
EDITED BY : Yu Xue, Jian Su, Ferrante Neri and Ali Wagdy Mohamed

PUBLISHED IN : Frontiers in Plant Science

INTELLIGENT COMPUTING RESEARCH 
WITH APPLICATIONS IN ECOLOGICAL 
PLANT PROTECTION

https://www.frontiersin.org/research-topics/30033/intelligent-computing-research-with-applications-in-ecological-plant-protection
https://www.frontiersin.org/research-topics/30033/intelligent-computing-research-with-applications-in-ecological-plant-protection
https://www.frontiersin.org/research-topics/30033/intelligent-computing-research-with-applications-in-ecological-plant-protection
https://www.frontiersin.org/research-topics/30033/intelligent-computing-research-with-applications-in-ecological-plant-protection
https://www.frontiersin.org/journals/plant-science


Frontiers in Plant Science 1 November 2022 | Intelligent Computing Research

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-83250-899-2 

DOI 10.3389/978-2-83250-899-2

https://www.frontiersin.org/research-topics/30033/intelligent-computing-research-with-applications-in-ecological-plant-protection
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact


Frontiers in Plant Science 2 November 2022 | Intelligent Computing Research

INTELLIGENT COMPUTING RESEARCH 
WITH APPLICATIONS IN ECOLOGICAL 
PLANT PROTECTION

Topic Editors: 
Yu Xue, Nanjing University of Information Science and Technology, China
Jian Su, Nanjing University of Information Science and Technology, China
Ferrante Neri, University of Surrey, United Kingdom
Ali Wagdy Mohamed, Cairo University, Egypt

Citation: Xue, Y., Su, J., Neri, F., Mohamed, A. W., eds. (2022). 
Intelligent Computing Research with Applications in Ecological Plant Protection. 
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-83250-899-2

https://www.frontiersin.org/research-topics/30033/intelligent-computing-research-with-applications-in-ecological-plant-protection
https://www.frontiersin.org/journals/plant-science
http://doi.org/10.3389/978-2-83250-899-2


Frontiers in Plant Science 3 November 2022 | Intelligent Computing Research

04 Green Visual Sensor of Plant: An Energy-Efficient Compressive Video 
Sensing in the Internet of Things

Ran Li, Yihao Yang and Fengyuan Sun

22 Ecology and Biodiversity Ontology Alignment for Smart Environment via 
Adaptive Compact Evolutionary Algorithm

Xingsi Xue and Pei-Wei Tsai

36 Evaluation of Ecological Suitability and Quality Suitability of Panax 
notoginseng Under Multi-Regionalization Modeling Theory

JiaQi Yue, ZhiMin Li, ZhiTian Zuo and YuanZhong Wang

51 Application of Improved Satin Bowerbird Optimizer in Image 
Segmentation

Linguo Li, Shunqiang Qian, Zhangfei Li and Shujing Li

61 A Segmentation-Guided Deep Learning Framework for Leaf Counting

Xijian Fan, Rui Zhou, Tardi Tjahjadi, Sruti Das Choudhury and Qiaolin Ye

74 An Algorithm for Precipitation Correction in Flood Season Based on 
Dendritic Neural Network

Tao Li, Chenwei Qiao, Lina Wang, Jie Chen and Yongjun Ren

87 Tasseled Crop Rows Detection Based on Micro-Region of Interest and 
Logarithmic Transformation

Zhenling Yang, Yang Yang, Chaorong Li, Yang Zhou, Xiaoshuang Zhang, 
Yang Yu and Dan Liu

102 Effects of Different Environment-Friendly Gibberellic Acid Microcapsules 
on Herbicide Injury of Wheat

Guisen Zhang, Tao Ma, Yong Cheng, Jianing Wang, Lang Liu and 
Baojun Zhang

111 Detecting Asymptomatic Infections of Rice Bacterial Leaf Blight Using 
Hyperspectral Imaging and 3-Dimensional Convolutional Neural Network 
With Spectral Dilated Convolution

Yifei Cao, Peisen Yuan, Huanliang Xu, José Fernán Martínez-Ortega, 
Jiarui Feng and Zhaoyu Zhai

128 Kernel Principal Component Analysis and Differential Non-linear Feature 
Extraction of Pesticide Residues on Fruit Surface Based on 
Surface-enhanced Raman Spectroscopy 
Guolong Shi, Xinyi Shen, Huan Ren, Yuan Rao, Shizhuang Weng and 
Xianghu Tang

141 Ecotourism Design and Plant Protection Based on Sensor Network

Jiang Zhu and JinChun Sun

Table of Contents

https://www.frontiersin.org/research-topics/30033/intelligent-computing-research-with-applications-in-ecological-plant-protection
https://www.frontiersin.org/journals/plant-science


ORIGINAL RESEARCH
published: 28 February 2022

doi: 10.3389/fpls.2022.849606

Frontiers in Plant Science | www.frontiersin.org 1 February 2022 | Volume 13 | Article 849606

Edited by:

Yu Xue,

Nanjing University of Information

Science and Technology, China

Reviewed by:

Romany Mansour,

The New Valley University, Egypt

Zijian Qiao,

Ningbo University, China

Khan Muhammad,

Sejong University, South Korea

*Correspondence:

Ran Li

liran@xynu.edu.cn

Specialty section:

This article was submitted to

Sustainable and Intelligent

Phytoprotection,

a section of the journal

Frontiers in Plant Science

Received: 06 January 2022

Accepted: 24 January 2022

Published: 28 February 2022

Citation:

Li R, Yang Y and Sun F (2022) Green

Visual Sensor of Plant: An

Energy-Efficient Compressive Video

Sensing in the Internet of Things.

Front. Plant Sci. 13:849606.

doi: 10.3389/fpls.2022.849606

Green Visual Sensor of Plant: An
Energy-Efficient Compressive Video
Sensing in the Internet of Things

Ran Li 1*, Yihao Yang 1 and Fengyuan Sun 2

1 School of Computer and Information Technology, Xinyang Normal University, Xinyang, China, 2Guangxi Key Laboratory of

Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology, Guilin, China

Internet of Things (IoT) realizes the real-time video monitoring of plant propagation or

growth in the wild. However, the monitoring time is seriously limited by the battery

capacity of the visual sensor, which poses a challenge to the long-working plant

monitoring. Video coding is the most consuming component in a visual sensor, it is

important to design an energy-efficient video codec in order to extend the time of

monitoring plants. This article presents an energy-efficient Compressive Video Sensing

(CVS) system to make the visual sensor green. We fuse a context-based allocation

into CVS to improve the reconstruction quality with fewer computations. Especially,

considering the practicality of CVS, we extract the contexts of video frames from

compressive measurements but not from original pixels. Adapting to these contexts,

more measurements are allocated to capture the complex structures but fewer to

the simple structures. This adaptive allocation enables the low-complexity recovery

algorithm to produce high-quality reconstructed video sequences. Experimental results

show that by deploying the proposed context-based CVS system on the visual sensor,

the rate-distortion performance is significantly improved when comparing it with some

state-of-the-art methods, and the computational complexity is also reduced, resulting in

a low energy consumption.

Keywords: Internet of Things, visual sensor, Compressive Video Sensing, context extraction, linear recovery,

plant monitoring

1. INTRODUCTION

In the Internet of Things (IoT), the plant propagation process or plant growth can be monitored
by visual sensors. One benefit from the framework of IoT, a large amount of data on the plant
can be gathered in a central server, and the valuable information can be achieved by analyzing
the data in real-time. However, with the limited processing capabilities and power/energy budget
of visual sensors, it is a challenge for video monitoring of plant to compress large-scale video
sequences by using the traditional codec, e.g., H.264/AVC and HEVC (Sullivan et al., 2012), so
the existing works have developed low-complexity and energy-efficient video codecs, in which
Distributed Video Coding (DVC) (Girod et al., 2005) and Compressive Video Sensing (CVS)
(Baraniuk et al., 2017) have attracted more attention in industry and academia. Different from
DVC, CVS dispenses with the feedback and virtual channels (Unde and Pattathil, 2020), which
makes the codec framework simpler. Meanwhile, CVS provides a low-complexity encoder because
of its theoretic foundation, Compressive Sensing (CS) (Baraniuk, 2007), realizes the capture of
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video frames at a rate significantly below the Nyquist rate.
Currently, many researchers recognize that CVS is a potential
scheme to compress the video sequences in the IoT framework,
and especially for wireless video monitoring of plants, the CVS
scheme can assist visual sensors to efficiently reduce the energy
consumptions, however, its rate-distortion performances are still
far from satisfactory.

The objective of this article is to improve the rate-distortion
performance of CVS, providing high-quality video monitoring of
plants with low energy consumption. To achieve this objective,
the existing works focus on how to design excellent recovery
algorithms, and they are keen on mixing various advanced tools
into the CVS framework, e.g., the latest popular Deep Neural
Network (DNN) (Palangi et al., 2016; Zhao et al., 2020; Tran et al.,
2021). Though effective, they bear a heavy computational burden.
Different from these works, we try to exploit the capability of CS
to capture important structures, improving the reconstruction
quality only armed with some simple recovery algorithms. It is
well known that the context feature (Shechtman and Irani, 2007;
Romano and Elad, 2016) is a good structure for visual quality,
and, therefore, in this article, we focus on how to fuse contexts
into CVS for an obvious improvement of reconstruction quality.

Compressive Video Sensing consists of three essential steps
including CS measurement, measurements quantization, and
reconstruction. CS measurement is a process of randomly
sampling each video frame, in which the block-based (Gan, 2007;
Bigot et al., 2016) or structurally (Do et al., 2012; Zhang et al.,
2015) random matrix is often used to ensure the small memory
requirement. Output by CS measurement, all measurements are
required to be quantized as bits, then transmitted to the decoder.
The straightforward solution to incorporating quantization into
CVS is simply to apply Scalar Quantization (SQ), but it brings
a big error. For block-based sampling, Differential Pulse Code
Modulation (DPCM) (Mun and Fowler, 2012) can be used,
and it exploits the correlations between blocks to improve the
rate-distortion performance. Based on DPCM, many works also
proposed some efficient predictive schemes (Zhang et al., 2013;
Gao et al., 2015) to quantize CS measurements. Reconstruction
is deployed at the decoder, and it uses quantized measurements
to reconstruct the video sequence by the CS recovery algorithm.
At present, the reconstruction can be implemented by one of
the three types: frame-by-frame (Chen Y. et al., 2020; Trevisi
et al., 2020), three-dimensional (3D) (Qiu et al., 2015; Tachella
et al., 2020), and distributed strategies (Zhang et al., 2020;
Zhen et al., 2020). The frame-by-frame reconstruction performs
a CS recovery algorithm to reconstruct each video frame
independently, and it has a poor rate-distortion performance
due to neglecting the correlations between frames. The 3D
reconstruction designs some complex representation models to
once reconstruct a whole video sequence or a Group Of Pictures
(GOP), e.g., Li et al. (2020) proposed the Scalable Structured
CVS (SS-CVS) framework, which learns the union of data-
driven subspaces model to reconstruct GOPs. However, it has
a defect in 3D reconstruction that the huge memory and high
computational complexity are required to be invested at decoder.
Derived from the decoding strategy of DVC, the distributed
reconstruction divides the input video sequence into non-key

frames and key frames and reconstructs each non-key frame
by the CS recovery algorithm with the aid of its neighboring
key frames. With a small memory and a low computational
complexity, the distributed reconstruction improves the rate-
distortion performance by exploiting the motions between
frames, so many existing works focus on it to design the CVS
systems, e.g., Ma et al. proposed the DIStributed video Coding
Using Compressed Sampling (DISCUCS) (Prades-Nebot et al.,
2009), Gan et al. proposed the DIStributeCOmpressed video
Sensing (DISCOS) (Do et al., 2009), Fowler et al. proposed
the Multi-Hypothesis Block CS (MH-BCS) system (Chen et al.,
2011; Tramel and Fowler, 2011; Azghani et al., 2016), etc. The
core of distributed reconstruction is the Multi-Hypothesis (MH)
predictive technique, which uses a linear combination of blocks
in key frames to interpolate the blocks in non-key frames.
As one of the state-of-the-art techniques, the MH prediction
is widely applied to distributed reconstruction. Recently, some
works try to modify the implementation of MH prediction,
e.g., Chen C. et al. (2020) added the iterative Reweighted
TIKhonov-regularized scheme into MH prediction (MH-RTIK),
causing a significant improvement of CVS performance. CS
theory indicates that the precise recovery requires enough CS
measurements. With insufficient CS measurements, the excellent
CS recovery algorithm still cannot prevent the degradation of
reconstruction quality, however, by adaptively allocating CS
measurements based on local structures of the image, a simple
recovery algorithm can also provide a good reconstruction
quality (Yu et al., 2010; Taimori and Marvasti, 2018; Zammit
and Wassell, 2020). Judging from the above facts, the adaptive
allocation is a potential way to improve the rate-distortion
performance of the CVS system with a light codec.

This article presents a context-based CVS system, of which the
core is the allocation of CS measurements adapted by context
structures at the encoder. Based on these adaptive measurements,
by combining linear estimation and MH prediction into
distributed reconstruction, the decoder provides a satisfying
reconstruction quality with lowmemory and computational cost.
The contributions of the proposed context-based CVS is to solve
the following issues:

(1) How to extract the context structures from CS
measurements? Traditional methods use pixels to compute
the context features, but it costs lots of computations at the
encoder, resulting in impracticality for CVS. Especially when
the encoder is realized by Compressive Imaging (CI) devices
(Liu et al., 2019; Deng et al., 2021), due to the unavailability
of original pixels, it is impossible to perform the traditional
methods. Considering the low dimensionality and availability
of CS measurements, it is practical in CVS to extract context
structures from CS measurements.

(2) How to adaptively allocate CS measurements by context
structures? Contexts measure the correlations between pixels,
and their distribution reveals some meaningful structures,
e.g., smoothness, edges, textures, etc. With the same
recovery quality, fewer necessary measurements are required
for simple structures and more for complex structures.
According to the distribution of contexts, an efficient
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allocation is designed to avoid insufficiency or redundancy
of measurements.

(3) How to quantize the adaptive measurements? Adaptive
allocation makes blocks have different numbers of CS
measurements, as a result, the traditional prediction cannot
be applied to quantization. Due to the insufficient capability
of SQ, an appropriate prediction scheme is required to reduce
the quantization error.

Experimental results show that the proposed context-based CVS
system outputs the high-quality reconstructed video sequences
when monitoring plant growth or propagation and improves the
rate-distortion performances when compared with the state-of-
the-art CVS systems, which demonstrates the effectiveness of
context-based allocation for CVS.

The rest of this article is organized as follows. Section 2 briefly
overviews Plant Monitoring System, CVS, and describes the
traditional method to extract context features. Section 3 presents
the proposed context based CVS system. Experimental results are
provided in Section 4, and we conclude this article in Section 5.

2. RELATED WORKS

2.1. Plant Monitoring System
In modern agriculture, it is essential to monitor plant
propagation or growth for guaranteeing productivity. The labor
costs can be efficiently reduced by automatically capturing the
architectural parameters of the plant, so more andmore attention
has been paid to the design of the plant monitoring system
(Somov et al., 2018; Grimblatt et al., 2021; Rayhana et al.,
2021). Early, lots of systems are designed to monitor the various
environmental parameters on plant growth, such as humidity,
temperature, solar illuminance, etc., e.g., James and Maheshwar
(2016) used multiple sensors to measure the soil data of plants
and transmitted these data to the mobile phone by Raspberry
Pi; Okayasu et al. (2017) developed a self-powered wireless
monitoring device that is equipped with some environmental
sensors; Guo et al. (2018) added big-data services to analyze
the environmental data on plant growth. These environmental
parameters indirectly indicate the process of plant growth, and
they cannot record the visual scenes on plant growth, resulting in
the unavailability of the physical structure parameters on plants.
To realize the visual monitoring of plants, some works have
started to integrate the visual sensors into the plant monitoring
system, e.g., Peng et al. (2022) used the binocular camera to
capture video sequences on a plant and used the structure
from motion method (Piermattei et al., 2019) to extract the
3-D information of a plant; Sajith et al. (2019) designed a
complex network to derive the plant growth parameters from the
monitoring images; Akila et al. (2017) extracted the plant color
and texture by the visual monitoring system. From the above, it
can be seen that the visual sensor or camera is used to capture the
video sequences on plant growth, and these video sequences are
compressed as bitstream which is transmitted to the IoT cloud
for further analyzing. As the core of visual sensors, the video
compression is a major energy consumer, so a challenge that we
face for the visual monitoring system of the plant is to design

an energy-efficient video coding scheme to extend the working
time of the visual sensor. In the framework of IoT, CVS is a
potential coding scheme to reduce the energy consumption of
visual sensors. The following briefly overviews the CVS systems.

2.2. CVS System
Compressive Video Sensing is the marriage of CS theory and
DVC, which reduces the encoding costs and enhances the
robustness to noise, thus becoming a potential video codec for
wireless visual sensors. At the encoder, to satisfy low complexity
and fast computation, the block-based CS sampling is performed
on each video frame independently, i.e., the ith video frame f i of
size N1 × N2 is partitioned into non-overlapping blocks of size
B × B, each block is vectorized as xi,j of length Nb, and the CS
measurements yi,j of xi,j are output by

yi,j = Φ i,j · xi,j (1)

where Φ i,j is called as the measurement matrix and can be
constructed by some random matrices, e.g., Gaussian, Bernoulli,
structural random matrix, etc. By setting the length of yi,j to be
Mi,j, the size of Φ i,j is fixed to beMi,j × Nb, and the subrate Si of
f i is defined as

Si =
Mi

N
=

∑J
j=1Mi,j

N1 × N2
(2)

where N is the number of total pixels in f i, Mi is the number
of CS measurements for f i, and J is the number of blocks in
f i. In CI application, an optical device is designed to perform
Equation (1), and directly output the CS measurements. To
ensure a stable recovery, L video frames are gathered to form a
GOP, in which the first frame, called the key frame, is set to be a
high subrate, and others, called the non-key frame, are set to be a
low subrate. After quantization, all CS measurements of GOP are
packaged and transmitted to decoder.

At the decoder, by using the received CS measurements,
the frame-by-frame, 3D, or distributed strategy is performed to
reconstruct the GOP. For frame-by-frame, the reconstruction
model can be represented by

{
x̂i,j

}J
j=1

= arg min
{xi,j}

J
j=1




J∑

j=1

∥∥∥yi,j − Φ i,j · xi,j

∥∥∥
2

2
+α ·

J∑

j=1

∥∥Ψ · xi,j
∥∥
1



 (3)

where Ψ denotes the 2D sparse representation basis, α is a
regularization factor, ‖ · ‖2 denotes ℓ2 norm, and ‖ · ‖1 denotes
ℓ1 norm. The model (3) can be solved by some non-linear
optimization algorithms, e.g., Alternating Direction Method of
Multipliers (ADMM) (Yang et al., 2020), and all reconstructed

blocks are spliced into the estimated frame f̂ i. The frame-by-
frame model uses only the spatial correlations, so its rate-
distortion performance is unsatisfactory. The 3D reconstruction
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FIGURE 1 | Mechanism of Multi-Hypothesis (MH) prediction.

model fully considers the spatial-temporal correlations and it can
be represented by

{
x̂i,j

∣∣L
i=1

}J
j=1

= arg min
{xi,j|Li=1 }

J

j=1





L∑

i=1

J∑

j=1

‖yi,j − Φ i,j · xi,j‖
2
2

+α ·

L∑

i=1

J∑

j=1

∣∣Γ ·
[
x1,j, x2,j, · · · , xL,j

]∣∣




(4)

where Γ denotes the 3D sparse representation basis, and it is used
to remove the spatial-temporal redundancies between blocks.
Though effective, model (4) results in a heavy computational
burden. Different from the 3D reconstruction, the distributed
reconstruction uses the motion-compensation based prediction
technique to expose the spatial-temporal redundancies between
blocks. Figure 1 shows the mechanism of MH prediction, which
is commonly used in distributed reconstruction. MH prediction
collects the spatial-temporal neighboring blocks in key frames to
construct an MH matrix Hi,j. According to the motion vector
vi of xi,j, the motion-aligned windows W1 and W2 of sizes
W × W are, respectively, located on the previous and the
next key frames, and all candidate blocks in W1 and W2 are
extracted as the hypotheses {ht}

T
t=1 of xi,j, producing Hi,j =

[h1, h2, · · · , hT], in which T = W2. By using MH prediction,
the distributed reconstruction is modeled as a Least-Squares (LS)
problem as follows:

ŵi,j = argmin
w

{
‖yi,j − Φ i,j ·Hi,j · w‖

2
2 + β · ‖Θ · w‖22

}
(5)

x̂i,j = Hi,j · ŵi,j (6)

where Θ is the Tikhonov matrix, and β is a regularization factor.
Θ is a diagonal matrix and constructed by

Θ =



‖yi,j − Φ i,j · h1‖2 0

. . .

0 ‖yi,j − Φ i,j · hT‖2


 (7)

With this structure, Θ assigns weights of small magnitude to
hypotheses mostly dissimilar from xi,j. The LS problem can be
fast solved by the Conjugate Gradient algorithm (Zhang et al.,
2018), which significantly reduces the computational complexity
of distributed reconstruction. Due to the full exploitation of
spatial-temporal correlations between blocks, the MH prediction
enables the distributed reconstruction to provide superior
recovery. From the above, in order to realize a light decoder
and ensure a good recovery at the same time, distributed
reconstruction is a wise way.

2.3. Contexts
Compressive Sensing theory indicates that the sparsity K of the
signal determines its required numberM of CS measurements by
precise recovery. An empirical rule (Becker and Bobin, 2011) is
that the precise recovery can be achieved if

M ≥ 4 · K (8)

In the block-based CS sampling, this rule can be used to avoid
the redundancy or insufficiency of CS measurements for blocks,
i.e., adapted by the sparsity, each block is allocated to the
appropriate number of CS measurements. The sparsity is defined
as the number of coefficients with significant magnitude in a
representation, and its calculation has not a strict mathematical
formula. For images, the sparsity can be revealed by some
features, e.g., edge, variance, gradient, etc., and these features
are applied into adaptive allocation, leading to the improvement
of recovery quality. The simple features only describe the
correlations between pixels, but the structures of blocks are not
taken into consideration, thus we require some complex features
to improve the efficiency of adaptive allocation. In Ref. Romano
and Elad (2016), the self-similarity descriptor (Shechtman and
Irani, 2007) is used to extract the contexts of blocks, which
represents how similar a central block is to its large surrounding
windows. Contexts contain the internal structures and external
relations among blocks, and it is a potential feature to better
reveal the sparsity variation. The following briefly describes how
to extract the contexts in an image.

The context feature expresses the similarities between a central
block and those of its large surrounding windows. As illustrated
in Figure 2, for a central block xp in an image, its similarity
weights are computed by

sp,q = exp

{
−
‖xp − xq‖

2
2

2σ 2

}
,∀q ∈ �d

(
p
)

(9)

where xq denotes the qth surrounding block in a neighborhood
�d

(
p
)
of size d × d, and σ is a normalization factor. The range
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of sp,q is [0, 1], in which a large value indicates that the blocks xp
and xq are highly similar, and a small value indicates that the two
are substantially different. All weights constitute a correlation
surface Up =

[
sp,q|∀q ∈ �d

(
p
)]
, of which the statistics reveal

FIGURE 2 | Illustration on the traditional extraction of contexts.

the self-similarity of xp. To measure the statistics, the correlation
surface of xp is rearranged into a histogram of b bins, of which
the normalization is regarded as the context feature gp of xp.

The context feature gp is an empirical distribution of the co-
occurrences of xp in its large surroundings, which measures the
correlations between xp to its surroundings. When gp is biased
toward the left bins, it can be concluded that the majority of
sp,q are small, indicating the block xp is unique, i.e., it originates
from a highly textured and non-repetitive area, so its sparsity
is relatively high. When gp is biased toward the right bins, it
means that most of sp,q are high, indicating that the block xp has
many co-occurrences in its surroundings, i.e., it originates from
a large flat area, so its sparsity is low. From the above, we can
see that the context feature accurately describes the geometric
structure of a block with respect to its surrounding blocks, thus it
is naturally sensitive to the sparsity variation. However, in CVS,
the traditional method is impractical due to the unavailability
of original pixels or high computational complexity. Therefore,
it is challenging to extract the context feature by using CS
measurements of blocks.

3. PROPOSED CONTEXT BASED CVS
SYSTEM

3.1. System Architecture
As shown in Figure 3, we describe the architecture of the
proposed context-based CVS system in detail. The input video
sequence is divided into several GOPs of length L, and each
GOPk is successively encoded as Packetk. After receiving this
packet, the decoder reconstructs the corresponding ĜOPk, and all
reconstructed GOPs are regrouped as the entire video sequence.

FIGURE 3 | Architecture of the proposed context-based Compressive Video Sensing (CVS) system: (A) encoder framework, (B) decoder framework.
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Figure 3A presents the process of encoding GOPk. The key

frame f 1 is split from GOPk, and others
{
f i

}L
i=2

are regarded
as the non-key frames. The key frame f 1 and the ith non-key

frame f i are partitioned into J non-overlapping blocks
{
x1,j

}J
j=1

and
{
xi,j

}J
j=1

of size B × B, respectively. For the key frame

f 1, we set a high subrate S1 = SK to sample the blocks
{
x1,j

}J
j=1

and generate the CS measurements
{
y1,j

}J
j=1

according

to Equation (1). The blocks
{
xi,j

}J
j=1

in the non-key frame f i are

sampled at a low subrate Si = SNK, producing the corresponding

CS measurements
{
yi,j

}J
j=1

by Equation (1). For f 1 and f i, based

on the preset subrates, CS measurements are uniformly allocated
to each block, however, without considering the structures of
blocks, the uniform allocation results in either redundancy or
insufficiency of CS measurements for some blocks. To improve
the efficiency of block-based CS sampling, the core of the
encoder is to perform the adaptive allocation by contexts of
blocks. Different from traditional methods, the contexts U1,j

and U i,j of x1,j and xi,j are, respectively, extracted by using the

CS measurements y1,j and yi,j, which makes CVS system more
practical. After context extraction, according to the contexts U1,j

and U i,j, the numbers of CS measurements of x1,j and xi,j are
modified as M1,j and Mi,j by adaptive allocation. According to
M1,j andMi,j, by removing the redundancy or supplementing the
insufficiency in y1,j and yi,j, x1,j and xi,j are re-sampled as ỹ1,j and
ỹi,j, respectively. DPCM cannot be used to quantize the adaptive
measurements with different numbers. To overcome this defect
of DPCM, we fuse zero padding into DPCM and predictively
quantize ỹ1,j and ỹi,j as ỹ

q
1,j and ỹ

q
i,j. Finally, all quantized CS

measurements are encoded as bits by Huffman and packaged
as Packetk.

Figure 3B presents the process of decoding Packetk. After
unpackaging Packetk, the inversions of Huffman and zero-
padding DPCM are implemented, and the CS measurements
of x1,j and xi,j are recovered as ŷ1,j and ŷi,j which have
some quantization errors with their originals ỹ1,j and ỹi,j. The
distributed reconstruction is performed to reconstruct the key

frame f 1 and the non-key frames
{
f i

}L
i=2

. To suppress the
blocking artifacts in the reconstructed frames, we realize the
recovery of large blocks by merging the CS measurements

FIGURE 4 | Illustration on contexts extraction based on Compressive Sensing (CS) measurements.
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of the spatially neighboring blocks, so the CS measurements
of f 1 and f i are updated as z1,r and zi,r for large blocks.

Based on z1,r , the reconstructed key frame f̂ 1 is produced by

Algorithm 1 | Allocating the appropriate numbers of
Compressive Sensing (CS) measurements to blocks.

Require: Si - Subrate of f i, Pi,j - Distribution on the sparsity of
blocks xi,j, j = 1, 2, · · · , J, N - Total number of pixels in f i,
Nb - Block length;

1: Initial measurement number m(0)
i,j = Round

(
Pi,jSi,jN

)
, and

Round (·) is a rounding operator;

2: Restrict m
(0)
i,j to not be larger than 0.9Nb, i.e., m

(0)
i,j =

Min
(
m

(0)
i,j , 0.9Nb

)
, in which Min (·) is a minimization

operator;

3: SetMsup = Si · N −
∑J

j=1m
(0)
i,j , and iter = 0;

4: whileMsup > 0, increment iter by 1 do
5: ifMsup < J then
6: Randomly select Msup blocks, and their measurement

numbers are incremented by 1;

7: Updatem(iter)
i,j , and setMi,j = m

(iter)
i,j ;

8: Break;
9: else

10: m
(iter+1)
i,j = m

(iter)
i,j + 1

11: Msup = Msup − J
12: end if

13: end while

14: return Mi,j, j = 1, 2, · · · , J.

using a linear recovery model, which rapidly recovers each
block by a matrix-vector product. Regarding the previous
and the next reconstructed key frames as references, the MH

prediction outputs the reconstructed non-key frame f̂ i by
using zi,r . Finally, all reconstructed frames are combined into
ĜOPk. Details of the core parts, including contexts extraction,
measurements allocation, zero-padding DPCM, and distribution
reconstruction, are described in the following subsections.

3.2. Context Extraction
In the proposed CVS system, the context features are extracted by
using the CS measurements of blocks. As illustrated in Figure 4,
we compute the correlation surfaceU i,j of xi,j in f i as its contexts,
in which i = 1, 2, · · · , L. In the surrounding window of size db ×
db centered on xi,j, we cannot extract the original blocks pixel-
by-pixel due to the unavailability of original pixels, but can only

use the CS measurements
{
yi,j	n

}Nc

n=1
of non-overlapping blocks

{
xi,j	n

}Nc

n=1
, in which Nc = d2b. According to CS theory, the

measurement matrix Φ i,j holds the Restricted Isometry Property

(RIP) (Candès and Wakin, 2008) for blocks
{
xi,j

}J
j=1

, which

implies that all pairwise distances between original blocks can be
well preserved in the measurement space, i.e.,

‖xi,j − xi,j	n‖2 ≈ ‖Φ i,j · xi,j − Φ i,j · xi,j	n‖2

= ‖yi,j − yi,j	n‖2,∀n ∈ {1, 2, · · · ,Nc}
(10)

where it is noted that all blocks share the same measurement
matrix Φ i,j due to the uniform allocation. Based on Equation

FIGURE 5 | Illustration on zero-padding Differential Pulse Code Modulation (DPCM).
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(10), the similarity weights between xi,j and xi,j	n can be
estimated by

si,j	n = exp

{
−
‖yi,j − yi,j	n‖

2
2

2σ 2

}
,∀n ∈ {1, 2, · · · ,Nc} (11)

All weights constitute the correlation surface U i,j as follows:

U i,j =
[
si,j	n |∀n ∈ {1, 2, · · · ,Nc}

]
(12)

To compactly represent the contexts of xi,j, we compute the mean
ui,j of U i,j as the context feature, i.e.,

ui,j =
1

Nc

Nc∑

n=1

si,j	n (13)

3.3. Measurement Allocation
By exploiting the context feature ui,j of xi,j, we set the appropriate
number of CS measurements for xi,j, and remove the redundancy
or supplement the insufficiency in yi,j. The magnitudes of context
features are high in smooth regions, and the magnitudes are low
in the edge and texture regions, so it is found that the experience
that the context feature is inversely proportional to the sparsity.

Based on this experience, we can describe the distribution on the
sparsity degrees of blocks by

Pi,j =
u−1
i,j∑J

j=1 u
−1
i,j

(14)

According to the present subrate Si of f i, we construct the
allocation model of CS measurements for blocks as follows:

Mi,j = arg min
mi,j

J∑

j=1

(
mi,j − Pi,j · Si · N

)

s.t.

j∑

j=1

mi,j = Si · N,mi,j ≤ 0.9 · Nb,mi,j ∈ N
+

(15)

whereN is the total number of pixels in f i,Nb is the block length,
mi,j is a positive integer, and its upper bound is set to be 0.9 · Nb.
The model (15) is solved according to Algorithm 1 and outputs
the final numberMi,j of CS measurements for xi,j.

3.4. Zero-Padding DPCM
Due to the adaptive allocation, the lengths of the re-sampled

CS measurements
{
ỹi,j

}L
j=1

vary. Compared with SQ, DPCM

provides better rate-distortion performance by adding the

FIGURE 6 | Illustration on block merging when lev is set to be 1.
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predictive scheme into the quantization of block-based CS
measurements. However, DPCM requires that all blocks have the
same number of CS measurements, as a result, DPCM cannot

be used to quantize
{
ỹi,j

}L
j=1

. To make DPCM adapt to the

adaptive allocation, we propose zero-padding DPCM, whose
implementation is shown in Figure 5. Before inputting ỹi,j to
DCPM, we fill zeros in the last of ỹi,j to make its length the same
as others. After obtaining the de-quantized CS measurements
ŷi,j, we delete the zeros in the last of ŷi,j to recover its original

length Mi,j. By zero padding, each measurement in ŷi,j−1 can

be used to predict the corresponding measurement in ŷi,j, and

especially when there is predictive measurement ŷi,j−1(m) of the

m-thmeasurement ỹi,j(m), the residual ydi,j(m) can be significantly

reduced due to the intrinsic spatial correlation between ỹi,j and
ỹi,j−1. The rate-distortion curves of the reconstructed Foreman,
Mobile, and Football sequences are presented when zero-padding

DPCM and SQ are, respectively, used to quantize the adaptive

CS measurements (shown in Supplementary Figure 1), in which

the rate-distortion curve is measured in terms of the Peak Signal-
to-Noise Ratio (PSNR) in dB and bitrate in bits per pixel (bpp),

and the linear recovery algorithm presented in subsection 3.5

is used to recover each video frame. It can be seen that zero-
padding DPCM presents competitive performance with SQ at
low bitrates but as the bitrate increases, its improvement of
performance over SQ is increasingly significant. From these
results, we find that the efficiency of zero-padding DPCM relies
on the correlation between block-based CS measurements. With
insufficient measurements, the correlation is weakened by the
filling of excessive zeros, causing the performance degradation,
but when measurements are sufficient, a high correlation is
maintained, so the performance improvement stands out. From
the above, zero-padding DPCM is more suitable for adaptive
measurements compared with SQ.

FIGURE 7 | Rate-distortion curves of the reconstructed key frames in (A) Foreman, (B) BlowingBubbles, and (C) ParkScene sequences at different block-size pairs.
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3.5. Distributed Reconstruction
At decoder, the distributed strategy is performed to reconstruct

the key frame f 1 and the non-key frames
{
f i

}L
i=2

, in which f 1
is estimated by a linear recovery model, and f i is produced by
MH prediction. To highlight the complex structures by contexts,
a small block size is more desired at the encoder. However,
the small block size causes serious blocking artifacts due to the
differences of neighboring blocks in recovery quality. To suppress

the blocking artifacts, we merge the CS measurements
{
ŷi,j

}J
j=1

of the small blocks
{
xi,j

}J
j=1

into those
{
zi,r

}R
r=1

of the large

blocks
{
x̃i,r

}R
r=1

and realize the sampling of small blocks and the
recovery of large blocks. The size Blev × Blev of large block is set
to be

Blev = 2lev · B, lev = 1, 2, · · · (16)

in which lev is a positive integer. The number R of large blocks
is N/B2

lev
, and it is smaller than the number J of small blocks.

Figure 6 illustrates the block merging when lev is set to be 1.
The four neighboring blocks xi,j, xi,j+1, xi,j+N1/B, xi,j+1+N1/B are
merged into a large block x̃i,r , and their CS measurements ŷi,j,

ŷi,j+1, ŷi,j+N1/B
, and ŷi,j+1+N1/B

are spliced into zi,r in rows, i.e.,

zi,r =




ŷi,j
ŷi,j+1

ŷi,j+N1/B

ŷi,j+1+N1/B


 ≈ Λi,r ·




xi,j
xi,j+1

xi,j+N1/B

xi,j+1+N1/B


 (17)

Λi,r =




Φ i,j 0
Φ i,j+1

Φ i,j+N1/B

0 Φ i,j+1+N1/B


 (18)

FIGURE 8 | Rate-distortion curves of the reconstructed non-key frames in (A) Foreman, (B) BlowingBubbles, and (C) ParkScene sequences at different

block-size pairs.

Frontiers in Plant Science | www.frontiersin.org 10 February 2022 | Volume 13 | Article 84960613

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Li et al. Green Visual Sensor of Plant

in which Λi,r is the diagonal matrix composed of the block
measurement matrices Φ i,j, Φ i,j+1, Φ i,j+N1/B, and Φ i,j+1+N1/B,
N1 is the total number of rows in f i, and B is the block size of
the small block. To make zi,r , the CS measurements of x̃i,r , we
transform x̃i,r as




xi,j
xi,j+1

xi,j+N1/B

xi,j+1+N1/B


 = I · x̃i,r (19)

in which I is an elementary column transformation matrix.
Plugging Equation (19) into Equation (17), we build the bridge
between x̃i,r and zi,r by

zi,r ≈ Λi,r · I · x̃i,r = Ai,r · x̃i,r (20)

in which Ai,r = Λi,r · I. According to Equation (20), the large
block x̃i,r can be recovered by using zi,r . When lev is set to be
larger than 1, the block merging can be done in manner similar
to the above.

After the block merging, we use
{
z1,r

}R
r=1

to recover the key
frame f 1. The block x̃1,r of f 1 is linearly estimated by

x̂1,r = P1,r · z1,r (21)

in which P1,r is the transformation matrix produced by the
following model:

P1,r = arg min
P

{
E

[
‖x̃1,r − P · z1,r‖

2
2

]}
(22)

in which E [·] denotes the expectation function. The model (22)
outputs the optimal transformationmatrix to minimize the mean
square error between x̃1,r and its estimator x̂1,r , and it can be

FIGURE 9 | Rate-distortion curves of the reconstructed key frames in (A) Foreman, (B) BlowingBubbles, and (C) ParkScene sequences when using different

allocation schemes. For Foreman and BlowingBubbles, the block-size pair is set to be (2, 16), and for ParkScene, the block-size is set to be (8, 16).
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solved by making the gradient of objective function equal to
0, producing

P1,r = E
[
x̃1,rz

T
1,r

]
E−1

[
z1,rz

T
1,r

]
(23)

Plugging Equation (20) into Equation (23), we get

P1,r = Corxx · A
T
1,r

(
A1,r · Corxx · A

T
1,r

)−1
(24)

Corxx = E
[
x̃1,rx̃

T
1,r

]
(25)

in which Corxx is the auto-correlation matrix of x̃1,r , and its
element Corxx [m, n] is estimated as follows:

Corxx [m, n] = 0.95δm,n (26)

in which δm,n is the Euclidean distance between two pixels x̃1,r(m)
and x̃1,r(n) in x̃1,r . When the subrate is set to be large, the linear
recovery model can provide excellent visual quality while costing
fewer computations.

4. EXPERIMENTAL RESULTS

We evaluate the proposed CVS system on video sequences with
various resolutions, including seven CIF (352 × 288) sequences
Akiyo, Bus, Container, Coastguard, Football, Foreman, Hall, one
WQVGA (416 × 240) sequence BlowingBubbles, and one 1080p
(1920× 1080) sequence ParkScene. In the proposed CVS system,
the window size db × db and the normalization factor σ are,
respectively, set to be 11 × 11 and 10 for the context extraction,
the window size W × W and the regularization factor β are,
respectively, set to be 21×21 and 0.25 for theMH prediction, and

FIGURE 10 | Rate-distortion curves of the reconstructed non-key frames in (A) Foreman, (B) BlowingBubbles, and (C) ParkScene sequences when using different

allocation schemes. For Foreman and BlowingBubbles, the block-size pair is set to be (2, 16), and for ParkScene, the block-size is set to be (8, 16).
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the measurement matrix is produced by Gaussian distribution.
First, we discuss the effects of different block sizes on the
proposed CVS system. Second, we evaluate the performance
improvement resulting from the used context extraction. Finally,
we compare the proposed CVS system with two state-of-the-art
CVS systems: SS-CVS (Li et al., 2020) and MH-RTIK (Chen C.
et al., 2020) in terms of the rate-distortion performance. PSNR is
used to evaluate the qualities of reconstructed video sequences,
and the bitrate denotes the average amount of bits per pixel to
encode a video sequence. The variation of PSNR with bitrate
is called the rate-distortion performance. The computational
complexity is measured by the execution time. Experiments are
implemented with MATLAB on a workstation with 3.30-GHz
CPU and 8 GB RAM.

4.1. Effects of Block Sizes
In the proposed CVS system, in order to highlight the complex
structures by contexts, we desire a small block size at encoder, but
at decoder, a large block size is desired to suppress the blocking
artifacts in the reconstructed video frames. We set a block-size
pair (B,Blev), in which B and Blev are the block sizes for sampling
and recovery, respectively, and evaluate the effects of different
block-size pairs on the reconstruction qualities of key frames and
non-key frames.

First, we select the first frames of Foreman, BlowingBubbles,
and ParkScene sequences as the key frames, which are linearly

recovered, and show their rate-distortion curves at different
block-size pairs in Figure 7. For Foreman and BlowingBubbles
with the low resolution, the block-size pair (4, 16) achieves higher
PSNR values than others with low bitrates, but the rate-distortion
curve for the block-size pair (2, 16) rapidly increases as the
bitrate increases and significant PSNR gains are achieved when
compared with other block-size pairs. These results indicate that
the small blocks used in adaptive allocation and large blocks
for linear recovery fit together well. For ParkScene with high
resolution, when the block size B for sampling is set to be too
small, e.g., B = 2, no block can contain sufficient structures,
causing the rate-distortion performance to degenerate as the
bitrate increases, but a suitable block size for sampling is set, e.g.,
B = 8, PSNR gains can be significantly improved.

Then, we select the second frames of Foreman,
BlowingBubbles, and ParkScene sequences as the non-key
frames, which are recovered by MH prediction based on the
reconstructed previous and next key frames at the subrate 0.7,
and show their rate-distortion curves at different block-size pairs
in Figure 8. Similar to the results from key frames, for Foreman
and BlowingBubbles, the better rate-distortion performance is
achieved when the block-size pair is set to be (2, 16), and for
ParkScene, in order to prevent the loss of structures, the block
size for sampling is appropriately set to be 8.

Given the above, we can see that the bad effects resulting
from the extraction of contexts can be suppressed by the block

TABLE 1 | Average Peak Signal-to-Noise Ratio (PSNR) (dB) for reconstructed video sequences by the proposed Compressive Video Sensing (CVS) system, Scalable

Structured CVS (SS-CVS) (Trevisi et al., 2020), and Multi-Hypothesis Reweighted TIKhonov (MH-RTIK) (Chen C. et al., 2020) at subrates 0.1 to 0.5.

Sequence Resolution Algorithm
Subrate SNK

0.1 0.2 0.3 0.4 0.5

GOP Length L = 2

Container

CIF

MH-RTIK 33.67 34.76 35.08 35.28 35.47

Proposed 38.74 39.92 40.38 40.47 40.61

Coastguard
MH-RTIK 33.12 34.26 34.69 35.08 35.43

Proposed 35.80 37.22 38.30 38.89 39.45

Hall
MH-RTIK 37.10 38.01 38.39 38.65 38.91

Proposed 38.26 39.69 40.82 41.23 41.50

Foreman
MH-RTIK 36.52 37.09 37.56 37.96 38.60

Proposed 38.13 39.66 40.87 41.41 41.78

GOP Length L = 10

Akiyo

CIF

SS-CVS 17.70 24.80 33.06 36.55 39.23

Proposed 40.75 43.50 45.28 45.09 45.56

Bus
SS-CVS 18.65 23.57 25.71 27.67 30.10

Proposed 25.65 38.31 30.97 32.97 34.00

Football
SS-CVS 15.52 23.95 27.87 30.33 32.93

Proposed 28.98 32.67 35.78 36.55 37.28

Foreman
SS-CVS 13.40 20.51 28.07 32.90 35.25

Proposed 33.18 36.00 38.55 39.54 40.22

BlowingBubble QWVGA
SS-CVS 16.93 23.50 28.47 30.70 32.84

Proposed 30.13 32.17 33.58 35.01 35.68

ParkScene 1080P
SS-CVS 23.19 30.04 33.14 35.53 36.62

Proposed 33.01 35.18 36.79 37.97 38.67
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merging, therefore, the quality improvement from contexts-
based allocation is further enhanced.

4.2. Effects of Contexts
In the proposed CVS system, the contexts are extracted
from CS measurements and used to adaptively allocate the
CS measurements for blocks, leading to the improvement of
reconstruction quality. To verify the validity of contexts from
CS measurements on the quality improvement, we evaluate the
effects of different allocation schemes on the rate-distortion
performance of the proposed CVS system. The uniform
allocation is used as a benchmark, and the adaptive allocation
uses the contexts extracted from CS measurements and original
pixels, respectively.

Figure 9 shows the rate-distortion curves of the reconstructed
key frames when using different allocation schemes, in which
the key frames are, respectively, taken from the first frames of
Foreman, BlowingBubbles, and ParkScene sequences. It can be
seen that adaptive allocation outperforms uniform allocation in

PSNR values at any bitrate, indicating that contexts contribute
to quality improvement. Importantly, the contexts from CS
measurements are competitive with those from original pixels,
and their performance gaps are very small, which means that CS
measurements can better represent the contexts of blocks.

Figure 10 shows the rate-distortion curves of the
reconstructed non-key frames when using different allocation
schemes, in which the non-key frames are, respectively, taken
from the second frames of Foreman, BlowingBubbles, and
ParkScene sequences. It can be seen that the adaptive allocation is
still effective for MH prediction, and it can significantly improve
the rate-distortion performances when compared with uniform
allocation. The contexts from CS measurements have similar
efficiency of allocation to that of contexts from original pixels,
which proves that the merits of adaptive allocation can still be
maintained in the measurement domain.

The above results indicate that the contexts extracted by
CS measurements prompt the adaptive allocation to improve
the reconstruction quality of CVS system, which makes the

FIGURE 11 | Rate-distortion curves obtained by the proposed CVS system and Multi-Hypothesis TIKhonov (MH-TIK) (Chen C. et al., 2020) for (A) Container,

(B) Coastguard, (C) Hall, and (D) Foreman sequences. Note that the length L of GOP is set to be 2.

Frontiers in Plant Science | www.frontiersin.org 14 February 2022 | Volume 13 | Article 84960617

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Li et al. Green Visual Sensor of Plant

FIGURE 12 | Rate-distortion curves obtained by the proposed CVS system and Scalable Structured CVS (SS-CVS) (Li et al., 2020) for (A) Akiyo, (B) Bus,

(C) Football, (D) Foreman, (E) BlowingBubble, and (F) ParkScene sequences. Note that the length L of GOP is set to be 10.
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TABLE 2 | Average encoding time (s/frame) and decoding time (s/frame) on video

sequences with different resolutions for the proposed CVS system, SS-CVS (Li

et al., 2020), and MH-RTIK (Chen C. et al., 2020).

Resolution Algorithm Encoding Time

(s/frame)

Decoding Time

(s/frame)

Average on Subrates SNK 0.1 to 0.5

CIF
MH-RTIK 0.17 19.34

Proposed 0.63 4.48

Average on Subrates SNK = 0.6

CIF
SS-CVS 5.40 21.22

Proposed 0.64 7.79

QWVGA
SS-CVS 4.90 17.23

Proposed 0.64 7.69

1080P
SS-CVS 108.10 401.8

Proposed 1.83 162.47

proposed CVS system more suitable to the applications with
limited resources.

4.3. Performance Comparisons
We evaluate the performance of the proposed CVS system by
comparing it with the two state-of-the-art CVS systems: SS-CVS
(Li et al., 2020) and MH-RTIK (Chen C. et al., 2020). To make a
fair comparison, we keep the parameter settings of SS-CVS and
MH-RTIK in their original reports, some important details are
repeated as follows:

1) SS-CVS: the system consists of one base layer and one
enhancement layer; the block size is set to be 16; the length
of GOP is 10; the subrate of key frame is set to be 0.9; the
dimension of the subspace is 10; the number of subspaces is 50.

2) MH-RTIK: the sub-block extraction is used; the number of
hypotheses is 40; the block size is set to be 16; the length of
GOP is 2; the subrate of key frame is set to be 0.7.

In addition, we employ SQ and Huffman in SS-CVS and MH-
RTIK to compress the CS measurements. For the proposed
CVS system, the block-size pair is set to be (2, 16) for CIF and
QWVGA sequences and (8, 16) for 1080P sequences, the subrate
SK of key frame is set to be 0.7, the results under the GOP
length L = 2 are compared with those of MH-RTIK, and the
results under the GOP length L = 10 are compared with those
of SS-CVS.

Table 1 lists the average PSNR values for the reconstructed
video sequences by the proposed CVS system, SS-CVS, and MH-
RTIK when the subrate SNK of non-key frame varies from 0.1
to 0.5. Compared with MH-RTIK, the proposed CVS system
achieves obvious PSNR gains at any subrate, e.g., the average
PSNR gain is 2.824 dB for the Foreman sequence. Compared
with SS-CVS, the proposed CVS system also presents higher
PSNR values at any subrate, and especially for low subrates,
PSNR gains are significant, e.g., when the subrate is 0.1, PSNR
gains are 9.82, 13.20, and 19.78 dB for ParkScene, BlowingBubble,
Foreman sequences, respectively. Figures 11, 12 show the rate-
distortion curves for the proposed CVS system, MH-RTIK, and

SS-CVS. Due to the implementation of zero-padding DPCM,
the performance improvement of the proposed CVS system is
further enhanced when compared with MH-RTIK and SS-CVS.
By the objective evaluation of the reconstruction quality, it can
be indicated that the proposed CVS system can significantly
improve the qualities of the reconstructed video sequences.

Table 2 lists the average encoding time (s/frame) and decoding
time (s/frame) on video sequences with different resolutions for
the proposed CVS system, SS-CVS, and MH-RTIK. We compute
the average execution time on the range [0.1, 0.5] of subrate SNK
for the proposed CVS system and compare it with that of MH-
RTIK for CIF sequences. The encoding speed of the proposed
CVS system is slowed down due to the contexts-based adaptive
allocation, and its encoding time is 0.63 s per frame, larger than
that of MH-RTIK. Assisted by the simple linear recovery, the
proposed CVS system reduces the decoding complexity, and only
costs 4.48 s to reconstruct a video frame, however, MH-RTIK
requires 19.34 s per frame. Under the subrate SNK = 0.6, the
execution time of the proposed CVS algorithm is compared with
that of SS-CVS for the CIF, QWVGA, and 1080P video sequences,
respectively. Compared with SS-CVS, the proposed CVS system
costs less encoding time, and the encoding time does not
dramatically increase as the resolution increases, e.g., for 1080P
sequence, the proposed CVS system only costs 1.83 s per frame,
but SS-CVS costs 108.10 s. In SS-CVS, the subspace clustering
and the basis derivation are implemented at the encoder, and
they lead to more encoding costs than the adaptive allocation
in the proposed CVS system. The proposed CVS system costs
less decoding time than SS-CVS, and its decoding costs also
grow more slowly when compared with SS-CVS, e.g., for 1080P
sequence, the proposed CVS system costs 162.47 s per frame,
and the SS-CVS costs 401.8 s. The heavy computational burdens
for SS-CVS derive from the non-linear subspace learning, but
the decoding complexity of the proposed CVS system is limited
benefiting from the linear recovery and prediction. From the
above, we can see that the proposed CVS system still keeps
a low computational complexity while providing better rate-
distortion performance.

5. CONCLUSION

In this article, a context-based CVS system is proposed to
improve the visual quality of the reconstructed video sequences.
At the encoder, the CS measurements are adaptively allocated for
blocks according to the contexts of video frames. Innovatively,
the contexts are extracted by CS measurements. Although the
extraction of contexts is independent of original pixels, these
contexts can still better reveal the structural complexity of
each block. To guarantee better rate-distortion performance,
the zero-padding DPCM is proposed to quantize these adaptive
measurements. At the decoder, the key frames are reconstructed
by linear recovery, and these non-key frames are reconstructed
by MH prediction. Thanks to the effectiveness of context-based
adaptive allocation, the simple recovery schemes also provide the
comfortable visual quality. Experimental results show that the
proposed CVS system improves the rate-distortion performances
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when compared with two state-of-the-art CVS systems, including
MH-RTIK and SS-CVS, and guarantees a low computational
complexity.

As the research in this article is exploratory, there are many
intriguing questions that future work should consider. First, the
estimation of block sparsity should be analyzed in mathematics.
Second, we will investigate how to fuse the quantization into
adaptive allocation. More importantly, we will deploy the
adaptive CVS system on an actual hardware platform.
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Smart Environment (SE) focuses on the initiatives for healthy living, where ecological

issues and biodiversity play a vital role in the environment and sustainability. To

manage the knowledge on ecology and biodiversity and preserve the ecosystem and

biodiversity simultaneously, it is necessary to align the data entities in different ecology

and biodiversity ontologies. Since the problem of Ecology and Biodiversity Ontology

Alignment (EBOA) is a large-scale optimization problem with sparse solutions, finding

high-quality EBOA is an open challenge. Evolutionary Algorithm (EA) is a state-of-the-art

technique in the ontology aligning domain, and this study further proposes an Adaptive

Compact EA (ACEA) to address the problem of EBOA, which uses semantic reasoning

to reduce searching space and adaptively guides searching direction to improve the

algorithm’s performance. In addition, we formally model the problem of EBOA as a

discrete optimization problem, which maximizes the alignment’s completeness and

correctness through determining an optimal entity corresponding set. After that, a hybrid

entity similarity measure is presented to distinguish the heterogeneous data entities,

and an ACEA-based aligning technique is proposed. The experiment uses the famous

Biodiversity and Ecology track to test ACEA’s performance, and the experimental results

show that ACEA-based aligning technique statistically outperforms other EA-based and

state-of-the-art aligning techniques.

Keywords: ecology ontology, biodiversity ontology, ontology alignment, adaptive compact evolutionary algorithm,

semantic reasoning

1. INTRODUCTION

Smart Environment (SE) is a knowledge-based system that focuses on initiatives for healthy living
with an emphasis on environment and sustainability, where ecological issues and biodiversity
play a vital role in urban citizens’ life (Kumar, 2020). In particular, ecology research focuses on
the ecosystems, habitat restoration practices, and communities of interest, which is of help to
further our understanding of the environment and opportunities to affect change; biodiversity
investigates the species’ variability as well as their relationship to the environment. Since ecology
and biodiversity are the most complex entities on this planet, the corresponding knowledge is
usually modeled with the ontology (Madin et al., 2008), which is a powerful domain knowledge
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modeling technique (Berners-Lee et al., 2001). Currently, more
and more ecology and biodiversity ontologies have been
developed, such as Environment Ontology (ENVO) and Plant
Trait Ontology (PTO). However, since they are developed and
maintained independently, a concept might be defined with
different contexts, granularities, and terminologies, yielding the
ontology heterogeneity problem (Karam et al., 2020). Examples
of heterogeneous ecology and biodiversity ontologies are shown
in Table 1.

Therefore, to preserve the ecosystem and biodiversity
simultaneously and manage the knowledge on ecology and
biodiversity, it is necessary to link the data entities in different
ecology and biodiversity ontologies, which is the so-called
Ecology and Biodiversity Ontology Alignment (EBOA).

Aligning ecology and biodiversity ontologies aims at finding a
0–1 Aligning Matrix (AM), whose element denotes whether two
corresponding entities (the source ontology’s entities in row and
the target ontology’s entities in column) are mapped by 1 or not
by 0. Since the scale of the ecology and biodiversity ontologies
are usually large, and the constraint of single cardinality on
the aligning result, the problem of EBOA needs to find a
large-scale AM (the number of its row and column is large)
with sparse solutions (most of its element values are 0). Due
to the large search space and richness of semantic meaning
on different data entities, it is a complex task of aligning
ecology and biodiversity ontologies. In recent years, Evolutionary
Algorithm (EA) (Mirjalili, 2019) has become a popular technique
in the ontology aligning domain (Acampora et al., 2013; Xue
et al., 2018). Due to the population-based evolving paradigm,
the classic EA’s searching performance is low in terms of
memory consumption and run time. To improve the efficiency,
a new category of EA with the name Compact EA (CEA) is
presented, which uses compact encoding mechanism to describe
the whole population with probability estimation. CEA mimics
EA’s searching process by simplifying the evolving operators,
but it is easy to get stuck in the local optima especially when
two ontologies’ scale is large. To overcome this drawback, this
study further proposes an Adaptive CEA (ACEA), which uses the
semantic reasoning to filter the negative correspondences, and
adaptively alters the algorithm’s searching direction to explore
the unknown region. In the following, we list the contributions
of this study:

TABLE 1 | The examples of heterogeneous ecology and biodiversity ontologies.

ENVO ontologya SWEET ontologyb

Divergent tectonic movement Plate divergence

Tectonic movement Continental drift

FLOTO ontologyc PTO ontologyd

Inflorescence absent Inflorescenceless

Leaf alternate placement Phyllotaxy

ahttp://agroportal.lirmm.fr/ontologies/ENVO.
bhttps://bioportal.bioontology.org/ontologies/SWEET.
chttp://agroportal.lirmm.fr/ontologies/FLOPO.
dhttp://agroportal.lirmm.fr/ontologies/TO.

• The optimization model of the problem of EBOA is presented;
• A hybrid entity similarity measure is proposed to distinguish

the heterogeneous ecology and biodiversity data entities;
• An ACEA-based aligning technique is proposed, which uses

semantic reasoning to reduce searching space, and adaptively
guides the searching direction to efficiently align the ecology
and biodiversity ontologies.

The introduction process of this study is as follows: before
defining the problem of EBOA and entity similarity measure
(Section 3), the EA-based aligning techniques are overviewed
(Section 2); after that, the problem-specific ACEA is presented
(Section 4), followed by the experimental results (Section 5); and
finally, we draw the conclusion on this article’s study (Section 6).

2. EVOLUTIONARY ONTOLOGY ALIGNING
TECHNIQUE

With the rapid development of ontology engineering, the scale
of an ontology has grown from hundreds of entities to tens of
thousands of entities, and the semantic representation of the
entities also become more and more complex, which makes the
determination of a high-quality ontology alignment become an
open challenge (Shvaiko and Euzenat, 2011). Essentially, the
ontology aligning problem can be regarded as an optimizing issue
that aims at maximizing the quality of final alignment, and EA-
based aligning techniques have become a popular methodology
to address this problem.

The first EA-based ontology aligning technique is proposed
by Martinez-Gil et al. (2008) which tries to find an optimal way
of combining different similarity measures for determining the
final alignment. Later on, researchers have done a lot to improve
this category of EA-based aligning techniques. Based on this
study, Ginsca and Iftene (2010) further optimize the threshold for
filtering final alignment. Acampora et al. (2012) propose a Hybrid
EA (HEA) to improve the efficiency of classic EA’s performance.
Alves et al. (2012) further use the instance-level information in an
ontology to construct the similarity measure and then use HEA
to combine it with others. Currently, it is necessary to enhance
the performance of population-based EA in terms of running
time and memory so as to address the large-scale aligning task,
such as addressing the problem of EBOA where the ontology
contains tens of thousands of entities. To this end, an efficiency
improvement strategy should be introduced to improve classic
EA’s performance. The most popular way is the utilization of a
compact encoding based evolving paradigm, which describes the
population with a probability distribution, and on this basis, it
approximates the classic EA’s evolving process. The first CEA-
based aligning technique is proposed in Xue et al. (2015),
which executes the evolving process by one Probability Vector
(PV). According to the experimental results, CEA is able to
significantly reduce EA’s running time andmemory consumption
without sacrificing the alignment’s quality. Later on, a Hybrid
CEA (HCEA) (Xue and Wang, 2015a) and a CEA with a Re-
sample Inheritance Mechanism (RIM) (Xue and Liu, 2022) are
respectively proposed to further enhance CEA’s performance.
To address the large-scale aligning task, a divide-and-conquer

Frontiers in Plant Science | www.frontiersin.org 2 April 2022 | Volume 13 | Article 87712023

http://agroportal.lirmm.fr/ontologies/ENVO
https://bioportal.bioontology.org/ontologies/SWEET
http://agroportal.lirmm.fr/ontologies/FLOPO
http://agroportal.lirmm.fr/ontologies/TO
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Xue and Tsai EBOA for SE via ACEA

FIGURE 1 | A segment of plant trait ontology.

method is also presented, which is of help to reduce HCEA’s
searching space (Xue and Wang, 2015b; Xue and Zhang, 2021).

Existing EA-based aligning approaches need to maintain
each similarity measure’s corresponding AM, and on this basis,
the optimization on the alignment can be executed, which
greatly raises the computational complexity. In this study,
we try to directly find a set of correspondences with the
given similarity measure, which only needs to save several
entity pairs’ similarity value instead of maintaining all the
similarity measures’ corresponding entity pairs’ similarity values.
In addition, classic CEA only uses one PV to execute the
optimizing process, which makes it easy to get stuck in the
local optima when facing a complex optimization problem. To
overcome this drawback, our approach proposes to adaptively
maintain several Probability Matrices (PMs) to guide the
algorithm’s searching direction. Finally, since the problem

of EBOA is a large-scale issue with sparse solutions, we
propose semantic reasoning based initialization to reduce the
algorithm’s searching space and evenly distribute the AM’s
element values.

3. ECOLOGY AND BIODIVERSITY
ONTOLOGY ALIGNMENT

3.1. The Problem of Ecology and
Biodiversity Ontology Alignment
An ontology consists of the concepts, the datatype properties,
and the object properties, which are referred to as entities (Xue
et al., 2021). Figure 1 shows a segment of PTO, where the oval
symbol describes the concept’s name, e.g., “plant trait,” the arrow
line is the object property or relationship between two concepts,
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FIGURE 2 | Logical contradiction between correspondences.

e.g., the concept “quantity trait” is subsumed by “plant trait,”
and each concept has several datatype properties to describe its
feature, e.g., the concept “plant trait” has the datatype property
“definition” whose value is “A plant trait (TO:0000387) that is
the commercial and /or economical value of the plant product, or
its overall improvement.”

An entity correspondence consists of 4 elements, i.e.,
e1, e2, rel, conf , where e1 and e2 are respectively two ontologies’
entities, rel is the type of their relationship (typically the
equivalence ≡), and conf denotes the confidence level
that the correspondence holds, which is often measured
by e1 and e2’s similarity value. For example, in Table 1,
(ENVO :Tectonicmovement, SWEET :Continentaldrift,≡, 0.9)
denote a correspondence between the concept “Tectonic
movement” from ENVO and the concept “Continental drift”
from SWEET, their relationship is the equivalence ≡, and
this correspondence’s confidence value is 0.9. The ontology
alignment is a correspondence set, whose quality is typically
evaluated with recall, precision, and f-measure (Rijsberge,
1975). Since reference alignment is often not available in the
practical aligning tasks, this study proposes three new metrics
to approximate them. According to Wang et al. (2006), recall(A)
can be estimated by the number of correspondences found in
A, i.e., recall′(A) = norm(|A|), precision(A) can be evaluated by
the average similarity values of all the correspondences in A,

i.e., recall′(A) =
∑

sim(corri)
|A| where corri is i-th correspondence

in A. To evaluate an alignment’s quality in terms of both
completeness and correctness, a comprehensive metric

f − measure′(A) =
2×recall′(A)×precision′(A)
recall′(A)+precision′(A) is presented, which

calculate an alignment’s harmony mean of its recall′(A) and
precision′(A). Given two ontologies O1 and O2, a 0–1 matrix M
and its corresponding alignment A, the problem of EBOA is
defined as follows:





max f (M)

s.t. M = [mi,j]|O1|×|O2|

mi,j ∈ {0, 1}, i = 1, 2, · · · , |O1|

(1)

where |O1| and O2 are respectively O1 and O2’s entity numbers,
and f (M) is equal to f − measure′(A), and the model of
EBOA aims at finding an optimal matrix by maximizing its
corresponding alignment’s f − measure′. In particular, the
decision variable is a 0–1 matrix whose row and column are
respectively two ontologies’ entities, and its element value 1
means two corresponding entities are mapped, and 0 means not.

3.2. Entity Similarity Measure
The entity similarity measure calculates two entities’ similarity
value conf , which is a real number in [0,1]. conf = 1 means
two entities are the same, and conf = 0 means they are
totally different. To improve the result’s confidence, usually,
it is necessary to comprehensively consider three categories
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FIGURE 3 | An example of encoding mechanism.

of similarity measures, i.e., string-based, linguistic-based, and
structure-based similarity measures (Xue and Huang, 2022). To
this end, this study proposes a hybrid entity similarity measure
to comprehensively calculate the similarity value: (1) given two
entities e1 and e2, before calculating their similarity value, the
numbers, punctuations, and stop-words in their names are first
removed; (2) the strings are split into the words, which are further
lemmatized and stemmed; (3) in each word set, the word will be
removed if it is the same literally or synonymous to the other one
in Wordnet (Miller, 1995), and we obtain two word sets s1 and
s2; finally, e1 and e2’s similarity value is the same as the similarity
value of two string s1 and s2:

sim(s1, s2)

=

∑|W1|
i=1 max

j=1···|W2|
(sim(w1,i,w2,j))+

∑|W2|
j=1 max

i=1···|W1|
(sim(w1,i,w2,j))

|W1| + |W2|

(2)

where |W1| and |W1| are respectively the numbers of words
in W1 and W2, and w1,i and w2,j are respectively the ith and
jth words in W1 and W2; and sim(w1,i,w2,j) is calculated with

Wordnet and N-gram measure (Kondrak, 2005):

sim(w1,i,w2,j) =





1, two words are synonyms

in Wordnet

N-gram(w1,i,w2,j), otherwise

(3)

4. ADAPTIVE COMPACT EVOLUTIONARY
ALGORITHM

Adaptive compact evolutionary algorithm adaptively maintains
PMs according to the current generation’s population
information, which is able to help the algorithm effectively
exploit the unexplored domains. In addition, ACEA uses the
anchor-based semantic reasoning strategy to initialize the
individual and refine the new individuals, which can effectively
reduce the algorithm’s searching domain. The framework of
ACEA is presented in Algorithm 1, which takes as input two
ontologies to be aligned, and the output the alignment with best
fitness value.

In the next, we successively present the Semantic Reasoning
Based Initialization and adaptive PM maintenance.
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FIGURE 4 | Sensitivity testing on Adaptive Compact EA’s (ACEA) parameter δ in terms of f-measure.

Algorithm 1 The Framework of Adaptive Evolutionary
Algorithm

PMnum =2; //Initialize the number of PM
for i = 0; i < PMnum; i++ do

AMi
elite

= initializeAM(PMi); //Initialize the elite AM
end for

gen = 0;
while gen < maxGen do

for i = 0; i < PMnum; i++ do

Update(PMi); //Execute the evolutionary operator and
update PM

end for

PMnum = adaptivePMMaintenance(); //Adaptivelymaintain
the PMs
gen = gen+ 1;

end while

4.1. Semantic Reasoning Based
Initialization
Typically, the correspondence with a high confidence value is
referred to as Positive Anchor (PA), and the one with a low
confidence value is called the Negative Anchor (NA) (Wang,
2010). The concepts in an ontology are modeled with the

hierarchy graph (Chu et al., 2020), where the node denotes the
concept and the edge represents the relationships between two
concepts. Figure 2 shows an example of correspondences’ logical
contradiction. As shown in the figure, the entities a1, a2, and a3
are three entities of ontology O1, and the entities b1, b2, and b3
belong to ontologyO2. InO1 (O2), a3 (b3) is subsumed by a1 (b1),
and a1 (b1) is subsumed by a2 (b2). Assuming the correspondence
(a1, b1) is a PA, the correspondences (a2, b3) and (a3, b2) logically
contradict with (a1, b1). It is obvious that the correspondences
that contradict with some PA will not hold, and the confidence
of correspondences that are in line with some NA should be
reduced. According to this reasoning rule, the searching space of
the algorithm can be reduced.

Each individual of ACEA is represented by a 0–1 matrix, i.e.,
the so-called AM. Figure 3 shows an example of an encoding
mechanism, wherein the top of the figure is a real alignment, and
its corresponding AM is given below it. ACEA uses Probability
Matrix (PM) to approximately describe the population, which
has the same size as AM. PM’s elements are the real number
in [0,1], which denotes the probability of being 1 with respect
to the corresponding gene bit. Therefore, we can use PM to
generate AM by comparing its elements with a random number
in [0,1].

Since the problem of EBOA is a large-scale issue with sparse
solutions, it is necessary to evenly distribute the gene value
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FIGURE 5 | Sensitivity testing on ACEA’s parameter δ in terms of running time (second).

TABLE 2 | Comparisons among Adaptive Compact EA (ACEA), Compact EA

(CEA), and Hybrid CEA (HCEA) in terms of mean f-measure and standard

deviation.

Testing case CEA HCEA ACEA

f-measure f-measure f-measure

(stdDev) (stdDev) (stdDev)

ENVO-SWEET 0.79 (0.03) 0.83 (0.01) 0.88 (0.01)

FLOPO-PTO 0.76 (0.01) 0.76 (0.02) 0.83 (0.01)

AGROVOC-NALT 0.78 (0.03) 0.80 (0.01) 0.89 (0.02)

ANAEETHES-GEMET 0.74 (0.02) 0.82 (0.01) 0.92 (0.01)

TABLE 3 | T-test on alignment’s quality.

Testing case (CEA, ACEA) (HCEA, ACEA)

t-value (p-value) t-value (p-value)

ENVO-SWEET –5.69 (0.014) –7.07 (0.009)

FLOPO-PTO –9.89 (0.005) –6.26 (0.012)

AGROVOC-NALT –6.10 (0.012) –8.04 (0.007)

ANAEETHES-GEMET –16.09 (0.001) –4.14 (0.026)

when initializing AM. Algorithm 2 shows the pseudo-code
of initialization.
We first initialize AM by setting all its elements as 0 and
determine the positive anchor set PAS with the similarity

Algorithm 2 Initialization

Initialize Aligning Matrix AM by setting all its elements as 0;
if Probability Matrix PM is not given then

initialize all the elements in PM as 0.5;
end if

initialize the Positive Anchor Set PAS;
for i = 0; i < PAS.length; i++ do

for j = 0; j < AM.row; j++ do

for k = 0; k < AM.column; k++ do

if (entityi, entityj) is contradicted with PASi then
PMi,j = 0;

else

if random(0, 1) < PMi,j then

AMi,j = 1;
end if

end if

end for

end for

end for

measure. If probability matrix PM is not given, all its
elements will be initialized as 0.5. Then, we compare all the
correspondences in AM with PAS. If the correspondence is
logically conflicted with PAS’s correspondence, its AM and
PM’s values will be set as 0, otherwise, its value is decided by
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comparing its corresponding PM’s value with a random number
in [0,1]. Through semantic reasoning, the searching space can be
significantly reduced, and initializing PM’s elements as 0.5 is also
of help to ensure the even distribution of the gene values.

4.2. Updating Probability Matrix
Adaptive compact evolutionary algorithm combines the
mechanisms of a classic EA with a competitive learning
mechanism, which is effective to lead the algorithm to determine
the optimal solution. To be specific, ACEA first uses its fitness
function to evaluate its solution’s fitness value by calculating
its corresponding alignment’s f − measure′, and through
competitions between the individuals, the algorithm updates PM
by moving it toward the elite individual. The process of updating
PM is presented in Algorithm 3.

Algorithm 3 Updating Probability Matrix

AMnew = PM.generateAM();
AM′ = PM.generateAM();
for i = 0; i < AMnew.row; i++ do

for j = 0; j < AMnew.column; j++ do

if random(0, 1) < 0.5 then
AMnew

i,j = AM′
i,j;

end if

end for

end for

compete(AMnew,AMelite);
if winner == AMnew then

AMelite = AMnew;
end if

for i = 0; i < PM.row; i++ do

for j = 0; j < PM.column; j++ do

if AMelite
i,j == 1 then

PMelite
i,j + = 0.01;

else

PMelite
i,j − = 0.01;

end if

end for

end for

for i = 0; i < PMelite.row; i++ do

for j = 0; j < PMelite.column; j++ do

if corr(ei, ej).conf < 0.2 then

PMelite
i,j = 0;

if corr(em, en) is corr(ei, ej)’s neighbor correspondence
then

if corr(em, en) does not logically contradict with
corr(ei, ej) then

PMelite
m,n− = 0.01;

end if

end if

end if

end for

end for

In Algorithm 3, we first generate two AMs and use them to
obtain a new AM AMnew with the uniform crossover operator.
Then, AMnew is compared with the elite AM AMelite, and the
winner will become the elite AM. After that, we use AMelite

to update its corresponding PM: if AMelite
i,j == 1, then

PMelite
i,j + = 0.01; otherwise, PMelite

i,j − = 0.01. We update

PM so that the newly generated AM will be closer to the elite
AM. Finally, we find the NA corr(ei, ej) from AMelite, and their
neighbor correspondence corr(em, en) where the shortest path
between em (or en) and ei (or ej) in the ontology hierarchy
graph is less than 2, we pick up those do logically contradict
with corr(ei, ej) and reduce their corresponding PM elements’
values by 0.01. In particular, the step length of updating PM
determines the algorithm’s learning rate. If the step length
is too large, the algorithm converges quickly, i.e., the value
of PMâĂŸs elements are close to 1 or 0; and if it is too
small, the algorithm consumes a long running time. Here,
we empirically set the step length as 0.01, which is able
to ensure the highest average quality of alignments on all
testing cases.

4.3. Adaptive Probability Matrix
Maintenance
At the end of the generation, adaptive PM
maintenance is executed to adjust the algorithm’s

Algorithm 4 Adaptive Probability Matrix Maintenance

if
∑

(|PMa
i,j − PMb

i,j|) < 0.5 then

if PMa
elite

is better than PMb
elite

then

remove PMb;
else

remove PMa;
end if

end if

if All elite AMs keep unchanged for δ generations then
for i = 0; i < PMnew.row; i++ do

for j = 0; j < PMnew.column; j++ do

if PMmax
i,j = PMmin

i,j = 1or0 then

PMnew
i,j = 1or0;

end if

if PMmax
i,j < 0.5 then

PMnew
i,j = PMmax

i,j + rand(0, 1)(1− PMmax
i,j );

end if

if PMmin
i,j > 0.5 then

PMnew
i,j = (1− rand(0, 1))PMmin

i,j ;
end if

if PMmax
i,j > 0.5 and PMmin

i,j < 0.5 then

PMnew
i,j = 0.5;

end if

end for

end for

AMnew
elite

= initializeAM(PMnew);
end if
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FIGURE 6 | Comparison among ACEA, CEA, and HCEA in terms of convergence graph on ENVO-SWEET.

searching direction. The pseudo-code of
adaptive population maintenance is shown in
Algorithm 4.

In Algorithm 4, we first calculate the distance between the
existing PMs. The smaller distance indicates a larger overlap
between their searching directions, and therefore, the one
with worse elite AM should be deleted. When all elite AMs
keep unchanged for δ generations, i.e., the algorithm gets
stuck in the local optima, we add a new PM PMnew with a
different searching direction. To determine PMnew’s elements,
we need to analyze the existing PMs’ elements distribution
through the maximum probability and minimum probability.
To be specific, for each of PMnew’s element PMnew

i,j , we find

its corresponding maximum probability PMmax
i,j and minimum

probability PMmin
i,j from the existing PMs. If they are all equal

to 1 or 0, we will set PMnew
i,j as 1 or 0. If PMmax

i,j < 0.5,

PMnew
i,j will be put in the left of all existing probabilities, i.e.,

PMnew
i,j = PMmax

i,j + rand(0, 1)(1 − PMmax
i,j ). If PMmin

i,j > 0.5,

PMnew
i,j will be put in the right of all existing probabilities,

i.e., PMnew
i,j = (1 − rand(0, 1))PMmin

i,j ). If PMmax
i,j > 0.5

and PMmin
i,j < 0.5, PMnew

i,j will be put in the middle, i.e.,

PMnew
i,j = 0.5. Finally, we initialize the elite AM AMnew

elite

for PMnew.

5. EXPERIMENT

5.1. Experimental Configuration
We use the track of Biodiversity and Ecology in Ontology
Alignment Evaluation Initiative (OAEI)1 to test ACEA’s
performance. Biodiversity and Ecology track consists of four
pairs of ontologies in the biodiversity and ecology domain: (1)
ENVO2-SWEET3, (2) PTO4-FLOPO5, (3) AGROVOC6-NALT7,
(4) GEMET8-ANAEETHES9. All of these ontologies are widely
used in various projects and researches on biodiversity and
ecology, which are developed in parallel and are significantly
overlapping.

In the experiment, we compare ACEA with CEA (Xue et al.,
2015), HCEA (Xue and Chen, 2019), and OAEI’s participants. In
particular, CEA’s configuration is as follows:

1http://oaei.ontologymatching.org
2http://agroportal.lirmm.fr/ontologies/ENVO
3https://bioportal.bioontology.org/ontologies/SWEET
4http://agroportal.lirmm.fr/ontologies/TO
5http://agroportal.lirmm.fr/ontologies/FLOPO
6http://agroportal.lirmm.fr/ontologies/AGROVOC
7http://agroportal.lirmm.fr/ontologies/NALT
8http://agroportal.lirmm.fr/ontologies/GEMET
9http://agroportal.lirmm.fr/ontologies/ANAEETHES
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FIGURE 7 | Comparison among ACEA, CEA, and HCEA in terms of convergence graph on FLOPO-PTO.

• The maximum generation= 3,000;
• The step length for updating PV= 0.01.

The configuration of HCEA’s is as following:

• The maximum generation= 3,000;
• The step length for updating PV= 0.01;
• The crossover probability= 0.6;
• The mutation probability= 0.03;
• The mutation shift= 0.05.

Additionally, ACEA’s configuration is given as follows:

• The maximum generation= 3,000;
• The threshold for activate PMMaintenance= 60;
• The step length for updating probability matrix= 0.01.

Ontology Alignment Evaluation Initiative’s participants’ results
are from OAEI’s official website10. We first show the sensitivity
testing on ACEA’s parameter, then ACEA is compared with CEA
and HCEA in terms of f-measure and convergence graph, and
finally, ACEA is compared with the state-of-the-art ontology
aligning techniques. ACEA, CEA, and HCEA’s results are the
mean value of 30 independent runs.

10http://oaei.ontologymatching.org/2021/biodiv/index.html

5.2. Experimental Results
First, the sensitivity testings are carried out on ACEA’s parameter
δ that determines the timing of executing the PMmaintenance. If
δ is too large, ACEAwould get stuck in the local optima for a long
time, which would hamper the algorithm from converging on the
global optima, and if δ is too small, there would be too many PVs,
which increases the computational complexity. We empirically
take five representative values, i.e., 20, 40, 60, 80, and 100, to
execute the sensitivity testing on δ, whose results are shown in
Figures 4, 5.

In Figures 4, 5, with the increasing values, the quality of
alignments begins to deteriorate when δ > 60, and the running
time start to decrease, and when δ = 60, it reaches the bottom.
Therefore, the parameter δ = 60 is able to better trade-off the
quality of alignments and the algorithm’s running time.

In Table 2, we compare ACEA with CEA and HCEA with
mean f-measure f -measure and the standard deviation stdDev. In
Table 2, the statistical t-test (Schmetterer and Lehmann, 1962) is
executed on the data presented in Table 3.

In Table 3, the T-test’s degree of freedom of is 2, and
the significance level is 0.05. On all testing cases, the p-
values are all smaller than 0.05, and thus, we can draw the
conclusion that ACEA statistically outperforms CEA and HCEA
based aligning techniques at the significance level of 5%. It
is obvious that through adaptively maintaining PMs, ACEA
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FIGURE 8 | Comparison among ACEA, CEA, and HCEA in terms of convergence graph on AGROVOC-NALT.

can effectively explore the whole feasible region and find high-
quality alignments.

As depicted in Figures 6–9, with the introduction of semantic
reasoning, the searching space of ACEA can be significantly
reduced, which makes it able to more efficiently converge to the
global optimal solution.

Finally, we compare ACEA with OAEI’s participants on
Biodiversity and Ecology track through f-measure. In Table 4,
we can see that ACEA’s mean f-measure outperforms all the
state-of-the-art ontology aligning systems on all testing cases.
ACEA makes use of the evolutionary paradigm to iteratively
refine the alignment’s quality, which is a more effective way of
improving the alignment’s quality than other machine learning
based aligning approaches (such as ALOD2Vec, POMap, and
DOME), logical reasoning based aligning methods (such as
Lily, LogMap Family, and XMap) and Word-based aligning
techniques (such as AML, Wiktionary, FCAMapKG, ATBox,
and KGMatcher).

5.3. Discussions on Experimental Results
Compact evolutionary algorithm combines the mechanisms
of a classic EA with competitive learning, which is effective
to lead the algorithm to determine the optimal solution. In
addition, the simplicity of CEA, which does not require all the

mechanisms of an EA, rather the few steps in the algorithm are
small and simple. HCEA further introduces local refinements
on the elite solution, which allows increasing the convergence
speed via the local search. Compared with CEA and HCEA,
ACEA works based on the probabilistic modeling of promising
solutions, which makes it easier to predict the movements of the
populations in the search space. When confronted with complex
optimization issues, ACEA is able to jump out of the local
optima through adaptively PM maintenance, which guides the
algorithm to explore the potential search space and learn a more
complex probabilistic model. Therefore, ACEA outperforms
CEA and HCEA in terms of both qualities of alignments and
computational efficiency.

In addition, ACEA comprehensively aggregates three broad
categories of entity similarity measure, i.e., syntactic-based
similarity measure, linguistic-based similarity measure, and
structure-based similarity measure, which lead to better
alignments than the ones that only take into consideration one
or two of them, such as AML, LogMap Family, POMap, XMap,
DOME, FCAMapKG. This is because when facing a different
heterogeneous situation, none of the similarity measures could
be effective in all matching tasks, and taking into consideration
more similarity measures could be of help to find the correct
correspondences.
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FIGURE 9 | Comparison among ACEA, CEA, and HCEA in terms of convergence graph on ANAEETHES-GEMET.

TABLE 4 | Comparisons among ACEA and state-of-the-art ontology aligning techniques in terms of f-measure.

Aligning system ENVO-SWEET FLOPO-PTO AGROVOC-NALT ANAEETHES-GEMET

AML (Lima et al., 2020) 0.84 0.86 0.87 0.85

Lily (Wu et al., 2019) 0.73 0.68 - -

LogMap (Jiménez-Ruiz, 2020) 0.78 0.80 - 0.89

LogMapBio (Jiménez-Ruiz, 2020) 0.77 0.79 - 0.89

LogMapLite (Jiménez-Ruiz, 2020) 0.77 0.75 - 0.49

POMap (Laadhar et al., 2018) 0.78 0.68 - -

XMap (Djeddi et al., 2015) 0.78 0.76 - -

DOME (Hertling and Paulheim, 2018) - 0.73 - -

FCAMapKG (Algergawy et al., 2019) 0.63 0.69 - -

POMap (Laadhar et al., 2018) 0.69 0.68 - -

ATBox (Hertling and Paulheim, 2020) 0.69 0.71 - -

Wiktionary (Portisch and Paulheim, 2020) - 0.002 - -

ALOD2Vec (Portisch et al., 2020) - 0.002 - 0.10

KGMatcher (Fallatah et al., 2021) 0.005 - - 0.063

ACEA 0.88 0.83 0.89 0.92

The symbol “-” means that the corresponding matching technique is not able to determine an alignment.

6. CONCLUSION

To manage knowledge on ecology and biodiversity and
preserve the ecosystem and biodiversity simultaneously, it
is necessary to link the data entities in different ecology

and biodiversity ontologies. To this end, this study proposes
an ACEA-based ecology and biodiversity ontology aligning
technique. In particular, the problem of EBOA is modeled
as a large-scale discrete optimization problem with a
sparse solution. Then, a hybrid entity similarity measure is
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presented to calculate the ecology and biodiversity entities’
similarity. Finally, a problem-specific ACEA is proposed,
which introduces semantic reasoning and adaptive PM
maintenance to efficiently solve the problem of EBOA. The
experimental results show that the evolutionary paradigm
is able to find a better alignment than other artificial
techniques and the proposed semantic reasoning and
adaptive PM maintenance are able to further improve the
algorithm’s efficiency.

Although ACEA based aligning technique shows its
superiority in the experiment, it is not able to detect the
m:n correspondence, i.e., multiple source entities are mapped
with multiple target entities, which is a common complex
correspondence pattern. In addition, ACEA is also not able to
find other semantic relationships among the entities, such as
the subsumption. Finally, the divide-and-conquer approach
has been proved to be a viable method that can facilitate the
effectiveness of aligning process (Hu et al., 2008), and we are
also interested in utilizing the ontology partitioning technique to
pre-process two ontologies.
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Panax notoginseng is an important medicinal plant in China, but there are some

limitations in the ecological suitability study, such as incomplete investigation of species

distribution, single regionalization modeling, and lack of collaborative evaluation of

ecological suitability, and quality suitability. In this study, the maximum entropy model

was used to analyze the ecological suitability of P. notoginseng under current and future

climates. The multi-source chemical information of samples was collected to evaluate

the uniformity between quality and ecology. The results showed that the current suitable

habitat was mainly in southwest China. In the future climate scenarios, the high suitable

habitat will be severely degraded. Modeling based on different regionalization could

predict larger suitable habitat areas. The samples in the high suitable habitat had both

quality suitability and ecological suitability, and the accumulation of chemical components

had different responses to different environmental factors. Two-dimensional correlation

spectroscopy combined with deep learning could achieve rapid identification of samples

from different suitable habitats. In conclusion, global warming is not conducive to the

distribution and spread of P. notoginseng. The high suitable habitat was conducive to

the cultivation of high-quality medicinal materials. Actual regionalization modeling had

more guiding significance for the selection of suitable habitats in a small area. The multi-

regionalization modeling theory proposed in this study could provide a new perspective

for the ecological suitability study of similar medicinal plants. The results provided a

reference for the introduction and cultivation, and lay the foundation for the scientific

and standardized production of high-quality P. notoginseng.

Keywords: Panax notoginseng, maximum entropy model, ecological suitability, quality suitability, multi-

regionalization modeling
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INTRODUCTION

Panax notoginseng (Burk.) F. H. Chen is a perennial herb of
Panax genus, whose dry root and rhizome are valuable medicinal
herbs, peculiar to China. Modern studies have proved that
P. notoginseng mainly contains saponins, flavonoids, volatile
oils, sterols, organic acids, polysaccharides, amino acids, and
other chemical components (Wang et al., 2006, 2016, 2020;
Li et al., 2013; Liu et al., 2020), and has anti-inflammatory,
anti-tumor, protecting the cardiovascular system, improving the
immunity and blood circulation and inhibiting the metastasis
of liver tumor cells and other pharmacological effects (He
et al., 2012; Zhou et al., 2014; Xie et al., 2018; My et al.,
2021). Due to the uniqueness of the growth environment,
P. notoginseng has become the dominant medicinal material
in China. As the main raw material of traditional Chinese
medicine preparation, decoction pieces, and Chinese patent
medicine, it is also an important pillar for the development
of the regional economy, which is of vital importance to the
development of the traditional Chinese medicine industry and
even the whole health industry (Cui et al., 2014). However,
P. notoginseng is a typical ecologically fragile shade plant
with a narrow distribution area. Coupled with problems, such
as continuous cropping obstacles, diseases, insect pests, and
other problems, the origin of P. notoginseng in Wenshan
in Yunnan faces a planting bottleneck (Ou et al., 2021).
In addition, there are reports of deforestation to plant
P. notoginseng in 14 prefectures and cities in Yunnan,
which poses varying degrees of harm to forest resources
and the ecological environment (YUNNAN.CN, 2019). The
contradiction between the protection of forest resources and the
standardized development of P. notoginseng planting industry
is becoming increasingly prominent. Accordingly, there is
an urgent need for the introduction and expansion of new
planting areas.

Panax notoginseng is an economic medicinal plant that has
been cultivated and domesticated earlier. It has been artificially
cultivated for more than 400 years, and its demand has
been increasing sharply year after year (Wang et al., 2013).
Traditionally, P. notoginseng in Wenshan has the best quality
and effect. In order to meet the market demand, new planting
areas have been developed in Kunming, Qujing, Honghe, and
other regions. The quality differences in different regions reflect
that the growing development of P. notoginseng is affected by
natural ecological factors (Tao and Wu, 2003). Therefore, blind
introduction and expansion will seriously affect the rational
distribution of P. notoginseng production, greatly weakening
the authenticity of medicinal materials, resulting in a serious
decline in the quality of medicinal materials. When planting,
it is extremely important to determine the suitable area for
medicinal materials. For thousands of years, the evaluation
of high-quality medicinal materials has been limited to the
relationship between the efficacy and place of production. The
understanding of the relationship between medicinal materials
and the environment is still vague and superficial, failing to
reveal its intrinsic relevance. The research on the ecology of
medicinal plants and the ecology of traditional Chinese medicine

resources should be actively strengthened to realize the synergy
between the ecological suitability and quality suitability of
medicinal plants.

Existing studies have analyzed the ecological suitability and
quality ecology of P. notoginseng to different degrees. The
possible distribution of the ecological suitable area and the main
ecological factors affecting the geographical distribution were
discussed (Zhang H.Z., et al., 2016). The study indicated that
the possible ecological suitable areas in China were distributed
in Yunnan, Guangxi, Guangdong, Guizhou, Hainan, Sichuan,
Fujian, and Chongqing, accounting for more than 70% of
the world’s optimum cultivation area. Yunnan and Guangxi
were the most suitable cultivation areas. The United States,
Brazil, Portugal, and other countries also have a small number
of optimal cultivation areas (Meng et al., 2016). The main
ecological factors affecting the geographical distribution of
P. notoginseng are the precipitation of warmest quarter,
temperature seasonality, altitude, isothermality, coefficient of
variation of precipitation seasonality, the mean of monthly,
and the precipitation of the driest month (Zhang Q. et al.,
2016). Although current studies can provide a theoretical
basis for the suitable regionalization of P. notoginseng, there
are some limitations, such as incomplete investigation of
species distribution, single regionalization modeling method,
and lack of ecological and quality coordination research,
which seriously restrict the reliability of research results. In
addition, most regionalization studies aimed at suitability
accounted for the majority, while few regionalization studies
focused on the accumulation of secondary metabolites. The
regionalization studies did not discuss whether the growth
suitability and quality suitability of the suitable area was
consistent, resulting in that the suitable area obtained had no
practical value for P. notoginseng cultivation, land use, and
social economy.

The present study conducted a more comprehensive

investigation and collection of the actual distribution of P.

notoginseng. At the theoretical level, the interaction between

the environment and planting of P. notoginseng was analyzed

to find the key ecological factors, and the maximum entropy
(MaxEnt) model was used to explore the potentially suitable

habitat and simulate the impact of climate change on the

distribution of P. notoginseng in the future. At the practical

level, modern analytical methods were used to integrate

multi-source chemical information of P. notoginseng samples,

analyze the ecological suitability regionalization and quality

suitability regionalization collaboratively, and establish a

rapid identification method of P. notoginseng from high-

quality suitable habitat. It is proposed to combine theory
and practice on the basis of current species distribution,

reveal the geographical distribution pattern of P. notoginseng

under current and future climate scenarios, and evaluate the

consistency of ecological suitability regionalization and quality

suitability regionalization. In this way, the quality of the source is

guaranteed, and a scientific basis is provided for the selection of
suitable planting regionalization for P. notoginseng under future
climate change.
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MATERIALS AND METHODS

Species Distribution Data
The distribution data of P. notoginseng were obtained by
three ways: (1) From 2011 to 2018, the Institute of Medicinal
Plants, Yunnan Academy of Agricultural Sciences conducted
field surveys on themajor distribution areas in Yunnan, Guangxi,
and surrounding areas, recorded the longitude and latitude
information of planting sites in detail, and compiled data sets
of species distribution. (2) Species distribution information
was obtained through literature review and online sharing
platform of specimen digital information. Platforms include the
Chinese Virtual Herbarium databases of National Plant Specimen
Resource Center (CVH, https://www.cvh.ac.cn), the National
Specimen Information Infrastructure (NSII, www.nsii.org.cn),
and the Global Biodiversity Information Facility (GBIF, https://
www.gbif.org). (3) Government news reports combined with
Google satellite images conducted investigation and image
analysis of greenhouses for planting P. notoginseng in Yunnan,
Guangxi, Guizhou, Sichuan, and in Chongqing from 2020 to
2021, so as to supplement and improve the species distribution
data set. Through the integration of the above data sets, 3,475
species distribution data were obtained.

The species distribution data were further filtered and
screened. First, the items with duplicate origin information and
incomplete latitude and longitude information were removed.
Then, based on Google Earth and the latitude and longitude
information of specimens, the entries with incorrect origin
information were revised or deleted. Finally, in order to avoid the
redundancy of distribution data during modeling, ArcGIS was
used to buffer and analyze species distribution data, and repeated
data within 1 km was deleted to ensure that there was only one
species distribution point in each 1.0 × 1.0 km2 grid. Through
the above screening, 2,122 species distribution data (Figure 1)
were finally reserved forMaxEnt modeling analysis. Details of the
distribution data are shown in Supplementary Table S1.

Environmental Variables
The environment variables for modeling mainly include
elevation data and bioclimatic variables (Table 1). All these
variables (spatial resolution of 30 s and raster data of about 1.0×
1.0 km2) were downloaded from the WorldClim (https://www.
worldclim.org/). The climate variables required to study current
species distributions were obtained from the grid data generated
by interpolating observations from global climate stations from
1970 to 2000. Future climate data were predicted by the medium-
resolution Climate System Model (BBC-CSM2-MR) developed
by the National Climate Center (Beijing). Two greenhouse gas
concentration pathways (medium-low concentration scenario:
SSP245 and high concentration scenario: SSP585) under two
future periods (2050s: 2041–2060 and 2090s: 2081–2100) were
selected to study. The precision of future climate data provided
by WorldClim is 2.5min. In order to facilitate modeling, the
data of spatial resolution was unified at 30 s by using ArcGIS
raster resampling.

In order to avoid over-fitting of modeling results due to
multicollinearity among environmental variables, elevation

and bioclimatic variables corresponding to species distribution
data were extracted for Spearman’s correlation analysis.
Combined with the modeling results, when the variables are
significantly correlated and the correlation coefficient is>0.8, the
variables with small modeling contributions are eliminated. All
environment variables were converted to ASCII format before
modeling. The final variables used for modeling are shown in
Table 1.

Model Establishment and Evaluation
Regionalization of Modeling
Regionalization, which means the division of regions, is a
way for people to extract spatial information according to
a specific purpose, and to realize the understanding of the
natural or the social environment through the region-based
classification and merger (Margules and Pressey, 2000; Margules
et al., 2002). The regionalization of traditional Chinese medicine
resources is to study the spatial differentiation law of traditional
Chinese medicine resources and their regional systems, and to
divide them into regions according to this spatial consistency
and difference law (Chinese Medical Company, 1995; Zhu
et al., 2017). The traditional method of modeling based on
all distribution points (i.e., overall regionalization) may have
poor representativeness and ignore the internal relationship
between the quality of medicinal materials and the regional
ecological environment. As a result, the model results are
only of theoretical significance and lack of practical guiding
significance combined with actual regionalization. Through
the comprehensive utilization of more reliable and reasonable
species regionalization results, the collaborative modeling of
ecological suitability regionalization and production suitability
regionalization can greatly improve the practicability of predicted
suitable habitat for P. notoginseng. Therefore, in addition to
modeling for overall regionalization, this study also divided all
distribution sites into the following regionalization according to
the topographic characteristics of the distribution region, the
actual planting situation, the authenticity of planting region, the
traditional production area, the new production area, and other
restrictions: (1) Hengduan Mountains, (2) Yunnan-Guizhou
Plateau, (3) Yunnan + Guangxi, (4) Sichuan Basin, (5) Sichuan
+ Chongqing + Guizhou, and (6) Sichuan + Chongqing +

Guizhou + Guangxi + Wenshan. It is planned to compare
and predict the suitable habitat areas of P. notoginseng through
different regionalization modeling.

Parameter Setting and Establishment of Model
MaxEnt modeling is one of the most widely used algorithms
in the recent years (Phillips et al., 2006). This method has
been widely used in the prediction of geographic distribution of
medicinal plant species with high simulation accuracy (Guisan
and Zimmermann, 2000; Elith et al., 2011). In this study, species
distribution data in CSV format and environment variable data
in ASCII format were imported into MaxEnt software (Version
3.4.4). About 75% of distribution data were set as training set and
the remaining 25% as test set. Maximum iterations were set to
5,000, and the remaining parameters were default values. Model
prediction results were saved as ASCII files.
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FIGURE 1 | The picture information on 2,122 distribution records, habitats, and samples of Panax notoginseng.

TABLE 1 | The environment variables information.

Type Abbreviation Environment variables Unit

Climate factor Bio01 Annual mean temperature ◦C

Bio02* Mean diurnal range ◦C

Bio03* Isothermality /

Bio04* Temperature seasonality ◦C

Bio05 Max temperature of warmest month ◦C

Bio06 Min temperature of coldest month ◦C

Bio07* Temperature annual range ◦C

Bio08 Mean temperature of wettest quarter ◦C

Bio09 Mean temperature of driest quarter ◦C

Bio10 Mean temperature of warmest quarter ◦C

Bio11 Mean temperature of coldest quarter ◦C

Bio12 Annual precipitation mm

Bio13* Precipitation of wettest month mm

Bio14* Precipitation of driest month mm

Bio15* Precipitation seasonality /

Bio16 Precipitation of wettest quarter mm

Bio17* Precipitation of driest quarter mm

Bio18* Precipitation of warmest quarter mm

Bio19* Precipitation of coldest quarter mm

Topographic factor Ele* Elevation m

Variables with an asterisk (*) were used for the final modeling.

The area under the curve (AUC) value of the area under
the receiver operating characteristics (ROC) curve was used
to evaluate the accuracy of the model results. The AUC
value ranges from 0 to 1, and the closer the value is

to 1, the more reliable the prediction results are (Hanley
and McNeil, 1982; Zweig and Campbell, 1993). The index
of important variables affecting the species distribution was
determined by Jackknife test combined with the cumulative
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contribution rate of modeling environmental variables (Phillips,
2005).

The ASCII files obtained by MaxEnt operation were imported
into ArcGIS and converted into raster data. Raster data were
reclassified according to habitat suitability index (HSI). The
suitability was divided into four categories according to the
difference of suitability index: high suitability (HIS ≥ 0.6),
moderate suitability (0.4 ≤ HIS < 0.6), low suitability (0.2 ≤

HIS < 0.4), and no suitability (HIS < 0.2) (Shen et al., 2021).
The areas of various suitable habitat were calculated by Zonal
Statistics of ArcGIS.

Post-processing of Model Results
The spatial extent of suitable habitat of P. notoginseng was
modeled based on the current climate data. Since the overall
regionalization is more representative of the actual distribution
of P. notoginseng, the modeling projections of two future periods
(2050s and 2090s) and two emission scenarios (SSP245 and
SSP585) were performed based on the overall regionalization.
Then, the HIS for current and future suitable habitats were
calculated based on the results of MaxEnt software (probability of
species presence). According to the suitability index, the habitat
suitability of P. notoginseng was divided into high suitability,
moderate suitability, low suitability and no suitability.

The changes of current and future suitable habitats were
evaluated by calculating the suitable habitat change rate (SHCR)
of high suitability, moderate suitability, and low suitability.

SHCR = (AF − AC)/AC.

Ecological Quality Suitability Analysis of
P. notoginseng
Sample Collection
At present, the cultivation area of P. notoginseng is mainly
concentrated in Yunnan, China. In addition, according to
the survey results of actual distribution sites, there are more
distribution sites in the five regions of Wenshan, Honghe,
Yuxi, Kunming, and Qujing in Yunnan Province. Therefore,
considering the actual planting situation, the economic value of
production and the prediction results of suitable habitat for the
Maxent model, these five regions were selected for sampling,
and a total of 455 samples of P. notoginseng were collected.
The picture information of some habitats, collection sites, and
samples are shown in Figure 1. All samples were identified as
P. notoginseng (Burk.) F. H. Chen by Professor JinYu Zhang,
Institute of Medicinal Plants, Yunnan Academy of Agricultural
Sciences. After sampling, the roots of fresh samples were taken,
cleaned, and dried in a constant temperature oven at 50◦C. Then
all samples were crushed with a grinder, screened through 80
mesh, and stored in ziplock bags to avoid light for subsequent
analysis. The number of samples used for content analysis and
spectral analysis is shown in Supplementary Table S1.

Content Determination
In this study, the contents of notoginsenoside R1, ginsenoside
Rg1, ginsenoside Re, and ginsenoside Rb1 were determined

by high-performance liquid chromatography (HPLC) analysis.
The contents of total flavonoids and total polysaccharide were
determined by UV-visible spectrophotometry. Chromatographic
analyses were performed with LC-10 ATvp liquid chromatograph
system with a diode array detector. binary pump, manual
sampler, and CLASS-VP workstation. The chromatographic
separation was achieved using an Inertsil ODS-3 column (4.6 ×

150mm, 5µm). Standards of notoginsenoside R1, ginsenoside
Rg1, ginsenoside Re, ginsenoside Rb1, and rutin were purchased
from the Chinese National Institute for Food and Drug Control
(Beijing, China). Anhydrous glucose was purchased from Sigma-
Aldrich. HPLC grade acetonitrile and methanol were purchased
from Thermo Fisher Scientific (Fair Lawn, NJ, USA). Other
chemicals and reagents were of analytical grade.

Determination of four kinds of saponins, such as
Notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, and
ginsenoside Rb1 were precisely measured at 2.00, 3.00, 2.20,
and 2.40mg, respectively, and dissolved in 1mL of methanol
solution. The solution was diluted 7 times according to the
gradient of 60% to obtain a total of 8 mass concentration
gradients of the reference solution. Sample powder was weighed
accurately to 100 ± 0.30mg and extracted with 2.0mL of
methanol by an ultrasound-assisted method for 60min at
ambient temperature. The methanol loss was supplemented
after ultrasound, and the extract solution was filtered using a
0.22µm membrane filter, which was the solution to be tested.
The mobile phase and gradient elution procedures refer to HPLC
detection of P. notoginseng in the Chinese Pharmacopeia (I
division, 2015 edition) (National Pharmacopoeia Committee,
2015). The mobile phase consisted of ultrapure water (A) and
acetonitrile (B). The gradient elution sequence was conducted as
follows: 0–12min (19% B), 12–60min (19–36% B). The column
temperature was 30◦C. The flow rate was kept at 1 mL/min and
the injection volume was 10 µL. Detective wavelengths were set
at 203 nm (Ma, 2014).

Determination of total flavonoid: Rutin was weighed
accurately to 1.20mg, dissolved in 8mL of 70% ethanol
solution, and then added 0.1 mol·L−1 of AlCl3 ethanol solution
(chromogenic agent) to 10mL. The mother liquor of standard
substance was diluted 6 times according to the equal gradient
of 60% to obtain the standard substance solution with seven
concentration gradients. Sample powder of 50 ± 0.2mg were
accurately weighed, and 8mL of 70% ethanol solution was
added for ultrasonic extraction for 1 h. Then, 6mL of extracts
were absorbed, and color reagent was added to 8mL. Color
developing time was 20min, and scanning range was 190–
600 nm. The background was scanned using a blank solution
with chromogenic agent before collecting the sample spectra
(Sun et al., 2018).

Determination of total polysaccharides: Anhydrous glucose
was accurately weighed to be 30.50mg, and the volume was
adjusted to 100mL with ultrapure water. The sample powder
of 500.0 ± 1.0mg was accurately weighed, and the volume was
fixed to 50mL with ultrapure water. Ultrasonic extraction was
performed at 60◦C water bath for 2 h, and the lost solution was
supplemented after completion. The extract was quickly filtered
by a quantitative filter paper. After the filtrate was cooled to
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room temperature, 20mL of filtrate was absorbed into a 50mL
centrifuge tube. After heating, the filtrate was volatilized to
10mL, and then 100% ethanol was added to the filtrate at a
constant volume of 50mL. After blending, the filtrate was left to
settle for 12 h. After precipitation, the solution was centrifuged
at a speed of 9,000 r/min for 10min, and the supernatant was
extracted after centrifugation. The precipitation was washed with
30mL of 80% ethanol solution and centrifuged at a speed of
9,000 r/min for 5min. The supernatant was extracted and washed
twice. The precipitation was added with ultra-pure water at a
constant volume of 40mL, and then heated in boiling water bath
for 30min after uniform oscillation, which was the solution to be
tested. The glucose standard solution of 0.05, 0.1, 0.2, 0.4, 0.6, 0.8,
and 1.0mL was accurately pipetted into test tubes, and water is
added to 2mL, respectively. About 1.0mL of the sample solution
was precisely pipetted into a test tube, water was added to 2mL,
and finally, 1mL of 5% phenol solution was added. After shaking,
4mL of concentrated sulfuric acid was slowly added along the
wall of the test tube, shaken quickly, and heated in a boiling water
bath for 30min. The solution was cooled to room temperature,
and the UV scan range was set to 350–600 nm. The background
was scanned using a blank solution with chromogenic agent
before collecting the sample spectra (Li et al., 2017).

Fourier Transform Mid-infrared and Near Infrared

Spectra Acquisition
The Fourier transform mid-infrared spectra (FT-MIR) of each
samples were performed by the Fourier transform infrared
spectrometer (Perkin Elmer, Norwalk, CT, USA) equipped with
a deuterated triglycine sulfate (DTGS) detector. The sample
powder (1.2 ± 0.2mg) and KBr powder (15.0 ± 1.0mg) were
accurately weighed andmixed in an agate mortar. After grinding,
the mixture was poured into a mold and pressed to make
uniform flakes. Each sample tablet was tested to obtain FT-
MIR spectra that was recorded in the region of 4,000–650 cm−1

with a resolution of 4 cm−1, and a total of 16 scans were
performed. Two scans were repeated for all samples to obtain an
average spectrum. Prior to sample scanning, the background was
scanned using blank KBr tablet to remove carbon dioxide and
water interference.

The near infrared spectra (NIR) of sample powder were
collected with an Antaris II spectrometer (Thermo Fisher
Scientific, USA) equipped with an integrating sphere diffused
reflection mode and Result 2.1 software. The wavenumber region
was set to 10,000–4,000 cm−1, and the resolution was set to 8
cm−1. About 64 scans were accumulated for a single sample, and
each sample was repeated for three times to obtain the average
spectrum. The spectral record after acquisition is the logarithm
of reciprocal reflectance.

Analysis of Content Data
To investigate whether P. notoginseng samples with ecological
suitability (these samples are usually from highly suitable habitat
areas) has quality suitability, the contents of notoginsenoside
R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, total
flavonoids, and total polysaccharides in these samples were
compared and analyzed. In addition, we drew the boxplot for

intuitively displaying the content data distribution characteristics
of P. notoginseng samples from Wenshan, Honghe, Yuxi,
Kunming, and Qujing.

Principal component analysis (PCA) is an unsupervised
pattern recognition method, which transforms multiple
related variables into a group of unrelated new variables
by dimensionality reduction, while preserving the original
sample information as much as possible (Abdi and Williams,
2010). In this study, simca software was used to conduct PCA
on the content data and 20 environmental variables of five
regions, in order to explore the similarity and differentiation
of environmental variables, and the correlation between
environmental variables and content.

Discriminant Evaluation Based on Deep Learning
Deep learning is the main research method adopted in the
development of artificial intelligence at the present stage,
which has unique advantages in image classification and object
recognition (LeCun et al., 2015). The spectroscopy technology
has the advantages of fast, lossless, and convenient. In particular,
a two-dimensional correlation spectroscopy (2DCOS), which
has the advantages of multi-discipline, can greatly improve the
resolution of spectra through the increase of dimension, and
enrich the information carried by the spectra (Noda, 1989).
Combining it with deep learning for the identification of
medicinal plants can give full play to the advantages of the two
technologies and greatly improve the efficiency of identification
analysis. In this study, a deep learning method combined with
2DCOS was developed to rapidly identify samples from different
suitable habitat areas.

Generalized 2DCOS is an effective method to improve
the spectral resolution and solve spectral overlap problem by
designing interference variables, which is obtained by discrete
generalized two-dimensional correlation spectral algorithm. Its
dynamic spectra are expressed as S, and the expression is
provided in Equation (1), where v is the variable and t is the
external disturbance (Noda, 1993).

S(v) =




y(v, t1)
y(v, t2)
y(v, t3)

�

�

�

y(v, tm)




(1)

Studies have shown that synchronous 2DCOS is more suitable for
the identification ofmedicinal plants (Yue et al., 2021). Therefore,
we combined it with deep learning to identify samples from
different suitable areas. The synchronous spectral intensity is, and
its expression is provided in Equation (2).

8 (v1, v2) =
1

m− 1
S (v1)

T · S (v2) (2)

Matlab2017b software was used to automatically generate
synchronous 2DCOS images. All images were stored in the
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corresponding folder in the JPEG image format of 64 × 64-
pixel size, which is used to build the ResNet model. All data sets
were divided into training set (60%), test set (30%), and external
validation set (10%) using the Kennard–Stone algorithm.

In this study, a 12-layer ResNet was established with a
weight attenuation coefficient λ of 0.0001 and a learning rate
of 0.01. Supplementary Table S2 showed the ResNet network
parameter configuration. The model structure is shown in
Supplementary Figure S1, where the input data is synchronous
2DCOS images. The identification flow chart of ResNet is shown
in Supplementary Figure S2. The training set was used to train
the model. The Stochastic Gradient Descent (SGD) method was
adopted to search for optimal parameters and minimize the loss
function value, so as to obtain the optimal model. The test set
was used to verify whether the performance of the final model
was optimal. The external validation set was used to verify the
generalization ability of the model.

RESULTS AND DISCUSSION

Model Evaluation and Important
Environmental Variables
The AUC value can be used to evaluate the credibility and
accuracy of the model results, and its value is between −1 and
1. For the AUC value, 0.60 < AUC ≤ 0.70 indicates that the
model effect is fair, the value 0.70 < AUC ≤ 0.80 indicates that
the model effect is good, the value 0.80 < AUC ≤ 0.90 indicates
that the model effect is very good, and the value 0.90 < AUC ≤

1.00 indicates that the model effect is excellent (Swets, 1988). The
AUC values of the prediction results of the seven models were all
higher than 0.92, indicating that all models had excellent fitting
effects and high prediction accuracy.

Eleven climate factors were selected as indicators to simulate
the suitable habitat of P. notoginseng, and the main climate
factors affecting the distribution of P. notoginseng were obtained.
Supplementary Table S3 shows AUC values and important
environmental variables of the seven regionalization models
under current climate conditions. The results of important
environmental variables were obtained from the comprehensive
analysis of contribution analysis of variables and the jackknife
test of variable importance, which were listed in the descending
order of importance as follows. The variables that had a higher
contribution to the overall regionalization model were Bio04,
Bio07, Ele, and Bio17, and their cumulative contribution rate
was 95.32%. For the Hengduan Mountain regionalization model,
Bio04, Bio03, Bio14, Bio17, and Ele had a high contribution
rate to the potential distribution of P. notoginseng with a
cumulative contribution rate of 94.08%. The variables of Bio04,
Ele, Bio02, Bio17, and Bio14 contributed significantly to the
potential distribution of P. notoginseng in Yunnan-Guizhou
Plateau regionalization model, with a cumulative contribution
rate of 93.40%. For Yunnan + Guangxi regionalization model,
Bio04, Bio07, and Bio17 contributed significantly to the potential
distribution, with a cumulative contribution rate of 96.48%.
The variables of Bio04, Ele, Bio03, and Bio19 had a high
contribution rate to the potential distribution in the Sichuan

Basin regionalization model, with a cumulative contribution
rate of 100.00%. Bio18, Bio14, Bio15, Bio02, Ele, and Bio19
had a high contribution rate to the potential distribution of P.
notoginseng in the Sichuan + Guizhou regionalization model,
with a cumulative contribution rate of 93.84%. For Sichuan +

Guizhou + Guangxi + Wenshan regionalization model, Bio17,
Bio04, Ele, Bio13, Bio15, and Bio07 contributed significantly to
the potential distribution of P. notoginseng with a cumulative
contribution rate of 99.53%.

In summary, there are certain differences in the important
environmental variables affecting the distribution of suitable
habitats in different regions, which has reference significance for
the introduction and cultivation of P. notoginseng in different
regions. On the whole, the main ecological factors affecting the
spatial distribution of P. notoginseng are Bio04, Ele, and Bio17.
According to relevant literature reports, the elevation of the
most suitable planting area of P. notoginseng is about 1,400–
1,800m, and the incidence of black spot will increase with the
higher elevation beyond the suitable range (Dong et al., 2016).
In addition, precipitation and temperature have a vital influence
on the growth and distribution. P. notoginseng prefers humidity
and warmth, but excessive high temperatures and excessive
precipitation during the growth period will cause diseases to
occur, and too little will not meet the growth needs (Zhang
Q. et al., 2016). Therefore, special attention should be paid to
the reasonable control of moisture and temperature during the
cultivation and introduction process in different regions. From
the similarity of important environmental variables, Models 2,
3, 6, and 7 are relatively similar, while Models 4 and 5 are
significantly different. The results showed that there was a certain
correlation between the existing ecological environment of
different regionalization, which could provide a certain reference
for the division of real regions, so that the regionalization
results could be truly used in the production of P. notoginseng.
In addition, similar climate is a prerequisite for introduction
and cultivation, and it is more likely to expand P. notoginseng
successfully in regionalization with high similarity to traditional
producing areas.

Current Distribution of P. notoginseng
Under Overall Regionalization Model
The AUC values of training set and test set data of
MaxEnt model under the overall regionalization were 0.927
(Supplementary Table S3), indicating that the model has
excellent fitting effect and high prediction accuracy. Based
on MaxEnt prediction results, the potential distribution of
P. notoginseng under the overall regionalization model was
divided and visualized, as shown in Figure 2. The suitable
habitat distribution of P. notoginseng under current climatic
conditions was mainly in the southwest of China. Highly suitable
habitat areas were concentrated in Yunnan Province, presenting
a horizontal distribution with broad areas in the east and
sparse areas in the west. In the western margin of Guangxi,
the southwest margin of Guizhou, and the southern margin of
Sichuan, there are highly suitable habitat areas with small area.
The high suitable habitat in Yunnan were mainly distributed in

Frontiers in Plant Science | www.frontiersin.org 7 April 2022 | Volume 13 | Article 81837642

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yue et al. Ecological Suitability and Quality Suitability

FIGURE 2 | The potential distribution of Panax notoginseng under current climate based on the overall regionalization model.

the central and southeast Yunnan, including Wenshan, Honghe,
Qujing, Kunming, Yuxi, and Chuxiong. It is also distributed in
some prefectures and cities of west and south Yunnan, such as
Baoshan, Lincang, Dehong, and Pu’er. The moderate and low
suitable habitat mainly include the central part of Hengduan
Mountain region, the northwest part of Yunnan-Guizhou
Plateau, and the borderlands of Yunnan, Guizhou, Guangxi, and
Sichuan Province. Currently, the total area of suitable habitat
in China is 27.85 × 104 km2, of which the area of high suitable
habitat is 10.01 × 104 km2, the area of moderate suitable habitat
is 8.44 × 104 km2, and the area of low suitable habitat is 9.40 ×

104 km2 (Supplementary Table S4). The area of high suitable
habitat in Yunnan is 9.74 × 104 km2, accounting for 97.30% of
that in China.

The model results show that the potential distribution area of
P. notoginseng is relatively limited, which is consistent with the
actual distribution of P. notoginseng. The main reason for this
result is that P. notoginseng has special requirements on climate,
soil, vegetation, and other growth environment (Zhang H.Z.,
et al., 2016). However, due to the rapid increase in the demand
for P. notoginseng and the shortage of suitable land resources, the
planting range has been expanded to many Prefectures and cities
of Yunnan, Guangxi, Guizhou, Sichuan, and other places (Li
et al., 2018). From the actual distribution and model prediction
results, we can find that although there are suitable habitats in
the northwestern Yunnan, P. notoginseng has not been planted

on a large scale as in the southeastern Yunnan. We speculate that
the accumulation of temperature and humidity in northwestern
Yunnan is lower than that in the southeastern Yunnan since the
barrier of Ailao Mountain is not conducive for the growth of P.
notoginseng. In addition, the terrain in the northwestern Yunnan
is steep. In terms of regional topography and geomorphology,
this may also be one of the reasons why P. notoginseng has
not been planted in large areas in the northwestern Yunnan.
On the contrary, why Sichuan, as a new production area, can
successfully plant P. notoginseng is also a question worthy of
discussion and of great practical significance for the expansion
of P. notoginseng. Judging from the distribution sites in Sichuan,
almost all the planting sites are close to the river, which
provides a guarantee for the important humidity conditions
required for the growth of P. notoginseng. We speculate that
this is one of the factors influencing its successful planting.
Second, the accumulated temperature of Sichuan is similar to
that of Yunnan, which may also be an important influencing
factor. In future, the production of P. notoginseng will face the
problem of further expansion of the production area and re-
selection of the location. The current overall regionalization
modeling is a general prediction of the suitable habitat, which
has certain significance for actual planting. However, Chinese
medicinal materials have spatial consistency and differences in
climate, topography, landform, vegetation, soil, and other aspects
according to natural conditions. Discussions on the suitability
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FIGURE 3 | The potential distribution of Panax notoginseng under current climate based on different regionalization model. (A) Hengduan Mountain regionalization,

(B) Yunnan-Guizhou Plateau regionalization, (C) Yunnan + Guangxi regionalization, (D) Sichuan Basin regionalization, (E) Sichuan + Chongqing + Guizhou

regionalization, and (F) Sichuan + Chongqing + Guizhou + Guangxi + Wenshan regionalization.

of Chinese medicinal materials based on regionalization may
have greater reference value for actual production, planting, and
quality. Therefore, it is necessary to explore suitable habitats
for P. notoginseng under different regionalization according to
local conditions.

Current Distribution of P. notoginseng
Under Different Regionalization Models
MaxEnt model was used to predict the current potential
distribution areas of P. notoginseng in different regionalization.
The AUC values of the training set and test set data of the
six models under different regionalization were all >0.920
(Supplementary Table S3), indicating that the model fitting
effect was good and the prediction accuracy was high. The
suitable habitat area data of the whole country and five provinces
are shown in Supplementary Table S4, and the intuitive
comparison chart is shown in Supplementary Figure S3. The
distribution of suitable habitats for P. notoginseng in different
regionalization models is shown in Figure 3.

Figure 3A shows the distribution of suitable habitat of
P. notoginseng based on the regionalization of Hengduan
Mountain. Compared to the overall regionalization model, the
high suitable habitats in Hengduan Mountain region shifted
and expanded to the northwest, and the area of low suitable
habitats in Yunnan increased. Figure 3B shows the distribution
of suitable habitat of P. notoginseng based on the regionalization
model of Yunnan-Guizhou Plateau. Compared to the overall

regionalization model, the regional change of high suitable
habitat in Yunnan-Guizhou Plateau region is not significant, but
the area of moderate and low suitable habitat is significantly
reduced. Figure 3C shows the distribution of suitable habitat
of P. notoginseng based on the regionalization of Yunnan +

Guangxi. The regional distribution of high suitable habitat is
roughly consistent with the overall regionalization model.

Figure 3D shows the suitable habitat distribution of
P. notoginseng based on the regionalization of Sichuan
Basin. Figure 3E shows the suitable habitat distribution of
P. notoginseng based on Sichuan+Guizhou regionalization. The
results of high, moderate, and low suitable habitat predicted by
the two regionalization models were significantly different from
those of the overall regionalization model. From the Figure 3

and Supplementary Table S4, we can see that the area of high
suitable habitat increased significantly in Sichuan, Guizhou, and
Guangxi. Based on the Sichuan Basin Regionalization model,
the high suitable habitat area in Sichuan is 46 times more than
that under the overall regionalization model. The area of high
suitable habitat in Sichuan, Guangxi, and Guizhou based on the
Sichuan + Guizhou regionalization model is 57 times, 91 times,
and 104 times that of Sichuan, Guangxi, and Guizhou based on
the overall regionalization model, respectively. Figure 3F shows
the suitable habitat distribution of P. notoginseng based on the
Sichuan + Guizhou + Guangxi + Wenshan regionalization
model. This regionalization added Guangxi and Wenshan on
the basis of Sichuan + Guizhou regionalization. The prediction
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results of the model are greatly different from the results of
model in Figure 3E. The high suitable habitat area is mainly
distributed in Wenshan, with an area of only 1.71 × 104

km2.
In general, compared to the overall regionalization model,

the distribution of high suitable habitat in the Yunnan-
Guizhou Plateau regionalization model and Yunnan + Guangxi
regionalization model was consistent, while the other four
regionalization models (A, D, E, and F) had significant
changes in both area and location. This was caused by the
differences of topographic, geomorphic, and climatic factors
in different regionalization, which indicated that selecting the
suitable habitat in these four divisions should refer to the
prediction results of each regionalization rather than the overall
regionalization. From models D, E, and F, we can see that
Sichuan, Guangxi, and Guizhou should theoretically have larger
suitable habitat areas. Since the overall regionalization model
is more focused on traditional production areas with more
distribution points, it conceals important environmental factors
of new production areas, and underestimates the potential
and suitability of planting P. notoginseng in Sichuan, Guangxi,
and Guizhou. It is worth noting that the reason why the
suitable area of the F model is so different from that of
the E model may be due to the difference in the altitude.
Therefore, for areas with large differences in topography and
geomorphology, modeling according to different regionalization
may be more practical in guiding the selection of suitable habitats
in different regions than the overall regionalization modeling.
In this study, modeling based on different regionalization can
predict a larger area of suitable habitat and provide more
choices for the introduction of P. notoginseng. However, a
more reasonable and practical regionalization study is needed
to provide a solid foundation for the suitable habitat analysis of
P. notoginseng.

Future Distribution of P. notoginseng
Under Overall Regionalization Model
Under the background of climate change, two climate scenarios
of 2050s and 2090s were selected respectively. The optimum
MaxEntmodel was used to simulate the geographical distribution
of P. notoginseng, and the suitable habitat distribution (Figure 4)
and suitable habitat area (Table 2) under different climate
scenarios in different periods was obtained. In order to evaluate
the distribution changes of suitable habitat of P. notoginseng
under current and future climate conditions, we also calculated
the SHCR (Table 2). The results show that the total suitable
habitat areas for low, moderate, and total areas increased
under the four scenarios in the two periods. Among them,
the areas of low, moderate, and total suitable habitats under
the SSP585-2050s climate background increased the most, and
their areas were 14.70 × 104 km2, 11.07 × 104 km2, and
33.96 × 104 km2. Compared to the current climate scenario,
the area of high suitable habitats has increased by 56.38,
31.16, and 21.94%, respectively. It is worth noting that under
different climate scenarios, the increase of low suitable habitat
is the most significant, and the SHCR is higher than 40%.

The area of high suitable habitat decreased, and the area
of high suitable habitat was 8.95 × 104 km2, 8.58 × 104

km2, 8.19 × 104 km2, and 8.02 × 104 km2 under the four
scenarios, respectively. Compared to the current climate, the
area of high suitable habitat decreased by 10.59, 14.29, 18.18,
and 19.88%, respectively. In the scenario of SSP585-2090s, P.
notoginseng has the smallest area of high suitable area in the
whole country.

In this study, it was found that P. notoginseng has the
widest distribution and the largest area of high suitable habitat
under the current climate scenario. With the increase of
time and emission intensity, the area of high suitable habitat
decreased, and the emission intensity had a greater impact on
the area of high suitable habitat than that of time. The higher
the emission intensity in the same period, the more is the
decrease in the area of high suitable habitat, indicating that the
scenario of high concentration of CO2 emission had a greater
impact on the potential distribution area of P. notoginseng. The
area of high suitable habitat of P. notoginseng decreased in
China and other provinces, indicating that the high suitable
habitat of P. notoginseng will be degraded seriously under
the background of future climate change. Yunnan was the
province with the largest distribution of high suitable habitat
area under different climate scenarios in different periods. The
total suitable habitat area increased significantly, while the
high suitable habitat area decreased, indicating that the high
suitable habitat was transforming to the moderate and low
suitable habitat, and the moderate and low suitable habitat
was expanding continuously. The transformation and expansion
of suitable habitat in Sichuan was consistent with that in
Yunnan under different climate scenarios in different periods,
while the total suitable habitat area in Guangxi and Guizhou
decreased, and the moderate and low suitable habitat area
showed slight expansion and contraction. The suitable habitat
areas in Yunnan and Sichuan under different climate scenarios
in various periods will continue to expand in the future,
and the phenomenon with the period and emissions intensity
had no obvious positive correlation, indicating that Yunnan
is still the main area for the cultivation and expansion of P.
notoginseng both at present and in the future, and Sichuan is
the potential area of expansion in the future. But it should
be noted that the introduction and cultivation should be
adapted to local conditions. A small-scale introduction should
be carried out first, and then a large-scale promotion can be
carried out after successful trial planting. In addition, ecological
planting modes based on regional distribution have gradually
developed, such as intercropping ofmedicine and grain, cropping
rotation and under-forest planting (Kang et al., 2020), which
can effectively alleviate land shortage caused by continuous
cropping obstacles under traditional planting mode, provide
high-quality medicinal materials, and promote the development
of multi-dimensional cultivation mode. These cropping patterns
were coupled with species interaction and habitat demand
for growing environment. However, climate change will affect
species richness and community stability. Therefore, in addition
to the prediction of a single species in the study of suitable
habitats for P. notoginseng in the future climate, it is also
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FIGURE 4 | Future potential distribution of Panax notoginseng under climate change scenarios SSP245 and SSP585.

TABLE 2 | The distribution area and suitable habitat change rate of Panax notoginseng under future climate scenarios.

Scenario Area (×104 km2) SHCR (%)

L M H T L M H T

ssp245-2050s 12.40 8.90 8.95 30.25 31.91 5.45 −10.59 8.62

ssp245-2090s 13.59 9.34 8.58 31.51 44.57 10.66 −14.29 13.14

ssp585-2050s 14.70 11.07 8.19 33.96 56.38 31.16 −18.18 21.94

ssp585-2090s 13.65 9.90 8.02 31.57 45.21 17.30 −19.88 13.36

L, Low suitable habitat; M, Moderate suitable habitat; H, High suitable habitat; T, Total suitable habitat; SHCR, Suitable habitat change rate.

necessary to coordinate the study of suitable habitats between
regional communities.

Quality Suitability Analysis
Quality Evaluation of Samples in High Suitable

Habitat
The contents of notoginsenoside R1, ginsenoside Rg1,
ginsenoside Re, ginsenoside Rb1, total flavonoids, and
total polysaccharides of P. notoginseng samples from five
high suitable habitats (Wenshan. Honghe, Yuxi, Kunming,
and Qujing) were determined (Supplementary Table S5).
Supplementary Figure S4 is the boxplot of content data.
As can be seen from the Supplementary Figure S4 and
Supplementary Table S5, the content of ginsenoside Rg1 is the
highest, followed by ginsenoside Rb1, notoginsenoside R1 is the
third, and the content of ginsenoside Re is the lowest among the
four saponins. Among the five regions, notoginsenoside R1 and

ginsenoside Rg1 in Honghe, ginsenoside Re, and total flavonoids
in Wenshan, ginsenoside Rb1 in Yuxi, and total polysaccharides
in Kunming were the highest. Taken together, the samples
from Honghe had better quality than those from the other high
suitable habitat according to the standard of “Pharmacopeia of
People’s Republic of China.” We speculated that the difference
in content was caused by the elevation of the collection sites,
changeable climatic conditions, or other natural factors, which
led to the genetic variation of the samples or the change of their
own metabolites.

In general, the contents of notoginseng R1, ginsenoside Rg1,
and ginsenoside Rb1 in 50 samples of P. notoginseng were higher
than the standard contents stipulated by Chinese Pharmacopeia
of 2020 Edition (National Pharmacopoeia Committee, 2020),
indicating that the P. notoginseng samples in the five high
suitable habitats had high quality. It can be seen from the above
results that the ecological suitability and quality suitability of P.
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notoginseng samples in the high suitable habitat are consistent.
However, this study also has some problems, such as insufficient
sample size and coverage of sample collection points in different
regions, so further research is needed.

PCA Analysis Based on Content Data and

Environmental Factors
Principal Component Analysis is a multivariate statistical
technique, which simplifies data structure by simplifyingmultiple
variables into a few comprehensive variables with the idea
of dimensionality reduction. PCA analysis was carried out
on the content data of P. notoginseng and corresponding
environmental variables of different sampling sites in five regions.
This study revealed the relationship between environmental
factors and seven active ingredients using principal components.
Supplementary Figure S5 is the scree plot of PCA, which is a
graph of eigenvalues sorted from the largest to the smallest,
used to determine the number of principal components. The
first five principal components explained 92.3% of the variables
cumulatively, of which 41.2% of the variables were explained
by PC1. Supplementary Figure S6 is a loading plot for PCA,
showing the contribution rate of each variable to the principal
component. The red dashed line on the graph above indicates
the expected average contribution. For a given component, a
variable with a contribution larger than this cutoff could be
considered as important in contributing to the component.
Supplementary Figure S7 is a variable correlation plot colored
by groups. It shows the relationships between all variables. It
can be interpreted as follow: Positively correlated variables are
grouped together. Negatively correlated variables are positioned
on opposite sides of the plot origin (opposed quadrants). The
distance between variables and the origin measures the quality
of the variables on the factor map. Variables that are away from
the origin are well-represented on the factor map.

Obviously, Bio12, Bio16, Bio18, and Bio13 have a positive
effect on the accumulation of GB, GE, and NR, especially GB
and GE. However, Bio07, Bio02, and Ele are not conducive
to the accumulation of these three components, but they are
conducive to the accumulation of TP. Bio14, Bio04, Bio19,
and Bio17 are beneficial to the accumulation of TF, but not
beneficial to the accumulation of NR and GR. There are many
environmental variables that have a positive effect on GR
accumulation, and all of them are distributed in the fourth
quadrant. In particular, Bio05 has a significant effect on GR
accumulation. The study results of Feng et al. (2006) on P.
notoginseng showed that the precipitation in January and the
annual temperature difference were the key factors affecting
the total saponin of P. notoginseng. The precipitation was
beneficial to the accumulation of flavonoid, but inhibited the
accumulation of total saponin, polysaccharides, and dencichine
in P. notoginseng. This is consistent with the correlation analysis
results of this study. In addition, other related studies also showed
that the region with small annual temperature difference was
conducive to the accumulation of notoginseng saponin. Excessive
precipitation would inhibit the accumulation of notoginseng
saponin, while the overcast and rainy environment with more
water was conducive to the accumulation of flavonoid, but

not conducive to the accumulation of dencichine (Dong et al.,
2003). Therefore, in the cultivation of P. notoginseng, appropriate
artificial control of relevant environmental factors, such as
light, humidity and so on, is conducive to the accumulation of
important characteristic components of P. notoginseng.

Rapid Identification of Samples From
Different Suitable Habitat
In this study, ResNet models were established based on FT-MIR
and NIR 2DCOS images to identify P. notoginseng samples from
different suitable areas. The discriminative ability of all models
was evaluated by accuracy and loss values. External validation
was used to judge and evaluate the strengths and weaknesses of
the models to ensure the stability of the established model.

Figure 5 shows the accuracy curve, cross entropy, and external
verification results of the established models. Figure 5A is the
identification result based on the FT-MIR 2DCOS images. The
results show that the accuracy of the training set is 99%, the
test set is 99%, the external validation set is 100%, the number
of epochs is 20, and the loss value is 0.053. Figure 5B is the
identification result based on the NIR 2DCOS images. The results
show that the accuracy of the training set is 100%, test set is 99%,
the external validation set is 100%, the number of epochs is 20,
and the loss value is 0.056.

According to the modeling results, ResNet models based
on FT-MIR and NIR data can achieve rapid identification
of P. notoginseng samples from five suitable areas. From
the perspective of accuracy rate, lost value, and external
verification results, the two models have almost no difference
and have excellent discrimination performance with almost 100%
accuracy. This result may be related to the learning performance
of the deep learning model itself, which can extract features of
different images for learning and finally realize the identification
of target objects (Bargshady et al., 2020). The accuracy curves
based on the training set and test set are highly consistent with
the increasing trend of training rounds, which indicates that the
model has no over-fitting risk and good robustness. The loss
values of these models are close to zero, which verifies that the
established models have good convergence effect.

In conclusion, deep learning combined with 2DCOS is an
efficient and simple recognition method, which eliminates the
need to manually extract sample data features and reduces the
interference of human factors. As a means of identification,
it is applied after ecological suitability evaluation and quality
suitability evaluation, so as to realize the rapid identification
and evaluation of P. notoginseng samples with both ecological
suitability and quality suitability.

CONCLUSION

This study combined theory with practice to study the
geographical distribution pattern of P. notoginseng under current
and future climate scenarios and predicted the suitable habitat
of P. notoginseng through overall regionalization model and
different regionalization model. The ecological suitability and
quality suitability of P. notoginseng samples were analyzed by
integrating multi-source chemical information of samples from
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FIGURE 5 | The accuracy curves, cross entropy, and confusion matrix of ResNet models based on different spectral data. (A) FT-MIR, (B) NIR.

different suitable habitats with modern analytical methods, and
the rapid identification method of high-quality samples from
different suitable habitats was established. Under the overall
regionalization model, P. notoginseng is mainly distributed in
the southwest China, and its high suitable habitat areas are
mainly concentrated in Yunnan, China. Under future climate
scenarios, the high suitable habitat will be severely degraded,
and greenhouse gas emissions will not be conducive to the
distribution and diffusion of P. notoginseng. However, the
suitable habitat areas in Yunnan and Sichuan are expanding
continuously. Whether at present or in the future, Yunnan
is still the main area for the cultivation and expansion of P.
notoginseng, and Sichuan is a region with a great potential
for the expansion of P. notoginseng in the future. Modeling
based on different regionalization can more accurately predict
suitable habitats in a smaller area. Especially in Sichuan, Guizhou,
Guangxi, and other places, the suitable habitat under different
regionalization model is much higher than that of the overall
regionalization model, which can provide more choices for the
introduction and cultivation of P. notoginseng. The analysis
of multi-source chemical information shows that the samples
of P. notoginseng in the high suitable habitat have higher
quality, and the ecological suitability and quality suitability are
consistent. In addition, changes in habitat will also affect the
quality of medicinal materials. The accumulation of saponin,
polysaccharide, and flavonoid in the samples is affected by
various environmental factors. Proper regulation of relevant
environmental factors during the planting process is conducive
to the improvement of the important characteristic components

of P. notoginseng. Deep learning combined with 2DCOS can
realize the identification of samples in different suitable areas,
providing an efficient and simple method for the evaluation
of Traditional Chinese medicine. This study can guide the
reasonable layout of production base, and the introduction and
breeding, and promote the sustainable development of high-
quality P. notoginseng industry.
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Aiming at the problems of low optimization accuracy and slow convergence speed of 
Satin Bowerbird Optimizer (SBO), an improved Satin Bowerbird Optimizer (ISBO) based 
on chaotic initialization and Cauchy mutation strategy is proposed. In order to improve 
the value of the proposed algorithm in engineering and practical applications, we apply 
it to the segmentation of medical and plant images. To improve the optimization accuracy, 
convergence speed and pertinence of the initial population, the population is initialized 
by introducing the Logistic chaotic map. To avoid the algorithm falling into local optimum 
(prematurity), the search performance of the algorithm is improved through Cauchy 
mutation strategy. Based on extensive visual and quantitative data analysis, this paper 
conducts a comparative analysis of the ISBO with the SBO, the fuzzy Gray Wolf Optimizer 
(FGWO), and the Fuzzy Coyote Optimization Algorithm (FCOA). The results show that the 
ISBO achieves better segmentation effects in both medical and plant disease images.

Keywords: satin bowerbird optimizer, chaotic initialization, Cauchy mutation strategy, medical image, plant image

INTRODUCTION

Image segmentation is an important means of image processing, analysis, understanding and 
computer vision. In addition to efficiently locating the region of interest in an image, it can 
also be widely used in the fields of feature extraction (Dobreva et  al., 2021), image classification 
(Houssein et  al., 2021; Xue et al., 2022), medical diagnosis (Kurmi et  al., 2021) and plant 
disease segmentation (Akay et  al., 2021). The quality of image segmentation is affected by 
many factors such as illumination change, inter-class difference and background complexity. 
There is still a considerable gap between existing image segmentation technology and the 
requirements of intelligent recognition and machine vision. Therefore, image segmentation 
remains a very open research field with unlimited potential. In recent times, a variety of image 
segmentation schemes have been proposed based on the needs of image understanding and 
machine vision, including thresholding, edge detection, and region methods (Pare et  al., 2020; 
Mittal et  al., 2021). The thresholding method divides the image into non-overlapping regions 
according to the gray level of the image through a threshold vector (one or more thresholds). 
Compared with other kinds of methods, such a method is easier to perform and involves less 
calculation. Therefore, it has been widely used in many fields, such as those involving medical 
images (Avola et  al., 2021) and plant disease images (Neupane and Baysal Gurel, 2021).
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Although the thresholding method is a simple and effective 
image segmentation procedure, the selection of optimal threshold 
remains crucial due to the influence of image background 
complexity, regional contrast and other factors. With the increase 
in the number of thresholds, the amount of calculation involved 
in this method also increases considerably. Therefore, the 
intelligent optimization algorithm based on specific objective 
function is widely used (Singh et  al., 2021). Yazid et  al. (2022) 
comprehensively analyze the effects of image brightness difference, 
target size and noise on Kapur and Li entropies in image 
thresholding. Through numerous experiments, the author verify 
the effectiveness of the two entropies, and put forward reasonable 
parameter setting suggestions for the application of the two 
entropies in image segmentation. Wu et  al. (2021) take Kapur 
as the objective function and improve the preconditioning 
optimization algorithm (HPOA) through the evolutionary state 
strategy. In the experimental verification stage, the authors 
verify the excellent performance of Kapur entropy in color 
image segmentation through peak signal-to-noise ratio (PSNR), 
feature similarity index (FSIM) and structural similarity index 
(SSIM); this method is superior to other methods such as the 
moth flame optimization algorithm (MFO), and the multiverse 
optimizer (MVO). Sowjanya and Injeti (2021) verify the effects 
of Kapur and Otsu objective functions in multi-thresholding 
image segmentation through the butterfly optimization algorithm 
(BOA) and the gasses Brownian motion optimization (GBMO) 
fusion algorithm. Compared with seven optimization algorithms 
such as WOA (whale optimization algorithm) and SSO (social 
spider optimization), this method obtains better optimal threshold 
and further improves the image segmentation quality. Liu et al. 
(2021) use 2D Kapur entropy as the objective function and 
improve the differential evolution (DE) algorithm through slime 
mould foraging behavior, verifying the better performance of 
this method in breast cancer image segmentation. Experimental 
results show that this method not only improves convergence 
accuracy, but also reduces the risk of falling into local 
optimization. Kurban et al. (2021) use six intelligent optimization 
algorithms including equilibrium optimization (EO) and political 
optimizer (PO) to optimize Kapur and Otsu objective functions 
and obtain the optimal threshold. Through the evaluation 
indices such as PSNR, FSIM, Kapur-based marine predictors 
algorithm (MPA) and turbine flow of water-based optimization 
(TFWO) perform better than the other four methods in color 
aerial image segmentation. Anitha et  al. (2021) take Kapur 
and Otsu as the objective function and obtain the optimal 
threshold through the modified white optimization algorithm 
(MWOA). Compared with GA, PSO and ABC algorithms, this 
method demonstrates superior convergence speed, feature stability 
and image segmentation quality. The time efficiency of this 
method is also higher. According to the specific objective 
function-based multi-level image thresholding methods in recent 
years, the use frequency of Kapur entropy is relatively high, 
and it also shows a reliable optimization effect in experimental 
comparison. Therefore, this paper continues to take the fuzzy 
Kapur (Li et  al., 2016) as the objective function to analyze 
the performance of intelligent optimization algorithms in medical 
and plant image segmentation.

In view of the high computational complexity of multi-level 
thresholding and the demanding requirements of medical and 
plant image segmentation, the intelligent optimization algorithm 
is widely used to obtain the optimal threshold (Avola et  al., 
2021; Mittal et  al., 2021; Neupane and Baysal Gurel, 2021). Li 
et  al. (2016) improve the search strategy of gray wolf optimizer 
(GWO) by weighting the optimal population, enhancing the 
quality of image segmentation through median aggregation. The 
experimental verification of Berkeley segmentation dataset 
benchmarks 500 (BSD500) shows that this method obtains higher 
image segmentation accuracy in evaluation parameters such as 
PSNR and FSIM, compared with GWO, electromagnetism 
optimization (EO) and fuzzy DE. Su et  al. (2022) improve the 
artificial bee colony algorithm (ABC) through horizontal and 
vertical search strategies. This algorithm improves the convergence 
speed and the quality of the optimal solution of ABC to some 
extent. In the experimental verification, the authors compare the 
performance of the algorithm with that of the original algorithm 
through 30 benchmark functions and apply the improved algorithm 
to Covid-19 X-ray images. In comparison with WOA, Sine Cosine 
Algorithm (SCA), Harris Hawks optimizer (HHO), Spherical 
Search optimizer (SSO) and other methods, the algorithm has 
better image segmentation effect on Covid-19 X-ray images with 
Kapur entropy as the objective function. Chen et  al. (2021) 
improve the slim mount algorithm (SMA) through the threshold 
update mechanism of ABC and form a new ASMA fusion 
algorithm. Based on the analysis of 30 standard functions, this 
method obtains a better optimal solution and can effectively 
avoid prematurity. And the authors have achieved good results 
in the segmentation of standard images and lupus nephritis 
images. Li et al. (2021) inspired by the idea of differential evolution 
and make full use of the current number of iterations and the 
maximum number of iterations to improve the population search 
strategy of Coyote optimization algorithm (COA). Compared 
with COA, fuzzy ABC and fuzzy GWO, this method is better 
in visual and PSNR segmentation quality evaluations of BSD500 
and medical image segmentation. Chakraborty and Mali (2022) 
improve the cuckoo search (CS) algorithm using fuzzy theory. 
Through the evaluation indices such as PSNR, SSIM, this method 
enjoys certain advantages in medical image segmentation quality 
and calculation time, compared with the improved DE, moth 
flame optimization algorithm and other methods. Singh et  al. 
(2022) combine the tune swarm algorithm (TSA) and the naked 
mole rat algorithm (NMRA), and compare the data of CEC 
2019 standard function and image segmentation, they show that 
this method is better than PSO, GA and others. According to 
the application of intelligent optimization algorithms in multi-
level thresholding in recent years, we  find this kind of method 
with numerous variations has been used widely in different fields. 
Taking account of the characteristics of medical and plant images, 
and the amount of experimental verification involved, this paper 
seeks to enhance the initialization and optimal population search 
strategy of the SBO. It further seeks to refine its optimization 
accuracy and convergence speed in image segmentation. Thus, 
image segmentation quality is improved.

The remainder of this paper is set out as follows: “Overview 
of the SBO” section briefly introduces the SBO. “The Improved 
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Satin Bowerbird Optimizer Based on Chaos Initialization and 
Cauchy Mutation” section presents the improved SBO (ISBO) 
based on chaotic initialization and Cauchy mutation strategy. 
“Selection of the Objective Function” section analyzes the selection 
of objective function corresponding to ISBO. “Comparison and 
Analysis of Experimental Results with the Medical and Plant 
Images” section details the performance of ISBO for medical 
and plant image segmentation. Finally, “Conclusion” section 
concludes this study.

OVERVIEW OF THE SBO

Satin Bowerbird Optimizer (SBO; Moosavi and Bardsiri, 2017) 
is an intelligent optimization algorithm that simulates the 
breeding behavior of an adult male Satin Bowerbird in the 
wild. As a wild bird with strong survival and reproduction 
skills, a mature male Satin Bowerbird wins the favor of the 
female by carefully constructing a courtship cabin, and attracts 
the opposite sex through continuous loud singing, holding a 
luminous object in its beak, to improve the probability of a 
successful courtship. In the courtship process the male should 
not only ensure a successful courtship cabin construction, but 
also constantly resist the challenges of its competitors, to prevent 
the nest from being damaged. According to Satin Bowerbird 
survival “rules,” the SBO algorithm includes the following steps:

 1. Random generation of the initial population of Satin 
Bowerbirds. An initial population of several NB individuals 
is randomly generated in a solution space. The position of 
each courtship cabin is defined as D-dimension, and the 
current population evolution algebra is t.

 2. Calculate the fitness value (objective function) of each 
individual, and then calculate the ratio of the fitness value 
to the overall fitness value to represent the probability of 
the individual being selected. The probability of selecting 
the courtship cabin is calculated by Equation (1), fiti  
represents the fitness value of the i-th courtship cabin, which 
can be  calculated by Equation (2), f xi( )  represents the 
objective function value of the i-th courtship cabin.

 

Prob fit

fit
i

i

n
NB

n
=

=∑ 1  

(1)

 

fit f x
f x

f x f x
i i

i

i i

= + ( ) ( ) ≥

+ ( ) ( ) <









1

1
0

1 0

,

,
 

(2)

 3. Update the population. According to the position information 
of the last iteration, the male Satin Bowerbird constantly 
adjusts the position of the courtship cabin, to continuously 
approach the optimal solution. The position update formula 
is as follows.
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Where x
ik
t  is the k-dimensional component of the i-th 

individual in the t-th iteration; x jk  is the k-dimensional 
component of the optimal position ever found at present, x j
is determined by the roulette selection mechanism; xelite k,  is 
the k-dimensional component of the current global optimal 
position of the whole population. λk  is the step factor, which 
is calculated by equation (4).
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Where α  is the maximum step size, and Pj  is the probability 
of selecting the target courtship cabin, P ,j∈[ ]01 . Equation 
(4) clearly shows that the greater the probability of selecting 
the target location, the smaller the step size. When the 
probability of selecting the target location is 0, the step size 
is the largest, denoted as α . When the probability of selecting 
the target location is 1, the step size is the smallest, 
denoted as α / 2 .
 4. Individual variation to prevent it from falling into local 

optimization. A strong male often steals from other males’ 
courtship cabins, and even destroys those cabins. Therefore, 
at the end of each iteration of the algorithm, there is a 
certain random mutation probability to improve the mutation 
of the algorithm. At this stage, xik  the follows the normal 
distribution, as shown in Equation (5).
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The calculation formula of the SD is as:

 σ = ∗ −( )z var varmax min  (7)

Where z is the scaling factor, varmax  and varmin  are, 
respectively, the upper and lower limits of the variable xi .
 5. At the end of each iteration, a new combination population 

is formed from the initial population and the population 
obtained from the mutation, and the fitness values of all 
individuals in the combination population are arranged 
in an ascending order. The individual with the largest 
objective function value is retained, and the other 
individuals are removed. If the end condition is satisfied 
at this stage, the optimal position and its corresponding 
optimal value will be  outputted. Otherwise, the iteration 
will continue until the maximum number of iterations 
is reached.
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THE IMPROVED SATIN BOWERBIRD 
OPTIMIZER BASED ON CHAOS 
INITIALIZATION AND CAUCHY MUTATION

Initialization of Logistic Chaos
Although according to the natural law, the initial population 
of the intelligent optimization algorithm adopts a random 
initialization mode, based on the purpose of the engineering 
application and convergence speed requirements, a better 
initialization method will greatly accelerate the convergence 
speed of intelligent optimization algorithm. The SBO also uses 
random values to initialize the population. Therefore, in this 
paper we  introduce a Logistic chaotic map (Aniszewska, 2018) 
to improve the diversity of the initial population, thus obtaining 
a better initial population, and finally improving the optimization 
accuracy and convergence speed of the algorithm. The calculation 
method of Logistic chaotic map is shown in Equation (8):

 X X Xi i i+ = ∗ −( )1 1µ .  (8)

The value range of control parameters µ  is set from 0 to 
4. When the value of µ  is larger, its chaos will be  stronger. 
When the value of µ  is 4, the chaotic initialization effect will 
be  enhanced. Therefore, we  take the value of µ  at 4. Thus, the 
population initialization equation can be changed to Equation (9):

 pop i Position Z i, VarMax VarMin VarMin( ) ( ) ( )= ∗ − +. : .  (9)

Where Z i, :( )  represents Xi+1  of Equation (8).

Cauchy Variation Strategy
The SBO is prone to fall into local optimization in its mutation 
stage. To solve this problem, this paper uses the Cauchy mutation 
strategy (Karakus et  al., 2020) to replace the original mutation 
strategy of the SBO. The peak distribution of Cauchy function 
at the coordinate origin is shorter, but the distribution in the 
rest is longer. Using Cauchy mutation can produce greater 
disturbance nearby the current population. Compared with 
the original mutation strategy of the SBO, the improved method 
can produce greater and wider individual mutation, thus ensuring 
the flexibility and distinctiveness of mutation. The calculation 
equation of Cauchy variation strategy is shown in Equation (10):

 X X t Cauchy X ti j
t

best best,
+ = ( ) + ( )⊕ ( )1

01,  (10)

Where Cauchy (0,1) represents the standard Cauchy 
distribution; X tbest ( )  is the position of an individual that 
needs variation.

The corresponding variation probability is calculated by 
Equation (11):

 
P it

MaxIt
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 +exp 1
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(11)

Where the value of p is taken at 0.05, MaxIt represents 
the maximum number of iterations, and it represents the current 
number of iterations. If r and <Ps, the Cauchy mutation 
operation will not be  performed. Otherwise, the mutation 
operation will continue.

SELECTION OF THE OBJECTIVE 
FUNCTION

According to the analysis of “Introduction”section, Kapur entropy 
is the commonly used objective function of multi-level thresholding. 
In Li et  al. (2021), the Kapur entropy based on fuzzy theory is 
proposed, and the experiments show that the fuzzy Kapur entropy 
has a better optimization effect. Therefore, in order to reflect 
the optimal performance of the ISBO, the fuzzy Kapur continues 
to be  set as the objective function in our work; next the optimal 
threshold is obtained through ISBO optimization, and the image 
is divided into multiple target regions. Assuming I x,y( ) t is the 
gray image that needs to be  processed, l 2 dth , th , , th…  are the 
preset D thresholds, then fuzzy Kapur represents the sum of 
probability statistics being divided into D + 1 different gray 
distributions, which are shown in Equation (12):

 H th th th H H Hd d1 2 0 1, , ,…( ) = + +…+  (12)

Where Hi  is the entropy of the i-th gray distribution, which 
is expressed as:

      

                                            (13)

Where µ0 i( )  is trapezoidal membership function (Li et  al., 
2016), and the threshold is calculated by fuzzy parameters, as 
shown in Equation (14):
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 (14)

COMPARISON AND ANALYSIS OF 
EXPERIMENTAL RESULTS WITH THE 
MEDICAL AND PLANT IMAGES

Parameter Setting and Discussion
In order to verify the value of ISBO in engineering and practical 
applications, this paper focuses on the segmentation effect in 
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medical and plant images. Medical image segmentation can 
assist doctors to determine the location of lesions, especially 
in patients with mild disease, and can effectively help avoid 
doctors’ diagnostic errors. Plant disease segmentation also has 
high application value in the field of agriculture. It can effectively 
detect pests and diseases and improve crop yield in a timely 
manner, especially in large-scale planting. This section first 
analyzes and compares the segmentation effects of medical 
images, and then gives the experimental results of plant images 
in the following section. The experiment of ISBO is performed 
on Windows10 (64bit), Intel Core i5 processor with 8GB RAM, 
using programming software MATLAB R2016a. The setting of 

the experimental parameters is shown in Table  1, like in 
Moosavi and Bardsiri (2017) and Li et  al. (2021).

In order to prove that the parameter setting in Table  1 
can improve the optimization effect of ISBO, Table  2 lists 
the PSNR and FSIM image segmentation quality evaluation 
values of Brn (Figure  1A) images with different population 
numbers, when the threshold is 5. According to the literature 
review in “Introduction” section, PSNR and FSIM are the 
two most commonly used evaluation indices in image 
segmentation. PSNR is called peak signal-to-noise ratio. The 
greater its value, the smaller the distortion of the image. 
FSIM is called feature similarity. The greater its value, the 
higher the similarity between the two images, and the better 
the quality of image segmentation. It can be  observed from 
Table  2 that when the population number is 20, the PSNR 
value and the FSIM value reach their maximum. With the 
increase in the population number, the values of PSNR and 
FSIM begin to decrease gradually. Therefore, in this paper, 
the population number of 20 is adopted.

In (Moosavi and Bardsiri, 2017), the step size is set to 
0.94. In order to verify whether this step size is optimal, 
Table 3 lists the impact of step threshold on image segmentation 
quality with the same image. Table  3 demonstrates that when 
the value of the step threshold increases from 0.5 to 0.94, the 
PSNR value and FSIM value also increase. However, when 

Original images MT=2 MT=3 MT=5

Brn 

Brn2 

Gland

Gland2

A B C D

E F G H

I J K L

M N O P

FIGURE 1 | The medical image segmentation results based on the ISBO. (A-P) only characterize the serial numbers of different experimental images.

TABLE 1 | Experimental parameter setting.

Parameter nPop Alpha Thresholds Iterations

Value 20 0.94 2,3,5 1,000

TABLE 2 | Experimental results with different population numbers.

nPop 20 40 50 60 80

PSNR 26.1277 25.8615 25.4419 25.3696 24.9538
FSIM 0.9069 0.8951 0.8910 0.8890 0.8575
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the step threshold continues to increase from 0.94 onwards, 
the PSNR value and FSIM value begin to decrease. Then we can 
determine that the result is optimized, when the maximum 
step is 0.94. Therefore, this paper sets the threshold step to 0.94.

Table 4 lists the effects of the maximum number of iterations 
on image segmentation quality. When the maximum number 
of iterations is 1,000, the PSNR value and FSIM value of the 
algorithm in this paper are optimal, therefore we  decide to 
set the maximum number of iterations of ISBO to 1,000.

Three spatial local information aggregation methods are 
cited in Li et  al. (2016, 2021). Similarly, this paper also uses 
regional aggregation to improve the effect of image segmentation. 
To further compare the advantages and disadvantages of the 
proposed algorithm where the three aggregation methods are 
applied, Figure  2 shows the segmentation results of Brn 
(Figure 1A) image by ISBO algorithm using the three aggregation 
methods, and Table 5 lists the PSNR evaluation value obtained 

by using the proposed method in this paper under 
different thresholds.

Figures 2A–I demonstrates that the three aggregation methods 
have achieved satisfactory image segmentation results, but the 
visual contrast effect is not visibly obvious. In order to demonstrate 
the advantages and disadvantages of the three methods in detail, 
we can observe from Table 5 that the median aggregation method 
obtains higher PSNR values under all thresholding conditions, 
compared with the other two methods. Therefore, ISBO is 
combined with the median aggregation method to complete the 
next experimental comparison and analysis.

Medical Image Experiment Results
Figures 1B–D, F–H, J–L and N–P show the image segmentation 
results of four medical images [Brain images: (A) and (E), Gland 
images: (I) and (M)] which collected from Simulated Brain 
Database (SBD)1 and Gland Segmentation in Colon Histology 
Images (GlaS)2 with different threshold numbers. In order to 

1 https://brainweb.bic.mni.mcgill.ca/brainweb/
2 https://warwick.ac.uk/fac/cross_fac/tia

Aggregation 
methods MT=2 MT=3 MT=5

Average

Iterative 
average

Median

A B C

D E F

G H I

FIGURE 2 | Image segmentation effect of improved satin bowerbird optimizer (ISBO) based on three aggregation methods. (A-I) only characterize the serial 
numbers of different experimental images.

TABLE 3 | Experimental results with different values of the step thresholds.

Alpha 0.5 0.94 1 1.5

PSNR 23.8823 26.1277 25.9621 24.8653
FSIM 0.8621 0.9069 0.8966 0.8593

TABLE 4 | Experimental results with different maximum iterations.

Iterations 500 1,000 3,000 5,000 10,000

PSNR 25.1937 26.1277 24.4850 25.1867 25.5288
FSIM 0.8604 0.9069 0.8547 0.8912 0.8791

TABLE 5 | Experimental results with three different aggregation methods.

No. of thresholds
PSNR

Average Iterative median Median

2 15.6635 18.1473 18.2564
3 18.7338 22.5321 22.6985
5 25.8563 26.0101 26.2851
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more intuitively demonstrate the quality of image segmentation 
results, Table  6 lists the threshold distribution, PSNR and FSIM 
of the four medical images with different threshold numbers.

As can be observed from Figure 1, for brain medical images 
and gland medical images, the ISBO algorithm can clearly 
segment the structures or tissues of different medical images, 
can effectively assist doctors in medical diagnosis, and can 
provide more refined pre-processing data for accurate diagnosis 
or disease prediction. In order to further compare it with 
other similar algorithms, as visual results alone cannot fully 
illustrate the problem, Table  6 lists the threshold distribution 
and PSNR and FSIM evaluation data of the images in Figure 1 
after being optimized by the ISBO. From the data analysis, 
we can see that with the increase in the number of thresholds, 
the threshold distribution of the proposed method in our work 
tends to be  balanced gradually, and better expected values are 
obtained in the PSNR and FSIM indices.

Quantitative Comparison and Analysis of 
Similar Algorithms
To fully illustrate the advantages of the proposed algorithm 
in this paper, based on Figure 1; Tables 6, 7 lists the experimental 
data of ISBO and SBO, FGWO and FCOA, and analyzes the 
advantages and disadvantages of ISBO with PSNR as the 
evaluation standard.

The experimental data in Table 7 demonstrates that compared 
with SBO, ISBO obtains higher PSNR value in all cases. 
Specifically, the PSNR value of ISBO algorithm increases by 
0.2583 on average, − a mean percentage increase of 1.47%. 
The maximum increase stands at 1.062 and the minimum 
increase at 0.0007. Similarly, the maximum percentage increase 
is 6.03%, the minimum 0.004%. Compared to the FGWO, the 
PSNR value of the ISBO is also superior with an average 
increase of 0.8803 and an average increase ratio of 5.18%, of 
which the maximum increase is 5.7502 and the minimum 
0.0022. By percentage, the maximum increase is 33.86% and 
the minimum 0.01%. Finally, compared with the FCOA, the 
ISBO is better than the FCOA except when the Gland 2 image 
threshold is 2. To be  exact, the PSNR value of the ISBO is 
0.8635 higher than that of the FCOA, with an average increase 
ratio of 4.96%. The highest increase occurs when the threshold 
of Brn2 image is 2, with an increase of 4.1066, and an increase 
ratio of 23.57%.

Comparison and Analysis of Plant Image 
Segmentation Experiments
In order to verify the superiority of ISBO and fully reflect its 
practical application value, we  apply this algorithm to the plant 
image segmentation. In our study, four plant images in the Kaggle 
plant image dataset3 are selected for experiment, and the parameter 
setting is consistent with that discussed in “Parameter Setting 
and Discussion” section. Figures 3B–D, F–H, J–L and N–P show 
the image segmentation results of the four plant images 
(Figures  3A,E,I,M) by ISBO with different threshold numbers. 
The corresponding Table  8 lists the experimental result data.

Figure 3 shows that ISBO achieves more refined plant image 
segmentation, and effectively realizes the segmentation of lesion 
area. Like medical image analysis, it cannot effectively make 
the comparative analysis with other similar algorithms in a 
visual way. Therefore, Table  8 lists the threshold distribution 
and PSNR and FSIM quantitative data corresponding to the 
plant image segmentation. Table 8 shows that with the increase 
in the number of thresholds, the threshold vectors are more 
evenly distributed; the values of PSNR and FSIM are higher, 

3 https://www.kaggle.com/datasets/asheniranga/leaf-disease-dataset-combination

TABLE 6 | The experimental result data with medical images.

Image MT Thresholds PSNR FSIM

Brn 2 38.5 169.5 18.2564 0.6299

3 25.5 117 196 22.6985 0.7868
5 15.5 76 137 162 221.5 26.2851 0.9080

Brn2 2 71.5 175.5 17.6193 0.5881
3 26.5 86 211.5 20.6821 0.6828
5 21 69 104 160 219.5 26.2558 0.8210

Gland 2 111.5 175 13.3887 0.5657
3 77.5 150.5 183 13.8454 0.7133
5 59.5 135.5 156.5 195 236.5 14.1263 0.8328

Gland2 2 93.5 189.5 13.2126 0.5746
3 70 142.5 205.5 13.8357 0.7349
5 24 105.5 136.5 172 243.5 14.1201 0.8404

TABLE 7 | The experimental data with different algorithms.

Image MT PSNR

ISBO SBO FGWO FCOA

Brn 2 18.2564 18.1473 18.1473 16.5122
3 22.6985 22.5213 22.4268 21.4169
5 26.2851 25.5405 25.5976 25.5721

Brn2 2 17.6193 17.5533 11.8691 13.5127
3 20.6821 20.2781 19.5746 20.5012
5 26.2558 25.1938 23.8653 25.2699

Gland 2 13.3887 13.2855 13.3207 13.3219
3 13.8454 13.5825 13.7803 13.6153
5 14.1263 14.1256 14.0953 14.0777

Gland2 2 13.2126 13.1912 13.2104 13.2140
3 13.8357 13.6966 13.7586 13.7032
5 14.1201 14.1110 14.1163 14.1113
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thus proving that the proposed algorithm in our work can 
effectively realize the segmentation of plant disease images.

To more intuitively evaluate the advantages and disadvantages 
of ISBO in plant image segmentation, this section also compares 

ISBO with SBO, FGWO and FCOA. Table 9 lists the experimental 
result data of the four algorithms. It shows that the PSNR 
value of ISBO is superior to that of SBO in all cases. Specifically, 
compared with SBO, the PSNR value of the ISBO increases 

Original image MT=2 MT=3 MT=5

Gry1

Gry2

Gry3

Gy4

A B C D

E F G H

I J K L

M N O P

FIGURE 3 | The plant image segmentation result based on ISBO.

TABLE 8 | Experimental data of the plant image segmentation.

Image MT Thresholds PSNR FSIM

Gry1 2 105 187 16.2897 0.7236

3 82.5 123.5 183.5 16.6751 0.7703
5 27.5 76 144.5 178.5 226.5 26.1164 0.8181

Gry2 2 112 197 16.5825 0.6447
3 51 101 175 19.0693 0.6779
5 36 83.5 125 182 225.5 22.1451 0.7327

Gry3 2 43.5 135.5 16.4277 0.5099
3 37 117 194.5 19.2348 0.5989
5 37 92.5 125 165 232.5 20.7436 0.7151

Gry4 2 66.5 180.5 20.1022 0.5137
3 59 138.5 185.5 22.0812 0.6039
5 23.5 106.5 150 171 200.5 23.5093 0.7078
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by 0.6719 on average, and the average increase percentage is 
3.49%. And the maximum increase reaches 3.5591 and the 
minimum increase reaches 0.0172. By percentage, the maximum 
increase reaches 18.5%, the minimum 0.09%. Compared with 
the FGWO, the ISBO is superior under other conditions except 
when the threshold of Gry3 is 5. Specifically, the PSNR value 
of the ISBO is 1.4126 higher than that of the FGWO, and 
the average increase percentage is 7.67%. In the case of the 
Gry3 image when the exceptional threshold 5 is set, the PSNR 
value of the ISBO is only 0.0607 lower than that of the 
FGWO. Finally, compared with the FCOA, the ISBO still obtains 
higher PSNR value in all cases. Similarly, compared with the 
FCOA, the PSNR value of the ISBO increases by 1.5146 on 
average, with an average increase percentage of 8.23%, of which 
the highest and lowest increase percentages are 51.3% and 
0.05%, respectively.

CONCLUSION

In order to fully verify the value of the intelligent optimization 
algorithm based on specific objective function in medical and 
plant image segmentation applications, this paper introduces 
the ISBO into the multi-level thresholding of medical and 
plant images. The algorithm takes fuzzy Kapur as the objective 
function and optimizes a set of thresholds by improving the 
SBO algorithm to complete the initial image segmentation. 

On this basis, the median aggregation method is introduced 
to avoid the problem of over-segmentation or segmentation 
of outliers. In the process of improving the SBO algorithm, 
chaos initialization and Cauchy mutation strategy are also 
introduced to improve the convergence speed of the algorithm 
and reduce the risk of falling into local optimization. To prove 
the superiority of ISBO, this paper compares ISBO with SBO, 
FGWO and FCOA using medical and plant images. Through 
the comparison of visual and quantitative data, it can be observed 
that ISBO is more effective in the segmentation of medical 
and plant images.
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Deep learning-based methods have recently provided a means to rapidly and effectively
extract various plant traits due to their powerful ability to depict a plant image across
a variety of species and growth conditions. In this study, we focus on dealing with two
fundamental tasks in plant phenotyping, i.e., plant segmentation and leaf counting, and
propose a two-steam deep learning framework for segmenting plants and counting
leaves with various size and shape from two-dimensional plant images. In the first
stream, a multi-scale segmentation model using spatial pyramid is developed to extract
leaves with different size and shape, where the fine-grained details of leaves are
captured using deep feature extractor. In the second stream, a regression counting
model is proposed to estimate the number of leaves without any pre-detection, where
an auxiliary binary mask from segmentation stream is introduced to enhance the
counting performance by effectively alleviating the influence of complex background.
Extensive pot experiments are conducted CVPPP 2017 Leaf Counting Challenge
dataset, which contains images of Arabidopsis and tobacco plants. The experimental
results demonstrate that the proposed framework achieves a promising performance
both in plant segmentation and leaf counting, providing a reference for the automatic
analysis of plant phenotypes.

Keywords: plant phenotyping, segmentation, deep CNN architecture, leaf counting, multiple traits

INTRODUCTION

Plant phenotype is a set of observable traits of a plant, which is heavily influenced by the
interaction between plant gene expression and environmental factor (Siebner et al., 2009). The
accurate and efficient monitoring of phenotypes is essential for plant cultivation, which is a
prerequisite for intelligent production and planting, and information/data management. The
traditional monitoring of plant phenotype mainly requires manual observation and measurement
to analyse the appearance of plants in terms of their shape, texture, colour, and other characteristic
morphological phenotypes (Montero et al., 2000; Minervini et al., 2015). Such an approach is labour
intensive, which is time-consuming and prone to error due to the reliance on subjective perception
(Yang et al., 2020). Image-based plant phenotyping allows non-invasive and distant observation,
reducing the effects of manual interference and vastly increasing the scale and throughput of plant
phenotyping activities. However, it still requires a robust algorithm to automatically process the
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input image to provide accurate and reliable phenotypic
estimation (Scharr et al., 2016). In addition, such an algorithm
should be able to estimate a wide diversity of phenotypes, which
allows for a range of different scientific applications. The current
trend of image-based plant phenotyping attempts to combine
image processing (e.g., noise removal and image enhancement),
feature extraction and machine learning to obtain effective
and efficient estimation (Tsaftaris et al., 2016). In recent years,
deep learning-based methods have made remarkable progress
in the field of computer vision such as semantic segmentation,
classification, and object detection (Lecun et al., 2015). They
integrate feature extraction and classification using a single
convolutional neural network (CNN) based framework, which is
trained in an end-to-end fashion. Due to their powerful ability
to capture meaningful feature representation, deep learning-
based methods are drawing more attention in the plant research
community (Dhaka et al., 2021; Kundu et al., 2021) and have also
been applied to deal with different tasks in plant phenotyping
(Choudhury et al., 2019).

Plant segmentation and leaf counting are two fundamental
tasks of plant phenotyping as they are relevant to the
developmental stage of a plant, and are considered essential
means of providing vital indicators for the evaluation of plant
growth (e.g., growth regulation and flowering time), yield
potential, and plant health. Moreover, they help farmers and
horticulturists to make better decision regarding cultivation
strategic and timely horticulture adjustments. Plant segmentation
aims to extract the plant area, shape, and size from a visual
perspective by segmenting an entire plant from the scene
background in an image. Such a task closely relates to the
semantic/instance segmentation problems, and some researchers
have addressed this task using instance/semantic segmentation
(Romera-Paredes and Torr, 2016; Ren and Zemel, 2017; Ward
et al., 2018; Zhu et al., 2018), achieving promising performance.
Leaf counting aims to estimate the precise number of leaves of
a plant. There are two mainstream ways to infer the leaf count
or leaf number: (1) estimating the leaf number as a sub-product
of leaf segmentation or detection (Girshick, 2015; Kong et al.,
2020; Kumar and Domnic, 2020; Lin and Guo, 2020; Lu and Cao,
2020; Tassis et al., 2021); and (2) directly regarding the task as
a holistic regression problem (Dobrescu et al., 2017; Giuffrida
et al., 2018; Itzhaky et al., 2018; Ubbens et al., 2018; Mishra
et al., 2021). The methods have successfully addressed the tasks
of leaf segmentation and counting using machine learning and
especially deep learning methods, which uncover the intrinsic
information from plant images, even when they contain complex
structure. However, they merely focus on a single task, i.e., learn
one plant trait at a time. Thus, they might ignore the facts that
plant phenotype traits tend to be associated with each other and
lack the insight to the potential relationship between different
traits (Gomes and Zheng, 2020). For instance, the leaf number
is associated with the leaf area, age, and genotype. We believe
that incorporating multiple traits in the deep CNN architecture
could be beneficial for learning more reliable and discriminative
information than using only one trait. Dobrescu et al. (2020)
presented a multi-task framework for leaf count, projected leaf
area, and genotyping, where they compute three plant traits at

the same time by using the share representation layers. However,
they did not address the tasks of plant segmentation that is more
challenging due to the requirement of classifying all the leaves
(foreground) pixel by pixel.

Convolutional neural network based methods have been
applied to plant and leaf segmentation in plant phenotyping. Aich
and Stavness (2017) used a CNN based deconvolutional network
for plant (foreground) and leaf segmentation. Kuznichov et al.
(2019) utilised data augmentation technology to maintain the
geometric structure and physical appearance of plant in images
to improve the leaf segmentation. Bell and Dee (2019) employed
a relatively shallow CNN model to classify image edges extracted
using Canny edge detector, which distinguished the occluding
pairs of leaves. Ren and Zemel (2017) adopted recurrent
neural network (RNN) to generate a single segmented template
for each leaf and combined convolutional long short-term
memory (LSTM) network using spatial inhibition modules. They
then used dynamical non-maximal suppression to leverage the
previously segmented instances to enhance the segmentation.
Although achieving promising results, these methods use the
shallow CNN model, which is inadequate to capture the
meaningful information of the diversity of plant images.
Moreover, all methods concentrate on addressing the single task,
i.e., leaf/plant segmentation in an independent pipeline.

Image segmentation using deep learning has gained a
significant advance, and a few benchmark methods have
been proposed. Fully convolutional networks (FCN) (Long
et al., 2015) and U-Net (Ronneberger et al., 2015) are two
representative models that are based on the encoder-decoder
network architecture. Both of them share a similar idea, i.e., using
skip connection, that shows the capability to capture the fine-
grained characteristics of the target images. FCN summed the
up-sampled feature maps with feature maps skipped from the
encoder, while U-Net modified the way of feature concatenation
by adding convolutions and non-linearities during each up-
sampling step. Another mainstream work is using spatial
pyramid pooling ideas. PSPNet employed a pyramid parsing
operation that captures global context information by region
feature aggregation (Zhao et al., 2017). DeepLab (Chen et al.,
2017) introduced the atrous convolution with up-sampling filter
for feature extraction, and extended it using spatial pyramid
pooling to encode the multi-scale contextual semantics. However,
the various scale pooling operations tend to lose local spatial
details and will fail to maintain leaf target with high density if
a small input size is adopted. The Mask Region Convolutional
Neural Network (Mask-RCNN), proposed by He et al. (2017),
extended the region proposal network by integrating a branch
to predict segmentation mask on each ROI. Mask RCNN can
segment the object with pixel-wise mask from a complicated
background, which is suitable for the leaf segmentation. Thus,
we developed our network model based on the backbone
architecture in Mask-RCNN and simply replaced the plain skip
connection with a nested dense skip pathway to enhance the
ability to extract more fine-grained features in leaf images.

Leaf counting is also an important task in plant phenotyping,
since leaf count is considered as an indicator for yield potential
and plant health (Rahnemoonfar and Sheppard, 2017). From the
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perspective of computer vision, leaf counting can be addressed
along two different lines: (1) Regarding leaf counting as the sub-
product of leaf segmentation or detection, leading to the leaf
number following the segmentation module; and (2) Directly
learning an image-to-count model to estimate the leaf number
using training samples.

Direct Count
Leaf counting is regarded as a holistic regression task, in which
a counting model estimates the leaf number for a given plant
image. In this way, the machine learning based regression
model solely needs the annotation of leaf number, which is an
easier way to obtain compared with the pixel-wise annotations
using segmentation. Dobrescu et al. (2017) presented a counting
framework employing the ResNet50 backbone (He et al., 2016),
in which the learning of leaf counting is performed by gathering
samples from multiple sources. Itzhaky et al. (2018) proposed to
estimate the leaf number using multi-scale representations and
fuse them to make the final predictions. Ubbens et al. (2018)
presented an open-source platform which aims to introduce a
more generalised system for plant breeders, which can be used
to count leaves across different datasets, as well as to assist other
tasks e.g., projected leaf area and genotype classification. da Silva
and Goncalves (2019) constructed a CNN based regression model
to learn from images, where the skip connections of Resent50
(He et al., 2016) are considered efficient for leaf counting. Direct
count could be a natural and easy selection as it is not necessary
to annotate the image when training.

Counting via Detection or Segmentation
This approach regards the leaf counting problem as a sub-
product of detection or segmentation, where the exact locations
and number of the leaves are also obtained after detection
or segmentation. Romera-Paredes and Torr (2016) proposed
to learn an end-to-end segmentation model using RNN, that
segments each leaf sequentially and then estimate the number
of segmented leaves. Aich and Stavness (2017) used a CNN
based deconvolutional network for leaf segmentation and a
convolutional network for leaf counting. Kumar and Domnic
(2019) developed a counting model with the combination of
CNN and traditional methods, where graph-based method is
used for U-Net segmentation and CNN-based is then used for
leaf counting via a fine-tuned AlexNet. Ren and Zemel (2017),
propose a neural network using which visual attention operation
to jointly learn the instance segmentation and counting model,
where sequential attention using LSTM cell is created by using
temporal chain to output one instance at a time. However, such
a segmentation or detection-based method has one limitation
for counting. That is, only successfully segmented leaves are
counted, and imperfect detection will result in reduced accuracy
in counting. Unlike the aforementioned methods, we employ the
segmented binary image to guide the learning of leaf counting,
i.e., not counting directly from the segmented image, thus
avoiding the effect of inaccurate detection or segmentation on
the counting task.

In this study, we present in this article a two-stream
framework, one stream for plant segmentation and the other

stream for leaf counting based on regression. The resultant mask
from segmentation stream is leveraged to guide the learning of
leaf counting, which help to alleviate the inference of complex
background. In order to obtain more semantic and meaningful
feature representation of plant images, we employ the deep CNN
as the model backbones of both two streams. By using the CNN
paradigm, the two-stream model is robust and generalizes well
regardless of the plant species and the quality of the acquired
image data. This is achieved by one stream task supervising the
training of the other stream task via sharing certain knowledge.
To this end, we employ the segmented binary mask from the
plant segmentation stream as an auxiliary cue to optimise the
training process of the leaf counting stream. Introducing the
binary mask to supervise the learning of leaf counting is based
on two issues that exclusively exist in plant leaf counting: (1)
some leaves might be partially occluded by other leaves, or
are incomplete and fragmentary on their own, making them
difficult to detect; and (2) the leaves sometimes contain complex
background, increasing the challenge in leaf counting. These two
issues led to incorrect or missing count where the meaningful
and useful information of leaf is hard to maintain during the
leaf counting. The binary mask effectively deals with these two
issues by precisely locating all individual leaves while alleviating
the effect of complex background. In addition, the binary mask
of image samples brings more diversity of the input images by
increasing the number of samples, which could be regarded as an
implicit data augmentation.

Specifically, in our proposed framework, a two-stream deep
neural network model segments the leaves and counts the
number of leaves, where the segmented binary mask is employed
as an auxiliary cue to supervise the learning of leaf counting. In
the stream for segmentation, a multi-scale-based segmentation
network is proposed to extract fine-grained characteristics of
leaves. In the stream for leaf counting, we propose to learn a
regression model based on the fine-tuned CNN model. During
the learning of leaf counting, the segmented mask is utilized
to highlight the target leaf region (foreground) of interest
(ROI) from the entire image by removing the disturbance of
complex background (i.e., non-leaf area, thus facilitating the
counting process.

The contributions of this study are summarized as follows:

1. We propose to explore fine-grained characteristics, i.e.,
high inter-class similarity and low intra-class variations,
widely existing in high throughput plant phenotyping that
cause the failure in localizing the leaves within a small area
during segmentation. To address this issue, we introduce a
multi-scale U-Net segmentation model which compensates
the upper-lower semantics difference by concatenating
features in various scales. This model is learned in an end-
to-end fashion, allowing for efficient segmentation of the
leaves with different areas.

2. We propose a two-stream network based on deep
CNN architecture to complete the leaf counting
together with plant segmentation, in which the model
outputs the segmentation results and directly estimates
the leaf number.
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3. We enhance the leaf counting by introducing the auxiliary
binary information. The binary mask is utilised to
supervise the leaf counting, which increases the contrast
between the leaf target from background interference,
and significantly aids the convergence of the counting
regression model.

The remainder of the article is presented as follows: we review
related work in Section “Introduction,” present our method in
Section “Proposed Method,” provide the experimental results in
Section “Experiments” and discuss the conclusions and further
work in Section “Conclusion.”

PROPOSED METHOD

We present a parallel two-stream network for determining
leaf count and undertake segmentation simultaneously for the
rosette-shaped plants as shown in Figure 1. The stream for
segmentation adopts the nested U-Net (U-Net++) architecture
(Zhou et al., 2018) as backbone to extract the target leaf region
from the entire image using a binary mask. The stream for
leaf counting learns the CNN based regression model which
is customized by modifying its last layer to directly estimate
the number of leaves where the segmented mask and original
colour images with the leaf number label are mixed as input of
the regression model. The streams for plant segmentation and
count are designed separately first. The segmented binary mask
denoting the area of the leaf is used as a complementary cue to
supervise the learning of the count regression stream. This is
because the two key traits of the two streams, i.e., the area and
leaf number are often related to each other. Incorporating the
leaf area into the estimation of leaf number during the learning
of deep neural network aids not only to learn more meaningful
and essential information, but also alleviates the influence of
complex background.

Plant Segmentation Module
The segmentation module aims to extract the whole leaf area
from the background. In order to enhance the robustness
and accuracy of extraction, it is a necessity for the module
to be in capacity to depict the characteristics existing in a
plant image, i.e., fine-grained and variation in shape and size.
To this end, we consider the nested U-Net as our backbone
network for the segmentation. The nested U-Net model is
proposed based on the U-Net that was originally proposed
to meet the requirement on accurately segmenting medical
images. Compared with the original U-Net model proposed
by Ronneberger et al. (2015), the nested U-Net architecture
replaces the plain skip connection with nested and dense skip
connections, which can capture fine-grained information of the
object in an image. Moreover, due to the up-sampling scheme,
the U-Net model could locate leaves with different size and shape
by using feature maps with different scales. By dealing with
the characteristics in leaves, the nested U-Net is thus suitable
for plant segmentation. Another problem needs to be addressed
during training, namely the ROIs of plant segmentation comprise

a relatively small segment of the entire image. Thus, negative
samples (i.e., background pixels) are much larger than positive
samples (i.e., leaf pixels), which resulted in an unbalanced binary
classification problem. To address the problem, we integrate
the binary cross-entropy (BCE) loss with dice loss together,
and jointly guide the learning process of the segmentation.
Generally, the nested U-Net consists of three main modules:
encoding, decoding, and cross-layers dense concatenation. The
feature maps in the same size are defined to be of the same
layer, denoting the layers as L1–L5 from top to bottom. Each
node represents a feature extraction module consisting of two
3 × 3 convolutional layers, followed by a rectified linear unit
(ReLU) and a 2 × 2 max pooling that use stride 2 for down-
sampling.

The output features from encoder are fused with the next
encoder layer via up-sampling features across layers from top
to bottom. The fusion outputs are concatenated with the
corresponding up-sampled features of the next layer, and the
process is iterated until there is no corresponding module in the
next layer. The integrated feature maps are defined as

xi,j
=

H
(
xi−1,j) j= 0

H
([[

xi,k
]j−1

k=0
,U

(
xi+1,j−1)]) j > 0

(1)

where H(·) denotes a convolution operation followed by an
activation function, U (·) denotes an up-sampling layer, and []
denotes the concatenation layer. Nodes at level j = 0 only receive
input from the previous encoder layer; nodes at level j = 1 receive
the encoder and sub-network input from two consecutive levels;
and nodes j > 1 receive j + 1 inputs of which j inputs are the
outputs of the previous j nodes in the same skip pathway and the
last input is the up-sampled output from the lower skip pathway.

The dense skip connections between layers in the same
dimension pass the output of the current module to all
subsequent modules and fuse it with other input features. Thus,
the overall U-Net++ feature fusion structure is in the form
of an inverted pyramid, where the intermediate layer contains
more accurate localisation information, while the in-depth layer
captures pixel-level category information.

As a typical binary classification task, the core objective is
to segment the plant image into a binary image by labelling
the foreground and background pixels as 1 and 0, respectively.
To overcome the class imbalance problem, BCE loss and Dice
loss are combined to form the objective function to optimize
the imbalance between the foreground and background pixels
through back-propagation. Dice coefficient is a measure of the
pixel degree of an ensemble, and the original expression takes the
form of

d =
2|X ∩ Y|
|X| + |Y|

(2)

where X and Y are sets, and s ∈ [0, 1], and the size of s reflects the
similarity between the sets X and Y.
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FIGURE 1 | The proposed parallel two-stream network combines leaf counting and segmentation tasks. Top row: the modified Resnet50 regression model for leaf
counting with 16 residual blocks. Remaining rows: U-Net++ for segmentation via multi-use of the features from different semantic levels (layers). Each blue box
corresponds to a multi-channel feature map, and the green boxes represent copied feature maps. The arrows denote various operations.

The binary cross-entropy and dice coefficient are combined to
form the final loss function, which is defined as

L(Ygt, Ypred) = −
1
N

N∑
b = 1

(
1
2
· Yb

gt · logYb
pred +

2 · Yb
gt · Y

b
pred

Yb
gt + Yb

pred

)
(3)

where Yb
gt and Yb

pred denote the predict map and ground truth
map of b-th image, respectively, and N denotes the batch size.

The objective function takes the form of a logarithmic logic
function as a replacement for the complex softmax multi-class
prediction function. Forward propagation infers the prediction
results and compares them with the true value annotations
to generate cross-entropy loss. Backward propagation updates
the model weight parameters. In this way, the task of plant
segmentation is transformed into a binary classification problem
that is suitable for plant segmentation. The re-designed skip
pathways take effect on the output of the fused features and
simplify the optimisation on the shallow, middle, and profound
output results for varying degrees, via tuning the overall
parameter of the network.

Learning Count Model With
Segmentation
During leaf counting, the estimated number of leaves tends to
exceed its ground truth. This is because the lower part of a leaf
might be occluded by other leaves, or the leaves are incomplete
and fragmentary on their own, which would be ignored by the
counting model. To address this problem, we introduced the
auxiliary cue, i.e., the segmented mask to guide the learning of

the counting model. Also, it is widely acknowledged the counting
model could fail due to the lacking of available samples belonging
to certain class in the training dataset. The labelling for leaf
counting is also time-consuming. Such data scarcity is often
met in the data-driven methods such as deep learning. Thus,
we augmented the samples by combining the segmented mask
and the original images, which enhance the model to effectively
capture the occluded leaves and the hardly detected leaves in plant
image under the assistance of segmented binary mask.

Inspired by the work of He et al. (2016), we employed
Resnet50 network as our backbone architecture due to its superb
performance in image recognition. For our regression task, we
modified the Resnet50 network by replacing the last layer with
a fully connected layer with one-dimension output, which acts
as a regression model for leaf counting. The modified network
uses the combined samples from the segmentation mask and
the original images as input, and applies convolution with a
7× 7 filter followed by a series of convolutions, ending with fully
connected layers to determine the number of plant predictions.
Residual learning is also used to overcome the inefficient learning
and the possibility of over-fitting due to deep network, where
the skip connections resolve the degradation problem by taking
the output of the previous layers as the input of the latter. For
instance, when an input is x and the learned features are denoted
as H(x), then the residual learning features is F(x) = H(x) - x. The
stacked-layer learns new features on top of the input features, and
a residual unit is given by

yl = h (xl) + F (xl, Wl) , xl + 1 = f
(
yl
)

(4)

where xl and xl + 1, respectively, represent the input and output
of the l th residual unit, and each residual unit contains multiple
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layers of structure. F represents the learned residual block,
h(xl) = xl is the constant mapping, f is the ReLU activation
function. Thus, the learned features from shallow l to deep L are

xL = xl +

L−1∑
i = l

F (xi, Wi) (5)

A chain rule is used to aid the reverse process of gradients, i.e.,

∂ loss
∂xl

=
∂ loss
∂xL
·
∂xL

∂xl
=

∂ loss
∂xL
·

(
1 +

∂

xL

L−1∑
i = l

F (xi, Wi)

)
(6)

where ∂ loss
∂xL

denotes the gradient of the loss function reaching
L, the value 1 in the parentheses indicates that the shortcut
connection mechanism propagates the gradient without loss,
while other residual gradient passes through a layer with weights
indirectly. In this context, 1 is selected to make the residual
gradient easier to learn and thus avoid the gradient vanishing.

To better train the regression model, we employed mean
squared error (MSE) as the loss function. Given an image i
and the ground truth leaf count yi

gt,c, the loss function Lc is
determined by

Lc =
1
m

m∑
i = 1

(
yi

pred,c−yi
gt,c

)2
(7)

where m is the image number and yi
pred,c denotes the

predicted leaf count.
With respect to our regression task, the last fully-connected

layer with 1,000 neurons initially used for classification is
replaced by a layer with a single neuron, which allows for the
output estimation of leaf number. The neuron is to regress the
correct leaf numbers given the input images. To obtain the
rich prior knowledge, the regression network is pre-trained on
ImageNet for parameter initialization, and then fine-tuned on the
used datasets. Our regression model is shown in the top row of
Figure 1. Note that the combination of segmentation and RGB
images extends the input channel from 3 to 4. By extending
the channel, an additional binary channel is added to the leaf
count regression model to convey pure semantic information of
leaf and suppress bias from features in the background of the
training images, e.g., the soil, moss, pot, etc., that differ between
datasets. At the same time, the RGB channels enable the network
to retain the rich local texture and context information that the
binary mask fails to capture, thus enhancing the robustness of our
model. In addition, our regression model does not require any
bounding box or centre point annotation, which can be efficiently
applied to deal with more complex scenes.

U-Net remains the preferred choice for the maintenance of
fine edge binary segmentation. The design of skip connections
greatly enriches the information received by the decoder, and
via specially trained end-to-end, U-Net performs high-precision
segmentation for small training samples. When applied in leaf
segmentation, the architecture extracts the edge details, size,
and shape diversity in the low-level information and uncovers

the discriminative high-level information of the target leaf. This
advantage reduces the overall size of the dataset required for
training. Furthermore, due to the effective reuse of extracted
features and an ability to capture the targets, the architecture
achieves an implicit data argumentation and speeds up the
convergence for the binary tasks during training.

However, since the leaf dataset (with sub-datasets A1–A4)
varies in the degree of occlusion, leaf numbers and leaf size,
we only combined the same-scale information not previously
countered. Designing U-net with different depth for each layer
may be an idea but such an approach has not been widely
applied. To address this, we adopt U-Net++ (remaining rows of
Figure 1) as the feature extractor for segmentation, which extends
U-Net with denser cross-layer concatenation and shortens the
semantic gap between the encoder and decoder by fusing spatial
information from shallow to deep cross layers. The architecture
makes full use of contextual features and semantic information
from the same dimension, and it captures the detailed features
of the target. Moreover, using the pruning scheme basing on
the module which receives the best estimation during training,
the network is adjustable and customisable. For instance, it
is customised to the most suitable size and saves unnecessary
storage space. This is equivalent to the maintenance of any useful
feature we acquired and the distinctive design for each dataset in
one end-to-end network.

EXPERIMENTS

We thoroughly assess the effectiveness of our proposed
framework on the widely used plant phenotyping dataset
including its four sub-datasets (see Section “Dataset and Data
Pre-processing”). We conducted extensive experiments on both
plant segmentation and leaf counting, and compared the
performance of our method with the state-of-the-art methods for
validation. We explored three segmentation architectures using
three different backbone networks, i.e., MobileNet, ResNet, and
VGGNet on the four sub-datasets, and compared our method
with the state-of-the-art leaf segmentation methods. We also
performed the experiments to demonstrate the effectiveness of
the proposed leaf counting method, comparing it with the state-
of-the-art leaf counting methods.

Dataset and Data Pre-processing
The dataset used in our experiments belongs to the Leaf
Segmentation and Counting Challenge (LCC and LSC) held as
part of the Computer Vision Problems in Plant Phenotyping
(CVPPP 2017) workshop (Giuffrida et al., 2015). The dataset
is divided into training set and testing set, which consists of
810 and 275 top-down view RGB images of either Tobacco
or Arabidopsis plants, respectively. Both training and testing
images are grouped into four folders, i.e., four sub-datasets
which vary from the species and means of collection such as
imaging setups and labs. The training sets include 128, 31,
27, 624 images and the testing sets contain 33, 9, 65, 168
images for A1, A2, A3, and A4 respectively. The sub-datasets
A1 and A2 include Arabidopsis images collected from growth
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FIGURE 2 | Augmentation samples for training the segmentation network to avoid the risk of over-fitting.

chamber experiments with different field of views covering many
plants and then cropped to a single plant image with the size
of approximately 500 × 500 pixels. Sub-dataset A3 contains
tobacco images at 2,000 × 2,500 pixels with the field of view
chosen to encompass a single plant. Sub-dataset A4 is a subset
of another public Arabidopsis dataset. The dataset provides
the corresponding annotations in binary segmentation with 1
and 0, respectively, denoting plant and background pixels. All
the folders contain the ground truth binary mask used for
whole plant segmentation (i.e., semantic segmentation). For the
experiment of plant segmentation, we follow the training strategy
from Aich and Stavness (2017), and also use the combination
of all sub-datasets (referred as to All) for training to achieve
more robust model.

In our work, we addressed two problems caused by a dataset as
follows: (1) Deep learning based methods require a huge amount
of training samples while the availability of the dataset of plant
leaf with annotations is limited, causing data scarcity; and (2)
Small and overlapping leaf instances brought a challenge for
plant segmentation and leaf counting. Data augmentation is a
widely used technique in deep learning to increase the number of
samples and provide more diversity to the deep neural networks.
In this context, we also employed data augmentation to address
the above two problems.

Moreover, we first reshaped the size of training images to
480× 480 pixels and normalized. Following the resize operation,
we conducted the following scheme for data augmentation: (1)
Random-Rotate with an interval of 90 to increase the network
invariance to slight angular changes; (2) Flip: horizontal, vertical,
and horizontal+ vertical; (3) Resize the images to increase the
network invariance to different image resolutions; (4) Gamma
transform to extend the data by changing the image greyscale;
(5) Random-Brightness: the clarity of object depends on scene
lighting and camera sensitivity, thus random changing the image

brightness improves the illumination invariance of the network;
(6) Random change in the contrast range to increase the network
invariance to shadows and improve the network performance
in low light conditions; (7) Hue Saturation Brightness (HSV):
changes in colour channels, degree of lightness or darkness of a
colour; and (8) Normalise a characteristic linear transformation
which scales a specific range of data values retaining the original
data distribution. Selected augmentation processes are shown in
Figure 2.

Implementation Details and Evaluation
Protocol
All images from the training set are randomly split into two sets
for training and validation with the split ratio of 0.8 and 0.2,
respectively. Images from the testing set are used for evaluating
the segmentation performance. We used the validation set to
verify the hyper-parameters (see Table 1) during the training of
the initial experiments.

Network Parameter Setting
All our experiments are performed on the PyTorch platform
with NVIDIA 2080Ti GPU. We used the data augmentation
to increase the number of samples as in Section “Dataset and
Data Pre-processing.” This module contributes to preventing
over-fitting for the relatively small plant datasets and ensure the

TABLE 1 | Hyper-parameters used for training.

Epochs 100

Batch-size 4

Optimizer Adam

Learning-rate 1e-3

Weight-decay 1e-4

Factor 0.1
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model produces promising results when segmenting on new data
via learning multiple variations (Holmberg, 2020). The binary
mask is transformed the same way, to maintain the consistency
between images and annotations (except for the transformation
regarding colours).

We randomly sampled four samples to form a mini-batch with
batch size of four to guarantee the convergence of training. Adam
is adopted as the optimizer for its fast convergence rate to train
the model for a total of 100 epochs, where the results remain
stable with no further improvement. The weight decay factor is
set to 0.0001 and the learning rate is constantly set as 0.001.

Metrics for Segmentation
We employed the intersection of union (IoU) as the evaluation
metric, which is widely used in segmentation. IoU is used to
determine the spatial overlap between the segmented leaf region
and its ground truth, i.e.,

IoU(%) =

∣∣Pgt ∩ Ppred
∣∣∣∣Pgt

∣∣ + ∣∣Ppred
∣∣ (8)

where Pgt and Ppred, respectively, denote the ground truth
mask and the prediction mask. Due to the problem of class
imbalance between positive and negative samples, it is insufficient
to use accuracy as evaluation metric. For better evaluation, we
introduced two more metrics: Precision and Recall. Precision is
used to determine the portion of segmented leaf region pixels that
matches with the ground truth, i.e.,

Precision(%) =
TP

TP + FP
× 100 (9)

Recall is used to determine the portion of ground-truth pixels
present in the segmented leaf region, i.e.,

Recall(%) =
TP

TP + FN
× 100 (10)

where True Positive (TP), False Negative (FN), and False Positive
(FP) respectively denote the number of leaf region pixels correctly
identified, the number of leaf region pixels unidentified, and the
number of leaf region pixels falsely identified.

Metrics for Count
To evaluate how good a leaf count method is in estimating the
correct number of leaves, we employed the regression metrics:
Difference in Count (DiC), Absolute Difference in Count (ADiC),
and mean squared error (MSE) calculated as follows:

DiC =
1
m

m∑
i = 1

(
y(i)

gt,c−y(i)
pred,c

)
(11)

ADiC =
1
m

m∑
i = 1

∣∣∣(y(i)
gt,c−y(i)

pred,c

)∣∣∣ (12)

MSE =
1
m

m∑
i = 1

(
y(i)

gt,c−y(i)
pred,c

)2
(13)

Experimental Analysis
Segmentation Analysis
In the first experiment, we evaluated the effectiveness of
our segmentation model on plant images by using different
segmentation architectures and backbones for comparison.
FCN8, PSPNet, U-Net are selected as the basic encoder and
decoder architectures, where ResNet and VGG are used as
backbones due to its good ability of depicting 2D images. The

FIGURE 3 | Results of segmentation using Resnet50 and VGG16 as backbone in FCN, PSPnet, U-Net, and U-Net++ architectures.
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TABLE 2 | Segmentation results on each sub-dataset and their com- bination
using different basic architectures.

IoU (%) All A1 A2 A3 A4

FCN 93.95 93.45 89.17 88.51 92.23

PSPNet 90.17 94.34 90.55 91.19 93.83

U-Net 98.32 98.51 97.76 94.72 97.17

U-Net++ 99.11 98.29 97.98 95.90 97.23

comparative segmentation performance in terms of IoU on the
combination of all sub-datasets are provided in Figure 3. It is
evident from Figure 3 that the segmentation results generated
by our segmentation model outperforms the other architectures.
Among different models, using VGG as backbone performs
constantly better than using ResNet as backbone. To evaluate the
performance of dealing with a variety of scenes, we evaluated
our model on the four individual sub-datasets and the results
are shown in Table 2. The U-Net++ performs significantly
better than the state-of-the-art segmentation methods. For better
illustration, the segmentation results for images in sub- dataset
A1 using different models together with ground truth are shown
in Figure 4. Although all the three semantic segmentation
methods can obtain clear segmentation results on A1, the
U-Net++ retains the boundary and detail information. For the
relative scarce sub-dataset A3 which only contains 27 tobacco
images, the proposed method still shows a stable IoU. For each
sub-dataset, the network generates segmentation results that are
almost consistent with the corresponding binary template, from
both quantitative and qualitative standpoints.

FIGURE 5 | Segmentation result for each sub-dataset, with the
corresponding IoU provided at the right.

During the training for segmentation, the sigmoid function
produces outputs in the range [0 ... 1]. While calculating the loss,
greater weight is assigned for the boundary pixels. The weight

FIGURE 4 | Comparing segmentation results on the same RGB image.
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map is then calculated using

w(x) = wc(x) + w0 · exp

(
−

(
d1(x + )d2(x)

)2

2σ2

)
(14)

where wc(x) is the category weight based on the frequency
of occurrence of each category in the training dataset; d1(x)
represents the distance between the object pixel and the nearest
boundary. d2(x) represents the same distance for the second
nearest boundary. In our work, we set the threshold σ to
0.5 to obtain the segmentation weight map. The segmentation
results using our method on different sub-datasets are shown
in Figure 5. Our model generates the segmentation results that
are almost coincident visually with the ground-truth mask for
each sub-dataset. For A3 sub-dataset which only contains 27

tobacco images with small leaf area, our method still shows
a stable segmentation result. The results show our method
effectively addresses segmentation under various scenes, i.e., with
occlusions, small leaf area, and large leaf area, demonstrating
good robustness.

We also compared the convergence rate of different
segmentation models. The curves of the precision, recall,
training cross entropy (CE) loss, and IoU are shown in
Figure 6. The figure shows that all four networks selecting
VGG16 as the encoder for feature extraction achieve good IoU
scores consistently. In addition, Figure 7 visualises the feature
extraction process of our method using UNet++ with VGG
from the early to late epochs. The process of feature extraction is
smoother and faster to reach the convergence, which shows VGG
can capture the meaningful representations for leaf images.

FIGURE 6 | Convergence curves for accuracy, loss, and IoU score on the validation set during the training process for comparison in terms of accuracy and
convergence rate.

FIGURE 7 | Visualization for the feature extraction process of our method, arranged by time series from the early to late epochs. The first to third line images
respectively show the predicted images, ground truth images and transformed RGB images.
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TABLE 3 | Segmentation results on each sub-dataset and their combination using
different basic architectures.

SRGB Ours

All A1 A2 A3 A4 All A1 A2 A3 A4

Precision 0.92 0.98 0.94 0.80 0.96 0.99 0.99 0.99 0.99 0.99

Recall 0.97 0.99 0.99 0.94 0.98 0.99 0.98 0.99 0.99 0.99

IoU – – – – – 0.98 0.98 0.99 0.98 0.98

TABLE 4 | Counting results using different backbones with or without the auxiliary
binary mask on CVPPP 2017 dataset (Bold values denote the best performance).

Metric DiC ADiC MSE

Mobilenet

RGB –0.30 0.66 0.98

RGB+SBM 0.13 0.46 0.64

InceptionNet

Rgb 0.29 0.61 1.20

RGB+SBM 0.20 0.43 0.54

VGGNet

RGB 0.20 0.79 1.44

RGB+SBM –0.12 0.37 0.44

Resnet50

RGB –0.12 0.60 0.89

RGB+SBM 0.11 0.36 0.42

For DiC, ADiC, and MSE, a lower value is better.

We compared the proposed segmentation model with the
other state-of-the-art method that performed the experiment on
plant (foreground) segmentation, i.e., SRGB (Aich and Stavness,
2017) using three metrics, i.e., Precision, Recall, and IoU and the
results are shown in Table 3. Our method outperforms the SRGB
method on two metrics, achieving the high performance on IoU.
The results suggest that our approach is very effective for plant
segmentation task in plant phenotyping.

Leaf Count Evaluations
In the second experiment, we evaluated the effectiveness of the
proposed leaf counting method using segmented binary mask

TABLE 5 | Comparative evaluation of the proposed counting model with
state-of-the-art methods.

DiC ADiC MSE

IPK –1.9 (2.7) 2.4 (2.1) –

GLC –0.51 (2.02) 1.43 (1.51) 4.31

Nottingham –2.4 (2.8) 2.9 (2.3) –

MSU –2.3(1.8) 2.4 (1.7) –

Wageningen 1.5 (4.4) 2.5 (3.9) –

Proposed RGB+SBM 0.11 (0.98)– 0.36 (0.93) 0.42

(referred as RGB+SBM). During the experiment, the number
of input channels must be consistent with the input size of
the backbone models, i.e., 3 channels. In this way, when a
binary image with single channel is fed into the model, the
values of the single channel are extended to three channels by
duplication, forming an image with three channels. The resulting
three-channel images are mixed with the RGB image samples to
increase the number of training samples, facilitating the stability
of leaf counting. To validate the effectiveness of our counting
model for leaf counting, we adopted different backbones for our
leaf counting task, e.g., MobileNet, VGGNet, InceptionNet, and
ResNet, and report the results in Table 4. Moreover, to further
explore the potential benefit of the auxiliary binary mask, we
conducted an ablation experiment on with/without using the
binary channel, and the result is also shown in Table 4. In
Table 4, RGB denotes the method without using the binary mask,
while RGB+SBM denotes that our method using the auxiliary
binary mask. It is observed from the table that the count model
using the ResNet50 backbone performs the best among the
backbones. The binary mask increases the count performance in
all metrics, where the MSE drops from 0.89 to 0.04, DiC from
0.02 to 0.01, and ADiC from 0.60 to 0.36. These results validate
our assumption that binary mask improves the accuracy and
robustness for the leaf count model, due to its capability to deal
with background interferences.

We used the scatter diagram to visually illustrate the
correlation between the estimated leaf numbers and their ground
truth, and the results are shown in Figure 8, which is also

FIGURE 8 | Comparison between the coefficient of determination in the implementation of scatter graphics, where (A) denotes using only RGB image, (B) denotes
using the mixture of RGB and segmented binary mask, and (C) denotes using the double RGB images by simple copy.
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for the evaluation of our regression model. The higher overlap
between the scatter plots of estimation and the ground truth
indicates a better agreement. Figure 8 shows that the binary
mask significantly enhances the agreement between the ground
truth and the estimation, as the error distribution in leaf count
is constantly confined within smaller region. If directly doubling
the number of the input samples by simple copy, referred as RGB
∗2, we find that the performance is almost the same as with the
mixture of RGB and binary mask images. In the experiments,
the time cost using double RGB images is higher than using
the combination of RGB and binary mask images. Thus, we
conclude that using the auxiliary binary mask to guide the
leaf counting is a simple but effective way for improving the
performance of counting.

In addition, we reported the quantitative comparison of our
leaf counting method with state-of-the-art methods i.e., GLC
(Giuffrida et al., 2015), IPK (Pape and Klukas, 2015), Nottingham
(Scharr et al., 2016), MSU (Scharr et al., 2016), and Wageningen
(Scharr et al., 2016), as shown in Table 5. For fair comparison,
we used A1, A2, A3 from testing set for testing the counting
performance. Overall, the proposed leaf counting model using
segmented binary mask achieves the best performance with lower
values in the metrics of DiC, ADiC, and MSE. This shows the
proposed counting model estimates the number of leaves with
adequate accuracy and stability.

CONCLUSION

In this study, we focus on dealing with two fundamental tasks in
plant phenotyping, i.e., plant segmentation and leaf counting, and
propose a two-stream deep learning framework for automatic

segmenting and counting leaves with various size and shape
from two-dimensional plant images. In the first stream, a multi-
scale segmentation model using spatial pyramid is developed to
extract the whole plant in different size and shape, where the
fine-grained details of leaves are captured using deep feature
extractor. In the second stream, a regression counting model
is proposed to estimate the number of leaves without any pre-
detection, where the auxiliary binary mask is introduced to
enhance the counting performance by effectively alleviating the
influence of complex background. Extensive experiments on
a publicly available plant phenotyping dataset show that the
proposed framework achieves a promising performance both in
the task of plant segmentation and leaf counting, providing a
reference for the automatic analysis of plant. Future work will
focus in increasing the robustness of the tasks of segmentation
and the counting to deal with varying environments.
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In recent years, the National Climate Center has developed a dynamic downscaling
prediction technology based on the Climate-Weather Research and Forecasting (CWRF)
regional climate model and used it for summer precipitation prediction, but there are
certain deviations, and it is difficult to predict more accurately. The CWRF model
simulates the summer precipitation forecast data from 1996 to 2019 and uses a
combination of dendrite net (DD) and artificial neural networks (ANNs) to conduct a
comparative analysis of summer precipitation correction techniques. While summarizing
the characteristics and current situation of summer precipitation in the whole country,
the meteorological elements related to precipitation are analyzed. CWRF is used to
simulate summer precipitation and actual observation precipitation data to establish
a model to correct the precipitation. By comparing with the measured data of the
ground station after quality control, the relevant evaluation index analysis is used to
determine the best revised model. The results show that the correction effect based
on the dendritic neural network algorithm is better than the CWRF historical return, in
which, the anomaly correlation coefficient (ACC) and the temporal correlation coefficient
(TCC) both increased by 0.1, the mean square error (MSE) dropped by about 26%, and
the overall trend anomaly (Ps) test score was also improved, showing that the machine
learning algorithms can correct the summer precipitation in the CWRF regional climate
model to a certain extent and improve the accuracy of weather forecasts.

Keywords: machine learning, summer precipitation correction, dendrite net (DD) and artificial neural networks
(ANN), mean square error (MSE), temporal correlation coefficient (TCC), anomaly correlation coefficient (ACC)

INTRODUCTION

Climate prediction is the process of predicting the likely trend of climate development in the
future based on the changing laws of the past climate. In recent years, the forward-looking
role of climate prediction in disaster prevention and mitigation has been recognized more and
more, and the demand for prediction in all walks of life is increasing. With the needs of
social and economic development, research on climate prediction needs to be improved urgently
(Yingdong et al., 2011; Bannister et al., 2019; Xinmin et al., 2019). Accurate precipitation data
are essential for understanding climate change and associated hydrological responses from small
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basins to large regions around the world (Pan et al., 2016). At
present, global and regional climate models are the primary
tools for climate change simulation and prediction research
(Rummukainen, 2010), but they are restricted by the complexity
of the climate system and the level of scientific development.
Compared with actual observations, climate model simulations
always show deviations in precipitation (Ren and Li, 2007; Kim
et al., 2015, 2020).

Precipitation correction is an effective way to improve model
forecasts. The concept of precipitation correction is proposed
because there is some model data for flood season precipitation
forecast in the current climate forecast business, but there are
certain deviations. Therefore, it is hoped that the correction will
reduce the error and improve the precipitation forecast accuracy
and performance (Yao et al., 2017). With the development of
weather forecasting technology, artificial intelligence, and data
mining research, the use of intelligent computing and data
mining technology to correct regional precipitation provides a
new and effective method for improving the existing precipitation
forecast quality and prediction accuracy, which has become one
of the research hotspots.

The dendritic neural network has achieved great success in
many fields (Wu et al., 2009, 2018; Kisi et al., 2017; Egrioglu
et al., 2019; Xue et al., 2021; Achite et al., 2022). The diverse
kinds of synaptic plasticity and non-linearity mechanisms enable
synapses to take a valuable part in calculation (Gao et al.,
2018). Synaptic non-linearity is implemented in a dendritic
structure to effectively solve linearly inseparable problems,
and this model has been applied to a variety of complex
continuous functions (Zhou et al., 2016; Chen et al., 2017; Ji
et al., 2019, 2021). Among the various types of soft computing
approaches, the artificial neural networks (ANNs) models have
satisfactorily been applied to non-linear hydrologic simulations
such as rainfall (Acharya et al., 2014), evapotranspiration (Kisi
et al., 2015), and river flow (Zounemat-Kermani et al., 2013).
In recent years, related research has also been carried out
at home and abroad. For example, Huating Xu (Xu et al.,
2018) mentioned that the global environmental multiscale
(GEM) model is widely used as a high-resolution medium-term
prediction model for precipitation forecasting in various parts
of Canada. With the continuous deepening of regional climate
simulation research, the new generation of regional climate
models, Climate-Weather Research and Forecasting (CWRF),
has begun to be widely used because of its excellent performance
(Guanzhou and XinZhong, 2017). For example, Xiaoyun et al.
(2019) used the CWRF regional model to propose a cumulative
probability transformation deviation correction method for
extreme precipitation to test and evaluate its applicability to
extreme precipitation correction. For example, Zhang and Zhi
(2018) proposed using the frequency matching method (FMM)
to calibrate the large-scale precipitation forecast data obtained
from the Public Meteorological Service Center of the China
Meteorological Administration (CMA). The results show that
FMM calibration can significantly improve the forecasting skills
of large-scale precipitation forecasts. For example, Jixue et al.
(2016) used 18 meteorological elements, such as temperature,
humidity, pressure, and wind field, in high-altitude weather

observation data to train a three-layer BP neural network
model. The experimental results show that the ANN has good
application prospects in short-term precipitation forecasting.
For example, Yuting et al. (2020) trained the ANN model
with the annual precipitation of five stations in the western
area of Taihu Lake. The results showed that the fitting and
prediction accuracy and stability of the ANN model based on
component analysis were higher than those of the original ANN
and linear autoregression models and the other 4 types of
neural networks. For example, Liu and Wang (2021) proposed
a white-box dendrite net (DD) with a logical operational
relationship, while the ANN network is a black-box network that
does not consider the fuzzy non-linear mapping of the logical
operation. DD has better generalization. Li et al. (2020) used
the integrated network model of ANN and DD, and through
digital recognition tasks, experiments proved the potential of
artificial DDs to improve overall performance. Liangmin et al.
(2016) proposed an objective clustering method based on nearest
neighbor propagation to divide the climate of summer rainfall
in China while using factors such as sea temperature and sea
level pressure to establish a least-squares regression method to
predict precipitation. Moreover, Chow and Cho (1997) described
the development of new approaches to rainfall forecasting using
ANN (Egrioglu et al., 2019).

In this article, the artificial DD is used to correct the CWRF
simulation of summer precipitation so as to improve the accuracy
of the CWRF prediction of precipitation. The data mining
correlation algorithm is used for the correction of precipitation
forecast results, and a precipitation correction scheme based on
NN is proposed, which is used for the correction of precipitation
in the summer flood season in China.

DATA AND METHODS

Data Sources
The data used were obtained from the historical return results of
the CWRF regional climate model (Climate Extension of WRF)
(30 km resolution) in the summer of China (June–August) from
1991 to 2020 in the National Climate Center. Among them, 7
physical configuration combinations (i.e., case 01, 02, 06, 15, 16,
23, and 28) are selected from the four starting times (i.e., 00, 06,
12, and 18) on March 2 each year, a total of 28 samples; at the same
time, the actual observation data (OBS) data from the ground
station during the summer of 1991–2019 is selected as the target.
The main meteorological elements included are precipitation,
wind speed (10 m), wind volume (10 m), relative humidity (2 m),
temperature (2 m), 500 altitude field, sea level pressure, whole
layer water vapor, and vertical speed.

Method Introduction
Artificial Neural Network Algorithm Model
Artificial neural network is a system with non-linear and adaptive
information processing capabilities composed of a large number
of neurons connected by different weights. ANN is a model that
simulates the biological nervous system, which can approximate
any non-linear function. There are three kinds of neurons,
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FIGURE 1 | Flowchart of artificial neural network model.

namely, (a) output neurons, those that send data out of the
network; (b) input neurons, which receive external data; and (c)
hidden neurons, whose signals remain in the ANN and join the
input layer neurons to the neurons of the output layer (Samani
et al., 2007; Zounemat-Kermani, 2012). Traditional precipitation
forecasting and correction methods need to be analyzed by
understanding precipitation principles and related influencing
factors, while the ANN to achieve interannual precipitation
forecasting does not need to be clear about the precipitation
mechanism, and a model can be learned by learning precipitation
and related element data to forecast future precipitation.

Artificial Neural Network Model

Where X = [x1, x2, ..., xn] ,W =


wi1
wi2
·

win

 , b =


bi1
bi2
·

bin


The ANN algorithm model includes two parts, namely,

forward propagation of information and back propagation
of error. In Figure 1, X1 ∼ X2 are the input characteristic
signals passed in from the neuron. Wi1 ∼Win are the weights
corresponding to the incoming signals of different neurons.
bi1 ∼ bin represent a bias. The setting of bias is to achieve
accurate output and is an important parameter in the model.
Different neurons are combined into the final input signal
through different weight matrices. In Figure 1, f(∗), f are called
activation functions. The activation function mainly acts on
the linear connection, and the non-linear function is added to
the model, which can well realize the learning of non-linear
problems. In the figure, y is the final output of the neuron.

Error Back-Propagation and Improvement
Back-propagation (BP) neural network is a process of continuous
repetition when training the network, by collecting the errors
generated by the system, returning these errors to the output
value, and then using these errors to adjust the weight of the
neurons so that the loss of the model propagates along the
direction of the negative gradient. The parameters that affect
the performance of the BP neural network mainly include the
number of hidden layer nodes, the choice of activation function,
and the choice of the learning rate. This article is based on the

number of hidden layer nodes of the neural network to improve.
According to the empirical formula:

√
N + X (1)

Among them, N represents the number of sample features,
and the value range of X is 1–10. The number of hidden layer
nodes is determined step by step, and the prediction performance
of each model is obtained by comparing different numbers of
nodes, and the number of nodes with the best effect is selected
as the number of hidden layer neurons. When determining the
number of hidden layer nodes, the following conditions must be
met: First, the number of hidden layer nodes must be less than
N−1, that is, less than the number of input features. Otherwise,
the system error of the network model is independent of the
characteristics of the training sample and tends to be zero, i.e.,
the constructed network model has no generalization ability.
Second, the number of training samples must be more than the
connection weight of the network model, generally 2–10 times.
Otherwise, the sample must be divided into several parts and
the method of “training in turn” can be used to obtain a reliable
neural network model.

Artificial Dendrite Net Algorithm Model
Dendrite Net Algorithm Model
The main concept of the DD model is that if the output logical
expression contains the logical relationship of the corresponding
class between the inputs (and\or\not), the algorithm can identify
the class after learning. The white box machine learning
algorithm DD shows excellent system recognition performance
for the black box system. The DD has white box properties,
controllable accuracy, better generalization ability, and lower
computational complexity. Not only can DD be used in general
engineering but as a module of deep learning, it also has broad
development potential. The expression of the DD module is as
follows:

Al
= W l,l−1Al−1

◦ X (2)

Among them, Al−1 and Al represent the input and output of
the model, X represents the input of DD, Wl,l−1 is the weight
matrix from module l−1 to module l, and ◦ is the multiplication
of corresponding elements, sometimes called Hadamard product.

Artificial Dendrite Net Algorithm Model
The artificial dendritic neural network model is shown in Figure
2. The ANN algorithm model adds a DD module on the basis
of ANN. The connection of different DD modules enhances the
processing ability of neurons carrying information. The number
of modules can effectively adjust the logic expression ability of
DD and avoid excessive simulation. Together, it is easy to obtain
models with outstanding generalization capabilities. By analyzing
the existing ANN network model, it does not consider that the
logical operation is a fuzzy non-linear mapping relationship, and
the DD considers that the logical operation can converge to the
global optimum with a high probability, so the integration of DD
and ANN is adopted. The network model of the ANN adds a
dendritic module to the hidden layer of the ANN to improve the
generalization ability of the ANN algorithm model.
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Evaluation Index
In this article, three indicators such as mean square error (MSE),
temporal correlation coefficient (TCC), and spatial anomaly
correlation coefficient (ACC), commonly used in meteorological
services are used to evaluate the effect of machine learning on the
correction of CWRF summer precipitation. The definitions are,
respectively, as follows:

(1) The MSE is often used as an indicator to evaluate the
prediction results of a machine learning model. The
formula is as follows:

MSE =
1
N

N∑
i = 1

(
prei−obsi

)2 (3)

(2) The time correlation coefficient (TCC) can better represent
the model’s ability to predict the abnormality of each grid
point in a statistical sense and obtain a complete spatial
distribution of correlation techniques. When calculating
TCC, the mean square deviation and covariance of each
grid point are required. The formula is as follows:

TCC =

∑N
i = 1

(
prei−prei

) (
obsi−obsi

)
√∑N

i = 1
(
prei−prei

)2 ∑N
i = 1

(
obsi−obsi

)2
(4)

In the formula, prei and prei are the model return value or
precipitation data model forecast value of i sample point
and its multiyear average value; obsi and obsi are the actual
observation values of the precipitation data of sample point
i; N is the total number of grid points actually participating
in the evaluation.

(3) The ACC mainly reflects the degree of similarity between
the forecasted value and the actual value of the space type
and can also be called the spatial similarity coefficient.
The spatial similarity coefficient can be calculated for
each forecast field. The formula for calculating ACC is as
follows:

ACC =
∑N

i = 1
(
1Rf−1Rf

) (
1Ro−1Ro

)√∑N
i = 1

(
1Rf−1Rf

)2 ∑N
i = 1

(
1Ro−1Ro

)2 (5)

In the formula, 1Rf and 1Rf are the forecast value
and multiyear average value of precipitation anomaly
percentage ((actual measured value-historical average
value of the same period)/historical average value of
the same period); 1Ro and 1Ro are the corresponding
observation values; N is the total number of stations
actually participating in the evaluation.

The formula for the abnormal comprehensive (Ps) test score,
which is a commonly used predictive scoring index in business,
is:

PS =
a ∗ N0 + b ∗ N1 + c ∗ N2

(N−N0) + a ∗ N0 + b ∗ N1 + c ∗ N2 + M
∗ 100

(6)
The scoring steps are as follows:

1. Determine whether the forecasted trend is correct from
station to station and calculate the total number of stations
with correct trend prediction N0;

2. Determine whether the first-level anomaly prediction is
correct from station to station and calculate the total
number of stations N1 with the correct first-level anomaly
prediction;

3. Determine whether the second-level anomaly prediction is
correct from station by station and count the total number
of stations N2 with the correct second-level anomaly
prediction;

4. The number of stations where the percentage of
precipitation anomaly is ≥ 100% or equal to −100%,
and the temperature anomaly is ≥ 3◦C or ≤ −3◦C
(referred to as missed stations, denoted as M) without a
second-level anomaly forecast;

5. Count the number of stations N that actually participated
in the assessment, that is, the number of stations that are
required to participate in the assessment minus the number
of stations that are not in the live test;

a, b, and c are the weight coefficients of the climate trend
item, the first-level anomaly item, and the second-level anomaly
item, respectively. This algorithm takes a = 2, b = 2, and
c = 2, respectively.

PRECIPITATION CORRECTION MODEL
CONSTRUCTION

National Climate Division
In this study, the precipitation prediction results of the CWRF
model in the flood season (June–August) in China (8.37◦N–
58.75◦N, 58.40◦E–161.60◦E) were selected as the target of
forecast correction. The geographical diversity of climate is
obvious, which makes it difficult for a single model to represent
the climate characteristics of the entire China, leading to certain
difficulties in climate forecasting. To realize the correction
of the national regional precipitation forecast data, regional
modeling forecasts are carried out for the whole country. That is,
according to the climatic characteristics of different regions, they
establish model algorithms suitable for their respective climatic
characteristics, promote the high generalization ability of the
model, and improve the accuracy of precipitation forecasting.
According to the climate characteristics of different regions,
China is divided into eight regions (Wang and Yang, 2017). The
specific results are shown in Table 1.

In the precipitation data file, the data size is 231 × 171, that
is, 231 × 171 grid points, including the China region. Now, the
regions are divided according to Figure 3 and Table 1.

Feature Selection and Data Organization
Feature Selection
Pearson correlation coefficient (PCC) and random forest
algorithm for feature selection comparison.

Pearson correlation coefficient, also known as Pearson
product-moment correlation coefficient (PPMCC or PCCs), is
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FIGURE 2 | Flowchart of artificial dendritic neural network model.

used to measure the correlation between two variables X and Y
(linear correlation), and its value is between -1 and 1.

The PCC between two variables is defined as the quotient of
the covariance and standard deviation between the two variables:

ρX,Y =
cov (X,Y)

σXσY
=

E [(X−µX) (Y−µY)]
σXσY

(7)

The above formula defines the overall correlation coefficient,
and Greek lowercase letters are commonly used as representative
symbols. Estimate the covariance and standard deviation of the
sample to get the PCC. Commonly used English lowercase letter
r stands for:

r =
∑n

i = 1
(
Xi−X

) (
Y i−Y

)√∑n
i = 1

(
Xi−X

)2
√∑n

i = 1
(
Y i−Y

)2
(8)

r can also be estimated from the mean value of the standard scores
of the sample points (Xi, Yi), and an expression equivalent to the
above equation can be obtained:

r =
1

n−1

n∑
i = 1

(
Xi−X

σX

)(
Y i−Y

σY

)
(9)

Among them, Xi−X
σX

, X, and σX are the standard score, sample
mean, and sample standard deviation of Xi sample, respectively.

TABLE 1 | Eight area names.

Abbreviations Full name

NWCH Northwest China

TP Tibetan Plateau

BBYR Big Bend of Yellow River

SWCH Southwest China

NECH Northeast China

NCH North China

YHRB Yangtze–Huaihe River Basin

SCH South China

1. Use PCC to select features for precipitation data.
2. Use random forest model to select features.

After experiments, for the random forest model, using the
attribute column obtained through the PCC in step 1 for training,
the score is 0.97; while using the features selected by the random
forest for training, the score is 0.98. It can be seen that the use
of random forest for feature selection still has a certain effect on
improving the ability of the model on this dataset.

Later, we picked the characteristics that are most important to
us: the precipitation and the historical return of the CWRF. These
are cumulative wind volume v component, cumulative wind
speed, cumulative temperature 2 m, and precipitation correlation
of the historical return.

Data Organization
First of all, considering the influence of the age average on
forecasting, anomalies are commonly used in meteorological
forecasting operations, so this article also chooses anomalies
to preprocess the data. Taking precipitation as an example,
comparing the rainfall forecasted by the model with the average
rainfall over the years, the forecast is the value of the forecast

FIGURE 3 | China’s terrestrial climate regional division map.
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rainfall minus the average rainfall over the same period. It is
generally used in medium- and long-term forecasts and can be
used as a reference for flood control and drought resistance. The
historical year-month (year) precipitation distance is equal to the
difference between the historical year-month (year) precipitation
and the cumulative year-month (year) average precipitation.

Dpt = Pre− AvgPre (10)

Among them, Pre represents the precipitation of a certain
location in a certain month in a certain year, AvgPre represents
the average precipitation of a certain location in the historical
years that have been recorded at that point, and Dpt represents
the precipitation of a certain location in a certain year from the
average value in a certain month. If Dpt < 0, it is a positive
anomaly, and the annual precipitation at the location is greater
than the cumulative annual average precipitation; if Dpt > 0, it
is a negative anomaly, and the annual precipitation at the location
is less than the cumulative annual average precipitation.

Then, the summer precipitation data are gridded data. Each
grid point has only the CWRF return data and actual observation
data at a specific time and a specific location. Based on the
similarity characteristics of the climate in the neighboring areas,
the target point is divided into small areas of M∗M, and then
each grid point has M∗M feature data; (1) the precipitation is
corrected by the single-element integration method: the value of
M is 3, which is a small area of 3 × 3 around the grid point.
Second, taking into account the influence of the precipitation
months in summer (6–8), the average precipitation anomaly of
the past 5 months (4–8) is used as the input feature of the model
to organize the data. That is, the April–August precipitation
anomaly and the average precipitation of the 3 × 3 grid points
around the current year of the CWRF model precipitation
are used as the characteristics of the model training input,
and the output is the precipitation anomaly from April to
August of the current year; (2) using the multifactor integration
method to correct the precipitation: select the historically
reported precipitation of CWRF, the cumulative wind volume
u component, the cumulative wind volume v component, the
cumulative wind speed, and the cumulative temperature 2 m.
The data are preprocessed and converted into monthly anomaly
data. Five meteorological elements, input according to 3 × 3
grid points are selected; the input data from June to August (or
a single month) are organized, and the corresponding 1-month
precipitation anomaly is delivered. Data according to the above
different methods are organized, and a data format suitable for
network model training is constructed. Finally, based on the
interdecadal influence in the meteorological field, this article uses
the data of nearly N years when training based on the artificial DD
model and then predicts the summer precipitation in N1 years.
The range of N selected in this article is 3–10. The analysis of the
experimental comparison results shows that N is set to 5, that is,
the training algorithm model using the data of the past 5 years is
better than the correction results of other years.

Through the above-mentioned modeling method, the forecast
factors are optimized at the same time for the 28 sample forecast
data of 7 different physical parameter configurations and 4

FIGURE 4 | Flowchart of summer precipitation correction algorithm based on
artificial dendrite net.

start times. One or more forecast factors are used to predict
the precipitation, and the 28 sample forecast results use the
weighted average method to integrate as the final output. First,
the organized data are divided as follows: 70% of the data as the
training set, 20% of the data as the validation set, and the rest as
the test set. At the same time, the MSE is selected as the error loss
function for network model training, based on the artificial DD
model summer precipitation. The flowchart is shown in Figure 4.

ANALYSIS OF PRECIPITATION
CORRECTION RESULTS

Regional Precipitation Forecast Revision
(1) Comparison of TCC before and after the regional
correction in China.

The eight sub-areas are divided to calculate the TCC of
each grid point, and the correction results of the precipitation
forecast of the flood season model are tested. Figures 5A,B shows
the TCC comparison test of precipitation and actual observed
precipitation (OBS) in the eight sub-regions during the flood
season from 1996 to 2019. It can be seen from Figures 5A,B that
after the machine learning method is revised, the positive value
range of the TCC of precipitation prediction in different regions
has been improved to varying degrees, especially in the eastern
key areas of the rain belt during the flood season in China [South
China (SCH), Yangtze-Huaihe River Basin (YHRB), North China
(NCH), Northeast China (NECH)] TCC correction effect is more
obvious. The YHRB, the NECH, and the Southwest Region
(SWCH) have significantly improved TCC compared with other
regions. After the revision, the regions that passed the 90%
significance test significantly increased.

Frontiers in Plant Science | www.frontiersin.org 6 May 2022 | Volume 13 | Article 86255879

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-862558 May 19, 2022 Time: 16:15 # 7

Li et al. Neural Network Based Precipitation Correction

FIGURE 5 | (A) Comparison of regional precipitation time correlation coefficients [Climate-Weather Research and Forecasting (CWRF) vs. Machine Learning (ML)],
the color code numbers 0.33, 0.388, and 0.496, respectively, represent that the correlation coefficients have passed the significance test of 90%, 95%, and 99%,
respectively. (B) Comparison of regional precipitation time correlation coefficients (CWRF vs. ML); the color code numbers are the same as panel (A).

It can be seen from Figure 6 that after the correction of the
machine learning method, the mean value of the TCC of the
precipitation prediction in different regions has been improved
to different degrees. The range of the positive value after the
correction by the improved ANN algorithm has been improved
more obviously, especially in the rainy season in China. The effect
of TCC correction in key eastern regions of the belt [Big Bend of
Yellow River (BBYR), Northwest China (NWCH), SCH, YHRB,
NCH, and NECH] is more obvious. The Jianghuai River Basin
(YHRB), BBYR, NCH, and NWCH have significantly improved
TCC compared with other regions. From the regional average,
the difference between the results of experiments before and after
the correction has more than 0.2.

(2) Comparison of spatial correlation coefficients (i.e.,
ACC) before and after the revision of China’s regional
precipitation forecasts.

Calculate the spatial correlation coefficients between the
precipitation during the flood season from 1996 to 2019 and the
actual observed precipitation for the eight sub-regions divided,

and the ACC values before and after the correction are shown
in Figure 7. It can be seen from Figure 7 that the spatial
correlation coefficient of the corrected results of ML in the 8
regions is larger than the original prediction of CWRF. The
spatial correlation coefficient of b is relatively close. After the
machine learning method is revised, the spatial correlation
coefficients of precipitation forecasts in different regions have
been improved to varying degrees. The algorithm has certain
predictive performance.

It can be seen from Figure 8 that after the correction of
the machine learning method, the mean values of the spatial
correlation coefficients of precipitation forecasts in different
regions have improved to varying degrees. Among them,
BBYR, NCH, NWCH, SCH, SWCH, and YHRB have improved
significantly, especially during the flood season in China. The
ACC correction effect in the key eastern areas of the rain
belt (i.e., SCH, YHRB, NCH, NECH, and SWCH) is more
obvious. The Jianghuai River Basin (YHRB), the NECH, and
the Southwest Region (SWCH) have significantly improved ACC
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FIGURE 6 | Comparison of mean values of regional precipitation time correlation coefficients (CWRF vs. ML). (a) CWRF prediction and (b) machine learning
correction.

FIGURE 7 | Comparison of anomaly correlation coefficient (ACC) before and after precipitation correction in 8 sub-regions.
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FIGURE 8 | Comparison of mean values of spatial correlation coefficients of
regional precipitation (CWRF vs. ML). (a) CWRF prediction and (b) machine
learning correction.

compared with other regions. From the regional average, the
difference in results before and after the correction has risen more
than 0.1 on average.

Evaluation of the Effect of the National
Precipitation Forecast Revision
(1) Comparison of the MSE before and after the correction of the
national summer precipitation forecast (puzzle).

Figure 9 contains the comparison of two calculation
results, namely, (1) MSE change (CWRF) between simulated
precipitation (case) and actual observed precipitation (OBS)
in CWRF model and (2) use artificial network to correct
precipitation and actual observation (OBS) between MSE change

(ML) under the corresponding parameters; from Figure 9, it can
be seen that there are fluctuations between the different CWRF
model data and the MSE of the actual observation data, indicating
that different physical parameter configurations have different
degrees of error in the simulated flood season precipitation; after
correction, the rainy season precipitation of the next 7 cases
all increased to varying degrees. The 7 case results of CWRF
simulated precipitation, respectively, calculate the MSE, and the
average MSE is 9.45, and the corrected average MSE is 7.03, a
decrease of 2.42 (equivalent to a 26% decrease in MSE). It can
be seen from the figure that the MSE of the CWRF model rainy
season precipitation data fluctuates greatly, and the corrected 7
case results have stabilized, indicating that the artificial network
model has improved the accuracy of the model forecast data
to a certain extent. The forecasting performance of CWRF
has to be improved.

(2) Comparison of the TCC before and after the correction of
the national summer precipitation forecast (puzzle).

Figure 10 shows the TCC comparison before and after the
correction of CWRF forecasts for 7 cases and 4 time-time
sets (28 samples in total). It can be seen from the figure that
there are fewer positive correlation areas for TCC before the
correction, especially in eastern China. There is a large area
of negative value in the key area (the Yangtze River Basin to
SCH). After the correction of the artificial network model, the
TCC of the key precipitation area in eastern China shows a
large positive correlation, especially in the south of the Yangtze
River and the northeast. After correction by machine learning,
the number of positive TCC regions and significant regions
increased significantly across the country, especially in the
Yangtze River Basin and Northeast China, indicating that the
ANN-DD algorithm model can achieve certain corrections to
the national regional precipitation forecast data during the flood
season. Forecasting skills have been significantly improved.

FIGURE 9 | Mean square error (MSE) change graph of precipitation data correction results for 7 cases (i.e., 01, 02, 06, 15, 16, 23, and 28) of CWRF based on the
artificial DD model.

Frontiers in Plant Science | www.frontiersin.org 9 May 2022 | Volume 13 | Article 86255882

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-862558 May 19, 2022 Time: 16:15 # 10

Li et al. Neural Network Based Precipitation Correction

FIGURE 10 | Comparison of TCC before and after CWRF prediction correction for 7 case sets, (A) CWRF prediction and (B) machine learning correction, the color
code number is the same as Figure 4.

(3) Comparison of the spatial correlation coefficient (ACC)
before and after the correction of the national summer
precipitation forecast (puzzle).

Figure 11 shows the ACC comparison before and after the
correction of CWRF forecasts for 7 cases and 4 time sets (28
samples in total). It can be seen from the figure that the average
ACC before correction is −0.01, and the ACC value in most
years is low at 0, there is a negative correlation. After correction
by machine learning, the ACC value has increased significantly.
The correction result of the ML (curve b in the figure) scheme
is about 0.1 higher than before the correction, and the ACC
value in most years is greater than 0. At the same time, the
predicted result after correction can be seen in the figure. The
stability has improved, and the fluctuations before correction
are large, showing a good correction effect. It shows that the
ANN algorithm model can make certain corrections to the
national regional rainy season precipitation forecast data, and the
forecasting skills have improved.

(4) Comparison of comprehensive trend anomaly scores (Ps)
before and after correction of the national summer precipitation
forecast (puzzle).

Consider case 28 (Figure 12) and 7 case set (Figure 13) as
examples to illustrate the improvement effect of the CWRF model
prediction Ps of the machine learning correction method.

Figure 12 shows the comparison of the CWRF prediction and
the Ps score corrected by ANN after the 4 time collections of case
28 (the 4 time precipitation predictions of case 01 are collected
before calculating the Ps). It can be seen from the figure that the
average value of Ps before correction is around 70.87, and after
correction by machine learning, the Ps score is around 72.55, and
the overall prediction skills have improved. Among them, ML
(curve b in the figure) has a better overall trend abnormality score
in 1996–2014 than CWRF’s original prediction (curve a in the
figure); the Ps score in 2015–2019 fluctuates more. This means

that the simulated precipitation of case 28 is better because of
machine learning.

Figure 13 shows the comparison of CWRF prediction and
ANN corrected Ps after the collection of 4 starting times for 7
cases (before calculating Ps, the precipitation predictions for 4
times (28 samples in total) of 7 cases are collected) deal with.
The CWRF forecast on the graph shows that the average Ps
score from 1996 to 2019 is about 67.79; the average Ps score
after machine learning correction is about 74.34; Figure 13
generally shows the same correction effect as Figure 12, except
for the Ps value of individual years’ difference. This shows
that the precipitation forecasting skills during the flood season
have improved to a certain extent compared with before the

FIGURE 11 | Comparison of ACC before and after CWRF forecast correction
for 7 case sets. (a) CWRF forecast, (b) machine learning correction, and (a, b)
1996–2019 average.
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FIGURE 12 | Comparison of Ps before and after CWRF forecast correction for the 4 time-time sets of case 28. (a) CWRF forecast, (b) machine learning correction,
and (a, b) mean Ps from 1996 to 2019.

correction, and the Ps score of most years after the correction
has improved. The Ps score shows a stable trend with a small
fluctuation range. Based on the above two calculations of Ps
anomaly scores for different physical parameter configurations
and integrations, it can be concluded that the prediction
performance of the revised algorithm model based on machine
learning for the rainy season precipitation prediction results is
improved compared with the climate model simulation, which

FIGURE 13 | Comparison of Ps before and after CWRF forecast correction for
7 case sets. (a) CWRF forecast, (b) machine learning correction, and (a, b)
mean Ps from 1996 to 2019.

can achieve a certain degree of improvement in the rainy season
precipitation forecast skills.

In summary, it can be concluded from Figure 13 that the
MSE, Ps, ACC, and TCC values before and after the CWRF
prediction are improved, and the prediction performance of
the summer precipitation prediction result correction algorithm
model based on the dendritic neural network model can be
obtained. Compared with the CWRF climate model simulation,
it is improved and can realize the correction of summer
precipitation forecast data to a certain extent.

CONCLUSION AND FUTURE WORK

In this article, we used the information from nearby regions
and time series and latitude and longitude positions to organize
the data and then divide it into eight regions according to
the climate characteristics of different regions. Then, the ANN
model is improved, and the dendritic module is introduced
to improve the generalization ability of the model. When
constructing the network model in this article, the number
of hidden layers is 2, and the number of neurons in each
layer is 9. The back propagation algorithm is used for model
training. Through cross-validation experiments on the model,
it is found that the activation function of the hidden layer
is adopted by the RELU function. The optimization algorithm
adopts the Adam algorithm model to predict better. The CWRF
regional climate model simulated summer precipitation was
corrected by optimizing the relevant meteorological elements
such as precipitation and temperature and analyzed with related
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evaluation indicators such as MSE, TCC, and ACC. It was
found that all three indicators were improved, indicating that
the artificial dendritic network model is effective for CWRF.
The accuracy of model forecast data has been improved,
which can improve the forecasting performance of CWRF to
a certain extent. The experimental results are obtained using
the cross-validation method, which can objectively evaluate the
generalization performance of the model. Experiments show that
good results can be achieved, which makes this method a good
choice for the meteorological field.

This article mainly discusses the problem of precipitation
correction in flood season. In theory, this idea and method
can be used in other related meteorological forecasting fields
and can be used as future work. At present, the model
only considers the output of the climate model, and many
other related elements are not used for modeling, so the
advantages of big data are not fully utilized. In the future,
more meteorological elements can be introduced to overcome
this limitation. This article cannot remove the impact of
extreme weather precipitation data when using precipitation
data, and only the forecast output of the meteorological model
is used as the modeling object of the algorithm in this
article. Taking into account the complexity of meteorological
problems. Furthermore, we hope to reduce the impact of
extreme weather by layered modeling of precipitation. Other
data, such as relevant observation data, can be added as
model inputs to check whether the accuracy of the model
can be improved.
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Machine vision-based navigation in the maize field is significant for intelligent agriculture.

Therefore, precision detection of the tasseled crop rows for navigation of agricultural

machinery with an accurate and fast method remains an open question. In this article,

we propose a new crop rows detection method at the tasseling stage of maize

fields for agrarian machinery navigation. The whole work is achieved mainly through

image augment and feature point extraction by micro-region of interest (micro-ROI).

In the proposed method, we first augment the distinction between the tassels and

background by the logarithmic transformation in RGB color space, and then the image is

transformed to hue-saturation-value (HSV) space to extract the tassels. Second, the ROI

is approximately selected and updated using the bounding box until the multiple-region of

interest (multi-ROI) is determined. We further propose a feature points extraction method

based on micro-ROI and the feature points are used to calculate the crop rows detection

lines. Finally, the bisector of the acute angle formed by the two detection lines is used as

the field navigation line. The experimental results show that the algorithm proposed has

good robustness and can accurately detect crop rows. Compared with other existing

methods, our method’s accuracy and real-time performance have improved by about

5 and 62.3%, respectively, which can meet the accuracy and real-time requirements of

agricultural vehicles’ navigation in maize fields.

Keywords: agricultural machinery navigation, crop rows detection, micro-region of interest, energy-efficient,

logarithmic transformation

1. INTRODUCTION

In recent years, advances in intelligent agriculture have effectively reduced human costs and
decreased the human harm caused by chemical factors such as pesticides. Real-time navigation of
machines walking in the field is crucial for agriculture. Among them, the most popular approaches
for field navigation are still path planning based on Global Position System (GPS) (Jin and Tang,
2011; Hameed, 2014; Li et al., 2019; Wang et al., 2021) and machine vision-based navigation (Ball
et al., 2016; Radcliffe et al., 2018; Mavridou et al., 2019; Rovira-Mas et al., 2021; Vrochidou et al.,
2022). The development of path planning algorithms has solved the path tracking problem of
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agricultural machinery on a global scale, but the phenomenon
of seedling injury from wheels is still inevitable. Since crops are
usually sown in rows, machine vision-based field navigation is
a promising way to provide navigation paths for agricultural
machinery. Among them, the critical technology of computer
vision, feature extraction (Manavalan, 2020; Xue et al., 2020,
2021a; Shrivastava and Pradhan, 2021; Vishnoi et al., 2022),
is widely used in crop rows detection due to its advantages,
such as low reliance on data resources. Many researchers have
devoted significant efforts to developing efficient field navigation
algorithms, and they can be classified into the following types.

1.1. Methods Based on Hough Transform
Hough (1962) proposed a way to transform points from
a right-angle coordinate system into hough space. It has a
good performance in processing information with straight-line
features, but the real-time performance and accuracy of crop
rows detection are unsatisfactory with mid-late stage plants.
Thus, various improvements have been proposed. Ji and Qi
(2011) detected crop rows by randomly selecting feature points
for the Hough transform and then using many-to-one mapping
to parameter space. Gall et al. (2011) established Hough Forest to
improve the speed of Hough straight line detection. Winterhalter
et al. (2018) proposed a reliable plant splitting pipeline and
detected crop rows by Hough transform, but this approach is still
limited to the crop rows at the early stage.

1.2. Methods Based on Horizontal Strips
It is very difficult to extract crop information from non-parallel
crop rows in the image. This problem is effectively solved by
dividing the image into multiple horizontal strips and processing
them in successive steps. Ma et al. (2021) determined the number
of crop rows by dividing horizontal strips in the upper part of
the image. Ospina and Noguchi (2019) derived detection lines of
crop rows by dividing horizontal strips. Crop contours in each
strip are calculated, and their geometric centers are extracted
as feature points for fitting. Zhou et al. (2021) determined the
multi-ROI by dividing the horizontal strips. The initial ROI
is calculated and continuously slides upward for the update.
Finally, the midpoints of each ROI are fitted to make a navigation
line. This method does not fully extract crop information when
dealing with discrete characteristics of plants.

1.3. The Deep Learning Method
During the past decades, deep neural networks (DNNs) have
made great success in field detection. Bah et al. (2020)
combined Convolutional Neural Networks (CNN) and the
Hough transform to detect crop rows in the field. Adhikari et al.
(2020) used a deep network to learn semantic images, which
makes the input images directly output detection lines as tractor
control signals. Lac et al. (2022) first used a deep neural network
to detect the plant stem and then used an aggregation algorithm
to refine the localization of the crop further. Ponnambalam
et al. (2020) divided the image into a vehicle driving area and
a crop area using semantic segmentation based on CNN, and
feature points are extracted. They further fitted the feature points
derived from the multi-ROI to plan the crop rows detection lines.

Although DNNs have good performance in accuracy, they really
require large computing resources, and this limits their practical
applications (Zhang et al., 2018a; Roy et al., 2019; Pan et al., 2021).

1.4. Integrated Approaches
Yu et al. (2021) proposed a treble classification and two-
dimensional clustering-based crop rows detection in paddy fields
for the problem of numerous weeds and floating weeds in the
paddy fields. This method used a triple Otsu’s (Otsu, 2007)
method approach for segmentation and fitted the detection
lines after selecting the misleading points by a two-dimensional
adaptive clustering method. This method needs to be improved
in terms of real-time performance. Jiang et al. (2015) integrated
the crop rows with close geometric features in the robot walking
area by multi-ROI for optimization and extraction of the crop
rows centroids by clustering method. The detection lines were
extracted by the linear regression method. Tenhunen et al. (2019)
segmented the green objects after segmentation and obtained the
direction and distance information between crop rows using a
two-dimensional Fourier transform, then performed a clustering
operation and finally obtained the location of the crop row. This
algorithm is still deficient in coping with strong illumination
conditions. Rabab et al. (2021) investigated adaptive crop row
detection in variable field environments without the need to
determine the number of crop rows by clustering. The method
has good adaptability. Zhang et al. (2018b) defined clusters of
feature points and fitted crop rows detection lines through a
clustering algorithm and optimal path selection.

1.5. Our Contributions
In this study, we propose a new crop rows detection method for
real-time navigation in maize fields during the tasseling stage.
The article makes the following main contributions.

(1) To solve the difficulty of segmentation caused by the
concentrated distribution of each color component in the image,
we propose an image enhancement method based on logarithmic
transformation, which well increases the contrast between the
tassels and the background.

(2) We propose a method to determine ROI (Montalvo et al.,
2012) by two steps of approximate selection and update, which
overcomes the problem that ROI cannot achieve adaptivity in
extracting information from skewed crop rows images.

(3) To verify the performance of the proposed method, various
experiments are conducted to analyze the effect of parameters
and make a comparison with the existing related studies. The
experimental results demonstrate the advantages of this study in
terms of accuracy and real-time performance.

Specifically, this study demonstrates the possibilities and
prospects of feature extraction algorithms for extracting
navigation lines in the tasseled maize field. We have overcome
the problems of complex tassels segmentation and non-adaptive
ROI. The whole process of this algorithm is shown in Figure 1.
Our proposed model consists of two main parts: image
preprocessing and determination of navigation lines. In image
preprocessing: First, the logarithmic transformation is applied
to augment this capture images. Second, these images are
transformed into HSV space and segmented the tassels from
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FIGURE 1 | Flowchart of the whole extract navigation line algorithm.

the background by grayscaling and Otsu’s method. Finally,
the binarised image is morphologically processed to decrease
impulse noise. In the part of the determination navigation line:
First, we divide the image into multiple horizontal strips, and
then the initial ROI is determined using the bounding box.
Second, continuously slide up the bounding box and update it
until the whole image is completed to get the multi-ROI. Then,
dividing the micro-ROIs to extract the feature points. Finally, the
detection lines of the crop rows aremade by using the least square
method to fit these points. We further compute the bisector of
the acute angle formed by the two detection lines and use it as the
navigation line.

2. METHODS

While the deep learning-based methods achieve good
performance in image processing and crop rows detection,
they usually require a lot of computing resources, such as
graphics processing units and GPU clusters. Based on image
enhancement, selection of ROI, and delineation of horizontal
strips, we propose an accurate and fast method for crop rows
detection in the maize field during the tasseling stage. This
section will introduce two main modules of our proposed
method: image pre-processing and the determination of the
navigation line.

2.1. Image Pre-processing
2.1.1. Pixel Value Modification
The distribution between crop rows in the upper part of the image
is very concentrated, making it challenging to distinguish crop

rows when extracting crop information. Additionally, the upper
part of the image is not very meaningful for navigation; we only
need the lower part of the image as the navigation area. Thus,
the lower 3/4 of the image is taken as the processing object, and
then the image is partially cropped to remove the redundant
information. Finally, the size of the pixel value of the image is
modified to 600×600 pixels.

2.1.2. Logarithmic Transformation
The grayscale processing (Liu et al., 2010, 2020; Laursen
et al., 2014) is mainly performed using the excess green
(ExG) (Comba et al., 2015; Tang et al., 2016; Chen et al.,
2020) feature operator when segmenting the crops with the
background at the early stage. However, ExG was not effective
in processing maize at the tasseling location. The logarithmic
function shows a nonlinear feature is uniformly increasing the
independent variable. Additionally, the magnitude of change
gradually decreases. Based on this, we adopt the logarithmic
transformation for the pixel values of each pixel point in the
image under RGB color space, which can augment the distinction
between the tassels and background and realize the segmentation
of the picture. When establishing the logarithmic function, the
following factors are considered: (1) Transformation should
avoid negative results after the logarithmic operation; (2) The
effect of differentiation between the tassels and the background
is augmented after the logarithmic operation. The logarithmic
function established is Equation (1).

Out = C × log(1.0+ p), (1)
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where Out is the result of the pixel value operation of the pixel
point; p is the pixel value of the pixel point in the image to be
processed; and C is a constant.

2.1.3. Building Masks and Morphological Processing
The images calculated in the way of 2.1.2 are transformed
from RGB to HSV color space. We will determine the suitable
threshold to build the mask through subsequent experiments.
The mask images are converted to grayscale images, and Otsu’s
method (Cellini et al., 2017) is performed to extract the tassels.
At the end of this part, it is necessary to select the appropriate
kernels for the morphological processing of the image.

2.2. Determination Navigation Line
In this section, we describe how to determine a navigation
line. It mainly contains two parts: selecting ROIs and planning
navigation lines.

2.2.1. Select ROIs
The algorithm addresses the problem of navigation line
extraction for field vehicles. We believe that the crop rows in the
traveling area (the two crop rows in the center of the image) are
valid for navigation, while the crop rows at the image boundary
can be disregarded. Due to the perspective principle, the crop
rows are not parallel in the image, bringing more significant
difficulties to feature point extraction. Therefore, we extracted
feature points by selecting ROIs.

To determine the ROI of an image, we specify a bounding
box, which is described as follows: The coordinates of point q0
(Xr, Yr) are used as the origin, L1+L2 (L1=45pix, L2=55pix) as
the width andH (20pix) as the height to determine the bounding
box shown in Figure 2. Since L1, L2, and H are all constants and
only the coordinates of the center point q0 are variable. Thus, the
location of the bounding box is expressed in Equation (2).

B = (Xr ,Yr). (2)

2.2.1.1. Divide the Image Band
We divide the binarized images according to the following way:
The image is divided into left and right areas using the line
x=center (260pix) as the dividing line. The areas are labeled as
Left and Right. The algorithm uses the same approach for Left and
Right, thus, we only describe the process of Left in the following
step. On Left, eight horizontal strips are divided in step length
of 1h (20pix) from bottom to top, each strip was numbered Ks
(s=1,2,3...,8). The resulting model is shown in Figure 3.

The unstable environment such as light and weeds makes the
work hard of getting crop rows information, we determine the
ROI by approximate selection and update. The primary choice
is completed first. The bounding box is applied to frame the
approximate position of the initial ROI. Then this ROI is updated
according to its local pixel distribution to obtain a more accurate
result of the initial ROI.

We start by approximately selecting the initial ROI with a
bounding box, marking it as B1, and the process is as follows:
First, we set the threshold Y=15. The cumulative valueM(j) of the
number of white pixels in each column of the strip is calculated

FIGURE 2 | The structure of the bounding box.

FIGURE 3 | Image division processing. The green part is the binarized image.

W and H is the image pixel value of width and high.

using Equation (3) sequentially in the order of the labels until
the maximum value of M(j) ≥ Y in the Ks strip, and this strip
is name Kj. The values of columns whose coordinates are higher
than Y are counted, and it is stored in list Q. In Q, the closest
value to the center is the horizontal coordinate of the origin of
the initial bounding box, and the lower boundary of the strip is
the vertical coordinate of the origin of the initial bounding box.
The coordinates of the origin of the bounding box are given by
Equation (4), then B1 is framed.

M(j) =

∑1h
i=1 p(i,j) = 255

255
, j ∈ {1, 2, ...,w} , (3)

where j is the column coordinate of the pixel point of the image
strip; i is the row coordinate of the pixel point of the image strip;
p(i,j) is the pixel value of the coordinate; w is the horizontal pixel
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FIGURE 4 | Image captured by CMOS. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

size of the strip.

(js,W − (Ks − 1)×△h). (4)

2.2.1.2. The Method of Updating Bounding Box
To achieve a more accurate location of the ROI, we propose an
updated method, and the steps are as follows.

(1) First, the number of white pixels in each column of the
bounding box is counted using Equation (5). Mark the horizontal
coordinate of the lower boundary of the bounding box as xp
(xp=1,2,3..., L1+L2). The distribution of white pixels in the
bounding box for the part of the horizontal coordinate less than
xp and more than xp are expressed respectively as Equation (6)
and Equation (7).

Z(v) =

∑1h
u=1 p(u,v) = 255

255
, v ∈ {1, 2, ..., L1+ L2}, (5)

where u is the row coordinate of the pixel point within the ROI; v
is the column coordinate of the pixel point within the ROI; p(u,v)
is the pixel value of this point.

Il =

xp∑

v=1

Z(v)× (xp − v ), (6)

Ir =

L1+L2∑

v=xp+1

Z(v)× (v− xp ), (7)

where Z(v) is calculated by Equation (5) v is the column
coordinate of the pixel point of the image strip; L1+L2 is the
width pixel value of the bounding box.

(2) To find a point in the bounding box that makes the
distribution of pixels balanced, we build an evaluation function
f(xp), which is shown as Equation (8). For the second-order
partial derivative (Equation (9) of f(xp). Since Equation (9) >0,
there is a minimum value of f(xp). The horizontal coordinates of
the bounding box are updated to the horizontal coordinates of
the lowest point of f(xp) which is determined by Equation (10),
and the vertical coordinates are unchanged.

f (xp) = |Il − Ir| , (8)

∂2f (xp)

∂x2p
= 2, (9)

jk = argminf (xp). (10)

2.2.1.3. Determining the Final Result of the Initial ROI
By means of 2.2.1.2 [Due to the white pixels of B1 are already
calculated by Equation (3) and do not need to be repeated by
Equation (5)], the bounding of B1 is updated, and the coordinate
origin of the result is (jk1, W-(Ks-1)×1h) [jk1 is the result of the
calculation of Equation (10)]. This bounding box determines the
final outcome of the initial ROI, marked as D1.

2.2.1.4. Sliding of Bounding Box
After obtaining the initial ROI, the ROI named B2 is determined
by sliding the bounding box of the initial ROI in the negative
direction along the y-axis in step length1h. The coordinate of the
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FIGURE 5 | Statistics of color components in RGB space. (A) Color grade in original picture Type-1 field (illumination: 130800 lx). (B) Color grade in original picture

Type-2 field (illumination: 101700 lx).

FIGURE 6 | Statistics of color components after logarithmic transformation. (A) Color grade by transformation Type-1 field (illumination: 130800 lx). (B) Color grade by

transformation Type-2 field (illumination: 101700 lx).

bounding box origin of B2 is (jk1, W-Ks×1h). T1 is the number
of white pixel points inside B2, calculated by Equation (11).

T1 =

L1+L2∑

n=1

1h∑

b=1

p(b, n) = 255, (11)

where b is the row coordinate of the pixel point; n is the column
coordinate of the pixel point. p(b,n) is the value of the pixel point
in B2.

The algorithm updates the bounding box of the optimized B2
to obtain the updated resultD2 by establishing a thresholdT0. We
take T0 as 20 and offset d=20 in this article. The updated resultD2

for B2 is derived and framed. The updating method is as follows:
(1) T1 < T0: B2 is judged to be a sparse crop area. Considering

that the distribution of the crop rows in the image is skewed,
we slide the bounding box of B2 in the image coordinate system
along the x-axis toward the line x=center by sliding step of offset
d, and the result of D2 is determined.

(2) T1 ≥ T0: B2 is determined as a feature region. The
bounding box of B2 is updated by the method of 2.2.1.3 to give
the coordinates of the origin as (jk2, W-Ks×1h), and the result
frame D2 [jk2 is the result of the calculation of Equation (10)].

2.2.1.5. Determination of Multi-ROI
There is a tendency for the crop rows to converge in the image.
Based on this feature, the steps in 2.2.1.4 are repeated. The
process is as follows. First, The bounding box of the current
ROI(De) (subscript e is the number of the ROI, e=1,2,3...) is
slid up to determine the subsequent ROI (Be+1) in the strip.
Then Be+1 is updated and optimized to obtain. De+1 until the
multi-ROI is reached.

2.2.2. Planning Navigation Line by Getting

Micro-ROIs
The part marked as Right are processed using the methods in
2.2.1.1, 2.2.1.3, 2.2.1.4, and 2.2.1.5 in sequence. Therefore, all the
ROI of the whole picture are determined.
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FIGURE 7 | Images in HSV color space. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

FIGURE 8 | Distribution interval of H, S, and V at sampling points. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

FIGURE 9 | Binary images. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

This algorithm extracts feature points by building micro-
ROIs. The method is as follows: Each ROI (D1, D2,...) is
divided into 10 x 2 grids, each with a 10(pix)×10(pix)

micro-ROI. We set the threshold for the number of white
pixels in the micro-ROI H0=20 and calculate the number
of white pixels Hn in the individual micro-ROI. When
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FIGURE 10 | Results of morphological processing. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

FIGURE 11 | The projected image of the Kj strip (Kj is calculated in 2.2.1.1).

Hn >H0, the geometric midpoint of the micro-ROI is a
feature point.

Finally, these feature points are fitted using least squares
to get the crop rows detection lines. The angle bisector at
the intersection of the two identification lines is used as the
navigation line.

3. EXPERIMENTAL RESULT AND
DISCUSSION

In this section, we first introduce image acquisition. Then the
results of each step are described. Finally, the performance of this
article and existing algorithms is shown.

3.1. Image Acquisition and Processing
Equipment
The subject of this study is the images of maize crops in
the tasseling stage. The image acquisition device is a CMOS

(Complementary Metal-Oxide-Semiconductor) machine vision
camera, which is installed at a height of 2.9 m from the ground
with a tilt angle of 20◦ the ground and calibrated using the camera
imaging principle. The camera resolution is 1,920× 1,080 pixels.
Video is collected in Gu’an County, Hebei Province, China. The
crops are planted at a row spacing of 60 cm, and the plant
height was 2.7 m. The programming software was python 3.7
IDE, PyCharm professional 2020 compiler. The image processing
hardware used AdvantechMIC-7700 IPC, processor Intel Corei5,
main frequency 2.5GHz, graphics card for NVIDIA GTX 1650,
video memory 8G. The video was saved in AVI format. The video
was collected on 8 July 2020 (illumination:101700 lx) and 11 July
2020 (illumination:130800 lx).

3.2. The Performance of the Proposed
Model
In this part, we will use these images as examples to describe the
result of every step. Example images are shown in Figure 4. In
Figure 4, the illumination of the Type-1 field and Type-2 field
are 130800 (lx) and 101700 (lx) respectively. First, the pixels of
the two images are modified by way of 2.1.1. Then the results are
processed in the following steps.

3.2.1. The Result of Logarithmic Transformation
The processing results of Figure 4 are plotted with the frequency
statistics of each color component (R, G, B) as shown in Figure 5.
It can be found that the distribution of each color component
is concentrated, indicating that the differentiation between the
tassels and the backgrounds, such as leaves and soil, is not
obvious under natural illumination, which makes it challenging
for subsequent segmentation work. To determine the value of
C in Equation (1), the experiment methods are as follows:
We transformed the images by Equation (1), and the results
of C taking values in the range 1 to 100 were observed. We
found that the frequency distribution has clear discrimination
when C is taken as 48. The statistical results are shown in
Figure 6. Comparing the statistical results in Figures 5, 6, the
application of logarithmic transformation significantly enhances
the distinction between the tassels and the background, which
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FIGURE 12 | Distribution of the judging function.

FIGURE 13 | The result of multi-ROI extraction. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

provides the necessary conditions for the subsequent image
segmentation, so we determine the value of C is 48.

3.2.2. Result of Masks and Morphological Operations
Images are transformed to HSV color space, and the result is
shown in Figure 7. Fifty frames are randomly selected, and 50
sampling points are chosen on each of the tassels to count the
distribution of H, S, and V. The statistical results are shown in
Figure 8. Based on the statistical results, we set the threshold
of H as [80,121], S as [250, 255], and V as [240, 255]. By these
thresholds, themasks are built, mask images are transformed into
grayscale images, and Otsu’s method is performed to extract the
tassels. The result is shown in Figure 9.

There is impulse noise in the binary images, and the feature
pixel values of maize tassels are too small, making it challenging

to extract feature points. It is necessary to performmorphological
operations. Thus, we use a convolutional kernel of size 3×3
to inflate the image once morphologically. Then use a median
filter with a convolutional kernel of size 9 to the noise for the
inflated image. The morphological processing results are shown
in Figure 10.

3.2.3. The Result of Dividing Image, Initial ROI, and

Second ROI
By the method of 2.2.1.1 to 2.2.1.3, the result of every step is
as follows: Take Figure 10B as an example. We find the ks=1
horizontal strip. Its statistical graph of the number of white pixel
dots in the column is shown in Figure 11. With the assistance
of this graph, the rough initial ROI B1 is determined, and the
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FIGURE 14 | Fitting results for feature points. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

FIGURE 15 | Calculated angles in the illumination of 101700(lx).

result is shown in Figure 11. By intercepting the curve inside B1
in Figure 11, we plot the distribution function of f(xp) as shown
in Figure 12, and find the horizontal coordinate of the lowest
point is jk1. The coordinates of the origin point of the bounding
box are (jk1, W-(Ks-1)×1h). We use the bounding box to frame
the final result of the initial ROI D1. Next, the second ROI can
be determined by the method proposed in 2.2.1.4. The results are
shown in Figure 13.

3.2.4. The Result of Multi-ROI
The final multi-ROI can be determined by the method proposed
in 2.2.1.5, the result is shown in Figure 13. The tassel feature
pixels that deviate from the path appear during the upward
sliding of the bounding box, as shown in the red box in
Figure 13A. According to the original images, the pixels in this
region correspond to tassels deviated from the crop rows, so
this region is judged as deviated and will not be processed. Our
proposed method allows the ROI always to follow the crop rows

FIGURE 16 | Calculated angles in the illumination of 130800(lx).

TABLE 1 | The performance of different methods in indicators of time,error angle,

accuracy, and FPS compared with those in the literature.

Methods
Average

time(s)

Maximum

angle(θ )

Minimum

angle(θ )

Average

angle(θ )

Accuracy

(%)
FPS

This study 312.3 3.88 1.04 1.49 98.6 4.4

Algorithm-1 1000.2 12.82 8.69 8.36 70.1 2.1

Algorithm-2 828.4 9.24 5.88 6.89 88.5 3.8

Algorithm-3 459.9 4.95 3.28 3.78 93.6 2.9

Algorithm-4 610.4 10.4 7.77 8.59 84.9 2.6

trend and guarantees the reliability of the subsequent feature
point extraction work as much as possible.

3.2.5. The Result of Feature and Navigation Line
By the method proposed in 2.2.2, feature points are extracted.We
further plan the crop rows detection lines and the field navigation
line. The result is shown in Figure 14.
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FIGURE 17 | Results of comparative data. (A) The data of angle, (B) the data of accuracy, and (C) the data of time.

3.3. Results and Discussion
To verify the accuracy of the detection results. We designed an
experiment as follows: Since the navigation line is calculated by
crop rows detection lines, only the declination angle θ between
the navigation line and the manually drawn navigation lines is
needed to evaluate the detection accuracy of the algorithm. If θ is
less than 5◦, the detection result for navigation can be considered
accurate. As the speed of agricultural machinery in the field is
very slow, nomore than 0.5m/s, we considered that the algorithm
can meet the basic real-time requirements when the frames per
second (FPS) is greater than 4. A total of 1,000 frames of video
taken in the field were randomly selected for the experiment.
Among this video, 500 frames are in 101700(lx) illumination,
and others are in 130800(lx) illumination. Average processing
time, θ , and FPS were calculated for each frame selected. The
error angles in different illumination are shown in Figures 15, 16,
respectively. The performance of this algorithm is shown in
Table 1.

To further verify the reliability and real-time performance of

this study it is compared with the methods proposed by Hough

(1962) (Hough Transform) (Algorithm-1), Ji and Qi (2011)
(Algorithm-2), Zhou et al. (2021) (Algorithm-3), and Zhang
et al. (2018b) (Algorithm-4). Additionally, we will analyze the
results of the performance among different methods in terms of
accuracy and processing time. The Hough transform is a very
classical algorithm. After the images are segmented using the
pre-processing method proposed, we used the Hough transform
to detect the crop rows and record the data. Algorithm-2
mapped the coordinates of the image space to the parameter
space through random numbers. The parameter space feature
points disappeared when dealing with the case of divergence
of tassels, resulting in significant deviations in the Hough line
detection process, and the navigation line’s average error angle
reached 6.89◦. Moreover, Algorithm-2 used the Hough transform
algorithm, which had a higher computational cost, and the
average time to process a frame was more than 800 ms, which
could not meet the real-time requirements of field navigation. In
response to the problems of Algorithm-2, the proposed algorithm
took the left and suitable regions of the image and obtained the
multi-ROI by sliding off the bounding box to extract the feature

points, which effectively calculated the navigation line under
the dense conditions of crop rows distribution. The average
error angle of the navigation line calculated by Algorithm-3
is 3.78◦. This error is because the ROI window proposed in
the paper could not completely cover the tassels after the ROI
window was slid upward when the tassels were bifurcated during
the extraction process, which led to deviations in the fitting.
Furthermore, the algorithm selects the appropriate feature points
by the center of each ROI. However, the navigation lines were
biased due to the problems of forked tassels. The algorithm in
this article deals with the deviation points by fixed-size ROI
and the ROI optimization to extract the tassels completely.
Algorithm-4 removed feature points by selecting the midpoints
of the left and right edge points in the image strips. This
approach had better performance when dealing with small target
plants, but when dealing with more oversized tassels, especially
the characteristic tassels with bifurcation, the feature points
calculated in this way did not express the crop distribution in this
region, resulting in a significant error in the subsequent detection
lines extraction. The proposed algorithm extracted feature points
more completely by dividing micro-ROIs, avoiding the above
problems. By comparison, the algorithm of this study has high
accuracy and real-time performance in crop row detection in
maize fields at the tasseling stage.

The performance of each algorithm is shown in Table 1. The
main parameters are shown in Figure 17 so that they can be
more intuitive. Compared to current popular algorithms, we have
improved accuracy by at least 5% and single-frame processing
time by at the least 62.3%. The processing results of this algorithm
are shown in Figure 18. The results of the above comparison
experiment are shown in Figure 19.

4. CONCLUSION AND FUTURE STUDY

Based on machine vision, we propose a real-time method for
the extraction of navigation lines in the maize field during the
tasseling stage. Field navigation line extraction in the maize crop
rows during the tasseling phase is challenging because the tassels
are hard to be segmented from the background, and extracting
their information is difficult. We propose a real-time crop rows
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FIGURE 18 | Experimental results of crop rows detection. The blue lines are the manual calibration lines, the white lines are the algorithmic crop rows identification

lines, and the pink lines are the algorithmic navigation lines. (A) Type-1 field, (B) Type-2 field, (C) Type-3 field, (D) Type-4 field, (E) Type-5 field, and (F) Type-6 field.
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FIGURE 19 | Extraction results comparison between literature and algorithm in this article. This algorithm’s crop rows detection lines are white, the manually calibrated

navigation line is yellow, and the corresponding algorithm’s navigation line is pink. (A) Algorithm of this paper, (B) Algorithm-2, (C) Algorithm of this paper, (D)

Algorithm-3, (E) Algorithm of this paper, and (F) Algorithm-4.
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detection algorithm based on logarithmic transformation and
micro-ROI in the field during the tassel period to address these
issues. After cutting the image captured by the CMOS camera
(RGB) to obtain a 600×600 (pix) image, the algorithm performs
a logarithmic transformation to augment the distinction between
the tassel and the background. This research converted the
image to the HSV color space. Additionally, the background
of the tassels was created as a mask. After the lower part of
the image is divided into eight horizontal strips, we use the
bounding box to determine the initial ROI by selecting the
starting point. The final result of the initial ROI is determined
by updating its bounding box position. The current bounding
box is slid along the negative direction of the y-axis of the
image coordinate system in steps 1h and updated until the
multi-ROI is reached. The ROI is divided into cells to get the
micro-ROIs, and then the feature points are extracted. Feature
points are fitted to derive crop row detection lines, on which the
navigation lines are then calculated. We fit the feature points to
make crop rows detection and navigation line. The error in the
navigation line of this algorithm is stable at 1.49◦, and the average
computational time of the single frame is 312.3 ms. The accuracy
is reaching 98.6%. After the Comparison experiment, the
algorithm proves to have a clear advantage in terms of real-time
and accuracy.

However, there are still some limitations to this method,
such as different climates and different crop row spacing, which
can reduce the accuracy of the algorithm. In the future, we
will focus on new methods of feature extraction (Xue et al.,
2021b), image augments (Sui et al., 2020), and ROI adaptability
to segment a variety of tasseled plants and calculate adaptive

ROI with a wide range of planting rows. In addition, how

to apply the energy-efficient spiking neural networks to crop
rows detection is another interesting topic. Because the SNNs
hold the potential to provide a good performance equivalent to
that of DNNs while with low latency and high computational
efficiency (Feldmann et al., 2019; Zhang et al., 2021; Luo et al.,
2022).
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Environmentally friendly microcapsules are becoming more and more widely used

due to the increasing demand for environmental safety in pesticides. To compare

the impact of differences in wheat herbicide phytotoxicity of different gibberellic acid

microcapsule suspensions, two microcapsule suspensions were separately formulated

using the phase transfer method and the in situ polymerization method, and the key

performance indicators are the size of microcapsules and the degree of encapsulation.

Meanwhile, through field trials, the pharmacological and detoxification effects of different

types of microcapsule suspensions on the herbicide methyldisulfuron in wheat fields

were compared. The microcapsule suspension was prepared by the phase transfer

method and the particle sizes D10, D50, and D90 are 0.990, 2.136, and 5.201µm,

respectively; the microcapsule suspension was prepared by the in situ polymerization,

the particle sizes D10, D50, and D90 are 4.365, 8.547, and 16.782µm, respectively.

The encapsulation rate of the microcapsules prepared by the phase transfer method

and the in situ polymerization method was 86.9% and 91.2%, being higher than 80%,

the national standard for capsules. Meanwhile, the release rate conforms to first-order

release kinetics in 0–4 days and zero-order release kinetics in 5–28 days. The plot trials’

result showed that the detoxification effect of the microcapsules prepared by the in

situ polymerization method was significantly better than the detoxification effect of the

microcapsules prepared by the phase transfer method and the control agent. The growth

index of wheat was higher than that of the untreated check after using the agent.

Keywords: microcapsules, gibberellic acid, brassinolide, phytotoxicity, soluble powder

INTRODUCTION

Microcapsule technology is widely used in global agricultural production because microcapsules
are more environmentally friendly compared with other pesticide formulations, such as pesticide
emulsion, wettable powder, andmicroemulsion. At present, inorganic or organic polymermaterials
aremainly coated on the surface of the active ingredient solution via physical and chemicalmethods
to form solid particles with a certain shape. The diameter of such solid particles is generally between
10 and 1,000 microns (Cui et al., 2018), and the release of active ingredients occurs mainly through
two mechanisms: osmotic diffusion and capsular rupture (Wang, 2009). Therefore, microcapsule
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technology can provide controlled release, prolong residual
efficacy, and improve products’ storage stability, and all the
features can provide a significant value to pesticides applied in
agricultural production, which has a high application value (Liu
et al., 2018).

Gibberellic acid is a plant growth regulating hormone
with good performance and widely used in global agricultural
production. Gibberellic acid can provide excellent performance
in promoting plant growth and cell differentiation, delaying
senescence, and increasing crop tolerance. Gibberellic acid
applied during the wheat growth stage promotes early wheat
maturity, improves wheat quality and yield, and at the same
time can improve wheat crop tolerance (Liu et al., 2015; Chen,
2018; Yu et al., 2019). However, the performance of gibberellic
acid in the field is easily affected due to high temperature,
moisture, and other environmental factors, sometimes, the
efficacy in the field is reduced due to the decomposition of
an active ingredient. Microcapsule technology can prolong
residual efficacy via reducing the decomposition of an active
ingredient. Methylsulfuron is a sulfonylurea herbicide, which
can control a variety of grass weeds and is widely used in
wheat fields globally (Zhou et al., 2019). However, if it is used
improperly, such as repeated spraying and multiple spraying,
or under unfavorable environmental conditions, such as rain,
cooling, and flooding, severe pesticide phytotoxicity may occur
after application and cause yield losses in the field, and urea
or plant growth regulators (such as gibberellic acid) applied
in time will reduce the impact on crops and yield (Cao et al.,
2018). However, there are no reports on the microencapsulation
of gibberellic acids and their detoxification effect on herbicide
phytotoxicity. Microcapsules as environmentally friendly
pesticide formulations play an important role. The author used
the phase transfer method and in situ polymerization to prepare
microcapsule suspensions of different types of gibberellic acid,
and applied the prepared microcapsule suspensions to the field.
The result showed that microencapsulation of gibberellic acid
can reduce wheat herbicide phytotoxicity caused by methyl
sulfuron, and this research provides a theoretical basis and data
support for subsequent practical agricultural production practice
in the future.

RELATED WORKS

Main Instruments and Reagents
Materials
Sodium hydroxide, 36% concentrated hydrochloric acid, urea,
formaldehyde, ethyl acetate, ethyl cellulose, butyl phthalate,
polyvinyl alcohol, n-dodecane, methyl oleate, xanthan gum, and
ethylene glycol are all analytical grade. The above reagents
were purchased from Sinopharm Chemical Reagent Co., Ltd.
Tween-80 and Tween-20 are chemically pure and purchased
from Hai’an Petrochemical Plant in Jiangsu Province; 30 g·L−1

methyldisulfuron-dispersible oil suspension agent (Shandong
Bio-Biotechnology Co., Ltd.), 10% Gibberellic acid soluble
powder (Zhejiang Qianjiang Biochemical Co., Ltd.), 90.3%
Gibberellic acid (GA3) original medicine was provided by
Sichuan Guoguang Agrochemical Co., Ltd.

Instruments
Instruments include JT2003B electronic balance (Yuyao Jinnuo
Balance Instrument Co., Ltd.), E-100 optical microscope (Nikon
Corporation), GZX-GF101 electric blast drying oven (Shanghai
Yuejin Medical Instrument Co., Ltd.), WJL-602 laser particle
size analyzer (Shanghai Yidian Physical and Optical Instrument
Co., Ltd.), HH-2 Electric Heating Constant Temperature Water
Bath (Beijing Kewei Yongxing Instrument Co., Ltd.), GC-4000A
Liquid Chromatograph (Beijing Dongxi Analytical Instrument
Co., Ltd.), JP-100 Ultrasonic Cell Crusher (Shenzhen Jiemeng
Cleaning Equipment Co., Ltd.), and Digital Vernier Calipers
(Shijiazhuang Woma Tools Co., Ltd.).

Preparation of 10% Gibberellic Acid
Microcapsule Suspension
Preparation of Microcapsule Suspensions by the

Phase Transfer Method

Aqueous Phase Preparation
Approximately 40ml of an aqueous solution containing 0.5 g of
Tween-80 and 1.5 g of PVA was prepared.

Organic Phase Preparation
Approximately 1 g of ethyl cellulose and 2 g of methyl oleate were
weighed into a beaker, added with 5.54 g of gibberellic acid and
10ml of ethyl acetate solution, and then stirred to completely
dissolve ethyl cellulose and gibberellic acid.

Microcapsule Preparation
The prepared aqueous solution was poured into a three-necked
flask equipped with a mechanical stirrer by adjusting the rotation
speed to 1,500 r·min−1, controlling the water temperature at
30◦C, and adding the organic phase dropwise at a speed of 3
ml·min−1. After dropping, stirring was continued for 20min by
slowly raising the temperature to 60◦C and adjusting the rotation
speed to 550 r·min−1, and when the ethyl acetate is evaporated,
it was made up with 50 g water to obtain 10% gibberellic acid
microcapsule suspension.

Preparation of Microcapsule Suspensions by in situ

Polymerization

Preparation of the Oil Phase
About 6.18 g of gibberellic acid was weighed, dissolved in 12.0 g
of ethyl acetate, and used as the oil phase.

Preparation of the Water Phase
In a three-neck flask equipped with a thermometer and stirring
device, formaldehyde and urea were mixed according to the
molar ratio of 1.75, dissolved and added with an appropriate
amount of deionized water, and then added to the three-neck
flask and stirred at a rate of 200 r·min−1. Meanwhile the pH was
adjusted to 8.0 with 0.5 mol·L−1 sodium hydroxide solution and
then warmed up to 70◦C at a rate of 2◦C·min−1, and the reaction
was carried out for 1 h after warming up to obtain formaldehyde–
urea prepolymer solution (Zhang, 2012). A further 8.0 g of 30%
urea–formaldehyde resin prepolymer was mixed with 2.0 g of
emulsifier T-20 and 21.82 g of water as the aqueous phase.
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Preparation of Microcapsules
The oil and water phases were mixed, sheared for 60 s at 10,000
r·min−1, transferred to a 100-ml three-necked flask, stirred at
30◦C and 800 r·min−1, and hydrochloric acid was used (1%).
The pH was adjusted to 4.5, heated to 60◦C, and stirred for
60min. Approximately 0.1 g of xanthan gum and 2.0 g of ethylene
glycol were added and stirring was continued for 30min. Sodium
hydroxide (20%) was used to adjust the pH to 9, and finally
water was replenished to 50 g to obtain a 10% gibberellic acid
microcapsule suspension agent with urea–formaldehyde resin as
a wall material (Zhang, 2011).

Characterization of 10% Gibberellic Acid
Microcapsule Suspension
Determination of the Appearance and Particle Size of

Microcapsule Suspension
An optical microscope was used to change the four fields of
view, observe the morphology of the microcapsules, and, in the
meantime, measure the average particle size of the microcapsules
with a laser particle size distribution analyzer.

Determination of Encapsulation Efficiency
Approximately 0.05 g of the microcapsule suspension sample was
accurately weighed (accurately to 0.0001 g), and an appropriate
amount of methanol was added, the capsule was broken with
an ultrasonic cell pulverizer, and then made up to 100ml
volume with methanol. The content of active ingredients
in the microcapsule suspension was determined by liquid
chromatography (Zhang, 2012).

Calculation of microencapsulation efficiency:

Encapsulation rate (%) = (microcapsule core material content/

core material content in raw materials)×100.

(1)

Operating conditions of liquid chromatography: column
temperature: room temperature; detection wavelength: 210 nm;
mobile phase: methanol+ water+ formic acid= 40+ 60+ 0.05
(V/V); flow rate: 0.8ml·min−1; injection volume: 20 µl (Ye et al.,
1996).

Study on the Release Kinetics of Microcapsules in

Organic Solvents
The prepared microcapsule suspension was filtered and dried
for use. A 0.1000 g of dry sample was weighed, transferred to a
100-ml volumetric flask to break the capsule with an ultrasonic
cell disruptor, and then made up to 100ml with xylene. Liquid
chromatography was used to determine the drug loading in the
dried microcapsule sample.

About 0.2000 g of the sample was weighed again,
transferred to a three-necked flask containing 200ml of
xylene, and stirred at 40◦C and 400 r·min−1. Samples
were taken once a day for the first 5 days, and samples
were taken every 2 days from the 6th day. Aspirate 5ml
of liquid while adding 5ml of xylene. The extracted
liquid was filtered to determine the cumulative release

amount at each point by liquid chromatography, and
the cumulative release percentage (%) was calculated.
The formula was calculated according to formula 1:
(Zhang et al., 2012).

Gibberellic Acid Microcapsule Suspension
Herbicide Detoxification
Test Process
The wheat variety Jinmai 101 provided by the Wheat
Research Institute of Shanxi Academy of Agricultural
Sciences was tested. It is a semi-winter variety with a
growth period of 235 days and an average plant height of
about 88 cm.

The trial was conducted in Sangzi village, Hucun town, Taigu
County, Jinzhong City, Shanxi province in 2018–2019. The trial
field conditions are flat field, sandy loam soil, 1.57% organic,
and pH 7.4. For test field preparation, the field was irrigated
at 5 days before sowing to ensure good field conditions for
mechanical planting. And, the wheat was sown at 24 September
2018, and the seeding amount is 300 kg·hm−2. The test was
planted in a north-south direction via a randomized block design,
and the plot size is 25 m2 (length 5m, width 5m, 13 rows
per plot, 0.38m pitch, and 0.50m plot spacing), and 1.00m
width walkway between replications, and even crop vigor among
four replications. After returning to the green (21 March 2019),
methyldisulfuron was applied at 30 g·L−1 and the dosage was 30 g
ai·ha−1. Following the finding of methyldisulfuron phytotoxicity
symptom, such as yellowing of leaves or the weakness of plants
or reduced plant height or stunted growth (26 March 2019) on
wheat, gibberellic acid microcapsule suspension was applied to
wheat with four replications. The treatment list is presented in
Table 1.

Survey of the Results
Samples were collected before and at 21 days after the
application of the microcapsule suspension, five points per
plot, and five plants per point. The height of each plant was
investigated, and the plant height growth and growth promotion
rate were calculated. The calculation formula was as follows:
formulas (2) and (3). Meanwhile, samples were collected before
harvest once again, five points per plot, and five plant per
point. Ear length, ear diameter, single ear weight, and 1,000-
kernel weight were investigated, and the yield of each plot
was assessed.

Plant height growth = plant height (cm) after

medicine− plant height (cm) before medicine. (2)

Data Analysis
Variance analysis on the above mentioned index traits
was analyzed by the SPSS data processing system, and
multiple comparisons were performed to analyze the
differences between the different agents via a new complex
range method.
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TABLE 1 | Concentration of the reagents used in the test field.

No. Pharmacy Active ingredient dosage (ml·ha−1) Remarks

1 10% gibberellic acid microcapsule suspension (Microcapsule 1) 250 Prepared by the phase transfer method

2 500

3 750

4 10% gibberellic acid microcapsule suspension (Microcapsule 2) 250 Prepared by in situ polymerization

5 500

6 750

7 10% gibberellic acid soluble powder 250 —

8 500

9 750

10 Untreated check – -

Microcapsule 1 represents the formulation prepared by the phase transfer method and microcapsule 2 represents the formulation prepared by the in situ polymerization method, and

so on.

FIGURE 1 | Microscopic images on microcapsule particle size prepared by

the phase transfer method (100×).

RESULTS AND DISCUSSION

Determination of Performance Indicators
of Microcapsule Suspensions
Determination of the Appearance and Particle Size of

Microcapsule Suspensions
The results of observations of microcapsules 1 and 2 using
an optical microscope are shown in Figures 1, 2. The particle
size measured by the laser particle size distribution analyzer
showed that: for microcapsule 1, D3 is 0.697µm, D10 is
0.990µm, D50 is 2.136µm, D90 is 5.201µm, and D97 is
7.987µm, δ = 1.971; for microcapsule 2, D3 is 3.241µm, D10

is 4.365µm, D50 is 8.547µm, D90 is 16.782µm, and D97 is

FIGURE 2 | Microscopic images on microcapsule particle size prepared by in

situ polymerization (100×).

22.946µm, δ = 1.453; particle size. Distribution diagrams are
shown in Figures 3, 4. Comprehensively, the result showed that
microcapsule 1 had a smaller particle size, worse monodispersity,
and wider particle size distribution compared with microcapsule
2. This phenomenon occurs during the microcapsule preparation
process. The selection of the emulsifier is related to the selection
of a suitable emulsifier when preparing the aqueous phase, which
can emulsify the oil phase into fine oil droplets and disperse
uniformly in the aqueous phase.

Determination of Encapsulation Efficiency
The encapsulation rate of microcapsules 1 and 2 was 86.9%
and 91.2%. The results showed that the encapsulation rate of
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FIGURE 3 | Particle size distribution of microcapsule 1.

FIGURE 4 | Particle size distribution of microcapsule 2.

microcapsules prepared by the in situ polymerization method is
high. It is possible that microcapsule 2 is formed by encapsulating
the active ingredients after polymerization of the capsule wall
monomer, the formed capsule is denser; while microcapsule
1 is a capsule prepared by the physical method, the phase
transfer occurs in the capsule wall. Due to the influence of the
volatilization rate of organic solvents, the conditions are difficult
to grasp, and the cysts formed are not uniform.

Study on the Release Kinetics of Microcapsules Into

Organic Solvents
The release profiles of the microcapsules prepared by the two
methods are shown in Figures 5, 6. For microcapsule 1, the
release rate on the 1st day was 13.4%, and the cumulative
release rate in the first 5 days was 32.5%, indicating that the
microcapsules had a rapid release process in the early stage.

From 0 to 5 days, by fitting the kinetic equation with time and
cumulative release, the zero-order release kinetic equation of
microcapsule 1 is y = 5.6× + 10.45 (R2 = 0.8659, Q is the
cumulative release percentage), and the first-order release kinetic
theoretical equation is Ln(1 – Q) = −0.0725× + 4.5022 (R2 =

0.8828). The R2 value of the zero-order release kinetic equation
is lower than that of the first-order release kinetic equation. This
means that the release of microcapsule 1 complies with the first-
order kinetic equation from 0 to 4 days, and the release behavior
of the active ingredients in the microcapsules has entered a
stable phase from the 5th day. From 5 to 28 days, the zero-
order release kinetic equation is y = 2.5519× + 20.792 (R2 =

0.989), and the first-order release kinetic equation is Ln(1 – Q)
= −0.0792× + 4.7626 (R2 = 0.9581). The R2 value of the zero-
order release kinetic equation is greater than that of the first-
order release kinetic equation, which means that the release of
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FIGURE 5 | Microcapsule 1 release curve.

FIGURE 6 | Microcapsule 2 release curve.

microcapsule 1 fits the zero-order kinetic equation from 5 to
28 days.

Similarly, the first-order release kinetic equation of
microcapsule 2 released in 0–4 days is Ln (1–Q) = −0.1054× +

4.5772 (R2 = 0.9676), and the zero-order kinetic equation
is y = 8.02× + 4.7 (R2 = 0.9568), the release from 5
to 28 days the first-order kinetic equation is Ln(1–Q) =

−0.0998× + 4.8952 (R2 = 0.8367), the zero-order kinetic
equation is y = 2.4675× + 26.422 (R2 = 0.993), which
means that the release of microcapsule 2 from 0 to 4 days
conforms to the first-order kinetic equation, and the release
of microcapsules in 5–28 days conforms to the zero-order
kinetic equation.

Research on Detoxification
Effect of Pesticides on Wheat Growth
The effects of the different pesticides on wheat growth are
shown in Table 2. At 14 days after application, plant height in
all gibberellic acid treatments is significantly higher than that
in untreated checks, and a clear dosage response was found
in different gibberellic acid treatments. Meanwhile, there are
no significant differences between microcapsules 1 and 2 at
the same dosage, which are significantly lower compared with
gibberellic acid soluble powder treatment at the same dosage.
At 28 days after application, plant height in all gibberellic acid
treatments is still significantly higher than that in untreated
checks. Meanwhile, plant height in microcapsule treatments
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TABLE 2 | Detoxification effects of different pesticides on wheat.

Treatments Amount of active

ingredients (ml·ha−1)

Growth height (cm) Growth promotion rate

14 days after application 28 days after application 14 days after application 28 days after application

Microcapsule 1 250 10.28d 31.96e 11.14d 19.50e

500 13.48c 33.93cd 45.77c 26.88cd

750 15.00b 35.37b 62.18b 32.26b

Microcapsule 2 250 10.70d 31.18e 15.71d 16.58e

500 13.48c 34.71bc 45.77c 29.80bc

750 15.24b 37.78a 64.79b 41.26a

10% gibberellic acid

soluble powder

250 12.96c 28.42f 40.13c 6.26f

500 14.80b 31.07e 59.99b 16.17e

750 18.65a 33.42d 101.70a 24.97d

Untreated Check – 9.25e 26.74 g

The meaning of the letters a–d represents the significance of the difference, and the different letters indicate that the results are significantly different from each other.

TABLE 3 | An effect of the different pesticides on wheat yield.

Elixir Amount of active

ingredient (ml

·ha−1)

Ear diameter (cm) Ear length (cm) Single spike

weight (g)

1,000 kernel

weight (g)

Yield (kg·hm−2) Yield increase (%)

Microcapsule 1 250 1.18ef 7.51d 2.22cde 40.01e 6893.45ef 3.45ef

500 1.23cd 7.72bc 2.39b 43.23cd 7463.73bcd 12.01bcd

750 1.30ab 7.89ab 2.59a 45.71ab 8624.31a 29.43a

Microcapsule 2 250 1.21de 7.53d 2.24cd 41.71de 7073.54def 6.16def

500 1.25bc 7.78ab 2.38b 44.10bc 7763.88b 16.52b

750 1.32a 7.94a 2.67a 46.75a 8824.41a 32.43a

10% gibberellic acid

soluble powder

250 1.15f 7.34e 2.19de 37.52f 6683.34f 0.30f

500 1.21de 7.60cd 2.31bc 39.83e 7243.62cde 8.71cde

750 1.26bc 7.75bc 2.40b 41.57de 7623.81bc 14.41bc

Blank control – 1.08 g 7.18f 2.12e 35.25 g 6663.33f –

Different lowercase letters after the same column of data indicate a significant difference of 5%.

is significantly higher than that in gibberellic acid soluble
powder treatment at the same dosage due to the longer residual
control from the microcapsule compared with the soluble
powder formulation, in terms of comparison of two types of
microcapsule, plant height in microcapsule 2 @ 750 ml/ha is
significantly higher than microcapsule 1 @ 750 ml/ha, and plant
height in microcapsules 1 and 2 @ 250–500 ml/ha is comparable
to each other at the same dosage.

Effect of Pesticides on Wheat Yield
The effects of spraying different pesticides on wheat yield are
shown in Table 3. A clear dosage response was found in all the
assessment factors for all the three gibberellic acid formulations.
Yield performance from three gibberellic acid formulations @ 250
ml/kg is comparable with the untreated check due to comparable
or slightly better performance in the assessed factors, such as
ear diameter, ear length, single ear weight, and 1,000-grain
weight, from different gibberellic acid formulations compared

with the untreated check, and a significantly higher yield from
three gibberellic acid formulations @ 500–750 ml/kg with the
untreated check due to significantly better performance in the
assessed factors, such as ear diameter, ear length, single ear
weight, and 1,000-grain weight. Meanwhile, the yield of both
microcapsules @ 750ml/ha is significantly higher than gibberellic
acid soluble powder @ 750 ml/ha, which is driven by 1,000-
grain weight and single ear weight, and all the assessed factors
of microcapsules 2 @ 750 ml/ha are significantly better than
gibberellic acid soluble powder @ 750 ml/ha, and the assessed
factors of microcapsule 1 @ 750 ml/ha are better than or
comparable with gibberellic acid soluble powder @ 750 ml/ha.
Comprehensively, microcapsule 2 provided the best effect in the
field especially on yield, followed by microcapsule 1, which is
better than the control agent. This shows that the microcapsules
can significantly increase the yield of wheat through yield loss
reduction due to the damage caused by pesticides (Wang et al.,
2000).
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DISCUSSION

Characterization of Pesticide Microcapsule
Release Properties
Microcapsule suspensions, as a new type of controlled released
formulation, have the outstanding advantages of prolonging the
residual efficacy from the active ingredient through slow release
(Liu and Xie, 2005). Release is an important indicator, which can
directly reflect the effect of sustained release and durability of
microcapsules, and it is of great significance for evaluating and
using pesticide microcapsules (Zhao et al., 2007). Meanwhile, the
release of the microcapsules has a significant impact by means
of environmental conditions, such as temperature, pH, and
moisture. And, the release mechanism is usually done through
physical routes, such as dissolution, diffusion, penetration, and
ion exchange, and chemical pathways, such as active ingredients
or enzyme degradation (Chen, 2015; Xue, 2019), normally,
there are two phases in the release process, which are rapid
release and slow release phase. In the rapid release phase,
an active component on the outer wall of the capsule may
not be coated, resulting in a large amount of initial release,
which is consistent with the “burst release effect” of the initial
release of microcapsules (Jegat and Taverdet, 2000). In the
slow-release phase, the active ingredient diffuses through the
wall of the capsule over time, the release is gentle and the
cumulative release amount increases slowly; through these two
phases, the microcapsules can be guaranteed to have a rapid
and sustained effect. During the experiment, the microcapsules
were placed in an organic solvent to simulate the actual
release of the microcapsules through diffusion. There are two
stages in the release process of microcapsules 1 and 2, which
meet the characteristics of slow release of microcapsules. The
mechanism and characterization of the release properties of
pesticide microcapsules prepared from different capsule wall
materials need to be further explored.

Comparison of Field Effects of Different
Methods for Preparing Microcapsules
This experiment verifies that the microcapsules prepared by the
two different methods have different effects in their actual use.
The specific performance is that the microcapsules prepared by
the in situ polymerization method are more effective than the
microcapsules prepared by the phase transfer method, both of
which are higher than soluble powder. The better performance
should be caused by a smaller particle size of microcapsule 2
compared with microcapsule 1. The smaller particle size means
that the microcapsule is easier to attach to the surface of the crop
and not easy to fall. Meanwhile, the emulsifier and processing
technology are also related; on the other hand, the release
is faster, and the amount released after 28 days is higher in
microcapsule 2 than in microcapsule 1. Through the release
of microcapsules, gibberellic acid can be continuously released
into the environment, to extend the efficacy in promoting
crop growth, and continuously increase crop tolerance against

herbicide damage. However, the efficacy at 14 days is not as
good as the soluble powder formulation, which may be caused
by the microcapsules that have not yet been completely released.
The control agent has a higher amount of gibberellic acid active
ingredients on the surface of wheat than the microcapsules, at 28
days, the efficacy is significantly better than the soluble powder
formulation, which demonstrates the longer durability of the
microcapsules and the advantages of resisting the effects of the
natural environment on the active ingredients.

CONCLUSION

Two gibberellic acid microcapsule suspensions prepared by the
phase transfer method and the in situ polymerization method
have a uniform particle size distribution. The encapsulation
efficiency and release characteristics meet the requirements of
the microcapsules. The preparation method and characterization
of microcapsules can provide a theoretical basis and supporting
data for their production and practical applications, and have
a certain application value. At the same time, the use of 10%
gibberellic acid microcapsules and 10% gibberellic acid soluble
powder can reduce herbicide damage to crop growth caused
by methyldisulfuron in wheat. The two types of microcapsules
have a different effect. Through the indexes of microcapsule
particle size, encapsulation rate, release rate, and the effect
on wheat growth, it was found that the performance of the
microcapsules prepared by the in situ polymerization method
was better than that of the microcapsules prepared by the
phase transfer method, and the microcapsules can prolong the
product residual efficacy in the field via controlled release;
therefore, the in situ polymerization method was recommended
for practical production.
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Rice is one of the most important food crops for human beings. Its total production
ranks third in the grain crop output. Bacterial Leaf Blight (BLB), as one of the three major
diseases of rice, occurs every year, posing a huge threat to rice production and safety.
There is an asymptomatic period between the infection and the onset periods, and BLB
will spread rapidly and widely under suitable conditions. Therefore, accurate detection
of early asymptomatic BLB is very necessary. The purpose of this study was to test the
feasibility of detecting early asymptomatic infection of the rice BLB disease based on
hyperspectral imaging and Spectral Dilated Convolution 3-Dimensional Convolutional
Neural Network (SDC-3DCNN). First, hyperspectral images were obtained from rice
leaves infected with the BLB disease at the tillering stage. The spectrum was smoothed
by the Savitzky–Golay (SG) method, and the wavelength between 450 and 950 nm was
intercepted for analysis. Then Principal Component Analysis (PCA) and Random Forest
(RF) were used to extract the feature information from the original spectra as inputs. The
overall performance of the SDC-3DCNN model with different numbers of input features
and different spectral dilated ratios was evaluated. Lastly, the saliency map visualization
was used to explain the sensitivity of individual wavelengths. The results showed that
the performance of the SDC-3DCNN model reached an accuracy of 95.4427% when
the number of inputs is 50 characteristic wavelengths (extracted by RF) and the dilated
ratio is set at 5. The saliency-sensitive wavelengths were identified in the range from 530
to 570 nm, which overlaps with the important wavelengths extracted by RF. According
to our findings, combining hyperspectral imaging and deep learning can be a reliable
approach for identifying early asymptomatic infection of the rice BLB disease, providing
sufficient support for early warning and rice disease prevention.

Keywords: bacterial leaf blight, asymptomatic infection, hyperspectral imaging, deep learning, spectral dilated
convolution, interpretable
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INTRODUCTION

Rice is one of the most important grain crops, more than half
of the world’s population relies on it for food (Wu et al., 2020).
Achieving steady and high rice yield has always been the goal
of agricultural production. Bacterial leaf blight (BLB) disease, as
one of the three major diseases of rice, is not evenly distributed
in rice fields, but occurs in patches with large areas of the
field free of disease in the early stages of infestation. In recent
years, the outbreak area of BLB disease accounts for about one
third of the total planting areas, and the average diseased plant
rate is about 10%. It has a huge impact on the yield of rice.
Generally, the yield is reduced by up to 50–60%, and even the
grains are not harvested (Zarco-Tejada et al., 2018; Zhang et al.,
2020). To reduce the negative effects of rice BLB disease, farmers
used to treat a large number of pesticides. Overuse of pesticides
not only increases the treatment expenditure, but also pollutes
the environment (Šebela et al., 2018; Zhang J. et al., 2019).
From the perspective of plant protection, the primary task is to
quickly and accurately identify the potential occurrence of BLB,
and then apply chemical treatments with the required amount
(Tian et al., 2021). Therefore, the early identification of BLB
is particularly critical. Early detection and prevention, as well
as timely guidance, enable farmers to take efficient measures to
control the spread of the disease, thereby reducing the amount
of pesticides applied, and achieving the goal of sustainable
agriculture (Rahman et al., 2020; Shu et al., 2021).

As computer vision and deep learning techniques have
developed rapidly in recent years, they have shown great promise
in detecting plant diseases (Qiu et al., 2021). Various rice
disease detection methods have been proposed by detecting
external changes of infected rice leaves from RGB images.
Jiang et al. (2021) used a VGG-16 model and RGB images
to recognize diseases of rice leaves and wheat leaves at the
same time. Lu et al. (2017) proposed a deep convolutional
neural network to identify a dataset of 500 RGB images
containing 10 rice diseases, and the accuracy achieved
at 95.48%. Besides, researchers have applied evolutionary
approaches to neural architecture search of convolutional
neural networks for improving computational efficiency
(Xue et al., 2021a,b).

Although deep neural networks have achieved great success
in detecting rice disease from RGB images, it is worth noting
that these networks may fail to generate correct results for the
early asymptomatic BLB disease detection based on RGB images.
The examples of healthy and asymptomatic leaves are presented
in Figure 1. Without giving labels in advance, one can hardly
identify whether the leaf is healthy (Figure 1A) or asymptomatic
(Figure 1B) due to their similar visual textures.

Since the rice BLB disease is caused by pathogen, rice leaves
under such a stress would experience two periods, including
asymptomatic and symptomatic stages (Deng et al., 2019; Tian
et al., 2021). Although there are no significant lesions shown
at the asymptomatic stage, the inner chemical composition has
changed according to the plant pathology theory (Chen et al.,
2020). Therefore, this inner change in rice leaves motivated
us to adopt the hyperspectral imaging technique to detect the

asymptomatic infection of the rice BLB disease and we obtained
the following results shown in Figure 2. It can be seen that there
are distinguishable features between the wavelengths from 378
to 1033 nm of hyperspectral images of healthy and infected rice
leaves. This finding motivates us to use the hyperspectral imaging
technique to detect the rice BLB disease at the asymptomatic
stage, thereby providing an earlier warning to the farmers and
assisting them in decision making about chemical treatments.

Hyperspectral imaging is a technique that analyzes multiple
wavelengths of reflectance intensity of each pixel instead of just
investigating primary colors (e.g., red, green, and blue) that only
cover the wavelength range from 450 to 680 nm (Lowe et al.,
2017; Zhang et al., 2021a). In comparison to traditional spectral
and image technologies, hyperspectral imaging technology can
obtain multiple wavelengths of spectrum and image information
at the same time, and it has been demonstrated to be an
effective and non-destructive technique for detecting crop
diseases across multiple scales (Franceschini et al., 2019; Riefolo
et al., 2021). Adopting the hyperspectral imaging technique
to detect leaf disease has become a popular approach because
hyperspectral imaging has high potential for finding new
insights about plant diseases. Through the information fusion of
multiple wavelengths, hyperspectral imaging can achieve better
classification performance than using RGB images (Cabrera
Ardila et al., 2020; Wang et al., 2021). Koushik et al. (2019) used
hyperspectral imaging to detect soybean charcoal rot disease.
Zhao et al. (2020) combined hyperspectral imaging and SVM
to detect wheat early powdery mildew. Zhang et al. (2021a)
applied in-situ hyperspectral imaging to diagnose the symptoms
of sheath blight disease on rice stalk. Kaitlin et al. (2020)
detected potato pre-symptomatic of late blight and early blight
by hyperspectral imaging. From above works, it can be concluded
that hyperspectral imaging is a powerful technique to detect the
early disease of plants. Meanwhile, it is also worth noting that the
high dimensionality of hyperspectral images might bring a huge
challenge to the computational complexity, which is an urgent
problem to be solved in the detection of plant diseases using
hyperspectral images (Zhang et al., 2020).

Because of the high dimensionality of hyperspectral images,
shallow machine learning models cannot perfectly handle the
target detection tasks in hyperspectral images (Kaitlin et al.,
2020). Deep learning, on the other hand, has shown its great
potential in diverse applications. Hyperspectral images can be
treated as a stack of 2D matrices, representing the correlations
between spatial and spectral directions (Zhang J. et al., 2019).
Therefore, many scholars have contributed to the combination
of deep learning and hyperspectral imaging for plant disease
identification (Polder et al., 2019; Xiao et al., 2022). Chu et al.
(2022) proposed a shallow convolutional neural network with
attention mechanism model to predict the early herbicide stress
in wheat cultivars. Polder et al. (2019) designed a new imaging
setup consisting of a hyperspectral line-scan camera and applied
a convolutional neural network for detecting potato virus Y.
Nguyen et al. (2021) applied both deep learning and machine
learning models to identify grapevine early vein-clearing virus
in hyperspectral images. The result showed that the former
achieved a better classification result. Conclusively, combining
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FIGURE 1 | RGB images of rice leaves: (A) healthy; (B) asymptomatic.

FIGURE 2 | Spectra of infected leaves under different stages.

deep learning with hyperspectral imaging is very promising in the
plant disease detection task.

The purpose of this paper is to apply hyperspectral imaging
and deep learning to detect asymptomatic infections of the
rice BLB disease. The main contributions of this paper were
summarized as follows: (1) to explore the applicability of using
random forest (RF) and principal component analysis (PCA) to
extract sensitive features from raw hyperspectral data, thereby
improving the computational efficiency; (2) to build a spectral
dilated convolution 3-dimensional convolutional neural network
(SDC-3DCNN) model and test the effect of the number of input
features on the detection performance; (3) to assess the detection
performance of the SDC-3DCNN model under different spectral
dilated ratios (SDR); (4) to interpret the important wavelengths
with a saliency map method. In conclusion, the proposed SDC-
3DCNN model is able to detect the asymptomatic infection of

the rice BLB disease, thereby providing early warnings before the
disease outbreak. This result may assist in arranging chemical
treatments for disease control.

MATERIALS AND METHODS

Experimental Materials
Rice Planting and Artificial Inoculation
The experimental materials were processed and collected in 2020
at a greenhouse base in Nanjing Agricultural University, Nanjing,
Jiangsu, China. The rice seeds were sown and then transplanted
into plastic pots (three plants per pot) on June 17th, 2020.
The rice was grown in plastic pots (35 cm diameter × 32 cm
height) filled with paddy clay soil. A total of 50 pots were
used for the hyperspectral data collection. Data collected from
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different rice leaves provided an opportunity to evaluate the
reproducibility and reliability of the findings on disease detection.
To ensure consistent management practices in the greenhouse
environment, the basal nutrition fertilizers (nitrogen provided by
urea, 150 kg·ha−2; P2O5, 135 kg·ha−2; and K2O, 18.3 kg·ha−2)
were applied prior to transplantation, and a second nitrogen
topdressing (N, 150 kg·ha−2) was applied during the tillering
stage. The rice plants were irrigated as needed to ensure that the
soil in each pot was always covered by a shallow layer of water.
All plants were placed outdoors and were not transferred to the
greenhouse until 1 week before the inoculation treatment. The
greenhouse comprised two layers of transparent materials and
was equipped with air conditioning and humidifying facilities to
provide suitable environmental conditions (26–32◦C, over 90%
relative humidity, and a photoperiod of 14 h) for the artificial
inoculation of the BLB pathogen. The artificial inoculation
operations were conducted on rice leaves to induce BLB infection
at the tillering stage. The BLB pathogen (Xanthomonas oryzae
pv.oryzae Xoo) was provided by the College of Plant Protection at
Nanjing Agricultural University, Nanjing, Jiangsu, China. After
the BLB pathogen was isolated, it was transferred to the plate
medium (beef extract 0.3%, meat peptone 1%, sucrose 1%, and
agar 2%). The bacteria were placed in an incubator at 28◦C
and cultivated for 48 h, diluted with phosphate buffered saline.
The concentration was diluted to about 9 × 109 bacteria per
milliliter by the turbidimetric method. The surgical scissors were
used to dip the bacterial solution and cut off the tip of the rice
flag leaf to complete the bacterial inoculation. All inoculation
operations were completed within 3 h. After inoculation, all
plants were completely covered with black, light-tight plastic
materials for 48 h. Temperature (26–32◦C), relative humidity
(≥90%), and light conditions were all strictly controlled to ensure
a successful infection.

Definition of the Disease Infection Process
Previous studies have typically defined disease severity at the
leaf level as the average percentage of symptomatic surface areas
(Bock et al., 2020; Tian et al., 2021). However, rice leaves with
asymptomatic infections cannot be described by this method. For
the rice BLB disease, the appearance of obvious symptoms on rice
leaves indicates that a large area has begun to spread, which is
not conducive to the timely prevention of the disease. Effectively
identifying asymptomatic infections is crucial for the prevention
and control of the BLB disease.

Since the spectrum of health pixels is different from infected
areas, a pixel-level annotation method can be used to visualize
areas of asymptomatic infection and to more precisely define
the disease levels (Lowe et al., 2017). Labels for each pixel
sample were determined by combining visual inspection of leaf
color with spectral changes (Sun et al., 2018). Specifically, the
healthy ROI was defined as the same uninoculated area without
any change in the spectrum after inoculation (Figure 3A). The
asymptomatic ROI was defined as the area where obvious disease
lesions had not yet appeared but the spectral of infected leaves
changed. In the asymptomatic stage, light yellowish-green watery
lesions could be observed on a few infected leaves, but they
are often not easily noticed under field conditions (Figure 3B).

FIGURE 3 | The pixel-level annotation of disease severity levels. (A) Denotes
pixels that belong to the healthy class. (B) Denotes pixels that belong to the
asymptomatic class. (C–E) Denote pixels that belong to the symptomatic
class.

The symptomatic ROI was defined as the leaves are turning
into wavy yellow green or gray green spots along one or both
sides of the leaf margin or along the mid-vein, along with
irregular chlorotic spots, and then turning into withered yellow
patches or large patches (Figures 3C–E). The boundary between
the symptomatic part and the asymptomatic part is observable,
whereas it is difficult to distinguish between the asymptomatic
and healthy pixels.

Data Collection and Processing
The configuration of the hyperspectral imaging system and
parameter settings in this study can be referred to Zhang et al.
(2015). The correlative settings of HSI, including the speed of the
motor and positions, could be set by the software (Isuzu Optics
Corp, Taiwan, China). The main components and parameters of
the hyperspectral imaging system are shown in Table 1.

The imaging system was pre-heated for 5 min before collecting
hyperspectral images. For data collection, rice leaves were placed
on the stage below the imaging lens at an object distance of 27 cm,
and leaves were fixed on a black background (Figure 4).

The spectrum was recorded in the wavelength range of
378.28–1033.05 nm by the hyperspectral imaging system. In the
first conversion step, the information was transformed to a cube
format containing the spatial information in the x–y directions
and the spectral information in the z direction (Bauriegel et al.,
2011). Due to the existence of dark current in the CCD camera
and the uneven intensity distribution of the light source in
different spectra, the obtained hyperspectral image is unstable.
Therefore, the hyperspectral image correction was carried out by
the black and white correction method (Zhang et al., 2015). After
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TABLE 1 | Main components of the imaging system and parameter settings.

Parameters Value (unit) Parameters Value (unit)

Spectral
camera

Raptor EM285 Light input 21V/200W halogen
light

Dispersion 97.5 nm/mm Spectral range 378.28–
1033.05 nm

Spectral
resolution

2.14 nm Image size 1632 × 1401 pixels

Spatial
resolution

Spot diameter
< 9 µm

Object distance 27 cm

Aberration Halo < 1.5 µm,
trapezoid < 1 µm

Exposure time 8 ms

Aperture F/2.4 Move speed 0.8 mm/s

FIGURE 4 | The schematic of the hyperspectral imaging system. 1. Imaging
lens; 2. halogen lamps; 3. transportation platform; 4. leaves sample.

collecting the hyperspectral images of all diseased rice leaves, the
leaf samples were quickly put back into the original environment
for further cultivation so as to facilitate the next image collection
while reducing the impact of the environment on plant growth
and disease development.

Overview of Data Processing and
Modeling Pipeline
The spectrum used in this study ranged from 378.28 to
1033.05 nm, 306 wavelengths in total. In order to reduce
redundancy and increase the computational efficiency, RF and
PCA were used to extract spectral features from raw hyperspectral
images. According to the number of extracted features, nine
datasets were established. The detection performance of the SDC-
3DCNN model over the nine datasets was tested. Meanwhile, the
effect of dilation ratios was also examined through experiments.
Lastly, the saliency score of wavelength channels was calculated
and sorted for interpretation of feature importance. The overview
workflow of the data processing and modeling pipeline for early
rice BLB disease detection is shown in Figure 5.

Hyperspectral Preprocessing
Raw hyperspectral images were analyzed with the software ENVI
5.3 (ITT Visual Information Solutions, Boulder, United States).

With this software, symptomatic and healthy pixels of leaves
could easily be labeled in a false color image at 450, 550, and
650 nm by visual inspection. While asymptomatic pixels have
to be labeled according to the spectral change. The false color
images also facilitated the proper manual setting of ROIs and
the selection of tissues for spectral analysis. In all hyperspectral
images, spectra of healthy and infected tissue areas were obtained
pixel-wise. To reduce the impact of noise at both ends of the
spectrum, only 450–950 nm (a total of 232 wavelengths) were
intercepted for further analysis. The original spectra of different
ROIs are shown in Figure 6A.

In order to eliminate the random noise in the spectral signal
and improve the signal-to-noise ratio of the sample signal, the
Savitzky–Golay (SG) smoothing filter was used to reduce the
random noise (the kernel size was 5 × 5 × 5, the polynomial
order was 3, and the filter value was calculated at the central
node of the kernel). The noise in the spectra of different ROIs
was greatly reduced after SG smoothing, and the interference
of size difference and different information structures was
removed (Figure 6B).

The original spectra and SG smoothed spectra in the range of
450–950 nm are shown in Figure 6. The general distribution of
the reflection intensity of the healthy ROI is consistent with the
asymptomatic ROI, however, both of which are different from
the reflection intensity of the symptomatic ROI. From 450 to
550 nm, the reflectance of all spectra shows an increasing trend.
While the trend changes between 550 and 750 nm, for healthy and
asymptomatic ROI, the reflectance shows a significant decrease
in the spectral range of 550–680 nm and a rapid increase in
the range of 680–750 nm. The reflectance of the asymptomatic
spectrum is higher at each wavelength than the reflectance of the
healthy spectrum. For symptomatic ROI, the reflectance from 680
to 750 nm increases less than the reflectance of asymptomatic
ROI. Finally, between 750 and 950 nm, the spectrum tends to be
flat. The difference between different spectra provides a basis for
classifying different pixels based on the spectral information.

Features Extraction by Different Algorithms
Considering that the variation of disease rice physiological
parameters could induce strong responses at specific spectral
wavelengths, the unbalance of the spectral features selected from
the 450–950 nm range could be attributed to the sensitivity of
different physiological parameters to disease infection. Spectral
information covers wavelengths from 450 to 950 nm and is
characterized by a high dimension of redundancy between
adjacent wavelengths. Excessive redundant spectral information
brings great challenges to detection methods and computational
complexity (Hennessy et al., 2020; Zhang et al., 2021b). Therefore,
it is necessary to compress the amount of data by a dimensionality
reduction method to reduce the cost of subsequent processing
on the basis of not dropping the effective feature spectral
information (Poona et al., 2016; Sadeghi-Tehran et al., 2021).

On the one hand, the principal component analysis (PCA)
algorithm is a common data compression method and it is
often used for dimensionality reduction of high-dimensional
data. PCA can extract principal components (PCs) of original
hyperspectral data (Hsieh and Kiang, 2020). The main idea of
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FIGURE 5 | The overview workflow of data processing and modeling pipeline for early rice BLB disease detection.

PCA in this paper is to map 232 wavelengths to a k-dimensional
feature space (k < 232). On the contrary to simply removing
less important dimensional features from the original space, these
k-dimensional features can be viewed as PCs through mapping
the features in the original space into a latent space. The PCs were
obtained by following the calculation process shown in Figure 7.

The PCA was used to extract PCs from the smoothed
232 wavelengths of hyperspectral images. The original
hyperspectral data was projected to a k-dimensional space
for dimensionality reduction.

On the other hand, the random forest wavelength extraction
method is to randomly replace each wavelength and to evaluate
its importance (Ma et al., 2018). The higher the wavelength
importance, the greater the variation in the prediction error
rate would achieve (Hidayat et al., 2017; Speiser et al., 2019).
In this way, each wavelength was scored by the change in the
error rate of the out-of-bag data before and after wavelength
replacement, so as to obtain the characteristic wavelength with
a high importance score (Tan et al., 2020). In this paper, in order
to reduce the dimension of original hyperspectral data, a different
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FIGURE 6 | The reflection intensity of different ROIs: (A) Original spectra; (B) SG smoothed spectra. A single line represents the reflection intensity of an individual
spectrum. The total number of spectra in (A) and (B) is both 1000.

number of characteristic wavelengths were selected according to
the important score.

The random forest algorithm used for extracting characteristic
wavelengths is described as follows. The number of decision trees

FIGURE 7 | Flowchart of extracting the PCs.

in the RF is denoted by Ntree, set at 200; the number of the
original wavelength is denoted by d, set at 232. The wavelength
importance measurement based on out-of-bag error analysis of a
single feature Xj(j = 1, 2, , d) was calculated as follows:

Step1: Calculate the number of Out-of-Bag error samples
ErrOOBi of Out-of-Bag data OOBi corresponding to the
ith decision tree.

Step2: Keep other wavelengths unchanged, randomly change
the wavelength Xj in OOBi, and obtain OOBji.

Step3: Re-calculate the number of out-of-bag error samples
ErrOOBji of out-of-bag data OOBji.

Step4: Repeat steps 1, 2, and 3 to obtain{
ErrOOBji|i = 1, 2, ,Ntree

}
.

Step5: The importance score VI
(
Xj) of wavelength Xj was

calculated by Equation 1:

VI(Xj) =
1

Ntree

Ntree∑
i

(ErrOOBji − ErrOOBi) (1)

Both PCA and RF were adopted to reduce the dimension of
raw hyperspectral data, thereby minimizing the computational
complexity. The importance score of each wavelength from
the original spectrum was ranked by the above methods, and
the top 50, 100, 150, and 200 wavelengths extracted by RF
were used to establish four datasets. On the other hand, the
principal components (PCs) of the top 50, 100, 150, and 200
rankings extracted from the original spectrum by PCA were
used to establish another four datasets. In addition, the original
smoothed 232 wavelengths without feature extraction were used
to establish the ninth dataset for comparison as well. In total, nine
datasets were established.

Spectral Dilated Convolution
Dilated convolution is usually applied to expand the receptive
field without changing the original structure or the number
of parameters of the model (Cao and Guo, 2020). Whereas
traditional 2D dilated convolutions can only enlarge the receptive
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field along spatial dimensions (Xu et al., 2021). Due to the 3D
character of hyperspectral data, 3-Dimensional Spectral Dilated
Convolution (3D SDC) was developed to expand the receptive
field along three dimensions of hyperspectral (Figure 8).

The receptive field of 3D SDC is decided by the spectral dilated
ratio (SDR) as:

Rf = 2 × (rSDR − 1) × (k− 1)+ k (2)

Where Rf represents the receptive field of a single convolution
kernel; rSDR represents the spectral dilation ratio; k represents the
size of convolution kernels. Here k was set to 3 (Mohanty et al.,
2016; Albattah et al., 2022).

As shown in Figure 8, the black cubes represent the
convolution kernel, and the white cubes cover the receptive
field. When SDR is set to 1, 2, and 3, the receptive fields
of the convolution kernels are 3 × 3 × 3, 7 × 7 × 7, and
11× 11× 11, respectively.

Residual Module
The increase in the model depth usually improves the
performance of the neural network (Xu et al., 2021). However,
such an increase may cause gradient vanishing or gradient
explosion (Zhong et al., 2018). Cao and Guo (2020) suggested that
the 3D residual connection can solve this problem.

The input information can be directly passed to subsequent
layers through the residual module. The shortcut connections can
be seen as identity mapping. In a residual block, the output of the
lth block is computed by Equation 3:

xl+1 = F(xl)+ h(xl) (3)

Where xl and xl1 are the input and output of the lth block,
respectively. F (xl) is a residual mapping function, and h (xl) is
an identity mapping function.

As shown in Figure 9, the shortcut connection in the lth
residual block, shown in blue background, h (xl) is basically a
direct connection between the input and output of the lth block,
while F (xl) usually contains multiple convolution layers and
batch normalization and activation.

Spectral Dilated Convolution 3-Dimensional
Convolutional Neural Network Framework for Early
Disease Detection
In this paper, we compared different numbers of input features.
The RF can sort the original wavelength according to the
importance score. The top 50, 100, 150, and 200 characteristic
wavelengths extracted by the RF were treated as inputs to the
SDC-3DCNN model, respectively. On the other hand, the top
50, 100, 150, and 200 PCs extracted by PCA from the original
spectrum were also treated as inputs to the SDC-3DCNN model,
respectively. In addition, the smoothed 232 wavelengths were
treated as the input to the SDC-3DCNN model for comparison.
The framework of the SDC-3DCNN model is presented in
Figure 10, where H, W, and D represent the height, width, and
size along the spectral dimension of the data cube. The SDC
modules can extract and fuse features corresponding to multiple
wavelength resolutions, so the important wavelength information
can be more effectively used. We also employed residual blocks
to avoid the gradient vanishing problem (Xu et al., 2021). The
target sample from the infected rice leaf HSI is composed of
31680 (132 × 240) pixels, which are divided into three classes:
healthy, asymptomatic, and symptomatic. The datasets were
divided into a training set, a verification set, and a test set under
the ratio of 8:1:1.

The 3D convolution is achieved by using a 3D kernel to stack
multiple contiguous wavelengths into a cube (Pi et al., 2021). By
this construction, the feature maps in the convolution layer are
connected to multiple wavelengths frames in the previous layer,
thereby capturing spectral information. Formally, the value at
position (x, y, z) on the jth feature map in the ith layer, denoted
as vxyz

ij , is computed by Equation 4.

vxyzij = f
(∑

m

hi−1∑
h=0

wi−1∑
w=0

di−1∑
d=0

whwd
ijm v(x+h)

(i−1) m
(y+w)(Z+d)

+ bij
)

(4)

Where Hi, Wi and Di are the height, width, and the size along the
spectral dimension of the kernel. wxyz

ijm is the value at the position(
h,w, d

)
of the kernel connect to the mth feature map in the

FIGURE 8 | 3D dilated convolution under different SDRs: (A) SDR = 1; (B) SDR = 2; (C) SDR = 3. It can be considered that zeros are inserted into the kernel to
evenly space the filter under different SDRs.
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FIGURE 9 | Schematic of the 3D residual module.

previous layer. bij is the bias for this feature map. m indexes over
the set of feature maps in the (i− 1)th layer connected to the
current feature map, and the other parameters are the same as
in the 2D convolution (Ji et al., 2013).

The SDC-3DCNN model used cross entropy as the loss
function and the stochastic gradient descent optimizer for
training. The specific parameters of SDC-3DCNN were as
follows: learning rate was set to 1× 10−3, weight decay coefficient
was set to 1 × 10−6, momentum was set to 0.95, epsilon was set
to 1 × 10−5, epoch was set to 50, dropout was set to 0.45. In
order to achieve fast convergence, the training set was divided
into multiple batches, and the batch size was set to 64.

Saliency Wavelengths in Hyperspectral
Images
In order to prove the reliability of the detection results, we added
post-hoc explanations. A saliency map method was applied to
look into the classification results and further improve the overall
design of the system. Saliency scores have been used as a popular
visualization technique to detect how and why a deep learning
neural network makes certain predictions (Zhang et al., 2021c).

In this research, a saliency explanation of wavelength channels
was applied. Through one single back-propagation, the derivative
ω from a specific predicted result to the input wavelength can
be obtained from the well-trained model with the index h(i, j, c).
Here, (i, j) indicates the spatial arrangement of elements in ω,
while c indicates spectral channels (Zhang et al., 2021c). The
wavelength saliency scores Wc can be calculated by Equation 5.

Wc =
∑

i

∑
j

|ωh(i,j,c)| (5)

All contributions from one specific wavelength channel were
summed. The saliency score represents the contribution of
different wavelength channels to the classification result.
The importance of a specific wavelength can be quantified
by the saliency gradient magnitude at that wavelength
(Nagasubramanian et al., 2018).

Classification Assessment
This paper considers the widely acknowledged criteria to evaluate
the proposed SDC-3DCNN model, including precision, recall,
F1 score, accuracy, and kappa coefficient. True positive, false
positive, false negative, and true negative are denoted by TP, FP,
FN, and TN, respectively. The formulas of precision (P) and recall
(R) are presented in Equations 6 and 7.

P =
TP

TP+ FP
× 100% (6)

R =
TP

TP+ FN
× 100% (7)

It is expected that the values of precision and recall should
be higher, but they are incompatible. The F1 score is a better
metric that combines the characteristics of precision and recall to
evaluate the model for different classes in the dataset. A high F1
score is also indicative of satisfactory classification performance.

FIGURE 10 | Framework of the spectral dilated convolution 3-dimensional convolutional neural network model.
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The F1 score formula is presented in Equation 8.

F1 =
2 × TP

2 × TP+ FN+ FP
× 100% (8)

Accuracy (A) is another evaluation metric. In general, the higher
the accuracy, the better effect that a model would achieve. The
formula of accuracy is presented in Equation 9.

A =
TP+ TN

TP+ TN+ FN+ FP
× 100% (9)

Kappa coefficient (K) is used for consistency test and
classification accuracy. The higher the Kappa coefficient,
the better consistency that a model would achieve. The formula
of Kappa coefficient is presented in Equations 10 and 11:

K =
A−Pe

1−Pe
× 100% (10)

Pe =

∑n
i=1 ais × asi

N2 (11)

Where ais is the sum of the elements in the i row of confusion
matrix, asi is the sum of the elements in the i column of confusion
matrix, n is the number of columns in confusion matrix, N is the
total number of pixel samples.

Besides, the training time and the number of trainable
parameters of the model are also important indicators to evaluate
the complexity of the model.

RESULTS

The proposed model is programmed in Python and implemented
based on the Tensorflow and Keras open-source deep learning
framework. The operating platform hardware configuration
includes the NVIDIA GeForce RTX 2080Ti GPU and the AMD
Ryzen 5-1600 Six-Core processor @ 3.20 GHZ CPUs.

A total of nine datasets were constructed from 50, 100,
150, and 200 characteristic wavelengths extracted by RF (4
datasets), 50, 100, 150, and 200 PCs extracted by PCA (4
datasets), and smoothed 232 wavelengths without any extraction
(1 dataset). Each dataset is divided by 80% for training, 10%
for validation, and 10% for testing. The performance of the
SDC-3DCNN was evaluated as follows. First, the SDC-3DCNN
model was trained and evaluated with those nine datasets. It
is noted that at this stage, the SDR was set to 1, meaning that
the SDC module did not have any effect. Second, we further
explored the effect of the SDC module by adjusting the spectral
dilated ratios. Finally, the saliency map method was used to
interpret the important features that contributed the most to the
classification results.

Features Extracted by Random Forest
and Principal Component Analysis
In this paper, the RF was used to rank the importance of
the original 232 wavelengths of the hyperspectral spectrum
(Figure 11A). It can be seen that wavelengths with the highest
importance scores are mainly distributed at 530–710 nm. It has

been shown clearly in Figure 11B that the top 10 wavelengths
with high importance scores are 547.2, 534.5, 551.4, 566.2,
697.4, 530.3, 693.0, 543.0, 538.7, and 568.4. The original 232
wavelengths were sorted according to the importance score
obtained from the RF. The top 50, 100, 150, and 200 characteristic
wavelengths were used to construct datasets for the detection of
the asymptomatic BLB disease.

On the other hand, the PCA was used to compute the
variance contribution of PCs. It can be seen from Figure 12
that the x-axis represents the first principal component score
and the y-axis represents the second principal component score.
It can be seen that healthy, asymptomatic, and symptomatic
pixels were projected into different categories. The top 50, 100,
150, and 200 PCs extracted by PCA were used to establish the
datasets, respectively.

Detection Performance of Spectral
Dilated Convolution 3-Dimensional
Convolutional Neural Network With
Different Input Features
Table 2 shows the performance comparison of using nine
datasets to detect healthy, asymptomatic, and symptomatic
pixels. The original 232 wavelengths without feature extraction,
the top 50, 100, 150, and 200 PCs extracted by PCA, and
the top 50, 100, 150, and 200 characteristic wavelengths
extracted by RF were used as inputs to the SDC-3DCNN
model, respectively. It can be seen from Table 2 that the
fewer the input features, the shorter the training time and the
less the trainable parameters will be. For the same number
of features extracted by RF and PCA, there was a minor
difference between the training times. When the number of
input features was reduced to 50, the training time is almost
reduced to a quarter, and the number of trainable parameters
is reduced to about 1/6, compared with the full-feature input.
In terms of classification accuracy, when the characteristic
wavelengths extracted by RF were used as the input, the overall
performance is higher than that when the PCs extracted by PCA
and the original 232 wavelengths without features extraction
are used as the input. When the input is 50 characteristic
wavelengths extracted by RF, the performance of the model
achieved the best, with an accuracy of 94.7640% and a kappa
coefficient of 92.1466%.

Figure 13 shows the accuracy (Figure 13A) and loss value
(Figure 13B) of the validation set when inputting different
features extracted by PCA and RF, as well as the full wavelengths.
It can be seen that the worst accuracy was achieved when
the full wavelengths were used as the input to the SDC-
3DCNN model. However, using features extracted by PCA and
RF as inputs, the SDC-3DCNN model achieved better results,
especially the latter one.

From the results in Table 2 and Figure 13, it can be
seen that the performance is better when the characteristic
wavelengths extracted by RF are treated as the input. This shows
that the redundant spectral information not only increases the
computational complexity and training time of the model but
also reduces the performance of the detection model. It can be
concluded that RF is more suitable for dimensionality reduction.
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A B

FIGURE 11 | The importance scores of wavelengths: (A) importance scores of 232 wavelengths; (B) the ranking of importance scores of the top 50 wavelengths.

FIGURE 12 | PCA scores map of first two principal components.

Classification Performance Assessment
With Different Spectral Dilated Ratios
It can be seen from Table 2 that when the number of extracted
features is 50, the model performance is the best. As a result, we
set the number of input features to 50 and then tested the SDR
module with various spectral dilated ratios. As shown in Table 3,
for the 50 characteristic wavelengths extracted by RF, when the
SDR is 5, the SDC-3DCNN model reached the optimal detection
performance with an accuracy of 95.4427%. It is also worth
noting that when the SDR is set to 5, the SDC-3DCNN model
could detect healthy samples more accurately, with a precision
of 97.7513%. The performance of detecting symptomatic samples
ranks the second, with a precision of 94.3126%. It is nature

that the SDC-3DCNN model achieved the worst precision
(94.2804%) in the asymptomatic detection task because the
asymptomatic samples just had minor differences with the
healthy ones. Lastly, it is also glad to notice that the detection
performance is generally improved when the SDR is enabled
(when SDR is set greater than 1).

It can be seen from Table 4, for 50 PCs extracted by PCA
as the input, when the SDR is 3, the detection performance
reached the best, and the accuracy achieved at 93.2252%. Diving
into the detection performance of each class, it is noted that the
SDC-3DCNN model still can predict the healthy samples with the
highest precision (96.6517%), following the symptomatic class
with a precision of 93.2132%. This finding indicated that the class
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TABLE 2 | Classification performance of different inputs.

Feature extraction
method

Number of input
features

Training time/s Number of trainable
parameters

Accuracy/% Kappa coefficient/%

RF 50 154.1598 1,559,731 94.7640 92.1466

100 263.6340 3,263,667 94.6772 92.0167

150 382.1071 4,836,531 94.3261 91.4893

200 502.7476 6,540,467 94.7122 91.0660

PCA 50 154.7476 1,466,515 92.9688 89.4517

100 262.8174 2,870,451 92.6847 89.0279

150 383.3145 4,443,315 92.6491 88.9721

200 501.7399 6,147,251 92.9648 89.4443

None 232 573.6130 7,589,043 89.4492 84.1938

The bold values denote the achieved best performance.

A B

FIGURE 13 | Performance over the validation set: (A) accuracy; (B) loss.

sensitivity varies in the SDR settings. Meanwhile, we noticed that
when the 50 PCs were treated as the input and the SDR was set
to 2, the precision of detecting asymptomatic samples reached
at 91.1620%, even higher than the performance of symptomatic
detection.

By summarizing the results in Tables 3, 4 it can be concluded
that compared with using the 50 PCs extracted by PCA as
the input, using the 50 wavelengths extracted by RF may
generally achieve better performance, no matter how the SDR
was set. Meanwhile, due to the feature information extracted
by RF and PCA is different, the SDC-3DCNN model requires
specific SDR settings.

For further exploring the effect of SDR settings, we presented
the detection results in Figure 14. The red, green, and blue
pixels represent healthy, asymptomatic, and symptomatic pixels,
respectively. It can be seen that when the SDR equals 1–4, the
SDC-3DCNN model failed to classify certain pixels, especially the
ones near the boundary between asymptomatic and symptomatic
areas. This can be attributed to the over-extraction of the spectral
information. When SDR equals 5, the classification result was
fairly good, as more pixels can be classified correctly.

Interpretation of Feature Importance
Analysis
Figure 15 shows the saliency scores of each wavelength
channel, which guides us to extract the important channels for
detecting healthy, asymptomatic, and symptomatic pixels from
infected rice leaves.

The contributions of different wavelengths are depicted as
the gray area shown in Figure 15. Here the spectral saliency
scores were min-max normalized into the range of [0, 1].
It can be seen that all channels did not contribute equally
to the classification result. The regions between 530–580 and
680–710 nm contributed the most, which were 547.2, 534.5,
551.4, 564.1, 697.4, 530.3, 695.2, 543.0, 538.7, and 568.4 nm.
As shown in Figure 16, when compared with the top 10
characteristic wavelengths extracted by RF, it can be found that
eight characteristic wavelengths overlapped with the saliency
sensitive wavelengths. Through analysis of interpretation, the
accuracy of the extracted wavelengths by RF is verified. At the
same time, the saliency score can also be used to determine
the characteristic wavelengths and reduce the dimensionality of
the spectrum, thereby improving the computational efficiency.

Frontiers in Plant Science | www.frontiersin.org 12 July 2022 | Volume 13 | Article 963170122

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-963170 July 7, 2022 Time: 15:5 # 13

Cao et al. SDC-3DCNN

TABLE 3 | Performance of spectral dilated convolution 3-dimensional convolutional neural network models under different SDRs with RF extracted feature inputs.

Class Evaluating indicator SDR

1 2 3 4 5

Healthy Precision/% 94.7901 98.8107 97.3088 97.3327 97.7513

Recall/% 99.4036 96.1350 98.3419 98.3777 98.0079

F1-score/% 97.0420 97.4545 97.8226 97.8524 97.8794

Asymptomatic Precision/% 92.5733 90.5362 96.8478 91.1809 94.2804

Recall/% 91.4542 95.3800 86.4153 94.5302 91.7415

F1-score/% 92.0104 92.8950 91.3346 92.7431 92.9936

Symptomatic Precision/% 96.9153 96.5538 90.3685 97.1809 94.3126

Recall/% 93.4581 94.0855 98.8845 92.5285 96.5373

F1-score/% 95.1553 95.3037 94.4349 94.7976 95.4120

Average precision/% 94.7596 95.3002 94.8417 95.2315 95.4481

Average recall/% 94.7720 95.2002 94.5472 95.1455 95.4289

Average F1-score/% 94.7359 95.2177 94.5307 95.1310 95.4283

Accuracy/% 94.7640 95.1902 94.5944 95.1231 95.4427

The bold values denote the achieved best performance.

TABLE 4 | Performance of spectral dilated convolution 3-dimensional convolutional neural network models under different SDRs with PCA extracted feature inputs.

Class Evaluating indicator SDR

1 2 3 4 5

Healthy Precision/% 96.4727 96.8532 96.6517 96.9132 96.5840

Recall/% 97.8767 97.6619 97.4472 97.3756 97.1371

F1-score/% 97.1696 97.2559 97.0478 97.1439 96.8598

Asymptomatic Precision/% 90.2768 91.1620 89.7676 88.7874 89.8821

Recall/% 88.2346 86.6667 89.6709 89.5631 87.6122

F1-score/% 89.2440 88.8575 89.7192 89.1736 88.7327

Symptomatic Precision/% 92.0673 90.5007 93.2132 92.7705 91.4471

Recall/% 92.7841 94.0971 92.5633 91.5524 93.1792

F1-score/% 92.4243 92.2639 92.8871 92.1574 92.3050

Average precision/% 92.9389 92.8386 93.2108 92.8237 92.6377

Average recall/% 92.9651 92.8086 93.2271 92.8304 92.6428

Average F1-score/% 92.9460 92.7924 93.2180 92.8250 92.6325

Accuracy/% 92.9688 92.8267 93.2252 92.8227 92.6531

The bold values denote the achieved best performance.

This evidence also provides some explanations for the decision-
making of the model, indicating that the model might use these
features to distinguish pixels in different infected states.

DISCUSSION

Advantages of Using Feature Extraction
and Spectral Dilated Convolution
3-Dimensional Convolutional Neural
Network Classification Models
Our results suggest that the combination of deep learning
and hyperspectral imaging can be a useful approach for
detecting asymptomatic infections of BLB disease in rice leaves.
Previous studies have demonstrated that redundancy exists
in the raw hyperspectral spectrum, leading to an increase in

computational complexity (Li et al., 2017). Therefore, feature
extraction is necessary. In this study, RF and PCA both
can extract characteristic features from the raw hyperspectral
data. Additionally, the characteristic wavelengths extracted by
RF may assist the SDC-3DCNN model in achieving better
classification performance than the ones extracted by PCA.
Compared with PCA, the characteristic wavelengths extracted by
RF could be better interpreted. The advantage of interpretability
enables a multispectral camera to incorporate only the most
important wavelengths instead of adopting the full wavelengths
for disease detection.

Feasibility of Hyperspectral in
Asymptomatic Disease Detection
We find that the healthy, asymptomatic, and symptomatic
pixels of rice leaves are sensitive to different wavelengths.
According to Šebela et al. (2018), Zhang S. et al. (2019), the
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FIGURE 14 | Comparative results under different SDRs. The red, green, and blue pixels represent healthy, asymptomatic, and symptomatic pixels, respectively. The
input to the spectral dilated convolution 3-dimensional convolutional neural network model is 50 characteristic wavelengths extracted by RF.

FIGURE 15 | Spectral saliency scores.

invasion of the rice BLB disease will cause inner changes
such as pigment, cell structure, and leaf water content. The
reflectance of different pixels is mainly affected by those inner
changes in leaves, which provides a theoretical basis for disease
detection based on hyperspectral imaging. In recent studies
(Su et al., 2018; Wang et al., 2019; Savian et al., 2020), it has
been demonstrated that accurate extraction of leaf characteristic
wavelengths at different scales is feasible and facilitates the
possibility of detecting the subtle spectral variation induced
by the BLB disease infection. Compared with RGB images,
hyperspectral imaging can obtain not only the texture and color
information, but also the spectral information of the internal
changes in rice leaves. This early detection can guide growers
to prevent and apply pesticides in advance, thereby avoiding

the BLB disease outbreak. On the other hand, the asymptomatic
detection method proposed in this paper for the BLB disease
can also be applied to the detection of asymptomatic infection
of other plant diseases.

Potential of Spectral Dilated Convolution
for Hyperspectral Imaging
At present, dilated convolution is mostly applied to increase
the receptive field without pooling in 2D computer vision tasks.
For the same feature map, a larger receptive field can decrease
the computation complexity and improve the effect of small
object recognition. Whereas the hyperspectral image is a cube,
which not only includes 2D spatial information but also includes
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FIGURE 16 | Venn diagram for the characteristic wavelengths and the
saliency wavelength channels.

the spectral information, 3D spectral dilated convolution is
needed for hyperspectral image processing. There is rarely
research on 3D spectral dilated convolution for hyperspectral
data analysis. Xu et al. (2021) used 3D dilated convolution in
hyperspectral image classification and achieved a good result.
However, only spectral dimension dilated convolution was
considered in the research. Considering the 3D characteristics
of hyperspectral images and the information redundancy of the
spectral dimension, we tested the effectiveness of 3D SDC in
hyperspectral data processing. Different SDRs were compared
and the SDC-3DCNN model achieved the best performance
when the SDR was 5. The 3D SDC increases the receptive field not
only in the spectral dimension but also in the spatial dimension,
thus obtaining richer features.

Interpretation of Characteristic
Wavelengths
At current, researches are paying attention to the interpretability
of deep learning models because the explainable scale network
can more precisely analyze the relationship between the learned
scale features and different classes (Shi et al., 2022). Human-
understandable results are more acceptable than undetectable
black-box results, especially in the practical application of disease
detection. On the basis of spectral saliency, we can find that
the important wavelengths for classifying healthy, asymptomatic,
and symptomatic pixels were located at 530-710 nm, which is
consistent with the research results of Wang et al. (2019). In this
paper, we used the saliency score to interpret the results of the
model and infer the wavelengths that contributed the most to
the output results. The top 10 saliency wavelengths overlapped
with 8 wavelengths from the top 10 characteristic wavelengths
extracted by RF, which indicated the validity of RF in extracting
characteristic wavelengths. On the other hand, the saliency map
method can figure out the important wavelengths, which are not
extracted by RF. In addition to the significant saliency score, other
interpretation methods can be further developed.

CONCLUSION

This is the first study to use hyperspectral imaging and deep
learning to detect the infection of rice leaf BLB disease,
particularly in the early asymptomatic stage that RGB imaging
cannot detect. In this paper, RF and PCA were used to extract
features from raw hyperspectral data. The detection performance
of the SDC-3DCNN model with different input features and
spectral dilated ratios was tested and compared. When 50
wavelengths extracted by RF were used as the input and SDR
was set to 5, the SDC-3DCNN model achieved the highest
accuracy at 95.4427%. In addition, the effectiveness of extracting
characteristic wavelengths was verified by saliency scores, and the
wavelengths with the greatest contributions were in the range of
530–710 nm. In conclusion, the combination of deep learning
and hyperspectral imaging can achieve good performance for
asymptomatic rice BLB disease detection. The proposed method
can further evaluate the incidence of plant diseases, providing an
early disease warning for farmers to apply pesticides accurately
and efficiently.
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Surface-enhanced Raman spectroscopy (SERS) has attracted much attention

because of its high sensitivity, high speed, and simple sample processing,

and has great potential for application in the field of pesticide residue

detection. However, SERS is susceptible to the influence of a complex

detection environment in the detection of pesticide residues on the surface

of fruits, facing problems such as interference from the spectral peaks

of detected impurities, unclear dimension of effective correlation data,

and poor linearity of sensing signals. In this work, the enhanced raw

data of the pesticide thiram residues on the fruit surface using gold

nanoparticle (Au-NPs) solution are formed into the raw data set of Raman

signal in the IoT environment of Raman spectroscopy principal component

detection. Considering the non-linear characteristics of sensing data, this

work adopts kernel principal component analysis (KPCA) including radial

basis function (RBF) to extract the main features for the spectra in

the ranges of 653∼683 cm−1, 705∼728 cm−1, and 847∼872 cm−1, and

discusses the effects of different kernel function widths (σ) to construct

a qualitative analysis of pesticide residues based on SERS spectral data

model, so that the SERS spectral data produce more useful dimensionality

reduction with minimal loss, higher mean squared error for cross-

validation in non-linear scenarios, and effectively weaken the interference

features of detecting impurity spectral peaks, unclear dimensionality of
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effective correlation data, and poor linearity of sensing signals, reflecting

better extraction effects than conventional principal component analysis

(PCA) models.

KEYWORDS

surface-enhanced Raman spectroscopy, kernel principal component analysis, fruit
pesticide residues, radial basis function, non-linear signal processing

Introduction

As a fungicide, thiram can effectively control apple scab
and tomato rot, and is widely used in the cultivation of
fruits and vegetables (Wang et al., 2019; Hussain et al., 2020;
Gedam et al., 2021; Mbaye et al., 2022). Although the toxicity
of formazan is relatively low, studies have shown that there
are multiple potential harms from exposure to formazan.
Currently, methods for the detection of agrochemical pollutants
in fruits and vegetables include gas chromatography (Girard
et al., 2021), high-performance liquid chromatography (Wei
et al., 2021), gas chromatography-mass spectrometry (Ghatak
et al., 2018), and liquid chromatography-mass spectrometry
(Ye et al., 2020). Although these analytical techniques have
good sensitivity for the quantitative detection of chemical
pollutants, they still have shortcomings such as the inability to
real-time monitoring, complicated operations, and cumbersome
sampling process (Bereli et al., 2021). Therefore, it is necessary
to propose simple and reliable methods to rapidly assess and
detect pesticide residues on fruit surfaces. SERS is often used
as a promising spectroscopic tool due to its advantages of high
sensitivity, good specificity, simple preprocessing, and rapid
spectral measurement (de Goes et al., 2019). At present, SERS
has a wide range of analysis and applications and is often used
to identify and detect chemical and biological species, as well
as molecular imaging and monitoring at the cellular, tissue, and
animal levels. It also has broad application prospects in the field
of food safety (Abasi et al., 2020). Generally, SERS technology
is a combination of Raman spectroscopy and nanoscience
(Yoo et al., 2021), in which the molecules to be detected are
adsorbed on or near the rough surface of transition metals,
thereby increasing the Raman signal intensity in the local optical
nanostructure region by several orders of magnitude. The effect
is caused by the surface plasmon resonance of nanoparticles
(Huang et al., 2020; Lin et al., 2020). As one of the most
commonly used metal systems, gold nanoparticles (Au-NPs) are
mainly used for SERS sensing (Zhang et al., 2017; Dowgiallo and
Guenther, 2019; Szekeres and Kneipp, 2019).

Surface-enhanced Raman spectroscopy technology has great
potential in detecting pesticide residues, but it still faces the
following difficulties. First, good detection conditions are the
basis for sensitive detection of SERS. At present, researchers

have prepared various SERS substrates, but in the SERS
detection of pesticide residues, they still lack high sensitivity,
good repeatability, simple preparation, and low cost, which can
not only enrich pesticide molecules, but also effectively enhance
the suitability of the substrate (Kuo and Chang, 2014; Shen
et al., 2022). In addition, there is still a lack of systematic
research on the influence mechanism of different detection
environments on pesticide SERS detection. Second, according to
the electromagnetic enhancement mechanism, only molecules
adsorbed or close to the surface of the substrate can undergo
a plasmon resonance effect under light excitation, producing
the SERS enhancement effect. And some pesticide molecules
of weak affinity class can only produce a weak Raman signal
or even no Raman signal (Krajczewski et al., 2020). In general,
the SERS detection of pesticide residues on fruit surfaces is
in the development stage. The ultra-sensitive detection based
on SERS is prone to interference, so it is necessary to extract
the characteristic information. The model of signal processing
and signal recognition is still being explored, and a unified
standard has not been formed. There are still many problems
worth exploring.

In this work, SERS was used for the signal detection of
thiram pesticide on the fruit surface, and the detection limits
were determined by a combination of KPCA and partial least
squares (PLS) chemometric methods after pre-processing with
averaging, smoothing and differentiation, and finally, a model
for the detection of thiram pesticide residues on the fruit surface
was established to achieve qualitative and quantitative detection
of thiram pesticide residues on the fruit surface, providing an
experimental basis for the application of SERS to the detection
of pesticide residues in fruits.

Related works

Surface-enhanced Raman spectroscopy refers to the
phenomenon that the molecules to be tested will be adsorbed on
the surface of some solid metals (gold, silver, copper, etc.) or soil
particles under the irradiation of incident light, resulting in the
enhancement of their local electric field (Kim et al., 2019). The
intensity of the Raman spectrum obtained at this time is 104-
106 times higher than that of the ordinary Raman spectrum,
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which overcomes the defects of weak intensity and low
sensitivity of the ordinary Raman spectrum (Zhan et al., 2019).
SERS technology has also made great progress in detecting
pesticide residues on the surface of fruits. Nanomaterials widely
used in SERS detection of pesticide residues include noble
metal sol substrates, mainly including gold, silver, and other
nanoparticles, which can significantly enhance the SERS signal
intensity of the analyte adsorbed on its surface (Xu et al.,
2017; Ong et al., 2020). At present, the commonly used metal
sol preparation methods include the electrochemical redox
method, chemical deposition method, seed method, and so on,
or else adding inducers such as NaC, NaNO3, and cysteamine
hydrochloride to the metal sol can enrich the nanoparticles
and generate a large number of hot spots to improve the
enhancement effect (Krajczewski et al., 2020). Stamplecoskie
et al. (2011) prepared silver nanoparticles (Ag NPs) by seed
method and controlled their sizes, and detected 10−3 mol·L−1

rhodamine 6G (R6G), the results showed that the optimal size
of Ag NPs was 50∼60 nm, the SERS intensity on the surface of
R6G is the highest, and this method is expected to be extended
to other adsorbents. Xu et al. (2017) developed a surfactant-free
method to prepare popcorn-like Au-NPs for the detection of
Chrysanthemum cicada on the peel surface. At present, SERS
has been widely used in chemical science, biological science,
safety, quality inspection, etc.

Generally, the dimension of independent variables is
reduced in advance, and it is hoped that fewer features are used
to express the original data, to make the constructed model
simpler and the results more accurate and precise, and PCA is
a widely used method. The rapid screening and identification
of contaminants in food contact materials is another important
approach with the help of data mining technology, among
which, PCA has been widely adopted as a favorable tool for data
mining (Liang et al., 2021). PCA can perform dimensionality
reduction on big data so that useful information in the data can
be quickly extracted and classified. At present, SERS combined
with PCA has been used for the rapid detection of multiple
targets such as multiple disease markers (Nargis et al., 2019),
and good results have been achieved. Some scholars have used
this method in combination with vector machines to propose a
new method to solve the problem that the original model has a
large amount of computation and a slow training speed when
the data is high-dimensional. It is empirically found that the
results of the new method are more accurate than methods such
as neural networks.

Shin et al. (2018) demonstrated the correlation between
non-small cell lung cancer (NSCLC) cell-derived exons and
potential protein markers in cancer diagnosis through Raman
scattering spectroscopy and PCA. Ai et al. (2018) analyzed the
SERS spectrum of four different food colorants using modified
PCA and identified characteristic bands. Uddin et al. (2021)
proposed the use of variance accumulation for selecting top
features from PCA data, from segmentally folded PCA (Seg Fol
PCA) and spectrally segmented folded PCA (Seg Fol PCA) FE

methods Intrinsic features are selected in the transformation
space of, but the non-linear relationship between transformation
features generated by the PCA-based finite element method
cannot be exploited. KPCA operates on the covariance of non-
linear transformations of the data, allowing a more flexible
functional basis to be constructed. The basic idea of KPCA is
to map the linearly no separable data in the low dimensional
space to the higher dimensional space through some mapping
function through the kernel function so that it can be linearly
separable in the high dimensional space, and then use the
relevant algorithms applicable to the linearly separable data for
subsequent processing. When linear mapping may not get the
desired results, KPCA has more advantages than PCA. Xin et al.
(2020) used a kernel function to non-linearly map the calibrated
samples to a high-dimensional space, evaluated the Raman
spectral reconstruction accuracy based on the relative root mean
square error, and reduced bad data and non-performing samples
in the sample. Sun et al. (2019) proposed a model combining
KPCA and support vector machine, which effectively eliminated
the influence of noise in the spectrum. Wang et al. (2021) used
the synthetic minority oversampling technique (SMOTE) to
predict protein-protein interaction sites and applied KPCA to
remove redundant features.

Test principle and instrument
reagents

Mathematical expression of Raman
signal

Many fields of physics, including plasma spectroscopy,
atmospheric spectroscopy, nuclear physics, and nuclear
magnetic resonance, can emit information-rich spectral lines
whose contours approximate the Voigt function. The Voigt
function is the result of the convolution of the Gaussian
function and the Lorentzian function, and its calculation
process is extremely complicated. Studies have shown that
the Voigt peak function is divided into a Gaussian peak and a
superposition of a Lorentz peak with the same center position
and half-width, and its approximate form can be expressed as
(Ejiri et al., 2021):

V(ν) = θα exp
[
−

4 ln 2(ν− ω)2

γ2

]
+ (1− θ)α

γ2

(ν− ω)2 + γ2

In this equation, ν is the wave number, θ is the Gauss-
Lorentz coefficient, α is the peak height, ω is the center
position of the peak, and γ is the half-width of the peak. The
spectral signal curve is formed by the superposition of dozens
or hundreds of Voigt peaks. Tracing back to the source, the
mathematical analysis of the vibrational spectral signal is to
use the Voigt function to mathematically describe the spectral
curve. The Voigt peak function is divided into a superposition
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FIGURE 1

The IoT environment for the detection of principal components of pesticide residues on the surface of fruits by Raman spectroscopy.

of a Gaussian peak and a Lorentzian peak with the same
center position and half-width. Therefore, the spectral peaks
of the Raman and other vibrational spectra have the contour
of the Lorentzian function, and its form can be expressed as:

L(v) =
1
π

γ2
L

(v− w)2 + γ2
L

In this equation, ν is the wave number, γL is the half-
width of the Lorentz peak, and ω is the center position
of the peak. However, the spectrum is often affected by a
variety of factors, such as altitude, air pressure, or the power

distribution of the laser, and the Lorentz peak profile changes
accordingly. Mathematically, the effects of these factors are
generally approximated by the convolution of a Gaussian
function. The following is the representation of the Gaussian
function:

G(v) =
1
γG

(
ln 2
π

)1/2
exp

[
−

(
v− w
γG

)2
ln 2

]

Where γG is the half-width of the Gaussian peak.
The research shows that the Raman spectral signal obtained

by the instrument is not only the real Raman spectrum but
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the result of the co-convolution of the real Raman spectrum
showing the Lorentzian line shape and the instrument function
showing the Gaussian line shape. The half-width of the latter
depends on the resolution of the Raman spectrometer, and the
half-width of the actual Raman spectral peak is much larger
than the resolution of the Raman spectrometer. Therefore, if
equation of G(v) is used to fit the Voigt line shape, a higher
fitting accuracy can be obtained, which is suitable for various
quantitative analysis situations.

Raman spectrum testing instrument

The IoT environment for the detection of principal
components of pesticide residues on fruit surfaces is shown
in Figure 1. The Raman spectrometer used in the experiment
is LabRAM-HR800 from HORIBA Jobin Yvon, France, and
the specification model is Horiba Jobin-Yvon LabRAM-HR800.
HR800 laser confocal Raman spectrometer has the function
of in situ spectral research, overcomes the limitation that the
original Raman spectrometer can only perform offline structural
analysis of materials in an indoor open environment, and
realizes non-destructive and non-invasive in situ measurement,
which provides a reliable experimental technique for real-time
monitoring of physical and chemical changes of substances
under specific temperature, pressure, and atmosphere (Tang
et al., 2015). The Raman spectrometer has a variety of
laser wavelengths to choose from and can switch gratings
automatically. The detection range is between 550 and
1550 cm−1 and the 633 nm laser used in this experiment is
used as the Raman light source, dispersion system, and data
processing system, which can meet the needs of data acquisition
in this experiment.

The laser reaches the surface of the sample through
a series of condensing lenses, mirrors, etc. In the focused
state, the radiation power of the sample per unit area
reaches the maximum. The laser-focused sample produces
high energy and heat. Some biological samples or substances
with lower melting points often need to reduce the power
during testing. The six filters on the power attenuation
wheel can achieve 1/2, 1/4, 1/10, 1/100, 1/1000, and 1/10000
six-gear power reduction. The dispersive system separates
the Raman scattered light in space by wavelength, usually
using a grating. An important parameter of the grating
is the spectral resolution (R), which is a measure of
the ability to separate two adjacent spectral lines at a
specific wavelength (λ). That is, R = λ/M λ. The grating
focal length (F) and the grating line density (N) are
important factors to determine the spectral resolution (R),
R∝F·N. The larger the F and N, the higher the spectral
resolution. In addition, the spectral resolution is also related
to the wavelength (λ). The larger the λ, the higher the
spectral resolution. The powerful data analysis function is

an indispensable part of an advanced Raman spectrometer.
The Labspec 5 equipped with it has conventional data
acquisition and analysis functions, and its imaging technology
can generate images for different features of the spectrum
(peak position, peak intensity), it also supports VB scripting
language, and can also be used for Active X control in
third-party applications, Labspec 5 software plug-ins can
enter the spectral library and search, compatible with many
commercial databases.

Substrate preparation and data
collection

A 1.0 × 10−4 g·ml−1 solution sample of thiram solution
was prepared in the laboratory, and the scanning electron
microscope diagram of Au-NPs is shown in Figure 2A. It can
be observed that the appearance of Au-NPs is spherical, and
the particle diameter distribution diagram given in Figure 2B
shows that its shape is relatively uniform. The specific operation
was to dissolve 0.01 g of thiram sample in 100 ml of acetone, as
shown in Figure 2C. Raman enhanced substrate is an important
part of SERS technology. Au-NPs have stable properties and
can generate local surface plasmon resonance under visible
light irradiation. They are widely used in the preparation of
reinforced substrates. The preparation method of Au-NPs is
simple, the property is stable, and the reproducibility is high. It
is an excellent material to strengthen the substrate. Therefore,
70 nm Au-NPs was prepared in the laboratory as the substrate
for SERS detection (Wang et al., 2021). The test samples
used in the experiment were the red Fuji apples purchased
in the campus supermarket with basically the same size and
weight, and Dangshan pears with almost the same size and
weight, simulating the pesticide spraying process in the natural
environment, that is, spraying on the surfaces of the two
samples, respectively. The concentration of 1.0 × 10−4 g·ml−1

thiram, and then wait for 10-15 min after the fruit sample
surface is automatically air-dried, take the sample epidermis,
and then drop 5 microliters of Au-NPs solution on the sample
epidermis, as shown in Figure 2D.

Limit of detection (LOD) refers to the corresponding
amount of three times the instrument background signal
generated by the matrix blank, or the average value of the
background signal generated by the matrix blank plus three
times the mean standard deviation. In the qualitative analysis
of trace amounts, the LOD is used as the evaluation index
to measure the enhancement effect of the substrate. For
quantitative analysis, it is necessary to focus on uniformity
and reproducibility. The substrate sensitivity and uniformity
and repeatability have not yet reached a perfect balance. Sol-
based substrates can achieve better detection limits and better
SERS performance.
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FIGURE 2

(A) Scanning electron microscope diagram of Au-NPs. (B) Particle diameter distribution diagram. (C) Preparation of thiram solution.
(D) Dropping Au-NPs solution on the surface of the sample.

Rhodamine 6G is a kind of dye that characterizes SERS. It
has strong fluorescence and has a good application effect in SERS
ultra-sensitive single-molecule detection. Rhodamine groups
with blocked spironolactone units can produce cation-excited
fluorescence and SERS signals. Their excellent photophysical
properties are widely used in fluorescent probes and SERS.
To explore the uniformity and repeatability of Raman
enhancement of the Au-NPs substrate used in this work,
the probe molecule R6G was selected for testing, and the
probe molecules located at 1510 cm−1 (attributed to N-H
in-plane bending) and 1362 cm−1 (attributed to C-H in-
plane bending) were tested. Statistical calculation of the SERS
peak intensity values (as shown in Figure 3) at the two
peaks shows that the relative standard deviation (RSD) of
the two peaks is only 1.36258 and 1.63378%, indicating that

the prepared Au-NPs substrates have good homogeneity and
reproducibility.

During the experiment, thiram solution was sprayed on
the sample for the first time and then detected by the Raman
spectrum. The fluorescence signal and noise signal in the Raman
spectrum experimental data obtained are very strong so that
the characteristic peak signal of thiram solution is completely
covered by interference, and the composition analysis of the
data in the subsequent work cannot be completed. The edible
wax on the skin of the fruit can not only keep it fresh but also
prevent microorganisms from invading the fruit. There may
be residual wax on the cleaned fruit surface, which causes a
strong fluorescence signal to interfere with the Raman signal.
Therefore, the experimental plan was improved in this work.
The Au-NPs suspension was dropped on the tape with a pipette,

Frontiers in Plant Science frontiersin.org

133

https://doi.org/10.3389/fpls.2022.956778
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-956778 July 14, 2022 Time: 16:54 # 7

Shi et al. 10.3389/fpls.2022.956778

FIGURE 3

SERS spectral intensity of R6G (10−4 mol·L−1) measured at 20 positions on Au-NPs substrate.
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FIGURE 4

Schematic diagram of the plasma SERS model with enhancement effect with reaction time for the solution of thiram and Au-NPs.

and a drop was dropped every 8 cm or so, and it was left to
stand for several hours until it was completely dry. Take different
varieties of apples and pears and scrub the surface. And after
drying, respectively, apply thiram solution on the surface of the
fruit to air dry naturally. Adhere the tape coated with Au-NPs
to the fruit containing thiram solution on the surface, peel it
off after a few minutes, and place it on the Raman instrument
detection table for detection (Liu et al., 2021). The transfer of
pesticides to the tape can reduce the fluorescence signal and

ensure the full reaction of pesticides with the substrate. Using
a 633 nm light source and a 50× microscope, the LabSpec6
software collects data on different points on the surface of
different varieties of apple and pear samples to obtain the raw
data of the Raman spectrum on the surface of the sample. The
obtained Raman spectrum data can be observed, as shown in
Figure 4. The characteristic peak signal of the thiram solution
indicates that the SERS can be used to obtain the original data of
the sample surface. The original data includes the Raman spectra
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FIGURE 5

Flow chart of quantitative KPCA for SERS.

of Au-NPs on the tape, the Raman spectra of Au-NPs mixed with
thiram on the fruit surface, the Raman spectra of thiram on the
fruit surface, and the Raman spectra of thiram solutions with
different concentrations.

Signal processing and non-linear
feature extraction

Raman signal preprocessing

Since Raman scattering itself is relatively weak, the Raman
spectrum is often affected by sample fluorescence, substrate
fluorescence, natural light, and fluorescent light, resulting
in high background and cosmic rays. When detecting the
SERS signal of thiram, due to high-frequency random noise,
fluorescence background, and sample unevenness, certain
interference such as light scattering noise and baseline drift
will be generated. The improvement of equipment often
cannot eliminate these interference factors, and it is easy
to affect the accuracy of subsequent prediction models. To
obtain better experimental results, reduce noise, and improve
the signal-to-noise ratio, the collected Raman signals must
be analyzed. Perform certain preprocessing. Commonly
used preprocessing methods include Smoothing, Baseline
Correction, Derivative, Multiplicative Scatter Correction
(MSC), and Standard Normal. Variate Correction (SNV),
Wavelet Transform (WT), Direct Orthogonal Signal Correction
(DOSC), and Empirical Mode Decomposition (EMD), are
shown in Figure 5.

In this work, spectral averaging is used to average the
SERS of thiram pesticides. Since the subsequent first-order
differential and second-order differential processing will amplify

the influence of noise, smoothing is used to remove the
noise interference of the system and fluorescence. Improve
the signal-to-noise ratio; finally, the overlapping peaks in the
spectrum are separated by differential processing, and the first-
order differential and second-order differential can, respectively,
remove the drift that is independent of the same wavelength
and linearly related. PLS is a regression modeling method of
multiple dependent variables to multiple independent variables.
By calculating the maximum variance between the spectral data
and the target analyte, the relationship between the two is
analyzed. It is suitable for complex multi-component Spectral
analysis a widely used multivariate calibration method with
good selectivity and predictive accuracy. PLS can eliminate
the influence of data collinearity and effectively reduce the
dimension of spectral data. After spectral averaging, smoothing,
and differential processing, the implicit linear relationship
between variables can be effectively detected due to the
combination of appropriate chemometric methods, as shown
in Figure 6. Therefore, the KPCA method and PLS method
are used in this study to further construct the model to
determine its non-linear relationship. To achieve the best fitting
effect of the PLS model, the number of correction sets and
prediction sets is very important. The experiment adopts the
maximum-minimum strategy to establish a PLS model for
samples according to a certain proportion of correction set
and prediction set. First, calculate the average spectra of all
candidate samples, and find the samples with the minimum
and maximum distance from the average spectra to add to the
calibration set. Then calculate the spectral distance between the
remaining samples and each sample in the calibration set, find
the samples with the minimum and maximum spectral distance
from the average spectrum and add them to the calibration set,
and repeat the above steps until the number of calibration sets
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FIGURE 6

The spectrum after preprocessing the original Raman spectrum
by subtracting the baseline, etc.

reaches the set value, and the remaining samples are included in
the prediction set.

Non-linear kernel principal component
analysis method

Surface-enhanced Raman spectroscopy spectrum is
preprocessed to reduce noise interference and reduce or
eliminate fluorescence background. However, because the
SERS spectral data is up to thousands of dimensions and
contains a lot of redundant information, the computational
complexity of subsequent analysis increases, the accuracy rate
decreases, and the model robustness is poor. To optimize the
model and improve its prediction accuracy, the full spectrum
variable modeling is usually not used, but the characteristic
range spectrum is selected for analysis and processing, and
the variables with a high contribution rate are extracted for
modeling. Commonly used feature extraction methods include
non-negative factorization (NMF), discrete cosine transform
(DCT), PCA, etc. These methods obtain subject information in
the sense of mathematical transformation after transforming
the spectral signal.

Principal component analysis ignores the linear components
with small variance and preserves the larger variance terms
by processing the raw data. In this way, the dimension of
effective data representation is reduced, the difficulty of problem
processing is simplified, and the signal-to-noise ratio of data
information is improved, to improve the prediction accuracy
of the model. However, it usually requires the raw data to
be Gaussian scores to extract better features, which greatly
limits the practicality of this method. This is mainly because,
in essence, the traditional PCA is a linear mapping method
and does not do any non-linear processing, so it cannot detect
the non-linear structure between the data. Therefore, many

studies have extracted features between data by using non-
linear PCA. On the other hand, an important feature of high-
dimensional data is that the amount of data is huge, but the
useful information that can be obtained from it is very limited,
and there are different degrees of non-linear relationships. For
this, traditional linear principal components are not sufficient.

Kernel principal component analysis uses an appropriate
kernel function to project the original data space into a high-
dimensional feature space. Generally, KPCA uses a non-linear
kernel function to reconstruct a linear PCA, and the non-linear
expansion of PCA can improve the dimensionality reduction
quality of some non-linear data. KPCA maps the original data
space to high-dimensional feature space and then performs PCA
dimensionality reduction in the feature space.

Suppose the corresponding mapping is 8, which is defined
as 8 : Rd → F, x→ ξ = 8(x). The kernel function is to
implicitly realize the mapping from point x to F by mapping
8, so that the data in the generated features satisfies the
centralization condition, that is,

M∑
µ=1

8(xµ) = 0

The covariance matrix in the feature space is:

C =
1
M

M∑
µ=1

8(xµ)8(xµ)
T

The eigenvalues and eigenvectors can be obtained by
solving, and the test sample projection in the eigenvector space
vk is:

[νk ·8(x)] =
M∑
i=1

(αi)
k
[8(xi),8(x)]

Replacing the inner product with a kernel function, we have

[vk ·8(x)] =
M∑
i=1

(αi)
kK(xi, x)

When equation the above does not hold, it needs to be
adjusted

8(xµ)→ 8(xµ)−
1
M

M∑
v=1

8(xv)µ = 1, . . . ,M

Then the kernel matrix can be modified as

Kµν → Kµν −
1
M

( M∑
w=1

Kµw +

M∑
w=1

Kwv

)
+

1
M2

M∑
w,τ=1

Kwτ

The KPCA algorithm essentially extracts the non-linear
structure of the original data through the non-linear
transformation between the data space, feature space, and
category space, and combines multiple related indices into
several independent comprehensive indices, to reduce the
dimension of the data and solve the problem of PCA in the
processing of linearly inseparable data.
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TABLE 1 Predicted results of the model developed using
chemometric methods.

Data MLR PLSR KPCA + PLS

RMSECV/
(mg·L−1)

RMSECV/
(mg·L−1)

σ in
KPCA

RMSECV/
(mg·L−1)

Spectra of 0.4507 0.4178 1000 3.902

653∼683, 5000 0.0347

705∼728, 8000 0.0305

847∼872 cm−1 10000 0.1828

The kernel function K (kernel function) can directly obtain
the inner product of the low-dimensional data mapped to the
high-dimensional data, ignoring what the mapping function
is, that is K < x,y > = < 8(x), 8(y)>, where x and y are
low-dimensional input vectors, 8 is the mapping from low-
dimensional to high-dimensional, and <x, y> is the inner
product of x and y. Kernel functions provide a link from linear
to non-linear and any algorithm that can represent only the dot
product between two vectors. If we first map our input data
to a higher-dimensional space, the effect of operations in this
high-dimensional space will be non-linear in the original space.
Commonly used kernel functions are Linear Kernel (Linear
Kernel) k(x, y) = xTy + c, polynomial kernel(Polynomial Kernel)
k(x, y) = (axTy + c)d, Among them, the Radial Basis Function
(Radial Basis Function) k(x, y) = exp(-γ||x-y||2), Also called
Gaussian Kernel, because it can be one of the following kernel
functions:

k(x, y) = exp
(
−
||x-y||2

2σ2

)
The radial basis function refers to a real-valued function

whose value only depends on the distance of a specific point,
that is,

8(x, y) = 8
(
||x-y||

)
Any function 8 that satisfies the property is called a radial

vector function, Standard generally uses Euclidean distance,
although other distance functions are possible. Therefore,
the other two commonly used kernel functions, the power
exponential kernel and the Laplacian kernel, also belong to the
radial basis kernel. In this work, the SERS spectrum including
radial basis function (RBF) is used to extract the main features
of the spectrum in the range of 653∼683, 705∼728, and
847∼872 cm−1, and the influence of different kernel function
widths (σ) is discussed. Then, the support vector machine
regression (SVR) algorithm was used to establish a regression
model to predict the residues of thiram solution in the fruit
epidermis, and the mean square error of interactive verification
(RMSECV) was used to evaluate the performance of the model.
The results are shown in Table 1.

It can be seen that the linear models built by multiple linear
regression (MLR) and PLSR have higher RMSECV values, which
may lead to lower accuracy of the prediction results; when

σ is 1000, the prediction performance of the model built by
KPCA combined with PLS is the worst, while the prediction
performance improves when σ is 10000, but it is still weaker than
when σ is 5000 and 8000. In conclusion, the model constructed
by PCA combined with PLS with a σ of 8000 is the best.
Its RMSECV is 0.0268 mg·L−1, the error is small, and it can
accurately predict the residues of thiram solution.

The KPCA algorithm used is a qualitative and quantitative
analysis model of pesticide residues written based on the
measured SERS spectral data using Matlab software. The
conversion equation of peak and pesticide concentration,
through which qualitative and quantitative analysis of pesticide
residues of unknown concentration can be carried out, and
goodness of fit can be introduced to ensure that the error and
accuracy of the model are within the allowable range. The
goodness of fit refers to the fitting degree of the regression line
to the observed value. The statistic to measure the goodness of
fit is the determinate coefficient (also known as the determinate
coefficient) r2. The maximum value of r2 is 1. The closer the
value of r2 is to 1, the better the fitting degree of the regression
line to the observed value is. Conversely, the smaller the value
of r2, the worse the fitting degree of the regression line to
the observed value.

Peak attribution and principal
component comparison of thiram
solution

According to the molecular structure and conventional
Raman spectra of thiram, thiram has obvious Raman
characteristic peaks at 562, 929, 1146, 1379, and 1514 cm−1.
The characteristic peak of 562 cm−1 is caused by S-S stretching
vibration; the characteristic peak of 929 cm−1 is caused by
C = S and C-N stretching vibration; the characteristic peaks of
1146 cm−1 and 1514 cm−1 can be attributed to C–N stretching
and CH3 rocking vibration; the strongest characteristic peak at
1379 cm−1 is caused by the C-N stretching vibration and the
CH3 symmetrical deformation vibration mode. Linear fitting
was performed between the intensity (I) of the Raman peak
at 1379 cm−1 and the concentration of the standard solution
(N, µg·mL−1) of thiram, and the results showed that the mass
concentration of thiram and the intensity of the Raman peak at
1379 cm−1 were linearly fitted. It has a good linear relationship.
When the mass concentration range is 0.1∼5.0 µg·mL−1, it
satisfies the linear regression equation I = 11644N + 4536.5 and
the correlation coefficient r2 = 0.9912.

Compared with the standard Raman spectrum of thiram
solution, the characteristic peaks of the Raman spectrum of the
experimental sample data obtained by MATLAB are consistent
with the standard Raman spectrum of thiram in the number of
characteristic peaks and Raman displacement.
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FIGURE 7

Score diagram of KPCA of thiram enhanced by Au-NPs solution.

In this work, by artificially applying the standard solution of
thiram pesticide to the fruit samples that were not contaminated
by the pesticide residues of thiram, the residual concentrations
of thiram in the fruit epidermis were 0, 0.1, 0.5, 1.5, and
10 µg/g, respectively. Its SERS was measured under a Raman
microscope, and each concentration was repeated four times,
and the obtained SERS was smoothed, and baseline corrected.
The characteristic peaks of the SERS in the water (1:1) solution
are relatively consistent, and there are characteristic peaks at
750, 830, 1165, 1560 cm−1, etc., and the relationship between
the intensity of the characteristic peak at 750 cm−1 and the
concentration is the most obvious. Therefore, the characteristic
peak at 750 cm−1 was selected to study the relationship between
the peak intensity of the SERS and the concentration of fumes in
the fruit epidermis. KPCA was used to determine the minimum
detection limit of thiram in fruit epidermis. It can be seen from
Figure 7 that the minimum detection limit of thiram in fruit
epidermis is 0.1 µg/g, indicating that SERS can be used to detect
thiram pesticide residues in fruit epidermis, and the minimum
detection limit can reach 0.1 µ g/g.

Comparison with principal component
analysis method

The visualization diagram of the 18 groups of sample data
selected in this study. Through this diagram, we can compare
it with the standard Raman spectrum of thiram solution after
processing. From this, we can preliminarily determine whether
the measured samples containing Pesticide residues are the
characteristic peaks of the molecules of thiram, and with the
graph of the experimental data, we can also see the similarity and
difference of Raman spectra, even if the characteristic peaks of
the same substance may not be the same, but the characteristics

FIGURE 8

Relationship between the contribution of sample information
and individual components.

FIGURE 9

Two-dimensional scatter diagram of PC1 and PC2.

of the same substance The number of peaks is the same, and
there is little difference between similar characteristic peaks. It
can also be seen that the rapid detection of pesticide residues by
KPCA Raman spectroscopy is more accurate.

The first two principal components PC1 and PC2 have
accounted for 98.9% of the variance. It can be seen from Figure 8
that the first principal component PC1 has explained most
of the variance in the sample data matrix. Figure 9 shows a
2D scatter plot generated by PC1 and PC2, where the PC2
axis is perpendicular to the PC1 axis, which is often used
for data classification. In Figure 9, it can be seen that the
explained variance of PC1 for the experimental sample data
is 90.0%, and the explained variance of PC2 is 8.9%. And the
number of principal components shown in Figure 8 is also
in full agreement with this data. It can be seen that Raman
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spectroscopy using KPCA combined with PLS is superior to the
PCA model in terms of accuracy, precision, and stability.

Conclusion

Ultra-sensitive detection based on SERS is prone to the
interference of impurities and fluorescent substances. Therefore,
to play the maximum role of SERS, it is necessary to extract
feature information and establish a feature recognition model,
that is, the recognition module of signal processing and signal
recognition model for the relevant data spectrum library. In
this work, by simulating the situation of pesticide residues on
the fruit surface in the natural environment and based on the
SERS detection technology, the pesticide residues on the fruit
epidermis were determined. It was found that the metal particles
in the SERS substrate could adsorb the pesticide components
in the fruit epidermis. Thus, the Raman signal is enhanced,
and the interference of the fluorescent signal and noise on
the surface of the fruit is prevented to a certain extent. The
performance of the models processed by non-linear kernel
principal components is better than that of the models processed
by principal components, which proves that the former has
a better dimensionality reduction effect than the latter and
makes the results more accurate. The probe molecule R6G
was selected for comparative testing, and the relative standard
deviation (RSD) of the two peaks was statistically calculated for
the SERS peak intensity value, indicating that the prepared Au-
NPs substrate had an excellent enhancement effect on pesticides.
Then, with Au-NPs substrate as the enhancer, the Raman peaks
of the standard product of thiram solution were compared,
and the characteristic peaks for qualitative discrimination of
thiram solution were determined based on the assignment
of spectral peaks. Using the Raman spectroscopy technique
based on KPCA, the punctuation samples are standardized and
preprocessed, and then the samples are non-linearly mapped
by the Gaussian kernel function. Non-linear factors improve
the usability and operability of measurement data and reduce
computational overhead. In this method, the substances in the
Raman spectrum can be classified and the pesticide residues can
be detected quickly. At the same time, this work is of great value
to the practical popularization of SERS.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

GS was responsible for working as a supervisor for all
procedures. XS was responsible for manuscript preparation
and data processing. HR, SW, and YR participated in
discussions and revisions. XT was responsible for providing
the experimental platform and data collection. All authors
contributed to the article and approved the submission.

Funding

This work was funded by China Postdoctoral Science
Foundation (No. 2021M692473), Natural Science Foundation
of Anhui Province (2108085QF260), the Open Research Fund
of National Engineering Research Center for Agro-Ecological
Big Data Analysis and Application, Anhui University (No.
AE202103), and Anhui Provincial Department of Education
Research Project (KJ2021A0179).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

Abasi, S., Minaei, S., Jamshidi, B., and Fathi, D. (2020). Development of an
optical smart portable instrument for fruit quality detection. IEEE Trans. Instrum.
Meas. 70, 1–9. doi: 10.1109/TIM.2020.3011334

Ai, Y. J., Liang, P., Wu, Y. X., Dong, Q. M., Li, J. B., Bai, Y., et al. (2018).
Rapid qualitative and quantitative determination of food colorants by both Raman
spectra and Surface-enhanced Raman Scattering (SERS). Food Chem. 241, 427–
433. doi: 10.1016/j.foodchem.2017.09.019

Bereli, N., Çimen, D., and Denizli, A. (2021). Optical sensor-based molecular
imprinted poly (hydroxyethyl methacrylate-n-methacryloyl-(l)-histidine methyl
ester) thin films for determination of Tartrazine in fruit juice. IEEE Sens. J. 21,
13215–13222. doi: 10.1109/JSEN.2021.3070389

de Goes, R. E., Possetti, G. R. C., Muller, M., and Fabris, J. L. (2019). Tuning of
citrate-stabilized laser ablated silver nanoparticles for glyphosate detection. IEEE
Sens. J. 20, 1843–1850. doi: 10.1109/JSEN.2019.2950161

Frontiers in Plant Science frontiersin.org

139

https://doi.org/10.3389/fpls.2022.956778
https://doi.org/10.1109/TIM.2020.3011334
https://doi.org/10.1016/j.foodchem.2017.09.019
https://doi.org/10.1109/JSEN.2021.3070389
https://doi.org/10.1109/JSEN.2019.2950161
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-956778 July 14, 2022 Time: 16:54 # 13

Shi et al. 10.3389/fpls.2022.956778

Dowgiallo, A. M., and Guenther, D. A. (2019). Determination of the limit of
detection of multiple pesticides utilizing gold nanoparticles and surface-enhanced
Raman spectroscopy. J. Agric. Food Chem. 67, 12642–12651. doi: 10.1021/acs.jafc.
9b01544

Ejiri, H., Kikuchi, R., Kumada, A., Hidaka, K., Suwa, A., Matsui, Y., et al.
(2021). Excitation temperature imaging of vacuum arc based on two-line radiance
method. IEEE Trans. Plasma Sci. 49, 1955–1961. doi: 10.1109/TPS.2021.3077971

Gedam, P. A., Thangasamy, A., Shirsat, D. V., Ghosh, S., Bhagat, K. P.,
Sogam, O. A., et al. (2021). Screening of onion (Allium cepa L.) genotypes for
drought tolerance using physiological and yield based indices through multivariate
analysis. Front. Plant Sci. 12:122. doi: 10.3389/fpls.2021.600371

Ghatak, B., Ali, S. B., Prasad, A., Ghosh, A., Sharma, P., Tudu, B., et al. (2018).
Application of polymethacrylic acid imprinted quartz crystal microbalance sensor
for detection of 3-Carene in mango. IEEE Sens. J. 18, 2697–2704. doi: 10.1109/
JSEN.2018.2794607

Girard, J., Lanneau, G., Delage, L., Leroux, C., Belcour, A., Got, J., et al. (2021).
Semi-quantitative targeted gas chromatography-mass spectrometry profiling
supports a late side-chain reductase cycloartenol-to-cholesterol biosynthesis
pathway in brown algae. Front. Plant Sci. 12:648426. doi: 10.3389/fpls.2021.648426

Huang, Q., Fang, C., Muhammad, M., and Yao, G. (2020). Assessment of
norfloxacin degradation induced by plasma-produced ozone using surface-
enhanced Raman spectroscopy. Chemosphere 238:124618. doi: 10.1016/j.chemo
sphere.2019.124618

Hussain, A., Sun, D. W., and Pu, H. (2020). Bimetallic core shelled nanoparticles
(Au@ AgNPs) for rapid detection of thiram and dicyandiamide contaminants in
liquid milk using SERS. Food Chem. 317:126429. doi: 10.1016/j.foodchem.2020.
126429

Kim, J., Jang, Y., Kim, N. J., Kim, H., Yi, G. C., Shin, Y., et al. (2019).
Study of chemical enhancement mechanism in non-plasmonic surface enhanced
Raman spectroscopy (SERS). Front. Chem. 7:582. doi: 10.3389/fchem.2019.0
0582

Krajczewski, J., Ambroziak, R., and Kudelski, A. (2020). Substrates for
surface-enhanced Raman scattering formed on nanostructured non-metallic
materials: preparation and characterization. Nanomaterials 11:75. doi: 10.3390/
nano11010075

Kuo, H. F., and Chang, C. C. (2014). Analysis of core-shell-isolated nanoparticle
configurations used in the surface-enhanced Raman scattering technique. IEEE
Sens. J. 14, 3708–3714. doi: 10.1109/JSEN.2014.2331459

Liang, H., Liu, S., Li, Z., Guo, J., and Jiang, Y. (2021). Research on infrared
spectral quantitative analysis of hydrocarbon gases based on adaptive boosting
classifier and PLS. IEEE Sens. J. 21, 20521–20529. doi: 10.1109/JSEN.2021.3096956

Lin, T., Song, Y. L., Liao, J., Liu, F., and Zeng, T. T. (2020). Applications
of surface-enhanced Raman spectroscopy in detection fields. Nanomedicine 15,
2971–2989. doi: 10.2217/nnm-2020-0361

Liu, H., Dai, E., Xiao, R., Zhou, Z., Zhang, M., Bai, Z., et al. (2021). Development
of a SERS-based lateral flow immunoassay for rapid and ultra-sensitive detection
of anti-SARS-CoV-2 IgM/IgG in clinical samples. Sensor. Actuat. B-Chem.
329:129196. doi: 10.1016/j.snb.2020.129196

Mbaye, M., Diaw, P. A., Mbaye, O. M. A., Oturan, N., Seye, M. D. G., Trellu, C.,
et al. (2022). Rapid removal of fungicide thiram in aqueous medium by electro-
Fenton process with Pt and BDD anodes. Sep. Purif. Technol. 281:119837. doi:
10.1016/j.seppur.2021.119837

Nargis, H. F., Nawaz, H., Ditta, A., Mahmood, T., Majeed, M. I., Rashid, N., et al.
(2019). Raman spectroscopy of blood plasma samples from breast cancer patients
at different stages. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 222:117210. doi:
10.1016/j.saa.2019.117210

Ong, T. T., Blanch, E. W., and Jones, O. A. (2020). Surface Enhanced Raman
Spectroscopy in environmental analysis, monitoring and assessment. Sci. Total
Environ. 720:137601. doi: 10.1016/j.scitotenv.2020.137601

Shen, X., Shi, G., Zhang, Y., and Weng, S. (2022). wireless volatile organic
compound detection for restricted internet of things environments based
on cataluminescence sensors. Chemosensors 10:179. doi: 10.3390/chemosenso
rs10050179

Shin, H., Jeong, H., Park, J., Hong, S., and Choi, Y. (2018). Correlation between
cancerous exosomes and protein markers based on surface-enhanced Raman
spectroscopy (SERS) and principal component analysis (PCA). ACS sensors 3,
2637–2643. doi: 10.1021/acssensors.8b01047

Stamplecoskie, K. G., Scaiano, J. C., Tiwari, V. S., and Anis, H. (2011). Optimal
size of silver nanoparticles for surface-enhanced Raman spectroscopy. J. Phys.
Chem. C. 115, 1403–1409. doi: 10.1021/jp106666t

Sun, H., Lv, G., Mo, J., Lv, X., Du, G., and Liu, Y. (2019). Application of KPCA
combined with SVM in Raman spectral discrimination. Optik 184, 214–219. doi:
10.1016/j.ijleo.2019.02.126

Szekeres, G. P., and Kneipp, J. (2019). SERS probing of proteins in
gold nanoparticle agglomerates. Front. Chem. 7:30. doi: 10.3389/fchem.2019.0
0030

Tang, X., Dong, R., Yang, L., and Liu, J. (2015). Fabrication of Au
nanorod-coated Fe3O4 microspheres as SERS substrate for pesticide analysis
by near-infrared excitation. J. Raman Spectrosc. 46, 470–475. doi: 10.1002/jrs.
4658

Uddin, M. P., Mamun, M. A., Afjal, M. I., and Hossain, M. A. (2021).
Information-theoretic feature selection with segmentation-based folded principal
component analysis (PCA) for hyperspectral image classification. Int. J. Remote
Sens. 42, 286–321. doi: 10.1080/01431161.2020.1807650

Wang, C., Wang, C., Wang, X., Wang, K., Zhu, Y., Rong, Z., et al. (2019).
Magnetic SERS strip for sensitive and simultaneous detection of respiratory
viruses. ACS Appl. Mater. Inter. 11, 19495–19505. doi: 10.1021/acsami.9b03920

Wang, X., Zhang, Y., Yu, B., Salhi, A., Chen, R., Wang, L., et al. (2021).
Prediction of protein-protein interaction sites through eXtreme gradient boosting
with kernel principal component analysis. Comput. Biol. Med. 134:104516. doi:
10.1016/j.compbiomed.2021.104516

Wei, Y., Chen, Z., Zhang, X. K., Duan, C. Q., and Pan, Q. H. (2021). Comparative
analysis of glycosidic aroma compound profiling in three vitis vinifera varieties by
using ultra-high-performance liquid chromatography quadrupole-time-of-flight
mass spectrometry. Front. Plant Sci. 12:1271. doi: 10.3389/fpls.2021.694979

Xin, W. A. N. G., Zhe-ming, K. A. N. G., Long, L. I. U., and Xian-guang,
F. A. N. (2020). Multi-channel Raman Spectral Reconstruction Based on Gaussian
Kernel Principal Component Analysis. Acta Photon. Sini. 49:0330001. doi: 10.
3788/gzxb20204903.0330001

Xu, M. L., Gao, Y., Han, X. X., and Zhao, B. (2017). Detection of pesticide
residues in food using surface-enhanced Raman spectroscopy: a review. J. Agric.
Food Chem. 65, 6719–6726. doi: 10.1021/acs.jafc.7b02504

Ye, D., and Wang, P., Omkar (2020). A dual-mode microwave resonator for
liquid chromatography applications. IEEE Sens. J. 21, 1222–1228. doi: 10.1109/
JSEN.2020.3018683

Yoo, J., Chang, S. K., Jung, G., Kim, K., Kim, T. S., Song, J. H., et al. (2021).
Analysis of thermal characteristics of AlGaN/GaN heterostructure field-effect
transistors using micro-raman spectroscopy. J. Nanosci. Nanotechnol. 21, 5736–
5741. doi: 10.1166/jnn.2021.19491

Zhan, C., Chen, X. J., Huang, Y. F., Wu, D. Y., and Tian, Z. Q. (2019).
Plasmon-mediated chemical reactions on nanostructures unveiled by surface-
enhanced Raman spectroscopy. Account. Chem. Res. 52, 2784–2792. doi: 10.1021/
acs.accounts.9b00280

Zhang, J., He, L., Zhang, X., Wang, J., Yang, L., Liu, B., et al.
(2017). Colorimetric and SERS dual-readout for assaying alkaline
phosphatase activity by ascorbic acid induced aggregation of Ag coated Au
nanoparticles. Sensor. Actuat. B-Chem. 253, 839–845. doi: 10.1016/j.snb.2017.
06.186

Frontiers in Plant Science frontiersin.org

140

https://doi.org/10.3389/fpls.2022.956778
https://doi.org/10.1021/acs.jafc.9b01544
https://doi.org/10.1021/acs.jafc.9b01544
https://doi.org/10.1109/TPS.2021.3077971
https://doi.org/10.3389/fpls.2021.600371
https://doi.org/10.1109/JSEN.2018.2794607
https://doi.org/10.1109/JSEN.2018.2794607
https://doi.org/10.3389/fpls.2021.648426
https://doi.org/10.1016/j.chemosphere.2019.124618
https://doi.org/10.1016/j.chemosphere.2019.124618
https://doi.org/10.1016/j.foodchem.2020.126429
https://doi.org/10.1016/j.foodchem.2020.126429
https://doi.org/10.3389/fchem.2019.00582
https://doi.org/10.3389/fchem.2019.00582
https://doi.org/10.3390/nano11010075
https://doi.org/10.3390/nano11010075
https://doi.org/10.1109/JSEN.2014.2331459
https://doi.org/10.1109/JSEN.2021.3096956
https://doi.org/10.2217/nnm-2020-0361
https://doi.org/10.1016/j.snb.2020.129196
https://doi.org/10.1016/j.seppur.2021.119837
https://doi.org/10.1016/j.seppur.2021.119837
https://doi.org/10.1016/j.saa.2019.117210
https://doi.org/10.1016/j.saa.2019.117210
https://doi.org/10.1016/j.scitotenv.2020.137601
https://doi.org/10.3390/chemosensors10050179
https://doi.org/10.3390/chemosensors10050179
https://doi.org/10.1021/acssensors.8b01047
https://doi.org/10.1021/jp106666t
https://doi.org/10.1016/j.ijleo.2019.02.126
https://doi.org/10.1016/j.ijleo.2019.02.126
https://doi.org/10.3389/fchem.2019.00030
https://doi.org/10.3389/fchem.2019.00030
https://doi.org/10.1002/jrs.4658
https://doi.org/10.1002/jrs.4658
https://doi.org/10.1080/01431161.2020.1807650
https://doi.org/10.1021/acsami.9b03920
https://doi.org/10.1016/j.compbiomed.2021.104516
https://doi.org/10.1016/j.compbiomed.2021.104516
https://doi.org/10.3389/fpls.2021.694979
https://doi.org/10.3788/gzxb20204903.0330001
https://doi.org/10.3788/gzxb20204903.0330001
https://doi.org/10.1021/acs.jafc.7b02504
https://doi.org/10.1109/JSEN.2020.3018683
https://doi.org/10.1109/JSEN.2020.3018683
https://doi.org/10.1166/jnn.2021.19491
https://doi.org/10.1021/acs.accounts.9b00280
https://doi.org/10.1021/acs.accounts.9b00280
https://doi.org/10.1016/j.snb.2017.06.186
https://doi.org/10.1016/j.snb.2017.06.186
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-993838 September 6, 2022 Time: 16:48 # 1

TYPE Original Research
PUBLISHED 12 September 2022
DOI 10.3389/fpls.2022.993838

OPEN ACCESS

EDITED BY

Jian Su,
Nanjing University of Information
Science and Technology, China

REVIEWED BY

Haider Aziz Aziz,
University of Tikrit, Iraq
Laipeng Xiao,
Tianjin University of Sport, China
Hong Chao,
Dankook University, South Korea

*CORRESPONDENCE

Jiang Zhu
jjff251314@163.com

SPECIALTY SECTION

This article was submitted to
Sustainable and Intelligent
Phytoprotection,
a section of the journal
Frontiers in Plant Science

RECEIVED 14 July 2022
ACCEPTED 03 August 2022
PUBLISHED 12 September 2022

CITATION

Zhu J and Sun J (2022) Ecotourism
design and plant protection based on
sensor network.
Front. Plant Sci. 13:993838.
doi: 10.3389/fpls.2022.993838

COPYRIGHT

© 2022 Zhu and Sun. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Ecotourism design and plant
protection based on sensor
network
Jiang Zhu1,2* and JinChun Sun1

1School of Management, Xi’an Jiaotong University, Xi’an, China, 2Department of Design, Taiyuan
Normal University, Taiyuan, China

National Forest Park is an important place for the public to carry out forest

recreation activities and recognize natural habitats. With the popularization

of forest tourism and the increase of forest recreational activities, the

pressure on forest habitats has increased. The development of national

forest parks is accompanied by opportunities and challenges. The main

purpose of this paper is to analyze and study the impact of ecotourism

design on plant protection based on sensor network technology. This paper

analyzes the impact of tourism on the ecological environment, establishes

an ecological environment monitoring system and an ecological tourism

resource evaluation system, and studies the functional division of forest parks.

Experimental research shows that, as a strictly protected area, the ecological

conservation area basically does not conduct scenic spot development and

resource mining, nor is it open to tourists. The total area is 852.92 ha,

accounting for 22.31% of the total area of the forest park, allowing the

ecology of the ecological conservation area to achieve sustainable and

healthy development.

KEYWORDS

sensor network, ecotourism design, plant protection, forest park, conservation area

Introduction

With the development of science and technology and the leap of economy, the
integration of agriculture and eco-tourism is developing rapidly, and the agro-eco-
tourism industry has promoted the transformation of agricultural industrial structure
and the improvement of efficiency, and has been flourishing in all parts of my country.
The basic characteristics of agricultural ecotourism include dependence on ecological
agriculture, taking ecological environment protection as the core, combining with rural
culture, and extensive participation in tourism activities. At the same time, due to the
insufficient understanding of the role of plant protection in tourism, the surrounding
environment has deteriorated and the risk of large-scale outbreaks of pests and diseases
has increased. From the academic point of view, ecotourism mainly focuses on planning,
economy and ecology, but there are few theoretical studies on the role of plant protection
on ecotourism (Awasthi and Bollas, 2020; Manoj et al., 2020). The construction of
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ecological agriculture has laid a good material foundation and
pollution-free security for the development of tourism. The
establishment of green agricultural product bases in tourist
attractions and the adoption of science and technology to plant
crops are not only conducive to the promotion and application
of agricultural technology, but also provide green food for
tourists. Tourism and eco agriculture are combined, and they
complement each other and promote each other, so as to realize
the ecological, social and economic benefits of agricultural eco-
tourism.

In related research, Sambo et al. (2020) mentioned that
wireless underground sensor network (WUSN) faces the
problem of wireless underground communication (WUC),
which greatly attenuates ground signals. Wireless sensor
network unit includes data acquisition unit, data transmission
unit, data processing unit, and energy supply unit. At the end
of it is a sensor that can sense and inspect the external world.
His sensors communicate wirelessly. From this, a WUSN path
loss for precision agriculture is proposed, called WUSN-PLM.
To achieve this, the proposed model is based on an accurate
prediction of the complex permittivity (CDC). Martin et al.
(2021) proposed an algorithm to map direct normal irradiance
(DNI) in thermal solar power plants using a mobile robotic
sensor network (RSN). The algorithm selects measurement
points and assigns RSN accordingly for dynamic estimation of
DNI. Sensor network realizes three functions of data acquisition,
processing and transmission. Together with communication
technology and computer technology, it constitutes the three
pillars of information technology. The performance of the
algorithm is evaluated using a generic thermal solar power plant
with a fleet as a simulated case study.

Based on sensor network technology, this paper analyzes
and studies the impact of ecotourism design on plant protection.
This paper first introduces the meaning of ecotourism, and
analyzes the four principles of ecological planning, namely,
the principle of ecological protection, the principle of overall
optimization, the principle of adapting to local conditions,
and the principle of landscape heterogeneity. The impact of
water bodies, soil, plants, and wild animals; then, the data
processing technology is analyzed, the ecological environment
monitoring system and the ecotourism resource evaluation
system are established, and the comprehensive ecological
characteristics are analyzed. Note that For the development
and ecological protection of tourism resources, combined
with the comprehensive improvement of key river basins
and regional environment, the environmental management of
tourist areas has been strengthened, the environmental impact
assessment has been carried out for the planning, development
and construction projects of some tourist areas, the pollution
prevention and control efforts have been strengthened, and a
number of polluting enterprises in scenic tourist areas have been
shut down, relocated and treated within a time limit (Palani
et al., 2020).

Design research

The meaning of ecotourism

The meaning of ecotourism has been constantly changing,
and the process of changing the definition of forest park
is similar, but the emphasis is still different. Tourism, with
distinctive ecological environment as its main landscape, takes
sustainable development as the concept, takes the protection of
ecological environment as the premise, takes the harmonious
development between man and nature as the criterion, and
relies on a good natural ecological environment and a unique
human ecosystem. The key points include ecotourism tourist
motivation, ecotourism resource level, socioeconomic capacity
of the region, and ecological capacity of forest parks. Because
ecotourism is different from other forms of tourism, it appeared
in a later period, so it is not very familiar to the public, and
it is easy to be confused with other concepts such as mass
tourism, nature tourism, and sustainable development tourism
that have appeared in research for a long time (Baghaee et al.,
2020; Venkataravanappa et al., 2020).

Distinguishing analysis of similar concepts and categories:
One is the difference between ecotourism and mass tourism.

Compared with ecotourism, mass tourism emerged earlier,
and ecotourism is a derivative of mass tourism. Because mass
tourism is an early concept and form of tourism, its connotation
does not include the protection of natural environment
and ecological resources, the threshold for development and
introduction is low, and it is easy to develop and implement,
but there are also problems of damage and negative impact
on forest resources. The first meaning of mass tourism refers
to that the range of participants in tourism activities has been
extended to ordinary working people. The second meaning is
that modern tourism activities began to form a mass tourism
model represented by organized group package tourism, and
formed a dominant tourism form among the general public.
In terms of planning management, development goals, and
stakeholders, ecotourism prioritizes resource protection and
avoids the sacrifice of forest resources. Therefore, it is quite
different from mass tourism.

The second is the difference between ecotourism and
nature tourism. The difference between the two is small,
the main reason is that both rely on natural resources and
are closely related to animal and plant resources, as well
as physical resources such as mountains and rivers. Natural
tourism takes natural resources as the core of development
power. Compared with mass tourism, it is more inclined to be
close to natural resources, but it also lacks the popularization
of environmental protection awareness. Therefore, tourism
activities will still have an impact on natural resources. On the
basis of natural tourism, ecotourism emphasizes the protection
of the natural environment and ecological resources, from
people-oriented to ecological resources-oriented, and realizes
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the value of ecotourism through the interaction between people
and ecological resources in the natural environment. The
basic principles of people-oriented management include: paying
attention to people’s needs, encouraging employees, cultivating
employees, and people-centered organization design.

Among these three tourism concepts, the origin of
sustainable tourism comes from ecotourism. From the
perspective of sustainable development, sustainable tourism is
a persistent and continuous tourism behavior. The difference
between sustainable development tourism and ecotourism is
that sustainable development tourism contains more abundant
concepts. There are various forms and processes of sustainable
development tourism, and it is not limited to ecotourism. The
main connotation of sustainable tourism includes improving
people’s understanding of the environmental and economic
impact of tourism, strengthening people’s ecological awareness,
promoting the fair development of tourism, improving the
quality of life in tourism reception areas, providing high-quality
tourism services to tourists, and protecting the environmental
quality on which future tourism development depends.

Principles of ecological planning

Principles of ecological protection
The ecological elements of the ecosystem play an important

role in the stability of the resource utilization of the forest
park. Therefore, in the planning, it is necessary to respect and
conform to nature, and on this basis, adhere to the principle
of ecological security to provide the maximum survival for
the biological groups in the forest park. It is necessary to
improve the ability to protect ecological resources, maintain
the connectivity between various landscapes, and create a living
environment space suitable for biological habitats. Ecological
security has the characteristics of integrity, irreversibility
and long-term. Specifically, ecological security is a state of
human living environment or human ecological conditions.
Ecological security is a dynamic concept. Ecological security
emphasizes people-oriented, and maintaining ecological
security requires costs. Focusing on the comprehensive
protection of landscape resources, a targeted forest park
planning scheme is formulated, and ecological protection and
forest tourism are always positioned as the primary functions
of the park, and development is carried out on the basis of
sustainable development (Blake et al., 2021).

The overall optimization principle
The principle of overall optimization should be considered,

so that the internal functional division of the forest park can be
adapted to the surrounding environment, and the symbiosis and
prosperity of the forest park and the surrounding environment
should be ensured through overall protection and system
optimization. The attributes and functional properties of each

component in the park are different, but the overall style and
form should be unified, and the overall characteristics and image
characteristics of the forest park should be maximized through
analysis, and each element must be balanced in the ecological
environment. We can’t ignore one and lose the other, take the
overall optimization as an important organic part of ecotourism,
and strive to create an ecologically harmonious forest ecosystem.

The principle of adjusting measures to local
conditions

When planning and designing suburban forests, it is
necessary to respect the status quo of the natural, cultural and
economic conditions of the region, and carry out practical
designs based on research and analysis of superior planning,
so as to highlight the characteristics of suburban forest parks.
It is necessary to focus on ecological conservation and cultural
protection, and design various places for forest tours, popular
science education, and outdoor recreation according to local
conditions. The construction of suburban forest parks is to
protect the original ecological environment and develop its
unique landscape on this basis. Select native plants, give full
play to climatic characteristics, properly use exotic plants and
cultivate new high-quality tree species to form a multi-layer
mixed structure of trees, shrubs, grasses, and ground cover.
Create infrastructures such as water landscapes, buildings, and
sketches that are rich in local characteristics and forest park
orientation, so that various landscape spaces can cooperate
with each other to form a forest tourism environment with
changing scenery and increase the fun of the tour. The
economic characteristics of suburban forestry include the
duality of suburban forestry, the diversity of suburban forestry
production, and the economy of suburban forestry. Among
them, the economy of suburban forestry is reflected as follows:
on the one hand, facing the vast cities, suburban forestry
has fast information, wide product sales and broad market
prospects; On the other hand, the suburban forestry cannot
be completed like the urban garden department, and the
construction funds are allocated by the state to solve the
construction of suburban forestry.

The principle of landscape heterogeneity
Landscape heterogeneity refers to the variability of

landscape elements in the landscape system, which is
beneficial to the division of the spatial pattern of the
ecological environment and to improve patch heterogeneity
and complexity. The degree of landscape heterogeneity is
related to the biodiversity of the landscape. In the construction,
the existing landscape heterogeneity should be used and
strengthened, the vertical landscape design should be enriched,
the aquatic plant habitat system should be established, and
the ecological balance should be maintained. Strengthen
the protection of ecologically sensitive areas, provide a
heterogeneous living environment for the creatures in the park,
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strengthen the construction of landscape heterogeneity, and
create a heterogeneous tourism space for tourists.

The impact of tourism on the
ecological environment of forest parks

The impact of tourism activities on the ecological
environment is usually reflected in specific locations in
tourist areas. Because the locations of natural landscapes and
cultural attractions that attract tourists are relatively fixed,
they account for a small proportion of the total area. Among
them, the impact of tourism activities on vegetation and soil
is relatively concentrated, which are fixed components of
the ecosystem, while the impact on water bodies and wild
animals is relatively scattered (Alkhalifa and Almogren, 2020;
Khodadadiangostar et al., 2020).

Impact on water bodies
The impact of tourism activities on water bodies is

mainly reflected in the quality of water quality, such as:
eutrophication of water bodies, discarding of domestic waste,
mass reproduction of planktonic algae, and water pollution
caused by discarded suspended solids. Water pollution will
directly affect the death and accumulation of aquatic animals
and plants. The accumulation of pollutants causes harmful gases
to be produced in water bodies. The human excrement produced
by the residents living in the forest park also greatly pollutes the
water quality, and the hotels, shopping streets, restaurants and
other tourist service places opened near the water resources will
also produce non-degradable waste when entertaining tourists.
It takes a long time to purify the wastes to remove the pollution.
If these pollutants are not treated scientifically and properly, it
will cause water pollution in the forest park and surrounding
water bodies. In the surface fresh water system, phosphate is
usually the limiting factor of plant growth, while in the seawater
system, ammonia nitrogen and nitrate are often the limiting
factors of plant growth and total production. The substances
that lead to eutrophication are often the nutrients with limited
content in these water systems. Accordingly, the prevention and
control measures include controlling the input of exogenous
nutrients and reducing the load of endogenous nutrients.

Although the water body has a self-purification function
and has a certain ability to withstand external influences, the
pollution caused by the short-term is not significant, but after
a long period of time, when the pollutants accumulate to a
certain level, the problem will become prominent. The aquatic
ecosystem has a dynamic equilibrium system, and usually
all kinds of organisms in the aquatic ecological environment
are in the trend of mutual balance. However, when various
tourism activities follow, the water ecological balance will be
broken, and the linkage of the entire ecological chain will begin
to fail, which will reduce the stable development of aquatic

organisms and the protection of diversity, will cause more
serious ecological damage.

Effects on soil and plants
Because the growth of vegetation is inseparable from the

soil, tourism activities, especially the impact of trampling on
the soil, will indirectly affect the growth of vegetation. Vehicles
roll on the soil, causing the soil to be compacted, or tourists
trampling on the lawn, causing damage to the vegetation surface,
severe surface exposure and serious soil erosion, which affect
the growth and vitality of trees, which in turn has a series of
cyclic effects on soil and vegetation. It is also related to the
location of tourist routes and scenic spots. For scenic spots that
are used more frequently, the scope of influence will expand
with the extension of usage time and the increase of tourists’
demand for space.

The most direct consequences of tourism activities on soil
and plants are: the reduction of surface vegetation coverage and
the reduction of species diversity, which in the long run will
affect the ecosystem of suburban forest parks.

Impact on wild animals
Tourism activities create a stressful environment for

animals, and noise pollution from development and tourism
activities has the greatest impact on wildlife. When animals live
in an environment that exceeds the normal volume for a long
time, they will become more and more timid and unresponsive.
When encountering a moving vehicle or an advancing ship,
they cannot avoid danger in time, resulting in an increase in
accidental mortality, and even put some endangered animals on
the verge of extinction. The trampling of natural ground cover
by tourists and the uncontrolled picking of flowers and fruits
of plants will also have a negative impact on the animal habitat
in the forest park, which limits the living space and activity
range of animals to a large extent. At the same time, hunting
and hunting activities have a great impact on wild animals. The
endless hunting activities of humans have led to a sharp decrease
in the number of wild animals. The destruction of the overall
ecological environment also has a certain impact on the number
of wild insects (Nobar et al., 2020; Younus et al., 2020).

Algorithm research

After the forest data collection is completed through
the image, according to the characteristics of the Rikola
hyperspectral remote control data, on the basis of completing
the initial quality assessment of the image, the hyperspectral
image is reproduced in the system and process. Compared
with the traditional low spectral resolution remote sensing
technology, hyperspectral remote sensing provides a
wider application in earth observation and environmental
investigation, which is mainly reflected in the following aspects:
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the resolution and recognition ability of ground objects is
greatly improved, the imaging channel is greatly increased, and
the influence of other interference factors is largely suppressed
in the spectral space.

System calibration
In the process of acquiring hyperspectral images by the

UAV platform, there will inevitably be systematic errors due to
the limitations of the instrument itself and the measurement
method, and such errors need to be corrected.

Vegetation hyperspectral images represent ground object
information by pixel brightness value (DN value), but due to the
influence of systematic errors, DN value cannot truly reflect the
spectral properties of ground objects, and it is necessary to use
measurement information representing specific signals obtained
during the testing process. Convert the DN value of the original
image to the reflectivity of ground objects, the formula is as (1).

ρt =
DNt − DN1

DN2 − DN1
(ρ2 − ρ1)+ ρ1 (1)

In the formula, ρt and DNt are the reflectivity and DN value
of the original image target pixel, respectively, ρ1 and ρ2 are the
reflectivity of different calibration oil cloths, respectively, DN1

and DN2 are the DN values of different calibration oil cloths,
respectively. The main application of traditional imaging remote
sensing technology is qualitative analysis, and the accuracy of
some quantitative analysis results is not ideal. This is obviously
due to the limitations of the spectrum and spatial resolution of
the imaging sensor, the interference of the atmosphere and soil
background, etc., which greatly suppresses the influence of other
interference factors in the spectral space, which is of great help
to improve the accuracy of quantitative analysis results.

Post-processing correction
The UAV images obtained by the frame-based imaging

method in the flight experiment in this study are affected by
factors such as the imaging principle and the environment.
There are subtle differences in position and attitude among the
45-band images, resulting in the generated hyperspectral cubes
with different bands in each band. Cannot completely overlap,
we used the Coregister folder tool of Pix4D software for band
registration. The time for a drone to fly once is about 20–30 min.
Affected by changes in sunlight conditions, there will be gradient
differences in the radiance between different flight zones, and
the image will often show uneven color and brightness. Using
equations (2) and (3) can effectively correct the irradiance to
the normal level.

Ljc(λ)at_sensor = Lj(λ)∗atsensor
Cj(λ) (2)

Cj(λ) = Ej(λ)/Eref (λ) (3)

Among them: Ljc(λ)at_sensor represents the image after
irradiance consistency correction; Ljc(λ)at_sensor represents the

jth original image; Cj(λ) represents the multiplicative correction
factor of j; Ej(λ) represents the record of j Irradiance value;
Cref (λ) represents the irradiance value of the reference image.
Note that image gradient can regard image as a two-dimensional
discrete function, and image gradient is actually the derivation
of this two-dimensional discrete function. Image edge is
generally realized by gradient operation of image.

Experimental study

Data processing technology

Using ArcGIS and ENVI software to preprocess the
collected basic data, the main technical tools involved are as
follows:

Image mosaic
Image mosaicking is a tool for splicing multiple adjacent

image maps into a large-scale image with spatial connection
due to the limitation of the area of remote sensing image maps.
The methods of cutting lines and feathering are often used
for boundary processing. After multiple adjacent images across
the state, the images need to be stitched together using the
mosaic tool. The whole process of image mosaic technology
includes image preprocessing, image registration, establishment
of transformation model, unified coordinate transformation,
fusion, and reconstruction.

Image cropping
Due to the difference between the directly acquired

data space range and the actual range of the research
object, when conducting regional research, image cropping
is often used to extract the specified range of the original
image. This paper mainly uses the mask extraction tool
to extract various types of data within the research area
data, so that the spatial extent of different data layers after
processing is consistent.

Resampling
Resampling is the use of ArcGIS to process existing raster

data to convert its resolution to a specified size. Since the
delineation of ecological space involves a lot of index data, it is
necessary to use the resampling tool in the data management
tool to unify it into a grid with a resolution of 100 m × 100 m,
and then perform overlay calculation.

Reclassification
Reclassification is to reclassify and assign values according

to the required sequence according to the size of the original
data values, so as to obtain a new set of data. Cover the original
values of indicators, etc., and use the reclassification in the
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FIGURE 1

Ecological environment monitoring system diagram.

spatial analysis module to reclassify the indicator data interval
and assign sensitive values.

Neighborhood analysis
In Figure 1, re-classification is performed according to the

size of the original value, the data set and the original value
are obtained, and the re-classification in the spatial analysis
module is used to re classify the index data interval and allocate
the sensitive value. Since the prior art cannot directly obtain
the topographic relief related to the topographic factors, it is
necessary to select focus statistics in the neighborhood analysis
module of ArcGIS spatial analysis through DEM elevation
data, and select 3 × 3 pixels to extract the maximum and
minimum values. Raster calculation. There are many forms of
data organization and expression of digital elevation model,
including regular rectangular grid and irregular triangular grid,
which are commonly used in land use engineering.

Grid calculation
Using the grid calculator, according to the evaluation model

formula of ecological space delineation, the multi-raster layer
data is substituted and the superposition operation is performed
to obtain the spatial distribution relationship between the
evaluation factors.

Fuzzy classification
In the evaluation of the importance of ecological service

functions, the evaluation results of each subsystem need
to be normalized. Select the fuzzy classification in the
superposition analysis, input the original evaluation value, select
the classification value type as a linear function, and assign
the data membership between 0 and 1. The core of fuzzy
set is the determination of membership function, which has
a great impact on the application effect of fuzzy set. The
process of determining the membership function is closely

related to the practical application background, and there is
no general method.

Interpolation analysis
Interpolation analysis is by inputting coordinate points

with specific values, and using kriging interpolation or inverse
distance weighting (IDW) in the interpolation analysis of
the spatial analysis module to assign spatial evolution trends
to point coordinate values. Due to the spatial evolution
of meteorological station data, it is manifested as the
spatial distribution trend of meteorological data such as
rainfall and wind speed.

Ecological environment monitoring
system

The construction of the ecological environment monitoring
system can comprehensively understand the resources of
suburban forest parks, promote the integrity of forest eco-
tourism resources, enable forest tourism resources to achieve
the most scientific and effective development and utilization,
convert various benefits into value, and improve the forest
resources. Quality and value of park ecotourism resources.

The main function of the ecological environment
monitoring and evaluation system is to confirm the ecological
level of the suburban forest park, reduce the adverse impact,
and propose reasonable ecological protection measures.
Take the ecological environment impact assessment work
as a routine work and put it into the various links of the
ecological tourism development and construction of suburban
forest parks. The research contents mainly include: ecological
environment assessment and environmental impact assessment
reflecting changes in environmental quality; graded assessment
of scenic resource quality and put forward a scientific and
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FIGURE 2

Analysis of differences in natural perception and air quality perception of different habitat types.

FIGURE 3

Evaluation framework of ecotourism resources.

effective resource development model. Monitoring should not
only ensure systematization and timeliness, but also clearly
reflect the existing problems in suburban forest parks, so that
effective protection measures can be taken more quickly, so
as to continuously optimize the planning and construction
management of suburban forest parks, and solve the problems
of tourism resources and environment protection issues.

Evaluation system of ecotourism
resources

In Figure 2, different habitats are analyzed, and reasonable
ecological protection measures are proposed through
differences in natural perception and air quality to enhance
the role of forest resources. In order to give full play to the
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FIGURE 4

Analysis of functional zoning of forest park.

resource advantages of eco-tourism in the National Forest
Park and realize the coordination and unity of various
resource protection and planning and construction, the existing
natural resources in the National Forest Park from water
resources, climate resources, dynamic plant resources, etc. The
comprehensive evaluation system of eco-tourism resources is
systematically constructed from three directions. Combined
with the specific conditions of national forest parks, it is
further subdivided into two-level evaluation indicators such
as biological resource quality, environmental resource quality,

and regional and location conditions. The Delphi method, the
expert evaluation method, is mainly used, and the research
foundation and practical experience accumulated by experts in
ecotourism planning are used to judge the grades of ecotourism
resources at all levels, and then the national forest parks are
classified according to the evaluation standards of individual
tourism resources. The ecotourism landscape resources are
classified (see Figure 3).

Experiment analysis

Comprehensive ecological
characteristic analysis

The division of ecological function zones is mainly based
on the types of the ecosystems of suburban forest parks and
the differences in ecological functions. In Figure 4, according
to the analysis of the functional area division of the forest park,
in order to realize the coordination of elimination protection
and planning and construction, it is necessary to make full
use of the impact of Ecotourism of the National Forest Park.

In Table 1, differences in ecological functions are shown. For
suburban forest parks, functional zoning can control tourists’
tour routes, and more importantly, protect ecologically sensitive
areas, which play a key role in the sustainable development of
regional ecosystems and the comprehensive improvement of the
ecological environment.

Perception differences of different
habitat types

In Table 2, it can be seen that the structure of forest
recreation space plays a leading role in improving air quality,
and coniferous forests have a more significant improvement in

TABLE 1 Comprehensive ecological characteristics of different
ecological sensitivities.

Ecological
grade

1 2 3

Category Basic suitable
land

Suitable land Very suitable

Land use
direction

Restricted
planning

Proper planning Unrestricted
planning

Ecological
sensitivity

Moderately
sensitive

Mildly sensitive insensitive

Comprehensive
ecological
characteristics

The terrain is
low, the

undulations are
small, and it is
far away from
the ecological
conservation

area.

Mostly
agricultural and

forestry land

The terrain is
low and flat,

with abundant
tourist

attractions and
good

infrastructure.

Frontiers in Plant Science frontiersin.org

148

https://doi.org/10.3389/fpls.2022.993838
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-993838 September 6, 2022 Time: 16:48 # 9

Zhu and Sun 10.3389/fpls.2022.993838

TABLE 2 Differences in nature perception and air quality perception
in different habitat types.

Habitat type Natural
perception

Air quality
perception

1 Deciduous
broad-leaved

forest

1.179 2.295

2 Coniferous and
broadleaf mixed

forest

1.285 2.349

3 Artificial
coniferous forest

1.357 3.286

4 Primeval
coniferous pine

forest

1.697 2.152

5 Other
coniferous

forests

1.267 2.600

TABLE 3 Functional zoning table of forest park.

Serial number Ribbon Area
(ha)

The main
function

Area
percentage

(%)

1 Manage service
area

20.11 Reception service,
customer

distribution,
administrative
management

0.53%

2 Core landscape
area

82.73 Ecological
tourism, cultural
tourism, religious

pilgrimage

2.16%

3 General
recreation area

2867.24 Ecotourism,
forest health,

religious
pilgrimage

75.00%

4 Ecological
conservation

area

852.92 Water
conservation, soil,

and water
conservation,

ecological
maintenance

22.31%

The total planned area of the forest park is 3,823 ha.

air quality than broad-leaved forests. Samples of lower habitat
quality confirmed these patterns, but users in higher quality
habitats were more aware of the natural habitat itself.

The results show that aesthetic perception, emotion and
natural perception are important factors affecting the cognitive
mode of habitat space; the perception of soundscape is driven by
the wet habitat; the recognition of the specific parts of Korean
pine promotes the user’s perception of the educational function
of the habitat; Historic landscape sketches will evoke public
perception of historical heritage.

Functional division of forest park

The details are shown in Table 3.
As can be seen from the above picture, as a strictly protected

area, the ecological conservation area basically does not conduct
scenic spot development and resource mining, nor is it open
to tourists. The total area is 852.92 ha, accounting for 22.31%
of the total area of the forest park. The Forest Park Ecological
Conservation Area is strictly in accordance with the regulations,
and there are no tourist attractions open to tourists, so that
the ecology of the ecological conservation area can develop
sustainably and healthily.

Conclusion

Eco-tourism design planning must be combined with
management to improve the management level, clarify the
development of forest parks and the short-term and long-
term planning and design. Only good design combined with
excellent management methods can maximize the benefits of
ecotourism; reduce human interference to forest parks. For
areas that have been damaged by humans, ecological restoration
and reconstruction measures are taken to reconstruct the
rich forest ecological landscape structure. At the same time,
try to concentrate and narrow the scope of the construction
area, pay attention to the protection of ecologically sensitive
areas, and maintain the balance of the ecological system in
the ecological conservation area; improve the risk awareness
of tourists, and avoid the risk of sudden natural or man-
made tourism disasters. Implement the strategy of ecological
sustainable development of tourism, increase planning and
publicity, attach importance to the shaping of tourism products
with tourism image and characteristics of suburban forest parks,
and expand the tourism market; it is necessary to mobilize the
subjective initiative of residents in scenic spots to participate
in tourism and promote local economic development, not
only considering immediate interests, but also focus on long-
term development.
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