it can

never be used in a dialogue and, therefore, it has no effect on

the acceptance of other arguments. We call it Irrelevance of

Necessarily Rejected Arguments.

2. Within each extension, if none of the attackers of an

argument is accepted and the argument is not involved in a

paradoxical relation, then the argument is accepted. We define

paradoxicality as being part of an odd cycle, and we call this

principle Strong Completeness Outside Odd Cycles.

We have argued that these features, together with further

satisfied principles and the findings from empirical cognitive

studies, make SCF2 a good candidate for an argumentation

semantics that corresponds well to what humans consider a rational

judgment on the acceptability of arguments.

Though many results have been obtained—some of them listed

in the appendix—there is also some work left to be done. First of

all, for a few principles discussed in the literature, it still needs to

be shown whether they hold for SCF2 or not. Moreover, dialogue-

based decision procedures must be defined, and the complexity

of the various decision problems must be established. Finally, an

extension toward structured argumentation should be investigated.
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Recent years have witnessed the rise of several new argumentation-based support

systems, especially in the healthcare industry. In themedical sector, it is imperative

that the exchange of information occurs in a clear and accurate way, and this

has to be reflected in any employed virtual systems. Argument Schemes and their

critical questions representwell-suited formal tools formodeling such information

and exchanges since they provide detailed templates for explanations to be

delivered. This paper details the EQR argument scheme and deploys it to generate

explanations for patients’ treatment advice using a chatbot (EQRbot). The EQR

scheme (devised as a pattern of Explanation-Question-Response interactions

between agents) comprises multiple premises that can be interrogated to disclose

additional data. The resulting explanations, obtained as instances of the employed

argumentation reasoning engine and the EQR template, will then feed the

conversational agent that will exhaustively convey the requested information

and answers to follow-on users’ queries as personalized Telegram messages.

Comparisons with a previous baseline and existing argumentation-based chatbots

illustrate the improvements yielded by EQRbot against similar conversational

agents.

KEYWORDS

argument schemes, computational argumentation, chatbot, explainability, decision-

support systems, healthcare, XAI

1. Introduction

Artificial Intelligence constitutes a powerful means when deployed for assisting people

in making well-informed decisions. Such assistance is delivered as a set of recommendations

on which a human, who is interacting with the AI-based system, has the final word. In

the healthcare sector, decision support systems (DSS) prove to be especially useful since

they mostly present: time-saving virtual assistance for practitioners; help for patients in

self-managing their health conditions; better documentation, retrieval and presentation of

data (which, as stated in Fairweather et al. (2020), is still required to be reliable by showing

that its provenance is non-repudiable); and, finally, a substantial cost saving due to the

partial automation and optimization (while preferring cheaper, but still effective, treatment

options) of the workflow (Sutton et al., 2020). Several DSS employ advanced machine

learning algorithms as their main AI reasoning mechanism, although they do not seem

to provide robust evidence of improved diagnostic performance in clinical environments

(Vasey et al., 2021). Other DSS employ computational argumentation instead as their AI

reasoning mechanism. Indeed, as highlighted by Lindgren et al. (2020), the handling of

inconsistent and conflicting knowledge is a common feature in medical decision-making

processes when the opinions of several medical experts are solicited with regard to specific

cases. Arguments can reflect the opinion of a single practitioner, of a general/local medical
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guideline or even represent the viewpoint of a patient concerning

a particular treatment. As an example of argumentation-driven

clinical DSS (henceforth cDSS), the authors of Kökciyan et al.

(2021) model medical recommendations via meta-level arguments

that makes it possible to determine the ground on which the

object-level arguments are justified or preferred. The work of

Cyras et al. (2018) moves, instead, toward the creation of a cDSS

that employs the structured argumentation formalism of ABA+

(stemming from the Assumption-Based Argumentation framework

originally described in Bondarenko et al., 1997) for automated

reasoning with conflicting clinical guidelines, patients’ information

and preferences. Multiple studies have also been conducted in the

field of cDSS considering patients suffering from multimorbidities

(as in Oliveira et al., 2018 and Chapman et al., 2019). Although the

results thus far achieved have mostly been positive, in Bilici et al.

(2018) the authors emphasize the need for further investigations

regarding considerations of shared decisions, patients’ preferences

and social contexts, and a broader range of drug interactions

(including food-drug interactions). Argumentation-based cDSS

have been devised also in this specific research area: the CONSULT

project (outlined in papers such as Essers et al., 2018; Balatsoukas

et al., 2019; Kökciyan et al., 2019) introduces a data-driven decision

support tool to help patients with chronic conditions manage their

multimorbidities in collaboration with their carers and the health

care professionals who are looking after them.

The drive to overcome ethical issues involving AI-based

systems, along with distrust from their users, constitutes the reason

for the recent interest in the field of Explainable AI (XAI). The

idea is that the trustworthiness of AIs can be improved by building

more transparent and interpretable tools capable of: explaining

what the system has done, what it is doing now and what it

is going to do next while disclosing salient information during

these processes (Bellotti and Edwards, 2001). Nevertheless, Vilone

and Longo (2021) point out that there is no general consensus

upon an unambiguous definition of explanations and their essential

properties. Drawing from social sciences studies, Miller (2019)

identifies specific features that could help characterize explanations,

all of which converge around a single conclusion: explanations are

contextual. Similarly, Bex andWalton (2016) consider explanations

as speech acts, differentiated by context from other locutions, used

to help understand something. More precisely, explanations are

a transfer of understanding from one party to another, where

understanding is intended as common knowledge” shared between

those parties. That said, there still remain many active issues

concerning XAI. In Gunning et al. (2019), the authors present a

(non-exhaustive) list of these challenges, that includes topics such

as: accuracy vs. interpretability, the use of abstractions to simplify

explanations or prioritizing competencies over decisions. Another

problem is related to the end-user who is meant to receive the

explanation. Indeed, the explainee might be an individual with a

specific background. Taking into account the different knowledge

and clarification needs of each target user group will ensure the

generation ofmore compelling explanations. From this perspective,

it is interesting to notice that the research presented in Antaki

and Leudar (1992), and more recently in Cyras et al. (2021),

propose an account of explanations that is primarily argumentative.

Similarly, the survey of Vassiliades et al. (2021) concludes that

using argumentation to justify why an event started, or what led

to a decision, can enhance explainability. These intuitions are also

backed by McBurney and Parsons (2021), where it is suggested

that AI systems should adopt an argumentation-based approach

to explanations. The advocated approach points toward Douglas

Walton’s Argument schemes (AS), thoroughly discussed in Walton

et al. (2008).

The paper is structured as follows. Starting from a brief

introduction of the required background notions in Section

2, we will propose a new dialectical tool for delivering cDSS

recommendations: the EQR scheme, its corresponding critical

questions, and the role that such a model plays in providing

explanation within the clinical setting (Section 3). Section 4

articulates its implementation in the context of the CONSULT

system, whereas Section 5 describes the chatbot (EQRbot) and its

internal architecture. The bot conveys information starting from

an instantiated EQR scheme around which pivots any additional

answer to follow-on users’ questions. Finally, Sections 6 and 7

provide a discussion and conclusion, respectively.

1.1. Contributions

The research outlined in this paper presents several original

contributions. Expanding on the previous work of Castagna et al.

(2022) that sketched the novel EQR scheme, we are going to (1)

provide a more detailed description of the EQR scheme. Such

a formal structure emerges as an effective model for conveying

practical and theoretical information yielded as consequences

of a presumptive reasoning formalization involving acting upon

an expert opinion. The EQR scheme herein proposed proves

to be particularly suited in concentrating relevant knowledge

within a single explanation. For this reason, we devise (2) an

implementation in the form of a chatbot (EQRbot) integrated

into the CONSULT system. This bot delivers tailored EQR-based

recommendations to patients, helping them self-managing their

conditions. These recommendations also embed an additional

layer of information: the rationale behind the instantiated scheme

acceptability (i.e., its evaluation according to the considered

argumentation framework). Finally, the EQRbot main procedure

draws from our third contribution: (3) an algorithm for computing

and delivering explanations, of which we provide (4) a formal

analysis of the performance.

2. Background

The following background covers a concise summary of

computational argumentation, along with a short overview of how

argument schemes (and their clinically specialized version) have

been employed in the literature to deliver medical explanations.

The introduced formal definitions and models will prove useful in

the next sections.
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2.1. Computational argumentation

Informal studies on argumentation are underpinned by a rich

literary heritage, but it is only in the past decades that logic-based

models of argumentation have been intensively investigated as core

components of AI-driven and Multi-Agent Systems (Chesnevar

et al., 2000; Bench-Capon and Dunne, 2007). The seminal work

conducted in Dung (1995) has been the starting point for most

of the recent interest and research in the field of abstract

argumentation and its argumentative characterizations of non-

monotonic inferences. Indeed, the main strength of his approach

is the simple and intuitive use of arguments as a means to formalize

non-monotonic reasoning while also showing how humans handle

conflicting information in a dialectical way. In a nutshell, the

idea is that correct reasoning is related to the admissibility of

a statement: the argument is acceptable (i.e., justified) only if it

is defended against any counter-arguments. The core notion of

Dung’s abstract approach revolves around the definition of an

argumentation framework, that is a pair AF = 〈AR, attacks〉, where

AR is a set of arguments, and ‘attacks’ is a binary relation on AR,

i.e., attacks⊆AR×AR, such that attacks(X, Y) denotes the conflict

existing between an argument X and its target Y . In the same paper,

the author proposes also different semantics to capture alternative

(skeptical or credulous) types of reasoning:

Definition 1 (Argumentation semantics). Let AF = 〈AR, attacks〉,

and S ⊆ AR be a set of arguments:

• S is conflict free iff ∀X,Y ∈ S: ¬attacks(X,Y);

• X ∈ AR is acceptable w.r.t. S iff ∀Y ∈ AR such that

attacks(Y ,X): ∃Z ∈ S such that attacks(Z,Y);

• S is an admissible extension iff X ∈ S implies X is acceptable

w.r.t. S;

• An admissible extension S is a complete extension iff ∀X ∈AR:

X is acceptable w.r.t. S implies X ∈ S;

• The least complete extension (with respect to set inclusion) is

called the grounded extension;

• A maximal complete extension (with respect to set inclusion)

is called a preferred extension.

As anticipated, AFs represent general frameworks capable

of providing argumentative characterizations of non-monotonic

logics.1 That is to say, given a set of formulae 1 of some

logical language L, AFs can be instantiated by such formulae. The

conclusions of justified arguments defined by the instantiating

1 are equivalent to those obtained from 1 by the inference

relation of the logic L. These instantiations paved the way for a

plethora of different studies concerning the so-called “structured”

argumentation (as opposed to the abstract approach). Among these,

Besnard and Hunter (2008), Modgil and Prakken (2013), and Toni

(2014) describe a formalization of arguments that follows the same

model of the Argument Schemes introduced inWalton et al. (2008).

That is to say, arguments are typically used to advocate a claim

1 In Dung (1995), the author employs Reiter’s Default logic (Reiter, 1980)

and Pollock’s Inductive Defeasible logic (Pollock, 1987) as an example of

non-monotonic reasoning rendered via abstract argumentation.

based on the premises put forward as evidence to support such

a claim.

2.2. Argument schemes and explanations in
clinical settings

Argument schemes have been extensively investigated and

employed in the AI literature as a way to directly convey

presumptive reasoning in multi-agent interactions (for example,

Atkinson et al., 2006; Tolchinsky et al., 2012; Grando et al., 2013).

Each AS is characterized by a unique set of critical questions

(CQs), rendered as attacking arguments, whose purpose is to

establish the validity of the scheme instantiations. This generates

an argumentation framework that can then be evaluated according

to one of the semantics described in Dung (1995). Such evaluation

embeds the rationale for choosing an argument over another,

meaning that justified instantiations of schemes can be employed

for conveying explanations. The use of argument schemes for

providing explanations is, indeed, not unusual, especially in the

clinical setting. In Shaheen et al. (2021), the authors introduce the

Explain Argument Scheme, whichmodels explanations based on the

reasons, types (of reasons) and levels (of abstraction) and shows a

(pro or con) rationale for giving a particular drug to a patient. The

work presented in Sassoon et al. (2019), Kökciyan et al. (2020), and

Sassoon et al. (2021) harnesses Explanation Templates that differ

according to the reasoning and argument scheme represented and

include placeholders for the actual instantiated variables specific to

a given application of the scheme. Formally:

Definition 2 (Argument Scheme). AS = 〈Prem,Con,Var〉 denotes
an argument scheme, where Prem is a set of premises, Con is the

conclusion, and Var is the set of variables used in the argument

scheme.

Definition 3 (Explanation Template). Let AS be an argument

scheme (as per Definition 2), and txt be a natural language text that
includes elements from Var. Then, an Explanation Template for AS

can be rendered as the tuple ExplAS = 〈AS, txt〉.

Definition 4 (Explanation). An explanation is a tuple 〈ExplAS,
ASi〉 such that ExplAS is the explanation template introduced in

Definition 3, ASi is an acceptable (as per Definition 1) instantiation

of AS with respect to some AF, and every variable in txt of ExplAS is
instantiated by the corresponding element in ASi.

Intuitively, Explanation Templates are engineered to be

adaptive toward the circumstance of their employment and thus

generate tailored explanations. That is to say, argument schemes

model stereotypical patterns of reasoning in different generic

situations, increasing their versatility of usage thanks to a number

of integrated variables. Leveraging those variables, Definition 3

depicts formal structures that further enhance their flexibility

by considering specific natural language snippets concerning the

current context. These structures account then for explanations

that enjoy the contextuality property (one of the most relevant

features of explanations according to Miller, 2019), while they also

acknowledge the end-users’ different knowledge, understanding

capability, and clarification needs.
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2.3. Clinically specialized argument
schemes

In order for a cDSS to provide the appropriate medical

suggestions, explanation templates have previously been mapped

to the Argument Scheme for Proposed Treatment (ASPT) (Sassoon

et al., 2019, 2021; Kökciyan et al., 2020). Introduced in Kokciyan

et al. (2018), ASPT derives from the Argument Scheme for Practical

Reasoning as presented in Atkinson and Bench-Capon (2007). It

instantiates an argument in support of a possible treatment, given

the facts Ft about the patients and the goal G to be achieved.

ASPT

Premise : Given the patient’s fact Ft
Premise : In order to realize goal G

Premise : Treatment T promotes goal G

Conclusion : Treatment T should be considered

As with each argument scheme, ASPT is accompanied by

a series of critical questions that serve to assess the efficacy

of the proposed treatment. In Sassoon et al. (2021), some of

these questions are modeled as clinical specializations of existing

argument schemes (listed in Walton et al., 2008) and cover

particular aspects of the suggested treatment, such as AS from

Patient Medical History, AS from Negative Side Effect and AS

for Contraindications.

3. Methods: Providing explanations via
the EQR argument scheme

3.1. EQR argument scheme

Devised as a model of Explanation-Question-Response agents

interactions sketched in McBurney and Parsons (2021), the EQR

argument scheme draws from the AS for Practical Reasoning (the

variation of the AS presented in Walton (1996) as characterized in

Atkinson and Bench-Capon, 2007) and theAS from Expert Opinion

(Walton, 1997). The underlying idea is to merge the knowledge

elicited by those two formal patterns in a single scheme that would

then yield the advantage of concentrating and synthesizing the

same amount of information in a unique data structure that may

be queried more conveniently. That is to say, the purpose of the

EQR scheme is to formalize the consequences arising (and the

presumptive reasoning leading to them) by acting upon a specific

expert opinion. A reference to such authority provides the rationale

that justifies the conclusion of the argument, also leaving chances of

inquiry for more detailed explanations.

The proposed scheme assumes the existence of:

• A finite set of knowledgeable experts, called Experts, denoted

with elements E, E’, etc. Experts are deemed knowledgeable

if they can somehow prove their competencies (e.g., years of

experience, professional achievements, research publications).

EQR

Premise : In the current state R

Premise : acting upon α (from an expert E in a field F)

Premise : will result in a new state S

Premise : which will make proposition A true (alternatively, false)

Premise : which will promote some value v

Conclusion : Acting upon the opinion α should make proposition

A true (false) and entail value v

• A finite set of disciplinary fields of expertise, called Fields,

denoted with elements F, F’, etc.

• A finite set of propositions, called Opinions, denoted with

elements α, β , etc. Each member represents the viewpoint of

an expert with regard to a specific topic.

• A finite set of propositions, called Prop, denoted with elements

A, B, etc.

• A finite set of states, called States, denoted with elements R, S,

etc. Every member describes a specific state of the world and

corresponds to an assignment of truth values {Truth,False} to
every element of Prop.

• A finite set of Values denoted with elements v, w, etc. This

category includes both positive (i.e., constructive, such as

wellbeing, altruism, integrity, etc.) and negative (i.e., non-

constructive, such as dishonesty, manipulation, greed, etc.)

values.

• A function acting_upon that maps each element of Opinions

to a member of States.

Intuitively, starting from the current circumstance R and acting

upon the opinion asserted by a competent expert in the relevant

field, the agent instantiating the scheme wishes to attain A (or

not A) and the actual reason for it (value v), along with the

entailed consequences, whether they are desired or not (new

state S). As an example of expert opinion, consider an architect

asserting that, according to her recent evaluation, the nearby bridge

requires immediate maintenance to prevent its collapse. In this

case, by acting upon such an opinion, the practical intervention

of specialized workers will change the state of the world into a

new state where the bridge is no longer precarious (promoting the

safety value).

The EQR scheme is accompanied by specifically designed

critical questions:

(EQR.CQ1) Is E the most knowledgeable expert source?

(EQR.CQ2) Is E trustworthy?

(EQR.CQ3) Is E an expert in the field F that α is in?

(EQR.CQ4) Would acting upon α imply A (or not A)?

(EQR.CQ5) Are there alternative experts’ opinions that can be

acted upon to imply A (or not A)?

(EQR.CQ6) Would acting upon α entail contradictory

propositions?

(EQR.CQ7) Is A consistent with what other experts assert?

(EQR.CQ8) Is α based on the (facts expressed by) state R?

(EQR.CQ9) Is F the most relevant disciplinary field to A given

the (facts expressed by) state R?

(EQR.CQ10) Would acting upon α promote a negative value?
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Following an approach akin to Sassoon et al. (2021), we can

model each of the above critical questions into corresponding

argument schemes. Each of these additional argument schemes

may have its respective critical questions. However, we are omitting

them since a full list of CQs for every possible argument scheme

elicited by the critical questions of EQR is out of the scope of the

current paper. For simplicity, we are going to outline only three of

such templates.

3.1.1. AS for expert reliability (ASEXP)

ASEXP

Premise : Given a set of knowledgeable experts

Premise : E is more trustworthy and knowledgeable than any other experts

Conclusion : E should be considered the most reliable expert

The AS for Expert Reliability fleshes out why a proficient

source should be regarded as the most reliable (i.e., the most

knowledgeable and trustworthy) in a group of several experts

(if any). This is connected with and models EQR.CQ1-CQ2.

Notice that here we are assuming a hierarchy of experts based

on their reliability achieved by a preliminary probing of the

ASEXP scheme instantiation (through its respective CQs) and the

available professionals in the set of Experts that informs the EQR

scheme instantiation. As an example, we could envisage a team

of archaeologists at different stages of their careers. Everyone is

considered an expert with several years of experience in their

competence area. However, among them, there is a person (E)

who has published more research articles and has participated

in more archaeological excavations than any other member of

the examined group of professionals (most knowledgeable). In

addition, E has also diligently conducted the role of treasurer in

each past expedition he took part in (trustworthy). Therefore, E

can be deemed as the most reliable expert within those present.

Observe that the same result will also occur if E is the only

element of the considered set. Anticipating our implementation

of the scheme within the CONSULT cDSS, let us also present

another example that considers, like the aforementioned system,

only clinical guidelines as Experts. This may yield an ASEXP

instantiation where the World Health Organization (WHO) and

other local practices are compared.WHO guidelines2 (E), informed

by several global professionals in a multitude of medical areas,

result in the most knowledgeable source of expertise if measured

against any other guidances based upon the proficiency of smaller

(often not international) local practitioners teams, as occurs

for hospital guidelines. The formers also emerge as the most

trustworthy guidances since they are regularly inspected by a

specific review committee composed of appropriately trained staff

members. As such, E can be regarded as the most reliable expert

among those present.

2 https://www.who.int/publications/who-guidelines

3.1.2. AS for relevant field of expertise (ASF)

ASF

Premise : Given a set of disciplinary fields of expertise

Premise : Given the current state R

Premise : Given a goal to achieve G

Premise : F yields more connections, with respect to R and G,

than any other fields

Conclusion : F should be considered the most relevant disciplinary field

The AS for Relevant Field provides the rationale for identifying

the most relevant field, with respect to the current state of affairs R

and a goal to achieve G, among a set of different disciplinary fields

of expertise. This AS is correlated with andmodels EQR.CQ9. Once

again, we are assuming a hierarchy of fields of expertise, based on

their relevance over R and G, achieved by a preliminary probing

of the ASF scheme instantiation (through its respective CQs) and

the available elements in the set of Fields that informs the EQR

scheme instantiation. As an example, consider R to be a state where

a pandemic has spread to a whole country. To deal with such an

emergency and promote people’s health (G), we should probably

resort to epidemiology as a more relevant field of expertise rather

than, say, oncology or neurology. That is because the former can be

deemed as having more connections with R and G, hence proving

to be more relevant than the latter.

3.1.3. AS for alternatives options (ASO)

ASO

Premise : Given a set of alternative options

Premise : Given circumstance C

Premise : Option O does not cause complications in circumstance C

Conclusion : O should be selected

The AS for alternative Options examines the reasons why

a specific option, given a particular circumstance C, should be

selected among a set of alternative options. This AS is correlated

with and models EQR.CQ5. As an example, we can picture a

man that needs to testify in court for a robbery he witnessed.

Unfortunately, he also knows the thief. The man is now required

to choose between producing a deposition that will incriminate

his acquaintance or lying about having witnessed the crime at

all. However, since perjury is a prosecutable criminal offense,

telling the truth proves to be the only option that does not

cause legal complications. As such, the witness will select the

former alternative.

3.2. EQR and explanations in medical
setting

Intuitively, the EQR scheme can display a large number of

information bits to an explainee when looking for clarifications
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about a proposed treatment. Notice indeed that the EQR scheme

can encompass ASPT such that it renders: (i) the treatment T as the

expert’s opinion α (from an expert E in a field F); (ii) the patient

fact Ft as part of the current state R and (iii) the goal to be realized

G as proposition A. That is to say, by embedding ASPT into the

EQR scheme, it will be possible to give more opportunities for

inquiry to an agent seeking clinical recommendations. Certainly,

in this way, further aspects can be interrogated and this can lead

to more satisfactory (and complete) explanations. For example, the

additional data comprised in the current state R, the connected

field of expertise F, the immediate consequence S entailed by the

proposed treatment, or the value v conveyed by the truth-value of

A, all of these are elements that can be interrogated by the patients.

In particular, knowing the source of the recommendation E (in

the remainder of the paper, this will correspond to the chosen

clinical guideline) may boost the patient’s trust in the explainer

and the advised medical care plan. Moreover, the rationale behind

the provided explanations can be further investigated (resulting

in additional, more detailed, explanations) thanks to the extra

information supplied by the answers to each critical question and

corresponding argument that informs valid instantiations of the

EQR scheme (and the incorporated ASPT). This entails that the

same CQs that challenges ASPT will also question instantiations of

the EQR schemewhen deployed formedical recommendations. For

example, the CQs concerning the presence of contraindications and

negative side effects within the proposed treatment (that structure

AS for Contraindications and AS from Negative Side Effect and

in the work of Sassoon et al., 2021) will revise the previously

introduced AS for alternative Options in a clinically specialized

form. The resulting AS for alternative Clinical Options (ASCO)

describes the reasoning pattern that elicits the choice of a specific

harmless treatment for a patient, considering her health conditions.

Indeed, the selection of the recommended remedy is informed by

the subject’s health record: it thus strictly avoids any potentially

dangerous medication. As an example, depict R as the state that

includes a patient suffering from a bacterial chest infection. There

are three available antibiotics that can treat such a disease in

the current state R: amoxicillin3, cefalexin4, and azithromycin.5

According to the information documented by the subject’s medical

facts (Ft) embedded in R, the patient is particularly sensitive to

joint and muscle pain, which is listed among the amoxicillin

side effects. Furthermore, azithromycin should be avoided due to

its contraindications for people affected by heart problems, as,

suppose, is our virtual subject. On the other hand, cefalexin (T)

has already been administered to the patient in the past without

resulting in any dangers or complications. As such, the latter is the

treatment that should be recommended to cure the infection.

An EQR Explanation Template is then determined as in

Definition 3, although it employs the EQR scheme rather than

a generic AS. Similarly, we can formalize an instance of such a

template as:

Definition 5 (EQR Explanation). An EQR explanation is a tuple

〈ExplEQR, EQRi〉 such that ExplEQR is the explanation template

3 https://www.nhs.uk/medicines/amoxicillin/

4 https://www.nhs.uk/medicines/cefalexin/

5 https://www.nhs.uk/medicines/azithromycin/

ASCO

Premise : Given a set of alternative treatments

Premise : Given the current state R

Premise : Considering the patient’s fact Ft (subsumed in R),

treatment T does not cause contraindication nor side effects

Conclusion : T should be recommended

for the EQR scheme, EQRi is an acceptable (as per Definition 1)

instantiation of the EQR scheme with respect to some AF, and

every variable in txt of ExplEQR is instantiated by the corresponding

element in EQRi.

Example 1. Suppose that we have an acceptable (as per Definition

1) clinical instantiation of the EQR scheme, informed by its critical

questions and a specific knowledge base. Assume also that the

scheme variables Var = {R,E, F,α, S,A, v} are equivalent to the

following:

[R] : the patient’s previous health record and the current fever

and headache (due to COVID-19)

[E] : the NICE guidelines6

[F] :medical management of COVID-19

[α] : the administering of paracetamol

[S] : the reduction of fever and headache

[A] : controlling the negative effect of the COVID-19 virus

[v] : the patient’s wellbeing

Finally, let txt be the natural language text: Given [R], the

expertise of [E] in the field of [F] indicates [α] as an effective

treatment. This should lead to [S] which will bolster the goal of [A]

and promote [v]”. Then, the actual EQR Explanation would be:

“Given the patient’s previous health record and the current

fever and headache (due to COVID-19), the expertise of

the NICE guidelines in the field of medical management

of COVID-19 indicates the administering of paracetamol as

an effective treatment. This should lead to the reduction of

fever and headache which will bolster the goal of controlling

the negative effect of the COVID-19 virus and promote the

patient’s wellbeing”.

4. The CONSULT system

The CONSULT7 system is a novel data-driven mobile cDSS

designed to help patients self-managing their condition and

adhere to agreed-upon treatment plans in collaboration with

healthcare professionals. Its main components are outlined in the

following paragraphs and depicted in Figure 1. More details on the

architecture of the system are available in Chapman et al. (2022).

6 https://www.nice.org.uk/guidance

7 https://consultproject.co.uk
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FIGURE 1

Flow chart describing the internal architecture of the CONSULT cDSS. The input data is provided by di�erent sources. The Schemes are templates for

structuring and representing arguments, attacks and explanations. A formal language (i.e., first-order logic) is used to encode the knowledge,

retrieved from the input data, in terms of Specifications that will then instantiate the attack and argument schemes subsequently computed in the

resulting AF by the ASPARTIX (Egly et al., 2008) Solver. The Explanation Generator [based on the sound and complete algorithm developed in

Kökciyan et al. (2020)] constructs textual explanations for the recommendations according to explanation templates and the acceptable arguments

produced by the Solver. The output will be stored in the Instantiated Explanations repository whose elements will feed the EQRbot, the chatbot

responsible for interacting with the patient.

4.1. Data inputs

There are three main types of data inputs into the CONSULT

system: Wellness Sensors, Electronic Health Records and clinical

guidelines. The Wellness sensors used included a Heart Rate

monitor, a Blood Pressure Cuff and an ECG (Electrocardiogram)

patch. The live parameters from these sensors are collected and

displayed in one dashboard in the CONSULT system. This data is

also used within the Argumentation Schemes instantiated in the

reasoning engine. Information is additionally collected from the

Electronic Health Record (EHR), for example the patients’ known

allergies and prescriptions along with their general medical history.

Finally the clinical guidelines, i.e., official documents published by

medical organizations (as the already mentioned NICE guidelines),

are also represented within the system. The CONSULT system also

considers the preferences of stakeholders allowing for personalized

recommendations. Such preferences are rendered as hierarchies of

information (e.g., values, treatment, and guidelines) elicited from

multiple sources, e.g., patient and treating clinician (which also

convey the interests of the healthcare organization and the ethical

oath they have to observe). Ultimately, tailored algorithms are used

to map these medical data and preferences into the formal language

used by the reasoning engine. That is to say, stored in a knowledge

base (i.e., the Specifications), data is represented in terms of facts

and Answer Set Programming (ASP) rules using first-order logic.

4.2. Specifications

The EHR data provides information such as the current_state

of a patient (including demographics and current medications),

which need to be taken into account, along with the health

parameters detected by the wellness sensors, when suggesting

a treatment. Indeed, there may be age or other conditional

restrictions related to the recommendation of, say, certain over-

the-counter medications. For example, consider Frida, a pregnant

patient currently suffering from fever and headache due to the

COVID-19 virus. These facts will be formalized in first-order logic

by the cDSS as current_state(fever, headache, COVID19) and

condition(pregnancy). A treatment may then be recommended

(as shown in Example 1) following the clinical guidelines of NICE-

NG1918 and NHS9 (after their encoding into ASP-rules) that

specifically handle those circumstances.

4.3. Schemes

Argument, attack and explanation schemes are templates

representing common patterns of reasoning and relate a set of

premises to a conclusion, all of which are sentences that can be

represented in first-order logic and include variables that can be

instantiated by data stored in a knowledge base. These schemes

are kept in the Schemes repository and are rendered as ASP rules

composed of a rule body, namely a conjunction of predicates

(premises of the scheme), and a rule head, namely the scheme

conclusion. The information stored in the Specifications data will

8 NICEcovid-managementguide section that specifically covers fever-

management.

9 NHSwebpage section that specifically deals with ibuprofen assumption

risks during pregnancy (redirected from NICE webpage).
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then instantiate the elements of Schemes (i.e., attack and argument

schemes) and thereupon will be fed to the Solver.

4.4. Solver and explanation generator

The argumentation-based reasoning engine runs on

ASPARTIX (Egly et al., 2008), an ASP-Solver capable of computing

arguments extensions under the required semantics (Dung,

1995). The reasoning engine leverages a formal representation of

arguments through their respective argument schemes, critical

questions and attacks to account for the conflicts between

arguments in a given domain. The engine relies on the EvalAF

algorithm to construct an argumentation framework for decision

support and the ExpAF algorithm to provide explanations for

acceptable arguments and attacks through the use of explanation

templates10. The EvalAF algorithm generates an argumentation

framework from a knowledge base and computes extensions under

given semantics. The ExpAF algorithmmaps acceptable arguments

and attacks into explanations in natural language, using the sets of

acceptable arguments and attacks, and corresponding explanation

templates (Definition 3). In charge of the generation of such

explanations is the sound and complete algorithm developed and

implemented in Kökciyan et al. (2020).

4.5. Instantiated explanations

The Instantiated Explanations repository contains the

rationales that justify the EQR explanation(s) (also member(s) of

the repository) that serves as the pivotal element upon which all

the other information is connected. Any answer to the questions

moved by users of the CONSULT cDSS will be drawn from the data

stored in such an archive. Notice that each explanation is tailored

to the specific interacting patient’s requirements, preferences and

medical records. That is because the system manages only known

information about the user and their conditions, thus providing

suited routine recommendations conveniently retrieved by the

applicable clinical guidelines (according to the predetermined

cDSS resources and the patient’s preferences). The user is made

aware that CONSULT is not conceived to solve conflicts or handle

unfamiliar data that would require professional medical expertise.

Given this constraint, we can understand how the explanations

stored within the Instantiated Explanations repository have to

be finite.

5. EQRbot

The agent that will handle the interaction with the patient

is a retrieval-type chatbot, i.e., a kind of bot that focuses on

retrieving contexts and keywords from the user’s prompts in order

to select the best response to give.11 The explanation process will

occur as delineated in Figure 2. After having provided the initial

explanation (i.e., the EQR explanation informed by an acceptable

10 https://git.ecdf.ed.ac.uk/nkokciya/explainable-argumentation

11 https://github.com/FCast07/EQRbot

instantiation of the EQR scheme), the patient will be asked to

express their opinion. If the user is satisfied with the explanation,

then the conversation will immediately end. Alternatively, the

chatbot will demand: a brief context (e.g., “Would you please specify

the context of your explanation request?”) along with the actual

request from the patient. Consider that the interaction is not

limited by a specific set of options to which the explainee needs to

comply: the choice of words to use for formulating the inquiries

is completely unrestricted. By matching stored explanations (all

of which account for the stakeholders’ preferences), context and

user input, the bot will output the additional solicited information.

Observe that the double query prompted by the conversational

agent ensures a significant reduction of misunderstandings when

providing answers to the patient. That is because the matching

occurs via a double-layer word similarity counter function based

on a BoW (Bag of Words) model. The explainer (chatbot)

can be considered successful in its clarification attempt if the

proposed explanation is deemed satisfactory by the user. Recall

that the patient is aware of the EQRbot’s inability to address

questions regarding information not stored within the CONSULT

system. As such, a satisfactory explanation may also be depicted

as the realization that the user has to contact an healthcare

professional should they have further queries. This will stop the

loop of answers/questions and will end the conversation. It will

continue otherwise.

It should be noted that the presence of multiple initial

acceptable EQR explanations will not affect the chatbot operations.

Since all of the explanations are acceptable, there is no need

to further invoke the reasoning engine. The explanations are all

considered equally good, seeing that our criteria for presenting

an explanation is its acceptability (in turn influenced by the

stakeholders’ preferences), and so the EQRbot will randomly

choose one of the available options and will then begin its

interaction with the user. To this end, observe also that the

bot is designed to avoid any unnecessary prolongation of the

interaction to focus only on the required explanations. For this

reason, the EQRbot will not start a conversation (nor even send

a message) without the user prompt, but will react to each

received text.

5.1. NLP filter

The chatbot employs a Natural Language Processing (NLP)

filter in order to refine the input it receives from the patient

and the stored instantiated explanations (Figure 2). The filtering

process comprises: (a) the separation of the considered data

into lists of single words (tokenization); (b) the elimination of

the most common English words, including conjunctions and

prepositions (stop-words removal); (c) the transformation of each

word into its lemmatic form (lemmatization). The purpose of this

refinement procedure is to ease the word matching between a

patient’s request and the system stored information. Notice that

NLP does not influence the reasoning engine nor its outcome (i.e.,

the resulting arguments and their status), it only facilitates the

matching operation.
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FIGURE 2

Flow chart describing the high-level operations performed by the chatbot (EQRbot).

5.2. The algorithm

The EQRbot’s inner operations can be described

by an algorithm, Algorithm 1, that takes as input the

Instantiated Explanations repository (EXP), along with

the set of all the possible user queries (Q) related to the

data conveyed by the initially provided EQR_explanation

(which is also an element of EXP). The procedure

continues until the depletion of all the possible queries

of Q, that is to say until the user is satisfied with the

received information.

Intuitively, NLP_filter corresponds to the function

that performs a series of Natural Language Process

operations as outlined in 5.1. double_layer_matcher,
instead, represents the BoW similarity procedure in charge

of identifying the appropriate response to be delivered.

double_layer_matcher takes advantage of the context

designation, the frequency of key terms occurrence

and multiple cross-counts of the input words and the

system stored data. Each resulting explanation will then

be printed and displayed in the chatbot graphical user

interface (GUI).

Proposition 1. Given the interacting user collaboration (i.e., no

out-of-context, non-sense or out-of-the-system-capability input),

Algorithm 1 is both sound and complete.

Indeed, the procedure can provide the requested information

that is correct according to the user’s input (soundness), and all

such answers can be conveyed by the algorithm (completeness).

Obviously, this is limited by the data held by the system at the time

of the explanation delivery. That is to say, the procedure can only

generate explanations determined by the information saved in the

system’s knowledge base.

Proof.

• [Soundness] The chatbot retrieves the patient’s prompt (q)
as a pair of context (c) and request (r). Then, the function

find_specific_explanation (lines 8–23)matches the

input with one of the explanations stored in the system

(EX) according to a BoW similarity procedure denoted

double_layer_matcher (lines 16–18). The result of this

operation will then consist of the information requested by the

user. In case of a mismatch, the process can be repeated until

the user’s satisfaction (lines 2–5).
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Input: EXP, an EQR_explanation, and the (finite)

set of the possible user’s queries Q

Output: all the requested explanations

1: print(EQR_explanation)

2: for each q ∈ Q:

3: q == (c , r) ## q is a pair composed

by a context (c) and specific request (r) ##

4: find_specific_explanation(q)

5: end for each

6: ·

7: ·

8: Function find_specific_explanation(q )

9: NLP_filter(c)

10: NLP_filter(r)

11: specific_explanation = “ ”

12: similarity_counter = 0

13: provisional_explanation = “ ”

14: for each EX ∈ EXP\{EQR_explanation}

15: NLP_filter(EX)

16: if double_layer_matcher(c, r, EX)

> similarity_counter then

17: similarity_counter

= double_layer_matcher(c, r, EX)

18: provisional_explanation = EX

19: endif

20: end for each

21: specific_explanation

= provisional_explanation

22: print(specific_explanation)

23: end Function

Algorithm 1. Matching Queries/Explanations.

• [Completeness] All the requested information can be

conveyed by the algorithm. Indeed, each additional

explanation the patient might require (associated with

the initial EQR explanation) is already saved in the system.

They can all be retrieved with the corresponding query (lines

2–5).

Since no machine learning operation is involved, hence

no time is consumed in training a model, the algorithm will

take polynomial time to run. That is because the function

find_specific_explanation will be called a maximum of

|Q| times, i.e., up to the number of elements of Q.

5.3. Implementation

Let us consider the EQR explanation of Example 1. We

implemented it via a Telegram GUI. We chose to deploy the

EQRbot via Telegram due to (i) its reputation as one of the

most well-known and utilized instant messenger applications, and

(ii) its programmer-friendly BOT API. To clarify the interaction

depicted in Figure 3, let us suppose that the user monitored by

the CONSULT system is, once again, Frida. The electronic health

record supplies the cDSS with two pieces of information: the

patient is pregnant, and she is currently suffering from fever

and headache caused by the COVID-19 virus. To ease Frida

from the pain, when prompted, the CONSULT reasoning engine

computes an acceptable (as per Definition 1) piece of advice in

the form of an EQR explanation. The EQRbot will display such a

recommendation while encouraging also to ask for more details.

Supplying the context and the specific request, the patient will

demand the rationale behind the choice of the expert that provides

the received clinical advice. The chatbot reply involves a natural

language explanation based on the acceptable instantiation of the

AS for Expert Reliability (Figure 3A). In the example, the system

considers NICE guidelines as the most reliable source and provides

an explanation accordingly. Notice, however, that CONSULT is

engineered as a cDSS that supplies recommendations attained from

general health guidelines (e.g., NICE). As explicitly stated before

its usage, since the system is not supposed to handle conflicts

that require professional medical knowledge to be solved, the

users should seek advice from their general practitioners would

such a circumstance occur. Indeed, this may cause significant

harm to the patient if not handled correctly, as emphasized in

Snaith et al. (2021). For the same reason, the cDSS (hence the

EQRbot) is also updated by the patient’s latest wellness sensor

readings, the data in their EHR (so, for example, it will not

recommend a therapy that has caused negative side effects in the

past) and their preferences regarding treatments. The conversation

continues in Figure 3B, where Frida interrogates the chatbot for

additional information regarding the relevance of the selected field

of expertise to the proposed recommendation. Similarly to its

previous reply, the bot will formulate an explanation based upon

the acceptable instantiation of theAS for Relevant Field of Expertise.

To completely satisfy the patient’s need for clarification, the chatbot

will have to output one last explanation, this time about the

acceptable instantiation of the AS for alternative Clinical Options.

Indeed, the patient desires to know if alternative treatments are

available (because, for instance, the drug indicated by CONSULT

is not currently accessible to her). However, the cDSS confirms

its previous recommendation informing Frida that, due to her

pregnancy, paracetamol is the most appropriate remedy to assume

(Figure 3C).

5.4. Evaluating the EQRbot against the
CONSULT baseline

A seven day within-subjects mixed-methods run in-the-wild

(Waterson et al., 2002) study has been conducted to assess the

usability and acceptability of the CONSULT system with two

different versions: with and without a chatbot. Such a pilot

study demonstrated that real users could employ the application

over an extended period (Balatsoukas et al., 2020). Connie, the

conversational agent previously equipped with the cDSS at the

time of the experiment, accommodates the patients willing to

seek immediate evidence-based advice about a specific health

problem. Informed by the user’s vital data, preferences, EHR and

clinical guidelines retrieved by the CONSULT system, the chatbot

provides any additional explanation regarding the proposed

Frontiers in Artificial Intelligence 10 frontiersin.org69

https://doi.org/10.3389/frai.2023.1045614
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Castagna et al. 10.3389/frai.2023.1045614

FIGURE 3

Instance of a conversation with the EQRbot starting from the explanation of Example 1. The displayed interaction captures the patient inquiries

regarding the involved expert (A), the field of expertise (B) and possible alternatives to the proposed treatment (C). Matching the user’s input, context

and the information stored in the system, the EQRbot provides the additional requested explanation via the acceptable instantiations of the,

respectively, ASEXP, ASF, and ASCO schemes.
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recommendation. The main aspects that characterize Connie can

be outlined as:

• User’s Input.No free interaction occurs since the user’s prompt

is restricted to hard-coded multiple options.

• Interface. The chat, and related conversation log, are

graphically displayed viaMattermost12.

• Chatbot Type. Connie is a rule-based chatbot13, i.e., an

agent capable of responding only by following predetermined

(scripted) replies according to the user’s input.

• Reasoning Engine. The bot leverages the results of the

operations performed by the CONSULT system by means of

the computational argumentation solver ASPARTIX.

• Explanation Delivery. No particular strategy is deployed. The

explanations are triggered via the options selected by the user.

An example of a conversation with Connie is illustrated in

Figure 4B. Here the interacting patient is given the choice of

selecting among four different options in response to the question

“What can I help you with?”. The user then decides to report a

symptom concerning backpain, asking also for more details once

a reply is given. This option triggers one last response from the

chatbot, thus providing the explanation behind the rationale of the

proposed recommendation. Nonetheless, Connie presents some

limitations, as summarized by the result of the pilot study: “[. . . ]

the lack of a more natural conversation flow when interacting with

the chatbot (e.g., close to the one that they [the patients] would have

with their GP)” (Balatsoukas et al., 2020).

Against Connie, considered as the previous baseline,

the EQRbot yields several advantages, as highlighted by the

comparative table of Figure 4A:

• User’s Input. Free textual interaction. Each user’s prompt will

be parsed by the chatbot NLP filter andmatched with the most

appropriate reply. Any non-sense or out-of-context input will

be addressed by a random response from the bot.

• Interface. The chat, and related conversation log, are

graphically displayed via Telegram.14

• Chatbot Type. EQRbot is a retrieval-based chatbot, i.e., an

agent that mostly retrieves its replies from a database of

potential responses according to the most relevant match with

the user’s input.

• Reasoning Engine. The bot leverages the results of the

operations performed by the CONSULT system by means of

the computational argumentation solver ASPARTIX.

• Explanation Delivery. The aim is to reduce the number of

potential user queries (including possible follow-on questions)

and concerns by concentrating the most relevant information

about a specific recommendation within a single explanation,

i.e., the one elicited by an acceptable instantiation of the EQR

scheme.

12 https://mattermost.com/

13 https://www.codecademy.com/article/what-are-chatbots

14 https://telegram.org/

The EQRbot represent an improvement over Connie since

it addresses (in four out of the five listed main features) the

shortcomings ensuing from the pilot study outcome. Indeed,

it allows for (i) better approximations of natural conversations

without textual restriction, by employing (ii) Telegram GUI, i.e.,

a more user-friendly, and popular messaging application than

Mattermost. In general, (iii) retrieval-based chatbots are more

versatile and flexible than rule-based ones, hence more suited for

real-world exchange of arguments. Finally, despite its simplicity,

(iv) having an explanation strategy bring the EQRbot closer to an

authentic question-answer dialog.

6. Discussion

Although argument schemes-based clinical explanations have

already been employed in studies such as Atkinson et al. (2006),

Kökciyan et al. (2020), Shaheen et al. (2021), and Sassoon et al.

(2021), the EQR scheme proposed herein emerges as a model

designed to efficiently deliver a significant amount of information

(both practical and theoretical) at once. Indeed, EQR explanations

constitute the core notions around which all the data, possibly

required by subsequent follow-on queries, are clustered into

user-friendly natural language snippets of texts. Nevertheless, the

envisaged implementation (of which Figure 3 represents a very

restricted example) of this new argument scheme via the EQRbot

presents some limitations, the most prominent of which concerns

the delivery of the explanations. The conversation that occurs

with the patient, albeit simple and clear, lacks a fully-fledged

formal protocol with a complete set of available locutions, tracked

utterances commitment store, precise semantics and pragmatics

(McBurney and Parsons, 2009). A protocol for an explanation

dialog has been given in Bex and Walton (2016) with a complete

list of locutions. However, to evaluate the provided explanation, the

explainee needs to resort to a different dialog protocol (denoted

examination). Similarly, Madumal et al. (2019) devise a study

for modeling explanation dialogs by following a data-driven

approach. The resulting formalization embeds (possibly several)

argumentation dialogs nested in the outer layer of the explanation

protocol. Finally, also the dialog structure proposed (for a previous

version of the CONSULT chatbot) by Sassoon et al. (2019) in

the context of explanations for wellness consultation exploits

multiple dialog types (e.g., persuasion, deliberation and information

seeking) and their respective protocols whilst mostly focusing on

the course of action to undertake. This is different from the

anticipated EQR dialog (sketched in McBurney and Parsons, 2021

as Explanation-Question-Response), whose protocol is halfway

between persuasion, information-giving/seeking and query and

more comprehensively incorporates locutions for handling each

of these tasks without the need for adopting a control layer

(Cogan et al., 2006) or switching between protocols. This allows

for a simpler formalization and more genuine dialogs. For all

of these reasons, future implementations of EQRbot will provide

for the addition of a formal protocol and an adjustment to

the chatbot’s memory. That is to say, the bot’s capability for

recalling the arguments previously moved in the conversation

and recorded in the commitment store. Indeed, considering that

the EQR explanations have been informed by several CQs that
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FIGURE 4

(A) Comparison of EQRbot and Connie’s main features. (B) Example of interaction between a patient and Connie.

should comprehend all the possible challenges moved to them, no

problemwill arise if the user’s inquiries regard these explanations or

their specifics. However, if the inquiries concern a reference to an

argument that occurred in an earlier stage of the dialog, the chatbot

may not be able to properly address the request.

The landscape of argumentation-based chatbots has seen

an increase in interest in recent years. For example, ArguBot

(Bistarelli et al., 2021), developed using Google DialogFlow,

employs ASPARTIX to compute arguments from an underlying

Bipolar AF, or BAF, (Cayrol and Lagasquie-Schiex, 2005) to

support or challenge the user’s opinion about a dialog topic.

The conversational capabilities of ArguBot are, however, restricted

by the arguments stored in the BAF as its knowledge base,

limiting its dialectical potential only to specific fully-developed

interactions. One of themain problems concerning argumentation-

based chatbots is indeed the creation of a proper knowledge

base from which the bot’s arguments can be retrieved and

employed to interact with the user. The research of Chalaguine

et al. (2018) and Chalaguine and Hunter (2018, 2019) outline

harvesting and crowd-sourcing methodologies capable of collecting

arguments and counter-arguments on a specific topic, thus

generating suitable and persuasive knowledge bases for chatbots

[e.g., Chalaguine and Hunter (2020), and, harnessing also hand-

crafted counterarguments due to the topic sensitivity, Chalaguine

and Hunter (2021)]. Unlike the studies presented thus far, the

knowledge base of the EQRbot is personalized on the patient’s

preferences and health data. That information is constantly

updated, making it possible to generate a potentially indefinite

number of diverse explanations (although the user will need

to restart the conversation to allow for the acquisition of the

modified knowledge base, since the EQRbot cannot alter its stored

responses during an interaction). Finally, although still resorting

to similarity algorithms to retrieve appropriate arguments from

a fixed knowledge base, Fazzinga et al. (2021) designed a bot

that performs a reasoning step with multiple elements of user

information before outputting each reply. Notice, however, that

our EQRbot already performs such a step before selecting the

final answer. Indeed, the list of responses fed to the chatbot is the

result of a computation of the framework’s acceptable arguments

generated from the data and templates presented in the CONSULT

system. Restarting the conversation with the EQRbot before each

new explanation request will ensure that a new reasoning process

(that involves the overall AF) will take place.

Lastly, further improvements could also arise by combining

the recent developments in the field of Argument Mining (Cabrio

and Villata, 2018) with additional chatbot code-based instructions.

The swift generation of AFs comprising domain-specific arguments

can indeed assist the bot in performing engaging dialogs such
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that the user’s claims might be constructively challenged by more

persuasive and precise explanations. The mining should occur

from a specialized dataset composed of annotated clinical abstracts

as in Mayer et al. (2020) or Stylianou and Vlahavas (2021),

where the authors provide a complete argument mining pipeline

capable of classifying argument components as evidence/claim and

argument relations as attack/support. In addition, the research

presented in Mayer et al. (2021) extends the pipeline by detecting

also the effects on the outcome associated with the identified

argumentative components.

6.1. Planned user study

To fully evaluate the EQRbot performances, we are currently

planning a user study. The goal of the study is to analyze the

interactions between the patients and the chatbot, such as how

often a conversation is initiated, how long the question/answer

session is on average and which are the most common queries

prompted by the user. In particular, we are interested in a

qualitative assessment of the provided explanations and the

general level of users’ satisfaction toward them. As discussed

before, CONSULT handles data from patients’ Electronic Health

Records and suggests treatments (following clinical guidelines and

stakeholders’ preferences) that have already been tested on the

interacting subjects, thus preventing any contraindications or side

effects. Therefore the recommendations and potential explanations

delivered by the EQRbot will not risk harming the user, and will

instead indicate to contact medical professionals when required.

However, if such a message occurs frequently, this may have the

negative consequence of raising distrust from the patient against

the system which may then overlook such a recommendation

hence precluding (possibly essential) communications with the

main caregivers. For this reason, the participants of the study will

be preemptively informed of the cDSS limitations and its main

functions. In addition, they will also receive a user manual to be

examined whenever needed. The study is expected to last for two

weeks, during which the patients are free to explore the system

functionalities and interact with the chatbot. Before the beginning

of the experiment, the participants will be interviewed in order

to understand what they seek and prospect from the interactions

with the cDSS and the EQRbot. A similar interview will also be

conducted at the end of the study, where it will be possible to

compare the user experience with their initial expectations and

where feedback for further improvements will be collected.

7. Conclusion

Designed as a model capable of efficiently delivering both

practical and theoretical information during inter-agent (human

or AI) explanations, the EQR argument scheme proposed

herein formalizes the consequences yielded (and the presumptive

reasoning leading to them) by acting upon an expert opinion.

In this paper, we outlined an approach that integrates the EQR

scheme in the current research landscape involving decision

support systems and argument-based explanations. In particular,

we have focussed on studies regarding medical applications of

such reasoning patterns, and we have presented a possible way

of enhancing the related explanation templates. Indeed, one of

the main advantages offered by the provided contributions is

the incorporation of clinically specialized AS (e.g., ASPT) into

the newly detailed EQR scheme structure. This will give more

opportunities for inquiry to an agent seeking clarification since

there are more aspects that can be interrogated and that can

help in finding a satisfactory and more complete explanation.

For example, which expert is informing the suggested treatment

is a piece of information that might increase the patients’ trust

in the medical recommendation system. Furthermore, we have

presented an implementation of the proposed contributions by

equipping the CONSULT cDSS with a chatbot that employs

acceptable EQR scheme instantiations as the core element to

convey explanations. This is a substantial contribution to the

research field of argumentation-based human-agent interactions.

Indeed, our bot is guided exclusively by an argumentation

reasoning engine in its decision-making process while it converses

with the user: no machine learning algorithm is involved in

the procedure. In addition, NLP is utilized only as a means for

enhancing the word matching between the user input (which

is completely free and not limited to multiple choice options)

and the system stored explanations. Unlike other chatbots in the

literature, the EQRbot depends upon a dynamic knowledge base

that is constantly updated by the patient’s data received from the

health sensors and their EHR. This entails more personalized and,

possibly, disparate interactions, as long as the user restarts the

conversation (which will allow the reasoning engine to generate

new explanations upon the updated knowledge base). Finally, we

deploy our bot via Telegram. Such a choice ensures a convenient

programmer API along with a well-known and user-friendly GUI.
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The pursuit of trust in and fairness of AI systems in order to enable human-centric

goals has been gathering pace of late, often supported by the use of explanations

for the outputs of these systems. Several properties of explanations have been

highlighted as critical for achieving trustworthy and fair AI systems, but one

that has thus far been overlooked is that of descriptive accuracy (DA), i.e., that

the explanation contents are in correspondence with the internal working of

the explained system. Indeed, the violation of this core property would lead

to the paradoxical situation of systems producing explanations which are not

suitably related to how the system actually works: clearly this may hinder user

trust. Further, if explanations violate DA then they can be deceitful, resulting

in an unfair behavior toward the users. Crucial as the DA property appears to

be, it has been somehow overlooked in the XAI literature to date. To address

this problem, we consider the questions of formalizing DA and of analyzing its

satisfaction by explanation methods. We provide formal definitions of naive,

structural and dialectical DA, using the family of probabilistic classifiers as the

context for our analysis. We evaluate the satisfaction of our given notions of DA

by several explanation methods, amounting to two popular feature-attribution

methods from the literature, variants thereof and a novel form of explanation

that we propose. We conduct experiments with a varied selection of concrete

probabilistic classifiers and highlight the importance, with a user study, of our

most demanding notion of dialectical DA, which our novel method satisfies by

design and others may violate. We thus demonstrate how DA could be a critical

component in achieving trustworthy and fair systems, in line with the principles of

human-centric AI.

KEYWORDS

argumentation, descriptive accuracy, explainable AI, probabilistic classifiers, properties

1. Introduction

Equipping automated decision systems with explanation capabilities is a compelling

need which lies at the basis of the rapid growth of the research field of explainable AI

(XAI) in recent years (Guidotti et al., 2019) and is receiving an increasing attention from

government and regulatory bodies, like the European Commission. Quoting the report of

the Independent high-level expert group on Artificial Intelligence set up by the European

Commission (2019): “Whenever an AI system has a significant impact on people’s lives,

it should be possible to demand a suitable explanation of the AI system’s decision-making

process. Such explanation should be timely and adapted to the expertise of the stakeholder

concerned (e.g., layperson, regulator or researcher).”
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By providing explanations, a system goes beyond just

presenting its outcomes as oracles: rather, they are subjected to

the scrutiny of the cognitive capabilities of the users, who receive

means to achieve a better understanding of the reasons underlying

system’s decisions and/or of its internal operation. In this way, the

adoption of an active and conscious role by users is supported: they

will be able to criticize or agree with system decisions, based on a

cognitively elaborated motivation, rather than blindly rejecting or

accepting them. Thus, explanations for the outputs of AI systems

are widely understood as crucial to support trust in these systems

(Ribeiro et al., 2016; Miller, 2019; Zerilli et al., 2022).

Due to their role in promoting users’ understanding and

involvement, it is no surprise that the two properties of cognitive

explainability and transparency are widely regarded as key factors

and technical challenges of Human-Centric AI, as evidenced in the

introductory article of this special issue (Kakas et al., 2022). For

instance, “Make clear why the system did what it did” is one of the

design guidelines for human-AI interaction presented by Amershi

et al. (2019), while the Research Roadmap of the European network

of Human-Centered Artificial Intelligence (www.humane-ai.eu)

regards the fact that AI systems are explainable and accountable as

a basic prerequisite for human-in-the-loop activities.

This paper contributes to the development of explainability for

human-centric AI by proposing a formal treatment of the notion

of descriptive accuracy (DA), a crucial property for explanations

supporting fair AI systems deserving trust, and by showing how

DA requirements can be achieved in practice through a suitable

form of explanation, called DARXs (acronym for Dialectically

Accurate Relational Explanations). Both the formal treatment of DA

and the definition of DARX are based on ideas and formalisms

from the field of Argumentation Theory, connecting the present

contribution to the subject of the special issue. Argumentation

theory (also referred to in the literature as computational or

artificial argumentation, e.g., see Atkinson et al., 2017; Baroni et al.,

2018 for overviews) has recently been advocated, in a variety of

ways, as a mechanism for supporting explainable AI (see Cyras

et al., 2021; Vassiliades et al., 2021 for recent surveys). A popular

use thereof is as a means for representing the information in an

existing AI system in a way which is more amenable for human

consumption than typical explanation methods, e.g., as in Timmer

et al. (2015) and Rago et al. (2021). This use of argumentation is the

inspiration also for this paper: the formulations of DA we propose

are defined for abstract notions of explanation inspired by the

argumentation frameworks in the seminal works of Toulmin (1958)

and Cayrol and Lagasquie-Schiex (2005), DARXs are inspired

by bipolar argumentation frameworks (Cayrol and Lagasquie-

Schiex, 2005); and our definitions of DA bear resemblance to

properties originally proposed (for various forms of argumentation

frameworks) by Amgoud and Ben-Naim (2018) and by Baroni et al.

(2019).

The paper is organized as follows. Section 2 presents the

motivations and contribution of the work, in particular positioning

our contribution in the context of the special issue, while Section

3 discusses related works. Then, after providing the required

preliminary notions in Section 4, we introduce the proposed formal

treatment of DA in Section 5. Section 6 examines the satisfaction of

DA by some existing and novel explanation approaches, showing

that, differently from other proposals, DARX guarantees a full

satisfaction of DA requirements. These formal results are backed

by an experimental evaluation in Section 7 and by a human

experiment in Section 8, before concluding in Section 9.

2. Motivations and contribution

Being immersed in the human-centric perspective, the issue

of realizing explainable and transparent system does not only

represent a challenging and fascinating socio-technical problem to

tackle (Miller, 2019), but also involves substantial ethical aspects

and requires the satisfaction of human-centric properties, like

trustworthiness and fairness.

First, the explanations provided for the outputs of a system are

a key factor in achieving user trust, a prerequisite for acceptance of

the decisions of a systemwhen deemed to be trustworthy. However,

as pointed out by Jacovi et al. (2021), trust, which is an attitude of

the trustors (in our case, the systems’ users), is distinguished from

trustworthiness, which is a property of the trustees (in our case the

explained systems), i.e., the capability of maintaining some contract

with the users. In fact, “trust and trustworthiness are entirely

disentangled: . . . trust can exist in a model that is not trustworthy,

and a trustworthy model does not necessarily gain trust” (Jacovi

et al., 2021). This makes the goal of achieving trust, and the role

of explanations therefor, a rather tricky issue. On the one hand,

there can be situations where trust is achieved by explanations

which are convincing but somehow deceptive. On the other hand,

there can be situations where an otherwise trustworthy system loses

users’ trust due to problems in its explanations’ capabilities, e.g., as

pointed out by Jacovi et al. (2021), For illustration, consider the case

of an AI-based medical system predicting, for a patient, a high risk

of getting disease X and including in the explanation the fact that

some parameter Y in the patient’s blood test is high. If the patient

deems the system trustworthy, they may try to change (if possible)

the value of Y, e.g., by lifestyle changes. If they find out that the

value of Y was actually irrelevant, i.e., the diagnosis would have

been the same with a low value of Y, and thus trying to modify it

will not have the intended impact on the system prediction, then

the patient’s trust will be negatively affected, independently of the

correctness of the diagnosis.

Thus, trust in an otherwise accurate system can be hindered or

even destroyed by some drawbacks of the explanations it provides.

Trust is however not the only issue at stake. Continuing the

illustration, suppose the patient never gets to know about the

irrelevance of parameter Y. Then, their trust may be preserved, but

then a possibly deceitful system would remain in place. This shows

that, in connection to their impact on trust, explanations also have

an important role toward fairness of AI systems: the description

of the principle of fairness in the report by the Independent high-

level expert group on Artificial Intelligence set up by the European

Commission (2019) states that “the use of AI systems should never

lead to people being deceived or unjustifiably impaired in their

freedom of choice.” This indication complements the requirement

of “ensuring equal and just distribution of both benefits and costs,

and ensuring that individuals and groups are free from unfair bias,

discrimination and stigmatization.” Two complementary facets

of fairness emerge here. The latter concerns a possible unjust
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treatment caused by system biases toward specific user features,

while the former addresses the risk that the system may treat

its users improperly due to inappropriate design choices for the

explanations. This form of unfairness applies to all users, rather

than just some, as in the case of selective system biases.

Avoiding selectively unfair (biased) systems is receiving a great

deal of attention in the literature (see, for instance, Dwork et al.,

2012; Heidari et al., 2019; Hutchinson and Mitchell, 2019; Binns,

2020; Räz, 2021), whereas the problem of avoiding uniformly unfair

systems (due to ill-founded explanations) is receiving less attention,

in spite of being no less important.

These considerations call for the need of identifying some basic

formal requirements that explanations should satisfy in order to

lead to (deservingly) trustworthy as well as (uniformly) fair AI

systems. Indeed, providing a formal counterpart to these high-level

principles appears to be crucial in order to carry out the following

activities in a well-founded and non-ambiguous way: defining

methods for quality verification and assurance from a human-

centric perspective, comparing the adequacy of different systems

on a uniform basis, providing guidelines for system development.

Universal and absolute notions of trustworthiness and fairness

being elusive, if not utopical, we share the suggestion that “the

point is not complete fairness, but the need to establish metrics and

thresholds for fairness that ensure trust in AI systems” (Dignum,

2021).

In turn, the investigation of formal requirements for

explanations can benefit from a reference conceptual environment

where their definition can be put in relation with some general

foundational notions, whose suitability with respect to the human-

centric perspective is well-established. Formal argumentation

is an ideal candidate in this respect, for the reasons extensively

illustrated in particular in Sections 3.1, 4.1 of Kakas et al. (2022)

from which we limit ourselves to cite the emblematic statement

that “Argumentation has a natural link to explanation.” Thus, it

is not surprising that several works have focused on the use of

argumentative techniques for a variety of explanation purposes

(Cyras et al., 2021; Vassiliades et al., 2021). However, the study

of argumentation-inspired formal properties related to human-

centric issues like trustworthiness and fairness appears to have

received lesser attention.

As a contribution to fill this gap, in this paper we use

argumentation as a basis to formalize the property of descriptive

accuracy (DA) described by Murdoch et al. (2019), for machine

learning in general, as “the degree to which an interpretation

method objectively captures the relationships learned by machine

learning models.” DA appears to be a crucial requirement for any

explanation: its absence would lead to the risk of misleading (if

not deceptive) indications for the user (thus affecting trust and

fairness). As such, one would expect that any explanation method

is either able to enforce DA by construction or is equipped with a

way to unearth possible violations of this fundamental property.

Specifically, we address the issue of defining argumentation-

inspired formal counterparts (from simpler to more articulated)

for the general notion of DA. In particular, our proposal leverages

on two main sources from the argumentation literature: Toulmin’s

argument model (Toulmin, 1958) and the formalism of bipolar

argumentation frameworks (Cayrol and Lagasquie-Schiex, 2005;

Amgoud et al., 2008; Cayrol and Lagasquie-Schiex, 2013). In a

nutshell, Toulmin’s argument model focuses on providing patterns

for analyzing argument structure at a conceptual level. The

most fundamental argument structure consists of three elements:

claim, data and warrant. The claim of an argument is the

conclusion it brings forward; the data provide evidence and

facts which are the grounds in support of the claim; and the

warrant, which could be implicit, links the data to the claim.

Bipolar argumentation frameworks belong to the family of abstract

argumentation formalisms pioneered by Dung (1995), where

arguments are seen as abstract entities, and the main focus is on

the relations among arguments, their meaning, and their role in the

assessment of argument status. In particular, bipolar argumentation

encompasses the basic relations of attack and support which

provide a synthetic and powerful abstraction of the main kinds of

dialectical interactions that may occur between two entities (see, for

instance, Tversky and Kahneman (1992) and Dubois et al. (2008)

for general analyzes emphasizing the role of bipolarity in human

decisions). A bipolar argumentation framework is hence a triple

(Args,Att, Supp) where Att, Supp ⊆ Args× Args.

We will see that some of our abstractions for explanations can

be put in correspondence with Toulmin’s model with an implicit

warrant, whereas others can be seen as bipolar argumentation

frameworks. Argumentation frameworks are typically equipped

with “semantics” (e.g., notions of extensions) that may satisfy

desirable properties: we define notions of DA drawing inspiration

from some of these properties.

On these bases, focusing on the setting of probabilistic classifiers,

we make the following contributions.

• We introduce three formal notions of DA (Section 5): naive

DA, as a precursor to dialectical DA, both applicable to

any probabilistic classifier, and structural DA, applicable to

probabilistic classifiers that are equipped with a structural

description, as is the case for Bayesian network classifiers

(BCs) (see Bielza and Larrañaga, 2014 for an overview) and

Chain Classifiers (CCs), resulting from chaining probabilistic

classifiers (e.g., as is done for BCs by Read et al., 2009

and for other types of probabilistic classifiers by Blazek

and Lin, 2021). These notions of DA are defined for

generic abstractions of explanations, so that they can be

applied widely to a variety of concrete notions instantiating

the abstractions.

• We study whether concrete explanation methods

(instantiating our abstract notions of explanation) satisfy

our notions of DA (Section 6). We focus our analysis on

(i) existing feature attribution methods from the literature,

namely LIME (Ribeiro et al., 2016) and SHAP (Lundberg and

Lee, 2017), as well as (ii) novel variants thereof and (iii) a

novel method we define (which we refer to in short as DARX).

We prove that: the methods (i) are not guaranteed to satisfy

any of the formulations of DA we define; the variants (ii) are

guaranteed to satisfy structural DA (by construction) but may

still violate (naive and) dialectical DA; the DARX method

is guaranteed to satisfy all the considered forms of DA (by

construction), thus providing a proof of concept that our

forms of DA are indeed satisfiable.
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• We evaluate our forms of DA empirically on a variety of BCs

and CCs (Section 7),1 showing that they are often violated in

practice by methods (i) and (ii).

• We describe a user study we conducted to gauge the

importance of dialectical DA (our most “demanding” form

of DA, applicable to any probabilistic classifier) to humans,

when using explanations of probabilistic classifiers (Section

8), showing that this property predominantly aligns with

human judgement.

3. Related work

A multitude of methods for providing explanations have been

proposed (e.g., see the survey by Guidotti et al., 2019) and

their desirable properties have been considered from a variety

of perspectives (e.g., see the survey by Sokol and Flach, 2020).

We draw inspiration from Murdoch et al. (2019) and focus,

in particular, on their property of descriptive accuracy (DA) for

(model-based or post-hoc) interpretable machine learning. As

mentioned in the introduction, DA concerns the degree to which

an interpretation (in our setting, explanation) method objectively

captures the behavior of themachine-learnedmodels.We will build

on argumentative notions to provide three formal characterisations

for DA, allowing evaluation of explanation methods for satisfaction

of DA in precise terms.

DA is seen, in Murdoch et al. (2019), as a crucial property for

achieving interpretable machine learning, alongside, in particular,

predictive accuracy, wrt (test) data, of the predictions produced by

the interpretations/explanations. Whereas DA is concerned with

the inner workings of models, predictive accuracy is concerned

with the input-output behavior thereof. Predictive accuracy is thus

closely linked with properties of fidelity or faithfulness which have

been considered by several works. For instance, in Guidotti et al.

(2019) fidelity is defined as the capability of an explanation model

to “accurately imitate a black-box predictor” and is measured in

terms of accuracy score, F1-score, and so on, but wrt synthetic data

capturing the behavior of the black-box. Analogously, in Lakkaraju

et al. (2019), fidelity concerns the ability of an explanation to

“faithfully mimic the behavior” of a model and is assessed in terms

of the disagreement between the labels predicted by the explanation

and the labels predicted by the model. In the case of explanations

concerning a single instance, local fidelity has been defined as

a measure of how well an explanation model approximates the

original model in a neighborhood of the considered instance in

need of explaining (Ribeiro et al., 2016; Alvarez-Melis and Jaakkola,

2017). In a similar vein, White and d’Avila Garcez (2020) define

counterfactual fidelity error as the difference between the actual

perturbation of a parameter needed to change the outcome in the

original model and an estimate of that value, calculated using an

approximate model.

1 Note that some of these probabilistic classifiers are based on models

which are, in principle, interpretable, like Bayesian networks. However

we remark that interpretable models may still need explanations (Lipton,

2018; Ciatto et al., 2020; Du et al., 2020), e.g., because their size is

beyond human interpretation capabilities or because lay users cannot

understand probabilities.

Du et al. (2019) propose a post-hoc attribution method to

explain the predictions of recurrent neural networks (RNNs) in

text mining tasks with the goal of producing explanations, both at

word-level and phrase-level which are faithful to the original RNN

model. The method is specifically tailored to RNNs’ architecture as

it resorts to computations on hidden state vectors. Faithfulness is

evaluated empirically by computing a score based on the following

idea: if one deletes the sentence with the highest attribution for

a given prediction, one should then observe a significant drop

in the probability of the predicted outcome, if the method is

faithful. Thus, this work does not introduce a formal notion of

faithfulness which is directly comparable to our characterization of

descriptive accuracy and, in fact, the faithfulness score proposed is

only indirectly related to the internal behavior of the RNN or of any

other classifier.

The work by Adebayo et al. (2018) focuses on saliency methods

used to highlight relevant features in images and shows that some

of these methods are independent of both the data the model

was trained on, and the model parameters, thus pointing out

a lack of descriptive accuracy. Interestingly, but not completely

surprisingly, it is shown that visual inspection of saliency maps

may be misleading and some systematic tests (called sanity checks)

are applied to verify whether the explanations depend on the data

and the model parameters. The very interesting analysis carried

out in this work provides striking evidence that the notion of

descriptive accuracy requires more attention, while, differently

from our present work, it does not include a proposal for an explicit

formalization of this notion.

Yeh et al. (2019) address the problem of defining objective

measures to assess explanations and propose, in particular, an

infidelity measure, which can be roughly described as the difference

between the effect of an input perturbation on the explanation

and its effect on the output, and a sensitivity measure capturing

the degree to which the explanation is affected by insignificant

perturbations. Both measures use the classifier as a black box and

hence there are no a priori guarantees about their ability to satisfy

descriptive accuracy, as discussed in the present paper. Indeed, the

authors apply a sanity check in the spirit of Adebayo et al. (2018) to

verify whether the explanations generated to optimize the proposed

measures are related to the model.

In the context of deep networks, Sundararajan et al. (2017)

propose two axioms called Sensitivity and Implementation

Invariance. The former consists of two requirements: (a) for every

input and baseline that differ in one feature but have different

predictions then the differing feature should be given a non-zero

attribution; (b) if the function implemented by the deep network

does not depend (mathematically) on some variable, then the

attribution to that variable is always zero. The latter states that

attributions should be identical for two functionally equivalent

networks, where two networks are functionally equivalent if their

outputs are equal for all inputs, despite having very different

implementations. Sensitivity bears some similarity with the weakest

notion we consider, namely naive descriptive accuracy, as they

both refer to the role of individual variables and to ensure their

relevance when present in explanations. However the perspective

is slightly different as we essentially require that the presence

of a feature in the explanation is somehow justified by the

model, while Sundararajan et al. (2017) require that a feature is
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present in the explanation under some specific conditions. Bridging

these perspectives is an interesting issue for future work. The

requirement of Implementation Invariance is motivated by the

authors with the claim that attribution can be colloquially defined

as assigning the blame (or credit) for the output to the input

features. Such a definition does not refer to implementation details.

While referring to the special (and rather unlikely in practice)

situation where two internally different classifiers produce exactly

the same output for the same input, we regard this requirement,

which is somehow in contrast with descriptive accuracy, as partly

questionable. Indeed, the fact that internal differences are reflected

in the explanations may be, at least in principle, useful for some

purposes like model debugging. If the differences concern the use

of actually irrelevant features, we argue that this aspect should be

captured by more general relevance-related criteria.

Chan et al. (2022) carry out a comparative study of faithfulness

metrics for model interpretability methods in the context of natural

language processing (NLP). Six faithfulness metrics are examined,

all of which are based, with different nuances, on an evaluation of

the role of the most important tokens in the classified sentences,

in particular the common idea underlying these metrics is to

compare the output of the classifiers for the same input with or

without the most important tokens. These metrics use classifiers

as black boxes and do not take into consideration their actual

internal operation, so, while sharing the general goal of avoiding

explanations that have loose correspondence with the explained

model, their scope is somehow orthogonal to ours. Chan et al.

(2022) observe that, though referring to the same basic principle,

thesemetrics may provide contradictory outcomes, so that themost

faithful method according to a metric is the worst with respect

to another one. To address this problem, the authors propose a

property of Diagnosticity, which refers to the capability of a metric

to discriminate a more faithful interpretation from an unfaithful

one (where, in practice, randomly generated interpretations are

used as instances of unfaithful ones). Applying a possibly adapted

notion of Diagnosticity in the context of our proposal appears an

interesting direction of future work.

Mollas et al. (2022) propose Altruist, an approach for

transforming the output of feature attribution methods into

explanations using argumentation based on classical logic. In

particular, Altruist is able to distinguish truthful vs. untruthful

parts in a feature attribution and can work as a meta-explanation

technique on top of a set of feature attribution methods. Similarly

to our proposal, Mollas et al. (2022) assume that the importance

weights produced by feature attribution methods are typically

associated with a monotonic notion, and that end-users expect

monotonic behavior when altering the value of some feature.

On this basis, Altruist includes a module which assesses the

truthfulness of an importance value by comparing the expected

changes of the output, given some perturbations, with respect to

the actual ones and then building an argumentation framework

which is based on the predicates corresponding to the results of

these comparisons and can be used to support a dialogue with

the final user. The notion of truthfulness used in Mollas et al.

(2022) refers to correspondence with users expectations rather

than with internal model behavior and is thus complementary to

our notion of descriptive accuracy. As both aspects are important

in practice, bridging them and investigating their relationships

is a very interesting direction of future work. Also, the uses of

argumentation in the two works are somehow complementary:

while we resort to argumentation concepts as foundational

notions, in Mollas et al. (2022) logic-based argumentation

frameworks are used to support reasoning and dialogues about

truthfulness evaluations.

Overall, whereas formal counterparts of predictive

accuracy/faithfulness/fidelity have been extensively studied

in the XAI literature, to the best of our knowledge, formal

counterparts of DA appear to have received limited attention

up to now. This gap is particularly significant for the classes of

post-hoc explanations methods which, per se, have no relations with

the underlying operation of the explained model and therefore

cannot rely on any implicit assumption that DA is guaranteed, in a

sense, by construction. This applies, in particular, to the family of

model-agnostic local explanation methods, namely methods which

are designed to be applicable to any model (and hence need to treat

the model itself purely as a black-box) and whose explanations are

restricted to illustrate individually a single outcome of the model

without aiming to describe its behavior in more general terms. This

family includes the well-known class of additive feature attribution

methods, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg

and Lee, 2017), where the explanation for the outcome of a model

basically consists in ascribing to each input feature a numerical

weight. We will study our formalisations of DA in the context of

both LIME and SHAP.

SHAP has been shown to be the only additive attribution

method able to jointly satisfy three formal properties, called local

accuracy, missingness, and consistency (see Lundberg and Lee, 2017

for details). These properties do not directly concern the internal

working of the model and thus cannot be seen as forms of DA.

Indeed, our analysis will show that SHAP, as well as LIME, are

not guaranteed to satisfy our notions of DA– thus local accuracy,

missingness and consistency do not suffice to enforce DA in

our sense.

A variety of approaches devoted in particular to the explanation

of Bayesian networks exist in the literature (Lacave and Díez,

2002; Mihaljevic et al., 2021). At a high level these approaches can

be partitioned into three main families (Lacave and Díez, 2002):

explanation of evidence (which concerns explaining observations

by abducing the value of some unobserved variables), explanation

of model (which aims at presenting the entire underlying model to

the user), and explanation of reasoning. Explanation of reasoning

is the one that best lends itself to fulfilling DA. According to

Lacave and Díez (2002), it is in turn divided into: (i) explanation

of the results obtained by the system and the reasoning process that

produced them; (ii) explanation of the results not obtained by the

system, despite the user’s expectations; (iii) hypothetical reasoning,

i.e., what results the system would have returned if one or more

given variables had taken on different values from those observed.

Our DARX approach is mainly related to point (i), even if it

may support some form of hypothetical reasoning too. We remark

that the spirit of DARX is not advancing the state of the art in

explanations for Bayesian networks but rather providing a concrete

example of a method satisfying the DA properties we introduce

and showing that even with this baseline approach we can get
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improvements with respect to popular model-agnostic methods, as

concerns satisfaction of DA.

To introduce formal notions of DA we take inspiration from

basic concepts in formal argumentation. As pointed out by Cyras

et al. (2021), many popular methods for generating explanations

in AI can be seen as implicitly argumentative, in addition to

the vast literature on overtly argumentative approaches. These

include the use of a variety of argumentation frameworks for

explanation purposes, as surveyed in particular by Cyras et al.

(2021), with a broad set of application domains, ranging from

law and medical informatics to robotics and security, as discussed

by Vassiliades et al. (2021). As pointed out by Cyras et al.

(2021), however, in the literature the study of formal properties

of argumentation frameworks have received by far more attention

than the investigation of desirable properties of explanations, and

our use of argumentation to drive the definition of explanation

requirements, rather than of the explanation methods themselves,

appears to be a novel investigation line to the best of our knowledge.

Last but not least, the human-centric approach requires

that users’ perspectives lie at the heart of the evaluation of

AI explanation methods. Some works have identified properties

naturally amenable to being assessed with humans, for example,

Murdoch et al. (2019) propose relevancy, concerning the ability

to provide insight for a particular audience into a chosen domain

problem. It is widely acknowledged though that more user testing

would be beneficial for evaluating XAI methods (e.g., see Keane

et al., 2021). We contribute to this line of research by conducting

a user study to assess whether our dialectical DA is in line with

user expectations.

4. Preliminaries on probabilistic
classifiers

As DA is inherently related to the internal operation of a model,

rather than just to its input/output behavior, any formal notion

of DA cannot be completely model-agnostic. It follows that an

investigation of DA needs to find a balance between the obvious

need of wide applicability and the potential advantages of model-

tailored definitions. For this reason we will focus on the broad

family of probabilistic classifiers.

We consider (discrete) probabilistic classifiers with feature

variables X = {X1, . . . ,Xm} (m > 1) and class variables C =

{C1, . . . ,Cn} (n ≥ 1). Each (random) variable Vi ∈ V = X ∪ C

is equipped with a discrete set of possible values2 �Vi : we define

the feature space as X = �X1 × . . . × �Xm and the class space as

C = �C1 × . . . × �Cn . From now on, we call any vector x ∈ X an

input and denote as x(Xi) the value of feature Xi in x. Given input x,

a probabilistic classifier PC computes, for each class variable Ci and

value ω ∈ �Ci , the probability P(Ci = ω|x) that Ci takes value ω,

given x.3 We then refer to the resulting value for a class variableCi ∈

2 Thus, in this paper we discretise continuous variables, leaving their full

treatment to future work.

3 Our focus is on explaining the outputs of classifiers, so we ignore how

they are obtained, e.g., by hand or from data (subject to whichever bias), and

how they perform computation.

C given input x as PC(Ci|x) = argmaxω∈�Ci
P(Ci = ω|x). Table 1

gives a probabilistic classifier for a (toy) financial setting where

the values of class variables problematic external event and drop in

consumer confidence are determined based on the feature variables

company share price trend, devaluation of currency, healthy housing

market and negative breaking news cycle. Here, for any variable

Vi ∈ V, �Vi = {+,−}.

For Xi ∈ X, we will abuse notation as follows, to simplify some

of the formal definitions later in the paper: PC(Xi|x) = x(Xi)

(basically, the “resulting value” for a feature variable, given an input,

is the value assigned to that variable in the input) and P(Xi =

x(Xi)) = 1 (basically, the probability of a feature variable being

assigned its value, in the given input, is 1).Wewill also use notation:

P(V=v|x, set(Vi=vi))=

{

P(V = v|x′), if Vi ∈ X,

P(V = v|x,Vi = vi), if Vi ∈ C,

where, in the first case, x′(Vi) = vi and x′(Vj) = x(Vj) for

all Vj ∈ X \ {Vi}. Basically, this notation allows to gauge the

effects of changes in value for (input or class) variables on the

probabilities computed by the classifiers (for assignments of values

to any variables).

Various types of probabilistic classifiers exist. In Section 7

we will experiment with (explanations for) a variety of (discrete)

Bayesian Classifiers (BCs, see Bielza and Larrañaga, 2014 for an

overview), where the variables in V constitute the nodes in a

Bayesian network, i.e., a directed acyclic graph whose edges indicate

probabilistic dependencies amongst the variables.4 We will also

experiment with (explanations for) chained probabilistic classifiers

(CCs, e.g., as defined by Read et al. (2009) for the case of BCs).

These CCs result from the combination of simpler probabilistic

classifiers (possibly, but not necessarily, BCs), using an ordering≻C

over C such that the value of any Ci ∈ C is treated as a feature value

for determining the value of any Cj ∈ C with Cj ≻C Ci, and thus

a classifier computing values for Ci can be chained with one for

computing values for Cj. For illustration, in Table 2 we re-interpret

the classifier from Table 1 as a CC amounting to a chain of two

classifiers, using e ≻C c: the classifier (a) determines the value of c as

an additional input for the classifier (b). Then, the overall classifier

determines the value of c first based on the feature variables d, h

and n, and then e based on s and c (treated as a feature variable

in the chaining, thus implicitly taking into account d, h and n).

Note that, in Table 2 and throughout the paper, we abuse notation

and use inputs for overall (chained) classifiers (x in the caption of

the table) as inputs of all simpler classifiers forming them (rather

than the inputs’ restriction to the specific input variables of the

simpler classifiers).

For some families of probabilistic classifiers (e.g., for BCs)

it is possible to provide a graphical representation which gives

a synthetic view of the dependence and independence relations

between the variables. In these cases, we will assume that the

classifier is accompanied by a structural description, namely a set

SD ⊆ V × V. The structural description identifies for each

variable Vj ∈ V a (possibly empty) set of parents PA(Vj) =

{Vi | (Vi,Vj)} ∈ SD with the meaning that the evaluation of

4 BCs determine probabilities based on prior and conditional probabilities,

e.g., using maximum a posteriori estimation. Given that our focus is on

explaining, we ignore here how BCs are obtained.
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TABLE 1 An example of probabilistic classifier with X={s,d,h,n} and C={c, e}.

s + + + + + + + + − − − − − − − −

d + + + + − − − − + + + + − − − −

h + + − − + + − − + + − − + + − −

n + − + − + − + − + − + − + − + −

c + − + + + − + − + − + + + − + −

P .60 .65 1 .60 .60 1 1 .65 .60 .65 1 .60 .60 1 1 .65

e + − + + + − + − + − + + + − + −

P .60 1 .60 .60 .60 1 .60 1 1 .65 1 1 1 .65 1 .65

Here, e.g., for x (highlighted in bold) such that x(s) = x(d) = x(h) = x(n) = +,PC(c|x) = + (as P(c = +|x) = .60), andPC(e|x) = + (as P(e = +|x) = .60).

TABLE 2 An example of chained probabilistic classifier (CC) with (a) the

first probabilistic classifierPC1 with X1 ={d,h,n}, C1 = {c}, and (b) the

second probabilistic classifierPC2 with X2 = {s, c}, C2 = {e} (both inputs

highlighted in bold).

(a)

d + + + + − − − −

h + + − − + + − −

n + − + − + − + −

c + − + + + − + −

P .60 .65 1 .60 .60 1 1 .65

(b)

s + + − −

c + − + −

e + − + −

P .60 1 1 .65

(c)

Here, e.g., for x as in the caption of Table 1, PC(c|x) = PC1(c|x) = + and PC(e|x) =

PC2(e|x, set(c = PC1(c|x))) = +. (c) A structural description for the CC in (a, b), shown as

a graph.

Vj is completely determined by the evaluations of PA(Vj) in the

classifier. In the case of BCs, the parents of each (class) variable

correspond to the variables in its unique Markov boundary (Pearl,

1989; Neapolitan and Jiang, 2010) M :V → 2V, where, for any

Vi ∈ V, M(Vi) is the ⊆-minimal set of variables such that Vi is

conditionally independent of all the other variables (V \ M(Vi)),

given M(Vi). In the case of CCs, even when no information is

available about the internal structure of the individual classifiers

being chained, a structural description may be extracted to reflect

the connections between features and classes. For illustration,

for the CC in Tables 2a, b, the structural description is SD =

{(d, c), (h, c), (n, c), (s, e), (c, e)}, given in Table 2c as a graph.

We remark that notions similar to structural descriptions have

been considered earlier in the literature. For instance, in Timmer

et al. (2015) the argumentative notion of a support graph derived

from a Bayesian network has been considered. This support graph

however is built with reference to a given variable of interest and is

meant to facilitate the construction of arguments which provide a

sort of representation of the reasoning inside the network. In our

case we provide a structural description which does not refer to a

single variable of interest and is not used for building explanations

but rather to verify whether they satisfy structural DA, as will be

described later.

In the remainder, unless specified otherwise, we assume as

given a probabilistic classifier PC with feature variables X and class

variables C, without making any assumptions.

5. Formalizing descriptive accuracy

We aim to define DA, using argumentative notions as a basis, in

a way which is independent of any specific explanationmethod (but

with a focus on the broad class of local explanations, and specifically

feature attribution methods to obtain them).

At a very abstract level, an explanation, whatever its structure is,

can be regarded as including a set of explanation elementswhich are

provided by the explainer to the explainee in order to justify some

system outcome. Relationships between explanations under this

abstract understanding and argumentative notions can be drawn

at different levels. According to a first basic interpretation, the

main components of an explanation can be put in correspondence

with the essential parts of Toulmin’s argument model (Toulmin,

1958): the system outcome can be regarded as an argument claim,

while the explanation elements are the data supporting the claim;

claim and data are connected (implicitly) by a warrant, namely the

assumption on which the validity of the link from the data to the

claim relies. In a more articulated interpretation, one can consider

the existence of distinct argumentative relations underlying the

explanation. Specifically, as mentioned in Section 2, we will focus

on the fundamental relations of attack and support encompassed in

bipolar argumentation frameworks (Amgoud et al., 2008).

According to both interpretations, the property of DA can be

understood as the requirement that the argumentative structure

underlying the explanation has a correspondence in the system

being explained, and hence can be regarded as accurate. In

particular, in the basic interpretation, we regard an explanation as

satisfying DA if a suitable warrant, linking the explanation elements

with the outcome, can be identified in the behavior of the system,

while in the more articulated interpretation we require that the
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relations of attack and support correspond to the existence of

suitable bipolar influences within the system.

In order to convert these high-level considerations into

formal definitions for both argumentative interpretations, we

will consider different abstractions of the notion of (local)

explanation, able to encompass a broad range of existing notions

in the literature as instances. The abstractions we define are

based on the combinations of alternative choices along two

dimensions. On one hand, we consider two basic elements that

an explanation may refer to: (1) input features; (2) pairs of

variables representing relations between variables.When only input

features are used then the resulting explanations are flat/shallow,

only describing input/output behavior, whereas the inclusion of

relations potentially allows for deeper explanation structures. On

the other hand, we assume that the basic elements inside an

explanation can be: (a) regarded as an undifferentiated set (we

call these elements unsigned, in contrast with (b)); (b) partitioned

into two sets according to their positive or negative role in the

explanation. The combinations (1)-(a) and (2)-(a) will correspond

respectively to the abstract notions of unipolar and relational

unipolar explanations while the combinations (1)-(b) and (2)-(b)

will correspond respectively to the notions of bipolar and relational

bipolar explanations.5

Driven by argumentative interpretations for these forms of

explanations, in terms of Toulmin’s argument model and bipolar

argumentation as highlighted above, we will introduce a notion of

naive DA for all the kinds of abstract explanations we consider and

a notion of dialectical DA tailored to the two cases of relational

explanations. We see naive DA as a very weak pre-requisite for

explanations, and prove that it is implied by dialectical DA for

both bipolar and relational bipolar explanations (Propositions 1

and 2, resp.): thus, naive DA can be seen as a step toward defining

dialectical DA. (Naive and) Dialectical DA are applicable to any

probabilistic classifiers. In the specific setting of classifiers with

underlying graph structures, such as BCs and CCs, we will also

define a notion of structural DA for relational unipolar/bipolar

explanations. Table 3 summarizes the definitions from this section,

given below.

5.1. Unipolar explanations and naive DA

We begin with a very general notion of unipolar explanation:

we only assume that, whatever the nature and structure of the

explanation, it can be regarded at an abstract level as a set of features:

Definition 1. Given an input x ∈ X and the resulting value ω =

PC(C|x) for class C ∈ C given x, a unipolar explanation (for C = ω,

given x) is a triple 〈F,C, x〉 where F ⊆ X.

5 We stress that what we call here explanations are in fact abstractions of

what full-fledged explanations typically are (e.g., feature attribution methods

such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017) include,

in addition to positive and negative features, a numerical value therefor).

In this sense, we could more appropriately refer to our abstractions as

explanation skeletons, but refrain to do so for simplicity of exposition.

It is easy to see that it is straightforward to derive unipolar

explanations from the outcomes produced by existing explanation

methods when they return features accompanied by additional

information (e.g., feature importance as in the case of the

attribution methods LIME and SHAP): basically, in these settings

the unipolar explanations disregard the additional information, and

amount to (a subset of) the set of features alone (e.g., the k most

important features).

From an argumentative perspective, the features in a unipolar

explanation can be regarded as the grounds (somewhat in

Toulmin’s sense) for justifying the resulting value assigned by the

classifier to a class variable, for the input under consideration.

Accordingly, we require that some form of warrant justifying the

link of these grounds with the resulting value can be identified.

This corresponds to the simplest form of DA, i.e., naive DA, whose

intuition is that the features included in a unipolar explanation

should be “relevant,” i.e., should play a role in the underlyingmodel,

as formally defined in the following.

Property 1. A unipolar explanation 〈F,C, x〉 satisfies naive

descriptive accuracy iff for every Xi ∈ F there exists an input x′ ∈ X

with x′(Xj) = x(Xj) for every Xj 6= Xi and with x
′(Xi) 6= x(Xi), such

that, lettingω = PC(C|x), it holds that P(C = ω|x) 6= P(C = ω|x′).

Naive DA holds when, for each individual feature, there is at

least one case (i.e., an alternative input x′ to the input x being

explained) where a change in the value of the feature has an effect on

the probability of the value of the class variable: thus, it is a rather

weak requirement as it excludes individually “irrelevant” features

from playing a role in the explanation. Note that this property

can also be interpreted as a rudimentary form of counterfactual

reasoning (of the form “what happens when the value of some

variable changes?”). However, it is too weak to define counterfactual

explanations (e.g., as first modeled in Tolomei et al., 2017; Wachter

et al., 2017). Indeed, changes in probabilities, as in naive DA, may

not lead to changes in classification, as required when defining

counterfactual explanations. Furthermore, the notion of naive

DA disregards considerations of “actionability” for counterfactual

explanations, e.g., as addressed by Karimi et al. (2021). We leave

formalization of DA for counterfactual explanations to future work.

For illustration, given the probabilistic classifier in Table 1 and

x as in the table’s caption, the unipolar explanation 〈{s, d, h, n}, c, x〉

does not satisfy naive DA, given that both s and d are “irrelevant”

here: changing the value of either does not affect the probability of

c. Instead, it is easy to see that 〈{h, n}, c, x〉 satisfies naive DA.

5.2. Bipolar explanations and dialectical DA

Unipolar explanations consist of “minimal” information, i.e.,

just the features playing a role in explanations. At a finer level

of granularity, corresponding to a greater degree of articulated

argumentative interpretation, we consider bipolar explanations,

where the features are partitioned into two sets: those having a

positive, or supporting, effect on the resulting value and those

having a negative, or attacking, effect. The notions of positive

and negative effect may admit different specific interpretations

in different contexts, the general underlying intuition being that
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TABLE 3 Explanations with the characteristics they hold (as combinations of (1)-(2) and (a)-(b)) represented byX and their DA properties (in italics)

represented by ⋆.

Unip. Rel. Unip. Bip. Rel. Bip.

(Section 5.1) (Section 5.2) (Section 5.3) (Section 5.4)

(1) input features X X

(2) relations X X

(a) unsigned X X

(b) positive or negative X X

Basic DA ⋆ ⋆ ⋆ ⋆

Dialectical DA ⋆ ⋆

Structural DA ⋆ ⋆

the corresponding features provide, resp., reasons for and against

the resulting value being explained. Whatever the interpretation,

we assume that positive and negative features are disjoint, as a

feature with a twofold role in an explanation could be confusing

for the user.

Definition 2. Given an input x ∈ X and the resulting value ω =

PC(C|x) for class C ∈ C given x, a bipolar explanation (for C = ω,

given x) is a quadruple 〈F+, F−,C, x〉 where F+ ⊆ X, F− ⊆ X, and

F+∩F− = ∅; we refer to features in F+ and F− resp. as positive and

negative reasons.

It is easy to see that existing explanation methods can be

regarded as producing bipolar explanations when those methods

return features accompanied by additional positive or negative

information (e.g., positive and negative feature importance as in

the case of attribution methods such as LIME and SHAP): in

these settings, as in the case of unipolar explanations, bipolar

explanations disregard the additional information, and amount to

(a subset of) the set of features with their polarity (e.g., the k features

with the highest positive importance as positive features and the k

features with the lowest negative importance as negative features).

Taking into account the distinction between positive and

negative reasons, we introduce a property requiring that the

dialectical role assigned to features is justified:

Property 2. A bipolar explanation 〈F+, F−,C, x〉 satisfies dialectical

descriptive accuracy iff for every Xi ∈ F+ ∪ F−, for every x′ ∈ X

with x′(Xj) = x(Xj) for all Xj 6= Xi and x′(Xi) 6= x(Xi), letting

ω = PC(C|x), it holds that

if Xi ∈ F+ then P(C = ω|x)>P(C = ω|x′);

if Xi ∈ F− then P(C = ω|x)<P(C = ω|x′).

In words, if a feature is identified as a positive (negative) reason

for the resulting value for a class variable, given the input, the

feature variable’s value leads to increasing (decreasing, resp.) the

posterior probability of the class variable’s resulting value (with all

other feature values unchanged). This has a direct correspondence

with the properties of monotonicity considered in the literature for

gradual argumentation semantics (Amgoud and Ben-Naim, 2018;

Baroni et al., 2019) and we posit that this requirement ensures that

each reason has a cognitively plausible dialectical meaning, faithful

to human intuition, as we will examine in Section 8.

For illustration, in the running example withPC in Table 1, the

bipolar explanation 〈{d, n}, {h}, c, x〉, given input x as in the table’s

caption does not satisfy dialectical DA. Indeed, d is a positive reason

in the explanation but, for x′ agreeing with x on all features other

than d (with x′(d) = −), we obtain P(c = +|x) = .60 6< P(c =

+|x′) = .60. Instead, it is easy to see that the bipolar explanation

〈{n}, {h}, c, x〉, satisfies dialectical DA.

Note that the property of dialectical DA may not be satisfied

by all re-interpretations of existing forms of explanations as bipolar

explanations. As an example, consider contrastive explanations of

the form proposed by Dhurandhar et al. (2018). Here, features are

split into pertinent positives and negatives, which are those whose

presence or absence, resp., is “relevant” to the resulting value being

explained. If these pertinent positives and negatives are understood,

resp., as positive and negative reasons in bipolar explanations, the

latter do not satisfy dialectical DA, since both positive and negative

pertinent features support the resulting value being explained. If,

instead, pertinent positives and negatives are both understood

as positive reasons, then the resulting bipolar explanations may

satisfy dialectical DA: we leave the analysis of this aspect, and

the definition of additional forms of DA e.g., able to distinguish

between pertinent positives and negatives, for future work.

In general, unipolar explanations can be directly obtained from

bipolar explanations by ignoring the distinction between positive

and negative reasons, and the property of naive DA can be lifted:

Definition 3. A bipolar explanation 〈F+, F−,C, x〉 satisfies naive

descriptive accuracy iff the unipolar explanation 〈F+ ∪ F−,C, x〉

satisfies naive descriptive accuracy.

It is then easy to see that dialectical DA strengthens naive DA:6

Proposition 1. If a bipolar explanation 〈F+, F−,C, x〉 satisfies

dialectical DA then it satisfies naive DA.

5.3. Relational unipolar explanations and
naive DA

Moving toward a notion of deeper explanations, we pursue the

idea of providing a more detailed view of the relations between

6 All proofs not included in the paper can be found in Appendix 1.
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variables of a probabilistic classifier, reflecting influences possibly

occurring amongst them. To this purpose, we first introduce

relational unipolar explanations as follows.

Definition 4. Given x ∈ X and the resulting value ω = PC(C|x)

for C ∈ C given x, a relational unipolar explanation (for C = ω,

given x) is a triple 〈R,C, x〉 whereR ⊆ V× V.

In words, a relational unipolar explanation includes a set R of

pairs of variables (i.e., a relation between variables) where (Vi,Vj) ∈

R indicates that the value of Vi has a role in determining the value

of Vj, given the input.

For illustration, for PC in Table 1, 〈{(s, e), (c, e)}, e, x〉 may

be a relational unipolar explanation for x in the table’s caption,

indicating that s and c both influence (the value of) e. Note

that relational unipolar explanations admit unipolar explanations

as special instances: given a unipolar explanation 〈F,C, x〉, it

is straightforward to see that 〈F × {C},C, x〉 is a relational

unipolar explanation. However, as demonstrated in the illustration,

relational unipolar explanationsmay include relations besides those

between feature and class variables found in unipolar explanations.

From an argumentative perspective, this corresponds to regarding

the explanation as composed by a set of “finer grain” arguments,

identifying not only the grounds for the explained outcome, but

also for intermediate evaluations of the classifier, which in turn

may provide grounds for the explained outcome and/or other

intermediate evaluations.

The notion of naive DA can be naturally extended to

relational unipolar explanations by requiring that a warrant

based on relevance can be identified for each of the (implicit)

finer arguments.

Property 3. A relational unipolar explanation 〈R,C, x〉 satisfies

naive descriptive accuracy iff for every (Vi,Vj) ∈ R, letting vi =

PC(Vi|x) and vj = PC(Vj|x), there exists v
′
i ∈ �Vi , v

′
i 6= vi, such

that P(Vj = vj|x) 6=P(Vj = vj|x, set(Vi = v′i)).

For illustration, for PC in Table 1, 〈{(s, e), (n, e)}, e, x〉 satisfies

naive DA for x in the table’s caption, but 〈{(s, e), (d, e)}, e, x〉 does

not, as changing the value of d to − (the only alternative value to

+), the probability of e = + remains unchanged.

It is easy to see that, for relational unipolar explanations

〈F × {C},C, x〉, corresponding to unipolar explanations 〈F,C, x〉,

Property 1 is implied by Property 3.

5.4. Relational bipolar explanations and
dialectical DA

Bipolarity can be directly enforced on relational explanations

as follows.

Definition 5. Given an input x ∈ X and the resulting value ω =

PC(C|x) for class C ∈ C given x, a relational bipolar explanation

(RX) is a quadruple 〈R+,R−,C, x〉 where:

R+ ⊆ V× V, referred to as the set of positive reasons;

R− ⊆ V× V, referred to as the set of negative reasons;

R+ ∩R− = ∅.

An RX can be seen as a graph of variables connected by

edges identifying positive or negative reasons, i.e., as a bipolar

argumentation framework (Cayrol and Lagasquie-Schiex, 2005).

Here DA consists in requiring that the polarity of each edge is

justified, which leads to the following definition, extending to

relations the idea expressed in Property 2.

Property 4. An RX 〈R+,R−,C, x〉 satisfies dialectical descriptive

accuracy iff for every (Vi,Vj) ∈ R+ ∪ R−, letting vi = PC(Vi|x),

vj = PC(Vj|x), it holds that, for every v
′
i ∈ �Vi \ {vi}:

if (Vi,Vj) ∈ R+ then P(Vj = vj|x) > P(Vj = vj|x, set(Vi =

v′i));

if (Vi,Vj) ∈ R− then P(Vj = vj|x) < P(Vj = vj|x, set(Vi =

v′i)).

Similarly to dialectical descriptive accuracy for bipolar

explanations, if, given the input, a variable Vi is categorized as a

positive (negative) reason for the resulting value of another variable

Vj, Vi’s value leads to increasing (decreasing, resp.) the posterior

probability of Vj’s resulting value (with all values of the other

variables playing a role in Vj’s value remaining unchanged).

Examples of RXs for the running example are shown as graphs

in Figure 1 (where the nodes also indicate the values ascribed to

the feature variables in the input x and to the class variables by any

of the toy classifiers in Tables 1, 2). Here, (iii) satisfies dialectical

DA, since setting to − the value of any variable with a positive

(negative) reason to another variable will reduce (increase, resp.)

the probability of the latter’s value being +, whereas (ii) does not,

since setting d to− does not affect the probability of c’s value being

+ and (i) does not since setting d to− does not affect the probability

of e’s value being+.

Similarly to the case of unipolar/bipolar explanations, relational

unipolar explanations can be directly obtained from RXs by

ignoring the distinction between positive and negative reasons, and

the property of dialectical DA can be lifted:

Definition 6. An RX 〈R+,R−,C, x〉 satisfies naive descriptive

accuracy iff the relational unipolar explanation 〈R+ ∪ R−,C, x〉

satisfies naive descriptive accuracy.

It is then easy to see that dialectical DA strengthens naive DA:

Proposition 2. If an RX 〈R+,R−,C, x〉 satisfies dialectical DA then

it satisfies naive DA.

Note that bipolar explanations 〈F+, F−,C, x〉 can be regarded as

special cases of RXs, i.e., 〈{(X,C)|X∈F+}, {(X,C) | X ∈ F−},C, x〉

(indeed, the RX in Figure 1i is a bipolar explanation). Thus, from

now on we will often refer to all forms of bipolar explanation

as RXs.

5.5. Relational explanations and structural
DA

When a classifier is equipped with a structural description, one

can require that the relations used for explanation purposes in RXs

are subsets of those specified by the structural description, so that

the RXs correspond directly to (parts of) the inner working of the

model. This leads to the following additional form of DA:
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FIGURE 1

Example RXs (shown as graphs, with positive and negative reasons given by edges labeled + and −, resp.) with input x such that

x(s) = x(d) = x(h) = x(n) = + (represented as s+, d+, h+, n+) and (resulting) class values c = + (represented as c+) and e = + (represented as e+).

Property 5. Given a probabilistic classifier PC with structural

description SD:

• a relational unipolar explanation 〈R,C, x〉 satisfies structural

descriptive accuracy iffR ⊆ SD; and

• an RX 〈R+,R−,C, x〉 satisfies structural descriptive accuracy

iffR+ ∪R− ⊆ SD.

For instance, suppose that SD is the structural description in

Table 2c. Then, the RXs in Figures 1ii, iii satisfy structural DA, since

all of the relations are contained within the structural description,

while the RX in Figure 1i does not, since the relations from d, h and

n to e are not present in the structural description.

6. Achieving descriptive accuracy in
practice

In this section, we study the satisfaction of the proposed

properties by explanation methods. We focus in particular on two

existing methods in the literature, namely LIME (Ribeiro et al.,

2016) and SHAP (Lundberg and Lee, 2017) , and variants thereof

that we design so that they satisfy structural DA. After showing

that none of these methods satisfies all the properties introduced in

Section 5, we introduce a novel form of explanation guaranteed to

satisfy them, by definition. Thus, this novel form of explanation can

be seen as a “champion” for our proposed forms of DA, showing

that they can be satisfied in practice.

We start with LIME and SHAP. The explanations they produce

(given an input x and a classifier, computing C = ω, given x)

basically consist in computing, for each feature Xi ∈ X, a real

number w(x,Xi,C) indicating the importance of Xi, which has

assigned value x(Xi) in the given input x, toward the probability

of the class variable C being assigned value ω = PC(C|x) by the

classifier, in the context of x.7 The absolute value of this number

can be interpreted as a measure of the feature importance in the

explanation, while its sign, in the context of explaining probabilistic

7 We omit the formal definitions of how these well-known methods

compute w, as the considerations in this paper on property satisfaction

for LIME and SHAP are mostly based on empirical evaluation, supported

by the standard implementations of LIME and SHAP, rather than their

formal definition.

classifiers, indicates whether the feature has a positive or negative

role wrt the classifier’s resulting value for the explained instance.

Features which are assigned a value of zero can be regarded

as irrelevant.8 Clearly, such explanations correspond to bipolar

explanations 〈F+, F−,C, x〉 as in Definition 2, with

• F+ = {Xi ∈ X | w(x,Xi,C) > 0} and

• F− = {Xi ∈ X | w(x,Xi,C) < 0}.

In the remainder, with an abuse of terminology, we call

these bipolar explanations LIME/SHAP explanations, depending on

whether w is calculated using, resp., the method of LIME/SHAP.

For illustration, consider the classifier in Table 1 and x such that

x(s) = x(d) = x(h) = x(n) = +, as in the caption of Figure 1,

for which the classifier computes e = +. In this simple setting,

SHAP computes w(x, s+, e+) = −0.20, w(x, d+, e+) = 0.03,

w(x, h+, e+) = −0.05, and w(x, n+, e+) = 0.25 (adopting here the

same conventions on variable assignments as in the caption of the

Figure). This results in the SHAP explanation in Figure 1i. Thus

features d and n (with their current values) are ascribed positive

roles and s and h are ascribed negative roles in determining the

outcome PC(e|x) = +. However, as stated earlier, for feature

d this is in contrast with the property of naive DA. In fact, by

inspection of Table 1, it can be noted that changing the value of

this variable individually we would still have P(e = +|x) = 1.

To put it in intuitive terms, assigning a positive importance to

this variable suggests to the user that its current value (namely

+) has a role (though minor) in determining the outcome e =

+, which is misleading. The following proposition generalizes

these considerations:

8 While our property of naive DA requires that features included in an

explanation are, in fact, relevant, a dual requirement would be that features

not included in an explanation are, in fact, irrelevant. Addressing also

this requirement corresponds to considering the implicit contents of an

explanation too, i.e., all the features which are not presented to the user.

However, the choice of features to be presented to the users may be

determined also by their importance degree. In this sense, a feature which

is not included does not necessarily need to be completely irrelevant,

while a feature which is included definitely needs to be relevant. Based on

this considerations, in this paper we focus on naive DA as a fundamental

requirement, while we leave the investigation of more articulated versions

of this property to future work.
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Proposition 3. In general, LIME and SHAP explanations are not

guaranteed to satisfy naive nor dialectical DA.

The illustration above proves this result for SHAP explanations,

by providing a counterexample to naive (and hence dialectical)

DA in the context of the classifier in Table 1. The result for

LIME explanations can be proved by introducing spurious features

within trained probabilistic classifiers and showing that they play

a role within LIME (see Appendix 1). As a side observation,

in the appendix we also show empirically that approximate

implementations of SHAP (the ones being used in practice, as an

exact implementation of SHAP is practically unfeasible) also violate

naive (and hence dialectical) DA.

Concerning structural DA, LIME and SHAP explanations may

in general satisfy it only if X × C ⊆ SD, i.e., if the structural

description includes all the possible relations from feature variables

to class variables. This is, for instance, the case for naive BCs

(Maron and Kuhns, 1960), but not for more general BCs or CCs.

To overcome this limitation, generalizations of LIME and SHAP

explanations can be defined so that they are guaranteed to satisfy

structural DA by construction. This requires that the computation

of (LIME/SHAP) w is applied not only to pairs with a feature

and a class, but also, more generally, to any pairs of variables,

following the underpinning structural description: in this way a

bipolar argumentation framework satisfying structural DA is built.

Definition 7. Let PC be a probabilistic classifier with structural

description SD. Given an input x ∈ X and the resulting value

ω = PC(C|x) for class C ∈ C given x, a LIME/SHAP explanation

satisfying structural DA (SDA-LIME/SDA-SHAP in short) is an RX

〈R+,R−,C, x〉 such thatR+ ∪R− ⊆ SD and

• R+ = {(Vi,Vj) ∈ SD|w(x,Vi,Vj) > 0}, and

• R− = {(Vi,Vj) ∈ SD|w(x,Vi,Vj) < 0}

where w is calculated, resp., using LIME/SHAP iteratively on the

sub-classifiers induced by the structural description.

In practice, SDA-LIME and SDA-SHAP result from applying

the attribution methods not on “black box” reasons (i.e., explaining

class variables in terms of input features alone) but rather on

reasons drawn from the structural description. In a nutshell,

this amounts to applying LIME and SHAP by following the

dependencies included in SD, namely treating parents of class

variables as features, in the context of sub-classifiers induced by

SD, step-wise. In the first iteration, for each class variable whose

parents are all features (note that at least one such variable must

exist), LIME and SHAP are applied to the sub-classifier consisting

of the variable and its parents, and the weight computed for each

parent is assigned to the link from the parent to the variable. Then,

for the purposes of the subsequent iterations, each class variable

to which this computation has been applied is marked as covered.

As a consequence, new variables whose parents are all features or

covered will be identified and LIME and SHAPwill be applied to the

relevant sub-classifiers as above. The process will terminate when

reaching the coverage of all variables.

As a simple example, Figure 1ii gives an illustration of the

application of SDA-SHAP for the structural description in Table 2c.

In the first iteration, SHAP is applied to the sub-classifier consisting

of variable c (the only one whose parents are all features) and its

parents, i.e., to the classifier in Table 2a, giving rise to w(x, d, c) =

0.04, w(x, h, c) = −0.19, w(x, n, c) = 0.18. Then c is covered and

SHAP can be applied to the classifier consisting of variable e and its

parents (Table 2b), obtaining w(x, s, e) = −0.19, w(x, c, e) = 0.31

and completing the coverage of the variables.

Note that, like SDA-SHAP, Shapley Flow, recently proposed

by Wang et al. (2021), generalizes SHAP so that reasons, rather

than feature variables, are assigned a numerical weight. This is

done using a causal model as the structural description for features

and classes, in order to remove the risk that features not used

by the model are assigned non-zero weights. Though featuring a

similar high-level goal and sharing some basic idea, Shapley Flow

significantly differs from SDA-SHAP. As a first remark, Shapley

Flow is limited to single class variables, whereas SDA-SHAP can

be used with probabilistic classifiers with any number of class

variables. More importantly, in Shapley Flow the weights assigned

to edges correspond to a notion of global flow rather than to a

notion of importance of local influences, and hence have a different

meaning wrt SDA-SHAP.

SDA-LIME and SDA-SHAP of course satisfy structural DA (by

design) but fail to satisfy naive and dialectical DA.

Proposition 4. SDA-LIME & SDA-SHAP satisfy structural but are

not guaranteed to satisfy naive nor dialectical DA.

The results above show that in order to guarantee the

satisfaction of all the DA properties, an alternative approach to the

construction of bipolar argumentation frameworks for explanation

is needed. To this purpose, we introduce the novel dialectically

accurate relational explanations (DARXs), whose definition is

driven by the set of requirements we have identified.

Definition 8. Given a probabilistic classifier with structural

description SD, a dialectically accurate relational explanation

(DARX) is a relational bipolar explanation 〈R+,R−,C, x〉 where,

letting vx = PC(Vx|x) for any Vx ∈ V:

• R+ = {(Vi,Vj) ∈ SD|∀v′i ∈ �Vi \ {vi} it holds that P(Vj =

vj|x) > P(Vj = vj|x, set(Vi = v′i))};

• R− = {(Vi,Vj) ∈ SD|∀v′i ∈ �Vi \ {vi} it holds that P(Vj =

vj|x) < P(Vj = vj|x, set(Vi = v′i))}.

Proposition 5. DARXs are guaranteed to satisfy naive, structural

and dialectical DA.

For illustration, suppose SD corresponds exactly to the links in

Figure 1iii. Then, this figure shows the DARX for e given the input

in the figure’s caption and the classifier in Table 1 (or Table 2). Here,

the satisfaction of naive DA ensures that no spurious reasons, i.e.,

where the corresponding variables do not, in fact, influence one

another, are included in the DARX. Note that, when explaining e

with the same input, SHAP may draw a positive reason from d

to e (as in Figure 1i) when, according to SD, d does not directly

affect e. Further, the satisfaction of dialectical DA means that each

of the reasons in the DARX in Figure 1iii is guaranteed to have the

desired dialectical effect (e.g., that the current value of n renders

the (positive) prediction of c more likely, while the value of h has
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the opposite effect). Meanwhile, the RXs (Figures 1i, ii) include

the positive reasons from d, which have no bearing on either

classification for this input.

Note that the bipolar argumentation frameworks representing

DARXs are conceived as local explanations, i.e., they are meant to

explain the behavior of the classifier given a specific input, not the

behavior of the classifier in general. In other words, they assign a

positive or negative role to variables with reference to the specific

input considered and it may of course be the case that, given a

different input, the same variable has a different role.

While DARX provides a notion of local explanation based

on bipolar argumentation frameworks which is fully compliant

with DA requirements, one may wonder whether its advantages

are significant when applied to actual instances of probabilistic

classifiers and whether it is viable in terms of performance. These

questions are addressed by the empirical evaluation presented in

next section.

7. Empirical evaluation

As mentioned in Section 4, we experiment with (chains of)

BCs as well as chains (in the form of trees) of tree-based classifiers

(referred to as C-DTs below). As far as BCs are concerned,

we experiment with different types, corresponding to different

restrictions on the structure of the underlying Bayesian network

and conditional dependencies: naive BCs (NBC) (Maron and

Kuhns, 1960); tree-augmented naive BCs (TAN) (Friedman et al.,

1997); and chains of BCs (Zaragoza et al., 2011), specifically in

the form of chains of the unrestricted BCs suggested in Provan

and Singh (1995) (CUBC). We choose C-DTs and (chains of) BCs

because they are naturally equipped with underlying structural

descriptions, which allows us to evaluate structural DA, while they

are popular methods with tabular data, e.g., in the case of BCs, for

medical diagnosis (Lipovetsky, 2020; McLachlan et al., 2020; Stähli

et al., 2021).9

Our experiments aim to evaluate the satisfaction/violation of

structural and dialectical DA empirically for various concrete RXs

(i.e., LIME, SHAP and their structural variants) when they are not

guaranteed to satisfy the properties, as shown in Section 6.

The main questions we aim to address concern actual DA and

efficiency, as follows. Actual DA. While some approaches may not

be guaranteed to satisfy DA in general, theymay for themost part in

practice. How much DA is achieved in the concrete settings of SHAP,

LIME, SDA-SHAP and SDA-LIME explanations? We checked the

average percentages of reasons in LIME and SHAP explanations

and in their structural counterparts which do not satisfy our

notions of descriptive accuracy. The results are in Table 4. We

9 We use several datasets or (pre-computed) Bayesian networks, and

deploy the best-performing type of the chosen type of classifier for each.

Dataset sources were as follows: Shuttle (UCI, 2020), German (UCI, 2020),

California (Kelley Pace and Barry, 1997), Child (BNlearn, 2020), Insurance

(BNlearn, 2020), HELOC (Community, 2019) and LendingClub (LC) (Club,

2019). As structural descriptions, we use those described in Section 4. When

training classifiers on datasets, we split them into train/test sets and optimize

the hyper-parameters. See Appendix 2 for details on the datasets, training and

performance, and for further details on the experiments.

note that: (1) LIME often violates naive descriptive accuracy, e.g.,

in the Child and Insurance BCs, whereas SDA-LIME, SHAP and

SDA-SHAP do not; (2) LIME and SHAP systematically violate

structural descriptive accuracy; (3) LIME, SHAP and their structural

counterparts often violate dialectical descriptive accuracy.

Efficiency. Wehave definedDARXs so that they are guaranteed

to satisfy structural and dialectical DA. Is the enforcement of these

properties viable in practice, i.e., how expensive is it to compute

DARXs? Formally, the computational cost for DARXs can be

obtained as follows. Let tp be the time to compute a prediction

and its associated posterior probabilities.10 The upper bound

of the time complexity to compute a DARX is TDARX(�) =

O
(

tp ·
∑

Vi∈V
|�Vi |

)

, which is linear with respect to the sum of the

number of variables’ values, making DARXs efficient.

8. Human experiment

Toward the goal of complying with human-centric

requirements for explanations, we introduced dialectical descriptive

accuracy as a cognitively plausible property supporting trust and

fairness but lacking in some popular model-agnostic approaches.

We hypothesize that dialectical DA aligns with human judgement.

To assess our hypothesis, we conducted experiments on Amazon

Mechanical Turk through a Qualtrics questionnaire with 72

participants. Of these, only 40 (56%) passed attention checks

consisting of (1) basic questions for trivial information visualized

on the screen and (2) timers checking whether the user was

skipping very quickly through the questions. We used the Shuttle

dataset to test our hypothesis. Indeed, this captures a setting with

categorical (not only binary) observations, keeping participants’

cognitive load low with an underlying classification problem easily

understandable to lay users (see information about user expertise

in Appendix 3).

We presented users with six questions, each accompanied by

a DARX in the form exemplified in Figure 2 left, with six feature

variables (i.e.,WindDirection,Wind Strength, Positioning,Altimeter

Error Sign, Altimeter Error Magnitude and Sky Condition) assigned

to various values and with corresponding predicted probability p

for the (shown value of the) class variable Recommended Control

Mode, as computed by our NBC for Shuttle (in Figure 2 left,

p = 0.979 for the Automatic value of the class variable, given

the values of the feature variables as shown). The graphical view

demonstrated in the figure is a representation of a DARX as

defined in Definition 8, with the green/red edges representing

the positive/negative resp. reasons. We asked the users how they

expected p to change when adding a positive (green arrow labeled

with +) or negative (red arrow labeled with -) reason, e.g., Figure 2

shows how we asked the users what effect they thought that adding

the positive reason Altimeter Error Magnitude would have (as in

the DARX on the right). Specifically, we asked users to choose

among options:

(a) p increases;

10 In our experiments, using a machine with Intel i9-9900X at 3.5Ghz and

32GB of RAM with no GPU acceleration, tp ranges from 3µs for the simplest

NBC to 436ms for the most complex chain classifier.
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TABLE 4 Average percentages of reasons (over 100 samples) violating DA (i.e., |{(Vi,Vj)∈R−∪R+ such that(Vi,Vj) violates DA}|/|R− ∪ R+|) for several

instantiated RXs.

Dataset Classifier∗
SHAP LIME SDA-SHAP SDA-LIME

Naive Structural Dialectical Naive Structural Dialectical Naive Dialectical Naive Dialectical

Shuttle NBC 0% 0%† 16.43% 0% 0%† 17.14% ‡ ‡ ‡ ‡

German NBC 0% 0%† 54.56% 0% 0%† 49.55% ‡ ‡ ‡ ‡

California TAN 0% 0%† 16.75% 0% 0%† 16.75% ‡ ‡ ‡ ‡

Insurance CUBC 0% 67.07% 78.77% 59.56% 89.26% 93.07% 0% 41.77% 0% 42.56%

Child CUBC 0% 70.97% 75.35% 63.74% 89.59% 91.16% 0% 21.18% 0% 21.18%

HELOC C-DTs 51.77% 100% 94.42% 62.21% 100% 97.87% 25.60% 77.88% 31.21% 82.09%

LC C-DTs 16.19% 100% 94.47% 72.95% 100% 98.57% 0% 52.26% 0% 57.63%

(∗) NBC (Naive BC), TAN (Tree-Augmented NBC), CUBC (Chain of Unrestricted BCs), C-DTs (Chain of Decision Trees); (†) results must be 0.0% due to the BC type; (‡) SDA-LIME and

SDA-SHAP explanations are equal to LIME and SHAP, resp., due to the BC type.

FIGURE 2

Example question as presented to users in the human experiment.

(b) p decreases;

(c) p remains unchanged; and

(d) I don’t know,

as indicated in Figure 2. For our hypothesis to hold we expected

users to select answer (a) when adding positive reasons (as in

Figure 3) and to select answer (b) when adding negative reasons.

We also assessed how consistent users were, dividing the results

based on the number of questions (out of 6) users answered

following the same pattern, e.g., consistency of 6 means either

all answers aligned with our hypothesis or all answers did not,

while consistency of 3 means half of the answers aligned and half

did not.

The results are shown in Figure 3: here, when computing

the p-values against the null hypothesis of random answers

(50%-50%) we used the multinomial statistical test. We note

that: (1) in all cases users’ answers were predominantly in line

with our expectations; and (2) participants that were consistent

in answering more questions were more likely to agree with

our hypothesis.
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FIGURE 3

Results of the experiments with 40 participants; all results are significant (p << 0.001) against the null hypothesis of random answers. Here,

“Negative/Positive reasons” refers to adding negative/positive contributions, resp., from features, as illustrated in Figure 2. (†) Consistency represents

the number of questions (out of 6) users answered following the same pattern (also unexpected ones, e.g., that negative reasons increase

probability). (§) We aggregated all results for unexpected answers in these bar plots.

9. Conclusions

In this paper we have studied how to define and enforce

properties of explanations for the outputs of AI models (focusing

on probabilistic classifiers), so that they can be deemed trustworthy

and fair, in the sense that they do not mislead their users.

Specifically, we have introduced a three-fold notion of DA

for explanations of probabilistic classifiers, which, despite its

intuitiveness, is often not satisfied by prominent explanation

methods, and shown that it can be satisfied, by design, by the novel

explanation concept of DARXs.We have performed a wide-ranging

evaluation with theoretical results and experiments in a variety of

data-centric settings and with humans wrt explanation baselines,

highlighting the importance of our most demanding notion of DA

(dialectical DA), from a human perspective. This demonstrates how

DA, which has thus far been overlooked in the explainable AI

literature, could be a critical component in achieving trustworthy

and fair systems, in line with the principles of human-centric AI.

We have built our definitions of DA and DARX around notions

inspired by formal notions of argumentation, thus providing some

instantiated evidence about the foundational role of argumentation

for human-centric AI, on which the present special issue is focused.

Our work opens several avenues for future work. It would

be interesting to experiment with other forms of probabilistic

classifiers, including (chained) neural networks, possibly in

combination with methods for extracting causal models from

these classifiers (e.g., as in Kyono et al., 2020) to provide

structural descriptions for satisfying structural DA. It would

also be interesting to study the satisfaction of (suitable variants

of) DA , e.g., those incorporating zero-valued variables as

mentioned previously, by other forms of explanations, including

minimum cardinality explanations (Shih et al., 2018) and set-

based explanations (Dhurandhar et al., 2018; Ignatiev et al.,

2019). We also note that our proposed methodology in this

paper can support human users’ full understandings of model

intricacies toward leading to their outputs. However, as with other

explanation models, there is a fine line between explainability

and manipulability. Thus, it would be interesting to explore

potential risks in revealing the inner workings of probabilistic

classifiers to end users, as this may empower users to manipulate

them. We would also like to extend the human experiment

described in Section 8 to present a more rigorous assessment of

our notions of DA, e.g., assessing structural DA, which would

require users who are able to appreciate the model’s underpinning

structure. Last but not least, while the human experiment provided

encouraging indications about the cognitive plausibility of the

proposed approach, the present research needs to be complemented

by an investigation focused on the Human-Computer Interaction

(HCI) aspects involved in properly conveying explanations to users.

The fact that HCI principles and methodologies are of paramount

importance in human-centric AI has been pointed out by several

works in the literature (see e.g., Xu, 2019; Shneiderman, 2020),

which also stress the need to properly take into account human

and ethical factors. In particular, interactivity is a key factor to

address the basic tension between interpretability and accuracy,

especially when dealing with complex models (Weld and Bansal,

2019). This is demonstrated, for instance, in case studies where

suitable interaction mechanisms are used to allow users to combine

global and local explanation paradigms (Hohman et al., 2019) or

to enable heuristic cooperation between users and machine in a

challenging context like the analysis of complex data in the criminal

justice domain (Lettieri et al., 2022).

Author’s note

This paper extends (Albini et al., 2022) in various ways;

in particular we introduce novel variants of LIME and SHAP,

which satisfy structural DA by design, and we undertake a

human experiment examining our approach along the metric

of consistency.
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Human and artificial reasoning has to deal with uncertain environments.

Ideally, probabilistic information is available. However, sometimes probabilistic

information may not be precise or it is missing entirely. In such cases we reason

with higher-order uncertainty. Formal argumentation is one of the leading formal

methods to model defeasible reasoning in artificial intelligence, in particular in the

tradition of Dung’s abstract argumentation. Also from the perspective of cognition,

reasoning has been considered as argumentative and social in nature, for instance

by Mercier and Sperber. In this paper we use formal argumentation to provide

a framework for reasoning with higher-order uncertainty. Our approach builds

strongly on Haenni’s system of probabilistic argumentation, but enhances it in

several ways. First, we integrate it with deductive argumentation, both in terms

of the representation of arguments and attacks, and in terms of utilizing abstract

argumentation semantics for selecting some out of a set of possibly conflicting

arguments. We show how our system can be adjusted to perform well under

the so-called rationality postulates of formal argumentation. Second, we provide

several notions of argument strength which are studied both meta-theoretically

and empirically. In this way the paper contributes a formal model of reasoning

with higher-order uncertainty with possible applications in artificial intelligence

and human cognition.

KEYWORDS

abstract argumentation, probabilistic argumentation, argument strength, higher-order

uncertainty, reasoning with uncertainty, non-monotonic logic

1. Introduction

1.1. Reasoning with uncertainties

Many sources of information provide uncertain information. Such information may

come with probabilistic estimations of how likely specific events are (think of a weather

report), in which case we deal with (precise or first order) probabilistic uncertainty. However,

often probabilistic information is missing, or the probabilities are not known precisely, in

which case we deal with higher-order uncertainty (in short, HOU). HOU occurs when the

underlying probability distribution is not or only partially known.1 We illustrate the role of

HOU with two examples.

1 We note that following Keynes and Knight “uncertainty” is often used for non-probabilistic

uncertainties in contradistinction to “risk” (which in this paper is first order uncertainty). For a discussion

on the subtle di�erences in Knight and Keynes and for further discussion on the pairs of distinctions

risk-vs-uncertainty and the related probabilistic-vs-non-probabilistic uncertainty (see O’Donnell, 2021).

In contrast, here we use first order vs. higher-order uncertainty in place of risk vs. uncertainty.
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Example 1 (COMARG). The COMARG conference is to be held

during December 2023. We have the following information

concerning the question whether COMARG will be held hybrid (see

Figure 1, left).

1. The organizers of COMARG announce that a sufficient condition

for the conference to be held hybrid is if there is another wave of

COVID in autumn.

2. If there is no COVID wave in autumn, the steering

committee will take into account other considerations (such as

environmental issue, etc.) and decide on this basis whether the

conference is to be held hybrid. We lack any information about

how likely it is that such considerations lead to a decision in

favor (or disfavor) of a hybrid conference.

3. According to expert opinion, the likelihood of a COVID wave in

autumn is at 0.7.

The answer to the question whether the next COMARG conference

will be held hybrid is uncertain. Moreover, one cannot attach a

precise probability to it: the best that can be said is that it has at

least the likelihood 0.7 (given statements 1 and 3). We are dealing

with HOU in contradistinction to mere first order uncertainty: in

contrast to the question how likely a COVID wave in autumn is,

the question how likely it is that COMARG will be held hybrid has

no precise answer.

Example 2 (Ellsberg, 1961). Suppose an urn contains 30 red balls,

and 60 non-red balls, among which each ball is yellow or black,

but we do not know the distribution of yellow and black balls. The

question of whether a randomly drawn ball is red is one of first

order uncertainty since it comes with the (precise) probability of 1/3.

The question whether it is yellow is one of HOU since the available

probabilistic information does not lead to a precise probabilistic

estimate. See Figure 1 (right) for an illustration.

1.2. First and higher-order uncertainty in
human cognition and AI (HCAI)

Since our environments come with many sources of uncertain

information, both quantifiable and not, it is not surprising that

human reasoning is well-adjusted to dealing with such situations.

What is more, human reasoning distinguishes the two types of

uncertainty by treating them differently. For example, in Example 2

people are more willing to bet on drawing a red ball than on

drawing a yellow ball in a game in which one wins if one bets

the right color. This phenomenon is known as ambiguity (or

uncertainty) aversion. The distinction can be traced back both to

the psychological and neurological level. For instance, different

types of psychological or other medical problems are associated

with a compromised decision making under first order uncertainty,

but not under HOU [e.g., gambling problems in Brevers et al.

(2012), obsessive-compulsive disorder in Zhang et al. (2015),

pathological buying issues in Trotzke et al. (2015)] and vice versa

(e.g., Parkinson’s disease in Euteneuer et al., 2009). This shows that

different causal mechanisms are related to the human capacities

of reasoning with the two types of uncertainties. Similarly, on the

neurological level differences can be traced, though it is still an open

issue whether the two uncertainty types have separate or graded

representations in the brain [see De Groot and Thurik (2018), to

which we also refer for a recent overview on both the psychological

and neurological literature].

What the discussion highlights is that a formal model of

human reasoning should pay special attention to both types of

uncertainties and provide a framework that can integrate mixed

reasoning processes, such as in our Examples 1 and 2. The same

can be stated for AI for the simple reason that in many applications

artificial agents will face sources of uncertain information.

When reasoning with uncertain information, we infer

defeasibly, that is, given new (and possibly more reliable)

information we may be willing to retract inferences. As forcefully

argued on philosophical grounds in Toulmin (1958), reasoning

is naturally studied as a form of argumentation. Similarly,

the cognitive scientists Mercier and Sperber developed an

argumentative theory of human reasoning (Mercier and Sperber,

2017). Dung’s abstract argumentation theory (Dung, 1995)

provides a unifying formal framework for an argumentative model

of defeasible reasoning and has been widely adopted by now both in

the context of symbolic AI and to provide explanatory frameworks

in the context of human cognition (Saldanha and Kakas, 2019;

Cramer and Dietz Saldanha, 2020). Several ways of instantiating

abstract argumentation with concrete formal languages and rule

sets have been proposed, such as ASPIC+ (Modgil and Prakken,

2014), assumption-based argumentation (Dung et al., 2009), and

logic-based argumentation (Besnard and Hunter, 2001; Arieli and

Straßer, 2015).

It would therefore seem advantageous for the theoretical

foundations of HCAI to combine formal argumentation with a

representation of first and higher-order uncertainty. This paper will

propose such a formal framework.

1.3. Formal methods

Several formal models of this type of reasoning are available:

from imprecise probabilities (Bradley, 2019) to subjective logic

(Jøsang, 2001) and probabilistic argumentation (Haenni, 2009).

However, the link to the leading paradigm of computational

argumentation, namely Dung-style argumentation semantics, is

rather loose.

Probabilistic argumentation with uncertain probabilities is

comparatively understudied in formal argumentation. Works by

Hunter and Thimm (Hunter and Thimm, 2017; Hunter, 2022)

focus on precise probabilities. Our framework generalizes aspects

of such settings to include a treatment of HOU. Also, in contrast

to them, we will utilize Dung argumentation semantics in the

context of probabilistic argumentation. Hunter et al. (2020) equip

arguments with a degree of belief as well as disbelief, notions

that can also be expressed in Haenni’s framework and will be

considered in our study of argument strength. A framework

that considers imprecise probabilities is presented by Oren

et al. (2007). It utilizes subjective logic in the context of a

dialogical approach for reasoning about evidence. Similarly, Santini

et al. (2018) label arguments in abstract argumentation with

opinions from subjective logic. In contrast, our study focuses on

structured argumentation.
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FIGURE 1

Illustration of Example 1 (left) and Example 2 (right). The dashed arrow signify HOU. The numbers on the arrows represent the probabilities of the

associated events.

Mainly starting with the seminal (Ellsberg, 1961), HOU has

been intensively studied in the context of decision theory. As

has been shown there, human reasoning with HOU may lead

to violations of axioms of subjective expected utility theory

(as axiomatized in Savage, 1972), leading to several alternative

accounts [e.g., maxmin expected utility in Gilboa and Schmeidler

(2004) or prospect theory in Kahneman and Tversky (1979)]. In

this paper, we omit utilities, values, and practical decision making

and concentrate instead on reasoning in the epistemic context of

belief formation and hypothesis generation. As we will show, even

without utilities HOU gives rise to interesting and challenging

reasoning scenarios.

1.4. Our contribution

In this paper we integrate reasoning with HOU in abstract

argumentation. For achieving this goal, several key questions have

to be answered:

1. What is a knowledge base? A knowledge base contains strict

assumptions (also, constraints) and defeasible assumptions

for which probabilistic information is available in form of a

family of probability functions. Following Haenni (2009), we

distinguish probabilistic and non-probabilistic (also, logical)

variables, where only for the former set probabilistic information

is available.

2. What is a logically structured argument? We will follow the

tradition in logical/deductive argumentation according to which

an argument is a pair 〈S ,φ〉 where S is a set of assumptions and

φ a sentence that deductively follows from S (in signs, S ⊢ φ).

3. When is an argument stronger than another one? We

propose several measures of argument strength with special

consideration of HOU and study their properties. Any model

of defeasible reasoning may have various applications, from

normative philosophical models of non-monotonic inference

to symbolic artificial intelligence, to descriptively adequate

(and therefore predictive) models of human reasoning. When

considering argument strength, we here focus on the latter

and provide a small empirical study (incl. well-known

reasoning tasks such as Ellsberg, 1961) to check the accuracy

of the previously defined notions. Clearly, this is a first

preliminary step which can only point in a direction, rather

than conclusively validate the formal notions developed in

this paper.2

4. What constitutes an argumentative attack? We study four types

of argumentative attack, namely, rebut and three forms of

undercut.

5. How to obtain meta-theoretically well-behaved selections of

arguments?We study several standard argumentation semantics

from Dung (1995) for different attack forms in terms of

rationality postulates developed for structured argumentation

Caminada and Amgoud (2007). When applying argumentation

semantics, problems concerning the consistency of extensions

already known from logical argumentation re-occur: namely,

the set of conclusions of arguments in a given complete

extension may be inconsistent. We will propose a solution to

this problem that is also applicable in the context of probabilistic

argumentation in the style of Hunter and Thimm (2017) and

logical argumentation. Moreover, we argue that a naive selection

of arguments whose strength passes a certain threshold can

lead to inconsistency. Instead, selections in the tradition of

Dung seem to be more promising. First, our Dung-based

approach satisfies several rationality postulates (including some

concerning the consistency of selections). Moreover, it allows

for the reinstatement of arguments that are defended by other

selected arguments from attacks by non-selected arguments.

This is advantageous e.g., when adopting an investigative or

hypothetical reasoning style.

Our work takes as the starting point the theory of probabilistic

argumentation developed in Haenni (2009). The framework

is enhanced by (1) a structured notion of argument in the

style of logical argumentation, (2) argumentative attacks, (3)

several notions of argument strength [based on notions of

degree of support and degree of possibility presented in

Haenni (2009)], and (4) a study of Dung-style argumentation

2 The focus point of the paper will be on strength measures that associate

arguments with strength values in [0, 1], leading to linear strength orderings

on the given set of arguments. In future work we will investigate broader

notions allowing for incomparabilities between arguments.
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semantics. This way, we obtain a generalization of both

(some forms of) logical argumentation (Besnard and Hunter,

2018) and probabilistic argumentation in the tradition of

Hunter and Thimm (2017).

The structure of the paper is as follows. In Section 2,

we introduce knowledge bases and arguments. In

Section 3, we discuss the application of argumentation

semantics and study rationality postulates relative

to the attack form used. Section 4 presents the

empirical study on argument strength. We provide a

discussion and conclusion in Section 5. In the Appendix

(Supplementary material), we provide proofs of our main results,

some alternative but equivalent definitions, and details on our

empirical study.

2. Knowledge bases and arguments

2.1. Knowledge bases

Our reasoning processes never start from void, but wemake use

of available information when building arguments. This available

information is encoded in a knowledge base. In our initial

Example 1, we had two types of information available:

1. probabilistic information concerning a COVID-wave (“the

likelihood of a COVID wave in autumn is 70%”). This

information may ground defeasible assumption such as “a

COVID wave will (probably) (not) take place”; and

2. information about a factual constraint concerning the

circumstances in which the conference will be held hybrid

(namely, if there is a COVID wave in autumn).

More generally we will follow this rough distinction in

probabilistic information that gives rise to defeasible assumptions,

on the one hand, and factual constraints, on the other hand.

Constraints are taken for granted, either because a reasoner is

convinced of their truth, or otherwise committed to them in the

reasoning process (e.g., they may be supposed in an episode of

hypothetical reasoning3).

Altogether a knowledge base consists of the following

components:

Assumptions. Our knowledge bases are equipped with

a (finite) set of propositional variables Vp about which

probabilistic information (in the form of probability

functions) is available. Out of these propositional variables

a set of defeasible assumptions A is formed, whose strength

will be influenced by their probabilities. So, where sent(Vp)

is the set of the propositional sentences with atoms in Vp,

A ⊆ sent(Vp).

Probabilities. We work with a set probability functions

P based on states(Vp), where states(Vp) is the state

space for Vp (i.e., the set of all truth-value assignments

v :Vp → {0, 1}). This allows for cases in which

more than one probability function is available, e.g.,

3 For work in non-probabilistic structured argumentation on hypothetical

reasoning, see Beirlaen et al. (2018), Cramer and Dauphin (2019).

TABLE 1 Overview: technical notation.

Syntactic entities

p, q, . . . Propositional atoms

φ,ψ , . . . Propositional sentences

Ŵ Set of sentences

ŝ Syntactic representation of state s

Vp Set of probabilistic propositional variables

Vl Set of logical propositional variables

sent(V) Set of sentences over V

A Set of assumptions (subset of sent(Vp))

C Set of constraints (subset of sent(Vp ∪ Vl))

K Knowledge base

a, b, . . . Arguments

Sup(a) Support of a

Con(a) Conclusion of a

Arg(K) Set of arguments induced byK

@(Ŵ) The argument 〈Ŵ,
∧

Ŵ〉

E Set of arguments, an argumentation extension

Semantic entities

s State

states(V) Set of states over variables in V

P Probability function

PC Probability function after Bayesian update on C

P Set of probability functions

℘(·) Power set

‖φ‖ Set of states that verify φ

‖φ‖C Set of states that verify φ and are consistent with C

str(a) Placeholder for argument strength function

dsp(a) Degree of support of a

dps(a) Degree of possibility of a

scenarios in which multiple sources of probabilities are

considered or in which the probabilistic information

about the state space states(Vp) is incomplete (see below

for examples).

For a sentence φ we let ‖φ‖ be the set of states s ∈ states(Vp)

for which s |H φ. For some s ∈ states(Vp), we denote by ŝ the

conjunction
∧

{φ | α(φ) = 1,φ ∈ Vp} ∪ {¬φ | α(φ) = 0,φ ∈ Vp}.

The reader finds an overview of the notation used in this paper in

Table 1.

We may also use propositional variables for which no (direct)

probabilistic information is considered. We collect these in Vl (the

logical variables) and require Vl ∩ Vp = ∅. By allowing logical

variables as well as probabilistic ones, we can unite logical (where

Vp = ∅) and probabilistic reasoning (where Vl = ∅) and can

involve both systems seamlessly, following the approach by Haenni
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TABLE 2 The state space and the probabilities for Example 3.

State s |H p P

s1 0.3

s2 X 0.7

(2009). Constraints will typically relate probabilistic with non-

probabilistic information and therefore they are based on atoms

from both sets, Vp and Vl.

Constraints. The last element of knowledge bases is a set of

factual constraints (in short, constraints) C. The formulas in C

are based on atoms in Vp ∪ Vl.

In the following we write Ŵ ⊢C φ as an abbreviation of Ŵ ∪ C ⊢

φ, where Ŵ ⊆ sent(Vl ∪ Vp). It will also be useful to collect all

states that are consistent with C and that support a formula φ ∈

sent(Vl ∪ Vp) in ‖φ‖C = {s ∈ states(Vp) | ŝ 0C ¬φ and ŝ ⊢C φ}.

Similarly, we write s |HC φ in case s ∈ ‖φ‖C .

We summarize the above discussion in the following definition:

Definition 1 (Knowledge Base). A knowledge base K is a tuple

〈〈Vp,Vl〉,A, C,P〉 for which

• Vp is a finite set of probabilistic variables,

• Vl is a finite set of logical variables such that Vl ∩ Vp = ∅,
4

• A ⊆ sent(Vp) is a finite set of defeasible assumptions,

• C ⊆ sent(Vp ∪ Vl) is a finite set of constraints,

• P is a non-empty set of probability functions P : states(Vp)→

[0, 1].

Example 3 (Ex. 1 cont.). Let us return to our example. It can be

modeled by the knowledge base

COVID = 〈〈Vp :{p},Vl :{q}〉,A :{p,¬p}, C :{p→ q},P :{P}〉,

where P(p) = 0.7, p stands for a COVID-Wave to happen and q for

the conference to by held hybrid. Our defeasible assumptionsA are

{p,¬p} (“there will (not) be a COVID-Wave”). Our set of factual

constraints is C = {p → q}. Table 2 shows the state space induced

by Vp.

2.2. Arguments, support, and strength

Given a knowledge base K = 〈A, C,P〉, a natural way of

thinking about arguments is in terms of support-conclusion pairs:

Definition 2 (Argument). Given a knowledge base K = 〈A, C,P〉,

an argument a forK is a pair 〈Sup(a),Con(a)〉, where

• Sup(a) ⊆ A is a set of assumptions, the support of a,

• Con(a) ∈ sent(Vl ∪ Vp) is the conclusion of a,

4 Where the context disambiguates, we will omit the listing of the variables

Vp and Vl to avoid clutter in the notation.

• such that Sup(a) ⊢C Con(a).

We write Arg(K) for the set of all arguments based onK.

Example 4 (Ex. 3 cont.). In our example we can form the argument

hybrid = 〈{p}, q〉 for the conference to be held hybrid, the

argument wave = 〈{p}, p〉 for there being a COVID-wave, and

noWave = 〈{¬p},¬p〉 for there being no wave.

When considering the question of how strong an argument a =

〈Ŵ,φ〉 is, a naive approach is to simply measure the probabilistic

strength of the support. In the simple case of our example and the

argument hybrid = 〈{p}, q〉 this would amount to P(p) = 0.7, the

same as for the argument wave, whereas noWavewould only have

a strength of 0.3. However, there are some subtleties whichmotivate

amore fine-grained analysis. To show this, we enhance our example

as follows.

Example 5 (COMARG2). We also consider another conference,

COMARG2, for which we know that it will be held hybrid

(symbolized by q′) if and only if(!) a COVID-wave breaks

in autumn. Our enhanced knowledge base is COVID
′ =

〈〈{p}, {q, q′}〉,A :{p,¬p}, C′ :{p→ q, p ↔ q′}〉. We now added also

p ↔ q′ to the set of constraints C. We can now also consider the

additional argument hybrid′ = 〈{p}, q′〉 for COMARG2 to be held

hybrid.

Observation 1 (Stronger, but less precise arguments.).

Intuitively, the argument hybrid in favor of q is stronger than

the argument hybrid′ in favor of q′ (see also our empirical

study in Section 4). Although both arguments have the same

support, {p}, the conclusion q of hybrid is compatible with

both states, s1 and s2 (it is certain in s2 and possible in s1), while

the conclusion q′ of hybrid′ is only compatible with s2. As

a consequence, q has at least the probability 0.7, while q′ has

precisely the probability 0.7.

In sum, it is intuitive to consider an argument a as at least as

strong as an argument b, in case both arguments have the same

support, but the conclusion of a is at least as probable as the

conclusion of b.

Let us analyse this observation in more formal terms. We write

s |HC 3φ iff s ∈ ‖⊤‖C \ ‖¬φ‖C . This means that φ is possible in

s in view of the constraints in C. Similarly, we write ‖3φ‖C for the

set of states ‖⊤‖C \ ‖¬φ‖C .

Fact 1. Let a ∈ Arg(K) and Con(a) ⊢C φ. Then (1) ‖Sup(a)‖C =
‖
∧

Sup(a)‖C ⊆ ‖Con(a)‖C ⊆ ‖φ‖C , and (2) ‖Con(a)‖C ⊆
‖3Con(a)‖C ⊆ ‖3φ‖C .

In our Example 5 we have the validities for the different states

shown in Table 3. Following Observation 1, hybrid = 〈{p}, q〉 is

stronger than hybrid′ = 〈{p}, q′〉. The reason seems to be that

despite having the same support, the “space of possibility” for q is

larger than the one for q′: {s1, s2} vs. {s2}. From the probabilistic

perspective, the support for p seems to be located in [0.7, 1] while

the one for q′ is exactly 0.7.

Following this rationale, the strength of the support of an

argument is measured relative to a lower and upper bound: the
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TABLE 3 Validities for Example 5.

State s s |H p s |HC′ q s |HC′ 3q s |HC′ q
′ s |HC′ 3q′

s1 X

s2 X X X X X

lower bound is the cautious measure of how probable the support is

in the worst case, the upper bound considers the best case scenario

in which states in which the conclusion holds have maximal

probability mass. As we will see, the central idea for modeling

argument strength in this paper is by means of functions that map

arguments to [0, 1] (their strength) by aggregating the worst and

best case support.

Before discussing two complications, we shortly summarize

the ideas so far. Arguments are support-conclusion pairs. When

considering the strength of an argument a = 〈Sup,φ〉 it is

advisable not only to consider the probabilistic strength of its

support Sup, but also to consider the probabilistic support for the

possibility of its conclusion3φ. A measure of argument strength is

expected to aggregate the two.

2.3. Imprecise probabilistic information

In many scenarios it will be advantageous or unavoidable to

work with families of probability functions, instead of a unique

probability function. These are cases in which the probabilistic

information concerning the probabilistic variables in Vp is

incomplete or it stems from various sources, each providing an

individual probability function. The following example falls in the

former category.

Example 6 (Three conferences). Peter and Mary are in the

steering committee of CONFB, CONFP, and CONFM. Their votes

have different weights for the decision making of the respective

committees. Both of their positive votes are sufficient but not

necessary for CONFB to be held hybrid. For CONFP the decision

relies entirely on Peter’s vote, and for CONFM it relies entirely on

Mary’s vote.

• If Peter votes hybrid, CONFB will be hybrid. p1 → q1
• If Mary votes hybrid, CONFB will be hybrid. p2 → q1
• CONFP will be hybrid if and only if Peter votes hybrid. p1 ↔

q2.

• CONFMwill be hybrid if and only if Mary votes hybrid. p2 ↔

q3.

• According to Peter, there is a 2/3 likelihood that he will vote

hybrid. P(p1) = 2/3

• According to Mary, she is at least as likely to vote hybrid as

Peter. P(p2) ≥ 2/3

(We lack more precise information.)

Altogether our knowledge base is given by K =

〈〈{p1, p2}, {q1, q2, q3}〉,A, C,P :{Pµ | µ ∈ [0, 1/3]}〉, where

A = sent(Vp) and C = {p1 → q1, p2 → q1, p1 ↔ q2, p2 ↔ q3}.

Moreover, in this case the probabilities for our defeasible

assumptions p1 and p2 are not precise. They are expressed by

means of a family of probability functions (see Table 4).5

Given an argument 〈Sup,φ〉, a cautious way to consider

the worst case probabilistic support is by considering

infP∈P(P(‖Sup‖C)). Following Haenni, we refer to this measure as

the degree of support of an argument. For the best case probabilistic

support, on the other hand, we consider supP∈P(P(‖3φ‖C)). We

refer to this measure as the degree of possibility of an argument.

An overview for the current example can be found in Table 5.

Before formally defining the two discussed measures, we have to

still consider one more complication, however, which will discuss

in the next section.

2.4. Updating the probabilities in view of
the constraints

Consider the following example:

Example 7 (Witnesses). 1. According to witness 1 p∧q is the case.

p1 → p ∧ q

2. According to witness 2 p ∧ ¬q is the case. p2 → p ∧ ¬q

3. Witness 1 tells the truth in 2/3 of cases. P(p1) = 2/3

4. Witness 2 tells the truth in 3/4 of cases. P(p2) = 3/4

We may model this scenario with the knowledge base K =

〈〈Vp :{p1, p2},Vl :{p, q}〉,A : sent(Vp), C :{p1 → p ∧ q, p2 → p ∧

¬q},P = {P}〉 where P assigns the probabilities as depicted in

Table 6.

In this case s4 is incompatible with the set of constraints C of

our knowledge in K and the probabilities have to be updated. We

followHaenni (2009) by using a Bayesian update on
∧

C and letting

PC(s) =
P(s)

P(‖C‖)
· P(‖C‖ | s) =

P(s)

P(‖⊤‖C)
·
P(‖s‖C)

P(s)
=

P(‖ŝ‖C)

P(‖⊤‖C)
.

(1)

Similarly, where P is a family of probability functions, we let PC =

{PC | P ∈ P}. When calculating the degrees of support and degrees

of possibility of an argument we will consider PC instead of P.

Definition 3 (Degree of Support and Degree of Possibility,

(Im)Precision). Given a knowledge base K = 〈A, C,P〉 and an

argument a = 〈Sup,φ〉 forK,

• The degree of support of a (in signs, dsp(a)) is given by

infPC∈PC (P
C(‖Sup‖)),

• The degree of possibility of a (in signs, dps(a)) is given by

supPC∈PC (P
C(‖3φ‖)),

• The imprecision of a (in signs, imprec(a)) is given by dps(a)−
dsp(a),

• The precision of a (in signs, prec(a)) is given by 1−imprec(a).

Fact 2. Let a, b ∈ Arg(K).

5 Here we assume probabilistic independence of p1 and p2. If this

assumption is given up we operate on the basis of P = {Pλ,µ | λ ∈ [0, 2/3],µ ∈

[2/3− λ, 1/3]} where Pλ,µ : s1 7→ 1/3− µ, s2 7→ µ, s3 7→ 2/3− λ, s4 7→ λ.
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TABLE 4 The state space and probabilities for Example 6, where µ ∈ [0, 1/3].

State p1 p2 Pµ Pµ=0 Pµ=1/3 q1 q2 q3

s1 0 0 1/3 · (1/3− µ) 1/9 0 3 0 0

s2 0 1 1/3 · (2/3+ µ) 2/9 1/3 1 0 1

s3 1 0 2/3 · (1/3− µ) 2/9 0 1 1 0

s4 1 1 2/3 · (2/3+ µ) 4/9 2/3 1 1 1

TABLE 5 The degrees of support and possibility for Example 6.

Argument Degree of support Degree of possibility Precision Imprecision

a1 = 〈p1 , q1〉
infµ∈[0,1/3](Pµ(‖p1‖)) =

inf({2/3}) = 2/3

supµ∈[0,1/3](Pµ(‖3q1‖)) =

sup({1}) = 1

2/3 1/3

a2 = 〈p2 , q1〉
infµ∈[0,1/3](Pµ(‖p2‖)) =

inf([2/3, 1]) = 2/3

supµ∈[0,1/3](Pµ(‖3q1)‖) =

sup({1}) = 1

2/3 1/3

a3 = 〈p1 ∨ p2 , q1〉
infµ∈[0,1/3](Pµ(‖p1 ∨ p2‖)) =

inf([8/9, 1]) = 8/9

supµ∈[0,1/3](Pµ(‖3q1)‖) =

sup({1}) = 1

8/9 1/9

b = 〈p1 , q2〉
infµ∈[0,1/3](Pµ(‖p1‖)) =

inf({2/3}) = 2/3

supµ∈[0,1/3](Pµ(‖3q2‖)) =

sup({2/3}) = 2/3

1 0

c = 〈p2 , q3〉
infµ∈[0,1/3](Pµ(‖p2‖)) =

inf([2/3, 1]) = 2/3

supµ∈[0,1/3](Pµ(‖3q3‖)) =

sup([2/3, 1]) = 1

2/3 1/3

TABLE 6 The states for Example 7.

State s p1 p2 P s ∈ ‖⊤‖C PC(s) s |HC p s |HC 3p

s1 0 0 1/12 X P(s1)/P({s1 ,s2 ,s3}) = 1/6 X

s2 0 1 1/4 X P(s2)/P({s1 ,s2 ,s3}) = 1/2 X X

s3 1 0 1/6 X P(s3)/P({s1 ,s2 ,s3}) = 1/3 X X

s4 1 1 1/2 P(∅)/P({s1 ,s2 ,s3}) = 0

The 5th column indicates which states are consistent with C (the only exception is state s4). The 6th column represents the updated probabilities for each state in accordance with Equation (1).

1. If Sup(a) ⊆ Sup(b) then dsp(a) ≥ dsp(b).
2. If {Con(a)} ⊢C Con(b) then dps(b) ≥ dps(a).

As discussed above, we expect a measure of argument strength

to aggregate the two measures of degree of support and degree of

possibility.

Definition 4 (Argument strength function). Let K = 〈A, C,P〉

be a knowledge base. A measure of argument strength for K is a

function str :Args(K) → [0, 1] that is associated with a function

π :2 → [0, 1] for which 2 = {(n,m) ∈ [0, 1]2 | n ≤ m} and

str(a) = π(dsp(a), dps(a)).

3. Argument selection

In this section, we consider the question of how to evaluate the

strength of arguments and how to select them for acceptance out

of a scenario of possibly conflicting arguments. The questions of

argument strength and of argument selection are connected: e.g., if

two arguments conflict, it is usually advisable to select the stronger

of the two. We will proceed in several steps.

1. We propose several notions of argument strength and study

their properties (Section 3.1).

2. In Section 3.2, we discuss two types of argumentative attacks:

rebuttals and undercuts. We show that both lead to suboptimal

outcomes when combined with Dung-style argumentation

semantics for selecting arguments in a naive way.

3. In Section 3.3, we propose a solution to the problem of argument

selection.

While this section is devoted to the theoretic foundations of

probabilistic argumentation, we will provide a small empirical

study to compare some of the proposed measures in Section 4.

3.1. Argument strength

As discussed above, we have two underlying measures which

can serve as input for a measure of argument strength: the degree of

support and the degree of possibility (recall Definition 4): str(a) =
π(dsp(a), dps(a)) where π :{(n,m) ∈ [0, 1]2 | n ≤ m} → [0, 1].

As for π there are various straight-forward options. We list a

few in Table 7. Support and possibility reflect the lower and upper
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probabilistic bounds represented by dsp and dps, while mean

represents their mean. Boosted support follows the idea underlying

Observation 1 according to which an argument c with dsp(c) <
dps(c) should get a “boost” as compared to an argument d for which

dsp(d) = dps(d) = dsp(c). The factor m ≥ 1 determines the

magnitude of the boost, the lower m the more the lower bound

dsp is boosted (where for m = 1 the boosted support is identical

to dps). Convex combination follows a similar idea by letting the

strength of an argument a be the result of a convex combination

of dsp(a) and dps(a), where the parameter α determines how

cautious an agent is: the higher α the less epistemic risk an agent

is willing to take (where for α = 1 the convex combination is

identical to dsp(a)). Precision mean is a qualification of mean in

that it also considers the precision of an argument as a marker

of strength (see Pfeifer, 2013). The precision of an argument a is

given by 1 − (dps(a) − dps(a)): the closer dsp(a) and dps(a) the
more precise is a. The precision mean of an argument is the result of

multiplying its meanwith its precision.We note that this measure is

in tension with the intuition behind Observation 1 in that it would

measure the strength of hybrid higher than that of hybrid′,

unlike boosted support or convex combination.

Clearly, some of the measures coincide for specific parameters

(the proof can be found in Appendix A):

Fact 3. 1. mean(a) = bst2(a) = convex.5(a)
2. dsp(a) = convex1(a) and dps(a) = convex0(a) = bst1(a)
3. bstm(a) = convex1−1/m(a) and convexα(a) = bst1/(1−α)(a)

(where α < 1).

Proof: Items 1 and 2 are trivial. We show Item 3. We have, on

the one hand, bstm(a) = dsp(a) + dps(a)−dsp(a)
m = dsp(a) −

dsp(a)
m +

dps(a)
m = (1 − 1/m) · dsp(a) + (1 − (1 − 1/m)) · dps(a) =

convex1−1/m(a). On the other hand, convexα(a) = α·dsp(a)+(1−
α)dps(a) = dsp(a)+dps(a)−dps(a) ·α−dsp(a)+dsp(a) ·α =
dsp(a)+ (dps(a)− dsp(a)) · (1− α) = bst1/(1−α)(a).

Example 8. In Table 8, we apply the different argument strength

measures to Examples 1 and 6.

We now analyse the different strength measures in view of

several properties, some of which may be considered desiderata.6

Table 9 offers an overview on which properties are satisfied for

which measures.

• Domain Restriction. str(a) ∈ [dsp(a), dps(a)]. In the

context of a given knowledge base, the degree of support

represents a cautious estimation of the probability of the

conclusion of a in view of its support, while the degree of

possibility represents the most optimistic (in that it considers

its possibility) estimation of its probability.

• Precision. If prec(a) = 1 then str(a) = dsp(a) =
dps(a). This is a special case of Domain Restriction for cases

in which the available information concerning a is precise.

6 The question of what properties are considered desired depends on

the applications: if the application is to obtain a predictive mode of

human reasoning these properties are in need of empirical verification (see

Section 4).

• Neutrality. str(a) = 0.5 if prec(a) = 0. If prec(a) = 0, we

have dsp(a) = 0 and dps(a) = 1. According to Neutrality we

treat such cases as flipping an unbiased coin.

• Moderation. str(a) ≤ mean(a). Moderation is a cautious

approach, putting more weight on the degree of support than

the degree of possibility.

The following properties specify various ways the degrees of

support and/or possibility are related to argument strength in

terms of offering sufficient resp. necessary conditions. For the

following properties let a ⊑ b iff dsp(a) ≤ dsp(b) and dps(a) ≤
dps(b). Let < be the strict version of ⊑, i.e., a < b iff a ⊑ b

and b 6⊑ a.

Fact 4. Let a, b be precise arguments (so, prec(a) = prec(b) = 1).

If Precision holds for str, then: str(a) ≤ str(b) iff a ⊑ b.

• Weak epistemic sufficiency. str(a) ≤ str(b) if a ⊑ b.

• Strict epistemic sufficiency. str(a) < str(b) if a <

b. Our Observation 1 follows the intuition of Strict epistemic

sufficiency. In Example 5 we have hybrid = hybrid′ and

therefore we expect also str(hybrid) > str(hybrid′).
• Epistemic risk aversion. dsp(a) ≤ dsp(b) if str(a) ≤

str(b). The criterion says that for b to be at least as strong

as a it also has to have an at least as strong degree of support.

The agent would take epistemic risk if it were to consider

an argument b stronger than a, although b has less degree of

support (but maybe more degree of possibility). The contrast

case is expressed next.7

• Epistemic risk tolerance. It is possible that str(a) ≤ str(b)
while dsp(a) > dsp(b).

• Upper compensation. str(a) > str(b) and mean(a) ≤
mean(b) implies dps(a) > dps(b). Choosing an argument a

over b despite the fact that b has at least as high mean has to be

compensated by a having a higher degree of possibility.

• Lower compensation. str(a) > str(b) and mean(a) ≤
mean(b) implies dsp(a) > dsp(b). Analogous to the

previous criterion, except that the compensation is in terms

of the degree of support.

The following criteria present various ways of considering

precision a sign of argument quality. For instance, Pfeifer (2013)

considers precision a central marker of strength.

• Precision sufficiency. If mean(a) = mean(b) and prec(a) ≥
prec(b) then str(a) ≥ str(b). If two arguments have the same

mean, the one with more precision is better. The rationale is

that the latter is supported by more informative evidence.

• Strict precision sufficiency. If mean(a) = mean(b) and
prec(a) > prec(b) then str(a) > str(b).

• Precision necessity. str(a) ≥ str(b) implies prec(a) ≥
prec(b). An argument can only be at least as good as another

one if its precision is at least as good.

7 We note that Epistemic risk aversion is not very suitable for strength

measures that linearly order arguments such as the ones studied in this paper.

Indeed, dsp is the only of our measures that satisfies it.
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TABLE 7 Various notions of argument strength expressed as function of the degree of support and the degree of possibility of an argument.

Name π :(x, y) 7→ . . . str(a) = π(dsp(a),dps(a)) = . . .

Support x dsp(a)

Possibility y dps(a)

Mean
x+y
2

mean(a) = dsp(a)+dps(a)
2

Boosted support x+
y−x
m

(m ≥ 1) bstm(a) = dsp(a)+ imprec(a)
m

Convex combination α · x+ (1− α) · y (α ∈ [0, 1]) convexα(a) = α · dsp(a)+ (1− α) · dps(a)

Precision mean
x+y
2
· (1− (y− x)) precMean(a) = mean(a) · prec(a)

TABLE 8 The strengths of arguments presented in Examples 5 and 6.

Example Argument dsp(a) dps(a) mean(a) bst3(a) resp. precMean(a)

convex2/3(a)

Example 5 wave 0.7 0.7 0.7 0.7 0.7

hybrid 0.7 1 0.85 0.8 0.595

hybrid′ 0.7 0.7 0.7 0.7 0.7

Example 6 a1 2/3 1 5/6 7/9 5/9

a2 2/3 1 5/6 7/9 5/9

a3 8/9 1 17/18 25/27 68/81

b 2/3 2/3 2/3 2/3 2/3

c 2/3 1 5/6 7/9 5/9

TABLE 9 Overview on the properties.

Property dsp(a) dps(a) mean(a) bstm(a) convexα(a) precMean(a)

Domain restriction⊤ ✓ ✓ ✓ ✓ ✓ ✗ [Example 10]

Precision⊤ ✓ ✓ ✓ ✓ ✓ ✓

Neutrality⊤ ✗ [Example 9] ✗ [Example 9] ✓ ✓ [m = 2] ✓ [α = 0.5] ✗

Moderation⊤ ✓ ✗ [Example 9] ✓ ✓ [m ≥ 2] ✓ [α ≥ 0.5] ✓

Weak ep. sufficiency♥ ✓ ✓ ✓ ✓ ✓ ✗ [Example 10]

Strict ep. sufficiency ✗ [Example 9] ✗ [Example 9] ✓⊤ ✗ [Example 9]◦ ✗ [Example 9]◦ ✗ [Example 10]

Ep. risk aversion ✓ ✗ [Example 12] ✗ [Example 12] ✗ [Example 12] ✗ [Example 12] ✗ [Example 12]

Ep. risk tolerance ✗ ✓ [Example 12] ✓ [Example 12] ✓ [Example 12] ✓ [α < 1] ✓

Upper compensation• ✗ [Example 9] ✓ ✓⊤ ✓ ✓[α < 1] ✗ [Example 10]

Lower compensation♠ ✓ ✗ [Example 9] ✓ ✓ [m ≥ 2] ✓ [α ≥ 0.5] ✗ [Example 10]

Precision sufficiency† ✓ ✗ [Example 9] ✓ ✓ [m ≥ 2] ✓ [α ≤ 0.5] ✓

Str. prec. sufficiency† ✓ ✗ [Example 9] ✗ [Example 9] ✓ [m > 2] ✓ [α < 0.5] ✓

Precision necessity ✗ [Example 9] ✗ [Example 9] ✗ [Example 9] ✗ [Example 9]◦ ✗ [Example 9]◦ ✗ [Example 10]

Precision compensation ✓ [Proposition 4] ✗ [Example 9] ✓⊤ ✗ [Example 9]◦ ✗ [Example 9]◦ ✓ [Proposition 4]

Counter‡ ✓ ✓ ✓ ✓ ✓ ✓

R-Weakening⋆ ✓ ✓ ✓ ✓ ✓ ✗ [Example 10]

L-Weakening⋆ ✓ ✓ ✓ ✓ ✓ ✓

(⊤) The proofs of these properties are trivial and therefore omitted. (♥) shown in Proposition 2. (♠) shown in Proposition 6. (†) shown in Proposition 3. (‡) shown in Proposition 7. (⋆)

shown in Proposition 8. (•) shown in Proposition 5. (◦) The counter-examples for dsp and mean apply in view of Fact 3. Proposition 2–8 and their proofs are presented in Appendix A

(Supplementary material).
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• Precision compensation. str(a) > str(b) and mean(a) ≤
mean(b) implies prec(a) > prec(b). Choosing an argument

a over b despite the fact that b has at least as high mean, has to

be compensated by a having a higher precision.

Finally, we offer some criteria that relate arguments to other

arguments in a logical way.

• Counter. If infP∈P(P(‖Con(a)‖C)) = 0 and Con(b) =
¬Con(a), then str(b) ≥ str(a). If the conclusion of a has no

probabilistic support in the knowledge base and b concludes

the opposite, then b is at least as good as a.

• R-Weakening. If Sup(a) = Sup(b) and Con(a) ⊢C Con(b)
then str(b) ≥ str(a). For two arguments with the same

support the one with the logically weaker conclusion is at least

as strong as the other argument. Clearly, its conclusion is more

cautious.

• L-Weakening. If Sup(a) ⊇ Sup(b) and Con(a) = Con(b)
then str(a) ≤ str(b). For two arguments with the same

conclusions the argument which has more support is at most

as strong as the other argument.

Before studying these properties for our different notions of

argument strength, we observe some logical relations between some

of them.

Proposition 1. For any argument strength measure str we have:

1. If str satisfies Domain restriction then it satisfies Precision.

2. If str satisfies Weak epistemic sufficiency, then it also satisfies

R-weakening and L-weakening.

Proof: Ad 1. Trivial. Ad 2. Concerning R-weakening and L-

weakening, observe that if a and b fulfill the requirements of the

left hand side of R-weakening resp. of L-weakening, then b ⊒ a. So,

by Weak epistemic sufficiency, str(a) ≤ str(b).

Example 9 (Violation of properties for dsp, dps and mean.). An

argument a with prec(a) = 0 is such that dsp(a) = 0 and

dps(a) = 1. Clearly, neutrality is violated for dsp and dps. Such
an argument also violatesmoderation for dps.

To illustrate other violations we give an

example similar to Example 6. Let K =

〈〈Vp :{p1, p2},Vl :{q1, q2, q3, q4}〉,A : sent(Vp), C :{(p1 ∧ p2 ↔

q1),¬(p1 ∨ p2) → q2, p1 → q4},P :{P}〉 with the probabilities

as in Table 10. We note that mean(a1) > mean(a2)
[resp. dsp(a1) > dsp(a2)] while dps(a2) > dps(a1)
illustrating a violation of lower compensation for dps. Since

prec(a2) = 0.1 < 1 = prec(a1) this also gives a counter-example

for precision compensation and necessity, for dps. For a counter-

example for upper compensation and dsp consider arguments

a3 and a5: dsp(a3) < dsp(a5) and mean(a5) ≤ mean(a3),
while dps(a5) < dps(a3). A counter-example for strict epistemic

sufficiency and dps is given in view of dps(a2) 6> dps(a3), although
a3 < a2.

Strict epistemic sufficiency and precision necessity for dsp is

violated in view of hybrid and hybrid′ in Example 5, where

dsp(hybrid) = dsp(hybrid′) while hybrid = hybrid′ and

prec(hybrid) < prec(hybrid′).

Consider K = 〈A :{p}, C : ∅,P :{P}〉 where P(p) = 0.5 and the

arguments a :〈{p}, p〉 and b :〈∅,⊤〉. Then dsp(a) = 0.5 = dps(a) =
mean(a) and prec(a) = 1, while dsp(b) = 0, dps(b) = 1,

mean(b) = 0.5 and prec(b) = 0. The example represents a

counter-example for (i) precision necessity for str ∈ {dps,mean},
(ii) strict precision sufficiency for str ∈ {dps,mean} and (iii)

precision sufficiency for dps.

Example 10 (Violation of properties for precision mean.). In

Table 8, we have dsp(hybrid) = 0.7, dps(hybrid) = 1,

while precMean(hybrid) = 0.595 (see Table 8). This shows that

precMean does not satisfy domain restriction. Note that wave ⊑

hybrid and precMean(wave) = 0.7. So, we also have a counter-

example for weak and strict epistemic sufficiency, as well as for

R-weakening.

We consider the knowledge base K =

〈〈Vp :{p1, p2},Vl :{q1, q2, q3, q4}〉,A : sent(Vp), C :{¬(p1 ∨ p2) →

q1, (¬p2∨p1)→ q2,¬p2 → q3, (p1∧p2)→ ¬(q3∨q4),¬p1∧p2 →

q4,¬(p1 ∨ p2) → ¬q4},P :{P}〉 with the probabilities and

arguments in Table 11. For a counter-example for upper

(resp. lower) compensation consider a1 and a2 (resp. a3).

The arguments a3 and a5 also provide a counter-example for

precision necessity since precMean(a3) > precMean(a5) while
prec(a5) = 0.75 > prec(a3) = 0.6.

Example 11 (Violation of lower compensation, Boosted support,

and Convex combination). In the knowledge base of Table 11 we

have a counter-example for lower compensation and bstm for m =

1.5. Note that bstm(a2) > bstm(a4) and mean(a2) ≤ mean(a4)
while dsp(a4) > dsp(a2). In view of Fact 3 the example applies

equally to convexα for α = 1/3.

Example 12 (Epistemic Risk Tolerance). We note that, in the

example of Table 11, dps(a2) > dps(a1) [resp. mean(a2) >

mean(a1)] (resp. bst1.5(a2) > bst1.5(a1)), while dsp(a2) <

dsp(a1), demonstrating epistemic risk tolerance for dps [resp for

mean] (resp. for bst1.5 and convex2/3). For precMeanwe consider

arguments a1 and a3.

3.2. Naively applying argumentation
semantics

Argumentation semantics aim at providing a rationale for

selecting arguments for acceptance in discursive situations in

which arguments and counter-arguments are exchanged. Some

requirements are, for instance, that a selection does not contain

conflicting arguments, or that a selection is such that any counter-

argument to one of its arguments is attacked by some argument

in the selection. In this section, we will gradually introduce new

notions and observations based on a list of problems. Ultimately

the critical discussion will lead to an improved account to be

introduced in Section 3.3. In order to define argumentation

semantics we first need a notion of argumentative defeat.

Definition 5 (defeat types). Let K be a knowledge base, str a

strength measure, and a, b ∈ Arg(K).

rebuttal: a rebuts b if (1) str(a) ≥ str(b) and (2) Con(a) ⊢C
¬Con(b).
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TABLE 10 Arguments and state space for the knowledge base K = 〈〈Vp :{p1,p2},Vl :{q1,q2,q3,q4}〉,A : sent(Vp), C :{(p1 ∧ p2 ↔ q1),¬(p1 ∨ p2) → q2,

p1 → q4},P :{P}〉, Example 9.

State p1 p2 P q1 q2 q3 q4 Argument dsp dps mean precMean

s1 0 0 0.1 0 1 3 3 a1 :〈{p1 ∧ p2}, q1〉 0.7 0.7 0.7 0.7

s2 0 1 0.1 0 3 3 3 a2 :〈{¬(p1 ∨ p2)}, q2〉 0.1 1 0.55 0.055

s3 1 0 0.1 0 3 3 1 a3 :〈∅, q3〉 0 1 0.5 0

s4 1 1 0.7 1 3 3 1 a4 :〈{p1}, q4〉 0.8 1 0.9 0.72

a5 :〈{¬(p1 ∧ p2)},¬q1〉 0.3 0.3 0.3 0.3

TABLE 11 Arguments and the state space for K = 〈〈Vp :{p1,p2},Vl :{q1,q2,q3,q4}〉,A : sent(Vp),C :{¬(p1 ∨ p2) → q1, (¬p2 ∨ p1) → q2,¬p2 →

q3, (p1 ∧ p2) → ¬(q3 ∨ q4),¬p1 ∧ p2 → q4,¬(p1 ∨ p2) → ¬q4},P :{P}〉 (see Example 10).

p1 p2 P q1 q2 q3 q4 Argument dsp dps mean precMeanbst1.5 bst2.5

s1 0 0 0.1 1 1 1 0 a1 :〈{p1}, p1〉 0.5 0.5 0.5 0.5 0.5 0.5

s2 0 1 0.4 3 3 3 1 a2 :〈{¬(p1 ∨ p2)}, q1〉 0.1 1 0.55 0.055 0.7 0.46

s3 1 0 0.25 3 1 1 3 a3 :〈{¬p2 ∨ p1}, q2〉 0.6 1 0.8 0.48 0.867 0.76

s4 1 1 0.25 3 1 0 0 a4 :〈{¬p2}, q3〉 0.35 0.75 0.55 0.33 0.62 0.51

a5 :〈{¬p1 ∧ p2}, q4〉 0.4 0.65 0.525 0.394 0.567 0.5

undercut: a undercuts b if (1) str(a) ≥ str(b) and (2)Con(a) ⊢C
¬

∧

Sup′ for ∅ 6= Sup′ ⊆ Sup(b).
undercut′: a undercuts′ b if (1) str(a) ≥ str(@(Sup(b))),
where @(Sup(b)) = 〈Sup(b),

∧

Sup(b)〉, and (2) Con(a) ⊢C
¬

∧

Sup′ for ∅ 6= Sup′ ⊆ Sup(b).

Lemma 1. Suppose Weak Epistemic Sufficiency holds for str. Let
a, b ∈ Arg(K).

1. If Con(a) ⊢C Con(b) and Sup(a) = Sup(b) then str(a) ≤
str(b).

2. str(@(Sup(a))) ≤ str(a).
3. If Sup(a) ⊆ Sup(b) then str(@(Sup(a))) ≥ str(@(Sup(b))).
4. If a undercuts b, a also undercuts′ b.

Proof: Ad 1. Suppose Con(a) ⊢C Con(b) and Sup(a) =
Sup(b). By Fact 2, dsp(a) = dsp(b) and dps(b) ≥ dps(a).
By Weak Epistemic Sufficiency, str(a) ≤ str(b). Ad 2. This

is a special case of item 1 since Sup(a) = Sup(@(Sup(a)))
and Con(@(Sup(a))) ⊢C Con(a). Ad 3. In this case

Con(@(Sup(b))) ⊢C Con(@(Sup(a))). By Fact 2, dps(a) ≥
dps(b) and dsp(a) ≥ dsp(b). By Weak Epistemic Sufficiency,

str(@(Sup(a))) ≥ str(@(Sup(b))). Ad 4. Suppose a undercuts b.

In order to show that a undercuts′ b we only have to show that

str(a) ≥ str(@(Sup(b))). Since str(a) ≥ str(b) this follows with
Item 2.

We are now in a position to define argumentation frameworks

and subsequently argumentation semantics.

Definition 6 (AF). An argumentation framework based on a

knowledge base K is a pair 〈Arg(K), def〉 where def is a (non-

empty) set of defeat-types (as in Definition 5) for a given measure

of argument strength str.

3.2.1. Problem 1. Reinstatement and threshold
selections

When selecting arguments for acceptance one may follow a

naive “threshold-strategy” according to which one sets a threshold

τ , say τ = 0.55, and simply selects all arguments which are

stronger than τ (e.g., according to their degree of support, or

another argument strengthmeasure).8 This strategy, however, leads

to various kinds of problems. One, illustrated in Example 16 below,

is that following this strategy one may be left of with arguments

whose conclusions form an inconsistent set. In this sense, the

strategy selects too many arguments. On the other hand, this

strategy does not validate a central principle from argumentation

theory: reinstatement. It states that an argument which is defended

by a set of accepted arguments, should also be accepted.

Example 13 (Reinstatement). Consider the following knowledge

base:K = 〈〈Vp :{w1,w2,w3},Vl :{scene,home,pub, . . .}〉,A :

{w1,w2,w3}, C :{w1 → home,w2 → scene,w3 →

pub,¬(scene ∧ home),¬(scene ∧ pub),pub →

home},P :{P}〉. In our scenario we have 3 witnesses. Witness

1 states, among other things, that Mr. X was in his home town at

the time of the murder (w1 → home), witness 2 states that Mr. X

was at the scene of the murder (w2 → scene), and witness 3 that

he was at the pub (w3 → pub). Mr. X cannot be both at the scene

and in his home town. Also, the pub is located in Mr. X’s home

town. Witness 1 has a reliability of 0.82 (e.g., we estimate that she

tells the truth in 82/100 cases), witness 2 of 0.91 and witness 3 of 0.6.

After correcting the probabilities according to the states consistent

with C (see Section 2.4) we obtain the ones listed in Table 12. There,

we also state three key arguments a1, a2 and a3, their strength and

the argumentation framework based on str = mean and rebuttal.

8 For instance, Hunter (2013) uses a threshold of 0.5 to define his epistemic

extensions.
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TABLE 12 State space, probabilities, and arguments for Example 13.

State w1 w2 w3 P(si) PC(si) home scene pub Argument [dsp,dps] mean

s1 0 0 0 0.18 · 0.09 · 0.4 0.044 3 3 3 a1 [0.506, 0.551] 0.528

s2 0 1 0 0.18 · 0.91 · 0.4 0.449 0 1 0 a2 [0.449, 0.494] 0.472

s3 1 0 0 0.82 · 0.09 · 0.4 0.202 1 0 3 a3 [0.304, 0.551] 0.427

s4 1 0 1 0.82 · 0.09 · 0.6 0.304 1 0 1

AF a1 → a2 → a3

We omit states that are incompatible with C. We calculate PC (si) by P(si)/e where e = P(‖⊤‖C ) =
∑4

i=1 P(si) = 0.146 (see Section 2.4). We have the arguments a1 :〈{w1},pub〉,

a2 :〈{w2},scene〉 and a3 :〈{w3},home〉. The argumentation framework on the right (bottom) is based on rebuttal and str = mean.

The strongest argument a1 is in favor of Mr. X being in

his home town, which would clear Mr. X from suspicion. If we

subscribe to this argument, however, the argument a3 for him being

in the pub becomes quite reasonable, since its only attacker a2 (him

being at the scene) is refuted. If we put ourselves in the investigative

spirit of a detective working the case, it seems reasonable to select

arguments a1 and a3 to form an investigative and/or explanatory

hypothesis (despite the strength of a3 being below a threshold such

as 0.5, both in terms of its degree of support or mean value).

This hypothesis, may then lead us to the decision to investigate

the question whether he was at the pub further in order to either

substantiate or refute our stance.

Observation 2 (Reinstatement). Argumentative reinstatement

is not validated in naive threshold-based approaches for

selecting arguments. This motivates other types of selections,

since in specific reasoning scenarios, such as the formation

of explanatory hypothesis, reinstatement is a reasonable

argumentative principle.

Since threshold-based selection does not allow for

reinstatement we will also study other selection types, in particular

those introduced by Dung (1995) for abstract argumentation.

Definition 7 (Argumentation Semantics, Dung, 1995). Given an

AF = 〈Arg(K),Def〉 and a set of arguments E ⊆ Arg(K) we

define

• E is conflict-free iff (E × E) ∩ Def = ∅.
• E defends some a ∈ Arg(K) iff for every defeater b of a there is

a c ∈ E that defeats b.

• E is admissible iff E is conflict-free and it defends every a ∈ E .

• E is complete iff E is admissible and it contains every a ∈

Arg(K) it defends.

• E is grounded iff it is the unique ⊆-minimal complete

extension.

• E is α-accepted in case E = {a ∈ Arg(K) | str(a) > α} (where

α ∈ [0, 1], typically α = 0.5).

• E is preferred iff E is a⊆-maximal complete extension.

• E is stable iff E is conflict-free and E ∩ Arg(K) defeats every

a ∈ Arg(K) \ E .

In the remainder of this section we show that naively applying

these semantics to AFs leads to various problems. In the next

section we present an alternative approach to resolve (some of)

these issues.

Let us first highlight differences between the two types of defeat,

rebut and undercut.

3.2.2. Selecting arguments with inconsistent
support with some semantics
Example 14 (The possibility of inconsistent supports.). This

example is similar to Example 3, where K = 〈A :{p,¬p}, C :{p →

q},P :{P}〉, except for the probability function P which is adjusted

as described in Table 13 (left). On the right hand of the figure we

describe the arguments and their respective strengths. It seems clear

that the argument ap in favor of¬p is preferable to the argument ap
in favor of p, given that P(‖¬p‖) = 4/7 > 3/7 = P(‖p‖). What

about aq in favor of q, though? On the one hand, it is based on the

assumption p, since only if p we know for certain that q. On the

other hand, it comes with HOU, since for the case¬pwe are under-

informed about q: q is possible (and so is¬q). Thus, q seems to have

more in its favor than ¬q and a reasoner committing to q seems

not irrational, possibly even so when also selecting ap and therefore

committing to¬p. Note that such a reasoner will not be committed

to an inconsistent set of arguments (since {¬p, q} is consistent). In

the following, we will show how some attack types support this kind

of selections, while others do not.

Observation 3 (Possibility of inconsistent supports.). In

probabilistic argumentation, when situations of HOU arise,

we can rationalize selections of arguments with mutually

inconsistent supports (but consistent conclusions).

It should be mentioned, though, that this observation is

normatively cautious. We do not claim that from a normative

philosophical perspective such selections are permissible (although

they may be), we merely claim that agents are in a position to

rationalize such selections. A formal framework modeling such

selections is therefore at least attractive from a descriptive cognitive

perspective (but possibly also from a normative philosophical

perspective).

Let us now consider the different defeat-types in combination

with our various argument strength measures, in order to see

how they model the example. The underlying argumentation

frameworks are illustrated in Table 13 (right, bottom).

Rebut. The argumentation framework based on rebut is in

conformity with the rationale underlying Observation 3. Despite
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TABLE 13 The state space, probabilities (left), arguments, and argumentation frameworks for di�erent attack forms (right), Example 14 for

K = 〈A :{p,¬p},C :{p → q},P :{P}〉.

State p q P

s1 1 1 3/7

s2 0 3 4/7

bstm<4(a) bstm>4(a)

Argument Mean(a) (= convexα<2/3) (= convexα>2/3)

ap :〈{p}, p〉 3/7 3/7 3/7

ap :〈{¬p},¬p〉 4/7 4/7 4/7

aq = 〈{p}, q〉 5/7 > 4/7 < 4/7

ap∨q :〈{p}, p ∨ ¬q〉 5/7 > 4/7 < 4/7

ap∨q :〈{p}, p ∨ q〉 5/7 > 4/7 < 4/7

rebut ap ← ap aq ap ← ap aq ap ← ap aq

undercut ap ← ap aq ap ← ap aq ap ← ap → aq

undercut′ ap ← ap → aq ap ← ap → aq ap ← ap → aq

the fact that aq is based on the support p and ap attacks ap, ap, and

aq are selected.

Undercut. In case str(aq) > str(ap) (e.g., where str = mean
or str = bstm withm < 4, see Table 13), the latter is not sufficiently

strong to defeat aq leading to a selection analogous to the one based

on rebut. Conceptually, however, undercut creates a tension in this

and similar examples. While the rationale underlying undercut is

that arguments with inconsistent supports should not both end up

in the same selection, in our example they do since ap is not strong

enough to undercut aq (while condition (2) of Definition 5 is met,

condition (1) is not, which renders undercut unsuccessful in this

case). This incoherence is resolved with our variant undercut′.

Undercut′. In contrast to undercut, for undercut′ for ap to

attack aq it merely needs to be at least as strong as ap. Therefore, in

all scenarios the attack is successfull (see right column in Table 13).

Therefore, undercut′ does not allow for a selection of arguments

with mutually inconsistent supports (We prove this impossibility

in Section 3.4 after solving some other problems.).

3.2.3. Problem 2: selecting arguments with
inconsistent conclusions with rebut

When only working with rebut, we run into problems with

inconsistent arguments, as the following example shows.

Example 15 (Inconsistent conclusions with rebut.). ConsiderK =

〈〈Vp :{p},Vl :{q}〉,A :{p,¬p}, C : ∅,P :{P}〉 where P(p) = 0.5. We

have, for instance, the following arguments: a⊤ = 〈∅,¬(p ∧

¬p)〉, ap = 〈{p}, p〉, ap = 〈{¬p},¬p〉, aq = 〈{p,¬p}, q〉 and

aq = 〈{p,¬p},¬q〉. In an approach based on rebut, we get, for

instance, a complete extension E containing the arguments a⊤,

ap and aq. The latter argument, or any argument for q based on

K, is problematic in that it is based on an inconsistent support.

Rebut does not effectively filter out such arguments. We also

note that [dsp(a⊤), dps(a⊤)] = {1} while [dsp(aq), dps(aq)] =
[0, 1] = [dsp(aq), dps(aq)]. So, for any strength measure

respecting Domain Restriction, str(a⊤) ≥ str(aq) = str(aq) and
so a⊤ undercuts aq and aq. This shows that with undercut-based

attacks inconsistent arguments are “automatically” filtered out.

In order to deal with the problem of inconsistent arguments

when using rebuts, we can either manually sort out inconsistent

arguments (as proposed in Wu and Podlaszewski, 2014), or use

inconsistency-undercuts (as proposed in Arieli and Straßer, 2020)

in addition to rebuts.

Inconsistency Undercut. Where a, b ∈ Arg(K), Sup(b) ⊢C ⊥,
a = 〈∅,¬

∧

Sup(b)〉 inconsistency-undercuts b.

Lemma 2. Let str satisfy Domain restriction. If a inconsistency

undercuts b, then (i) a undercuts [resp. undercuts′] b, (ii) str(a) =
1, and (iii) there is no argument that defeats a (according to rebut,

undercut, undercut′, or inconsistency undercut).

Proof: Suppose a inconsistency undercuts b. Since Sup(a) =
∅, by Domain restriction, str(a) = dsp(a) = dps(a) =
infP∈P P(‖⊤‖C) = supP∈P P(‖⊤‖C) = 1. This is (ii). For (i) it is

sufficient to show that str(a) ≥ str(b). This follows trivially from

(ii). For (iii) assume toward a contradiction that some c defeats

a. Since Sup(a) = ∅, this cannot be an undercut, undercut′,

or inconsistency undercut. Suppose c rebuts a. So, Con(c) ⊢C
∧

Sup(b) and therefore Con(a) ⊢C ¬Con(c). Moreover, ∅ ⊢C
¬Sup(c). So, dsp(c) = dps(c) = 0 since ‖Sup(c)‖C =

‖3Con(c)‖C = ∅. Therefore, str(c) < str(a), a contradiction.

3.2.4. Problem 3: (n>2)-conflicts and selecting
arguments with inconsistent conclusions

The following example illustrates that even in scenarios with

exclusively precise probabilities (so, all arguments have precision

1) all discussed types of attack lead to problems.

Example 16 ((n>2)-conflicts and inconsistent selections.). Let

K = 〈〈Vp :{p1, p2},Vl : ∅〉,A :℘(Ŵ) \ Ŵ, C : ∅,P :{P}〉 where Ŵ =

{p1, p2,¬(p1 ∧ p2)}, P is given in Table 14 (right). There we also list

arguments (left) with their corresponding strengths and an excerpt

of the underlying argumentation framework (center), relative to

any of the defeat-types, rebut, undercut and undercut′. As the

reader can easily verify, there is a complete extension (highlighted)

containing a1, a2, and an. The problem with this selection is that it

contains inconsistent conclusions, namely p1, p2, and ¬(p1 ∧ p2).

The same problem occurs with α-selections for, e.g., α ≤ 0.54.
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TABLE 14 The state space, probabilities (right), arguments and argumentation framework (left) for K = 〈〈Vp :{p1,p2},Vl : ∅〉,A :℘(Ŵ) \ Ŵ,C : ∅,P :{P}〉,

Ŵ = {p1,p2,¬(p1 ∧ p2)}, and any of the defined strength measures str, Example 16.

Argument str Attack diagram

a1 = 〈{p1}, p1〉 0.55 0.55

a2 = 〈{p2}, p2〉 0.55 0.55 a1 an a2

an = 〈{¬(p1 ∧ p2)},¬(p1 ∧ p2)〉 0.85 0.85 ↓ ↓ ↓

ab = 〈{p1 , p2}, p1 ∧ p2〉 0.15 0.15 a1 ab a2

a1 = 〈{p2 ,¬(p1 ∧ p2)},¬p1〉 0.40 0.425

a2 = 〈{p1 ,¬(p1 ∧ p2)},¬p2〉 0.40 0.425

State p1 p2 P

s1 0 0 0.05

s2 0 1 0.40

s3 1 0 0.40

s4 1 1 0.15

In simple scenarios such as the one above, one may reasonably

expect a reasoner to make a consistent selection of arguments.9

Observation 4 (Inconsistency with regular AFs). Naively

applying argumentation semantics in the context of

probabilistic argumentationmay lead to inconsistent selections,

even for simple scenarios only including two probabilistic

variables and no higher-order uncertainties. We consider this

a serious problem, which we try to accommodate in the next

section.

3.3. Using hyper-arguments: a refined
method for argument selection

Given a knowledge basedK, in order to enforce the consistency

of the set of conclusion of a given complete extension we will make

use of what we call hyper-arguments (collected in the set HArg(K),

see Definition 8 below), i.e., arguments written as [a1, . . . , an]

(where a1, . . . , an ∈ Arg(K)). Hyper-arguments express the

idea that if one were to accept each a1, . . . , an then one cannot

accept a regular argument b ∈ Arg(K) for which {a1, . . . , an, b}

is conflicting. For this a specific type of hyper-argument based

defeat, so-called h-defeats, are introduced. From the argumentation

theoretic perspective hyper-defeats express themeta-argumentative

consideration that a reasoner should not commit to an inconsistent

set of arguments. Therefore, hyper-arguments do not contribute to

the content-level of a discussion, but rather they express constraints

on argument selection.

In the following, we will make this idea formally precise,

illustrate it with examples and study meta-theoretic properties in

9 However, there may be limitations to the requirement of consistency.

As is well-known from cases such as the lottery paradox (Kyburg, 1961) or

the preface paradox (Makinson, 1965), complex scenarios may give rise to

inconsistent belief states, possibly even for rational reasoners. Although this

is, as the reader may expect, a deep philosophical problem, see Douven

and Williamson (2006) for a critical discussion. Clearly, though, in the simple

examples included in our paper it should be considered irrational to hold

inconsistent beliefs andwe also don’t expect it to be descriptionally adequate.

A discussion of the mentioned paradoxical scenarios in the context of the

formalism presented in this paper is left for future occasions.

Section 3.4. As we will see, working both with normal and hyper-

arguments, as well as both with h-defeats and defeats, suffices

to ensure the consistency of the set of conclusions of complete

extensions (and some other properties) and therefore avoids the

problem pointed out in Observation 4.

Definition 8 (Hyper-arguments.). Given a knowledge base K and

a1, . . . , an ∈ Arg(K), [a1, . . . , an] is a hyper-argument (based

on K). We call a1, . . . , an the components of [a1, . . . , an]. We

let Sup([a1, . . . , an]) =
⋃n

i=1 Sup(ai) and Con([a1, . . . , an]) =
∧n

i=1 Con(ai). We denote by HArg(K) the set of all hyper-

arguments a based onK.

In the following we will use the convention to use sub-scripted

variables ai, bi, etc. for regular arguments (in Arg(K)) and non-

subscripted variables a, b, etc. for both regular arguments and

hyper-arguments. We use ‘argument’ as a generic term covering

both regular and hyper-arguments.

Attacks are generalized to the level of hyper-arguments

by letting, for instance, [a1, . . . , an] h-rebut b in case

Con([a1, . . . , an]) ⊢C ¬Con(b). A hyper-argument is defeated

resp. h-defeated by another regular argument resp. hyper-argument

if one of its component arguments ai is defeated resp. h-defeated

(see Definition 9 below). While defeat is a relation on the domain

Arg(K) × (Arg(K) ∪ HArg(K)), h-defeat is a relation on the

domain HArg(K)× (HArg(K) ∪ Arg(K)).

Definition 9 (h-defeat.). Let K be a knowledge base. h-defeats

define a relation on HArg(K) × (Arg(K) ∪ HArg(K)). Let a =

[a1, . . . , an], b = [b1, . . . , bm] ∈ HArg(K) and c ∈ Arg(K).

• a h-rebuts c iff Con(a) ⊢C ¬Con(c).
• a h-rebuts b iff there is an i ∈ {1, . . . ,m} for which a h-rebuts

bi.

• a h-undercuts c iff Con(a) ⊢C ¬
∧

Sup(c).
• a h-undercuts b iff for some i ∈ {1, . . . ,m}, a h-undercuts bi.

Note that unlike regular defeats, h-defeats do not consider

argument strength. The reason is that h-defeats encode meta-

argumentative considerations concerning the consistency of

selections of arguments. For such considerations, argument

strength is of no concern.

Definition 10 (Regular defeats). Let K be a knowledge base.

Defeats define a relation on Arg(K) × (Arg(K) ∪ HArg(K)) where

the part on Arg(K) × Arg(K) is defined as in Definition 5, and
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TABLE 15 A list of argumentation properties.

Property Definition

Component closure [a1 , . . . , an] ∈ E iff a1 , . . . , an ∈ E .

Direct consistency If a1 , a2 ∈ E then Con(a1),Con(a2) 0C ⊥.

Indirect consistency If a1 , . . . , an ∈ E then

Con(a1), . . . ,Con(an) 0C ⊥.

Weakening If a1 ∈ E and Con(a1) ⊢C φ then also

〈Sup(a1),φ〉 ∈ E .

Support consistency If a1 , . . . , an ∈ E then
⋃n

i=1 Sup(ai) 0C ⊥.

Dir. support closure If a1 ∈ E then for every a2 for which

Sup(a2) ⊆ Sup(a1), a2 ∈ E .

Ind. support closure If a1 , . . . , an ∈ E and b1 ∈ Arg(AF) is
s. t. Sup(b1) ⊆

⋃n
i=1 Sup(ai), then b1 ∈ E .

Logical closure If a1 , . . . , an ∈ E , 〈
⋃n

i=1 Sup(ai),φ〉 ∈ E for all φ

for which
⋃n

i=1 Sup(ai) ⊢C φ.

A property P in the left column of the table holds for an argumentation semantics sem in

case for every (hyper) argumentation framework AF and every sem-extension of AF the

right column holds.

some a ∈ Arg(K) rebuts [resp. undercuts, undercuts′] some b =

[b1, . . . , bn] ∈ HArg(K) iff a rebuts [resp. undercuts, undercuts′]

some component bi of b.

Fact 5. Let K be a knowledge base, a ∈ Arg(K) ∪ HArg(K)

and b ∈ HArg(K). a defeats [resp. h-defeats] b (according to

rebut, undercut, undercut′ and consistency undercut) iff a defeats

[resp. h-defeats] some component bi of b.

Having defined regular and hyper-arguments and different

notions of defeat among them, we are now in a position to

generalize our notion of argumentation frameworks to include

hyper-arguments.

Definition 11 (Hyper AF, h-AF). A hyper-argumentation

framework based on a knowledge base K is a pair

〈〈Arg(K),HArg(K)), 〈Def,Hdef〉〉 where Def is a relation of

regular defeat and Hdef a relation of hyper-defeat based on rebut

and/or undercut and/or undercut′ and/or inconsistency undercut.

In the remainder, we consider three types of frameworks:

(1) rebut-based h-AFs, where Def = {rebut, cons.undercut} and
Hdef = {h-rebut}

(2) undercut-based h-AFs, where Def = {undercut} and Hdef =
{h-undercut}

(3) undercut′-based h-AFs, where Def = {undercut′} and Hdef =
{h-undercut}

Argumentation semantics are adjusted to the case with hyper-

arguments as expected. We only need to adjust the notion of

defense: defeats need to be counter-defeated, while h-defeats need

to be counter-h-defeated.

Definition 12 (Argumentation Semantics). Given an h-AF AF =

〈〈Arg(K),HArg(K)〉, 〈Def,Hdef〉〉 and a set of arguments E ⊆

Arg(K) ∪ HArg(K) we say

• E is conflict-free iff (E × E) ∩ (Def ∪ Hdef) = ∅.

• E defends some a ∈ Arg(K) ∪ HArg(K) iff for every defeater

[resp. h-defeater] b of a there is a c ∈ E that defeats [resp. h-

defeats] b.

• E is admissible iff E is conflict-free and it defends every a ∈ E .

• E is complete iff E is admissible and it contains every a ∈

Arg(K) ∪ HArg(K) it defends.

• E is preferred iff E is a⊆-maximal complete extension.

• E is stable iff E is conflict-free and E ∩ Arg(K) defeats every

a ∈ Arg(K) \ E .

Our definition requires that only h-defeats can defend from h-

defeats. In Appendix C.1 (Supplementary material), we show that

allowing regular defeats to defend from h-defeats leads to the same

complete extensions (see Preposition 18).

Example 17. Let K = 〈A :{p,¬p}, C : ∅,P :{P}〉 where P(‖p‖) =

0.6 (and P(‖¬p‖) = 0.4). Let ap = 〈{p}, p〉, ap = 〈{¬p},¬p〉.

Let defeat be rebut (or undercut). In Figure 2 (left), we see an

excerpt of an hyper-argumentation framework based on K. With

the above definitions there is a slight redundancy in that every

regular argument a has a hyper-argument [a] as counter-part. Note

that ap is defended from the hyper-attack by [ap] by its hyper-

argument counterpart [ap]. Unlike ap and [ap], ap and [ap] are part

of the unique preferred extension. Note that ap and [ap] cannot be

defended from the defeat by ap.

In the following examples we will omit hyper-argumentative

counterparts of regular arguments in the attack diagrams. For

instance, Figure 2 (left) will be simplified to Figure 2 (center). In

Appendix C.2 (Proposition 19), we show that it is possible to work

without hyper-arguments of the form [a], i.e., to identify them with

their regular counterparts. In our example this variant also results

in Figure 2 (right).

We have omitted the grounded extension from Definition 12.

Example 17 illustrates why. While we would expect ap to be

contained in the grounded extension, it is not since it is in need

to be defended from the h-defeat by [ap], but no non-attacked

argument is able to do so. So, in many cases the grounded extension

will not be informative since it will only contain arguments without

h-attackers (e.g., those with tautological conclusions).10

Example 18 (Example 16 cont.). In Figure 3, we show excerpts

of the argumentation frameworks for Example 16, now enriched

with hyper-arguments. We have three preferred extensions, E1 =

{a1, an, [a1, an], . . . } (left), E2 = {a2, an, [a2, an], . . . } (center) and

E3 = {a1, a2, [a1, a2], . . . } (right). We note that the problematic

complete extension from Example 16, including arguments a1, a2
and an is not anymore admissible in the setup with hyper-

arguments. One of the reasons is that the h-defeat from [a2, an] on

a1 cannot be defended. Indeed, the defeat from [a2, an] expresses

the consistency constraint that if we accept a2 and an then we shall

10 A similar observation can be made for stable semantics. While these

need not exist in frameworks with odd defeat-cycles in regular AFs, the

situation worsens in hyper-argumentation frameworks due to the presence

of h-defeats (see Example 18). We include stable semantics nevertheless in

Definition 12 since they satisfy some rationality postulates that don’t hold for

preferred semantics (see Table 16).
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FIGURE 2

Illustration for Example 17. Dotted arrows indicate h-defeats, solid arrows regular defeats. (Left) Detailed presentation. (Center) Compact

presentation omitting simple hyper-arguments. (Right) The presentation obtained by the variant defined in Appendix C.2 (Supplementary material).

FIGURE 3

Excerpt of the hyper-argumentation frameworks for Example 18 with rebut, undercut, resp. undercut′. Highlighted are three preferred extensions

(from left to right). As mentioned above, for the sake of compactness of presentation we identified simple hyper-arguments (i.e., hyper-arguments

with only one component) with their component and omitted symmetric h-defeats between arguments whenever there are regular defeats present

between their components (e.g., the h-defeat between [a1] and [a1] is omitted since a1 is defeated by a1).

not accept a1. We also note that neither of these three extensions is

stable, e.g., a2 /∈ E1 and a2 is also not defeated by E1.

3.4. Rationality postulates for
hyper-argumentation frameworks

We now study meta-theoretic properties of hyper-

argumentation frameworks. Table 15 contains various properties,

often called “rationality postulates” (see Caminada and Amgoud,

2007; Arieli et al., 2021). We will investigate these for our different

attack types and for argument strength measures that satisfy

Weak Epistemic Sufficiency and Domain Restriction. We consider

two general scenarios: a naive one without hyperarguments (as

discussed in Section 3.2) and a hyper one with hyperarguments.

Table 16 provides an overview of our results. Proofs are provided

in Appendix B (Supplementary material). We summarize:

Observation 5 (Key observations.). Our results show that

hyper-argument based probabilistic argumentation satisfies the

desiderata discussed in Observations 1, 3, and 4.

Concerning Observation 1 we employ argument strength

measures that satisfy weak epistemic sufficiency to do justice to

the intuition that an argument such as hybrid is stronger than

an argument such as wave due to the presence of higher-order

uncertainty.

In order to model the intuition underlying Observation

3 one may use hyper-argumentation frameworks based on

rebuttals: in such frameworks both ap and aq can be present in

the same complete extension, without causing an inconsistent

conclusion set.

Finally, we overcome the problem of the existence of

complete extensions with inconsistent conclusion sets identified

for regular argumentation frameworks in Observation 4: all

of the studied hyper-argumentation frameworks satisfy the

postulate of Indirect Consistency.

In the remainder of this section we illustrate the lack of some

properties from Table 16 with examples. For this we first take

another look at Example 14, this time with hyper-arguments.

Example 19 (Example 14 cont.). In Figure 4, we show excerpts

of the argumentation frameworks for Example 14 for rebut (left),

undercut (center), and undercut′ (right), now enriched with hyper-

arguments. In each figure we highlight a preferred extension. We

note that the one on the right is unique.

Example 20 (Counter-examples, Rationality Postulates.). In

Figures 3, 4, we observe the following violations of rationality

postulates.

Support Consistency. Support consistency is violated for rebut

in Figure 4 (left). There both ap and aq are contained in the given

preferred extension, although Sup(ap),Sup(aq) ⊢C ⊥.
Logical Closure. Logical closure is violated for rebut, undercut

and undercut′ for complete and preferred extensions, as can be

seen in Figure 3 (left). Although a1 and an are accepted in the given

preferred extension, the argument a2 = 〈{p1,¬(p1 ∧ p2)},¬p2〉 is

not (it is and cannot be defended from the defeat by a2 since by

Definition 12 a defense from a regular defeat must be in terms of a
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TABLE 16 Overview: rationality postulates.

Method Naive Naive Naive Hyper Hyper Hyper
Arguments Arg(K) Arg(K) Arg(K) HArg(K) HArg(K) HArg(K)
Attack form(s) Rebut Undercut Undercut′ Rebut Undercut Undercut′

cons. u.cut (cons. u.cut) (cons. u.cut) cons. u.cut (cons. u.cut) (cons. u.cut)

Component closure n.a. n.a. n.a. X [Corollary 1] X [Corollary 1] X [Corollary 1]

Direct consistency X [Proposition 11] X [Proposition 11] X [Proposition 11] X [Proposition 11] X [Proposition 11] X [Proposition 11]

Indirect consistency ✗ [Example 16] ✗ [Example 16] ✗ [Example 16] X [Proposition 12] X [Proposition 13] X [Proposition 13]

Weakening X[Proposition 10] X [Proposition 9] X [Proposition 9] X[Proposition 10] X [Proposition 9] X [Proposition 9]

Support consistency ✗ [Example 16] ✗ [Example 16] ✗ [Example 16] ✗† X [Proposition 15] X [Proposition 15]

Logical closure ✗ [Example 16] ✗ [Example 16] ✗ [Example 16] ✗† ✗† X
⋆[Proposition 17]

Dir. support closure ✗ [Example 14] ✗ [Example 14] ✗ [Example 14] ✗† ✗† X[Proposition 14]

Ind. support closure ✗ [Example 16] ✗ [Example 16] ✗† ✗† ✗† X
⋆[Proposition 16]

All propositions and corollaries are to be found in Appendix B (Supplementary material). Properties marked by X⋆ apply only to stable semantics. Counter-examples for other semantics can

be found in Example 20, as well as counter-examples for properties marked with †.

FIGURE 4

Hyper-argumentation frameworks for Example 14 with rebut (left), undercut (center) and undercut′ (right) (where m < 4 in case of str = bstm
resp. α < 2

3
in case of str = convexα , see Table 13). Highlighted are preferred extensions. We use the same conventions as in Figure 3 to avoid clutter.

regular defeat and therefore the hyper-defeat of [a1, an] on a2 is not

sufficient to defend a2 from a2).

Support Closure. Direct support closure is violated for both

rebuts and undercuts. For rebuts we have in the preferred extension

of Figure 4 (left), aq selected, but not ap although Sup(ap) =
Sup(aq). Similarly for undercuts, in Figure 4 (center). The violation

of indirect support closure is an immediate consequence.

As for undercut′ and indirect support closure we consider

Figure 3 (right): although a1 and a2 are selected, ab = 〈{p1, p2}, p1∧

p2〉 is not since it cannot be defended from the undercut′ from

an. Note that the h-undercut on an by the selected [a1, a2] is not

sufficient to defend ab from a regular undercut′: Definition 12

requires a defense from a regular defeat in terms of a regular defeat

(i.e., an undercut′ in this case).

4. Empirical study

In this section, we discuss a small empirical study we conducted

on evaluating argument strength in the context of higher-order

uncertainty.11 Our main objective was to investigate the following

research questions:

RQ1. Is argument evaluation more context-sensitive than our

logical model predicts? To answer this question we consider two

reasoning contexts: an abstract one where participants have to

reason about the probability to draw balls from an urn, and

one practical medical context. In both scenarios, the participants

face arguments of the same underlying logical form in our

representation (see Appendices D, E in Supplementary material

for details) but with different informal interpretations. For such

arguments our model calculates the same degrees of support and

possibilities, and therefore it predicts the same argument strengths.

Similarly, we want to know whether across different contexts

arguments of the same logical form are evaluated equally by our

participants.

RQ2. How do the different argument strength measures from

Section 3.1 predict the participants’ answers? In particular, which

values of the parameters m for bstm resp. α for convexα are

11 We leave empirical studies concerning argument selection/semantics

(Section 3) for a future occasion.
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empirically adequate (possibly relative to fixed reasoning contexts,

see RQ1)?

RQ3. Which rationality postulates from Section 3.4 are met

resp. violated by the participants’ answers? In particular, is the

intuition behind our Observation 1 empirically adequate?

The study was conducted in the context of three university

seminars on the Bachelor and Master level of philosophy

programs. Altogether 42 students participated. The questionnaire

encompasses 19 questions and is structured into 3 reasoning

scenarios. Each scenario comes with a number of arguments built

on the basis of the available information. For each argument, the

participants were asked to rate its strength in a scale with 10

subdivisions, reaching from very weak to very strong (see Figure 5

for two arguments in the context of the second scenario). We

list all scenarios of the questionnaire in detail in Appendix C

(Supplementary material).12

The three reasoning scenarios covered by the questionnaire

are: (S1) one of the well-known Ellsberg scenarios (Ellsberg, 1961,

see Example 2), (S2.1) a less abstract re-phrasing of the Ellsberg

scenario in terms of a medical investigation, (S2.2) a variant of

(S2.1) in which more emphasis is given to imprecise probabilistic

information, as discussed in Section 2.3 (similar to Example 6).

Table 17 gives an overview on our results. We now evaluate our

findings.

4.1. Concerning RQ1

We first observe that the reasoning context is crucial for the

assessment of argument strength. We note that scenarios 1 and 2.1

have the same formal structure and therefore our model predicts

the same argument strength assessments for arguments of the same

logical form (indicated by α,β , γ , δ and ǫ in Table 17). Indeed,

within scenario 2.1, the evaluation of the strength of arguments of

the same logical form (Q10 and Q12 resp. Q11 and Q13) remained

relatively stable (max. variance is 0.02 between the mean values)

among our participants. However, if we compare arguments of

the same logical form between scenario 1 and scenario 2 we see

clear differences. For instance for arguments of type α we have a

difference of 0.13 in the mean, for arguments of type ǫ a difference

of .02. In particular, the evaluation of α in the context of Q1 is 0.45

and in the context of Q9 it is 0.32. What is also striking is that

for imprecise arguments there is basically no variance between the

two scenarios. This asymmetry is surprising and we don’t have an

explanation for it.

4.2. Concerning RQ2

When averaging over all questions the optimal value form is≈

2.05 and the one for α is ≈ 0.51. In view of this the mean measure

is a good approximation of the empirical results. However, when

zooming into the different types of arguments we observe that the

12 In this study, we did not randomize the order of presentation for each

participant in order to avoid priming.

m (resp. α) value is contextual, depending on where the [dsp, dps]-
interval is situated. With Table 18 we observe the tendency that m

grows the more the weight of the [dsp, dps]-interval moves toward

1. This means that the reasoning becomes more cautious resp. risk

averse in such cases. For instance, the average strength estimation

of arguments of type γ with [dsp, dps] = [1/3, 1] is 0.58 (closer

to the dsp), while the average strength estimation of arguments of

type µ with [dsp, dps] = [0, 1/3] is 0.29 (closer to the dps).

4.3. Concerning RQ3

Epistemic sufficiency could be generally verified in the study.13

This reflects positively on our Observation 1 which can be

considered empirically verified in view of our small study.

Participants show typically Risk tolerant reasoning and therefore

violated Risk aversion. Upper compensation could not convincingly

be verified in our questionnaire. Strict precision sufficiency,

Precision necessity and compensation only fare slightly better. In

contrast, the acceptance rates for Lower compensation and for

Precision sufficiency are in average high.

Before moving to Domain restriction and Moderation, we

make two methodological remarks of caution. First, the scale of

the questionnaire was not numerical and therefore it does not

directly represent the interval [0, 1] in which our technical notions

such as dsp, dps, etc. are measured. Therefore, a validation of

criteria such as Domain restriction based on this questionnaire

has to be interpreted with caution, since we naively mapped

the interval in questionnaire to the interval [0, 1] (preserving

scaling). Second, we interpreted the answers of the participants

charitably, e.g., when evaluating Domain restriction we checked

if the answer is “roughly” within the corresponding interval.

Despite these methodological hurdles we consider the empirical

study informative also for these criteria since it allows us to see

discrepancies between the replies concerning logically equivalent

arguments (indicated by types α, . . . , ǫ in Table 17) in different

settings. We observe that Domain Restriction is violated for the

types α and δ (even under a charitable interpretation of the

answers). Interestingly for the imprecise arguments (so, arguments

for which dsp(a) < dps(a)) Domain Restriction could be

empirically verified. It is again the precise arguments as opposed

to the imprecise ones, for which we find violations of Moderation.

We see some divergence for arguments of type α between to

two scenarios (in S2.1 and S2.2 Moderation is verified for α-type

arguments, not in S1), while for arguments of type δ Moderation

fails in more than 50% in both scenarios. One explanation may be

13 We note that the only case with a low acceptance rate is Scenario 2.1

for Weak epistemic su�ciency (34%). However, this value is due to the fact

that there are 12 di�erent pairwise argument combinations (e.g., Q8 and Q9,

Q10 and Q11, etc.) in which participants could violate the criterion. The 34%

feature only participants who validated weak epistemic su�ciency for every

pair. If we consider each such pair separately, the acceptance rate per pair

is rather high. In most of the pairs we see a very high acceptance rate for

Weak epistemic su�ciency, only when comparing Q11 and Q13 resp. Q10

and Q12 our participants struggle. The reason is that for these particular pairs

Weak epistemic su�ciency would demand equal strength attribution.
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FIGURE 5

The second scenario of the questionnaire with two arguments.

that disjunctive claims may lead to over-estimating their associated

probabilities. For imprecise arguments the observed shifting of the

optimal m-value (see RQ2) has the effect that for arguments (such

as γ ) for which the weight of [dsp, dps]-interval is toward 1 a

more risk-averse reasoning takes place and thereforeModeration is

validated. The opposite applies to arguments (such as µ) for which

the weight of [dsp, dps]-interval is toward 0, where Moderation is

typically violated.

5. Discussion, conclusion, and outlook

Having presented our framework and results, we are in a

position to situate this work in the context of probabilistic and

formal argumentation. Our framework builds on Haenni’s account

of probabilistic argumentation (Haenni, 2009) and enhances it in

several ways.

First, we adjust the representational form of argument

to premise-conclusion pairs. This renders our approach a

generalization of deductive argumentation (where the base

logic is classical logic) and situates it in the tradition of

formal argumentation. Also, our formalism generalizes Hunter’s

probabilistic argumentation (Hunter, 2013) in that it allows for

HOU. Indeed, our framework inhabits the continuum between

deductive argumentation (where Vp = ∅) and Hunter’s

probabilistic argumentation (where Vl = ∅). This mirrors a

similar observation of Haenni for his original framework which

is situated in the continuum between classical and probabilistic

logic (Haenni, 2009, p. 165). Moreover, modeling arguments

as premise-conclusion pairs (unlike Haenni, 2009) allows for

capturing scenarios with different arguments that have the same

conclusion but different supports and therefore possibly different

strengths.

Second, we introduce several notions of argument strength and

study them based on postulates. Our postulates are targeted at

studying the role of HOU. This distinguishes it from the postulate-

based study (Hunter, 2022) (which is based on probabilistic

argumentation combined with defeasible logic). Argument strength

has also been studied in Bayesian probabilistic argumentation

(Hahn, 2020) and applied as a model of argumentative fallacies

(Hahn and Oaksford, 2007). The idea that probability intervals

can be utilized to model the actual reasoning of humans when

confronted with scenarios such as Ellsberg’s (see Example 2) is not

new. Pfeifer and Pankka (2017) run an empirical study similar to

ours to test the argument strength measure that has been dubbed

precision mean in our paper (see also Pfeifer, 2013 for a motivation

of this measure). Since the latter violates the desideratum strict

epistemic sufficiency motivated in Observation 1 and instead opts

for precision sufficiency, we included in our empirical study a

scenario (S2.2) to test these postulates. Indeed, for the evaluation

of argument strength our study indicates that strict epistemic

sufficiency is more adequate than precision sufficiency. It seems to us

that the latter more readily fits measures of argument quality than

measures of strength (and, consequently, these two notions should

be treated differently). Among the argument strength measures

proposed in this paper are convex combinations of the degree

of support and the degree of possibility. Convex combinations

have also been used in formal epistemology as models of belief

update, e.g., in context in which agents get information from

other agents and an independent “truth signal” (Douven, 2010)

or in which they are confronted with higher-order evidence

(Henderson, 2021).
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TABLE 17 Overview on the results from the empirical study on argument strength.

Scenario scenario S1 (Ellsberg) Scenario 2.1 (Medical) S2.2 (Impr. Prob.)

Question Q1 Q2 Q3 Q4 Q5 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

Argument type α β γ δ ǫ δ α γ β γ β ǫ α λ µ

dsp 1/3 0 1/3 2/3 1 2/3 1/3 1/3 0 1/3 0 1 1/3 1/3 0

dps 1/3 2/3 1 2/3 1 2/3 1/3 1 2/3 1 2/3 1 1/3 2/3 1/3

Claim type at at ∨ ∨ ∨ ∨ at ∨ at ∨ at ∨ at at at

Average Strength 0.45 0.4 0.6 0.69 0.97 0.7 0.32 0.58 0.34 0.56 0.35 0.99 0.33 0.56 0.29

ordering β < α < γ < δ < ǫ α(<)β < γ < δ < ǫ µ < α < λ

Domain restr. 0.31 0.98 1 0.38 0.67 0.37 0.51 0.98 0.95 0.95 0.88 0.80 0.53 0.67 0.7

Moderation 0.36 0.36 0.64 0.45 - 0.41 0.76 0.78 0.68 0.78 0.61 - 0.76 0.5 0.29

Weak Ep. suff. 0.6 0.34 0.73

Str. Ep. suff. 0.57 0.73 0.68

Ep. risk tolerance 0.74 0.66 0.32

Upper

compensation

0.52 0.5 0.24 0.54 0.24 0.54 0.24 0.54 0.97 1

Lower

compensation

0.79 0.88 0.88 0.63 0.88 0.63 0.88 0.63 0.97 1

Precision suff. 0.79 0.88 0.88 0.63 0.88 0.63 0.88 0.63 -

Str. precision suff. 0.48 0.5 0.63 0.38 0.63 0.38 0.63 0.38 -

Precision nec. 0.48 0.5 0.63 0.38 0.63 0.38 0.63 0.38 0.03

Prec. compensation 0.48 0.5 0.63 0.38 0.63 0.38 0.63 0.38 0.03 1

Listed are the different scenarios (S1, S2.1, and S2.2) and their respective questions. Each question is concerned with the evaluation of the strength of an argument presented in an informal

way. Some of these arguments share the same type w.r.t. their degrees of support and possibility (indicated by α, . . . , ǫ). Precise arguments (i.e, arguments a for which dsp(a) = dps(a)) are
underlined. The exact logical form is presented in Appendix E (Supplementary material). We also list the type of claim (atomic “at” vs. disjunctive “∨”). Below we list the average strength

assessment of the participants and an empirical evaluation of the properties from Section 3.1. In the first block we present properties concerned with arguments in isolation (Domain Restriction

and Moderation, but note our cautious remarks concerning the evaluation of the survey with respect to these criteria in the main text). The second block concerns properties where arguments

are compared. In these cases we analyse the two main scenarios S1 and S2 separately. For the desiderata weak/strong epistemic sufficiency and epistemic risk tolerance we compared the

answers block-wise according to the scenarios 1, 2.1, and 2.2., i.e., 60% of participants validated weak epistemic sufficiency for all questions in scenario 1. For the rest of the criteria we picked

out paradigmatic pairings of arguments. A number below two questions indicates that the arguments corresponding to those two questions were compared to each other according to the

desideratum, e.g., the first value 0.52 for upper compensation means that w.r.t. the arguments in Q1 and Q2 52% of the participants answered in accordance with upper compensation. In

scenario 2.1 whenever questions have the same number, it means those were compared to each other according to the desideratum, i.e., 24% of participants fulfilled upper compensation when

comparing questions 8, 10, and 12 to each other. The hyphen ‘-’ indicates that the criterion is not applicable.

TABLE 18 Optimalm values for di�erent argument types.

Type [dsp,dps] Optimal m Average strength

µ [0, 1/3] 1.15 0.29

λ [1/3, 2/3] 1.46 0.56

β [0, 2/3] 1.84 0.36

γ [1/3, 1] 2.63 0.58

Third, we show how abstract argumentation semantics (Dung,

1995) can be applied to our framework given different (standard)

notions of attack (versions of undercut and rebut). It is well-

known from deductive argumentation that violations of rationality

postulates can occur if one proceeds too naively. We proposed

a solution based on hyper-arguments, which express consistency

constraints. Given that our framework generalizes deductive

argumentation and Hunter’s probabilistic argumentation, the

solution applies also there. In the context of probabilistic

argumentation Dung’s semantics are rarely applied. For example,

Haenni (2009) does not propose any rationale for selecting

arguments for selection, while Hunter (2013) uses threshold

semantics. We consider Dung’s semantics attractive for several

reasons. First, they are widely applied and well-researched in

formal argumentation (Baroni et al., 2018); second, being based

on notions such as conflict-freeness and defendability, they are

very intuitive; and third, they allow for reinstatement, a principle

that is not (in general) validated by threshold semantics. The

latter is in particular interesting when generating explanatory

hypotheses (see Example 13 and Observation 2). In this context

we note that it is sometimes distinguished between an epistemic

and a constellations approach (Hunter, 2012). While in the

former probabilities express a doxastic attitude toward arguments,

in the latter they express how likely it is that arguments

belong to and/or are relevant to a certain discursive situation.

Our approach clearly belongs in the epistemic camp. We note

that the interpretation of argument strength and defeat in

structured non-probabilistic argumentation seems more in line
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with the epistemic approach and it is where reinstatement is

often applied.14

The paper presents only a first step to systematically integrate

reasoning with HOU in abstract argumentation. In future work, we

intend to enhance the empirical study, both in terms of the number

of participants and also in scope, by a stronger focus on the impact

of context on argument strength, and by including questions of

argument selection (e.g., is reinstatement used by participants

when generating hypotheses and explanations?, etc.). Another

application of our framework is to study in more detail reasoning

in the context of multiple agents (e.g., considering testimony,

higher-order evidence, and dialogue15). According to (Elkin and

Wheeler, 2016; Elkin, 2021; Henderson, 2021) situations of peer

disagreements and/or where higher-order evidence matters (e.g.,

evidence provided by expert panels, etc.) should not be modeled by

naively aggregating beliefs, since this may overstate precision, but

it should be modeled in terms of credal sets, i.e., in terms of HOU.

Our framework provides some of the basic ingredients to model

argumentation in such contexts. In the present work we restricted

the focus on purely epistemic reasoning by not considering other

practical utilities. A possible enhancement of our study is to widen

the focus and incorporate decision theories under HOU (such as

Gilboa and Schmeidler, 2004).
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Sketching the vision of the Web of
Debates

Antonis Bikakis1*, Giorgos Flouris2, Theodore Patkos2 and

Dimitris Plexousakis2

1Department of Information Studies, University College London, London, United Kingdom, 2Institute of

Computer Science, Foundation for Research and Technology–Hellas, Heraklion, Greece

The exchange of comments, opinions, and arguments in blogs, forums, social

media, wikis, and review websites has transformed the Web into a modern

agora, a virtual place where all types of debates take place. This wealth of

information remains mostly unexploited: due to its textual form, such information

is di�cult to automatically process and analyse in order to validate, evaluate,

compare, combine with other types of information andmake it actionable. Recent

research in Machine Learning, Natural Language Processing, and Computational

Argumentation has provided some solutions, which still cannot fully capture

important aspects of online debates, such as various forms of unsound reasoning,

arguments that do not follow a standard structure, information that is not explicitly

expressed, and non-logical argumentation methods. Tackling these challenges

would give immense added-value, as it would allow searching for, navigating

through and analyzing online opinions and arguments, obtaining a better picture

of the various debates for a well-intentioned user. Ultimately, it may lead to

increased participation of Web users in democratic, dialogical interchange of

arguments, more informed decisions by professionals and decision-makers, as

well as to an easier identification of biased, misleading, or deceptive arguments.

This paper presents the vision of the Web of Debates, a more human-centered

version of the Web, which aims to unlock the potential of the abundance of

argumentative information that currently exists online, o�ering its users a new

generation of argument-based web services and tools that are tailored to their

real needs.
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1. Introduction

From the plain publishing of content1 to the collaborative contribution of knowledge

through social media2 and the annotation of content with machine-processable semantic

information,3 the Web has been constantly reshaping. The development of the Social Web

(the social aspect of Web 2.0) has brought about a significant change in the way people use

the Web. Nowadays, people around the world access the Web to rate a hotel or a restaurant;

they share comments on the story and the writing style of a book; they use it to like or dislike

a photograph, a video, or the whole lifework of a music band; they write opinions in blogs;

they discuss subjects of any matter in forums; they substantiate opinions in wikis citing

1 https://en.wikipedia.org/wiki/Web_2.0#Web_1.0

2 http://en.wikipedia.org/wiki/Web_2.0

3 https://en.wikipedia.org/wiki/Semantic_Web
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sources of diverse reliability. Currently, the Web is flooded with

opinions and arguments touching topics related to just about

everything important or insignificant that happens or has happened

or may happen in our world.

Unfortunately, all these colorful, diverse, contradictory,

interesting or indifferent opinions get lost; scripta manent, yet

opinions are currently not uploaded as machine-processable data,

they are not interlinked, and it is extremely difficult for Web users

to find opinions and arguments related to a particular subject,

let alone to evaluate them, characterize them based on objective

or subjective criteria, or select the ones that would appeal more

to them. Current search engines can only help the user access

the pages containing arguments on a topic; manual effort is then

required for making sense out of the multitude of contradictory

and diverse results returned, for identifying the relations among

the available arguments and supportive data, or for analyzing

their credibility.

Building on the recent advancements in Machine Learning,

Natural Language Processing, and Computational Argumentation,

there have been some attempts to unlock the potential of

this information. These include an ontology for representing

arguments using well-defined, structured formats (Rahwan et al.,

2007), methods for argument mining (Stede and Schneider,

2018; Lawrence and Reed, 2019), software tools for argument

analysis and visualization (Reed et al., 2017), argument search

engines (Wachsmuth et al., 2017b; Stab et al., 2018; Chen et al.,

2019), persuasive chatbots (Chalaguine and Hunter, 2020), and

autonomous debating systems (Slonim et al., 2021). However,

existing efforts fall short in two ways: first, there is still no mature

technology allowing the reliable extraction of arguments from text

for annotation and further automated processing; second, there are

still no general models for realistic arguments, which would be

able to capture all aspects of our everyday argumentative dialogues

or debates on topics of general concern, such as global warming,

international politics, or the energy crisis. Especially since Dung’s

seminal paper on Abstract Argumentation Frameworks (Dung,

1995), we have developed a very good understanding of the relation

between argumentation and logic-based reasoning. However,

human dialogues and debates often involve arguments based on

implicit information (e.g., commonsense knowledge), may resort to

unsound reasoning (e.g., proof-by-example), or employ non-logical

argumentation methods (e.g., peer-pressure, use of emotionally

loaded arguments, authoritative claims). The study of such aspects

and, more generally, the study of the ethos (appeal to the credibility

of the speaker) and pathos (appeal to the emotions of the audience)

of argumentation, is not yet as mature as the study of the logos of

argumentation, in the context of Artificial Intelligence.

Furthermore, online arguments and opinions are not just put

forward to be heard, but they have a purpose and their processing

needs to be purposeful as well. There is, therefore, a need for a

new generation of Web tools that will assist humans in reaching

conclusions using arguments that are not only formally structured,

but are also tailored to the particular characteristics of the audience

that they are addressed to and the context in which they are made,

in order to be better comprehensible, more relevant and, therefore,

more effective. For any topic, it is important to provide Web users

with an overview of all different viewpoints; it is equally important,

however, the presentation of these viewpoints to take into account

the background knowledge and cognitive characteristics of each

individual user.

To address these challenges and needs, we propose and sketch

the design of a new version of the Web, which we call the

Web of Debates. Its ultimate goal will be to offer the means

for assisting humans in participating in debates and collective

decision making processes with well-justified and persuasive

arguments, as well as in identifying biased, misleading or deceptive

arguments. It will be a global, human-centric AI system, which,

taking advantage of advanced AI methods, will be able to process

and analyse the huge amount of natural language arguments

and opinions that are available online, and provide its users

with personalized, user-friendly services for retrieving, filtering,

evaluating and visualizing this information, helping them better

make sense of the different viewpoints, draw their own conclusions

and take informed decisions about any matter of personal or

public concern. The aims of this paper are to describe this vision,

identify the requirements and challenges of its realization, discuss

the theoretical and technological advancements that are needed

to address them, and provide a roadmap toward its realization.

Another aim is to demonstrate the central role argumentation

can play in the development of human-centric AI systems by

providing computational models and tools for cognitive reasoning

and dialogues among humans and machines at the global scale. We

presented some preliminary ideas on this vision in Flouris et al.

(2013) and Flouris et al. (2016); here, we elaborate more on these

ideas, taking into consideration the recent advancements in related

fields of research such as argumentation, machine learning and

natural language processing.

The not-so-distant-future example that follows illustrates how

we envision the interaction with the Web of Debates (Section 2).

Section 3 gives more details about the vision: it motivates the need

for its realization and describes how it will function, how people will

benefit from it, and itsmain goals. Section 4 describes the challenges

that stand in the way of its realization and proposes directions to

overcome them, and Section 5 discusses its potential impact and

some possible ethical issues that the Web of Debates may raise.

Section 6 summarizes the main points of this vision paper.

2. Motivating example

The day began with a feeling of unrest for Steffi. The new article

she is about to prepare obtains added gravity in the prospect of her

country’s elections next month. The topic is not unfamiliar to her;

as a financial journalist she has written numerous articles in the past

regarding the financial crisis and the impact of measures suggested

by the International Monetary Fund (IMF) in other countries.

Her intention this time is to question the diverse viewpoints

on the IMF that are put forward by the different parties and

to present as objectively as possible well-justified and clearly-

articulated opinions both in favor and against the controversial role

of IMF.

She hits “IMF policies help countries recover from financial

crises” in ArgSE, the Arguments Search Engine she mostly uses

when seeking for arguments on theWeb, and configures its settings

in “debate mode”, in order to receive both supporting and refuting

arguments. She has prepared a categorization of the different
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target groups she is interested in to drive the mining process,

and has uploaded the corresponding profiles using the “Audience

Characteristics” functionality of ArgSE. For instance, she would like

to know what arguments can be more meaningful for unemployed

young people and middle-class workers.

Steffi has configured ArgSE to search for relevant arguments

online but ignore sources with a low credibility score. Her profile

data guides ArgSE to accurately decide on the level of detail to

apply for the construction and presentation of arguments: her

expertise in financial terms is sufficient to understand arguments

on the connection between unemployment and inflation, but those

regarding certain social aspects of unemployment require more

detailed analysis in order to be comprehended.

As a result, ArgSE returns a graphic showing in a visually

appealing manner the different arguments, as well as their relevant

properties and metadata, including the sources (provenance) of

each argument, the date and time of its publication, its supporting

evidence, the argument style (e.g., deductive, inductive, etc.),

its adequacy for a particular audience, and the relationships

among the arguments (e.g., attack, support etc). It further

identifies categorizations that Steffi did not consider in the first

place, classifying certain arguments to audience groups sharing

similar characteristics.

Using all the available information, Steffi navigates more deeply

in the graph, she filters, questions, groups and organizes the

available arguments, and eventually identifies and extracts the most

convincing ones. A few hours later her article is ready. Her debate-

enabled editor has assisted her in annotating the different parts of

her text with a formal description of the arguments they refer to,

so that search engines can identify and retrieve them, and links

them with the respective online sources and evidence they are

based upon. Steffi’s own conclusions, based on the correlation of

facts she personally deduced during her research are also included

(and annotated) in the text. This way, her annotated article and

arguments can be stored in her electronic newspaper’s argument

repository for others to find and reuse. As she sends the article to

her editor she feels confident that her audience will have the means

to form a well-informed opinion before actively participating in the

country’s decision making process.

3. The vision of the Web of Debates

3.1. Why: the need for the Web of Debates

As the Web is increasingly being used for informational

purposes, the public opinion is progressively being shaped by what

people read online. Online versions of traditional mass media

play a major role in this shift. On the other hand, due to the

easiness with which content can now be uploaded, many users

now use the Web as a podium to express themselves. However,

extracting meaning out of the plethora of opinions (i.e., evaluating

the credibility and coherence of information related to a subject of

interest, understanding why it is important, and ultimately deciding

whether to adopt or reject it) becomes increasingly difficult.

Even today’s Web contains the information necessary for Steffi

to complete her article. However, this information, being in textual

form, is not easily retrievable or processable, so it is not appropriate

FIGURE 1

A realistic argument in the Web of Debates.

for implementing the features presented in our example scenario.

The Semantic Web (Berners-Lee et al., 2001) and Linked Data4

initiatives promised to overcome some of the limitations of natural-

language Web pages by providing appropriate methodologies

for publishing and interlinking semantic data on the Web

using machine-processable formats. This has recently led to the

development of knowledge graphs (graph-based representations of

real-world knowledge; Hogan et al., 2021) and several types of

knowledge-based systems, such as search engines, recommendation

systems, personal agents, etc. However, the focus of these initiatives

and models is on the representation of data, rather than arguments

or opinions.

Similarly, the main tenets of computational

argumentation (Besnard and Hunter, 2008; Baroni et al.,

2018) and the extensive research conducted in this field have direct

impact on the formulation of the new Web. This research has led

to various types of applications in domains such as law, medicine,

e-government and others (Atkinson et al., 2017). While they

demonstrate well the potential of computational argumentation,

they are all of small scale, being limited by their inability to

process natural language arguments. On the other hand, the recent

advancements in argument mining (Lawrence and Reed, 2019) have

led to global-scale applications of argumentation such as argument

search engines (Wachsmuth et al., 2017b; Stab et al., 2018;

Chen et al., 2019). Their main functionality is to find on the Web

arguments pro or con any controversial issue. args.me (Wachsmuth

et al., 2017b) and PerspectroScope (Chen et al., 2019) rely on pre-

structured arguments, while ArgumenText (Stab et al., 2018) has

the ability to extract arguments from any Web document. They

all rank arguments by relevance to the user-specified topic, while

some of them present extra information for each argument such

as supporting evidence, its stance score (denoting the extent to

which it supports or refutes the claim) or its relevance score. While

4 https://lod-cloud.net/
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these are closer to the kinds of applications we envision for the

Web of Debates, their performance is still limited as, for example,

evidenced by the results of a recent user-based evaluation, which

showed that they do not significantly outperform conventional

search engines especially with respect to the convincingness of the

arguments they retrieve (Rach et al., 2020). This can be attributed

on the one hand to the limitations of the argument miningmethods

they use, and on the other to the lack of a method to assess the

quality or persuasiveness of arguments.

Realizing the types of services and applications we describe in

Section 2 requires addressing the primal reason why opinions reach

the Web in the first place, which is to be persuasive. This latter step

is important, in order to depart from simple argument listings and

logical argumentation, and support realistic arguments and debates

with a purpose, i.e., debates where arguments are not-purely-logical,

and have a certain aim, namely to persuade a certain audience on

some topic, as happens in real-world debates, or help a group of

people make an informed decision through deliberation.

3.2. How: the function and use of the Web
of Debates

Current Web technologies focus on searching for and

managing documents and information. The Web of Debates will

additionally enable searching for and managing realistic arguments

(Figure 1). A realistic argument will have an internal structure,

containing a logical part, but also other types of information

related to its persuasiveness or general quality: the audience that

it is targeted at, its provenance, the context in which it was

made, the values it promotes, the popularity of the claim that it

supports, evidence for its believability (e.g., links to documents,

facts, or other arguments that back it up), the conditions under

which it is effective or valid, etc. Moreover, arguments will be

interlinked in various ways, where the links may represent different

types of support or attack relationships among the arguments

(Figure 2). Understanding the role of the different components

and interconnections of realistic arguments, as well as studying the

factors that affect the persuasiveness and quality of arguments, such

as emotions, trust, provenance, evidence and other logical or extra-

logical considerations will be a crucial first step toward realizing the

vision of the Web of Debates.

The Web of Debates will revolutionize the way argumentative

information that exists on the Web is organized and exploited.

Arguments will be uploaded directly by content providers, but it

will also be possible to construct them on demand from text or by

combining existing arguments with data from knowledge graphs

and other types of knowledge bases, following formal methods,

and taking into account the intended audience. To allow content

consumers make the most out of the presented arguments, the

Web of Debates will exploit information that is both of objective

nature (e.g., the structure of an argument, the logical fallacies it may

contain or its relationships with other arguments) and of subjective

nature (e.g., the consumer’s background knowledge and cognitive

characteristics), based on which a proper ranking of the presented

arguments will be possible, so that the strongest, most relevant and

most understandable will be more visible. This, however, will not

undermine the diversification of the presented opinions. In order

to prevent the formation of echo chambers5 or filter bubbles,6 the

selection and ranking algorithms of the Web of Debates will ensure

that arguments from all different viewpoints will be presented and

highlighted, and the users will be allowed to access and configure

the algorithms as they wish. In our motivating example, ArgSE

would return the official opinions of IMF, as well as counter-

opinions put forward by leading economists and other people,

provided that they are trustworthy enough and understandable (per

Steffi’s knowledge background). It would also be able to explain

how the presented arguments were selected and ranked and give

the options to Steffi to configure the selection and ranking process.

Realistic arguments will be stored in “argument bases” (the

analogous to knowledge bases and ontologies) and will be linked to

online sources, such as a collection of sentences inside a document,

information retrieved from a picture, etc. In the context of our

example, people arguing about IMF’s role in mitigating the effects

of the economic crisis, will have the ability to post and interrelate

arguments in a machine-interpretable way. Similarly, the IMF itself

will be able to express its own arguments on the matter, stored in its

own dedicated repository and uploaded on its website. Note that all

types of digital artifacts (from financial reports to polls, simple text,

images, videos, other arguments, datasets) can be used as evidence

supporting a certain argument. Thus, arguments and digital objects

will be interrelated in two ways: arguments can be linked to digital

objects they refer to, whereas digital objects can also be used as parts

of arguments (e.g., as supportive evidence).

The Web of Debates will also enable certain forms of dialogical

interaction with its users. As described in the motivating example,

after receiving a set of arguments that best match her request,

Steffi will be able to follow up by requesting more arguments, by

asking for more clarifying information about a certain argument,

or even dispute the returned ones by presenting her own counter-

arguments. ArgSE will then be able to search again in the Web

of Debates and respond back by presenting additional persuasive

arguments in the first case, data that back up or explain the

argument in question in the second case, and data or arguments

that invalidate Steffi’s counter-arguments in the third case.

Summing up, we envision the Web of Debates not as

a replacement for the current Web but as a complementary

technology. Searching for and interlinking documents and

information will still be among the core functions of the Web. The

Web of Debates will provide additional tools that will exploit such

functions to support a new one: the retrieval and management of

arguments and the interlinking among arguments, web documents

and information.

3.3. Who: actors in the Web of Debates

The Web of Debates will provide benefits for both the content

provider and the content consumer, by offering a convenient

podium for expressing one’s opinions and a platform for accessing

opinions of others. The easy access to the enormous amounts

5 https://en.wikipedia.org/wiki/Echo_chamber

6 https://en.wikipedia.org/wiki/Filter_bubble
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FIGURE 2

Arguments and data interplay in the Web of Debates.

of Web information, in tandem with the automated annotation,

retrieval, exploration and analysis of realistic arguments, will allow

opinions to reach a large, literally global, audience, and, at the

same time, provide a valuable tool in the hands of professionals,

businesses, organizations, governments, or individuals to support

their decision-making processes. This will be realized via the

development of new and more powerful argument-aware search

engines and other types of web applications that will allow users

to retrieve, process, visualize, understand and query the arguments

uploaded by content providers, as well as their interrelationships.

The combination of these features and tools will stimulate

opinion diversity, contribute toward collective awareness and

informed decision-making, promote active citizenship and e-

democracy, support legal argumentation and justice attribution,

allow improved fact-checking and encourage structured and

civilized argument exchange in a networked world. In addition,

it will help all parties formulate explicit opinions in their effort

to persuade others into accepting a certain claim or taking a

certain action, thereby using the Web to argue in favor of the

products, services or ideas that they promote (for marketing

or advertising purposes, or for refuting unjustified opinions

or prejudices).

In our motivating scenario, Steffi is aided in her task by a

graphic display summarizing the strongest arguments retrieved

from credible sources on the Web, as well as their properties,

supporting evidence and interrelationships. In this way, she

would be protected from malicious users and sloppy arguments.

Moreover, she would be able to concentrate on the most important

ones or those that are most relevant to the specific context or case

that she is interested in, and she would be able to easily identify

poorly supported opinions.

3.4. What: the goal of the Web of Debates

The goal of the Web of Debates is not to impose any given

opinion, but to provide the medium through which a user can

“collect” different arguments in favor and/or against a certain claim

in order to form an opinion of their own, convince an audience

to accept a certain claim or opinion or participate in discussions

with other users in order to take collective decisions about a certain

course of action. The services offered by a search engine in theWeb

of Debates are analogous to those of a journalist, whose role is to
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FIGURE 3

Related technologies and challenges toward the Web of Debates

vision.

objectively and concisely reproduce the most prominent opinions

expressed by different people or entities (e.g., political parties),

in ways that help the readers better understand and evaluate

them, taking into account their profiles and backgrounds. In our

example, ArgSE retrieves and presents arguments from sources

that are considered reliable, as well as information associated to

their quality and persuasive strength for audiences that match the

profiles provided by Steffi. But it is up to Steffi to decide which

of them would actually be the most influential for the readers of

the newspaper she is working for. Apart from search engines, the

Web of Debates will support several other types of applications,

such as everyday assistants, expert companion systems (see e.g.,

Dietz et al., 2022 for some examples), collaborative decision support

systems, intelligent tutoring systems aimed at teaching users how

to make better arguments, automated debating systems and others.

Some common characteristics of all such systems will be their

focus on natural-language arguments and the human aspects of

argumentation, their seamless integration within the online, private

or social, activities of their users, their adaptability to background

knowledge and cognitive characteristics of each user or group of

users, their ability to explain any inferences they make, and their

ability to develop by learning from experience and by taking into

account the feedback provided by their users. In other words, they

will combine all major characteristics of human-centric AI systems.

4. Realizing the vision

There are several research fields and state-of-the-art

technologies that can provide the substrate upon which the

vision of the Web of Debates can be realized, but also important

obstacles that stand in the way of its realization. Figures 3, 4

provide an overview, showing some broad research fields and

technologies that are relevant.

Figure 3 lists the main relevant technologies. The vertical bars

represent various challenges that need to be overcome by the

corresponding technologies and research fields. The horizontal bars

represent critical technologies, which, even though not directly

used to address any challenge, will set the guiding principles

upon which the solutions to all challenges will be based. All these

technologies need to be advanced or further explored to overcome

the related challenges.

Figure 4 displays the same technologies and challenges from

a different perspective, organizing them in a two-axis chart. The

position of the technology along the horizontal axis represents

both the current and the required maturity of each technology

to solve the respective challenge. The left side of each rectangle

represents the current capacity of the corresponding technology

to address the related challenge, at least at a preliminary stage,

whereas its right side represents additional advances that need to

be achieved (and how far in the future these are estimated to occur)

before actually solving the respective challenge in its entirety. On

the other hand, the vertical axis represents the kind of progress

required per technology (practical or theoretical) to overcome the

respective challenge. We should note that this chart is based on our

own assessment of the maturity level of each technology based on

the literature we reviewed, and not on a systematic evaluation of

the technologies.

In the following sections, we further analyse these technologies

and their role in the realization of the Web of Debates.

4.1. Understanding realistic argumentation

Argumentation theory studies how conclusions can be reached

through logical reasoning in the presence of, possibly contradictory,

evidence for or against a certain conclusion, whereas argumentation

systems are logic-based computational systems that aim to

automate this process (see Baroni et al., 2018; Gabbay et al., 2021

for the state of the art and current trends). Scientific advances in

these fields of study, such as the understanding of the structure of

arguments, the development of tools for constructing arguments,

the identification of their relations, and the development of

semantics for drawing sound logical conclusions from possibly

contradictory arguments, are all relevant in the context of the Web

of Debates.

Nevertheless, the Web of Debates is a lot more than an

argumentation system deployed in a global scale. The main

challenge here is the shift from logical argumentation to realistic

argumentation. Realistic argumentation does not only appeal to the

logic of the audience, but also to its emotions. It is only partly

based on facts and data, often employing additional techniques

such as the clever use of verbal cues and the semantic structure

of text/speech (politeness, aggressiveness etc), as well as different

argument schemes based on factors such as appeal to authority

or expert opinion, popularity of supported claims, peer-pressure,

arguments from analogy, proof-by-example, non-logical (e.g.,

statistical) correlations between different arguments, and others

(Walton, 2006). The aim of realistic argumentation is usually to

persuade or help reach a decision, rather than prove or present

facts or arguments for the sake of presenting them; thus, it also
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FIGURE 4

A 2-dimensional categorization of related technologies and challenges.

involves a process of selecting the strongest arguments to put

forward first, taking into account their relatedness, informativeness

or persuasive characteristics. In this sense, realistic argumentation

is more context-aware and more personalized.

Building on the most influential model of arguments in

the last decades, Abstract Argumentation Frameworks (Dung,

1995), there have been some attempts to formalize features

of realistic argumentation, such as the audience (Hunter,

2015), the values that arguments promote (Bench-Capon,

2003), preferences (Amgoud and Vesic, 2014), trust (Villata

et al., 2013), the argument strength (Amgoud et al., 2022), the

context of argumentation (Brewka and Eiter, 2009), uncertain

arguments (Hunter, 2013), commonsense arguments (Vassiliades

et al., 2020), enthymemes (Black andHunter, 2008), and persuasion

dialogues (Prakken, 2009). There is also some promising research

on the formalization of argumentation schemes (Verheij,

2003; Reed and Walton, 2005; Prakken et al., 2015; Wyner,

2016; Panisson et al., 2021), and more generally on the use of

argumentation schemes in AI (Macagno, 2021). The study of

what contributes to the persuasiveness or the quality an argument

has recently started but is growing fast. Work on this topic

includes crowdsourcing studies comparing arguments in terms

of their persuasiveness (Habernal and Gurevych, 2016; Gretz

et al., 2020), studies focusing on specific factors such as linguistic

features (Persing and Ng, 2017), the semantic types (logos, ethos,

or pathos) of claims and premises (Hidey et al., 2017), the types

of evidence used to support an argument (Addawood and Bashir,

2016), personality traits and prior beliefs of the audience (Lukin

et al., 2017; Durmus and Cardie, 2018; Al-Khatib et al., 2020), the

style of the arguments (Baff et al., 2020), etc., but also some more

general attempts to identify all related factors (Steenbergen et al.,

2003; Wachsmuth et al., 2017a). According to Wachsmuth et al.

(2017a), the quality of an argument is determined by its cogency,

i.e., whether its premises are acceptable, relevant to its conclusion

and sufficient to draw its conclusion; its effectiveness, which is

related to the credibility of its author, its clarity, its emotional

appeal and its appropriateness; and its reasonableness, which refers

to its global acceptability, its relevance to the discussion or debate,

and its ability to defend itself against all counter-arguments.

The deliberative quality of an argument, defined in Steenbergen

et al. (2003), includes additional factors that are important in

deliberation dialogues, such as respect, equality among all arguers,

interactivity and testimoniality. Most work in this area has the

form of empirical studies aiming at validating the related factors,

and improving our understanding of human argumentation.

There are still, though, relevant issues from the perspective of

discourse analysis, rhetorics, and psychology [e.g., whether people

are skilled arguers (Hahn and Oaksford, 2012), and why people

argue (Mercier and Sperber, 2011)] that has not yet attracted much

attention from the AI community. Some other open research

problems in this area concern the interaction of the different

factors, how teams of arguments work in concert in debates, how

the order that the arguments are presented influence the outcome

of a debate, and how people select which arguments to put forward

in a debate. The interdisciplinary study of such issues is necessary

for understanding and formalizing human argumentation,

which is in turn a key requirement for realizing the Web

of Debates.
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4.2. Web technologies

The current Web is based on the simple idea of interlinking

documents and making them available to anyone from anywhere.

Building on the same principle, different technologies have been

proposed to extend the documentWeb. One of the most prominent

ones is the Semantic Web (Berners-Lee et al., 2001) and the closely

related Linked Data initiative, where the main building blocks are

structured datasets (rather than documents). Its motivation is that

documents are not easily machine-processable, so there are certain

limitations on what a machine can do with them; on the other

hand, access to machine-interpretable data (in the sense of a “global

database”) can give rise to even more sophisticated applications,

such as the ones that have already been created on top of knowledge

graphs (see Hogan et al., 2021 for some examples).

The so-called Social Web aims to foster social interaction,

by providing a plethora of tools and platforms enabling humans

to communicate through blogging, tagging, Web content voting,

social bookmarking, and other means of social interaction. The

Web of Debates seeks to upgrade the role of the Social Web

into a broader means of communicating opinions and carrying

out debates. There have already been some attempts to integrate

argumentation within the Social Web. For example, Schneider

et al. (2013) provides a review of web applications that combine

features of the Social Web, the Semantic Web and computational

argumentation. Such applications, however, are still limited in the

features of realistic argumentation they can support as they mostly

rely on models that capture the logical aspects of argumentation.

Frameworks for social argumentation (Leite and Martins, 2011;

Baroni et al., 2015; Patkos et al., 2016) integrate arguments with

social votes; online debates, though, involve a lot more non-logical

aspects, which these frameworks do not capture. With a shift

toward realistic arguments, knowledge exchange will be carried out

along the lines of logical consistency, factual accuracy and some

degree of emotional appeal to the intended audience, but will also

take into account the individual needs and preferences of web users.

Even though the decision of adopting one conclusion over another

will remain a subjective issue, the Web of Debates will facilitate

the process of deliberation by filtering out irrational and logically

incorrect expressions, while maintaining a significant degree of

personalization in choosing the top-rated arguments for each user.

The Pragmatic Web (Schoop et al., 2006) is motivated by

the observation that the content of the Web does not actually

represent factual data, but the subjective opinions of the people

who upload it. Even though it has a similar motivation with the

Web of Debates, its objectives and used methodologies are quite

different. From the Pragmatic Web viewpoint, a conflict is just a

clash of opinions, which is resolved not by analyzing the opinions

themselves, but by determining the support of each opinion via

crowdsourcing techniques, and by interpreting and representing

data in a context-dependent manner so as to enable users to reach

agreements. On the other hand, the Web of Debates aims to

analyse and contrast the different contradicting arguments, to allow

the interested user to better understand their connections, and

eventually judge themselves the validity of each one, based on their

own beliefs, knowledge, or even prejudice; unlike the approach

followed by Pragmatic Web, this would allow the identification of

widely spread, but unjustified, beliefs or opinions.

Closer to our vision is the Argument Web (Bex et al., 2013;

Reed et al., 2017), which is an effort to deploy argumentation

on the Web. At its core is the Argument Interchange Format

(AIF, Chesñevar et al., 2006; Rahwan et al., 2007), an ontology

for arguments. On top of AIF, several Web-based tools have been

developed for argument annotation, visualization and analysis7 and

have been applied to various types of real debates, including, for

example, debates taking place in the famous BBC broadcast Moral

Maze.8 Other applications include tools for better understanding

existing arguments, or for improving the argumentation skills of

adolescents.9 All these developments are in line with our vision

of the Web of Debates and will contribute to its realization.

These tools, however, rely mostly on manual annotation and

analysis and cannot, therefore, meet the requirements of large-

scale applications. The realization of the Web of Debates will

require the automation of the argument annotation and analysis

processes, their enhancement so that they can handle all features of

human argumentation, and the development of several other extra-

logical processes, such as profile and context analysis, audience

analysis, trust analysis, reputation analysis and others. This will

enable the development of large-scale web applications that can

take advantage of all argumentative information that is already

available on the Web.

In summary, the technological advances made in the context

of the above technologies will contribute to the development of

the Web of Debates in a critical manner. In particular, the low-

level infrastructure of the Web of Debates is expected to reuse the

standard Web protocols, whereas knowledge graph languages and

semantic technologies, and other techniques and technologies such

as crowdsourcing, social tagging, voting and others, which Web

users are already familiar with, will probably find their way into the

Web of Debates. The developments made in the Argument Web

with respect to argument modeling, annotation and visualization

will also be exploited and extended or adapted to the needs of the

Web of Debates.

4.3. Extraction and annotation

As with all added-value technologies, the size of the Web of

Debates must reach a critical mass to make itself useful. Given the

abundance of the natural language arguments already on the Web,

technologies such as automated mining of arguments from blogs,

forums or other social media, Natural Language Processing (NLP)

techniques and others, need to be employed to create structured

arguments out of text. In addition, human contribution could

be enabled for this task, by adapting existing technologies such

as gamification (von Ahn and Dabbish, 2008) or crowdsourcing

techniques. Some efforts have already been made to crowdsource

argument creation (Chalaguine and Hunter, 2019) and annotation

(Ghosh et al., 2014; Skeppstedt et al., 2018). Furthermore, aspects

7 https://arg-tech.org/index.php/research

8 https://www.newsweek.com/artificial-intelligence-argument-debate-

752199

9 https://www.independent.co.uk/tech/artificial-intelligence-debate-

argue-bbc-science-tech-research-a8118191.html

Frontiers in Artificial Intelligence 08 frontiersin.org123

https://doi.org/10.3389/frai.2023.1124045
https://arg-tech.org/index.php/research
https://www.newsweek.com/artificial-intelligence-argument-debate-752199
https://www.newsweek.com/artificial-intelligence-argument-debate-752199
https://www.independent.co.uk/tech/artificial-intelligence-debate-argue-bbc-science-tech-research-a8118191.html
https://www.independent.co.uk/tech/artificial-intelligence-debate-argue-bbc-science-tech-research-a8118191.html
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Bikakis et al. 10.3389/frai.2023.1124045

related to multilinguality should be addressed, exploiting the

improving quality of automated translation tools. Along similar

lines, the annotation of images, sounds or complete documents

with the arguments that characterize them is equally critical for a

Web where knowledge can take various forms.

In tandem with the above efforts, it is of crucial importance

to encourage content providers to upload their arguments online

using the proper format (i.e., in a structured form), by providing

tools that simplify the process, e.g., by allowing the semi-automatic

generation of arguments and/or by aiding the content provider

annotate her arguments. Existing tools for manual argument

creation or annotation, such as Araucaria (Reed and Rowe,

2004), Rationale (van Gelder, 2007), OVA (Bex et al., 2013), and

Carneades (Gordon et al., 2007), enable the users to identify the

components of arguments (e.g. their premises, conclusions, etc.),

their relations (e.g., attack, support, etc.) and the argumentation

schemes they instantiate (e.g., argument from expert

opinion, etc.).

However, in order to be able to exploit the abundance of natural

language arguments that already exist on the Web, automating the

extraction of arguments from text is a fundamental requirement.

The rapidly expanding field of argument mining (see Stede and

Schneider, 2018; Lawrence and Reed, 2019 for a recent survey and

book) has already demonstrated some promising results that could

form the basis for realistic argument extraction and annotation

in the Web of Debates. These include annotation schemes for

argument mining (Budzynska and Reed, 2011; Peldszus and Stede,

2013; Stab and Gurevych, 2014; Kirschner et al., 2015; Habernal and

Gurevych, 2017; Niculae et al., 2017), annotated corpora (Andreas

et al., 2012; Ghosh et al., 2014; Rosenthal and McKeown, 2015;

Abbott et al., 2016; Habernal and Gurevych, 2017), methods for

argument extraction from text (Andreas et al., 2012; Florou et al.,

2013; Ghosh et al., 2014; Rosenthal and McKeown, 2015; Abbott

et al., 2016; Habernal and Gurevych, 2017) or for identification

of argument relations (Peldszus and Stede, 2015; Cocarascu and

Toni, 2017; Lawrence and Reed, 2017; Niculae et al., 2017; Nguyen

and Litman, 2018; Kobbe et al., 2019; Trautmann et al., 2020).

Most of the current corpora and argument mining methods

have been developed for specific domains and applications and

the performance varies across different tasks and domains; for

example, the results are much better in persuasive essays (Stab

and Gurevych, 2017) than in legal cases (Teruel et al., 2018) or

microtexts (Peldszus and Stede, 2015), which are most commonly

encountered on the Web. There is still lack of a general annotation

scheme and generic methodologies that would perform well in

multiple domains. We should note here that it may be impossible

to develop a computational method that can with 100% accuracy

identify arguments in a natural language text. As evidenced by

several studies that involved manual annotation of texts (Stab and

Gurevych, 2014; Kirschner et al., 2015; Habernal and Gurevych,

2017), there is very often disagreement between annotators on

the arguments, components of arguments or argument relations

conveyed by a text, which in most cases is due to the ambiguity

of human language. As shown in Thorn Jakobsen et al. (2022), it

may also be due to the different backgrounds and demographic

characteristics of the annotators. Manual annotation may therefore

introduce social bias to the data used to train data-driven argument

mining methods and, as a result, also to the methods themselves.

Addressing this challenge is a requirement for the realization of

the Web of Debates, while methods for identifying and measuring

biases (Pagano et al., 2023) can also help mitigate this issue.

Most current argument mining approaches focus on arguments,

components of arguments (e.g., premises and claim) or relations

between arguments (e.g., attack and support). There have been

some attempts to automatically extract from text other features

of human argumentation such as ethotic expressions (Duthie and

Budzynska, 2018), emotional arguments (Oraby et al., 2015) and

argument schemes (Lawrence and Reed, 2016), but the research in

this area is still in its early stages. Developing domain-independent

methods with the capability of identifying extra-logical features of

argumentation is essential for the development of solutions that

better fit the needs of the Web of Debates.

4.4. Representation and interchange

Enabling the association and combination of arguments

from different sites of the Web requires the development

of a semantically explicit representation model (ontology) for

realistic arguments, so that different independently developed

applications will be able to process them in a common manner

and interoperate within an integrated environment. As also

discussed above, AIF (Chesñevar et al., 2006; Rahwan et al.,

2007) is one such ontology, which captures various models of

argument, both formal (such as AAFs), and informal such as

Walton’s argumentation schemes (Walton, 2006). Using AIF, it is

possible to model the (logical) structure of an argument (e.g.,

its premises, conclusion, etc.), argument relations (e.g., support,

conflict, preferences), but also the argumentation scheme that an

argument adheres to. An extension of AIF enables also modeling

elements of argumentative dialogues such as locutions (e.g.,

statements, withdrawals, questions, challenges, etc.), commitments

and dialogue rules (Reed et al., 2008). Such approaches are

definitely within the spirit of the Web of Debates. There are still

though several aspects of human argumentation that have not been

accommodated. The development of an appropriate model for

realistic arguments requires answering additional questions such

as: What are exactly the types of information that define the quality

or persuasiveness of an argument? How are these modeled and

attached to an argument? How do we characterize and model the

presenter of an argument and her audience? What are the possible

relations between realistic arguments and the possible statuses of

an argument within a realistic debate? Most of these issues are still

open research topics in computational argumentation, with some

interesting approaches being proposed during the last few years

(e.g., see Bench-Capon, 2012).

The representational model will be based on knowledge

graph languages, to allow reusing existing ontologies that capture

features related to realistic argumentation [e.g., profile ontologies

such as UPOS (Sutterer et al., 2008) or provenance ontologies

such as PROV-O (McGuinness et al., 2013)], and exploiting the

Linked Open Data (LOD) architecture to provide connections

between the concepts/topics related to the arguments and their

representation in existing online datasets (e.g., Wikidata). This will

enable interlinking related arguments, but also linking arguments
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with other types of web data, which can be used for example as

supporting evidence. It will also allow using standard Semantic

Web languages and tools (e.g., SPARQL, rule languages, etc.) for

querying and reasoning with the arguments and their relationships.

4.5. Storage and management

Realistic arguments will be stored in what we call “argument

bases”, the analogous of knowledge bases. Their structure will

enable storing arguments, as well as any other information that

is relevant to the proper representation of realistic arguments

and debates. Argument bases should also provide: (a) inference

support; (b) query support; (c) support for data management

tasks such as updating, repairing and change monitoring; (d)

alignment and interoperating capabilities with related ontologies;

and (e) propagation of relevant information among different

systems. For the development of such systems, the experience

gained from the deployment of triple stores and other semantic

data management systems (Özsu, 2016; Abdelaziz et al., 2017)

will be exploited. The AIFdb database system (Lawrence et al.,

2012), which was developed for storing and managing arguments

described in the AIF ontology, supports some of the desired

functionalities: it enables semantic processing and visualization of

arguments, query management and dialogue control. A language

for querying structured dialogical data, which is compatible with

AIF and knowledge graph languages (RDF, SPARQL), was also

recently developed (Zografistou et al., 2018). Such technologies are

compatible with and can form the basis for the development of

web-scale argument bases for the Web of Debates.

4.6. Reasoning and analytics

Representing and storing arguments in an adequate format

is not an objective in itself, just the means toward providing

adequate services over the Web of Debates, based on the general

notions of analytics and reasoning. Through these services, the

user will be able to search and navigate through arguments

(possibly in an exploratory manner), pose structured queries

over the pool of available arguments, or perform sophisticated

(and customized) aggregation and summarization operations. In

addition, sophisticated forms of reasoning may emerge, allowing

the identification of implicit relationships among arguments, or

the development of new forms of semantics that determine

the “acceptability” of realistic arguments, along the tradition

of abstract argumentation (Dung, 1995). There are already

several tools, called argumentation solvers, that were designed

to solve standard reasoning tasks (e.g., compute the set of

acceptable arguments) in abstract argumentation frameworks—

see Cerutti et al. (2017) for an overview and Lagniez et al.

(2021) for the results of the latest International Competition

on Computational Models of Argumentation. The standard

acceptability semantics of AAFs, proposed in Dung (1995) and

considered in all these tools, use two (accepted/rejected) or

three values (accepted/rejected/undetermined) for representing

the acceptability of arguments. This is, however, too simplistic

compared to the way that we evaluate arguments in our every

day life, where we most commonly believe in or are persuaded by

arguments to varying degrees. This has recently led to finer-grain

gradual evaluation methods, based on numerical scales (Baroni

et al., 2019) or rankings (Bonzon et al., 2016). Some of these

approaches also consider a base weight, a value assigned to an

argument, which may represent the probability of believing the

argument (Hunter, 2013), the aggregated strength of its premises

and inference rules (Spaans, 2021), votes provided by users (Leite

and Martins, 2011), the importance degree of a value promoted

by the argument (Bench-Capon, 2003), or the trustworthiness of

the argument’s source (da Costa Pereira et al., 2011). Extending

these methods to take into account the factors associated with the

persuasiveness or quality of arguments discussed in Steenbergen

et al. (2003) and Wachsmuth et al. (2017a) (see also Section 4.1)

is a promising research direction that would contribute to the

realization of theWeb of Debates. A computational framework that

combines an arbitrary set of factors to compute the overall quality

or acceptance of an argument was proposed in Patkos et al. (2016);

however, the framework is generic and takes only into account

the users’ arguments and votes. Further research is required to

determine the extent to which each factor contributes to the quality

of an argument, possible dependencies among the factors, and the

role of the topic or context of a debate in determining which factors

are more or less important.

Another aspect that should be taken into account is the much

bigger scale of the Web of Debates compared to current argument-

based applications. The majority of the reasoning problems in

AAFs are known to be NP-hard (Charwat et al., 2015), and

reasoning with realistic arguments is expected to be even more

complex. The exact and complete solutions implemented by

argumentation solvers may not, therefore, be feasible in scenarios

involving large scale datasets. There have already been some recent

efforts to develop approximate solutions for AAFs based on graph

neural networks (Kuhlmann and Thimm, 2019; Craandijk and Bex,

2020; Malmqvist et al., 2020). The realization of theWeb of Debates

will require the development of similar approximate solutions for

the evaluation of realistic arguments.

The automated generation of arguments on the basis of data

or other arguments found on the Web will also be a desirable

feature for many applications of the Web of Debates. This will

create additional value from existing arguments, via aggregation,

summarization, elaboration, and generation of new knowledge

in the form of new realistic arguments. This is similar to how

reasoning and inference generates new knowledge from existing

facts based on well-defined formal deductive rules. In this direction,

the approach proposed in Khatib et al. (2021), where arguments are

generated by GPT-2, a neural language model, trained with data

from argument knowledge graphs, has demonstrated promising

results and a methodology that fits the envisioned features of the

Web of Debates.

4.7. Presentation and visualization

Given the sheer size of the Web, one expects to find a large

number of arguments in favor (or against) a certain claim, so
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presenting everything to the user is certainly not productive. Some

kind of aggregation or summarization is necessary, along with a

ranking process that will highlight the most important or relevant

ones, taking into account also issues like the diversification of

opinions. It should be emphasized that ranking only aims at the

practical necessity to give priority to some of the arguments;

the user should have access to all arguments, and no filtering

or censorship should take place as part of the ranking process.

Preliminary research in this area has focused on identifying

similar arguments using clustering techniques (Misra et al.,

2015; Boltuzic and Snajder, 2016) and on summarizing the key

issues brought up in debates using standard text summarization

techniques (Ranade et al., 2013), tools and techniques from lexical

semantics (Saint-Dizier, 2018), or machine learning techniques and

word embeddings (Misra et al., 2017).

A similar challenge is related to the visualization of arguments

and their relationships, which is important for the content

consumer to understand the structure of a complex web of

realistic arguments. Tools such as Araucaria, Rationale, OVA, and

Carneades (discussed in a previous section) visualize debates as

trees or graphs, focusing on the logical part of arguments or their

relationships. Other argument mapping tools are Kialo,10 which

displays one argument at a time with its support arguments on one

side and the attacking arguments on the other, and DebateGraph,11

which also focuses on one argument at a time and displays its

related arguments in the form of a graph. Some of these tools

display additional data about the arguments, such as a score or links

to related debates or data. Such data but also any other information

that is related to the quality or persuasiveness of an argument

should be somehow made available to the users of the Web of the

Debates and visualized in an intuitive way that will help themmake

sense of all different viewpoints in a debate as quickly as possible.

Addressing the tradeoff between making available all relevant

information to the users while, at the same time, helping them to

make sense of a debate as quickly as possible is definitely a big

challenge, and will require the adoption of standard information

visualization principles such as the ones proposed by Shneiderman

(1996), i.e., overview, zoom and filter, details on demand, relate,

history and export.

5. Impact of the Web of Debates

5.1. Potential impact

The Web of Debates can be viewed as the “blog of tomorrow”,

where people will be able not only to express their viewpoints in

a natural language, but also to annotate and connect them in a

machine-interpretable way. The expression of arguments in formal,

machine-processable terms, as well as their interlinking, will create

significant added-value benefits. In the same way that linked data

and knowledge graphs have led to the discovery of new, previously

unseen connections, correlations and knowledge (e.g., business

analytics), we expect the interlinking of arguments to lead to a

10 https://www.kialo.com/

11 https://debategraph.org/

better understanding of the various debates and the generation of

new, aggregated or previously unknown arguments and insights.

The abundance of Web data, combined with machine-

processable arguments, will allow the envisioned version of the

Web not only to provide relevant information (as when reading

a book), but also to combine available data in order to provide

arguments in favor of (or against) different alternative options

(as done by a knowledgeable expert). This way, people will be

better informed on matters of interest, thus promoting collective

awareness on community problems and enabling better decision-

making for professionals or companies.

At the community level, the services of the Web of Debates

can enable public authorities to reach a broader audience in a

more personalized way, in order to foster policies of societal

value (e.g., healthy lifestyle, sound environmental behavior), to

target unjustified concerns, to promote participation in community

matters and democratic processes (e-democracy), or to support

legal argumentation and justice attribution. At the individual level,

the same services are expected to form a critical component

of future autonomous entities endowed with socio-cognitive

intelligence, which are used in the emerging market of smart

spaces (Alazab et al., 2022). This can find applications ranging

from service robots for domestic use, to smart environments related

to domestic care and work, education, healthcare, communication

and entertainment.

In addition, there is a wide range of potential applications

suitable for the private sector; these generally fall under marketing,

e.g., persuading customers to buy products/services, convincing

people to donate to a charity, etc. Similarly, the Web of Debates

can also be used as an assistive tool for individuals that practice

persuasion as part of their professional life, such as lawyers,

business executives etc, or for decision-makers in general, as it

would allow better and more informed choices by combining

information found on theWeb, and also possibly in local databases,

to build persuasive arguments and suggestions. But at the same

time, by relying on transparent and easily configurable algorithms

that promote the diversification of the viewpoints they present to

the users, it can also help mitigate the problem of echo chambers

and the increased polarization that this phenomenon causes.

Ultimately, we see the Web of Debates as the platform of

ideas that holds the promise for promoting the role of humans

in collective decision-making and e-democracy, able to have

significant impact at both the individual and the societal level.

5.2. Ethical issues

The ability of the Web of Debates to adapt to the personal

characteristics and background knowledge of each user requires

that it has access to this information. However, it is important to

ensure both that the users will be in total control of their personal

data, and that the functionality of the Web of Debates will not

be diminished by the lack of personal data. This can be ensured

by developing the Web of Debates according to the Privacy by

Design principles (Cavoukian, 2013). Following these principles,

the Web of Debates should by default not have access to any

personal data, its operations should be visible and transparent to
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all users, it should provide several data-sharing options that will be

easily comprehensible to all users, and it should employ end-to-end

security mechanisms for protecting the users’ data.

We acknowledge the fact that persuasion (that underlies the

Web of Debates), as well as the development of automated

persuasion systems, would, by their very nature, be open for misuse

by governments, businesses, individuals or organizations (e.g.,

for coercion, control or opinion enforcement). For example, one

potential issue would be the usage of theWeb of Debates as a means

to promote the incorporation of false, deceptive or misleading

arguments by malicious content providers. In both cases, naive

content consumers could be deceived, thus causing disillusionment

to well-intentioned users and jeopardizing the usefulness of the

Web of Debates.

Despite the fact that such opportunities for abuse are

admittedly present, this is the case for most useful technologies, so

we argue that this should not be a deterring factor toward realizing

this technology. As a most striking example, one could refer to

today’s Web, where all such features exist (inaccurate or false

information, etc.). However, we argue that the Web of Debates will

in fact improve the situation, and will be helpful toward mitigating

this problem.

In particular, it should be noted that it is not the aim of the

Web of Debates to provide any kind of censorship or checking on

different opinions. On the contrary, it will allow all opinions to be

more easily publishable and accessible. We argue that this feature

will in fact reduce the opportunities for censorship, coercion, or

deception, in the sense that access to different opinions, as well as

the verification of the validity of arguments associated with these

opinions, will be easier for open-minded content consumers, so

the power of deceptive or misleading arguments and opinions will

be mitigated.

Similarly, understanding persuasion (in general) can reduce

the opportunities of coercion, control, or manipulation that may

potentially be exercised by businesses, individuals or organizations

over unaware citizens. Research on persuasion can help in

identifying how and when this happens, as well as in preventing

it, by allowing humans and intelligent systems to argue together.

At a more technical level, advances in the fields of trust

and automated fact-checking,12 as well as the incorporation of

provenance information in realistic arguments could help users in

the task of identifying deceptive or misleading arguments. This is

similar to how the current Web has allowed recent advances in

technology where facts and statements can be more easily checked

for validity against the vast amount of the information available on

the Web, using fact-checkers.13

Furthermore, the integration of models and methods from

Explainable Artificial Intelligence (Banerjee and Barnwal, 2023),

especially in the processes that involve Machine Learning

algorithms (e.g., argument mining or argument generation)

will contribute to the transparency, interpretability and

understandability of the outputs of the Web of Debates tools

and applications and to the establishment of trust with their users.

Computational argumentation has already proved to be a very

12 http://en.wikipedia.org/wiki/Fact_checking

13 https://en.wikipedia.org/wiki/List_of_fact-checking_websites

useful tool for developing explainable systems (Vassiliades et al.,

2021), while the recent launch of the International Workshop on

Argumentation for Explainable AI14 shows that this is an active

area of interest for researchers in computational argumentation.

We, therefore, anticipate that their involvement in the design and

development of the Web of Debates will ensure that it will function

as an explainable system.

6. Conclusion

Not long ago, the problem of information overload attracted

the attention of different scientific communities, fueled by the

increasing number of people posting and accessing information

on the Web; nowadays, the increasing amount of user-generated

reviews, comments and arguments on the Web may lead to a

similar problem, that of opinion overload. In this paper, we looked

ahead to a future version of the Web, where this problem can

be overcome by exploiting the structure of realistic arguments

and understanding the arguers’ intentions. After motivating and

describing our vision, we identified its main challenges and

proposed research and technological directions to its realization,

which can be summarized in: understanding and formalizing

realistic arguments and debates; developing methods and tools for

automatically generating structured arguments (e.g., by extracting

arguments from text); developing appropriate models for the

representation and interchange of arguments; creating systems

for their storage and management; developing methods for

analyzing arguments and debates; developing models and methods

for summarizing and visualizing arguments and debates; and

augmenting Web technologies with the ability to automatically

process online arguments by integrating the above research

developments.

We strongly believe that the realization of this vision

will stipulate research in a wide range of domains—scientific,

academic and commercial—and can lead to the development of

innovative human-centered applications that will revolutionize

Web experience. Apart from its evident impact on the organization

of argument and knowledge exchange on the Web, this effort

opens up a way to serve a higher-level purpose: by enabling

people to locate the valid rational arguments in the sea of

opinions of questionable credibility, as well as those arguments

that better support them, it will empower critical thinking

and facilitate the active participation of humans in collective

governance processes. Ultimately, we see the Web of Debates as

the platform of ideas that holds the promise for promoting the role

of humans in collective decision-making and e-democracy, able

to have significant impact at both the individual and the societal

level.
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This article investigates the conceptual connection between argumentation and

explanation in the law and provides a formal account of it. To do so, the methods

used are conceptual analysis from legal theory and formal argumentation from

AI. The contribution and results are twofold. On the one hand, we o�er a critical

reconstruction of the concept of legal argument, justification, and explanation of

decision-making as it has been elaborated in legal theory and, above all, in AI and

law. On the other hand, we propose some definitions of explanation in the context

of formal legal argumentation, showing a connection between formal justification

and explanation. We also investigate the notion of stable normative explanation

developed elsewhere in Defeasible Logic and extend some complexity results. Our

contribution is thus mainly conceptual, and it is meant to show how notions of

explanation from literature on explainable AI and legal theory can be modeled in

an argumentation framework with structured arguments.

KEYWORDS

explanation, argumentation, legal reasoning, defeasibility, normative systems,

justification

1. Introduction

Argumentation is critically relevant to law, whose application involves deliberation over

the ascertainment of uncertain past facts, as well as the interpretation and application of

general legal rules to particular cases, in consideration of relevant values and principles.1

Legal problem solving involves dialectical and indeed adversarial interactions in

which different ways of reasoning are deployed: probabilistic, deductive and presumptive

inferences, the use of analogies, appeals to precedent and policy, and the balancing

of interests.

Legal decisions have the authority to be coercively enforced, as issuing from the political

community. Thus, such decisions need to be justified: reasons must be provided of why

certain claims were endorsed, based on what reasons, and it must be specified why such

reasons prevailed over the reasons to the contrary. These justifications need to be critically

evaluated, to determine whether they succeed in explaining legal decision in a way that is

satisfactory for the individuals involved and for the society.

While legal theory has extensively studied legal argumentation (see Perelman and

Olbrechts-Tyteca, 1969; MacCormick, 1978; Alexy, 1989), a formal account of it has only

been provided by the AI & Law research, which has profited from, and contributed to, the

logical tools for argumentation made available within AI (for an overview, see Prakken and

Sartor, 2015). In fact, AI & Law researchers have not only applied AI-based argumentation

techniques to the law, but have also made innovative contributions to the development of

formal models of argumentation.

An open research question, which is drawingmore andmore attention in the literature, is

the conceptual and formal investigation of the relation between justification and explanation

of legal decisions, especially, when norms are crucial in the reasoning process. This article

will mainly address this issue.

1 The introduction and parts of Section 3 elaborate on materials from Prakken and Sartor (2015).
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1.1. Purpose and synopsis of this
contribution

We believe there is a still overlooked research challenge, which,

taking stock of major achievements in legal theory, concerns

the relationship between the “justification of legal arguments”

and the “explanation of normative conclusions.” To tackle this

issue, we aim to connect two research domains, employing formal

argumentation: the investigation of AI & Law, which focuses on

justifying (automated) legal decision-making, and the examination

of explanations within the context of eXplainable AI.

Our contribution is primarily conceptual, aiming to

demonstrate how ideas proposed in works such as the one

by Miller (2019) or explored in legal theory can be represented

within an argumentation framework.

In the light of the importance of argumentation for the legal

domain, this article thus aims at contributing to the following

related aspects:

- Reconstructing, from the AI & Law literature, themainmodels

of legal argument and formal argumentation, and linking these

models to the concepts of justification and explanation;

- Given the above conceptual background, proposing some

definitions of explanation in the context of formal legal

argumentation.

The layout of the article is as follows. Section 2 clarifies

the distinction in the law between justification and explanation.

Section 3 develops as follows: after recalling why the law is an

argumentation framework (Section 3.1), we will discuss the need

to provide explanations when norms are used as preconditions for

inferring and issuing other norms (Section 3.2) or for applying

them (Section 3.3). We will then consider applications in legal

interpretation (Section 3.4) and in case-based reasoning (Section

3.5). Sections 4, 5 offer a conceptual analysis of legal explanation

in formal argumentation: the building blocks are recalled in

Section 4, while Section 5 presents some definitions of the idea

explanation in legal argumentation and investigates the concept of

stable explanation extending previous work. Section 6 clarifies the

originality of our contributions and discusses related and future

work. Some conclusions end the paper.

2. Justification, explanation, and
argumentation in legal reasoning

In this section we shall discuss how argumentation has a

foundational role with regard to the justification and explanation

of normative conclusions.

2.1. Justification and explanation in legal
decision-making

An extensive discussion of the relation between normative

explanation and justification (Baier, 1958, chap. 6) is beyond

the scope of this paper. Let us just remark that, while a vast

literature exists on the concept of an explanation in philosophy

(Achinstein, 1983; Pitt, 1988) legal theory has mainly focused on

justification, taking this concept as central in the context of legal

decision-making (Alexy, 1989; Peczenik, 1989). From the legal

theory perspective, it may seem that explanations are a byproduct

of justifications: the arguments justifying a decision, on the basis of

facts and norms, also provide an explanation of the same decision.

The connection between explanation and justification has also

emerged in AI, where more attention has been devoted to the

concept of explanation, especially in the debate on eXplainable

AI (XAI) (Miller et al., 2022). The AI & Law community

has also worked toward explanation, since both “transparency”

and “justification” of (automated) legal decision-making require

providing explanations (Atkinson et al., 2020; Governatori et al.,

2022c; Prakken and Ratsma, 2022).

Legal decision-making (and consequently, also legal advice) is

a complex multi-step process that involves addressing factual and

normative issues, based on empirical evidence and legal questions.

Different answers to such issues are often possible, depending on

the ethical and political preferences and the psychological attitudes

of the decision-makers. The extent to which such preferences and

attitudes may determine the outcome of the case is constrained

by the available evidence and applicable norms. However, a space

for discretion, broadly understood, remains, and this space is

adjustable, since constraints themselves are to be interpreted by the

decision-makers, according to their view of the role of decision-

maker (typically judges) and of the principle of the separation

of powers.

Within an argumentation-based approach, the justification of

a legal decision may be viewed as an argument structure aimed

to show that the decision is right or correct, according to a

convincing reconstruction of facts and norms. Justifications are

pervasive in the law, since, as noted above, legal decision-makers

are usually required to publicly provide rational grounds for the

normative correctness of their decisions (at least for important

ones). Justifications may also be produced, possibly integrating the

original ones, at a subsequent time, by those who agree with such

decisions and want to provide further reasons supporting them.

Consider for instance Dobbs v. Jackson Women’s Health

Organization, 19-1392 U.S. 597 (2022) decision by the US Supreme

Court, which denied the existence of a constitutional right to

abortion, contrary to the previous Roe v. Wade, 410 U.S. 113

(1973) decision, which had affirmed that right. The majority of

the Dobbs judges provided a justification of that decision based on

certain legal doctrines on the interpretation of the US constitution

(a version of the so-called originalism), on federalism, on the

separation of powers, which require according to their view that

the legality of abortion is decided at the State level, rather than at

the federal level. More extended justifications of that decisions have

been provided by legal scholars who agree with its content and want

to support its correctness with further considerations. On the other

hand, the judges in the dissenting opinion strongly criticized this

justification, and so did scholars and activists opposing the Dobbs

decision.

In legal theory it is common to distinguish the “discovery”

process through which decision-makers endorse certain

conclusions on the relevant issues—guided by the information

they access, but also by their intuitions and by their tacit expert
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knowledge—and the process of building an accessible justification

of that decision, whichmay appear convincing or at least acceptable

to the parties and the public (MacCormick, 1978). Justification

usually follows discovery, and selectively uses the information

elicited during discovery, in order to provide a rhetorically

effective account. However, dialectical interactions between the

two processes exist: on the one hand considerations developed

during the discovery process may enter into the justification, on

the other hand the necessity to build a convincing justification

may guide the process of discovery, leading the decision-makers to

reject or amend the outcomes for which a convincing justification

could not be found.

It seems to us that in any case a description of the discovery

process is no substitute for a justification as just described: first of

all, many aspects of the process of discovery are not accessible to

description, pertaining to the unconscious working of the decision-

maker’s mind; secondly, some moves in the discovery process may

pertain to taking wrong directions, or anyway to aspects that are not

relevant for the goal of providing a publicly acceptable justification.

On the other hand, however, certain inference steps that took

place during discovery (including logical and statistical inferences,

the assessment of competing factors, the interaction of rules and

exceptions, presumption, etc.) can be recovered for the purpose of

building a justification.

2.2. Types of legal explanation: conceptual
distinctions

While justifications are reasoned defenses of (legal) decisions by

the authors of such decisions or third parties supporting the same

decisions, explanations involve a third-party perspective, which does

not presuppose the endorsement of the explained decisions (for a

general philosophical discussion, see Davidson, 1963).

We may indeed distinguish two ways of explaining legal

decisions: causal explanations, and rational reconstructions.

Causal explanations of legal decisions aim at identifying social,

ideological, or political factors that contribute to the outcomes of

legal cases, inducing decision-makers to adopt such outcomes. For

instance, in the Dobb case we might consider that the outcome

was determined by the political position of the majority of the

judges (positioned in the right-wing side and nominated by

republican presidents), their religious convictions, their ideological

commitments, their connections with certain groups of the

population, etc. In some cases, the causal explanation may include

pointing to failures in the decisional process: the decision-makers

were affected by their prejudices, were bribed, their decision was

instrumental to favoring their friends or harm their enemies, etc.

This extra-legal and extra-systemic explanation of legal

decisions can be distinguished from the intra-legal and intra-

systemic rational explanation (i.e., a rational reconstruction), by

which we may understand the attempt to identify reasons why

certain decisions may be legally appropriate, given the beliefs,

view-point and political-ethical-legal commitments of those who

support such decisions (and first of all of the decision-makers who

adopted them). A broad notion, which fits with our analysis, is

proposed by Väyrynen (2021) for whom normative explanations

are “explanations of why things are wrong, good, or unfair.” In

the context of legal decision-making, we may say that a normative

explanation is an account of why a legal evaluation (on the

legality, illegality of action, the ascription of rights or obligations)

is considered to be correct on the basis of both norms and facts (a

combination that was first emphasized by Schroeder, 2005).

Rational explanations, as well as justifications can take the shape

of an argumentation framework, in which, besides presenting the

arguments favoring the decision, arguments to the contrary are

considered and defeated. This perspective involves a “principle

of charity,” in the sense that it is assumed that the decision is

the outcome of reasoned factual and legal considerations, even

though we may disagree with the substance of such considerations.

Thus, those who disagree with the Dobbs decision, can still

provide a rational explanation (reconstruction) of that decision by

presenting a coherent narrative including legally relevant reasons

in favor of that decision, together with the assessment of such

reasons according to the perspective of those who endorse them.

Nevertheless, the opponents of the same decision may continue to

consider that it was wrong, since stronger reasons, according to

their perspective, exist for reaching the opposite conclusion. The

opponent of Dobbs can also merge their critical considerations

with the rational explanation of the decision they disagree with.

In such a case, a critical argumentation framework is obtained, in

which the arguments explaining the decision are defeated by the

arguments against that decision (consider for instance, a legal essay

that attacks the conclusion as well as the reasoning of the judges in

the Dobbs case).

2.3. Our conceptual standpoint

In conclusion, it seems to us that both the justification of

a legal decision and its rational explanation, as described above,

can be captured through argumentation. Both ideas presuppose

that an outcome (the decision of a case) should be supported

by reasons, and that these reasons should prevail over the

reason to the contrary, according to a certain perspective. The

distinction between justification and rational explanation, according

to our analysis, pertains to pragmatics, rather than to semantics.

It concerns the purpose of the exercise: providing support to

a decision we endorse (being those who propose it, or aim to

advance or defend it) or rather accounting for the support that

is attributed to a decision by those who endorse it, for reasons

endorsed by them. In the following, when speaking of explanations,

without further clarifications, we cover both justifications and

rational explanations.

The distinction between justification and (rational) explanation

thus seems to rely on a perspectival approach. For an agent a1: (a)

a decision d (by a1 or by other agents) is justified iff it is supported

by prevailing reasons in the context of the attitudes and beliefs of

a1; (b) a decision d by an agent a2 is (rationally) explained if it is

supported by prevailing reasons in the context of the attitudes and

beliefs of a2.

In the context of the application of AI technologies to

legal decision-making the relation between discovery (the activity

through which a system constructs an answer to a legal issue) and
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justification-explanation (the attempt to provide reasons for that

answer) tends to take a different form in knowledge-based systems

(including formal-argumentation system), on the one hand, and in

opaque machine learning applications, on the other hand. In the

first case, the argumentative justification-explanation of a case can

be constructed on the basis of the very inferences and reasoning

patterns through which the system came to determine its outcome;

in the second case an argumentative justification-explanation

has to constructed as a parallel exercise, meant to mimic the

opaque inference of the system. In both cases, the construction

of argumentative explanations presupposes the availability of a

knowledge base of rules and concepts, from which arguments can

be constructed.

In this paper, we shall assume that such a knowledge-base

is available, and we shall consider to what extent it can be

used to build argumentation frameworks. Given an argumentation

framework we shall consider, by deploying an argumentation

semantics, what arguments and conclusions are supported by that

framework, where this notion of support may be viewed as a kind of

justification: an outcome is justified by the (grounded) extension or

labeling in which it is included. Based on this idea, we shall provide

some notions that clarify aspects of legally relevant explanations.

First, we shall discuss whether an explanation can be viewed as

an argument set that is suitable to support the explanandum (within

the given argumentation framework): if any arguments in the set

were not available the explanandum would not be derived, through

that explanation.

Focusing especially on factual premises and norms, we

shall then consider contrastive explanations, which elicit, under

minimality conditions, those facts or norms whose presence or

removal would preempt the derivation of the explanandum.

We are aware that our analysis cannot cover all aspects that

are addressed under philosophical conceptions of a (normative)

explanation, but we believe we will provide a sufficiently rich

account that makes an essential use of the distinctive elements the

legal knowledge base.

3. Models of legal argument

The adoption of argumentative model for the justification-

explanation of legal decisions was motivated by the fact that purely

deductive approaches fail to capture key aspects of legal reasoning,

such as conflicts between competing rules, the relation between

rules and exceptions, the significance of factors, interpretive and

case-based reasoning, and more generally, the dialectical and

adversarial nature of legal interactions (Perelman and Olbrechts-

Tyteca, 1969; Alexy, 1989; Walton et al., 2008; Bongiovanni et al.,

2018).

Argumentation pervades all the three dimensions of the law

distinguished by Hart (1994):

- Norm recognition and hierarchies: legal systems consist

of norms and provide criteria for establishing whether any

norms belong to them; legal systems assign to their norms a

different ranking status and organize them in hierarchies (e.g.,

constitutional norms are stronger than legislative acts);

- Norm change: legal systems change and include criteria

governing their dynamical evolution;

- Norm application: the norms in a legal system are applied to

concrete cases, and this process is based on interpretive and

procedural criteria specified by that system.

In a reasoning and argumentative perspective, we can think of

the above dimensions as follows:

- Arguments can be used for inferring, issuing, or adopting

norms, and for determining how norms are related with one

another (e.g., for establishing when one norm may override

another one in case of conflicts; Norm recognition and

hierarchies);

- Arguments can be used for proposing and implementing

revisions to legal systems (Norm change);

- Arguments can be used for advancing interpretations

of legal provisions, supporting them against alternative

interpretations (e.g., when different interpretive canons, as

applied to the same provision, offer different legal solutions

for the same case) and for applying the resulting norms (Norm

application).

In the following, we briefly recall the main contribution of

argumentation theory in AI & Law to some of these dimensions and

identify some challenges to be addressed in regard to the distinction

between justification and explanation.

3.1. The law as an argumentation
framework

It has been argued that the law itself can be described

as a complex argumentation framework (Prakken and Sartor,

2015). Under this general assumption, arguments must determine

(and thus explain) the way in which norms interplay with one

another in legal systems (Alchourron and Bulygin, 1971). Defeasible

argumentation (Dung, 1995; Pollock, 1995) has indeed been used to

address conflicts between norms and ways to resolve such conflicts

through meta-arguments, as well as the interactions between legal

rules and the reasons supporting them (Hage, 1997; Prakken and

Sartor, 2015).

Through formal argumentation, among others, the following

challenges can be addressed:

- Explaining the interplay of legal norms. When there is a

conflict of legal rules r1 and r2, both applicable to the case

at hand, then a decision for r1’s outcome must include a

preference for r1 and possibly reasons for that preference.

- Explaining the application of norms. In deciding a case a

procedure has to be followed where facts have be assessed in

compliance with legal constraints, rules have to be identified

and their applicability assessed.

- Explaining the interpretation of legal norms.When alternative

interpretations i1 and i2 of a legal provision exist, then

a decision for the outcome corresponding to i1 must be
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supported by the reasons why i1 rather than i2 should be

accepted as the interpretation of that provision.

3.2. Explaining the interplay of legal norms

Let us first consider the need to provide explanations where

norms are used for inferring, issuing, or applying other norms.

Assume that norms in the legal system L are represented as

rules of the form r :φ1, . . . ,φn ⇒ ψ (where r is the name of the

norm). Then a preference relation > can capture a hierarchy over

L that enables collisions between norms being addressed. Consider

for example

L = {{r :φ1, . . . ,φn ⇒ ψ , s :ψ ⇒ π , t :ω⇒ ¬π}

>= {〈s, t〉}}.

Assume also that the antecedents of r and t, i.e., facts

φ1, . . . ,φn,ω are the case. Because s is hierarchically superior to t,

then an argument A concatenating φ1, . . . ,φn, r and s successfully

supports the conclusion π , defeating the argument concatenatingω

and t. Jurists usually would say that this argument legally grounds

and justifies π in L. Notice that the law “is not concerned with

the absolute rationality of the normative statement in question,

but only with showing that it can be rationally justified within

the framework of the validly prevailing legal order” (Alexy, 1989,

p. 220). This simple context illustrates different legally relevant

explanations of π . We may say that conclusion π is explained:

- By argument A, which grounds conclusion π upon the

relevant facts;

- By the whole of L plus all facts of the case, which together

provide for the conflicting arguments and for the preference

solving their conflict;

- By each fact in φ1, . . . ,φn, since one may counterfactually

argue that without any of them we would have ¬π rather

than π ;

- By each of the rules r and s, since without either of them π

could not be (sceptically) inferred;

- By the preference s > t, without which also π could not

be inferred.

3.3. Explaining the application of the law

When the law is applied to cases (e.g., by judges in courts), legal

theory traditionally breaks down the analysis of judicial decisions

into three dimensions: the so-called question of fact (quaestio

facti), i.e., reconstructing the facts of the case on the basis of the

available evidence, the ways in which proceedings develop (judicial

procedures), and the so-called question on law (quaestio juris), i.e.,

interpreting the law to identify the applicable legal rule. Within

AI & Law, an in-depth analysis has been developed of evidential

reasoning, comparing different approaches to it (Verheij et al.,

2016). The procedural aspects of decisions have been investigated

in regard to ideas such as the standard of proofs, presumptions,

and burdens of proof (Prakken and Sartor, 2006; Calegari and

Sartor, 2021; Kampik et al., 2021). Formalizations have also been

developed for protocols governing the admissibility and impact of

arguments in legal debates (Gordon, 1995; Governatori et al., 2014).

More recently, the idea that multiple argument schemes can be

used in legal arguments has been explored, as well as the issue of

which argumentative strategies are most effective in different legal

disputes from a game-theoretical perspective (Roth et al., 2007;

Riveret et al., 2008).

Jurists naturally resort to causal explanation in the context

of reasoning about evidence (Walton, 2002), where competing

accounts of the facts of the case are developed on the basis of

the available evidence. In this domain, AI & Law research has

devoted an extensive effort and discussed classic issues such as the

relation between abductive and counterfactual reasoning and legal

argumentation (see, again Prakken and Sartor, 2015 for an overview

of the literature, see Liepina et al., 2020 for a recent attemp di

identify causal argument schemes for causal reasoning).

Logical models have also been used to relate legal norms to

the cases at hand and explain why such norms are applicable to

the given facts. One framework that has been developed for this

purpose is called reason-based logic (RBL), which focuses on how

principles, goals, and rules can influence the interpretation of legal

provisions (Hage, 1997).

3.4. Explaining the interpretation of the law

Legal interpretation has been viewed as a decision-making

problem, in which the goal is to choose the best interpretation based

on its consequences for promoting and demoting values (Atkinson

and Bench-Capon, 2007; da Costa Pereira et al., 2017). Another

approach is the argument-scheme approach, which considers

interpretive canons using defeasible rules to interpret legal

provisions and resolving conflicts by comparing the reasons behind

different interpretations (Rotolo et al., 2015; Walton et al., 2021).

The latter idea fits legal theories that view interpretive canons as

reasoning patterns for constructing arguments aimed at justifying

interpretive outcomes. Examples of canons by MacCormick and

Summers (1991) are:

Argument from ordinary meaning: if a statutory provision

can be interpreted according to the meaning a native speaker

of a given language would ascribe to it, it should be

interpreted in this way, unless there is a reason for a different

interpretation.

Argument by coherence: a provision should be interpreted

in light of the whole statute it is part of, or in light of other

provisions it is related to.

Teleological argument: a provision should be interpreted as

applied to a particular case in a way compatible with the

purpose that the provision is supposed to achieve.

Arguments from general principles: whenever general

principles, including principles of law, are applicable to a

provision, one should favor the interpretation that is most in

conformity with these general legal principles.
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According to Rotolo et al. (2015) and Walton et al. (2021),

the structure of interpretive arguments can be analyzed using

interpretation rules, where the antecedent of interpretation rules

can be of any type, while the conclusion is an interpretive act I of a
provision n leading to an interpretive resultψ for nwhich expresses

such an interpretation paraphrasing n into ψ . An example of an

interpretation rule is the following:

r′ :φ1, . . . ,φn ⇒ Iteleological(n
L
1 ,ψ) (1)

Rule r′ states that, if φ1, . . . ,φn hold, then the interpretive canon

to be applied in legal system L for provision n1 is the teleological

interpretation, which returns ψ .

Now suppose to have the following rules (the example logically

mirrors the one in Section 3.2):

R = {{r′ :φ1, . . . ,φn ⇒ Iteleological(n
L
1 ,ψ)

s′ : Iteleological(n
L
1 ,ψ) ⇒ Icoherence(n

L
2 ,π),

t′ : ⇒ Iordinary(n
L
2 ,¬π)}

>= {〈s′, t′〉}}.

In legal theory, we may say that the interpretation of n2 as π is

justified in the legal system L (on modeling interpretation through

argumentation, see Walton et al., 2021; Sartor, 2023). We may also

say that the argument built with r′ and s′ explains this outcome, or,

also, that φ1, . . . ,φn explain it.

3.5. Explaining the use of judicial cases

Legal systems often rely on past cases to guide decision-making

and legal reasoning. A popular AI & Law approach to case-based

reasoning consists in focusing on factors, namely, on features of

cases that favor or disfavor certain outcomes (Rissland and Ashley,

1987; Ashley, 1990; Ashley and Aleven, 1991). The presence or

absence of certain factors in a new case, or in precedents cases,

can be used to support or challenge legal claims. There have been

various developments of the factor-based approach within AI &

Law, including the use of multivalued factors (Bench-Capon and

Rissland, 2002) and hierarchies of factors (Aleven and Ashley,

1997), as well as logical mechanisms for determining when a

decision is consistent or inconsistent with a case base (Horty, 2011).

Investigations have been developed on the combination of

models of case-based reasoning with formal approaches to

defeasible argumentation (Berman andHafner, 1993; Bench-Capon

and Sartor, 2003; Bench-Capon et al., 2013; Maranhão et al.,

2021). Accordingly, a case can be reconstructed as expressing two

competing rules and a preference for one of them (Prakken and

Sartor, 1998): the conjunction of the factors φ1, . . . ,φn which are

present in the case and support its outcome ψ corresponds to

a defeasible rule φ1, . . . ,φn ⇒ ψ , which prevails over the rule

χ1, . . . ,χm ⇒ ¬ψ , whose antecedent is the conjunction of all

factors χ1, . . . ,χm in the case which support the outcome ¬ψ . The

rules involved in factor-based reasoning are defeasible in that new

factors can explain deviations from earlier decisions.

In Liu et al. (2022a) case-based reasoning and classifier systems

are connected, and on this basis different kinds of case-based

explanations are defined such as abductive and contrastive ones.

The logic of Liu et al. (2022a) is based on modal logic and

does not directly capture the argumentative nature of case-based

reasoning, as recalled above. Prakken and Ratsma (2022) uses

argumentation—based on multi-valued factors (dimensions)—to

explain the outcome of legal cases.

4. Formal argumentation

In this section we present formal argumentation and illustrate

its application to legal reasoning. Argumentation frameworks have

been proposed by Dung (1995) to investigate the general aspects

of dialectical reasoning without specifying the internal structure of

arguments. Many semantic models have been developed (Baroni

and Giacomin, 2009) for abstract argumentation. Such models

determine what arguments can be accepted, by considering not

only how such arguments directly conflict with each other,

but also how arguments can be indirectly defended by other

arguments. Among them, several options have been acknowledged

as appropriate in legal reasoning (see Prakken and Sartor, 2023).

However, since we work in this paper on argumentation for

reasoning with norms, we follow Governatori et al. (2021) and

Governatori and Rotolo (2023). These works suggest that when

norms collide and no priority principles can apply (such as the

principles lex superior, lex posterior and lex specialis), a skeptical

approach may be the most appropriate one, especially when legal

effects of norms are obligations or sanctions. For the sake of

simplicity, we focus on grounded semantics.

Let us first of all recall from the literature some basic

formal concepts.

Definition 1 (Argumentation framework and semantics).

Argumentation framework. An argumentation framework AF is

a pair (A,≫) whereA is a set of arguments, and≫ ⊆ A×A

is a binary, attack relation.

Conflict-free set. A set S of arguments is said to be conflict-free if,

and only if there are no arguments A and B in S such that B

attacks A.

Argument defense. Let S ⊆ A. The set S defends an argument

A ∈ A if, and only if for each argument B attacking A there is

an argument C ∈ S that attacks B.

Complete extension. Let AF = (A,≫) and S ⊆ A. S is a

complete extension of AF if and only if S is conflict-free and

S = {A ∈ A |S defends A}.

Grounded extension. A grounded extension GE(AF) of an

argumentation framework AF is the minimal complete

extension of AF.

Justified argument and conclusion. An argument A and its

conclusion Conc(A) are justified w.r.t. an argumentation

framework AF if, and only if A ∈ GE(AF).

Rejected argument and conclusion. An argument A and

its conclusion Conc(A) are rejected w.r.t. an argument

framework AF is, and only if A /∈ GE(AF).
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While abstract argumentation is not concerned with the

internal structure of arguments, it was argued in the AI & Law

literature the importance of devising argumentation frameworks

where arguments have a logical structure (see Sartor, 2005; Prakken

and Sartor, 2015; Governatori et al., 2021). If the underlying

language of an argumentation framework refers to any logic L,

arguments can roughly correspond to proofs in L (Prakken and

Vreeswijk, 2002). As done by Governatori et al. (2004), Prakken

(2010), and Toni (2013), given the above framework the (internal)

logical structure of arguments can be specified using rule-based

systems in such a way that rules correspond, e.g., to norms or

normative reasoning patterns (such as in the case of interpretation

rules) (Sartor, 2005; Prakken and Sartor, 2015; Governatori et al.,

2021) and arguments are logical inference trees built from them.

Definition 2 (Language). The language consists of literals and

defeasible rules. Given a set PROP of propositional atoms, the set

of literals is Lit = PROP ∪ {¬p | p ∈ PROP}. We denote with ∼φ

the complementary of literal φ; if φ is a positive literal ψ , then ∼φ

is ¬ψ , and if φ is a negative literal ¬ψ , then∼φ is ψ .

Let Lab be a set of unique rule labels. A defeasible rule r with

r ∈ Lab has the form Ant(r) ⇒ Head(r), where

- Ant(r), called the antecedent or the premises of r, is a subset of

Lit (which may be empty) and

- Head(r) is a literal in Lit, called the consequent or head of r.

If R is a set of rules,

- R[φ] is the set of rules in R with head φ,

- ANT(R) is the union of all antecedents of all rules in R (i.e., it

contains all literals in the antecedents of such rules).

Any defeasible rule whose antecedent is satisfied provides

sufficient support to its conclusion unless there is evidence contrary

to that conclusion.2

Following Governatori et al. (2004) we use the term

argumentation theory to denote the rule-based knowledge from

which argumentation frameworks are built. Notice that, as done

by Antoniou et al. (2001), we distinguish a set of indisputable

statements called facts, even though, without loss of generality, we

impose some restrictions on it to keep things simpler.

Definition 3 (Argumentation theory). An argumentation theory

D is a structure

(R, F,>)

where

- R is a (finite) set of defeasible rules,

- F ⊆ Lit is a consistent set of indisputable statements called

facts such that, for each ϕ ∈ F, R[ϕ] ∪ R[∼ϕ] = Ø, and

2 In several systems other two kinds of rules are allowed: strict rules and

defeaters. A strict rule is a rule in the classical sense: whenever the antecedent

holds, so indisputably is the conclusion. A defeater is a rule that cannot

be used to draw any conclusion, but can provide contrary evidence to

complementary conclusions.

- >⊆ R× R is a binary relation on R called superiority relation.

The relation > describes the relative strength of rules, that is

to say, when a single rule may override the conclusion of another

rule; it is required to be irreflexive, asymmetric and acyclic (i.e., its

transitive closure is irreflexive).

By combining the rules in a theory, we can build arguments

[we adjust the definition by Prakken (2010) to meet Definition

3]. Let us first introduce some notation: for a given argument

A, Conc(A) returns A’s conclusion, Sub(A) returns all its sub-

arguments, Rules(A) returns all the rules in the argument and,

finally, TopRule(A) returns the last inference rule in A.

Definition 4 (Argument). Let D = (R, F,>) be an argumentation

theory. An argument A for φ constructed from D has either the

form ⇒F φ (factual argument), where φ ∈ F, or the form

A1, . . . ,An ⇒r φ (plain argument), where 1 ≤ k ≤ n, and

- Ak is an argument constructed from D, and

- r :Conc(A1), . . . ,Conc(An) ⇒ φ is a rule in R.

With regard to a factual argument⇒F φ:

Conc(A) = φ; Sub(A) = Ø; TopRule(A) =
Ø; Rules(A) = Ø

With regard to a plain argument A = A1, . . . ,An ⇒r φ:

Conc(A) = φ

Sub(A) = Sub(A1), . . .Sub(An),A

TopRule(A) = r :Conc(A1), . . . ,Conc(An) ⇒r φ

Rules(A) = Rules(A1), . . . ,Rules(An),TopRule(A).

We only consider conflicts between arguments A and B

such that the conclusion of A contradicts the conclusion of a

subargument B′ of B.

Conflicts between arguments having contradictory conclusions

are resolved on the basis of a last-link ordering. An argument

A is stronger than another argument B (A > B) if, and only

if TopRule(A) is stronger than TopRule(B) [TopRule(A) >

TopRule(B)]. Notice that we do not need to consider conflicts

involving arguments of the form ⇒F φ since the set of facts is

assumed to be consistent and no fact (or its negation) can occur

in the head of any rule.3

Definition 5 (Defeats). An argument B defeats an argument A if,

and only if ∃A′ ∈ Sub(A) such that Conc(B) = ∼Conc(A′), and

A′ 6> B.

An argument B strictly defeats an argument A if, and only if B

defeats A and A does not defeat B.

We can now define the argumentation framework that is

determined by an argumentation theory.

3 This simplification does not a�ect the generality of the approach. Such an

assumption, which can be abandoned (see Governatori et al., 2004), allows

for exploring some interesting properties of explanations: see Governatori

et al. (2022b) and Section 5.4.
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Definition 6. (Argumentation framework in structured

argumentation). Let D = (R, F,>) be an argumentation

theory. The argumentation framework AF(D) determined by D is

(A,≫) where A is the set of all arguments constructible from D,

and≫ is the defeat relation defined above.

Given this definition of argumentation framework, if D is an

argumentation theory, we can abuse notation somewhat and write

GE(D) to denote the grounded extension of the argumentation

framework determined by D.

As noted above we consider that an argument is justified iff it is

included in the grounded extension, and a conclusion justified iff it

is supported by a justified argument.

Example 1. Consider the following theory D, describing a COVID

scenario adapted from Italian temporary legal measures to prevent

the spreading of pandemics (Governatori et al., 2022a).4

F = {positive, vax,¬mask, old}

R = {r1 : positive, quarantine ⇒ ¬spread,

r2 : positive ⇒ spread,

r3 : positive,mask ⇒ ¬spread,

r4 : spread, vax ⇒ ¬high_lethality,

r5 : spread, old ⇒ high_lethality,

r6 : high_lethality ⇒ hospital_collapse,

r7 : positive ⇒ mask_obligatory,

r8 : hospital_collapse ⇒ lockdown_obligatory}

>= {〈r1, r2〉, 〈r3, r2〉, 〈r5, r4〉}.

Let us define the setA of arguments from D:

A = {A1 : ⇒F positive,

A2 : ⇒F vax,

A3 : ⇒F ¬mask,

A4 : ⇒F old,

A5 : A1 ⇒r2 spread,

A6 : A5,A2 ⇒r4 ¬high_lethality,

A7 : A5,A4 ⇒r5 high_lethality,

A8 : A7 ⇒r6 hospital_collapse,

A9 : A1 ⇒r7 mask_obligatory,

A10 : A8 ⇒r8 lockdown_obligatory}.

The argumentation framework determined by D is thus

AF(D) = (A,≫) where

≫ = {〈A7,A6〉}.

The grounded extension of AF(D) is

{A1,A2,A3,A4,A5,A7,A8,A9,A10}. The set GE(D) of justified

conclusions is

GE(D) = {positive, vax, ¬mask, old, spread, high_lethality,

hospital_collapse,mask_obligatory, lockdown_obligatory}.

4 https://www.osservatoriosullefonti.it/emergenza-covid-19/fonti-

governative/decreti-del-presidente-del-consiglio-dei-ministri/2997-

emcov-dpcm-elenco

5. Types of explanation in legal
argumentation

As informally discussed in Sections 2, 3, an open research

issue concerns the relation between the justification of arguments

and the explanation of legal conclusions. To address this issue, we

shall try to build a bridge between two research lines using formal

argumentation: the AI & Law investigation on the justification

of (automated) legal decision-making, and the study of the idea

of explanation in the context of eXplainable AI. The following

sections provide some general ideas to fill the gap and aim at

potentially addressing, at an abstract level, the challenges discussed

in Sections 2, 3.

In rule-based systems, finding an explanation for a certain

normative conclusion φ (such as a legal conclusion) requires

determining if certain pieces of information support the conclusion

of φ through a set of rules (Governatori et al., 2022b). In the

context of argumentation, such an intuition should be adjusted and

further elaborated. Notice that, in contrast with the majority of the

literature (see Section 6) we provide several definitions of the idea

of legal explanation that do not simply focus on arguments, but also

that make an essential use of the distinctive elements (facts, rules,

priorities) of argumentation frameworks.

Our contribution is mainly conceptual and it is meant to show

how notions such as those proposed by Miller (2019) or discussed

in legal theory can be modeled in an argumentation framework: an

extensive formal study is left to future research.

5.1. Explanations by su�cient or necessary
arguments

Let us first introduce two auxiliary notions, i.e., closure under

subarguments and superarguments.

Definition 7. (Closure under subarguments and under

superarguments). A set S of arguments is closed under

subarguments iff for every arguments A ∈ S, Sub(A) ⊆ S.

A set S of arguments is closed under superarguments w.r.t. an

argument set W, iff for every arguments A ∈ W and A′ ∈ S such

that A′ ∈ Sub(A), A ∈ S.

Let us begin with two basic concepts of legal explanation that

draw inspiration from Hart and Honoré’s (1959) NESS theory of

legal causation, and which are reframed here to cover arguments

built using norms.

We start with the concept of explanation by sufficient

arguments, by which we mean a minimal set of arguments

which, within the given argumentation framework, is sufficient to

determine a certain legal outcome.

Definition 8 (Explanation by sufficient arguments). Let

D = (R, F,>) be an argumentation theory and AF(D) = (A,≫)

be the argumentation framework determined by D. The set E ⊆ A

is an explanation of φ by sufficient arguments w.r.t. D iff

- A ∈ E is an argument for φ and A is justified w.r.t. D;

- E is a minimal set such that, for every argument B ∈ A that

defeats A, there is an argument C ∈ E that strictly defeats B;
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- E is closed under subarguments.

Notice that a broader concept of explanation by sufficient

arguments for a conclusion φ could be obtained by the set-

theoretical union of all explanations by sufficiency of φ.

Remark 1. The idea of explanation by sufficient arguments may be

philosophically linked to Hart and Honoré’s (1959) NESS approach

to causality, where a cause for an effect is a necessary element of

a sufficient set of conditions for that effect. In our framework, any

explanation by sufficient arguments E of φ is a sufficient set for φ.

Within formal argumentation, the idea of an explanation

by sufficient arguments has been firstly elaborated with minor

differences by Fan and Toni (2015) with the idea of related

admissibility, which states that a set of arguments E is relatedly

admissible iff ∃A ∈ E s.t. E defends A and E is admissible. In

particular, the authors identify a case where E is minimal (they

call this case minimal explanation). A difference with respect to

our definition is that we focus on the conclusion φ (which can

be supported by more than one argument) and not on a single

argument. A similar analysis has been also proposed by Borg and

Bex (2020).

The second notion of explanation of a proposition is that

of explanation by necessary arguments. This includes a set of

arguments such that their omission from the argumentation

framework would prevent the proposition being justified. Note

that this notion is independent from the notion of explanation by

sufficient arguments, as introduced in Definition 8.

Definition 9 (Explanation by necessary arguments).

LetD= (R, F,>) be an argumentation theory and AF(D) = (A,≫)

be the argumentation framework determined by D, and φ be a

justified conclusion of AF(D). The set E ⊆ A is an explanation by

necessary arguments of φ w.r.t. AF(D) iff

- φ is not justified w.r.t. AF′(D′) = (A/S,≫′), where S is the

closure under superarguments of E relatively to A and ≫′ =

≫− {〈A,B〉 |A ∈ S or B ∈ S};

- E is minimal.

Example 2. According to Definition 9, assume thatAF(D) contains
argument [[a] ⇒ b] ⇒ c as well as argument [d] ⇒ c]. Then

c is explained through necessary arguments by any set including

a subargument for each of these arguments. For instance c is

explained by {[a] ⇒ b], d}}, since c cannot be established if both

[a] ⇒ b] and d were not available.

Remark 2. Notice that Borg and Bex (2020) have also considered

the explanation by necessary arguments. In this work, however,

the focus X is on single arguments and the target (i.e., the

Y for which X is necessary) is an argument and not a legal

conclusion φ (a conclusion can in fact be supported by more

arguments). For this reason, the authors do not explicitly state

that, when considered more necessary arguments, Smust be closed

under superarguments.

In legal reasoning often the rules are assumed to be fixed and

we only consider the facts as relevant explanations. For instance, if

asked why one got a fine, a sufficient answermay consist in pointing

to the fact that the speed was 100 km per hour, if it is fixed the set

of norms containing the rule prohibiting such a speed.

Following this idea, we can provide the following notions

of explanations by sufficient and necessary facts, extracting

factual arguments from explanations by sufficient and necessary

arguments.

Definition 10 (Explanation by sufficient/necessary facts).

Let D= (R, F,>) be an argumentation theory and AF(D) = (A,≫)

be the argumentation framework determined by D. The set F is an

explanation of φ by sufficient/necessary facts w.r.t. D iff

- E is and explanation by sufficient/necessary arguments of φ

and

- F is the set of all and only the factual arguments in E.

5.2. Contrastive explanations

Let us now consider some specifications of an idea of

explanation that is well-known in the literature (Miller, 2019),

which is widely used in XAI (Miller et al., 2022), and which has

been recently considered in the context of legal reasoning (Borg and

Bex, 2020; Liu et al., 2022a). We may informally characterize such

explanations as follows:

Intuition 1 (Contrastive explanation). Saying that φ is

contrastively explained by x′ means saying that if x′ rather

than x had been the case, then φ′ rather than φ would have been

the case.

We may develop the intuition above depending on whether

we consider facts or rules. Indeed, the idea for modeling such a

notion is to remove/add relevant facts or rules in such a way that

the justification status of φ will change, and use these changes to

provide (part of) an explanation (see Liu et al., 2022b, following

Miller, 2019).

Note that our notion of a constrastive explanation covers two

different ways in which the justification of a proposition can be

interfered with. The inteference may consist in (a) removing from

the theory elements being used in arguments that directly or

indirectly support the proposition at stake or (b) inserting in the

theory elements to be used in arguments that directly or indirectly

attack the proposition at stake. Obviously, indirect support consists

in attacking attackers and indirect attack in attacking defenders.

Let us first focus on the facts (the literals) that are being

used to build legal arguments. We then consider what arguments

would be available if the set of facts were changed, adding and/or

removing some facts. Thus the contrastive explanation is obtained

by considering a minimal pair 〈F−, F+〉 where F− are the facts to

be deleted, and F+ the facts to be consistently added (i.e., such that

F ∪ F+ is consistent).

Definition 11 (Fact-based contrastive explanation). Let D =

(R, F,>) be an argumentation theory and φ be justified w.r.t. D.

Then 〈F−, F+〉, is a fact-based contrastive explanation of φ w.r.t.

AF(D) iff

1. (F \ F−) ∪ F+ is consistent;
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2. φ is not justified w.r.t. D′ = (R, (F \ F−) ∪ F+),>);

3. no 〈F′− ⊆ F−, F′+ ⊆ F+〉, where F′− ∪ F′+ ⊂ F+ ∪ F−, satisfies

conditions 1 and 2.

Example 3. Let us apply Definition 11 to Example 1 above.

It appears that a fact-based contrastive explanation for

lockdown_obligatory is provided by 〈{positive}, Ø〉: positive

contrastively explains that outcome since, without this fact the

explanandum would not be justified (if positivity were not the case

there would be no obligatory lockdown). Another explanation for

the same explanandum would be 〈{old}, Ø〉.

Similarly, 〈{¬mask}, {mask}〉 is an explanation for

lockdown_obligatory, since if people had masks rather than

not having them, the explanandum would not hold. In fact,

under such a change, all the rest remaining the same, we can

infer ¬spread so defeating the argument for spread. This would

prevent the derivation of high_letality, hospital_collapse and

lockdown_obligatory.

Besides contrastively explaining a proposition φ, as in

Definition 11, we may also contrastively explain the non-

acceptance of a proposition relative to a theory, i.e., of the failure

to provide a justification for it.

Definition 12. (Fact-based contrastive explanation of non-

acceptance). Let D = (R, F,>) be an argumentation theory and φ

not be justified w.r.t. D. Then 〈F−, F+〉, is a fact-based contrastive

explanation of the non-acceptance of φ w.r.t. AF(D) iff

1. (F \ F−) ∪ F+ is consistent;

2. φ is justified w.r.t. D′ = (R, (F \ F−) ∪ F+),>);

3. no 〈F′− ⊆ F−, F′+ ⊆ F+〉, where F′− ∪ F′+ ⊂ F+ ∪ F−, satisfies

conditions 1 and 2.

Example 4. Consider again Example 1 add to it the following rule,

according which if the pandemic does not spread, we can have a

normal life under the pandemic:

r9 :¬spread ⇒ normal_life

We may than ask “Why is it that we cannot have a

normal life,” and an answer would be the contrastive explanation

〈{¬mask}, {mask}〉: people are not wearing masks (rather than

wearing them). In fact, after the theory is revised by removing,

¬mask and adding mask, there is a justified argument for

normal_life, based on rule r9, whose antecedent condition ¬spread

can be establishes by using rule r3, and facts positive, andmask.

The ideas just described can be expanded by assuming that

also rules can be removed or added. The rules to be removed are

included in the current theory, while the rules to be added can

be built from the language (see Definition 2). Thus we obtain the

following definition, which matches Definition 11 above.

Definition 13 (Rule-based contrastive explanation). Let D =

(R, F,>) be an argumentation theory and φ be justified w.r.t. D.

Then 〈R−,R+〉, with ,R− ⊆ R and R+ ⊆ Rul, is a rule-based

contrastive explanation of φ w.r.t. AF(D) iff

1. D′ = (R \ R−) ∪ R+, F,>′) where >′=> −{〈r, r′〉 | {r, r′} ∩

R− 6= Ø};

2. φ is not justified w.r.t. D′;

3. no 〈R′−,R′+〉, such that (R′− ∪ R′+) ⊂ (R− ∪ R+), satisfies

conditions 1 and 2.

Finally, by combining the possibility to add or remove facts,

rules, or even rule-priorities, we come to the following definition:

Definition 14. (Fact-, rule-, and priority-based contrastive

explanation). Let D = (R, F,>) be an argumentation theory,

AF(D) = (A,≫) be the argumentation framework determined by

D, and φ be justified w.r.t. D. Then 〈F−, F+〉, 〈R−,R+〉, 〈>−,>+〉,

with F−, F+ ⊆ ANT(R), R−,R+ ⊆ Rul, >−,>+⊆ Rul × Rul is a

fact-rule-priority-based contrastive explanation of φ w.r.t. AF(D)
iff

1. AF(D′) = (A,≫) is the argumentation framework determined

by D′ = (R \ R−) ∪ R+, F \ F−) ∪ F+, (> \ >−)∪ >+))

2. φ is not justified wrt D′;

3. Conditions 1 and 2. are satisfied by no triplet

〈F′−, F′+〉, 〈R′−,R′+〉, 〈>′−,>′+〉, such that ∪(F′−, F′+,R′−,

R′+,>′−,>′+) ⊂ ∪(F−, F+,R−,R+,>−,>+).

The definitions above are abstract and fit the structure

of argumentation frameworks: the effective process of defining

minimal revisions of rules and priorities is rather complex (see

Billington et al., 1999; Governatori and Rotolo, 2010; Boella et al.,

2016; Governatori et al., 2019).

Example 5. Consider again Example 1 and the normative

conclusion lockdown_obligatory. Trivially, 〈{r2}, Ø〉, 〈{r5}, Ø〉,

〈{r6}, Ø〉, and 〈{r8}, Ø〉 are rule-based contrastive explanations of

lockdown_obligatory w.r.t. AF(D).
Assume that F would already include the fact countryside and

suppose to change the theory D into D′ = (R′, F,>) as follows:

R′ =R ∪ {r9 : countryside, spread ⇒ ¬lockdown_obligatory}.

Then, we would have two new arguments

A12 : ⇒F countryside,

A13 : A5,A12 ⇒r9 ¬lockdown_obligatory

Since we work in a skeptical semantics, 〈{r9}, Ø〉 is a rule-based

contrastive explanation of lockdown_obligatory w.r.t. AF(D).
Finally, suppose we obtainD′ by simply making> empty: then,

〈Ø,Ø〉, 〈Ø,Ø, 〈>−, Ø〉 is a fact-rule-priority-based contrastive

explanation of lockdown_obligatory w.r.t. AF(D).

5.3. Discussion and further examples

Contrastive explanation is perhaps the best example to

highlight the third-party nature of explanations as discussed in

Section 2. Indeed, such a type of explanation explicitly compares

two different argumentation theories and frameworks, which could

in fact correspond to two different argumentative angles: one could

be attributed to the decision-maker and one of to any observer that

rationally reconstructs the decision and explains it by comparison.

More precisely, the actual argumentation framework where we

justify a certain legal conclusion provides the perspective of the
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decision-maker D, while the comparison between this framework

and anything else is made by a neutral observerO.

Example 6. Let us go back to the case of legal interpretation briefly

recalled in Section 3.4 and consider the following provision from

the Italian penal code:

Art. 575. Homicide. Whoever causes the death of aman

[uomo] is punishable by no less than 21 years in prison.

The almost unanimous interpretation of courts of art. 575 is that,

of course, it covers killing of any person and not only of men. For

doing so, one may consider the ordinary interpretation of art. 3

of the Italian constitution, which establishes, among other things,

that all people have equal social status and are equal before the

law, without regard to any personal aspects including gender. This

is an argument from general principles. Alternatively, one may

use an argument by coherence and maintain that the ordinary

interpretation of other legislative provisions n does the same. Both

exclude the ordinary reading of “man” as “adult male human

being.” Consider the following argumentation theory D, where ψ

means “only the death of a human male is punishable by no less

that 21 years of prison”:

R = {r′ : Iordinary(art.3,π) ⇒ Iconstitutional_principle(art.575,¬ψ)

s′ : Iordinary(n, γ ) ⇒ Icoherence(art.575,¬ψ),

t′ : ⇒ Iordinary(art.575,ψ)

z′ : Iconstitutional_principle(art.575,¬ψ) ⇒ ¬ψ ,

z′′ : Icoherence(art.575,¬ψ) ⇒ ¬ψ ,

z′′′ : Iordinary(art.575,ψ) ⇒ ψ}

F = {Iordinary(art.3,π), Iordinary(n, γ )}

>= {〈z′, z′′′〉}}.

Suppose a court decides a case rejecting ψ and supports ¬ψ

because of r′, i.e., in the light of art. 3. Indeed, since A in AF(D)
includes

A1 : ⇒F Iordinary(art.3,π)

A2 :A1 ⇒r′ Iconstitutional_principle(art.575,¬ψ)

A3 :A2 ⇒z′ ¬ψ

then the argument A3 and its conclusion ¬ψ using r′ and z′ are

justified in the corresponding argumentation framework AF(D).
Preliminarily, we should note that

- {A3,A2,A1} is an explanation by sufficient arguments of ¬ψ ;

- {A3,A2,A1} is not an explanation by necessary arguments of

¬ψ if we added the rules

w : Iprinciple(art.575,¬ψ) ⇒ Iteleological(art.575,¬ψ),

w′
: Iteleological(art.575,¬ψ) ⇒ ¬ψ ,

and changed the priorities as follows

>= {〈z′, z′′′〉, 〈w′, z′′′〉}

being still {A3,A2,A1} an explanation by sufficiency.

This could be enough in the perspective of the decision-maker

D. Let us rationally reconstructD’s decision. Such a reconstruction

may correspond to an observerO: several options are available. Let

us see three of them for the sake of illustration.

1. If F− = {Iordinary(art.3,π)} then 〈Ø, F−〉 is a fact-based

contrastive explanation of ψ : O’s explanation of D’s decision in

favor of ψ is based on noticing that this fact, if removed, would

prevent the conclusion.

2. Since A in AF(D) includes the following set of justified

arguments

A1 : ⇒F Iordinary(art.3,π)

A2 :A1 ⇒r′ Iconstitutional_principle(art.575,¬ψ)

A3 :A2 ⇒z′ ¬ψ

A4 : ⇒F Iordinary(n, γ )

A5 :A4 ⇒s′ Icoherence(art.575,¬ψ)

A6 :A5 ⇒z′′ ¬ψ

while D could only explicitly rely on A3, the observer O would

contrastively explain the decision by noticing that 〈{r′, s′}, Ø〉 is

rule-based contrastive explanation of ¬ψ .

3. Finally, assume to change the argumentation theory in such a

way that >= ∅. ThenD would not decide in favor of ¬ψ . Since

we work in skeptical argumentation, an observer O can explain

this decision by identifying elements that would be needed to

conclude ¬ψ and by simply noting that

〈Ø,Ø〉, 〈{r′, s′}, Ø〉, 〈Ø, {〈z′, z′′′〉}〉

is a fact-rule-priority-based contrastive explanation of ¬ψ .

5.4. Stable argumentative explanations

An interesting issue for investigation is the concept of stable

explanation in argumentation, a concept that was explored from

a proof-theoretic perspective, among others, by Brewka et al.

(2019); Brewka and Ulbricht (2019); Governatori et al. (2022b).

In particular, Governatori et al. (2022b,c) considered the problem

of determining a stable normative explanation for a certain legal

conclusion, which means to identify a set of facts (i.e., reasoning

inputs) able to ensure that such a conclusion continues to hold

when new facts are added to a normative case. The basic intuition

is the following.

Intuition 2 (Stable explanation). A normative explanation for a

given legal conclusion φ is stable when adding new normative

elements to that explanation does not affect its power to explain φ.

Interestingly, in the context of legal argumentation, we can

observe the following (Governatori et al., 2022c):

- Given the facts of the normative case, any judicial proceeding

has the objective of determining what legal requirements (e.g.,

obligations, prohibitions, permissions, ascription of rights)

hold, and whether such legal requirements have been fulfilled;
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- If new facts were presented by one party in the proceeding, the

outcome of the case could change;

- Each party in the judicial proceeding is thus interested in the

following question:How to ensure a specific outcome for a case,

which, in an adversarial context, means how to ensure that the

facts presented by such a party are “resilient” to the attacks of

the opponent?

The following example is adapted from Australian commercial

law and from Governatori et al. (2022b,c), and illustrates the idea.5

Example 7. Suppose the law forbids private individuals engaging in

credit activities. However, such activities are permitted if you have a

credit license. Moreover, they are also permitted if you are acting on

behalf of another person (the principal), who holds a credit license.

In any case, such activities are prohibited if you have been banned

from them by the competent regulatory authority. Consider the

following theory D:

F = Ø

R = {s1 : creditActivity ⇒ violation,

s2 : creditLicense, creditActivity ⇒ ¬violation,

s3 : actsOnBehalfPrincipal, principalCreditLicense,

creditAcivity ⇒ ¬violation,

s4 : banned, creditActivity ⇒ violation}

>= {〈s2 > s1〉, 〈s3 > s1〉, 〈s4 > s2〉, 〈s4 > s3〉}.

It is easy to see that relative to theoryDwe can distinguish stable

and unstable explanations:

- F ∪ {creditActivity} is not a stable explanation for violation

w.r.t.D, since it is no explanation for violation inD′ if facts are

{creditActivity, creditLicense} (violation not being a justified

conclusion w.r.t. D′):

- F ∪ {banned, creditActivity} is stable explanation for violation

w.r.t. D, since there are no facts F′ consistent with F (and

with the conclusions of the rules in R) such that F is not an

explanation of violation with regard to D′ = (R, F ∪ F′,>).

Here is a definition of a stable normative explanation, based on

the analysis just provided. In the context of stable explanation by

sufficient facts we need to consider facts that (a) are additional to

the facts in the theory (b) are consistent with the such facts.

Definition 15 (Stable explanation by sufficient facts). Let D =

(R, F,>) be an argumentation theory and F be the set of factual

arguments of AF(D). An explanation E
′ ⊆ F by sufficient facts is

stable relative to D if there is no set of facts F′ such that

- F ∩ F′ = Ø,

- F′ is consistent with F, and

- E
′ is not an explanation by sufficient facts relative to D′ =

(R, F ∪ F′,>).

It is easy to check that this definition works relative to the

examples above. For instance, E′ = {⇒F creditActivity} is no

5 https://www.legislation.gov.au/Details/C2009A00134

stable explanation by sufficient facts of violation, since adding

{creditLicense} to the facts is such that there is no explanation of

violation relative to the facts {creditActivity, creditLicense}.

A broader account of Governatori et al. (2022b)’s approach

is rule-based and proof-theoretic (in Defeasible Logic: Antoniou

et al., 2001) while a deontic extension of it has been developed

by Governatori et al. (2022c) to characterize the idea of deontic

explanation. Relative to an argumentation setting such as the one

from Section 4, we can establish the following theorem (for the

proof, see Appendix).

Theorem 1. Given a theory D and an explanation by sufficient

facts F relative to D, the problem of determining if F is stable is

co-NP-complete.

6. Related and future work

We have provided multiple characterisations for the idea of

normative explanation in legal argumentation. We hope that our

work, though coherent with previous literature, may contribute to

further developments on the interaction between argumentation

and explanation in the legal domain. The following lines of inquiry

are especially relevant to our endeavor:

- Research on explanation in argumentation;

- Research on explanation in the AI & Law domain;

- Research on norm revision and other issues in legal reasoning.

6.1. Explanation in argumentation

The idea of modeling explanations in an argumentation

framework for decision-making is not new (for an overview, see

Cyras et al., 2021b). Approaches to argument-based decision-

making have been developed, where argumentation is used to

evaluate arguments for and against potential decisions, with the

argumentation frameworks constituting the explanations (Amgoud

and Prade, 2009). Our approach is connected to this idea, though

we extract explanations from argumentation frameworks, rather

than viewing argumentation framework as explanations.

The goal of providing explanation through argumentation

has inspired the research by Toni et al. starting from (Fan and

Toni, 2015) [several subsequent contributions appeared and recent

developments have been proposed in several applied fields such

as medical diagnostics (Cyras et al., 2021a)]. They construct

arguments using rules as we do and elaborate the idea of

explanation in an argument-based way (also considered in Cyras

et al., 2021b). They sees explanation of an argument A as a relation

between A and a subset E of a set of admissible set of arguments

to which A belongs. Different appropriateness criteria are adopted

to define E, according to which explanations can be classified

into different types: minimal explanation, compact explanation,

maximal explanation, and so forth. Differently from them we

have focused the need to provide an appropriate explanation for

a legal conclusion, i.e., and explanation that may be meaningful

for the humans involved (relying on Miller, 2019), thus focusing

particularly on contrastive explanations. Our work is also related
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to Borg and Bex (2021a,b), who propose similar definitions of

explanation by sufficient and necessary arguments, but who do not

consider several contrastive models.

Other relevant contributions in decision-making are Liao and

van der Torre (2020) and Besnard et al. (2022), which however

reconstruct explanations within an abstract argumentation

perspective.

6.2. Explanation in legal argumentation and
AI & Law

The concept of explanation has played an important role

in the AI & Law community, being related with the general

quest of justification and transparency of legal decision-making

(Atkinson et al., 2020). Within this community, argument-based

explanations have been considered in the domain of evidence

(Walton, 2005; Di Bello and Verheij, 2020), as well as in case-based

reasoning (Liu et al., 2022a; Prakken and Ratsma, 2022). Prakken

and Ratsma (2022) reconstruct explanations—and in particular

contrastive explanations in the context as argument games between

a proponent and opponent of an argument (i.e., a case citation for

an outcome to be explained). Liu et al. (2022a) directly followMiller

(2019) and argue that a case base can be represented through a

binary classifier: thus contrastive and counterfactual explanations

are used to explain the outcomes of the classifier. Though valuable,

those systems work on cases having the form c = (s, X, c), where s is

a state/fact situation, c ∈ {0, 1} (the outcome favors the defendant

or the plaintiff), and X, called the reason of the decision, is a subset

of s. The structure of decisions and legal reasoning is much richer

in our framework.

An interesting contribution in legal reasoning—but mainly

focused on legal evidence—is Borg and Bex (2020), which

develops similar notions of explanation by sufficient and necessary

arguments. The idea of contrastive is also considered, but the

approach is technically rather different. The authors, given the

question “why P rather than Q?”, call P the fact and Q the foil

(Lipton, 1990). The constrative explanation aims at making the

foil explicit and considers those arguments that explain: (a) the

acceptance of the fact and the non-acceptance of the foil; (b)

the non-acceptance of the fact and the acceptance of the foil.

Our approach provide several options that exploit the structure

of argumentation theories, and which are not discussed by Borg

and Bex (2020) (such as the distinction between factual and

plain arguments).

6.3. Norm revisions and legal reasoning

As we have shown, the idea of contrastive and stable

explanation require the current argumentation framework to be

changed. Hence, an interesting issue is rethinking the quest

for an explanation as an abductive inference, based on the

revision of the given argumentation theory (Governatori and

Rotolo, 2010; Governatori et al., 2019). Formally, given the

argumentation theory Dinit , the revised theory D, and the

target conclusion φ, we could formally define change operations

as follows:

Expansion: from Dinit 6⊢ φ to D ⊢ φ.

Contraction: from Dinit ⊢ φ to D 6⊢ φ.

Revision: from Dinit ⊢ φ to D ⊢ ∼φ.

The development of this intuition has to be left to future

research.

Another interesting future development concerns the import

of the proposed idea of explanation in legal theory. While it is

well-known that the idea of explanation can be used to reconstruct

causality, it is less clear how to apply it to normative reasons. It can

be interesting to mention here an exponent of classical doctrine

of case law, Wambaugh (1894), who stated that the identification

of the ratio decidendi of a precedent starting from a particular

datum—understood as part of the argumentative framework—is

reduced to a procedure in which one must ask whether, by denying

this datum, the court could reach the conclusion obtained. This

suggests that various types of explanation can play an interesting

role in case-based reasoning (Liu et al., 2022a), including the idea

of conterfactual explanation (Miller, 2019), which is left as well to

future research.

7. Conclusion

In this paper we have discussed the role of argumentation in

the law, and reviewed some literature of formal models of legal

argumentation. Then we have investigated the formal connection

between argumentation and explanation in the law. In particular,

we have proposed several definitions of an explanation in the

context of formal argumentation, articulating the relations between

the justification of arguments and explanations.

One basic theoretical challenge was at the core of our

contribution: clarifying through formal argumentation the

structure in normative reasoning of the concepts of justification

and explanation. In legal theory, the focus usually is on

providing a justification for legal decisions, so that the idea

of an explanation only plays a secondary role. This is due to

the fact that on the one hand it is assumed that legal decision-

making requires strong standard of (internal) rationality, and

on the other hand the notion of an explanation is usually

confined to what we called causal explanation, rather than to

rational reconstruction.

In this paper we took a different perspective, which is closer

to how the concept of explanation has been formally developed

in logic and adopted in XAI. We argued that the distinction

between justification and explanation is pragmatical rather than

structural. Thus we can include rational reconstructions within the

scope of explanation, and have argued that such reconstructions

can be extracted from justifications, to provide an account of the

logic of such justification with regard to the issues at stake. Thus,

we have developed various notions of explanation on top of the

justification of arguments and conclusions, such as different kinds

of contrastive explanations.
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Wehave also presented the idea of stable normative explanation

(Governatori et al., 2022c). The problem of determining a stable

normative explanation for a certain legal conclusion means to

identify a set of facts, obligations, permissions, and other normative

inputs able to ensure that such a conclusion continues to hold

when new facts are added to a case. This notion is interesting

from a logical point of view—think about the classical idea of

inference to the best explanation—but it can contribute to symbolic

models for XAI for the law (consider, for instance, systems of

predictive justice).
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Appendix: proof of Theorem 1

Proof. Rule-based grounded semantics are characterized by

Defeasible Logic with ambiguity propagation (DLp) (Antoniou

et al., 2001), and so we know that, given any argumentation theory

D and for any conclusion ψ , D ⊢DLp ψ (resp. D 6⊢DLp ψ) iff

there exists an argument A in GE(D) such that Conc(A) = ψ

(resp. there exists no argument A in GE(D) such that Conc(A) =
ψ) under grounded semantics (Governatori et al., 2004, Theorem

3.12). Accordingly, we can resort, with some minor modifications,

to the proof developed by Governatori et al. (2022b) and which

is based on the proof-theoretic properties of Defeasible Logic.

We show that the complement of the considered problem is

NP-complete. Namely, given the argumentation theory and the

normative case, the problem is to show that the case is not

stable. Hence, we have to show that a superset of the explanation

that does not prove the target literal exists using the proof

theory described by Governatori et al. (2004). As usual, the proof

consists of two parts. Given an oracle that guesses a theory

where the set of facts is a superset of the one corresponding

to the explanation, we can check polynomially whether this

theory proves the target literal or not [which is a standard result

of Defeasible Logics (Maher, 2001)]. For the second part, we

provide a polynomial encoding of 3-SAT, and we demonstrate

that if the theory encoding the 3-SAT instance is not stable,

then the 3-SAT instance is satisfiable. A 3-SAT instance is

given by

n
∧

i=1

φi

where φi = ψ1
i ∨ ψ2

i ∨ ψ3
i . Its encoding in Defeasible

Logic is given by the argumentation theory D = (R, Ø, Ø)

where R contains, for every clause φi, the following

rules6:

6 Notice that we use φi as a variable for a clause in the 3-SAT instance and

as a literal (representing the clause) in the corresponding defeasible logic

encoding.

ri,j : ψ
j
i ⇒ φi j ∈ {1, 2, 3}

plus the two rules:
rsat : φ1, . . . ,φn ⇒ sat

rnsat : ⇒ ¬sat

The encoding is polynomial in the size of the 3-SAT instance.

We consider the case given by the empty set of facts and ¬sat

as the target literal. It is immediate to verify that D ⊢DLp ¬sat:

rnsat is the only applicable rule. The set of admissible facts (see

Definition 3) consists of all literals ψ
j
i and ¬ψ

j
i . To show that

Ø is not stable we have to find a subset of admissible facts

C such that D′ = (R,C, Ø) 6⊢DLp ¬sat.7 For a (consistent)

set of admissible facts C, we build the interpretation I as

follows:

I(ψ
j
i ) =

{

TRUE ψ
j
i ∈ C

FALSE otherwise

We cannot show that D′ 6⊢DLp ¬sat iff I |H
∧n

i=1 φi. To

disprove ¬sat, the rule rsat has to be applicable. This means we

need to prove φi. This implies that for each φi at least one of the

rules ri,1, ri,2 and ri,3 is applicable too. Consequently, one of ψ1
i ,

ψ2
i , and ψ

3
i is derivable. Given there are no rules for ψ

j
i , ψ

j
i is

provable iff ψ
j
i ∈ C. Accordingly, I(ψ

j
i ) = TRUE. Thus, for every

clause we have an element in it that makes the clause true, thus

I(φi) = TRUE, for every i and so the 3-SAT instance is satisfiable.

Conversely, when I |H
∧n

i=1 φi, I |H φi for every 1 ≤ i ≤ n.

Thus, for each φi, there is a ψ
j
i such that I(ψ

j
i ) = TRUE, and

so ψ
j
i ∈ C. Therefore, D′ ⊢DLp ψ

j
i , from which we derive that

for every i, D′ ⊢DLp φi, making rsat applicable, which implies

D′ 6⊢DLp ¬sat.

Of course, the following holds as well.

Theorem 2. Given a theoryD and an explanation by sufficient facts

F relative to D, the problem of determining if F is not stable is

NP-complete.

7 More precisely, we have to constructively disprove such a conclusion

(i.e., we have to constructively show that there is no proof), something that

Defeasible Logic support in its proof theory.
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Formal deductive logic, used to express and reason over declarative, axiomatizable

content, captures, we now know, essentially all of what is known in mathematics

and physics, and captures as well the details of the proofs by which such

knowledge has been secured. This is certainly impressive, but deductive logic

alone cannot enable rational adjudication of arguments that are at variance

(however much additional information is added). After a�rming a fundamental

directive, according to which argumentation should be the basis for human-

centric AI, we introduce and employ both a deductive and—crucially—an inductive

cognitive calculus. The former cognitive calculus, DCEC, is the deductive one and

is used with our automated deductive reasoner ShadowProver; the latter, IDCEC,

is inductive, is used with the automated inductive reasoner ShadowAdjudicator,

and is based on human-used concepts of likelihood (and in some dialects of

IDCEC, probability). We explain that ShadowAdjudicator centers around the

concept of competing and nuanced arguments adjudicated non-monotonically

through time. We make things clearer and more concrete by way of three case

studies, in which our two automated reasoners are employed. Case Study 1

involves the famous Monty Hall Problem. Case Study 2 makes vivid the e�cacy

of our calculi and automated reasoners in simulations that involve a cognitive

robot (PERI.2). In Case Study 3, as we explain, the simulation employs the cognitive

architecture ARCADIA, which is designed to computationally model human-level

cognition in ways that take perception and attention seriously. We also discuss

a type of argument rarely analyzed in logic-based AI; arguments intended to

persuade by leveraging human deficiencies. We end by sharing thoughts about the

future of research and associated engineering of the type that we have displayed.

KEYWORDS

inductive logic, compromised perception, argument and automated reasoning, Monty

Hall dilemma, cognitive robotics, AI

1 Introduction

Formal deductive logic, used to express and reason over declarative, axiomatizable

content, captures, we now know, essentially all of what is known inmathematics and physics,

and captures as well the details of the proofs by which such knowledge has been secured.

This is impressive certainly, but even simple scenarios explain a very different story: for

example, if (human) Alice perceives a blue cube on a table, then accordingly declares that she

believes that there is a blue cube thereon, while Bob, beside her and looking also at the table

through his pair of glasses, asserts “No, actually that’s an orange sphere,” deductive logic alone
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cannot enable rational adjudication of the disagreements between

them. The great pioneer of modern inductive logic, Rudolph

Carnap, fully understood this in the mid-20th century during the

heyday period of deductive logic brought about principally by

Gödel. Carnap would say, and the logicians and mathematicians

today who continue his vibrant legacy in the form of what is known

as pure inductive logic (PIL) (Paris and Vencovská, 2015) would

still say, that “There is a blue cube on the table” and “There is an

orange sphere on the table” should each be assigned a probability

value (a real number between 0 and 1, inclusive), and this content,

combined with additional probabilitized propositions, can be used

in a process that dictates what should be rationally believed.

Unfortunately, Carnap and his followers pay little attention to the

“coin of the realm” in human reasoning and decision-making:

arguments and argumentation.1 This tradition (which began before

Carnap and includes e.g., Keynes, 1921) also runs afoul of the brute

fact that humans very rarely use probabilities and the probability

calculus (and when they are “boxed in” to using probabilities,

very rarely use them correctly, as shown by the infamous “Linda

Problem”, nicely discussed in this connection by Kahneman, 2013).

In addition, this tradition in inductive logic avoids the brute fact

that Alice and Bob, humans in general, and also today’s cognitive

robots, inevitably perceive in messy environments that render

percepts highly uncertain (e.g., what are the ambient lighting

conditions in the room Alice and Bob are in?). We introduce below

a family of novel inductive logics, based centrally on human-used

concepts of likelihood, that center around the concept of competing,

nuanced arguments adjudicated through time. We present three

case studies in which likelihood is key: Case Study 1 involves the

famousMonty Hall Problem.2 Case Study 2makes vivid the efficacy

of our calculi and automated reasoners in simulations that involve

the robot (PERI.2). In Case Study 3, as we explain, the simulation

employs automated reasoners joinedwith the cognitive architecture

ARCADIA, which is designed to computationally model cognition

in ways that take perception and attention seriously. Penultimately,

we discuss a class of arguments hitherto largely ignored in logicist

AI, such as arguments designed to persuade despite the fact that

they are unsound. We end by sharing thoughts about the future

of research and associated engineering of the type that we have

displayed herein.

The remainder of the present study unfolds as follows. In

the next Section 2, we explain, affirm, and (albeit briefly) defend

1 As well as proofs, which we take to be just a special case of arguments.

Abstractly put, an argument for us is a sequence of formulae in some formal

language of some logic or logics, where the sequence links these formulae

by instances of inference schemata. A proof is an argument in which (i) the

inference schemata in play are restricted to deductive ones, and (ii) some

premises given in the sequence in question enjoy special status because they

are members of a pre-identified axiom system (e.g., axioms for Euclidean

geometry, or for arithmetic, or topology).

2 MHP, as a matter of fact, in our formalization and solution, involves both

likelihood and probability. Since the emphasis, herein, is very much on the

former, we do not bring to bear our full formalization and implementation

of the probability calculus of Kolmogorov (1933) within a richer version of

IDCEC. Doing so would be overkill in the present study, since the key

manner of handling uncertainty is here cognitive likelihood not probability.

our “prime directive,” in a word that argumentation must be the

basis of human-level, and human-centric, AI. Next, we (Section

3) briefly point out that, putting it mildly, perception has not

exactly been treated in a deep way in the history of logicist AI—

despite the fact that immediately instructive parables such as the

Alice-Bob sketched above have been obvious sinceMcKeon (1941)3

presented to humanity, in his Organon, the first formal logic, with

algorithms for determining whether arguments expressed therein

are formally valid.4 What follows is a section devoted to giving an

historical perspective on our research (Section 4) and coverage of

a considerable amount of related prior study. The next section lists

the specific desiderata for argument-centric automated defeasible

(= non-monotonic) reasoning that we seek and abide by and

which are satisfied by the logico-mathematics, systems, and case-

study demonstration we present herein. We then (Section 6) orient

the reader to our brand of logicist AI by briefly explaining our

background logico-mathematics; this section ends with a sub-

section in which the specifications for the two pivotal cognitive

calculi alluded to above (DCEC & IDCEC) are given. Section 7

presents, in turn, the three case studies we have promised above.

The penultimate section of the study is devoted to explaining a

category of arguments premeditatedly designed to be unsound but

(in fact in some cases more) persuasive. In our final Section 9,

we touch upon the need to solve paradoxes in the intersection of

reasoning and perception, point out that future study is needed

to address pictorial arguments (which are common in the human

case), and offer a few final remarks.

2 Argumentation must ground
human-centric AI

We believe that the basis for rational human use of

AI technology is, or at least ought to be, argumentation,

computationally treated, and managed. In this regard, we wholly

concur with Dietz et al. (2022). For us, this is a firm and

fundamental directive that guides our research. For convenient

reference to this directive in the remainder of the present study, we

refer to it as simply ‘Dir’. Notably, we stipulate that Dir specifies for

us rational human use of AI. Obviously, there are irrational uses of

AI that, by definition,make argumentation decidedly unwanted, for

at least some of the humans involved. For instance, Jones may wish

to simply make, activate, and then violently destroy AI technology

(because he is in the grip of an pathological level of hatred of all

things both artificial and human-like), and it is exceedingly hard

to observe how this non-cerebral use of AI should be mediated by

argumentation.5 Of course, we anticipate that most human use of

AI technology will indeed be rational.

3 A modern translation into English of Aristotle’s writings.

4 A nice, modern overview of this fragment of first-order logic= L is given

in the study mentioned in Smith (2017).

5 The Spielberg–Kubrick film A.I includes a rather depressing depiction of

a number of humans who are, in fact, like Jones. We refer to the (disturbing)

stretch of the film in which humans destroy robot after robot in violent,

sadistic fashion.

Frontiers in Artificial Intelligence 02 frontiersin.org149

https://doi.org/10.3389/frai.2023.1144569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Bringsjord et al. 10.3389/frai.2023.1144569

So far, we have referred to “AI technology.” Let us be a bit

more accurate, by speaking of artificial agents, in accordance with

the comprehensive, respected textbooks for the field of AI (see

Luger, 2008; Russell and Norvig, 2020). In these studies, in broad

strokes, which suffice for the present study, artificial agents, located

in a given environment, take in percepts of that environment as

input and compute in some fashion over this input (along with

various information from other sources and of other types), and

this computation leads them to perform actions as output. In our

approach, that of logic-based/logicist AI, the computation that

maps percepts to actions is specifically that of automated reasoning,

and the performance of all actions is the result of a conclusion

reached by inferences which are, in each and every case, formally

verified (which means that in the case of actions carried out by

our logicist artificial agents in the coming trio of case studies,

correctness is invariably proved).6

Next, and importantly, we point out that Dir is not just

randomly pulled from thin air: we follow it because not doing so

at best makes rational human use of artificial agents less productive

and at worst makes such use in some cases outright dangerous. This

holds true not only when the artificial agents in question operate

in a manner divorced from the type of AI that intimately connects

to argumentation (i.e., logic-based AI, to which we are adherents

and which grounds the new research we present below) but also

when these agents are in fact logic-based (or logicist). We explain

this now with an example of each of these two types of cases.

2.1 The need for argumentation in non-
logicist systems for rational human use

To observe the desirable role of argumentation in an example

of dangerous human use of artificial agents engineered in the

absence of logicist formalisms and techniques, we can consider

the logic-less “large language model” Galactica, engineered and

released by its creators in order to provide human beings with “a

new interface for science” (Taylor et al., 2021), at least seemingly

a rather laudable goal for human-centric AI.7 As a matter of fact,

Galactica, with minimal prompts from a human, can quickly write

entire scientific papers, replete with references. It does this by

way of deep learning only. Unfortunately, when used by some

human scientists, Galactica simply concocted many things having

no relation to relevant reality. For instance, some of the references

in scientific papers it “wrote” were completely fictional but of course

sounded quite legitimate. The debacle, efficiently chronicled in the

study mentioned in Heaven (2022), shows that Galactica poses

the danger of unethical submission of scientific papers that appear

sound yet are anything but. In short, a Galactic-written paper is—

to use the adjective we flesh out in the study mentioned in Section

8—sophistic.

6 This not being a study on formal verification, we omit formal verification.

7 Exactly parallel points as we make in the present section could be made

about GPT-4, discussed (and greatly lauded) in the study mentioned in

Bubeck et al. (2023). The details behind GPT-4 are unfortunately proprietary;

Meta has made available to all its transformer infrastructure.

What is the solution? The solution is that the actions taken

by artificial agents, in this case the assembling of scientific papers

on the basis of purely statistical processing of historical data,

be intimately tied to checkable arguments in support of what is

expressed in said papers. As we explain below, in our argument-

based AI, all outputs are the result of automatically found proofs

and/or formal arguments; and these proofs and arguments can not

only be inspected by humans but can be certified by artificial agents

that automatically check these proofs/arguments.

2.2 The need for argumentation in logicist
systems for rational human use

What about artificial agents in the second kind of case? That

is, what about artificial agents that are in fact logic-based, but

argumentation does not meditate between the humans using such

agents and the agents’ actions? An illuminating example to consider

here is the famous “Monty Hall Problem” (MHP), which is going to

be a bit of a theme in the present study, and which, following the

study mentioned in Bringsjord et al. (2022b), we sum up as follows:

The (3-door) Monty Hall Problem (MHP3)

Jones has come to a game show and finds himself thereon

selected to play a game on national TV with the show’s suave

host, Monty Hall. Jones is told correctly by Monty that hidden

behind one of three closed, opaque doors facing the two of them

is $1,000,000 USD, while behind each of the other two is a not-

exactly-clean, obstreperous donkey whose value on the open

market is charitably pegged at $1. Monty reminds Jones that

this is a game and a fair one, and that if Jones ends up selecting

the door with $1M behind it, all that money will indeed be his.

(We can assume without loss of generality that Jones’ net worth

has nearly been exhausted by his expenditures in traveling to

the show.) Monty also reminds Jones that he (=Monty) knows

what is behind each door, fixed in place until the game ends.

Monty asks Jones to select which door he wants the

contents of. Jones says, “Door 1.” Monty then says: “Hm. Okay.

Part of this game is my revealing at this point what’s behind

one of the doors you didn’t choose. So . . . let me show you

what’s behind Door 3.” Door 3 opens to reveal a cute but very

— economically speaking — unsavory donkey. Monty now to

Jones: “Do you want to switch to Door 2, or stay with Door 1?

You’ll get what’s behind the door of your choice, and our game

will end.” Monty looks briefly into the camera, directly.

What should Jones do if he is logical?

Unfortunately, as nicely explained in the study mentioned in

Friedman (1998) and many other papers and books, including the

recently published Rationality from Pinker (2021), the vast majority

of humans respond by saying that Jones should not switch. In

fact, as the history of MHP3 has shown, many mathematicians

aggressively insisted that the rational policy is STAY, not SWITCH.8

8 See Tierney (1991), and for a shorter historical account, Chap. 1 of Pinker

(2021). For fuller discussion of the mathematicians to whom we have just

referred, see Granberg (2014).
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However, the provably correct response to the question is that Jones

should follow a SWITCH policy.

Now, suppose that some artificial agents have perceived the

MHP3 problem, automatically discovered the correct answer, and

now share that answer with a typical human who fails to grasp

the problem and thought that the correct policy was STAY. How

helpful is this artificial agent going to be to this human? Not very.

After all, the human does not know why the correct answer is

SWITCH. The obvious solution, given the need for genuinely helpful

human-centric AI, is a class of artificial agents that can not only find

solutions but also provide cogent, compelling, verified arguments

certifying those solutions. If such a thing is provided in the present

case, the human will be enlightened. As will be observed later in the

study, this is what our artificial agents can do, even in cases where

the percepts to these agents are “clouded.”

3 The perception lacuna/challenge

The lead author has been carrying out logicist AI R&D for

three decades and can count, on one hand, systems that genuinely

integrate automated reasoning with the full gamut of the main

human-level cognitive operators, andwith attention and perception

understood in keeping with state-of-the-art cognitive science.

It is even harder to find such systems that are rigorous and

computationally implemented. This missing type of research is

what the present section’s heading refers to as a lacuna.

Addressing this inadequacy is observed as important by others.

For example, Dietz et al. (2022), when setting out desiderata for

HCAI systems, include that such systems must exhibit a “body-

mind like model of operation to sense, recognize, think, and act”

(Dietz et al., 2022). For us, broadly speaking, here, “think” is

constituted by reasoning,9 and we associate “sense, recognize” with

attention and perception. Later, in the same study, when discussing

what is needed for true success in HCAI and indeed for any brand

of AI overall that aspires to cover the human-level case, Dietz et al.

(2022) point to the following challenge:

[Such success must include showing] how the internal

integrated operation of cognition, from low-level perception

to increasingly higher levels of cognition, is supported by an

appropriate architecture, and how an individual’s cognition is

integrated with the external physical and social environment

(Dietz et al., 2022; emphasis ours).

In keeping with such demands, we are actively working on

the integration of attention and perception with (esp. rational)

human-level reasoning, in a manner that takes account of a given

artificial agent’s external and physical environment.10 Another way

9 A view a�rmed and used in the Prolog-centric (and hence only

extensional) and pedagogically oriented tour through thinking as reasoning

in the study mentioned in Levesque (2012).

10 The lead author, along with author P. Bello, is, in addition, convinced

not only that an agent’s perception of its internal, mental environment is

equally important, but also working on formalizing and implementing the

relationship between internal perception (which calls for its own intensional

operator in cognitive calculi) and reasoning. For an exploration of internal

to put our goal of integration is to say that it is aimed at unifying

“bands of cognition.” This aim is characterized by the following

instructive quote:

Interestingly, [the] missing convergence toward unified

theories of cognition persists across and within the bands of

cognition Newell (1990). Bridging the gap between Newell’s

bands of cognition still exists as a problem and the main

challenge remains. How do we organize the internal processes

of a system at different levels such that they can operate

internally linking perception and high-level cognition, by

facilitating their meaningful integration with other systems and

the external human participating environment? (Dietz et al.,

2022).

The question in the last sentence of this quote is fundamentally

what drives our integration of our automated-reasoning systems

with perception; and below, Case Studies 2 (Section 7.2) and 3

(Section 7.3) demonstrate some of this study.

We now turn specifically to the latest version11 of our desiderata

for human-level argumentation (and proof) systems, specified and

implemented within the constraints of our particular approach to

human-level logicist-AI.

4 Historical context and related work

In the present section, we first provide some historical contexts

(Section 4.1) and then (Section 4.2) summarize related studies to

set the stage for giving our own specific desiderata, which drive

our work.

4.1 Historical context

Sensible presentation of our desiderata for an argument-centric

automated reasonermust, at least to some degree, be contextualized

historically. We, thus, now issue some remarks along this line.

Needless to say, these remarks will not constitute a full history

of systematic, precise work in argumentation-based formal and/or

computational logic.12

perception in self-conscious robots that is integrated with robust reasoning

in a cognitive calculus, see Bringsjord et al. (2015).

11 Ancestors and less-developed lists of the desiderata in question have

been given in some previous studies, including e.g., Bringsjord et al. (2020a).

12 A comprehensive history, in our opinion, needs to be composed by

someone at some point. Part of the challenge is the need for the brave

author who takes this project to be fluent in at least both ancient Greek and

German. The former language is key because Aristotle can be viewed as the

primogenitor (e.g., see Topica and De Sophisticis Elenchis in his Organon,

available in McKeon, 1941). German is crucial because, even to this day,

the remarkable work of Lorenzen, momentarily discussed, has not been

fully translated from the German. In addition, the lead author is personally

of the view that the work of Leibniz in formal logic (which includes the

long-before-Frege invention of both first-order logic and modal logic; see

Lenzen, 2004), and in particular work toward his dream of a “universal logic”

(which is expressly intended to cover the dynamic argumentation of multiple,
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From an historical perspective, our approach, formalisms, and

AI technology for argumentation can be viewed as having roots in

dialogue logic, the seminal 1958 introduction of which, in formal

terms, is due to Lorenzen (1960). As Walton and Krabbe (1995)

have pointed out, Lorenzen’s work can be traced to treatment

of dialogue in Aristotle (and in this connection see note 12).

Since an excellent and remarkably efficient summary of dialogue

logic/games is provided by Bench-Capon and Dunne (2007), a

paper to which we shall return to, and rely upon, later, there is

really little it makes sense for us to recapitulate from the dialogue

tradition. We make only three quick points, as follows:

1. When one considers a two-person dialogue game in which

Proponent and Opponent struggle over some proposition, our

ShadowAdjudicator can be viewed as the judge charged with

rendering rulings as to the winner.

2. We allow any number of agents to articulate and propose

arguments on the proposition at hand (a fact that becomes

concretized in our case studies).

3. Our third point is by far the most important of the present

trio and consists of our explicitly affirming an insight into

Bench-Capon and Dunne (2007), which in a word is that the

specification of the internal structure of arguments, vis-à-vis

conformity to inference schemata,13 is crucial. This insight is,

in fact, explicitly included as a desideratum in Des, as shall be

soon observed. In our case, inference schemata, as will be clearly

and concretely observed in the cognitive calculi we bring to bear

in our case studies, are not only formal (as is the case even

with something is straightforward as modus ponens) but also

are intensional in nature and parameter-rich (e.g., the inference

schemata specified for bothDCEC and IDCEC given in Section

6.2.1).14

interacting agents), is quite relevant to any full history of the sort we are

imagining, which means that command of Latin and French also becomes a

requirement for the relevant scholarship [we return to the Leibnizian nature

of our paradigm below (Section 4.2)].

13 We read as follows:

It has been seen that Dung’s fundamental model, as described in

[73], abstracts away such internal structure from individual argument

in order to focus on the manner in which arguments interact via

the defined attack relationship. In unfolding the exact nature of “the

argument x attacks the argument y,” however, the reason why such an

attack is present needs to be considered in terms of those structural

schema underlying the arguments x and y from which the attack arises.

Such an interpretation, therefore, raises issues that concern the form

an argument might take, i.e. issues regarding the components and

representation of arguments rather than the process and outcome of

the argumentation involved (Bench-Capon and Dunne, 2007, p. 625).

14 It is worth pointing out that Dung’s (1995) abstract scheme for

arguments is (unbeknown in our experience to most researchers working

in AI and computational argumentation systems and formalisms) related to,

indeed in some non-trivial respects anticipated by, a longstanding sub-area

of formal logic that spans both extensional and intensional logic; we refer

to justification logic. A nice starting point is Artemov (2008). The core idea

in justification logic (to simplify rather harshly for economy) is that formulae

Turning now to more “classical” logicist work in 20th-century

AI, we begin by rehearsing that, as the reader will likely recall,

standard first-order logic L! (and all its fragments, such as the

propositional calculus and zero-order logic L0
15) ismonotonic: the

arrival of new information cannot change the result of previous

inferences. That is,

If8 ⊢ φ then8 ∪9 ⊢ φ,

where 8,9 are sets of formulae in the formal language of L1, and

φ is an individual formulae in this logic; we implicitly universally

quantify over these three elements. In stark contrast, defeasible

reasoning is non-monotonic. It has long been known in AI that

such reasoning is desirable when formalizing much real-world

reasoning. For instance, there are the early, classic default logics

of Reiter (1980), in which epistemic possibilities hold in default of

information to the contrary. In general, it is desirable to be able to

reason based on beliefs which could potentially be false, and to be

able to retract such beliefs when new, countervailing information

arrives. Our coming desiderata Des call for more than this. Default

logic, despite having many virtues, does not satisfyDes; the reason,

in short, is that it has no provision for intensional/modal operators

corresponding to cognitive verbs known to stand at the heart

of human-level cognition (such as believes, knows, perceives, and

communicates), as cognitive psychologists have shown (for an

overview, see Ashcraft and Radvansky, 2013). These verbs are also

known as propositional attitudes by logicians and philosophers, and

their inclusion in a given logic makes that logic an intensional one,

not just an extensional one (Fitting, 2015; Nelson, 2015).

A diagnosis parallel to that issued for default logic holds

with respect to circumscription, an impressive non-monotonic

form of reasoning introduced long ago by McCarthy (1980).

Circumscription makes no provision for modal operators to

that express some proposition, say φ, are accompanied by justifications, and

we thus have for instance t :φ, where t is the justification. Justifications, here,

have long been conceived as proofs and/or arguments. This tradition, and

the logico-mathematical results that have been obtained, run back to a time

(circa 1930 in the case of extensional logic, within mathematical logic) quite

before the study by Dung and others on abstract schemes for the systematic

study of argumentation. For a detailed overview, see Artemov and Fitting

(2020) (while this overview credits some early mathematical logicians, e.g.,

Kolmogorov, 1932, with laying the foundations of justification logic because

of their identifying “truth” with “provability,” it does not credit, as the first

author of the present study feels it should, those who established proof-

theoretic semantics, as also laying part of these foundations. As observed

below when we present the technical basis of our approach to and work

on computational inductive logic, proof-theoretic semantics has greatly

influenced this approach/work). Regarding our own approach, the lack of

internal structure in justifications in justification logic, which parallels the

situation with respect to Dung’s approach, means that our computational

logics and AI systems for argumentation-centric AI are very di�erent. This is

expressed explicitly in desiderata d4 and d5 in our set Des of desiderata, given

in Section 5.

15 No quantifiers, but constants to denote individuals, unrestricted use of

n-ary relation and function symbols, the identity = relation, and inference

schemata for deduction using identity, e.g., that if a=b and φ(a) (a formula in

which constant a occurs), then inference to φ(b) is permitted.
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capture cognitive attitudes and does not include the type of human-

digestible arguments we require. There have been defeasible-

reasoning models and systems that do include arguments that

compete against each other in a manner at least somewhat similar

to our concept of adjudication. The closest case in point is the work

of Pollock (1995). For an excellent survey of defeasible reasoning

systems that are, at least to some degree, argument-based (see

Prakken and Vreeswijk, 2001).16

4.2 Related work

Argumentation in AI, as our foregoing coverage in the present

section clearly indicates, is long established. To now further set

the stage for enumeration of the desiderata that govern our own

work, we turn to the 21st century. A truly excellent overview of

this more recent work is provided by Bench-Capon and Dunne

(2007), a study we have already relied upon, and which at its

outset attempts to distinguish between mathematical reasoning

and proofs vs. reasoning observed in arguments. The distinction

is given, in part, to provide a basis for a number of studies in a

special issue of Artificial Intelligence that follow this study, and

as far as we can determine from reading these other studies,

the distinction is affirmed by all the authors. However, while we

certainly acknowledge that this foundational distinction is widely

affirmed, it is not one that applies to our approach. In a word,

the reason is that inductive logic, computationally treated, as has

been explained by the lead author elsewhere (see Bringsjord et al.,

2021, 2023b), must conform to the Leibnizian dream of a “universal

logic” that would serve to place rigorous argumentation (in

e.g., even jurisprudence) in the same machine-verifiable category

as mathematical reasoning. This means that the fundamental

distinction made in the study mentioned in Bench-Capon and

Dunne (2007), while nearly universally accepted, does not apply

to the approach taken herein. In particular, our desideratum d5
given in the next section treats proof and argument the same in this

regard: both are formally, mechanically verifiable. We now take a

closer look at these matters.17

16 For an e�cient overview of defeasible reasoning, in general, the

interested reader for whom defeasible/non-monotonic reasoning is new is

directed first to the study mentioned in Koons (2017).

17 There are at least two other important, substantive matters that must

for economy be left aside, which are quite important. The first is that

as a matter of fact, the arguments and proofs that are key to our study

are often expressed in what is as far as we know a novel graphical form

of so-called “natural reasoning”: hypergraphical natural reasoning because

arguments, proofs, and semantic structures [e.g., a hypergraphical version

of so-called “truth trees” (as nicely introduced in Bergmann et al., 2013)]

are all expressed as hypergraphs (Berge, 1989; Bretto, 2013), including 3-

dimensional hypergraphs; see Bringsjord et al. (2023a). We observed our

hypergraphical approach as being within the general fold of graphical

schemes for argumentation, a nice example of which is given in the study

mentioned in Bench-Capon et al. (1992), which is, in turn, within the general

approach of Toulmin (2003). A look at a robust hypergraphical proof within a

logicized theory of special relativity that faster-than-light travel is impossible

(see Govindarajalulu et al., 2015).

Bench-Capon and Dunne (2007) present four properties that

mathematical reasoning is said to have, but which argumentation

is said to lack. We do not think that any of these properties hold

of mathematical reasoning but not of argumentation; however,

unsurprisingly, full analysis is beyond the present scope. We thus

comment on only their fourth property, which relates directly to

the issue we have already raised. This fourth property is expressed

verbatim by these two authors as follows:

[I]n mathematical reasoning . . . [r]easoning and

conclusions are entirely objective, not susceptible to rational

dispute on the basis of subjective views and prejudices. Proof is

demonstration whereas argument is persuasion (Bench-Capon

and Dunne, 2007, p. 620).

Our reaction is rooted in Leibniz, whose objective was explicitly

to do away with mere persuasion (on weighty matters), and

rational disputes were to be crisply adjudicated by computation

over arguments—computation we formalize and implement as

automated adjudication in our sense, displayed in the present

study.18 To meet this objective, two things were needed, a

universal formal/logical language, the characteristic universalis,

and automated-reasoning technology, the calculus rationcinator

(Paleo, 2016). The idea is that when these are obtained,

rigorous argumentation (arising from disagreements that drive

the production of competing arguments) can be computationaly

adjudicated, and arguments can also be discovered by computation.

It is not important here at all as to whether Bringsjord and

Govindarajulu have in fact found, as they claim, these two

things (e.g., claimed and justified by an argument, in Bringsjord

et al., 2023b); the important point is that the paradigm advanced

by the research and engineering, reported herein, is based

on a premeditated conflation of argument/argumentation and

proof/mathematical reasoning.19

A second wide-ranging treatment of reasoning in AI

approached via logic is provided in the study mentioned in

18 Bench-Capon and Dunne (2007) astutely concede in footnote #2 on

page 620 that even in mathematics there are disputes about premises (or

axioms); they give the Axiom of Choice as an example. However, they insist

that a sine qua non for rational dispute is having on hand an “alternative

theory” (in this case e.g., ZF rather than ZFC). Moreover, at any given point

in mathematics (and, needless to say, mathematical physics pursued through

formal logic), there has been dispute in the absence of an alternative theory.

A case in point is the rejection to Cantor’s seminal introduction of transfinite

numbers and their logic by many mathematicians, on the grounds not of an

alternative theory, but of their perceived near absurdity. A more recent case

in point is that Gödel’s now-fulfilled prophecy that new axioms governing

very large sets (e.g., the independence of the Continuum Hypothesis from

ZF/ZFC) would simply be legislated. Another example, perhaps the sharpest

one, is the rejection of infinitesimals in the absence of alternative theory

that accommodated them (rather than simply leaving aside, as in the case

of limits), and then the subsequent vindication of Leibniz on infinitesimals by

Robinson (1996).

19 Alert readers will perceive that our terminological practice in the present

study reflects this, as e.g., we sometimes use “proof” instead of “argument”

to refer to a chain of inferences found automatically by our ShadowProver

system.
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Davis (2017), and we now offer analysis of it in relation to our own

approach as well. Davis (2017) provides a survey of the attempt to

formalize commonsense reasoning in a logic, and certainly some

(including a reviewer of an earlier draft of the present study who

encouraged us to factor in Davis’s study) regard our argumentation-

focused work in human-centric AI to be at least in large measure

devoted to commonsense reasoning. It seems reasonable, for

example, to view MHP as a commonsense-reasoning challenge.

At any rate, for the sake of argument, we are more than willing to

agree that this is the case. However, while the survey in question

is as far as it goes in our opinion masterful, our approach is quite

different in important, enlightening ways, as we now explain. We

list three ways our work in computational inductive logics for

formalization and automation of argumentation differs from all

the work that Davis (2017) surveys:

1. Our foundation is decidedly not mathematical logic. Repeatedly,

Davis writes that the approach he is analyzing and summarizing

is the use of “mathematical logic” for formalizing commonsense

reasoning. For example, on p. 651 he writes: “One of the

most studied approaches toward [the] goal [of formalizing

commonsense reasoning] has been to use formal mathematical

logic” (emphasis ours). On p. 656 he writes: “This paper focuses

on developing representations of fundamental commonsense

domain by hand by experts using mathematical logic as a

framework” (emphasis ours). There are other such quotes

available in the study, but we omit them as redundant. The point,

here, is that mathematical logic is the branch of logic devoted

to formalizing mathematical reasoning, a pursuit that started

with Aristotle (Glymour, 1992). However, our roots are in the

tradition of devising formal logics that can capture human-level

cognition, not mathematical reasoning or anything of the sort

(see Bringsjord et al., 2023c). In a word, mathematical logic has

for over two millennia been purely extensional.

2. We straddle formal deductive logic and formal inductive logic;

the latter is not on Davis’s radar screen. The phrase “inductive

logic” (nor any equivalent) does not occur in Davis (2017).

Given that the work surveyed therein is avowedly aligned

with mathematical logic (as we have pointed out), this is

unsurprising. However, formal logic is a large discipline that—

as we have shared above—includes not just deductive logic but

inductive logic, and the latter is itself any enormous enterprise

now. There is, for example, no mention of the Carnapian edifice

of pure inductive logic (Paris and Vencovská, 2015) in the

survey, and nomention of inductive logic as the part of logic that

includes analogical and abductive reasoning and enumerative

induction (Johnson, 2016). To his great credit, Davis does

consider logics in the categories of non-monotonic, probabilistic,

and fuzzy (see final paragraph of p. 664). Moreover, here, there is

for sure a connection to our approach and formalisms, but one

important difference is that our study makes crucial use of the

concept of likelihood, as distinct from probability (see below).

3. There is an expressivity canyon between what Davis is concerned

with vs. our cognitive calculi (= our logics). Our cognitive calculi

start at the level of quantified multi-modal logic and expand

from there. However, when Davis reports on modal logics, his

orientation is that of containment. For instance, he reports

with approval that “propositional modal logics . . . are often

both expressive enough for the purpose at hand and reasonably

tractable, or at least decidable” (p. 662). However, from the

standpoint of human-level cognition, our position is that modal

operators are almost invariably accompanied by quantification

(and in fact quite naturally to L3).

Now, what about work specifically in defeasible argumentation

systems, with an eye to the desiderata Des to be laid down

momentarily in the next section? We wrap up the present

section by summarizing two examples of such related

prior study, and distinguish them from our approach in

broad strokes:

1. Modgil and Prakken (2014) have presented and made available

a general, computational framework—ASPIC+—for structured

argumentation. This impressive framework is based on two

fundamental principles, the second of which is that “arguments

are built with two types of inference rules: strict, or deductive

rules, whose premises guarantee their conclusion, and defeasible

rules, whose premises only create a presumption in favor of

their conclusion” (p. 31 of Modgil and Prakken, 2014). This

second principle is directly at odds with desideratum d5 in the

full list Des given in the next section. In our approach, all non-

deductive inference schemata are checked, in exactly the way

that deductive inference schemata are. For instance, if some

inferences are analogical in nature, as long as the schema 8
C

(8 for a collection of premises in some formal language and

C for the conclusion) for an analogical inference is correctly

followed, the inference is watertight, not different than even

modus ponens, where of course specifically we have φ→ψ ,φ
ψ

.20

2. Cerutti et al. (2017) is an overview of implementation of

formal-argumentation systems. However, the overview is highly

constrained by two attributes. The first is that their emphasis

is on Turing-decidable reasoning problems, whereas our

emphasis—as reflected in Des and in our case studies—is on

reasoning challenges that, in the general case, are Turing-

undecidable. As to the second attribute, the authors are careful

to say that their study is constrained by the “basic requirement”

that “conflicts” between arguments are “solved by selecting

subsets of arguments,” where “none of the selected arguments

attack each other.” Both of these attributes are rejected in our

approach; in fact, in the coming trio of case studies (Section 7),

automated processing is possible because of this rejection. With

respect to the first of their attributes, most of the interesting parts

of automated-reasoning science and technology for us only start

with problems at the level of the Entscheidungsproblem; see in

this regard desideratum d7. As to the second attribute, it is not

true for our approach.

Now, as promised, here are our desiderata, which the reader will

notice are in play when we reach our case studies.

20 For a discussion of this sort of explicit rigidity in the case of analogical

inference, see Bringsjord and Licato (2015). Analogical inference schemata

arise again below, in Section 8.
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5 Desiderata driving our approach

Wedenote the 7-fold desiderata for the capability we seek in our

automatic argumentation systems by ‘Des’. An automated reasoner

of the kind we seek must:

Desiderata “Des”

d1 be defeasible (and hence non-monotonic) in nature (when new

information comes to light, past reasoning is retracted in favor

of new reasoning with new conclusions);

d2 be able to resolve inconsistencies when appropriate and tolerate

them when necessary in a manner that fully permits reasoning

to continue;

d3 make use of values beyond standard bivalence and standard

trivalence (e.g., beyond e.g., Kleene’s, 1938 TRUE, FALSE, and

UNKNOWN trio), specifically probabilities and strength factors

(= cognitive likelihoods), (the latter case giving rise to multi-

valued inductive logics);

d4 be argument-based, where the arguments have internal

inference-to-inference structure, so that justification (and hence

explanation) is available;

d5 have inference schemata (which sanction the inference-to-

inference structure referred to in d4), whether deductive or

inductive, that are transparent, formal, and hence machine-

checkable;

d6 be able to allow automated reasoning over the cognitive

verbs/operators of knowledge, belief, desire, perception,

intention, communication, etc., of the humans who are to be

helped by this AI;

d7 be able to allow automated reasoning that can tackle Turing-

unsolvable reasoning problems, e.g., queries about probability

at and even above the Entscheidungsproblem. We do not here

assume anything like hypercomputation. The requirement, here,

is that formal science and engineering be harnessed to tackle

particular instances of the Turing-uncomputable problem of

algorithmically deciding provability.

We turn now to more detailed coverage of the technical

background needed to understand our approach and its application

in the promised three case studies.

6 Formal background of our brand of
logicist AI

We first provide the reader with enough background to

understand our approach and its application to the three case

studies.

6.1 AI, logicist = logic-based AI, and
artificial agents

AI has become a vast field as chronicled and explained in

Bringsjord and Govindarajulu (2018). Accordingly, the pursuit of

computing machines that qualify as intelligent and indeed even

the meaning of “intelligent” itself in some contemporary debates

are defined differently by different researchers and engineers, even

though all of them work under the umbrella of “AI.” Our approach

is a logicist one, or—as it is sometimes said—a logic-based one. A

full characterization of our approach to AI and robotics is of course

beyond the reach of the present study, but we must give at least

enough information to orient the reader and enable understanding

of our three case studies, and we do so now. We turn first to

the generic concept of an artificial intelligent agent, or—since, by

context, it is clear that we must have intelligence, in some sense,

front and center—simply artificial agents.

6.1.1 Artificial agents/AI, generically speaking
For present purposes, we rely upon how dominant textbooks,

for example Russell and Norvig (2009, 2020); Luger (2008),

characterize artificial agents. Their characterization is simply that

such an agent computes a function from what is perceived

(percepts) to behavior (actions). All such agents are assumed to

operate this way in a certain environment, but for present purposes,

we can leave explicit consideration of this aspect of the AI landscape

to the side; doing so causes no loss of generality or applicability

for the work we relate herein. However, what about the nature

of the function from percepts to actions? As pointed out in the

course of an attempt to show that the so-called Singularity21 is

mathematically impossible (Bringsjord, 2012), the fact is that in

the dominant AI textbooks, these functions are firmly assumed

to be recursive. In the present study, we affirm this assumption,

but the reader should keep in mind that despite this affirmation,

our AI technology can still be based on automated reasoning that

is routinely applied to problems that are Turing-uncomputable

in the general case. This is directly expressed in desideratum d7
in Des. After all, all automated reasoners that are specifically

automated theorem provers for first-order logic confront the

Entscheidungsproblem, first shown unsolvable by Church (Church’s

Theorem). Our automated reasoners routinely attempt to discover

arguments and proofs in order to settle queries at levels far above

Church’s negative result.

6.1.2 The logicist approach to AI/robotics
We can now quickly state the heart of our logicist approach to

AI and cognitive robotics as follows. The artificial agents we specify

and implement compute their functions (from, again, percepts to

actions) via automated reasoning over a given formula 8 in some

formal language L for some formal logic L. This means that what

these agents perceive must ultimately be transduced into content

expressed in such formulae; and it means that an action, before

translated into lower-level information that can trigger/control an

effector, must also be expressed as a formula. The reader will see

this in action below when we show our AI used in the trio of case

studies. But how, specifically, are the functions computed in the

case of such agents? The answer is straightforward: These functions

are computed by automated reasoning. Of course, it has long been

known that computation, while often understood in procedural

21 The point in future time at which, so the story goes, AIs reach human-

level intelligence, and then immediately thereafter ascend to intellectual

heights far, far above our own.
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terms (e.g., in terms of Turing machines), is fully reducible to, and

usable as, reasoning.22

What about cognitive robotics, specifically? This is a key

question because our Case Study 2 features our cognitive robot,

PERI.2 (alert readers have noticed that we have already used the

adjective “cognitive”). Alternatively, the introduction of cognitive

elements to a formalism is said to make that formalism behavioral

in nature; see Camerer, 2003.) We specifically pursue cognitive

robotics as defined in the study by Levesque and Lakemeyer

(2007),23 with a slight formal tweak, and say simply that a cognitive

robot is one whose macroscopic actions are a function of what

the robot knows, believes, intends, and so on. As seen below,

these verbs are at the heart of a cognitive calculus, the class of

cognitively oriented logics we employ in general and in automated

reasoning quite concretely. It will soon be observed that the

robot PERI.2 is a cognitive robot, by the definitions just given

and affirmed.

Our logicist-AI work is specifically enabled by cognitive calculi.

Details regarding this class of logics and exactly how they are

tailor-made for handling cognitive attitudes/verbs are provided

in numerous publications in which such calculi are harnessed

for various implementations (see Govindarajulu and Bringsjord,

2017a; Bringsjord et al., 2020b). Put with a brevity here that is

sufficient, a cognitive calculus C is a pair 〈L,I〉 where L is a formal

language (composed, in turn, minimally, of a formal grammar

and an alphabet/symbol set), and I is a collection of inference

schemata (sometimes called a proof theory or argument theory) I ;

in this regard, our logicist-AI work is in the tradition of proof-

theoretic semantics inaugurated by Prawitz (1972) and others

(and for a modern treatment, see Francez, 2015; Bringsjord et al.,

2022c).

Cognitive calculi have exclusively proof-theoretic and

argument-theoretic semantics; no model theory is used,

no possible worlds are used.24 Within the present study,

as explained below, dialects of the cognitive calculi DCEC

(deductive) and IDCEC (inductive) will be utilized, and

this is what makes success in our case studies in Section 7

possible.

We said that IDCEC is an inductive cognitive calculus. The

great pioneer of modern inductive logic in any form was Rudolph

Carnap. Carnap would say, and the logicians and mathematicians

today who continue his particular approach in the form of what is

known as pure inductive logic (PIL) (Paris and Vencovská, 2015)

would still say, that “There is a blue cube on the table” and

“There is an orange sphere on the table” should each be assigned

22 This is what allows proofs of the Halting Problem for Turing machines

to be relied upon to prove the undecidability of the Entscheidungsproblem;

see Boolos et al. (2003).

23 As pointed out in that study, as far as most relevant thinkers know,

it was actually Ray Reiter (the same thinker who introduced default logic,

briefly mentioned above) who coined and first defined the phrase “cognitive

robotics.”

24 Bringsjord’s rejection of possible-worlds semantics can be traced

to his proof rather long ago that such structures can be shown to be

mathematically impossible; see Bringsjord (1985).

a probability value (a real number between 0 and 1, inclusive), and

this content, combined with additional probabilitized propositions,

can be used in a process that dictates what should be rationally

believed. Unfortunately, Carnap and his followers pay precious

little attention to the “coin of the realm” in human reasoning and

decision-making: arguments and argumentation. This tradition

(which began long before Carnap and includes e.g., Keynes and

Bayes) also runs afoul of the brute fact that humans very rarely

use probabilities and the probability calculus. In our approach,

to computational inductive logic for AI, inference schemata that,

when instantiated in sequence, lead to arguments and proofs, are

front and center. This can be observed clearly in the specifications

of both of the cognitive calculi used in the present study, which

we now provide (next section). Later, in the three forthcoming

case studies, it is the automated discovery of arguments and proofs

based on linked inferences as instantiations of these schemata that

is key.

6.2 Cognitive calculi, in more detail

Cognitive calculi, as we have said, are members of an infinite

family of highly expressive logics that, for instance, include

unrestricted third-order logic, meta-logical quantification, and

predication (it can be expressed not only that a property has

a property but that a formulae has a property), and all this

extensional machinery is intertwined with intensional operators

for belief, knowledge, intention, communication, action, and the

traditional alethic modalities as well. To the best of our knowledge,

cognitive calculi are the most expressive logics that have been

implemented and used with corresponding automated reasoners.

For more on cognitive calculi, see Arkoudas and Bringsjord

(2009a); Govindarajulu and Bringsjord (2017a); Govindarajulu

et al. (2019); Bringsjord et al. (2020b). For the shortest account of

cognitive calculi, and implementation of reasoning over declarative

content therein, in which it is made clear that such calculi

are exclusively proof- and argument-theoretic, see Bringsjord

and Govindarajulu (2020). For an explanation of how natural-

language understanding works in connection with cognitive calculi,

see Bringsjord et al. (2022c). There are many more resources

available, as cognitive calculi are well established at this point,

but for present purposes, it suffices to economically provide the

specifications of the two cognitive calculi used for modeling

and simulation in the present study, and these specifications

follow now.

6.2.1 Specifications of cognitive calculiDCEC

and IDCEC

Below is the signature of the standard dialect of DCEC. The

signature contains the sorts, function signatures, and grammar of

this cognitive calculus, presented in a manner that is standard

and self-explanatory for the most part. As obvious, lower-case

Greek letters are formulae, bolded majuscule Roman letters are

intensional/modal operators (K for knows, B for believes, I for

intends, etc.).
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DCEC Signature

S : : = Agent | ActionType | Action ⊑ Event |Moment | Fluent

f : : =



































































action :Agent× ActionType → Action

initially : Fluent → Formula

holds : Fluent×Moment → Formula

happens :Event×Moment → Formula

clipped :Moment× Fluent×Moment → Formula

initiates :Event× Fluent×Moment → Formula

terminates :Event× Fluent×Moment → Formula

prior :Moment×Moment → Formula

t : : = x : S | c : S | f (t1 , . . . , tn)

φ : : =























q : Formula | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀x :φ(x) | ∃x :φ(x)

P(a, t,φ) | K(a, t,φ) | S(a, b, t,φ) | S(a, t,φ)

C(t,φ) | B(a, t,φ) |D(a, t,φ) | I(a, t,φ)

O(a, t,φ, (¬)happens(action(a∗ ,α), t′))

Perceives, Knows, Says, Common-knowledge

Believes,Desires, Intends,Ought-to

Next is the standard set of inference schemata for DCEC.

They say that when what is above the vertical line is instantiated,

that which is below can be inferred (in accordance with that

instantiation); this top-bottom notation is common in descriptions

of so-called natural deduction. The approach to logicist AI-based

on cognitive calculi is not restricted in any way to “off the shelf ”

logics but are instead created and specified for given purposes and

applications in AI. However, all cognitive calculi include standard

extensional logics (one or more of L0,L1,L2,L3, and standard

natural-inference schemata for these extensional logics).

DCEC Inference Schemata

K(a, t1 ,Ŵ), Ŵ ⊢ φ, t1 ≤ t2

K(a, t2 ,φ)
[IK]

B(a, t1 ,Ŵ), Ŵ ⊢ φ, t1 ≤ t2

B(a, t2 ,φ)
[IB]

C(t,P(a, t,φ) → K(a, t,φ))
[I1]

C(t,K(a, t,φ) → B(a, t,φ))
[I2]

C(t,φ), t ≤ t1 , . . . , t ≤ tn

K(a1 , t1 , . . .K(an , tn ,φ) . . .)
[I3]

K(a, t,φ)

φ
[I4]

t1 ≤ t2 ≤ t3

C(t,K(a, t1 ,φ1 → φ2)) → K(a, t2 ,φ1) → K(a, t3 ,φ2)
[I5]

t1 ≤ t2 ≤ t3

C(t,B(a, t1 ,φ1 → φ2)) → B(a, t2 ,φ1) → B(a, t3 ,φ2)
[I6]

t1 ≤ t2 ≤ t3

C(t,C(t1 ,φ1 → φ2)) → C(t2 ,φ1) → C(t3 ,φ2)
[I7]

C(t, ∀x. φ → φ[x 7→ t])
[I8]

C(t,φ1 ↔ φ2 → ¬φ2 → ¬φ1)
[I9]

C(t, [φ1 ∧ . . . ∧ φn → φ] → [φ1 → . . .→ φn → φ])
[I10]

B(a, t,φ) B(a, t,φ → ψ)

B(a, t,ψ)
[I11a]

B(a, t,φ) B(a, t,ψ)

B(a, t,φ ∧ ψ)
[I11b]

S(s, h, t,φ)

B(h, t,B(s, t,φ))
[I12]

I(a, t, happens(action(a∗ ,α), t′))

P(a, t, happens(action(a∗ ,α), t′))
[I13]

B(a, t,φ) B(a, t,O(a, t,φ,χ)) O(a, t,φ,χ)

K(a, t, I(a, t,χ))
[I14]

The following two framed boxes specify the additional

signature and inference schemata for IDCEC, respectively. That

is, they build on top of those given for DCEC immediately above.

These specifications enable reasoning about uncertain belief. In

the first of three case studies discussed next, we will describe

the uncertainty system which enables the ascription of likelihood

values to beliefs present in these schemata. Herein, we only

provide a subset of the inference schemata of IDCEC; a full

exposition of IDCEC and its inference schemata are the focus

of a doctoral dissertation (Giancola, 2023). For an early inductive

cognitive calculus with cognitive likelihood, see Govindarajulu and

Bringsjord (2017b).

Additional Signature for IDCEC

S : : = Number | List

f : : =

{

min : List[Number] → Number

max : List[Number] → Number

φ : : =

{

Bσ (a, t,φ)

where σ ∈ [−5,−4, . . . , 4, 5]

Additional Inference Schemata for

IDCEC

S(s, a, t1 ,φ), t1 < t2

B1(a, t2 ,φ)
[Iℓ1 ]

P(a, t,φ)

B4(a, t,φ)
[Iℓ4 ]

Bσ (a, t1 ,φ), Ŵ 6⊢ ¬Bσ (a, t2 ,φ), t1 < t2

Bσ (a, t2 ,φ)
[IℓPROP]

Bσ1 (a, t,φ1), . . . ,B
σm (a, t,φm), {φ1 , . . . ,φm} ⊢ φ, {φ1 , . . . ,φm} 6⊢ ⊥

Bmin(σ1 ,...,σm)(a, t,φ)
[IℓWLP]

where σi ∈ [0, 1, . . . , 4, 5]

6.2.2 Regarding metatheoretical properties of
our cognitive calculi and associated automated
reasoners

As the chief purpose of the study we report herein is

to advance logicist AI, both formally and computationally,

rather than to advance computational formal logic in and of

itself, it would be inappropriate to spend appreciable time

and space explaining, let alone proving, the metatheoretical

properties—soundness, completeness, un/decidability, complexity

measures, etc.–of the family of cognitive calculi and the members

thereof used herein (DCEC& IDCEC) and of our automated

reasoners. However, we do now provide some brief metatheoretical

information that readers well versed in formal logic will likely find

helpful.

To begin, recall that desideratum d7, if satisfied, ensures that

the fundamental question as to whether some formula φ can be

inferred (via some collection of inference schemata) from some

set 8 of formulae is for us usually25 Turing-undecidable. We have

already mentioned Church’s Theorem in this regard, which of

course applied to theoremhood in first-order logic= L1. However,

as a matter of fact, L1 is semi-decidable: if, in fact, there exists a

25 There will be the o� case of a query, e.g., as to whether a low-

expressivity φ is inferable from a low-expressivity 8, for instance when all

formulae selected for automated processing aremere propositional-calculus

formulae, or—more realistically—when all formulae fall into a decidable

fragment of L1, e.g., fluted logic. However, the standard cases for use

of cognitive calculi, which are multi-modal quantified logics, will include

high-expressivity formulae.
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proof in the first-order case that supports an affirmative answer to

the question, that proof can be algorithmically found. However,

in the case of our paradigm, there are many general inference

questions posable by and to our artificial agents using as a basis a

cognitive calculus (whether deductive or inductive) that are fully

undecidable. This can be immediately observed from the well-

known theorem that L2 is not even semi-decidable.26 However,

our study, as it is based on cognitive calculi, places crucial reliance

upon human-level cognitive verbs, where these verbs are logicized

by relevant modal operators; for example: P for perceives, B for

believes (which, in our approach, can have a positive likelihood

parameter attached), K for knows (which also can have a positive

likelihood parameter attached), and so on. This means that things

are only that much harder computationally, and in fact, since both

the Arithmetic and Analytic Hierarchies are purely extensional

(the former based on L1 and the latter based on L2), and hence

devoid of modal operators, things are only even harder, given

our willingness to consider formulae and queries arising from an

unflinching look at the human case. This is simply the nature of

the beast—that beast being the undeniable expressivity of human-

level cognition and specifically of human-level argumentation.

After all, there can be no denying that humans create and assess

arguments that, when logicized, require remarkably high levels

of expressivity; this holds for even everyday activity, not just

for recherché academic problems. For an everyday example, let

us consider an argument, to be found and verified by our AI

technology, for the proposition (‡) that the dog Rover is scary,

based chiefly on these two premises:

(P1) As trainer David knows, there are some properties that are

downright scary and that some dogs have; and if they have any

of these properties, the dog in question is itself scary.

(P2) David also knows that one of these scary properties is

having prominent and pronounced musculature, and another

is having long and large incisors.

Now further suppose that (P3) David perceives a particular

dog, Rover, who as it happens has thick, pronounced incisors and

prominent pronounced musculature. Our automated reasoner,

ShadowProver, working with the formal representation of

{P1, P2, P3} in the cognitive calculus DCEC3,27 is able to find an

argument, and verify it, for (‡)—despite the formal fact that, in

the general case, the question as to whether a proposition follows

from modalized third-order formulae is a Turing-undecidable

question.28

Some readers, even cognoscenti, may then ask: But if the

queries your artificial agents much seek to handle are this difficult,

how does the engineering of your automated-reasoning systems

work? This question alone, if answered fully, would require its

own monograph. However, the answer is actually quite simple,

26 In general, once one moves beyond first-order logic, a dramatic loss of

metatheoretical properties desirable to many (not us) occurs, as revealed in

Lindström’s Theorems, elegantly covered in Ebbinghaus et al. (1994).

27 When the extensional core is L3.

28 We do not spend the space to recount why.

fundamentally, The short version of the answer is that our

engineering (a) reflects the famous conception, originated by AI

pioneer Herbert Simon, of “satisficing” (Simon, 1956); and (b) this

engineering makes use of a most valuable but low-technology sub-

system: a stopwatch, in the form of timeouts on duration of CPU

processing. In other words, we engineer for success on particular

cases within the general space of Turing-uncomputable problems,

and if processing takes too long and no answer has been returned,

we curtail processing by fiat, in accordance with a pre-set length of

time allowed for CPU activity. In the case of our three case studies

featured herein, temporal thresholds were not reached, in fact were

not even approached.29

What about other metatheoretical properties in the realm of

formal logic? What about complexity, soundness, completeness,

for example? Complexity is irrelevant, because almost all of the

problems that our human- and argumentation-centric artificial

agents seek to solve are not even in the Polynomial Hierarchy (since

they are above 61 in the Arithmetic Hierarchy). Soundness and

completeness, given that our approach is purely proof-theoretic, is

beyond scope; readers for a start are directed to Govindarajulu et al.

(2019). As can be readily understood given the foregoing, while

there is a lot of truly impressive work in AI and intelligent systems

that makes use of computational logic, much of it is nonetheless

radically different in formal orientation than ours. An example is

the use of logic programming. For a specific example, as Brewka

et al. (2011) show, answer set programming (ASP) is quite powerful

and promising—but its nature is applauded and affirmed because

“ASP . . . aim[s] to maintain a balance between expressivity, ease of

use, and computational effectiveness” (Brewka et al., 2011, p. 92–

93). The balance, here, can indeed be very powerful, but as should

be abundantly clear, our approach and the concrete case studies

within it reported herein, we do not desire this balance.30

One final word, aimed especially at those who subscribe, as

the first author long did but no longer does, to the general

expressivity-vs.-tractability tradeoff for formal (extensional) logics

that has become part of the fixed furniture of logicist AI. This

tradeoff, entrenched since at least the publication of the important

(Levesque and Brachman, 1985), is far from being both clear

and ironclad in the case of our brand of AI engineering. The

logico-mathematical reason stems directly from Gödel’s Speedup

Theorem (GST) (Buss, 1994, 1995), which, in word, says that the

move from first- to-second-order logic enables a non-recursive

gain in efficiency, measured by length of proof (and likewise for

jumping from second- to-third-order, and so on for each jump).31

In engineering terms, while of course we have no recourse to

algorithms for answering queries fully in the general case, we

also know that engineering techniques just might find staggering

gains in efficiency for cases at hand. Readers interested in learning

29 In fact, every run arising from every query that triggers automated

reasoning/planning in our three case studies is clocked in milliseconds: no

run exceeded 3 s on an Apple laptop.

30 We do not by the way mean to imply that no one within the ASP rubric

has tackled human-level cognition. Ganascia (2007), e.g., has modeled and

simulated aspects of lying constrained by this rubric.

31 Gödel’s results pertain directly only to elementary number theory, but

they carry over their application to other domains.
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more about this phenomenon are advised to start with the striking

example of Boolos (1987) and move from there to study GST itself

via the references we provided.

7 Three Case Studies

We turn now to our three case studies. In the third and final

study, reasoning is explained in somewhat higher-level terms than

in the case of the first and second; more specifically, the arguments

in Case Study 3 are for space-saving and expository purposes

expressed rather informally. Our first study takes us back to Monty

Hall, and we proceed to it now.

7.1 Case Study 1: MHP3 redux

We have every confidence the reader will remember MHP3,

which we suppose that some artificial agents have perceived in full,

automatically discovered the correct answer for, and now share that

answer with a typical human who fails to grasp the problem, and

thought the correct answer was STAY. How helpful is this artificial

agent going to be to this human? Not very. After all, our human

does not know why the correct answer is SWITCH. The obvious

solution, given the need for genuinely helpful human-centric AI,

is a class of artificial agents that can not only find solutions but also

provide cogent, compelling, verified arguments, certifying those

solutions. If such a thing is provided in the present case, the human

will be enlightened. This is what our artificial agents can do.

Given the complexity of MHP3, we cannot, herein, canvass the

full terrain of this problem, its logicization into our inductive logic

IDCEC, and solutions automatically found, but let us consider

two prominent arguments regarding MHP3, the first sound (and

hence both veracious and valid32) and the second not. The sound

argument goes as follows:

1. Without loss of generality, assume that you select Door 1.33

2. There are three potential cases, in which the prize is behindDoor

1, Door 2, or Door 3, respectively.

3. Let’s first consider the outcome of the three cases under the STAY

protocol.

(a) If the prize is behind Door 1, you win. If it is behind Door 2

or 3, you lose.

(b) Hence there is a 1
3 chance of winning if you follow STAY.

4. The cases are a bit more complex if you follow SWITCH, because,

crucially, Monty knows where the prize is, and, having perceived

your initial choice, will always reveal a door without the prize

behind it.

32 Following long-established and customary terminology, a sound

argument is both veracious and valid; a veracious argument has true (or at

least plausible to some level in some stratification of plausibility) premises;

and a valid argument has inferences that abide by the collection of inference

schemata taken to be operative in the case at hand.

33 Since it is equally likely that the prize is behind any of the three doors,

the same argument can be generated regardless of which door is initially

selected.

(a) If the prize is behind Door 1, you will lose. Monty can

open either of Door 2 or Door 3 (and should be assumed to

randomly choose which one), and regardless of which door

you switch to, you will lose.

(b) If the prize is behind Door 2, Monty must open Door 3.

Therefore if you SWITCH to Door 2, you will win.

(c) If the prize is behind Door 3, Monty must open Door 2.

Therefore, if you follow SWITCH and move to Door 2, you

will win.

(d) Hence, by simply counting, we deduce that there is a 2
3 chance

of winning if you follow SWITCH.

While many arguments have beenmade for STAY,34 they mostly

follow the same general pattern. That pattern is as follows:

1. Without loss of generality, assume that you select Door 1, and

that Monty then opens Door 3.

2. When Monty opens Door 3 that door of course has dropped

out of consideration, and we are down to two doors, so the

probability that the prize is behind Door 1 becomes 1
2 ; same as

the probability that the prize is behind Door 2.

3. Hence there is no reason to switch doors (and since—as the

economists who study rationality say—time is money, switching

is irrational).

Pinpointing where this invalid argument goes awry is

enabled by our concept of likelihood, specifically what we

term cognitive likelihood (Giancola, 2023). The invention

of this concept and its use in our intelligent, defeasible

argumentation systems satisfies desideratum d3. This concept

enables the ranking of the strength of beliefs (and other cognitive

attitudes), in accordance with their likelihood values. The

spectrum of the 11 possible values are presented in Table 1

(the caption for which offers some contextualization of

these values in contrast with probabilities). The use of these

strength-factor/cognitive likelihood values makes IDCEC

a multi-valued (or many-valued) logic; an efficient, broad

overview of such logics is provided in the study by Gottwald

(2015).35

By enabling beliefs to take on these uncertainty levels, cognitive

likelihood allows agents to reason with uncertain beliefs generated

by and reasoned over in integration with other modalities, for

example, with perception, communication, and intention. This is

formalized in the inference schemata of IDCEC. For example,

34 See Pinker (2021) for an argument (authored and advocated by a

mathematician) made by a analogy to horse race, and for more extensive

coverage of such arguments, see Granberg (2014). We explain in the study

mentioned in Section 8 that two-horse arguments are ideal specimens of

sophistic argumentation.

35 To the best of our knowledge, while the first multi-valued modal logic

(a three-valued one) appeared in 1967 due to the study by Segerberg

(1967), IDCEC is the first multi-valued multi-modal-operator logic, and

with little question (for better or worse), the first such logic computationally

implemented. Multi-valued logics in the non-modal/extensional case (three

values) originated with the study by Łukasiewicz (1920), and our basis

on the extensional side (e.g., standard L1) for our cognitive calculi is an

extension and refinement of Łukasiewicz’s study by Kleene’s (1938); see again

desideratum d3 in Des.
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TABLE 1 The 11 cognitive likelihood values.

Numerical Linguistic

5 CERTAIN

4 EVIDENT

3 OVERWHELMINGLY LIKELY

= BEYOND REASONABLE DOUBT

2 LIKELY

1 MORE LIKELY THAN NOT

0 COUNTERBALANCED

-1 MORE UNLIKELY THAN NOT

-2 UNLIKELY

-3 OVERWHELMINGLY UNLIKELY

= BEYOND REASONABLE BELIEF

-4 EVIDENTLY NOT

-5 CERTAINLY NOT

These values, notably, are not in any way real numbers in an interval, as are probabilities

in Kolmogorov’s (1933) probability calculus (the interval of course being [0, 1]), much

used in modern AI, e.g., in Bayesian approaches. Rather, these are fixed values in the

traditional sense of ‘value’ in multi-valued (or many-valued) logics, where each value has an

independent justification as a determinate value in rational human cognition. For example,

when strength/value is 3 for a belief, this corresponds to what humans in general refer to

as something that ought (epistemically, not morally, speaking) to be believed because the

proposition is “beyond reasonable doubt,” a concept central to occidental jurisprudence. For

the present study, it is beyond scope to present our full axiomatic theory L of cognitive

likelihood that is subsumed by IDCEC, in which Kolmogorov’s axioms do not hold. E.g.,

where p yields the probability of an event/proposition φ, Kolmogorov’s second axiom says

that if φ is a theorem in a standard, elementary extensional logic (such as the propositional

calculus), p(φ)=1. However, theorems in such a logic are not at all guaranteed to have a

likelihood value of 5, since an infinite number of such theorems are not familiar to human

beings and hence cannot be believed. In addition, theorems ofL are often completely without

corresponding analogs in the probability calculus. E.g., “if ℓ(φ) = 5, ℓ(¬φ) = 0” is a theorem

inL that has no analog in the probability calculus.

perception of φ sanctions, by inference schema Iℓ4 (see the

specification of inference schemata in the specifications shown in

Section 6.2.1), a belief that φ—but only at the cognitive-likelihood

value σ := 4. (that which we perceive, at least when we are

talking about perception of things in the external world, might be

illusory). Certainty, when σ := 5, is reserved in our framework

for belief regarding mathematical propositions. In general, this

ability to reason with cognitive-likelihood values enables the kind

of nuanced argumentation we seek, as it provides a formalism

in which individual statements and arguments as a whole can be

assigned relative strengths (= cognitive likelihoods), which, in turn,

allows certain statements and arguments carrying higher strength

to “defeat” others non-monotonically as time flows; this occurs in

our case studies.

Now, back to MHP3. The first argument is fully supported

by the basic tenets of probability theory viewed through the

lens of odds (i.e., the probability of an event is the ratio of

the number of possible outcomes in which it occurs, over the

number of total possible outcomes).36 Therefore, a belief in

36 This approach to probability can be formalized in what is known as

probability logic (Adams, 1998), and probability logic can be subsumed in

the conclusion of Argument 1—namely, that one should follow

SWITCH—can be held at the level of EVIDENT. It is EVIDENT,

not CERTAIN, because the argument fundamentally relies on the

agent’s perception of various elements of the game, which could be

compromised without violation of any mathematically necessary

axioms or theorems. Such beliefs are inferred using schema Iℓ4 as

follows:

P(a, t,φ)

B4(a, t,φ)
[Iℓ4] (1)

On the other hand, Step 2. of Argument 2 is generally asserted

with no justification. One could argue that it is justified by the large

group of people who state it. Given the inference schema [Iℓ2], such

a justification can warrant a belief at the level of MORE LIKELY

THAN NOT but not higher. Therefore, we have formally observed

that the first argument is stronger than the other and hence should

be accepted.

As mentioned above, while a full formal and computational

account of the overarching argument and its sub-proofs are out

of scope in the present study, we give the automated proofs found

by ShadowAdjudicator in Figure 1 and point the interested reader

to Giancola (2023) for a full exposition of the relevant inference

schemata, all the arguments and proofs, and full analysis. We

mention as well that there are now numerous variants ofMHP3 that

are a good deal trickier than the original; these are comprehensively

treated in the study by Bringsjord et al. (2022b), which takes

account, for instance, of the variants discussed in the study by

Rosenthal (2008).

7.2 Case Study 2: the robot PERI.2 meets
“Clouded” Meta-Forms

Our second case study revolves around a very interesting

and challenging reasoning game that we are using in a sustained

attempt to quite literally have the cognitive robot PERI.237 attend

school and progress grade-by-grade through at least high school,

on the road thereby to artificial general intelligence (AGI); this

project was announced in Bringsjord et al. (2022a). The game

is called “Meta-Forms” (see Figure 2 for a rapid orientation to

the game).

For our second case study, PERI.2 is issued the challenge of

solving a Meta-Forms problem; not one of the very hardest of such

problems, but certainly a non-trivial one, even for adult humans;

the problem is shown in Figure 3.

PERI.2 does meet with success, in what as far as we

know is one of the most robust uses of argumentation-

based AI in cognitive robotics. This success is shown

in Figure 4, and the automatically found reasoning that

leads to PERI.2’s knowledge38 (which, in turn, leads to the

intention to act accordingly, and then the performance of

cognitive calculi that subsume the two—DCEC and IDCEC–we employ

herein, but this is out of scope.

37 The precursor robot, PERI, anchored the introduction, to the field of AI,

what is called psychometric AI; see Bringsjord and Schimanski (2003).
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FIGURE 1

Two arguments for supposedly solving MHP3, automatically found by ShadowAdjudicator/ShadowProver. The complete valid argument includes six

sub-proofs, the result of considering whether switching or staying will result in a win depending on the three possible locations of the prize (and

assuming, without loss of generality, that the contestant initially selected Door 1). In the graphic here, we show two of the six: switching when the

prize is behind Door 2, and staying when the prize is behind Door 1. One of the others is the same as one shown: the contestant wins if they switch

when the prize is behind Doors 2 or 3. The other 3 proofs result in failure; e.g., one cannot prove that staying will result in a win if the prize is behind

Doors 2 or 3.

the action) is shown in Figure 5. It is important to realize

that because of the nature of Meta-Forms problems, dynamic

argumentation through time is part and parcel of how

PERI.2 operates.

However, now what happens if PERI.2’s environment is

uncoöperative? Specifically, what happens when this cognitive

robot is faced with fog (or smoke, etc.), to the point where some

possibly crucial information cannot be perceived, then believed,

and then reasoned about? Such a situation is shown in Figure 6.

In this situation, PERI.2 is unable to arrive at knowledge in support

of action that can be taken in order to physically solve the problem

(see Figure 7).

38 In the case of the step presented in Figure 4, PERI.2 is able to utilize

disjunctive syllogism to satisfy the probability query in schema [IK]. Essentially,

because PERI.2 knows that there are already puzzle pieces in three of the

four possible places it can put the blue piece, the piece must go in the only

remaining place.

7.3 Case Study 3: a life-and-death
multi-agent decision

The ARCADIA human-level cognitive architecture (Bridewell

and Bello, 2015) provides means by which we are able to integrate

our cognitive calculi and associated automated reasoners with a

perceptual system that takes into account not only the general

cognitive science of perception but also specifically a given agent’s

dynamically shifting attention. Computational cognitive science

has disclosed that attention and perception go hand in symbiotic

hand, and when an agent is designed and implemented as an

ARCADIA model, this symbiosis is made computationally real.

In the present section, we give a case study of a robust

multi-agent system perceiving and reasoning, and in which our

automated-reasoning technology helps assess threat levels in a

delicate scenario that is too depressingly real in the world today.

The simulation is in real time, as perceptual information is

communicated to and from multiple agents. However, before
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FIGURE 2

The Meta-Forms game, from FoxMind. This game provides a series of “clues” to the would-be puzzle solver, each of which is a visual version of a

“logical statement,” which, in turn for our AI work, becomes a formula in a cognitive calculus (often requiring for such logicization only the formal

language of a standard extensional logic such as L1). The goal is to physically construct a complete configuration of the 3×3 board from these

clues, i.e., a full placement of each of the nine di�erent objects in the game (3D versions of a triangle, square, and circle, each of which can be one of

the three colors of red, blue, and yellow). Formally, if 5 is a complete configuration of the board, and Ŵ the collection of formulae that logicize all

clues, necessarily 5 ∪ Ŵ is provably consistent in L1 and more expressive logics that subsume it.

FIGURE 3

A Meta-Forms problem. This is the full problem that serves as the

challenge at the heart of Case Study 2. Clues are best read by the AI

system top to bottom and left to right. The goal is to reason out

where to place all nine objects on the grid.

the case study, we give now some brief—but given purposes—

additional relevant background on ARCADIA.

The ARCADIA cognitive architecture is composed primarily

of a collection of non-introspectable processing units called

components. On each ARCADIA processing cycle, components

may take in and produce interlingua content items, which are tables

of labeled data able to be interpreted by other components. Once

generated, content items are placed in an accessible content area

from which the architecture will select one on each processing

cycle to become the focus of attention. This selected element is

fed back into the components and used to generate more content

items. The strategy for selecting a content item is decided on a

task-to-task basis that favors items, representing things deserving

of more attention, such as those representing changes to objects

within the field of vision. Though this architectural design and

various types of components are motivated, as we have said, by

the cognitive science of cognition, ARCADIA is able to smoothly

and efficiently perform a robust range of tasks as implemented

computation—such as object recognition, tracking, and driving

(Bello and Bridewell, 2020).

To move into the case study, let us suppose that it is known

that some people of interest are working on an unknown device

in a building in an area that has a history of terrorist training

and planning.39 A team of “blue” artificial agents is tasked with

deciding (and reporting to humans thereafter) whether or not

these people of interest and the device with them pose a threat.

The investigating team operates under the two-part assumption

that those in the building are possibly terrorists, and the device

in question possibly a bomb. In total, there are four investigative

artificial agents. Three of them are in the vicinity of the building

and are approaching it to ascertain the nature of the device in

question via their sensors. These three agents are a high-altitude

drone with a scanner (denoted by constant hdrone), a low-altitude

drone with a camera (denoted by constant ldrone), and a land-

based agent with wall-penetrating radar (denoted by constant

radar). The final agent is a special argument-adjudicating agent

(adjudicator) in full command of both cognitive calculi DCEC

and IDCEC and also ShadowProver and ShadowAdjudicator; this

agent is tasked with sending mission commands and receiving

39 This general premise is unfortunately far from implausible and is used

as well in a simpler ARCADIA-less/perception-less adjudication scenario

presented in Bringsjord et al. (2021), which is directly inspired by real events

in the past.
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FIGURE 4

PERI.2 observes the clue (left) and holds a Meta-Form piece in One Hand (center), correctly placing the shape (right). The clue, when logicized by

PERI.2, can be represented as: B[peri2,now, LocatedAt(bluesquare, 1) ∨ LocatedAt(bluesquare, 2) ∨ LocatedAt(bluesquare, 4)

∨LocatedAt(bluesquare, 5)]. Notably, this is a disjunction. The challenge is to dynamically adjust arguments through time as clues are perceived by

trying to negate disjuncts. Machine-vision middleware for PERI.2 is courtesy of Cognex, three of whose cameras are part of PERI.2 as well; hands are

from Barrett Technologies.

FIGURE 5

PERI.2 comes to know by reasoning that the Blue Square is at location #4. A rather long run of automated reasoning eventuates in PERI.2’s coming to

know that the blue square is at location #4. The proof given here provides justification for PERI.2’s belief. It is, in fact, true that the blue square

belongs to location 4. Therefore, in accordance with the conception of knowledge as justified true belief, where both belief and knowledge are

allowed to vary in strength [in order to surmount the famous problem of Gettier (1963), as explained in Bringsjord et al. (2020b)], PERI.2 knows the

correct placement.

messages from the other agents. From these messages, it is to use

all its information at each time step to determine by reasoning

if the people and the device are a threat. The other agents do

not have full cognitive power (i.e., most of the cognitive verbs

captured by both DCEC and IDCEC cannot be instantiated by

their processing; e.g., these agents do not have the epistemic

“power” of believing and knowing); rather, they are only perceptive

and communicative agents, able to focus on commands and changes

in their environment and report their percepts to the adjudicator

agent. The adjudicator agent is, thus, able to reason about the state

of the world using the full ensemble of our calculi and automated

reasoners, but the subsidiary agents are restricted to proper parts
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of the cognitive calculi in question. Both DCEC and IDCEC have

in their formal languages both a perception operator P and a

communication operator S, read as “says” (see again as needed

Section 6.2.1); but the operators in this pair for belief, knowledge,

intention, and action are not available to the subsidiary agents.

For implementation of this scenario, we use the Minigrid

environment (Chevalier-Boisvert et al., 2018): a virtual grid world

in which we can model our artificial agents with limited field-

of-view and perceptual impedances. Our house is represented as

a structure enclosed by walls that block visual sensors but allow

use of wall-penetrating radar. There is an opening in the house;

it represents a garage in which the individuals are working on

the mysterious device. The individuals under investigation and

the device being worked on are represented by special tiles, as

are perceptual disturbances such as dust clouds. At a high level,

the situation can be observed playing out in our environment, as

shown in Figure 8. Our agents on the scene (i.e., hdrone, ldrone,

and radar) use instances of ARCADIA, while the adjudicator agent

(adjudicator), again, is built atop ShadowAdjudicator (Giancola

et al., 2020), which now, courtesy of a tie-in with ARCADIA, has

scientifically serious capacity for both perception and argument-

based reasoning.40

Time in our implementation is conceptualized as adjudication

timesteps and ARCADIA steps. On each reasoner cycle, a

predetermined movement command is issued to each of hdrone,

ldrone, and radar by adjudicator and received by a transceiver

component that creates an interlingua item based on this

command. The attentional strategy prioritizes these command

items; they, thus, become the focus of attention. The agent’s

movement effector component receives this command item and

executes it. In parallel to this, ARCADIA’s robust attentional-

and-visual system monitors for changes from the visual sensor;

this sensor creates items from objects in the field of view. In

the event a fully represented object in memory is perceived and

becomes the focus of attention, it will be passed to the transceiver

component, which will, in turn, send a message containing

the agent’s perception to the adjudicator agent, which adds the

information about the agent’s perception to its knowledge-base.

This information includes whether a threat was perceived or

not. After receiving a new percept, adjudicator will reason over

the known percepts and return a belief about the situation, in

particular, the degree of belief regarding whether a threat exists.

The overarching pipeline is shown in Figure 9. These degrees

correspond to the levels introduced earlier in the present study (see

again, if needed, Table 1).

The situation plays out as follows and is presented in Figure 10.

First, hdrone is issued orders to scan the building in a fly-by. It

perceives the building but does not perceive any objects beyond

this. From these percepts (or lack thereof in this case), adjudicator

cannot determine whether there is a threat at this time-step, derived

as a counterbalanced (recall again Section 7.1 and Table 1) belief as

40 As the reader by now knows, DCEC has a perception operator (and a

communication operator), but they are not in and of themselves connected

to any genuine mechanization of attention and perception that is, in turn,

based on the science of attention and perception in computational cognitive

science. Connecting to ARCADIA changes this in one fell swoop.

FIGURE 6

A Full Trio of clues are fogged over. Fog (courtesy of a fog machine)

has appeared in the RAIR Lab, and the results are not good

perception-wise.

to whether or not there is a threat. In other words, at this point

adjudicator is agnostic.

Next, the low-altitude drone (ldrone), in possession of a camera,

receives orders to make an approach. As it obeys, its attention is

focused on the people of interest and the device, but before the

internal representation of the object can be fully assembled . . . a

dust storm is kicked up, and this blocks ldrone’s visual sensors,

which, in turn, nullifies its ability to have its visual component form

representations of individuals or the device. Instead, it directs its

attentional focus at the dust cloud itself; this blocks its view. These

percepts of the people and cloud are sent back to adjudicator, which,

at this point (rationally), maintains a counterbalanced/agnostic

epistemic attitude regarding a threat/no-threat (i.e., re. p).41

At this point, the aforementioned ground-based agent with

wall-penetrating radar (radar) is deployed to the side of the

building. Its attention is drawn to two men located around the

suspicious device. The ground-based agent reports these percepts

to the adjudicator agent; it, accordingly, believes that there is more

likely than not a threat present.

We explain in some detail the reasoning at t2 below.

The adjudicator uses its Domain_Knowledge, which contains

general rules for the situation, such as how to prioritize the

beliefs of each agent and the definitions of negative and 0 belief

in this context. When combined with the percepts reported by

the ARCADIA Agents (IDCEC_KB_at_t2), ShadowAdjudicator

is able to use IDCEC inference schemata to derive the

current threat level. More formally, where this notation is

simply “pretty printed” from underlying code, the situation is

as follows:

41 This agnosticism is, in part, based on the initial percepts of the people

of interest in the garage.
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FIGURE 7

PERI.2 fails to find a proof when perception is compromised. Due to fog in the environment, some key clues are now absent in automated reasoning,

and there is failure because PERI.2 cannot turn disjunctive (indeterminate) clues into knowledge.

FIGURE 8

Multi-agent scanning. (Top Left) The high-altitude drone scans the building but does not perceive anything. (Top Right) The low-altitude drone

moves in, but before attention can be focused on the objects in the building, a dust storm blocks its visual sensors. (Bottom Left) A ground-based

agent with ground-penetrating radar moves into position and scans the inside of the building. (Bottom Right) The dust cloud disappears and the

low-altitude drone’s attention is drawn to the open building, where it perceives two men benignly working on an engine.

Domain_Knowledge ={∀t0, t1, t2 :B
h(hdrone, t0,φ)

∧ Br(radar, t1,φ) ∧ Bl(ldrone, t2,φ) ⇒

Bmax(r·1/4,h·1/4,l·1/2)(adjudicator,max(t0, t1, t2),φ),

∀t :Bσ (adjudicator, t,¬φ)}

⇔ B−σ (adjudicator, t,φ),

∀t :∀a :¬P(a, t,¬φ) ∧ ¬P(a, t,φ) ⇒ B0(a, t,φ)}

IDCEC_KB_at_t2 ={¬P(hdrone, t0,¬p),¬P(hdrone, t0, p),

¬P(ldrone, t1,¬p),¬P(ldrone, t1, p)

P(radar, t2,¬p)}

Domain_Knowledge∪IDCEC_KB_at_t2 ⊢IDCEC

B1(adjudicator, t2, p)

Finally, the low-altitude drone (ldrone) manages to emerge

from the dust storm after new orders and is thus once again able to

observe into the building. It focuses its attention on the device and

. . . perceives it to be a benign car engine. Once this information is

relayed back to adjudicator, it reasons that it is unlikely there is a

threat.

It should be noted here that adjudicator has situation-

dependent definitions within its knowledge-base and is able

to perform perception-infused reasoning that factors in these

formulae. For example, notably, the true percept reported to the

adjudicator is not really the presence of threat proposition p as

simplifyingly shown in P(·, ·, p), as shown in Figure 10, but rather

a percept of the true object that the agent perceives [in this case

that of hdrone, P(hdrone, t0,wall)]. From this, adjudicator uses

domain-context knowledge with the given percept to determine

whether the agent perceived a threat or if not enough was

perceived to ascertain whether the agent perceived a threat

or not. Additionally, this extends to the adjudicator having a

context-aware understanding of different types of agents and

different levels of perception power, some being stronger than

others, which is why the visual sensor on ldrone overrides the

Frontiers in Artificial Intelligence 18 frontiersin.org165

https://doi.org/10.3389/frai.2023.1144569
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Bringsjord et al. 10.3389/frai.2023.1144569

FIGURE 9

The information pipeline between the ARCADIA agent and the adjudicator agent. The high-level information pipeline between ARCADIA agents and

the adjudicator agent is shown here. At each time step, mission instructions are passed to the ARCADIA agent in the situation via the agent’s

transceiver component. These commands are attended to and passed to the agent’s movement e�ectors. The ARCADIA agent’s perceptual sensors

(visual, radar, etc.) pick out new items attended via the visual components that create objects. The finalized objects are interpreted to be fully

perceived and are sent to the Adjudicator via the transceiver. The Adjudicator adjudicates between arguments factoring in the percepts of multiple

agents on the ground, along with mission-relevant domain-context knowledge, to determine if there is a threat.

perceptions from radar at t2 and t3. This event leads to its

final belief at the unlikely level. This is also why the percepts

from the wall-penetrating radar only lead to a more likely than

not level of belief, rather than a belief at the level of likely

at t2.

Summing up, our third case study provides not only a

potential real-life example in which our automated argumentation

systems play a central and salutary role, but also demonstrates

that our system has many capabilities outlined in our desiderata,

Des. In particular, Case Study 3 exemplifies the defeasible

nature of our system as encapsulated by desiderata d1 and

the ability of our system to reason over cognitive operators

as stated in desiderata d6. Regarding desiderata d1: As new

information comes to light over the course of the scenario,

the adjudicator is able to update its reasoning regarding

the threat level at each time-step (see Figure 10); hence the

reasoning capability of the system is observably defeasible,

as desired. For desiderata d6, the system reasons over the

cognitive operators for both belief and perception, as observed

in depictions of both the agents on the scene and the

adjudicator agent; see both Figure 10 and our presentation of

Domain_Knowledge. This reasoning over cognitive operators

also includes reasoning over the belief levels; hence part of

desiderata d3 is satisfied.

8 Sophistic argumentation

There is, it seems to us, a long-standing bias or presumption

within the logicist AI tradition (into which, as explained above,

our study as reported herein firmly falls) that treats arguments

as fundamentally similar to earnestly constructed proofs (or at

least to simplified, scaled-down proofs, earnestly and sincerely

constructed). In this tradition, the purpose or function of

arguments, like that of the authoring of proofs by humans engaged

in the formal sciences, is to support rational belief fixation and

to thereby enable new knowledge to arrive in the mind of

cognizers who assimilate these proofs. This tradition makes room

for and indeed realistically expects (at least periodically) invalid

proofs (the history of mathematics having seen many), just as

the tradition of computer programming makes plenty of room

for programs that are invalid (but certainly programs).42 In point

of fact, we ourselves, in adopting a thoroughgoing inference-

theoretic perspective, regard arguments to be akin to proofs and

42 After all, program verification makes little sense if there cannot be

programs that are invalid. For discussion of this, see Arkoudas and Bringsjord

(2007). For a paradigm of program verification based directly on our brand of

logicist AI, see Bringsjord (2015).
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FIGURE 10

The timeline. Shown here is the state of the situation at each reasoner time-step, with the percepts of three agents in the scene regarding the

proposition p, that a threat is present, where p is a�rmed by the adjudicator if a dangerous object is reported as perceived. The adjudicator agent, on

the bottom, reports its derived belief from the percepts at each reasoning time-step.

argument crafting on the part of humans to be akin to the

craft of articulating proofs. However, while arguments do often

function as demonstration and warrant in support of belief and

decision-making, these are undeniably neither the sole functions

of arguments nor are all warrants rational ones. This is something

we suspect that AI should start to take note of, carefully. We, thus,

now briefly explain, and our explanation will wrap up by drawing

once again upon the three-doorMontyHall Problem=MHP3, now

familiar to our readers given earlier discussion of this problem.

To explain, let us first consider the function of arguments:

Arguments are often instruments of persuasion. In fact, an

argument’s persuasiveness may be of greater import than its

veracity or validity, depending on the arguer’s intent with regard

to its audience. Logicist AI has largely followed in the footsteps

of formal logic by privileging the dialectic (i.e., in a word, logic)

over the other members of the ancient trivium. By eschewing

rhetoric (essentially argumentation as treated today what is known

as informal logic; see Groarke, 1996/2017), most logicist AI fails

to appreciate the persuasive function of argument and its role in

dialogical games such as disputation. This failure is not a small

one. The persuasive power of argument is central to the practice

of policy-making, politics, and law, and the life-altering decisions

sometimes made therein. Moreover, persuasion is essential to the

utility and success of logicist AI—even if this is unrecognized by

practitioners. Why is it essential? Well, insofar as logicist AI in

support of, and interacting with, humans is concerned, the goal is

both to “be correct” and to “be believed;” systems that are correct

but not believed are useless. Furthermore, we charitably assume

that acceptance and use of these logicist-AI systems are intended

to be volitional, and as such, the goal again is to “be believed,”

not simply to “be obeyed;” systems that are obeyed even when not

believed are undesirable, dangerous, and potentially unethical.

Second, regarding rationality, arguments can be persuasive

even when they are invalid or untruthful, and veracious arguments

can be unpersuasive (as the literature on MHP3 confirms; see the

discussion of this empirical fact in Chapter 1 of Pinker, 2021).

In terms of bringing about human belief, validity and veracity

guarantee nothing. That invalid, pseudo-rational arguments can

be persuasive is not a new revelation; Aristotle knew this over

two millennia back when he wrote that arguments can have

the appearance (but not always the substance) of demonstrable

justification that makes belief warranted (Aristotle, 1823). Indeed,

the methodological and disciplinary distinction between rhetoric

and dialectic—between persuasion and veracity—dates back firmly

and in general to ancient Greece and the age and work of not

just Aristotle, but Plato and Socrates (see, specifically, the claimed

intellectual battles between Socrates and the sophists).

Who were the sophists? To brutally summarize some of Plato’s

dialogues, the sophists were itinerant teachers who, for money,

taught the skill of persuasive argumentation and debate to Athenian

citizens so that they might prevail in the courts and in civic life—

even if they were in the wrong. The sophists were criticized and

opposed by Socrates and others because they (supposedly) only

cared about being persuasive. They have been characterized as

purveyors of the semblance of wisdom and not the genuine article,

having rejected the doctrinal ideal of “truth” to promulgate, instead
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of the virtue of persuasive cleverness without moral good (Aristotle,

1955). While many contemporary scholars (see Marback, 1999;

Gagarin, 2001; McComiskey, 2002) have attempted to rehabilitate

the sophists’ reputation, the legacy of the sophists—among both

scholars the general public—still amounts to “sophistry” being a

byword for insincerity, self-interest, and, above all, manipulative

persuasion by clever argumentation.

This encapsulated history of the sophists is given by us here

for more than just trivia; the sophists demonstrated the power and

importance of persuasion (viz. rhetoric), attempted to systematize

it, and stand as a cautionary warning about the pursuit of

argument-based persuasion unchecked by truth or virtue. However,

why, the reader might ask, did the sophists’ techniques work? More

importantly, why are invalid arguments sometimes so persuasive?

The answer to that is rather simple: Absent sufficient training and

in-the-moment mental effort, humans are abysmal at normative

argumentation and rational judgment. Humans are, unknowingly,

imperfect reasoners who predictably and instinctively succumb to

a host of biases and illusions and, moreover, are supremely, yet

undeservedly, overconfident of their ability to reason and judge the

reasoning of others—at least when compared with the standards of

formal deductive and inductive logics and probability theory.

Moreover, the takeaway is that not only do logicist-AI systems

need argumentation but also they need persuasive argumentation

that ensures and preserves truthfulness (veracity) and formal

validity in order to engender rational human use. Perhaps the

reader will agree that we do not want artificial agents able to

understand and generate arguments wonderfully, in order to, in

part, persuade humans sophistically.

Before moving on to the final section of the present study, it is,

in our view, worthwhile to say a bit more about the sophists, and

to then end this section by looking at a specimen of just the sort of

sophistic argumentation that AI systems should not produce and

promote in order to persuade humans.

Naïve and unfair as their remembrance may be—the truth is

that ancient sophistic techniques have been vibrantly alive and

well and continuously refined for over two millennia—persuasive

techniques that prey upon the audience’s cognitive dissonance,

ignorance, intellectual laziness, and desire for comforting belief

reinforcement. Is there the specter of digital sophists emerging?

Why yes. Sophistic AI is literally a past accomplishment. Starting

in the early 2000s, the application of AI to natural argumentation

refocused on audience-centric systems that take subjective aspects

of argumentation seriously (see Reed and Grasso, 2001, 2007; Reed

and Norman, 2004) and this resulted in the development of various

neo-rhetorical (e.g., Grasso, 2002) and logico-dialectical (e.g.,

Aubry and Risch, 2006) approaches to persuasive and deceptive

argumentation. In 2010, cognitive models were added to the mix,

resulting in The Lying Machine (Clark, 2010), an explicitly sophistic

artificial agent that persuades via a combination of argumentation

and illusion.

The Lying Machine (TLM) is a logicist-AI system that

manipulates human beliefs through persuasive argument by

using cognitive models to generate convincing yet potentially

disingenuous arguments. In design, the machine maintains

conceptually separate repositories for its first- and second-order

beliefs (i.e., its beliefs about the world and its beliefs about its

audience’s beliefs about the world). It reasons over first-order

beliefs in a normatively correct fashion, but when reasoning over

second-order beliefs, it uses both normatively correct reasoning

and a predictive theory of human reasoning, namely,mental models

theory (Johnson-Laird, 1983, 2006), one of the most influential

theories of human reasoning in cognitive science. In so doing,

the machine internally contrasts (i) what it believes, (ii) what it

believes its audience ought to believe were they to reason correctly,

and (iii) what it believes its audience will likely believe given their

predicted fallibility. In operation, TLM seeks to achieve various

persuasion goals of the form “persuade the audience of φ,” where

φ is a logicization of a proposition 〈φ〉 about the world. Given such

a goal, the machine first forms its own justified belief about φ.43

TLM, then, determines whether its audience ought to believe 〈φ〉

and whether 〈φ〉 can be justified in convincing fashion based solely

on second-order beliefs (i.e., beliefs it ascribes to its audience).

If so, the machine, then, constructs and articulates a credible

argument for φ, presented then as an argument for 〈φ〉.44 Like the

sophists, TLM aims for perceived credibility as opposed to objective,

logical, or epistemological credibility. While its arguments may

be logically valid or invalid, the importance is that they appear

valid to its audience. Argument credibility is enhanced by limiting

the initial premises to what the audience is believed by TLM to

already believe. Moreover, since the machine is not constrained by

logical validity, it is able to produce all of the following types of

arguments:

• a veracious argument for a true proposition emanating from

shared beliefs;

• a valid argument for a false proposition emanating from one

or more false premises that the audience erroneously believes

already;

• a fallacious argument for a true proposition (an expedient

fiction for the fraudulent conveyance of a truth); and

• a fallacious argument for a false proposition (the most

opprobrious form being one that insidiously passes from true

premises to a false conclusion).

With the above repertoire in hand, the lying machine attempts

to take on the pejorative mantle of the sophists by causing arbitrary

belief to materialize in the minds of those targeted, through

persuasive argumentation without concern for validity, sincerity,

or truth. The results of experiments with TLM are, perhaps,

unfortunate but not surprising, given that the fully replicated and

thoroughly confirmed empirical fact of the matter in the cognitive

science of reasoning has disclosed that humans confidently believe

any number of things on the strength of reason that is often

downright absurd, logically and mathematically speaking. [An

excellent, if depressing, survey of this science is given in the study

43 That is to say, it determines and internally justifies whether φ follows

from, or is contradicted by, first-order beliefs (i.e., its own beliefs about the

world), as regulated by background inference schemata (which obviously

include normatively invalid ones, e.g., a�rming the consequent).

44 Natural-language-generation aspects of TLM are left aside here since

out of scope.
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by Pinker (2021), the anchoring first chapter of which features the

very same MHP3 problem first introduced in the present essay in

Section 2.] Humans find the machine’s sophistic arguments both

credible and persuasive, even when those arguments are opposed

by (logically) valid rebuttals (Clark, 2010, 2011).

We now end the present with an informal presentation of an

argument regarding MHP3 that practitioners of human-centric AI

need to ensure is not generated, nor accepted, by artificial agents.

The argument in question is in support of a policy of STAY in the

problem, and runs as follows:

The Lame-Horse Argument

(1) Suppose you bet at random on Horse #2 in a three-

horse race, where all three horses at the outset are

indistinguishable with respect to all of their respective racing-

relevant properties.

(Of course, the idea is that in MHP3 we have a three-door

“race,” and the bet is the initial selection of one of the three

doors.)

(2) From (1), we deduce that your odds of winning at t, the

moment the race starts, are 1
3 .

(3) Suppose as well that during the race, at t′(t′ > t), Horse #3

suddenly comes up lame and is out for good, while Horse #1

and Horse #2 continue running, neck and neck.

(4) From (3), we deduce that your odds of winning at t′′(t′′ > t′),

the moment after Horse #3 drops out, are 1
2 .

(5) We can also infer that switching your bet to Horse #1 at

the next instant t′′′(t′′′ > t′′), with all conditions remaining

the same (& assuming that you are given the opportunity to

switch) is irrational, because the effort of doing so will not

improve your 1
2 odds at all.

(6) Since the scenario here is isomorphic to that seen in MHP3
(where of course your opportunity to switch doors is just like

your opportunity to switch horses), it’s irrational for you, or for

that matter any contestant, to switch doors after Monty Hall

reveals a donkey (or llama, etc.), a move that is of course the

analog for Horse #3 coming up lame and thus “revealing” itself

to be a guaranteed loser.

The Lame Horse Argument is a powerful sophistic argument;

as Pinker (2021) explains, it even persuaded many professional

mathematicians that a STAY policy in MHP3 is irrational (an

extensive treatment of, and references for, The Lame-Horse

Argument, can be found in the study by Granberg, 2014). Of

course, this is not to say that such mathematicians intended

to persuade their targets while knowing that their argument

was invalid. However, regardless, this is certainly something

that could be done by malevolent agents (whether human or

artificial), rather easily. Thus, if we may be so bold, the argument

here is one that by our lights, the sophists would be quite

happy with, in general; it is an argument, if you will, right up

their alley.

However,why is The Lame-Horse Argument unsound? Though

it is persuasive, it is not veracious because (in short), in point of

fact, the two scenarios are not isomorphic at all (and that they

are is a premise in the argument); they are not even analogous

by the simplest inference schemata for analogical argumentation.45

The reason is that a number of intensional factors in the mind of

Monty Hall himself are crucial to a correct, reasoned solutions, but

these factors are entirely absent from the three-horse scenario; these

factors were discussed and logicized in the cognitive calculusDCEC

in Section 7.1.46

9 Next steps; conclusion

We now briefly describe a series of steps we are already in

the process of taking, to further broaden and apply our approach.

Readers both alert and knowledgeable will in the case of most if

not all of them have already wondered whether our approach is

applicable in these directions.

9.1 Surmounting the paradoxes of
perception

The history of argument-based defeasible/non-monotonic

systems in AI, as evidenced prominently by Pollock (1995), has

been driven in no small part by the need to solve certain paradoxes,

among which are the Lottery Paradox and the Paradox of the

Preface.47 Are there paradoxes specifically in the intersection of

perception and such argumentation systems? Indeed there are;

see for example the rather tricky one presented in Davis (1989).

We are working hard on proving, and empirically demonstrating

via simulations, that this and other even-harder paradoxes can

be surmounted by our cognitive calculi and associated automated

reasoners, in keeping with the desiderata that sum up our approach.

9.2 What about abductive argumentation?

Some of our readers will inevitably be curious about a type of

reasoning we have yet to touch upon: abductive reasoning.48 While

45 Laid out e.g., in Bartha (2013); Bringsjord and Licato (2015).

46 The three intensional prerequisites are: (i) Monty must know what’s

hidden by all doors; (ii) hemust perceive and thereby come to know that initial

choice; (iii) he must intend to open a losing door, and accordingly perform

the associated action.

47 We do not fully agree with Pollock’s proposed solutions to this pair of

paradoxes, but such matters are out of scope presently.

48 Because (a) we momentarily provide information regarding how our

approach will be extended into abductive reasoning, and (b) this information

could not have been assimilated by the reader in advance of our laying out

our approach, and instantiating it in the three case studies, we judged the

present, concluding section to be the optimal location for our discussion

of abduction. Notably, there are forms of abduction that in fact are not

viewed as reasoning. This is nicely discussed in the study by Douven (2021),

which begins with a key distinction: abduction viewed as the generation

of hypotheses vs. abduction as the reasoning that justifies propositions,

especially propositions that are hypotheses. Clearly, it is the latter form that

is our concern.
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it is certainly the case that there is no consensus as to what the

precise nature of this reasoning is, the agreed-upon kernel of such

reasoning in formal logic and AI expressed as an inference schema

at least roughly in the fashion, followed earlier in the study, is as

follows (where “φ” and “ψ” are formulae in accordance with some

formal language, ‘ν” denotes one or more variables free in these

formulae, and χ denotes one or more constants/names):

ψ(χ), ∀ν[φ(ν) → ψ(ν)]

φ(χ)

Let us label this inference schema “IA.” This (deductively

invalid, as desired) schema accords with many of the simple,

familiar specimens of abduction. For example, suppose that soon

after waking in the morning Bertram goes to the kitchen to make

a cup of coffee, but upon entering the room finds a steaming cup

of cappuccino sitting on his placemat at the breakfast table. No

one else is present. Bertram asks himself: How did this situation

come to be? Knowing that there is only one person—Abigail—

in his household fully capable of making the exact kind of coffee

he prefers, with knowledge of where he customarily sits, Bertram

abduces via IA, instantiated, to produce the following argument,

to which Bertram accedes, and the mystery is solved (and he has

gained knowledge as to whence the coffee cup).49

The Abductive Coffee-Mystery Argument

1. OnTable(cup22)

2. Prepared(abigail,cup22) → OnTable(cup22)

∴ 3. Prepared(abigail, cup22)

Unfortunately, as has been long and widely appreciated, IA, and

indeed any schema that is of this general sort, is deeply problematic.

The set of defects has little to do with the mere (and desired) fact

that abductive reasoning is non-deductive (it is, in this regard,

a specific type of reasoning falling with inductive logic as the

subdiscipline of logic our work falls into and is hence analyzed

in the study by Johnson, 2016). For instance, this set of defects

includes the havoc that can ensue from multiple uses of IA: Let the

universally quantified formula be instantiated twice (separately) to

yield

∀x[R(x) → S(x)]

and

∀x[¬R(x) → T(x)],

49 Because abductive reasoning is often described as “inference to the

best explanation”, and such inferencing is (plausibly, in our opinion) taken

by many to be a cornerstone of the empirical sciences (see Douven, 2021),

more elaborate examples from science could be given instead of our simple

parable, but doing so is beyond scope and available space here—but we

provide a few leads: For the reader not all that familiar with abduction, but

with logic and science, in general, our recommendation is to read a seminal

abductivemodel fromHintikka (1998). For those with an interest like ours, i.e.,

in human-centric AI and cognition, the place to start is without question the

recently released Magnani (2023), and for a somewhat older but still-relevant

overview of AI and computational logic, see Paul (2000).

and then suppose we have S(a) and T(a). A contradiction is, then,

directly provable by two inferences, each in conformity with IA.

Thus, one can view the chief challenge of working out a logic

of abduction in the style of our cognitive calculi to be specifically

the development of inference schemata that (i) are in the spirit of

IA, (ii) are (as it in fact is) machine checkable so that abductive

argumentation is verifiable/falsifiable but (iii) have none of the

obviously objectionable attributes of this inference schema. Of all

the work we are aware of in this vein, Meheus and Batens (2006)

comes closest to conforming to it and our approach. In this study,

there is firm insistence upon having a proof theory, indeed one

that is based on an attempt to expand and refine IA. However, this

proof theory could not be used to model and solve any of our three

case studies. The reason is that the logic in question, LAr , is purely

extensional, as admitted by the researchers in question:

The logic presented in this study [LAr] will be based on

Classical Logic — henceforth CL. Moreover, all references to

causality, laws of nature, and similar non-extensional concepts

[such as belief, knowledge, and perception] will be out of the

picture. We do not doubt that more interesting results may be

obtained from intensional logics (Meheus and Batens, 2006, p.

22–223).

This quote can be viewed as a convenient stepping stone

for a next step on our part, in which our cognitive calculi

and automated reasoners, as introduced, explained, and deployed

above, cover human-level abductive argumentation. The novel

inference schemata in these calculi will minimally have perception

and epistemic operators. Additionally, there would be a knowledge-

base for the agent/s reasoning abductively. Thus, from our

perspective, the coffee mystery is an enthymematic argument, both

perceptually and epistemically. To achieve more precision, schema

IA would need to be expanded and refined; here, in fact, is a

schema—IintA —marking a first such step in that direction, making

use of the operators B, K, and P (for, as the reader will recall from

the foregoing, belief, knowledge, and perception, respectively):

P(a,ψ(χ)),K(a, ∀ν[φ(ν) → ψ(ν)])

B(a,φ(χ))

This inference schema can formally and computationally

undergird the argument Bertram might offer to someone as to why

he regards the “mystery” to be solved, the idea being that he would

express his reliance on perceiving the cup of cappuccino and his

knowing beforehand the key conditional formula (and particular

propositions re. Abigail), suitably instantiated. We are actively

working on the expansion of our paradigm in this abductive

direction.

9.3 What about pictorial argumentation?

Human agents make considerable use, even in sophisticated

settings observed in the formal sciences, of arguments and proofs

that include pictorial representations, where such representations

are not reduced, and in some case not even in principle reducible to,

symbolic content. [In our study described above (Case Study 2), we
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have of course relied on the reduction of diagrams in Meta-Forms

to linguistic formulae.] Notably, we are not here referring to

arguments or proofs laid out in graphical ways (an important

issue briefly discussed in Footnote 17). Reasoning frameworks, at

least of the deductive sort that subsume extensional logics such

as L1 and include both symbolic content (e.g., formulae in the

formal language of a logic or—as in our case—cognitive calculi)

and pictorial content, were seminally introduced by Barwise

and Etchemendy (1995); they call such logics heterogeneous.

Subsequently, a more general formal logic for heterogeneous

reasoning, Vivid, was introduced by Arkoudas and Bringsjord

(2009b). Vivid can be used to allow PERI.2 (and for that matter

any logicist artificial agent) to reason about the Meta-Forms

game board and clues relating to it as a diagram, unreduced to

or represented by anything linguistic/symbolic. We are actively

working on this direction, based on a new cognitive calculus with

all the extant expressive and reasoning powers of DCEC and

IDCEC and, at the same time, the vivid-like capacity to directly and

irreducibly represent and allow reasoning over pictures, images,

and diagrams.

9.4 Final words

We end by admitting that, at least in our view, the most

daunting obstacle standing in the way of HCAI being based on

argumentation science and engineering is not a technical one, at all.

We are, for what it is worth, completely confident that the research

trajectory explained (and hopefully rendered at least somewhat

promising in the reader’s view by virtue of the foregoing) above can

indeed be used as the basis of artificial agents with near-human-

level intelligence that profoundly help humans. However, humans

have to want what argumentation-centric AI can provide. Our

directive Dir is not (yet) universally affirmed. In a world where

forms of AI, for instance large language models produced by so-

called “Deep Learning,” wholly forego any argument or proof of

the sort that we are calling for, we see room for plenty of rational

concern. The forms we refer, as the reader will likely well-know,

are purely statistical/connectionist ones entirely devoid of any

declarative content expressed in accordance with a formal language

(since they rely upon tokenization into formats that are only strings

with none of the structure of quantification, inference schemata,

etc.) and thus by definition devoid of any reasoning over such

content in accordance with inference schemata.
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