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Green Tea Polyphenols Upregulate
the Nrf2 Signaling Pathway and
Suppress Oxidative Stress and
Inflammation Markers in
D-Galactose-Induced Liver Aging in
Mice
Dongxu Wang 1*, Taotao Wang 2, Zhanming Li 1, Yuanxin Guo 1 and Daniel Granato 3

1 School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China, 2Department of

Clinical Nutrition, Affiliated Hospital of Jiangsu University, Zhenjiang, China, 3Department of Biological Sciences, Faculty of

Science and Engineering, University of Limerick, Limerick, Ireland

The beneficial effects of green tea polyphenols (GTPs) on D-galactose (D-Gal)-induced

liver aging in male Kunming mice were investigated. For this purpose, 40 adult

male Kunming mice were divided into four groups. All animals, except for the

normal control and GTPs control, were intraperitoneally injected with D-galactose

(D-Gal; 300 mg/kg/day for 5 days a week) for 12 consecutive weeks, and the

D-Gal-treated mice were allowed free access to 0.05% GTPs (w/w) diet or normal

diet for 12 consecutive weeks. Results showed that GTP administration improved

the liver index and decreased transaminases and total bilirubin levels. Furthermore,

GTPs significantly increased hepatic glutathione and total antioxidant levels, and the

activities of superoxide dismutase, catalase, and glutathione S-transferase (GST).

Furthermore, GTPs downregulated 8-hydroxy-2-deoxyguanosine, advanced glycation

end products, and hepatic oxidative stress markers, such as malondialdehyde

and nitric oxide. Additionally, GTPs abrogated dysregulation in hepatic Kelch-like

ECH-associated protein 1 and nuclear factor erythroid 2-related factor 2 (Nrf2)

and its downstream target gene expression [heme oxygenase 1, NAD(P)H:quinone

oxidoreductase 1, and GST] and inhibited tumor necrosis factor-α, transforming growth

factor-β, and interleukin (IL)-1β and IL-6 in the liver of treated mice. Finally, GTPs

effectively attenuated D-Gal-induced edema, vacuole formation, and inflammatory cell

infiltration. In conclusion, GTPs showed antioxidant and anti-inflammatory properties in

D-Gal-induced aging mice, and may be considered a natural alternative to the effects of

hepatic aging.

Keywords: green tea polyphenols (GTPs), aging, antioxidants, D-galactose, inflammatory cytokines, Nrf2 signaling

pathway
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INTRODUCTION

Aging is one kind of irreversible and perennial natural
biological process that accounts for genetic, internal, and
external environmental factors. This process is characterized by
a progressive loss of physiological integrity, which invariably
leads to impairments in the organizational structure and
function of organs (1). The aging of tissues/organs makes the
human body susceptible to adverse circumstances and is the
primary risk factor for major human pathologies (2). Like
other organs, after the growth and development, the liver
undergoes a series of degeneration processes, such as aging,
that encompasses changes in its morphological structure to
metabolic functions (3). Aging-related liver diseases mainly
include alterations of hepatic structure and function, where the
increase of liver volume and decrease of hepatic blood flow
and perfusion occur. These changes increase the liver fibrosis,
hepatocarcinoma, andmortality rate of susceptible elderly people
and can thus be considered adverse prognostic factors (3–
5). At the cellular level, the disturbances of proteostasis by
protein oxidation aggregates trigger reactive oxygen species
(ROS) and inflammatory cytokines production (6, 7). Liver aging
is usually manifested as a decrease in albumin (Alb) levels and
an increase in total bilirubin (TBiL), alkaline phosphatase (ALP),
and aminotransferase levels in the blood (8). In addition, liver
aging may be related to cytoplasmic polyploidy and decreases
in the surface area of the endoplasmic reticulum and the
number of mitochondria, thus imposing a negative impact
on the functions of hepatocytes (4). Similarly, the damage of
hepatocyte mitochondrial function increases the incidence of
autoimmune and other age-related diseases (9). Thus, strategies
to counteract/alleviate the harmful effects of aging on liver
function are desired from the public health perspective.

Green tea has been one of the most consumed non-alcoholic
beverages in more than 160 countries (10). The beneficial health
effects of green tea are generally associated with its polyphenols,
whichmay account for up to 30% of its dry weight (10). Green tea
polyphenols (GTPs) are mainly composed of monomeric flavan-
3-ols, such as catechins (10). GTPs exhibit numerous biological
effects; for example, they have anti-obesity, anti-inflammatory,
antioxidant, neuroprotective, and antitumor properties (10–
12). Most biological effects of GTPs are attributed to their
ability to transcriptionally upregulate the nuclear factor erythroid
2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1
(Keap1) signaling pathway in response to the regulation of
antioxidant and Phase II detoxification enzymes and nuclear
factor-kappa β (NF-κβ) in different organs, particularly in liver
tissue (13, 14).

To our knowledge, the protective effects of GTPs on liver aging
have not been extensively evaluated and findings obtained with
different in vivo protocols are inconclusive and not convergent.
For instance, a previous study has shown that in an adult male
Sprague–Dawley rat model of metabolic syndrome induced by
a high-fat diet, GTPs were able to decrease liver transaminases,
oxidative markers, and inflammatory cytokines in the liver (15).
Conversely, in a C57BL/6 mice model of cholesterol-induced
steatohepatitis, Hirsch et al. observed that GTPs exacerbated

hepatic steatosis, oxidative stress, bile acids, and liver damage
(16). Thus, it is of pivotal importance to understand the
mechanisms of how GTPs can affect inflammation and oxidative
stress using different protocols. Considering the global trend for
natural products that can be used as adjuvant agents to decrease
the risk of diseases and the scientific gap on the beneficial effects
of GTPs on liver aging, this work focused on the effects of
GTPs on D-galactose (D-Gal)-induced aging in male Kunming
mouse liver. The underpinning mechanisms of action were
unveiled by quantifying the main oxidative, inflammation, and
senescence markers.

MATERIALS AND METHODS

Chemicals and Reagents
D-Gal (CAS: 59-23-4) of 99% purity was purchased from
Sigma–Aldrich Chemical Co. (MO, United States). GTPs [gallic
acid (4.9%), catechin (0.42%), epicatechin (4.17%), gallocatechin
gallate (1.28%), epigallocatechin (10.76%), epicatechin gallate
(7.46%), epigallocatechin-3-gallate (60.97%), anthocyanins
(3.42%), leukoanthocyanins (1.34%), and other phenolic
acids (5.28%)] were purchased from Hefei Jishi Mingxiang
Biotechnology Co. Ltd. (Anhui, China). Commercial kits for
measuring the levels of alanine aminotransferase (ALT), aspartate
aminotransferase (AST), ALP, Alb, TBiL, total superoxide
dismutase (T-SOD), catalase (CAT), glutathione S-transferase
(GST), total antioxidant capacity (T-AOC), glutathione (GSH),
malondialdehyde (MDA), nitric oxide (NO), and ELISA kits for
measuring the levels of 8-hydroxy-2-deoxyguanosine (8-OHdG)
and advanced glycation end products (AGEs) were obtained
from Nanjing Jiancheng Bioengineering Institute (Nanjing,
China). Mouse interleukin (IL)-1β, IL-6, tumor necrosis factor
(TNF)-α, transforming growth factor (TGF)-β, and heme
oxygenase 1 (HO-1) ELISA kits were purchased from Sigma–
Aldrich (MO, United States), Invitrogen (CA, United States),
BD Biosciences (CA, United States), Cell Sciences Inc. (MA,
United States), and Abcam (CA, United States), respectively.
Mouse Nrf2, Kelch-like ECH-associated protein 1 (Keap1), and
NAD(P)H:quinone oxidoreductase 1 (NQO1) ELISA kits were
purchased from CUSABIO (Wuhan, China).

Animals
Healthy male Kunming mice (age: 7–8 weeks, body weight:∼18–
22 g) were obtained from Shanghai SLAC Laboratory Animal
Co. Ltd. Mice were given a standard laboratory diet and water
ad libitum.

Experimental Design for the in vivo

Protocol
After a week of acclimation, 40 mice (10 in each group) were
randomly divided into the following groups: (i) normal control,
(ii) D-Gal model, (iii) GTPs intervention, and (iv) GTPs control.
The normal control group had free access to the standard diet
and received intraperitoneal injections of normal saline for 12
weeks. The D-Gal model group mice that were fed the standard
diet had intraperitoneal injections of 300 mg/kg D-Gal (5 days a
week) for 12 weeks, the GTPs intervention group mice received a
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0.05% GTPs (w/w) diet with the intraperitoneal injection of 300
mg/kg D-Gal for 12 weeks, and the GTPs control group received
a 0.05% GTPs (w/w) diet with an intraperitoneal injection of
normal saline (5 days a week) for 12 weeks. The mice were
anesthetized and sacrificed as per ethical guidelines 24 h after
the last administration. The liver of each animal was removed,
weighed carefully, and quickly placed into ice-cold phosphate-
buffered saline (PBS; 150mM, pH 7.2). The right liver lobes
were fixed with 10% neutral-buffered formalin for >72 h before
the preparation of tissue sections for histological examination;
the left liver lobes were removed and then stored at −80◦C
until biochemical analysis. Blood samples were obtained to
determine cytokines levels by using ELISA and to evaluate plasma
enzyme activities.

Assessment of Hepatic Function
The plasma levels of hematological biomarkers, including Alb,
TBiL, ALP, ALT, and AST, were estimated using an enzyme-
labeled instrument and the commercially available colorimetric
assay kits according to the manufacturer’s protocols. The liver
index was calculated according to the following equation: liver
weight (g)/body weight (g)× 100%.

Assessment of Hepatic Antioxidant
Markers
The levels or activities of GSH, T-AOC, T-SOD, CAT, and GST in
the liver homogenates were measured using an enzyme-labeled
instrument by the commercially available colorimetric assay kits
according to the manufacturer’s protocols.

Assessment of Hepatic Oxidative Stress
and Senescence Markers
The levels ofMDA,NO, 8-OhdG, andAGEs in liver homogenates
were detected using an enzyme-labeled instrument by the
commercially available colorimetric assay kits following the
manufacturer’s protocol.

Assessment of Hepatic Inflammatory
Mediator Concentrations
The hepatic inflammatory cytokines concentrations, including
IL-1β, IL-6, TNF-α, and TGF-β, were assessed using an enzyme-
labeled instrument by the commercially available ELISA kits
according to the manufacturer’s instructions.

Histopathological Examinations
Fixed liver tissues were embedded in paraffin and cut into coronal
sections (4µm thick), which were then stained with hematoxylin
and eosin (H&E) according to Wang et al. (17).

RNA Isolation and qPCR
The total RNA isolation, reverse transcription, and quantitative
real-time reverse transcription–polymerase chain reaction (qRT-
PCR) were performed according to the standard protocol
described by Wang et al. (17). The sequences of HO-1, NQO1,
GST m1, and GST a1 were designed and synthesized as described
by Wang et al. (17).

Preparation of Cytosolic and Nuclear
Fractions and Assessment of the Hepatic
Nrf2 Pathway
Hepatic cytosolic and nuclear fractions were prepared using
a commercially available Minute Cytosolic and Nuclear
Extraction Kit (Invent Biotechnologies, Inc.) according to the
manufacturer’s protocol. Briefly, liver tissues (25 mg/mouse)
were washed once with cold buffer solution A on ice for 5min,
and the samples were twisted and ground with a grinding pestle
for 1min (40–60 times). Homogenates were centrifuged at
14,000 g for 5min, the supernatants were recovered as cytosolic
fractions, and the nuclear pellets were lysed in cold buffer
solution B on ice for 5min. After centrifugation at 500 g for
5min, the nuclei were resuspended in cold buffer solution N
for 5min. Thereafter, 50mg of protein extract powder and cold
buffer solution A were added, and the solution was mixed for
1min. Hepatic homogenates were centrifuged at 10,000 g for
5min, and the supernatants were recovered as nuclear fractions
for a subsequent ELISA.

Statistical Analysis
Data are presented as mean ± standard error of the mean. One-
way analysis of variance (ANOVA) followed by Tukey’s multiple
comparison post-hoc test were used to compare the treatments.
P < 0.05 were considered statistically significant.

RESULTS

Effects of GTPs on the Liver Function
Markers
The beneficial effects of GTPs on liver function were investigated
by assessing organ index and multiple hematological indicators.
The results in Table 1 and Figure 1 show that the liver index and
hematological indicators were significantly increased after the
exposure to D-Gal, whereas the liver index and the hematological
indicators were significantly lower in the GTP-treated group. In
particular, plasmatic ALP, ALT, and AST levels of the D-Gal mice
were significantly increased (Figure 1C), revealing that the liver
function in the D-Gal model group was disrupted. Moreover,
plasmatic ALP, ALT, and AST levels were significantly lower in
the D-Gal-treated mice supplemented with GTPs. In addition,
plasmatic Alb level was 24% lower and plasma TBiL level was

TABLE 1 | Effects of GTPs on body weight and liver indexes.

Groups Body weight Liver weight (g) Liver index (%)

Initial Final

Normal control 24.8 ± 1.8 37.2 ± 2.6 1.92 ± 0.14 5.16 ± 0.28

D-Gal model 25.2 ± 1.8 36.5 ± 2.2 2.45 ± 0.16** 6.71 ± 0.35*

GTPs intervention 25.0 ± 1.6 37.8 ± 2.4 2.23 ± 0.12 5.90 ± 0.31#

GTPs control 25.1 ± 1.7 37.9 ± 2.5 2.02 ± 0.13 5.32 ± 0.26

D-Gal, D-galactose; GTPs, green tea polyphenols.

*P < 0.05 and **P < 0.01 vs. normal control group; #P < 0.05 vs. D-Gal model group.
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92% higher in the D-Gal model group compared with the normal
control group. Furthermore, plasmatic Alb and plasma TBiL
levels were significantly higher and lower, respectively, in the D-
Gal model mouse were supplemented with GTPs (Figures 1A,B).
However, the administration of GTPs did not affect the liver
index and liver damage indexes.

Effects of GTPs on Liver Antioxidant,
Oxidative Stress, and Senescence Markers
In this study, liver antioxidant and oxidative stress markers
were screened to explore the protective effects of GTPs
against D-Gal-induced liver aging. In the D-Gal model
group, antioxidant and oxidative stress marker values were
significantly different from those of the normal control
group. Hepatic antioxidant markers, namely T-SOD, CAT,
GST, GSH, and T-AOC, significantly decreased in the D-Gal-
treated group (Figures 1D–F). Furthermore, hepatic oxidative
stress and senescence markers, namely MDA, NO, 8-OhdG,
and AGE, significantly increased in the D-Gal-treated group
(Figures 2A–C). Moreover, these antioxidant markers were
significantly increased, and the oxidative stress and senescence
markers were significantly inhibited in the D-Gal model mice
supplemented with GTPs (Figures 1, 2). These results highlight
the regulatory role of GTPs in relation to the redox imbalance
and oxidative stress in the liver of D-Gal-treated mice. However,
the supplementation of GTPs did not affect hepatic markers of
antioxidant, oxidative stress, and senescence.

Effects of GTPs on Liver Inflammatory
Mediators
The hepatic level of TNF-α (proinflammatory cytokine) in the
D-Gal-treated mice was significantly higher than that in the
normal control group (Figure 2D). Furthermore, the hepatic
TNF-α level of the GTPs intervention group was significantly
lower than that in the D-Gal model group (Figure 2D). Similarly,
the level of hepatic TGF-β was significantly higher in the D-Gal
model mouse; furthermore, the hepatic TGF-β level was lower
in the D-Gal model mice supplemented with GTPs (Figure 2D).
Additionally, the administration of GTPs significantly inhibited
the production of both IL-1β and IL-6. However, only GTPs did
not affect hepatic inflammatory mediators.

Effects of GTPs on Hepatic
Histopathological Alterations
The histopathological analysis found that D-Gal caused edema,
vacuoles, cytoplasmic porosity, inflammatory cell infiltration,
and degeneration in the liver (Figure 3). GTP was able to
counteract these harmful effects and reduce the pathological
damage of the liver induced by D-Gal (Figure 3). However, only
GTPs did not affect hepatic histopathological changes.

Effects of GTPs on the Hepatic Nrf2
Signaling Pathway
To investigate the underlying mechanism of the anti-aging
effect caused by the administration of GTPs, the signal changes
of the Nrf2/Keap1 pathway in mice treated with D-Gal were

investigated. Mice treated with D-Gal had significant changes
in Keap1 and Nrf2 and its downstream target genes in the liver
(Figure 4). Hepatic Keap1 levels were 40% higher in response
to D-Gal treatment (Figure 4A). Hepatic Nrf2 (cytoplasmic
and nuclear) had a different pattern compared to Keap1 in
the GTP-treated group; both cytoplasmic and nuclear Nrf2
levels in the liver were significantly higher in the GTPs-treated
group compared within the D-Gal model mice (Figure 4B).
Furthermore, the HO-1 and NQO1 protein expression levels
in the liver of aged mice were significantly lower (by 47 and
36%, respectively) in the D-Gal model group compared within
the normal control group (Figure 4C). The drastic decreases in
HO-1 and NQO1 levels were abrogated in the D-Gal model
mice supplemented with GTPs (Figure 4C). D-Gal injection
significantly downregulated the gene expression of HO-1, NQO1,
GST m1, and GST a1 in the liver (Figure 4D). Moreover, the
Nrf2-targeted gene expression levels were increased in the D-Gal
model mice supplemented with GTPs (Figure 4D).

DISCUSSION

Aging is a normal physiological phenomenon and is an
independent risk factor for various chronic diseases (2).
Therefore, discovering and using natural products that may
effectively decrease the risk of aging-related diseases are crucial
tasks. Oxidative stress and proinflammatory responses are the
detrimental causative factors leading to imbalances between
oxidative damage and antioxidant function in the development of
age-associated conditions (18, 19). Recent evidence suggests that
age-related progressive hepatic capacity dysfunction enhances
the senescence of hepatocytes (9).

D-galactose has been widely applied to induce an aging-like
condition in various organs to study different biomarkers (20–
22). High doses of D-Gal can induce the formation of hydrogen
peroxide, which is invariably linked to ROS, thus leading to
hepatic metabolic disorders and, ultimately, liver aging (23, 24).
Therefore, in our study, the D-Gal-induced liver aging model
in mice was used. The hepatic antioxidant system plays an
important role in maintaining the normal liver function, and
changes in antioxidants in this system impact the endogenous
antioxidant capacity (24). Although the antioxidant properties of
GTPs were confirmed using this in vivo model, this is the first
study to investigate their ability to alleviate the hepatic oxidative
stress in D-Gal-treated mice. Thus, our results showed that
GTPs can improve hepatic antioxidant capacity and maintain
hepatic redox balance during simulated aging. D-Gal significantly
increased hepatic damage by changing the levels of plasmatic
ALP, ALT, and AST, when compared with the control mice. The
increase in aminotransferases in D-Gal-induced liver aging has
been reported elsewhere (21). Moreover, plasma TBiL level was
remarkably increased in these mice. The catabolism process of
bilirubin depends on liver function; therefore, a high level of TBiL
reflects hepatocellular dysfunction (25). Consistently, we found
that GTPs significantly counteracted liver function abnormalities
in D-Gal-treated mice (Figure 1). The proposed mechanism of
action of GTPs is shown in Figure 5.
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FIGURE 1 | Effects of GTPs on liver damage indexes and antioxidant markers of D-gal treated mice. (A) Plasma levels of Alb. (B) Plasma levels of TBiL. (C) Plasma

levels of ALP, ALT, and AST. (D) Hepatic contents of T-SOD, GST, and CAT. (E) Hepatic levels of GSH. (F) Hepatic levels of T-AOC. *P < 0.05 and **P < 0.001 vs.

control group; #P < 0.05 and ##P < 0.01 vs. D-Gal model group. Alb, albumin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate

aminotransferase; CAT, catalase; D-Gal, D-galactose; GSH, reduced glutathione; GST, glutathione S-transferase; GTPs, green tea polyphenols; T-SOD, total

superoxide dismutase; T-AOC, total antioxidant capacity; TBil, total bilirubin.
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FIGURE 2 | Effects of GTPs on liver oxidative stress markers and inflammatory mediators of D-gal-treated mice. (A) Plasma level of NO. (B) Hepatic contents of MDA.

(C) Plasma levels of AGEs and 8-OHdG. (D) Hepatic contents of TNF-α, TGF-β, IL-1β, and IL-6. *P < 0.05 and **P < 0.001 vs. control group; #P < 0.05 and ##P <

0.01 vs. D-Gal model group.
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FIGURE 3 | Effects of GTPs on hepatic histopathological alterations in D-Gal-treated mice. Representative HE-stained sections of the liver tissues from rats in each

group (100× and 400×). Green arrow indicates edema, vacuoles, and cytoplasmic porosity. Yellow arrow indicates inflammatory cell infiltration. Red arrow indicates

degeneration. Scale bars (200 and 40µm).
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FIGURE 4 | Effects of GTPs on the expressions of Nrf2 pathway in the liver of D-Gal-treated mice. (A) Hepatic protein levels of Keap1. (B) Hepatic protein levels of

cytoplasmic and nuclear Nrf2. (C) Hepatic protein levels of HO1 and NQO1. (D) Hepatic mRNA expressions of Nrf2-targeted genes. ***P < 0.001 vs. control group;
###P < 0.001 vs. the D-Gal model group.
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FIGURE 5 | Mechanism of action of GTPs in D-galactose-induced aging in mice liver. GTPs, green tea polyphenols; ROS, reactive oxygen species; MDA,

malondialdehyde; NO, nitric oxide; 8-OhdG, 8-hydroxydeoxyguanosine; AGEs, advanced glycation end products; Keap1, Kelch-like ECH-associated protein 1; Nrf2,

NF-E2-related factor 2; NF-kB, nuclear factor kappa B; ARE, antioxidant response element; HO-1, hemeoxygenase; NQO1, NAD(P)H:quinone oxidoreductase 1; GST,

glutathione S-transferase; SOD, superoxide dismutase; CAT, catalase; GSH, reduced glutathione; T-AOC, total antioxidant capacity; TNF, tumor necrosis factor; TGF,

transforming growth factor; IL, interleukin.

GTPs have exhibited antioxidant effects against oxidative
stress and liver damage in different in vivo experimental
models, such as lipopolysaccharide-induced inflammatory
liver injury, azathioprine-induced hepatotoxicity, and carbon
tetrachloride–induced hepatotoxicity (26–28). Furthermore, our
data corroborate previous observations that exposure to D-Gal
can induce hepatic oxidative stress associated primarily with
a drastic decrease in the activity of antioxidant enzymes and
content of non-enzymatic antioxidants in the liver of aged mice
(29). We also found that GTPs effectively decreased oxidative
products (MDA and 8-OHdG) in D-Gal-treated mice and
increased the activity of endogenous antioxidant enzymes (T-
SOD, CAT, GST) and content of antioxidants (T-AOC and GSH)
in aging liver tissues, leading to the mitigation of D-Gal-induced
impaired liver function. In a previous study with primary
cultured rat hepatocytes exposed to 1,4-naphthoquinone, GTPs
were not able to counteract the lipid oxidation (i.e., MDA
levels) (30).

In an aging pathological state, oxidative stress can induce
NF-κβ activation in the liver in addition to evoking direct cellular

damage, thereby resulting in the release of proinflammatory
cytokines (31, 32). The overexpression and secretion of
proinflammatory cytokines negatively affect the hepatocyte’s
function and further enhance oxidative lesions. Thus, our
results showed that the hepatic pro-inflammatory cytokines
levels notably increased after D-Gal treatment in mice
(Figure 2D), which was in accordance with the histopathological
findings (Figure 3). Nonetheless, GTPs not only suppressed
the overproduction of these cytokines but also significantly
attenuated inflammatory cell infiltration caused by D-Gal in
the liver, corroborating the data obtained by Xu et al. (33).
Accordingly, the observed protective effect of GTPs on D-Gal-
treated mice is likely to have significant beneficial effects on the
inflammatory response.

Recent studies have revealed that inflammation-induced
AGEs are accumulated in aging tissues of humans and animals,
which can serve as a biomarker of organ function (34,
35). Furthermore, previous studies have verified that AGEs
might enhance the homeostasis imbalance and age-related
clinical diseases via increasing the production of ROS and
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proinflammatory cytokines (36). Hence, it is hypothesized that
GTPs could inhibit AGE production in D-Gal-treated mice
and thus prevent liver aging. Notably, Nrf2/Keap1 signaling
pathway is one of the major intracellular signaling pathways
for attenuating oxidative stress–induced liver aging (24, 37).
After signal stimulation, Nrf2 was isolated from Keap1, and
activated the processing and synthesis of Nrf2 target antioxidative
enzymes and non-enzymatic antioxidants, eventually initiating
antioxidant response (24, 38, 39). Interestingly, this study
found that GTPs increased the expression of Nrf2, HO-
1, and NOQ1 proteins in the liver of D-Gal-treated mice.
The phenomenon indicated that GTPs were able to mitigate
D-Gal-induced liver aging via activation of the Nrf2/Keap1
pathway in vivo.

In the present study, a D-Gal-induced senescent mice
model was used to investigate the protective effects of
GTPs on the liver. GTPs upregulated the Nrf2 signaling
pathway, maintained a balance in redox and inflammation,
reduced cellular oxidative stress and AGE concentration, and
improved the activities of antioxidant enzymes in D-Gal-
treated mice, thus ameliorating the simulated aging process.
Furthermore, histopathological observation revealed that GTPs
effectively inhibitedD-Gal-induced hepatic pathological changes,
highlighting their potential use as a dietary supplement to
decrease the effects of liver aging. Further research must be
conducted on the potential mechanism by which GTPs activate
Nrf2 translocation. Phosphatidylinositol 3-kinase (PI3K)/Akt
signaling pathway plays a vital role in the regulation of
proliferation, differentiation, and survival (40). Studies have
shown that Nrf2 is a target of the PI3K/Akt signaling
pathway and the nuclear translocation of Nrf2 requires the
activation of the PI3K/Akt signaling pathway (41, 42). Our
previous study found that GTPs can activate PI3K/Akt signaling
pathway in mice (43); therefore, these results revealed that the
PI3K/Akt signaling pathway was involved in Nrf2 activation
induced by GTPs. Additionally, whether other redox-associated
transcription factors, such as activator protein-1 and NF-
κβ, are involved in the regulation of antioxidant enzymes
by GTPs requires further studies. Moreover, the structure–
activity relationship responsible for the anti-liver aging activity
must be identified to explore its moderating effects on the
Nrf2/Keap1 pathway.

Other polyphenols have also been reported to reduce D-Gal-
induced liver aging through antioxidant and anti-inflammatory
mechanisms, such as rambutan peel polyphenols, purple sweet
potato polyphenols, ellagic acid, curcumin, and epigallocatechin-
3-gallate (20, 44, 45). These results indicate that polyphenols
exert beneficial effects on liver aging, and GTPs may be a
source of bioactive polyphenols for protecting liver aging due
to their rich content and biological activity in vivo. Although
GTPs have a good protective effect on liver aging, some studies
have found that the long-term consumption of tea polyphenol
epigallocatechin-3-gallate can cause subacute liver failure in
mice, including hepatocyte necrosis along with an abnormal
change of blood transaminases, TBiL, and Alb (46). Among
the active components of GTPs, anthocyanin, gallic acid, and
epigallocatechin-3-gallate have been reported to have potential
beneficial effects for the prevention and treatment of age-related

liver diseases in mice or rats (47–49). Although we have observed
beneficial effects of GTPs in a mouse model of liver aging, it
is prudent to state that more studies using in vitro (i.e., cell
cultures) and in vivo (i.e., piglets) protocols are highly required to
demonstrate the toxicological safety, dose and time dependency
effects, and overall outcomes of the supplementation of GTPs.
To date, the consumption of GTPs in powder form or capsules
that contain a dose of catechins more than 800 mg/day is not
incentivized by international governmental agencies, such as
the European Food Safety Authority (EFSA). From a practical
standpoint, the dosage in future studies should be pondered:
doses higher than those normally consumed in 1-3 teacups a
day may cause damage to the outer mitochondrial membrane
of hepatocytes (cell injury), and an uncoupling of oxidative
phosphorylation may occur, which increases the ROS production
and cytokines secretion (50, 51).

In the current study, we found that GTPs exert protective
effects against D-Gal-induced liver aging in mice. These results
show that GTPs can decrease D-Gal–induced liver dysfunction,
histopathological changes, oxidative stress, pro-inflammatory
cytokines production, and expression levels of 8-OHdG and
AGEs in the liver through regulating Nrf2 signaling pathways.
The results highlight the importance of GTP as a natural
supplement of anti-aging compounds.
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Black Tea in Alleviating Excess Lipid
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Mice: A Comparative Study
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The chemical compositions of black teas differ greatly and may have different health

benefits; however, systematic investigations into such benefits are lacking. Here, the

chemical profiles of Keemun black tea (KBT) and Dianhong black tea (DBT), two common

categories of tea in China, were analyzed, and their lipid-lowering effects in male C57BL/6

mice fed a high-fat diet (60% energy from fat) or the diet supplemented with 2%

black tea powder for 15 weeks were investigated. The compounds most crucial in

differentiating KBT and DBT were determined to be phenolic compounds, theanine,

and D-psicose. DBT was more effective than KBT in preventing excess hepatic fat

accumulation. Both black teas effectively and comparably altered the mRNA levels of

hepatic lipid–metabolizing genes. DBT had more favorable effects in stimulating fecal

fat excretion than did KBT. The differentiating compounds with the higher values of

variable importance in the projection (VIP) might predominantly contribute to the different

health benefits; however, the most essential compound or combination of compounds

requires clarification.

Keywords: black tea, diet-induced obesity, fatty liver, lipid metabolism, fecal excretion

INTRODUCTION

Fatty liver, which is characterized by excessive hepatic lipid storage, is closely related to high-
fat diet (HFD)-induced obesity. Numerous pathophysiological mechanisms are involved in the
development of obesity, and triglycerides and cholesterol in hepatic and intestinal tissues are crucial
factors in the regulation of lipid metabolism and energy balance (1). Dietary control is considered
a key strategy in the prevention of fatty liver (2). Natural phytochemicals, such as polyphenols,
have demonstrated protective effects against fatty liver (3). Tea is popular worldwide, and its lipid-
lowering and weight-reducing effects have been frequently reported in animal studies and human
interventions (4).

Black tea is the most-consumed tea beverage in the world, and its health benefits, including
anti-obesity anti-atherosclerosis properties and the prevention of fatty liver, have been frequently
reported (5). As underlying mechanisms, tea inhibits fat synthesis and promotes fecal lipid
excretion and fat oxidative decomposition (6). Black tea contains a large quantity of biologically
active substances, such as catechins, theaflavins, thearubigins, theanine, alkaloids, phenolic acids,
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GRAPHICAL ABSTRACT | Schematic diagram of the effects of two black teas in alleviating excess hepatic lipid accumulation.

and tea polysaccharides, which are the material basis of its
efficacy. The chemical profiles of black tea categories differ
greatly. They are influenced by the plant cultivar, garden
environment, fresh leaf maturity, and manufacturing process
among other factors (7). The genetic background of the tea
plant is a vital. Taxonomically, the cultivated varieties of tea
plant are generally classified into two groups: Camellia sinensis
var. assamica and C. sinensis var. sinensis (8). Assam black tea
from India and Dianhong black tea (DBT) from China are
representative of the large-leaf cultivar C. sinensis var. assamica,
and Keemun black tea (KBT) from China and Darjeeling black
tea from India are produced by the small-leaf cultivar C.
sinensis var. sinensis. Differences in the chemical compositions
of black tea categories lead to different health benefits; however,
few comparative studies have systematically investigated these
differences in chemical profiles and efficacies.

In the present study, the chemical profiles of KBT and DBT
and their effects in preventing HFD-induced fatty liver were
examined. KBT is grown in Anhui province, China, and possesses
unique floral and honey aromas (9). DBT is from Yunnan
province, China, and has a higher phenolic content and strong,
mellow aromas (10). Ultra performance liquid chromatography-
quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-
MS/MS) was used to analyze the chemical compositions of KBT
and DBT. Male C57BL/6 mice (7 weeks old) were fed different

diets: a low-fat diet (LFD) or an HFD with or without black
tea powder supplementation. The expression levels of key genes
pertaining to lipid metabolism were measured using the PCR
technique, and high-throughput sequencing was used to screen
gut microbiota changes in fecal samples.

MATERIALS AND METHODS

Tea Samples
Fresh KBT and DBT leaves with the same maturity (one shoot
and two young leaves) were picked in May 2019. The sample of
KBT was processed and obtained from local tea factory (Qimen,
Anhui, China), and DBT was processed and obtained from local
tea factory (Yunnan, China). All samples were sealed stored at
−20◦C before analysis.

Untargeted Metabolomic Analysis by
LC-MS
Non-targeted metabolomic analysis was conducted as reported
(11) with minor modifications. An Agilent 1290 liquid
chromatography system connected to a time-of-flight mass
spectrometer (Agilent, Palo Alto, CA) and an RP18 column (50
× 2.1 mm2, 1.7µm) (Waters, Milford, MA) was used to analyze
the samples. The gradient elution, instrument parameters,
and metabolomic analysis were as described by Guo et al.
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(9). Qualitative and quantitative analyses were performed
using the mass spectrometric data obtained. In brief, Optimus
(Version 1.5.1) was employed to transform the original data
obtained from LC-MS/MS. SMICA-P software (V14.1 Umetrics,
Umea, Sweden), the Global Natural Products Social Molecular
Networking platform, and Cytoscape (version 3.8.0) were used
for multifactorial analysis and the identification of compounds.
The final quantitative analysis was completed using MassHunter
Qualitative Analysis (B.07.00).

Animals, Diets, and Treatments
The animal experiment was conducted in compliance with
institutional animal care guidelines and approved by the
Committee of Anhui Agricultural University (approval number
AHAU2019025). Forty-eight C57BL/6 mice (male, 6 weeks)
were obtained from the Model Animal Research Center of
Nanjing University (Nanjing, China). Upon arrival, the mice
were maintained in a specific-pathogen-free environment and
reared in ventilated cages under controlled conditions (25± 2◦C,
50 ± 5% relative humidity) with a 12-h light/dark cycle. All the
animals had ad libitum access to diet and tap water during the
entire rearing experiment.

The experimental groups received the following diets after
acclimation for 1 week: (1) LFD (TP2330055BC), (2) HFD
(TP2330055B, Supplementary Table 1), (3) HFD and 2% KBT
powder (HFKB, HFD containing 2.0% KBT [w/w]), or (4)
HFD and 2% DBT powder (HFDB, HFD containing 2.0% DBT
[w/w]). The animal feed was provided by a commercial company
(Trophic Animal Feed, Nantong, China) and kept under freezing
temperature (−20◦C).

During the 15-week experiment, the body weight of the
mice was measured weekly. Consumption of food and water
was recorded every other day. Feces were collected every 2
weeks and stored at −80◦C. After 15 weeks of treatment, the
animals were sacrificed under anesthesia with chloral hydrate
(4%, w/w) by intraperitoneal (i.p.) injection. Blood was collected
through cardiopuncture, and serum samples were obtained
after centrifugation. Immediately afterward, liver and white
adipose tissues were harvested and weighed. The small and large
intestines were then collected, cut out, and rinsed in cold 0.9%
saline, and the cecal contents were collected at the same time.
All the samples were snap-frozen in liquid nitrogen and stored
at−80◦C for subsequent analyses.

Analysis of Blood Biochemical Parameters
Commercial kits (Jiancheng Technology, Nanjing, China)
were used to determine the levels of serum lipids and
aminotransferases. The measurements were conducted in strict
accordance with manufacturer instructions.

Hepatic Histochemical Analysis and Lipid
Content Determination
For histochemical analysis, the liver samples were fixed
in formalin and embedded in paraffin. Hematoxylin and
eosin (H&E) staining was performed in compliance with the

standard procedure, and the samples were examined at 200-
fold magnification.

Lipids in the liver were extracted and measured according to
our previous study (12), and the levels of hepatic triglycerides
(TG) and total cholesterol (TC) were determined using the
methods used with the serum samples.

Total Fecal Bile Acid and Lipid Content
Analysis
The total bile acids in the feces were extracted and determined
according to the method described by Kim et al. (13). A
commercial assay kit (Huili Biotech, Changchun, China) was
used to determine the concentrations of bile acids extracted. The
analysis of lipid content in feces was conducted identically to that
for livers.

Analysis of Gene Expression Through
RT-qPCR
The total RNA of liver and small intestine tissues was extracted
using an RNA extraction kit (Tiangen, Beijing, China), and
reverse transcription was performed with a GoScript reverse
transcription system (Promega, Madison, WI), following the
manufacturer’s instructions. The mRNA levels of hepatic and
intestinal genes were measured with a PCR mix kit (Life
Technologies, Carlsbad, CA), normalized to the expression level
of β-actin, and calculated using the 2−11CT method. The
sequences of genes and primers were obtained and designed
using the NCBI Gene Bank database and BLAS tools. The gene ID
and primer sequences are presented in Supplementary Table 2.

Short-Chain Fatty Acids and Gut
Microbiota Analysis
The determination of fecal short-chain fatty acids (SCFAs) was
done with reference to the method described by Tian et al.
(14), with modifications. Briefly, an Agilent 7890A GC system
connected to a flame ionization detector and an HP-INNOWAX
column (30m× 0.25mm× 0.25µm, Agilent Technologies) was
used. The column temperature was regulated as follows: 100◦C
maintained for 1min, then an increase of 5◦C/min for 16min to
achieve a temperature of 180◦C, which was maintained for 4 min.

The fecal genomic DNA was extracted with the
TIANamp Stool DNA Kit (Tiangen, Beijing, China)
according to the manufacturer’s instructions. The total
bacterial DNA was sent to Novogene Co., Ltd. (Beijing,
China) in dry ice. For high-throughput sequencing, the
hypervariable region of the 16S rRNA (V3-V4) was
selected for amplification. Sequences with a similarity of
97% according to UPARSE were clustered into operational
taxonomic units, which were randomly subsampled (15).
Alpha diversity analysis was performed to measure the
complexity of species diversity. The species complexity in
the samples was evaluated using beta diversity analysis.
The alpha and beta diversities of both weighted and
UniFrac results were assessed using R software (version
2.15.3 http://www.r-project.org/).
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FIGURE 1 | Multivariate analysis of compounds detected in mass spectrometry. Keemun black tea (KBT), Dianhong black tea (DBT). (A) OPLS-DA; (B) S-plot.

Statistical Analysis
The data are expressed as mean ± standard error of the
mean. Themultisample analysis was performed through one-way
analysis of variance and Tukey’s post-hoc test by using IBM SPSS
Statistics for Windows, version 22 (IBM Corp., Armonk, NY). A
difference was considered significant if p < 0.05.

RESULTS

Untargeted Metabolomic Analysis of KBT
and DBT
To systematically examine the differences in the chemical profiles
of KBT and DBT, UPLC-Q-TOF/MS was employed. Orthogonal
partial least squares discriminant analysis (OPLS-DA) provided
a clear classification for the two types of black tea (Figure 1A).
Compounds with a VIP value ≥ 2 and p[1] value in the S-plot
> |0.05| were selected as the key differentiating compounds to
distinguish KBT and DBT (Figure 1B). A total of 33 critical
compounds in negative mode were screened and identified. As
summarized in Table 1, three carbohydrates and carbohydrate
conjugates, eight phenolic acids and contractive phenolic acids,
three catechins, nine flavonoids, one tannin, two hydrolyzable
tannins, two amino acids and derivatives, one gallic acid and
derivatives, three citric acids or isomers, and one hyperoside
were identified. Most of the 10 marker compounds with the
highest VIP values were phenolic acids, flavonoids, theanine,
hydrolyzable tannins, and D-psicose. A total of 25 compounds
of the 33 critical ones were phenolic, indicating their vital roles in
distinguishing these two categories of black tea.

Effects of Dietary Black Tea on Visceral Fat
Mass and Serum Lipids
UPLC-Q-TOF/MS analysis indicated that the contents of
phenolic acids, catechins and flavonoids between KBT and DBT
were different. To clarify the differences in the anti-obesity effects
between KBT and DBT in HFD-fed mice, the body weight
gain and visceral fat mass of the experimental animals were
measured. As shown in Figure 2A, no significant differences

were observed in the initial body weight of the four groups.
After week three, HFD-treatedmice had significantly higher body
weight than did mice in the LFD group, and they eventually
gained 81.4% more weight increase compared with the LFD-
treated mice. Dietary DBT significantly decreased body weight
by 30.7%. Although the body weight of HFKB-treated mice
exhibited a decreasing trend compared with HFD mice at week
15, no significant difference was observed (food consumption of
the four groups was comparable throughout the experimental
period; Supplementary Figure 1). The HFD notably increased
visceral fat mass, and HFKB and HFDB treatments significantly
decreased perirenal adipose mass deposition by 22.8 and 32.8%,
respectively (Table 2). No significant differences in mesenteric
and epididymal adipose mass among the HFD, HFKB, andHFDB
groups were noted (Table 2). Similarly, the HFD significantly
enhanced the levels of serum lipid parameters (LDL-C, HDL-
C, and TC), and black tea treatments failed to prevent these
increases (Supplementary Table 3). Moreover, the serum TG
levels of mice in the four groups were comparable.

Effects of Dietary Black Tea on the
Development of Fatty Liver
As shown in Table 2, the HFD significantly increased liver
weight, and black tea treatments slightly but not significantly
decreased the ratio of total liver weight to body weight. The levels
of serum ALT in the mice in the HFD group were significantly
(8.8-fold) higher than those in the LFD group, and HFKB and
HFDB treatments significantly decreased this parameter by 32.3
and 40.9%, respectively (Table 2).

We also conducted liver histopathological analysis using slices
stained with H&E. No sign of fatty liver was observed in the
LFD mice (Figure 2B), and the hepatocytes of these samples
were morphologically intact, with clear borders, and neatly
arranged. In the HFD groups, numerous large fat vacuoles
were observed, with the nucleus moving to one side and no
clear boundary between cells (Figure 2B). Black tea treatments
effectively prevented the development of HFD-induced fatty
liver, especially in the HFDB-treated mice, whose liver slices
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TABLE 1 | Compounds crucial in differentiating Keemun black tea and Dianhong black tea.

No. RT (min) m/z VIP Identification Classification

1 0.84 191.059 11.41 Quinic acid or it’s isomer Phenolic acids and contractive phenolic

acids

2 7.96 447.099 5.61 Kaempferol-3-O-glucoside or it’s isomer Flavonoids

3 0.5 173.092 5.61 Theanine Amino acids and derivatives

4 7.69 463.091 5.54 Isoquercitrin or it’s isomer Flavonoids

5 4.32 633.078 5.35 [(1R,21S,23R)-6,7,8,11,12,13,22,23-

octahydroxy-3,16-dioxo-2,17,20-

trioxatetracyclo[17.3.1.04,9.010,15]tricosa-

4,6,8,10,12,14-hexaen-21-yl]

3,4,5-trihydroxybenzoate

Hydrolyzable Tannins

6 7.71 739.214 5.24 Kaempferol-3-O-galactoside-6”-rhamnoside-

4”’-rha or it’s

isomer

Flavonoids

7 3.09 337.098 5.01 3-O-Coumaroylquinic acid Phenolic acids and contractive phenolic

acids

8 8.11 447.098 4.75 Kaempferol-3-O-glucoside or it’s isomer Flavonoids

9 6.49 635.095 4.62 1,2,3-Tri-O-galloyl-beta-D-glucose Tannins

10 0.54 179.06 4.51 D-Psicose Carbohydrates and carbohydrate

conjugates

11 0.5 145.065 4.35 L-Glutamine Amino acids and derivatives

12 6.2 457.083 4.17 Epigallocatechin gallate Catechins

13 1.24 169.018 3.93 Gallic acid Gallic acid and derivatives

14 0.52 387.12 3.61 Coniferyl alcohol + O-Hex Carbohydrates and carbohydrate

conjugates

15 7.57 463.069 3.31 Isoquercitrin or it’s isomer Flavonoids

16 3.38 337.098 3.31 3-O-Coumaroylquinic acid or it’s isomer Phenolic acids and contractive phenolic

acids

17 4.95 337.098 3.28 3-O-Coumaroylquinic acid or it’s isomer Phenolic acids and contractive phenolic

acids

18 4.3 337.098 3.18 Coumaroyl quinic acid Phenolic acids and contractive phenolic

acids

19 3.77 353.093 3.01 3-O-Coumaroylquinic acid or it’s isomer Phenolic acids and contractive phenolic

acids

20 7.47 609.15 2.89 Rutin or it’s isomer Flavonoids

21 8.16 447.098 2.85 Kaempferol-3-O-glucoside or it’s isomer Flavonoids

22 6.91 457.08 2.85 Epigallocatechin gallate Catechins

23 0.84 191.023 2.78 Citric acid or it’s isomer Citric acid or it’s isomer

24 7.63 463.093 2.62 Hyperoside Flavonoids

25 7.39 609.152 2.53 Rutin or it’s isomer Flavonoids

26 0.56 191.023 2.5 Citric acid or it’s isomer Citric acid or it’s isomer

27 7.35 441.089 2.42 Epicatechin gallate Catechins

28 0.56 191.06 2.39 Quinic acid or it’s isomer Phenolic acids and contractive phenolic

acids

29 0.56 191.024 2.35 Citric acid or it’s isomer Citric acid or it’s isomer

30 4.25 633.079 2.17 [(1R,21S,23R)-6,7,8,11,12,13,22,23-

octahydroxy-3,16-dioxo-2,17,20-

trioxatetracyclo[17.3.1.04,9.010,15]tricosa-

4,6,8,10,12,14-hexaen-21-yl]

3,4,5-trihydroxybenzoate

Hydrolyzable Tannins

31 7.62 739.213 2.15 Kaempferol-3-O-galactoside-6”-rhamnoside-

3”’-rha or it’s

isomer

Flavonoids

32 1.02 179.059 2.08 Psicose Carbohydrates and carbohydrate

conjugates

33 4.06 353.092 2 Chlorogenic acid Phenolic acids and contractive phenolic

acids
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FIGURE 2 | Effects of black tea on body weight and fat accumulation in the liver. LFD, low-fat diet; HFD, high-fat diet; HFKB, HFD + KBT diet (containing 2.0%

Keemun black tea); HFDB, HFD + DBT diet (containing 2.0% Dianhong black tea). (A) body weight; (B) hematoxylin and eosin–stained slices of liver; (C) total lipid

content in the liver; (D) hepatic triglyceride content; (E) total cholesterol content in the liver. Data are presented as mean ± SEM (n = 12). a,b,cp represents significant

differences among groups (ANOVA, p < 0.05).
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TABLE 2 | Liver and visceral fat mass and concentrations of serum AST and ALT.

Percentage of body weight (%)

LFD HFD HFKB HFDB

Perirenal

adipose

0.82 ± 0.29c 3.41 ± 0.47a 2.82 ± 0.68b 2.56 ± 0.71b

Mesenteric

adipose

1.20 ± 0.24b 3.08 ± 0.56a 2.84 ± 0.93a 2.80 ± 0.96a

Epididymal

adipose

2.70 ± 0.77b 4.70 ± 0.86a 4.32 ± 1.34a 4.99 ± 0.85a

Liver 4.02 ± 0.67b 7.00 ± 1.67a 6.97 ± 1.71a 6.12 ± 1.24a

AST (U/L) 29.11 ± 2.91 24.24 ± 3.32 19.39 ± 4.65 27.23 ± 5.26

ALT (U/L) 5.17 ± 1.89c 50.67 ± 16.06a 35.99 ± 9.43b 32.04 ± 8.13b

AST, aspartate aminotransferase; ALT, alanine aminotransferase. Values are expressed as

mean ± SEM (n= 12). Different letters indicate significant differences (ANOVA, p < 0.05).

were similar in appearance to those of LFD mice. Furthermore,
total hepatic lipid, TG, and TC levels were significantly increased
in the HFD groups relative to the LFD group (Figures 2C–E).
Similar to the implications of the histopathological data, DBT
treatment completely prevented the HFD-induced increase of
hepatic total lipids and TG. DBT treatment also significantly
decreased hepatic TC content by 37.9%. KBT treatment slightly
but not significantly prevented lipid accumulation in the livers of
experimental mice.

Effects of Dietary Black Tea on Total Bile
Acid and Lipids in Fecal Samples
To examine the effects of dietary black tea on intestinal fat
absorption, we measured total bile acid and lipid levels in murine
feces. The level of fecal total bile acids in the HFD groups was
significantly lower than that of the LFD group. HFKB and HFDB
slightly increased the fecal excretion of bile acids; however, no
significant differences were observed (Figure 3A). Higher levels
of fecal total lipids, TGs, and cholesterol were also observed in
mice in the HFD group. Mice who underwent DBT treatment
exhibited higher excretion of fecal lipids and TGs compared
with the mice in the HFD group (Figures 3B–D). Similar to the
aforementioned parameters, the fecal lipid–promoting effects of
KBT were lower than those of DBT.

Effects of Dietary Black Tea on
Lipid-Metabolizing Gene Expression in the
Liver
To further examine the prevention of excessive fat deposition
in the liver by dietary black tea, the expression of lipid-
metabolizing genes in the liver was measured. The mRNA
level of hepatic HMG-CoA reductase (HMGR) was significantly
decreased by DBT, which neutralized the effects of the HFD
treatment (Figure 4A). However, neither black tea treatment
altered the mRNA expression of stearoyl-CoA desaturase 1
(SCD1), fatty acid synthase (FAS), sterol regulatory element
binding protein-1c (SREBP1c), acetyl-CoA carboxylase A
(ACACA), or acetyl-CoA carboxylase B (ACACB; Figure 4A).
The expression of SCD1, FAS, ACACA, and ACACB among

the four groups was comparable. Notably, the HFD treatment
enhanced the mRNA level of lipoprotein lipase (LPL) and
suppressed the expression of adipose triglyceride lipase (ATGL)
in the liver; the black tea treatments completely reversed
the HFD-induced changes of these two genes. The gene
expression levels of peroxisome proliferator-activated receptor-
alpha (PPARα), carnitine palmitoyl transterase-1 (Cpt1α), and
acyl-CoA oxidase (ACOX) in mice undergoing black tea
treatments were significantly enhanced relative to those of the
HFD group (Figure 4B). Unlike the effects in alleviating fatty
liver, the alterations of the mRNA expression of hepatic lipid–
metabolizing genes by KBT or DBT treatment exhibited no
significant differences.

Effects of Dietary Black Tea on Expression
of Genes Related to Lipid Transport and
Metabolism in the Small Intestine
Given the notable effect of dietary black tea in promoting
fecal lipid excretion, we quantified the mRNA expression
levels of genes involved in lipid transport and metabolization
in the small intestine. The HFD significantly increased the
mRNA levels of acyl-CoA cholesterol acyltransferase 2 (ACAT2),
Cpt1α, and ACOX and decreased the gene expression of ATP-
binding cassette subfamily G 5 (ABCG5), ATGL, and Niemann–
Pick C1-like 1 (Npc1l1; Figure 4C; Supplementary Figure 3A).
Moreover, DBT treatment significantly decreased the gene
expression of ACAT2 and increased the mRNA levels of ABCG5
and ATGL, indicating its neutralizing effects on the alterations
resulting from high-fat feeding. The alterations of these genes
through the KBT treatment exhibited similar trends; however,
no significant differences were observed. Neither black tea
treatment changed the gene expression of Npc1l1. Moreover,
the mRNA levels of mitochondrial functional protein (MTP)
and ATP-binding cassette transporter A1 among the four
groups were comparable (Figure 4C). Similarly, neither black
tea treatment altered the mRNA expression levels of genes
involved in fatty acid re-esterification, prechylomicron assembly
and secretion, or fatty acid metabolism in the small intestine
(Supplementary Figures 2A–C).

Effects of Dietary Black Tea on Gut
Microbiota
That gut microbiota are closely related to HFD-induced
obesity and non-alcoholic fatty liver disease (NAFLD) has
been well documented (16). The concentration of fecal SCFAs
was analyzed using gas chromatography, and the colonic
microbiota were profiled using 16S rDNA gene sequencing.
Our data indicated that total SCFA content, acetate, propionate,
and butyrate were markedly decreased by high-fat feeding;
however, neither black tea treatment prevented the changes
induced by the feeding (Supplementary Table 4). Chao 1 and
ACE estimators and the Shannon and Simpson indexes were
used to assess community richness and diversity, respectively.
No differences in Chao 1 and ACE estimations or the
Shannon and Simpson indexes were evident among the four
groups (Supplementary Table 5). However, the HFD induced a
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FIGURE 3 | Effects of black tea on fecal total bile acids and lipids. (A) fecal total bile acids; (B) fecal total lipids; (C) fecal triglycerides; (D) fecal total cholesterol. Data

are presented as mean ± SEM (n = 12). a,b,cp represents significant differences among groups (ANOVA, p < 0.05).

dramatic shift in gut microbiota; the proportion of Firmicutes
increased and that of Bacteroidetes decreased, and the Firmicute
to Bacteroidete ratio was significantly increased in HFD mice
compared with the LFD animals. However, black tea treatment
did not significantly affect the ratio (Supplementary Figure 3D).
Similarly, in the results of principal coordinates analysis and
linear discriminant analysis effect size, black tea supplementation
exhibited little impact on the modulation of intestinal microbiota
(Figure 5).

DISCUSSION

The health benefits of tea have become a hot topic in food science
research (17). Black tea is the most consumed tea beverage
worldwide. The major phenolic compounds of black tea are
oxidized and dimerized to form theaflavins, which are of large
molecular weight and not easily absorbed by the small intestine.
The effects of black tea on fatty liver prevention in HFD-induced
obese animals are well-established (18). Significant differences
in chemical compositions are evident among categories of black
tea; however, few studies have been conducted to systematically
clarify the differences of chemical profiles and the potential

health benefits of types of black tea. In the present study, two
common categories of black tea in China were selected, and their
chemical profiles and effects in alleviating excessive hepatic lipid
depositions in mice fed an HFD were compared.

KBT and DBT are produced from a small-leaf tea plant
cultivar (C. sinensis var. sinensis) and a large-leaf tea plant
cultivar (C. sinensis var. assamica), respectively. In previous
studies, the shoots and fresh leaves of large-leaf tea plant
cultivars had higher contents of inclusion and more phenolic
compounds than did small-leaf cultivars (19). Wang et al. (7)
reported that tea polyphenols, flavonoids, and amino acids
might play key roles in the differences between C. sinensis
var. sinensis and C. sinensis var. assamica. In the present
study, mass spectrographic analysis indicated that the marker
compounds with the largest VIP values (≥2) between KBT and
DBT were generally phenolic acids, catechins, and flavonoids,
which is consistent with previous studies. Moreover, our former
results (Supplementary Table 6) indicated that the amounts of
total phenols, crude fiber, and tea polysaccharides in DBT
were significantly higher than those in KBT, although the
crude protein content did not differ. Therefore, in addition
to small-molecule compounds (mainly phenolic compounds
and theanine), tea polysaccharides and other macromolecular
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FIGURE 4 | Effects of black tea on mRNA levels of genes in the liver and the small intestine. (A,B), hepatic genes; (C) genes in the small intestine. Data are presented

as mean ± SEM (n = 12). a,b,cp represents significant differences among groups (ANOVA, p < 0.05).

Frontiers in Nutrition | www.frontiersin.org 9 March 2022 | Volume 9 | Article 84958224

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Liao et al. Black Teas Alleviate Fatty Liver

FIGURE 5 | Effects of black tea on overall microbial structure. (A) principal coordinates analysis; (B) linear discriminant analysis effect size comparison of microbiota

for LFD, HFD, HFKB, and HFDB.

substances play vital roles in distinguishing between KBT
and DBT.

Excessive fat consumption contributes to the development
of obesity and NAFLD and causes hepatocellular damage and
gut microbiota dysbiosis (20). The putative anti-obesity effects
of tea have been most commonly ascribed to its rich bioactive
compounds, especially the phenolic compounds (21). In the
present study, HFD-treated mice exhibited the symptoms typical
of obesity and NAFLD, and the results were consistent with
those of other reports (20). Only dietary DBT significantly
reduced body weight gain, perirenal adipose mass, serum ALT
levels, and hepatic excess fat accumulation in mice fed an
HFD, but these effects did not appear in the KBT group,
with the exception of effects on perirenal adipose mass and
serum ALT levels. Consistently, the significant alleviation of
excessive fat accumulation and steatosis severity in the liver was
observed only in the DBT-treated mice. We speculate that this
phenomenon may be related to the differences in the levels of
phenol compounds, theanine, and tea polysaccharides in the two
types of tea.

Hepatic lipid metabolism disorder is a main cause of the
development of fatty liver disease (22). We examined the
expression of hepatic lipid–metabolizing genes. Both KBT and
DBT significantly decreased the expression of hepatic HMGR,
a rate-limiting enzyme in cholesterol biosynthesis (23), and the
alteration of this gene might contribute to the decreased levels
of hepatic cholesterol in black tea–treated mice. The excessive
accumulation of hepatic cholesterol critically contributes to
the pathogenesis of fatty liver (24). Our data demonstrated
that dietary black tea was an effective approach to fatty
liver prevention. Moreover, excess hepatic lipid accumulation
usually reflects imbalances of fatty acid import and export,
catabolism, and lipogenesis in the liver (25). In our study,

the mRNA levels of genes involved in hepatic fatty acid de
novo synthesis (FAS, ACACA, ACACB, and SCD1) were not
significantly altered by black tea treatments. However, KBT and
DBT significantly increased the mRNA expression of ATGL,
PPARα, Cpt1α, and ACOX, which are related to fat lipolysis
and fatty acid beta-oxidation. This result is consistent with a
study in which Puerh tea treatment significantly increasedmRNA
levels of the transcription factor and enzymes involved in fatty
acid oxidation, including PPARα, Cpt1α, and ACOX in HFD-
induced obese mice (26). Notably, both black tea treatments
completely restored the HFD-induced increase of LPL gene
expression. LPL is an enzyme vital in catalyzing the hydrolysis
of triglycerol from circulating chylomicrons or very low-density
lipoproteins (27). The enhanced mRNA level of LPL in hepatic
stellate cells increases the uptake of cholesterol from serum
lipoproteins, which induces an increase in TLR4 signaling and
the exacerbation of liver fibrosis (28). The decreased LPL mRNA
levels evident with dietary black tea treatment indicated the
role of LPL mRNA level in restraining the entry of free fatty
acids and cholesterol into hepatic cells. Overall, the hepatic
gene results suggested that dietary black tea might prevent
the development of fatty liver by decreasing the synthesis of
cholesterol, stimulating fat lipolysis and fatty acid oxidation, and
inhibiting the absorption of cholesterol and free fatty acids from
circulation. The alteration of hepatic lipid metabolism by KBT
was comparable to that by DBT.

Our data also indicated that black tea treatments significantly
increased fecal lipid excretion. We measured the expression of
key genes related to the absorption, re-esterification, transport,
and metabolism of lipid molecules in the small intestine. ACAT2
is a key enzyme for the re-esterification of cholesteryl ester, and
the loss of ACAT2 results in defective cholesterol absorption
(29). ABCG5 is a heterodimer involved in the transport of
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cholesterol from hepatocytes into the bile and from enterocytes
into the intestinal lumen (30). Black tea treatments, especially
DBT, significantly decreased the mRNA level of intestinal ACAT2
and increased the expression of ABCG5, which was notably
suppressed by the HFD. DBT also effectively restored the reduced
mRNA levels of intestinal ATGL in high-fat-feeding mice.
These results implied that dietary DBT is more effective than
dietary KBT in decreasing cholesterol absorption and promoting
cholesterol efflux and lipolysis in the small intestine. However,
the expression of most genes involved in the re-esterification,
transport, and metabolism of intestinal lipid molecules was
not altered by black tea supplementation. Our results indicated
that black tea treatments did not alter the absorption of fat,
especially the fatty acids that originate from neutral fat, which
accounts for ∼95% of dietary lipids. The inhibition of lipid
digestion in the small intestine might be the main mechanism
for the enhanced fecal fat excretion in black tea–treated
mice. Previous studies have shown that dietary tea powder,
tea polyphenols, and epigallocatechin gallate can decrease the
activity of pancreatic lipase and alter the emulsification of dietary
lipids (31). Therefore, black tea supplementation significantly
stimulated fecal fat excretion but did not alter the absorption
of lipid molecules in the small intestine. The stimulatory effects
of DBT on fecal lipid excretion were significantly stronger than
those of KBT, and this might be the primary contributor to
the differences between the two black teas in preventing the
development of fatty liver.

In the past decade, the relationship between the development
of fatty liver and the alteration of the gut microbiota has been
frequently reported in several lines of studies (32). As the
metabolites of microorganisms, the composition and amounts
of fecal SCFAs can reveal the status of the gut microbiota (33).
Our data demonstrated that the HFD significantly decreased
the amount of intestinal SCFAs, and black tea supplementation
did not recover the production of fecal SCFAs. Similarly, the
amelioration of the Firmicutes to Bacteroidetes ratio was not
observed in black tea–treated mice. Furthermore, black tea
supplementation did not change the α- and β-diversity of
intestinal microbiota, indicating that intestinal microbes made
no significant contribution to the improvement of fatty liver
observed in our study. The reason for these intricate results may
be related to the cycle of the high-fat model and the dosage of the
black teas.

Our results demonstrated that DBT was more effective than
KBT in alleviating excessive hepatic lipid accumulation in mice
fed an HFD. In UPLC-Q-TOF-MS/MS data, the compounds
crucial in differentiating KBT and DBT were quinic acid,
kaempferol-3-O-glucoside or its isomer, theanine, isoquercitrin
or its isomer, and others, and these may be key factors
in the differences in the health benefits of the teas. Quinic
acid and chlorogenic acid are phenolic acids, and either can
effectively prevent fatty liver disease through the alteration of
fat metabolism in the liver and other organs (34). Kaempferol-
3-O-glucoside, isoquercitrin, rutin, and hyperoside are active
flavonoids in black tea and can prevent fatty liver by inhibiting
lipogenesis and facilitating fatty acid metabolism (35). Theanine
and L-glutamine are amino acids that effectively ameliorated

lipid metabolism disorders in male Sprague–Dawley rats and
C57BL/6J mice (36). D-psicose is a new-generation sugar
substitute that suppressed lipogenesis and stimulated fatty acid
oxidation in Wistar rats (37). As one of the widely studied active
compounds in black tea, phenolic acids are considered to be
the crucial compounds of health benefits, including catechins
(38), gallic acid (39) and other compounds found in black tea,
is likely to be the most crucial compounds responsible for the
stronger beneficial effects of DBT than KBT in the prevention
of fatty liver, which is a limitation that need to be addressed
in additional studies. Besides, tea polysaccharide is also an
important functional ingredient in black tea, and whether the
content and structure of tea polysaccharide play an important
role in promoting the gut health warrants further studied.
Collectively, these results indicate that most of the compounds
crucial to the differentiation of the KBT and DBT samples
play vital roles in the prevention of fatty liver. However, the
compound or combination of compounds that is the key factor
in the differences in the health benefits of the two black teas is
not yet clear.

CONCLUSION

In conclusion, most of the compounds differentiating KBT
and DBT are phenolic compounds, theanine, and D-psicose.
DBT was more effective than KBT in preventing excess
fat accumulation in the liver of mice fed an HFD. Both
black tea treatments effectively and comparably altered the
mRNA levels of hepatic genes involved in cholesterol synthesis,
fat lipolysis, fatty acid beta-oxidation, and the absorption
of free fatty acid and cholesterol from circulation. DBT
treatment exhibited more favorable effects in stimulating fecal
fat excretion than did KBT treatment, and this may be
the primary factor in the different health-promoting effects
of the two tea treatments in this study. The different
compounds with the higher VIP values might make the main
contributions to the different health benefits; however, the
most important compound or combination of compounds
requires clarification.
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Tea (Camellia sinensis L.) is a very popular health drink and has attracted increasing
attention in recent years due to its various bioactive substances. Among them,
L-theanine, a unique free amino acid, is one of the most important substances in
tea and endows tea with a special flavor. Moreover, L-theanine is also a bioactive
compound with plenty of health benefits, including antioxidant, anti-inflammatory,
neuroprotective, anticancer, metabolic regulatory, cardiovascular protective, liver and
kidney protective, immune regulatory, and anti-obesity effects. Due to the unique
characteristics and beneficial functions, L-theanine has potential applications in the
development of functional foods. This review summarized the influencing factors of
L-theanine content in teas, the main health benefits and related molecular mechanisms
of L-theanine, and its applications in food, understanding of which can provide updated
information for the further research of L-theanine.

Keywords: L-theanine, tea, health benefits, mechanisms of action, food applications

INTRODUCTION

Tea (Camellia sinensis L) is originated from China and is one of three major popular beverages in
the world (1). Fresh tea leaves need to go through various processing procedures to be made into
tea products prior to consumption. The processing operations, such as fermentation and baking,
can change the color, aroma, taste, and chemical composition of tea (2, 3). Based on the degree of
fermentation, tea can be divided into six categories, including green, yellow, white, oolong, black,
and dark teas (4). Tea is rich in diverse chemical components, endowing tea with multiple beneficial
functions (5, 6).

L-theanine, a non-protein water-soluble amino acid, is characteristically found in tea plants (7,
8). It is a unique taste component with caramel flavor, which can alleviate the bitterness of caffeinel
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(9). As a unique secondary metabolite in tea, L-theanine is
the main source of tea flavor (10). L-theanine was proved to
contribute to the generation of tea volatiles, which may be the
main source of the crispy-rice-like smell and the chestnut-like
balminess (11, 12). It can be used as one of the significant
indexes to estimate the freshness of tea (13). In addition, it has
many health benefits, such as antioxidant, anti-inflammatory,
neuroprotective, anti-cancer, anti-anxiety, metabolic regulatory,
cardiovascular protective, liver and kidney protective, and
immune regulatory effects (14–16). Due to its flavor and diverse
health benefits, L-theanine has wide applications, such as being
used as a beverage ingredient or dietary supplement (17).

In our current review article, high-quality literature published
in recent 5 years was collected from the Web of Science Core
Collection and PubMed databases. The influence factors of
L-theanine content in tea and its effect on tea fragrance were
first introduced, and its health benefits were then summarized,
with intensive discussion about the molecular mechanism of
actions, and finally, its practical applications in foods were
briefly introduced. We hope that this review paper can
provide an updated understanding of L-theanine and support
its wide applications in the development of L-theanine-based
functional foods.

INFLUENCING FACTORS OF
L-THEANINE CONTENT IN TEA

L-theanine is widely distributed in different parts of the tea plants,
and the content is different. L-theanine could be first produced
in the roots of tea plants and then transported to the shoots
(18). Its content in roots could be up to 6% of dry weight (19).
Another study reported that tea leaves and roots had higher
L-theanine contents than stems (20). Different influencing factors
of L-theanine content in tea leaves are summarized in Figure 1.

Firstly, L-theanine content is variable among different tea
categories. Through the quantitative analysis of 37 different
varieties of tea, the average content of L-theanine in green,
white, oolong, and black teas were 6.56, 6.26, 6.09, and
5.13 mg/g, respectively (21). Moreover, the content of L-theanine
in albino yellow tea was higher than that in normal green
tea, and the accumulation mechanism of albino yellow tea
was associated with the slow catabolism of L-theanine (22).
Secondly, L-theanine content was related to the expression of
its metabolism-related genes. Among 17 identified genes related
to L-theanine metabolism, the transcription levels of GsTS2,
GsGS1, and GsGDH2 were positively correlated with L-theanine
content, while most other genes were negatively correlated
(20). Thirdly, temperature and season also affect L-theanine
content to a certain extent. It was found that melatonin
could accelerate the photosynthesis of tea plants and increase
the biosynthesis of L-theanine in tea leaves under sub-high
temperature (35/30◦C) (23). A combination of transcriptomics
and metabolomics analysis showed that L-theanine content in
spring was significantly higher than that in summer and autumn
(24). Consistently, quantitative determination of 58 Chinese

white tea showed that L-theanine content in the early spring-
produced silver needle white tea was higher than that in the late
spring-produced white peony white tea and autumn produced
Shoumei white tea (25). Further analysis showed that the change
of L-theanine content in different seasons was due to the effects
of sunshine intensity on the photosynthesis of tea plants and then
the expression of main transcription factors and structural genes
(24). Finally, the content of L-theanine was affected by the growth
period. Taking the leaves of tea at different stages (bud, 1st leaf,
2nd leaf, 3rd leaf, and old leaf) as the research object, it was
found that the content of bud and 1st leaf was the highest and
the content of L-theanine in leaves decreased gradually with the
leave maturity (20). In addition, by comparing the fresh Jukro tea
leaves at the growth stage of 40, 60, and 90 days, it was found
that the content of L-theanine was the highest in the 60-day
leaves (13).

To sum up, the content of L-theanine in tea leaves was higher.
Even the content of L-theanine in the same tissue would vary due
to several influencing factors. Among the six categories of tea,
the content of L-theanine in albino yellow tea was the highest.
Even in the same category of tea, L-theanine content also showed
significant differences among genetic background, temperature
and season, and growth periods.

HEALTH BENEFITS OF L-THEANINE

L-theanine exhibits a variety of health benefits, such as
antioxidant, anti-inflammatory, neuroprotective, anticancer,
metabolic regulatory, cardiovascular protective, liver, and
kidney protective, immune regulatory, as well as urogenital
and intestinal protective effects, which are summarized in
Supplementary Table 1 and briefly discussed below, with
highlights about the potential mechanism of action (Figure 2).

Antioxidant Activity
Recent studies reported that L-theanine exhibited good in vitro
and in vivo antioxidant activities. In a neuronal-like rat
pheochromocytoma cell model stimulated by cadmium oxide,
L-theanine could reduce the synthesis of reactive oxygen species
(ROS) and enhance the activity of antioxidant enzymes to
weaken oxidative damage (26). It was reported that L-theanine
showed antioxidant effects through adjusting the non-enzymatic
activities, enhancing the activities and mRNA expression of
catalase (CAT), and increasing superoxide dismutase (SOD) and
glutathione peroxidase 1 (Gpx1) in enterotoxigenic Escherichia
coli (ETEC)-infected mice (17). In a haloperidol (HAL)-induced
rat model of orofacial dyskinesia (OD), the main feature of
tardive dyskinesia (TD), it was found that L-theanine might
have protective effects on OD due to its formidable antioxidant
properties (27). In another study, L-theanine treatment reduced
the levels of lipid peroxide and nitric oxide (NO) in OD rat
models induced by HAL, thus improving the antioxidant capacity
of the striatum (28). Combined with the existing evidence
of animal studies, L-theanine may be able to treat human
TD clinically through its antioxidant activity and regulating
the activity of NO.
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FIGURE 1 | Influencing factors of L-theanine content in tea leaves.

Generally, L-theanine has strong antioxidant activity, which
can be associated with the regulation of the expression and
activities of antioxidant-related enzymes.

Anti-inflammatory Activity
The anti-inflammatory activity of L-theanine has been verified
in vitro and in vivo. Through establishing an interleukin (IL)-
1β-stimulated chondrocytes, it was found that L-theanine could
inhibit the nuclear factor kappa B (NF-κB) pathway, thereby
reducing the expression of proinflammatory factors, including
cyclooxygenase-2 (COX-2), prostaglandin E2, inducible nitric
oxide synthase, as well as NO, and protect the degradation of
extracellular matrix (29). At the same time, L-theanine also
significantly relieved osteoarthritis (OA) lesions in the anterior
cruciate ligament transection-induced OA rat models (29).
In addition, it was found that in 12-O-tetradecanoylphorbol-
13-acetate (2.5 µg/ear)-induced ear edema mouse models,
L-theanine could downregulate the expression of platelet
endothelial adhesion molecule-1 (PECAM-1) and decrease
the production of pro-inflammatory factors, including IL-
1β, tumor necrosis factor-alpha (TNF-α), and COX-2, which
were significantly expressed in neutrophils, thus improving the
infiltration and activation of neutrophils (30). L-theanine was
found to inhibit inflammation in rats with inflammatory bowel
disease (IBD) induced by dextran sulfate sodium (DSS), and
L-theanine treatment (200 mg/kg/day) could improve DSS-
induced IBD through the molecular mechanisms related to
cholesterol and retinol metabolism (31). In addition, the study
on DSS-induced colitis in C57BL/6J male mouse models also
confirmed that L-theanine could effectively inhibit intestinal
inflammation (32). In rat models with intestinal stress induced
by enterotoxigenic ETEC infection, the combined treatment
of L-theanine with L-glutamine significantly decreased the
expression of inflammatory factors, such as IL-1β, IL-6, and TNF-
α (33). L-theanine was also found to reduce inflammation in
lipopolysaccharide-induced mouse models, by normalizing the
hyperactivity of the hypothalamus-pituitary-adrenal (HPA) axis
and reducing the expression of inflammatory factors, including
IL-1β, TNF-α, and IL-6, via inhibiting the NF-κB pathway

(34). In ovalbumin-induced mouse asthma models, L-theanine
treatment could reduce the transport of inflammatory cells to
bronchoalveolar lavage fluid (BALF) and inhibit the infiltration
of inflammatory cells via blocking the activation of NF-κB
pathway and its downstream production of ROS, monocyte
chemoattractant protein-1 (MCP-1), IL-4, IL-5, IL-13, TNF-α,
and interferon (IFN)-γ in BALF (35).

In summary, the anti-inflammatory activity of L-theanine can
be associated with inhibiting the expression of inflammatory
factors and inflammation-related signaling pathways.

Neuroprotective Effect
L-theanine has been reported with excellent neuroprotective
effects on neuro injury. In a cell-based model induced
by excessive dopamine, L-theanine exhibited neuroprotective
effects on neuronal injury through the release of body fluid
molecules from astrocytes, such as glutathione (36). Pretreatment
of multipotential neural stem cells (NSCs) and C57BL/6J
mice with L-theanine showed that L-theanine could alleviate
the injury of NSCs induced by isoflurane and cognitive
dysfunction of young mice, and the mechanism was related
to the Akt/glycogen synthase kinase 3 beta (GSK3β) signaling
pathway (37). In addition, since L-theanine was shown to
have a relaxing effect and gamma-aminobutyric acid (GABA)
was an important inhibitory neurotransmitter, the mixture of
L-theanine and GABA had a positive synergistic effect on
sleep behavior, including sleep quality and duration in caffeine-
induced awake rats, and the mechanism might be that the
mixture could promote the expression of GABA receptor,
which was conducive to sleep (38). In another study, the
mixture of L-theanine and Neumentix proprietary spearmint
extract also regulated sleep disorders, prolonged sleep duration,
significantly increased brain acetylcholine (Ach) and GABA
concentrations, and decreased serotonin (5-HT) concentrations
(39). Using the rat models of spinal cord injury (SCI), it was
found that L-theanine could promote the recovery of behavioral
motor function after SCI, and its potential neuroprotective
mechanism may be related to the inhibition of posttraumatic
oxidative reaction, neuroinflammation, and apoptosis (40). In rat
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FIGURE 2 | The health benefits of L-theanine. AMPK, adenosine 5′-monophosphate-activated protein kinase; CPT1, carnitine palmitoyltransferase 1; IR, insulin
receptor; IRS, insulin receptor substrate; LKB1, liver kinase B1; PFK, phosphofructokinase.

models of orofacial dyskinesia induced by reserpine, L-theanine
showed potential neuroprotective activities by reducing oxidative
damage, neurotransmitter deficiency, neuroinflammation, and
apoptosis (41). Moreover, by intraperitoneal injection of Aroclor
1254, brain oxidative stress and neurobehavioral changes were
induced in rats (42). On this basis, the oral administration
of L-theanine (200 mg/kg BW) could repair the normal
brain structure, downregulate the expression of inflammatory
cytokines, so as to protect the brain from the oxidative
lesion (42). Further study on the brain injury model of
mice induced by Cadmium (Cd) showed that L-theanine
could protect mice from Cd-induced neurotoxicity, which
was achieved by reducing the level of Cd in the brain and
plasma, inhibiting the death of neurons in the cortex and
hippocampus, improving the activities of SOD, GSH, and CAT
in the brain, and most importantly, significantly alleviating
the hyperphosphorylation of tau protein Ser199, Ser202, and
Ser396 (26).

In addition, L-theanine could be cooperated with other
substances to protect from neuro injury. A composite membrane
was prepared by chemical grafting of L-theanine with graphene
oxide, and it promoted the survival, proliferation, and neuronal
differentiation of neural stem cells, suggesting that it might
be used in the treatment of central nervous system injury
(43). L-theanine and cystine, as supplements, performed well
in the prevention of oxaliplatin-induced peripheral neuropathy
in mouse models (44). This effect was further verified in
human studies. Through the treatment of 28 patients with

colorectal cancer, it was shown that daily oral intake of
L-theanine and cystine could effectively reduce the damage
of oxaliplatin-induced peripheral neuropathy. This was mainly
because that oral intake of L-theanine and cystine could
promote the synthesis of glutathione, which was a potential
substance to prevent neuropathy (45). Furthermore, in a model
of brachial plexus root avulsion created in Sprague Dawley
(SD) rats, L-theanine combined with NEP1-40 observably
accelerated nerve regeneration after brachial plexus root
avulsion (46).

On the other hand, L-theanine has also been shown to be
effective in treating neurodegenerative diseases. L-theanine
could alleviate the memory impairment of the aging mouse by
upregulating janus kinase 2 (JAK2)/activator of transcription
3 (STAT3), M1 muscarinic cholinergic receptor (mAChR),
and extracellular signal-regulated kinase (ERK) signaling (47).
L-theanine combined with luteolin could prevent symptoms
similar to Alzheimer’s disease (AD) in rat models injected
with amyloid-β (25–35) into the hippocampal CA1 region,
and this was mainly associated with the improvement of
hippocampal insulin signaling, norepinephrine metabolism,
and the mitigation of neuroinflammation (48). L-theanine
could also relieve the memory impairment and save the
damage of hippocampal long-term potentiation in AD mice
by activating the dopamine D1/5 receptor-protein kinase
A pathway (49). Similarly, in the rat models of human
Huntington’s disease (HD) induced by quinolinic acid,
L-theanine alone could reduce the changes caused by QA
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(50). In rat HD models, neuropathological changes in the
rat striatum were induced by 3-nitropropionic acid, and
L-theanine exhibited neuroprotective effects, which mainly
depended on not only inhibiting the production of harmful
NO but also preventing the change of neurotransmitters in the
striatum (51).

Therefore L-theanine has a good neuroprotective effect not
only on improving cognitive and memory impairment, but
also on preventing peripheral neuropathy and repairing nerves,
and has a prominent influence on some neurodegenerative
diseases, like AD and HD.

Mental Protection
L-theanine also has positive effects on mental health. In
mouse models, it was found that L-theanine could improve
the anticonvulsive effect of pentobarbital sodium in a dose-
dependent manner (52). In a mouse model of psychosocial stress,
it was found that green tea had an anti-stress effect, which was
due to the synergistic effect of L-theanine, epigallocatechin, and
arginine, thus eliminating the antagonistic effect of caffeine and
epigallocatechin gallate on psychological stress-induced adrenal
hypertrophy (53). In adolescent male rat models exposed by the
Delta-9-tetrahydrocannabinol (THC), L-theanine could strongly
block the development of emotional and cognitive abnormalities
associated with adolescent THC exposure, since L-theanine
pretreatment could intercept THC-induced downregulation of
local GSK-3 and Akt signaling pathway in the prefrontal
cortex (PFC) (54). In addition, through behavioral tests and
cerebrospinal fluid analysis in rats, L-theanine might change
the levels of glutamate and methionine in the brain to improve
the hippocampal activity, showing an antianxiety effect (55).
Besides, the 30-day test score of 33 cats showed that L-theanine
could alleviate all stress-related symptoms and eliminate the
adverse stress performance after 15 days, and the effect was
better after 30 days (56). In chronic unpredictable mild stress
(CUMS) rat models, L-theanine could effectively improve
the depressive-like behaviors of rats, which was regulated by
monoamine neurotransmitters in the limbic-cortical-striatal-
pallidal-thalamic-circuit related brain regions (57). L-theanine
intake (6 mg/kg) could prevent brain atrophy and stress
vulnerability in senescence-accelerated mice prone 10 (SAMP10)
mice, with the mechanism of intaking L-theanine could block
the expression changes of the transcription factor neuronal PAS
domain protein 4 (Npas4) and Lipocalin 2 (Lcn2) in hippocampus
and PFC of SAMP10 (58). Another study suggested that the
administration of L-theanine ameliorated the depression-like
behavior of stress-challenged SAMP10 mice (59).

Some clinical trials have also been carried out to verify the
role of L-theanine in mental health. In terms of attention, a
study involving 27 healthy adults showed that a high dose of
L-theanine could improve the neurophysiological indexes of
attention processing in a dose-dependent manner (60). Another
study confirmed that L-theanine and caffeine had additive effects
on cognition and attention in 20 healthy men (61). Furthermore,
the test results of nine healthy adult males showed that L-theanine
could reduce the allocation of neural resources to distractors,
so attention would be more efficient in focusing on goals,

and L-theanine and caffeine could cooperate to reduce mind
wandering (62). In addition, in the study of Japanese men and
women aged 50–69, L-theanine showed excellent performance
in improving attention, and the working memory and executive
function of the subjects were also enhanced (63). Furthermore,
five boys (8–15 years old) with attention deficit hyperactivity
disorder (ADHD) were treated with L-theanine and caffeine, and
the result showed that L-theanine combined with caffeine could
effectively treat ADHD-related injuries in sustained attention,
inhibitory control, and overall cognitive performance (64).
L-theanine has also shown good clinical effects in psychological
and mental related aspects. For the purpose of assessing the
influence of L-theanine on the mental and physical health of
athletes, 20 college athletes were chosen for the study, and
it was found that small amounts of L-theanine, caffeine, and
tyrosine could boost the movement accuracy of athletes before
and after exhaustive exercise (65). In another study, 30 subjects
(9 men and 21 women, with the age of 48.3 ± 11.9 years old)
without major mental illness were selected to evaluate the stress-
related symptoms, sleep status, and cognitive function, and the
result showed that L-theanine could facilitate the mental health
of normal persons with stress-related diseases and cognitive
disorder (66). On the other hand, 20 patients (4 males and 16
females, with the age of 41.0 ± 14.1 and 42.9 ± 12.0 years
old, respectively) with major depressive disorders were selected
as the research objects, and it was found that L-theanine
(250 mg/day) treatment for 8 weeks was safe and effective
to significantly mitigate the symptoms of depression, anxiety,
somnipathy, and cognitive disorder (67). Besides, after taking
L-theanine-containing beverage, the subjective stress response
of 34 healthy adults aged 18–40 who were subjected to a
multitasking cognitive stressor was significantly decreased, and
the response of salivary cortisol to stressors was also decreased
after positive treatment (68).

In summary, L-theanine shows excellent therapeutic effects on
mental health, such as depression, stress, as well as emotional
and cognitive function, and can also improve sleep condition and
physical fitness to some extent.

Anti-cancer Activity
Recent studies have demonstrated the anticancer activity of
L-theanine in cell and animal models. Firstly, L-theanine
could contribute to preventing the reproductive system
cancers. In previous study, L-theanine and its derivatives,
ethyl 6-bromocoumarin-3-carboxylyl L-theanine (TBrC), could
effectively prevent the growth and migration of highly metastatic
human cervical cancer cells, which was confirmed by in vitro
and in vivo studies (69). They could decrease the expression
and phosphorylation of epidermal growth factor receptor
(EGFR), Met, Akt, and NF-κB in cervical cancer cells, and totally
inhibit the EGFR/Met-Akt/NF-κB signaling pathway activated
by hepatocyte growth factor (HGF) and epidermal growth
factor (EGF) (69). Meanwhile, L-theanine and TBrC obviously
inhibited the growth of cervical cancer in nude mice bearing
tumors but showed no toxicity to mice. A recent study found
that L-theanine had the therapeutic potential for metastatic
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prostate cancer (PCa), since L-theanine inhibited the epithelial-
mesenchymal transition process of PCa by downregulating
matrix metallopeptidase 9 (MMP9), N-cadherin, Vimentin, and
Snail, and upregulating E-cadherin (70). Moreover, L-theanine
also inhibited the transcription of MMP9 and Snail through
weakening the ERK/NF-κB signaling pathway and p65 binding
activity with MMP9 and Snail promoter region (70).

Secondly, L-theanine could induce or inhibit the digestive
system cancers. It was shown that L-theanine (600 µg/mL)
could induce apoptosis of tumor cells through the mitochondrial
pathway in human HepG2 hepatoblastoma cells and HeLa
adenocarcinoma cells (71). Furthermore, L-theanine and its
semi-synthesized derivative (R)-2-(6,8-dibromo-2-oxo-2H-
chromene-3-carboxamido)-5-(ethylamino)-5-oxopentanoic
ethyl ester (DTBrC) also restrained the growth and migration of
human hepatocellular carcinoma (HHC) cells in in vitro, ex vivo,
and in vivo HHC models, and the mechanism of this effect was
that L-theanine and DTBrC blocked the Met/EGFR/vascular
endothelial growth factor receptor (VEGFR)-Akt/NF-κB
pathways (72). Then, L-theanine alone or in combination with
theobromine could effectively inhibit tumor production in male
Wistar rats with colon cancer induced by dimethylhydrazine,
and the mechanism of action was related to downregulating the
Akt/mTOR (mammalian target of rapamycin) and JAK2/STAT3
pathways and increasing the mRNA and protein expression of
tumor suppressor Smad2 (73).

In addition, L-theanine can also be used as an auxiliary
measure to reduce some side effects of cancer treatment.
L-theanine and cystine pretreatment (280 mg/kg for 5 days)
could significantly enhance the weight loss and survival rate
of rats after the irradiation, which may be connected with the
inhibition of apoptosis and the enhancement of the proliferation
of bone marrow cells (74). It was noteworthy that oral L-theanine
could also weaken the adverse reactions of S-1 adjuvant
chemotherapy (75).

In general, L-theanine could induce cancer cell apoptosis
through the mitochondrial pathway, inhibiting the EGFR, NF-
κB, and other signaling pathways, downregulating MMP9, or
upregulating Smad2 in cancer treatment. In addition to acting
directly on cancer cells, L-theanine also has beneficial effects in
radiotherapy and chemotherapy.

Metabolic Regulation
The absorption of nutrients is very important to human health,
and L-theanine can effectively regulate metabolism. Pretreatment
of RIN-m5F pancreatic beta-cell line with L-theanine increased
the beta-cell mass and insulin production in a dose-dependent
manner (76). In addition, L-theanine (50 µM) promoted the
proliferation of human Sertoli cells (SCs) and increased its
glucose metabolism (77). L-theanine can regulate metabolism
in animal models. By observing serum insulin secretion and
blood glucose concentration in rats, it was found that L-theanine
downregulated the expression of SGLT3 and GLUT5 in the
intestinal tract, leading to the inhibition of glucose uptake in the
small intestine (78). In addition, L-theanine (100 mg/kg) could
effectively regulate the metabolism of glucose, lipids, and proteins
in SD rats, and the main mechanism was that L-theanine could

upregulate the mRNA expression of phosphofructokinase (PFK),
carnitine palmitoyltransferase 1 (CPT1), insulin receptor (IR),
insulin receptor substrate (IRS), and liver kinase B1 (LKB1), and
enhance the phosphorylation of adenosine 5′-monophosphate-
activated protein kinase (AMPK) (79). The effects of L-theanine
on metabolism were also supported by human studies. For
example, serum ethylamine level was used as an indicator of
L-theanine consumption, and the monitoring of 2,253 Japanese
residents aged 40–79 without diabetes found that a higher
level of serum ethylamine was significantly correlated with a
lower risk of type 2 diabetes, suggesting a negative association
between L-theanine and diabetes (80). L-theanine also played an
effective role in diet-induced obesity. After oral administration of
L-theanine, the metabolic activity of brown fat and subcutaneous
white fat were increased, which significantly improved the obesity
and hepatic steatosis of mice fed a high-fat diet (HFD), and
the composition of intestinal microflora was also reasonably
regulated (81).

These results suggest that L-theanine can regulate the
metabolism of glucose, lipid, and protein by downregulating
SGLT3 and GLUT5 expression and upregulating the mRNA
expression of IR, PFK, IRS, especially since it has a positive health
effect against diabetes and obesity.

Cardiovascular Protection
L-theanine showed a positive effect on the cardiovascular system.
It was reported that L-theanine could significantly inhibit the
proliferation and migration of cultured vascular smooth muscle
cells (VSMCs) induced by angiotensin II (82). The JAK2/STAT3
and ERK pathways were involved in the possible molecular
mechanism. In addition, the pathogenesis of cardiovascular
diseases (CVD) was also related to the dysregulation of
circadian rhythm (82). In dexamethasone-induced rat VSMCs
circadian gene expression models, L-theanine treatment showed
that the expression of clock genes Bmal1, Cry1, Reverb
alpha, and Per2 increased (83). At the same time, L-theanine
could also upregulate a bunch of the rhythm genes and
differential expression genes involved in vasoconstriction and
actin cytoskeleton regulation pathways. Moreover, L-theanine
could significantly inhibit the formation of neointima and
prevent the transformation of VSMCs from contractile type
to synthetic type in rat carotid artery balloon injury models
(84). Further research showed that L-theanine had a potential
preventive effect on neointimal hyperplasia and related vascular
remodeling, mainly by inhibiting the phosphorylation of Elk-
1 and activating mitogen-activated protein kinase-1 (MAPK-
1) (84).

Collectively, L-theanine can block the JAK2, STAT3, and
ERK1/2 pathways, regulate the expression of clock genes and
rhythm genes and inhibit the formation of neointima, which
makes L-theanine a potential cardiovascular beneficial substance.

Liver and Kidney Protection
A number of studies have proved the positive effects of
L-theanine on the liver. By adding L-theanine to the drinking
water of cirrhotic rats established by carbon tetrachloride, it
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was found that L-theanine inhibited the expression of NF-
κB, downregulated the pro-inflammatory cytokines (e.g., IL-
1 and IL-6), and profibrotic mediators (e.g., transforming
growth factor β and connective tissue growth factor), and
promoted the expression of anti-inflammatory cytokine IL-10
and fibrinolytic enzyme metalloproteinases-13 (85). Therefore,
L-theanine could effectively restrain liver cirrhosis in rats due
to its anti-inflammatory and anti-fibrosis effects. In addition,
L-theanine distinctly reduced the elevated serum aspartate
aminotransferase (AST) and alanine aminotransferase (86)
activities in ETEC infected mouse models (87). Further study
showed that L-theanine could obviously increase the expression
of Bcl-2 mRNA and protein, decrease the expression of Bax,
a pro-apoptotic molecule, and decrease the phosphorylation of
ERK1/2 and c-Jun NH2-terminal kinase (JNK1/2) MAPKs (87).
In D-galactose-induced aging rats, L-theanine could protect the
liver not only by reducing the levels of pro-inflammatory factors,
such as IL-1β, TNF-α, and IL-6 but also by efficiently reducing
the production of edema and vacuole induced by D-galactose
(88). Liver injury is a side effect of heat stress. After intragastric
administration of L-theanine before systemic heat exposure, heat-
induced liver injury was also reduced in mice (89). In LPS-
induced inflammatory mice, L-theanine treatment reduced the
acute liver injury by inhibition of the concentrations of ALT and
AST, the level of hepatic total superoxide dismutase (T-SOD), and
malondialdehyde (MDA) (34). The molecular mechanism might
be that L-theanine significantly reduced the release of IL-1β and
TNF-α, and the phosphorylation of NF-κB, and increased the
ratio of IL-10 to interferon (IFN)-γ.

With regard to kidney protection, in the doxorubicin (DOX)
induced acute nephrotoxicity rat models, it was found that
the treatment with L-theanine could attenuate the decrease of
creatinine clearance, inhibit the production of lipid peroxidation
in the kidney, and inhibit the reduction of glutathione content
and SOD activity after DOX administration (90). Moreover,
another study of DOX-induced nephrotoxicity in SD rats proved
that L-theanine could protect the kidney by reducing the levels
of oxidized glutathione (GSSG), gamma-glutamyltransferase 1
(GGT1), NF-κB p65, and the percentage of apoptosis indexes
in the tissue and plasma, and increasing the levels of GSH
and the activities of GPx, glutathione reductase (GR), and
glutathione S-transferase (GST) (86). Furthermore, cecal ligation
and perforation could lead to sepsis and damage the liver and
kidney of SD rats, and L-theanine had a significant inhibitory
effect on this kind of liver and kidney injury in a dose-dependent
manner (91).

In general, the protective mechanism of L-theanine for the
liver and kidney is to inhibit the NF-κB pathway, regulate pro-
inflammatory cytokines, such as IL-1, IL-6, IL-10, and TNF, and
finally regulate the activities of AST, ALT, T-SOD, and other
related enzymes, to effectively protect the liver and kidney and
deal with liver and kidney injury caused by different reasons.

Immunoregulation
L-theanine has an excellent performance in immune regulation.
In the SD rat models, daily intragastric administration of
L-theanine solution (400 mg/kg) could increase the weight

of the spleen, modify the balance of Th1/Th2 cytokines,
reduce the level of serum corticosterone, increase the level of
dopamine and 5-HT in the brain, and regulate the mRNA
expression of phospholipase C isomers in the heart, finally
improving the immune function (92). Moreover, in another
study, L-theanine effectively regulated the secretion of cytokines
such as IFN-γ, IL-2, IL-4, IL-10, IL-12, and TNF-α except for
IL-6 by activating the mRNA and protein expression of Ras-
related protein Rap-1A (Rap1A), 3-hydroxy-3-methylglutaryl-
CoA reductase (HMGCR), and farnesyl diphosphate synthase
(FDPs) in the mevalonate synthesis pathway of rat splenic
lymphocytes (93). In addition, L-theanine treatment decreased
the mRNA expression of Toll-like receptors (e.g., TLR-2 and
TLR-4) and cytokines (e.g., IFN-α, IFN-γ, and IL-2) in broilers
(94). Furthermore, a 28-day feeding study of SD rats showed
that L-theanine could increase the content of total short-chain
fatty acids and regulate intestinal mucosal immunity based on
dietary fiber feeding (95). Whereafter, L-theanine could regulate
the innate immunity of mice with immune stress induced by
ETEC, mainly by inhibiting the overexpression of nucleotide-
binding oligomerization domain, IL-1β, and TNF-α, partially
reducing the protein level of NF-κB p65, and suppressing
the phosphorylation of ERK1/2 (96). In another study, it was
found that L-theanine antagonized cannabinoid receptor 1 and
inhibited its activity, relieved the inhibition of cannabinoid
receptor 1 on COX-2 expression, reduced the pro-inflammatory
factor TNF-α, and enhanced the anti-inflammatory factor IL-
10, making L-theanine show a significant regulatory effect on
the immune function of normal and E44813-stressed rats (97).
Additionally, in the study of Polish rowing team members, it was
found that L-theanine supplementation could contribute to the
reduction of IL-10 concentration after exercise, which had an
advantageous influence on the destruction of Th1/Th2 balance
of top athletes (98).

In a word, L-theanine can regulate the balance of Th2/Th1
cytokines and the content of related substances. The main
mechanism is closely related to the expression of protein and
mRNA of action factors.

FIGURE 3 | Food applications of L-theanine. AGEs, advanced glycation end
products.
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Urogenital Protection
L-theanine also exhibits protection in the urogenital system
in vitro and in vivo. In urethane-anesthetized female Wistar
rats, L-theanine could reduce substance P-induced bladder
hyperfunction through inhibiting pro-inflammatory protein
kinase C (PKC)/ERK/NF-κB/intercellular adhesion molecule 1
(ICAM-1)/IL-33 signaling, oxidative stress, apoptosis, autophagy
(99). It was noted that when L-theanine, caffeine, and EGCG
were supplemented in the culture medium, the motility of rat
epididymal sperms was increased after 72 h of incubation at room
temperature (100). More than that, studies on SCs found that
L-theanine (50 µM) could promote the proliferation and glucose
metabolism of human SCs to maintain the Krebs cycle, which
was very important to prevent spermatogenesis disruption (77).
On the whole, L-theanine can block bladder hyperfunction and
protect spermatogenesis.

Intestinal Protection
Recent studies suggest that L-theanine exhibits intestinal
protective effects in animal models. When L-theanine was
added to the diet of broilers, L-theanine had a beneficial
effect on the intestinal microbiota, with increases in beneficial
microorganisms, such as Lactobacillus, while inhibiting harmful
microorganisms, such as Clostridium (94). Another study
also validated that L-theanine could improve the intestinal
development and health status of broilers, and the relative
weight of duodenum, jejunum, and ileum increased, and the
villus height and glutathione peroxidase activity of jejunum
showed a linear or quadratic increase, and also enhanced the
mRNA levels of intestinal amino acid and peptide transporters
(101). It was also found that L-theanine could alleviate the
intestinal pressure and stabilize the healthy intestinal tract
in the stressed rat models established by E44813 infection,
mainly by significantly enhancing the synthesis of glutamine
and increasing the villus height and crypt depth of the
intestinal tract (33). Overall, the intestinal protection of
L-theanine can mainly be associated with the regulation of
intestinal microbiota and the reduction of enterotoxin-mediated
intestinal damage.

FOOD APPLICATIONS OF L-THEANINE

L-theanine has some applications in foods and this kind of
functional food has a positive effect on health and is very
popular with consumers (Figure 3). L-theanine powder was
obtained from decaffeinated tea and then made into theanine
bread and other baked foods (102). Tea powder was used
to prepare L-theanine enriched fractions (TEF), which could
prevent the formation of fluorescent advanced glycation end-
products, therefore, TEF was used to make healthy and delicious
L-theanine bread (103). In addition, the concentrated L-theanine
was added to wheat bread, which could inhibit E. coli and
extend the shelf-life of bread for 1 day (40). Besides, due
to the anti-stress effect of L-theanine, a nutritional beverage
was made based on L-theanine, and the test results showed
that the beverage could significantly reduce the subjective

stress of 36 participants responding to multi-task cognitive
stressors (68). Moreover, the cold-water brewed green tea, a
new type of functional low-calorie beverage, was made at
30◦C and contained a large number of L-theanine, catechin,
gallic acid, and other bioactive ingredients, and it was found
to significantly alleviate obesity and regulate the intestinal
flora of HFD mice (104). A nootropic beverage containing
L-theanine, pine bark, and blackcurrant could reduce mental
fatigue in the sports environment, maintain brain clarity,
improve the total score and accuracy, and effectively control
the tension of athletes (105). In order to alleviate pressure,
L-theanine was added into mango sorbet to make functional
food, and the study proposed that the influence of food
matrix should be considered when establishing functional
food ingredients (106). Moreover, eating Matcha biscuits
containing L-theanine also verified the pressure-reducing effect
of L-theanine through animal experiments and clinical trials
(107). Furthermore, a wheat flour rich in L-theanine was
developed, and it could forcefully weaken the immune response
mediated by T cells stimulated by gluten in the intestine
of patients with celiac disease, and retain the function of
gluten (108). This suggests its potential application in gluten-
containing food products.

At present, the food application of L-theanine is mainly in
beverages and bread. L-theanine has attracted much attention
due to its various biological activities, suggesting its potential
for formulating functional food products. In the future, more
applications of L-theanine in foods should be explored, and its
dosage and processing in products should be further studied.

CONCLUSION AND PERSPECTIVES

L-theanine is a special free amino acid in tea, which is widely
distributed in tea plants. The content of L-theanine in different
kinds of tea is varying, with the climate and growth period
affecting its content. As one of the main components of tea,
L-theanine also has a variety of health benefits and some
applications in foods as mentioned above. In the future, the
following points are worthy of attention. Firstly, the mechanism
of L-theanine on tea flavor should be further studied, and the
changing trend of L-theanine content in different fermentation
stages should be explained. Secondly, although a number of
studies have confirmed the health benefits of L-theanine in vitro
and in vivo, human-based research is still limited, and more
clinical trials should be guaranteed to evaluate the health
benefits of L-theanine. Overall, L-theanine exhibits plenty of
beneficial functions and can be a promising functional additive
or supplement in the food and nutritional industry.
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Coronavirus disease 2019 (COVID-19) disrupts the intestinal micro-ecological balance,

and patients often develop the intestinal disease. The gut is the largest immune organ in

the human body; intestinal microbes can affect the immune function of the lungs through

the gut-lung axis. It has been reported that tea polyphenols (TPs) have antiviral and

prebiotic activity. In this review, we discussed TPs reduced lung-related diseases through

gut-lung axis by inhibiting dysbiosis. In addition, we also highlighted the preventive

and therapeutic effects of TPs on COVID-19 complications, further demonstrating the

importance of research on TPs for the prevention and treatment of COVID-19 in humans.

Based on this understanding, we recommend using TPs to regulate the gut microbiota

to prevent or alleviate COVID-19 through the gut-lung axis.

Keywords: tea polyphenols, COVID-19, gut microbiota, gut-lung axis, antiviral

INTRODUCTION

Human pathogenic coronavirus, including severe acute respiratory syndrome coronavirus
(SARS-CoV) and SARS-CoV-2, it binds to the angiotensinogen-converting enzyme 2 (ACE2), a
recently discovered mono-carboxypeptidase and the first ACE homolog, and then enters the cell
(1). SARS-CoV S1 contains a receptor-binding domain (RBD) that explicitly recognizes ACE2 as
its receptor (2), and tea polyphenols (TPs) have been found to bind to RBD to inhibit virus invasion
(3). Numerous studies have demonstrated TPs to prevent obesity, diabetes, cardiovascular disease,
cancer, and antiviral activity and fight diseases caused by oxidative stress and inflammation (4, 5).
For instance, when the balance between the accumulation of reactive oxygen species (ROS) and
the body’s antioxidant process is disturbed, oxidative stress can be induced, causing damage to cells
and tissues, thus leading to various diseases (6). However, when TPs enter the body, the activity of
antioxidant enzymes increases, the inhibition of lipid peroxidation, and the production of ROS in
the body can be promoted to achieve the antioxidant effect (7). These effects are also likely to help
alleviate a range of complications caused by the new coronavirus.

Tea is the most popular beverage besides water and the most widely used (8). In China,
tea consumption has been more than 5,000 years. TPs are a mixture of phenolic compounds
extracted from tea leaves. In terms of concentration, tea catechins are one of the most important
bioactive substances in tea leaves, accounting for 60–80% of total polyphenols. Catechins
are the main polyphenol compounds in tea, including epigallocatechin-3-gallate (EGCG),
epigallocatechin-3-gallate, epicatechin-3-gallate and epicatechin, the content and activity of EGCG
was the highest (9).
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It is known that the dysbiosis of the human gut microbiota is
associated with various health conditions, including respiratory
tract infections (RTI) via the gut-lung axis. The gut microbiota
is involved in various physiological responses, including nutrient
absorption, energy regulation, glucose metabolism, and immune
system regulation (10). Perhaps only 1.9% of the gut microbiome
is heritable, while more than 20% of the biodiversity of
the microbiome is derived from the environment (including
diet). TPs can effectively modulate gut microbiota composition,
thereby effectively improving gut microbiome and host health.
For many, COVID-19 brings few symptoms, but others are life-
threatening due to SARS-CoV-2. While certain gut microbes
have been linked to adverse outcomes from viral infections,
some researchers suggest using these bacteria as biomarkers.
If gut health affects the prognosis of COVID-19, we should
use it to better control and prevent COVID-19. TPs have been
used in research in the fields of immunity, psychiatric diseases,
cardiovascular and metabolic diseases, and have achieved certain
achievements. It can be seen that it is reasonable to use tea
polyphenols to regulate intestinal microecology and prevent
and intervene in COVID-19 (11). Therefore, improving the
nutritional status of patients and enhancing the body’s immunity
by regulating the microbiota is of great significance for the
treatment of novel coronavirus pneumonia. In this review, we
summarized the possible use of TPs to prevent viral infections.
In addition, the mechanism of action of TPs against COVID-19
was discussed from the perspective of the gut-lung axis.

THE IMPORTANT ROLE OF GUT
MICROBES IN COVID-19

Patients with COVID-19 show signs of intestinal flora imbalance,
which can cause intestinal damage and damage to the lung and
vital organ systems in the event of a pathogenic SARS-CoV-
2 infection. Therefore, it is essential to maintain a healthy gut
microbiome to optimize the immune system in order to prevent
excessive inflammation (12).

Intestinal Flora and the Gut-Lung Axis
Intestinal microorganisms can interact with the immune system,
and the immune cells generated by the immune function between
the intestine and the lungs move through the lymphatic system
and blood circulation. The interaction network between the
intestine and lung tissue mediated by microorganisms and
immune cells is called the “gut-lung axis” (13). The imbalance
of intestinal flora interacts with lung diseases and respiratory
infections. When a deadly influenza virus invades, intestinal
flora such as endogenous Bifidobacteria will increase, enhancing
the host’s resistance to influenza (14). The main bacterial phyla
of the lungs are the same as the intestines, mainly Firmicutes
and Bacteroides, followed by Proteobacteria and Actinomycetes,
the interaction between the lung microbiota and immunity
is also a two-way process (15). “Gut-lung axis” refers to the
intestinal flora that can affect and regulate the immunity and
function of the lungs, and may be related to acute and chronic
lung diseases (16). And patients with chronic gastrointestinal

inflammation and other diseases have a higher prevalence of
lung diseases. Respiratory influenza infection can cause intestinal
injury when lung injury occurs, and influenza infection changes
the composition of intestinal microflora (17).

Patients with respiratory infections usually have intestinal
dysfunction, and some COVID-19 patients experience
gastrointestinal (GI) symptoms, including diarrhea and
vomiting (18). The proportion of 651 COVID-19 patients
with gastrointestinal symptoms was 11.4%; trends in fever
and severity (severe/critical, mechanical ventilation, and ICU
admission rates) were significantly higher in COVID-19 patients
with gastrointestinal symptoms (19). Experiments in mice have
shown that depletion or loss of the intestinal microbiota can
lead to impaired immune response and worsen the prognosis
of bacterial or viral respiratory infections (20). The gut-lung
axis results from complex interactions between microbial
components in the gut and lung flora and local and long-
term immunity. Mice infected with the H1N1 flu in the nose
developed lung infections, a marked change in the composition
of the intestinal flora, and an increase in Bacteroides (21). Using
mouse models of respiratory tract influenza infection found that
respiratory tract influenza infection can cause intestinal damage
and change the composition of the intestinal microbiome with
the increase of Enterobacteriaceae bacteria and the decrease of
Lactobacillus and Lactococcus (22). In a meta-analysis, the gut
microbiota of 30 COVID-19 subjects, 24 H1N1 patients, and 30
healthy controls were evaluated. It was found that the intestinal
bacterial diversity of subjects infected with SARS-CoV-2 was
significantly reduced, and the relative abundance of beneficial
microorganisms, such as Bifidobacterium was also reduced (23).
Therefore, it is speculated that SARS-CoV-2 may indirectly affect
the intestinal flora related to the intestine-pulmonary axis and
damage human immunity, and it can prevent and treat lung
infections caused by SARS-CoV-2 by regulating the relevant
intestinal flora.

Changes in the Intestinal Flora of
COVID-19 Patients
The intestinal microflora is closely associated with respiratory
viral infections and causes various infections through the
gut-lung axis (24). In addition, influenza infection will affect
the composition of the intestinal flora, and the disorder of the
intestinal flora will reduce the host’s antiviral immune response,
thereby aggravating the lung damage caused by these infections
(25). Among them, changes in the intestinal environment and
immune factors caused by actinomycetes may aggravate the
damage caused by inflammatory bowel disease. Compared
with healthy individuals, the fecal microbiome of COVID-19
patients has significantly changed. The baseline abundance of
Coprobacillus, Clostridium ramosum, and Clostridium hatheway
correlates with the severity of COVID-19; the abundance of
Faecalibacterium prausnitzii (an anti-inflammatory bacteria)
the degree is negatively correlated with the severity of the
disease (26). Sequenced 274 feces samples (including feces
from 100 COVID-19 patients) and found that members of
the Bacteroidetes phylum in patients with COVID-19 were
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relatively abundant, and the compositional differences in the gut
microbiota of COVID-19 were mainly caused by the enrichment
of Ruminococcus gnavus, Ruminococcus torques and Bacteroides
dorei, and the depletion of Bifidobacterium adolescentis,
Faecalibacterium prausnitzii and Eubacterium rectale (27). In
conclusion, the gut microbiota of SARS-CoV-2-infected patients
is altered by a decrease in commensal microorganisms, a loss of
bacterial diversity, and an increase in opportunistic pathogens.

Patients with metabolic and GI are considered to be at
moderate to high risk of SARS-CoV-2 infection, suggesting
that gut dysbiosis directly affects the severity of COVID-19
(28). RNA metagenomics sequencing was performed on the
continuous fecal virus extracts of 15 COVID-19 hospitalized
patients. Feces with high SARS-CoV-2 infectivity have higher
microbiome functions, and demonstrated the increased relative
abundance of Collinsella aerofaciens, C. tanakaei, Morganella
morganii, and Streptococcus infants (29). Based on COVID-19
patient data, a blood proteomics risk score was constructed, and
it was found that gut microbial characteristics can highly predict
the susceptibility and severity of COVID-19 (30). Therefore,
intestinal microbial characteristics and related metabolites can be
used as potential prevention/treatment targets for intervention,
especially for those who are susceptible to SARS-CoV-2 infection.

Gut Flora Regulates Immunity Through the
Gut-Lung Axis
The gastrointestinal tract hosts a complex and highly diverse
microbial ecosystem that interacts with the host to ensure
the establishment and persistence of immune homeostasis
(31). These complex microbial communities provide important
genomic and enzymatic capabilities and play critical roles in
the immune system’s induction, development, and function,
protection from pathogens and sustained tolerance to innocuous
antigens, and protection of the ecology of the microbiota (32).
The gut microbiome is the protective agent during pneumococcal
pneumonia, and the gut microbiome enhances primary alveolar
macrophage function (20). In an acute lung infection model,
oral administration of segmented filamentous bacteria stimulates
pulmonary T helper cell responses and reduces S. pneumoniae
infection and mortality (33). Studies have shown that patients
with COVID-19 have lower levels of probiotics (such as
Lactobacillus and Bifidobacterium) (34). Because of the critical
role of the intestinal flora and its metabolites in regulating the
host’s immune and inflammatory response, the regulation of the
intestinal flora can be used to prevent and treat COVID-19 and
related diseases (such as viral and/or bacterial pneumonia, acute
respiratory infections, or flu) has attracted considerable attention.

The interaction between the gastrointestinal tract and the
respiratory tract is achieved through a common mucosal
immunity. There is persistent crosstalk between the intestine
and the pulmonary mucosa through the mesenteric lymphatic
system and the pulmonary lymph nodes (35). Short chain
fatty acids (SCFAs) induce the expression of dendritic cell
and macrophage pattern recognition receptors and regulate
cytokine secretion and antibody synthesis (sIgA and IgM) (36).
Dysbiosis in the lung affects the immune system and decreased

immune cell recruitment leads to increased viral load in the
lungs and reduced IFN-α and -β production, which negatively
affects T cell priming (37). Germ-free mice display defects in
several specific immune cell populations, such as impaired innate
lymphocyte function, lack of IgA-producing plasma cells, and,
more generally, increased susceptibility to infection (38). Using
each of 53 separate bacterial species to single-colonizemice, it was
found that the diversity of microbes in the gut ensures the ability
of the microbiota to produce consistent immune regulation (39).
When circumventing responses to pathogenic infections such as
coronaviruses, a healthy gut microbiomemay be vital to maintain
an optimal immune system, preventing a cascade of excessive
immune responses that ultimately damage the lungs and vital
organ systems (Figure 1).

POTENTIAL APPLICATIONS OF TPS TO
ALLEVIATE COVID-19

The gut-lung axis plays an important role in SARS-CoV-2
infection, so targeting the gut-lung axis to treat COVI-19 is
particularly important. TPs are considered to be multifunctional
bioactive molecules, which have antiviral effects in addition to
antibacterial and intestinal flora regulation to enhance immune
function (40). Therefore, TPs are considered to have potential
preventive and therapeutic effects on COVID-19.

Antibacterial Effect of TPs
In addition to various pharmacological effects such as
antioxidant, lowering blood sugar, and immune regulation,
TPs also have potent antibacterial effects, especially for Gram-
positive and Gram-negative bacteria (41). Although the current
research results on the antibacterial mechanism of TPs are
not very clear, researchers generally believe that the mechanism
involves many aspects, such as destroying the cell wall membrane
structure, interfering with cell growth and division, and inducing
oxidative stress (42). Catechins can inhibit bacterial toxins
directly by binding to bacterial toxins or indirectly by preventing
bacterial toxin secretion or promoting bacterial protease
breakdown (43).

The influence of the catechin structure in TPs on the
antibacterial effect mainly includes: (1) The complexation of
the ortho-phenolic hydroxyl group with the metal ion. The
metal ions in bacteria are partly prosthetic groups of enzymes
and partly essential bacteria elements. Multiple ortho-phenolic
hydroxyl groups of TPs molecules can be used as multi-
base ligands to undergo complex reactions with iron, calcium,
and other ions to produce precipitation. Induce oxidative
stress while depriving bacteria of essential nutrients, thereby
affecting bacterial activity, growth, and reproduction (44, 45);
(2) The phenolic hydroxyl group and benzene ring structure
are combined with proteins. The phenolic hydroxyl group and
benzene ring structure of TPs can be combined with bacterial
proteins through hydrogen bonds or hydrophobicity, affecting
the physiological functions of proteins, thereby inhibiting
bacterial infection and metabolic activity (46, 47); (3) The
effect of polymerization degree on the bacteriostatic effect of
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FIGURE 1 | Mechanisms of the gut-lung axis in the immune system. The previous crosstalk between the gut and lung mucosa is through the mesenteric lymphatic

system and the lymph nodes in the lungs, and immune cells generated by the immune function between the gut and the lungs move through the lymphatic system

and blood circulation.

catechins. For example, compared with catechin monomers,
its oligomers have higher antibacterial properties, which may
be attributed to the polymers having more phenolic hydroxyl
groups and benzene ring structures and having amore substantial
binding ability with proteins (48). However, compared with
catechin oligomers, catechin polymers and polymers have weaker
bacteriostatic effects, which may be because the molecular
weight of catechin polymers increases with the increase of the
degree of polymerization, making it challenging to penetrate
bacterial cell membranes (49). In addition, affected by the steric
hindrance effect of macromolecules, the activity of the phenolic
hydroxyl group is weakened, resulting in a decrease in the
antibacterial ability.

Regulation of Gut Microbes by TPs
TPs can promote the growth of beneficial bacteria in the intestinal
tract and inhibit the growth of pathogenic microorganisms in
the intestinal tract from regulating the composition of intestinal
flora (50). Intestinal microbes are an essential component of
the intestinal environment. Intestinal microbes can enhance
the function of the intestinal barrier by interacting with the
body’s metabolism to produce various metabolites and promote

mucosal immune homeostasis (51). The intestinal mucosal
barrier is a defense system against external infections and self-
maintenance and plays an essential role in maintaining intestinal
homeostasis and body health. Zhang et al. (52) studied TPs’
therapeutic and preventive effects on ileal injury and intestinal
flora disorder. The results showed that TPs could reduce
inflammatory and oxidative stress markers, increase the levels
of antioxidant enzymes and tight junction proteins, effectively
improve the intestinal flora imbalance, reduce the damage to the
intestinal mucosa and boost the body’s immunity.

Ten volunteers who did not drink green tea drank it
for 10 consecutive days, and the proportion of Bifidobacteria

showed an overall increasing trend (53). A mouse model was

established to explore the regulatory effect of TPs on the intestinal
flora. The study found that after feeding green TPs, specific
bacterial communities such as Bacteroidetes and Proteobacteria
still increased, and Firmicutes showed a decreasing trend (54).
This result indicates that TPs in green tea can improve the
diversity of intestinal flora and regulate the composition of
flora, thereby improving and maintaining the ecological balance
of intestinal flora, which is beneficial to human health. The
addition of TPs to calf feed reduces Clostridium perfringens in
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the gut, which is associated with a lower incidence of digestive
and respiratory diseases (55). Green tea consumption decreased
relative abundance at the phylum level of Bacteroidetes. In
addition, SCFAs-producing bacteria, including Faecalibacterium,
Coprococcus, and Bifidobacterium longum, increased, while
species from Prevotella decreased. And SCFAs are important
factors regulating cytokine secretion and antibody synthesis (56).
In conclusion, the protective effect of TPs on intestinal microflora
has been supported by a large number of experimental results.
Therefore, the reconstruction of immune homeostasis through
the normalization of the intestinal microbiome is considered an
effective method to treat COVID-19.

Inhibitory Mechanism of TPs on
SARS-CoV-2
Recent studies have demonstrated that TPs, particularly EGCG,
inhibit coronavirus enzymes as well as coronavirus replication
in vitro (57). However, laboratory and clinical studies have been
performed to study the efficacy of green tea consumption in
COVID-19 treatment, and the results are promising. SARS-CoV-
2 has a high affinity for ACE2, which acts as a receptor for the
spike glycoprotein on the surface of coronaviruses to facilitate
virus entry. Nrf2 is a cytoprotective transcription factor that
regulates the expression of a wide range of genes involved in
detoxification, inflammatory, immune and antiviral responses
(58). EGCG, via activating Nrf2, can suppress ACE2 (a cellular
receptor for SARS-CoV-2) and TMPRSS2 (the cell entry that
mediates the virus) (59). 3CL protease is required for the
maturation of SARS-CoV-2, and numerous experiments have
demonstrated that TPs (EGCG and theaflavins) have inhibitory
effects on SARS-CoV-2 3CL protease (60). Mice with COVID-
19 had lower levels of coronavirus RNA in their lungs when
fed EGCG and TPs containing more than 60% catechins (61).
Results demonstrated that EGCG treatment decreases viral RNA
and viral protein production in the media, therefore, EGCG can
inhibit coronavirus replication.

Data from docking simulations and in vitro assays suggest
that EGCG is capable of inhibiting the SARS-Cov-2 major
protease activity and thus can be used to interfere with SARS-
Cov-2 infection (62). In a recent study reviewing the antiviral
activities of EGCG and theaflavins, the authors suggest that
both polyphenols are able to interact with receptors present in
the structure of the SARS-CoV-2 virus, thereby inhibiting its
replication. In particular, theaflavin-3,3’-digallate (TF3) can be
employed as prophylactic agents due to their capacity to bind
spike RBD the main binding domain of the S protein located on
the S1 subunit of the SARS-CoV-2 virus; and TF3 can directly
bind to viral M protease and ACE2 receptors, helping to fight
SARS-CoV-2. EGCG can be used as a potential preventive agent
because of its ability to dock various active sites of the SARS-CoV-
2 virus (63).

Evidence suggests that patients infected with RNA viruses
are in a chronic oxidative stress state, which is induced by the
activation of phagocytes to produce and release ROS, and leads
to the depletion of antioxidant defense systems (64). The increase
in reactive oxygen species and the loss of antioxidant defense

mechanisms increase the incidence of SARS-CoV-2 infection
and the risk of immune dysfunction and death (65). Catechins
activate antioxidant enzymes, and the antioxidant power of
human plasma increases with the continued intake of green tea.
These antioxidant defense systems also protect against oxidative
damage in the brain, long-term intake of green tea catechins may
be important because cells are often exposed to oxidative stress
(66). TPs inhibits certain enzymes involved in reactive oxygen
species ROS production by upregulating other endogenous
antioxidant enzymes (such as glutathione peroxidase, superoxide
dismutase and catalase); while promoting heme oxygenation
enzyme 1 expression to reduce ROS production (67). Therefore,
it is necessary to supplement dietary antioxidants to improve
immunity when managing COVID-19. The use of exogenous
antioxidants such as TPs can significantly influence the clinical
outcome of COVID-19 by improving patients’ health, speeding
up the immune process, and thus shortening hospital stay.

Overall, TPs have antiviral solid and antioxidation properties
that may help reduce the risk of developing severe COVID-
19 symptoms; these findings highlight the potential for TPs to
prevent and treat COVID-19 (Figure 2).

REDUCTION OF COVID-19 COMORBIDITY
RISK BY TPS

In a retrospective study of 1,591 severely ill patients with COVID-
19, hypertension was the most common comorbidity (49%),
followed by cardiovascular disease (21%), hypercholesterolemia
(18%), and diabetes (17%) (68). Patients with COVID-19 can
develop complications of lung disease (cough, decreased lung
diffusivity, sleep apnea, and pulmonary fibrosis), cardiovascular
disease (diabetes, arrhythmia, andmyocarditis), and neurological
disorder (depression, anxiety, and attention disorders) (69). TP
can effectively prevent and treat some complications.

Pulmonary Fibrosis
COVID-19 patients may have the sequelae of pulmonary fibrosis,
with symptoms such as dry cough, fatigue, and dyspnea,
leading to weight loss, worsening physical condition, long-
term disability, and affecting the patient’s quality of life (70).
EGCG strongly inhibited neutrophil, inhibited reactive oxygen
species activity and inhibited apoptosis of activated neutrophil,
enhanced the regression of pulmonary inflammation model, and
significantly reduced subsequent fibrosis (71). EGCG reduces
NF-κB, TNF-α, and IL-1β, and this blockade may be critical for
the upregulation of proinflammatory and fibrotic cytokine genes
in models of pulmonary fibrosis (72). But so far, there are no clear
and reliable data on the frequency and severity of pulmonary
fibrosis in COVID-19 patients.

During treatment of pulmonary fibrotic rats with EGCG,
the rats exhibited reduced inflammation, alveolar damage, and
vascular congestion, which were associated with the membrane-
stabilizing and antioxidant properties of EGCG, demonstrating
that EGCG can act as a potential anti-fibrotic drug (73). Oral
administration of green tea extract (equivalent to EGCG doses
of 300–400 mg/kg) in drinking water to mice almost wholly
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FIGURE 2 | EGCG, via activating Nrf2, can suppress ACE2 receptors and TMPRSS2 during SARS-CoV-2 infection. TF3 can bind the SARS-CoV-2 spike

receptor-binding domain, and help to fight SARS-CoV-2.

prevented interstitial and peribronchial fibrosis, >99% reduction
in interstitial and peribronchial fibrosis and ∼50% reduction
in perivascular fibrosis (74). After EGCG (600mg given orally
for 14 days) treatment in 20 patients with pulmonary fibrosis,
reverses profibrotic biomarkers in their diagnostic biopsies and
serum samples, EGCG treatment was associated with a reduction
in fibrogenesis (75). These inhibitory activities of EGCG in
rodent models and humans suggest that EGCGmay be beneficial
for preventing and treating pulmonary fibrosis in COVID-
19 patients.

Diabetes
High-risk patients with severe COVID-19 or death have a variety
of characteristics, including advanced age and masculinity, as
well as potential health problems such as cardiovascular disease,
obesity, and diabetes (76). Preliminary studies have found that
diabetes increases the risk of infection with SARS-CoV-2 and
increases the severity of COVID-19 (77). In human monocytes,
an increase in glucose levels leads to an increase in SARS-
COV-2 replication, which is maintained by glycolysis through
the production of mitochondrial reactive oxygen species and
activation of hypoxia-inducible factor 1α (78). Therefore, high

blood sugar may support virus proliferation. Patients with
diabetes usually have higher levels of SARS-CoV-2 infection
than patients without diabetes. ACE2 knockout mice are
more susceptible to high-fat diet-induced pancreatic beta-cell
dysfunction than wild-type mice (79); and SARS-CoV infection
can lead to hyperglycemia in people with no history of diabetes
(80). This finding suggests that coronaviruses might specifically
damage islets, potentially leading to hyperglycemia.

Drinking 3–4 cups of tea per day (600–900 mg/day) is often
considered to prevent personal obesity metabolic syndrome or

reduce disease risk (81). In mice fed a high-fat (60% calorie)

diet; we found that EGCG (0.32% of the diet) significantly
reduced weight gain, body fat, and visceral fat at 16 weeks
(82). A retrospective study of 17,413 Japanese adults aged 40–
65 showed compared with people who drank <1 cup of green
tea a week, drinking more than six cups a day reduced the risk
of diabetes by 33% (83). TPs in reducing plasma cholesterol
levels, prevention of hypertension and improving endothelial
function in the role of helping to prevent cardiovascular diseases.
Weight loss and improved metabolic health may help better
cope with COVID-19, whether regular drinking tea (and the
required amount) can reduce the risk of COVID-19 infection

Frontiers in Nutrition | www.frontiersin.org 6 April 2022 | Volume 9 | Article 89984246

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Xu et al. Tea Polyphenols Prevent COVID-19

TABLE 1 | The reduction of COVID-19 comorbidity risk by TPs.

Comorbidity Risk Experimental model Results Reference

Pulmonary fibrosis 33% EGCG doses of 300–400 mg/kg >99% reduction in interstitial and peribronchial fibrosis and ∼50%

reduction in perivascular fibrosis

(74)

Diabetes 17% Drink ≥ 6 cups a day 33% lower risk of diabetes (83)

Depression 25% Drink ≥ 4 cups a day 51% lower prevalence of depressive symptoms (88)

and related syndromes requires a large number of experiments
to prove.

Depression
In addition to posing a significant threat to physical health, the
COVID-19 pandemic also poses a threat to the population’s
mental health due to increased fear and uncertainty; and
disruption to social and economic systems. The prevalence of
depression in the general population during the COVID-19
outbreak is 25% (84). Alterations in the composition of the
gut microbiota can increase the permeability of the gut barrier,
activate systemic inflammatory and immune responses, modulate
the release and efficacy of monoamine neurotransmitters, alter
the activity of the hypothalamic-pituitary-adrenal axis and
function, and alters the abundance of brain-derived neurotrophic
factor (BDNF) (85). A deficiency of BDNF may lead to
neuroplasticity impairment and depression. The mechanism of
the anti-depression effect of TPs is related to the inhibition of
HPA axis hyperactivity by reducing serum corticosterone and
ACTH levels (86). TPs also have an anti-anxiety effect (similar
to anti-anxiety drugs) at lower doses.

An investigation involving 2,011 Finnish general individuals
found that daily consumption of tea was negatively correlated
with the risk of depression (87). In addition, participants who
drank ≥4 cups of green tea per day had a 51% lower prevalence
of depressive symptoms compared to those who drank ≤1 cup
of green tea per day (88). The antidepressant mechanism of
TPs may be related to scavenging brain free radicals, regulating
monoamine neurotransmitters in the brain tissue of depressed
animals, and increasing the activity of brain antioxidant enzymes.
Via establishing a mouse model of depression, it was found that
the content of 5-HT and norepinephrine in the brain tissue
of normal mice was significantly higher than that of depressed
mice (89). After TPs were given, the content of 5-HT and
norepinephrine in the brain tissue was significantly higher than
that in the original depression mice (90). The antidepressant
effect of TPs has been proven, prompt prevention of mental
health status is also necessary for COVID-19 patients, whether
regular drinking tea can reduce the risk of COVID-19 infection
and related syndromes needs to be further investigated (Table 1,
Figure 3).

DOSAGE AND INSTRUCTIONS FOR
CORRECT USE OF TPS

Tea is rich in polyphenols, inexpensive, readily available, and
most importantly, safe for long-term use regardless of the

patient’s age (91). However, it is essential to note that taking
EGCG containing preparations during pregnancy may increase
the risk of fatal leukemia (92). According to the review
of toxicological evidence, the liver is the target organ, and
hepatotoxicity is the critical effect, strongly associated with
certain dosing conditions (such as mode of administration,
fasting) and positively correlated with catechin and EGCG
content (93). In the case of oral therapy, changes in hepatotoxicity
and serum lipid profiles were evident only at the highest dose of
108mg/kg/p.o. However, EGCG treatment to achieve appreciable
plasma concentrations may concomitantly increase serum lipids,
thereby increasing the severity of the liver injury (94). At present,
we have not accurately explained the association mechanism
between EGCG, liver, and blood lipids, which must be clarified
further. Regular consumption of green tea appears to be safe,
but high doses of green tea extract in dietary supplements may
affect drug metabolism and efficacy (95). Because these products
contain concentrated bioactive agents, the doses consumed
extensively exceed the doses available from food. Compared to
the control group (about 10mg per day), short-term (3 days)
overconsumption of green tea catechins (about 8 grams per day)
resulted in a significant increase in liver enzyme activity (by 35–
80%) (96). Interestingly, short-term overdose of green tea extract
has a more significant effect on drug biotransformation enzymes
than long-term small doses. There is no clear information on
how much catechins should be taken to achieve the best results.
Therefore, it is necessary to evaluate the specific amount of
catechin and its possible adverse effects.

According to the United States Department of Agriculture
(USDA), the average total catechin and EGCG per 100mL
of brewed green tea was 126.6mg and 77.8mg, respectively,
based on 1 g tea leaf 100mL infusion (93). Therefore, every
240mL serving of brewed green tea provides about 304mg of
total catechin and 187mg of EGCG. Thirty-six healthy male
volunteers took 800mg of EGCG orally for 10 days and were
tested for safety, tolerability, and plasma kinetic behavior; the
researchers found that the dose was safe and well-tolerated (97).
For adults with normal liver function, the safe intakes limit of
338mg of EGCG per day in solid form (under-eating or fasting
conditions) may be considered. The observed safe level of EGCG
equivalent dose (ingestion or fasting) for green tea preparations
consumed in beverage form is 704 mg/day (93). In a randomized,
double-blind trial of 200 healthcare workers, six capsules per
day (including 378mg of catechin and 270mg of EGCG) for 5
months were better at preventing the flu virus than a placebo (98).

Numerous experiments are still needed to confirm the
specific drug administration (green tea beverage, powdered

Frontiers in Nutrition | www.frontiersin.org 7 April 2022 | Volume 9 | Article 89984247

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Xu et al. Tea Polyphenols Prevent COVID-19

FIGURE 3 | Prevention and treatment of COVID-19 complications with TPs.

green tea extract, catechin mixture, catechin alone), dose
regimen (different doses, different duration of treatment), and
administration pathway management (oral in diet, oral in a
beverage) before determining the use of TPs for the treatment
of COVID-19.

SUMMARY AND FUTURE DIRECTION

Many experiments have confirmed the safety of tea, and an
appropriate amount of TPs will not cause harm to the human
body. EGCG is one of the most important catechins in tea,
enhancing the body’s antiviral ability and gradually being
regarded as a potential therapeutic agent for novel coronavirus
infection. Although numerous epidemiological and clinical
studies have shown that TPs have preventive and therapeutic
effects on COVID-19, we lack specific dosages of TPs as
dietary supplements or nutraceuticals for the prevention and

treatment of COVID-19. To obtain more specific information,
well-designed extensive cohort studies and human intervention
trials are necessary.
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Green tea (GT) and oolong tea (OLT) are widely consumed beverages, and their
preventive and regulatory effects on hypertension have been reported. However, the
interventional effects of GT and OLT on hypertension induced by a high-salt diet and
its mechanism have not been fully explored. This study evaluated the anti-hypertensive
effects of GT and OLT and their underlying mechanisms. The in vivo anti-hypertensive
effects of GT and OLT and their capability to prevent hypertension and regulate the
intestinal microbiota in Wistar rats fed with a high-salt diet were evaluated. Our results
show that GT and OLT supplementations could regulate oxidative stress, inflammation,
gene expression, and parameter levels related to blood pressure (BP) and prevent the
increase in BP induced by a high-salt diet. Furthermore, both GT and OLT boosted the
richness and diversity of intestinal microbiota, increased the abundance of beneficial
bacteria and reduced the abundance of harmful bacteria and conditionally pathogenic
bacteria, and regulated the intestinal microbial metabolism pathway related to BP.
Among them, OLT presented better effects than GT. These findings indicate that GT
and OLT can prevent hypertension caused by high-salt diets, which may be due to the
regulation of intestinal flora by GT and OLT.

Keywords: green tea, oolong tea, high-salt diet, hypertension, intestinal flora

INTRODUCTION

High-salt intake in the western diet is an important risk factor for many cardiovascular diseases (1).
It is becoming increasingly difficult to ignore the adverse effects of a high-salt diet on cardiovascular
health. Emerging evidence reveals that the potential cardiovascular hazards of high-salt diets are
mainly related to arterial hypertension and are significantly and positively correlated with its
morbidity and mortality (2). Besides, previous intervention studies have revealed that reducing
sodium salt in the diet would reduce the occurrence of cardiovascular events (3). A long-term
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high-salt diet can also cause other unfavorable conditions, such
as the imbalance of the intestinal microecology (4). So far, most
studies have focused on the direct effects on the blood vessel
and kidney system (5). However, some studies have shown that
gut microbes are involved in these processes, and changes in
their composition and structure will affect the occurrence and
development of hypertension (1).

The intestinal microorganism is an essential part of the human
micro-ecological environment and crucial in maintaining human
health. It is a dynamically balanced system. Intestinal microbes
respond to fluctuations in the composition of the diet, resulting
in transient or persistent changes in the composition of the gut
microbiome (6). The intake of high-salt food can cause significant
changes in the composition of the microbial community and
induce hypertension, thus producing a profound impact on the
host’s health (1). Accumulating evidence shows that hypertension
is associated with host intestinal microflora and its metabolic
disorders (7). In addition, many animal experimental models
also show that hypertension causes intestinal flora imbalance
(8, 9), and transplanting the dysbiological intestinal microbiota
from hypertensive subjects and animal models into normotensive
animals would increase the recipient’s BP (7, 10). Given the
relationship between hypertension and intestinal microflora,
adjusting the intestinal microflora is still a potential and effective
way to reduce hypertension. The environment plays a vital role in
regulating the composition and structure of intestinal microbes,
especially diet (11).

Since diet has a noticeable impact on intestinal microbes, it
is an executable strategy to use dietary intervention to restore
the destroyed intestinal flora and ameliorate hypertension and
its complications. Tea is one of the three largest non-alcoholic
beverages globally, and its drinking has a history of nearly a
thousand years. Tea contains many active ingredients, such as tea
polyphenols, polysaccharides, proteins, and catechins, which are
considered to have various health benefits (12). Many types of teas
and extracts can intervene or influence the intestinal microflora
and microenvironment, thus exerting its prebiotic effect (13).
So far, however, there has been little discussion on tea’s impact
on reducing BP by regulating the composition of intestinal
microorganisms. Accumulating studies have indicated that tea
has shown remarkable effects in preventing and managing
hypertension (12). The epidemiological and population-based
cohort results show that drinking GT or OLT can significantly
reduce the risk of hypertension (14). Moreover, intervention
studies of many hypertensive patients and animal models
have shown that black tea and GT have a significant anti-
hypertensive effect and can protect the cardiovascular system
(15, 16). However, research has consistently shown that the
mechanism of tea lowering BP has not been adequately
investigated. To solve these issues, more related works need
to be carried out.

In this work, we investigated the effects of GT and OLT
on BP, metabolic disorders, and gut microbial structure and
composition in high-salt-fed rats. Also, we initially explored the
possible mechanism of GT and OLT to prevent hypertension.
These outcomes will contribute to the development of functional
hypotensive foods.

MATERIALS AND METHODS

Materials and Reagents
Green and oolong teas were obtained from Enshi Selenium
Impression Agricultural Development Co., Ltd., (Enshi, China)
and Guangdong Baixiang Tea Co., Ltd., (Guangdong province,
China), respectively. The cultivar of GT came from the local area
of Enshi, named ‘Enshi Taizi’, contained four or five leaves with
fully mature. The cultivar of OLT was semi-treerescent form and
sexual group and it contained one bud and four or five leaves
with fully mature. Glutathione peroxidase (GPX), superoxide
dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO),
creatinine (Cre), aldosterone (ALD), angiotensin-converting
enzyme II (Ang II), and c-reactive protein (CRP) detection
kits were purchased from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). All catechin standards used in
liquid chromatography were purchased from Chengdu RefMedic
Biotech Co., Ltd., (Chengdu, China). All 21 amino acid
standards were purchased from Sigma Co., (St Louis, MO,
United States). All other chemicals were of analytical grade unless
otherwise specified.

Tea Aqueous Extract Preparation
Tea leaves were crushed and then extracted (1:10 and
1:9, w/v) twice with boiling water for 4 h. After filtering
through 500 mesh nylon cloth, the extracts were combined
and centrifuged, and then the supernatant was concentrated
and lyophilized.

Chemical Profile Analysis
The polysaccharide content was measured by the phenol
sulfuric acid method (17). The polyphenol content was
determined by using Folin–Ciocalteu method regarding the
national standard of China (GBT8313-2018). The flavonoid
content was investigated according to the description of the
national standard of China (SNT4592-2016). The element
distribution was percormed according to the previous report
(18). The catechin, alkaloid, and phenolic acid contents were
measured according to the previous report by our lab (19).
A high-performance liquid chromatography LCC-AT20 system
(Shimadzu, Tokyo, Japan) was used to analyze the amino acid
content in the samples. All kinds of amino acid standards
(dissolved in 0.1 mol/L HCl) were prepared into a 1 mg/mL
solution, and then each standard solution was mixed equally
and diluted to each concentration gradient with 0.1 mol/L
HCl. The samples were prepared in the same way. A total of
200 µL combined standard solution or sample was dissolved in
mixed solution (200 µL OPA derivatization reagent + 600 µL
boric acid buffer) and derivatized for 15 min in the dark.
Next, HPLC analysis was performed. The HPLC system was
as follows: C18 column (250 mm × 4.6 mm, 5 µm), 35◦C
for column temperature, 1 mL/min for flow rate, 338 nm
for detection wavelength, 20 µL for injection, mobile phase
A: 20 mmol/L dihydrogen phosphate sodium solution; mobile
phase B: a mixed solution (methanol: acetonitrile: distilled
water = 45: 45: 10).
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Animals and Experimental Design
Twenty-four 8-week-old cleaning Wistar male rats were obtained
from Slaccas Laboratory Animal Co., Ltd., (Shanghai, China) and
divided into four groups, including model control (MC), GT,
OLT, and normal control (NC) groups. All animal experiments
were carried out according to the Experimental Animal Ethics
Standards of the Experimental Animal Ethics and Use Committee
of Shanghai Jiao Tong University (approval A2020080) and
the Laboratory animal-Guideline for ethical review of China to
maximize animal welfare. All experimental rats were housed at
the Animal Experiment Center of Shanghai Jiao Tong University
with free access to food and water in a controlled animal
room (25 ± 1◦C, 70–75% humidity, and a 12 h light-dark
cycle). After acclimatization for 1 week, the NC group received
Shoobree common standard feed (No. 1010009, Jiangsu Synergy
Pharmaceutical Bioengineering Co., Lt d., Jiangsu, China) for
9 weeks on a regular diet; MC, GT, and OLT groups received
with high-salt chow (92.45% common standard feed + 7.55%
sodium chloride, 20210308(x), Suzhou Hongxin Biotechnology
Co., Ltd., Jiangsu, China) for 9 weeks to induce hypertension.
The Shoobree typical standard feed composition was presented
in our previous report (20). In addition, the rats in GT and OLT
groups were given 500 mg/kg GT and OLT aqueous extracts
added into drinking water daily, respectively, and the rats in MC
and NC groups were given distilled water. At the start and end of
treatment, the body weight and systolic pressure reflecting BP of
rats were measured.

Histology Analysis
After dehydration, the heart and kidney tissues were embedded in
paraffin and sliced (3 µm of thickness) and then placed in an oven
at 60◦C for 30–60 min. Next, gradient staining was performed
according to the following steps: xylene I for 5 min, xylene II
for 5 min, xylene III for 5 min, absolute ethanol for 1 min, 95%
alcohol for 1 min, and 75% alcohol for 1 min. After washing,
the sections were stained with hematoxylin staining solution for
2 min. After washing and returning to blue, the gradient dyeing
was continued according to the following steps: eosin staining
solution for 1 min, 75% alcohol for 30 s, 95% alcohol for 30 s,
absolute alcohol for 30 s, xylene transparent for 1 min. Finally,
the sections were mounted, dried, and observed under an optical
microscope (× 400).

Real-Time Reverse
Transcription-Quantitative PCR
(qRT-PCR) Analysis
The total mRNA in kidney tissue was extracted and reverse
transcribed into cDNA according to the Servicebio R©RT First
Strand cDNA Synthesis Kit instructions (Service, Wuhan,
China). The mRNA expression level was detected by SYBR qPCR
Master Mix (High ROX, Wuhan, China) according to the light
quantitative PCR kit instructions. The specific primers used were
as follows: ACE, 5′-TCATCCAGTTCCAGTTCCACG-3′ (F),
5′-CGTGTTTGGTGTCCAGG-3′(R); endothelin-1 (ET-1), 5′-
TTGCTCCTGCTCCTCCTTGAT-3′(F), 5′-CTGTTCCCTTGG
TCTGTGGTC-3′(R); endothelial nitric oxide synthase (eNOS),
5′-GGTATTTGATGCTCGGGACTGC-3′(F), 5′- GTGATGG

CTGAACGAAGATTGC-3′ (R). β-actin, 5′-TGCTATGTTGC
CCTAGACTTCG-3′ (F), 5′-GTTGGCATAGAGGTCTTTAC
GG-3′ (R). The gene β-actin was employed as an internal
reference, and the relative mRNA level of target genes was
calculated using the 2−11 Ct method.

Biochemical Analysis
The blood of rats was collected by cardiac puncture. Then,
blood was immediately managed and centrifuged at high speed
(10,000 rpm) at 4◦C for 10 min. Serum was collected and stored
at−80◦C. The levels of GPX, SOD, MDA, NO, Cre, ALD, Ang II,
and CRP in serum were measured by commercially available kits.

Microbiome Profiling of Fecal Samples
The tail of the fixed rats was lifted, and the lower abdomen of
the rats was gently pressed. After that, fresh feces were collected
aseptically and stored at −80◦C until detection. Detailed DNA
extraction analysis and sequencing steps were summarized in
Supplementary Information.

Statistical Analysis
The data were expressed as the arithmetic mean ± standard
deviation. The student’s t-test assessed comparisons between
groups for two groups and one-way ANOVA for multiple groups
using the Tukey test. A level of p < 0.05 was considered
statistically significant. All statistical analysis was performed
by SPSS 20.0 (SPSS Inc., Chicago, IL, United States) and
GraphPad Prism 8.0 (GraphPad Software Inc., San Diego,
CA, United States).

RESULTS

Chemical Composition
As shown in Table 1 and Supplementary Figure 1, both
GT and OLT extracts contained appreciable contents of tea
polysaccharides, polyphenols, epigallocatechin gallate (EGCG),
epigallocatechin (EGC), total flavonoids, and L-theanine.
Therein, the higher contents of EGCG, EGC, and L-theanine
were found in OLT extracts, and the higher contents of tea
polysaccharides, polyphenols, and total flavonoids were found in
GT extracts. In addition, the two tea extracts also contained a high
content of free amino acids, alkaloids and element distributions
(Supplementary Table 1). However, most of the components
of the two tea extracts had significant differences, which might
be related to their sources and processing techniques. These
results indicate that both GT and OLT extracts contain beneficial
nutrients, which may be the main contributors to the regulation
of BP.

Effect of Green Tea and Oolong Tea on
Body Weight, Blood Pressure, and
Histology of the Heart and Kidney
To assess the implication of a high-salt diet on the body
weight and BP of Wistar rats before and after drinking tea
were measured. Overall, a long-term high-salt diet did not
significantly affect the body weight, and the intervention of teas
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TABLE 1 | Comparison of GT and OLT extracts for the main components (n = 3).

Taxonomy Category GT OLT

Polysaccharides (mg/g) Tea polysaccharides 283.02 ± 7.09 176.23 ± 5.14**

Tea polyphenols (mg/g) Total polyphenols 221.30 ± 1.82 192.49 ± 1.12**

Flavone (mg/g) Total flavonoids 30.61 ± 0.63 20.49 ± 0.11**

Catechins (mg/g) Catechin 5.31 ± 0.07 11.07 ± 0.02**

EC 16.29 ± 0.39 9.00 ± 1.42**

ECG 12.06 ± 0.19 11.18 ± 0.20**

GC 48.36 ± 0.85 8.62 ± 0.35**

EGC 52.46 ± 0.98 59.36 ± 2.80*

GCG 18.24 ± 0.30 10.24 ± 0.53**

EGCG 57.24 ± 0.98 86.31 ± 0.75**

Alkaloids (mg/g) Caffeine 62.69 ± 0.35 8.40 ± 0.59**

Theobromine 13.50 ± 0.23 21.64 ± 0.07**

Phenolic acids (mg/g) Gallic acid 3.78 ± 0.05 20.05 ± 0.13**

Caffeic acid 0.81 ± 0.01 0.83 ± 0.09ns

p-Coumaric acid 1.40 ± 0.02 1.24 ± 0.05*

Ferulic acid 0.59 ± 0.01 0.69 ± 0.03*

Amino acids (mg/g) Asp 6.72 ± 0.05 3.38 ± 0.02**

Glu 6.50 ± 0.17 0.65 ± 0.07**

Asn 1.99 ± 0.01 0.87 ± 0.01**

Gln 0.35 ± 0.01 0.62 ± 0.01**

Gly 0.35 ± 0.01 0.65 ± 0.32**

His 0.44 ± 0.02 0.51 ± 0.04*

Thr 1.27 ± 0.05 1.04 ± 0.09**

Pro 0.15 ± 0.01 0.15 ± 0.07ns

Ala 1.14 ± 0.01 0.58 ± 0.04**

Ser 0.36 ± 0.05 1.34 ± 0.08**

L-theanine 20.68 ± 0.02 21.53 ± 0.03*

Tyr 0.08 ± 0.01 3.51 ± 0.07**

Arg 2.79 ± 0.12 2.12 ± 0.18ns

Val 0.17 ± 0.01 0.36 ± 0.02**

Met 1.40 ± 0.13 1.65 ± 0.15**

Trp 1.95 ± 0.13 2.61 ± 0.15**

Ile 0.78 ± 0.05 2.47 ± 0.30**

Phe 0.21 ± 0.03 0.44 ± 0.02**

Leu 0.70 ± 0.07 0.64 ± 0.12ns

Lys 1.75 ± 0.13 4.27 ± 0.33**

Cys ND ND

ND, not detected. Asterisk indicates a significant difference compared to GT.
*p < 0.05, **p < 0.01. EC, epicatechin; ECG, epicatechin gallate; GC,
gallocatechin; EGC, epigallocatechin; GCG, gallocatechin gallate; EGCG,
epigallocatechin gallate.

had limited effects on the body weight (Figure 1A). However,
the treatment of GT or OLT prevented the increase in BP
caused by a high-salt diet, and the BP of the GT and OLT
groups was significantly different from that of the MC group
after 8 weeks of intervention (Figure 1B). Moreover, the effect
of OLT on preventing the increase of BP was better than GT
(Figure 1C). Further histological analysis shows that both GT and
OLT reversed the structural damage of the heart and kidney tissue
caused by a high-salt diet (Figure 1D), including hypertrophy
and necrosis of cardiomyocytes, thickening of the arterial walls of
small blood vessels in the myocardium, and glomerular capillary
dilation, as well as vacuolization, degeneration and necrosis of
renal tubular epithelial cells.

Effect of Green Tea and Oolong Tea on
the Gene Expression
Studies have shown that a long-term high-salt diet causes
an increase in BP (1). Thus, we investigated the effect of
GT and OLT on the gene expressions closely related to BP
regulation in the kidneys, including ACE, ET-1, and eNOS.
From the data in Figures 2A–C, compared with the NC group,
the mRNA expression of ACE and ET-1 of the MC group
increased significantly, while the eNOS expression decreased
significantly. However, compared with the MC group, GT
and OLT treatments significantly down-regulated the mRNA
expressions of ACE and ET-1 and significantly up-regulated
the mRNA expression of eNOS. In particular, OLT exhibited a
stronger regulatory effect than GT.

Effect of Green Tea and Oolong Tea on
the Serum Biochemical Parameters
Ang II, ALD, and NO are important regulators to maintain the
balance of BP in the body, and their aberrant level will have a
meaningful impact on BP (21, 22). As shown in Figures 2D–
F, the MC group reported significantly more Ang II and ALD
levels and lowered NO level than the NC groups. GT or OLT
administration remarkably reduced the Ang II and ALD levels
and considerably elevated the NO level. Therein, only a limited
regulation by GT on the ALD level was presented. Besides, the
regulation effect of OLT on ALD was also better than GT.

The continuous increase of BP will increase the degree of
oxidative stress and inflammation, which will lead to vascular
dysfunction and kidney damage (23). Figures 2G–J shows a
significant decrease in SOD and GPX enzyme activities and a
significant increase in MDA and CRP levels in the MC group.
For SOD and GPX enzyme activities, GT and OLT treatments
significantly enhanced the enzyme activities of SOD and GPX,
respectively. GT and OLT treatments noticeably decreased the
MDA level but had a limited effect on CRP level for MDA and
CRP levels. CRE is one of the markers of renal injury, and
damaged kidneys are usually accompanied by elevated serum
CRE levels (24). As shown in Figure 2K, a long-term high-salt
diet caused a significant increase in the Cre level in the MC
group, but this could be significantly reversed by GT or OLT
intervention. Interestingly, GT and OLT showed similar effects
on the regulation of oxidative stress, inflammation, and kidney
damage (no significant difference between groups).

Effect of Green Tea and Oolong Tea on
the Diversity of Intestinal Flora
16S rRNA high-throughput sequencing technology was used to
sequence the microbiota in fecal samples of rats on the Illumina
novaseq platform. A total of 2,322,739 valid sequences and 4,801
different OTUs were provided from 24 samples (n = 6 in each
group). OTU and Shannon rarefaction curves (Supplementary
Figure 2) indicate that the number of sequencing samples is
sufficient, and the species richness and community uniformity
are both high. The results obtained from the preliminary analysis
of α-diversity, including the Chao and Shannon indices, are
presented in Figures 3A,B. As can be seen, the high-salt
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FIGURE 1 | GT and OLT affected the body weight, blood pressure, and tissue condition. (A) Body weight. (B) Blood pressure. (C) Blood pressure variation after GT
and OLT supplementation, (D) Histological analysis of heart and kidneys. Different uppercase or lowercase letters represent a significant difference among multiple
groups (p < 0.05). Asterisk represent a significant difference between groups. *p < 0.05. One-way ANOVA analysis followed by a Tukey test was employed to
estimate the statistical significance.

diet caused a significant decrease in the OTU richness and
community α-diversity of the intestinal flora. At the same time,
the intervention of GT and OLT alleviated the decline in the
OTU richness and α-diversity caused by the long-term high-
salt diet. Among them, OLT showed a better alteration effect.
The flower diagram of OTUs (Figure 3C) presented 446 mutual
OTUs of all groups. The peculiar OTUs in MC, NC, GT, and OLT
groups were 707, 962, 1,196, and 637. PCoA analysis (β-diversity)
(Figure 3D) showed a complete separation of gut microbiota
community between the MC and NC groups. The intervention of
GT and OLT reshaped the gut microbiota destroyed by the high-
salt diet and brought it close to a healthy state, particularly OLT,
with more effectiveness.

Effect of Green Tea and Oolong Tea on
the Gut Microbiota Composition at the
Phylum Level
At the phylum level (Figure 3H), the intestinal flora structure of
rats was dominated by Firmicutes and Bacteroidetes. Compared
with the NC group, the continuous high-salt diet feeding
caused a significant increase in Firmicutes and a significant
decrease in Bacteroidetes in the intestinal microbes of the
MC group (Figures 3E,F). As a result, an elevated ratio
of Firmicutes to Bacteroides in the MC group was found
(Figure 3G). Conversely, OLT supplementation significantly
decreased Firmicutes and significantly increased Bacteroidetes.
Accordingly, OLT supplementation could substantially reduce
the ratio of Firmicutes to Bacteroides, while GT supplementation
had a limited effect.

Effect of Green and Oolong Teas on the
Gut Microbiota Composition at the
Genus Level
The intestinal microbes (top 20 genera in relative abundance)
at the genus level in different treatment groups also had
obvious distinctions (Figure 4A). Additionally, Spearman
correlation analysis based on the relative abundance showed
more or less antagonistic or synergistic effects among
various bacteria in rats of each group (Figure 4B). The
cladogram in Figure 4C and linear discriminant analysis
(LDA) histogram in Figure 4D indicate that the GT group
specifically and significantly enriched the Enterococcus genus
compared with other groups. In contrast, the OLT group was
characterized by specific and significant enrichment for the
Allobaculum, Paraprevotella, Oscillospira, Bifidobacterium,
and Ruminococcus genera. Likewise, a significant selective
enhancement for Turicibacter, Treponema, Ralstonia, and
Coprococcus genera in the NC group was found. However,
the most unexpected result from this data is that the MC
group specifically and significantly enriched the abundance of
Lactobacillus.

Difference in Composition and
Enrichment of Bacteria Genera With
High Abundance
Just like the ecosystem, not all species are equal. The number
of main microorganisms in the intestinal micro-ecosystem
may have a crucial impact on the intestinal microenvironment.
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FIGURE 2 | GT and OLT adjusted the gene expression related to blood pressure and the serum biochemical parameters related to blood pressure in rats fed a
high-salt diet. The relative expression of ACE (A), ET-1 (B), and eNOS (C). The levels of Ang II (D), ALD (E), NO (F), SOD (G), GPX (H), MDA (I), CRP (J), and Cre
(K). Asterisk represent a significant difference between groups. *p < 0.05; **p < 0.01; ***p < 0.001. One-way ANOVA analysis followed by a Tukey test was
employed to estimate the statistical significance.
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FIGURE 3 | GT and OLT altered the gut microbial diversity and composition at the phylum level in rats induced by a high-salt diet. (A) Chao index reflects species
richness (the number of species). (B) Shannon index assessing the species diversity. (C) Flower diagram of OTUs, the petals are the number of OTUs unique to the
corresponding group, and the center is the number of mutual OTUs of all groups. (D) 3D PCoA analysis based on Bray Curtis distance, the percentage represents
the contribution value of each principal component to the sample difference. (E) Firmicutes abundance at the phylum level. (F) Bacteroidetes abundance at the
phylum level. (G) The ratio of Firmicutes to Bacteroidetes. (H) Histogram of the relative distribution of gut microbes at the phylum level. One-way ANOVA analysis
followed by a Tukey test was employed to estimate the statistical significance. The different letters represent significant differences between different groups
(p < 0.05).

As shown in Figure 5, the top 15 genera (more than 98%
abundance) had mainly consisted of Lactobacillus, Allobaculum,
Unspecified_S24_7, Turicibacter, Unspecified_Clostridiales,
Unspecified_Clostridiaceae, Unspecified_Ruminococcaceae,
Bifidobacterium, Treponema, Unspecified_Lachnospiraceae,
Paraprevotella, Unspecified_Lachnospiraceae, Ralstonia,
Ruminococcus, and Oscillospira. In high-salt fed rats,
several bacteria were significantly decreased compared with
a regular diet, including Unspecified_S24_7, Turicibacter,
Unspecified_Clostridiales, Unspecified_Ruminococcaceae,
Unspecified_Lachnospiraceae, and Ralstonia whereas others
were significantly increased, such as Lactobacillus and
Unspecified_Clostridiaceae. Interestingly, the decreased
abundance of Unspecified_S24_7, Unspecified_Clostridiales,
Unspecified_Ruminococcaceae, and Unspecified_Lachnospiraceae
observed in the MC group was remarkably reversed by
OLT supplementation. Furthermore, OLT intervention

significantly reversed the high-salt evoked increase in the
abundance of Unspecified_Clostridiaceae. Accordingly, GT
intervention significantly elevated the relative abundance
of Ralstonia and notably reduced the relative abundance of
Unspecified_Clostridiaceae. Of particular interest, GT and
OLT supplementation also considerably increased the relative
abundance of Allobaculum and Bifidobacterium. However,
surprisingly, the MC group was characterized by a relatively
higher abundance of Lactobacillus traditionally classified as
beneficial microbe.

Gut Microbial OTU Composition and Its
Correlation With Metabolic Parameters
Among the top 50 OTUs (more than 99% abundance), 24
distinct OTUs had undergone noticeable variations through
the GT intervention, and 34 distinct OTUs were significantly
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FIGURE 4 | GT and OLT changed gut microbiota structure at the genus level in rats in response to a high-salt diet. (A) Histogram of the relative distribution of gut
microbes at the genus level. (B) Microbial interaction network diagram at the genus level based on Spearman correlation analysis. The circle represents a genus, the
size represents its relative abundance, different colors represent different phylum classifications, the line between the circles represents a significant correlation
between the two bacteria (p < 0.05). The red line represents a positive correlation, and the blue line represents a negative correlation. The thicker the line, the greater
the absolute value of the correlation coefficient. (C) Cladogram based on LEfSe analysis. The cladogram corresponds to different levels of intestinal microbial
classification from the inside to the outside, and the connection between the levels represents the belonging relationship. Each circled node represents a
classification of bacteria, yellow nodes represent insignificant differences between groups, and non-yellow nodes represent that the bacterium is characteristic
microorganisms of the corresponding group (significantly higher abundance in this group). The colored fan-shaped area marks the subordinate classification intervals
of the characteristic microorganisms. (D) LDA histogram based on LEfSe analysis. Each horizontal column represents a kind of bacterium, and the length of the
column corresponds to the LDA value. The higher the LDA value, the greater the difference. The color of the column corresponds to the characteristic
microorganisms of the bacterial group (the higher abundance in the corresponding group).

changed by OLT intervention compared with the MC group
(Figure 6A). Further analysis revealed that 13 and 16 of the
OTUs altered by the Control group were reversed in response
to GT and OLT interventions, respectively. Likewise, Spearman
correlation analysis (Figure 6B) was employed to investigate
the correlation between the top 50 OTUs and hypertension-
associated metabolic parameters. As can be seen, 17 out of 50
OTUs were positively or negatively correlated with at least one

parameter associated with hypertension. Therein, Bacteroides,
Aggregatibacter, Anaerofustis, Agrobacterium, Elusimicrobium,
Prevotella, Sutterella, Paraprevotella, Coprococcus, Ruminococcus,
and Akkermansia were negatively and significantly correlated
with hypertension. However, although Lactobacillus had
a significant correlation with hypertension but showed a
controversial effect. Also, Faecalibacterium, Shuttleworthia,
Clostridium, Dorea, Bacteroides, Aggregatibacter, Anaerofustis,
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FIGURE 5 | The relative abundance of top 15 genera in gut microbial of high-salt fed rats differed after GT and OLT supplementation. (A) Lactobacillus,
(B) Allobaculum, (C) Unspecified_S24_7, (D) Turicibacter, (E) Unspecified_Clostridiales, (F) Unspecified_Clostridiaceae, (G) Unspecified_Ruminococcaceae,
(H) Bifidobacterium, (I) Treponema, (J) Unspecified_Lachnospiraceae, (K) Paraprevotella, (L) Unspecified_Lachnospiraceae, (M) Ralstonia, (N) Ruminococcus,
(O) Oscillospira. One-way ANOVA analysis followed by a Tukey test was employed to estimate the statistical significance. The different letters represent significant
differences between different groups (p < 0.05).
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FIGURE 6 | GT or OLT treatment reversed the imbalance of intestinal flora abundance of rats caused by a high-salt diet. (A) Heatmap in the abundance of the top
50 OTUs of different treatment groups of high-salt fed rats. The triangle and square indicate the less and more relative abundances of OTUs in GT or OLT groups in
comparison with the MC group, respectively. The circular indicates that the OTU of the NC group that was changed by hypertension was reversed by GT or OLT
treatment. (B) Spearman correlation analysis between the microbial genera in the intestinal flora and related parameters of hypertension. The parameters related to
blood pressure are on the X-axis, and the bacteria genera are on the Y-axis. The R-value is displayed in different colors, and the * sign indicates that there is a
significant correlation between the two. *p < 0.05, **p < 0.01, ***p < 0.001.
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Agrobacterium, Elusimicrobium, Enterobacter and Paraprevotella
were negatively and significantly correlated with hypertension-
related disorders. These genera may play a key role in preventing
hypertension evoked by a high-salt diet.

Green Tea and Oolong Tea Regulated the
KEGG L3 Pathways Related to
Hypertension
Up to date, identified pathways of particular interest regarding
BP regulation, including histidine metabolism, tryptophan
metabolism, and bile acid metabolism, have been proved to
affect host BP through circulating microbial metabolites (11).
Based on these researches, the KEGG L3 pathways related to
hypertension, including histidine metabolism, phenylalanine,
tyrosine, and tryptophan biosynthesis, primary bile acid
biosynthesis, and secondary bile acid biosynthesis, were
investigated to explore the effect of GT or OLT intervention on
intestinal microbial function (Figure 7). OLT supplementation
significantly enhanced histidine metabolism and phenylalanine,
tyrosine, and tryptophan biosynthesis compared with the MC
group. Moreover, it also significantly decreased the primary
and secondary bile acid biosynthesis. However, GT exhibited a
limited impact on these pathways.

DISCUSSION

A western high-salt diet is a risk factor for cardiovascular
complications and metabolic syndromes (25). Despite its
indispensable involvement in many physiological activities,
excessive salt uptake is detrimental to many well-recognized
diseases, especially hypertension (25). Changing dietary habits
has been proven to regulate BP (25) effectively. In particular,
nutritional therapy has exhibited beneficial effects on the
prevention and management of hypertension. As mentioned
in the literature review, a strong relationship between tea
consumption and BP has been reported in animal, population-
based cohort, and meta-analysis studies (26, 27). Moreover,
prior studies have noted the beneficial effect of various active
compounds in tea on anti-hypertension (28). Numerous reports
indicate a strong relationship between intestinal flora and host
health, and simple diet changes can reshape the host’s intestinal
flora (29). Excessive salt intake efficiently induces high BP
and severely disrupts the intestinal microecology diversity and
structure (1, 4). It has been reported that different tea extracts or
active compounds could alter the composition and metabolism
of the gut microbiota, directly or indirectly regulating the host
health through a variety of disease model validations (13).
However, the regulation mechanism of tea on hypertension
driven by a high-salt diet remains poorly understood. The present
study was designed to determine the effect of tea on BP and its
potential regulatory mechanism.

In the current study, both GT and OLT supplementation
showed a suppressive effect on BP and a protective effect
on cardiac and renal tissue injuries but a limited impact on
body weight. A similar result also was reported by Szulińska
et al., which showed that the anti-hypertensive effects of GT

and OLT were not conducted by intervening in body weight
(30). Our current findings are consistent with those of Xu and
Tanida, who found that GT drinking for 3–16 weeks significantly
reduced systolic and diastolic BP in the hypertensive subjects
tested and OLT drinking for 14 weeks reduced BP elevation
in spontaneously hypertensive rats (26, 31). Besides, studies
have shown that a low dose of GT extract (1 mg/kg/day)
could significantly improve myocardial stiffness and cardiac
compliance of deoxycorticosterone acetate-salt hypertensive rats
(32). Although, our results also reveal that the anti-hypertensive
activity of OLT was better than that of GT. It seems possible
that this result is due to their different chemical compositions
(Table 1). Owing to the distinctions in the category and source
of tea, the distribution of active compounds for lowering BP is
significantly different.

In addition to BP, GT or OLT intake also significantly
reduced the mRNA expression of ACE and ET-1 and greatly
increased the mRNA expression of eNOS. Ang II and ALD
levels were significantly decreased for serum BP regulators,
and NO level was markedly increased with the administration
of OLT. Accordingly, GT supplementation remarkably reduced
Ang II level and noticeably elevated NO status but had a
limited effect on the ALD level. Renin plays a pivotal role
in the development of hypertension. ACE is an integral part
of the renin-angiotensin system (RAS) system, which can
catalyze angiotensin I (Ang I) into Ang II with high-strength
vasoconstriction activity, thereby inducing hypertension (31).
Ang II can activate nicotinamide adenine dinucleotide phosphate
(NADPH) to increase vascular superoxide anion, and the change
of vascular superoxide anion plays a pivotal role in the occurrence
of hypertension (12). Furthermore, Ang II can constrict blood
vessels and promote the secretion of ALD. The high content of
ALD will increase the content of Na+ in the blood, which will
overload the blood volume and cause high BP (21). Previous
reports revealed that anti-hypertensive candidates could prevent
BP elevation, oxidative stress and inflammation (33). As expected,
treatment with GT and OLT (no significance between them)
significantly enhanced the enzyme activities of SOD and GPX,
and significantly reduced the levels of MDA and Cre. Still, no
remarkable difference in CRP level was observed. There are
similarities between our results and those described by Antonello,
who found that GT (6 mg/mL) could inhibit the increase of
BP and oxidative stress in male SD rats caused by excessive
Ang II (34). Moreover, GT supplementation (4 g/kg diet, 42
d) significantly reduced the concentration of TNF-α (a critical
pro-inflammatory cytokine) in the serum of NaCl-induced
hypertensive rats and enhanced the body’s total antioxidant
status (30). ET-1 and eNOS are essential members of the
renal endothelial function system. ET-1 is the most effective
vasoconstrictor produced by the blood vessel wall and is involved
in the pathogenesis of salt-sensitive hypertension in animals
and humans (35). eNOS is a specific enzyme that oxidizes L-
arginine to produce L-citrulline and NO. Studies have shown
that the knockout of the eNOS gene in mice would produce
vascular endothelial dysfunction and prone to hypertension.
After transfection the eNOS gene, the damaged blood vessels
can be recovered (36). Our results indicate that excessive salt
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FIGURE 7 | GT and OLT regulated the KEGG L3 pathway related to hypertension. (A) Histidine metabolism, (B) Phenylalanine, tyrosine, and tryptophan
biosynthesis, (C) Primary bile acid biosynthesis, (D) Secondary bile acid biosynthesis. If and only if the p-value after ANOVA analysis corrected for “false discovery
rate” is less than 0.05, the Duncan test will be further performed. The different letters represent significant differences between different groups (p < 0.05).

intake enhanced the oxidative stress state of rats and led to an
increase in the expression of ET-1, a decrease in the expression
of eNOS, and an increase in the levels of Ang II and ALD. There
are several possible explanations for this result. On the one hand,
oxidative stress and pro-inflammatory factors can enhance ET-
1 expression (12). On the other hand, ET-1 can activate the
RAS system, promote the synthesis of Ang II, and release ALD
(12). Our results corroborate the findings of a great deal of the
previous work on tea and its active compounds in regulating BP.
It is reported that GT (6 mg/mL) extracts significantly reduced
the systolic and diastolic BP and oxidative stress of SD rats by
inhibiting the increase in Ang II levels (34). In addition, black
tea extracts exposed to porcine aortic endothelial cells could
significantly boost the bioactivity of NO in aortic endothelial cells
(37). GT extract regulated vascular homeostasis by its influence
on the production of vasoconstrictive substances including Ang
II, ET-1 as well as vasodilating substances (38). Interestingly,
we found that the regulation effect of OLT was better than
GT, which might be explained in part by higher EGCG and
theanine contents in OLT. EGCG and theanine are considered to
be the main components of tea to lower BP (12). Furthermore,
it is speculated that the lower caffeine content might also be
the reason for the high activity showed by OLT (39), and the
stimulatory implications of caffeine could be decreased by the
amount of EGCG in tea (12).

Long-term dietary salt-induced metabolic disorders
contribute to aberrant intestinal microbiota via poorly

understood mechanisms and further lead to high BP,
accompanied by symptoms such as inflammation,
gastrointestinal diseases, and endocrine disorders (25). The
lower richness and diversity of gut microbes are observed
in hypertensive individuals induced by a high-salt diet (40).
Moreover, a strong relationship between microbial diversity
and hypertension-related features has been reported (9). In
line with these reports, our results (Figures 3A–D) show that
the richness and diversity (including α and β) of the intestinal
flora of hypertensive rats were significantly reduced. At the
same time, GT and OLT supplementation significantly restored
microbial richness and diversity, especially OLT. In addition
to GT and OLT, many other candidates like yellow, white and
dark teas can also increase the richness and diversity of the
gut microbiota in dextran sulfate sodium-induced colitis mice
(41). All these indicate the effectiveness of tea in regulating
the richness and diversity of intestinal microbes, which could
be attributed to the rich compounds in tea. At the phylum
level, our current study indicates that a high-salt diet elevated
gut colonization by bacteria of the phylum Firmicutes, with a
resultant increase in the Firmicutes/Bacteroidetes ratio, which
also accords with other previous studies (9). Furthermore, it
is reported that the Firmicutes/Bacteroidetes ratio is increased
in experimental animal and human subjects with obesity and
metabolic syndrome (42).

Among members of the Firmicutes phylum, high-salt-
enriched bacteria mainly belong to the Lactobacillus genus,
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belonging to the Lactobacillaceae family. It is well known
that the Lactobacillaceae family and Lactobacillus genus,
recognized intestinal probiotics, are beneficial intestinal flora for
improvement of intestinal health and exhibit anti-inflammation,
antidiabetic, and anti-obesity (43, 44). Recently and more
strikingly, studies have shown that higher levels of Lactobacillus
were observed in hypertensive rats (11). Moreover, it is reported
that the high abundance of Lactobacillus is positively correlated
with obesity-related features (45). Research shows that the
Lactobacillus genus contains more than 170 species (46).
A recent study showed that some Lactobacillus species like
Lactobacillus reuteri were related to metabolic disorders with
obesity (47). Thus, a high abundance of Lactobacillaceae and
Lactobacillus may also boost the risks of hypertension induced
by a high-salt diet. Early work has shown that Enterococcus
is a natural inhabitant of the intestinal tract in humans and
many animals and is a probiotic because it stimulates immunity,
anti-inflammatory activity, and the hypocholesterolemic effect.
It can be used as a starter in food fermentation (48). Our
results show that GT treatment could significantly enrich the
Enterococcus genus, thereby helping GT to prevent the increase
in BP. However, there are also some reports that Enterococcus
is an important opportunistic pathogen and can cause many
infections (49). This controversial result may be related to
different experimental conditions, design, and analytical
methods, and it can be explained by more research on microbial
regulation by GT. Compared with GT, OLT intake enriched
more intestinal microbes, including Allobaculum, Paraprevotella,
Oscillospira, Bifidobacterium, and Ruminococcus. Allobaculum
and Bifidobacterium (recognized beneficial bacteria) play a
valuable role in the body’s intestines and play an active role
in promoting body health (50). Besides, studies have shown
that the abundance of Paraprevotella is positively correlated
with body strength (51). Chen et al. found that Oscillospira
was closely related to human health because its abundance
was positively correlated with gut microbial diversity and was
inversely correlated with BP (52). Ruminococcus was reported to
produce short-chain fatty acids (SCFAs) and was beneficial to the
intestinal environment, whereas SCFAs are generally considered
to have a variety of essential roles in maintaining human health,
such as lowering BP, reducing inflammation, and protecting
the intestinal mucosal barrier (53). In addition, our results
reveal that OLT supplementation also significantly increased
the abundance of Unspecified_S24_7, Unspecified_Clostridiales,
and Unspecified_Ruminococcaceae genera. Thereinto, the
Ruminococcaceae family is negatively correlated with arterial
stiffness (54). However, there is limited information about
Unspecified_S24_7 and Unspecified_Clostridiales, and the
relationship between their levels and gut health needs to be
further studied. Our results further confirmed the regulatory
effect of tea on the intestinal flora, which may be a critical factor
in preventing the increase in BP evoked by a high-salt diet.

The abundance analysis of the top 50 OTUs further supports
the above analysis, and 24 and 34 different OTUs were markedly
altered by GT and OLT administrations, respectively. Therein,
Bacteroides, Aggregatibacter, Anaerofustis, Agrobacterium,
Elusimicrobium, Prevotella, Sutterella, Paraprevotella,

Coprococcus, Ruminococcus, and Akkermansia were negatively
and significantly correlated with hypertension. These bacteria
may be involved in intestinal metabolism and microenvironment
remodeling, thus exerting their indirect effects on regulating
BP. For example, a recent study revealed that Bacteroides could
play a protective role in hypertension and heart failure in
hypertensive rodents (55). In addition, some bacteria, including
Faecalibacterium, Shuttleworthia, Clostridium, Dorea, and
Enterobacter genera, may also help lower BP. For instance,
studies have shown that fecal Faecalibacterium abundance in
patients with hypertension was lower than in healthy controls
(55). Therefore, our results show that bacterial genera related to
BP or its metabolic disorders may be potential therapeutic targets
for preventing hypertension.

To further explore the implication of intestinal microbiota on
BP, the known pathways related to BP regulation in the KEGG
L3 pathway were explored, including histidine metabolism,
phenylalanine, tyrosine, and tryptophan biosynthesis, primary
bile acid biosynthesis, and secondary bile acid biosynthesis. It has
been proven that L-histidine can exert anti-hypertensive effects
in hypertensive models through central histamine H3 receptors
(56). Additionally, the downstream metabolites of tryptophan in
the intestine, including serotonin and indole, play an essential
role in BP regulation (57). It has been reported that the primary
receptor TGR5 was expressed on multiple tissues involved in BP
regulation, and TGR5 agonism increased the eNOS activity of
endothelial cells, which was beneficial to lower BP (58). Besides,
intravenous injection of secondary bile acids could reduce BP
in hypertensive rat models (59). As expected, GT and OLT
supplementation altered these microbial metabolic pathways, and
OLT exhibited a better regulation effect. These results strongly
confirm that tea can alleviate high-salt-induced hypertension by
regulating the metabolism of intestinal microbes.

In conclusion, both GT and OLT suppressed endothelial
dysfunction and alleviated the increase in BP, oxidative stress,
inflammation, and tissue damage in mice fed a high-salt diet. In
addition, the disturbance of intestinal flora induced by a high-salt
diet could be modulated by GT and OLT, which may be related
to their differentiated composition. In particular, OLT has shown
better anti-hypertension and regulation effects on intestinal flora
structure and metabolism.
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of Science and Technology, Taipa, Macao SAR, China

Objectives: Green tea and soy products are extensively consumed by many people
and they may influence the activity of drug metabolizing enzymes and drug transporters
to result in drug interactions. This study was performed to evaluate the effect of green
tea and soy isoflavone extracts on the pharmacokinetics of simvastatin in healthy
subjects and to clarify the role of polymorphisms in the SLCO1B1 drug transporter
in this effect.

Methods: This was an open-label, three-phase randomized crossover pharmacokinetic
study. A single dose of simvastatin 20 mg was taken on three occasions (without herbs,
with green tea, and with soy isoflavones) by healthy male Chinese subjects. The green
tea and soy isoflavone extracts were given at a dose containing EGCG 800 mg once
daily or soy isoflavones about 80 mg once daily for 14 days before simvastatin dosing
with at least 4-weeks washout period between phases.

Results: All the 18 subjects completed the study. Intake of soy isoflavones was
associated with reduced systemic exposure to simvastatin acid [geometric mean (%
coefficient of variation) AUC0−24h from 16.1 (44.2) h·µg/L to 12.1 (54.6) h·µg/L,
P < 0.05) but not the lactone. Further analysis showed that the interaction between
simvastatin and the soy isoflavones only resulted in a significant reduction of AUC
in subjects with the SLCO1B1 521TT genotype and not in those with the 521C
variant allele. There was no overall effect of the green tea extract on simvastatin
pharmacokinetics but the group with the SLCO1B1 521TT genotype showed reduced
AUC values for simvastatin acid.
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Conclusion: This study showed repeated administration of soy isoflavones reduced
the systemic bioavailability of simvastatin in healthy volunteers that was dependent on
the SLCO1B1 genotype which suggested that soy isoflavones-simvastatin interaction is
impacted by genotype-related function of this liver uptake transporter.

Keywords: SLCO1B1, drug interaction, EGCG, green tea, simvastatin, soy isoflavones

INTRODUCTION

Cardiovascular diseases (CVDs) are a significant health burden
with an increasing prevalence and remain the leading causes of
morbidity and mortality worldwide (1). Use of herbal medicines
and foods and beverages thought to have beneficial effects in CVD
is very common among patients with this condition (2). There
may be interactions between herbal medicines or foods with the
drugs taken for CVD which may result in toxicity or altered
efficacy. The composition of most herbal medicines is complex,
with each herb containing a variety of chemical components and
each of these components may lead to herb-drug interactions
by affecting the activity of drug metabolizing enzymes or drug
transporters (3).

Simvastatin is one of the 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase inhibitors or statins, which
has been used extensively worldwide to reduce low-density
lipoprotein cholesterol (LDL-C) and the risk for CVD events.
It is administered in the inactive lactone form and is rapidly
hydrolyzed to the active open acid form, simvastatin acid
(4). This is converted back to simvastatin lactone through a
glucuronidation and lactonization pathway (5). Simvastatin acid
and lactone are extensively metabolized by cytochrome P450
(CYP) enzymes, mainly CYP3A4 and CYP3A5 with a minor
contribution from CYP2C8 (6). Simvastatin acid is a substrate
for the liver uptake transporter organic anion–transporting
polypeptide 1B1 (OATP1B1) encoded by SLCO1B1 and the
adenosine triphosphate (ATP)-binding cassette (ABC) efflux
transporters, ABCG2 and ABCB1 (7). The ABCG2 c.421C > A
polymorphism contributed toward differences in exposure to
simvastatin acid between Caucasian and Asian subjects (8).

The SLCO1B1 c.521T > C single nucleotide polymorphism
(SNP) can result in marked inter-individual differences in
pharmacokinetics of simvastatin acid (9) and was the only
functional genetic variant associated with simvastatin-induced
myopathy in a genome wide association study (GWAS) (10) and
this variant also influenced the lipid response to simvastatin in a
meta-analysis of GWAS (11). A GWAS of the LDL-C response
to simvastatin in the Heart Protection Study also identified
an ABCC2 variant having a significant effect (12). Drugs and
chemicals from herbs and food materials which interact with any
of these pathways could therefore influence the systemic exposure
and efficacy and safety of simvastatin. A case was reported in
which green tea was thought to interact with simvastatin to cause
muscle pain (13).

Soybeans contain large amounts of isoflavones, including
phytoestrogens, and there is evidence that some isoflavones may
modify CYP enzyme expression and activity (14). The average
daily intake of soy foods in Asian adults provides an average

of 15-45 mg isoflavones/day (15) Rats fed diets containing
soy protein isolate showed increased activity and expression
of CYP3A1 (16) related to greater binding of the pregnane X
receptor (PXR) to a response element on the CYP3A1 promoter
(17). Isoflavones also activated human PXR increasing CYP3A4
expression (18). Soy components can activate other nuclear
receptors including peroxisome-proliferator activated receptors
(PPAR) α and PPARγ and liver X receptor (LXR) resulting in
increased expression of CYP3As (19–21). These nuclear receptors
can also modulate the expression of drug transporters.

On the other hand, flavonoids can inhibit multiple ABC efflux
transporters, including ABCB1, ABCC2 and ABCG2 (22). Many
flavonoids can inhibit OATP1B1 in a concentration-dependent
manner but rutin had a stimulatory effect (23). In a recent
study which investigated the effect of 25 common flavonoids
on OATP1B1-mediated uptake of the fluorescent substrate 2′,7′-
dichlorofluorescein (DCF) in Chinese hamster ovary (CHO) cells
stably expressing human OATP1B1, most of the flavonoids tested
had a concentration-dependent inhibitory effect on OATP1B1-
mediated DCF uptake, but a low concentration of epicatechin
gallate (ECG) showed a stimulating effect of about 160% (24).

This study was conducted to examine the effect of green
tea extract and soy isoflavones on the pharmacokinetics of
simvastatin in healthy subjects and whether any interactions were
influenced by the polymorphisms in SLCO1B1.

MATERIALS AND METHODS

Subjects
Eighteen healthy Chinese male subjects who gave written
informed consents were recruited for the study. Participants were
selected from a group of healthy subjects who had previously
been genotyped for the SLCO1B1 521T > C (rs4149056)
polymorphism so there would be a reasonable number of
subjects in each of the 3 genotype groups. The study was
performed in accordance with the ethical standards laid down
in the Declaration of Helsinki and approved by the Joint
Chinese University of Hong Kong-New Territories East Cluster
Clinical Research Ethics Committee with reference number CRE-
2010.524-T.

Subjects were required to abstain from taking any prescription
or non-prescription medications from 2 weeks prior to and
during the study. Smoking, alcohol, grapefruit juice, caffeine,
soybean milk, tea, dietary supplements, and herbal products were
forbidden from 2 weeks before and throughout the entire study.
Subjects fasted for 10 h before and 4 h after administration of
simvastatin during the blood sampling sessions. Standardized
meals were provided to consume at 4 h and 10 h after drug

Frontiers in Nutrition | www.frontiersin.org 2 May 2022 | Volume 9 | Article 86812669

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-868126 May 19, 2022 Time: 7:18 # 3

Zeng et al. Effect of Herbs on Simvastatin

administration. The meals were provided by the hospital catering
service and were the same for all subjects and the same for
the 3 phases of the study. Water intake was not allowed from
1 h pre-dose to 1 h post-dose except for the water provided for
drug administration. Subjects were asked to report any adverse
effects during the pharmacokinetic sampling and at other visits
to the study center.

Simvastatin-Herb Pharmacokinetic
Interaction
The study was an open-label, three-phase randomized crossover
design. Simvastatin 20 mg (Zocor R©, MSD) was given 3 times: 1.
simvastatin only; 2. with green tea extract; 3. with soy isoflavones
extract. There was a washout period of at least 4 weeks between
phases. The extracts of green tea or soy isoflavones were taken
as one sachet once daily in the morning before breakfast for
14 days. The herbal extracts were provided as a powder which
was taken in 150 ml water at room temperature. Fourteen blood
samples were taken at 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10,
12, and 24 h after the dose to evaluate the pharmacokinetic
profile on the simvastatin dosing days. A food diary was used
to monitor the food compliance during the study and subjects
were asked to record all their daily food intake including the main
meals, snacks and beverages. Subjects were requested to follow
the requirements on diet carefully.

Herbal Products
The extracts of green tea and soy isoflavones were manufactured
by the Hong Kong Institute of Biotechnology (HKIB) in
accordance with Good Manufacturing Practice (GMP). Standard
heavy metals, microbial and pesticide testing was performed
to ensure the products fulfilled the safety requirements set out
by the Department of Health in Hong Kong. Each sachet of
green tea extract or soy isoflavones was claimed to contain
800 mg standardized polyphenol (mainly EGCG) or 120 mg total
isoflavones, respectively.

Establishment of Chemical Profiles of
Herbal Products
Ultra-Performance Liquid Chromatography (UPLC) methods
were used to verify the contents of the green tea extracts
and soy extracts in the laboratory of the Institute of Chinese
Medicine, the Chinese University of Hong Kong as described
previously (25). The green tea extract was compared with a
standard mixture containing 7 chemical markers: gallic acid
(GA), epigallocatechin (EGC), catechin (C), epigallocatechin
gallate (EGCG), caffeine (CAF), epicatechin (EC) and epicatechin
gallate (ECG) in methanol. Soy isoflavone extract was compared
with a standard mixture containing 7 chemical markers:
glycitin, daidzin, genistin, daidzein, glycitein, genistein and
acetylgenistin in methanol.

Quantification of Plasma Concentrations
of Simvastatin and Simvastatin Acid
Plasma concentrations of simvastatin and its major active
metabolite simvastatin acid were determined by Liquid

Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
employing online sample pre-treatment.

The concentrations of simvastatin acid and lactone in plasma
were simultaneously quantified by a method validated according
to the U.S. Food and Drug Administration (USFDA) guidance
on Bioanalytical Method Validation (26) employing LC-MS/MS
using the corresponding isotopically labeled compounds as
internal standards. The plasma samples were prepared using
liquid–liquid extraction with diethyl ether. Chromatographic
separation was accomplished on an XBridge C18 (3.5 µm
2.1 × 30 mm Column; Waters, MA, United States). qqThe
mobile phase consisted of a gradient mixture of 0.015
mmol/L ammonium acetate in water (mobile phase A) and
methanol (mobile phase B) at a flow rate of 0.4 mL/min.
The gradient started at 50% mobile phase B for 0.5 min
with a subsequent fast gradient to 98% mobile phase B in
1 min and maintained for another 0.5 min. The gradient
was then returned to the initial mobile phase concentration
in a chromatographic run of 3 min. Simvastatin acid was
detected in a negative ionization mode with a quantification
transition of m/z 435.4–115.0 and a qualification transition
of m/z 435.4–319.2 while the lactone was quantified in a
positive ionization mode with a transition of m/z 441.3–310.2
and monitored by a qualification transition of m/z 441.3–
310.2. The lower limits of quantification of simvastatin acid
and lactone were 0.1 µg/L by using 300 µL plasma. The
linear ranges of the method were from 0.1 to 20.0 µg/L
for both simvastatin acid and lactone. The coefficients of
variation were lower than 10 and 9% for simvastatin acid and
lactone, respectively.

Effects on Plasma Lipid Profile and
Blood Pressure With Green Tea Extract
and Soy Isoflavones
Fasting lipid profiles and blood pressure were monitored at
baseline and after 14 days of green tea extract and soy isoflavones,
respectively. Plasma lipid profile including total cholesterol,
triglycerides, and high-density lipoprotein cholesterol (HDL-C)
was measured on a Roche Modular Analytics system (Roche
Diagnostics GmbH, Mannheim, Germany) using standard
reagent kits supplied by the manufacturer of the analyzer
and LDL-C level was estimated by using the Friedewald
formula (27) or directly measured when the triglyceride
level was over 4.5 mmol/L. After 5 min of resting seated,
clinic blood pressure and heart rate was measured four
times at 2-min intervals in the dominant arm with an
automatic device (Omron HEM 7080IT, Omron Healthcare).
The average of the last three measurements was used in the
statistical analyses.

Genotyping
High Pure PCR Template Preparation Kits (Roche Applied
Science) were used to extracted DNA from the blood
samples. TaqMan Drug Metabolism Genotyping Assays
from Applied Biosystems (Foster City, CA, United States)
was used to genotype each subject for the SLCO1B1
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388A > G (rs2306283) and 521T > C (rs4149056)
polymorphisms.

Pharmacokinetic Analysis
The pharmacokinetic parameters of simvastatin and its
active metabolite simvastatin acid were calculated using
non-compartmental methods with the aid of the computer
program WinNolin (version 2.1, Pharsight Corporation). The
maximum plasma concentration (Cmax) and time to Cmax
(tmax) were obtained directly from the observed concentration-
time data. The terminal elimination rate constant (λZ) was
determined by linear regression of the terminal portion of the
concentration-time curve and the elimination half-life (t1/2) was
calculated as 0.693/λZ.

Systemic exposure to simvastatin lactone and simvastatin acid
was evaluated by calculating the AUC using the linear trapezoidal
rule and AUC0−∞ was calculated as AUC0−∞ = AUC0−t +

Ct/Kel where Ct is the last quantifiable concentration. The oral
clearance (CL/F) was calculated as Dose/AUC0−∞.

Statistical Analysis
The pharmacokinetic parameters of simvastatin with and without
herb consumptions calculated by repeated measures ANOVA
and the Friedman rank test was used to compare tmax values.
The geometric mean ratios and 90% confidence intervals (CI)
were calculated from the log-transformed values of Cmax and
AUC compared between with and without the herbal extracts.
ANOVA analysis was used to compare the pharmacokinetic
parameters and interactions among genotype groups if the
data was normally distributed, otherwise the Kruskal-Wallis
test was used for skewed data. P < 0.05 was considered
statistically significant.

Sample Size
Previous studies have shown that significant effects of
polymorphisms in drug transporters can be seen for single-
dose complete pharmacokinetic studies in small groups of
n = 6 (28). A herb-drug interaction between baicalin and
rosuvastatin was shown to be related to different SLCO1B1
haplotype groups in 18 healthy Chinese subjects, with 6 subjects
in each haplotype group. A similar sample size of 18 subjects
was used in the current study to explore the potential herb-drug
interactions and their relationship with the SLCO1B1 521T > C
(rs4149056) polymorphism.

RESULTS

Establishment of Chemical Profiles of
Herbal Products
The green tea extract contained mainly EGCG and the other
6 chemical markers were present in small amounts. Each
sachet continued the amounts of EGCG, ECG, EC, EGC,
GA, CAF, and C of 804.6, 45.5, 5.9, 3.7, 1.02, 1.08, and
0.96 mg, respectively.

The soy isoflavone product contained the 7 chemical markers,
namely glycitin, daidzin, genistin, daidzein, glycitein, genistein
and acetylgenistin in amounts of 58.64, 8.72, 6.48, 2.20, 4.23,
0.42, and 0.90 mg per sachet, respectively. These seven isoflavones
were calculated to contribute a total of 81.6 mg per sachet. Some
other small unidentified peaks were seen on the chromatogram
and these may represent other components of the extract that
contribute to the total isoflavones.

Effect of Green Tea Extract and Soy
Isoflavones on the Pharmacokinetics of
Simvastatin and Simvastatin Acid
In the 18 healthy Chinese male volunteers (mean ( ± SD)
age: 26.6 ± 6.0 years; body weight: 61.7 ± 6.3 kg; body
mass index: 21.1 ± 1.7 kg/m2) (Table 1), intake of green tea
extract 800 mg daily for 14 days had no significant effect
on the average pharmacokinetic parameters for simvastatin or
simvastatin acid (Table 2). However, intake of soy isoflavones
significantly reduced the systemic exposure to simvastatin acid
with significant reductions in the AUC values but not in
Cmax (Table 2). There was no significant effect on any of the
pharmacokinetic parameters for simvastatin lactone with the
green tea or soy extracts.

The SLCO1B1 521T > C polymorphism was significantly
associated with the pharmacokinetics of simvastatin acid, but not
the lactone. Compared to the other genotype groups, subjects
with the 521CC genotype (n = 4) had increased systemic
exposure to simvastatin acid, but not simvastatin lactone, at
baseline and after intake of green tea and soy isoflavones and
the difference remained statistically significant after adjustment
for body weight (Tables 3, 4). Further analysis showed that the
interaction between simvastatin acid and the soy isoflavones
only occurred in subjects with the 521TT genotype but not in
those with the TC or CC genotypes (Table 4 and Figure 1).
The percentage reduction in AUC0−24h of simvastatin lactone

TABLE 1 | Demographics of the 18 study subjects in the simvastatin-herb interaction study.

Demographics All subjects (n = 18) SLCO1B1 521TT (n = 6) SLCO1B1 521TC (n = 8) SLCO1B1 521CC (n = 4)

388AA 388AG 388GG 388AA 388AG 388GG 388AA 388AG 388GG

(n = 0) (n = 3) (n = 3) (n = 1) (n = 4) (n = 3) (n = 0) (n = 0) (n = 4)

Age, years 26.6 ± 6.0 26.7 ± 6.4 26.3 ± 1.5 28 22.5 ± 1.7 36.7 ± 5.1 25.3 ± 5.1

BW, kg 61.7 ± 6.3 62.5 ± 6.2 60.8 ± 2.4 64.2 58.0 ± 8.6 66.1 ± 8.2 55.2 ± 5.6*

BMI, kg/m2 21.1 ± 1.7 20.8 ± 1.9 20.5 ± 1.1 22.9 20.5 ± 2.4 22.2 ± 2.4 19.8 ± 1.7*

*P < 0.05 vs. SLCO1B1 521TT; BW, body weight.
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and simvastatin acid with soy isoflavones in subjects with
521TT genotype were significantly greater than those with CC
genotypes (Figure 2).

TABLE 2 | Effect of green tea extract and soy isoflavones on the pharmacokinetic
parametes of simvastatin lactone and simvastatin acid in 18 healthy subjects.

Variable Simvastatin Simvastatin
and Green tea

Simvastatinand
Soy isoflavones

Overall
P values

Simvastatin lactone

Cmax, µg/L 3.35 (54.9) 3.68 (48.1) 3.64 (32.3) 0.814

GMR (90%CI) 0.95
(0.95–1.72)

0.97 (0.92–1.74)

AUC0−24 h 14.4 (49.7) 16.14 (40.5) 14.39 (33.7) 0.319

GMR (90%CI) 1.06
(1.00–1.52)

1.04 (0.90–1.29)

AUC0−∞ 14.7 (48.6) 17.17 (39.8) 15.2 (35.9) 0.211

T1/2, h 4.47 (27.4) 4.96 (34.0) 4.51 (33.6) 0.772

Tmax, h 1.0 (0.875, 2.5) 1.5 (1.0, 2.25) 2.0 (1.375, 2.25) 0.138

Simvastatin acid

Cmax, µg/L 2.21 (50.4) 1.81 (50.0) 1.78 (53.6) 0.427

GMR (90%CI) – 0.93
(0.67–1.40)

0.82 (0.73–1.26)

AUC0−24h 16.09 (44.2) 14.78 (48.1) 12.09 (54.6)* 0.015

GMR (90%CI) – 0.85
(0.77–1.27)

0.73 (0.68–0.95)

AUC0−∞ 17.76 (45.3) 16.53 (45.8) 12.82 (54.6)* 0.010

T1/2, h 3.94 (31.7) 5.17 (38.7) 3.89 (28.3) 0.262

Tmax, h 4.0 (3.0, 4.0) 4.0 (2.88, 4.0) 4.0 (3.0, 4.0) 0.976

Data are geometric mean (% CV) except for Tmax for which median (IQR) are given.
*P < 0.05 vs. baseline. AUC values in h·µg/L.
GMR, geometric mean ratio compared to simvastatin alone value.

TABLE 3 | Effects of the SLCO1B1 521 T > C polymorphism on the
pharmacokinetics of simvastatin lactone at baseline and after intake of the green
tea extract and soy isoflavones.

Variable 521TT (n = 6) 521TC (n = 8) 521CC (n = 4) P values

Baseline

Cmax, µg/L 4.21 (63.5) 3.4 (55.0) 2.3 (47.8) >0.05

AUC0−24h, h·µg/L 24.1 (50.1) 9.5 (35.9) 15.0 (42.5) >0.05

AUC0−∞, h·µg/L 24.4 (55.8) 10.3 (35.2) 16.2 (40.6) >0.05

T1/2, h 4.1 (16.2) 4.54 (34.0) 4.83 (30.2) >0.05

Tmax, h 2.0 (1.0, 3.0) 1.0 (0.625, 1.375) 2.25 (0.5, 4.0) >0.05

After green tea

Cmax, µg/L 4.30 (58.5) 3.13 (53.4) 4.03 (21.5) >0.05

AUC0−24h, h·µg/L 19.06 (47.7) 13.39 (35.6)* 18.29 (42.7) >0.05

AUC0−∞, h·µg/L 20.37 (44.9) 14.36 (36.6) 18.98 (42.4) >0.05

T1/2, h 6.15 (19.4)** 4.72 (42.7) 3.98 (31.5) >0.05

Tmax, h 1.0 (1.0, 2.25) 1.25 (1.0, 2.0) 1.75 (1.5, 3.5) >0.05

After soy isoflavones

Cmax, µg/L 4.64 (39.1) 3.42 (29.5) 2.86 (20.6) >0.05

AUC0−24h, h·µg/L 15.29 (36.7)* 12.63 (31.7)* 17.07 (37.9) >0.05

AUC0−∞, h·µg/L 15.61 (36.5)* 13.23 (33.3)* 19.30 (44.0) >0.05

T1/2, h 4.71 (15.5) 4.71 (39.3) 3.90 (49.1) >0.05

Tmax, h 1.5 (1.0, 1.75) 2.0 (1.25, 2.5) 2.0 (1.125, 2.875) >0.05

*P < 0.05 vs. baseline; **P < 0.01 vs. baseline.

Interestingly, subjects with the 521TT genotype also had a
significantly reduced systemic exposure to simvastatin acid with
green tea extract, but this was not observed with simvastatin
lactone, possibly due to wide variation in the systemic exposure
to simvastatin lactone among individuals (Table 4). In contrast,
subjects with the 521TC genotype but not the two homozygous
groups had increased systemic exposure to simvastatin lactone
with green tea extract intake. Due to the wide variation
in the pharmacokinetics of simvastatin lactone and limited
sample size, we cannot be certain if there is an interaction
between simvastatin and green tea extract observed in SLCO1B1
genotype subgroup subjects or if this is just a chance finding.
There were no statistically significant differences in percentage
changes in AUC0−24h of simvastatin lactone and simvastatin
acid with green tea extract among the SLCO1B1 genotype
groups (Figure 2).

Effect of the Green Tea Extract and Soy
Isoflavones on the Plasma Lipid Profiles
and Blood Pressure
The consumption of green tea extract for 2 weeks, but not soy
isoflavones, was associated with significant reductions in plasma
LDL-C (8.1% [95% confidence interval:−2.0,−14.3%], P < 0.01)
and total cholesterol (4.8 % [0.4 −10.1%], P < 0.05) compared
to baseline (Table 5). Reduction in LDL-C with green tea was
observed in 15 out of 18 subjects and the change in LDL-C was
not affected by the baseline levels. Neither green tea extract nor
soy isoflavones influenced the plasma high-density lipoprotein
cholesterol (HDL-C) or triglyceride levels or blood pressure in
this normotensive group of subjects (Table 5).

TABLE 4 | Effects of the SLCO1B1 521 T > C polymorphism on the
pharmacokinetics of simvastatin acid at baseline and after intake of the green tea
extract and soy isoflavones.

Variable 521TT (n = 6) 521TC (n = 8) 521CC (n = 4) P values

Baseline

Cmax, µg/L 1.68 (46.3) 1.78 (38.0) 5.11 (35.7) 0.019

AUC0−24h, h·µg/L 12.48 (30.26) 12.34 (28.03) 40.06 (26.8) 0.001

AUC0−∞, h·µg/L 14.54 (30.7) 12.87 (29.7) 43.42 (26.4) 0.001

T1/2, h 3.63 (25.9) 3.54 (34.4) 5.39(30.2) 0.328

Tmax, h 3.0 (1.75, 4.0) 4.0 (4.0, 4.0) 3.5 (3.0, 4.0) 0.502

After green tea

Cmax, µg/L 1.02 (31.8) 1.73 (33.1) 4.68 (21.9) <0.0005

AUC0−24h, h·µg/L 8.45 (31.7)* 14.53 (33.1) 35.43 (25.4) 0.001

AUC0−∞, h·µg/L 10.0 (31.5)* 16.05 (33.9) 37.24 (25.8) 0.002

T1/2, h 5.90 (53.9) 4.86 (38.2) 4.82 (16.2) 0.807

Tmax, h 4.0 (2.0, 4.0) 4.0 (3.0, 4.0) 4.0 (2.875, 4.0) 0.682

After soy isoflavones

Cmax, µg/L 0.93 (16.0) 1.76 (26.5) 4.88 (56.0) <0.0005

AUC0−24h, h·µg/L 6.44 (17.5)** 11.0 (27.2) 37.56 (41.8) <0.00005

AUC0−∞, h·µg/L 6.88 (18.1)* 11.51 (28.3) 40.45 (37.6) <0.00005

T1/2, h 3.85 (13.4) 3.68 (33.0) 4.41 (40.8) 0.801

Tmax, h 4.0 (2.75, 4.0) 3.5 (2.625, 4.0) 3.5 (3.0, 4.0) 0.823

*P < 0.05 vs. baseline; **P < 0.01 vs. baseline.
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FIGURE 1 | Effects of the SLCO1B1 521 T > C polymorphism on the pharmacokinetic interactions between simvastatin acid before and after the green tea extract
and soy isoflavones. Data are arithmetic mean.

Adverse Events
No adverse events were reported during the periods of
repeated intake of green tea extract or soy isoflavones or
the single doses of simvastatin. The subjects recorded in the
food diaries that they complied with the dietary restrictions
during the study.

DISCUSSION

Herbal medicines are often taken concomitantly with therapeutic
drugs in many conditions, raising the potential for herb–
drug interactions (HDIs). The major pathways leading to
HDIs involve the inhibition or induction of CYP-mediated
metabolism or drug transporters. The present study showed
that administration of ECGC 800 mg per day for 14 days had
no significant effect on the pharmacokinetics of simvastatin
and simvastatin acid in the overall 18 healthy volunteers,
although there was a reduction in systemic exposure to
simvastatin acid in the group with SLCO1B1 521TT genotype.
The most significant finding of the study is that intake of
soy isoflavones with 80 mg daily for 14 days significantly

reduced the systemic exposure to simvastatin lactone and
simvastatin acid in healthy volunteers with the SLCO1B1
521TT genotype.

This finding is similar to a study which showed that baicalin,
derived from the medical plant Radix scutellariae, reduced
plasma concentrations of rosuvastatin in healthy subjects with
haplotypes homozygous for the SLCO1B1 521TT genotype but
not in those homozygous for the SLCO1B1 521CC genotype,
with intermediate effects in the heterozygotes (28). We previously
reported that soy isoflavones did not affect the pharmacokinetics
of rosuvastatin (25) but the healthy subjects in that study were
not selected for SLCO1B1 genotypes so we cannot exclude the
possibility that the number of subjects with the SCLO1B1 521TT
genotype was too small to show a significant effect in that
previous research.

It has been shown that flavonoids could inhibit multiple
ABC efflux transporters, including ABCB1, ABCC2 and ABCG2
(14) as well as the hepatic uptake transporter OATP1B1 (23).
However, inhibition of OATP1B1 with soy isoflavones should
result in an increased plasma concentration of simvastatin. The
previous in vitro study examined the effects of individual
flavonoids and showed that some of them significantly
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FIGURE 2 | Percentage changes in AUC0−24h of simvastatin and simvastatin acid with green tea extract (A,B) or soy isoflavones (C,D) according to the SLCO1B1
521T > C genotypes.

inhibited [3H] dehydroepiandrosterone sulfate uptake in a
concentration-dependent manner in OATP1B1-expressing cells
(23). This may not be relevant to the present study which used
a combination of flavonoids in the soy extract, which may not
reach the same concentrations in vivo as those used in vitro, and
also used a different substrate for OATP1B1.

It was previously demonstrated that feeding rats diets
containing soy protein isolate (SPI) results in alterations in
expression and inducibility of a number of CYP enzymes,
including CYP1A1, CYP1A2, CYP2B1, and CYP2C11 (16, 29).
In addition, it was shown that there was a significant elevation
in expression and glucocorticoid-inducibility of hepatic CYP3As
after feeding SPI-containing diets to rats and mice and
after feeding soy infant formula to neonatal piglets (17, 18).
The nuclear hormone receptor, PXR regulates multiple drug
metabolizing enzymes and transporters including CYP3A4 and
activation of PXR by endogenous and exogenous chemicals
results in induction of drug metabolism. CYP3A4 is the
most important phase I drug metabolizing enzymes that is
responsible for the metabolism of approximately 50% of all
prescription drugs including simvastatin. Li et al. demonstrated

TABLE 5 | Effects of green tea and soy product on plasma lipids
and blood pressure.

Parameters Baseline After green
tea

After soy
isoflavones

P

Total cholesterol (mmol/L) 4.24 ± 0.73 4.02 ± 0.71* 4.17 ± 0.86 0.111

HDL-C (mmol/L) 1.42 ± 0.24 1.40 ± 0.22 1.37 ± 0.17 0.332

Triglycerides (mmol/L) 0.86 ± 0.25 0.92 ± 0.34 0.90 ± 0.32 0.800

LDL-C (mmol/L) 2.42 ± 0.73 2.21 ± 0.70* 2.39 ± 0.81 0.015

Systolic blood pressure,
(mmHg)

113.6 ± 2.0 115.6 ± 2.1 112.8 ± 2.3 0.399

Diastolic blood pressure,
(mmHg)

76.6 ± 9.7 77.5 ± 7.8 75.9 ± 9.4 0.779

Pulse rate, (beats per
minute)

72.2 ± 10.8 71.8 ± 10.3 68.1 ± 9.4 0.413

P values were assessed by repeated measures analyses of variance (ANOVA) for
difference among the three groups.
*P < 0.05 vs. baseline.

that the soy-associated isoflavones, genistein, daidzein and
equol, activated both mouse and human PXR and subsequently
upregulated CYP3A enzymes (18). It is therefore possible that the
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interaction between soy isoflavones and simvastatin is mediated
via activation of PXR.

In addition, other studies have shown that soy isoflavones,
genistein or daidzein, can activate PPARα and PPARγ

and regulate LXR activity indirectly by promoting the
phosphorylation of LXRα and LXRβ, leading to differential
expression of genes regulated by LXR (20, 30). These nuclear
receptors can modulate CYP3A4 and multiple influx and
efflux drug transporters suggesting that there may be complex
interplays between nuclear receptors, CYP3A4 and drug
transporters responsible for the observed interaction between
soy isoflavones and simvastatin.

Considering that soy isoflavones significantly reduced the
systemic exposure to simvastatin acid, but not the lactone, this
may suggest the effect is through a transporter rather than the
CYP enzymes as the lactone forms of most statins are metabolized
more extensively than the active acid forms (31). Furthermore,
the effect was only significant in the SLCO1B1 521TT genotype
group with the most active form of the OATP1B1 transporter,
suggesting the effect may be mediated by increasing expression
or activity of this transporter. There was also a significant
reduction in the AUC for simvastatin lactone with soy isoflavones
and a significant reduction in the AUC for simvastatin acid
with green tea extract in this genotype group. The effect could
be mediated via activation of PXR to increase expression of
OATP1B1 or a direct effect on the transporter activity by
certain flavonoids.

As mentioned above, simvastatin acid is also a substrate for
the efflux transporters, ABCG2, ABCB1 and ABCC2 (7, 12), and
less active forms of ABCG2 are associated with increased systemic
exposure to simvastatin acid (8). It is therefore possible that
activation of ABCG2, ABCB1 or ABCC2 would reduce the AUC
for simvastatin acid but it seems unlikely that the effect would
be influenced by the SLCO1B1 genotype. Likewise, other OATP
transporters expressed in hepatocytes and enterocytes such as
OATP1B3, OATP2B1 and OATP1A2 may play a minor role in
the disposition of simvastatin acid (9), but effects on these are
unlikely to be SLCO1B1 genotype-dependent.

A previous case report documented that consumption of green
tea might be associated with increased systemic exposure to
simvastatin lactone and acid and appeared to trigger statin muscle
intolerance in a 61-year-old man with hypercholesterolemia
who developed muscle symptoms while receiving low doses of
various statins (13). In addition, an in vitro study demonstrated
that green tea extract (containing EGCG, EGC, EC, and ECG
at 43.3, 24.8, 9.7 and 1.7%, respectively, with a total catechin
content of 86.5% w/w) weakly to moderately inhibited CYP3A
activity in a non-competitive manner as evaluated by midazolam
1′-hydroxylation in rat hepatic microsomes (32). A single
oral dose of green tea extract (400 mg/kg) 30 min before
simvastatin administration was associated with significantly
increased AUC0−6h of simvastatin by 3.4-fold but had no effect
on t1/2 in rats suggesting that green tea extract did not affect
the elimination of simvastatin (32). The AUC0−6h of simvastatin
acid was increased by 2.0-fold in this animal study but this
was not statistically significant due to large inter-individual
variations (32).

The discrepancies between our study and the previous in vitro
and animal studies may be due to various factors. Firstly, the
in vitro and animal studies generally use very high doses or
concentrations of green tea extract which may not be clinically
relevant and may have different effects on drug metabolizing
enzymes and transporters. It has been estimated that a freshly
brewed cup of green tea may contain 130–180 mg of EGCG (33).
The present study used an 800 mg dose of green tea extract,
which is equivalent to about 5–6 cups of green tea and may be
more relevant to the normal intake, although giving the extract
as a single dose will result in higher maximum concentration of
catechins than normal consumption of green tea as a beverage
throughout the day. Secondly, the previous experiments with
green tea extract were performed with a single dose of green tea
extract or a single cup of green tea and these may have different
effects from the multiple doses used in the present study. This
study used an extract which contained predominantly EGCG,
which is the most abundant catechin in green tea (up to 80%),
whereas other studies may have used other green tea extracts
or green tea drinks contain a different mixture of catechins
which may again also have different effects on drug metabolizing
enzymes and transporters.

In a previous study we showed that the same extract of
green tea reduced the systemic exposure to rosuvastatin by
about 20% when the extract was given daily for 2 weeks and
simultaneously with the dose of rosuvastatin (25). That effect
may have been due to activation of liver uptake by OATP1B1
or OATP1B3, or inhibition of intestinal uptake by OATP2B1
or OATP1A2. It has been shown that EGCG can inhibit
OATP1A2- and OATP2B1-mediated uptake of estrone-3-sulfate
in a concentration-dependent manner in cells expressing these
transporters (34). Green tea taken as a drink reduced the systemic
exposure to nadolol by 85% in healthy volunteers, which was
thought to be due to inhibition of OATP1A2-mediated intestinal
uptake of nadolol which was supported in vitro studies (35).

Moreover, EGCG was shown to activate OATP1B3 in in vitro
studies (36). Transporters such as ABCB1 and possibly hepatic
OATP1B transporters can be induced by various compounds by
activating PXR (37). The effect of the green tea extract used in
the present study to reduce the systemic exposure to rosuvastatin
in our previous study and possibly reduce the systemic exposure
to simvastatin in the SLCO1B1 521TT genotype group in
the present study may be due to activation of liver uptake
transporters and such effects are known to vary with different
substrates (37). Increased liver uptake of these statins may result
in increased LDL-C lowering effects and it would be interesting
to examine this.

LIMITATIONS

There are some limitations in this study. It is well known that
HDIs may depend on the dosage of herbs used and, in this study,
we only investigated one dosage for each herbal product. The
dosage was chosen to correspond with a high intake of the natural
substances in food or beverages. Secondly, there may be a physical
reaction between the herbal extracts and the drug because the
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subjects took the herbal extracts and simvastatin simultaneously
on the dosing day to try to identify the maximum interaction
between the herbs and drug. It was shown that the bioavailability
of sunitinib in rats was reduced when taken together with EGCG
but not when the EGCG was taken 8 or 4 h before sunitinib,
which appeared to be due to a physical reaction between the
two compounds when taken together (38). Thirdly, although we
instructed the subjects to follow the dietary restrictions, this relied
on the subjects’ cooperation and honesty and may not be entirely
reliable, but it was a practical way to conduct the study.

CONCLUSION

Repeated green tea catechin administration at a daily dose of
about 800 mg EGCG for 2 weeks had no significant overall effect
on the pharmacokinetics of simvastatin in healthy volunteers but
appeared to reduce the systemic exposure to simvastatin acid
in subjects with the SLCO1B1 521TT genotype. Soy isoflavones
at a dose of approximately 80 mg daily for 14 days was
associated with reduced systemic exposure to simvastatin and
simvastatin acid and this interaction appeared to occur in
subjects with the SLCO1B1 521TT genotype but not in subjects
with the 521C variant allele. Further studies are needed to
investigate the underlying mechanisms responsible for these
observed interactions and to assess the clinical relevance of these
interactions in patients receiving long-term simvastatin.
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Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused millions of deaths and

lacks treatment. Although several studies have focused on the major component of

green tea, epigallocatechin 3-gallate (EGCG), which is efficient in preventing COVID-

19, systemic analyses of the anti-COVID-19 potential of green tea remain insufficient.

Here, we co-analyzed the target genes of tea ingredients and COVID-19 signature

genes and found that epigallocatechin 3-acetalbehyde was capable of reversing the

major molecular processes of COVID-19 (MAPK and NF-κB activation). These findings

were further supported by Western blotting (WB), immunofluorescence, and quantitative

polymerase chain reaction (qPCR) in LPS-stimulated macrophages. Moreover, using

molecular docking analysis, we identified three tea ingredients ((-)-catechin gallate, D-

(+)-cellobiose, and EGCG) that may interact with the vital SARS-CoV-2 protein, 5R84,

compared with the qualified 5R84 ligand WGS. Thus, our results indicated that tea

ingredients have the potential to treat COVID-19 by suppressing the COVID-19 signature

genes and interacting with the vital SARS-CoV-2 protein.

Keywords: COVID-19, molecular docking, network pharmacology, tea ingredients, macrophage, key targets

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a disease with main manifestations involving the
lungs and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(1). SARS-CoV-2 is rapidly spreading around the world, and the number of confirmed
cases and infection-related deaths are increasing every day (2). The severity of COVID-
19 is associated with increased inflammatory and chemokine factors; these factors also
predict COVID-19 mortality (3). Although the pathogenesis of COVID-19 is not fully
understood, the virus and host immune system play key roles in its development (4).
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From Delta to Omicron, the new coronavirus is constantly
mutating, the global epidemic is at a high level, and the number
of infections continues to increase (5).While COVID-19 vaccines
can greatly prevent the spread of the virus, they cannot treat
patients infected with the virus (6). To treat patients with
new coronavirus pneumonia, scientists have made considerable
efforts in drug research and development; however, to date, there
are still very few drugs that can treat COVID-19 (7). Although
some neutralizing antibodies and small molecule inhibitors are
being developed, there is uncertainty about their safety and
efficacy (8). Therefore, we urgently need to explore new strategies
to treat COVID-19.

Tea is popular all over the world as a food drink; in
fact, tea has been used as an herbal medicine to prevent
and treat various diseases (9). Tea and its characteristic
polyphenols—catechins—have been shown to be active in
preventing obesity, diabetes, cardiovascular disease, cancer,
and other diseases (10–12). Tea ingredients have also been
shown to have anti-viral activity as well as protective activity
against diseases caused by oxidative stress and inflammation;
many of these ingredients may help alleviate and treat
COVID-19 (13, 14). Although several studies have focused
on epigallocatechin gallate (EGCG), the major component
of green tea, which has been shown to be effective in
preventing COVID-19 (15), we focused on systematic research
of the therapeutic potential of tea components for COVID-19,
including inhibition of COVID-19 signature gene transcription
and direct interactions with specific COVID-19 proteins.
Systematic research about tea and COVID-19 currently remains
insufficient. Systematic analyses of the anti-COVID-19 potential
of green tea and other teas remains insufficient. In this study,
we mainly used bioinformatics and computational network-
based pharmacology to explore and determine the efficacy and
possible therapeutic mechanisms of tea for the treatment of
COVID-19 to reveal the potential uses of tea in the treatment
of COVID-19. Using a network pharmacology strategy, we
report the pharmacological targets and molecular pathways of
tea ingredients. Therefore, in this bioinformatics report, we
aimed to reveal the component-target-pathway network and
pharmacological mechanisms of tea ingredients in the prevention
and treatment of COVID-19.

MATERIALS AND METHODS

Identification of the Target Genes of Tea in
the Treatment of COVID-19
Using effective tools such as Traditional Chinese Medicine
Systems Pharmacology (TCMSP), Swiss Target Prediction, and
SuperPred, the target genes of tea were screened from existing
databases (16, 17). Other genes related to the occurrence of
COVID-19 were obtained using the DisGeNET and GeneCards
databases (18). In addition, these putative tea and COVID-
19 genes were mapped using the UniProt tool prior to
correction. After functional enrichment analysis using FunRich
software, all anti-COVID-19 targets of tea were screened
and identified.

Protein-Protein Interaction (PPI) of
Candidate Genes
After obtaining the targets of tea and COVID-19, the STRING
database was used to further determine and construct a
functional protein association network according to a specific
algorithm (19, 20). In addition, based on the merged targets of
tea and COVID-19, a protein-protein interaction (PPI) network
was constructed using Cytoscape software (21, 22). Therefore, the
key targets of tea in the treatment of COVID-19 were revealed,
visualized, and determined with the topology parameters of the
network analyzer tool (23, 24).

Enrichment Analyses and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathway of Intersection Targets
R language packages, such as ClusterProfiler, org.Hs.eg.Db,
ReactomePA, and GOplot (3.6.1), have been used for enrichment
analysis and visualization of the biological processes and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
of intersection targets (25). In addition, gene annotation
information from org.Hs.eg.Db (26, 27), a p-value cutoff = 0.05,
and a q-value cutoff = 0.05 were used for enrichment before
plotting the corresponding bubble chart, histogram, and Circos
circle chart.

Molecular Docking Analysis
To screen and identify key targets for tea-based molecular
docking assays, a chemical-protein binding approach was used
(28, 29). After searching for a specific protein through the PDB
database, the 5R84 protein was selected for docking with the tea
compound. The three-dimensional structure of tea was drawn
using ChemBio3D Draw in Chem Bio Office 2010 software
before docking the molecular structure with AutoDock Vina
software (30). The plausibility of the docking parameter settings
was assessed by the root-mean-square deviation (RMSD) of the
ligand molecules. An RMSD ≤4 Å is the threshold for ligand
molecular conformation.

Cell Culture
Murine macrophage RAW 264.7 cells were acquired from the
Type Culture Collection of the Chinese Academy of Sciences
(Shanghai, China). Cells were grown at 37◦C under 5% CO2

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% (v/v) fetal bovine serum (FBS) and 1% penicillin
streptomycin (Gibco, USA) in humidified incubators (Thermo,
USA). Lipopolysaccharide (LPS, Escherichia coli 055: B5) and
EGCG were purchased from Sigma Chemical Co. (St. Louis,
USA). RAW 264.7 cells were treated with LPS, LPS+EGCG, or
EGCG (for the concentrations of LPS and EGCG see the figure
legend) for 24 h. For viability testing, the cells were starved for
24 h without serum before challenge and seeded at a density
of 1 × 105 cells/mL in 96-well plates with four replications,
and cell viability was analyzed with a CCK-8 cell counting kit
(Vazyme, China).
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Quantitative Real-Time Polymerase Chain
Reaction (QPCR)
The total RNA was isolated from cells using an RNA extraction
kit (Vazyme, China). First-strand complementary DNA (cDNA)
was synthesized using an iScript cDNA Synthesis Kit (Vazyme,
China). Quantitative PCR was performed with SYBR green PCR
Master Mix (Vazyme, China) using a ViiA 7 Real-Time PCR
System (Applied Biosystems, CA). The primers are detailed in
Table 1. The following cycle parameters were used: 55◦C for
2min, 95◦C for 10min, and 40 cycles of 95◦C for 30 s and 60◦C
for 30 s. The relative expressions of the target genes against that of
the reference gene, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), were calculated using the 2−11CT method. Cell
samples were evaluated in triplicate, and every experiment
was performed at least three times. The transcription levels of
inducible nitric oxide synthase (iNOS), tumor necrosis factor
alpha (TNF-α), interleukin (IL)-1β, IL-6, Arg-1, and GAPDH
were determined.

Protein Extraction and Western Blotting
(WB)
Total cellular proteins were extracted using
radioimmunoprecipitation assay buffer containing 1% sodium
dodecyl sulfate (SDS); 40mg of total lysate was separated by
10% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) gel
and transferred to a polyvinylidene fluoride membrane, blocked
with 5% bovine serum albumin in tris-buffered saline for 90min,
and then incubated with the appropriate primary antibody
overnight at 4◦C. Membranes were incubated with secondary
antibody for 90min at room temperature after washing and
then visualized using ECL Plus Western Blot Detection Reagent
(Millipore, USA). The protein expression levels of extracellular
signal-regulated kinase (ERK), p-ERK, c-Jun amino-terminal
kinase (JNK) and p-JNK, and p38 and p-p38 were determined by
Western blotting (WB). GAPDH was used as an internal control.

Enzyme Linked Immunosorbent Assay
(ELISA)
According to the manufacturer’s instructions, the cell
supernatant concentrations of IL-6, TNF-α, and IL-1β were
determined using ELISA kits (ExCell Bio, China).

TABLE 1 | Primers used for real-time quantitative PCR analysis.

Gene Forward primer Reverse primer

iNOS ACTCAGCCAAGCCCTCACCTAC TCCAATCTCTGCCTATCCGTCTCG

TNF-α CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG

IL-1β GCAACTGTTCCTGAACTCAACT ATCTTTTGGGGTCCGTCAACT

IL-6 CCAAGAGGTGAGTGCTTCCC CTGTTGTTCAGACTCTCTCCCT

Arg-1 CATATCTGCCAAAGACATCGTG GACATCAAAGCTCAGGTGAATC

GAPDH CATCCCAGAGCTGAACG CTGGTCCTCAGTGTAGCC

Immunofluorescence Assay
The expression of phospho-p65 was detected by
immunofluorescence assays using a fluorescence microscope.
RAW 264.7 cells were cultured directly on glass coverslips
in 6-well plates for 24 h. After stimulation with LPS in the
presence or absence of EGCG, the cells were fixed with 4%
paraformaldehyde in PBS. The membrane was permeabilized
by treating the cells for 5min with 0.1% Triton X-100 in PBS.
After a brief washing in PBS, slides were blocked with 5% bovine
serum albumin for 1 h and then incubated with rabbit polyclonal
anti-human phopho-p65 antibody (dilution, 1:100) overnight
at 4◦C at room temperature. The next day, the specimens were
rinsed with PBS three times. After washing, they were incubated
with the secondary antibodies (Alexa Fluor R© 594, Thermo
Fisher Scientific, CA, USA) for 30min and counterstained for
nuclei with DAPI (Beijing Solarbio Science & Technology,
Beijing, China) for 10min. After a brief washing in PBS, slides
were sealed using ProLong R© Gold antifade reagent (Molecular
Probes R© by Life TechnologiesTM, CA, USA). Fluorescence
micrographs were acquired with a fluorescence microscope
(Nikon ECLIPSE Ti-U, Nikon Co., Japan).

Data Analysis
Normally distributed data were analyzed using Student’s
t-test (for two-group comparisons) or analysis of variance
(for multiple-group comparisons). For non-normally
distributed values (as determined by the Kolmogorov–
Smirnov test), the Mann–Whitney’s rank-sum test was
used. All statistical tests were two-sided, and P <

0.05 was considered statistically significant. Data are
presented as the mean ± standard error of the mean
(SEM) and presented using GraphPad Prism 5 software
(LaJolla, CA).

RESULTS

Identification the Ingredients and Target
Genes of Tea
We first downloaded the ingredients and target genes of tea
from the Traditional Chinese Medicine Integrated Database
(TCMID) database (31). Eleven annotated ingredients and 931
target genes were reported, among which EGCG was the major
ingredient and targeted 556 genes (Figures 1A,B). According
to Gene Ontology (GO) enrichment analysis, the target
genes of tea were involved in inflammation and chemokines
(positive regulation of cytokine production, positive regulation of
leukocyte migration, etc.), coagulation and cell death (neuronal
death, extrinsic apoptotic signaling pathways, etc.) (Figure 1C),
which were previously reported as the molecular characteristics
of COVID-19, indicating that the tea has the potential
to have anti-COVID-19 activity. The KEGG enrichment
analysis also demonstrated that tea has a strong antiviral
activity, with target genes that were functionally enriched
in COVID-19 and influenza A, and represses inflammation
(Figure 1D).

In addition to EGCG, there are many additional
components such as beta-phenylethyl isothiocyanate,
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FIGURE 1 | The ingredients and target genes of tea. (A) The network of tea ingredients and target genes, the dot color represents the components, while green, red,

and blue represents the tea, tea ingredients, and target genes, respectively. (B) The target genes bar plot of each tea ingredient. (C) The GO enrichment map of tea

target genes organized enriched terms into a network with edges connecting overlapping genes and easier to identify hub module. (D) The KEGG enrichment bar plot

of the top 30 enriched terms, the bar color represents the P-value of each term.

carotene, and citral, that also have anti-inflammatory and
anti-chemotactic effects for COVID-19. We intersected the
targets of other tea ingredients with the signature genes
of COVID-19 (Supplementary Figure 1) and found that
the targets of EGCG covered the most signature genes of
COVID-19. Furthermore, beta-phenylethyl isothiocyanate
and carotene also covered some signature genes. The
enrichment analysis of the corresponding intersected genes
(Supplementary Figure 2) showed that in addition to EGCG,
other tea ingredients can repress the corresponding pathological

processes involved in COVID-19. For instance, the targets

of beta-phenylethyl isothiocyanate are closely related to cell

chemotaxis in COVID-19. Citral inhibits inflammation and
NK-κB signaling in COVID-19. Finally, cartone is related
to coagulation and cytokine secretion. In summary, these
results imply that tea can suppress inflammation and prevent
coronavirus disease.

Molecular Characterization of COVID-19
Infection
We next employed the DisGeNET and KEGG databases to
characterize the molecular signature of COVID-19 infection.
There were 1,288 and 232 COVID-19 signature genes in
the DisGeNET and KEGG databases, respectively, among
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which 87 genes were shared (Figure 2A). These genes were
functionally enriched in response to viruses, innate and adaptive
immune responses, inflammatory responses, and coagulation
(Figure 2B). Notably, the signature genes of COVID-19 infection
were also enriched in response to LPS, indicating a similar
molecular pattern between COVID-19 infection and sepsis
(Figure 2B). The similarity analysis of the enrichment results
of the DisGeNET and KEGG COVID-19 genes revealed that
cytokine and chemokine activity, endopeptidase activity, and
phosphatidylinositol 3-kinase (PI3K) activity were the major
processes of COVID-19 infection (Figure 2C). Furthermore,
the enrichment of KEGG COVID-19 signature genes showed
a MAPK signaling pathway specificity (Figure 3C). As for
shared genes of the two databases, the PPI analysis implied
that they were highly biologically relevant; among these
genes, IL-6, TNF, and IL-1B were relevant to the highest
degree (Figure 2D). In addition to cytokines, the Toll-like
receptor (TLR2, TLR3, TLR7, and TLR8) and inflammatory
signaling pathways (JAK-STAT, NF-κB, and MAPK signaling
pathways) were also important components in the PPI network
(Figure 2D). The functions of these genes included involvement
in the antiviral process (COVID-19, influenza A, etc.) and
responses to molecules of bacterial origin and inflammation
(Figures 2E,F).

Identification the Candidate Target Genes
of Tea and COVID-19
To further verify the anti-COVID-19 activity of tea ingredients,
we co-analyzed the target genes of tea with COVID-19 signature
genes. There were 249 and 50 shared targets genes of tea with
DisGeNET and KEGG COVID-19 gene signatures, respectively,
and 33 shared genes in all conditions (Figure 3A). The shared
GO enrichment items were focused on the response to bacteria
and viruses, inflammation (cytokines and chemokines), immune
responses, and coagulation; these cover the majority of signature
genes of COVID-19 that were enriched (Figures 2B, 3B),
suggesting that the ingredients of tea might act as anti-COVID-
19 components. The comparison of the GO enrichment results
also showed that tea could target the critical pathological
processes involved in COVID-19 infection including cytokine
and chemokine activity, endopeptidase activity, and the MAPK
signaling pathway (Figure 3C). The comparison of the KEGG
enrichment results also showed a similar pattern that covered
the major inflammatory signaling pathways including the JAK-
STAT, NF-κB, and MAPK signaling pathways (Figure 3D).
Furthermore, the shared 33 genes in all three conditions were
functionally involved in inflammation and immune responses,
which are similar to the major pathological processes of COVID-
19, which involve the Toll-like receptor signaling pathway, IL-
17 signaling pathway, and cytokine and chemokine activity
(Figure 3E). Notably, the shared 33 genes were similar to the
high degree genes in PPI, such as IL-6, TNF, and IL-1β, revealing
that they were centrally involved in the pathological status
of COVID-19 infection. Thus, the results demonstrated that
the target genes of tea covered the critical processes involved

in COVID-19 infection and might serve as anti-COVID-
19 components.

Molecular Docking Analysis of Tea
Ingredients With the COVID-19 Protein
5R84
Previous studies have reported that small molecules are able to
block the COVID-19 virus through interaction with vital virus
proteins, such as 5R84 (32). We next examined the interaction of
tea ingredients with the COVID-19 protein 5R84 by molecular
docking (33). Six of 11 tea ingredients were capable of interacting
with 5R84 and had lower free binding energies than the qualified
5R84 ligand WGS; these were (–)-catechin gallate, carotene, l-
epigallocatechin, (–)-epicatechin-pentaacetate, D-(+)-cellobiose,
and epigallocatechin 3-gallate (Figure 4A). Among these 6
ingredients, (–)-catechin gallate had the lowest binding free
energy (−8.8 kcal/mol) and formed 5 hydrogen bonds with the
ARG40, TYR54, GLU55, ASN-180, and ARG-188 residues of
5R84 (Figure 4B). The other 5 ingredients shared comparable
binding free energies (∼-7.26 kcal/mol) and formed 0 to 5
hydrogen bonds with residues (Figure 4B). Notably, although
carotene had a low binding free energy, it could not form
hydrogen bonds with 5R84, implying that the interaction of
carotene with 5R84 was not stable. In summary, we identified
three tea ingredients ((–)-catechin gallate, D-(+)-cellobiose, and
epigallocatechin 3-gallate) that were sufficient to block COVID-
19 by interacting with 5R84 protein.

Epigallocatechin 3-Gallate (EGCG)
Reduced the Secretion of Inflammatory
Factors by Inhibiting MAPK/NF-κB
Signaling and Regulating Macrophage
Polarization in vitro
Based on the abovementioned biometric analysis results, it is
reasonable to hypothesize that EGCG is involved in inflammation
in COVID-19. To ascertain whether EGCG can protect the
body from inflammatory injury, we conducted a CCK8 assay.
The results revealed that cell viability began to decline when
the concentration of EGCG exceeded 50 nM (Figure 5A).
Subsequently, we analyzed the effect of EGCG on macrophage
polarizations. The LPS (100 ng/mL)-induced mRNA expression
of M1 marker genes including iNOS, TNF-α, Il-1β , and IL-
6 was significantly reduced by EGCG (Figures 5B–E). On the
other hand, EGCG showed an increased effect on the level of
induction of the M2 marker gene Arg1 stimulated by LPS in
RAW264.7 cells (Figure 5F). Then, we collected RAW264.7 cell
supernatants after LPS stimulation in a culture system with or
without EGCG to measure the secretion of inflammatory factors
by ELISA. The results showed that EGCG significantly reduced
the production of IL-6, TNF-α, and IL-1β compared with the LPS
stimulation group (Figures 5G–I). Moreover, we also detected
the inflammatory factor IL-17A secreted by macrophages and the
expression of TLR4 and PI3K, which were previously screened
(Figure 3E); EGCG significantly suppressed the production of
IL-17A and the mRNA levels of TLR4 and PI3K compared with
the LPS stimulation group (Supplementary Figure 3). These
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FIGURE 2 | The gene signature of COVID-19. (A) The Venn plot of COVID-19 gene signature of DisGeNET and KEGG. (B) The shared COVID-19 gene signature GO

terms of DisGeNET and KEGG. (C) The comparison GO enrichment network of DisGeNET and KEGG, the number of circles in the bottom left corner represents the

gene number of each enriched term, the proportion of clusters in the pie chart is determined by the number of genes. (D) The PPI of shared genes of DisGeNET and

KEGG COVID-19 gene signature, the dot color represents the connectivity of each gene, while from yellow to red represents from low to high. (E) The top 10 KEGG

enriched terms of shared COVID-19 signature genes. (F) The genes and GO enriched terms network of shared COVID-19 signature genes, the red dots represent the

GO enriched terms while blue dots are the related genes.

results indicate that EGCG reduces the secretion of inflammatory
factors in vitro.

To further explore the mechanism by which EGCG alleviates
inflammatory damage to cells, we investigated the inflammation
pathway in vitro. We measured the activation of the MAPK
pathway. As shown in Figure 5J, phosphorylation of p-ERK, p-
JNK, and p-p38 in macrophages was significantly increased after
LPS challenge; this effect was suppressed by EGCG in vitro as
determined by WB (Figure 5J). This demonstrates that EGCG
could effectively inhibit the MAPK pathway. Furthermore,
we investigated the suppressive effect of EGCG treatment
on the NF-κB signaling cascade in RAW264.7 macrophages.
Our investigations indicated that the phosphorylation of p65
was significantly increased after LPS challenge, and this was
suppressed by EGCG (Figure 5K). This finding confirms that
EGCG suppressed inflammation by inhibiting MAPK/NF-
κB signaling.

DISCUSSION

Tea is one of the three most consumed beverages in the world

and is known as the beverage of the twenty-first century, not only

because of the long history of tea culture but also because of its
nutritional value and health care functions (34, 35). Studies have
shown that tea contains numerous active ingredients, mainly tea
polyphenols, tea pigments, tea polysaccharides, γ-aminobutyric
acid, tea saponins, alkaloids, vitamins, pyrroloquinoline quinone,
pantothenic acid, minerals, and other ingredients (36, 37). Tea
polyphenols are the most abundant soluble components in tea,
and they are also the most important substances in tea that
exert biological effects (35) that can reduce the incidence of
cardiovascular disease, decrease blood lipids, decrease body fat
formation, and change the intestinal flora ecology (35, 38).
Studies have shown that after drinking a cup of tea for half
an hour, the antioxidant capacity (ability to fight oxygen free
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FIGURE 3 | The anti-COVID-19 potential of tea. (A) The Venn plot of COVID-19 signature genes and tea target genes. (B) The shared GO enriched terms of

COVID-19 signature genes and tea target genes. The comparison GO (C) and KEGG (D) enrichment network of COVID-19 signature genes and tea target genes, the

bottom left circles stand for the gene number of each enriched term, the proportion of clusters in the pie chart indicates the number of genes. (E) The network of

shared COVID-19 signatures genes and tea target genes along with the GO and KEGG enrichment terms.

radicals) in the blood increases by 41% to 48% and can last for
one and a half hours at a high level (39).

In our work, we first screened the main ingredient of
tea, EGCG, in databases, suggesting that EGCG may play
an important role in the treatment of COVID-19. EGCG
is the main component of green tea polyphenols and is a
catechin monomer isolated from tea (40). Studies have shown
that EGCG has several functions including significant anti-
oxidation, involvement in scavenging free radicals, reduction
of inflammation and allergic reactions, anti-mutagenic effects,
inhibition of tumor growth, and strong inhibitory effects on
dysentery, typhoid fever, Staphylococcus aureus, and other
bacteria (41–43). EGCG also has the functions of anti-
aging, lowering blood lipids, improving low-density lipoprotein,

inhibiting the growth of liver fat and cholesterol, preventing
atherosclerosis, and enhancing immunity (44–46). In addition,
EGCG can inhibit the proliferation of glomerular cell membranes
and improve renal function (47). Several studies have reported
the potential of EGCG to prevent COVID-19. For instance,
EGCG inhibits the angiotensin-converting enzyme 2 (ACE2)
receptor (the cellular receptor for SARS-CoV-2) and TMPRSS2,
which mediate viral entry into cells, by activating Nrf2
(48, 49). By inhibiting the main protease of SARS-CoV-2,
EGCG may inhibit viral reproduction (48). EGCG protects
against SARS-CoV-2-induced mitochondrial reactive oxygen
species (ROS) (promoting SARS-CoV-2 replication) and ROS
bursts caused by neutrophil extracellular traps through its
broad antioxidant activity (48, 50). EGCG can potentially
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FIGURE 4 | The molecular docking analysis of tea ingredients with COVID-19 5R84 protein. (A) The binding-free energy and hydrogen bond numbers of tea

ingredients with 5R84 protein with qualified 5R84 ligand WGS as a reference, the red dot horizontal line indicates the binding-free energy of WGS with 5R84. (B) The

representative interaction of tea ingredients and WGS with 5R84, the yellow dot lines indicate the hydrogen bonds of the specific ligand with 5R84.

inhibit the SARS-CoV-2 life cycle by inhibiting ER-resident
GRP78 activity and expression (51, 52). EGCG has also
been shown to protect against (1) cytokine storm-related
acute lung injury/acute respiratory distress syndrome (48,
53), (2) thrombosis through inhibition of tissue factor and
activation of platelets (54), (3) inactivation of redox-sensitive
HMGB1-induced sepsis (55), and (4) pulmonary fibrosis
by increasing Nrf2 and inhibiting NF-κB (13). However,
these activities remain to be further confirmed in animals
and humans.

Studies have shown that macrophages play an important
role in COVID-19 (56). Cytokine storm syndrome (CSS) refers
to the continuous activation and expansion of lymphocytes
and macrophages caused by the infection of microorganisms,
and a variety of cytokines such as TNF-α, IL-1, IL-6, IL-12,
interferon (IFN)-α, IFN-β, IFN-γ, monocyte chemoattractant
protein (MCP)-1, and IL-8 are rapidly produced in large

quantities (57). CSS is an excessive immune phenomenon of
the body to external stimuli and is an important cause of acute
respiratory distress syndrome and multiple organ failure (58).
Studies have shown that cytokine storms play a key role in
the transition to severe and critical illness in most coronavirus-
infected patients (59). In addition, one study found that there
is a highly pro-inflammatory macrophage microenvironment in
the lungs of severely ill patients with the new strain, which the
researchers said may help to elucidate the underlying mechanism
behind the immune response triggered by the new coronavirus
(60). Therefore, we focused on the role of EGCG in regulating
changes in macrophage function to improve COVID-19. The
inflammatory response in COVID-19 is much more complex
than that in LPS-induced RAW264.7 cells, and it is extremely
important to distinguish the inflammatory subtypes of different
diseases. However, the inflammatory response in COVID-19
still shares some common signatures with the inflammatory
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FIGURE 5 | EGCG suppressed secretion of inflammatory factors, macrophage polarization, and MAPK/NF-κB signaling in vitro. (A) RAW 264.7 cells were incubated

with EGCG (50mM) for 24 h. Cell viability was determined by CCK8 assay (n = 5). (B–F) The mRNA levels of iNOS, TNF-α, Il-1β, IL-6, and Arg1 in the RAW 264.7

(Continued)
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FIGURE 5 | cells with LPS (100 ng/ml) and EGCG (50 nM) for 24 h were detected by q-PCR (n = 3). (G–I) The concentrations of IL-6, TNF-α, and IL-1β in RAW 264.7

cell supernatant after LPS and EGCG treatment for 24 h were determined by ELISA kits (n = 4). (J) The protein levels of ERK1/2, P-ERK1/2, JNK, P-JNK, P38, and

p-p38 in the RAW 264.7 cells treated with LPS (100 ng/ml) and EGCG (50 nM) for 24 h were detected by Western blotting. (K) The expressions of p-p65 (red) and

DAPI (blue) in RAW 264.7 cells were detected by using an immunofluorescence staining assay (scale bar: 50µm). *P < 0.1, **P < 0.01, ***P < 0.001, ****P <0.0001.

response in LPS-induced RAW264.7 cells, among which the
most typical are TLR4, NF-κB, and other signaling pathways and
their corresponding cytokines (including IL-6, TNF, IL-1β, etc.)
(Figure 2D). Through the LPS-stimulated macrophage model,
we attempted to demonstrate the possibility of EGCG molecules
indirectly inhibiting COVID-19 inflammation.

EGCG has been reported to alleviate acute lung injury,
regulate the polarization of macrophages to M2 (61), and inhibit
secretion of inflammatory factors, and its protective mechanism
may be related to the inhibition of the MAPK and NF-κB
signaling pathway (62–64). In addition, EGCG derivatives
have anti-inflammatory activity in LPS-stimulated mouse
macrophages (65). Furthermore, EGCG-modified collagen
membranes have been shown to downregulate the expression
of inflammatory factors and promote M2 (CD163 and CD206)
macrophages (66). EGCG also stimulates LC3-II production
and autophagosome formation and inhibits LPS-induced
upregulation and extracellular release of HMGB1 (67). Our
results are consistent with those described above; however,
the origins of the abovementioned research and our study are
different. There is some heterogeneity in the inflammatory
responses of different diseases and different states of certain
diseases. Starting from the gene signature of COVID-19, we
co-analyzed the target genes of each component of tea in an
attempt to identify the potential of specific components of
tea for the treatment of COVID-19. The results showed that
the intersection of COVID-19 signature genes and tea target
genes was highly focused on the response to LPS stimulation
(Figure 3B). This phenomenon itself is an important discovery.
Among the different components of tea, EGCG is obviously
an important molecule regulating this process in COVID-19;
furthermore, it has the most target genes and is the major active
ingredient in tea. We then indirectly verified our findings in
LPS-stimulated macrophages in vitro to examine the suppression
effects of EGCG on the LPS-like responses in COVID-19. Finally,
our study is slightly different from the abovementioned literature
(61–67) in terms of molecular signaling pathways. Based on
the results of the bioinformatics analysis, we focused on the
most credible MAPK (ERK1/2-JNK-P38) signaling pathway. In
addition, EGCG reduced the secretion of inflammatory factors
and regulatedmacrophage polarization (fromM1 toM2) in vitro.
These cell experiments verified the results of our bioinformatics
analysis; namely, the active ingredient of tea, ECGC, can directly
act on macrophages in the cytokine storm environment of

COVID-19, and inhibit the secretion of inflammatory factors

and the activation of the MAPK and NF-κB signaling pathways,

improving the prognosis of COVID-19.
Moreover, Douangamath et al. (68) performed a large-scale

electrophilic and non-covalent fragment screening of the major
proteases of SARS-CoV-2 by combined mass spectrometry

and X-ray and found that 5R84 is one of two cysteine viral
proteases essential for viral replication. We therefore examined
the interaction of tea components with the COVID-19 protein
5R84. Through molecular docking analysis, we identified three
tea ingredients ((–)-epicatechin-3-o-gallate, D-(+)-cellobiose,
and EGCG) that likely interact with the vital SARS-CoV-2
protein, 5R84, compared with the qualified 5R84 ligand WGS.
According to the description in PubChem (https://pubchem.
ncbi.nlm.nih.gov/compound/24802025#section=Household-
Products), D-(+)-cellobiose is indeed insoluble in water and
cannot be absorbed by the human body; thus, it is nearly
impossible to inhibit SARS-CoV-2 through absorption from the
gastrointestinal tract and into circulation. However, considering
the droplet transmission and fecal-oral transmission of SARS-
CoV-2, namely, that SARS-CoV-2 exists on the surfaces of
the respiratory tract and digestive tract, D-(+)-cellobiose
may directly interact with SARS-CoV-2 on the corresponding
surfaces. However, the roles of (–)-epicatechin-3-o-gallate and
D-(+)-cellobiose in COVID-19 should be studied further in cell
and animal experiments.

In summary, our research systematically analyzed the active
ingredients of tea, namely, (–)-epicatechin-3-o-gallate, D-(+)-
cellobiose and EGCG, which have the potential to treat COVID-
19 by suppressing the target genes and signaling pathways of
COVID-19 and interacting with the vital SARS-CoV-2 protein.
In addition, we validated the above results in macrophages.
Our study analyzed the anti-COVID-19 effects of the active
ingredients of tea and provided new ideas for the prevention and
treatment of COVID-19.
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Background and Aim: Research has shown that green tea catechins may

influence the activity of drug metabolizing enzymes and drug transporters. We

examined whether epigallocatechin-3-gallate (EGCG) affected the pharmacokinetics and

pharmacodynamics of bisoprolol in rats.

Methods: A sensitive, specific liquid chromatography-tandem mass spectrometry

(LC-MS/MS) method was established for the quantitative determination of EGCG and

bisoprolol. The pharmacokinetic parameters of EGCG and bisoprolol in Sprague-Dawley

(SD) rats were analyzed using non-compartmental methods with the aid of the computer

program WinNolin. Blood pressure (BP) of spontaneously hypertensive rats (SHRs) was

monitored by the tail-cuff method. Bisoprolol was given as single doses of 10 mg/kg with

or without EGCG 100 mg/kg by gavage or by intravenous injection.

Results: Intake of EGCG with bisoprolol by gavage significantly reduced the Cmax

(mean Cmax from 2012.31 to 942.26 ng/mL, P < 0.05) and increased the Tmax (mean

Tmax from 0.5 to 0.83 h, P < 0.01) for bisoprolol. After intravenous injection, EGCG

significantly increased the apparent volume of distribution of bisoprolol (mean Vz/F from

1629.62 to 2473.27 mL/Kg, P < 0.05) and tended to increase the clearance. The

absolute bioavailability of bisoprolol was reduced from 92.04 to 66.05% in rats when

bisoprolol was administered with EGCG. Heart rate reduction was less in SHRs when

EGCGwas given by gavage with bisoprolol whereas BP reduction occurred more rapidly.
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Conclusion: This study showed that the simultaneous administration of EGCG by

gavage at a dose of 100 mg/kg was associated with decreased Cmax and increased

Tmax of bisoprolol, and the Vz/F of bisoprolol was increased when administered with

EGCG by intravenous injection in SD rats. Moreover, the early heart rate reduction with

bisoprolol was attenuated and BP reduction occurred earlier when EGCG was given with

bisoprolol by gavage in SHRs.

Keywords: bisoprolol, epigallocatechin-3-gallate (EGCG), green tea, pharmacokinetics, pharmacodynamics,

hypertension

INTRODUCTION

The behavior of drinking tea has a history of more than 5,000
years and tea has become the second most consumed beverage
in the world after water with total annual sales exceeding $43
billion globally, of which more than $11 billion is accounted
for by green tea (1). In Asian countries, the average green
tea consumption is about three cups per day, providing 240–
320mg of polyphenols (2). Epigallocatechin-3-gallate (EGCG)
is the main abundant catechin in green tea, accounting for 50–
80% of the total catechins (3). EGCG is a potent antioxidant
and is considered to have the potential to treat various human
diseases such as cancer, inflammation, endometriosis, diabetes,
cardiovascular disease and even has antiviral activity against
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
infection (4–7).

Because of these benefits, green tea is often taken
concomitantly with therapeutic drugs in many conditions,
which leads to the potential for herb–drug interactions (HDIs).
The major pathways responsible for HDIs involve the inhibition
or induction of cytochrome P450 (CYP) enzyme activity and the
expression of drug transporters such as P-glycoprotein (P-gp)
and organic anion transporting polypeptide 1A2 (OATP1A2).

Bisoprolol is a β1-blocker with high oral bioavailability and

is one of the first choices for the treatment of hypertension and
angina. The highly β1-selective property of β-blockers has the

advantage of reducing side effects and improving efficacy in the

treatment of hypertension and other cardiovascular diseases (8).
Bisoprolol is moderately lipophilic with an oral bioavailability of
more than 90% and its half-life is 10–12 h (9). It is used once
a day for the treatment of hypertension. Bisoprolol is rapidly
absorbed after oral administration, and reaches peak plasma
concentration after about 3 h and is eliminated with 50% renal
excretion as unchanged drug and 50% via hepatic metabolism to
pharmacologically inactive metabolites which are then excreted
by the kidneys (10). Bisoprolol is mainly metabolized by the drug
metabolizing enzymes CYP3A4 (95%) and CYP2D6 (5%) both of
which are isoenzymes of cytochrome P450 (CYP). Therefore any
drugs or herbs that induce the activity of CYP3A4 and CYP2D6
can accelerate the metabolic clearance of bisoprolol and result in
drug interactions. Furthermore, the absorption and excretion of
bisoprolol is closely related to the activity of OATP1A2 and P-
gP (11). Therefore, any concomitant drug that affects the activity
of CYP3A4, CYP2D6, P-gP or OATP1A2 may lead to changes
in the plasma concentration of bisoprolol, which may be the

molecular basis for the pharmacokinetic interactions between
other drugs or herbs and bisoprolol. In recent years, many
studies have reported the influence of green tea extract and its
major ingredient, EGCG, on drug interactions, which ultimately
affect the blood concentration and efficacy of the drug. Therefore,
the present study was performed to investigate the effect of EGCG
on the pharmacokinetics and pharmacodynamics of bisoprolol
in rats.

MATERIALS AND METHODS

Chemicals and Reagents
EGCG (purity > 99%) and bisoprolol fumarate (purity > 99%)
were purchased from Selleckchem, USA. The Bisoprolol-D7
isotope (internal standard [IS], HPLC grade) and loratadine

FIGURE 1 | Isothermal titration calorimetry (ITC) assay.
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FIGURE 2 | The retention times of EGCG, bisoprolol, deuterated bisoprolol and loratadine in plasma sample at the same time.

(IS of EGCG) were obtained from CDN isotopes, Canada.
LC–MS grade acetonitrile and methanol were purchased from
TEDIA, USA. Ethylenediaminetetraacetic acid (EDTA) and
Vitamin C were obtained from Source Leaf Organisms, China.
Other chemicals employed throughout the experiment were
of analytical grade and available commercially. Deionized and
double-distilled water used in all assays was produced by a
Milli-Q purification System (Millipore, Bedford, MA).

Apparatus and Analytical Conditions
Samples were analyzed through Dionex Ultra-Liquid
Chromatography (Thermo ScientificTM, USA) and TSQ
QuantumTMAccess MAX (Thermo ScientificTM, USA) systems
on a Hypurity C18 column (50 × 2.1mm,3µm) using an
injection volume of 10 µL. The mobile phases consisted of 0.1%
formic acid water (A) and acetonitrile (B). The gradient elution
system was optimized as follows: 0–0.5min 10% B, 0.5–0.8min
10–95% B, 2.0–2.2min 95–10% B, 2.2–2.5min 10% B. The
flow rate was 0.8 mL/min. The autosampler was maintained at
4◦C, and 100 µL was automatically injected into the system.
MS/MS data acquisition was performed under negative/ positive
electrospray ionization (ESI) mode. The Multiple Reaction
Monitoring (MRM) mode was employed to monitor EGCG,
bisoprolol, loratadine (IS) and D7-Bisoprolol (IS) with the
precursor-to-product ion transition of m/z 457.13 → 169.98,
m/z 325.96 → 115.96, m/z 383.01 → 336.94 and m/z 325.96 →

115.96, respectively. The parameters were optimized as follows: a
capillary voltage of −3500V, a gas flow rate of 12 L/min, and the
dry gas temperature of 350 ◦C. For EGCG, bisoprolol, loratadine
(IS) and D7-Bisoprolol (IS), the collision energies were 20 eV,
17 eV, 18 eV, and 24 eV, respectively. The other parameters,
including cone voltage (CV), collision energy (CE), and the dwell
time, were also achieved for the maximum abundance of the ions

TABLE 1 | Regression equation of EGCG and bisoprolol in rats plasma

determined by HPLC-MS (weight W=1/X2).

Analyte Calibration curves R2 Weight %RE

EGCG Y = 3.028e−5X - 1.009e−4 0.9982 1/X2
−7.37 ∼ 4.19

Y = 2.098e−5X - 7.199e−5 0.9936 1/X2
−13.15 ∼ 9.91

Y = 2.144e−5X - 7.308 e−5 0.9918 1/X2
−11.19 ∼ 10.60

Bisoprolol Y = 1.193e−2X + 3.506e−3 0.9996 1/X2
−3.16 ∼ 1.91

Y = 1.117e−2X + 1.742e−5 0.9991 1/X2
−5.00 ∼ 4.25

Y = 1.119e−2X + 2.248e−3 0.9992 1/X2
−4.60 ∼ 3.51

of interest by the automatic tune procedure of the instrument.
Thermo Xcalibur (2.2 SP1.48, Thermo Scientific, USA).

Preparation of Calibrators and Quality
Control (QC) Samples
An 8-level series of calibrators was prepared using pooled
plasma. Briefly, pooled plasma was spiked with working solution
to give 50,100,500,1,000,2,000,5,000,10,000 and 20,000 ng/mL
calibrators. Pooled plasma was used as blank. Calibrators were
aliquotted and stored at −80

◦

C. A 4-level QC was prepared
using pooled plasma. Briefly, pooled plasma was spiked with
working solution to give 15,000,1500,150 and 50 ng/mL QC. All
QC samples were aliquotted and stored at−80

◦

C.

Extraction Procedure
50 µL of Plasma,d7-Bisoprolol (1µg/mL),Loratadine (1µg/mL)
and Antioxidant Mixture Were Added Into a 1.5mL Centrifuge
Tube, After 1min of Vortex Mixing, 200 µL of Acetonitrile Was
Added and Vortex Mixed for 3min, Then Mixed Evenly and
let to Stand at Room Temperature for 5min. After 5min of
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TABLE 2 | Intra-day and inter-day precisions and accuracies for the determination of EGCG and Bisoprolol from the assay samples (mean ± SD, n = 6).

Concentration Intra batch Inter batch

Analyte (ng/ml) Mean ± SD RE (%) RSD (%) Mean ± SD RE (%) RSD (%)

EGCG 5 5.79 ± 1.06 15.77 18.35 5.99 ± 0.76 19.70 12.63

15 15.48 ± 1.13 3.17 7.32 14.61 ± 1.10 −2.60 7.50

150 137.34 ± 6.48 −8.44 4.72 136.75 ± 1.31 −8.84 0.96

1500 1,547.44 ± 32.52 3.16 2.10 156.87 ± 48.11 4.19 3.08

Bisoprolol 5 4.23 ± 0.21 −15.42 4.89 4.30 ± 0.10 −13.95 2.37

15 14.04 ± 0.31 −6.40 2.21 14.15 ± 0.51 −5.66 3.57

150 150.30 ± 1.91 0.20 1.27 152.75 ± 2.99 1.83 1.96

1500 1,502.17 ± 18.52 0.14 1.23 1,508.16 ± 10.97 0.54 0.73

TABLE 3 | Extraction recovery and matrix effect for the EGCG and Bisoprolol in

plasma (mean ± SD, n = 6).

Concentration Matrix effect Recovery

Analyte (ng/ml) Mean ± SD RSD (%) Mean ± SD RSD (%)

EGCG 1500 90.12 ± 4.13 4.58 79.09 ± 2.97 3.76

150 91.00 ± 4.59 5.04 60.96 ± 4.20 6.89

15 97.58 ± 4.05 4.15 72.69 ± 10.22 14.06

Bisoprolol 1500 99.91 ± 2.14 2.14 98.82 ± 5.07 5.15

150 98.53 ± 1.42 1.45 99.71 ± 3.49 3.50

15 100.14 ± 3.34 3.34 96.88 ± 7.72 7.96

Centrifugation at 1400 rpm, 180 µL of Supernatant Was Added
Into Another Clean EP Tube and Centrifuged Again at 14,00
rpm for 5min, Then 10 µL of the Supernatant Was Taken and
Subjected to LC-MS/MS Analysis.

Bisoprolol-EGCG Pharmacokinetic
Interaction
A total of 30 Sprague-Dawley (SD) rats including 15 male and 15
female, weighing 180–220 g, were acquired from the Laboratory
Animal Center of Sun Yat-Sen University (Guangzhou, China,
license no. SCXK 2016-0029). The SD rats were housed in clean
cages under an optimal temperature range of 24–26

◦

C and 12 h
light/dark cycle with free access to food and water. All the
animal procedures complied with the institutional animal ethics
guidelines set by the Animal Care and Use Committee of Sun
Yat-Sen University. The rats were randomly allocated to two
phases of this pharmacokinetic interaction study. The dosing of
18 rats was given by intragastric (i.g.) gavage and another 12 rats
were dosed by tail vein injection. The 18 rats were randomly
allocated to three groups: bisoprolol (10 mg/kg) group, EGCG
(100 mg/kg) group and the bisoprolol (10 mg/kg) + EGCG (100
mg/kg) combination group. The 12 rats were randomly allocated
to two groups: bisoprolol (10 mg/kg body weight, i.g.) group,
bisoprolol (10 mg/kg body weight, i.g.) + EGCG (100 mg/kg
body weight, i.g.) group. The dose of the 12 rats was calculated
from bisoprolol (10 mg/kg) and EGCG (100 mg/kg) dissolved in
a 0.7% saline solution. The rats were fasted for 12 h prior to drug

administration without restriction of drinking water, and feeding
restarted at 4 h after dosing. The blood samples (approximately
0.3mL) were collected into heparinized centrifuge tubes via
orbital venous plexus sampling before dosing (denoted as 0min),
and at 5min,10min,15min,30min,1 h,1.5 h,2 h,4 h,8 h, and 24 h
after dosing. The supernatant was collected by centrifugation of
the blood samples immediately at 4000 rpm for 10min at 4

◦

C and
stored at−20

◦

C until further analysis.

Blood Pressure Measurements of SHRs
Twelve male spontaneously hypertensive rats (SHRs) of body
weight about 320 g and average blood pressure more than
180mm Hg were used. The SHRs were divided into two
groups and 6 in each group (including three female and
three male). The rats were housed in clean cages under an
optimal temperature range of 24–26

◦

C and 12 h light/dark
cycle with free access to food and water. The rats were
randomly allocated to the bisoprolol (10 mg/kg body weight,
i.g.) group and the bisoprolol (10 mg/kg body weight, i.g.)
+ EGCG (100 mg/kg body weight, i.g.) group. The dose
selection mainly was refered to the previous study in SHRs (12).
Fasting was carried out for 12 h prior to drug administration
without the restriction of drinking water, and feeding restarted
at 4 h after dosing. The dosing was given by gavage. A
real-time blood pressure monitor (Intelligent non-invasive
blood pressure monitor mouse BP-2010A, China) with non-
invasive manometry was used to measure blood pressure at
0min,15min,30min,45min,1 h,75min,1.5 h,105min,2 h,4 h,6 h,
8 h,12 h, and 24 h after dosing. The average value of three
recordings of blood pressure from the tail artery in the awake
state of the rats was used for analysis.

Isothermal Titration Calorimetry Assay
Isothermal titration calorimetry (ITC) assay was performed
to investigate the binding of EGCG to bisoprolol on a
NanoITC LV-190 µL (Waters GmbH, TA Instruments,
Eschborn, Germany). Titration calorimetry was performed
at 25

◦

C in the assay buffer (PBS, PH 6.5). Briefly, the
sample and syringe cell were filled with bisoprolol
(2.1mM) and EGCG (13mM), respectively, which were
degassed prior to use. The titrations consisted of 25
consecutive injections of 1.96 µL each with a 200 s interval
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TABLE 4 | Stability of EGCG and Bisoprolol in plasma (mean ± SD, n = 6).

Storage

condition

Analyte Concentration

(ng/ml)

Mean ±

SD

(ng/ml)

RSD (%) RE (%)

Room

temperature

4 h

EGCG 15 14.13 ±

1.76

12.44 −5.80

150 131.46 ±

15.90

12.09 −12.36

1500 1,446.46

± 24.61

1.70 −3.57

Bisoprolol 15 14.06 ±

0.41

2.90 −6.36

150 151.73 ±

7.25

4.78 1.15

1500 1,500.19

± 24.77

1.65 0.01

Autosampler

for 12 h

(4◦C)

EGCG 15 14.49 ±

1.60

11.02 −3.41

150 135.76 ±

5.73

4.22 −3.41

1500 1,506.53

± 49.58

3.29 0.44

Bisoprolol 15 13.68 ±

0.33

2.41 −8.82

150 151.72 ±

2.33

1.54 1.15

1500 1,519.58

± 23.01

1.51 1.31

Three

Freeze/thaw

cycle at

−80◦C

EGCG 15 13.48 ±

1.13

8.41 −10.11

150 129.87 ±

6.29

4.48 −13.42

1500 157.56 ±

63.32

4.02 5.04

Bisoprolol 15 14.89 ±

0.51

3.43 −0.72

150 150.54 ±

1.10

0.73 0.36

1500 144.94 ±

22.43

1.50 0.01

Long

term for

30 d at

−80 ◦C

EGCG 15 12.93 ±

1.03

7.99 −13.80

1500 1,391.63

± 87.32

6.27 −7.22

Bisoprolol 15 14.44 ±

0.33

2.26 −3.70

1500 1,432.24

± 44.86

3.13 −4.52

between injections. The data were analyzed using the
instrumental internal software package and fitted with an
independent model.

FIGURE 3 | The plasma concentration time curves of bisoprolol after oral (A)

and intravenous (B) administration.

Ethics Statement
All animal studies were carried out in strict accordance with
the recommendations in the Guide for the Care and Use of
Laboratory Animals of the Laboratory Animal Center of Sun Yat-
Sen University. The protocol was approved by the Institutional
Review Board of Baoan Women’s and Children’s Hospital,
Shenzhen, China with IRB No LLSC2020-03-05, and the Animal
Care and Use Committee of Sun Yat-Sen University.

Pharmacokinetic Analysis
The pharmacokinetic parameters of bisoprolol were calculated
using non-compartmental methods with the aid of the computer
program WinNolin (version 8.1, Pharsight Corporation). Cmax

and Tmax were obtained directly from the observed plasma
concentration-time data. The terminal elimination rate constant
(λZ) was determined by linear regression of the terminal portion
of the plasma concentration-time curve and the elimination
half-life (t1/2) was calculated as 0.693/λZ. Systemic exposure to
bisoprolol was evaluated by calculating the AUC using the linear
trapezoidal rule and AUC0−∞ was calculated as AUC0−∞ =

AUC0−t + Ct/Kel where Ct is the last quantifiable concentration.
Apparent volume of distribution (Vz/F) = dose ∗ bioavailability
/ plasma drug concentration. The oral clearance (CL/F) was
calculated as Dose/AUC0−∞.

Statistical Analysis
All data were verified for normal distribution. Data are presented
as mean ± SD. A probability value <0.05 was considered
statistically significant. The pharmacokinetic parameters of
bisoprolol with and without EGCG were compared by repeated
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TABLE 5 | Effect of EGCG on the pharmacokinetic parameters of bisoprolol in SD rats.

Parameters Intragastric administration Intravenous administration

Bisoprolol (n = 6) Bisoprolol+EGCG(n = 6) Bisoprolol (n = 6) Bisoprolol+EGCG(n = 6)

t1/2, h 3.89 ± 2.03 4.49 ± 1.45 2.47 ± 0.32 2.88 ± 0.94

Tmax, h 0.50 ± 0.10 0.83 ± 0.26** 0.25 ± 0.37 0.12 ± 0.07

Cmax, mg/mL 2,012.31 ± 510.67 942.26 ± 230.23* 2,259.56 ± 607.55 2,438.08 ± 962.08

AUC0−t, h·ng/mL 3,709.61 ± 827.46 2,260.37 ± 579.78 4,030.01 ± 1,091.01 3,421.82 ± 1,124.34

AUC0−∞, h·ng/mL 3,914.09 ± 1081.55 2,347.37 ± 586.96 4,050.09 ± 1,117.69 3,436.69 ± 1,115.84

Vz/F, mL/Kg 3,687.71 ± 2021.28 7,693.73 ± 5,114.65 1,629.62 ± 279.05 2,473.27 ± 1,814.65*

Cl/F, mL/h/Kg 661.27 ± 225.56 1,028.96 ± 374.99 466.34 ± 111.29 546.72 ± 206.45

*P < 0.05, ** P < 0.01.

TABLE 6 | Pharmacokinetic parameters of EGCG after intragastric administration

in SD rats.

Parameters EGCG(n = 6) EGCG+Bisoprolol

(n = 6)

P-value

t1/2, h 5.06 ± 2.99 2.81 ± 0.96 0.130

Tmax, h 0.36 ± 0.35 0.18 ± 0.06 0.270

Cmax, mg/mL 6,007.28 ±

8,136.92

4,768.19 ±

4,636.59

0.753

AUC0−t,

h·ng/mL

3,499.28 ±

2,489.96

3,219.20 ±

2,614.72

0.853

AUC0−∞,

h·ng/mL

3,634.08 ±

2,400.23

3,274.21 ±

2,625.90

0.809

Vz/F, mL/Kg 96,970.06 ±

109,217.92

120,821.98 ±

205,173.74

0.807

Cl/F, mL/h/Kg 11,109.16 ±

10,466.19

25,615.88 ±

39,010.30

0.400

measures ANOVA and the Friedman rank test was used to
compare Tmax values. SPSS 25.0 forWindows (SPSS, Chicago, IL)
was used.

RESULTS

The Direct Binding Effect of EGCG and
Bisoprolol in vitro
In this assay, bisoprolol was titrated with EGCG at room
temperature. The thermodynamics parameters of interaction
between EGCG and bisoprolol can be calculated by fitting
the raw ITC data. The parameter values were as follows:
1Go = −17.12 kJ/mol, 1Ho = 6.33 kJ/mol, –T1So =

−23.46 kJ/mol. The equilibrium dissociation constant (KD) was
determined after analysis of the normalized ITC curve by the
NanoAnalyze Software. The data indicated that EGCG can bind
to bisoprolol (see Figure 1).

Assay Validation
The retention times of EGCG, bisoprolol, deuterated bisoprolol
and loratadine were 1.22, 1.29, 1.30, and 1.48min, respectively.
There were no impurity peaks in the blank plasma samples at or

near the peak time (Figure 2). The linear relationship between
EGCG and bisoprolol was present in the range of 5–2,000 ng/mL,
and the correlation coefficient (R2) was more than 0.99. The
deviation of each concentration in the standard curve was within
the acceptable range of ±15%. The standard curve results are
shown in Table 1. Accuracy and precision all met acceptable
requirements, precision (RSD, %) were <15% and accuracy (RE,
%) were within ±15%. The accuracy and precision of LLOQ did
not exceed 20% (Table 2). The recoveries and matrix effects of
EGCG and bisoprolol are shown in Table 3. The recoveries for
all analytes ranged from 61.0 to 99.7%. No significant signal was
observed in the mass spectrometry affecting rat plasma. Under
current analytical conditions, matrix effects were negligible.
The accuracy of bisoprolol and EGCG measurement was not
significantly affected under different storage condition including
12 h in the autosampler, 4 h on a laboratory table at room
temperature, 30 days in a low temperature freezer at −80◦C or
3 freeze-thaw cycles (Table 4). No significant differences were
observed in test results compared to freshly prepared samples.

Effect of EGCG on the Pharmacokinetics of
Bisoprolol
After intragastric administration, intake of EGCG (100 mg/kg
body weight) with bisoprolol significantly increased the Tmax

(mean Tmax from 0.5 to 0.83 h, P < 0.01) and reduced the
Cmax (mean Cmax from 2012.31 to 942.26 ng/mL, P < 0.05) of
bisoprolol (Figure 3 and Table 5). Moreover, intake of EGCG
tended to reduce the systemic exposure to bisoprolol (mean
AUC0−∞ from 3914.09 to 2347.37 h.ng/mL, P = 0.17) but
this was not significant and there was no significant effect
on the elimination half-life (t1/2; Figure 3 and Table 5). After
intravenous administration, intake of EGCG with bisoprolol
significantly increased the apparent volume of distribution (mean
Vz/F from 1629.62 to 2473.27 mL/Kg, P < 0.05) but there was no
significant effect on other pharmacokinetic parameters (Figure 3
and Table 5). In the male group, the trend of increasing Cl/F after
co-administration was stronger than in the female group. This
means that the inhibitory effect of EGCG on the elimination of
bisoprolol was stronger in the male rats. AUC0−t and AUC0−∞

also went down in the male group more than in the female group,
which means that EGCG had more of an impact on bisoprolol’s
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absorption than it did in the female rats. So, it can be said that
there is a gender difference in the way EGCG affects the way
bisoprolol is absorbed, used, and excreted (Data didn’t shown).

The Pharmacokinetics of EGCG
The pharmacokinetic parameters of EGCG after intragastric
administration in SD rats were shown in Table 6. There were no
significant differences in a single dose of EGCG and combined
with bisoprolol.

Effect of EGCG on the Bioavailability of
Bisoprolol
Based on the pharmacokinetic study results of intragastric
administration and tail vein administration, the absolute
bioavailability of bisoprolol in the single-dose bisoprolol group
and the combined EGCG-administered group was calculated.
The results showed that the absolute bioavailability of bisoprolol
when administered alone (Fabs.Bisoprolol = 92.04%) was greater
than when it was administered in combination with EGCG
(Fabs.Bisoprolo+EGCG = 66.05%).

Effect of EGCG on the Pharmacodynamics
of Bisoprolol
After gavage administration, intake of EGCG (100 mg/kg body
weight) with bisoprolol lowered SBP at the first measurement
at 0.5 h post dose of EGCG and bisoprolol, while the SBP only
started to decrease at 4 h after administration of bisoprolol alone.
The largest reduction of SBP was 37.37 ± 10.91 mmHg (change
of−20.8%) at 8 h post dose with EGCG and bisoprolol combined
and was similar with bisoprolol alone. MBP and DBP reached the
maximum reduction of 28.38 ± 9.30 mmHg (change of −20%)
and 31.68± 12.96 mmHg(change of−24.6%), respectively, at 1 h
post dose of EGCG and bisoprolol. However, the reduction of
MBP and DBP were relatively slow, and reached the maximum
reduction at 8 h after the single dose of bisoprolol. The largest
reduction of heart rate (HR) was 140.72 ± 26.28 beats/min
(change of −30.0%) at 1 h after the dose of bisoprolol alone and
it was greater than the effect of the combination of EGCG and
bisoprolol with a reduction of 60.18 ± 80.37 beats/min (change
of−13.2%; Table 7 and Figure 4).

DISCUSSION

Green tea is taken as a common drink worldwide and it
can interact with various medications and may alter their
pharmacokinetic and pharmacodynamic properties. In this
study, we found for the first time that the green tea component
EGCG (100 mg/kg) can reduce the Cmax of bisoprolol and
delay the Tmax and tend to reduce the AUC when given
simultaneously by gavage in rats, while the Vz/F and clearance
of bisoprolol tended to increase. The Tmax, Cmax and the
AUC are all related to the absorption process of bisoprolol.
The results suggest that EGCG can inhibit the absorption of
bisoprolol when given together and this can lead to a lower
early reduction in HR. The attenuation in reduction of HR
with EGCG combined with bisoprolol was associated with a
greater early reduction in SBP, which may reflect the various

mechanisms involved in the reduction of BP with a beta-blocker.
In order to detect the plasma concentrations of bisoprolol
and EGCG simultaneously, a new HPLC-MS/MS method was
developed and validated. The method meets the guidelines for
the validation of methods for the definitive analysis of biological
samples (Version 2020) and was applied for the detection of
bisoprolol and EGCG in this study.We also employed isothermal
titration calorimetry (ITC), a thermodynamic method with high
sensitivity and reproducibility in vitro, to study biomolecular
interactions. We tested the direct binding effect of EGCG and
bisoprolol in vitro and found that EGCG and bisoprolol showed
a significant binding phenomenon, similar to that of EGCG
and atenolol.

EGCG is the main abundant catechin in green tea,
accounting for 50–80% of the total catechins and has been
reported to improve many cardiovascular risk factors including
blood pressure (13). Intake of catechins 400–500mg daily
can significantly reduce systolic and diastolic blood pressure
(14). However, several studies have reported that green tea
polyphenols may affect the expression or activities of drug-
metabolizing enzymes such as CYP1A1, CYP2D6, CYP3A4 and
drug transporters which leads to changes in the absorption
and metabolism of certain drugs (15, 16). In addition, it was
reported that green tea catechins can inhibit the activities
of CYP1A1, CYP2A6, CYP2C9 and CYP3A4 (17). Some
other studies have also reported the inhibition of the ABCB1
and ABCG2 transporter activity by EGCG (18). Roth et al.
showed that EGCG inhibited OATP1A2— and OATP2B1-
mediated uptake of estrone-3-sulfate in an in vivo study
(19). Another study has shown that the consumption of
green tea extract can significantly reduce the bioavailability
of nadolol through the inhibition of OATP1A2-mediated
uptake (20). Therefore, EGCG may inhibit the efflux of
bisoprolol by inhibiting the action of P-gp, resulting in
increased bioavailability.

A study in a Korean population found that co-administration
of rosuvastatin with EGCG resulted in a 19% decrease in
the plasma concentrations of the drug apparently due to
inhibition of drug absorption by the transporters OATP1A2
and OATP2B1(21). In a study in Hong Kong, green tea extract
was reported to affect the pharmacokinetics of rosuvastatin and
reduced the peak plasma drug concentration by 30% (22). It
has also been reported that green tea was able to inhibit the
drug metabolizing enzyme CYP3A4 and the efflux transporter
P-gP for simvastatin, resulting in increased simvastatin plasma
concentrations (23). Moreover, in a study in Japan there was
a significant effect of green tea on the pharmacokinetics and
therapeutic efficacy of nadolol after 14 days of simultaneous
administration of nadolol and green tea. In 10 healthy volunteers,
the peak plasma concentration (Cmax) and area under the plasma
concentration time curve up to 48 h (AUC0−48) decreased by
85.3 and 85.0%, respectively, while the time to Cmax (Tmax)
was significantly shortened, but no effect on the clearance was
found. Further study identified the mechanism involved in
the inhibition of the absorption of nadolol by EGCG through
the transporter OATP1A2 which resulted in a decrease in
the plasma concentration of nadolol (24). In addition, EGCG
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TABLE 7 | The reduction of blood pressure and heart rate after treatment in the two groups in SHRs.

Time

post

dose

SBP, mmHg DBP, mmHg MBP, mmHg HR,beats/min

Bisoprolol Bisoprolol

+ EGCG

Bisoprolol Bisoprolol

+ EGCG

Bisoprolol Bisoprolol

+ EGCG

Bisoprolol Bisoprolol

+ EGCG

0.5 h −13.62 ±

15.41

11.72 ±

8.37**

3 ± 16.77 1.93 ±

11.02

−2.5 ±

14.97

4.85 ±

10.26

139.48 ±

31.73

45.28 ±

71.11**

1 h −9.18 ±

16.61

23.23 ±

13.29**

3.68 ±

15.03

31.68 ±

12.96**

−0.73 ±

15.43

28.38 ±

9.30**

140.72 ±

26.28

60.18 ±

80.37**

2 h 0.17 ±

13.95

20.5 ±

12.07**

9.45 ±

15.97

6.17 ±

11.73

6.28 ±

14.67

10.62 ±

10.67

118.88 ±

36.24

47 ±

74.06

4 h 10.92 ±

11.59

21.05 ±

21.14

14.22 ±

11.12

23.07 ±

16.13

13.05 ±

10.23

20.43 ±

15.31

120.78 ±

21.76

53.77 ±

79.17

8 h 36.13 ±

17.46

37.37 ±

10.91

33.78 ±

18.89

24.83 ±

9.03

34.5 ±

17.88

28.88 ±

8.27

82.78 ±

34.10

23.98 ±

80.04

24 h 16.08 ±

13.65

26.83 ±

18.43

18.48 ±

14.05

18.6 ±

26.53

17.7 ±

13.32

21 ±

22.24

20.08 ±

54.12

−21.43 ±

71.55

Negative values indicate increases.
*P < 0.05, **P < 0.01.

FIGURE 4 | The blood pressure and heart rate changes as percentages over time after gavage administration of bisoprolol with or without EGCG. *P < 0.05, **P <

0.01. (A) Percentage change of SBP; (B) Percentage change of DBP; (C) Percentage change of mean BP; (D) Percentage change of heart rate.
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can interact with atenolol and form a precipitate under acidic
conditions in vitro, resulting in the inhibition of the absorption
of atenolol (25).

EGCG has been reported to increase the AUC of tamoxifen
and diltiazem when combined with these drugs by inhibiting
the activity of CYP3A4 and P-gp (18). Tamoxifen and
diltiazem are known to be metabolized by the same pathway
as bisoprolol. However, the AUC and Cmax of bisoprolol
were reduced in this study. That is mainly because of the
differences in the first-pass effect during the absorption of
drugs. The first-pass effect of bisoprolol is much smaller than
that of tamoxifen or diltiazem. Therefore, we will further
investigate the absorption pathway of bisoprolol and the factors
affecting this.

The metabolism of bisoprolol is mainly dependent on the
CYP3A4 enzyme, and it has been shown that EGCG can
inhibit the CYP3A4 enzyme (26), so it may be predicted that
EGCG could inhibit part of the metabolism of bisoprolol by
inhibiting the activity of CYP3A4, resulting in a reduction
in the metabolism of bisoprolol and causing accumulation.
In addition, when the metabolic pathway of bisoprolol via
CYP3A4 enzymes is inhibited, renal clearance becomes
the main route of elimination of bisoprolol, so renal
clearance increases and the overall elimination half-life is
prolonged although no significant effect was observed in the
present study.

The absorption of bisoprolol in the intestine may be
dependent on organic cation transporters (OCTs) for completion
(27). However, it has been shown that EGCG inhibits the
activity some of the OCTs (28), so EGCG may affect the
absorption of bisoprolol by inhibiting the action of OCTs,
resulting in a reduction in the absorption and a delay in
absorption time, leading to a delay in the Tmax and a reduction
of Cmax and AUC. The increase in the apparent volume
of distribution of bisoprolol after intravenous administration
with EGCG may also be related to effects on transporters
resulting in increased distribution of bisoprolol to body tissues
or more rapid clearance of bisoprolol by metabolism or
renal excretion.

LIMITATION

This study has some limitations that need to be considered.
Firstly, this study only assessed one dosage for EGCG (100
mg/kg). It is known that interactions between herbs and drugs
may be dose-dependent. Evaluating a higher dose or a lower dose
may help to provide a better understanding of the interaction
between bisoprolol and green tea. Secondly, it has been shown
that taking EGCG 8 or 4 h before sunitinib administration
had no effect on the pharmacokinetics of sunitinib in rats,
whereas taking the two together reduced the bioavailability of
sunitinib, probably because of a physical reaction between the
two compounds (50), suggesting separation of dosing of green
tea and drugs may reduce any herb-drug interaction. EGCG
was given simultaneously with bisoprolol in the present study
and we did demonstrate by isothermal titration calorimetry

that a physico-chemical reaction does occur between EGCG
and bisoprolol and this may be responsible for some of the
interaction. It would be useful to assess whether the separation
of dosing or repeated dosing of EGCG and bisoprolol have
different effects.

CONCLUSION

This study showed that administration of EGCG at a single dose
of 100 mg/kg with a single dose of bisoprolol of 10 mg/kg was
associated with decreased Cmax and Tmax and a tendency for
decreased AUC and increased Vz/F and clearance for bisoprolol
in SD rats when bisoprolol was taken simultaneously with EGCG.
Moreover, administration of EGCG significantly attenuated the
early HR reduction with bisoprolol and resulted in an earlier
reduction in BP compared to when bisoprolol was given alone
in SHRs.
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Non-alcoholic fatty liver disease (NAFLD) and obesity are serious public health problems.

Green tea is widely consumed in the world and different green teas could possess

different bioactivities. In this study, the effects of 10 selected green teas on obesity

and NAFLD were evaluated and compared. The mice fed with a high-fat diet were

intervened with green tea extract (200 mg/kg body weight) for 15 weeks. Most of these

teas were first evaluated for their effects on obesity and NAFLD. The results showed that

Selenium-Enriched Chaoqing Green Tea and Jieyang Chaoqing Tea showed the most

prominent inhibition of obesity and body weight gains of mice in these two tea intervention

groups and model groups were 5.3, 5.5, and 13.7 g, respectively. In addition, Jieyang

Chaoqing Tea, Taiping Houkui Tea, and Selenium-Enriched Chaoqing Green Tea exerted

the most notable effect on NAFLD, which was attributed to decreasing body weight, and

lipid content and ameliorating oxidative stress. Furthermore, 13 phytochemicals were

determined in these teas by high-performance liquid chromatography and the correlation

analysis found that epigallocatechin gallate, gallocatechin, and epigallocatechin might

contribute to the decrease of hepatic weight, while epicatechin might reduce oxidative

stress. In general, several green teas could prevent the development of obesity and

NAFLD and could be developed into functional foods. This study was also helpful for

the public to select appropriate tea to prevent obesity and NAFLD.

Keywords: green tea, obesity, non-alcoholic fatty liver disease, prevention, antioxidant activity

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is a threatening chronic non-communicable disease with
continuously increased incidence worldwide. The prevalence of NAFLD is estimated at 25% among
adults, 3–10% in the pediatric population, and could rise to 70% among children with obesity (1–3).
Various factors contribute to the development of NAFLD. Increasing evidence revealed that obesity
is a strong contributor to the occurrence of NAFLD and obesity itself is also a serious public health
problem. In the condition of similar body weight, people with more visceral fat are more likely to
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develop NAFLD (4–6). The lipid metabolism relied on the action
of the liver, such as the de-novo lipogenesis, lipid oxidation,
and uptake/secretion of lipoproteins. When excessive intake
of dietary fat and energy exceeds the capacity of the liver
to metabolize lipids, the synthesis and deposition of a lipid
would increase in the liver and body, leading to lipid metabolic
disturbance, which is of great importance in the pathogenesis
of NAFLD. The increase in the level of free fatty acids is
accompanied by the overload of lipids, which could promote
the over generation of reactive oxygen species (ROS) and the
consumption of antioxidants. Oxidative stress could further
impair the function of hepatocytes and even destroy the hepatic
structure, which would accelerate the process of NAFLD (7, 8).
NAFLD could develop into more severe liver diseases, such
as fibrosis, cirrhosis, and hepatocellular carcinoma (9, 10).
Therefore, prevention and treatment of NAFLD are vital. On the
other hand, some natural products have shown strong antiobesity
and/or antioxidant activity, which could be a good alternative
for the prevention of NAFLD and obesity because of the limited
efficacy and potential side effects of chemically synthetic drugs.

Tea (Camellia sinensis) is a popular drink with a long
history. It has shown various bioactivities, such as antioxidant,
anti-inflammation, antidiabetic, antiobesity, anticancer, and
cardiovascular protection (11–15). Tea could be divided into
green, white, yellow, oolong, black, and dark teas based on
different fermentation degrees. Green tea extract has been used to
treat antiobesity (11). On the other hand, growing studies showed
the effect of green tea on the prevention and management of
NAFLD (16–18). The hepatoprotective and antiobesity effects of
green tea are mainly attributed to its rich bioactive compounds,
such as polyphenols. However, different kinds of green teas
could have very different compositions and contents of bioactive
compounds. Hence, the effects of different kinds of green teas on
NAFLD and obesity could be different. In this study, the effects of
10 selected green teas on obesity and NAFLD induced by a high-
fat diet (HFD) were evaluated and compared in mice at a dose of
200 mg/kg body weight (bw). Most of these green teas were first
evaluated for their effects on obesity and NAFLD. The findings
could serve the public to choose tea for the prevention of obesity
and NAFLD. In addition, several teas could be developed into
functional food for the prevention and management of obesity
and NAFLD.

MATERIALS AND METHODS

Chemicals and Materials
Methanol, formic acid, and isopropanol were obtained from
Macklin Chemical Factory (Shanghai, China). The standard
chemicals were offered by Derick Biotechnology Corporation
Ltd. (Chengdu, China), namely, gallic acid, quercitrin,
kaempferol, astragalin, quercetin, ellagic acid, theaflavin,
myricetin, chlorogenic acid (CA), caffeine, catechin, epicatechin
(EC), gallocatechin (GC), catechin gallate (CG), epigallocatechin
(EGC), epicatechin gallate (ECG), gallocatechin gallate (GCG),
and epigallocatechin gallate (EGCG). The determination kits
of hepatic triglyceride (TG) and malondialdehyde (MDA)
were provided by Apply-gen Technologies Corporation Ltd.

TABLE 1 | The details of 10 selected green teas from China.

No. Name Production place

GT1 Dianqing Tea Kunming city, Yunnan province

GT2 Jieyang Chaoqing Tea Jieyang city, Guangdong province

GT3 Fenggang Zinc-Selenium-Enriched Tea Guiyang city, Guizhou province

GT4 Liping Xiang Tea Liping city, Guizhou province

GT5 Taiping Houkui Tea Huangshan city, Anhui province

GT6 Xihu Longjing Tea Hangzhou city, Zhejiang province

GT7 Chaoqing Green Tea Yichang city, Hubei province

GT8 Selenium-Enriched Chaoqing Green Tea Enshi city, Hubei province

GT9 Selenium-Enriched Matcha Enshi city, Hubei province

GT10 Seven Star Matcha Shaoxing city, Zhejiang province

(Beijing, China) and kits for superoxide dismutase (SOD) and
glutathione (GSH) were obtained from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China). Moreover, the
contents of serum TG, total cholesterol (TC), low-density
lipoprotein cholesterol (LDL-C), aspartate transaminase (AST),
and alanine transaminase (ALT) were determined by kits from
Roche Diagnostics (Shanghai, China).

The details of 10 selected green teas are shown in Table 1.

Preparation of Green Tea Extracts
The preparation of 10 kinds of green tea extracts was carried
out according to the literature (19). The 10 g green tea sample
and 100ml boiling deionized water were mixed in a conical flask
and extracted in a 98◦C water bath for 10min. The mixture
was filtered to collect the infusion. The tea sample was extracted
3 times and the infusions were collected and merged. Then,
the collected infusion was concentrated using a vacuum rotary
evaporator at 60◦C and about 15ml of concentrated infusion
was obtained. Finally, the concentrated infusion was freeze-dried
into powder by a lyophilizer and kept at −80◦C. The powders
were dissolved in deionized water to obtain the tea extracts with
a concentration of 20 g/l (w/v) before the administration to
the mice.

Animal Study
The C57BL/6J male mice (18–20 g) used in this study were
purchased from the Experimental Animal Center of Guangdong
Province (Guangzhou, China). All the mice were housed in
a specific pathogen-free (SPF) animal laboratory, where the
humidity was set at 40–60%, the room temperature was 22 ±

0.5◦C, and the light/dark cycle was 12 h. After acclimatization
for 1 week, 8-week-old mice were randomly divided into the
normal diet (ND) control group, the high-fat diet (HFD) model
group, and the green tea (GT) treatment groups (including 10
different green tea treatment groups), totally 12 groups (n =

10/group). The ND control group was fed with a normal diet
with an energy of 3.6 kcal/g (12% calories from fat), which
was provided by Jiangsu Xietong Pharmaceutical Bioengineering
Corporation Ltd. (Nanjing, China). Meanwhile, the HFD model
group and the treatment group were given a high-fat diet
with the energy of 5.0 kcal/g (60% calories from fat), which
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was purchased from Trophic Animal Feed High-technology
Corporation Ltd. (Nantong, China). Mice in the treatment
groups were intragastrically administrated with tea extracts at
a dose of 200 mg/kg bw daily for 15 weeks according to the
literature (20, 21). In addition, mice in the control and model
groups were received 10 ml/kg bw of deionized water by gavage
because the concentration of the intervention solution was 20 g/l,
which was equal to 10 ml/kg bw when a dose of 200 mg/kg bw
was used. The daily food consumption and weekly body weight
of mice were recorded. At the end of the 15-week intervention,
all the mice were fasted for 12 h and then weighed, anesthetized,
and sacrificed to collect blood and liver samples, and perirenal
and epididymal adipose tissues. All the experimental procedures
involving animals in this study have received approval from the
Ethics Committee in the School of Public Health, Sun Yat-Sen
University (No. 2019–002; 28 February 2019).

Measurement of Serum Alanine
Transaminase, Aspartate Transaminase,
Triglyceride, Total Cholesterol, and
Low-Density Lipoprotein Cholesterol
Levels
After being collected and placed at room temperature (25◦C) for
1 h, the blood samples were centrifuged at 3,000 × g (4◦C) for
15min to acquire serum. The levels of serum ALT, AST, TG, TC,
and LDL-C were determined with the instruction of detection
kits. In brief, enzymatic tests were used to measure the contents
of TG, TC, and LDL-C and the velocity tests were carried out to
determine the levels of AST and ALT.

Biochemical Analysis of Hepatic Tissue
The determination of hepatic TG content was performed
according to the instruction from the detection kit. The 25mg
hepatic tissue was completely homogenized with 500 µl lysis
buffer to obtain the liver homogenate. After placing for 10min,
the upper layer of liver homogenate was separated and heated at
70◦C for 10min and then centrifuged (2,000× g, 25◦C) for 5min
to obtain the supernatant to measure the TG content.

The status of hepatic oxidative stress in mice was assessed
by the determination of GSH, MDA, and SOD levels. The
200mg hepatic tissue was mixed and homogenized with 1.8ml
of 0.9% NaCl to acquire hepatic homogenate. The homogenate
was centrifuged (2,500×g, 4◦C) for 10min to get the supernatant
for the determination of GSH and SOD. In addition, 10mg
hepatic tissue was mixed and homogenized with 500 µl lysis
buffer to obtain liver homogenate, which was then centrifuged
(10,000× g, 4◦C) for 10min to obtain the supernatant tomeasure
MDA content.

Observation of Histopathological Changes
in Liver and Adipose Tissues
The histopathological changes in liver and epididymal adipose
tissues were examined using H&E staining. The hepatic and
epididymal adipose tissues were soaked in 4% paraformaldehyde
for a few days and then embedded in paraffin. The embedded
samples were sliced into 5-µm-thick sections and then

deparaffinized, rehydrated, and stained with H&E. The image
of the liver and epididymal adipose tissue was captured and
observed with a microscope.

Measurement of Bioactive Compounds in
Green Tea Extracts
The bioactive components in green tea extracts were qualitative
and quantitative analyzed using high-performance liquid
chromatography (HPLC) in comparison with the standard
compounds, which is according to our previous study (19).

Statistical Analysis
The analysis of experimental data was performed with the
software SPSS version 25.0 (IBM Incorporation, Armonk, NY,
USA) and the results were expressed as mean ± SD. A one-
way ANOVA combined with the least significant difference
(LSD) test was conducted to compare the difference between the
experimental groups. Statistical significance was set at p < 0.05.
In addition, the software GraphPad Prism 8 (GraphPad Software,
La Jolla, CA, USA) was applied to draw figures.

RESULTS AND DISCUSSION

Effects of Different Green Teas on Body
Weight
The effects of 10 kinds of green teas on body weight gain and
energy intake are shown in Figure 1. As shown in Figure 1A,
mice fed with HFD had a significantly larger weight gain than
those of the control group (p < 0.01). The average body weight
gain of mice in the model group was 13.7 g, which was 2.14-
fold that in the control group (6.4 g). In addition, the body
weight gain in all the green tea groups was markedly smaller
than that in the model group (p < 0.01), but the effect greatly
varied in different green teas. The Selenium-Enriched Chaoqing
Green Tea (GT8) and Jieyang Chaoqing Tea (GT2) showed the
strongest inhibition on obesity with 5.3 and 5.5 g body weight
gain, respectively. Moreover, the energy intake in the model
group was significantly bigger than that in the control group (p
< 0.05). The energy intake in mice treated with 8 green teas was
reduced compared with the model group (p < 0.01) (Figure 1B).
The results of energy intake were generally coincident with those
of body weight gain, which manifested that green tea played a
role in the inhibition of obesity partly because of its effect on the
reduction of energy intake.

A large amount of research has proved that excessive and
frequent consumption of a high-calorie diet led to the prevalence
of obesity and related NAFLD. In this study, HFD induced a
dramatic increase in body weight gain in C57BL/6 mice, while
green tea could effectively prevent obesity at a dose of 200 mg/kg
bw. The results were consistent with previous studies (16, 20, 22).
For example, a study found that the oral gavage with 500 mg/kg
bw of green tea extracts markedly attenuated body weight gain
in C57BL/6 mice compared with the HFD group (16). Weight
loss is usually accompanied by a decrease in energy intake. In this
study, most of the 10 green teas significantly inhibited the energy
intake, except Chaoqing Green Tea (GT7) and Seven Star Matcha
(GT10). Correspondingly, the body weight gain in mice treated
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FIGURE 1 | Effects of green teas on body weight (BW) gain (A) and energy intake (B). # p < 0.05, ## p < 0.01, the model group vs. the control group; ** p < 0.01,

the green tea groups vs. the model group. ND, normal diet; HFD, high-fat diet. GT1, Dianqing Tea; GT2, Jieyang Chaoqing Tea; GT3, Fenggang Zinc-Selenium

-Enriched Tea; GT4, Liping Xiang Tea; GT5, Taiping Houkui Tea; GT6, Xihu Longjing Tea; GT7, Chaoqing Green Tea; GT8, Selenium-Enriched Chaoqing Green Tea;

GT9, Selenium-Enriched Matcha; GT10, Seven Star Matcha.

FIGURE 2 | Effects of green teas on visceral adipose tissue. (A) Epididymal adipose mass/BW × 100 and (B) Perirenal adipose mass/BW × 100. ## p < 0.01, the

model group vs. the control group; ** p < 0.01, the green tea groups vs. the model group. BW, body weight; ND, normal diet; HFD, high-fat diet; GT1, Dianqing Tea;

GT2, Jieyang Chaoqing Tea; GT3, Fenggang Zinc-Selenium-Enriched Tea; GT4, Liping Xiang Tea; GT5, Taiping Houkui Tea; GT6, Xihu Longjing Tea; GT7, Chaoqing

Green Tea; GT8, Selenium-Enriched Chaoqing Green Tea; GT9, Selenium-Enriched Matcha; GT10, Seven Star Matcha.

with Chaoqing Green Tea (GT7) and Seven Star Matcha (GT10)
was more obvious than in other teas. Hence, the antiobesity
effects of 10 different green teas varied greatly, which was partly
due to the inhibitory difference in energy intake.

Effects of Green Teas on Visceral Adipose
Tissue
Epididymal and perirenal adipose is the important visceral
fat in the body. The ratio of their mass to body weight was
used to evaluate the effect of green teas on visceral adipose
in this study and the results are shown in Figure 2. The

percentages of both the epididymal and perirenal adipose masses
in the body weight of mice in the model group significantly
increased compared with those of the control group (p <

0.01), while the treatment of different green teas could reduce
the accumulation of visceral fat in mice induced by HFD
at varying degree. Among 10 kinds of green teas, Fenggang
Zinc-Selenium-Enriched Tea (GT3), Liping Xiang Tea (GT4),
and Taiping Houkui Tea (GT5) showed the most remarkable
effectiveness in suppressing the increase of visceral adipose
tissue. Furthermore, the histopathological changes in epididymal
adipose tissue have been studied and the results are shown in

Frontiers in Nutrition | www.frontiersin.org 4 June 2022 | Volume 9 | Article 929210104

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Zhou et al. Effects of Teas on NAFLD

FIGURE 3 | Histopathological changes of epididymal adipose tissues (200X magnification). (a) The control group; (b) the model group; (c) the GT1 group; (d) the GT2

group; (e) the GT3 group; (f) the GT4 group; (g) the GT5 group; (h) the GT6 group; (i) the GT7 group; (j) the GT8 group; (k) the GT9 group; and (l) the GT10 group.

ND, normal diet; HFD, high-fat diet; GT1, Dianqing Tea; GT2, Jieyang Chaoqing Tea; GT3, Fenggang Zinc-Selenium-Enriched Tea; GT4, Liping Xiang Tea; GT5,

Taiping Houkui Tea; GT6, Xihu Longjing Tea; GT7, Chaoqing Green Tea; GT8, Selenium-Enriched Chaoqing Green Tea; GT9, Selenium-Enriched Matcha; GT10, Seven

Star Matcha.
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Figure 3. It could be seen that the sizes of epididymal adipocytes
in themodel group had an incredible expansion and the shapes of
adipocytes showed an abnormal irregularity. On the other hand,
epididymal adipocytes in the different green tea groups were
significantly smaller and had more regular shapes compared with
the model group.

Increasing evidence revealed that the accumulation of visceral
adipose tissue was a strong predictor of the occurrence of
NAFLD. In the case of similar body weight, people with a
higher proportion of visceral fat were more prone to develop
NAFLD (23, 24). In this study, the visceral adipose tissues in
the model group markedly increased and the morphology of

epididymal adipose tissue was abnormal mainly characterized
by the expansive sizes and irregular shapes of adipocytes. These
adverse changes were ameliorated by the intervention of green
tea. Some studies also revealed the effect of green tea on inhibiting
the accumulation of visceral fat. In a previous study, the visceral
adipose mass of obese mice and lean littermates fed with diets
containing 1 or 2% green tea extract was significantly lower
than their respective controls fed with a green tea extract-
free diet (25). In another study, an HFD significantly increased
the weight of epididymal and perirenal adipose tissues, and
the size of adipocytes in mice, while the dietary supplement
Matcha prevented these unfavorable changes (26). Likewise,

FIGURE 4 | Effects of green teas on weight and TG content of liver. (A) Liver weight and (B) Liver triglyceride (TG) content. # p < 0.05, ## p < 0.01, the model group

vs. the control group; * p < 0.05, ** p < 0.01, the green tea groups vs. the model group. ND, normal diet; HFD, high-fat diet; GT1, Dianqing Tea; GT2, Jieyang

Chaoqing Tea; GT3, Fenggang Zinc-Selenium-Enriched Tea; GT4, Liping Xiang Tea; GT5, Taiping Houkui Tea; GT6, Xihu Longjing Tea; GT7, Chaoqing Green Tea;

GT8, Selenium-Enriched Chaoqing Green Tea; GT9, Selenium-Enriched Matcha; GT10, Seven Star Matcha.

FIGURE 5 | Effects of green teas on liver injury. (A) Serum AST level and (B) Serum ALT level. # p < 0.05, the model group vs. the control group; * p < 0.05,

** p < 0.01, the green tea groups vs. the model group. AST, aspartate transaminase; ALT, alanine aminotransferase; ND, normal diet; HFD, high-fat diet; GT1,

Dianqing Tea; GT2, Jieyang Chaoqing Tea; GT3, Fenggang Zinc-Selenium-Enriched Tea; GT4, Liping Xiang Tea; GT5, Taiping Houkui Tea; GT6, Xihu Longjing Tea;

GT7, Chaoqing Green Tea; GT8, Selenium-Enriched Chaoqing Green Tea; GT9, Selenium-Enriched Matcha; GT10, Seven Star Matcha.
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FIGURE 6 | The histopathological images of hepatic tissue (200 and 400X magnification). GT1, Dianqing Tea; GT2, Jieyang Chaoqing Tea; GT3, Fenggang

Zinc-Selenium-Enriched Tea; GT4, Liping Xiang Tea; GT5, Taiping Houkui Tea; GT6, Xihu Longjing Tea; GT7, Chaoqing Green Tea; GT8, Selenium-Enriched Chaoqing

Green Tea; GT9, Selenium-Enriched Matcha; GT10, Seven Star Matcha.

Selenium-EnrichedMatcha (GT9) and Seven StarMatcha (GT10)
in this study could reduce the accumulation of adipose and the
hypertrophy of adipocytes. In addition, we found that several

other green teas had better effects on visceral adipose tissues than
the Matcha teas, such as Fenggang Zinc-Selenium-Enriched Tea
and Liping Xiang Tea.
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Effects of Green Teas on Hepatic Weight
and Triglyceride Content of Liver
In this study, the hepatic weight and TG content of the liver
in mice fed with HFD markedly increased compared with
mice fed with a normal diet (p < 0.05) (Figure 4). All the 10
green teas could significantly decrease the hepatic weight (p
< 0.01), while the effect varied in different teas (Figure 4A).
Jieyang Chaoqing Tea (GT2), Taiping Houkui Tea (GT5),
and Selenium-Enriched Chaoqing Green Tea (GT8) exerted
a relatively notable effect on decreasing the hepatic weight.
Accordingly, the majority of 10 green teas, except Dianqing
Tea (GT1), could reduce the content of hepatic TG (p <

0.05) (Figure 4B). The most effective teas of decreasing TG
content were Taiping Houkui Tea (GT5), followed by Selenium-
EnrichedMatcha (GT9) and Selenium-Enriched ChaoqingGreen
Tea (GT8).

The hepatic weight and TG content of liver were important
predictors of hepatic lipid accumulation and the hepatic steatosis
(25). The effects of green teas on hepatic weight and TG content
in this study were in line with previous studies (16, 22, 27). For
example, a study pointed out that the dietary supplement of 1%
green tea extract decreased hepatic weight and TG content in
obese mice (27).

Effects of Green Tea on Aspartate
Transaminase and Alanine Transaminase
Levels
The liver injury was accessed by the detection of serum AST and
ALT levels and results are shown in Figure 5. In comparison with
the control group, although no significant increment of ALT level
was observed in the model group (p > 0.05) (Figure 5B), AST
level in serum was remarkably elevated (p < 0.05) (Figure 5A),

FIGURE 7 | Effects of green teas on serum lipid levels. (A) serum total cholesterol (TC) level; (B) serum low-density lipoprotein cholesterol (LDL-C) level; and (C)

serum TG level. # p < 0.05, ## p < 0.01, the model group vs. the control group; * p < 0.05, ** p < 0.01, the green tea group vs. the model group. GT1, Dianqing Tea;

GT2, Jieyang Chaoqing Tea; GT3, Fenggang Zinc-Selenium-Enriched Tea; GT4, Liping Xiang Tea; GT5, Taiping Houkui Tea; GT6, Xihu Longjing Tea; GT7, Chaoqing

Green Tea; GT8, Selenium-Enriched Chaoqing Green Tea; GT9, Selenium-Enriched Matcha; GT10, Seven Star Matcha.
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hinting the existence of liver injury induced by HFD. No
significant difference in AST and ALT levels was observed
between most of the 10 green teas groups and model group,
but a decreasing trend of AST and ALT levels was found in
the Fenggang Zinc-Selenium-Enriched Tea (GT3) and Chaoqing
Green Tea (GT7) groups (p > 0.05). On the other hand, Jieyang
Chaoqing Tea (GT2) and Selenium-Enriched Chaoqing Green
Tea (GT8) could further increase the ALT activity (p < 0.05),
which hinted their possible damage to the hepatocytes in mice.

The hepatocytes were gradually destroyed by various factors
induced by HFD, leading to the liver injury and NAFLD. The
increase of serum ALT and AST activities was sensitive indicator
in response to the liver injury. A previous study found that the
oral gavage with green tea extract (500 mg/kg bw) for 12 weeks
could prevent the increase of serum ALT and AST activities in
male C57Bl/6 mice fed with HFD and protect against liver injury
(16). Another study showed that green tea intervention reversed

the increase of serum ALT activity induced by HFD (28). In this
study, 10 green teas did not remarkably decrease the activities
of these two transaminases, which could be because the dosage
of intervention was smaller (200 mg/kg bw) than that in the
literature (500 mg/kg bw) (16).

Histopathological Evaluation of Liver
The H&E staining was performed to observe the
histopathological changes of liver induced by a HFD and
to further verify the effect of green teas on NAFLD. The results
are given in Figure 6. Compared with the control group,
many unequal size lipid droplets presented in the hepatocytes
of the model group. Of note, lipid droplets in hepatocytes
were significantly reduced by the intervention of green teas,
particularly in Fenggang Zinc-Selenium-Enriched Tea (GT3),
Liping Xiang Tea (GT4), Chaoqing Green Tea (GT7), and

FIGURE 8 | Effects of green teas on hepatic oxidative stress. (A) Glutathione (GSH) (µmol/g protein); (B) superoxide dismutase (SOD) (U/mg protein); and (C)

malondialdehyde (MDA) (nmol/mg protein). # p < 0.05, ## p < 0.01, the model group vs. the control group; * p < 0.05, ** p < 0.01, the green tea groups vs. the

model group. GT1, Dianqing Tea; GT2, Jieyang Chaoqing Tea; GT3, Fenggang Zinc-Selenium-Enriched Tea; GT4, Liping Xiang Tea; GT5, Taiping Houkui Tea; GT6,

Xihu Longjing Tea; GT7, Chaoqing Green Tea; GT8, Selenium-Enriched Chaoqing Green Tea; GT9, Selenium-Enriched Matcha; GT10, Seven Star Matcha.
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Selenium-Enriched Chaoqing Green Tea (GT8). The results were
consistent with previous studies (16, 17, 20).

Effects of Green Teas on Serum Lipid
Levels
The serum TC, TG, and LDL-C levels have been used to evaluate
the lipid levels in this study and the results are shown in Figure 7.
Compared with the control group, mice fed with HFD had
markedly higher levels of serum TC and LDL-C (p< 0.05), which
reflected the presence of hyperlipidemia. The effects of 10 green
teas on lipid levels varied greatly and some green teas showed
prominent effectiveness in decreasing lipid levels. The 6 out of
10 green teas showed significant effect in lowering TC levels,
namely, Liping Xiang Tea (GT4), Fenggang Zinc-Selenium-
Enriched Tea (GT3), Taiping Houkui Tea (GT5), Xihu Longjing
Tea (GT6), Chaoqing Green Tea (GT7), and Dianqing Tea (GT1)
(Figure 7A). Although there was no significant difference existed
in LDL-C level between the model group and the 10 green tea
groups (p > 0.05), a decreasing tendency was observed in the
Liping Xiang Tea (GT4) and Xihu Longjing Tea (GT6) groups
(Figure 7B). On the other hand, TG content in mice fed with a
HFD was not evidently elevated compared with that in mice fed

with normal diet (p > 0.05). In addition, there was no significant
difference in TG level between the model group and the majority
of the 10 green tea groups (p > 0.05), except the Xihu Longjing
Tea (GT6) group obviously decreased the level of TG (p < 0.05)
(Figure 7C).

Lipid metabolism disorder is one of the most prominent
manifestations of NAFLD, which could be presented as
hyperlipidemia, hypertriglyceridemia, and hypercholesterolemia
(29, 30). The TC, TG, and LDL-C contents in serum were
the most commonly used indicators to reflect the lipid profiles
(21, 31). Several studies showed that green tea could ameliorating
the development of NFLDA via decreasing the contents of
serum lipids and improving the lipid profile (20, 25, 27, 32). In
this study, different green teas exerted different effects on lipid
indicators. From a comprehensive perspective, Xihu Longjing
Tea (GT6) and Liping Xiang Tea (GT4) could be the most
efficient green teas to improve lipid profile.

Effects of Green Teas on Hepatic Oxidative
Stress
In this study, the levels of hepatic MDA, GSH, and SOD were
detected to reflect the redox state in the liver and the results

FIGURE 9 | The high-performance liquid chromatography (HPLC) chromatograms of the standard components (A) and Liping Xiang Tea (B) at 254 nm.
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are shown in Figure 8. As shown in Figure 8, the model group
showed a lower content of GSH and an increasing tendency
of MDA content in contrast with the control group, indicating
that oxidative stress occurred in the model group. In addition,
the Jieyang Chaoqing Tea (GT2) and Fenggang Zinc-Selenium-
Enriched Tea (GT3) groups showed a significant decrease of
the MDA content compared with the model group (p < 0.05),
suggesting their antioxidant activity (Figure 8A).

Oxidative stress is regarded as a crucial contributor to the
occurrence and development of NAFLD. With the accumulation
and oxidation of fatty acids in the liver, the antioxidants are
consumed and excessive reactive oxygen species are produced,
gradually destroying the structure and function of hepatocytes
and eventually accelerating the process of NAFLD (33, 34). MDA
is a representative product of lipid peroxidation (35). This study
found that HFD led to an escalating trend of MDA level in
mice, while some green teas, namely, Jieyang Chaoqing Tea
(GT2) and Fenggang Zinc-Selenium-Enriched Tea (GT3), could
significantly lower the MDA level, hence inhibiting the lipid
peroxidation and oxidative stress. The results were consistent

with some previous report. For example, in an ob/ob mice Non-
alcoholic steatohepatitis model, diet supplementation with 0.5
and 1% green tea extract for 6 weeks inhibited the generation
of ROS, along with the reduction of lipid peroxidation (36).
SOD is an important antioxidative enzyme and GSH is a non-
enzymatic antioxidants (10). The overgeneration of ROS caused
the consumption of antioxidant substances, subsequently might
led to the decrease of GSH content and SOD activity. However,
in this study, several green teas could lower the levels of GSH
and SOD, which was contrary to the expectation. This could be
because the concentration of antioxidants in these teas was too
high and they would show pro-oxidant activity in the body, just
as vitamin C, which is a strong antioxidant in vitro and will be
pro-oxidant under high concentration in vivo (37, 38).

Bioactive Components in Green Tea
Extracts
Bioactive components in green tea extracts were identified
by HPLC via comparison with standard compounds. The
chromatograms of the standard substances and Liping Xiang Tea

TABLE 2 | The contents of major phytochemicals in 10 green tea extracts (mg/g DW).

Phytochemicals GT1 GT2 GT3 GT4 GT5

EGCG 237.64 ± 2.77 262.32 ± 5.81 157.91 ± 5.00 248.37 ± 4.34 266.45 ± 7.40

GCG 50.24 ± 0.86 103.66 ± 1.52 40.15 ± 1.81 54.66 ± 0.96 77.75 ± 1.70

ECG 40.77 ± 0.43 16.83 ± 0.23 28.85 ± 0.70 24.02 ± 0.35 26.02 ± 0.29

EGC 31.22 ± 0.28 107.48 ± 3.49 37.87 ± 0.91 26.77 ± 0.43 40.99 ± 3.58

Catechin 34.68 ± 0.37 - 38.60 ± 2.15 17.31 ± 0.51 36.38 ± 0.52

Epicatechin 20.11 ± 1.03 30.07 ± 2.09 25.93 ± 0.96 14.48 ± 0.29 17.08 ± 1.05

GC 19.47 ± 1.40 95.36 ± 1.20 28.81 ± 0.59 18.93 ± 0.34 44.27 ± 3.59

CG 8.04 ± 0.27 5.21 ± 0.74 6.46 ± 0.60 6.13 ± 0.28 7.59 ± 0.44

Caffeine 78.11 ± 0.43 154.22 ± 3.00 106.46 ± 0.54 75.29 ± 1.23 107.33 ± 1.11

Gallic acid 8.40 ± 0.09 16.17 ± 0.77 11.52 ± 0.33 8.83 ± 0.40 12.27 ± 0.31

CA 5.18 ± 0.06 - 4.51 ± 0.04 1.69 ± 0.02 -

Astragalin - 2.05 ± 0.21 5.22 ± 0.31 5.74 ± 0.18 3.16 ± 0.02

Myricetin 1.83 ± 0.06 - - 4.17 ± 0.14 -

Phytochemicals GT6 GT7 GT8 GT9 GT10

EGCG 232.93 ± 6.39 162.03 ± 3.75 196.69 ± 1.94 234.29 ± 13.30 201.48 ± 5.72

GCG 63.22 ± 1.34 38.56 ± 1.10 30.95 ± 1.19 - -

ECG 15.19 ± 0.33 14.68 ± 0.30 9.20 ± 0.10 22.75 ± 0.91 -

EGC 43.65 ± 1.87 18.40 ± 0.26 86.84 ± 1.85 66.37 ± 1.60 46.08 ± 1.61

Catechin - - 16.52 ± 0.30 - 53.15 ± 4.53

Epicatechin 12.95 ± 0.41 11.03 ± 0.49 12.82 ± 0.20 19.24 ± 0.68 10.68 ± 0.65

GC 33.69 ± 0.39 16.44 ± 0.24 51.34 ± 0.23 41.31 ± 1.77 -

CG 3.96 ± 0.09 3.55 ± 0.17 2.08 ± 0.09 - -

Caffeine 88.18 ± 0.17 56.98 ± 0.59 54.40 ± 0.28 110.22 ± 1.25 131.10 ± 0.92

Gallic acid 7.16 ± 0.24 9.49 ± 0.25 2.60 ± 0.11 19.57 ± 0.25 1.91 ± 0.18

CA 2.11 ± 0.02 1.66 ± 0.04 - 2.93 ± 0.01 -

Astragalin 2.65 ± 0.11 - 4.47 ± 0.14 9.62 ± 0.15 -

Myricetin 2.20 ± 0.15 - - - -

Abbreviations: –, not detected; DW, dry weight; GT1, Dianqing Tea; GT2, Jieyang Chaoqing Tea; GT3, Fenggang Zinc-Selenium-Enriched Tea; GT4, Liping Xiang Tea; GT5, Taiping

Houkui Tea; GT6, Xihu Longjing Tea; GT7, Chaoqing Green Tea; GT8, Selenium-Enriched Chaoqing Green Tea; GT9, Selenium-Enriched Matcha; GT10, Seven Star Matcha; EGCG,

epigallocatechin gallate; GCG, gallocatechin gallate; ECG, epicatechin gallate; CG, catechin gallate; GC, gallocatechin; EGC, epigallocatechin; CA, chlorogenic acid.
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FIGURE 10 | Correlation analysis. (A) Epigallocatechin gallate (EGCG) and hepatic weight; (B) gallocatechin and hepatic weight; (C) epigallocatechin and hepatic

weight; and (D) epicatechin and hepatic MDA.

are given in Figure 9 and the contents of major phytochemicals
in 10 green teas are shown in Table 2. In general, 8 types of
catechins and 5 other active compounds (caffeine, gallic acid,
chlorogenic acid, astragalin, and myricetin) were detected and
quantified in green tea extracts (Figure 9). The results showed
that EGCG, epigallocatechin (EGC), epicatechin, caffeine, and
gallic acid could be detected in 10 green teas and most green
teas contained gallocatechin gallate (GCG), epicatechin gallate
(ECG), catechin, gallocatechin, catechin gallate, chlorogenic acid,
and astragalin. Myricetin was only found in Dianqing Tea (GT1),
Liping Xiang Tea (GT4), and Xihu Longjing Tea (GT6).

The contents of 13 phytochemicals in different green teas
varied greatly (Table 2). EGCG was the most abundant catechin
in green tea extracts (157.91 ± 5.00–266.45 ± 7.40 mg/g DW),
followed by GCG (30.95 ± 1.19–103.66 ± 1.52 mg/g DW), EGC
(18.40 ± 0.26–107.48 ± 3.49 mg/g DW), gallocatechin (16.44 ±

0.24–95.36 ± 1.20 mg/g DW), catechin (16.52 ± 0.30–53.15 ±

4.53 mg/g DW), ECG (9.20 ± 0.10–40.77 ± 0.43 mg/g DW),
epicatechin (10.68± 0.65–30.07± 2.09 mg/g DW), and catechin
gallate (2.08 ± 0.09–8.04 ± 0.27 mg/g DW). The 10 green teas
had also a high content of caffeine (54.40 ± 0.28–154.22 ±

3.00 mg/g DW). However, the contents of gallic acid (1.91 ±

0.18–19.57 ± 0.25 mg/g DW), astragalin (2.05 ± 0.21–9.62 ±

0.15 mg/g DW), chlorogenic acid (1.66 ± 0.04–5.18± 0.06 mg/g
DW), and myricetin (1.83 ± 0.06–4.17 ± 0.14 mg/g DW) were
relatively low in green tea extracts.

The correlation analysis was conducted to evaluate the
associations among detected phytochemicals in green tea extracts
and the tested biochemical indicators in this study (Figure 10).
The negative relationships were existed in the hepatic weight and
contents of EGCG (R2 = 0.5814), gallocatechin (R2

= 0.5674),
and epigallocatechin (R2

= 0.468), hinting that these compounds
might contribute to the decrease of hepatic weight. In addition,
a negative association was observed between the content of
epicatechin and hepatic MDA (R2

= 0.4649), suggesting that
epicatechin could reduce oxidative stress.

The rich bioactive ingredients in green tea conferred its
powerful hepatoprotective and antiobesity effects, especially
polyphenols. Catechins are the major phenolic compounds in
green tea, such as EGCG, GCG, EGC, ECG, and catechin (39).
As the most abundant catechins in green tea, EGCG was most
well studied and some studies indicated the preventive properties
of EGCG against obesity and NAFLD. An experimental study
pointed out that the dietary supplementation with 0.4% EGCG
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(w/w) for 14 weeks effectively prevented the development
of NAFLD induced by a HFD in mice (21). Moreover,
the coadministration of EGCG and caffeine exerted a more
remarkable effect on NAFLD amelioration than their single use
by suppression of body weight gain, and reduction of energy
intake and white adipose tissue weight in mice (40). Therefore,
green teas with high contents of EGCG and caffeine could be
an excellent alternative for the prevention and management of
obesity and NAFLD.

CONCLUSION

The effects of 10 different green teas on obesity and NAFLD
induced by a HFD were evaluated and compared in mice.
Although all the 10 green teas showed antiobesity, their effects
varied greatly. The Selenium-Enriched Chaoqing Green Tea and
Jieyang Chaoqing Tea were the most effective teas in inhibiting
body weight gain and the Fenggang Zinc-Selenium-Enriched
Tea, Liping Xiang Tea, and Taiping Houkui Tea could markedly
inhibit the increase of visceral adipose tissues. It was found
that several green teas, such as Jieyang Chaoqing Tea, Taiping
Houkui Tea, and Selenium-Enriched Chaoqing Green Tea, could
effectively prevent the occurrence of NAFLD and underlying
mechanisms were inhibiting body weight gain, reducing the
accumulation of visceral fat, improving lipid profile and
oxidative stress, and ameliorating hepatic steatosis. Furthermore,
13 phytochemicals in green tea extracts were separated and
quantified by an HPLC method and the correlation analysis
showed that EGCG, gallocatechin, and epigallocatechin could
contribute to the decrease of hepatic weight and epicatechin
could reduce oxidative stress. In conclusion, most of 10 green
teas were first evaluated for their effects on obesity and NAFLD.
Several green teas showed strong effects and could be developed
into functional foods to prevent obesity and NAFLD. In addition,
if the intervention dose (200mg/kg bw) for mice in this study was
transformed into that for persons, this dose could be obtained

by daily drinking tea, indicating the people could prevent obesity
and NAFLD by daily drinking some green teas. Therefore, the
findings could also serve the public to select suitable tea for the
prevention and management of obesity and NAFLD.
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Tea is a popular traditional drink and has been reported to exhibit various

health-promoting e�ects because of its abundance of polyphenols. Among all

the tea products, fermented tea accounts for the majority of tea consumption

worldwide. Microbiota plays an important role in the fermentation of tea,

which involves a series of reactions that modify the chemical constituents

and thereby a�ect the flavor and bioactivities of tea. In the present review,

the microorganisms involved in fermented tea and tea extracts in the recent

studies were summarized and the modulation e�ects of microorganisms

on tea in fermentation, including polyphenols composition and content,

biological activities and sensory characteristics, were also critically reviewed.

It is expected that the data summarized could provide some references for

the development of microbial fermented tea drinks with specific nutrition and

health benefits.

KEYWORDS

tea beverage, microbial fermentation, tea polyphenols, biological activity,

sensory characteristics

Introduction

Tea, one of themost popular beverages in the world, is generallymade from the leaves

of the Camellia sinensis plant through processing techniques such as curing, rolling,

heaping, and drying. Tea contains various bioactive ingredients, such as polyphenols,

polysaccharides, caffeine, minerals and other active substances (1). Previous studies

have indicated that tea possessed antioxidant, hypoglycemic (2), antihypertensive,

lipid-lowering (3), antibacterial, anti-cancer, and anti-obesity effects, which were mainly

attributed to its abundant polyphenols (4).

With the rise of fermentation engineering, researchers applied microbes to tea.

Unlike green tea, black tea and other teas that have not undergone microbial

fermentation, microbial fermented tea has special sensory characteristics, including

bright tea infusion, unique aroma, sweet, and smooth taste with low levels of bitterness
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and astringency. Therefore, dark tea and kombucha, two kinds

of microbial fermentation tea, are favored by consumers for

their special taste and aroma (5, 6). Furthermore, tea has been

fermented by microorganisms that are attracting increasing

attention because of its various health benefits, including

protection against hypertension and cardiovascular diseases (7,

8). At the same time, the content of its active ingredients will

change (9–11). After fermentation, some molecules in tea that

are not easy to be absorbed change from combined state to free

state, which is conducive to the absorption of nutrients in tea

and the exertion of its efficacy. Microbial fermentation is the key

factor responsible for the formation of sensory attributes and the

chemical components of tea.

The changes of chemical constituents and bioactivities

of tea during microbial fermentation have been revealed

in recent years, which were related to the bioconversion

of active components by microorganisms. The purpose of

this paper is to review the types of microbiota, changes of

polyphenols content and composition, biological activity and

sensory evaluation in tea aftermicrobial fermentation, according

to comprehensively understand the characteristics and current

situation of microbial fermented tea, and look forward to its

development prospects and research trends, which may provide

a theoretical basis for the in-depth study of tea fermented

by microorganisms.

Typical types of microbial
fermentation in tea

According to the type of microbiota, the microbial

fermented tea can be divided into four types, including bacterial

fermented tea, mold fermented tea, yeast fermented tea and

edible and medicinal fungi fermented tea, as shown in Figure 1.

After fermentation, the antibacterial activity and antioxidant

activity of tea were enhanced due to the increase of phenolic

substances. The reduction of caffeine after fermentation makes

the tea taste better. In addition, after fermentation, the variety

of aromatic substances increases, giving the tea a new aroma.

As well as changes in the types and content of tea pigments,

giving the tea soup has a clear color. Tea are fermented by

microorganisms, a variety of active substances produced by

microbial metabolism increased, thereby improving the overall

quality of the tea.

Bacteria fermentation in tea

In recent years, the research on using bacteria to ferment

tea is mainly focused on kombucha. During the fermentation

process of kombucha, changes in sugar and acid content

give the tea a new taste, the production of aromatic

substances increases the aroma of the tea, and changes

in phenolic substances increase the antioxidant capacity of

the tea.

Zhao et al. reported that lactic acid bacteria fermentation

may be an effective method to improve the bioavailability

of phenols and protect cells from oxidative stress (12).

Furthermore, kombucha is fermented by acetic acid bacteria and

yeast, during which the content of beneficial ingredients such

as vitamin C and glucuronic acid increases (13). Simultaneously

kombucha has significant changes in antioxidant potential,

pH, acetic acid, alcohol and sugar contents, and beneficial

ingredients such as organic acids, minerals and vitamins, amino

acids and polyphenols can be produced in the fermentation

process (14).

Mold fermentation in tea

On account of tea polyphenols in tea have no inhibitory

effect on mold, and some metabolites produced by mold will

produce a series of reactions in tea, including degradation,

oxidation, methylation, etc., which can improve the quality

of tea. Therefore, when tea is fermented with mold, some

researchers selected Streptomyces, Aspergillus niger, and Mucor

to conduct fermentation studies (15).

The results showed that compared with fresh tea, the

polyphenol content of tea fermented by Streptomyces bacillaris

strain R9 and Streptomyces cinereus strain Y11 strains was

higher, and the total phenol content was 32.9 ± 0.1 mg/mL and

31.9 ± 0.1 mg/mL, respectively, after 42 days of fermentation

(16). In another set of experiments, the contents of polyphenols

and purine alkaloids in solid state fermentation system of

Aspergillus niger and Aspergillus fumigatu were experimentally

studied, which provided a reliable basis for dynamic data

description and metabolic pathway of tea polyphenols in

fermented pu-erh tea (17). Similarly, when molds and yeasts

were used in the fermentation of black and green teas, molds

fermentation increased caffeine content, which are related

to the methylation process and the increase of the premise

substance of caffeine, while yeasts fermentation decreased

caffeine content. It was found that Aspergillus niger had the

best fermentation performance of the three molds in this

study (18).

In addition, Eurotium cristatum was also used for tea

fermentation in recent years. The bacteria secrete amylase and

oxidase, which can catalyze the transformation of protein and

starch in tea to monosaccharides, catalyze the oxidation of

polyphenol compounds, and transform them into substances

beneficial to human body, so as to improve and optimize tea

taste and other characteristics. When the extract of raw dark tea

was fermented by using Eurotium cristatum, the dry weight of

mycelia increased by about 10 times after the fermentation, the

mass concentrations of tea polyphenols, total protein and water

extract were decreased, the concentrations of total flavonoids,
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FIGURE 1

Typical types of microbial fermentation in tea.

free amino acids and theabrownin were increased, and 12 kinds

of aromatic components were increased, most of which were

esters and alcohols (19).

Yeast fermentation in tea

Using yeast to ferment tea can not only improve the activity

of tea fermentation, but also the complex biochemical reactions

in the fermentation process will produce ethanol, acids and

esters and other flavor substances to improve the sensory quality

of the microbial fermentation of tea.

Studies have shown that the fermentation of black tea

by Dabaryomyces hansenii results in the reduction of caffeine

and a large amount of tannins, and improves its nutritional

and medicinal value, so the ingestion of fermented tea is

more advantageous than black tea (20). Additionally, when

yeast strains were isolated from pu-erh tea and fermented

raw tea samples of pu-erh tea, the study found that after

yeast fermentation, the contents of tea polyphenols, theaflavins

and catechins in tea were increased, while the contents of

amino acids, caffeine, flavonoids, thearubigins and theabrownin

were decreased. The contents of amino acids, catechins and

caffeine affect the taste of tea, and the content of tea pigment

determines the color of tea soup. The decrease of theanine

content improved the bitter taste of tea, while the increase

of theaflavins improved the color, aroma and taste of tea.

Therefore, yeast has a great influence on the quality formation

of pu-erh tea (21).

Edible and medicinal fungi fermentation
in tea

With the in-depth study of tea and modulation effects

of microorganisms on tea beverage in fermentation process,

many researchers also introduced edible and medicinal fungi

for tea fermentation. With the fermentation of edible and

medicinal fungi, the tea fermented by microorganisms goes

through biochemical reaction to obtain aroma substances such

as esters and alcohols. There were also changes in substances

such as polyphenols and proteins. Improved the stale taste,

sour taste and astringency of tea, and gave tea a new aroma

and taste.

Rigling et al. used Poria cocos to adjust the smell of green

tea. The study found that after immersion and fermentation

for 17 h, due to the formation of methyl anthranilate, linalool,

2-phenylethanol and geraniol, Poria cocos changed the unique

smell of green tea into jasmine flower and slightly citrus

flavor. Meanwhile, the antioxidant activity of green tea is

retained (22).
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In addition, after the fermentation of Jinxuan oolong tea

with medicinal mushrooms Grifola frondosa and Tianzhi (new

variants ofGanoderma lucidum), the contents of polysaccharide,

free amino acid and protein of the fermented tea were

significantly increased, and the taste of the fermented tea

was fresher and mellow. The contents of tea polyphenols,

caffeine and water extract in the fermented products were

significantly reduced, which reduced the turbidity of tea

juice, reduced the bitterness, and gave it sweet taste and

aroma (23).

Changes of polyphenols content in
tea after microbial fermentation

Tea polyphenols are the main components that determine

the color, aroma, taste and efficacy of tea. They are classified as

flavonoid (flavonols, flavanols, flavones, flavanones, isoflavones,

and anthocyanins) and non-flavonoid molecules (phenolic

acids, hydroxycinnamic acids, lignans, stilbenes, and tannins)

(24). Tea polyphenols have anti-inflammatory, antiviral,

antibacterial, hypolipidemic, hypoglycemic, weight loss and

other effects. After microbial fermentation, the content of

polyphenols changes in the tea (25–28).

Changes of flavonoid content in tea

In recent years, researches on flavonoids polyphenols in tea

mainly focus on flavanols, flavonols, and flavones. This section

will review the changes of flavonoid content of tea before and

after microbial fermentation.

Catechins are synthesized from sugars through shikimic

acid pathway through the action of a series of enzymes

to form benzene ring compounds. Catechins are typical

flavanols, accounting for about 18 to 36% of the dry weight

of tea (29). As shown in Figure 2, there are four important

structures of catechins, namely (-)-epigallocatechin-3-gallate

(EGCG), (-)-epicatechin-3-gallate (ECG), (-)-Epicallocatechin

(EGC) and (-)-Epicatechin (EC). In the process of tea

fermentation, the content of catechin varies with the degree of

tea fermentation, fermentation time, fermentation temperature

and other factors (30). In another study, Qin et al. using

the method of quantitative analysis and high performance

liquid chromatography to study the change of tea polyphenols

content of pu-erh tea in solid-state fermentation system, it was

found that the content of ester-catechins increased slightly at

the initial stage of fermentation, and then the ester-catechins

gradually degraded to produce catechin and gallic acid. In

the initial stage (0 to 8 h), the content of EGCG increased

slightly, from 23.392 and 23.431 mg/g to 24.983 and 24.897

mg/g (17). According to another set of study, used the dominant

strain of qingzhuan brick tea to conduct solid fermentation

of qingzhuan brick tea, and after 6 days of fermentation,

the catechin content decreased by 27.6% under the action of

Aspergillus fumigatus M1 (25). The content of catechins in

most teas decreases during fermentation, possibly due to the

breakdown of catechins into substances such as theaflavins

during fermentation (31).

The main flavonols and flavones in tea include kaempferol,

quercetin, myricetin, and apigenin. Wang et al. identified

flavonoid glycoside (quercetin-3,4’-O-di-β-glucoside, quercetin

3-O-galactosyl rutin, myricetin 3-galactoside, luteolin 6-C-

glucoside, vitexin (apigenin-8-C-glucoside), kathinol 7-O-

glucoside) in green tea extracts fermented by Lactiplantibacillus

plantarum 299V significantly were decreased, which may be

related to the absorption and utilization of flavonoids by lactic

acid bacteria cell wall (32). Seven kinds of tea fungis were used

to ferment the sun-dried green tea, which promoted to the

accumulation of kahenol and myricetin. It was found that the

antioxidant activity of tea increased after fermentation, and the

positive correction of gallic acid and kamanol to the antioxidant

activity of fermented tea was observed (33). In addition, Ma

et al. found that Aspergillus palladium PT-3 and Aspergillus

sesamae PT-4, two tea fungis, could promote the biosynthesis of

various flavonoids such as neferol, quercetin, and myricetin in

the metabolic process of phenolic compounds, thus increasing

the content of flavonoids in tea during fermentation (34).

Furthermore, other researchers have used bacterial strains to

ferment black tea tomake drinks. For example, when Starmerella

davenportii strain Do18 was used to fermented black tea

extract, the research results showed that the flavonoid content

of fermented tea drinks was higher, and the total flavonoid

content of fermented drinks was significantly higher than that

of unfermented samples, and reached the highest level after 36 h

of fermentation (35).

Moreover, changes in acids in the fermentation environment

also lead to the release of bound flavonoids (36–38). However, in

the study of inoculated fermented tea, the flavonoid content of

fermented tea was higher than that of unfermented tea.

Changes of non-flavonoid molecules
content in tea

Phenolic acids in tea are secondary metabolites of aromatic

substances and non-flavonoids, which have many biological

characteristics. The phenolic acids in tea mainly include gallic

acid, chlorogenic acid, salicylic acid, vanillic acid and so on.

During the fermentation of tea, the content of phenolic acid will

vary with the degree of fermentation (39, 40).

Gallic acid is one of the important active ingredients

in tea. Fermentation of tea will affect the content of gallic

acid in tea. When studying the fermentation of loose tea by

Eurotium cristatum at different temperatures, it was found

Frontiers inNutrition 04 frontiersin.org

118

https://doi.org/10.3389/fnut.2022.931790
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Hu et al. 10.3389/fnut.2022.931790

FIGURE 2

The main structure of tea polyphenols.

that appropriately increasing the fermentation temperature was

beneficial to increase the content of gallic acid in fu brick

tea (41).

Liu et al. used Aspergillus Niger to ferment tea. It was found

that tannase was involved in the metabolism of gallic acid during

the fermentation of pu-erh tea, which increased the content of

gallic acid during the fermentation (42). However, Gallic acid

showed a decreasing trend in the early fermentation stage of

dark tea fermented by M. coronoid (43). In addition, in the

fermentation process of black tea extract, with the increase of

fermentation time, it is not conducive to the accumulation of

phenolic acids such as gallic acid and cinnamic acid (44). In

the fermentation process of tea, the change of phenolic acid

content should be analyzed in combination with the specific

situation (45).

Changes of biological activity in tea
after microbial fermentation

Tea has biological activities such as antibacterial,

antioxidant, hypoglycemic, weight loss, anticancer and so

on (46–48). With the fermentation of tea, its active function

will change. The antibacterial, anti-oxidant, hypoglycemic,

anti-lipid, anti-inflammatory, anti-toxin and anti-cancer

activities of microbial fermented tea can be applied to

the food, medicine and cosmetics industry and have a

good development prospect (49–52). In this section, the

antibacterial, antioxidant, hypoglycemic, lipid-lowering and

other activities of tea fermented by microorganism would

be elaborated.

Changes in antibacterial activity

With the deepening of fermentation, the metabolites of

some fungi in tea have the function of inhibiting intestinal

microorganisms (53, 54). Comparing the inhibitory effects of

black tea extracts before fermentation and black tea extracts after

fermentation on Escherichia coli, the research results showed

that among the three different concentrations of non-fermented

black tea extracts, only the tea extract at a concentration of

25 mg/mL can inhibit Escherichia coli. The fermented black

tea extracts at concentrations of 5, 10, and 25 mg/mL can

significantly inhibit the growth of Escherichia coli. Figure 3

shows the damage of 25 mg/ml fermented black tea extract

to Escherichia coli (55). When studying unfermented black tea
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FIGURE 3

The inhibitory e�ect of fermented black tea extract on Escherichia coli. The cell membrane and cell division of Escherichia coli were damaged

by 25 mg/ml fermented tea extract.

extracts and fermented black tea extracts, it was found that

as the fermentation time increased, the antibacterial effect of

black tea extracts increased. The results showed that under

the condition of PH 7.0, black tea extracts had no inhibitory

effect on S. typhimurium when it was not fermented; when

fermented for 14 days, the inhibition of S. typhimurium by

fermented tea could reach 30–35mm in diameter; Unfermented

black tea extracts has no inhibitory effect on Escherichia

coli, and after 14 days of fermentation, the diameter of the

inhibitory zone of fermented tea on Escherichia coli can reach

30–35mm; when fermented for 0–4 days, fermented tea has

no inhibitory effect on Candida albicans. When fermented

for 4–14 days, the inhibition halo diameter of fermented tea

on Candida albicans reaches 10–15mm (56). Studies have

found that the fermented fu brick tea contains a class of

triterpenoids with 6-hydroxy-7-one function. The antimicrobial

activity of compound enteric pathogenic Escherichia coli,

Escherichia coli, Staphylococcus aureus, Shigella dysenteriae,

and Salmonella typhi was evaluated by plate diffusion. The

test results show that the compound has weak antibacterial

activity against enteropathogenic Escherichia coli (EPEC) and

Salmonella typhi. The microbial fermented tea has a certain

inhibitory effect on harmful bacteria, and the inhibitory ability

may be related to the fermentation time, pH and other factors of

the microorganisms (57).

In addition, black tea extracts fermented by acetic acid

bacteria and yeast showed obvious inhibitory effects on

Staphylococcus aureus ATCC6538 (S. aureus) and E. coli

ATCC11229 (E. coli) (58), which suggest that fermented tea

might be a potential source of preservatives. The antimicrobial

activity of fu-brick tea after fermentation by bursa corundum is

obviously improved compared with that without fermentation.

When the concentration of fermented tea extract was 5

mg/mL or less, the growth of intestinal pathogenic bacteria

Shigella and Staphylococcus aureus could be reduced by 50%,

and the minimum inhibitory concentration of fermented tea

extract against Staphylococcus aureus was 0.625 mg/mL (59).

After microbial fermentation, the antibacterial activity of tea

was improved, and its antibacterial effect on Escherichia coli,

Staphylococcus aureus, Salmonella and other pathogenic bacteria

had improved significantly.

Changes in antioxidant activity

During the fermentation of tea, the antioxidant capacity of

tea will also change with the changes in content of secondary

metabolites (12, 60, 61). A single strain isolated from pu-erh tea

was used to inoculate fresh tea to study its fermentation effect.

The results of the study showed that fresh tea was inoculated
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with these strains, and the antioxidant capacity was significantly

enhanced after 42 days of fermentation. Among them, the

polyphenol content of tea inoculated with Streptomyces bacillus

strain R9 was 3.3 mg/100 g, and the scavenging ability of DPPH

free radicals reached 92%, the total polyphenol content was the

highest, and the antioxidant capacity was the strongest (11).

Fermentation of fu brick tea using Eurotium cristatum has

found that fermented tea at 28 and 37◦C has strong antioxidant

capacity (26). Compared with unfermented tea, fermented tea

has better antioxidant properties, and fermentation temperature

has a significant impact on the antioxidant properties of

fermented tea. Furthermore, using kombucha to ferment black

tea, and study the changes in its antioxidant activity with

fermentation time, the results of the study found that as

the fermentation time increases, the antioxidant activity of

fermented tea increases. After 8 days of fermentation, the

antioxidant activity of fermented tea can reach up to 89.69%

(62). And the DPPH scavenging ability of green tea reached

94.38% after fermentation of GABA-producing lactic acid

bacteria for 5 days (63).

Combined with the above research, when studying the

changes of antioxidant activity of microbial fermented tea, we

can improve the antioxidant activity of tea through microbial

fermentation, so as to provide a theoretical basis for the

research and development of antioxidant functional food and

the food industry.

Changes in hypoglycemic activity

In recent years, many researchers have used animal

experiments to study the biological activity of tea and found that

after microbial fermentation, it is demonstrated that the activity

of tea to reduce blood glucose has been improved (64–66).

The regulation effect of fermented tea on glucose

metabolism is mainly related to the metabolites of fermented

tea. For example, the relative contents of 10 kinds of polyphenol

metabolites (4 kinds of fatty acids, 1 kind of artemisylline

derivative, 3 kinds of lysophosphatidylcholine and 2 kinds

of triterpenoids) increased while the relative contents of

the other 5 kinds of polyphenol metabolites decreased

after the fermentation of dark tea by Cystis canopetiformis.

These metabolites are related to the hypoglycemic activity

of fermented tea (67). It was found that the kombucha has

obvious therapeutic effect to diabetic rats after fermentation.

The findings from the histopathological analyses revealed that

those of the alloxan-induced diabetic rats showed clear atrophy

of β-Cells. The pancreas of the diabetic rats that were treated

with fermented black tea, on the other hand, noted to undergo

a marked amelioration. Mainly because after fermentation of

tea extract on plasma and alpha amylase and lipase activity in

pancreas have better inhibitory effect, at the same time improve

the pancreas of diabetic mice structure, have better inhibitory

effect on blood sugar levels rise, as shown in Figure 4 (68). The

green tea extracts fermented by acetic acid bacteria, yeast and

lactic acid bacteria can improve the intestinal flora of mice.

The improvement of intestinal flora reduces the damage of

intestinal barrier, thus reducing lipopolysaccharide replacement

and inhibiting the occurrence of insulin resistance in vivo. In

addition, increasing the number of SCFAs-producing bacteria

can increase the number of SCFAs, improve the function of islet

β cells, and reduce blood glucose by promoting the secretion of

gastrointestinal hormones (69).

Changes in lipid-lowering activity

At present, research on the lipid-lowering activity of

microbial fermented tea is mainly focused on lowering blood

lipids and weight loss (70, 71). For example, the fu brick tea

was fermented by Eurotium cristatum, and the water extract of

the fermented fu brick tea was fed to high-fat zebrafish. The

results showed that when the concentration was 500µg/mL,

the lipid level of the zebrafish was compared with the control

group, it decreased by 51.49%. The water extract of fermented

Eurotium cristatum showed effective lipid-lowering activity on

high-fat zebrafish (72). In addition, Lactobacillus paracasei subsp

was used to fermentation Houttuynia cordata leaf tea and

green tea, and the anti-obesity activity of fermented tea was

studied through in vivo and in vitro experiments. Wang et al.

demonstrated that the fermented tea contained epigallocatechin

gallate, epigallocatechin, and chlorogenic acid, which inhibit

lipogenesis in mature 3T3-L1 adipocytes by stimulating adipose

decompose (73). Qin et al. fermented Anhua black tea with

Monascus and Cystaphylococcus coronatum, resulting in many

active substances in the fermented products, such as lovastatin,

which had certain lipids lowering effects (74). Therefore, long-

term drinking of microbial fermentation tea has a good role in

medical care.

Changes in other biological activities

The tea was fermented by microorganisms has antibacterial,

antioxidant, hypoglycemic, lipid-lowering, anti-inflammatory

and anti-cancer activities (75, 76). Zhang et al. found that

lovastatin produced by monascus fermentation of pu-erh

tea can induce neutrophil apoptosis by phosphorylation of

ERK/AKT and reduce neutrophil recruitment to inflammatory

sites, thereby reducing inflammation in zebrafish (77). In

addition, Assam tea after fungal fermentation, compared with

unfermented tea, microbial biological conversion of phenol

makes total polyphenol, total tannin content in the fermented

tea enhancement and enrichment of condensed tannins,

thus as a target, the function of the bioactive ingredients

in anti-inflammation mediated diseases such as cancer and
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FIGURE 4

E�ect of fermented black tea extract on β-cells of the Pancreas in Alloxan diabetic rats.

cardiovascular disease found in the corresponding application

(78). Moreover, Villarreal-soto et al. studied the bioactivity of

extracts from black tea fermented by kombucha bacteria. After

21 days of fermentation, the anti-inflammatory bioactivity was

enhanced, with IC50 values up to 9.0µg/mL (79). Li et al.

used Nigrospora sphaerica HCH285 to ferment the sun-dried

green tea, so as to develop a kind of melanospora fermented

tea. With the increase of fermentation time, after 45 days

of fermentation, the content of bostrycin in the fermented

tea reached 3.18 g/kg, and the content of bostrycin was the

highest in the whole fermentation process. Bostrycin has good

anticancer activity, so the anticancer activity of green tea is

enhanced in the fermentation process (80). Tea are fermented

by microorganisms, most of the biological activity of tea will

be enhanced.

Changes of sensory evaluation in tea
after microbial fermentation

Not only there is a change in the content of tea polyphenols

and bioactive functional, the sensory properties of tea changed

after fermentation (81, 82). For example, the change of tea taste

and the color and brightness of tea juice are mainly caused by

the change of amino acid content in the fermented tea and the

formation of theaflavins and thearubigen (83, 84).

Change in taste

Compared with unfermented tea, the taste of tea is

enhanced by microbial fermentation. This is because, after

tea fermentation, the protein in tea is decomposed into free

amino acids, increasing the flavor of tea. At the same time,

catechins were degraded and the bitter taste of tea beverage

was reduced. Besides, sugar content increased and pH value

decreased, making fermented tea beverage taste sour and sweet.

Laphet, a fermented tea from Myanmar, has a bitter taste

in the raw tea without fermentation, but the bitter taste of

the tea is reduced after fermentation (85). Nishioka et al. used

Lactobacillus to ferment Awaban tea and found that the free

amino acids of fermented tea contained large amounts of theine

and glutamate, which enhanced the umami taste of tea (86). At

the same time, the quality of Awaban tea is improved by some

other ingredients produced by lactic acid bacteria. In addition,

Zhao et al. used tea bacteria to discover the extract of pu-erh tea

and studied the flavor of tea in the fermentation process. It was

found that the total amount of free amino acids increased slightly

with the increase of fermentation time, and these free amino
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acids, as the most important aromatic precursors of fermented

tea, could significantly improve the flavor quality of fermented

tea. At the same time, due to the presence of acetobacter, the PH

of fermentation liquid is reduced, tea polyphenols are oxidized,

catechins are degraded, and bitterness is reduced, and fermented

tea is endowed with sweet and sour taste (87). Moreover,

it was found that the sensory properties of black brick tea

were changed during fermentation by liquid chromatography-

mass spectrometry. Based on liquid chromatography-mass

spectrometry of metabonomics analysis revealed that microbial

fermentation of the tea samples and microbial fermentation

before samples have significant differences, a total of 102

compounds were identified as the key to lead to metabolic

changes and green tea processing metabolites, catechins content

decreased significantly, and form new phenolic acids and

catechins derivatives. The sensory quality of the green brick

tea is mainly formed in the process of microbial fermentation,

which greatly reduced the astringency and bitterness of raw

tea and produced its characteristic woody and stale aroma as

well as mellow taste (88). When the dark tea was fermented

by Aspergillus Niger, the bitterness and astringency of tea were

reduced significantly due to the catechin content was decreased

in the fermentation process. In addition, bitterness and umami

taste were also changed due to amino acids were changed in

tea (89). After the fermentation of bacteria, the pH of black

tea decreases at the initial stage of fermentation, during which

sucrose is hydrolyzed and lactic acid content increases, and tea

is endowed with a sour and sweet taste (5).

Change in aroma

Tea has been fermented by microorganisms. Aroma

substances in tea are produced, including alcohols and

aldehydes. Besides enzymatic and non-enzymatic reactions

occur in tea, and the hydrolysis of some substances, such as

glycoside hydrolysis, has a great influence on the formation of

tea aroma (90–92).

For example, in the post-fermentation process of dark

tea, ketones are formed. These ketones are very important

flavor compounds with special floral and woody odors.

Therefore, the fermented dark tea has a special fragrance

(93). In the fermentation process of pu-erh tea extract,

the aroma of tea becomes weaker under the action of

microorganisms, while the compositions of fermented tea

such as camalool, phenylacetaldehyde, heptanaldehyde and 2,

4-dimethylbenzaldehyde are produced, which makes the tea

fermentation liquid have the fruit flavor (60). In addition,

the study used four non-Saccharomyces cerevisiae strains to

ferment green tea slurry, and the proper fermentation of these

four strains changed the characteristics of aroma compounds,

so that the aroma of fermented green tea changed. In the

microbial fermentation process of tea, the aroma composition

FIGURE 5

The color change of tea soup before and after fermentation of

Green Tea.

and aroma will change benignly, which makes the sensory sense

of tea more abundant (94). After the fermentation of green

tea with four kinds of mixed bacteria, a fruity ethyl ester was

produced, which increases the content of aroma compounds

such as methyl salicylate, geraniol and 2-phenylethanol, giving

tea a special aroma (32). Furthermore, the presence of D-

limonene (27.71%) and β-cinnamene (11.55%) in fu brick tea

was fermented by Eurotium cristatum gives the tea a fruity and

special aroma compared with the unfermented green tea (72).

Besides, Cyberlindnera aturnus var. mrakiiNCYC 2251 was used

to ferment green tea pulp. With the extension of fermentation

time, glycosylated aroma substances such as methyl salicylate,

benzyl alcohol and 2-phenylethanol increased (95).

Change in color

After the tea was fermented, the taste and aroma would be

changed. What’s more, the color of tea will also be changed.

Under the action of microbial fermentation, the content and

type of tea pigment in tea change, and then change the color of

tea soup. Therefore, the color of tea beverage will become bright,

and the tea soup will be improved after microbial fermentation.

For example, the brown pigment content affects the color

of black tea. After fermentation with Aspergillus fumigata M1,

the brown pigment content of pu-erh tea extracts increases by

110.6%, which improves the color of pu-erh tea (25). Kim et al.

conducted sensory evaluation on Monascus Pilosus fermented

green tea and found that the brightness evaluation of fermented

tea soup was as high as 4.26, significantly higher than that of

unfermented tea. Therefore, microbial fermentation of tea can

improve the color of tea soup and the overall quality of tea

(96), as shown in Figure 5. After fermentation, the color of the

tea soup mostly become translucent and the overall quality will

be improved.
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Concluding remarks

In the process of microbial fermentation of tea, the content

of catechins and flavonoids in tea mostly showed a decreasing

trend, mainly due to the oxidation or degradation of catechins

and flavonoids into gallic acid during the fermentation process.

The biological activity of unfermented tea and microbial

fermented tea is also different. After the tea is fermented, its

antibacterial and antioxidant capacity would be enhanced. In

addition, microbial fermented tea also has anti-inflammatory

and weight loss effects. Long-term drinking of microbial

fermented tea has good medical and health care effects.

Compared with unfermented tea, microbial fermented tea

has improved sensory performance, reduced bitterness and

astringency, stronger aroma, and brighter tea juice. At present,

researchers have not done much research on the fermentation

of tea with inoculated microorganisms. In the future, the

fermentation of tea with inoculated microorganisms may have

a good development prospect. At present, there are many

researches on fermented tea in the field of food, such as

kombucha, which uses mixed strains to ferment different

kinds of tea. Tea fermented by microorganisms has a good

prospect in functional food research and development because

of its antioxidant, hypoglycemic and lipid lowering properties.

The antibacterial properties of fermented tea have a good

application prospect in food preservation. In recent years, with

the development of fermentation engineering, bostrycin and

lovastatin obtained by microbial fermentation of tea have anti-

cancer and anti-inflammatory effects, and are expected to be

applied in medical clinical research. This article will provide

a theoretical basis for future researchers to explore more the

functional activities of microbial fermented tea, and provide a

certain scientific basis for the research and development of tea

in the field of functional health products, food and medicine.
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