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Editorial on the Research Topic

Artificial intelligence and big data for value-based care

Quality care is a key component of the health care system. The gap between actual

care received and ideal care quality in the existing healthcare system is enormous. Although

healthcare spending is remarkably rising than any other global economy, the healthcare system

is still facing immense challenges in inaccurate diagnoses, medication errors, inappropriate

or unnecessary treatments, and insufficient clinical practices. The World Health Organization

(WHO) report 2020 shows that global spending on healthcare has reachedUS$ 8.3 trillion,∼10%

of the global GDP (1). A decisive effort is necessary tomove value-based care from fee-for-service

to improve financial and clinical performance. Value-based care has the potential to promote

better clinical outcomes without increasing costs.

A shift to value-based care from fee-for-service is not a dream because of the availability

of patient data in the electronic health record (EHR) systems, standardization framework, and

advanced algorithms. Clinicians can collect overwhelming amounts of patient data and utilize

advanced analytical tools tomake accurate predictions and actionable insights to improve overall

provider performance, decrease medical errors, and reduce healthcare waste (2). Chen et al.

developed an artificial intelligence (AI) system to correctly classify long-term cardiovascular

outcomes in patients with normal ejection fraction. Echocardiographic data from 61,525 patients

were collected to develop an AI model, which was later internally and externally validated

using data from 3,810 and 5,760 patients. This AI-based system was able to stratify patients

with a left ventricular end-diastolic diameter (LV-D) and predicts ECG-EF accurately with high

AUCs. Nowadays, stereotactic body radiotherapy (SBRT) is considered one of the key treatment

options for patients with early-stage lung cancer. It has shown a beneficial effect in improving

tumor control and overall survival rate. A recent study tested the performance of the Mask

R-CNN-based algorithm for evaluating the dose accuracy of a lung SBRT treatment plan with

the target of a newly predicted internal target volume (ITVpredict) and the feasibility of its clinical

application (Zhang et al.). The cone-beam CT (CBCT) images were collected from early-stage 45

lung cancer patients who underwent SBRT at Huadong Hospital. This AI-enable tool was able

to predict the ITV volume of large tumors more accurately, which ensures the feasibility of this

automated model in making an appropriate treatment plan.
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Alzheimer’s disease (AD) is a critical global health problem

contributing to a substantial financial burden. A previous study

reported that ∼6.5 million aged 65 or older are living with AD in

the USA. Early identification of AD patients significantly reduces

healthcare costs and improves patients’ quality of life. Since AI

techniques based on MRI are being used in the early diagnosis of

AD, a novel deep learning radiomics (DLR) model was developed

to classify cognitively normal adults at risk of AD from normal

control using T1-weighted structural MRI images (Jiang et al.). A

total of 417 patients were included in the study, and MRI data

of those patients were used to divide patients into pre-AD (181

individuals) and control groups (236 individuals) based on a standard

uptake ratio >1.18. AI model achieved state-of-the-art performance

in classifying pre-AD and normal control with an accuracy of 89.85%

± 1.12%. It is now established that advanced AI algorithms have

surpassed traditional statistical methods in image recognition and

being extensively used in medical image analysis. In the last decade,

AI-based radiomic models have made meaningful contributions

to detecting chronic diseases, including lung cancer. A systematic

review and meta-analysis included a total of 19 published studies

to evaluate the diagnostic accuracy of AI models for lung cancer

staging (Zheng et al.). The findings of AI models have the potential

to improve diagnostic accuracy for lung cancer staging in terms

of sensitivity, specificity, and the area under the receiver operating

curve (AUROC).

AI models have tremendous potential to reduce medical errors,

effectively utilize limited resources, and ultimately improve value by

making accurate and effective clinical decisions. Recently, several

studies internationally validated AI tools and achieved classification

accuracy performance that outperformed human performance (3, 4).

Transforming to value-based care from a fee-for-service will face

significant challenges in achieving quality for all and will take time.

But widespread adoption of value-based care would help lower

healthcare costs while simultaneously improving the quality of care.
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Dosimetric Study of Deep
Learning-Guided ITV Prediction in
Cone-beam CT for Lung Stereotactic
Body Radiotherapy
Shujun Zhang †, Bo Lv †, Xiangpeng Zheng, Ya Li, Weiqiang Ge, Libo Zhang, Fan Mo and

Jianjian Qiu*

Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, China

Purpose: The purpose of this study was to evaluate the accuracy of a lung stereotactic

body radiotherapy (SBRT) treatment plan with the target of a newly predicted internal

target volume (ITVpredict) and the feasibility of its clinical application. ITVpredict was

automatically generated by our in-house deep learning model according to the

cone-beam CT (CBCT) image database.

Method: A retrospective study of 45 patients who underwent SBRT was involved, and

Mask R-CNN based algorithm model helped to predict the internal target volume (ITV)

using the CBCT image database. The geometric accuracy of ITVpredict was verified by the

Dice Similarity Coefficient (DSC), 3DMotion Range (R3D), Relative Volume Index (RVI), and

Hausdorff Distance (HD). The PTVpredict was generated by ITVpredict, which was registered

and then projected on free-breath CT (FBCT) images. The PTVFBCT was margined from

the GTV on FBCT images gross tumor volume on free-breath CT (GTVFBCT). Treatment

plans with the target of Predict planning target volume on CBCT images (PTVpredict) and

planning target volume on free-breath CT (PTVFBCT) were respectively re-established,

and the dosimetric parameters included the ratio of the volume of patients receiving

at least the prescribed dose to the volume of PTV (R100%), the ratio of the volume

of patients receiving at least 50% of the prescribed dose to the volume of PTV in the

Radiation Therapy Oncology Group (RTOG) 0813 Trial (R50%), Gradient Index (GI), and

the maximum dose 2 cm from the PTV (D2cm), which were evaluated via Plan4DCT, plan

which based on PTVpredict (Planpredict), and plan which based on PTVFBCT (PlanFBCT).

Result: The geometric results showed that there existed a good correlation

between ITVpredict and ITV on the 4-dimensional CT [ITV4DCT; DSC= 0.83 ±0.18].

However, the average volume of ITVpredict was 10% less than that of ITV4DCT
(p = 0.333). No significant difference in dose coverage was found in V100%
for the ITV with 99.98 ± 0.04% in the ITV4DCT vs. 97.56 ± 4.71% in the

ITVpredict (p = 0.162). Dosimetry parameters of PTV, including R100%, R50%, GI and

D2cm showed no statistically significant difference between each plan (p > 0.05).
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Conclusion: Dosimetric parameters of Planpredict are clinically comparable to those

of the original Plan4DCT. This study confirmed that the treatment plan based on ITVpredict
produced by our model could automatically meet clinical requirements. Thus, for patients

undergoing lung SBRT, the model has great potential for using CBCT images for ITV

contouring which can be used in treatment planning.

Keywords: 4DCT, CBCT (cone beam computed tomography), SBRT (stereotactic body radiation therapy), deep

learning, Mask R-CNN

INTRODUCTION

For patients with early-stage lung cancer, stereotactic body
radiotherapy (SBRT) has become one of the primary treatment
options. It has been proven to significantly improve the tumor
control and overall survival rate of patients with early-stage lung
cancer (1–4).

Currently, the most popular treatment method is to use four-
dimensional CT (4DCT) imaging to generate the internal target
volume (ITV) contour, which expresses the volume of a tumor
moving throughout a patient’s breathing. This ITV contour from
a four-dimensional averaged (4DAVG) image is used to generate
a radiation treatment plan (5).

With the 4DCT technique, image acquisition is associated
with the patient’s breathing curve. The limitations of 4DCT
are as follows: (1) Required high patient compliance as an
irregular breathing curve can reduce the image quality and
affect the accuracy of tumor contouring (6); (2) Complicated
and professional operation as it requires a longer time to
acquire 4DCT images, which could increase the instability and
randomness of the simulation (7); (3) Low popularity as it is
estimated that less than half of radiotherapy centers are equipped
with four-dimensional scanners (8). Overall, these limits may
potentially reduce the SBRT accuracy in treatment.

Conversely, CBCT has high popularity and is conventionally
equipped in a linear accelerator (9). In addition, it is mainly used
to compare the anatomical landmarks from treatment planning
CT images in clinical practice, which are used to determine
intra/inter-fraction motion (10). CBCT rotates 360◦ around the
patient’s body and then finishes the CT image scanning within a
period of time (∼1min) which includes 10–12 respiration time
phases and the motion trajectory of the tumor. The limitations

of CBCT are as follows. First, poor image quality is the main
factor affecting radiation oncologist determination of lung tumor

volume (11). Second, due to a prominent amount of and artifacts,

the dose calculation based on CBCT imagesmay be inaccurate for

treatment planning (12).
In recent years, “deep learning” has been extensively used in

medical image processing. Among them, convolutional neural
networks (CNNs) are the primary methods of target detection
and segmentation (13–16). Mask R-CNN is a simple, flexible,
commonly used framework for object instance segmentation,
and is popular in medical image processing (17). Bouget et al.
used the detection of mediastinal lymph nodes in CT images
for lung cancer staging while enabling good instance detection
(18). Zhang et al. successfully used Mask R-CNN to detect lung

tumors on PET images, which has more effectively and precisely
while suitably avoiding incorrect detection of tumors (19). Some
previous studies used Mask R-CNN on segmentation, such as
detection and classification the breast tumors on sonograms
(20) and brain tumor segmentation for dynamic susceptibility
contrast-enhanced perfusion imaging (21). These studies also
show the great potential of Mask R-CNN in object detection and
segmentation, presenting a possibility of it being used in clinical
applications of medical images in the future.

Our preliminary research confirmed that the upgraded Mask
R-CNNmodel could predict the ITV with CBCT image accuracy
(22). Meanwhile, SBRT delivers high radiation doses to the tumor
target in a hypo-fractionated area with a minimum dose to the
tissue around the target area (19). Therefore, dosmetric research
for lung SBRT is important. This study aimed to evaluate the dose
accuracy of a lung SBRT treatment plan with ITVpredict and the
feasibility of its clinical application.

MATERIALS AND METHODS

Patient Data
Forty-five lung cancer patients (average age was 68 years, range:
55–86 years) who underwent SBRT at Huadong Hospital from
January 2020 to July 2021 were randomly selected for this study.

Image Acquisition
Each patient’s free-breath CT (FBCT) was scanned by a Siemens
Somatom Definition AS R© CT scanner (Siemens Somatom
Sensation, Munich, Germany) with a pitch of 1.5 and slice
thickness of 1mm. 4DCT images were acquired with the
additional assistance of Varian real-time position management
(RPM) (Varian Medical Systems, Palo Alto, USA) using the
same scanning parameters. The first treatment fraction of CBCT
images were acquired in our CBCT system (100 kVp and 100
mAs, rotated at 360◦ with a speed of 6◦ per second), equipped
with a VarianVitalBeamTM linear accelerator (Varian Medical
Systems, Palo Alto, USA).

ITV Acquisition
The gross tumor volume (GTV) on FBCT images (GTVFBCT)
and the ITV on 4DAVG (ITV4DCT) images were contoured by
two radiation oncologists with expertise in lung tumors. Our
model, using the Mask R-CNN algorithm with a convolutional
block attention module (CBAM) module embedded, was used
to automatically establish a newly predicted ITV (ITVpredict)
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FIGURE 1 | Overview of the Mask R-CNN workflow22. There are two steps. First, it generates proposals for lung tumor regions based on the input cone-beam CT

(CBCT) image. Second, it generates a tumor pixel-level mask based on the proposal created in the first step.

FIGURE 2 | Volumetric-modulated arc therapy (VMAT) plans with a full arc.

using the CBCT image database (18). Then, we registered the
CBCT image and FBCT image and projected the ITVpredict on the
FBCT image to calculate the dose. The model workflow is shown
in Figure 1.

Treatment Plan
PTV4DCT and PTVpredict were defined as ITV margins of 5mm
on 4DAVG images and FBCT images, respectively. PTVFBCT was
defined as GTVFBCT with a margin of 10mm in the craniocaudal
(CC) direction and 5mm in the left-right (LR) and anterior-
posterior (AP) directions in the FBCT image.

All patient plans were replanned in the Varian Eclipse R©

system (version 15.5), which was generated by a full arc and was

used depending on the location and anatomic relationships of
the tumors and normal tissues (Figure 2), by our experienced
medical physicists. We used a 6 MV-FFF (DR: 1400 MU/min)
energy and the anisotropic analytical dose calculation algorithm
(AAA) with a 2.5 mm3 calculating grid in all plans. All
patients received prescription of 60 grays (Gy) in 10 fractions
(6Gy per fraction) for over 2 weeks. The planning objectives
aimed to cover the PTV with 95% of the prescribed dose in
all plans.

Geometry Evaluation Parameters for the
Prediction Model
The Dice Similarity Coefficient (DSC), 3D Motion Range (R3D),
Relative Volume Index (RVI), and Hausdorff Distance (HD)
were calculated to assess the agreement between ITVpredict and
ITV4DCT. All statistical tests were performed using SciPy (23)
in Python.

PTV Evaluation Parameters
The volume of PTV (VPTV, cm3), mean dose (Dmean), the
maximum dose received by 2% (D2%), and the minimum dose
received by 98% of the evaluated PTV volume (D98%) were
determined. The percent of the PTV receiving 100% of the
prescription dose (V100%) and the dose covering 95% of PTV
(D95%) were also calculated.

A steep dose gradient at the margin of the target volume
is an important part of the SBRT plan to protect the
normal organization. Some parameters for quantification have
been reported in the literature, including R100%, R50%, the
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Gradient Index (GI), and the maximum dose 2 cm from
the PTV (D2cm).

R100%
R100% is the ratio of the volume of patients receiving at least the
prescribed dose to the volume of PTV (9). When the value of
R100% is closer to 1, it means that the dose distribution has more
conformity for PTV.

R100% =
V100%

VPTV

TABLE 1 | Planning objectives for critical structures.

Objectives Parameters Limit

Normal Lung V 20Gy <10%

V12.5Gy <15%

Heart Dmax <32.5Gy

Trachea Dmax <32.0Gy

Esophagus Dmax <35.0Gy

Spinal Cord Dmax <25.0Gy

TABLE 2 | Patient and tumor characteristics.

Parameter Total

Patients (n = 45) Female = 17, Male = 28

Median age in years (range) 68 (55–86)

Median ITV in cm3 (range) 21.42 (0.7–65.7)

Tumor location (n = 45) 5 LUL, 13 LLL, 6 RUL, 7 RLL, 14 RML

LUL, left upper lobe; RUL, right upper lobe; LLL, left lower lobe; RLL, right lower lobe;

RML, right middle lobe.

TABLE 3 | Geometry parameters of the patients.

Parameters DSC R3D RVI HD

(mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD)

0.83 ± 0.18 3.08 ± 2.81 1.14 ± 0.21 19.77 ± 21.59

R50%
R50% was defined as the ratio of the volume of patients receiving
at least 50% of the prescribed dose to the volume of PTV in
the Radiation Therapy Oncology Group (RTOG) 0813 Trial (9).
The R50% is an evaluation index for damage to irradiated normal
tissues (24).

R50% =
V50%

VPTV

Gradient Index (GI)
The Gradient Index (GI) is defined as the ratio of the volume of
the patient receiving at least 50% of the prescription dose to the
volume of the patient receiving at least 100% of the prescription
dose (25). It was used to measure dose fall-off outside of the PTV.
The dose falling off outside the target volume is very important in
SBRT, especially as a predictor of complications (26).

Gradient Indax (GI) =
V50%

V100%

OARs Evaluation Parameters and
Treatment Efficiency Parameters
The dosimetric parameter acceptance of normal tissues
(27), which refers to the RTOG 0813 Trial, is listed in
Table 1. The ITV acquisition time was manually recorded
for delineation efficiency and automatically recorded for
model, and machine monitor units (Mus) were recorded for
treatment efficiency.

Statistical Analysis
The statistical significance of the difference between the groups
was assessed using 1-way analysis of variance (ANOVA) by SPSS
software release 20.0, and the statistical significance was p< 0.05.

RESULTS

Clinical Characteristics
Patient and tumor characteristics of the 45 patients are described
in Table 2.

FIGURE 3 | Comparison of contours between ITV on the 4-dimensional CT (ITV4DCT, red) and ITV prediction (ITVpredict, blue) in different views of patient images.
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Geometry Evaluation
The DSC value between ITV4DCT and ITVpredict was 0.83± 0.18.
The DSC value indicates that ITV4DCT and ITVpredict have a
good correlation (Table 3). In addition, Figure 3 shows a visual
evaluation from different perspectives. ITVpredict can outline the
patient’s tumor contour and is similar to the radiation oncologist
contouring (ITV4DCT). The visual assessment shows that the
results are reasonable.

TABLE 4 | Calculated prescription dose coverage (V100) and dose to 95% (D95) of

ITV.

Variables ITV4DCT ITVpredict P value

(mean ± SD) (mean ± SD)

Volume (cm3) 21.41 ± 9.38 19.31 ± 8.83 0.333

V100% (%) 99.98 ± 0.04 97.56 ± 4.71 0.162

D95% (Gy) 63.84 ± 1.55 61.02 ± 5.56 0.207

*A significant difference existed (p < 0.05).

SD, standard deviation.

ITV Evaluation
The average volumes of the ITV4DCT and ITVpredict were 21.41

± 9.38 cm3 and 19.31 ± 8.83 cm3, respectively. Compared to
ITV4DCT, ITVpredict reduced ITV volume by 10% on average (p
= 0.333). No significant difference was found in ITV volume.
However, no significant difference was found in V100% for the
ITV with 99.98 ± 0.04% in ITV4DCT vs. 97.56 ± 4.71% in
ITVpredict (p= 0.162) (Table 4).

PTV Evaluation
The PTV evaluation parameters are shown in Table 5. The
GI value of Planpredict (GI = 3.98 ± 0.42) was slightly lower
than that of PlanFBCT (GI = 4.74 ± 1.01), indicating that the
descending gradient of PTV was better than that of PlanFBCT
and second to that of Plan4DCT (GI = 3.31 ± 0.89). The R100%

value for Plan4DCT (R100% =1.05 ± 0.11) was always lower
than that for Planpredict (R100% = 1.08 ± 0.05) and PlanFBCT
(R100% = 1.12 ± 0.06), and the results show that Plan4DCT

has the best performance and high conformability. However,
there was no statistically significant difference between the
plans (F= 0.141).

TABLE 5 | Dosimetric parameter comparison among Plan4DCT, Planpredict, and PlanFBCT.

Variables Plan4DCT (mean ± SD) Planpredict(mean ± SD) PlanFBCT (mean ± SD) F P

PTV

Volume (cm3) 48.81 ± 38.99 44.84 ± 31.93 43.89 ± 34.05 0.051 0.952

D98 (Gy) 45.54 ± 10.72 51.01 ± 6.84 50.88 ± 4.33 0.384 0.685

D2 (Gy) 77.21 ± 7.03 78.4 ± 14.89 81.93 ± 12.37 1.430 0.259

V100 (%) 94.40 ± 1.80 94.9 ± 0.28 94.9 ± 0.25 0.931 0.408

D95 (Gy) 59.76 ± 5.76 59.98 ± 3.62 59.59 ± 7.82 0.662 0.525

R100% 1.05 ± 0.11 1.08 ± 0.05 1.12 ± 0.06 0.141 0.872

R50% 3.48 ± 0.82 5.25 ± 2.01 4.45 ± 0.70 0.560 0.598

GI 3.31 ± 0.89 3.98 ± 0.42 4.74 ± 1.01 0.573 0.592

D2cm (Gy) 30.27 ± 4.39 31.18 ± 3.46 33.46 ± 2.24 0.070 0.933

OARs

Lung

V12.5 (%) 5.83 ± 1.48 5.30 ± 0.85 5.50 ± 0.99 0.420 0.690

V20 (%) 3.05 ± 0.92 2.58 ± 0.71 2.80 ± 0.57 0.820 0.520

Heart

Dmax (Gy) 11.15 ± 6.58 9.84 ± 5.89 9.91 ± 6.42 0.058 0.994

Trachea

Dmax (Gy) 0.45 ± 0.04 0.55 ± 0.07 0.58 ± 0.06 0.681 0.791

Esophagus

Dmax (Gy) 9.14 ± 3.42 8.43 ± 2.14 7.01 ± 2.61 0.457 0.647

Spinal Cord

Dmax (Gy) 9.57 ± 2.61 8.89 ± 0.01 6.70 ± 2.45 0.926 0.431

Treatment efficiency parameters

Generate ITV time (min) 30.28 ± 3.74 1.45 ± 0.31 24.13 ± 4.93 756 0.000*

MU 1,023.31 ± 83.61 1,059.14 ± 92.38 1,042.36 ± 97.25 0.837 0.713

*A significant difference existed (p < 0.05).

SD, standard deviation.
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FIGURE 4 | Comparison of contours between planning target volume on four-dimensional CT (PTV4DCT ) (red), PTVpredict (blue), and PTVFBCT (green) in different views

of patient images (projected PTVpredict and PTVFBCT on 4DCT images).

FIGURE 5 | Dose color wash map of each plan for PTV (the area of the red line is PTV, and the red and blue color wash maps represent the 100 and 50% prescription

doses, respectively).

The contouring in different views is also similar for the PTV
of each plan (Figure 4). The visual assessment shows that the
results are reasonable. Figures 5, 6 show the dose color wash and
the dose volume histogram (DVH) of the patients, which were
calculated for each plan.

OARs and Treatment Efficiency Evaluation
The estimated dosimetric parameters for all plans met the criteria
specified in the RTOG 0813 protocol. The results show that
the V20 of Planpredict was better than that of Plan4DCT (with a
reduction of 15.4%) and PlanFBCT (with a reduction of 7.8%),
which obviously protected the lung (Figure 7), but no difference
existed in the dosimetric parameters. Additionally, there was no
statistically significant difference in each plan with the maximum
dose (Dmax) for the heart, esophagus, and spinal cord (Table 4).

The average times of generating ITVs were 1.45 ± 0.31 and
30.28 ± 3.74min for automatic (by model) and manual ITVs,
respectively. The model helped reduce it by 95% of the time on
average (p= 0.000).

DISCUSSION

Geometrical Accuracy of the Prediction
Model
We used geometric parameters to evaluate the similarity between
ITV4DCT and ITVpredict. The DSC value was 0.83± 0.18, showing
good agreement between the ITVpredict and ITV4DCT contour.
DSC > 0.7 is considered to be in good agreement with the gold
standard (28, 29). This result can become the basis for follow-
up research as it confirmed the feasibility of CBCT images to
predict ITV. The accuracy of the ITV contours will directly
affect the optimization and calculation of the DVH plan (30).
The results show that the ITVpredict volume is 10% smaller
than the ITV4DCT volume. Dou et al. found that 4DCT images
should be used with caution for patients with highly irregular
breathing. The simulation indicates that low-pitch helical 4DCT
processes potentially yield large tumor motion measurement
errors and overestimate tumor motion (31). However, there was
no significant difference between ITV4DCT and ITVpredict. This
result of ITVpredict volume reduction was acceptable.
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4DCT Limitation and CBCT Potential
Application
Four dimensional CT (4DCT) was acquired during the patient
positioning stage and could not reflect the deviation of
the tumor’s respiratory movement during treatment (32, 33).
Rabinowitz et al. showed that during the patient positioning
stage and the treatment stage, the tumor deviation caused by
respiratory motion was an average of 5.1mm. For thoracic
tumors, the tumor deviation caused by respiratory motion could
reach 5.8mm (34). Yang et al. showed that 4DCT could only
collect signals of a limited number of respiratory phases, but the
patient’s breathing may change at any time and cannot accurately
reflect the patient’s tumor movement during treatment (35). The
study showed that CBCT and maximum intensity projection
(MIP) images are equivalent in determining the location of ITV

FIGURE 6 | Comparison of the dose-volume histogram (DVH) of one case

under the 3 treatment plans: Plan4DCT (solid line), Planpredict (dash line), and

PlanFBCT (dot line).

(36). Li et al. showed that 4DCT and CBCT images can indicate
variations and inter-fractional setup displacement (37). In our
study, we used the first CBCT image at the time of treatment to
show the respiratory motion range of a tumor during treatment.

PTV Evaluation
Compared with conventional treatment, SBRT has higher
requirements for the PTV dose gradient and limited dose
limitation of organ at risks (OARs). The RTOG0813 protocol (26)
provides guidance on the acceptable values of R100%, R50%, and
D2cm based on the PTV volume. The values of R100% and R50%

in Plan4DCT and Planpredict were 1.05± 0.11, 1.08± 0.05, 3.48±
0.82, and 5.25 ± 2.01 respectively, which were comparable but
slightly different. The result of R100% indicated that Planpredict
and Plan4DCT have a similar dose coverage for PTV. The R50%

value of Planpredict increased by nearly 30% compared with that
of Plan4DCT, which shows that Plan4DCT has a stronger ability to
constrain PTV. All plans meet the RTOG0813 protocol and can
be used in clinical practice.

In our study, we also researched the dosimetry of GTV on
FBCT images to generate PlanFBCT. The results show that after
the RTOG0813 guide on margin from GTV, it can also meet
the treatment standards and hence can be used for treatment
planning. Tian et al. (38) compared the treatment planning and
dose calculation of average intensity projection (AIP) and FBCT
for SBRT and concluded that the dosimetric of the two datasets
were similar.

OARs Evaluation
In addition, the RTOG 0813 agreement contains restrictions on
each OAR, such as the lung and spinal cord. For SBRT patients,
high-energy rays inevitably pass through a part of normal lung
tissue, which affects lung function. Jin et al. (39) found that
when V20 was >25%, the incidence of radiation pneumonia
significantly increased. Our results show that the mean values of
V20 in Plan4DCT and Planpredict were 3.05 ± 0.92% and 2.58 ±

0.71%, respectively, indicating that Planpredict reduces the volume
of radiation received by normal lung tissue, thereby reducing the
incidence of radiation pneumonitis. The thoracic spinal cord is

FIGURE 7 | Comparison of color-wash dose distributions of the plans (blue color wash map represents a 20-Gy dose).
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more likely to be injured in patients with lung SBRT. Radiation
myelitis may cause serious consequences, such as paraplegia
and respiratory paralysis. The values of spinal cord Dmax in the
Plan4DCT and the Planpredict are 9.57 ± 2.61 Gy and 8.89 ±

0.01 Gy. This shows that Planpredict reduces the maximum dose
received in the spinal cord, which can thus reduce the incidence
of radiation myelitis.

Treatment Efficiency Evaluation
Currently, the model predicts the ITV volume of large tumors
more accurately. For patients with lung SBRT, this model can
generate ITV on CBCT images in, on average, 1.45 ± 0.31min.
In our research, the generated ITV time of Planpredict was
significantly reduced by nearly 95% compared with that of
Plan4DCT. Hence, Using the model to input CBCT images can
greatly shorten the time to collect patient images and significantly
increase the efficiency of tumor delineation for physicians.

This study has some limitations. Firstly, the number of patient
samples included was small. Therefore, our patient data did
not represent the whole spectrum. Tumors of different sizes
and different locations should be included in the future. This
could increase patient data for a more uniform tumor volume
distribution to ensure accuracy of results in the future.

CONCLUSION

Geometric results show that self-generated ITVpredict has a good
correlation with ITV4DCT, although the ITVpredict volume is
10% smaller than the ITV4DCT volume. This work confirmed
the feasibility of the clinical application of ITVpredict to make a
treatment plan. There were no significant dosimetry differences

between Plan4DCT and Planpredict. Thus, our model has potential

application in institutions with or without 4DCT scanning
technology or when patient breathing is irregular.
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Background: Heart failure (HF) is a global disease with increasing prevalence in an
aging society. However, the survival rate is poor despite the patient receiving standard
treatment. Early identification of patients with a high risk of HF is important but
challenging. Left ventricular end-diastolic diameter (LV-D) increase was an independent
risk factor of HF and adverse cardiovascular (CV) outcomes. In this study, we aimed to
develop an artificial intelligence (AI) enabled electrocardiogram (ECG) system to detect
LV-D increase early.

Objective: We developed a deep learning model (DLM) to predict left ventricular end-
diastolic and end-systolic diameter (LV-D and LV-S) with internal and external validations
and investigated the relationship between ECG-LV-D and echocardiographic LV-D and
explored the contributions of ECG-LV-D on future CV outcomes.

Methods: Electrocardiograms and corresponding echocardiography data within 7 days
were collected and paired for DLM training with 99,692 ECGs in the development set
and 20,197 ECGs in the tuning set. The other 7,551 and 11,644 ECGs were collected
from two different hospitals to validate the DLM performance in internal and external
validation sets. We analyzed the association and prediction ability of ECG-LVD for CV
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outcomes, including left ventricular (LV) dysfunction, CV mortality, acute myocardial
infarction (AMI), and coronary artery disease (CAD).

Results: The mean absolute errors (MAE) of ECG-LV-D were 5.25/5.29, and the area
under the receiver operating characteristic (ROC) curves (AUCs) were 0.8297/0.8072
and 0.9295/0.9148 for the detection of mild (56 5 LV-D < 65 mm) and severe (LV-D
= 65 mm) LV-D dilation in internal/external validation sets, respectively. Patients with
normal ejection fraction (EF) who were identified as high ECHO-LV-D had the higher
hazard ratios (HRs) of developing new onset LV dysfunction [HR: 2.34, 95% conference
interval (CI): 1.78–3.08], CV mortality (HR 2.30, 95% CI 1.05–5.05), new-onset AMI
(HR 2.12, 95% CI 1.36–3.29), and CAD (HR 1.59, 95% CI 1.26–2.00) in the internal
validation set. In addition, the ECG-LV-D presents a 1.88-fold risk (95% CI 1.47–2.39)
on new-onset LV dysfunction in the external validation set.

Conclusion: The ECG-LV-D not only identifies high-risk patients with normal EF but
also serves as an independent risk factor of long-term CV outcomes.

Keywords: artificial intelligence, electrocardiogram, deep learning, heart failure, ejection fraction, left ventricular
end-diastolic diameter, cardiovascular outcome

INTRODUCTION

Heart failure (HF) is a common clinical entity with increasing
prevalence in an aging society, which affects 5.7 million patients
and more than 870,000 new cases are diagnosed in the
United States every year (1). In developed countries, about 2%
of the population lives with HF (1, 2). The American Heart
Association forecasted that total costs associated with HF were
at $20.9 billion in 2012 and are projected to rise to $53.1 billion
by 2030 (3). Currently, HF is classified as reduced ejection
fraction (HFrEF), mildly reduced ejection fraction (HFmrEF),
and preserved ejection fraction (HFpEF) based on different
ejection fraction (EF) levels (4). Multiple modality treatment for
the patients with HF, such as renin-angiotensin system inhibition,
beta-blocker, and aldosterone antagonist, is evidence-based and
recommended in guidelines (4, 5). However, even with treatment,
the HF survival rate remains poor globally and the mortality
ranged from 17 to 45% in a year among the patients who were
admitted to a hospital because of HF (1, 2, 6). Such evidence
points out the significant problem of HF in aged society. Early
identification of those patients who are at risk to develop HF
and adequate risk reduction helps to improve the quality of life,
reduce hospitalization, and promote survival outcomes.

In patients with HF, there were several important parameters
for the assessment of cardiac functional and structural changes.
As EF was the ratio of blood leaving heart each time it contracts,
the left ventricular end-diastolic diameter (LV-D) and end-
systolic diameter (LV-S) influenced the value of ECHO-EF. The
principal ECG changes in patients with increased LV-D and
LV-S in LV hypertrophy include augmented QRS amplitude,
prolonged QRS conduction time, changes in instantaneous and
mean QRS vectors, ST depression and/or T-wave inversion, and
P-wave abnormalities, such as left atrial enlargement (7, 8). VF
frequency was consistently lower in patients with an increased
LV diameter (9). However, these ECG changes were neither

sensitive nor specific for increased LV-D or LV-S detection. The
EF serves as an indicator for cardiac contractility and a significant
predictor of survival (10–13). Previous studies presented that
LV-D increase was an independent risk factor of cardiovascular
outcomes (14, 15), ventricular arrhythmia inducibility (16),
and mortality (17, 18). By the investigation of 1,138 patients
with HFrEF and sinus rhythm, Ito et al. proposed strong
association between LV diameters and cardiovascular (CV)
outcomes, which is independent of ECHO-EF (14). Moreover, in
a combination with QRS duration, the LV-D could be applied
to identify the patients at risk for tachyarrhythmias. Makaryus
et al. revealed myocardial infarction with scar formation or
cardiomyopathy with disordered ventricular excitation accounts
for the ventricular arrhythmia and poor prognosis in patients
with dilated LV-D (16). In patients with mitral regurgitation,
the LV-S increase is independently associated with increased
mortality even under medical management (19). All the
results highlight the significance of EF, LV-D, and LV-S in
patients with HF.

Artificial intelligence-based ECG (AI-ECG) has expanded to
multiple applications and achieved human-level performance,
effectively detecting cardiac diseases with large annotated
ECG datasets, including echocardiogram predictions (20, 21),
arrhythmia detection (22), dyskalemia and its cause (23–25),
glycated hemoglobin (26), digoxin toxicity (27), aortic dissection
(28), pneumothorax (29), and myocardial infarction (30–32).
Importantly, previous studies revealed significant correlation
and predictability between ECG-predicted EF (ECG-EF) and
echocardiographic EF (ECHO-EF). This study not only revealed
the diagnostic value of ECG on HF but also further identified a
new subtype of HF, which has normal ECHO-EF but lower ECG-
EF and a high risk of future LV dysfunction (20). Meanwhile,
age estimated from ECG (ECG-age) is also a measure of
cardiovascular health, and the difference between the ECG-age
and the chronological age can be used as a marker of the risk of
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deaths even in different cohorts (33). The new concept of disease
previvor was proposed as individuals who are healthy but have a
markedly increased predisposition to develop the disease (34, 35).

However, the discrepancy between ECG-EF and ECHO-EF
was not fully interpreted. ECHO-EF is evaluated regularly
in echocardiography, similar to other cardiac structure
measurements, such as LV-D, LV-S, interventricular, and
posterior wall thickness. With the aid of AI-ECG, we
hypothesized that AI-ECG predicting LV-D (ECG-LV-D)
may provide additional information on CV outcomes in patients
with initially normal ECHO-EF, who are recognized as low
ECG-EF. Therefore, the aim of this study is to build a deep
learning model (DLM) to predict LV-D and LV-S and verify the
accuracy by echocardiography in two independent hospitals.
Finally, we tried to apply ECG-LV-D in different clinical
scenarios and acquire additional information on the prediction
of future CV diseases.

MATERIALS AND METHODS

Data Source and Population
This multicenter retrospective study was ethically approved by
the institutional review board of Tri-Service General Hospital,
Taipei, Taiwan (IRB NO. C202105049). The electronic medical
records (EMRs) of our hospital included digital ECG signals,
echocardiography images, hospital courses records, and future
outcomes between 1 January 2010 and 31 September 2021. We
identified patients who had at least one pair of 12-lead ECG
and transthoracic echocardiography (TTE) records within 7 days.
Subjects with inadequate ECG or echocardiographic information
were excluded, such as noise interference, leads dislodge or
dislocation, data loss of heart rate, EF, LV-D, or LV-S. The
remaining ECGs were annotated by TTE information collected
in this study. Finally, there were 75,942 patients in NeiHu
General Hospital at NeiHu District (hospital A), an academic
medical center in our hospital system, and 11,633 patients in
Tingzhou Branch Hospital at Zhongzheng District (hospital B),
a community hospital (Figure 1).

We divided ECGs into development, tuning, internal
validation, and external validation sets by different dates and
hospitals. For DLM training, there were 99,692 ECGs from 60,790
patients included in development set and 20,197 ECGs from
7,601 patients were included in tuning set. We only used the first
records in the validation step for the patients with multiple ECG-
TTE pairs, and the internal and external validation sets included
7,551 ECGs before 31 December 2015 in hospital A and 11,644
ECGs in hospital B. No repeated patients were recruited into
more than one group.

Observational Variables
The ECGs were acquired at a sampling rate of 500 Hz with a 10-s
period using a Philips 12-lead ECG machine (PH080A, Philips
Medical Systems, 3000 Minuteman Road Andover, MA 01810
United States). Comprehensive 2D ECG and quantitative data
were recorded at the time of the acquisition in a Philips image
system for all patients. The LV parameters included EF, LV-D, and

LV-S, which were routinely acquired by experienced cardiologists
or technicians using standardized methods. The EF was assessed
using the Simpson method, M-mode, and the reported visually
estimated EF. LV dimensions and wall thickness were measured
by M mode under para-sternal long axis view and recorded by
millimeter. The cut-off values of EF are 50 and 35% as mild and
severe LV dysfunction, which are comparable criteria described
in previous studies (20, 34, 36, 37). We selected LV-D and LV-S as
they can be measured more easily and are more reproducible than
other indices. Patients were divided into three groups according
to LV-D at initial echocardiography: ≤ 56 mm (normal), 56 < LV-
D ≤ 65 mm (mild increase), and > 65 mm (severe increase). The
criteria for LV-S were ≤ 38 mm (normal), 38 < LV-S ≤ 45 mm
(mild increase), and > 45 mm (severe increase). These diameters
were determined according to the reference values for LV size
from studies based on ethnic-appropriate population datasets
(18, 38–43).

The demographic characteristics were obtained in our EMRs
and disease history before the index date of ECG was collected
using the corresponding code of International Classification
of Disease, Ninth Revision and Tenth Revision (ICD-9 and
ICD-10, respectively), as described previously (24, 26, 32,
44). The remaining echocardiographic parameters, such as
interventricular septum (IVS) diameter, left ventricular posterior
wall (LVPW) diameter, left atrium (LA) size, aortic root (AO)
diameter, right ventricular (RV) diameter, pulmonary artery
systolic pressure (PASP), and pericardial effusion (PE), were also
collected in this study.

According to the promising ability of disease previvor
identification by AI-ECG, we analyzed the correlation between
ECG-LV-D increased and new-onset LV dysfunction, defined as
ECHO-EF ≤ 35. Moreover, patients’ data were censored at the last
known TTE examination to limit bias from incomplete records.
In addition to LV dysfunction, we followed and analyzed other
three CV outcomes, including CV mortality, new-onset acute
myocardial infarction (AMI), and new-onset coronary artery
disease (CAD). CV mortality included arrhythmia-related death,
acute coronary syndrome-related death, stroke death, and HF-
related death. These outcomes were censored at the patient’s last
known hospital alive encounter without corresponding events to
limit bias from incomplete records. The end of follow-up in this
study was 30 September 2021 for all the above outcomes.

The Implementation of the Deep
Learning Model
The ECG-based EF, LV-D, and LV-S were, respectively,
considered as function score and structure status of the heart,
both estimated by DLMs. The ECG12Net architecture with 82
convolutional layers and an attention mechanism was used for
estimation and the technology details, such as model architecture,
data augmentation, and model visualization, were described
previously (24). We used an oversampling process to adequately
recognize extreme EF, LV-D, and LV-S values. The process was
based on weights computed based on the prevalence of 20
equidistant intervals in the development set. The output of these
DLMs was a continuous estimation value of actual EF, LV-D,
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FIGURE 1 | Development, tuning, internal validation, and external validation sets generation and the ECG labeling of echocardiogram. Schematic of the dataset
creation and analysis strategy, which was devised to assure a robust and reliable dataset for training, validating, and testing of the network. Once a patient’s data
were placed in one of the datasets, that individual’s data were used only in that set, avoiding “cross-contamination” among the training, validation, and test datasets.
The details of the flowchart and how each of the datasets was used are described in “Materials and Methods” section.

and LV-S, which was called ECG-EF, ECG-LV-D, and ECG-LV-
S, respectively.

Statistical Analysis and Model
Performance Assessment
Patient characteristics are presented as numbers of patients,
population percentages, means, and standard deviations (SDs),
with the significance level set as p < 0.05. We used scatter
plots to describe the predicted value by ECG voltage-time
traces compared with actual EF and left ventricular diameters
(LV-D/LV-S). The accuracy of DLMs was evaluated by mean
difference (Diff), Pearson’s correlation coefficients (r), and mean
absolute errors (MAEs), calculated in both internal and external
validation sets. The diagnostic value of DLMs was measured
with the receiver operating characteristic (ROC) curve and the
area under the curve (AUC). The tuning set was used to decide
the operating point based on the maximum of Yunden’s index,
which was calculated for the corresponding sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) in both validation sets. To identify the underlying subtype
of patients with no correspondence between ECG-EF and ECHO-
EF, the proportion of patients with larger ECHO/ECG-LV-D
were explored in diverse ECHO/ECG-EF groups for the disease
previvors of future LV dysfunction.

The relationship between traditional ECG features and
AI-ECG-based ECG-LV-D was also analyzed. We showed
the importance rank of different traditional ECG features,
including 31 diagnostic pattern classes and 8 continuous ECG
measurements based on an automatic Philips analysis system.
These features were used to train an eXtreme gradient boosting
(XGB) model to predict ECG-LV-D. To identify the most

important ECG features in this analysis, the stepwise program
was used and the p-value to enter and to remove were 0.05 and
0.15, respectively.

To investigate the long-term incidence of developing new-
onset LV dysfunction, we plotted Kaplan–Meier curves of
patients with an initially normal EF (EF > 50%), stratified by
ECG-EF, left ventricle (end-diastole) diameter (LV-D), and ECG-
LV-D. Multivariable Cox proportional hazard models were used
to evaluate the predictive ability of ECG-EF, ECHO-LV-D, and
ECG-LV-D adjusted by gender and age on all outcomes of
interested, presenting in hazard ratios (HRs) and 95% conference
intervals (95% CIs). We assessed the risk of adverse CV outcomes
in patients with different ECG-EF/ECG-LV-D using a Cox
proportional hazard model after adjusting by gender and age
and demonstrated the risk matrixes of different outcomes with
HRs and the concordance statistic (C-index), which were used
to quantify their contributions. All the statistical analyses were
conducted in R software, version 3.4.4.

RESULTS

The baseline characteristics of patients, including disease
histories and echocardiographic data are presented in Table 1
for the development, tuning, internal validation, and external
validation sets. In internal and external validation sets, 3,810
(50.5%) and 5,760 (49.5%) patients were men, and mean age
was 63.4 and 65.7 years, respectively. According to disease
history, there were 2,248 (29.8%) and 3,612 (31.0%) patients
with diabetes mellitus (DM), 3,938 (52.2%) and 6,435 (55.3%)
with hypertension (HTN), 3,125 (41.4%) and 5,176 (44.5%) with
hyperlipidemia (HLP), 245 (3.2%) and 270 (2.4%) with AMI,
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TABLE 1 | Baseline characteristics.

Development Tuning Internal validation External validation

Demography

Sex (male) 50,925 (53.6%) 10,600 (52.5%) 3,810 (50.5%) 5,760 (49.5%)

Age (years) 63.8 ± 17.4 68.0 ± 16.3 63.4 ± 16.6 65.7 ± 18.1

BMI (kg/m2) 24.6 ± 4.4 24.3 ± 4.4 24.5 ± 4.4 24.5 ± 4.3

Disease history

DM 22,471 (23.6%) 7,211 (35.7%) 2,248 (29.8%) 3,612 (31.0%)

HTN 38,268 (40.3%) 11,778 (58.3%) 3,938 (52.2%) 6,435 (55.3%)

HLP 28,542 (30.0%) 9,088 (45.0%) 3,125 (41.4%) 5,176 (44.5%)

CKD 22,821 (24.0%) 8,820 (43.7%) 1,848 (24.5%) 2,896 (24.9%)

AMI 6,062 (6.4%) 2,099 (10.4%) 245 (3.2%) 279 (2.4%)

STK 13,055 (13.7%) 4,548 (22.5%) 1,274 (16.9%) 2,169 (18.6%)

CAD 26,382 (27.8%) 8,285 (41.0%) 2,358 (31.2%) 3,630 (31.2%)

HF 12,488 (13.1%) 4,777 (23.7%) 957 (12.7%) 1,484 (12.7%)

Afib 6,429 (6.8%) 2,570 (12.7%) 501 (6.6%) 754 (6.5%)

COPD 11,874 (12.5%) 4,372 (21.6%) 1,502 (19.9%) 2,758 (23.7%)

Echocardiography data

EF (%) 63.6 ± 12.6 61.1 ± 14.2 65.3 ± 11.4 65.5 ± 10.8

LV-D (mm) 47.5 ± 7.1 47.9 ± 7.8 47.3 ± 7.1 47.1 ± 6.8

LV-S (mm) 30.3 ± 6.9 31.2 ± 7.8 29.8 ± 6.7 29.6 ± 6.3

IVS (mm) 11.2 ± 2.6 11.5 ± 2.6 11.2 ± 2.6 11.1 ± 2.6

LVPW (mm) 9.3 ± 1.7 9.5 ± 1.8 9.3 ± 1.7 9.1 ± 1.7

LA (mm) 38.4 ± 7.5 39.6 ± 8.0 38.6 ± 7.6 38.7 ± 7.3

AO (mm) 32.7 ± 4.4 33.1 ± 4.4 32.9 ± 4.5 32.8 ± 4.3

RV (mm) 23.7 ± 4.9 24.2 ± 5.1 24.1 ± 5.0 24.0 ± 5.0

PASP (mmHg) 33.3 ± 11.1 34.8 ± 12.4 32.2 ± 10.4 33.0 ± 10.7

PE (mm) 0.5 ± 2.1 0.6 ± 2.1 0.3 ± 1.8 0.4 ± 1.7

BMI, body mass index; DM, diabetes mellitus; HTN, hypertension; HLP, hyperlipidemia; CKD, chronic kidney disease; AMI, acute myocardial infraction; STK, stroke; CAD,
coronary artery disease; HF, heart failure; Afib, atrial fibrillation; COPD, chronic obstructive pulmonary disease; EF, ejection fraction; LV-D, left ventricle (end-diastole); LV-S,
left ventricle (end-systole); IVS, Inter-ventricular septum; LVPW, left ventricular posterior wall; LA, left atrium; AO, aortic root; RV, right ventricle; PASP, pulmonary artery
systolic pressure; PE, pericardial effusion.

2,358 (31.2%) and 3,630 (31.2%) with CAD, and 957 (12.7%) and
1,484 (12.7%) with HF. The echocardiographic characteristics
are similar between internal and external validation sets, such
as EF (65.3%/65.5%), LV-D (47.4 mm/47.1 mm), and LV-S
(29.8 mm/29.6 mm).

Figure 2 demonstrated the accuracy of DLMs with the
scatter plots of ECG-based LV parameters compared to actual
ones. The ECG-EF showed a high correlation with the Diff of
1.23 ± 10.52/1.21 ± 10.45, Pearson’s correlation coefficients (r)
of 0.59/0.56, and MAEs of 7.95/7.91 in the internal/external
validation set, respectively. Meanwhile, the similar correlation
was observed in our analysis of ECG-LV-D and ECG-LV-S,
with Diff of 0.03 ± 6.75/0.86 ± 6.27, r of 0.53/0.59, and
MAE of 5.26/4.83 in the internal validation set, and Diff of
0.06 ± 6.81/0.78 ± 6.40, r of 0.49/0.53, and MAE of 5.29/4.93 in
the external validation set.

The ROC curve analysis was used to test the diagnostic
value of AI-enabled ECG parameters (Figure 3). The AUCs of
ECG-EF for mild/severe reduced EF in the internal validation
set were 0.8793/0.9618, with a percentage of sensitivity of
69.6/86.8, specificity of 89.1/92.5, PPV of 42.4/28.3, and NPV
of 96.2/99.5. Meanwhile, the AUCs of ECG-LV-D for detecting
mild/severe increased ECHO-LV-D were 0.8297/0.9295 with the

percentage of sensitivity of 66.6/80.2, specificity of 82.2/88.1,
PPV of 27.4/9.5, and NPV of 96.1/99.7, and the AUCs of
ECG-LV-S were 0.8821/0.9471 with the percentage of sensitivity
of 70.1/87.0, specificity of 88.3/89.6, PPV of 35.2/20.9, and
NPV of 97.0/99.5. The external validation analysis validated the
generalization ability of DLMs in a heterogeneous population
(AUC = 0.8816/0.9447 in ECG-EF, 0.8072/0.9148 in ECG-LV-
D, and 0.8485/0.9363 in ECG-LV-S). These results revealed the
possibility to detect abnormal EF/LV-D/LV-S via ECG accurately.

Subgroup analysis was stratified by the different clinical
settings and comorbidities in Figure 4. DLM performed better
in patients from the out-patient department (OPD) than those
from the emergency room (ER) or the inpatient department
(IPD). Compared to patients without comorbidities, ECG-EF,
ECG-LV-D, and ECG-LV-S had lower AUC in patients with
comorbidities, especially in patients with a history of AMI.
These comorbidities may be potential confounding factors for
new-onset LV dysfunction (45, 46). In other words, electrical
abnormalities induced by comorbidities may cause ECG changes
that interfere with the performance of our DLM.

In the previous study, we noticed patients with low ECG-
EF and normal ECHO-EF had a higher incidence of future
LV dysfunction. We hypothesized that the disease previvor was
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FIGURE 2 | Scatter plots of predicted value via ECG voltage–time traces only compared with the actual ejection fraction (EF) and left ventricle
(end-diastole/end-systole) (LV-D/LV-S). The x-axis indicates the actual value and the y-axis presents the ECG-predictions. Red points represent the highest density,
followed by yellow, green light blue, and dark blue. We presented the mean difference (Diff), Pearson’s correlation coefficients (r), and mean absolute errors (MAEs) to
demonstrate the accuracy of a deep learning model (DLM). The black lines with 95% conference intervals (CIs) are fitted via simple linear regression.

associated with obscure structural abnormalities, which could
be detected by ECG-LV-D before actual LV dilation. Our DLM
exhibited similar performance in predicting the size of LV-D and
LV-S (Figure 3). Due to the similar clinical meaning of LV-S
and LV-D in association with EF, we applied LV-D for further
analysis. Figure 5 presents the scatter plots of predicted and
actual EF correlated with LV-D. Initially, we applied ECHO-LV-
D in the internal validation set but only 15.2% of patients with
low ECG-EF and normal ECHO-EF were identified as the mild
increase (>56 mm) in the internal validation set, however, the
percentage increased to 65.8% in ECG-LV-D application group.
In the external validation set, the percentage increased from 20.0
to 61.1% similarly. These results may reveal the importance of
ECG-LV-D on previvors detection.

Figure 6 demonstrated the relationship between known ECG
features and ECG-LV-D. Our DLM identified those patients
with increased ECG-LV-D were associated with the ECG

features of ischemia/infarction, atrial fibrillation, tachycardia,
left ventricular hypertrophy, widening QRS duration, prolonged
PR interval, prolonged QT interval, augmented QRS amplitude,
higher T-wave axis, lower RS wave axis, and lower P-wave
axis compared to the ECG of normal patients. The explainable
variation of known ECG features for DLM-based ECG-LV-D was
41.89 and 37.28% in the internal and external validation sets,
respectively, which suggested that DLM could extract more than
50% additional information from raw ECGs.

In Figure 7, a long-term incidence of developing a new-
onset LV dysfunction in the patient with initially normal EF was
presented. We stratified by ECG-EF, ECHO-LV-D, and ECG-LV-
D and defined normal patient groups as reference. There were
6,083 patients and 9,281 patients at risk cases and the cumulative
incidence rates in the low ECG-EF (false positive) group were
percentages of 32.0/44.4/44.4 and 31.7/36.0/52.0 at 2/4/6 years
in the internal and external validation sets, respectively, with
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FIGURE 3 | Receiver operating characteristic (ROC) curve analysis for mild to severe left ventricle abnormality from deep learning model based ECG voltage–time
traces. The ROC curve (x-axis = specificity and y-axis = sensitivity) and area under ROC curve (AUC) were calculated using the internal validation set (A) and external
validation set (B). The operating point was selected based on the maximum of Yunden’s index in tuning set, which was used for calculating the corresponding
sensitivities and specificities in two validation sets.

Frontiers in Medicine | www.frontiersin.org 7 April 2022 | Volume 9 | Article 87052322

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-870523 April 5, 2022 Time: 13:15 # 8

Chen et al. AI-Enable ECG for LV-D Prediction

0.
95

2
(0

.9
33

−0
.9

72
)

0.
95

8
(0

.9
40

−0
.9

76
)

0.
96

4
(0

.9
21

−1
.0

00
)

0.
96

8
(0

.9
42

−0
.9

95
)

0.
97

5
(0

.9
66

−0
.9

83
)

0.
93

5
(0

.9
08

−0
.9

63
)

0.
97

8
(0

.9
69

−0
.9

86
)

0.
94

8
(0

.9
30

−0
.9

67
)

0.
96

5
(0

.9
55

−0
.9

76
)

0.
95

7
(0

.9
34

−0
.9

79
)

0.
96

1
(0

.9
45

−0
.9

77
)

0.
95

4
(0

.9
42

−0
.9

67
)

0.
96

6
(0

.9
56

−0
.9

77
)

0.
85

4
(0

.7
89

−0
.9

19
)

0.
96

5
(0

.9
53

−0
.9

76
)

0.
94

8
(0

.9
15

−0
.9

82
)

0.
96

6
(0

.9
53

−0
.9

80
)

0.
95

2
(0

.9
34

−0
.9

70
)

0.
96

7
(0

.9
50

−0
.9

84
)

0.
91

1
(0

.8
89

−0
.9

33
)

0.
96

7
(0

.9
56

−0
.9

79
)

0.
88

6
(0

.8
37

−0
.9

35
)

0.
96

7
(0

.9
56

−0
.9

78
)

0.
94

1
(0

.9
10

−0
.9

72
)

0.0

0.2

0.4

0.6

0.8

1.0

ERIPD
OPD

Unk
no

wn

with
ou

t D
M

with
DM

with
ou

t H
TN

with
HTN

with
ou

t H
LP

with
HLP

with
ou

t C
KD

with
CKD

with
ou

t A
MI

with
AMI

with
ou

t S
TK

with
STK

with
ou

t C
AD

with
CAD

with
ou

t H
F

with
HF

with
ou

t A
fib

with
Afib

with
ou

t C
OPD

with
COPD

AU
C

EF � 35 vs EF � 35
0.

87
0

(0
.8

18
−0

.9
23

)
0.

91
1

(0
.8

76
−0

.9
45

)
0.

98
5

(0
.9

74
−0

.9
95

)
0.

98
0

(0
.9

61
−0

.9
99

)

0.
93

5
(0

.9
11

−0
.9

58
)

0.
91

9
(0

.8
81

−0
.9

56
)

0.
94

0
(0

.9
10

−0
.9

70
)

0.
92

0
(0

.8
92

−0
.9

47
)

0.
92

7
(0

.9
00

−0
.9

54
)

0.
93

4
(0

.9
06

−0
.9

63
)

0.
94

1
(0

.9
17

−0
.9

64
)

0.
89

0
(0

.8
46

−0
.9

34
)

0.
92

6
(0

.9
04

−0
.9

48
)

0.
92

5
(0

.8
73

−0
.9

76
)

0.
93

5
(0

.9
13

−0
.9

58
)

0.
88

8
(0

.8
41

−0
.9

35
)

0.
93

0
(0

.9
03

−0
.9

57
)

0.
92

2
(0

.8
89

−0
.9

55
)

0.
89

7
(0

.8
58

−0
.9

36
)

0.
89

3
(0

.8
62

−0
.9

24
)

0.
93

3
(0

.9
11

−0
.9

55
)

0.
87

1
(0

.8
02

−0
.9

40
)

0.
93

1
(0

.9
09

−0
.9

54
)

0.
92

0
(0

.8
78

−0
.9

63
)

0.0

0.2

0.4

0.6

0.8

1.0

ERIPD
OPD

Unk
no

wn

with
ou

t D
M

with
DM

with
ou

t H
TN

with
HTN

with
ou

t H
LP

with
HLP

with
ou

t C
KD

with
CKD

with
ou

t A
MI

with
AMI

with
ou

t S
TK

with
STK

with
ou

t C
AD

with
CAD

with
ou

t H
F

with
HF

with
ou

t A
fib

with
Afib

with
ou

t C
OPD

with
COPD

AU
C

LV−D � 65 vs LV−D � 65

0.
91

3
(0

.8
81

−0
.9

46
)

0.
92

7
(0

.9
00

−0
.9

54
)

0.
99

0
(0

.9
83

−0
.9

96
)

0.
97

4
(0

.9
60

−0
.9

89
)

0.
95

7
(0

.9
43

−0
.9

71
)

0.
92

5
(0

.8
96

−0
.9

54
)

0.
95

7
(0

.9
39

−0
.9

75
)

0.
93

8
(0

.9
19

−0
.9

58
)

0.
94

6
(0

.9
28

−0
.9

64
)

0.
94

9
(0

.9
30

−0
.9

69
)

0.
95

9
(0

.9
44

−0
.9

75
)

0.
90

8
(0

.8
79

−0
.9

37
)

0.
94

8
(0

.9
34

−0
.9

62
)

0.
89

9
(0

.8
35

−0
.9

63
)

0.
95

0
(0

.9
36

−0
.9

65
)

0.
93

1
(0

.8
97

−0
.9

65
)

0.
94

0
(0

.9
20

−0
.9

60
)

0.
95

0
(0

.9
33

−0
.9

67
)

0.
91

5
(0

.8
86

−0
.9

45
)

0.
91

3
(0

.8
91

−0
.9

34
)

0.
94

9
(0

.9
35

−0
.9

64
)

0.
88

9
(0

.8
45

−0
.9

33
)

0.
94

8
(0

.9
34

−0
.9

62
)

0.
94

4
(0

.9
10

−0
.9

79
)

0.0

0.2

0.4

0.6

0.8

1.0

ERIPD
OPD

Unk
no

wn

with
ou

t D
M

with
DM

with
ou

t H
TN

with
HTN

with
ou

t H
LP

with
HLP

with
ou

t C
KD

with
CKD

with
ou

t A
MI

with
AMI

with
ou

t S
TK

with
STK

with
ou

t C
AD

with
CAD

with
ou

t H
F

with
HF

with
ou

t A
fib

with
Afib

with
ou

t C
OPD

with
COPD

AU
C

LV−S � 45 vs LV−S � 50

0.
91

8
(0

.8
92

−0
.9

45
)

0.
92

4
(0

.9
01

−0
.9

46
)

0.
97

1
(0

.9
33

−1
.0

00
)

0.
97

4
(0

.9
48

−1
.0

00
)

0.
94

6
(0

.9
30

−0
.9

62
)

0.
94

1
(0

.9
22

−0
.9

59
)

0.
94

5
(0

.9
22

−0
.9

68
)

0.
94

2
(0

.9
28

−0
.9

56
)

0.
94

1
(0

.9
24

−0
.9

58
)

0.
95

1
(0

.9
34

−0
.9

67
)

0.
95

3
(0

.9
38

−0
.9

68
)

0.
91

7
(0

.8
92

−0
.9

42
)

0.
94

5
(0

.9
32

−0
.9

59
)

0.
86

1
(0

.7
98

−0
.9

25
)

0.
94

9
(0

.9
35

−0
.9

63
)

0.
92

3
(0

.8
93

−0
.9

54
)

0.
93

3
(0

.9
12

−0
.9

54
)

0.
95

5
(0

.9
42

−0
.9

67
)

0.
92

2
(0

.8
95

−0
.9

49
)

0.
91

2
(0

.8
92

−0
.9

32
)

0.
94

6
(0

.9
32

−0
.9

60
)

0.
89

5
(0

.8
56

−0
.9

34
)

0.
94

5
(0

.9
30

−0
.9

59
)

0.
94

5
(0

.9
24

−0
.9

66
)

0.0

0.2

0.4

0.6

0.8

1.0

ERIPD
OPD

Unk
no

wn

with
ou

t D
M

with
DM

with
ou

t H
TN

with
HTN

with
ou

t H
LP

with
HLP

with
ou

t C
KD

with
CKD

with
ou

t A
MI

with
AMI

with
ou

t S
TK

with
STK

with
ou

t C
AD

with
CAD

with
ou

t H
F

with
HF

with
ou

t A
fib

with
Afib

with
ou

t C
OPD

with
COPD

AU
C

EF � 35 vs EF � 35

0.
89

6
(0

.8
46

−0
.9

47
)

0.
90

8
(0

.8
70

−0
.9

46
)

0.
93

3
(0

.8
91

−0
.9

76
)

0.
92

3
(0

.8
58

−0
.9

87
)

0.
94

5
(0

.9
26

−0
.9

63
)

0.
83

1
(0

.7
60

−0
.9

01
)

0.
96

7
(0

.9
50

−0
.9

85
)

0.
86

9
(0

.8
29

−0
.9

09
)

0.
93

1
(0

.9
06

−0
.9

56
)

0.
88

3
(0

.8
34

−0
.9

33
)

0.
94

3
(0

.9
20

−0
.9

65
)

0.
84

2
(0

.7
84

−0
.9

01
)

0.
91

6
(0

.8
91

−0
.9

40
)

0.
87

8
(0

.7
74

−0
.9

82
)

0.
93

3
(0

.9
11

−0
.9

55
)

0.
82

6
(0

.7
46

−0
.9

05
)

0.
94

3
(0

.9
22

−0
.9

64
)

0.
85

6
(0

.8
02

−0
.9

10
)

0.
89

8
(0

.8
64

−0
.9

32
)

0.
88

9
(0

.8
52

−0
.9

27
)

0.
92

2
(0

.8
96

−0
.9

47
)

0.
82

5
(0

.7
43

−0
.9

08
)

0.
93

4
(0

.9
12

−0
.9

56
)

0.
84

2
(0

.7
71

−0
.9

13
)

0.0

0.2

0.4

0.6

0.8

1.0

ERIPD
OPD

Unk
no

wn

with
ou

t D
M

with
DM

with
ou

t H
TN

with
HTN

with
ou

t H
LP

with
HLP

with
ou

t C
KD

with
CKD

with
ou

t A
MI

with
AMI

with
ou

t S
TK

with
STK

with
ou

t C
AD

with
CAD

with
ou

t H
F

with
HF

with
ou

t A
fib

with
Afib

with
ou

t C
OPD

with
COPD

AU
C

LV−D � 65 vs LV−D � 65

0.
92

4
(0

.8
94

−0
.9

54
)

0.
91

5
(0

.8
90

−0
.9

40
)

0.
95

3
(0

.9
25

−0
.9

81
)

0.
96

6
(0

.9
46

−0
.9

86
)

0.
94

1
(0

.9
24

−0
.9

59
)

0.
92

4
(0

.9
01

−0
.9

47
)

0.
94

2
(0

.9
15

−0
.9

69
)

0.
92

8
(0

.9
12

−0
.9

44
)

0.
93

7
(0

.9
18

−0
.9

56
)

0.
93

5
(0

.9
16

−0
.9

54
)

0.
93

8
(0

.9
19

−0
.9

57
)

0.
92

0
(0

.8
99

−0
.9

41
)

0.
93

9
(0

.9
25

−0
.9

53
)

0.
83

4
(0

.7
52

−0
.9

16
)

0.
94

7
(0

.9
32

−0
.9

61
)

0.
87

9
(0

.8
39

−0
.9

19
)

0.
93

6
(0

.9
15

−0
.9

57
)

0.
92

9
(0

.9
11

−0
.9

46
)

0.
91

3
(0

.8
86

−0
.9

39
)

0.
91

7
(0

.8
97

−0
.9

36
)

0.
93

9
(0

.9
24

−0
.9

55
)

0.
86

5
(0

.8
19

−0
.9

12
)

0.
93

7
(0

.9
21

−0
.9

53
)

0.
93

6
(0

.9
10

−0
.9

61
)

0.0

0.2

0.4

0.6

0.8

1.0

ERIPD
OPD

Unk
no

wn

with
ou

t D
M

with
DM

with
ou

t H
TN

with
HTN

with
ou

t H
LP

with
HLP

with
ou

t C
KD

with
CKD

with
ou

t A
MI

with
AMI

with
ou

t S
TK

with
STK

with
ou

t C
AD

with
CAD

with
ou

t H
F

with
HF

with
ou

t A
fib

with
Afib

with
ou

t C
OPD

with
COPD

AU
C

LV−S � 45 vs LV−S � 50

Internal validation set External validation set

FIGURE 4 | Stratified analysis for model performance for predicting electrocardiogram-based ejection fraction (ECG-EF), left ventricular end-diastolic diameter
(LV-D), and left ventricular end-systolic diameter (LV-S). The analyses were stratified by the disease histories or data source. The AUC and 95% CIs were presented
based on LV EFs and diameters. ER, Emergency room; IPD, inpatient department; OPD, outpatient department; DM, diabetes mellitus; HTN, hypertension; HLP,
hyperlipidemia; CKD, chronic kidney disease; AMI, acute myocardial infarction; STK, stroke; CAD, coronary artery disease; HF, heart failure; Afib, atrial fibrillation;
COPD, chronic obstructive pulmonary disease (COPD).

corresponding significant gender-age adjusted HRs (95% CI)
of 5.91 (3.58–9.78) and 5.63 (3.55–8.93). The C-index analyses
also show the significant prognostic value on new onset LV
dysfunction of 0.774 (95% CI: 0.753–0.7950) and 0.791 (95%
CI: 0.773–0.808), which emphasized the importance of ECG-EF.
In the analyses of ECHO-LV-D and ECG-LV-D, the significant
gender-age adjusted HRs demonstrated the contributions on
new-onset LV dysfunction in both validation sets. The HRs
of severe/mild ECG-LV-D increase was 7.30 (95% CI 3.61–
14.77)/3.12 (95% CI 2.41–4.03) in the internal validation set
and 5.51 (95% CI 2.85–10.66)/2.65 (95% CI 2.11–3.33) in the
external validation set. The C-indexes were higher in ECG-LV-
D (0.750, 95% CI 0.727–0.772) than in ECHO-LV-D (0.723,
95% CI 0.699–0.747) in internal validation set, which was

consistent in external validation set [0.750 (95% CI: 0.730–0.769)
vs. 0.737 (95% CI 0.718–0.757)]. It suggested that ECG-LV-D
may be a better differential indicator than ECHO-LV-D, which
supplements the ECG-EF to identify patients at the risk of LV
dysfunction in future.

Figure 8 shows the risk matrixes of different ECG-EF and
ECG-LV-D on adverse events in patients with normal ECHO-EF.
The patients with increased ECG-LV-D were more susceptible to
adverse CV outcomes. Combining ECG-EF and ECG-LV-D, the
gender-age-adjusted HRs increased to 4.60 (95% CI 3.17–6.68),
4.31 (95% CI 1.68–11.07), 4.80 (95% CI 2.78–8.28), and 2.23
(95% CI 1.65–3.31) on new-onset LV dysfunction, CV mortality,
new-onset AMI, and CAD, respectively. Moreover, the ECG-
LV-D independently provided the ability of risk stratification
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FIGURE 5 | Scatter plots of predicted and actual EF correlated with LV-D. The x-axis indicates the actual EF and the y-axis presents the ECG-EF. Green to red
points represent the small and large predicted and actual LV-D, respectively. The percentages were the proportion of people with an ECHO/ECG LV-D > 56 mm in
each ECHO and ECG EF group.
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FIGURE 6 | Relationship between most important ECG features and ECG estimated left ventricle (end-diastole) (ECG-LV-D). The related importance is based on the
information gain of eXtreme gradient boosting (XGB) model, and the R-square (R-sq) is the coefficient of determination to use selected ECG features for predicting
ECG-LV-D. The AI-ECG predictions were classified as ECG-normal (ECG-LV-D ≤ 56) and ECG-abnormal (ECG-LV-D > 56). The analyses are conducted both in
internal and external validation sets (***p < 0.001).

on new-onset LV dysfunction (HR 2.34, 95% CI 1.78–3.08), CV
mortality (HR 2.30, 95% CI 1.05–5.05), new-onset AMI (HR 2.12,
95% CI 1.36–3.29), and CAD (HR 1.59, 95% CI 1.26–2.00) in
the internal validation set, and achieved similar trends with 1.88-
fold-risk (95% CI 1.47–2.39) of new-onset LV dysfunction in
the external validation set. In the consideration of confounding
bias, we further adjusted more potential confounding factors,
such as comorbidities. Our data indicated that the trend of
results was similar with results adjusted by gender, age, and
comorbidities (Supplementary Figure 1), which emphasized the
importance and independency of ECG-EF and ECG-LV-D on
early identification of HF risk.

DISCUSSION

In this study, we reported an AI-ECG DLM including more
than 110,000 pairs of ECG and echocardiographic data and
analyzed the longitudinal data, such as EF reduction, mortality,
and adverse CV outcomes. Our DLM predicts ECG-EF accurately
with the high AUCs of 0.9618/0.9447 for reduced EF detection
(EF ≤ 35%) in the internal/external validation set, respectively.

The high correlation between ECHO-EF and ECG-EF suggested
the latter is a potential diagnostic tool. Severe/mild ECG-LV-
D increase with the AUCs of 0.9295/0.8297 and 0.9148/0.8072
in internal/external validation set, which exhibited its valuable
diagnostic power in patients with normal ECHO-EF. Moreover,
we found a higher prevalence of ECG-LV-D increase in patients
with low ECG-EF. Of these false positive patients, gender and
age-adjusted HRs of future LV dysfunction were significantly
high, suggesting that the DLM identified high-risk patients.
Most importantly, the ECG-LV-D additionally contributes to
predicting future LV dysfunction, which may provide the
information of prognosis independently. The HRs of adverse CV
outcomes increased significantly in patients identified as high
ECG-LV-D and low ECG-EF compared with those with normal
ECG-LV-D and ECG-EF. This is the first research to describe AI-
enabled ECG-LV-D, which was demonstrated with high accuracy
for the prediction of future LV dysfunction in patients with
initially normal ECHO-EF.

Heart failure is an increasing problem affecting more than
30 million people globally. In these patients, asymptomatic
LV dysfunction (ALVD, EF < 50%) patients are difficult to
diagnose, who account for 7.9–23% of population (4, 5). Patients
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FIGURE 7 | Long-term incidence of developing a new-onset left ventricular dysfunction (LVD, EF ≤ 35%) in patients with an initially normal EF (EF > 50%) stratified
by ECG-EF, LV-D, and ECG-LV-D. The C-index is calculated based on the continuous value combined with sex and age. The analyses are conducted both in internal
and external validation sets. The table shows the at-risk population and cumulative risk for the given time intervals in each risk stratification.

with ALVD were associated with the reduced quality of life,
increased hospitalization, morbidity, and mortality (47, 48).
Although current evidence highlights the significance of ALVD
and emphasized the early intervention to these patients, there
is no effective tool to screen patients with ALVD (49–53). In
previous studies for LV dysfunction detection, Kwon et al. proved
that the DLM outperformed other machine-learning methods
(54). Even with different sex, age, and body mass index, Attia et al.
and Cho et al. have demonstrated ECG-EF performance stability
and robustness in internal and external validation sets (36, 55,
56). Our DLM exhibits excellent predictive performance in ECG-
EF and ECG-LV-D. The concept of ECG-LV-D is proposed
to expand the application of ECG-EF and tried to explain
the discrepancy between ECG-EF and ECHO-EF. ECG-LV-D
is thought to be a structural indicator with subtle electrical

signal changes which provides critical information that helps
to early identify those patients who are at risk to develop LV
dysfunction. In combination with ECG-EF, the diagnostic power
significantly enhanced, which could be applied for large-scale
screening and for patients with asymptomatic HF to improve
their CV outcomes.

There are several ECG changes in LV-D increase. In
dilated cardiomyopathy (DCM), about 80% of patients had
ECG abnormalities, including LV hypertrophy, left/right atrial
enlargement, left/right bundle branch block, abnormal Q
wave, atrial fibrillation, first-degree atrial-ventricular block,
and T-wave inversion in inferior and anterolateral leads (57).
Merlo et al. demonstrated that LV hypertrophy, increased heart
rate, and anterior T-wave inversion predicted death or heart
transplantation in patients with DCM and ECHO-EF < 50%
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FIGURE 8 | Risk matrixes of different predicted ejection fraction (ECG-EF) and left ventricle (end-diastole) (ECG-LV-D) groups on adverse events in patients with an
initially normal EF (EF > 50%). The hazard ratios (HRs) are based on the Cox proportional hazard model adjusted by gender and age. The color gradient represents
the risk of corresponding group, and the non-significant results are defined as white.

(58). Previous studies proposed that delayed LV conduction
with QRS prolongation (≥ 120 ms) was associated with
restrictive LV filling, more advanced myocardial disease, worse
LV function, poorer prognosis, and a higher all-cause mortality
rate (59, 60). We found that our DLM was strongly correlated
with prolonged QRS duration, which partly explained why
the patients with high ECG-LV-D had a higher risk of
LV dysfunction compared to patients with normal ECG-
LV-D. Meanwhile, the possible mechanisms underlying the
interference of DLM performance among patients with AMI
could be myocardial scarring, which may affect electrical
vectors, create regions of slowed conduction, and re-entrant
circuits supporting sustained ventricular tachycardia (61, 62).
Along with ECG-EF, the ECG-LV-D performed significantly
better prediction capacity on new-onset LV dysfunction, CV
mortality, new-onset AMI, and CAD compared to ECG-EF
alone in the internal validation set. However, in the external
validation set, in which the data from mild disease patients
in community hospital, only the prediction of LV dysfunction
could be significantly enhanced. Possible reasons underlying the
inconsistency include different patient population and disease
severities. Considering the better performance of our DLM in
patients with less comorbidities from OPD than those from
ER or IPD, our DLM could be more suitable for community
screening than for hospitalized patients. Further large-scale
studies are needed to confirm the combination effects of ECG-
LV-D and ECG-EF.

The clinical application of AI-ECG is a worldwide tendency
and developed rapidly. As the AI-ECG could predict the disease
development in healthy individuals without abnormal imaging
findings or symptoms, the concept of previvors was proposed
recently. With apparent false positive AI-ECG findings, patients
with a higher risk of many diseases, such as LV dysfunction
(20), future atrial fibrillation (63), hyperkalemia (64), and elder
heart age (44), could receive preventive interventions or medical
surveillance early.

The importance and clinical significance of our ECG-LV-
D should be emphasized. Both ECG-EF and ECG-LV-D are
promising screening tools for patients who had a high risk
of future LV dysfunction. The advantage of timely HF risk
identification is evident to prevent adverse CV events and reduce
medical costs. Moreover, from a large community-based study of
sudden cardiac death (SCD), LV-D may contribute to the risk of
SCD independent of the EF (41). The ECG-EF and ECG-LV-D
models could be applied for risk stratification in patients with
HF, especially those with stage A or B HF (65). Importantly,
the wearable devices with ECG-EF and ECG-LV-D algorithms
would provide timely conditions and beneficial effects for high-
risk patients. Finally, considering that ECG is widely used and
is a standardized examination in a rural or remote hospital,
the AI-ECG could analyze and alert physician automatically
and immediately among these areas. Further community-based
studies of ECG-LV-D application are necessary to validate clinical
benefits on HF patient care.
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There are some limitations to this study. First, this study was a
retrospective study. Although ECG/ECHO pairs were collected
and the DLM was validated, the accuracy in different hospital
settings and prospective studies are necessary to generalize
the application of ECG-LV-D and promote treatment strategy.
Second, the clinical impact of treatment is needed to verify.
The actual benefit of ECG-LV-D import to clinical practice
is not clear now. Investigation of clinical benefits including
accidental HF detection, time reduction, prognosis management,
and outcomes evaluation should be conducted. Third, the best
application of AI-ECG is to screen asymptomatic patients
with HF, but the relationship between abnormal ECG and HF
symptoms was unclear. Future study should conduct a large-scale
community screening to validate the benefit in asymptomatic
patients with HF. Fourth, AI-ECG performed worse in patients
with more comorbidities, especially in patients with a history
of AMI. Interestingly, even after the adjustment of all the
confounding factors, our models of ECG-EF and ECG-LV-D
still provide significant predictive power for newly onset LV
dysfunction. Finally, the DLM design is an uninterpretable set of
methods, such as a black box, and full interpretability will be a
focus of future work.

In conclusion, our AI-ECG DLM could identify patients with
high ECG-LV-D and predict future LV dysfunction. ECG-LV-D
serves as an independent risk factor of long-term CV outcomes
in patients with normal ECHO-EF and low ECG-EF. The
combination of ECG-EF and ECG-LV-D provides significantly
synergistic diagnostic power to predict patients with future LV
dysfunction. Although further studies are needed, our ECG-LV-
D could be used as a screening tool for patients with normal
EF but with high cardiovascular risk to initiate appropriate
treatment in time.
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Objectives: We proposed a novel deep learning radiomics (DLR) method to distinguish
cognitively normal adults at risk of Alzheimer’s disease (AD) from normal control based
on T1-weighted structural MRI images.

Methods: In this study, we selected MRI data from the Alzheimer’s Disease
Neuroimaging Initiative Database (ADNI), which included 417 cognitively normal adults.
These subjects were divided into 181 individuals at risk of Alzheimer’s disease (preAD
group) and 236 normal control individuals (NC group) according to standard uptake ratio
>1.18 calculated by amyloid Positron Emission Tomography (PET). We further divided
the preaAD group into APOE+ and APOE− subgroups according to whether APOE ε4
was positive or not. All data sets were divided into one training/validation group and
one independent test group. The proposed DLR method included three steps: (1) the
pre-training of basic deep learning (DL) models, (2) the extraction, selection and fusion
of DLR features, and (3) classification. The support vector machine (SVM) was used as
the classifier. In the comparative experiments, we compared our proposed DLR method
with three existing models: hippocampal model, clinical model, and traditional radiomics
model. Ten-fold cross-validation was performed with 100 time repetitions.

Results: The DLR method achieved the best classification performance between preAD
and NC than other models with an accuracy of 89.85% ± 1.12%. In comparison,
the accuracies of the other three models were 72.44% ± 1.37%, 82.00% ± 4.09%
and 79.65% ± 2.21%. In addition, the DLR model also showed the best classification
performance (85.45% ± 9.04% and 92.80% ± 2.61%) in the subgroup experiment.

Conclusion: The results showed that the DLR method provided a potentially clinical
value to distinguish preAD from NC.

Keywords: deep learning radiomic, Alzheimer’s disease, magnetic resonance imaging, support vector machine,
artificial intelligence
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by progressive cognitive decline (1). Due to the
irreversibility of AD, it is critical to identify AD patients at an
ultra-early stage. According to the latest A-T-N diagnosis criteria
(2–4), individuals who showed obvious brain amyloid beta
(Aβ+) deposition have entered the Alzheimer’s continuum and
represented a high-risk of AD. This population could be defined
as the preclinical AD group (PreAD) (5, 6).

So far, structural resonance imaging (MRI) have been widely
used in the diagnosis of AD (7–11). For instance, previous studies
have shown that patients with mild cognitive impairment(MCI)
had increased hippocampal atrophy compared to normal control
(NC) subjects (12). The atrophy of hippocampal and entorhinal
cortex could also be used as an index to predict the conversion
from MCI to AD (13).

Currently, artificial intelligence (AI) techniques based on
MRI have frequently been used in the early diagnosis of AD.
One typical AI application is radiomics. For example, Zhao
et al. investigated hippocampal texture radiomics features as
effective MRI biomarkers for AD and achieved an accuracy
of 87.4% to distinguish AD and normal controls (NC)
(14). Zhou and Shu et al. utilized MRI radiomics features
to predict development of MCI to AD and achieved the
accuracy of 78.4 and 80.7%, respectively (15, 16). Notably,
Li et al. conducted an exploratory study to diagnosis preAD
from NC based on radiomics multi-parameter MRI and
obtained an average accuracy of 83.7% [T. (17)]. Although
the feasibility of traditional radiomics methods has been
proven, these methods could not be widely applied because
of obvious shortcomings, such as manual extraction of
regions of interest (ROIs) and hand-coding, which usually
require complex manual operations. Therefore, an alternative
method is required.

The deep learning radiomics (DLR) method may be the
alternative (18, 19). This technique was able to mine the
high dimension features of medical images automatically, and
effectively address the shortage of hand-coding by radiomics.
Recently, DLR has been used in brain tumor-related research and
AD diagnosis (20, 21). For example, previous studies achieved
good predictive performance of preoperative meningioma with
an accuracy of 92.6% (22). Wang et al. extracted MRI-based
DLR features to predict the prognosis of high-grade glioma (23).
For AD diagonosis, early DLR-based methods always focused on
pre-determined regions of interest prior to deep training, which
may hamper diagnostic performance. For example, Khvostikov
et al. and Li et al. trained DLR models based on pre-
extracted hippocampal regions of MRI and other multimodal
neuroimaging data (24, 25). Apart from the above, Basaia et al.
used a single cross-sectional MRI scan and deep neural networks
to automatically classify AD and MCI, with high accuracies of
98.2% between AD and NC, and of 74.9% from MCI to AD
progression (26). Lee et al. also used DLR method for AD
classification and achieved the accuracies of 95.35% and 98.74%
on different datasets (27). However, there is no existing DLR
model for preAD detection.

Therefore, in this study we hypothesized that the DLR
method was useful in the diagnosis of PreAD. Considering the
hippocampus volume has not been shrunk in AD early stage,
we used MRI images of the whole brain for DLR classification.
In addition, we also hypothesized that the DLR technique could
achieve high classification accuracy in detecting subgroups of
preAD from NC, such as APOE ε4+ individuals.

MATERIALS AND METHODS

Figure 1 showed the overall framework of this study, which
consisted of six steps: (1) enrolled subjects; (2) imaging
preprocessing, including segmentation, normalization and
smoothing; (3) basic deep learning (DL) model pre-training, in
this step several DL models were pre-trained in order to get the
best one for DLR feature extraction; (4) feature extraction and
fusion; (5) classification; (6) comparative experiments.

Subjects
The data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database.1 ADNI is
a longitudinal, multicenter study to develop clinical, imaging,
genetic and biochemical biomarkers for early detection and
tracking of AD. The latest information is available at http://adni.
loni.usc.edu/about/.

In this study, we collected 236 NC and 181 preAD data.
Demographic data included age, sex, gender, education,
neuropsychological assessment tests [Dementia Rating Scale
(CDRSB) and Mini-Mental State Examination (MMSE)],
Apolipoprotein E (APOE) ε4 and imaging information. T1-MRI
and amyloid positron emission tomography (PET) images were
selected for all subjects. The preAD group was defined as who
standard uptake value ratio (SUVR) value of amyloid PET was
>1.18 in whole cerebral cortex (17, 28). Whole cerebellum was
used for reference when deriving SUVR. In addition, to validate
our proposed DLR model, we enrolled 12 preAD individuals
who converted into the MCI state. We selected MRI images in
both baseline and MCI stages.

All subjects were divided into two groups, one
training/validation group and one independent test group.
The training/validation group was from ADNI 1, ADNI 2
and ADNI 3, including 212 NC and 162 preAD subjects. The
test group was from ADNI Go, including 24 NC subjects and
19 preAD subjects.

Images Acquisition and Preprocessing
The image acquisition process was described in the ADNI
website at http://adni.loni.usc.edu/about/. All MRI data have
been evaluated by quality control (QC) at the Mayo Clinic Aging
and Dementia Imaging Research Laboratory. The SUVR values of
Amyloid PET were downloaded from the ADNI website directly.

The preprocessing of MRI images was performed by statistical
parametric mapping (SPM12) software2 on MATLAB 2016b

1https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf
2https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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FIGURE 1 | The framework of this study.

platform.3 First, MRI images were segmented into probabilistic
gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF); Then, each GM image was normalized into the Montreal
Neurological Institute (MNI) space by diffeomorphic anatomical
registration via exponentiated lie algebra, and smoothed using
an 8-mm Gaussian-smoothing kernel. As a result, each image
has a spatial resolution of 91 × 109 × 91 with a voxel size of
2 mm × 2 mm × 2 mm; Finally, in order to adapt and speed
up the training of the deep learning model, 3D images were sliced
from the axial direction into 91 single-channel images with the
size of 91× 109 to tile 2D images, and then resized into 224× 224
for normalizing. Each 3D MRI image was tiled into a group of
2D images and resized into 224 × 224 pixels for subsequent
DL model training.

The Proposed Deep Learning Radiomics
Method
Figure 2 illustrates our proposed DLR method. The method
consisted of three parts: (1) Basic DL model pre-training. We
used six Convolutional Neural Networks (CNN) networks as
candidate DL models and pre-trained them, respectively. After
training, we selected one as the final DL model to obtain the
DLR features according to the classification results. (2) Feature
fusion. To obtain DLR features, we obtained DLR feature maps
from the last convolutional layer of the final selected DL model,
and extracted the maximum value of each feature map through
global max pooling. These extracted features were defined as DLR

3https://www.mathworks.com/products/matlab.html

features and combined with clinical features (sex, education, etc.)
as input data for classification. (3) Classification. Based on the
above features, the support vector machine (SVM) was used as
the classifier to distinguish preAD from NC.

Training for Candidate Deep Learning Models
Six CNN models, including AlexNet, ZFNet, ResNet18,
ResNet34, InceptionV3, and Xception, were applied in the
training step to define the best training model.

• AlexNet: it is the first CNN network architecture that
uses ReLU as the activation function, and uses interleaving
pooling technology in CNN (29).
• ZF-Net: it is fine-tuned on the basis of AlexNet. It

uses deconvolution to visually analyze the intermediate
feature map of CNN and improves model performance by
analyzing feature behavior (30).
• Inceptionv3: it improves the CNN model by using

convolution decomposition and regularization (31).
• Xception: it improves Inception V3 by using depth wise

separable convolution to replace the Inception module
(32, 33).
• ResNet: it introduces new network features based on

the previous traditional CNN network (34). Several
ResNet subtypes were proposed according to different
numbers of hidden layers, such as ResNet18, ResNet34,
ResNet101, and so on.

As an example, Figure 3 showed the network structure of
the ResNet34 model.
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FIGURE 2 | The flow chart of the proposed DLR model.

FIGURE 3 | (A) The network structure of the ResNet34 model. “7 × 7” represents the size of the convolution kernel, “conv” represents convolution, “avg pool”
represents average pooling, and “fc” represents fully connected layer. “64” means the number of channels, and “/2” means stride of 2. (B) Residual learning: a
building block. x represents direct identity mapping, F(x) represents residual mapping, and F(x)+x is output.

During the raining step, the selected six models were trained
in the training/validation group and tested in the test group.
Guided by the test results, we optimized the DL model by tuning
hyper parameters.

Classifier
We combined DLR features and clinical information (gender,
education, age, etc.) as input data for classification. SVM was used
as the classifier. As a classic supervised learning method, SVM
has been widely used in statistical classification and regression

analysis due to its ability to map vectors to a higher dimensional
space that creates a maximum margin hyperplane to achieve high
classification performance (35). In this study, we used the linear
kernel function in SVM to detect classification reliability and
generalization ability.

Comparative Experiments
To demonstrate the superiority of our proposed DLR method, we
compared our model and three existing models in comparative
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TABLE 1 | Demographic information for subjects.

Training/validation groups Test groups Longitudinal data

preAD APOE+ APOE− NC preAD APOE+ APOE− Baseline MCI

N 162 70 92 212 19 9 10 16 16

Gender(M/F) 68/94 36/34 32/60 103/109 5/14 3/6 2/8 9/7 9/7

Age(years) 76.3 ± 5.4 75.3 ± 6.3 76.9 ± 4.5 71.8 ± 5.7b 75.3 ± 5.1 74.7 ± 6.9 75.9 ± 3.4 71.5 ± 5.8b 80.8 ± 5.4

EDU 15.4 ± 3.0 14.9 ± 3.5 15.8 ± 2.5 16.7 ± 2.5b 15.4 ± 2.1 16.0 ± 2.4 14.8 ± 1.7 16.13 ± 2.4 16.13 ± 2.4

MMSE 28.7 ± 1.6 28.5 ± 1.6 28.8 ± 1.6 29.1 ± 1.3b 28.7 ± 1.3 28.8 ± 1.1 28.6 ± 1.6 29.2 ± 0.9 27.43 ± 2.0

CDRSB 0.3 ± 0.7 0.3 ± 0.8 0.3 ± 0.7 0.2 ± 0.4b 0.3 ± 0.9 0.5 ± 1.2 0.1 ± 0.2 0.1 ± 0.2 1.63 ± 0.9

APOE ε4 positive rate 70/162 N/A N/A 34/212 9/19 N/A N/A 3/13 3/13

All data except APOEε4 positive rate were presented as mean ± standard deviation. EDU, education; MMSE, Mini-mental State Examination; CDRSB, clinical dementia
rating sum of boxes.
aAge, Education, MMSE and CDRSB performed a two-sample t-test between NC and preAD groups; Gender performed a Chi-square test between NC and preAD groups.
bMeans that there was a significant difference (p < 0.05) between the preAD group and the NC group in the training/validation group and test group with two-sample
t-tests.

TABLE 2 | Classification performance of different DL models in the pre-training step.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC

Training/Validation Groups

AlexNet 96.28 ± 3.24 94.86 ± 5.88 97.38 ± 2.46 0.962 ± 0.04

ZF-Net 98.18 ± 1.88 97.55 ± 3.50 98.83 ± 1.98 0.980 ± 0.02

ResNet18 95.68 ± 2.66 94.49 ± 4.93 96.58 ± 3.05 0.962 ± 0.03

ResNet34 96.29 ± 2.54 96.62 ± 2.26 96.02 ± 3.58 0.964 ± 0.02

InceptionV3 97.63 ± 2.43 95.91 ± 4.99 98.95 ± 1.35 0.976 ± 0.01

Xception 97.02 ± 3.84 97.62 ± 3.62 96.54 ± 5.15 0.973 ± 0.03

Test Groups

AlexNet 87.91 ± 3.06 78.95 ± 4.30 95.00 ± 3.83 0.869 ± 0.03

ZF-Net 87.91 ± 2.40 79.47 ± 3.88 94.58 ± 2.01 0.870 ± 0.03

ResNet18 87.67 ± 1.91 84.21 ± 3.50 90.41 ± 2.01 0.872 ± 0.02

ResNet34 89.53 ± 2.51 87.89 ± 2.54 90.83 ± 5.12 0.893 ± 0.03

InceptionV3 84.88 ± 2.26 84.21 ± 3.51 85.42 ± 4.05 0.848 ± 0.03

Xception 88.84 ± 2.14 88.40 ± 3.30 89.17 ± 4.48 0.886 ± 0.04

The bold values indicate classification results of the optimal model ResNet34 for Base DLR Model Selection.

experiments, including: (1) Clinical model: clinical characteristics
included demographic data, neuropsychological cognitive
assessment results, and APOE ε4 genotyping characteristics of all
subjects. (2) Hippocampal model: the hippocampal volumes were
used as inputs for the classification; (3) Traditional radiomics
model: traditional radiomics features of were extracted for
the classification. In this experiment, we extracted features by
using the radiomics tool developed by Vallieres et al.4 We used
brain DMN regions as ROIs and performed texture analysis on
each input ROI using the "Texture Toolbox" in the Radiomics
Toolbox. Feature extraction steps included wavelet bandpass
filtering, isotropic resampling, Lloyd–Max quantization and
feature calculation. The detailed extraction process of the
radiomics features were described in the previous studies
(36, 37).

Three comparative experiments were employed in this study:
(1) NC vs. preAD; (2) NC vs. preAD APOE+; and (3) NC vs.
preAD APOE−. Ten-fold cross-validation was performed with
100 time repetitions. We calculated accuracy, sensitivity, and

4https://github.com/mvallieres/radiomics

specificity to evaluate the classification results. The mathematical
expressions of the three indicators were as follows:

Accuracy =
TP

TP + FP

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN

Longitudinal Study
The 12 individuals with longitudinal data were used to validate
the proposed DLR model. Firstly, we calculated the probability
value of SVM classifier, and defined it as the decision score; then
we compared the decision scores in both baseline and MCI states
in 12 individuals.

Statistical Analysis
In this study, we used two-sample t-tests or chi-square tests to
compare demographic and clinical characteristics between the
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TABLE 3 | The classification results of preAD vs. NC.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

Hippocampal model 76.20 ± 6.05 44.72 ± 10.58 99.05 ± 2.27

Traditional radiomics model 77.01 ± 7.77 62.61 ± 10.31 87.73 ± 9.50

Clinical model 85.66 ± 5.24 83.31 ± 9.56 87.70 ± 7.65

DLR model 99.40 ± 3.23 99.00 ± 4.00 99.56 ± 1.65

Test Groups

Hippocampal model 72.44 ± 1.46 42.68 ± 2.93 96.09 ± 1.31

Traditional radiomics model 82.00 ± 4.09 68.59 ± 8.35 92.62 ± 4.58

Clinical model 79.65 ± 2.21 82.75 ± 4.24 77.20 ± 2.61

DLR method 89.85 ± 1.12 94.74 ± 0. 10 85.98 ± 2.01

Bold values represent the classification performance of our proposed model.

NC and preAD groups and between the APOE+ and APOE−
subgroups. All statistical analyses were performed using SPSS
version 22.0 software (SPSS Inc., Chicago, IL, United States)
and performed in Matlab2019b (Mathworks Inc., Sherborn,
MA, United States). A p-value < 0.05 was considered to be
significantly different.

RESULTS

Demographic Information
The results of demographic data were shown in Table 1. There
was a significant difference in age and years of education between
the preAD group and the NC group in the training/validation
group (p < 0.001), and there was a difference in CDRSB and
MMSE (CDRSB: p = 0.006, MMSE: p = 0.003), while no difference
in gender between the two groups. There was no significant
difference in gender, education level, CDRSB and MMSE between
the preAD group and the NC group in the test group, whereas
there was a difference in age (p = 0.03).

Pre-training for Candidate Deep
Learning Models
Table 2 summarized the classification performance of six
candidate DL models, including classification accuracy,
sensitivity, and specificity. By comparing the results of the two
groups, ResNet34 was selected to be the best model. Therefore,
we chose the pre-training ResNet34 model and extracted DLR
features for the next step.

Comparative Experiments
Normal Control vs. Preclinical Alzheimer’s Disease
Group
Table 3 showed the classification results of the four models
between NC and preAD groups. Among the four models,
the DLR model showed the best classification performance
in the test group, with the accuracy of 89.85% ± 1.12%,
sensitivity of 94.74% ± 0.1%, and specificity of 85.98% ± 2.01%.
The performance of the hippocampal model, traditional
radiomics model, and clinical model were all significantly lower
than DLR model, with the accuracies of 72.44% ± 1.37%,

FIGURE 4 | ROC curves of the four models between NC and preAD groups.

TABLE 4 | The classification results of NC vs. preAD APOE+.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

Hippocampal model 76.90 ± 11.62 49.78 ± 26.80 99.37 ± 5.44

Traditional radiomics model 71.11 ± 10.60 54.42 ± 16.69 83.66 ± 9.33

Clinical model 71.11 ± 10.98 50.80 ± 15.66 84.94 ± 12.35

DLR model 99.94 ± 0.59 99.95 ± 0.01 99.88 ± 3.72

Test Groups

Hippocampal model 69.00 ± 6.84 30.71 ± 16.94 96.84 ± 15.91

Traditional radiomics model 78.87 ± 5.00 54.42 ± 16.21 83.66 ± 6.72

Clinical model 71.39 ± 4.65 32.84 ± 13.65 96.17 ± 4.37

DLR model 92.80 ± 2.61 88.89 ± 0.01 94.47 ± 3.72

Bold values represent the classification performance of our proposed model.

TABLE 5 | The classification results of NC vs. preAD APOE−.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

Hippocampal model 76.88 ± 12.86 75.46 ± 23.37 77.83 ± 12.60

Traditional radiomics model 73.50 ± 9.44 73.20 ± 12.45 72.51 ± 12.35

Clinical model 70.28 ± 9.69 60.20 ± 16.61 79.22 ± 12.05

DLR model 95.74 ± 11.85 89.60 ± 10.54 98.03 ± 10.76

Test Groups

Hippocampal model 63.36 ± 7.42 75.82 ± 24.86 50.90 ± 21.02

Traditional radiomics model 83.87 ± 3.04 78.00 ± 11.35 86.67 ± 6.66

Clinical model 70.10 ± 3.50 62.03 ± 7.93 73.95 ± 7.27

DLR model 85.45 ± 9.04 90.40 ± 9.47 83.10 ± 11.66

Bold values represent the classification performance of our proposed model.

82.00% ± 4.09% and 79.65% ± 2.21%, sensitivities of
42.68% ± 2.93%, 68.59% ± 8.35% and 82.754% ± 4.24%,
specificities of 96.09% ± 1.31%, 92.62% ± 4.58% and
77.20%± 2.61%, respectively.
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FIGURE 5 | ROC curves of the four models between NC and preAD APOE+ groups (left) and between NC and preAD APOE– groups (right).
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FIGURE 6 | The scores of the longitudinal data in preAD stage and MCI stage.

Figure 4 presented the ROC curves of the four models.
The mean AUCs (± SD) for the hippocampal model,
traditional radiomics model, clinical model, and DLR model
in were 0.691 ± 0.012, 0.806 ± 0.013, 0.800 ± 0.021 and
0.904± 0.014, respectively.

Normal Control vs. Preclinical Alzheimer’s Disease
Subgroups
Table 4 showed the classification results between NC and
preAD APOE+ groups. The accuracy, sensitivity and specificity
of the DLR model in the test group were 92.80% ± 2.61%,
88.89% ± 0.01%, and 94.47% ± 3.72%. The performance of the
hippocampal model, traditional radiomics model, and clinical
model were all significantly lower than our proposed model, with
the accuracies of 72.44%.

Table 5 showed the classification results between NC and
preAD APOE− groups. The accuracy, sensitivity and specificity
of the DLR model in the test group were 85.45 ± 9.04%,
90.40% ± 9.47%, and 83.10% ± 11.66%. The performance of
the hippocampal model, traditional radiomics model, and clinical
model were all significantly lower than our proposed model,

with the accuracies of 63.36% ± 7.42%, 83.87% ± 3.04%, and
70.10% ± 3.50%. In Tables 3, 4, the bold values represented the
classification performance of the our proposed method.

Figure 5 showed the ROC curves of the four models. The
mean AUCs (± SD) for the hippocampal model, traditional
radiomics model, clinical model and the best DLR model between
NC and preAD APOE+ were 0.638 ± 0.061, 0.728 ± 0.024,
0.645 ± 0.041 and 0.917 ± 0.010, and between NC and preAD
APOE− were 0.634 ± 0.075, 0.823 ± 0.041, 0.679 ± 0.042, and
0.868± 0.011, respectively.

Longitudinal Study
Figure 6 showed the results of the longitudinal study. The
decision scores had a slight upward trend from the PreAD
baseline to the MCI stage. The results showed that our model also
had a great prediction performance.

DISCUSSION

Currently, DLR is the hot spot and focus of current imaging
development. In view of its superiority in disease diagnosis,
DLR methods have been successfully applied in tumor genotype
prediction, preoperative analysis, prognosis evaluation, and
cancer diagnosis, etc., but DLR research for neurological
diseases remained lacking. In this study, we proposed a DLR
model to distinguish cognitively normal adults at risk of
Alzheimer’s disease from normal control based on T1-weighted
structural MRI images. Compared with other traditional models,
such as hippocampal model, clinical model or traditional
radiomics model, our proposed DLR model achieved best
classification results.

In the comparative experiments, the DLR method achieved
the highest accuracy in both training/validation group
(99.40% ± 3.23%) and separate test group (89.85% ± 1.12%).
Therefore, we proved the robustness of the DLR model.

Currently, several studies have investigated the classification
between preAD and NC by using machine learning or traditional
quantitative methods. For example, Ding et al. distinguished
preAD from NC by investigating the coupling relationship
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between glucose and oxygen metabolism from hybrid PET/MRI,
with an AUC of 0.787 (38). Li et al. used a voxel-based SSM/PCA
method to analyze fluorodeoxyglucose-PET (FDG-PET) images
with AUC of 0.815 (39), Li et al. conducted an exploratory study
for identifying preAD based on radiomics analysis of MRI and
obtained an average accuracy of 83.7% [T. (17)]. In comparison to
previous studies, our DLR model achieved the best classification
results. The reason can be explained as following: (1) the DLR
method can directly extract high-throughput image features from
CNN. Since it does not involve additional feature extraction
operations, it will not bring additional errors; (2) the results
of traditional methods were usually influenced by individual
factors and imaging machine parameters; while the DLR method
combined DLR image features and clinical information, which
partly solved the problems of individual heterogeneity.

To demonstrate the robustness of the proposed DLR model,
we performed experiments in the APOE ε4 subgroup analysis.
Notably, cerebral amyloid deposition is also affected by the
ApoE ε4 genotype (40). Higher levels of amyloid accumulation
were observed in SCD subjects with ApoE ε4 carriers than
noncarriers (41, 42). Therefore, we proposed to add ApoE
ε4 genotype features to further validate the accuracy of the
model. Notably, the DLR model achieved better classification
results between NC vs. preAD APOE+ (92.80% ± 2.61%)
than the two other experiments (89.85% ± 1.12% and
85.45% ± 9.04%). The high sensitivity (88.89% ± 0.01%) and
specificity (94.47% ± 3.72%) results also showed that the DLR
model was very powerful in identifying cognitively normal adults
at risk of Alzheimer’s disease.

Although the DLR method could distinguish preAD from
NC, it still had some limitations. First, more data was still
needed to verify the generality and robustness of the proposed
method. In this study, subjects were collected only from the
ADNI database. Whether our model was powerful for other
racial populations need further exploration. Secondly, we only
compared six DL models. Although the Resnet34 model achieved
good classification performance, it was unknown whether other
DL models beyond the six were more suitable. In addition, we
used the whole brain MRI image to train the DLR models in
this study. However, future studies were required to explore
whether DLR models based on the hippocampus or entorhinal
cortex instead were more effective. Furthermore, in this study, 2D
DLR models were employed. However, whether 3D DLR models
could achieve better classification performances need further
exploration. Finally, the proposed DLR model was based on T1-
MRI images. It may be possible to improve the classification
performance of DLR by combining other imaging modals, such
as FDG PET, amyloid PET and tau PET images.

CONCLUSION

We proposed a DLR method based on T1-MRI images
to discriminate preAD and NC. The results demonstrated
that our proposed DLR method could improve diagnostic
performance. The DLR method had potentials for clinical
applications in the future.
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Background: Surgery is the mainstay treatment for patients with symptomatic

intramedullary spinal cavernous hemangioma (ISCH), however the time of surgical

intervention remains controversial. In this study, we proposed emergency rescue surgery

(ERS) for patients in deteriorative type. The prognostic factors of patients with ISCH after

microsurgery and the clinical effect of ERS were analyzed.

Methods: From January 2013 to November 2019, 52 patients with symptomatic ISCH

treated by microsurgical treatment were collected, ranging in age from 17 to 66 years old

(mean: 45.8± 13.5 years). The course of the disease ranged from 2 days to 20 years. Of

52 lesions, 17 lesions were in the cervical segment, 25 in the thoracic segment, and 10

in the lumbosacral segment; while seven cases were at the ventral surface, 25 cases at

the dorsal surface, and 20 cases at the central spinal cord. The sagittal diameter ranged

from 1 to 58mm (median: 17.3mm). The transverse diameter ratio ranged from 20 to

80% (median: 50.7%). Thirty-two patients were diagnosed as deteriorative type and 22

were treated by ERS.

Results: At 12 months after surgery, all patients were followed up, and no residual

or recurrence was found in all patients. Twenty-five patients (48.1%) showed spinal

cord functional improvement after surgery; 25 (48.1%) had no functional change; 2

(3.8%) got worse. For deteriorative patients, ERS group had a significantly higher

improvement rate than the non-ERS group (χ2
= 5.393, P = 0.02); For all 52 patients,

the factors as a lesion at the ventral surface (Z = 10.453, P = 0.015), or lumbosacral

segment (χ2
= 9.259, P = 0.010) and longer course of disease (Z = −2.021, P

= 0.043) were potential risks in functional recovery in univariate analysis; and in

multiple-factor analysis, the lesion at the lumbosacral segment (OR = 4.004, 95% CI:

1.341∼11.961, P = 0.013) was the independent risk factors for the functional recovery.
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Conclusions: Microsurgical resection is safe and effective for symptomatic ISCH. The

ERS is an effective way to improve deteriorative patients’ spinal cord function at long-term

follow-up. The lesion at the lumbosacral segment is one of the poor prognostic factors.

Keywords: intramedullary spinal cavernous hemangioma, spinal cord, spinal cavernous hemangioma, central

nervous system, prognosis, microsurgery, salvage therapy

INTRODUCTION

Intramedullary spinal cavernous hemangioma (ISCH) is an
uncommon spinal vascular disease, accounting for 5–15% of
spinal vascular malformations (1–3). The natural history of
symptomatic ISCH is not completely understood, although most
ISCH has a benign clinical course, the annual rate for a first
hemorrhage could be up to 4.5% per year and the annual rate for
recurrent hemorrhage would be up to 66% (4).

For asymptomatic or small (1–3mm) ISCH, conservative
treatment might be optimal due to surgery-related complications
(5, 6), and the patients with hemorrhagic cavernomas should
consider surgical intervention, which prevents recurrent
hemorrhage and further neurologic deterioration (7–11). The
duration means the time from the onset of symptoms to surgery,
which varies greatly at different centers, from several hours to
several decades (12, 13). Some surgeons believe it is best to allow
the neurological symptoms to plateau, to prevent further damage
to viable tissue (14); while others believe the risk of rebleeding is
too high to wait (15, 16). With the advancement of surgical skills
and the continuous accumulation of experience, surgical excision
is more active, and duration has been constantly shortening, and
the patients with the shorter duration of presurgical symptoms
(≤ 3 months) have better clinical outcomes. However, the most
surgeon still do not take operation timing seriously, and there
are still few studies about the relationship between operation
timing and clinical prognosis.

We believe that if surgical resection and laminectomy are
performed as soon as possible, it will effectively alleviate
spinal edema and avoid deterioration of spinal function. In
2013, according to our new clinical classification, we proposed
emergency rescue surgery (ERS) for treating patients in
deteriorative type. The present study was conducted to evaluate
long-term outcomes in a cohort of 52 patients with symptomatic
ISCH after microsurgery and to study the clinical effects of
deteriorative patients with ERS.

MATERIALS AND METHODS

Patients and Study Design
From January 2013 to January 2019, the patients with
symptomatic ISCH in two neurosurgery centers were analyzed.
Inclusion criteria: 1. Diagnosed by ISCH surgically and
pathologically; and 2. Over 14 years old. Exclusion criteria: 1.
Recurrence of ISCH after surgery; 2. Multiple ISCHs with brain
function impaired; 3. Extramedullary (roots) lesions; 4. After
radiotherapy (e.g., gamma knife); and 5. Loss to follow-up. After
the exclusion of 16 cases, 52 patients (28 males and 24 females)

were included. The onset age ranged from 15 to 80 years (mean:
45.8 ± 14 years) and the course of disease ranged from 2 days
to 20 years (median: 12 days). Twenty-eight patients suffered
from muscle weakness or dyskinesia, 34 patients suffered from
paresthesia (20 cases felt pain, and 14 felt numb); 33 patients
suffered from bowel and/or bladder dysfunction. Nine patients
(17.3%) had multiple intracranial or intramedullary ISCHs, and
6 patients (11.5%) had a familial history of ISCH.

Preoperative MRI or DSA
All patients were examined by MRI scan and enhancement.
Spinal angiography would be performed to exclude other types
of vascular malformations if necessary. There were 17 lesions in
the cervical segment, 25 lesions in the thoracic segment, and 10
lesions in the lumbosacral segment. Sagittal length: 1∼62mm,
with an average of 15.8± 9.8mm.Horizontal transverse diameter
ratio (maximum diameter at the horizontal position of the
lesion/spinal cord diameter of the lesion): 18%∼80% (49.4% ±

16.8); Horizontal position: seven cases were in ventral surface, 25
cases on the dorsal surface, and 20 cases in center.

Clinical Course Classification
The new clinical classification was based on Ogilvy types (15). In
this study, four subtypes (A1, B1, B2, B3, and B4) were divided
into the acute course (Type A) and chronic course (Type B).
Type A: acute onset of symptoms with rapid decline; Type B1:
repeating deterioration of neurological decline with acute onset;
Type B2: acute onset of mild symptoms with subsequent gradual
decline lasting weeks to months; Type B3: discrete episodes
of neurological deterioration with varying degrees of recovery
between episodes. Types A and B1 are defined as acute and
chronic deteriorative types, respectively. Types B2 and B3 are
defined as chronic repetitive types (Figure 1).

Emergency Rescue Surgery (ERS)
The patients with deteriorative types were suggested by ERS
(Figure 1). The ERS was defined as: time interval between the
day of the first acute onset to the day of operation is <3 days
for patients with Type A, and the time interval between the last
acute onset to the day of operation is <7 days for patients with
Type B1.

Surgical Key Point
According to location, different approaches were adopted. If
the lesion was visible on the surface, it could be removed
directly (Figure 2). If the lesion was close to the center and in
deep, the posterior midline approach was adopted (Figure 3).
Somatosensory-evoked potentials (SEPs) and motor-evoked
potentials (MEPs) were monitored during surgery.
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FIGURE 1 | The new clinical classification of intramedullary spinal cavernous hemangioma (ISCH) and its relationship with emergency rescue surgery (ERS).

FIGURE 2 | A 37-year-old male, with numbness of limbs and trunk for 5 years, and standing difficulty for 5 days (mALs = 13 points, severe disorder, Type A), was

treated by ERS. (A,B) Preoperative spinal MRI examination revealed ISCH in C3 (red arrow). (C–E) The lesion was visible on spinal cord surface (black arrow) and the

artery (green arrow) was protected carefully. (F,G) MRI re-examination showed no residual or recurrence in the operative area at 4 years after surgery and the mAS

was 7 points at the last follow-up.

FIGURE 3 | A 15-year-old female with walking difficulty for 2 months and

aggravating for 5 days (mALs = 12 points, severe disorder, Type B1), was

treated by ERS. (A) Preoperative spinal MRI examination revealed ISCH in

T1-T2 (red arrow). (B,C) The lesion was resected in pieces (black arrow) by

posterior central approach. (D) MRI reexamination showed no residual or

recurrence at 2 years after surgery and the mAS was 8 points at the last

follow-up.

Neurofunctional Assessment and
Follow-Up
The patient’s spinal cord function was evaluated by modified
Aminoff-Logue scale (mAL)-excellent: normal or normal, ≤2
points; mild disorder, 3 ∼ 5 points; moderate disorder, 6∼8;
severe disorder, ≥9 points. The improvement or degradation of
neurological function was defined when the score was changed
at least one grade and in the excellent group, the improvement
was defined by patients’ subjective feeling or limbmuscle strength
improving. Clinical follow-up was conducted after 12 months
and every one year after surgery, includingMRI examination and
mALs assessment.

Statistical Analysis
The SPSS23.0 statistical software package was used to process
data. Fisher’s exact test was used for the comparison of the
rates between groups. The normal distribution measurement
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data (showed by mean and standard deviation) were tested by
the t-test and the non-normal distribution measurement data
(showed by median and quartile spacing) were tested by the
rank-sum test (Mann-Whitney U-test). The improvement of
factors at the neurological function was analyzed by multivariate
logistic regression analysis. The P < 0.05 was considered
statistically significant.

RESULTS

Postoperative Imaging
Patients have received anMRI plain scan and enhanced at follow-
up, and no residual or recurrence of ISCH was found in the
operative area at all 52 patients at the last follow-up.

ERS
Among the 32 patients with deteriorative type, the average
time interval between the day of onset to the day of surgical
intervention was 12.2 ± 17.9 days (2∼90 days), 22 patients
were treated by ERS, and 10 patients did not receive ERS. In
ERS group, 16 (68.8%, 22/32) patients showed neurofunctional
improvement at long-term follow-up, and in the non-ERS group,
only 2 (20%, 2/10) patients showed improvement (Table 1).
There was a significant difference in improvement rate between
the two groups (χ2

= 7.767, P = 0.005).

The Prognostic Factors After Microsurgical
Intervention
Of 52 patients, eight patients (15.4%, 8/52) showed a decrease
in mAL score after surgery, but most were transient and six
had recovered to the preoperative state within two months after
surgery. At 12 months after surgery, 48.1% (25/52) patients
showed improvement, 48.1% (25/52) had no changed and 3.8%
(2/52) got worse at mAL score. Lesion in ventral surface (Z =

10.453, P = 0.015), at lumbosacral segment (χ2
= 9.259, P =

0.010) and longer course of disease (Z = −2.021, P = 0.043)
were potential poor factors in functional recovery in univariate
analysis. In multiple-factor analysis, the lesion at lumbosacral
segment (OR = 4.004, 95% CI: 1.341∼11.961, P = 0.013) were
the independent risk factors for the functional recovery (Table 2).

Two Cases With Postoperative Aggravation
Case 1-A 63 years old male suffering from the sudden loss
of muscle strength and bowel and urine dysfunction for 12
days. The lesion was located at T11∼T12 by MRI test. The
patient was judged to Type A by our new clinical classification
and evaluated at 12 points by mAL scale before surgery.
During the surgery, the amplitude is permanently <20% by
electrophysiologic monitoring. After 1 month of surgery, spinal
cord function decreased to 13 points and had not improved at
the last follow-up.

TABLE 1 | Clinical data between ERS group and non-ERS group.

ERS group (n = 22) Non-ERS group (n = 10) Test value P value

Age (mean ± SD, years) 46.4 ± 14.8 47.2 ± 9.1 2.362a 0.878

Male (n,%) 10 (46.7%) 8 (80.0%) 3.334b 0.068

Deteriorative type

Acute deteriorative type (n,%) 16 6 0.518b 0.472

Chronic deteriorative type (n,%) 6 4

Segment 1.715b 0.424

Cervical segment 7 2

Thoracic segment 10 7

Lumbosacral segment 5 1

Horizontal position 4.368b 0.113

Dorsal surface 12 8

Center 6 3

Ventral surface 0 3

Transverse diameter ratio (%) 49% (40%-55.3%) 50% (45.3%-64%) −0.636c 0.535

Sagittal length (mm) 12 (11-20) 15.0 (12.8-17.0) −0.986c 0.324

Family history (n,%) 1 (6.7%) 1 (8.3%) 0.027b 0.869

Multiple lesions (n,%) 1 (6.7%) 1 (8.3%) 0.027b 0.869

Preoperative mALs 8 (3-12) 3 (2.8-10.3) −1.555c 0.120

Onset to operation (d) 3 (3-6) 15 (11-37) −4.606c <0.001

Prognosis 7.767b 0.005

Improvement 16 2

No change 5 7

Deterioration 1 1

aT value, bχ2 value; cZ value. The normal distribution measurement data were showed by mean and standard deviation and the non-normal distribution measurement data were showed

by median and quartile spacing.

Frontiers in Medicine | www.frontiersin.org 4 April 2022 | Volume 9 | Article 87282444

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Duan et al. New Ideas for Deteriorative Type

TABLE 2 | Univariate analysis and multi-factor regression analysis of spinal cord function recovery after operation in 52 patients with ISCH.

Variable Univariate analysis Multi-factor logistic regression

anlysis

Outcome Test value P value Odds ratio (95%

confidence interval)

P value

Improve (23) No-Improve (25)

Age (mean ± SD, years) 41.9 ± 15.7 49.4 ± 12.7 −1.999a 0.051

Male (n, %) 11 (44.0%) 17 (63.0%) 1.878b 0.171

Clinical presentation 2.720b 0.437

Type A 13 9

Type B1 5 5

Type B2 4 9

Type B3 3 4

Segment 9.259b 0.010 4.004 (1.341∼11.961) 0.013

Cervical segment 12 5

Thoracic segment 12 13

Lumbosacral segment 1 9

Horizontal position 6.264b 0.044 1.457 (0.805∼2.636) 0.213

Dorsal surface 16 9

Center 8 12

Ventral surface 1 6

Transverse diameter ratio (%) 50% (40–57%) 56% (30–66%) −0.018c 0.985

Sagittal length (mm) 15 (11–19.5) 14 (11.8–30) −0.350c 0.727

Family history (n,%) 3 (12.0%) 1 (7.1%) 0.23b 0.632

Multiple lesions (n,%) 3 (12.0%) 2 (14.3%) 0.042b 0.838

Onset to operation (d) 7 (3–25) 10 (5–80) −2.021c 0.043 1.001 (0.998∼1.004) 0.409

Preoperative mALS 4 (3–12) 3 (2–12) −0.080c 0.936

aT value, bχ2 value; cZ value.

The normal distribution measurement data were showed by mean and standard deviation and the non-normal distribution measurement data were showed by median and

quartile spacing.

Case 2-A 50 years old male suffering from episodic and
recurrent pain in both lower limbs for 1 year. The lesion was
located at T12 by MRI test and was evaluated at eight points
by mAL scale before surgery and judged to Type B3 by our
new clinical classification. During the surgery, the amplitude of
electrophysiologic monitoring had no abnormity. After 1 month
of surgery, spinal cord function decreased to 11 points and had
improved at 10 points 1 year after surgery.

DISCUSSION

Surgery is the mainstay treatment for ISCH (18), which can
eliminate the risk of subsequent hemorrhage (19), and prevent
further neurological decline (20). However, the timing for surgery
has been argued for decades (20). In this study, we firstly
proposed ERS intervention for ISCH patients with clinical
progression and further confirmed most patients could benefit
from ERS compared with non-ERS. As we believe, a wide range
of symptoms to either an acute hemorrhage forming a space-
occupying lesion, or by edema can lead to a progressive or
acute decline in neurological function (3, 21, 22), and choose to
evacuate the clot early to relieve compression (17, 23); whereas,
another surgeon still believed the timing should be postponed

for several weeks because it would help resolve the hematoma,
diminishing spinal cord swelling, and creating a discrete border
on the lesion itself (12).

According to previous literature, the median duration of
primary symptoms to referral was 6.5 months (24), the mean
duration from primary symptoms to subsequent hemorrhage or
deteriorative symptoms was 1.42 years and the mean duration
from primary symptoms to surgery was 2.1 years (25). It
means those patients with deteriorative symptoms may not be
treated bymicrosurgery timely at most neurosurgical centers. For
meta-analysis research, earlier timing for surgery was beneficial
for neurological function (26) and Zhang reported that most
pediatric patients presented with acute symptoms and they
can benefit from surgery at the acute phase of neurological
deterioration (27). In this study, the longer course of the disease
was also one of the potential negative factors for recovery. From
2013, the ERS system for patients with symptomatic ISCH has
been built at our two neurosurgical centers, cooperating with
departments of emergency, imaging, and surgery, specifically
for deteriorative patients (A and B1). In this study, 16 patients
(68.8%) in ERS group showed neurofunctional improvement,
and the rate at the non-ERS group was only 20%, which verified
ERS could be beneficial for recovery of deteriorative type patients.
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FIGURE 4 | 51-year-old female with unsteady walking for 6 months and

urinating difficulty for 3 days (mALs = 11 points, severe disorder, type B1), was

treated by ERS. (A) Preoperative spinal MRI examination revealed ISCH in

ventral conus (red arrow). (B–E) A The brown lesion on the spinal cord surface

(black arrow) could be seen after pushing posterior nerve roots (yellow star)

aside and the artery (green arrow) was protected carefully. (F) MRI

reexamination showed no residual or recurrence at 3 years after surgery and

the mAS was 10 points at the last follow-up.

There were also 10 patients with deterioration who not receive
ERS, seven patients were delayed at the referral process, and the
other three patients were indecisive about ERS and treated by
microsurgery at a routine time. As we think, the treatment system
of ERS needs constantly perfecting, such as letting more primary
hospitals and patients with symptoms understand the clinical
characteristics and treatment of ISCH.

Manyworsening predictors after resection have been reported,
such as poor preoperative function, thoracolumbar-level lesions,
and the depth of lesions (28, 29). In our study, lesions in the
ventral surface, at a lumbosacral segment, and a longer course
of disease were potential predictors for poor functional recovery.
For intramedullary ventrolateral deep lesion, Ren adopted a
new surgical approach, the dorsal root entry zone myelotomy
(DREZ), and showed that of 10 patients, two (20%) patients
improved and eight (80%) patients were stable after the new
approach (30). Ginalis reported a multi-segment, hemorrhagic
intramedullary cavernous malformation from C7 to T3 was
resected through a lateral myelotomy approach at the site of
superficial hemorrhage (31). As we believe, the reason for DREZ
or a lateral myelotomy approach being chosen, is because the
corridor is the closest way into the lesion. Westphal reported
500 cases of intramedullary lesions, including ependymomas,
astrocytoma, vascular pathologies, indicating that safe and
complete removal can be achieved by posterior midline approach
(32). The posterior midline approach for deeper lesions and the
direct approach for superficial lesions are our two conventional

approaches: 1. It needs to be emphasized that 1 blood vessels on
the surface of the spinal cord should be carefully protected during
the operation (Figure 4); 2. Avoid pulling and twisting the spinal
cord; and 3. Try not to use bipolar coagulation, and if necessary,
keep its energy to the minimum.

In this study, electrophysiologic monitoring was performed
in all patients, including motor-evoked potentials (MEPs) and
somatosensory-evoked potentials (SEPs). As our plan, if the
amplitude is <50%, the operation should be suspended (33).
Compared with Li’s result, of the 52 patients with ISCH under
electrophysiologic monitoring, 17 patients showed permanent
changes, two had long-term residual neurologic deficits (34). In
our cohort, ten patients showed transient amplitude decline, and
the other two patients showed permanent changes according
to electrophysiologic monitoring. During 1 week after surgery,
eight patients (15.4%, 8/52) showed a decrease in function, and
functional impairments included hypoesthesia in six patients,
sphincter dysfunction in two patients, and decreased muscle
strength in two patients. Most of the functional impairments
were transient, six had recovered to the preoperative state within
twomonths after surgery, and two with lesions at the lumbosacral
segment. At 12 months after surgery, only two patients got
worse at sphincter dysfunction or decreasedmuscle strength than
the status before surgery, whose lesions were all located at the
lumbosacral segment, whichmeant that recovery is more difficult
in those patients with lesions lumbosacral segment.

CONCLUSIONS

Microsurgical resection is safe and effective for symptomatic
ISCH; however, lumbosacral lesions had a poor prognosis. The
patients with a deteriorative type would receive a better prognosis
at long-term follow-up if treated by ERS.
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Pneumonia and pulmonary edema are the most common causes of acute respiratory

failure in emergency and intensive care. Airway maintenance and heart function

preservation are two foundations for resuscitation. Laboratory examinations have been

utilized for clinicians to early differentiate pneumonia and pulmonary edema; however,

none can provide results as prompt as radiology examinations, such as portable chest

X-ray (CXR), which can quickly deliver results without mobilizing patients. However,

similar features between pneumonia and pulmonary edema are found in CXR. It remains

challenging for Emergency Department (ED) physicians to make immediate decisions

as radiologists cannot be on-site all the time and provide support. Thus, Accurate

interpretation of images remains challenging in the emergency setting. References have

shown that deep convolutional neural networks (CNN) have a high sensitivity in CXR

readings. In this retrospective study, we collected the CXR images of patients over

65 hospitalized with pneumonia or pulmonary edema diagnosis between 2016 and

2020. After using the ICD-10 codes to select qualified patient records and removing the

duplicated ones, we used keywords to label the image reports found in the electronic

medical record (EMR) system. After that, we categorized their CXR images into five

categories: positive correlation, negative correlation, no correlation, low correlation,

and high correlation. Subcategorization was also performed to better differentiate

characteristics. We applied six experiments includes the crop interference and non-

interference categories by GoogLeNet and applied three times of validations. In our

best model, the F1 scores for pneumonia and pulmonary edema are 0.835 and 0.829,

respectively; accuracy rate: 83.2%, Recall rate: 83.2%, positive predictive value: 83.3%,

and F1 Score: 0.832. After the validation, the best accuracy rate of our model can reach

up to 73%. The model has a high negative predictive value of excluding pulmonary

edema, meaning the CXR shows no sign of pulmonary edema. At the time, there was
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a high positive predictive value in pneumonia. In that way, we could use it as a clinical

decision support (CDS) system to rule out pulmonary edema and rule in pneumonia

contributing to the critical care of the elderly.

Keywords: computer-aided detection (CAD), artificial intelligence, geriatrics medicine, critical care medicine,

chest X-ray (CXR)

INTRODUCTION

Chest X-ray (CXR) is one of the most commonly used
clinical imaging examinations in the medical field due to its
adequate image resolution and standardized sampling techniques
(1). Before admission to an outpatient clinic or emergency
department, patients usually undergo at least one routine
CXR, which is rapid and has high diagnostic value for
patients displaying symptoms of dyspnea (2). The appearance
of pneumonia (PN) on CXR films is inconsistent, and some
lung field characteristics, such as infiltration, are similar to
pulmonary edema (PE), which is also one of the most severe
respiratory diseases. These features were difficult to obtain
features with mathematical definitions and traditional image
processing methods on CXR. Previous studies suggested CXR
performed usually could not be timely interpreted by radiologists
to generate proved reports to assist clinicians to make proper
diagnosis (3, 4). Even in medical centers of Taiwan, CXR image
report generated by radiologist is not as timely as clinical
required. Thus, the correct early-stage interpretation of received
images is a substantial clinical challenge in emergency and
intensive care units.

Although pneumonia and pulmonary edema share some
similar characteristics on X-ray films, the main problem
in pneumonia is the inflammation of lung parenchyma
or interstitium, whereas that in edema is the abnormal
accumulation of fluid in the extravascular space of the lung;
thus, the pathophysiology and treatment of these diseases are
completely different. Pneumonia treatment involves controlling
lung infection and relieving inflammation, whereas edema
treatment prioritizes the elimination of pulmonary fluid.
Appropriate treatment after diagnosis can reduce the duration
of hospitalization and may save lives by avoiding respiratory
failure; thus, accurately distinguishing these diseases is key for
improving patient outcomes (5). In particular, for patients in
extreme age groups, namely children and older adults aged 65
years or above, early diagnosis is significantly correlated with
mortality rate (6).

AI approach from machine learning to deep learning
contributes to comprehensive healthcare in many ways, such
as: symptoms detection, disease classification. Not only has the
opportunity to improve the diagnosis and helping decision-
making, but also has the potential reduce the cost of medical care
(7). Deep learning can be used to identify and derive meaning
from image features. Its performance in image recognition
tasks has been confirmed in previous studies; deep learning
has performance superior to conventional machine learning
in the medical filed (8), and can be used in computer-aided
detection (CAD) (9). Recently, deep learning has been applied for

clinical decision-making assistance for the diagnosis of various
diseases, because of it is efficient to deal with unstructured and
ambiguous data (10), including diabetic retinopathy, macular
edema (11, 12), skin cancer (13), and breast cancer (14).
CXR is one of the most commonly used examinations in
hospitals, and numerous CXR images can be easily obtained.
However, laboratory findings are always more trustworthy
than diagnosis based on image features alone, which often
challenge early diagnosis. Deep learning models would helped
in recognize complex patterns precisely (15). Many papers
have used deep learning to help identified chest lesions such
as pneumonia, pneumothorax, etc. (16, 17), Furthermore, the
specific pattern of pneumonia caused by Covid-19 could also be
recognized by deep learning method (18). Deep convolutional
neural networks (CNNs) have exceptional performance in image
classification. In 2012, CNNs demonstrated excellent image
recognition performance in the ImageNet Large-Scale Visual
Recognition Competition (ILSVRC) classification task challenge
(19). CNNs have a multilayer neural network structure with
strong fault tolerance, self-learning, and parallel processing
capabilities. In CNN learning, suitable features can be selected
as inputs without additional manual processing, the features can
be automatically analyzed from the original image data, and
feature classification can be learned. CNNs use convolutional
layers to extract features and use pooling (max or average) layers
to generalize features. The set of the various filters they used
for Convolutional Layers extract different sets of features. The
biggest advantage of Deep Learning is that we do not need to
manually extract features from the image. The network learns to
extract features while training. Thus, CNN learning considerably
reduces manual preprocessing, facilitating the learning and
classification of optimal visual features. Compared with the
general feedforward network, the local connection method of the
CNN greatly reduces the network parameters. Many CNNs have
been developed, such as AlexNet (20), GoogLeNet (21), ResNet
(22), and VGGNet (23).

Numerous studies have verified that CNNs for lung disease
identification can produce diagnosis results with accuracy
meeting that of radiologists, such as ChestX-ray14, which is
used public datasets of National Institutes of Health (24),
and the CheXNeXt, which is based on the DenseNet (25).
However, research for critical cases or cases in older adults
were not mentioned in previous studies. The standard CXR
uses the posterior-anterior view (PA view) and is performed
with the patient standing. The PA view is optimal for image
interpretation and for analysis of the mediastinal space and
lungs and can be used for accurate heart size assessment (26).
For patients with severe illness who are bedridden or unable
to stand, the anterior-posterior view (AP view) or portable
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CXR are alternate methods. Because the heart is located further
away from the film, the AP view may cause the ratio of the
heart to the mediastinal space to be enlarged by 15–20%,
affecting the clinician’s judgment of the sizes of the heart, blood
vessels, and lymph vessels in the anterior mediastinal space.
Moreover, factors such as enlarged mediastinal space, elevated
diaphragm, skin folds, and incomplete opening of the scapula
in the AP view can affect the physician’s interpretation and
increase the possibility of errors (27). Furthermore, patients with
critical illnesses are often have life support instruments such
as endotracheal tube or vitals monitoring equipments attached
to their body likes electrocardiograph wires. Given CNNs’ high
potential for identifying tiny particles or objects in images (28),
studies have not individually discussed the interference caused by
these instruments or have even excluded this group of patients.
Although these images are the most challenging for machine
learning, the capacity for interpreting them in clinical practice
is urgently needed.

In this retrospective study, we discussed approaches of
distinguishing between pneumonia and pulmonary edema
on radiograph. GoogleNet transfer learning was used to
analyze the performance of machine learning in distinguishing
between PN and PE in the chest radiograph of patients
aged 65 years or older who were admitted to the emergency
department in Mackay Memorial Hospital. Moreover, we
explored the effects of instrument interference, image cropping,
and text labels on the capacity of machine learning to
classify images. The objective of this study was to establish
a CAD model for early diagnosis aimed at patients with
critical illnesses.

The main contributions of this study are as follows:

• We provide CAD tools for critically ill elderly who urgently
need assistance in image interpretation.

• We demonstrate the interferences such as life-supporting
catheters? instruments affect the machine learning outcomes.

• The performance of machine learning in chest X-ray is
consistent with the radiologists, when the EMR have more
clear features such as pneumonia and edema, the better results
are trained on these images.

MATERIALS AND METHODS

This study was approved by the Institutional Review Board
of Mackay Memorial Hospital. The International Classification
of Disease, Tenth Revision (ICD-10) hospital discharge codes
collected in one medical center in Taiwan (Mackay Memorial
Hospital) since 2015 to 2020 for patients aged 65 years and
older who were admitted to the hospital through the emergency
department. The number of CXR images from patients with
PN (ICD-10: J18) and PE (ICD-10: J81) were 45,781 and
43,674, respectively. Moreover, the electronic medical records
(EMR) compiled by radiologists were labeled using keywords and
subsequently analyzed by two emergency physicians with more
than 15 years of experience. A plastic surgeon assisted with image
classification and training. The experiment was divided into six
steps comprising tasks including preprocessing, text labeling, and
machine learning (Figure 1).

Data Acquisition
The CXR images were downloaded through the picture archiving
and communication system (PACS), after which deidentification
and annotation removal were performed. Moreover, 800
CXR images of patients without lung disease at admission
were collected and similarly subjected to deidentification and
annotation removal for joint training of the proposed CAD
model with the CXR images. The training image format was JPG,
and the image conversion size was 224× 224× 3 pixels.

Quality Assurance
To exclude repeated cases and ensure the quality of machine
learning, a pretraining process using image numbers and text
labels was performed before training the CNN (Figure 2).

First, during deidentification, we discovered that data were
repeated in the PN and PE sets; 16,762 images were present in the
two disease lists, indicating that both J18 and J81 were included
in the ICD-10 codes of these cases. These duplicated images
were not errors in case collection; instead, they represented older
adults with multiple comorbidities. For example, many patients
with severe pulmonary edema (e.g., acute decompensated heart
failure) were complicated by pneumonia due to respiratory

FIGURE 1 | Data processing procedure.
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FIGURE 2 | Classification process for image data. PN, pneumonia; PE, pulmonary edema.

tract infection after hospitalization. Conversely, patients with

pneumonia may also develop multiple organ failure after
hospitalization, leading to edema (e.g., heart or renal failure).

Therefore, duplicated images of the two diseases are expected
and reasonable in the collection of clinical cases. Accordingly, the

16,272 repeated cases were excluded; otherwise, they could not be
classified during CNN training. After exclusion of the repeated

cases, PN and PE each had 29,019 and 26,912 images. Because
the data were obtained directly from the PACS system, some
erroneous data might be included. After reconducting a query of
reports using keywords to exclude irrelevant cases, the PN and
PE data sets had 20,488 and 19,923 images, respectively.

Experimental Design for Image
Classification
The effects of CNN on the interpretation results under
different conditions were investigated with six experiments
as follows.

Experiment 1: First, we tested the CNN’s capability to identify
diseases and its capacity to distinguish between PN and PE
with correct ICD-10 diagnoses. A total of 2,000 files were
randomly sampled from the 20,488 PN and 19,923 PE images
and were combined with the 800 images of patients without
lung disease for transfer learning. The training model was
named G_random.
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Experiment 2: Because the images collected in this study
were those of patients with critical illnesses, more than half of
the images contained extracorporeal life support instruments or
tubes. To determine the degree of interference of this equipment
on machine learning, the 2,000 PN and PE images were further
divided into images with andwithout interference; these sets were
independently used to train the machine learning model. For
images with interference, we randomly sampled 1,000 files from
the two disease data sets for training. This training model was
named G_int.

Experiment 3: PN and PE were confirmed to contain only 650
and 480 images without interference, respectively.We named this
training model G_NCC and determined whether superior results
were obtained for the images without interference.

Experiment 4: To improve the trainingmodel, the images with
interference were processed using image cropping. In Figure 3,
the oxygen supply mask (indicated by a white arrow in the
image) was cropped to produce a clearer lung field. Finally, we
processed 1,100 PN and 670 PE images; this training model was
named G_clean.

Experiment 5: To further determine whether EMR labels
precisely would produce superior results in training, 2,000 each
image which obviously clamed pneumonia and edema were
collected and separated into two categories; this model was
named G_DC2.

Experiment 6: The data from Experiment 5 were combined
with 800 normal CXR images for joint training; this model
was called G_DC. Experiments 5 and 6 were performed to
compare whether machine learning was affected by including the
comparatively easily identifiable normal CXR images.

Model Training
The built-in neural network toolbox of MATLAB R2020b (The
MathWorks, Natick, MA, USA) on Windows 10 (Microsoft,
Redmont, WA, USA) was used for the experiments. The
computer had a GeForce RTX 2060 (Nvidia, Santa Clara, CA,
USA) graphics processing unit, and the training image format
was 24-bit JPG.

The transfer learning used the GoogLeNet Inception V4
architecture. GoogLeNet is a type of convolutional neural

FIGURE 3 | Comparison of images before and after manual cropping.

network based on the Inception architecture (29). It utilizes
Inception modules, which allow the network to choose between
multiple convolutional filter sizes in each block. An Inception
network stacks these modules on top of each other, with
occasional max-pooling layers with stride 2 to halve the
resolution of the grid. The GoogLeNet we used in this study
22 layers deep and have an image input size of 224-by-224.The
data were trained through multilayer calculations, and the
composition of each layer was automatically learned from the
data set. A key feature was the Inception module, which was
regarded as a milestone in the history of CNN development
in a previous study (30). Because this module replaces the
fully connected structure with sparse connections for the input
images, performs multiple convolution operations or pooling
operations, and splices all of the output results into an extremely
deep feature map, the module reduces the computational burden
of including numerous parameters as well as the problem
of overfitting. The performance of the current iteration of
Inception, Inception-v4, was verified in the 2015 ILSVRC
challenge; it has superior image recognition capabilities due to
its use of residual Inception networks.The training environment
settings were as follows: minimal batch size = 20, maximum
epochs = 50, pixel range= [−3, 3], Rotation Range = [−15, 15],
and training/validation ratio= 70:30.

Model Performance Evaluation
The built-in neural network toolbox in MATLAB R2020b was
used to draw the receiving operating characteristic (ROC)
curve and produce a confusion matrix. The recall, precision,
F1 score, and accuracy of each model were then calculated.
Recall, precision, and F1 Score are frequently used for analyzing
model performance. A high F1 score indicates higher precision
and recall for disease decision-making, and the results of the
aforementioned transfer learning models were analyzed using
these indicators.

RESULTS

Table 1 presents the model performance evaluation results for
all six experiments. The G_DC model that used images clearly
identified as having PN or PE had the highest accuracy and F1
score. The F1 score, and accuracy of the G_DCmodel (F1 score=
0.882, validation accuracy= 86.4%) were significantly superior to
those of the G_randommodel that was trained using only ICD-10
codes (F1 score= 0.82; validation accuracy= 79.1%).

In addition, the G_int model that was trained solely using
images with interference had the worst results with an accuracy
of only 73%. Both the G_NCC model, which trained on images
without interference from the beginning, and the G_cleanmodel,
which trained on cropped images, did not have significant
improvements in their validation accuracy or F1 scores. In
addition, the G_clean model had a significantly increase for
recall of PN from 78.3 to 90.5%; however, its PE recall declined
from 79.2 to 56.4%. No significant change was observed in the
precision for the two diseases (PN: 76.7 to 77.1%; PE: 77.4
to 78.6%).
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TABLE 1 | Accuracy, recall, precision, and F1 score results for the six experiments.

Recall Precision Accuracy F1 score

G_random 81.3% 82.8% 79.1% 0.82

G_int 73.2% 73.4% 73.4% 0.733

G_clean 73.5% 77.9% 77.5% 0.756

G_NCC 74% 73.6% 74.1% 0.738

G_DC 87.7% 88.7% 86.4% 0.882

G_DC2 83.2% 83.3% 83.2% 0.832

*G_random: Randomly selected from the PN and PE category and combined with

normal CXR.

G_int: Images with interferences from G_random.

G_clean: Images with interferences form G_random cropped manually.

G_NCC: Images without interferences from G_random.

G_DC: G_DC2 combined with 800 normal CXR images.

G_DC2: Images labeled pneumonia and edema.

The results of the G_random and G_DC models, the training
of which incorporated normal CXR images, revealed that normal
CXR resulted in an optimal area under the ROC (AUC; Figures 4,
5), indicating that normal CXR images are easier to identify.

Based on the aforementioned results, we believed that, rather
than medical interferences, images used for training with more
precise description from EMR were the decisive reason that
affected machine learning performance; such images proved to
be the main factor for improving machine learning performance.

DISCUSSION

Effects of Incorporating Normal CXR
In the experiments, normal CXR images of patients without
PN or PE had an F1 score over 95%. Machine learning had
superior performance among normal CXR than radiographs with
lesions. Similar results also demonstrated by Cicero et al. (21),
the positive predictive value of the normal category reached 90%,
whereas those for the consolidation and for edema were merely
23 and 43%, respectively. Thus, training with normal CXR images
could raise overall model accuracy by increasing both the true
positive and true negative values.

Comorbidities
For cases that might be diagnosed with PN and PE
simultaneously, we used two steps for preprocessing: (1)
excluding 16,762 repeated files on ICD-10 diagnosis; and (2)
excluding images based on the imaging reports. In machine
learning, feature selection is considered a critical step in data
preprocessing. When we directly use raw data such as ICD code
for classification, we sometimes observe that learning algorithms
perform poorly (31). These images were excluded because our
experiments did not aim to identify comorbidities and the
presence of two or more diseases in one radiograph would
reduce the machine learning performance (32).

Interferences
There is a significant difference influence between machine
learning and physician interpretation for medical devices and

FIGURE 4 | Receiver operating characteristic curve of the G_random model

(class 1, pulmonary edema; class 2, pneumonia; class 3, normal).

FIGURE 5 | Receiver operating characteristic curve of the G_DC model (class

1, normal; class 2, pulmonary edema; class 3, pneumonia).

life support equipment. Those in vitro instruments do not
affect physicians reading images, whereas machine learning can
detect even subtle features that would not normally be detected
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(33), affecting the learning outcome. In our study, the G_int
model that all images with medical equipment for training
had a significant decrease in its predictive performance; its
accuracy was reduced from 79.1 to 73.4%, and its F1 score
was reduced from 0.82 to 0.733 (Table 1). We performed
image processing using cropping but did not obtain a more
favorable result. As we known, machine learning is more
efficient in distinction of localized lesions rather than lesions
with global symmetrical patterns (25). Therefore, pneumonia
which sometimes shows unilateral consolidation is easier
to be identified than pulmonary edema which is bilateral
symmetrical pictures.

The cropped images differed substantially from the original
images; this may explain why the training performance was
worse than as expected. Moreover, the ratio of the lung field
to the lesions might have changed after cropping, causing local
consolidation, which were originally easily identified by the
models, to exhibit features that more closely resembled diffusion.
In addition, for patients in critical condition, PE images almost
always contained one or more medical instruments or life
support tubes, leading to the exclusion of many images that could
not be fully cropped in training. Only 1,100 and 670 PN and
PE training images, respectively, were retained after cropping.
Moreover, we discovered that the recall of PN was significantly
higher than that of PE (90.5 vs. 56.4%). The number of images in
training sets must be balanced because an unbalanced number
of training images causes learning to be biased toward image
types that themodel hadmore exposure to (34). Thus, insufficient
datasets and unbalanced training sets might also have affected
the performance.

Model Comparison
There were many previous studies used CNN as a chest
X-ray CAD tools. Some models were published based on
public institutions datasets such as ChestX-ray14 which built
by The National Institutes of Health (35). Cicero et al. used
GoogLeNet in 2017 to construct a model that resolves a
total of about 35,000 images. It includes normal chest plain
films and other five features: Pleural effusion, Cardiomegaly,
Consolidation, Pulmonary edema and Pneumothorax. It is found
that normal chest plain films had the best recognition, which
both sensitivity and specificity can reach above 91%. CheXNeXt
used ChestX-ray14 datasets compared with radiologists for
identification of 14 chest X-ray features in 2018. Results
showed that CheXNeXt performed as well as radiologists on
10 features (no statistically significant difference in AUC) and
it was superior than expert on atelectasis. Not as good as
radiologists on three characteristics (cardiomegaly, emphysema,
emphysema). We compared the performance of pneumonia
and pulmonary edema in G_DC and G_DC2 with above
literature models. In our experiments both pneumonia and
pulmonary edema have higher sensitivity, PPV and F1 score
(Table 2).

Limitations
It has been demonstrated that medical history and laboratory
tests would improve radiologist interpretations (36). In this

TABLE 2 | Experiments 5 and Experiments 6 compares with previous study.

Cicero et al. (21) CheXNeXt G_DC G_DC2

PE sensitivity 0.82 0.682 0.868 0.834

PE PPV 0.43 0.662 0.83 0.825

PE F1 score 0.564 0.672 0.849 0.829

PN sensitivity 0.74 0.650 0.832 0.83

PN PPV 0.23 0.377 0.852 0.84

PN F1 score 0.351 0.477 0.842 0.835

study, we did not combine patients’ history and clinical data
together for thorough analysis which might provide important
part in clinical CAD tool. In addition, due to the limitations
of deep learning, our tools currently cannot articulate the
eigenvalues by which to classify images. Data preprocessing
and text labeling both revealed that PN and PE are related to
many diseases and share mutual comorbidities. To maintain a
simple training environment during data processing, cases with
shared comorbidities were excluded, and no further analysis
was conducted on the interpretation of comorbidities. The
data in our study were collected from a single medical center,
which might affect the objectivity of the text labels. Finally,
we did not test the models against the interpretation of the
radiologists; thus, we were unable to compare the similarities
and differences between the interpretation of the models
and specialists.

CONCLUSION

This study revealed that using deep learning to construct
X-ray images and to distinguish between PE and PN,
and using images with explicit signs of PE or PN and
without interference for training, can produce an accuracy
of over 80%. Moreover, an accuracy of 70% or higher
was achieved even in the presence of interference. In
addition, the recognition rate of normal images exceeded
90%; thus, this model can be potentially applied in
clinical practice.

Currently, more than two-thirds of the world’s population
do not have access to professional interpretation of medical
images, are unable to receive timely diagnosis reports,
or cannot receive any diagnosis. During emergencies
or the presence of large number of patients in medical
centers (e.g., COVID-19 outbreak clusters), experienced
radiologists are subject to human limitations, such as off
duty hours, fatigue, and perceptual and cognitive biases;
these limitations may lead to misjudgment. Although our
model cannot completely replace clinicians. After testing,
our model showed excellent performance on identifying
pulmonary edema and also informative assistance on patients
with pneumonia in elder patients after testing. It provides
crucial image information in a timely manner to assist in
clinical diagnosis.
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Background: It is widely recognized that glycated hemoglobin (HbA1c) and systolic
blood pressure (SBP) are two key risk factors for albuminuria and renal function
impairment in patients with type 2 diabetes mellitus (T2DM). Our study aimed to identify
the specific numerical relationship of albumin/creatinine ratio (ACR) with HbA1c and SBP
among a large population of adults with T2DM.

Method: A total of 8,626 patients with T2DM were included in the data analysis from the
National Health and Nutrition Examination Surveys (NHANES) (1999-2018). The multiple
linear regressions were used to examine the associations of ACR with HbA1c and SBP.
Generalized additive models with smooth functions were performed to identify the non-
linear relations between variables and interactions were also tested.

Results: Significantly threshold effects were observed between ACR and HbA1c or
SBP after multivariable adjustment, with the risk threshold values HbA1c = 6.4% and
SBP = 127 mmHg, respectively. Once above thresholds were exceeded, the lnACR
increased dramatically with higher levels of HbA1c (β = 0.23, 95 CI%:0.14, 0.32,
P < 0.001) and SBP (β = 0.03, 95 CI%:0.03, 0.04, P < 0.001). Subgroup analysis
showed high protein diet was related to higher ACR. In addition, a higher risk of
ACR progression was observed in central obesity participants with HbA1C ≥ 6.4% or
hyperuricemia participants with SBP ≥ 127 mmHg among patients withT2DM.

Conclusion: We identified thresholds of HbA1c and SBP to stratify patients with T2DM
through rapid albuminuria progression. These might provide a clinical reference value for
preventing and controlling diabetes kidney disease.

Keywords: risk thresholds, glycated hemoglobin, systolic blood pressure, albuminuria, type 2 diabetes, NHANES
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INTRODUCTION

Progression of albuminuria in diabetic patients is associated
with impaired renal function and indicative of an increased
risk of cardiovascular disease (CVD). Studies have demonstrated
that in patients with type 2 diabetes mellitus (T2DM),
microalbuminuria is considered an early marker for renal
function decline, and elevated albuminuria was consistently
correlated with the risk of end-stage kidney disease (1, 2). In
addition, as an indicator of the systemic endothelial dysfunction
response (3), increased albuminuria also predicts higher risks
of myocardial infarction, heart failure, stroke, and cardiac
death (4–6). Therefore, it is essential to assess albuminuria in
diabetic patients. Since the albumin/creatinine ratio (ACR) is
a reliable and sensitive index reflecting early kidney damage
as well as relatively stable and convenient, ACR is commonly
used to estimate the degree of urinary protein excretion
clinically (7).

Although various risk factors could affect the development
of albuminuria, abundant studies have confirmed that raised
blood pressure and dysglycaemia are two critical risk factors
for albuminuria (8–11). Cumulative evidence emphasizes that
control of glycated hemoglobin (HbA1c) and systolic blood
pressure (SBP) are significant in decreased ACR for both T2DM
and Diabetic kidney disease (DKD) patients (12, 13). Previously,
a study identified a 5.5% HbA1c level as the risk threshold for
albuminuria prevalence in a large Chinese population over the
age of 40 (14). Another study found a significantly increased
risk of albuminuria in participants with HbA1c ≥ 7% compared
with the normal urinary protein population. The above results
remained stable in diabetic and non-diabetic populations (15).
This might suggest a threshold effect between HbA1c and ACR
levels, but a lack of large-scale population studies targeting
patients with T2DM. In addition, the studies on the risk
relationship between SBP and ACR have also been extensively
reported. A meta-analysis included 31 cohorts in the world
and demonstrated that each 20 mmHg increase in SBP was
associated with a 1.5-fold higher prevalence of albuminuria
(ACR ≥ 30 mg/g) in diabetes (11). It was also reported that
only SBP ≤ 120 mmHg was associated with the lowest risk
of new-onset microalbuminuria (16). However, almost all the
above studies use a recommended cut-off point of 30 mg/g
for ACR to explore the effects of HbA1c and SBP on the
risk of albuminuria. Notably, A cohort study with an up
to11-year follow-up period found that protein excretion levels,
even with normal at baseline, are pronouncedly associated
with increased mortality risk from CVD (17). A recent study
also confirmed that a normal ACR range (≤30 mg/g) was
related to left ventricular hypertrophy in patients with T2DM
(18). This suggested that the specific numerical changes of
ACR and the risk thresholds might not be fully reflected
when we simply treated ACR as a categorical variable with a
30 mg/g cut-off.

Thus, in this study, we treated ACR as a continuous
variable and included a large-scale T2DM population
to explore the specific association of ACR with SBP and
HbA1c simultaneously.

RESEARCH DESIGN AND METHODS

Study Population
In this cross-sectional study, we merged all the National Health
and Nutrition Examination Surveys (NHANES) data from 1999
to 2018. A total of 10,170 diabetes patients were identified
according to the definition. We further identified 9,901 patients
with T2DM after excluding pregnant woman (n = 47) and
possible individuals with type 1 diabetes (n = 369). All the
missing data for key variables, including ACR (n = 674), HbA1c
(n = 251), and SBP (n = 369), were removed from the dataset.
Eventually, 8,626 patients with T2DM were included in the final
data analyses. The flow chart of the included study population is
shown in Figure 1.

Definition of Diabetes
Diabetes was defined if each condition was satisfied in the
following items according to the recent American Diabetes
Association (ADA) recommendation (19): (1) Previous diagnosis
of type 2 diabetes by doctors (2) Fasting blood glucose levels
greater than or equal to 7.0 mmol/L (126 mg/dL) (3) Postprandial
2 h plasma glucose levels greater than or equal to 11.1 mmol/L
(200 mg/dL) after a standard 75-g oral glucose tolerance test (4)
HbA1c levels were 6.5% (48 mmol/mol) or higher (5) The use of
insulin or hypoglycemic drugs. Possible type 1 diabetes patients
were defined as those aged <20 years who were only treated with
insulin (20).

Measurement of Main Variables
The albumin/creatinine ratio was calculated from random
urine spot collections and reported as mg/g. Therein, the
fluorescent immunoassay was employed to measure human
urinary albumin and proved to be a reliable and accurate
method. The Jaffé method was used to measure urine
creatinine (period 1999–2007), and then the enzymatic
method was used (period 2008–2018). HbA1c was tested
by high-performance liquid chromatography after collecting
venous whole blood specimens in EDTA. Above detection,
operations were completed in the laboratory at the University
of Minnesota and Columbia. More information on sample
collection, transport, and processing was available in the
NHANES manual. Blood pressure (BP) was measured by
trained survey personnel when participants had rested for
at least 5 min in a seated position. BP values included in
the final analysis were the average of the three consecutive
readings obtained with a standard mercury sphygmomanometer
(interrupted or incomplete reading was replaced with fourth BP
reading). Pulse pressure (PP) was calculated as systolic minus
diastolic pressure.

Definition of Other Variables
Among the demographic parameters, marital status was divided
into living with a partner and live without a partner; education
level was divided into less than high school, high school,
and more than high school. Cigarette smoking status was
classified as current smokers (average cigarettes ≥ 1/day), past
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FIGURE 1 | Flow diagram of study population selection.

smokers (average cigarettes <1/day or ≥ 100-lifetime cigarettes
but currently non-smoking), and never smokers (<100-lifetime
cigarettes or never smoked). The consumption of alcohol was
divided into two categories according to whether respondents
had at least 12 drinks a year (21). Dietary intake, including dietary
protein, sodium intake, and potassium intake, was assessed by
two 24 h recalls (one in person and another by telephone 3–
10 days later). Meanwhile, the sodium/potassium (Na/K) ratio
was calculated for further analysis since the Na/K ratio was
proved to have a stronger association with BP than either
electrolyte examined alone (22). When obesity indicators were
determined as categorical variables, body mass index (BMI,
kg/m2) was grouped into normal weight (<25), overweight
(≥25, <30), and obese (≥30). A waist circumference ≥102 cm
for men and ≥88 cm for women indicates central obesity
(23). Diabetes duration was analyzed as a categorical variable
with <5 years, ≥5, <10 years, ≥10 years, and not recorded
(missing data). The homeostasis model assessment of insulin
resistance (HOMA-IR) was calculated with the formula [fasting
glucose (mmol/L) × fasting insulin (µU/L)]/22.5. Estimate
glomerular filtration rate (eGFR) was calculated based on the

chronic kidney disease epidemiology collaboration (CKD-EPI)
formula (24).

Statistical Processing and Analyses
To minimize bias brought by missing data, missing categorical
covariates were coded as a separate category as appropriate, and
missing continuous covariates were replaced by group means. In
addition, allowing for the complex sampling design, all analyses
were performed incorporating the sampling weights according to
NHANES guidelines (25). First, new multi-year sample weights
were calculated using ten survey cycles (using 4-year weights
when combining the 1999–2000 and 2001–2002 survey cycles).
Then the weights of the smallest subpopulation that includes
all the variables were selected for final analysis. Finally, to
estimate variance, Taylor series linearization was applied, and all
estimates were weighted.

In the baseline data assessment, the study population
was stratified into four groups according to ACR quartiles.
Continuous variables are presented as means ± SDs, and
categorical variables are reported as frequencies and percentages.
ACR was transformed with the natural logarithm function
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(LnACR) to stabilize variance prior to analysis. Comparison
of continuous variables among groups was analyzed by one-
way ANOVA or non-parametric test. The counting variables
were analyzed by the chi-square test. Multiple linear regression
models were performed to estimate the crude association of
ACR with HbA1c and SBP after varying degrees of covariates
adjustments. The fully adjusted model included covariates
for age, sex, education level, marital status, smoking, alcohol
consumption, diabetes duration, BMI, waist circumference,
fasting plasma glucose (FPG), diastolic blood pressure (DBP),
triglyceride (TG), uric acid (UA), eGFR, SBP/HbA1c, and dietary
protein. Covariates listed above were screened based on their
regression coefficients relative to ACR with a P-value of less
than 0.1 (26). There was no multicollinearity effect among the
covariates (variance inflation factor (VIF) = 1–4.7). It should
be noted that PP was not included as a covariate because of
strong collinearity among PP and SBP (VIF > 10). Also, SBP
was more positively correlated to ACR than PP, which was
consistent with previous studies (27, 28) and demonstrated a
stronger relationship between SBP and risk of ACR. Generalized
additive models with smooth functions captured the non-linear
relationships of ACR with HbA1c and SBP. Then, the threshold
levels of HbA1c and SBP were determined using a recursive
approach. Likelihood ratio tests were used to assess the difference
in fit between the one-line linear regression model with the two-
piecewise linear regression model, and P < 0.05 was considered
significant. Finally, interaction tests were performed between
subgroups. Data were analyzed using statistical packages R (The
R Foundation; version 3.4.3)1 and EmpowerStats software (X&Y
Solutions, Inc., Boston, MA, United States).2

RESULTS

Study Population Characteristics
The detailed clinical characteristics of the 8,626 patients with
T2DM included in our study were listed in Table 1. When the
study population was stratified into four groups according to
ACR quartiles. Age, the percentage of participants living with a
partner, proportion of participants with an educational level less
than high school, the number of current smokers, the proportions
of participants with a long diabetes duration (≥10 years), the
proportions of participants taking antihypertensive medication,
FPG, HbA1c, TG, SBP, PP, and UA levels all showed increased
tendency between the four groups with elevated ACR level.
BMI was significantly different across groups after being
transformed into a categorical variable. No significant differences
were observed in Na/K ratio, waist circumference, DBP, total
cholesterol (TC), and alanine aminotransferase (ALT).

Association Between Albumin/Creatinine
Ratio and HbA1c or Systolic Blood
Pressure
To comprehensively explore the relationship of ACR with
HbA1c and SBP, we conducted different linear regression

1http://www.r-project.org
2www.empowerstats.net/cn/

models when the independent variables were both treated as
continuous and categorical variables. Increased HbA1c and
SBP levels (continuous variable) have consistently shown an
association with increased lnACR level (P < 0.001) whether
in the non-adjusted model, the multivariate-adjusted model I
and II (Table 2). HbA1c and SBP were then transformed into
categorical variables by fixed intervals. In the fully adjusted
multivariable model II, compared with the reference group of
HbA1c (HbA1c < 6), no significant elevated lnACR levels were
observed in the second HbA1c group (β = 0.05, 95 CI%: −0.02,
0.12, P = 0.156), but the positive association became statistically
significant from the third group (β = 0.18, 95 CI%:0.09, 0.27,
P < 0.001) to highest HbA1c group (β = 0.81, 95 CI%:0.68, 0.94,
P < 0.001) (Table 2). The Changes in SBP also displayed similar
trends. Compared to the first group of SBP in multiple linear
regression models, only the second group of SBP levels had no
relationship with an increased level of lnACR (β = 0.02, 95 CI%:
−0.09, 0.12, P = 0.771) (Table 2). The above results suggested
that the positive linear relationships were not always consistent
between ACR and HbA1c or SBP. Potential threshold effects
might exist in the lower groups of HbA1c and SBP.

Non-linearity of Albumin/Creatinine Ratio
With HbA1c and Systolic Blood Pressure
Generalized additive models with smooth functions further
revealed the non-linear relationships between lnACR and HbA1c
or SBP (Figure 2). Data were fitted with the segmented linear
models, and two turning points were determined (HbA1c: 6.4%,
SBP: 127 mmHg). The likelihood-ratio tests demonstrated that
the two-piecewise linear regression models had a better fit
(P < 0.001) (Table 3). However, the threshold effect of HbA1c
became significant only after adjustment for confounders, while
the threshold effect of SBP remained throughout whether or not
the confounders were adjusted. After multivariate adjustment
in model II, below the thresholds, no significant correlations
were observed between lnACR and HbA1c or SBP. Above
the thresholds, lnACR was increased significantly with the
increment of HbA1c (β = 0.19, 95 CI%:0.16, 0.22, P < 0.001)
and SBP (β = 0.03, 95 CI%:0.03, 0.04, P < 0.001) (Table 3).
Notably, the corresponding ACR (mg/g) values for thresholds of
HbA1c and SBP were 15.03 (14.44–15.8) and 12.55 (11.94–13.2),
respectively, both values being in the normoalbuminuric range
(ACR < 30 mg/g).

Combined Thresholds Analysis and
Subgroups Analyses
We combined discovered thresholds and explored the
comprehensive effect of HbA1c and SBP levels on changes in
ACR. In parallel, subgroups analyses were performed separately
based on different thresholds. When the study population was
divided into four groups based on two thresholds, we discovered
that the dose-dependent positive relationship between the groups
and the risk of elevated lnACR levels was consistently present
whether adjusted for covariates (Table 4). Compared with the
population who had both HbA1c and SBP levels below the
thresholds, the population simultaneous above the thresholds
had the fastest increase in lnACR (β = 0.67, 95 CI%:0.58, 0.76,
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TABLE 1 | The clinical characteristics of enrolled participants were stratified by albumin/creatinine ratio (ACR) quartiles.

Characteristic ACR (mg/g) p-value

Q1(<6.58)n = 2,154 Q2(6.58 - 12.62)n = 2,158 Q3(12.62 - 40.46)n = 2,157 Q4(≥40.46)n = 2,157

Age (years) 57.56 ± 13.59 60.76 ± 13.56 62.15 ± 14.09 64.08 ± 13.42 <0.001

Sex <0.001

Male 1198 (55.62%) 1022 (47.36%) 1032 (47.84%) 1237 (57.35%)

Female 956 (44.38%) 1136 (52.64%) 1125(52.16%) 920 (42.65%)

Race <0.001

Mexican American 379 (17.60%) 420 (19.46%) 439 (20.35%) 502 (23.27%)

Other Hispanic 196 (9.10%) 207 (9.59%) 219 (10.15%) 195 (9.04%)

Non-hispanic White 814 (37.79%) 836 (38.74%) 830 (38.48%) 749 (34.72%)

Non-hispanic black 560 (26.00%) 466 (21.59%) 460 (21.33%) 530 (24.57%)

Other race 205 (9.52%) 229 (10.61%) 209 (9.69%) 181 (8.39%)

Marital status <0.001

Living with partner 1399 (64.95%) 1296 (60.06%) 1264 (58.60%) 1203 (55.77%)

Living without partner 740 (34.35%) 847 (39.25%) 882 (40.89%) 937 (43.44%)

Not recorded 15 (0.70%) 15 (0.70%) 11 (0.51%) 17 (0.79%)

Education level <0.001

Less than high school 664 (30.83%) 754 (34.94%) 791 (36.67%) 946 (43.86%)

High school 498 (23.12%) 516 (23.91%) 492 (22.81%) 460 (21.33%)

More than high school 992 (46.05%) 888 (41.15%) 874 (40.52%) 751 (34.82%)

Smoking <0.001

Current 328 (15.23%) 335 (15.52) 314 (14.56) 346 (16.04)

Past 700 (32.50) 720 (33.36%) 745 (34.54%) 821 (38.06%)

Never 1126 (52.27%) 1103 (51.11%) 1098 (50.90%) 990 (45.90%)

Alcohol consumption <0.001

Yes 1306 (60.63%) 1178 (54.59%) 1153 (53.45%) 1199 (55.59%)

No 707 (32.82%) 842 (39.02%) 856 (39.68%) 806 (37.37%)

Not recorded 141 (6.55%) 138 (6.39%) 148 (6.86%) 152 (7.05%)

Dietary protein (g/d) 79.28 ± 35.07 74.56 ± 32.40 73.88 ± 32.40 73.19 ± 33.52 <0.001

Sodium intake (mg/d) 3300.99 ± 1562.04 3130.04 ± 1446.84 3122.00 ± 1407.22 3035.04 ± 1459.83 <0.001

Potassium intake (mg/d) 2597.78 ± 1050.19 2516.54 ± 1053.73 2489.65 ± 1062.69 2382.29 ± 1006.80 <0.001

Na/K ratio 1.34 ± 0.50 1.31 ± 0.50 1.33 ± 0.50 1.34 ± 0.52 0.172

Diabetes duration (years) <0.001

<5 364 (16.90%) 339 (15.71%) 328 (15.21%) 227 (10.52%)

≥5, <10 217 (10.07%) 275 (12.74%) 253 (11.73%) 233 (10.80%)

≥10 418 (19.41%) 461 (21.36%) 516 (23.92%) 803 (37.23%)

Not recorded 1155 (53.62%) 1083 (50.19%) 1060 (49.14%) 894 (41.45%)

BMI (kg/m2) 32.03 ± 6.98 31.85 ± 7.23 31.68 ± 7.25 31.60 ± 7.04 0.141

BMI (kg/m2) 0.022

<25 268 (12.44%) 322 (14.92%) 326 (15.11%) 343 (15.90%)

≥25, <30 683 (31.71%) 644 (29.84%) 668 (30.97%) 616 (28.56%)

≥ 30 1203 (55.85%) 1192 (55.24%) 1163 (53.92%) 1198 (55.54%)

Waist circumference (cm) 107.55 ± 15.13 107.41 ± 15.26 107.58 ± 15.62 108.35 ± 15.22 0.121

Waist circumference (cm) 0.052

<102(male), < 88(female) 525 (24.37%) 459 (21.27%) 461 (21.37%) 483 (22.39%)

≥102(male), ≥ 88(female) 1629 (75.63%) 1699 (78.73%) 1696 (78.63%) 1674 (77.61%)

HOMA-IR <0.001

Lower group 481 (22.33%) 453 (20.99%) 427 (19.80%) 387 (17.94%)

Higher group 425 (19.73%) 472 (21.87%) 452 (20.96%) 400 (18.54%)

Not recorded 1248 (57.94%) 1233 (57.14%) 1278 (59.25%) 1370 (63.51%)

FPG (mmol/L) 7.62 ± 3.01 8.04 ± 3.27 8.79 ± 4.02 9.46 ± 4.59 <0.001

HbA1c (%) 6.69 ± 1.36 6.95 ± 1.54 7.30 ± 1.77 7.75 ± 2.07 <0.001

SBP (mmHg) 125.26 ± 15.49 129.13 ± 17.38 134.24 ± 20.34 141.95 ± 23.63 <0.001

DBP (mmHg) 69.15 ± 11.96 69.30 ± 12.99 69.45 ± 13.81 69.98 ± 15.25 0.225

(Continued)
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TABLE 1 | (Continued)

Characteristic ACR (mg/g) p-value

Q1(<6.58)n = 2,154 Q2(6.58 - 12.62)n = 2,158 Q3(12.62 - 40.46)n = 2,157 Q4(≥40.46)n = 2,157

PP (mmHg) 56.11 ± 17.27 59.83 ± 18.62 64.79 ± 21.22 71.97 ± 24.71 <0.001

TC(mmol/L) 4.91 ± 1.15 4.93 ± 1.12 4.97 ± 1.24 4.99 ± 1.36 0.757

TG (mmol/L) 2.03 ± 1.64 2.05 ± 1.75 2.31 ± 2.08 2.39 ± 2.41 <0.001

HDL-C (mmol/L) 1.25 ± 0.36 1.28 ± 0.39 1.24 ± 0.37 1.24 ± 0.40 0.009

ALT (U/L) 27.51 ± 18.99 27.16 ± 20.55 27.22 ± 20.29 26.54 ± 38.09 0.652

AST (U/L) 26.44 ± 15.26 26.48 ± 22.14 26.51 ± 15.23 26.46 ± 21.53 0.002

Albumin (G/L) 41.48 ± 3.21 41.73 ± 3.18 41.68 ± 3.23 40.61 ± 3.80 <0.001

UA(umol/L) 343.55 ± 83.88 333.48 ± 87.50 335.04 ± 95.04 357.41 ± 101.19 <0.001

Scr (umol/L) 82.33 ± 23.14 78.18 ± 24.10 80.11 ± 30.13 105.23 ± 81.42 <0.001

eGFR (ml/min/1.73 m2) 83.98 ± 23.92 86.71 ± 27.37 86.09 ± 29.60 75.84 ± 35.53 <0.001

Taking medication

ACEI/ARB 913 (42.39%) 991 (45.92%) 1034 (47.94%) 1118 (51.83%) <0.001

SGLT-2 8 (0.37%) 22 (1.02%) 15 (0.70%) 9 (0.42%) 0.026

ACR, albumin/creatinine ratio; Na/K ratio, sodium/potassium ratio; BMI, body mass index; HOMA-IR, homeostasis model assessment of insulin resistance; FPG, fasting
plasma glucose; HbA1c, glycated hemoglobin; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; TC, total cholesterol; TG, triglyceride;
HDL-C, high-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase; UA, uric acid; Scr, serum creatinine; eGFR, estimated
glomerular filtration rate; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; SGLT-2, sodium-glucose cotransporter 2. Data are present
as n (%) or the mean ± standard deviation.

TABLE 2 | The relationship between ACR and HbA1c or SBP using linear regression analysis.

LnACR (mg/g)

N Non-adjusted model Multivariate-adjusted model I Multivariate-adjusted model II

β (95CI) p-value β (95CI) p-value β (95CI) p-value

HbA1C (%)(continuous variable) 8626 0.21 (0.19, 0.22) <0.001 0.19 (0.17, 0.21) <0.001 0.16 (0.13, 0.18) <0.001

HbA1C (%)(categorical variable)

<6.0 2256 reference reference reference

6.0–7.0 2851 0.20 (0.13, 0.28) <0.001 0.08 (0.01, 0.16) 0.030 0.05 (−0.02, 0.12) 0.160

7.0–8.0 1600 0.49 (0.40, 0.58) <0.001 0.30 (0.21, 0.40) <0.001 0.19 (0.10, 0.27) <0.001

8.0–9.0 779 0.64 (0.52, 0.75) <0.001 0.48 (0.37, 0.60) <0.001 0.38 (0.26, 0.49) <0.001

≥9.0 1140 1.08 (0.98, 1.19) <0.001 1.02 (0.91, 1.12) <0.001 0.81 (0.68, 0.94) <0.001

SBP(mmHg)(continuous variable) 8626 0.03 (0.02, 0.03) <0.001 0.02 (0.02, 0.03) <0.001 0.02 (0.02, 0.02) <0.001

SBP (mmHg)(categorical variable)

<110 861 reference reference reference

110–120 1487 −0.01 (−0.11, 0.10) 0.912 0.02 (−0.09, 0.12) 0.734 0.02 (−0.09, 0.12) 0.768

120–130 1919 0.21 (0.11, 0.32) <0.001 0.20 (0.10, 0.30) <0.001 0.17 (0.06, 0.27) 0.001

130–140 1708 0.37 (0.26, 0.47) <0.001 0.33 (0.22, 0.44) <0.001 0.31 (0.20, 0.41) < 0.001

140–150 1091 0.72 (0.60, 0.84) <0.001 0.68 (0.56, 0.80) <0.001 0.65 (0.53, 0.77) < 0.001

150–160 697 1.09 (0.95, 1.23) <0.001 1.05 (0.92, 1.19) <0.001 0.98 (0.84, 1.11) < 0.001

≥160 863 1.76 (1.63, 1.90) <0.001 1.70 (1.57, 1.84) <0.001 1.62 (1.48, 1.75) < 0.001

LnACR, ln-transformed albumin/creatinine ratio; HbA1c, glycated hemoglobin; SBP, systolic blood pressure. Multivariate-Adjusted Model I adjusted for: age, sex, marital
status, education level, smoking, alcohol consumption, diabetes duration, body mass index (continuous), and waist circumference (continuous). Multivariate-Adjusted
Model II adjusted for: age, sex, marital status, education level, smoking, alcohol consumption, diabetes duration, body mass index (continuous), waist circumference
(continuous), fasting plasma glucose, glycated hemoglobin/systolic blood pressure, diastolic blood pressure, triglyceride, uric acid, estimated glomerular filtration rate and
dietary protein.

P < 0.001). A rapid increase in lnACR level was more relevant to
higher SBP levels above the threshold (≥127 mmHg) (Table 4).
When subgroup analyses were carried out for patients with
HbA1c ≥ 6.4%, significant interactions were observed both in
the diabetes duration subgroup (interaction P < 0.001), waist
circumference subgroup (interaction P = 0.029), dietary protein

subgroup (interaction P = 0.043) and Na/K ratio subgroup
(interaction P = 0.02) (Figure 3). In addition, there were also
interaction effects between SBP with diabetes duration group
(interaction P < 0.001), dietary protein subgroup (interaction
P < 0.001), UA group (interaction P < 0.001), ACR group
(interaction P < 0.001), and eGFR group (interaction P < 0.001)
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FIGURE 2 | Non-linear relationship between ACR and HbA1c or SBP. (A) lnACR with HbA1c (B) lnACR with SBP. The solid red line is the fitted curves and the
dotted curves are the 95 CI of the fit. All analyses were adjusted for age, sex, marital status, education level, smoking, alcohol consumption, diabetes duration, body
mass index (continuous), waist circumference (continuous), fasting plasma glucose, glycated hemoglobin/systolic blood pressure, diastolic blood pressure,
triglyceride, uric acid, estimated glomerular filtration rate and dietary protein.

TABLE 3 | Threshold effect analysis of HbA1c or SBP on ACR using two-piecewise linear regression.

LnACR (mg/g)

N Non-adjusted model Multivariate-adjustedmodel I Multivariate-adjustedmodel II

β (95CI) p-value β (95CI) p-value β (95CI) p-value

HbA1C (%)

<6.4 3184 0.25 (0.14, 0.37) <0.001 0.07 (−0.05, 0.18) 0.254 0.07 (−0.04, 0.18) 0.258

≥6.4 5442 0.19 (0.17, 0.22) <0.001 0.21 (0.19, 0.24) <0.001 0.19 (0.16, 0.22) <0.001

P for log-likelihood ratio test 0.092 0.002 <0.001

SBP (mmHg)

<127 3760 0.01 (0.00, 0.01) 0.024 0.00 (0.00, 0.01) 0.031 0.00 (0.00, 0.01) 0.051

≥127 4866 0.03 (0.03, 0.04) <0.001 0.03 (0.03, 0.04) <0.001 0.03 (0.03, 0.04) <0.001

P for log-likelihood ratio test <0.001 <0.001 <0.001

LnACR, ln-transformed albumin/creatinine ratio; HbA1c, glycated hemoglobin; SBP, systolic blood pressure. Multivariate-Adjusted Model I adjusted for: age, sex, marital
status, education level, smoking, alcohol consumption, diabetes duration, body mass index (continuous), and waist circumference (continuous). Multivariate-Adjusted
Model II adjusted for: age, sex, marital status, education level, smoking, alcohol consumption, diabetes duration, body mass index (continuous), waist circumference
(continuous), fasting plasma glucose, glycated hemoglobin/systolic blood pressure, diastolic blood pressure, triglyceride, uric acid, estimated glomerular filtration rate and
dietary protein.

TABLE 4 | Analysis of the combined threshold effect of both HbA1and SBP on ACR.

HbA1c (%) & SBP (mmHg) LnACR (mg/g)

N Non-adjusted model p-value Multivariate-adjusted model I p-value Multivariate-adjusted model II p-value

<6.4, <127 1505 reference reference reference

≥6.4, <127 2255 0.41 (0.32, 0.50) <0.001 0.29 (0.20, 0.37) <0.001 0.12 (0.03, 0.21) 0.006

<6.4, ≥127 1679 0.62 (0.53, 0.72) <0.001 0.55 (0.45, 0.64) <0.001 0.48 (0.39, 0.58) <0.001

≥6.4, ≥127 3187 1.06 (0.98, 1.14) <0.001 0.88 (0.80, 0.97) <0.001 0.67 (0.58, 0.76) <0.001

LnACR, ln-transformed albumin/creatinine ratio; HbA1c, glycated hemoglobin; SBP, systolic blood pressure. Multivariate-Adjusted Model I adjusted for: age, sex, marital
status, education level, smoking, alcohol consumption, diabetes duration, body mass index (continuous), and waist circumference (continuous). Multivariate-Adjusted
Model II adjusted for: age, sex, marital status, education level, smoking, alcohol consumption, diabetes duration, body mass index (continuous), waist circumference
(continuous), fasting plasma glucose, diastolic blood pressure, triglyceride, uric acid, estimated glomerular filtration rate and dietary protein.
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FIGURE 3 | Forest plots summarizing the subgroups analyses for ACR with HbA1c or SBP divided by thresholds (HbA1c ≥ 6.4%, SBP ≥ 127 mmHg). The dietary
protein, Na/K ratio, and HOMA-IR subgroups were divided based on the median. Each subgroup analysis adjusted for age, sex, marital status, education level,
smoking, alcohol consumption, diabetes duration, body mass index (continuous), waist circumference (continuous), fasting plasma glucose, glycated
hemoglobin/systolic blood pressure, diastolic blood pressure, triglyceride, uric acid, estimated glomerular filtration rate and dietary protein, except the subgrouping
variables.
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among the patients with T2DM who had a SBP level above
127 mmHg (Figure 3).

DISCUSSION

Our study elaborated on the relationship curves between ACR
and HbA1c or SBP in patients with T2DM and discovered the
different risk thresholds of HbA1c and SBP (HbA1c = 6.4%
and SBP = 127 mmHg) above which the risk of ACR increases
significantly. Additionally, more pronounced risk relationships
were detected in participants with longer-duration diabetes,
central obesity, or hyperuricemia.

Previously, one study discovered the threshold effect between
HbA1C and ACR among a Chinese population, but it has
not been studied in diabetic people (14). We first confirmed
a similar association in patients with T2DM, which suggested
that there exists an obvious ACR rising period that we are
easy to ignore before progression to microalbuminuria. The
gap between the risk threshold of HbA1c obtained in our
study (6.4%) and recommended HbA1c targets (7%) (29)
might be related to the early control of the above period.
Notably, to define target HbA1c control levels, not only the
risk of ACR progression should be taken into account, but
the incidence of renal endpoints, the ultimate risk of death,
and the occurrence of adverse events. Appropriate glucose
control (HbA1c < 7%) recommended by the guidelines was
based on a famous landmark UKPDS study (30), while the
ACCORD research highlighted that intensive glucose control
(HbA1c < 6%) could not reduce microvascular outcome
events (31). In addition, a large-scale study with up to
13 years of follow-up reported that strict control of glucose
(HbA1c < 6.5%) in the first year after newly diagnosed type
2 diabetes was associated with lower risks of diabetic vascular
complications and reduced mortality (32). The aforementioned
studies implied that it might be reasonable to control the HbA1c
level within 6–7%, and some newly diagnosed patients would
benefit more with HbA1c values < 6.5%. The threshold value
(HbA1c = 6.4%) obtained in our study was also within the above
range. Furthermore, a large prospective cohort study of older
German adults demonstrated that increasing HbA1c (≥6.4%)
was closely associated with a more than a 3-fold increased
risk of decreased renal function (33). This result was generally
consistent with our findings, Further, it demonstrated that
there might have both short-term and long-term renal function
protection when the HbA1c level was controlled below 6.4% in
patients with T2DM.

As another crucial risk factor for ACR, SBP exhibited a
similar threshold effect to HbA1c. However, all extensive studies
emphasized the approximate range of SBP control and did
not reveal the specific threshold, nor did they evaluate the
risky situations under continuous changes in SBP. The existing
authoritative research (34–37) results showed that patients with
T2DM had a relative positive benefit-risk balance with SBP
control between 120 and 140 mmHg. A prospective study
on T2DM veterans discovered a significant protective benefit
from lowering SBP below 130 mmHg (38), which suggested

that a tighter range (120–130 mmHg) for SBP control may
be required. The 127 mmHg threshold of SBP obtained
in our study is also within this range. Crucially, the risk
threshold detected in our study could be instrumental in the
future experiment design of SBP control levels to assess long-
term effects.

Combined analyses of thresholds showed the lowest ACR
levels when both HbA1c and SBP control levels were below
the thresholds. This was in accordance with most other
studies (39, 40). Of additional concern, compared to patients
with T2DM with HbA1c ≥ 6.4% and SBP < 127 mmHg,
a stronger association with elevated ACR was observed in
subjects with HbA1c < 6.4% and SBP ≥ 127 mmHg. These
findings implied that well-controlled SBP was likely to play
a more significant role in reducing urine protein levels and
should be elucidated by further studies. Finally, after complete
adjustment for confounding factors, the results of the subgroup
analysis partially explained the heterogeneity. Our results found
that longer diabetes duration and higher protein intake had
interacted with HbA1c (≥6.4%) and SBP (≥127 mmHg) in
the risk of ACR progression. These, too, were in keeping with
previous findings. Duration of diabetes was an unmodifiable
risk factor of ACR in patients with T2DM (41) while a
high protein diet can exacerbate hypertension and expedite
glomerular damage (42). Additionally, our results showed central
obesity and a higher Na/K intake ratio could impose an
extra burden on the kidney in patients with T2DM who had
HbA1c ≥ 6.4%. It has been reported that central obesity could
aggravate insulin resistance (43), and lead to the progression of
abnormal renal hemodynamics and podocyte injury (44). The
higher Na/K intake ratio might cause endothelial insult and
elevate urinary protein levels (45). When SBP ≥ 127 mmHg,
a more rapid rise in ACR was observed in patients with
T2DM with renal insufficiency or hyperuricemia. This may
be closely related to compromised kidney regulation and
marked glomerular hypertension caused by the combined
effects of diabetes status, hypertension, and impaired kidney
function (46). Hyperuricemia is recognized as one of the risk
factors for the development and progression of diabetic kidney
disease. It could activate the RAAS system, further increasing
blood pressure levels to promote ACR progression in patients
with T2DM (47). No significant differences were identified
in the subgroup analyses of age, gender, education levels,
marital status, smoking and alcohol consumption, and blood
lipids, which indicated that our results remain stable across
most subsamples.

There are two significant clinical implications in our study.
First, we identified the risk thresholds of rapid ACR progression
and provided valuable references for both early blockades of DKD
occurrence and development. Different from the conventional
studies dividing population-based on ACR ≥ 30 mg/g to explore
the potential risk factors, we described consecutive changes
in ACR and observed the risk thresholds of HbA1c and SBP
at an earlier level of ACR. As for patients with T2DM with
normal urine protein levels, tightly controlling HbA1c and
SBP within the threshold levels emphasize no proteinuria and
the maintenance of long-term stable normal urine protein
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levels. For patients with T2DM along with proteinuria,
the same control below the threshold levels may have
positive significance in delaying the progression of DKD
and even reversing to normal urinary protein levels (48).
Second, our study further explored high-risk populations
with rapid proteinuria progression, which provided partial
references for individualized prevention and targeted
intervention. For example, patients with T2DM diagnosed
with unsatisfactory HbA1c level control should pay
attention to weight management and moderately limit
their protein and salt intake; patients with high SBP
levels should not only reduce blood pressure reasonably
but also need to check renal function regularly to
prevent hyperuricemia.

Of course, our study has the following limitations. This
study is cross-sectional and lacks longitudinal follow-up
assessments, including primary endpoint and adverse events.
More prospective studies based on our thresholds are needed
in the future. In addition, it remains uncertain whether our
results are generally applicable to other populations, such as
Asian populations, since the enrolled participants are all from
the United States.

CONCLUSION

In type 2 diabetic population, we identified distinct thresholds
of HbA1c and SBP (HbA1c = 6.4% and SBP = 127 mmHg)
beyond which an elevated albuminuria risk would become
significant. Additionally, central obesity and higher Na/K intake
ratio could further increase the albuminuria risk in patients
with T2DM who had HbA1c ≥ 6.4% while hyperuricemia
and higher protein intake have similar effects in patients with
T2DM who had SBP ≥ 127 mmHg. Our findings might
have important clinical implications for the early prevention
and control of DKD.
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Background: There is conflicting evidence on the effectiveness of acupuncture in

the treatment of postpartum depression (PPD). This study aimed to assess previous

systematic reviews/meta-analyses (SRs/MAs) on the effectiveness of acupuncture to

treat PPD.

Method: SRs/MAs regarding the use of acupuncture for PPD were identified

from the establishment of digital databases to November 2021. The Assessing the

Methodological Quality of Systematic Reviews 2 (AMSTAR-2) was applied to evaluate

the methodological quality of included SRs/MAs. The Grades of Recommendations,

Assessment, Development and Evaluation (GRADE) was utilized to evaluate the evidence

quality for outcomes of interest.

Results: Six studies that conducted quantitative syntheses were included. According

to AMSTAR-2, the methodological quality of these SRs/MAs was critically low owing to

limitations of items 2, 4, and 7. According to GRADE, no study included high-quality

evidence and most studies included low-quality evidence.

Conclusions: Acupuncture m be beneficial for PPD, however, due to limitations of

current evidence and inconsistent findings, further studies are needed to provide stronger

evidence to draw definitive conclusions.

Keywords: evidence, decision-making, acupuncture, postpartum depression, overview

INTRODUCTION

Postpartum depression (PPD) is a mood disorder associated with childbirth, since its onset begins
between the first day and 4 months after delivery (1). Typically, PPD occurs within 6 weeks
postpartum and patients tend to recover in 3–6 months, while severe cases can persist for up to
2 years. The prevalence of PPD in first-time mothers is as high as 16% (2), and the recurrence
rate of PPD in the second pregnancy reaches 30% of women (3, 4). PPD is characterized by a
depressed mood, loss of interest, sleep disturbances, psychomotor agitation or retardation, feelings
of worthlessness, and even suicidal thoughts and behaviors in severe cases (5). Given the high
prevalence and deleterious impact of PPD, the development of effective treatments is needed.
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Treatment of PPD includes pharmacotherapy, psychotherapy,
or both, which is consistent with the treatment recommended in
guidelines for major depression (6). However, these treatments
vary in efficacy (7–9), are cost (10), while adverse events are
common (11, 12). Therefore, more effective and safer treatments
for PPD are still needed. In this regard, acupuncture is perceived
as an effective and safe alternative (13). A number of systematic
reviews (SRs)/meta-analyses (MAs) have evaluated the efficacy of
acupuncture for PPD, however their findings are inconsistent and
the evidence credibility is unclear. Therefore, we provide a critical
evaluation of SRs/MAs on the use of acupuncture to treat PPD.

METHODS

This study followed the methodology of the Cochrane Handbook
and high-quality studies (14–16).

Eligibility Criteria
The following eligibility criteria were used to screen studies:
(a) SRs/MAs based on randomized controlled trials (RCTs)
on the use of acupuncture to treat PPD; (b) participants
diagnosed with PPD by a recognized guideline; (c) interventions
included acupuncture therapy or acupuncture plus conventional
medication (CM), while the control group was treated with
CM, CM plus acupuncture, sham acupuncture, or other
non-pharmacological therapy; (d) outcomes included the
Hamilton Rating Scale for Depression (HAMD), Edinburgh
Postnatal Depression Scale (EPDS), effective rate and estradiol
levels. Repeated publications or studies lacking complete data
were removed.

Search Strategy
Embase, PubMed, Web of Science, Cochrane Library, CNKI,
CBM, Wanfang, and VIP were searched for studies published
between database creation and November 2021. The following
search terms were applied: postpartum depression, acupuncture,
meta-analysis, and systematic review. Table 1 presents the search
strategy for the PubMed database.

Data Collection and Extraction
Two independent evaluators screened abstracts and titles, and
then assessed potentially eligible full texts for final inclusion.
Disagreements were resolved through discussion with a third
independent reviewer. The following data were extracted from
included studies: first author, year of publication, country, sample
size, interventions, outcomes, quality assessment methods, and
summary estimates of effect.

Quality Assessment
Two independent evaluators assessed the methodological quality
of SR/MA using the Assessment of Methodological Quality of
Systematic Evaluation 2 (AMSTAR-2) (17). AMSTAR-2 consists

Abbreviations: PPD, postpartum depression; SR, Systematic review; MA, Meta-

analysis; AMSTAR-2, Assessing the Methodological Quality of Systematic Reviews

2; GRADE, Grading of Recommendations, Assessment, Development, and

Evaluation; RCTs, Randomized clinical trials; CM, conventional medication;

HAMD, Hamilton Depression Scale; EPDS, Edinburgh Postnatal Depression Scale.

TABLE 1 | Search strategy for the PubMed database.

Query Search term

# 1 Postpartum depression [Mesh]

# 2 Postpartum depression[Title/Abstract] OR postnatal

depression[Title/Abstract] OR post-partum

depression[Title/Abstract] OR post-natal depression[Title/Abstract]

OR post natal depression[Title/Abstract]

# 3 #1 OR #2

# 4 Acupuncture[Mesh]

# 5 Acupuncture[Title/Abstract] OR

pharmacoacupuncture[Title/Abstract] OR

acupotomy[Title/Abstract] OR acupotomies[Title/Abstract] OR

pharmacopuncture[Title/Abstract] OR needle[Title/Abstract] OR

needling[Title/Abstract] OR dry-needling[Title/Abstract] OR

body-acupuncture[Title/Abstract] OR

electroacupuncture[Title/Abstract] OR

electro-acupuncture[Title/Abstract] OR auricular

acupuncture[Title/Abstract]

# 6 #4 OR #5

# 7 Meta-analysis as Topic[Mesh]

# 8 Systematic review[Title/Abstract] OR meta-Analysis[Title/Abstract]

OR meta-analysis [Title/Abstract] OR meta-analyses[Title/Abstract]

OR meta-analysis [Title/Abstract]

# 9 #7 OR #8

# 10 #3 AND #6 AND #9

of 16 items, each with three possible answers, i.e., “yes,”
“partially yes,” or “no.” When up to one non-critical item
does not meet the requirements, the methodological quality
is considered “high”; when more than one non-critical item
does not meet the requirements, the methodological quality is
considered “medium”; when one critical item does not meet the
requirements, themethodological quality is considered “low” and
when more than one critical item do not meet the requirements,
the methodological quality is deemed “very low” (17).

Two independent evaluators used the Grade of
Recommendation, Assessment, Development and Evaluation
(GRADE) (18) to assess the quality of evidence for each outcome
indicator. GRADE ranks the evidence according to risk of
bias, indirectness, imprecision, inconsistency, and publication
bias. Each outcome measure is rated on four levels, i.e., “high,”
“moderate,” “low,” or “very low” (18).

Data Synthesis and Presentation
A narrative synthesis was used in this overview. The
characteristics and results of each SR/MA as well as results
from AMSTAR 2 were summarized by tabulation. The GRADE
evidence profile and summary of findings table were generated
using the GRADE pro GDT online software.

RESULTS

Study Selection
The literature search identified 114 articles, of which 40
duplicates were removed. Titles and abstracts of 74 articles were
screened, and 63 articles were subsequently excluded. The full

Frontiers in Public Health | www.frontiersin.org 2 July 2022 | Volume 10 | Article 94259571

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Hu et al. Evidence to Guide Decision-Making in Acupuncture for Postpartum Depression

FIGURE 1 | Flow diagram of the literature selection.

text of the remaining 11 articles was read and five articles were
excluded. Therefore, six papers were included in our analyses
(19–25). The selection process is shown in Figure 1.

Study Characteristics
All included studies were conducted in China and published
within the last 5 years. All studies were MAs with significant
differences in sample size (5–14 studies, 27–934 participants).
The interventions in the experimental group were acupuncture,
or a combination of acupuncture and CM, while the control
interventions were CM and/or sham acupuncture. Details on
study characteristics are reported in Table 2.

Methodological Appraisal
All studies were rated as very low quality according to the
AMSTAR-2 criteria. The key factors contributing to lower
methodological quality were item 2 (only one review registered
a protocol), item 4 (half of the studies did not provide a search
strategy), and item 7 (all reviews did not provide a list of excluded
studies). Detailed assessment results of AMSTAR-2 are shown
in Table 3.

GRADE Evidence Quality Classification
A total of 19 outcome indicators were assessed. No indicator was
deemed high, while twoweremoderate, 12 were low and five were
very low quality of evidence. Risk of bias was the most common
reason for downgrading the evidence, followed by inconsistency,
imprecision, publication bias, and indirectness. Details are shown
in Table 4.

Description of Efficacy
All studies used the HAMD to assess the severity of depression,
and one review (20) concluded that acupuncture treatment
improved depressive symptoms more significantly than CM,
however, five reviews (19, 21–24) showed no significant
difference between the two groups. Four reviews (19, 21–23)
reported the EPDS of acupuncture vs. CM, in which three reviews
showed that acupuncture was more effective than the control
group (21–23) and one review showed no significant difference
(19). The effective rate was reported in all reviews. Three of
which revealed that acupuncture was more effective than the
control group (19, 21, 23) while the other three reviews found
no difference (20, 22, 24). Estradiol levels were reported in five
reviews (19–23), in which three reviews found a significant effect
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TABLE 2 | Characteristics of the included studies.

References Country Sample

size

Treatment

intervention

Control

intervention

Quality

assessment

Conclusion

Tong et al. (19) China 12 (877) AT; AT+CM ST; CM Cochrane

criteria

Acupuncture has shown benefit in

improving some symptoms of PPD,

although the evidence is still inconclusive.

High-quality studies are needed to confirm

the effectiveness of acupuncture for PPD.

Li et al. (20) China 8 (517) AT ST; CM Cochrane

criteria

Acupuncture treatment significantly

improved HAMD scores, but had no

significant effect on EPDS, clinical

response, or serum estradiol levels.

Li et al. (21) China 9 (653) AT; AT+CM ST; CM Cochrane

criteria

Acupuncture appears to be beneficial for

PPD, however, the evidence is

inconclusive. To confirm the effectiveness

of acupuncture in PPD, further high-quality

RCTs are needed.

Cao et al. (22) China 13 (899) AT CM Cochrane

criteria

This study found no statistical difference

between acupuncture and control groups

in reducing HAMD scores and improving

clinical effectiveness. Further studies are

needed to validate these findings.

Wang et al. (23) China 14 (934) AT; AT+CM ST; CM Cochrane

criteria

Acupuncture is effective in the treatment of

PPD, but more high-quality and large

sample size RCTs are needed to provide

high-quality evidence.

Pang and Shi (24) China 5 (279) AT; AT+CM ST; CM Jadad Acupuncture is as effective as CM and

more effective than placebo to treat PPD.

Acupuncture is safe and effective,

although patients might experience

fainting and pain during the procedure.

AT, acupuncture therapy; ST, sham acupuncture; CM, conventional medication.

TABLE 3 | AMSTAR-2 assessment results.

References AMSTAR-2 Overall

quality
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Tong et al. (19) Y PY Y Y Y Y N Y Y Y Y Y Y Y Y Y CL

Li et al. (20) Y PY Y PY Y Y N Y Y Y Y Y Y Y Y Y CL

Li et al. (21) Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y CL

Cao et al. (22) Y PY Y Y Y Y N Y Y Y Y Y Y Y Y Y CL

Wang et al. (23) Y PY Y PY Y Y N Y Y Y Y Y Y Y Y Y CL

Pang and Shi (24) Y PY Y PY Y Y N Y Y N Y Y Y Y Y N CL

Y, Yes; PY, partial Yes; N, No; CL, Critically low; L, Low.

for acupuncture when compared to the control group (19, 21, 23)
and one review found no difference (20, 22).

DISCUSSION

Acupuncture is routinely used in clinical therapy for PPD in
China as a way to improve therapeutic effectiveness. Numerous
SRs/MAs have evaluated the effectiveness of acupuncture for
PPD, however, inconsistent results have been reported. In
this context, a critical evaluation of different SRs/MAs and a

summary of the scientific nature of the evidence is necessary
(25). Furthermore, an overview can highlight deficiencies that
need to be improved to guide future high-quality RCTs or
SRs/MAs (26).

A total of six SR/MAs were included in this study, all
of which were published in the past 5 years, suggesting that
more researchers are beginning to study acupuncture as an
alternative therapy for PPD. Nineteen outcome measures on
the effectiveness of acupuncture to treat PPD were evaluated,
and although most indicators suggested positive results, these
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TABLE 4 | Certainty of evidences quality.

References Outcomes Simple Limitations Inconsistency Indirectness Imprecision Publication

bias

Quality

Tong et al. (19) HAMD MD −1.27 (−2.55, 0.01) -1① -1② 0 0 0 Low

EPD SMD −0.49 (−1.01, 0.02) -1① -1② 0 -1③ -1④ Very low

Estradiol level MD 63.99 (13.47, 114.51) -1① -1② 0 -1③ -1④ Very low

Effect rate RR 1.20 (1.09, 1.33) -1① 0 0 0 0 Moderate

Li et al. (20) HAMD SMD −1.08 (−2.11, −0.05) -1① -1② 0 0 0 Low

Estradiol levels SMD 1.96 (−0.01, 3.93) -1① 0 0 -1③ -1④ Very low

Effect rate RR 1.00 (0.89, 1.12) -1① -1② 0 0 0 Low

Li et al. (21) HAMD MD −1.38 (−3.40, 0.64) -1① -1② 0 0 0 Low

EPDS MD 1.08 (1.09, 3.26) -1① -1② 0 -1③ -1④ Very low

Effective rate RR 1.15 (1.06, 1.24) -1① 0 0 -1③ 0 Low

Estradiol levels MD 36.92 (23.14, 50.71) -1① -1② 0 0 0 Low

Cao et al. (22) HAMD MD 0.45 (−0.52,1.41) -1① -1② 0 0 0 Low

EPDS MD 0.55 (0.18, 0.92) -1① 0 0 -1③ -1④ Very low

Effective rate RR 0.93 (0.70, 1.23) -1① -1② 0 0 0 Low

Estradiol levels MD 0.20 (−0.19, 0.58) -1① 0 0 0 0 Moderate

Wang et al. (23) HAMD MD −1.27 (−2.55,0.01) -1① -1② 0 0 0 Low

EPDS MD −0.47 (−0.92, −0.03) -1① 0 0 -1③ 0 Low

Estradiol levels WMD 63.99 (13.39, 114.60) -1① -1② 0 0 0 Low

Effective rate OR 3.15 (2.19, 4.55) -1① 0 0 -1③ 0 Low

Pang and Shi (24) HAMD MD −1.03 (−2.58,0.52) -1① -1② 0 -1③ -1④ Very low

Effective rate RR 0.98 (0.84, 1.14) -1① 0 0 -1③ -1④ Very low

RR, Risk Ratio; OR, odds ratio; SMD, SMD, standardized mean difference; WMD, Weighted Mean Difference; AT, acupuncture therapy; ST, sham acupuncture; CM, conventional

medication; HAMD, Hamilton Rating Scale for Depression; EPDS, Edinburgh Postnatal Depression Scale. ①, The design of the experiment with a large bias in random, distributive hiding

or blind; ②, The confidence interval overlaps less, the heterogeneity test P is very small, and the I2 is larger; ③, Confidence interval is not narrow enough; ④, Funnel graph asymmetry;

⑤, Fewer studies are included and there may be greater publication bias.

were inconsistent. Furthermore, although most of the included
studies suggested that acupuncture was effective as a treatment
for PPD, most authors did draw firm conclusions due to
the low methodological quality of evidence or the small
size of included trials. Indeed, all reviews were considered
to be of very low quality according to AMSTAR-2 criteria.
Therefore, our analysis concluded that acupuncture might
be an effective treatment for PPD, but such conclusion
must be treated with caution due to limitations of the
current evidence.

Over recent years, AMSTAR-2 has become the most widely
used tool to evaluate the methodological quality of SRs/MAs. All
included studies had more than one critical flaw, so that there is
very low confidence in their results. The key factors contributing
to this setting were item 2 (only one review registered a protocol),
item 4 (half of the studies did not provide a search strategy),
and item 7 (all reviews did not provide a list of excluded
studies). It was found that study protocols contribute to increased
transparency of the methodology used and improve the overall
methodological quality of SRs/MAs (27). The absence of a specific
search strategy can result in an unreproducible search process,
which leads to significant bias in included and excluded studies,
undermining the scientific validity of findings. Likewise, by
not presenting a list of excluded studies, authors can concur
to incorrect exclusion of key literature, undermining the rigor

of the report. Therefore, future SRs/MAs should address these
identified deficiencies to develop high-quality studies and thus
provide high-quality evidence.

In this study, authors of the included SRs/MAs did not draw
definitive conclusions. Indeed, after rating the evidence using
the GRADE system, we found that the certainty of evidence
was unsatisfactory, indicating that findings of the included
SRs/MAs are uncertain. Although all SRs/MAs evaluated only
RCTs, the certainty of evidence was limited owing to the
risk of bias (lack of blinding and allocation concealment),
inconsistency, imprecision, or publication bias. The results of the
methodological quality evaluation of RCTs showed that there is
room for addressing random, distributed hidden or blind biases.
Nevertheless, we must acknowledge that there are specificities of
acupuncture therapy (inability to blind physicians and patients)
that make the implementation of RCTs challenging. Improved
standardization and precision of acupuncture techniques and
procedures are urgently needed, as only a rigorously designed and
implemented RCT can reduce the risk of bias and therefore assess
the effectiveness of interventions (28).

To our knowledge, this is the first overview of SRs/MAs
summarizing the current evidence on the use of acupuncture
to treat PPD. The methodological and evidence qualities of
the included SRs/MAs may help to inform evidence-based
decision-making and guide future high-quality studies.
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However, our study presents some limitations. First, the
quality analysis demonstrated numerous methodological flaws
in the performance of SRs/MAs, and the evidence quality was
not satisfactory, making it impossible to draw firm conclusions
about the use acupuncture for PPD. Second, the rapid growth
in the number of SRs/MAs highlights challenges faced by
healthcare decision-makers and researchers in keeping up with
the evidence. This overview found that there were typically a
large number of low-quality SRs/MAs. To help evidence-based
practice, there is an urgent need for high-quality SRs/MAs that
do not overlap and are up to date. Furthermore, widely used
AMSTAR-2 tool and GRADE system are subjective evaluation
tools, therefore the accuracy of assessments can vary. To mitigate
this limitation, quality assessments were performed by two
independent authors.

CONCLUSION

Acupuncture might be beneficial for PPD. However, due to
limitations of the current evidence and inconsistent findings,
further studies are needed to provide strong evidence to draw
definitive conclusions.
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Background: Artificial intelligence has far surpassed previous related technologies in

image recognition and is increasingly used in medical image analysis. We aimed to

explore the diagnostic accuracy of the models based on deep learning or radiomics

for lung cancer staging.

Methods: Studies were systematically reviewed using literature searches from PubMed,

EMBASE, Web of Science, and Wanfang Database, according to PRISMA guidelines.

Studies about the diagnostic accuracy of radiomics and deep learning, including the

identifications of lung cancer, tumor types, malignant lung nodules and lymph node

metastase, were included. After identifying the articles, the methodological quality was

assessed using the QUADAS-2 checklist. We extracted the characteristic of each study;

the sensitivity, specificity, and AUROC for lung cancer diagnosis were summarized for

subgroup analysis.

Results: The systematic review identified 19 eligible studies, of which 14 used radiomics

models and 5 used deep learning models. The pooled AUROC of 7 studies to determine

whether patients had lung cancer was 0.83 (95% CI 0.78–0.88). The pooled AUROC

of 9 studies to determine whether patients had NSCLC was 0.78 (95% CI 0.73–0.83).

The pooled AUROC of the 6 studies that determined patients had malignant lung nodules

was 0.79 (95% CI 0.77–0.82). The pooled AUROC of the other 6 studies that determined

whether patients had lymph node metastases was 0.74 (95% CI 0.66–0.82).

Conclusion: The models based on deep learning or radiomics have the potential to

improve diagnostic accuracy for lung cancer staging.

Systematic Review Registration: https://inplasy.com/inplasy-2022-3-0167/,

identifier: INPLASY202230167.

Keywords: lung cancer, deep learning, radiomics, diagnostic accuracy, lymph node metastasis, meta-analysis
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INTRODUCTION

Lung cancer is one of the most common malignancies
globally and the leading cause of cancer-related death
in the world. Its morbidity and cancer-related mortality
rank first among malignant tumors. There are ∼2.2
million new cases and about 1.5 million deaths
worldwide (1).

Radiomics and deep learning, as an innovative means
to characterize lung lesions, can be applied to generate
descriptive data, build predictive model, and correlate
quantitative image features with phenotypes or gene-protein
signatures, thus aiding in cancer detection, diagnosis, staging,
treatment response prediction, and prognosis assessment
and playing an increasingly important role in clinical
decision-making, especially the management of malignant
tumors (2).

Lung cancer staging is usually done by radiologists
evaluating CT images of patients with lung cancer. The
accuracy of diagnosis is affected by various factors, such
as device performance, standardized imaging protocols,
the experience of the reporting radiologist, and patient-
specific factors. While radiomics involves using advanced
computational algorithms to extract large numbers of
researcher-defined features from images for defining
related lung lesions, studies suggesting that deep learning
algorithms can identify a more nuanced approach that
eschews traditional radiology and statistical methods
for cancer staging were extensively reported (3–6). Deep
learning, as a new research direction in the field of machine
learning (ML), is applied to learn the inherent laws and
representation levels of sample data for feature recognition
and model building (7). In the last decade, radiomics models
and deep learning have made meaningful contributions
to medical imaging diagnosis and related individual
medicine (8).

This study aimed to perform a systematic review and meta-
analysis of published data on lung cancer diagnosis and the
diagnostic accuracy of deep learning algorithms and radiomics
models for lung cancer staging.

METHODS

Search Strategy
This study followed the Preferred Reporting Item of the
Guidelines for Systematic Reviews and Meta-Analysis
(PRISMA), and selection criteria, data extraction, and
data analysis were determined before study initiation.
Any eligible studies in the PubMed, EMBASE, Web of
Science, and Wanfang Database will be searched by Cancer,
Radiomics, Deep Learning, Lung Cancer, and more. The

Abbreviations: CT, Computer tomography; MRI, Magnetic resonance imaging;

AI, Artificial intelligence; ML, machine learning; LNM, lymph node metastasis;

QUADAS-2, Quality assessment of diagnostic accuracy studies tool 2; AUROC,

Area under the receiver operating characteristic curve; NSCLC, non-small cell

lung cancer.

search method is shown in Table 1. Search terms such
as “radiomics,” “deep learning,” “lymph node metastasis,”
“non-small cell lung cancer,” “malignant lung nodules,” and
“diagnostic accuracy.” Use the Boolean operator AND to
combine the results of different queries. We also manually
searched the reference lists of included studies to identify
any relevant articles. Both English and Chinese articles are
considered eligible.

Study Selection
We selected publications for review if they met several of the
following inclusion criteria: (1) patients with pathologically
diagnosed lung cancer were included in the study; (2)
radiomics or deep learning algorithms applied to lung
cancer staging were evaluated. Exclusion criteria included:
(1) informal publication types (e.g., reviews, letters to the
editor, editorials, conference abstracts); (2) only focus on
research on image segmentation or image feature extraction
methods; (3) animal studies. After the removal of duplicates,
titles and abstracts were identified by two independent
reviewers using the Covidence systematic review software.
Any disagreements will be resolved by consensus by arbitration
by a third author.

Data Extraction
We reviewed data from selected primary studies using
standardized forms, and two reviewers independently
extracted data from each eligible study. Data extraction for
each study included first author, country, year of publication,
type of AI model, number of patients, patient characteristics
(mean/median age, gender), type of malignancy, benign
and malignant pulmonary nodules, lymph node metastasis.
In addition, we extracted the area under the receiver
operating characteristic curve (AUROC), along with sensitivity,
specificity, accuracy, etc., for data processing and forest map
production. The primary endpoint of this systematic review
was AUROC.

Quality Assessment
Two independent reviewers will initially assess the risk of
bias. A third reviewer will then review each study using
the Quality Assessment of Studies for Diagnostic Accuracy
(QUADAS-2) guidelines. The QUADAS-2 tool can assign a
risk of bias rating of “low,” “high,” or “uncertain” based
on the answer to “yes,” “no,” or “uncertain” to the relevant
flag questions included in each section. For example, if
the answer to all the landmark questions in a range is
“yes,” then it can be rated as low risk of bias; if all the
informational questions are answered “no,” then the risk of
bias is rated as “high” (9). We summarized the risk of bias in
individual studies in a narrative summary during the systematic
review phase.

Statistical Analysis
The accuracy measures for this diagnostic meta-analysis
included pooled sensitivity, pooled specificity, and their 95%
confidence intervals (95% CI). Missing data is calculated
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TABLE 1 | Search strategy.

Sources Search in MeSH terms Limits Search

results

Web of science Search

manager

(“deep learning” OR “convolutional neural network” OR “machine learning” OR “radiomics” OR “radiomic”)

AND (“CT” OR “MRI”) AND (“Lymph node” OR “lymph node metastasis” OR “Benign and malignant

pulmonary nodules”)AND (“lung cancer” OR “non-small cell lung cancer” OR “NSCLC”)

None 11

PubMed,

(MEDLINE)

N/A (“deep learning” OR “convolutional neural network” OR “machine learning” OR “radiomics” OR “radiomic”)

AND (“CT” OR “MRI”) AND (“Lymph node” OR “lymph node metastasis” OR “benign and malignant

pulmonary nodules”) AND (“lung cancer” OR “non-small cell lung cancer” OR “NSCLC”)

None 30

EMBASE Quick

search

(‘deep learning’/exp OR “deep learning” OR “machine learning”/exp OR “machine learning” OR

“radiomics”/exp OR “radiomics” OR “radiomic”) AND (“ct”/exp OR “ct” OR “mri”/exp OR “mri”) AND (“lymph

node”/exp OR “lymph node” OR “lymph node metastasis”/exp OR “lymph node metastasis” OR “benign

and malignant pulmonary nodules”) AND (“lung cancer”/exp OR “non-small cell lung cancer” OR “NSCLC”)

None 56

Wanfang database N/A (“deep learning” OR “machine learning” OR “radiomics” OR “radiomic”) AND (“CT” OR “MRI”) AND (“Lymph

node” OR “lymph node metastasis”) AND (“lung cancer” OR “NSCLC”)

None 5

TABLE 2 | Formulas.

Measure Formula

Sensitivity TP
P

=
TP

TP + FN

Specificity TN
N

=
TN

TN + FP

Accuracy TP + TN
P+N

=
TP+TN

TP + TN + FP + FN

PPV TP
TP + FP

NPV TN
TN + FN

SE (Upper Limit−Lower Limit)
3.92

95% Confidence interval best estimate +/− (1.96) * (SE)

P, condition positive; N, condition negative; FN, false negative; FP, false positive; TN, true

negative and TP, true positive; PPV, positive predictive value; NPV, negative predictive

value; Upper limit, upper limit of confidence interval; Lower limit, lower limit of confidence

interval; SE, standard error.

using the formula in Table 2. At the same time, AUROC
was calculated; an AUROC value close to 1.0 indicates
that the test can discriminate almost perfectly, while an
AUROC value close to 0.5 means poor discrimination (10,
11). The discordance index (I2) was used (12). Heterogeneity
was assessed as low, medium, and high, with upper limits
for I2 of 25, 50, and 75%, respectively. A forest plot
was drawn to show the AUROC estimates relative to the
summary pooled estimates for each study. In addition, we
will draw a funnel plot to assess publication bias more
intuitively. All statistical analyses were performed using STATA
V16.0 software.

RESULTS

Study Selection
Our search identified 74 studies, with 56 screened after
removing duplicates. Of these, 27 did not meet the inclusion
criteria based on title and abstract. The remaining 29
full manuscripts were individually assessed, and, finally,
22 studies were eligible and included in our systematic
review. Of these, 19 papers were available for meta-
analysis, and five articles were excluded because of their

insufficient data information. We outline the study
selection process for review using the PRISMA flowchart
(Figure 1).

Study Characteristics
Of the 19 included studies, 14 had sufficient data for a
meta-analysis of AUROC (Figure 2). Regarding study design,
17 studies were retrospective, and two were prospective.
Sixteen studies were single-center, and the other three
were multicenter. Most of the patients are male, and
the median age of 63 years (24–93 years) [Table 3 (13–
31)]. The malignancy type in twelve studies was NSCLC,
and the malignancy type in the remaining studies was
lung cancer. Seven studies used the diagnostic output per
patient, and eight studies used the lymph node diagnostic
output per node for metastases. While seven studies used
post-operative pathology reports as reference standards, 11 used
radiology reports.

Quality Assessment
According to the QUADAS-2 tool, the summary of this study’s
assessment is shown in Figure 3. The risk of bias in patient
selection was low in 12 (74%) studies and high in 5 (26%)
studies. The risk of bias for the index test was high in
2 studies (10%) and low in 17 studies (90%). The risk of
bias for the reference standard test was low in 16 studies
(85%), high in 2 studies (10%), and unclear in 1 study
(5%). Process and timing made the risk of bias unclear for
all 19 studies. Table 4 shown individual evaluation of the
risk of bias and applicability. Overall suitability issues are
low. To assess the publication bias of the studies, a funnel
plot was constructed (Figure 4). The shape of the funnel
plot revealed asymmetry in the included studies, showing
study heterogeneity.

Diagnostic Accuracy
Of the 19 studies eligible for quantitative analysis, 14 used
radiomics and 5 used deep learning. For each outcome, on
a per-patient basis, pooled estimates including specificity,
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FIGURE 1 | PRISMA flow chart outlining the selection of studies for review.

sensitivity, and AUROC were generated with 95% confidence
intervals. The categorized data extraction for each study
report is shown in Table 5. The type of lung cancer,
malignant lung nodules, lymph node metastases, and
deep learning or radiomics models discussed in each study
were considered.

The data from radiomics models showed high heterogeneity,
except for AUROC and the sensitivity of each node. After
removing the literature with insufficient data, the pooled
AUROC of the 7 studies determining whether a patient had
lung cancer was 0.83 (95% CI 0.78–0.88; Figure 2A), and
the pooled sensitivity and specificity were 0.838 and 0.653,

respectively, indicating high heterogeneity (I2 = 65.3%, p =

0.008). For the 9 NSCLC studies that currently represent
∼85% of lung cancer, the pooled AUROC of radiomics was
0.78 (95% CI 0.73–0.83; Figure 2B), and the pooled sensitivity
and specificity were 0.782 and 0.715, respectively, with higher
heterogeneity (I2 = 66.1%, p = 0.003). Among the six studies
predicting benign or malignant pulmonary nodules, the pooled
AUROC of radiomics was 0.79 (95% CI 0.77–0.82; Figure 2C),
and the pooled sensitivity and specificity were 0.787 and
0.774, respectively, with heterogeneity relatively low (I2 =

9.7%, p = 0.354). Among the 6 studies that predicted the
accuracy of LNM in lung cancer patients, the pooled AUROC
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FIGURE 2 | Summary of forest plots for different classifications. (A) The forest plot of determine if a patient has lung cancer. (B) The forest plot of determining whether

the cancer type is NSCLC. (C) The forest plot of predicting benign and malignant pulmonary nodules. (D) The forest plot of predicting lymph node metastasis in

lung cancer.

of radiomics was 0.74 (95% CI 0.66–0.82; Figure 2D), and
the pooled sensitivity and specificity were 0.661 and 0.598,
respectively, with heterogeneity relatively high (I2 = 88.7%,
p= 0.000).

DISCUSSION

During the diagnosis and treatment of lung cancer, many imaging
data, such as CT, MRI, and PET, are generated. Doctors usually
subjectively evaluate these data based on experience and make
treatment plans (32). However, the features that doctors can
observe from the image data with the naked eye are limited,
and the potential of the image data is often not fully realized.
Over the years, many researchers have tried to use complex
mathematical and statistical algorithms to extract quantitative

information that is hard to observe, even predicting cancer
progression (33–35).

With the development of artificial intelligence technology,
radiomics has emerged as the times require, using machine
learning algorithms to mine high-throughput features
from medical images and conduct modeling analysis.
Increasing evidence shows that radiomics can be used for
quantitative characterization of tumors for tasks such as
disease diagnosis, treatment planning, and prognosis, which
constitutes an important research direction for artificial
intelligence technology in medical applications (36, 37).
Radiomics is an emerging and rapidly developing field
that integrates knowledge from radiology, oncology, and
computer science and is an interdisciplinary subject that
emphasizes the integration of medicine and engineering
(38). With the rise of deep learning technology in recent
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TABLE 3 | Selected characteristics of included studies.

References Country Year Study

design

Patients

(% female

patients)

Sample

size for

diagnostic

accuracy

Mean or

median age

(SD; range),

years

Imaging

modality

Type of

malignancy

AI model

(Per-

patient/per-

node

diagnostic

output)

Reference

standard

Classification

criteria

Coroller

et al. (13)

USA 2016 Retrospective

single-center

85 (65%) – 60.3 CT NSCLC Radiomics

(per-patient)

Radiology B D

Parmar

et al. (14)

USA 2018 Retrospective

single-center

1,194 – 68.3 (32–93) CT NSCLC Deep learning

(per-patient)

Pathology A B C

Sun et al.

(15)

China 2019 Retrospective

single-center

385 (68%) 201 53.1 (±12.2) CT Lung Cancer Radiomics

(per-patient)

Radiology A C

Ling et al.

(16)

China 2019 Retrospective

multi-center

229 (31.5%) 74 64 (59–81) CT Lung Cancer Radiomics

(per-patient)

Radiology A

Coudray

et al. (17)

USA 2018 Retrospective

single-center

1,176 459 61

(51.3–72.8)

CT NSCLC Deep learning

(per-patient)

Radiology B C

Xu et al. (18) China 2019 Retrospective

single-center

179 (52.8%) – 63 (32–93) CT NSCLC Deep learning

(per-patient)

Pathology B D

Baldwin

et al. (19)

UK 2020 Retrospective

single-center

1,337 328 – CT Lung Cancer Deep learning

(per-patient)

– A

Schroers

et al. (20)

Germany 2019 Retrospective

single-center

82 (38%) 50 61.5 (±5.0) MRI Lung Cancer Radiomics

(per-patient)

Pathology A C

Wang et al.

(21)

China 2019 Retrospective

single-center

249 (39.8%) – 61.4 (±8.96) CT Lung Cancer Deep learning

(per-patient)

Radiology D

Leleu et al.

(22)

France 2020 Retrospective

single-center

215 (39%) 72 58.6 (±10.3) CT Lung Cancer Radiomics

(per-patient)

Pathology A

Ann et al.

(23)

USA 2019 Prospective

multi-center

262 48 – CT NSCLC Radiomics

(per-patient)

Pathology A B C

Cong et al.

(24)

China 2020 Retrospective

single-center

411 (50.4%) 141 59.62

(24–84)

CT NSCLC Radiomics

(per-patient)

Radiology B C D

Botta et al.

(25)

Italy 2020 Retrospective

single-center

270 (38%) – 67.4

(61.0–72.6)

CT NSCLC Radiomics

(per-patient)

Radiology A B D

Wei et al.

(26)

USA 2020 Retrospective

multi-center

146 (39.7%) – 65.72 (±

12.88)

PET/CT NSCLC Radiomics

(per-node)

Radiology A B C

Khorrami

et al. (27)

USA 2019 Retrospective

single-center

112 – – CT NSCLC Radiomics

(per-patient)

Pathology B D

Kirienko

et al. (28)

Italy 2021 Retrospective

single-center

149 (37.6%) 73 70 (41–84) PET/CT Lung Cancer Radiomics

(per-node)

Radiology B C

Rossi et al.

(29)

Italy 2020 Retrospective

single-center

109 – – CT NSCLC Radiomics

(per-patient)

Radiology A B

Chai et al.

(30)

China 2021 Retrospective

single-center

198 (54%) 402 58.1 (± 8.5) CT NSCLC Radiomics

(per-node)

Pathology A B D

Wang et al.

(31)

China 2019 Retrospective

single-center

717 386 — CT NSCLC Radiomics

(per-node)

Radiology B D

A, Determine whether the patient has lung cancer; B, Determine whether the patient has non-small cell lung cancer; C, Determine whether the patient has malignant lung nodule; D,

Determine whether the patient has lymph node metastasis.

years, the need for high precision and high stability
in lung cancer staging has become more and more
urgent (39).

To our knowledge, this is the first meta-analysis to summarize
the diagnostic accuracy of deep learning and radiomics involving
in lung cancer staging. We provided summarized data in this
field and compared the identification effectiveness of lung
cancer, tumor types, malignant lung nodules and lymph node
metastase. In this article, the included studies mainly used

radiomics (n = 14) rather than deep learning methods (n =

5). Of the five deep learning models, two were developed using
transfer learning and three were developed using convolutional
neural networks (CNN). Part of the reason there are relatively
few deep learning models is that deep learning techniques
are relatively new and prone to bias. The difference in the
number of studies of the two AI models will lead to a
significant deviation in the data ratio, affecting the ability
comparison of the two models. Furthermore, most studies
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FIGURE 3 | Summary of QUADAS-2 assessments of included studies.

TABLE 4 | Quality assessment.

Source Risk of bias Applicability concerns

Patient selection Index test Reference

standard

Flow and

timing

Patient

selection

Index

test

Reference

standard

Was the

statistical

management

adequate?

Were the

inclusion/

exclusion

criteria

specified?

Was the type

of study

(retrospective

or prospective)

specified?

Were the

imaging

acquisition

protocol and

the

segmentation

method(s)

detailed?

Was the

image

processing

approach

detailed?

Was the

validation

independent

(i.e., no

internal)?

Was the

reference

standard

adequate?

Was there an

appropriate

interval

between

index test

and

reference

standard?

Chetan et al. (1) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Unclear

Parmar et al. (2) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Yes

Sun et al. (3) Yes Yes Yes Yes Yes No Unclear Unclear Yes Yes Yes

Ling et al. (4) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Yes

Coudray et al. (5) Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes Unclear

Xu et al. (6) Yes No Yes Yes Yes No Unclear Unclear Yes Yes Yes

Baldwin et al. (7) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Yes

Schroers et al. (8) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Yes

Wang et al. (9) Yes No Yes Yes No No Unclear Unclear Yes Yes Unclear

Leleu et al. (10) Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes Yes

Ann et al. (11) Yes Yes Yes Yes Yes Yes Unclear Unclear Yes Yes Unclear

Cong et al. (12) Yes Yes Yes Yes Yes Yes No Unclear Yes Yes Yes

Botta et al. (13) Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes Unclear

Botta et al. (13) Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes Unclear

Wei et al. (14) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Yes

Khorrami et al. (15) Yes Yes Yes Yes Yes No Unclear Unclear Yes Yes Yes

Kirienko et al. (16) Yes Yes Yes Yes Yes No Unclear Unclear Yes Yes Unclear

Rossi et al. (17) Yes Yes Yes Yes Yes No Yes Unclear Yes Yes Unclear

Chai et al. (18) Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes Yes

Wang et al. (19) Yes Yes Yes Yes Yes No Unclear Unclear Yes Yes Unclear

are retrospective in design, there are few prospective deep
learning studies in lung cancer medical imaging staging, and
most studies lack data and code availability. At the same

time, most studies are single-center and use internal validation
or resampling methods (cross-validation). However, internal
validation tends to overestimate AUROC due to the lack of
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generality of the models, limiting the integration of AI models
into clinical settings (40). Therefore, predictive models validated
externally by using images from different hospitals are needed
to create reliable estimates of the performance levels of other
sites (41).

This systematic review performed a statistical assessment
of pooled data collected from 19 studies. However, our
findings must take into account some limitations. First, while
comprehensive, our search may have missed some studies that
could have been included. Second, we calculated estimates of
diagnostic performance using limited data as several studies

FIGURE 4 | Funnel plot of the area under the receiver operating characteristic

in 14 studies.

reported incomplete data. Third, there may be geographic
bias because the included studies were from geographically
different quantitative distributions. Finally, the type of scanner
used for diagnosis, the imaging protocol, and the criteria
for lung cancer staging may affect the accuracy of the
results. In the future, the clinical benefit of diagnostic lung
cancer staging models must be rigorously evaluated against
current diagnostic criteria, as not all models are applicable
in clinical practice (42, 43). Under the current hot spot
of artificial intelligence development, more and more deep
learning studies have shown that deep learning big data
extracted from patients’ medical images can have good clinical
application value in tumor staging of patients. Therefore, we
can combine deep learning features to establish a radiomics
combined with deep learning diagnostic model, so that the
accuracy of lung cancer staging diagnosis of patients can
be improved.

CONCLUSION

The models based on deep learning or radiomics
have the potential to improve diagnostic accuracy
in the pathological staging of lung cancer with the
purpose of providing individualized preoperative non-
invasive auxiliary prediction means for clinicians and
realizing valuable prediction for patients to obtain better
treatment strategy. Future studies are welcomed to use
standardized radiomics features, more robust tools of feature
selection and model development to further improve
the diagnostic accuracy of artificial intelligence in lung
cancer staging.

TABLE 5 | Summary of AUROC for each study.

References Sensitivity, % Specificity, % Accuracy, % AUROC 95%CI Standard error

Coroller et al. (13) – – – 0.630 0.583–0.713 0.0331

Parmar et al. (14) 82.4 73.1 83.5 0.710 0.60–0.82 0.0561

Sun et al. (15) – – – 0.770 0.69–0.86 0.0434

Ling et al. (16) – – – 0.864 0.782–0.904 0.0311

Coudray et al. (17) 89.0 93.0 83.3 0.869 0.753–0.961 0.0531

Xu et al. (18) – – 63.5 0.670 – –

Baldwin et al. (19) 99.57 28.03 40.01 0.896 0.876–0.915 0.0010

Schroers et al. (20) 86.95 93.25 88.89 – – –

Wang et al. (21) 64.04 58.97 61.47 0.640 0.61–0.67 0.0153

Leleu et al. (22) – – 72.6 – – –

Ann et al. (23) 79.9 75.2 65.8 0.761 0.59–0.71 0.0306

Cong et al. (24) 72.97 63.33 55.22 0.790 0.77–0.81 0.0102

Botta et al. (25) – – – 0.840 0.63–0.98 0.0893

Wei et al. (26) 54.16 55.56 63.64 0.860 0.79–0.94 0.0383

Khorrami et al. (27) 61.34 57.16 63.81 0.880 0.79–0.97 0.0459

Kirienko et al. (28) 85.7 88.2 93.3 – – –

Rossi et al. (29) 100.0 66.7 85.7 0.850 – –

Chai et al. (30) – – 95.3 – – –

Wang et al. (31) – – 72.4 0.712 0.678–0.770 0.0235
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With the increasing incidence and mortality of pulmonary tuberculosis, in addition
to tough and controversial disease management, time-wasting and resource-limited
conventional approaches to the diagnosis and differential diagnosis of tuberculosis
are still awkward issues, especially in countries with high tuberculosis burden and
backwardness. In the meantime, the climbing proportion of drug-resistant tuberculosis
poses a significant hazard to public health. Thus, auxiliary diagnostic tools with higher
efficiency and accuracy are urgently required. Artificial intelligence (AI), which is not
new but has recently grown in popularity, provides researchers with opportunities and
technical underpinnings to develop novel, precise, rapid, and automated implements for
pulmonary tuberculosis care, including but not limited to tuberculosis detection. In this
review, we aimed to introduce representative AI methods, focusing on deep learning
and radiomics, followed by definite descriptions of the state-of-the-art AI models
developed using medical images and genetic data to detect pulmonary tuberculosis,
distinguish the infection from other pulmonary diseases, and identify drug resistance
of tuberculosis, with the purpose of assisting physicians in deciding the appropriate
therapeutic schedule in the early stage of the disease. We also enumerated the
challenges in maximizing the impact of AI in this field such as generalization and clinical
utility of the deep learning models.

Keywords: pulmonary tuberculosis, artificial intelligence, deep learning, radiomics, machine learning

INTRODUCTION

Among the infectious diseases, tuberculosis (TB) is one of the major causes of mortality worldwide,
leading to approximately 1.4 million deaths and 10 million new cases annually, according to
the World Health Organization (WHO) Global Tuberculosis Report 2021 (1). In addition to
the threat to public health posed by TB, the incidence of drug-resistant tuberculosis (DR-TB)
continues to increase, resulting in difficulty in controlling the epidemic (2). Accurate detection
methods based on bacteria, such as acid-fast bacilli or bacterial cultures, are time-consuming
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and condition-limited. Gene testing to identify infection or
drug resistance of the pathogen-Mycobacterium tuberculosis
(M. tuberculosis) is inconvenient and restricted by the
laboratory environment. Although medical images, such
as chest radiographs [also called chest X-ray (CXR)] and
computed tomography (CT), are comparatively inexpensive and
more available, in certain developing countries or backward
areas, there may be no advanced medical equipment or a
lack of experienced radiologists to interpret the images, and
the growing medical image data may add workload to the
physicians. Therefore, automated, precise, efficient, and cost-
effective assistance tools devoted to TB management demand
prompt exploitation.

Over the past decades, with the vigorous development of
computer technology, artificial intelligence (AI) has aroused a
whopping level of attention in many fields, especially in image
recognition. AI systems based on medical images or other
meaningful clinical information have been utilized to screen,
diagnose, assess severity, and predict prognosis in multiple
diseases, such as brain tumor (3, 4), pneumonia (5), lung cancer
(6), cardiovascular disease (7), and even tumor metastasis (8).

In addition, for better implementation of AI in the medical
field, particular ethical concerns should also be considered. With
the widespread development and utilization of AI, privacy and
security during the management and transmission of data, as well
as the informed consent of patients are emerging as critical ethical
issues. Moreover, specific psychological and legal considerations
have also been proposed. For instance, when an error by
the automated system leads to a false diagnosis or improper
therapeutic schedule resulting in harmful consequences, this
may cause a dispute over who should be responsible for that
mishap. In medical practice, owing to the opaqueness of the
prediction generated by the algorithm, physicians may distrust
the model (9). Furthermore, to verify the clinical relevance of
the models, clinical trials are required, wherein more intractable
issues, such as obtaining informed consent, are present; however,
only a few clinical trials involving the use of AI systems have
been performed. Collectively, to guide the appropriate adoption
of AI systems, the establishment of effective ethical and legal
frameworks is of great urgency (10, 11).

We searched the literature in PubMed, Embase, and Web
of Science using a retrieval search strategy with the following
keywords: “tuberculosis” and “artificial intelligence” or “deep
learning” or “radiomics” or “machine learning,” selecting
quantified studies by the abstracts, and the flow diagram is
demonstrated in Supplementary Figure 1. In this review, we
mainly focused on approaches based on AI using CXR, CT,
positron emission tomography (PET)/CT images, and genetic
data associated with TB care. By describing the latest typical
AI studies focusing on TB, we aimed to inform physicians and
radiologists interested in AI for the precise diagnosis of TB to
carry out optimal therapeutic regimens.

We started by briefly introducing AI, with deep learning and
radiomics stressed; later, we provided a few definite examples
of the application of AI in the medical field, especially in
respiratory system. We then narrated the up-and-coming AI
techniques in TB from three aspects according to the proposed

use, namely, TB detection, discrimination between TB and other
pulmonary diseases, and recognition of drug resistance of TB
(Figure 1). Finally, we summarized the significance of previous
studies, challenges, and prospects of developing more practical
and accurate AI tools for TB in the future.

ARTIFICIAL INTELLIGENCE IN A
NUTSHELL

AI is a technical science that studies and develops the theory,
method, technology, and application of systems used to simulate
and extend human intelligence. Deep learning, a hot topic in
this field, which has been probed extensively, mostly leverages
convolutional neural networks (CNNs) comprised of multiple
layers, including input, convolutional, pooling, fully connected,
and output layers, through which the specific predictions could
derive from primary digitalized inputs, such as images, speech,
gene sequences, and clinical text information (12, 13). What’s
more, other plentiful sorts of machine learning algorithms,
such as logistic regression (LR), random forest (RF), support
vector machine (SVM), and decision tree (DT), are valuable
components of AI as well (14–18). Radiomics, designed to mine
pathophysiological information from medical images, includes
a common process involving data collection; identification
of the region of interest (ROI); ROI segmentation; feature
extraction, selection, and quantification; model establishment;
and prediction making in the end (19, 20). The workflow of deep
learning and radiomics is displayed in Figure 2.

The prosperity of AI applied to the medical field, especially
in respiratory system, has attracted substantial attention with
promising results, such as detection of pulmonary nodules (21)
and prediction of treatment response or outcome of lung cancer
(22, 23). Meanwhile, we have made excellent achievements,
including diagnosis and discrimination of 2019 novel coronavirus
pneumonia (24), predetermination of epidermal growth factor
receptor (EGFR) gene mutation status, programmed death
ligand-1 (PD-L1) expression level, and target therapy effect in
patients with lung cancer (25–27).

As a noticeable disease in this system, AI applied to TB is
presented as follows and summarized briefly in Table 1.

APPLICATION OF ARTIFICIAL
INTELLIGENCE IN PULMONARY
TUBERCULOSIS

Detection of Pulmonary Tuberculosis
Since the majority of patients with pulmonary tuberculosis (PTB)
have abnormal chest CXR findings, such as cavities, centrilobular
nodules, and consolidations (28), which are suggestive of the
diagnosis of PTB, and CXR is comparatively widely available,
WHO has recommended TB screening in high-risk populations
by chest radiographs (29). Similarly, CT images demonstrate
abnormalities when PTB occurs. These representative medical
images are commonly utilized to train a deep learning model
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FIGURE 1 | Application of artificial intelligence in tuberculosis. NTM-LD, non-tuberculous mycobacterium lung disease; CXR, chest X-ray; CT, computed
tomography; PET/CT, positron emission tomography/computed tomography.

FIGURE 2 | The workflow of deep learning and radiomics. ROI, region of interest.
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TABLE 1 | A brief summary of the included studies.

Section Study
proportion

Purpose Reference
standard

Primary materials Algorithm Evaluation
indicators

References

Tuberculosis
detection

48.5% Diagnose
pulmonary
tuberculosis or
disease evaluation

Pathogenic
detection, radiology
reports, clinical
records, etc.

CXR and CT
images

CNN and ML AUC, sensitivity,
specificity,
accuracy, etc.

(31–41, 43–47)

Tuberculosis
discrimination

18.2% Discriminate
between pulmonary
tuberculosis and
lung cancer or
NTM-LD

Pathogenic
detection,
pathology, or
follow-up
confirmation

CT and PET/CT
images

CNN and radiomics (52–55, 59, 60)

Tuberculosis drug
resistance
prediction

33.3% Recognize
MDR-TB or drug
resistance of
Mycobacterium
tuberculosis up to
14 anti-tuberculosis
drugs

Drug susceptibility
testing

CXR, CT images,
and gene
sequences

ANN, CNN, GNN,
and ML

(63–65, 68–73)

CXR, chest X-ray; CT, computed tomography; CNN, convolutional neural network; ML, machine learning; AUC, area under the curve; NTM-LD, non-tuberculous
mycobacterium lung disease; PET/CT, positron emission tomography/computed tomography; MDR-TB, multi-drug resistant tuberculosis; ANN, artificial neural network;
GNN, graph neural network.

to detect PTB suffering. As early as 1999, an artificial neural
network was exploited to predict active TB, taking advantage
of radiographic findings, symptoms, and demographic variables,
showing a favorable performance, which gave researchers
powerful afflatus (30). Thereafter, abundant studies have been
conducted to recognize the contagious disease using radiological
images in slightly different forms (Table 2).

Detection of Pulmonary Tuberculosis Alone
Lakhani and Sundaram (31) adopted two deep CNNs to detect
PTB on CXR images. Finally, the area under the curve (AUC)
achieved a significant level at 0.99 [95% confidence interval (CI)
0.96–1.00] on account of a method named “resemble,” which
indicated that the ultimate PTB probability score was obtained
from the two CNNs, with a different weighting of their outputs
and choosing the best match. In addition, this study revealed
that networks pretrained by daily color images outperformed
untrained ones [AUC 0.98 pretrained vs. 0.90 untrained of
AlexNet and 0.98 pretrained vs. 0.88 untrained of GoogLeNet
(P < 0.001) in the test dataset]. Similarly, Hwang et al. (32)
developed an automatic detection algorithm to classify active
PTB using chest radiographs from a massive dataset containing
60,989 images which eventually manifested high performance
both in lesion localization [area under the alternative free-
response receiver operating characteristic curves (AUAFROC)
0.973–1.000] and disease classification (AUC 0.977–1.000), while
the observer performance test showed that the algorithm
had better behavior than physicians with different degrees of
experience (AUC 0.993 vs. 0.664–0.925 in localization and 0.993
vs. 0.746–0.971 in classification). Another study developed an
algorithm based on ResNet to detect PTB, and the model reached
an accuracy of 96.73% with a heatmap generation for precise
lesion location as well (33). Using 20,135 chest radiographs
from 19,681 asymptomatic individuals, an out-of-sample test
was conducted (34) to validate the screening performance of
the deep learning-based automated detection (DLAD) algorithm

developed by Hwang et al. (32). Five images from four active
PTB cases confirmed by the bacteriological test were properly
classified as having abnormal discoveries with specificities of
0.997 and 0.959 at high specificity and high sensitivity thresholds,
respectively. Moreover, DLAD showed a decent performance in
identifying radiologically relevant abnormalities with an AUC of
0.967 (95% CI 0.93–0.996). Likewise, to verify the performance of
deep learning models on the general population, a study assessed
five CNNs in two forms, namely, I-CNN (images input only) and
D-CNN [images and demographic variables (age, sex, height, and
weight) input] to detect PTB by CXR images in 39,677 workers
from Korea. Among the five models, VGG19 achieved the highest
performance in both the training and test cohorts, regardless of
the demographic information input (AUC 0.9075 of I-CNN and
0.9213 of D-CNN in the test set), and the AUCs of the other
four systems were all over 0.88 with D-CNN in the test set.
Moreover, no statistical significance was observed when only a
single demographic variable was included (P > 0.05) (35). Taking
advantage of segmentation and augmentation, EfficientNetB3,
the CNN structure, demonstrated incredibly high performance in
PTB detection with an AUC of 0.999 (36). Moreover, a simplified
network was proposed to surmount the trouble of overfitting
and difficult deployment in mobile settings owing to the large
scale of parameters and hardware requirements of the models,
achieving an AUC of 0.925 through 5-fold cross-validation in
the diagnosis of PTB on CXRs (37). Uniquely, different from the
studies mentioned earlier, Rajaraman et al. blazed new trails to
recognize findings consistent with PTB by lateral CXRs through
deep learning, with an AUC up to 0.9491 (38).

TB is important not only in the general population but also
in patients with specific conditions. Due to the high mortality
caused by TB in human immunodeficiency virus (HIV)-positive
patients with the conspicuous incidence and improper treatment,
in South Africa, Rajpurkar et al. utilized CXRs, as well as certain
clinical covariates, including age, temperature, hemoglobin, and
white blood cell counts of 677 HIV-positive patients from two
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TABLE 2 | Summary of AI applications in TB detection.

No. References Method Reference
standard

Dataset Study population Training/Validation/test
cohort

Model names Algorithm Results

1 Lakhani and Sundaram (31) Retrospective
multi-center on
CXR images

Sputum, radiology
reports,
radiologists, and
clinical records.

1,007 participants United States,
China, and Belarus

Training: 685 Validation: 172
Test: 150

NA CNN AUC 0.99, Sen 97.3%,
Spe 94.7%, Acc 96.0%
of the ensemble
method

2 Hwang et al. (32) Retrospective
multi-center on
CXR images

Culture or PCR 62,433 CXR
images

Korea, China,
United States, etc.

Training: 60,089 Tuning: 450
Internal validation: 450 External
validation: 1,444

DLAD CNN AUC 0.977–1.000 for
TB classification,
AUAFROC
0.973–1.000 for lesion
localization; Sen
0.943–1.000, Spe
0.911–1.000 at high
sensitivity cutoff

3 Nijiati et al. (33) Retrospective
single-center on
CXR images

Symptoms,
laboratory and
radiological
examinations

9,628 CXR images China Training: 7,703 Test: 1,925 NA CNN AUC 0.9902–0.9944,
Sen 93.2–95.5%, Spe
95.78–98.05%, Acc
94.96–96.73% in the
test set

4 Lee et al. (34) Retrospective
single-center on
CXR images

Smear microscopy,
culture, PCR, and
radiologists

19,686 participants Korea Test: 19,686 DLAD CNN AUC 0.999, Sen 1.000,
Spe 0.959–0.997, Acc
0.96–0.997

5 Heo et al. (35) Retrospective
single-center on
CXR images

Radiologists 39,677 participants Korea Training: 2,000 Test: 37,677 D-CNN and I-CNN CNN AUC 0.9213, Sen
0.815, Spe 0.962 of
D-CNN

6 Nafisah and Muhammad (36) Retrospective
multi-center on
CXR images

NA 1,098 CXR images United States,
China, and Belarus

5-fold cross validation NA CNN AUC 0.999, Acc
98.7%, recall 98.3%,
precision 98.3%, Spe
99.0%

7 Pasa et al. (37) Retrospective
multi-center on
CXR images

NA 1,104 participants United States,
China, and Belarus

5-fold cross validation NA CNN AUC 0.925, Acc 86.2%

8 Rajaraman et al. (38) Retrospective
multi-center on
CXR images

Radiologists 76,031 CXR
images

United States and
Spain

Training: test 9:1 NA CNN AUC 0.9274–0.9491,
recall 0.7736–0.8113,
precision
0.9524–0.9773, Acc
0.8585–0.8962

(Continued)
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TABLE 2 | (Continued)

No. References Method Reference
standard

Dataset Study population Training/Validation/test
cohort

Model names Algorithm Results

9 Rajpurkar et al. (39) Retrospective
multi-center on
CXR images

Culture or Xpert
MTB/RIF

677 participants South Africa Training: 563 Test: 114 CheXaid Deep learning AUC 0.83, Sen 0.67,
Spe 0.87, Acc 0.78

10 Lee et al. (40) Retrospective
multi-center on
CXR images

Sputum
microscopy, culture
or PCR

6,964 participants Korea Training: validation 7:3 Test:
455

NA CNN AUC 0.82–0.84, Spe
26–48.5% at the cutoff
of 95% Sen in the test
set

11 Yan et al. (41) Retrospective
multi-center on CT
images

Culture 1,248 CT images China and United States Training: validation 8:2 External
test: 356

NA CNN Acc 95.35–98.25%,
recall 94.87–100%,
precision
94.87–98.70%

12 Khan et al. (43) Prospective
single-center on
CXR images

Culture 2,198 participants Pakistan Test: 2,198 qXR and CAD4TB CNN AUC 0.92, Sen 0.93,
Spe 0.75 for qXR; AUC
0.87, Sen 0.93, Spe
0.69 for CAD4TB

13 Qin et al. (44) Retrospective
multi-center on
CXR images

Xpert MTB/RIF 1,196 participants Nepal and Cameroon Test: 1,196 qXR, CAD4TB, and
Lunit INSIGHT CXR

CNN AUC 0.92–0.94, Sen
0.87–0.91, Spe
0.84–0.89, Acc
0.85–0.89

14 Qin et al. (45) Retrospective
multi-center on
CXR images

Xpert MTB/RIF 23,954 participants Bangladesh Test: 23,954 qXR, CAD4TB,
InferRead DR, etc.

CNN AUC 84.89–90.81%,
Sen 90.0–90.3%, Spe
61.1–74.3% when fixed
at 90% Sen

15 Codlin et al. (46) Retrospective
multi-center on
CXR images

Xpert MTB/RIF 1,032 participants Viet Nam Test: 1,032 qXR, CAD4TB,
Genki, etc.

CNN AUC 0.50–0.82, Spe
6.3–48.7%, Acc
17.8–54.7% when fixed
at 95.5% Sen

16 Melendez et al. (47) Retrospective
single-center on
CXR images

Culture 392 patients South Africa 10-fold cross validation CAD4TB Machine learning AUC 0.72–0.84, Spe
24–49%, NPV 95–98%
when fixed at 95% Sen

AI, artificial intelligence; TB, tuberculosis; CXR, chest X-ray; NA, not available; CNN, convolutional neural network; AUC, area under the curve; Sen, sensitivity; Spe, specificity; Acc, accuracy; PCR, polymerase chain
reaction; AUAFROC, area under the alternative free-response receiver-operating characteristic curve; CT, computed tomography.
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hospitals to establish a deep learning algorithm, named CheXaid,
which improved the clinicians’ diagnostic accuracy slightly (0.65
vs. 0.60, P = 0.002). Interestingly, the performance of the
algorithm alone was superior to that of clinicians assisted by
AI (accuracy 0.79 vs. 0.65, P < 0.001). Moreover, the training
strategy of adding clinical variables with CXRs improved the
performance of the algorithm (AUC of 0.83 and 0.71 in the
combination model and model alone) in this study and suggested
the importance of integrating inputs in various modalities to
enhance the power of the models (39).

Detection of Pulmonary Tuberculosis With Treatment
Monitoring and Severity Estimation
Apart from detecting PTB, deep learning is capable to follow
post-treatment changes and estimate the severity of it. Utilizing
CXRs, the output of the model developed by Lee and his
team elevated by 0.30 when the degree of smear positivity
increased (P < 0.001) and decreased gradually during treatment;
meanwhile, the model achieved AUCs over 0.82 in the two test
sets for PTB diagnosis (40).

Owing to higher resolution and more subtle presentation, CT
images provide more nuanced information on the lung region
and play an important role in PTB diagnosis as well (28). Thus,
Yan et al. (41) developed a model to detect PTB and quantitatively
evaluate the disease burden, of which the quantified TB scores
were obviously higher in severe patients than in non-severe
ones and was well correlated with the CT scores assessed by
radiologists. Moreover, the model demonstrated an accuracy of
83.37% for classifying the six pulmonary lesion types, such as
consolidation and calcified granulomas in the validation set,
while an accuracy of 98.25% was achieved for distinguishing
active PTB patients from inactive individuals in the test set.

The two studies are unique as there is a lack of research
targeting treatment monitoring and disease burden estimation
of TB by AI methods, which inspires us to launch more relevant
studies to give rein to their adjuvant role in the clinic.

Validation of Computer-Aided Pulmonary
Tuberculosis Detection Systems
In addition to the models obtained from the original studies,
the computer-aided detection (CAD) systems, such as qXR,
CAD4TB, and Lunit INSIGHT CXR (42), which generate a PTB
classification when the output is more than a defined threshold
score, have been established to facilitate PTB detection using CXR
images based on deep learning. Several studies have exclusively
assessed the diagnostic ability of the application of various
categories and versions in diverse datasets.

To identify the practicalities of qXR version 2.0 (qXRv2) and
CAD4TB version 6.0 (CAD4TBv6) in detecting PTB in low-
and middle-income countries with a high disease burden, Khan
et al. (43) conducted a prospective single-center study with 2,198
individuals at the Indus Hospital, located in Karachi, Pakistan.
Finally, qXRv2 attained a sensitivity of 0.93 (95% CI 0.89–0.95)
and a specificity of 0.75 (95% CI 0.73–0.77), while CAD4TBv6
showed a specificity of 0.69 (95% CI 0.67–0.71) when matched
with the same sensitivity, both reaching the Target Product
Profile recommendations defined by WHO (sensitivity ≥ 0.90

and specificity ≥ 0.70). What’s more, the sensitivity decreased
obviously in smear-negative patients compared to that in smear-
positive patients (0.80 in the negative group vs. 0.96 in the
positive cohort of qXRv2 and 0.82 in the negative population
vs. 0.97 in positive individuals of CAD4TBv6). This study is
worth emphasizing because it is a rare prospective investigation
validating CAD approaches.

Qin et al. (44) estimated three commercially available CAD
tools, qXRv2, CAD4TBv6, and Lunit INSIGHT CXR, to triage
PTB in 1,196 participants from Nepal and Cameroon, with AUCs
above 90% [0.94 (95% CI 0.93–0.96) for Lunit INSIGHT CXR,
0.94 (95% CI 0.92–0.97) for qXRv2, and 0.92 (95% CI 0.90–0.95)
for CAD4TBv6]. When the purpose was to reduce the Xpert test
by 50%, the sensitivities of the three models maintained at 97–
99%, with no statistical significance among them. Subsequently,
the group assessed five AI algorithms in newer versions, including
CAD4TB version 7 (CAD4TBv7), qXR version 3 (qXRv3),
Infereread DR version 2, Lunit INSIGHT CXR version 4.9.0, and
JF CXR-1 version 2, on a massive dataset comprising CXRs from
23,954 individuals. The performance of all of them surpassed
that of three radiologists as a concrete manifestation that AI
showed higher specificity and positive predictive values (PPVs)
when matched with the same sensitivity (45). Another study
evaluated a maximum of 12 CAD solutions to identify PTB in
comparison with an experienced radiologist and an intermediate
reader. The final results showed that qXRv3, CAD4TBv7, and
Lunit INSIGHT CXR version3.1.0.0 achieved the highest AUC
of 0.82. Meanwhile, five of them surpassed the intermediate
reader in specificity and accuracy when holding at the same
sensitivity, while only qXRv3 maintained comparable specificity
when sensitivity reached the standard of the experienced reader
[95.5% (95% CI 90.4–98.3%)] (46). The three studies mentioned
(43, 45, 46) coincidentally discovered that, in groups with
previous TB, the performance of AI systems would decline to
some extent. In addition, when integrating clinical information
with the CAD scores of CXRs generated by CAD4TB, the AUC
of the combination framework reached 0.84, improving the
performance of CAD4TB alone (47).

Although the verification results seem remarkable as a whole,
more prospective validation tests need to be carried out in a real
medical environment, after which these mercantile AI systems
may be competent enough to supply convenient, efficient, and
accurate tools for physicians worldwide, facilitating clinical
decision making in the near future.

Discrimination Between Pulmonary
Tuberculosis and Other Lung Diseases
In addition to detection, effort has been made to differentiate PTB
from other pulmonary diseases (Table 3).

Discrimination Between Tuberculosis and Lung
Cancer
Lung cancer is one of the primary causes of cancer death
and is the most common tumor worldwide (48). Moreover,
pulmonary tuberculosis granuloma (TBG) may present as lung
adenocarcinoma (LAC) with the demonstration of similar
solitary pulmonary nodules (49–51), resulting in diagnostic
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TABLE 3 | Summary of AI applications in discrimination between pulmonary tuberculosis and other lung diseases.

No. References Method Reference
standard

Dataset Study population Discrimination Training/Validation/
test cohort

Model
names

Algorithm Results

1 Feng et al. (52) Retrospective
multi-center on CT
images

Histological
diagnosis

550 patients China PTB and lung
cancer

Training:218
Internal
validation:140
External validation:
192

NA DLN AUC 0.809, Sen 0.908,
Spe 0.608, Acc 0.828
in the external
validation set

2 Zhuo et al. (53) Retrospective
multi-center on CT
images

Surgical pathology,
specimen culture or
assay

313 patients China PTB and lung
cancer

Training: validation
7:3

NA Radiomics
nomogram

AUC 0.99, Sen 0.9841,
Spe 0.9000, Acc
0.9570 in the validation
set

3 Hu et al. (54) Retrospective
multi-center on
PET/CT images

Pathological or
follow-up
confirmation

235 patients China PTB and lung
cancer

Training: 163
Validation: 72

NA Radiomics
nomogram

AUC 0.889, Sen 85%,
Spe 78.12%, Acc
79.53% in the
validation set

4 Du et al. (55) Retrospective
single-center on
PET/CT images

Pathology 174 patients China PTB and lung
cancer

Training: 122
Validation: 52

NA Radiomics
nomogram

AUC 0.93, Sen 0.86,
Spe 0.83, Acc 0.85 in
the validation set

5 Wang et al. (59) Retrospective
multi-center on CT
images

Sputum acid-fast
bacilli stain or
culture

1,185 patients China MTB-LD and
NTM-LD

Training: validation:
test 8:1:1 External
test: 80

NA CNN AUC 0.78, Sen 0.75,
Spe 0.63, Acc 0.69 in
the external test set

6 Yan et al. (60) Retrospective
multi-center on CT
images

Sputum culture or
smear

182 patients China MTB-LD and
NTM-LD

Training: validation
8:2 External
validation: 40

NA Radiomics AUC 0.84—0.98, Sen
0.61–0.97, Spe
0.61–0.97 in the
external validation set

AI, artificial intelligence; CT, computed tomography; PTB, pulmonary tuberculosis; NA, not available; DLN, deep learning nomogram; AUC, area under the curve; Sen, sensitivity; Spe, specificity; Acc, accuracy; PET/CT:
positron emission tomography/computed tomography; MTB-LD, Mycobacterium tuberculosis lung disease; NTM-LD, non-tuberculous mycobacterium lung disease; CNN, convolutional neural network.
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confusion and treatment mistakes. A deep learning-based
nomogram (DLN) using CT images was developed and validated
to distinguish TBG from LAC (52). The DLN was constituted
to compare with a clinical model including age, sex, and
subjective findings on CT images, and a deep learning signature
(DLS) model, with scores derived from 14 deep learning
features constructed in advance, and showed better diagnostic
performance than the clinical and DLS models. Comprised
by age, sex, lobulated shape, and DLS score, DLN achieved
both higher AUC and sensitivity than the other 2 models
in the internal validation cohort, meanwhile showing an
AUC of 0.809 in the external validation set. A radiomics
nomogram based on CT images was proposed by another
group, showing an AUC of 0.99 in the validation set to
differentiate the two fundamentally different diseases which
demonstrated similarities between each other (53). Analogously,
to distinguish between solitary LAC and PTB, Hu et al.
constructed a radiomic model containing a set of nine fluorine-
18-fluorodeoxyglucose PET/CT (18F-FDG PET/CT) radiomic
features, such as Histogram_Skewness and SHAPE_Sphericity
(54). While developing a clinical model, they also constructed
a complex model, which was a combination of the radiomic
and clinical models using multivariate LR. Finally, the radiomic
and complex models outperformed the clinical model, as the
AUC of the complex model reached 0.909, while the radiomic
and clinical models achieved 0.889 and 0.644 in the validation
set. Furthermore, a similar study utilized a radiomic nomogram
integrating the radiomic score (RAD-score) derived from a
weighted linear combination of features selected from 18F-FDG
PET/CT images and three semantic features to differentiate the
two semblable image phenotypes. The diagnostic performance of
the radiomic nomogram slightly surpassed that of the radiomic
and semantic models with an AUC of 0.93 in the validation
cohort; the decision curve also illustrated the net benefit of the
nomogram (55).

Discrimination Between Tuberculosis and
Non-tuberculous Mycobacterium Lung Disease
Given that non-tuberculous mycobacterium lung disease (NTM-
LD) demonstrates an increasing incidence and prevalence in
recent years (56, 57), due to similar clinical symptoms and
CT imaging characteristics with mycobacterium pulmonary
tuberculosis lung disease (MTB-LD) (58), it is crucial to
distinguish the different infections as quickly as possible in the
early stage to permit appropriate treatment implementation.
A deep learning framework was developed by Wang and his
colleagues to differentiate between NTM-LD and MTB-LD on
chest CT images with an AUC of 0.86 and 0.78 in the internal test
set and in the external test cohort, respectively (59). Moreover, the
model surpassed three radiologists in almost every metric with
higher diagnostic efficiency (1,000 times faster) and output class
activation maps identifying abnormal lung areas without manual
annotation. To achieve a similar purpose, another study leveraged
radiomics by taking advantage of the features of cavities in CT
images using six machine learning models (SVM, RF, LR, etc.)
(60); 458 ROIs were depicted by two radiologists, with 29 optimal
quantified image features, such as gradient and wavelet, selected

subsequently. AUCs of the six models were up to over 0.98 in the
training and validation sets.

These studies pioneered the application of AI for the
discrimination of PTB from lung cancer and NTM-LD, with
promising results encouraging investigators to develop more
AI models using a variety of original training materials to
differentiate PTB from more diseases.

Identification of Tuberculosis Drug
Resistance
In the context of increasing incidence and intractable
management of TB resistance, multiple examination approaches,
including drug susceptibility testing (DST), Xpert MTB/RIF,
line-probe assays, and whole-genome sequencing (WGS), have
been explored to identify DR-TB (2). However, cost and time
issues are still remaining. Hence, inexpensive, rapid, and accurate
tools for automated detection of the antimicrobial resistance are
of great concern (Table 4).

Drug-Resistant Tuberculosis Identification Based on
Medical Images
Imaging manifestations of these two main categories of TB,
sensitive or resistant to anti-tuberculosis therapy (ATT), differ
depending on the phenotypes, as DR-TB could demonstrate
larger lesions and thick-walled cavities on CXR images (61, 62).
Jaeger et al. (63) trained an artificial neural network through
cross-validation to identify patients with multi-drug resistant
tuberculosis (MDR-TB) using CXRs, which achieved an AUC of
only up to 66%. This unsatisfactory result may be explained by the
small dataset containing only 135 cases. However, it is inspiring
that the team used a larger dataset of 5,642 CXRs and various
CNNs for the same purpose, and finally, a preferable outcome was
obtained. With static or dynamic data augmentation, the AUC of
InceptionV3 increased to 0.85. For custom CNNs, six-layer CNN
expressed the best performance with an AUC of 0.74 (64). After
the ImageCLEF2017 competition, a study utilized a small dataset
from the match, which comprised CT images from 230 drug-
sensitive and MDR-TB patients to implement a combination of
a patch-based deep CNN and SVM, with an accuracy of 91.11%
in predicting MDR-TB at the patient level and 79.8% at the patch
level (65).

To date, the exploitation of using medical images to identify
DR-TB has not been investigated thoroughly; hence, these studies
are noteworthy because they could give us some instructions for
future research orientation.

Drug-Resistant Tuberculosis Identification Based on
Genetic Data
Besides medical images, genetic information could also serve as a
diagnostic tool for TB. As introduced above, various molecular
approaches are capable of detecting drug resistance, of which
the theoretical proof is that the resistance occurrence in TB
is caused by chromosomal mutations, passing along through
vertical descent, in present genes. Meanwhile, rapid molecular
tests using genomic information are more efficient than culture-
based assays so they are adopted widely, and related gene data
are available for scientific research (66). Therefore, numerous AI
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TABLE 4 | Summary of AI applications in TB drug resistance identification.

No. References Method Reference
standard

Dataset Study sample Resistance
identification

Training/Validation/
test cohort

Model
names

Algorithm Results

1 Jaeger et al. (63) Retrospective
multi-center on
CXR images

NA 135 patients Belarus MDR-TB 5-fold cross
validation

NA ANN, CNN and ML AUC 50–66%, Acc
0.62–0.66

2 Karki et al. (64) Retrospective
multi-center on
CXR images

DST 5,642 CXR images United States,
China, etc.

DR-TB 10-fold cross
validation

NA CNN AUC 0.85

3 Gao and Qian (65) Retrospective
multi-center on CT
images

NA 230 patients NA MDR-TB Training: 150
Validation: 35 Test:
45

NA CNN and ML Acc 64.71–91.11%

4 Yang et al. (68) Retrospective
multi-center on
gene sequences

DST 8,388 isolates European, Asia,
and Africa

4 drugs and
MDR-TB

Training: test 7:3 DeepAMR ML AUC 94.4–98.7%, Sen
87.3–96.3%, Spe
90.9–96.7%

5 Yang et al. (69) Retrospective
multi-center on
gene sequences

DST 13,402 isolates NA 4 drugs Training: validation:
test 4:2:2 or
stratified cross
validation

HGAT-AMR GNN AUC 72.83–99.10%,
Sen 50.65–96.60%,
Spe 79.50–98.87%

6 Yang et al. (70) Retrospective
multi-center on
gene sequences

DST 1,839 isolates United Kingdom 8 drugs and
MDR-TB

Cross-validation NA ML AUC 91–100%, Sen
84–97%, Spe 90–98%

7 Deelder et al. (71) Retrospective
multi-center on
gene sequences

DST 16,688 isolates NA 14 drugs and
MDR-TB

5-fold cross
validation

NA ML Acc 73.4–97.5%, Sen
0–92.8%, Spe
75.6–100%

8 Chen et al. (72) Retrospective
multi-center on
gene sequences

DST 4,393 isolates ReSeqTB
Knowledgebase

10 drugs 10-fold cross
validation
Independent
validation: 792

NA WDNN and ML AUC 0.937, Sen
87.9%, Spe 92.7% for
the first-line drugs

9 Gröschel et al. (73) Retrospective
multi-center on
gene sequences

DST 20,408 isolates NCBI Nucleotide
Database

10 drugs Training: validation
3:1

GenTB WDNN and ML AUC 0.73–0.96, Sen
57–93%, Spe
78–100%

10 Kuang et al. (75) Retrospective
multi-center on
gene sequences

DST 10,575 isolates China, Cameroon,
Uganda, etc.

8 drugs 10-fold cross
validation

NA CNN and ML Acc 89.2–99.2%, Sen
93.4–100%, Spe
48.0–91.7%, F1 score
93.3–99.6%

11 Jiang et al. (76) Retrospective
multi-center on
gene sequences

DST 12,378 isolates NCBI-SRA
Database

4 drugs Training: validation:
test 8:1:1 and
10-fold cross
validation

HANN Attentive neural
network

AUC 93.66–99.05%,
Sen 67.12–96.31%,
Spe 92.52–98.84%

AI, artificial intelligence; TB, tuberculosis; CXR, chest X-ray; NA, not available; MDR-TB, multi-drug resistant tuberculosis; ANN, artificial neural network; CNN, convolutional neural network; ML, machine learning; AUC,
area under the curve; Acc, accuracy; DST, drug susceptibility testing; DR-TB, drug-resistant tuberculosis; CT, computed tomography; Sen, sensitivity; Spe, specificity; GNN, graph neural network; WDNN, wide and
deep neural network; SRA, sequence read archive.
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studies based on gene sequences have been explored to identify
drug resistance of M. tuberculosis, as follows.

As researched previously, deep learning using genomic data
has been applied to reveal antibiotic resistance (67). Thus, with
mutations for isolates input and phenotypes of drug resistance
output, Yang et al. (68) developed “DeepAMR,” a deep learning
model with a deep denoising auto-encoder for multiple tasks
to predict co-occurrent drug resistance of M. tuberculosis,
comparing the model with conventional machine learning
methods, including RF, SVM, and ensemble classification chains
(ECC). The co-occurrence of rifampicin (RIF) and isoniazid
(INH) resistance accounted for the majority of the dataset
(n = 8,388). The results suggested that the model surpassed
all other approaches in predicting resistance to the four first-
line drugs, MDR-TB, and pan-susceptible tuberculosis (PANS-
TB, isolates susceptible to any of the four first-line drugs),
showing AUCs from 94.4 to 98.7% (P < 0.05). Later, utilizing a
novel method using graphs translated from genetic data of M.
tuberculosis, the team developed a graph neural network named
“HGAT-AMR” to predict drug resistance in a sample consisting
of 13,402 isolates tested for susceptibility to up to 11 drugs
(69). HGAT–AMRi-E (HGAT–AMR trained on any available
incomplete phenotype specimen for the multi-label learning task)
and HGAT–AMRs (HGAT–AMR trained on individual subsets
of different drugs for the single-label learning task) performed
best in INH and RIF, respectively, with AUCs of 98.53 and
99.10%. Meanwhile, HGAT–AMRi-E demonstrated the highest
sensitivity for INH, ethambutol (EMB), and pyrazinamide (PZA)
at 94.91, 96.60, and 90.63%, respectively, and HGAT-AMR
outperformed SVM and LR, unless in a condition of highly
imbalanced data when an isolate had only been tested by INH
and EMB, but not by other drugs. Favorable performance was
yielded in machine learning models constructed by the group
as well, with higher sensitivity compared to the previous rule-
based method (P < 0.01) (70). Collecting 16,688 isolates of which
the WGS and DST data are available to predict drug resistance,
another study developed the gradient boosted tree, a machine
learning method, reaching an accuracy of 95.5% in MDR-TB
identification (71).

Similarly, to determine the drug resistance of M. tuberculosis
strains by inputting gene sequences, Chen et al. compared the
performance of three deep learning models (72). The wide
and deep neural network (WDNN), constructed in the study,
incorporating LR and deep multilayer perceptron, was presented
in four forms, namely, kSD-WDNN (detecting preselected
mutations), SD-WDNN (detecting single resistance), and 2 MD-
WDNNs (detecting common mutations and for all mutations
in multiple resistance), in which the most complex model MD-
WDNN surpassed others in both first-line and second-line
drugs, with average AUCs of 0.937 and 0.891 in the validation
set. Subsequently, a correlative study developed a user-friendly
online tool named GenTB based on genome sequencing to
predict the antibiotic resistance (73), involving the WDNN
and an RF algorithm constituted by Farhat et al. (74). After
testing on 20,408 isolates, both GenTB-RF and GenTB-WDNN
demonstrated satisfactory performance in first-line drugs with
AUCs of more than 87% and with a slightly lower performance in
second-line drugs. In particular, GenTB-RF reached the highest

prediction for RIF [AUC 96% (95% CI 95–96%)]. Based on 1D
CNN, using large and diverse M. tuberculosis isolates from six
continents to verify the accuracy and steadiness of deep learning,
another study developed a model which outperformed the
advanced Mykrobe classifier which utilizes a De Bruijn graph to
identify resistance profiles in antimicrobial-resistant prediction
with higher F1 scores (75). Concurrently, it is worth mentioning
that an innovative hierarchical attentive neural network has been
constructed to predict the drug resistance of M. tuberculosis
through genome-wide variants recently, discovering a potential
gene related to drug resistance besides achieving supernal AUC
and sensitivity in resistance recognition (76).

DISCUSSION

As described earlier, in terms of TB detection, discrimination,
and drug resistance identification, AI showed a great potential,
with performance approximate to or even better than that of
physicians. Yet, there are still lots of challenges remaining, with
the concurrence of prospects, as described below.

Challenges
First, DR-TB remains a critical issue worldwide, with an
increasing incidence and tough management. Developing
dependable AI systems using sufficient radiology-based data,
which is more convenient than gene sequences to rapidly
recognize patients with DR-TB to assist physicians in executing
correct clinical decisions, is of great imperative.

Then, up till now, only a few studies have adopted deep
learning or other AI approaches to predict TB relapse or
treatment response to anti-tuberculosis drugs. An algorithm
based on CNN was proposed to predict the persistence time
needed to achieve culture negative in TB individuals with an
unsatisfactory accuracy, regrettably (77). In addition, it has been
revealed that the minimum inhibitory concentration grew higher
with an increasing risk of relapse (78) and aggressive regimens
may reduce the recurrence of MDR-TB after successful treatment
(79). Thus, if a prediction of relapse can be made in advance,
more precise and positive treatment could be carried out to
reduce the hazard of returning.

Third, the generalization of these models in a broader
population remains to be seen, since not all of those studies
contain external tests, and research samples are not abundant or
variable enough. However, studies, including external validation
sets, demonstrated diminishing performance from training to
external cohorts which gives us a hint of sustaining the
reproducibility of the models to suit various individuals. Perhaps,
multicenter studies in an enormous study population are capable
of solving this problem, but the subsequent issues of data
transmission efficiency and security in the process of data sharing
deserve to be highlighted.

As for model modalities, since Lu et al. developed a fusion
CNN integrated with images and basic clinical information to
predict lung cancer (80) and the model CheXaid utilized CXRs
with clinical variables to detect TB in HIV patients (39), it
is being probed prevalently in the construction of a fusion
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neural network, which is composed of several modules dealing
with data at multiple scales. Thus, there is an incredible amount
of untapped potential to develop AI models with the capacity
to handle multimodal inputs. Furthermore, primary inputs,
including images or data in other forms, are supposed to be
standardized, while diversiform data obtained from different
apparatuses may be at an uneven quality level.

Finally, to achieve the purpose of directing clinical practice,
the practicality of these novel models should be tested in a real
medical environment and seamlessly integrated into the routine
workflow, especially in countries with high TB burden and a
lack of advanced medical equipment and professional physicians.
Owing to the prospective real-world clinical setting, the superior
performance of retrospectively developed AI compared with that
of human should be regarded with some care.

Prospect
Following tremendous progress in computational power and
advanced techniques, AI is blooming increasingly in countless
fields. In radiology, AI demonstrates remarkable performance in
the detection, treatment monitoring, and prognosis prediction
of multiple diseases, especially in oncology. With regard to
TB, saving labor and time costs, AI is capable of improving
detection efficiency and precision; therefore, medical institutions
worldwide could benefit from these novel assistance tools.
In the coming decades, after better integration with clinical
workflow, AI will exert a brilliant influence on the entire duration
of TB from screening, diagnosis, and treatment following
to outcome prediction, meanwhile saving medical resources,
avoiding inappropriate management, and improving the quality
of life of patients.

CONCLUSION

AI-based approaches, including deep learning, radiomics, and
other conventional machine learning methods applied to TB,
provide a self-driven, convenient, and time-saving strategy

to improve diagnostic efficiency and accuracy, outperforming
radiologists. Nonetheless, the clinical utility of them remains to
be verified, while pitfalls, such as reproducibility of the model and
data standardization, need to be addressed as well. To summarize,
in this review, we listed several studies focusing on AI-based
assistance methods applied to TB detection, discrimination, and
drug resistance identification using CXR, CT, PET/CT images,
and genome data. Although most of these studies developed AI
models with favorable performance, quite a few hurdles must
be overcome along the way to maximize the potential of AI.
Although TB is especially emphasized in this study, application
of AI in other diseases is worth equivalent attention.
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Pattern identification (PI) is a diagnostic method used in Traditional East Asian

medicine (TEAM) to select appropriate and personalized acupuncture points

and herbal medicines for individual patients. Developing a reproducible PI

model using clinical information is important as it would reflect the actual

clinical setting and improve the e�ectiveness of TEAM treatment. In this paper,

we suggest a novel deep learning-based PI model with feature extraction

using a deep autoencoder and k-means clustering through a cross-sectional

study of sleep disturbance patient data. The data were obtained from an

anonymous electronic survey in the Republic of Korea Army (ROKA) members

from August 16, 2021, to September 20, 2021. The survey instrument consisted

of six sections: demographics, medical history, military duty, sleep-related

assessments (Pittsburgh sleep quality index (PSQI), Berlin questionnaire,

and sleeping environment), diet/nutrition-related assessments [dietary habit

survey questionnaire and nutrition quotient (NQ)], and gastrointestinal-related

assessments [gastrointestinal symptom rating scale (GSRS) and Bristol stool

scale]. Principal component analysis (PCA) and a deep autoencoder were

used to extract features, which were then clustered using the k-means

clustering method. The Calinski-Harabasz index, silhouette coe�cient, and

within-cluster sum of squares were used for internal cluster validation and the

final PSQI, Berlin questionnaire, GSRS, and NQ scores were used for external

cluster validation. One-way analysis of variance followed by the Tukey test and

chi-squared test were used for between-cluster comparisons. Among 4,869

survey responders, 2,579 patients with sleep disturbances were obtained after

filtering using a PSQI score of >5. When comparing clustering performance

using raw data and extracted features by PCA and the deep autoencoder, the

best feature extraction method for clustering was the deep autoencoder (16

nodes for the first and third hidden layers, and two nodes for the second
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hidden layer). Our model could cluster three di�erent PI types because the

optimal number of clusters was determined to be three via the elbowmethod.

After external cluster validation, three PI types were di�erentiated by changes

in sleep quality, dietary habits, and concomitant gastrointestinal symptoms.

This model may be applied to the development of artificial intelligence-based

clinical decision support systems through electronic medical records and

clinical trial protocols for evaluating the e�ectiveness of TEAM treatment.

KEYWORDS

deep autoencoder, deep learning, pattern identification, clustering, sleep

Introduction

Pattern identification (PI), a diagnostic method in

Traditional East Asian medicine (TEAM), is a meaningful step

for TEAM doctors when making treatment decisions such

as selection of an appropriate acupuncture point and herbal

medicine. It uses clinical information based on traditional

diagnostic criteria, which include observation, listening,

questioning, and pulse detection (1). Particularly, the use of PI

in selecting an optimal combination with a few acupuncture

points has been an important research subject to reveal those

used in actual clinical practice (2, 3). Most clinical trials on

the effectiveness of acupuncture treatment used a fixed-point

approach, which is different from the clinical practice that

uses a more individualized approach (4). Although some

study designs such as conventional randomized clinical

trials (RCTs) with a personalized acupuncture protocol or

a pragmatic clinical trial have been suggested to overcome

the gap between acupuncture research and clinical practice,

the results of an individualized approach vs. a fixed-point

approach are still controversial (5–9). Nonetheless, several

recent experimental studies have supported the significance

of acupuncture point selection (10–13). Therefore some

studies with data-mining methods were conducted using RCT

data, medical records, virtual diagnosis data, and classical

medical texts to systematically prove the relationship between

symptoms, diseases, PI, and acupuncture point selections

(3, 14–16).

Artificial intelligence (AI) techniques have also emerged

in the research of TEAM. Previous studies used artificial

neural network models to differentiate patterns for acupuncture

point selections (17, 18), and clustering algorithms to discover

the combination rules of herbal medicine (19). Also, the

recent deep learning models such as bidirectional encoder

representations from transformers generated some new herbal

medicine prescriptions from a few medical records (20, 21).

However, to the best of our knowledge, there are few AI studies

that assist PI from large amounts of clinical information, though

most clinical guidelines recommend a PI process by a TEAM

doctor prior to providing acupuncture or herbal medicine

treatment (22, 23).

With the appropriate PI, a wide variety of conditions can

be addressed by TEAM treatment. Sleep disturbances were

one of the major target conditions for TEAM treatment in

several previous studies (19, 24–28). The Korean Medicine

Clinical Practice Guidelines for insomnia disorder, which was

officially developed by research funded by the government,

suggest that TEAM doctors may consider six types of PI before

TEAM treatment (29). Furthermore, a recent systematic review

for insomnia showed that acupuncture treatment using PI

significantly improved the total effectiveness rate compared to

conventional medication (30). However, the effect of TEAM

treatment using PI is not reproducible since PI types and

processes may be inconsistent among TEAM doctors in

clinical settings. Therefore, the development of a model that

can consistently produce the same PI for certain patient

details required.

In this paper, we suggested a novel data-driven PI

method for TEAM treatment using emerging bioinformatics

techniques in combination with feature extraction using a deep

autoencoder, one of the self-supervised deep learning models,

and clustering using k-means clustering, an unsupervised

machine learning model. To develop a new model using

various types of clinical information as input data and provide

reproducible PI as an output for TEAM treatment decisions

in patients with sleep disturbances, we used cross-sectional

study data which examined the association between sleep and

diet/digestion in Republic of Korea Army (ROKA) active duty

service members.

Materials and methods

Study population

A multi-site cross-sectional study was conducted using an

anonymous electronic survey. The study was posted in five units

of the ROKA through printed recruitment posters and electronic
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bulletin boards from August 16, 2021, to September 20, 2021.

The participants were recruited during the same period. The

original aim of this study was to examine the association between

sleep and diet/digestion in ROKA active duty service members.

The results will be published in another paper.

Among active duty service members in five units of the

ROKA who met the inclusion criteria, the participants who

provided informed consent were enrolled in the study. The

inclusion criteria were (1) age 19 years or over; (2) active

duty service members (private, private first class, corporal, and

sergeants) who completed the basic military training course, and

(3) those who voluntarily agreed to participate in the study.

There were no exclusion criteria.

Sample size calculation for
cross-sectional study

Assuming that the total number of all active duty service

members in the ROKA is approximately 300,000, the sample size

was calculated using the following equation. The margin of error

was 3% and the confidence level was 95%, and the sample size

result was 1,064 (the target number of completed surveys).

Sample size =

z2×p(1−p)
e2

1+ (
z2×p(1−p)

e2N
)

(N = number in the populations;

e = margin of error; z = Z − score)

Previous studies using surveys showed that various factors

such as the survey method, survey content, and participant

compensation were associated with the response rate of the

study subjects. In particular, the online survey method is known

to have about a 10% lower response rate compared to other

media, but the actual response rate was different in each study

(31). In this study, referring to the response rate (3.4%) reported

in a previous study that conducted a health-related survey in

adult males, the response rate was set to 3%, and the target

number of questionnaires was determined to be 35,467 (31).

Survey instrument of cross-sectional
study

The survey instruments were refined to reveal the military

environment by healthcare professionals (seven TEAM doctors

including five military doctors). This involved the refinement

of the questionnaire by changing the phrasing and modifying

questions to clarify the premise of each item within the

questionnaire. The final questionnaire was designed and

distributed through the web-based application Survey Monkey.

The survey consisted of six sections: (1) demographics

(birth, recruitment date, height, weight, military identification

number, rank, military unit, education, smoking status,

alcohol consumption habits, caffeine consumption, exercise, and

physical grade); (2) medical history (present/past history of sleep

disorders, present/past history of gastrointestinal disorders,

present/past history of general diseases including hypertension,

diabetes, hyperlipidemia, and cardiac disease, stress status,

and drug history); (3) military duty (branch, position, night

shift with or without tomorrow duty-off, and its effect on

sleep and/or fatigue); (4) sleep-related assessments (Pittsburgh

sleep quality index (PSQI), Berlin questionnaire, and sleeping

environment); (5) diet/nutrition-related assessments [dietary

habit survey questionnaire and nutrition (32) quotient (NQ)];

and (6) gastrointestinal-related assessments [gastrointestinal

symptom rating scale (GSRS) and Bristol stool scale (BSS)].

The PSQI, a self-assessment questionnaire to evaluate sleep

quality within the past month, contains 19 items consisting of

seven component scores, including sleep quality, sleep latency,

sleep duration, daytime dysfunction, sleep efficiency, sleep

disturbances, and sleeping medication use (33). A final score of

>5 out of 21 indicates significant sleep disturbance.

The Berlin questionnaire has 11 questions grouped into

three categories (34). The first category comprises five questions

concerning snoring, witnessed apnea, and the frequency of

such events. The second category comprises four questions

addressing daytime sleepiness, with a sub-question on drowsy

driving. The third category comprises two questions concerning

a history of high blood pressure (> 140/90 mmHg) and a body

mass index (BMI) of >30 kg/m2. Categories 1 and 2 were

considered positive if there were two positive responses in each

category, while category 3 was considered positive with a self-

report of high blood pressure and/or a BMI of > 30 kg/m2.

The study patients were scored as being at high risk of having

obstructive sleep apnea (OSA) if the scores were positive for two

or more of the three categories.

The dietary habit survey questionnaire consists of 25 items

to evaluate the dietary habits of Korean adults (35). It includes

the number of meals per day, mealtime regularity, the amount

consumed, time taken for a meal, the frequency of missed

meals, the frequency of having breakfast, the reason for missing

breakfast, the frequency of dinners with family, the frequency of

overeating, meal at which overeating occurred (breakfast, lunch,

dinner or not), the frequency of eating out, the frequency of

eating snacks, the time of eating snacks, the types of snacks,

the time of late-night meals, whether certain foods were not

eaten, the reasons for not eating certain foods, and the frequency

of food intake (grains, meat, fish, eggs and legumes, fruits,

vegetables, milk and dairy products, fatty foods, instant foods,

and fast foods).

The NQ comprehensively evaluates the nutritional status

and meal quality of individuals or groups of Korean adults

through a checklist consisting of 21 items (36). It provides
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the global NQ score (NQ global), and scores for four factors:

nutritional balance (NQ balance), food diversity (NQ diversity),

moderation in the amount of food eaten (NQ moderation), and

dietary behavior (NQ behavior). It is considered “good” if the

score is 58 or higher, and “monitoring is necessary” if it is

below 58.

The GSRS evaluates gastrointestinal symptoms via an

inquiry table consisting of 15 items for the evaluation of general

gastrointestinal symptoms (37). Each GSRS item is rated on

a 7-point Likert scale ranging from “no discomfort” to “very

severe discomfort.”

The BSS examines the stool status in the past 24 h (32). The

score is based on a one to seven scale where one corresponds to

a hard stool and seven corresponds to watery diarrhea.

Data preprocessing

Data preprocessing to improve data quality and impute

missing values was performed in three steps. In the first step,

from all survey responders, the participants who provided

multiple responses were eliminated to ensure survey reliability.

Second, the participants who did not meet the inclusion criteria

were removed. The participants who completed the survey

remained. Last, a few samples with outliers, which might be

caused by miswriting in open question items such as height,

weight, smoking amount, and smoking duration were also

eliminated after exploratory data analysis (EDA).

Each PSQI, Berlin questionnaire, NQ, and GSRS score was

calculated and the remaining questionnaire responses were used

for input data. In clinical practice, TEAM doctors’ questions

to patients are closer to each item of the questionnaire, and

conversely, calculating each questionnaire’s scores one by one is

closer to the purpose of the clinical study. The calculated scores

were used for external cluster evaluation.

Since this study was conducted to examine patients with

sleep disturbances, the participants with PSQI scores of over five

were collected as a total data set. Then, the data set was randomly

split into a training set (80%) and test set (20%) for evaluating the

machine learning models.

Feature extraction

The autoencoder is a simple unsupervised learning model.

It learns hidden features through encoding and decoding

unlabeled data. Consider a d-dimensional data set X =

{x1, x2, . . . , xd}, where d is the number of variables presented

at the input layer. The autoencoder attempts to reconstruct X

at the output layer, which is the same as the identity function

f (x) = x (38). Then, the hidden layer is forced to learn a

compressed representation of the data X from the input layer,

which is reconstructed at the output layer as X̂. The optimized

model can be evaluated by the root mean squared error (RMSE)

between X and X̂.

In this study, we built a symmetric deep autoencoder model

composed of d-dimensional input and output layers, and three

hidden layers: J nodes for the second hidden layer (bottleneck),

and 8 × J nodes for the first and third hidden layers. Also,

a grid search using 1 ≤ J ≤ 10 was conducted to

find the optimal number of nodes in the hidden layers. When

compiling the model, RMSE and Adam were applied as the loss

function and training optimizer, respectively. For the training

process with 10-fold cross-validation, the batch size and the

number of epochs were set to 64 and 100, respectively. Finally,

representative nodes in the second hidden layer were used to

extract features for the clustering process. We also conducted

principal component analysis (PCA), one of the conventional

feature extraction methods, before k-means clustering.

K-means clustering

K-means clustering is an unsupervised machine learning

algorithm (39). This algorithm is less computationally intensive

for processing our large study data than hierarchical clustering.

Also, the number of clusters (k) can be predefined by this

algorithm to reveal our prior medical knowledge since the

number of PI types is generally ≤10 in TEAM. Consider a

d-dimensional data set X = {x1, x2, . . . , xn}, where d is

the number of variables, this algorithm aims to partition the

n observations into k (≤ n) sets S = {S1, S2, . . . , Sk} to

minimize the within-cluster sum of squares (WCSS). Formally,

the objective is to find:

argmin
s

k∑

i=1

∑

x∈Si

‖x− µi‖
2

(µi = mean of points in Si)

In this study, k-means clustering was performed on

the data set using raw data and PCA-extracted and deep

autoencoder-extracted features. The performance of the clusters

was compared between each input type. We set the candidate

number of clusters from k = 1 to k = 10, and 300 iterations for

each k using the expectation-maximization style algorithm.

Cluster evaluation

Cluster evaluation was conducted in two parts, internal

cluster evaluation and external cluster evaluation. The Calinski-

Harabasz index and silhouette coefficient were initially assessed

for internal cluster evaluation (40). The optimal number of

clusters was determined by the elbow method after plotting the

WCSS with k values. All the above processes were conducted

using the training set only. After determining the whole PI

model including the feature extraction and clustering methods,
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FIGURE 1

Flow chart illustrating the construction of the data set for the study.
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the test set was inferred by the trained PI model. The

PSQI, Berlin questionnaire, GSRS, and NQ scores, which were

not used in feature extraction, were compared by external

cluster evaluation.

Statistical analysis

Summaries of the continuous variables are presented as

means and standard deviations, and the categorical variables

are presented as frequencies and percentages. For continuous

variables, one-way analysis of variance (ANOVA) was used for

comparing means among three clusters, followed by the Tukey-

Kramer test for post-hoc multiple comparisons between two

clusters with unequal sample sizes. For categorical variables, the

chi-squared test was also performed. Statistical significance was

set at p < 0.05.

Tools

Python 3.8.0 (Python Software Foundation, Wilmington,

DE, USA) was used for data preprocessing, model development

and validation, visualization, and statistical analysis. The

Python libraries Pandas and Numpy were adopted for data

preprocessing; Scikit-learn was used for data preprocessing,

PCA, and k-means clustering; Keras with Tensorflow backend

for building and evaluating the deep autoencoder model;

Statsmodels for statistical analysis of comparisons between

clusters, and Seaborn with Matplotlib for data visualization.

Google Colab, a cloud service for machine learning research, was

used in this study. It provides various libraries and frameworks

for deep learning and a robust graphics processing unit.

Results

Data set construction

Of a total of 4,869 survey responders, 35 multiple

responders, and 139 responders who did not meet the

inclusion criteria were excluded. A total of 4,408 responders

completed the survey. After removing a few outliers for

height (below 110 cm or above 200 cm), weight (below 40 kg

or above 160 kg), smoking amount (above five packs per

day), and smoking duration (above 20 years) through EDA,

4,389 responses remained. The data set of 2,579 patients

with sleep disturbances was obtained after filtering by PSQI

scores of >5, which were randomly split into a training

FIGURE 2

Variance of the components in the training set.
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set (n = 2,063; 80%) and a test set (n = 516; 20%). The

flow chart of the data set construction process is shown in

Figure 1.

Feature extraction using PCA

For comparison with the main feature extraction method,

the deep autoencoder, PCA was first conducted using the

training set. It showed that variance dropped off when

the number of components was four, and the first four

components explained the majority of the variance in the

training set (Figure 2). Therefore, feature extraction using PCA

was conducted with four components.

Feature extraction using deep
autoencoder

Ten-fold cross-validation was conducted while training the

deep autoencoder. The mean RMSE of the training set and

validation set after 100 epochs (Table 1), and the change in

RMSE of the validation set during training (Figure 3) are

presented in each deep autoencoder architecture (the number of

nodes in the second hidden layer).

Internal cluster validation

The Calinski-Harabasz index and silhouette coefficient after

k-means clustering (2 ≤ k ≤ 10) are presented in Figure 4;

Supplementary Table 1. The performance of clustering after

feature extraction with the deep autoencoder was much better

than that with raw data or PCA. Comparing the results of

clustering after all feature extraction methods including PCA

and the deep autoencoder in this study, the deep autoencoder (J

= 2)—which presented the highest values of both the Calinski-

Harabasz index and the silhouette coefficient in the small

numbers of clusters (k ≤ 4)–might be the best feature extraction

method for k-means clustering. The final deep autoencoder

model architecture is shown in Figure 5. Also, considering

both the Calinski-Harabasz index and the silhouette coefficient,

k = 2 or 3 might be candidate clustering numbers. Finally,

the optimal number (k = 3) of clusters was determined by

the elbow method, a heuristic approach for determining the

appropriate point for the local optimum (41, 42), as shown in

Figure 6.

External cluster validation

The patient characteristics in each cluster of the training set

and test set are presented in Tables 2, 3 respectively. Among the

TABLE 1 The mean RMSE for each model.

The number of nodes in the

second hidden layer (J)

RMSE

Training set Validation set

1 0.820 ± 0.004 0.821 ± 0.013

2 0.796 ± 0.002 0.802 ± 0.014

3 0.776 ± 0.002 0.787 ± 0.014

4 0.760 ± 0.002 0.774 ± 0.012

5 0.745 ± 0.003 0.763 ± 0.013

6 0.732 ± 0.003 0.752 ± 0.013

7 0.719 ± 0.003 0.744 ± 0.012

8 0.708 ± 0.004 0.737 ± 0.012

9 0.696 ± 0.004 0.732 ± 0.011

10 0.686 ± 0.004 0.725 ± 0.012

Values are presented as the mean± standard deviation.

RMSE, root mean squared error.

clusters, the PSQI (p < 0.001), GSRS (p < 0.001), NQ balance (p

= 0.008), NQmoderation (p< 0.001), NQ behavior (p< 0.001),

and Berlin scores (p < 0.001) were significantly different in the

training set, and PSQI (p < 0.001), GSRS (p < 0.001), NQ global

(p < 0.001), NQ moderation (p < 0.001), and Berlin scores (p <

0.001) were significantly different in the test set (Table 4).

Through post-hoc analysis (Table 4), the mean PSQI score of

cluster A was significantly lower than that of cluster B (−3.24,

95% confidence interval (CI) −3.84, −2.64], p < 0.001) and

cluster C (−1.62, 95% CI [−1.91, −1.34], p < 0.001) in the

training set. The mean PSQI score of cluster B was significantly

higher than that of cluster C (1.62, 95% CI [0.99, 2.24], p <

0.001) in the training set. The mean PSQI score of cluster A was

significantly lower than that of cluster B (−2.78, 95% CI [−4.02,

−1.53], p< 0.001) and cluster C (−1.68, 95% CI [−2.24,−1.12],

p < 0.001) in the test set. The mean PSQI score of cluster B was

also higher but not significantly different than that of cluster C

(1.09, 95% CI [−0.20, 2.39], p= 0.117) in the test set.

The mean GSRS score of cluster A was significantly lower

than that of cluster B (−15.76, 95% CI [−16.55, −14.98], p

< 0.001) and cluster C (−4.21, 95% CI [−4.59, −3.84], p <

0.001) in the training set. The mean GSRS score of cluster B was

significantly higher than that of cluster C (11.55, 95% CI [10.73,

12.37], p < 0.001) in the training set. The mean GSRS score of

cluster A was significantly lower than that of cluster B (−17.69,

95% CI [−19.28,−16.10], p < 0.001) and cluster C (−4.44, 95%

CI [−5.16, −3.72], p < 0.001) in the test set. The mean GSRS

score of cluster B was significantly higher than that of cluster C

(13.25, 95% CI [11.60, 14.91], p < 0.001) in the test set.

The mean NQ global score of cluster A was lower but not

statistically different from that of cluster B (−1.27, 95% CI

[−3.59, 1.05], p = 0.404) and cluster C (−0.60, 95% CI [−1.71,

0.50], p = 0.406) in the training set. The mean NQ global score
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FIGURE 3

The change in RMSE during the model training process in each deep autoencoder architecture. Curves are averaged over 10 folds, with the

shaded area representing the 95% confidence interval across folds. RMSE, root mean squared error.

of cluster B was higher but not significantly different than that

of cluster C (0.67, 95% CI [−1.76, 3.09], p = 0.774) in the

training set. The mean NQ global score of cluster A was lower

but not statistically different than that of cluster B (−4.41, 95%

CI [−9.31, 0.50], p = 0.089) and significantly lower than that

of cluster C (−3.52, 95% CI [−5.74, −1.30], p < 0.001) in the

test set. The mean NQ global score of cluster B was higher but

not significantly different than that of cluster C (0.88, 95% CI

[−4.23, 6.00], p= 0.900) in the test set.

The mean NQ balance score of cluster A was higher but

not statistically different than that of cluster B (2.18, 95% CI

[−1.51, 5.88], p = 0.349) and significantly higher than that of

cluster C (2.20, 95% CI [0.44, 3.96], p = 0.010) in the training

set. The mean NQ balance score of cluster B was higher but not

significantly different than that of cluster C (0.02, 95%CI [−3.85,

3.88], p = 0.900) in the training set. The mean NQ balance

score of cluster A was lower but not statistically different than

that of cluster B (−3.66, 95% CI [−11.39, 4.08], p = 0.508) and

cluster C (−1.42, 95% CI [−4.92, 2.08], p = 0.599) in the test

set. The mean NQ balance score of cluster B was higher but not

significantly different than that of cluster C (2.24, 95%CI [−5.82,

10.30], p= 0.770) in the test set.

The mean NQ diversity score of cluster A was higher but not

statistically different than that of cluster B (0.73, 95% CI [−0.33,

1.79], p = 0.240) and lower but not statistically different than

that of cluster C (−0.16, 95% CI [−0.66, 3.48], p = 0.728) in

the training set. The mean NQ diversity score of cluster B was

lower but not significantly different than that of cluster C (−0.89,

95% CI [−1.99, 0.22], p = 0.147) in the training set. The mean

NQ diversity score of cluster A was higher but not statistically

different than that of cluster B (0.72, 95% CI [−1.43, 2.86], p

= 0.694) and lower but not statistically different than that of

cluster C (−0.54, 95% CI [−1.51, 0.43], p = 0.386) in the test

set. The mean NQ diversity score of cluster B was lower but

not significantly different than that of cluster C (−1.26, 95% CI

[−3.49, 0.97], p= 0.382) in the test set.

The mean NQ moderation score of cluster A was

significantly lower than that of cluster B (−4.25, 95% CI [−5.35,

−3.15], p< 0.001) and cluster C (−2.48, 95% CI [−3.00,−1.95],

p < 0.001) in the training set. The mean NQ moderation score

of cluster B was significantly higher than that of cluster C (1.77,

95% CI [0.62, 2.92], p < 0.001) in the training set. The mean

NQ moderation score of cluster A was significantly lower than

that of cluster B (−4.89, 95% CI [−7.13, −2.64], p < 0.001) and

cluster C (−3.28, 95% CI [−4.29, −2.26], p < 0.001) in the test

set. The mean NQmoderation score of cluster B was also higher

but not significantly different than that of cluster C (1.61, 95%

CI [−0.73, 3.95], p= 0.238) in the test set.

The mean NQ behavior score of cluster A was significantly

higher than that of cluster B (1.72, 95% CI [0.85, 2.58], p <

0.001) and cluster C (1.49, 95% CI [1.08, 1.90], p < 0.001) in

the training set. The mean NQ behavior score of cluster B was

lower but not significantly different than that of cluster C (−0.23,

95% CI [−1.13, 0.68], p = 0.806) in the training set. The mean
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FIGURE 4

Calinski-Harabasz index (A) and silhouette coe�cient (B) depending on each feature extraction method. J is the number of nodes in the second

hidden layer. DAE, deep autoencoder; PCA, principal component analysis.

NQ behavior score of cluster A was higher but not significantly

different than that of cluster B (0.70, 95% CI [−1.15, 2.55], p =

0.639) and cluster C (0.65, 95% CI [−0.18, 1.49], p = 0.159) in

the training set. The mean NQ behavior score of cluster B was

lower but not significantly different than that of cluster C (−0.04,

95% CI [−1.97, 1.89], p= 0.900) in the test set.

The Berlin score showed that cluster A had a significantly

lower risk of OSA than that of cluster B (odds ratio (OR)= 0.24,

95% CI [0.16, 0.38], X2
= 42.61, p < 0.001) and cluster C (OR=

0.30, 95% CI [0.23, 0.38], X2
= 103.92, p< 0.001) in the training

set. The Berlin score showed that cluster B had a higher risk than

that of cluster C (OR= 1.22, 95% CI [0.78, 1.91], X2
= 0.57, p=
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FIGURE 5

The final selected deep autoencoder model architecture for feature extraction.

0.452) in the training set. The Berlin score showed that cluster A

had a significantly lower risk of OSA than that of cluster B (OR

= 0.27, 95% CI [0.11, 0.68], X2
= 7.00, p = 0.008) and cluster C

(OR = 0.37, 95% CI [0.23, 0.59], X2
= 16.95, p < 0.001) in the

test set. The Berlin score showed that cluster B had a higher risk

than that of cluster C (OR= 1.36, 95% CI [0.53, 3.48],X2
= 0.16,

p= 0.693) in the test set.

Three–dimensional clustering visualizations were presented

with the major components that were statistically different by

multi-comparison and post-hoc analysis in both the training and

test sets, and statistically different by multi-comparison only in

both the training and test sets; NQ moderation between cluster

B and C was not statistically different by post-hoc analysis in the

test set (Figure 7).

Discussion

This study demonstrated that the deep autoencoder method

was a better feature extraction method for the clustering

of sleep disturbances than PCA. This result is comparable

to that of other studies in that the autoencoder effectively

reduces the high-dimensionality of the various types of data

since it can learn non-linear feature representations (43–45).

Specifically, based on internal cluster validation and the elbow

method, the best architecture of the deep autoencoder for

extracting features for clustering our study samples with sleep

disturbances was 16 nodes for the first and third hidden

layers, and two nodes for the second hidden layer, while the

optimal number of clusters was considered to be three. After
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FIGURE 6

The change in WCSS with the number of clusters after feature extraction by the deep autoencoder (J = 2). WCSS, within-cluster sum of squares.

external cluster validation, three PI types were differentiated

by changes in sleep quality, dietary habits, and concomitant

gastrointestinal symptoms.

PI has been used in TEAM for the personalized care of

various conditions including sleep disorders. As the accurate

diagnosis and precise evaluation of individual patients are the

key for personalized care in conventional medicine, PI, as well

as diagnosis according to the International Classification of

Diseases, Tenth Revision (ICD-10), is an important principle

in personalized TEAM treatments such as acupuncture point

selections and combinations of herbal medicines. Although

several previous studies have tried to standardize PI and

suggested new methods for PI in different types of data, it

is considered a “black box” in which the external validity or

usability in clinical TEAM practice cannot be ensured (14, 15,

46–48). Therefore, in another aspect of PI standardization, we

proposed a new paradigm, the clinical data-driven PI model,

applying advanced machine learning techniques. The PI model

is flexible in the data characteristics that can be used and is

reproducible for certain data to enhance the effectiveness of

TEAM treatment in clinical practice (Figure 8).

There were three main aspects to this study, data type,

feature extraction, and clustering. First, whole raw data from a

cross-sectional study were used. The cross-sectional study data

were generally composed of fundamental clinical information

such as age, sex, and medical history, and symptoms, and/or

a disease-related questionnaire. Particularly, our used cross-

sectional study included several questionnaires with different

domains including sleep, diet, nutrition, and gastrointestinal

status. Since TEAM doctors usually ask not only about sleep

conditions but also about other conditions to select the

appropriate acupuncture points and/or herbal medicines for

treating insomnia patients (28, 30), this type of data was suitable

for reflecting clinical settings. Furthermore, this data type

may assure external cluster validation. Clustering validation,

which measures the goodness of clustering results, can be

categorized into two methods: internal cluster validation and

external cluster validation (49). The internal cluster validation

is conducted without the need to obtain any additional

information, such as evaluating the average between- and

within-cluster sums of squares (Calinski-Harabasz index), or

the difference of the between- and within-cluster distances
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TABLE 2 Patient characteristics in each training set cluster.

Characteristics Cluster A

(n= 1,396)

Cluster B

(n= 98)

Cluster C

(n= 569)

Age, years (mean± SD) 20.8± 1.2 21.2± 1.6 21.1± 1.4

Height, cm (mean± SD) 174.6± 5.6 175.2± 6.0 174.8± 5.6

Weight, kg (mean± SD) 72.2± 9.2 75.1± 11.1 73.8± 11.1

BMI, kg/m2 (mean± SD) 23.6± 2.6 24.4± 3.2 24.1± 3.2

Smoking status

Never, n (%) 739 (52.9) 53 (54.1) 244 (42.9)

Past, n (%) 84 (6.0) 4 (4.1) 44 (7.7)

Active, n (%) 573 (41.0) 41 (41.8) 281 (49.4)

Pack-years (mean± SD) 0.97± 1.95 1.65± 3.07 1.57± 2.48

Alcohol, n (%)

<1 time/month 322 (23.1) 28 (28.6) 113 (19.9)

<1 time/week 396 (28.4) 26 (26.5) 130 (22.8)

1–2 times/week 493 (35.3) 25 (25.5) 199 (35.0)

3–7 times/week 185 (13.3) 19 (19.4) 127 (22.3)

Caffeine, n (%)

Coffee

<1 cup/week 511 (36.6) 34 (34.7) 193 (33.9)

1–2 cups/week 299 (21.4) 16 (16.3) 114 (20.0)

3–6 cups/week 252 (18.1) 15 (15.3) 90 (15.8)

1 cup/day 184 (13.2) 13 (13.3) 77 (13.5)

2 cups/day 102 (7.3) 11 (11.2) 59 (10.4)

≥3 cups/day 48 (3.4) 9 (9.2) 36 (6.3)

Energy drink

<1 cup/week 907 (65.0) 46 (46.9) 335 (58.9)

1–2 cups/week 266 (19.1) 17 (17.3) 88 (15.5)

3–6 cups/week 113 (8.1) 19 (19.4) 69 (12.1)

1 cup/day 72 (5.2) 8 (8.2) 43 (7.6)

2 cups/day 22 (1.6) 3 (3.1) 23 (4.0)

≥3 cups/day 16 (1.1) 5 (5.1) 11 (1.9)

Bacchus
R©

<1 cup/week 1,245 (90.9) 77 (78.6) 484 (85.1)

1–2 cups/week 121 (8.8) 13 (13.3) 60 (10.5)

3–6 cups/week 16 (1.2) 3 (3.1) 12 (2.1)

1 cup//day 10 (0.7) 2 (2.0) 7 (1.2)

2 cups/day 3 (0.2) 2 (2.0) 3 (0.5)

≥ 3 cups/day 1 (0.1) 1 (1.0) 3 (0.5)

Rank, n (%)

Private 80 (5.7) 2 (2.0) 15 (1.2)

Private first class 606 (43.4) 38 (38.8) 211 (8.4)

Corporal 560 (40.1) 45 (45.9) 251 (11.6)

Sergeant 150 (12.9) 13 (13.3) 92 (3.7)

Education, n (%)

Elementary school 1 (0.1) 0 (0.0) 0 (0.0)

Middle school 1 (0.1) 0 (0.0) 3 (0.5)

High school 1,326 (95.0) 89 (90.8) 518 (91.0)

University or college 68 (4.9) 9 (9.2) 48 (8.4)

(Continued)
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TABLE 2 Continued

Characteristics Cluster A

(n= 1,396)

Cluster B

(n= 98)

Cluster C

(n= 569)

Exercise, n (%)

<1 day/week 217 (15.5) 27 (27.6) 121 (21.3)

1–2 days/week 331 (23.7) 20 (20.4) 140 (24.6)

3–4 days/week 399 (28.6) 27 (27.6) 162 (28.5)

≥5 days/week 449 (32.2) 24 (24.5) 146 (25.7)

Physical grade in the military, n (%)

First 413(29.6) 17 (17.3) 142 (25.0)

Second 596 (42.7) 43 (43.9) 224 (39.4)

Third 379 (27.1) 38 (38.8) 198 (34.8)

Fourth 4 (0.3) 0 (0.0) 3 (0.5)

Fifth or above 4 (0.3) 0 (0.0) 2 (0.4)

Sleep disorders, n (%)

Present history

None 1,306 (93.6) 65 (66.3) 470 (82.6)

Insomnia 37 (2.7) 16 (16.3) 50 (8.8)

Narcolepsy 30 (2.1) 17 (17.3) 27 (4.7)

Obstructive sleep apnea 5 (0.4) 6 (6.1) 12 (2.1)

Restless leg syndrome 7 (0.5) 2 (2.0) 14 (2.5)

Periodic limb movement 7 (0.5) 4 (4.1) 8 (1.4)

Past history

None 1,353 (96.9) 80 (81.6) 526 (92.4)

Insomnia 32 (2.3) 11 (11.2) 31 (5.4)

Narcolepsy 3 (0.2) 8 (8.2) 3 (0.5)

Obstructive sleep apnea 4 (0.3) 2 (2.0) 7 (1.2)

Restless leg syndrome 2 (0.1) 1 (1.0) 4 (0.7)

Periodic limb movement 1 (0.1) 1 (1.0) 1 (0.2)

Gastrointestinal disorders, n (%)

Present history

None 1,337 (95.8) 67 (68.4) 487 (85.6)

Gastroesophageal reflux 23 (1.6) 19 (19.4) 41 (7.2)

Gastric ulcer 0 (0.0) 0 (0.0) 3 (0.5)

Duodenal ulcer 0 (0.0) 0 (0.0) 0 (0.0)

Irritable bowel syndrome 37 (2.7) 17 (17.3) 40 (7.0)

Past history

None 1,263 (90.5) 63 (64.3) 440 (77.3)

Gastroesophageal reflux 74 (5.3) 26 (26.5) 74 (13.0)

Gastric ulcer 1 (0.1) 1 (1.0) 7 (1.2)

Duodenal ulcer 1 (0.1) 1 (1.0) 1 (0.2)

Irritable bowel syndrome 62 (4.4) 17 (17.3) 60 (10.5)

General diseases, n (%)

None 1,322 (94.7) 85 (86.7) 527 (92.6)

Hypertension 65 (4.7) 12 (12.2) 34 (6.0)

Diabetes 5 (0.4) 2 (2.0) 2 (0.4)

Hyperlipidemia 4 (0.3) 1 (1.0) 5 (0.9)

Cardiac diseases 9 (0.6) 2 (2.0) 4 (0.7)

Medications, n (%)

(Continued)
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TABLE 2 Continued

Characteristics Cluster A

(n= 1,396)

Cluster B

(n= 98)

Cluster C

(n= 569)

Sleeping pills 12 (0.9) 9 (9.2) 15 (2.6)

Sleep health supplements 5 (0.4) 5 (5.1) 12 (2.1)

Oral steroids 6 (0.4) 4 (4.1) 6 (1.1)

Melatonin 2 (0.1) 0 (0.0) 2 (0.4)

Anticonvulsants 0 (0.0) 0 (0.0) 2 (0.4)

Antidepressants 19 (1.4) 9 (9.2) 14 (2.5)

Beta blockers 1 (0.1) 0 (0.0) 0 (0.0)

Bronchodilators 4 (0.3) 2 (2.0) 5 (0.9)

Stimulants 3 (0.2) 4 (4.1) 6 (1.1)

Antihistamines 31 (2.2) 3 (3.1) 12 (2.1)

Weight loss pills 4 (0.3) 3 (3.1) 6 (1.1)

Weight loss supplements 26 (1.9) 8 (8.2) 21 (3.7)

Digestive pills 31 (2.2) 13 (13.3) 33 (5.8)

Digestive supplements 54 (3.9) 12 (12.2) 52 (9.1)

Stress* (mean± SD) 3.46± 1.57 3.41± 1.16 3.40± 1.44

Night shift with tomorrow duty-off

Frequency, n (%)

None 781 (55.9) 47 (48.0) 289 (50.8)

1 time/month 58 (4.2) 7 (7.1) 29 (5.1)

2 times/month 115 (8.2) 9 (9.2) 36 (6.3)

3 times/month 134 (9.6) 10 (10.2) 61 (10.7)

4 times/month 94 (6.7) 9 (9.2) 44 (7.7)

≥5 times/month 214 (15.3) 16 (16.3) 110 (19.3)

Sleep disturbance or fatigue* (mean± SD) 4.07± 0.87 4.43± 0.85 4.25± 0.89

Night shift without tomorrow duty-off

Frequency, n (%)

None 710 (50.9) 44 (44.9) 210 (36.9)

1 time/month 45 (3.2) 5 (5.1) 18 (3.2)

2 times/month 58 (4.2) 9 (9.2) 21 (3.7)

3 times/month 52 (3.7) 5 (5.1) 22 (3.9)

4 times/month 62 (4.4) 3 (3.1) 29 (5.1)

≥5 times/month 469 (33.6) 32 (32.7) 169 (29.7)

Sleep disturbance or fatigue* (mean± SD) 4.28± 0.85 4.50± 0.77 4.42± 0.85

Values are presented as the mean± standard deviation (range) or number (%).
*Five-point Likert scale.

BMI, body mass index.

(silhouette coefficient). On the other hand, the external cluster

validation is conducted with other external information, such

as a true class of cluster or previous knowledge about data.

In this study, instead of obtaining the true labels of each

cluster, which require large amounts of cost and time for TEAM

doctors, we used the final scores of PSQI, NQ, GSRS, and

the Berlin score, which were not used in the input features

of clustering, but which could be calculated using specific

non-linear functions respectively to externally compare the

clustering results.

Second, feature extraction was conducted by a deep

autoencoder model. Two methods have been used before

the clustering process, feature selection (selecting a small

subset of actual features from the data) and feature extraction

(constructing a small set of artificial features from the data).

Most clinical studies conducted feature selection through

statistical methods such as the t-test or chi-squared test between

two groups or it was determined by clinical experience or

medical knowledge. However, in a large series of data, so-called

high-dimensional data, it was difficult to find the best feature
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TABLE 3 Patient characteristics in each test set cluster.

Characteristics Cluster A

(n= 352)

Cluster B

(n= 22)

Cluster C

(n= 142)

Age, years (mean± SD) 21.0± 1.4 21.9± 2.2 21.1± 1.5

Height, cm (mean± SD) 174.2± 5.5 175.3± 4.7 174.9± 5.1

Weight, kg (mean± SD) 72.5± 9.7 74.9± 7.8 74.6± 10.9

BMI, kg/m2 (mean± SD) 23.8± 2.6 24.4± 2.5 24.4± 3.1

Smoking status

Never, n (%) 186 (52.8) 6 (27.3) 60 (42.3)

Past, n (%) 19 (5.4) 3 (13.6) 11 (7.7)

Active, n (%) 147 (41.8) 13 (59.1) 71 (50.)

Pack-years (mean± SD) 0.94± 1.80 2.07± 2.99 1.78± 2.68

Alcohol, n (%)

<1 time/month 77 (21.9) 6 (27.3) 25 (17.6)

<1 time/week 107 (30.4) 4 (18.2) 35 (24.6)

1–2 times/week 122 (34.7) 8 (36.4) 41 (28.9)

3–7 times/week 46 (13.1) 4 (18.2) 41 (28.9)

Caffeine, n (%)

Coffee

<1 cup/week 131 (37.2) 8 (36.4) 35 (24.6)

1–2 cups/week 89 (25.3) 2 (9.1) 31 (21.8)

3–6 cups/week 56 (15.9) 4 (18.2) 24 (16.9)

1 cup/day 44 (12.5) 6 (27.3) 24 (16.9)

2 cups/day 20 (5.7) 1 (4.5) 21 (14.8)

≥3 cups/day 12 (3.4) 1 (4.5) 7 (4.9)

Energy drink

<1 cup/week 234 (66.5) 15 (68.2) 75 (52.8)

1–2 cups/week 65 (18.5) 3 (13.6) 37 (26.1)

3–6 cups/week 29 (8.2) 3 (13.6) 10 (7.0)

1 cup/day 13 (3.7) 1 (4.5) 11 (7.7)

2 cups/day 7 (2.0) 0 (0.0) 4 (2.8)

≥3 cups/day 4 (1.1) 0 (0.0) 5 (3.5)

Bacchus
R©

<1 cup/week 321 (91.2) 18 (81.8) 118 (83.1)

1–2 cups/week 27 (7.7) 3 (13.6) 12 (8.5)

3–6 cups/week 3 (0.9) 1 (4.5) 7 (4.9)

1 cup/day 0 (0.0) 0 (0.0) 3 (2.1)

2 cups/day 1 (0.3) 0 (0.0) 1 (0.7)

≥3 cups/day 0 (0.0) 0 (0.0) 1 (0.7)

Rank, n (%)

Private 25 (7.1) 2 (9.1) 7 (4.9)

Private first class 142 (40.3) 3 (13.6) 48 (33.8)

Corporal 136 (38.6) 10 (45.5) 66 (46.5)

Sergeant 49 (13.9) 7 (31.8) 21 (14.8)

Education, n (%)

Elementary school 0 (0.0) 0 (0.0) 0 (0.0)

Middle school 0 (0.0) 1 (4.5) 1 (0.7)

High school 329 (93.5) 19 (86.4) 134 (94.4)

University or college 23 (6.5) 2 (9.1) 7 (4.9)

(Continued)
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TABLE 3 Continued

Characteristics Cluster A

(n= 352)

Cluster B

(n= 22)

Cluster C

(n= 142)

Exercise, n (%)

<1 day/week 50 (14.2) 6 (27.3) 23 (16.2)

1–2 days/week 91 (25.9) 5 (22.7) 35 (24.6)

3–4 days/week 88 (25.0) 5 (22.7) 36 (25.4)

≥5 days/week 123 (34.9) 6 (27.3) 48 (33.8)

Physical grade in the military, n (%)

First 103 (29.3) 8 (36.4) 31 (21.8)

Second 141 (40.1) 6 (27.3) 63 (44.4)

Third 107 (30.4) 7 (31.8) 47 (33.1)

Fourth 1 (0.3) 1 (4.5) 1 (0.7)

Fifth or above 0 (0.0) 0 (0.0) 0 (0.0)

Sleep disorders, n (%)

Present history

None 334 (90.9) 18 (81.8) 114 (80.3)

Insomnia 10 (2.8) 3 (13.6) 14 (9.9)

Narcolepsy 5 (1.4) 2 (9.1) 7 (4.9)

Obstructive sleep apnea 1 (0.3) 0 (0.0) 2 (1.4)

Restless leg syndrome 1 (0.3) 1 (4.5) 6 (4.2)

Periodic limb movement 2 (0.6) 1 (4.5) 5 (3.5)

Past history

None 344 (97.7) 20 (90.9) 131 (92.3)

Insomnia 5 (1.4) 2 (9.1) 6 (4.2)

Narcolepsy 2 (0.6) 0 (0.0) 3 (2.1)

Obstructive sleep apnea 0 (0.0) 0 (0.0) 1 (0.7)

Restless leg syndrome 1 (0.3) 0 (0.0) 1 (0.7)

Periodic limb movement 0 (0.3) 0 (0.0) 1 (0.7)

Gastrointestinal disorders, n (%)

Present history

None 329 (93.5) 20 (90.9) 130 (91.5)

Gastroesophageal reflux 13 (3.7) 2 (9.1) 3 (2.1)

Gastric ulcer 0 (0.0) 0 (0.0) 0 (0.0)

Duodenal ulcer 0 (0.0) 0 (0.0) 0 (0.0)

Irritable bowel syndrome 12 (3.4) 0 (0.0) 10 (7.0)

Past history

None 300 (85.2) 15 (68.2) 119 (83.8)

Gastroesophageal reflux 22 (6.3) 5 (22.7) 11 (7.7)

Gastric ulcer 5 (1.4) 1 (4.5) 0 (0.0)

Duodenal ulcer 1 (0.3) 0 (0.0) 0 (0.0)

Irritable bowel syndrome 27 (7.7) 3 (13.6) 14 (9.9)

General diseases, n (%)

None 331 (94.0) 12 (54.5) 129 (90.8)

Hypertension 18 (5.1) 5 (22.7) 10 (7.0)

Diabetes 1 (0.3) 0 (0.0) 2 (1.4)

Hyperlipidemia 3 (0.9) 0 (0.0) 2 (1.4)

Cardiac diseases 1 (0.3) 2 (9.1) 2 (1.4)

Medications, n (%)

(Continued)

Frontiers inMedicine frontiersin.org

116

https://doi.org/10.3389/fmed.2022.950327
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Lee et al. 10.3389/fmed.2022.950327

TABLE 3 Continued

Characteristics Cluster A

(n= 352)

Cluster B

(n= 22)

Cluster C

(n= 142)

Sleeping pills 0 (0.0) 1 (4.5) 3 (2.1)

Sleep health supplements 1 (0.3) 0 (0.0) 1 (0.7)

Oral steroids 2 (0.6) 1 (4.5) 1 (0.7)

Melatonin 0 (0.0) 1 (4.5) 0 (0.0)

Anticonvulsants 0 (0.0) 0 (0.0) 0 (0.0)

Antidepressants 2 (0.6) 2 (9.1) 3 (2.1)

Beta blockers 0 (0.0) 0 (0.0) 0 (0.0)

Bronchodilators 1 (0.3) 0 (0.0) 1 (0.7)

Stimulants 1 (0.3) 0 (0.0) 0 (0.0)

Antihistamines 10 (2.8) 1 (4.5) 4 (2.8)

Weight loss pills 0 (0.0) 0 (0.0) 0 (0.0)

Weight loss supplements 3 (0.9) 1 (4.5) 10 (7.0)

Digestive pills 9 (2.6) 2 (9.1) 6 (4.2)

Digestive supplements 12 (3.4) 2 (9.1) 9 (6.3)

Stress* (mean± SD) 3.57± 1.57 3.41± 1.30 3.42± 1.38

Night shift with tomorrow duty-off

Frequency, n (%)

None 192 (54.5) 10 (45.5) 72 (50.7)

1 time/month 19 (5.4) 3 (13.6) 7 (4.9)

2 times/month 36 (10.2) 2 (9.1) 7 (4.9)

3 times/month 32 (9.1) 3 (13.6) 13 (9.2)

4 times/month 21 (6.0) 2 (9.1) 7 (4.9)

≥5 times/month 52 (14.8) 2 (9.1) 36 (25.4)

Sleep disturbance or fatigue* (mean± SD) 3.96± 0.89 4.13± 0.74 4.43± 0.80

Night shift without tomorrow duty-off

Frequency, n (%)

None 175 (49.7) 10 (45.5) 84 (59.2)

1 time/month 19 (5.4) 2 (9.1) 6 (4.2)

2 times/month 13 (3.7) 2 (9.1) 5 (3.5)

3 times/month 15 (4.3) 1 (4.5) 4 (2.8)

4 times/month 16 (4.5) 0 (0.0) 13 (9.2)

≥5 times/month 114 (32.4) 7 (31.8) 30 (21.1)

Sleep disturbance or fatigue* (mean± SD) 4.24± 0.88 4.67± 0.62 4.42± 0.76

Values are presented as the mean± standard deviation (range) or number (%).
*Five-point Likert scale.

BMI, body mass index.

selection strategy for efficiently reducing the dimension of the

data (50). Therefore, some algorithms such as PCA and the

autoencoder have been suggested for feature extraction (51),

very similar to a TEAM doctor’s PI process made by observing

patients with not just a few pieces of clinical information

but comprehensively, using a lot of clinical information.

This characteristic of TEAM doctors’ decision-making might

also be related to the reason why deep autoencoder model

extraction was much more efficient than that of other methods

in our study. As decision-making in TEAM is complex

and the interactions between clinical information and PI

are non-linear, autoencoder architecture learning non-linear

mapping allows for the transformation of high-dimensional data

into more clustering-friendly representations, whereas PCA is

fundamentally limited to linear embedding, and it is possible to

lose essential features (38). Another strength of using the deep

autoencoder for feature extraction is that it can extract features

from non-quantizable questionnaire responses (e.g., dietary

habit survey questionnaire), which does not use a formula

to generate a single score, and efficiently prevents the curse
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TABLE 4 Results of external cluster validation in the training set and test set.

Cluster A Cluster B Cluster C Cluster A vs. B Cluster A vs. C Cluster B vs. C

mean± SD or

ratio

mean± SD or

ratio

mean± SD or

ratio

F/X2 p-value Difference or OR

[95% CI]

p-value Difference or OR

[95% CI]

p-value Difference or OR

[95% CI]

p-value

Training set n= 1,396 n= 98 n= 569

PSQI 8.33± 2.20 11.57± 3.31 9.96± 2.81 149.27 <0.001 −3.24

[−3.84,−2.64]

<0.001 −1.62

[−1.91,−1.34]

<0.001 1.62

[0.99, 2.24]

<0.001

GSRS 2.18± 2.15 17.94± 7.38 6.39± 4.09 1,305.82 <0.001 −15.76

[−16.55,−14.98]

<0.001 −4.21

[−4.59,−3.84]

<0.001 11.55

[10.73, 12.37]

<0.001

NQ global 41.51± 8.78 42.78± 11.24 42.11± 10.65 1.45 0.234 −1.27

[−3.59, 1.05]

0.404 −0.60

[−1.71, 0.50]

0.406 0.67

[−1.76, 3.09]

0.774

NQ balance 35.44± 14.33 33.25± 15.37 33.24± 16.73 4.79 0.008 2.18

[−1.51, 5.88]

0.349 2.20

[0.44, 3.96]

0.010 0.02

[−3.85, 3.88]

0.900

NQ diversity 12.67± 4.21 11.95± 4.54 12.83± 4.55 1.76 0.172 0.73

[−0.33, 1.79]

0.240 −0.16

[−0.66, 3.48]

0.728 −0.89

[−1.99, 0.22]

0.147

NQ moderation 8.65± 4.18 12.9± 5.85 11.12± 4.91 90.63 <0.001 −4.25

[−5.35,−3.15]

<0.001 −2.48

[−3.00,−1.95]

<0.001 1.77

[0.62, 2.92]

<0.001

NQ behavior 11.38± 3.46 9.67± 3.74 9.90± 3.66 42.07 <0.001 1.72

[0.85, 2.58]

<0.001 1.49

[1.08, 1.90]

<0.001 −0.23

[−1.13, 0.68]

0.806

Berlin score (low/high) 1,230/166 63/35 391/178 122.00 <0.001 0.24

[0.16, 0.38]

<0.001 0.30

[0.23, 0.38]

<0.001 1.22

[0.78, 1.91]

0.452

Test set n=352 n=22 n=142

PSQI 8.36± 2.12 11.14± 3.45 10.04± 2.84 34.32 <0.001 −2.78

[−4.02,−1.53]

<0.001 −1.68

[−2.24,−1.12]

<0.001 1.09

[−0.20, 2.39]

0.117

GSRS 2.08± 2.05 19.77± 8.15 6.52± 3.73 406.57 <0.001 −17.69

[−19.28,−16.10]

<0.001 −4.44

[−5.16,−3.72]

<0.001 13.25

[11.60, 14.91]

<0.001

NQ global 40.30± 8.28 44.71± 17.48 43.83± 10.59 8.31 <0.001 −4.41

[−9.31, 0.50]

0.089 −3.52

[−5.74,−1.30]

<0.001 0.88

[−4.23, 6.00]

0.900

NQ balance 33.89± 13.10 37.55± 24.27 35.30± 17.34 0.95 0.387 −3.66

[−11.39, 4.08]

0.508 −1.42

[−4.92, 2.08]

0.599 2.24

[−5.82, 10.30]

0.770

NQ diversity 12.33± 4.05 11.62± 5.69 12.88± 4.12 1.34 0.263 0.72

[−1.43, 2.86]

0.694 −0.54

[−1.51, 0.43]

0.386 −1.26

[−3.49, 0.97]

0.382

NQ moderation 8.43± 4.02 12.32± 5.49 11.71± 4.88 37.53 <0.001 −4.89

[−7.13,−2.64]

<0.001 −3.28

[−4.29,−2.26]

<0.001 1.61

[−0.73, 3.95]

0.238

(Continued)
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of dimensionality without suffering from high computational

complexity in large-scale data (38).

Third, k-means clustering, an unsupervised machine

learning algorithm serving as a powerful computational method

to analyze high-dimensional data in the form of sequences or

expressions, was used in this study (38). It does not need data

labeling, which is costly and time-consuming in biomedical

research using supervised learning. In addition, even if data

labeling is performed by several TEAM doctors, the labeling

results are highly likely to be inconsistent because the types of PI

are inconsistent among TEAM doctors and each TEAM society

and different depending upon the disease. Therefore, a data-

driven approach to PI for TEAM research, which is flexible for

changes in data and reproducible for certain data, might bemore

reasonable than a standardization approach using a few TEAM

research experts.

Each cluster of sleep disturbance patients could be

differentiated, as shown in Figure 7. The patients in cluster A

had relatively mild sleep disturbances, severe immoderation in

the amount of food consumed, and good gastrointestinal status

compared to the other clusters. The patients in cluster B had

relatively severe sleep disturbances, mild immoderation in the

amount of food consumed, and severe gastrointestinal problems

compared to the other clusters. The patients in cluster C had

relatively moderate sleep disturbances, moderate immoderation

in the amount of food consumed, and mild-to-moderate

gastrointestinal problems compared to the other clusters.

Although the statistical analysis of the Berlin score indicated that

cluster A had a much lower risk than the other two clusters, it

could not be observed in the 3-dimensional visualizations.

The clustering results can be interpreted in two aspects,

the changes in sleep quality and the concomitant symptoms.

As sleep quality deteriorates, the appetite associated with food

moderation decreases, and the condition of the gastrointestinal

system worsens. Based on a recent systematic review and meta-

analysis of acupuncture using PI and TEAM clinical guidelines

for insomnia patients, cluster Amay bematched to the “stomach

disharmony pattern” type using ST36, CV12, and ST25; cluster

C may be matched to the “pattern of lingering phlegm” type

using ST40 and CV12; and cluster B may be matched to the

“pattern of dual deficiency of heart and spleen” type using CV12,

ST36, and ST40 (29, 30). This clusteringmodel can automatically

and consistently provide the same PI for a certain patient,

which ensures reliability for both TEAM doctors and patients.

However, it should be noted that this clustering model is flexible

to the number of patient data, changes in patient features, or

changes in the target disease, so-called “transfer learning” and

“fine-tuning” in machine learning techniques (52), which might

provide a different output for the number or types of patterns

identified. Therefore, the novel PI model in the present study

can be advanced, modified, or expanded for other studies.

The applications of this study include AI-based clinical

decision support systems (CDSSs) through electronic medical
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FIGURE 7

3D visualization of clusters with major components (PSQI, Berlin, GSRS scores, and NQ moderation) in the training set (A,B) and test set (C,D).

GSRS, gastrointestinal symptom rating scale; NQ, nutrition quotient; PSQI, Pittsburgh sleep quality index.

records (EMRs) and clinical trial protocols for evaluating

the effectiveness of TEAM treatment. If a TEAM doctor in

clinical practice obtains clinical data from insomnia patients

and documents them in the EMR, the PI model in AI-

based CDSSs suggests the candidate PI with the associated

probability and recommends a fundamental combination of

acupuncture points and herbal medicines. In addition, most

pragmatic trial protocols with individualized TEAM treatment

depend completely upon (one person or more) the TEAM

doctor’s PI for each patient. The reliability and validity of

PI itself, which might affect the effect size of individualized

TEAM treatments, are limited. However, the PI model in this

study could suggest a consistent PI technique for patients with

similar features, although the model’s effect on the results

of individualized TEAM treatment should be validated in a

prospective clinical trial.

Some limitations of this study follow. First, this cross-

sectional study data might not be fully sufficient to mimic the
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FIGURE 8

Flow diagram of the proposed PI model for acupuncture point and herbal medicine selection.

interaction between doctors and patients in clinical practices.

Some data obtained from free medical notes or an AI

speaker in clinical settings might be helpful to overcome this

limitation. Second, since this data was obtained from a single

sample of sleep disturbances in the ROKA, another study

sample is required for external validation of our proposed

model. Third, this study sequentially used a feature extraction

model and a clustering model separately. Emerging machine

learning research such as a deep clustering network, which

optimizes the feature extraction model and the clustering model

simultaneously, might perform better than the techniques used

in our study. This will be considered in future studies. Fourth,

the PI data used for each patient made by TEAM doctors were

limited in this study. However, the correlation between our

model’s output and actual PI by TEAM doctors in this study

should be observed to externally and more robustly validate

our clustering results. Fifth, although all features of data were

included to reflect a clinical setting wherein TEAM doctors

might consider all information of patients as much as possible

to find the appropriate PI, the feature selection algorithms,

such as univariate statistical test, Lasso regularization, or Boruta

algorithm can be applied in future studies to improve upon our

results. Finally, the specific combinations of acupuncture points

and herbal medicines after PI process were not represented

in this study. Although this study revealed the basic concepts

of the novel data-driven PI model, more research such as a

systematic review of published clinical articles, including case

series, or a survey of TEAM doctors is required to recommend

the appropriate acupuncture points and/or herbal medicines

after the determination of PI.
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AI-CenterNet CXR: An artificial
intelligence (AI) enabled system
for localization and classification
of chest X-ray disease
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Arabia, 2Faculty of Computing, Riphah International University, Islamabad, Pakistan

Machine learning techniques have lately attracted a lot of attention for their

potential to execute expert-level clinical tasks, notably in the area of medical

image analysis. Chest radiography is one of the most often utilized diagnostic

imaging modalities in medical practice, and it necessitates timely coverage

regarding the presence of probable abnormalities and disease diagnoses in

the images. Computer-aided solutions for the identification of chest illness

using chest radiography are being developed in medical imaging research.

However, accurate localization and categorization of specific disorders in

chest X-ray images is still a challenging problem due to the complex nature

of radiographs, presence of di�erent distortions, high inter-class similarities,

and intra-class variations in abnormalities. In this work, we have presented

an Artificial Intelligence (AI)-enabled fully automated approach using an

end-to-end deep learning technique to improve the accuracy of thoracic

illness diagnosis. We proposed AI-CenterNet CXR, a customized CenterNet

model with an improved feature extraction network for the recognition of

multi-label chest diseases. The enhanced backbone computes deep key points

that improve the abnormality localization accuracy and, thus, overall disease

classification performance. Moreover, the proposed architecture is lightweight

and computationally e�cient in comparison to the original CenterNet model.

We have performed extensive experimentation to validate the e�ectiveness of

the proposed technique using the National Institutes of Health (NIH) Chest

X-ray dataset. Our method achieved an overall Area Under the Curve (AUC)

of 0.888 and an average IOU of 0.801 to detect and classify the eight types

of chest abnormalities. Both the qualitative and quantitative findings reveal

that the suggested approach outperforms the existing methods, indicating the

e�cacy of our approach.

KEYWORDS

DenseNet, localization, CenterNet, chest X-ray images, deep learning

Introduction

The easier availability of multimedia content such as digital images and videos has

enhanced the growth of tasks performed in the field of computer vision (CV). The

well-known applications of CV involve object detection (1), object tracking (2), medical

image analysis (3–5), text analysis (6, 7), and video processing (8). The usage of CV
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approaches in the area of medical image analysis is assisting

the practitioners to perform their jobs quickly and accurately.

One of such applications is chest X-ray (CXR) analysis. The

CXR is the highest employed modality in the world to identify

several thoracic abnormalities such as pneumonia, COVID-19,

atelectasis, and lung nodule. The easier and more economic

behavior of CXR leads to significant medical inspections every

day (9). However, the manual examination of CXR is highly

reliant on the availability of domain specialists. Moreover,

the manual CXR study is a taunting and time-taking activity

accompanying high chances of wrong predictions. Whereas, the

automated CXR recognition system can fasten this process and

increase the accuracy of the system as well.

Chest abnormalities are the major reasons of deaths and

disability around the globe with about 65 million people

suffering from one disease or the other and 3 million demises

per year. Hence, timely identification of such diseases can save

the lives of patients and protect them from painful treatment

procedures (10). Therefore, to tackle the problems of manual

CXR inspection, the researchers have focused their attention to

present reliable automated solutions. Initially, the handcrafted

feature computation approaches were used for the classification

of several CXR abnormalities. Such methods are simple in

nature and can work well-with a small amount of data (11,

12). However, the handcrafted key points calculation methods

need extensive domain information and take huge time to

produce accurate results. Furthermore, there remains always a

trade-off between time complexity and classification results for

such techniques. The employment of huge key points enhances

the recognition power of these methods but at the cost of

the increased computational burden (12). The usage of small

key points causes increase in the efficiency of the hand-coded

approaches but results inmissing acquiring the significant aspect

of image modality which in turn decreases the classification

results. Due to such reasons, these methods are not found to be

proficient for the CXR analysis (13).

Now, the success of Artificial Intelligence (AI)-based

techniques in the automatic diagnosis of medical diseases is

astonishing. AI, when applied to the medical field, helps with

managing, diagnosing, and treating patients. This reduces the

stress of physicians and also serves as a helping hand to them.

It also helps on the administrative side by automating and

managing a large portion of the administrative burden (14).

Recently, the advancement of deep learning (DL) frameworks is

attracting the attention of the research community to use them

for digital image processing including the CXR examination

(15, 16). Numerous well-explored DL models such as CNN

(17) and Recurrent neural networks (RNNs) (18) are used

for segmentation and classification problems. This makes deep

learning a very powerful tool in healthcare, as most of the

work being done is categorized as either a classification or a

segmentation task. The empowerment of DL approaches has

made them highly suitable for medical image analysis as these

frameworks are capable of computing a more discriminative

set of key point vectors without the need for area specialists.

The CNN models are inspired by the working of human

brains to visualize and recall several objects. The well-known

CNN models i.e., VGG (19), ResNet (20), DenseNet (21), and

EfficientNet (22) are highly used for several image classification

tasks. Such methods can exhibit reliable performance with

minimum processing time (23–25). The main idea of using the

DL-based techniques for the medical image examination is that

these approaches are capable of computing the fundamental

information of the input samples and can deal with complex

image distortions such as intensity and color variations, noise,

blurring, and size changes.

Although existing techniques have acquired inspiring CXR

classification results; however, there is space for enhancement

both in terms of computational complexity and classification

accuracy. Hence, a more comprehensive investigation of

the existing traditional machine learning (ML) and DL

frameworks is required that can increase the CXR-related

disease classification performance. The major problem of ML

methods for the CXR abnormality classification is their low

effectiveness with increased computational time (26). The

power of DL approaches to resolve complicated real-world

issues is remarkable in comparison to human brain intellect.

While the DL approach resolves problems of ML techniques,

however, increased the model complexity as well. Hence, there

is a need for a more robust approach to the CXR-related

disease classification.

The timely and accurate classification of several CXR

diseases is a complex job due to the extensive similarities found

among different chest abnormalities. Besides, the incidence

of noise, blurring, light variation, and intensity changes

in the input samples further complicates the classification

procedure. To tackle the problems of existing methods, we

have presented a novel framework namely AI-CenterNet CXR

to detect and classify eight types of chest abnormalities. More

clearly, we have presented the DenseNet-41-based CenterNet

approach, where the key points from the input samples are

computed by using the DenseNet-41 model. The computed

features are later localized and classified by the one-stage

object detector of the CenterNet model. The experimental

results show that our technique is capable of discriminating

various types of chest diseases effectively under the presence

of different image distortions. The key contributions of our

work are:

• We proposed a novel AI-enabled framework namely AI-

CenterNet CXR with DenseNet-41 as a feature extractor to

enhance the identification and classification results of eight

types of chest abnormalities.

• The presented method is capable of accurately locating and

classifying the diseased portion from the X-ray samples

because of the effectiveness of the CenterNet technique.
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• We have improved the classification performance because

of the ability of the AI-CenterNet CXRmodel to better deal

with the model’s over-tuned training data.

• We have presented a computationally robust model to

classify several CXR abnormalities due to the one-stage

object detector framework of CenterNet.

• Huge evaluation is presented, and extensive

experimentation is performed against the latest approaches

for the CXR disease classification on a complex dataset

namely NIH Chest X-ray to show the accurateness of

our approach.

Related work

A lot of research work is proposed in the area of

CXR disease detection. This section provided a brief review

of previous research done for the detection of multi-class

chest diseases from medical images. Ayan and Ünver (27)

proposed a DL-based method using Xception and Vgg16 CNN

models for the diagnosis of pneumonia. Initially, different

data augmentation techniques, such as rotation, zooming, and

flipping, were applied to the input images to increase diversity

and avoid overfitting. Then, the DL models were fine-tuned

using transfer learning to extract discriminative key points.

The results showed that the Xception network achieved better

classification accuracy as compared to Vgg16; however, the

performance can be further improved. Bhandary et al. (28)

suggested a DL-based framework for the identification of

pneumonia and lung cancer that included two different models.

The first network was based on a modified AlexNet (MAN)

model to identify pneumonia class. The second network was

built using an ensemble strategy that combined handcrafted

features collected by the Haralick and Hu approach (29) with

deep features from the MAN model. For classification, the

Support Vector Machine (SVM) classifier was employed and

its performance was compared with the softmax classifier. This

technique attained a classification accuracy of 97.27% using

CT images from LIDC-IDRI benchmark dataset. In (30), the

authors evaluated the performance of different pre-trained

CNN models such as GoogLeNet, InceptionNet, and ResNet

using different image sizes and transfer learning. Moreover, the

network visualization was used to analyze the features learned

by these models. The results showed that shallow networks,

such as GoogleNet, outperform deeper network architectures

for discriminating between healthy and abnormal chest X-

rays. Rajpurkar et al. (31) presented a DL-based model namely

CheXNet to identify different illnesses in chest. The model

was comprised of 121 layers utilizing dense connectivity and

batch normalization. The authors retrained the ChexNet model,

which had previously been trained on ImageNet data, using

the CXR dataset. This approach achieved an F1 score of 43.5%

and Area Under the Receiver Operating Characteristic curve

(AUROC) of 0.801. In (32), the author proposed a DL model

for COVID-19 illness categorization across a wide range of other

chest diseases (multi-class classification) from chest x-rays. They

employed a Generative Adversarial Networks (GAN)-based

approach to generate synthetic images to solve the issues of class

imbalance data. The author analyzed the performance using

various scenarios such as data augmentation, transfer learning,

and imbalanced class data. The results showed that the ResNet-

based model yields higher accuracy of 87% with balanced data.

Ho and Gwak (33) designed a two-stage approach for the precise

identification of 14 different diseases from chest x-ray images.

Initially, the abnormal region was localized using activation

weights obtained from the last convolutional layer of fine-tuned

DenseNet-121 network. Then, classification was performed by

using a combination of handcrafted feature extractors i.e., SIFT,

HOG, LBP, GIST, and deep features. Several supervised learning

classifiers such as SVM, KNN, AdaBoost, and others were used

to classify hybrid features. The experimental findings showed

that the Extreme Learning Machines (ELM) classifier performs

well in comparison to other classifiers, with an accuracy of

0.8462. In (34), the authors developed a CNN-based network

comprising three convolutional layers for the identification of

12 different diseases using the CXR samples. They investigated

the performance against competitive NN and backpropagation

NN with unsupervised learning. The results demonstrated

that the proposed CNN attains high recognition rates and

better generalization power due to robust feature learning.

However, computation time and convergence iterations were

slightly higher.

In (35), the authors designed amulti-scale attention network

for enhanced multi-class chest disease identification accuracy.

The proposed network employed DenseNet169 as a backbone

with a multi-scale attention block that fused local characteristics

gathered at different scales with global features. A novel loss

function using perceptual and multi-label balance was also

introduced to solve issues of data imbalance. This approach

achieves an AUROC of 0.850 on CheXpert and 0.815 on the

CXR dataset. Ma et al. (36) suggested a cross-attention-based,

end-to-end architecture to address class unbalanced multi-label

x-ray chest illness classification. The model comprised a feature

extraction network based on densenet121 and densenet169 as

its backbone and a loss function based on an attention loss

and multi-label balance loss for better key point representation

through mutual attention. This model showed an improved

AUROC of 0.817 on the Chest X-ray14 dataset. Wang and Xia

(37) presented the ChestNet model to improve the accuracy of

multi-class thoracic illness diagnosis using chest radiography.

The model was comprised of two sub-networks: classification

and attention network. The classification network was based on

a pre-trained ResNet-152 model that was used to extract unified

key points. The attention network was used to investigate the

relationship between class labels and abnormal regions by using

the extracted key points. The suggested model outperformed

the existing models in classification using the CXR dataset.

Ouyang et al. (38) presented an approach to simultaneously
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perform both abnormality localization and multi-label chest

disease classification. The model was based on the hierarchical

visual attention mechanism comprising three levels and was

trained using a weakly supervised learning algorithm due to the

limited number of available box annotations for the abnormal

region. This approach exhibited a mean AUC score of 0.819 over

the CXR dataset.

Pan et al. (39) used pre-trained DenseNet and MobileNetV2

models for categorizing chest radiographs as healthy or diseased.

They evaluated these models for 14 different chest pathologies.

To analyze the generalization ability, the authors utilized

two different datasets. The results showed that MobileNetV2

outperformed the DenseNet model in the majority of scenarios.

Albahli and Yar (40) presented a multilevel classification

approach using DL to diagnose COVID-19 and other chest

disorders using CXR images. Initially, the first model was

used to classify the input into three classes: normal, COVID-

19 affected, and other. The second model was then used to

perform classification into 14 chest and associated disorders.

The suggested approach was evaluated using different pre-

trained DL models such as ResNet50, NasNetLarge, Xception,

InceptionV3, and InceptionResNetV2. The results exhibit that

ResNet50 performed best with an average accuracy of 71.905%

for COVID-19 identification and 66.634% for other diseases.

Alqudah et al. (41) introduced an approach for the diagnosis of

bacterial and viral pneumonia from healthy chest radiographs.

Initially, a modified CNN model pre-trained on other medical

images was fine-tuned to learn pneumonia disease-specific

features. Then, classification was performed using different

classifiers such as softmax classifier, SVM, and KNN. The

results exhibit that SVM outperformed the other classifiers;

however, the performance was evaluated on the limited dataset.

Kim et al. (42) presented an end-to-end learning approach

to perform multi-label lung disease classification. Initially, the

input images were preprocessed by applying crop and resize

operations to remove meaningless information from images.

Then, the pre-trained EfficientNetv2model was fine-tuned using

input images for the extraction of discriminative key point

vector and then classified into respective classes. This method

depicts improved results for three-class classification; however,

the model suffers from overfitting and performance degrades

on increasing the number of classes. Baltruschat et al. (43)

examined the execution of various ResNet-based models for the

task of multi-label chest x-ray images. The authors extended

the architecture and incorporated non-image features such as

the patient’s age, gender, and image acquisition category in

the network for improved classification. The results show that

ResNet-38 with integrated meta-information performed best

with an AUC of 0.727 as compared to others. Ibrahim et al. (44)

presented a DL-based multi-class identification method using

both CXR and CT images. The authors compared four different

custom architectures based on VGG19, ResNet152V2, and

Gated Recurrent Unit (GRU). The results exhibit that custom

VGG-19 outperformed the other models (i.e., ResNet152V2,

ResNet152V2 followed by GRU and Bi-GRU) by attaining an

accuracy of 98.05% on both X-ray and CT images; however,

the approach suffers from data overfitting issues. Ge et al.

(45) presented a multi-label CXR disease diagnosis approach

using illness and health label dependencies. The model was

comprised of two distinct sub-CNNs that were trained using

pairs of different loss functions, i.e., binary cross-entropy, multi-

label softmax loss, and correlation loss. The authors further

introduced bilinear pooling to compute meaningful features for

fine-grained categorization. This method (45) exhibits an AUC

of 0.8398 using ResNet as base model; however, it suffers from

high computational complexity.

The studies described above have shown remarkable

outcomes; however, they are limited to the identification

of a few chest-related diseases and lack generalizability for

the classification of multiple chest illnesses. A review of

approaches for recognizing chest diseases from the literature

is given in Table 1. It can be seen that there is still potential

for improvement in performing multi-label chest disease

classification in terms of accuracy, computation complexity, and

generalization ability.

Proposed methodology

Chest X-ray disease detection is based on two essential

modules: the first is the Localization of chest disease pathologies,

and the other is a classification of chest disease into eight

categories. The complete functionality of our novel method is

described in Figure 1.

For the classification of Chest X-ray disease, we have

presented the novel method named CenterNet with Densenet-

41. For training of our model, we have the publicly available

dataset having eight classes and also their bounding boxes values

of disease pathologies. So, we can perform localization of chest

X-ray disease lesions directly from images due to the availability

of bounding box ground truths. The proposed CenterNet

method recognizes the region of interest (ROI) in feature

extraction using DenseNet-41, afterward the localized areas are

classified into eight classes of chest diseases. Moreover, we have

evaluated all samples as per parameters in the field of CV.

CenterNet

Feature extraction is an essential step for recognizing the

regions in images and also for classification. So, efficient

features are required to correctly locate the disease areas from

CXR images and recognize their categories into eight classes.

However, this task is challenging due to the overfitting problem

which occurs because of the large feature vector. Another

challenge is the skip of essential areas (such as texture, shape,
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TABLE 1 A comparison of the multi-class chest disease diagnosis.

Reference Methodology Findings Gaps identified

Ayan and Ünver

(27)

VGG16

Xception network

Accuracy= 0.87% (VGG16)

Accuracy= 0.82% (Xception network)

The accuracy can be improved by combining

features from both networks

Bhandary et al. (28) Modified AlexNet (MAN) and Haralick and

Hu approach

Accuracy= 97.27% The generalization performance of the model

can be enhanced

Tataru et al. (30) GoogLeNet, InceptionNet, and ResNet Accuracy= 80%, F1 score of 0.66 The performance can be improved by the

inclusion of a segmentation approach to

allow the network to learn more

disease-specific attributes

Rajpurkar et al. (31) Novel CNN (121-layer) F1 score= 43.5% and AUROC=

0.801

Performance requires further improvement

Albahli (32) Novel CNN Accuracy= 87% Performance needs improvement

Ho and Gwak (33) A hybrid model with a DenseNet-121

network and hand-crafted feature extractor

i.e., SIFT, HOG, LBP, GIST, and different ML

classifiers such as SVM, KNN, AdaBoost, and

others

Accuracy= 0.8462, F1-score=

0.9413, AUC= 0.8097

Requires improvement in the generalization

ability of the model

Abiyev and Ma’aita

(34)

Novel CNN Accuracy= 92.4% The model can be made deeper to enhance

performance

Xu et al. (35) Densenet169 with multi-scale attention

network

AUROC= 0.850 The performance can be improved further

AUROC= 0.815

Ma et al. (36) Densenet121 and densenet169 with cross

attention

AUROC= 0.817 The model is computationally complex

AUROC= 0.775

Wang and Xia (37) ResNet-152 with attention network AUC= 0.781 The model is computationally complex and

suffers from high inference time

Ouyang et al. (38) ResNet with a hierarchical visual attention

mechanism

AUC= 0.819 The model is dependent on the availability of

box annotations

AUC= 0.9166

Pan et al. (39) DenseNet and MobileNetV2 AUROC= 0.924 The generalizability of the model requires

improvement

AUROC= 0.900

Albahli and Yar (40) ResNet50, NasNetLarge, Xception,

InceptionV3, and InceptionResNetV2

AUC= 96.9,

Sensitivity= 93.4, Specificity= 93.72

The images were segmented before the

classification

Alqudah et al. (41) Novel CNN with softmax classifier, SVM, and

KNN

Accuracy= 94%,

Sensitivity= 93.33%,

Specificity= 96.68%

Performed classification between Normal vs.

Bacterial Pneumonia vs. Viral Pneumonia

classes

Kim et al. (42) EfficientNetv2 Accuracy= 82.15%, Sensitivity=

81.40%, Specificity= 91.65%

The evaluation was performed on 4 classes

only Pneumonia, Pneumothorax,

Tuberculosis, and Normal class

Baltruschat et al.

(43)

ResNet38, ResNet50, ResNet101 AUC= 0.822 The performance can be improved further

Ibrahim et al. (44) CustomVGG19, ResNet152V2,

ResNet152V2-GRU, and

ResNet152V2-BiGRU

Accuracy= 98.05%, Recall= 98.05%,

Specificity= 99.5%, F1-score=

98.24%, AUC= 99.66%

The model is evaluated only using

COVID-19, Pneumonia, Lung Cancer, and

Normal classes

Ge et al. (45) ResNet and DenseNet with novel multi-loss

function

AUC= 0.8398 (ResNet)

AUC= 0.8392 (DenseNet)

The model is evaluated using only four

classes
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FIGURE 1

Flow diagram of proposed method namely AI CenterNet CXR.

and color changes) of the model due to the small set of the

feature vector.

To accomplish the robust and efficient feature vector,

it is essential to apply an automated key points extraction

approach, avoiding the handcrafted feature methods. Because

the handcrafted approaches of features extraction are not

effective in correctly recognizing the disease lesions from the

CXR images due to different variations, positions, and textures

of lesions. To tackle all these problems, we have presented

an efficient and novel method, which is the DL method and

based on CenterNet. The presented approach named Efficient

CenterNet has the ability to directly extract the features

efficiently from CXR images. CenterNet has the convolution

filter (CF) for key points calculation that extracts the structure

of disease areas from images. The inspiration for using the one-

stage method i.e., CenterNet (26) over the other object detectors

e.g., RCNNs (28) and (15, 29) for chest disease identification

is that these are complex structures and take more time due

to the two-stage approach. Faster-RCNN uses Region Proposal

Network (RPN) for localization of objects from images, then

collective features intimate with each ROIs split detection heads

and detect the class of object with bounding box. However, these

approaches are economically not robust and are not applicable to

real-world requirements of object localization. The DL approach

CenterNet addresses the issues of the abovementioned methods

by identifying features and also the location of ROIs in input

parallelly. Moreover, the one-step technique is the ability of

CenterNet that makes it more accurate and timelier efficient.

For recognizing and categorizing CXR diseases, it is

challenging to locate the features of ROIs because of numerous

factors i.e., finding the actual location of ROIs due to extreme

color and light variations, and other is finding the category

of each object. CenterNet can precisely classify and detect

the disease areas of numerous categories through heatmaps,

which switched the two-stage into a one-step object detector.

The heatmap unit acts by utilizing the center features that

accomplish greater recall values, which facilitate to decrease in

the computation cost of feature extraction.

Customize centernet

The conventional CenterNet (30) used ResNet-101 for

computing features to execute medical image analysis. However,

this method i.e., ResNet employs skip connections to prevent

non-linear conversions, which reason the immediate gradient

flow from the previous to the next layers through the identity

module. Figure 2 describes the Res-Net-101 technique that

encompasses huge parameters and ultimately produces the

vanishing gradient problem. To overcome the above issue, we

proposed a DenseNet-41 for feature extraction that is densely

accompanying the convolution approach. In the presented

approach, DenseNet is utilized as a backbone network of

CenterNet, which makes CenterNet more efficient due to a

smaller number of parameters than ResNet-101. The introduced

network consists of numerous Dense Blocks (D_B), which

consecutively join up by additional convolutional and pooling

layers among successive D_Bs. The DenseNet can exhibit the

complex renovation that facilitates overwhelming the challenge

of the inadequacy of the output position information for the

upper-level key points, in some measure. Moreover, this method

encourages feature reproduction, which makes them highly

convenient for Chest X-ray disease localization and improves

the training procedure. So, we introduced the DenseNet-41

(31) in CenterNet approach for feature extraction from Chest

Xray Images.

DenseNet-41 feature extractor

DenseNet-41 encompasses four D_Bs along with the equal

layers as employed in ResNet-101. The DenseNet-41 has less no

of parameters than Resnet-101, which makes it computationally
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FIGURE 2

The architectural view of ResNet-101.

TABLE 2 Description of DenseNet-41.

Layer DenseNet-41

Size Stride

Con L1 7× 7 conv 2

Pool L1 3× 3 max _pool 2

Dense B1

[
1× 1 conv

3× 3 conv

]
× 3 1

Transition L1 Con L2 1× 1 conv 1

Pool L2 2× 2 avg_pool 2

Dense B2

[
1× 1 conv

3× 3 conv

]
× 6 1

Transition L2 Con L3 1× 1 conv 1

Pool L3 2× 2 avg_pool 2

Dense B3

[
1× 1 conv

3× 3 conv

]
× 6 1

Transition L3 Con L4 1× 1 conv 1

Pool L4 2× 2 avg_pool 2

Dense B4

[
1× 1 conv

3× 3 conv

]
× 3 1

Classification Layer 7× 7 avg_pool

FC layer

SoftMax

efficient for feature computation of disease detection. Table 2 has

the description of DenseNet-41, including D_Bs (as shown in

Figure 3), convolutional, and transition layers (T_L).

The D_B is the vital component of DenseNet, l × l ×

m0 demonstrates the key points maps (KM) of the L-1 layer.

N specifies the dimension of KM, whereas all channels are

characterized by m0. P(.) is the non-linear conversion that

contains different modules i.e., batch normalization (BaN),

ReLU activation method, a 1 × 1 Conv layer (C_L), utilized

to lessen all the channels, and a 3 × 3 C_L, used for features

reorganization. Dense links are represented by long-dashed

arrows, which are utilized to join the L-1 to the L layer and

combined them through the result of the P(.). Lastly, l × l ×

(m0+ 2m) is the result of the L+ 1 layer.

The numerous dense connections enhance KMs; so, the

T_L is activated for reduction in feature size from the previous

DB, which is briefly explained in (32, 33). The calculated key

points are down-sampled with the four stride rate, after that

these features are utilized for the estimation of various heads,

illustrated in the proceeding subsections.

FMs increase because of vast dense links, so the T_L

is represented to decrease the size of the feature map from

the preceding D_B (32, 33). The feature set comes from the

DenseNet-41 is put down using four stride rate and then transfer

to calculate the several heads which are explained below:

Heatmap head

This head offers a key points approximation on the reduced

deep key points from the DenseNet-41 to find the diseased

portions with their category. The respective features are the

center of bbox when localize the ROIs can be calculated

as follows:

Ôi,j,c = exp
(
−
(i−p̂i)

2
+(j−p̂j)

2

�2σ 2
p

)
(1)

where i and j are the original feature values, p̂i and p̂j are

the positions of estimated down-sampled features, σp displays
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FIGURE 3

Dense block and transition layer.

the region size-adaptive standard deviation, c is the total of

categories, and ox,y ,c shows the center for a candidate features,

in case it is marked as 1 means affected; or else, considered

as healthy.

Dimension head

This type of head is utilized for the prediction of values of

bbox, which is responsible for computing the dimensions of the

box. The width and height of the bbox can be computed by the

L1 norm i.e., (x2-x1, y2-y1), for the k object with values (x1, x2,

y1, y2).

O�set head

After applying down-sampling on input images, the

discretization error appears that needs to be minimized. So, the

offset head is calculated for this purpose and then the center

points are again represented in the high-resolution input image.

Multitask loss

Multitask loss is the technique to improve the performance

of DL-based approaches like CenterNet, our proposed technique

used this type of loss for performance enhancement with

accurate localization and classification of disease regions. So, the

multitask loss is represented with L on every head, which can be

estimated as follows:

Lcenternet = Lmap + λdimLdim + λoff Loff (2)

The total loss calculated by our method is LCenterNet , in which

heatmaps, offset, and dimension head losses are described by

Lmap, Ldim, and Loff , respectively. And λdim and λoff are equal

to constant values of 0.1 and 1 simultaneously.

The Lmap is calculated through the following equation:

Lmap =
−1

n

∑

i,j,c

{
(1− Ôi,j,c)

α

log(Ôi,j,c) if Ôi,j,c = 1

(1−Oi,j,c)
β (Ôi,j,c)

α

log(1− Ôi,j,c) otherwise
(3)
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The total key points are shown by n. Oi,j,c is the center of the

original feature center, whereas oi,j,c is the estimated value of the

center. Hypermeters of loss in our case is described by α and β

having the values of 2 and 4 for the whole test.

The Ldim can be estimated by using the Equation 4,

Ldim =
1

n

n∑

k=1

∣∣∣b̂k − bk

∣∣∣ (4)

where bk is the actual and b̂k is the predicted bbox coordinates,

total samples are shown by n.

Ultimately, the Loff is determined by the Equation 5:

Loff =
1

n

∑

p

∣∣∣F̂p̂ − (p�R − p̂)
∣∣∣ (5)

The predicted offset rate is denoted by F̂ , while R is the

resultant stride. The real key point is p, while p̂ is the down-

sampled value.

Creation of bounding box

Lastly, the estimated values with each category are processed

separately which are gained through heatmaps. In this work, we

have utilized the 8 nearest neighbors, and then the highest 100

values are considered.

Let Q̂ is producing N-related center points of class c using

Equation 6:

Q =
{(
x̂j, ŷj

)}N
j=1

(6)

where the location of every estimated point is symbolized as

(x̂j, ŷj). We have utilized all values of key points denoted by Q̂ ,

and bbox and coordinates can be found through Equation 7:

(x̂j + ˆ∂xj − ŵj/2, ŷj + ˆ∂yj − ĥj/2, (7)

x̂j + ˆ∂xj + ŵj/2, ŷj + ˆ∂yj + ĥj/2)

In Equation 7, ( ˆ∂xj, ˆ∂yj) = offset prediction, while (ŵj, ĥj)

= size prediction.

The final bbox is created immediately from the

valuation of the features with no usage of IoU-based

non-maxima suppression.

Detection process

CenterNet is an efficient technique as compared to other

methods, which are explained in previous sections. So, in this

method, input X-ray image along their bbox is given to the

trained framework, whereas the CenterNet estimates its center

values of disease regions. The complete flow of the introduced

solution is described in Algorithm 1.

Input 1. CXR images from the NIH dataset

2. Eight categories of diseases are

nominated i.e., Atelectasis (AT),

Cardiomegaly (CD), Effusion (EF),

Infiltration (IF), Mass (M),

Nodule (ND), Pneumonia (PN), and

Pneumothorax (PX)

3. Bonding boxes containing the

region of interest

Output 4. Localized region identifying the

diseased area

5. Output label with a classification

score

6. Trained model

Environment 7. Python with TensorFlow and others

requires libraries

8. GPU-based machine

Configuration 9. Importing samples

10. Distribution of dataset into

train, validation, and test sets

Data

Configuration

11. Batch size = 16

Directories

Configurations

12. Generate 2-folders of the samples

with their output labels and

bounding box values employed for

the model training and

validation, respectively

Training and

Testing

13. Create the CenterNet model with

the Dense-41 base network and

fine-tuned it on the NIH images

to perform the model training.

14. Samples from the test set are

used to evaluate the trained

model performance for the CXR

disease classification.

Validation 15. Compilation of model with 25

epochs along with the 0.001

learning rate

16. The multi-loss function is used

to measure three types of losses

i.e., heatmaps, offset and

dimension head losses for model

performance optimization

Evaluation 17. Measure model performance by

using standard metrics:

• mAP

• IOU

• Confusion matrix

• Precision

• Recall

• Accuracy

• F1-Score

• Error rate

• AUC

• Test time

Algorithm 1. Flow of the introduced method.
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Experiment and results

In this portion of the paper, we have provided detailed

information about the dataset being used for the model

verification. Further, we have elaborated on the evaluation

measures that are used to compute the quantitative results of our

approach. Besides, extensive experiments have been performed

to test the proposed approach in numerous ways to show its

robustness for CXR disease detection and classification.We have

performed the experiments in Python language by using an

Nvidia GTX1070 GPU-based system. In the presented technique

for CXR recognition, the CenterNet model is employed with

pre-trained weights obtained from the MS-COCO dataset, and

transfer learning is carried out on the NIH X-ray dataset to

modify it for the chest disease classification.

Dataset

For model training and testing, we have used a standard

dataset of CXR namely the NIH Chest X-ray dataset (46). The

employed database comprises a total of 112,120 samples from

30,805 subjects. The details about the entire NIH CXR dataset

are shown in Figure 4. The outer layer in the figure shows

the number of images in the respective class, and the second

outer layer represents all the 14 classes. The complete dataset

has 14 classes, however, the dataset contains the annotations

for eight types of chest diseases such as AT, CD, EF, IF,

M, ND, PN, and PX, respectively. There are a total of 984

annotated samples available for model training, which are

marked by a panel of radiologists. As the proposed work is

concerned with the employment of an object detection-based

model for the CXR classification, therefore, we have considered

the abovementioned eight diseases for our approach. A few

samples from the NIH CXR dataset are presented in Figure 5.

The used dataset is quite complex in nature due to the presence

of intense light variations, noise, blurring, color changes, and

class imbalance problems.

Performance metrics

To assess the CXR detection and classification performance

of the proposed Custom-CenterNet model, we have utilized

several standard metrics used in the area of object detection and

classification domain. We have used the mean average precision

(mAP), Intersection over Union (IOU), precision, accuracy,

and recall, metrics for performance analysis. The mathematical

description of the accuracy measure is given in Equation 8:

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

Equation 9 depicts the mathematical formulation of AP, and

equation 10 is the mAP measure, where AP shows the average

precision for all classes and t is the test sample. T is representing

all test samples:

AP =

1∫

0

p(r)dr (9)

Here, p(r) is the accuracy of the target area or detection:

mAP : =

T∑

i=1

AP(ti)/T (10)

Figures 6–8 explain the visual demonstration form of IOU,

precision, and recall, respectively.

Localization results

An effective CXR disease classification should be capable of

correctly recognizing and classifying all categories of diseases.

For this reason, we have performed an analysis to check the

CXR abnormalities detection and classification performance of

our approach. The test images from the NIH CXR dataset are

applied to confirm the localization and categorization power of

the customCenterNet approach, and visual samples are reported

in Figure 9. We have reported some test results in Figure 9

for all eight classes, which include class labels and confidence

scores. The first row is showing the localization results of the

Atelectasis class, the second row is for the Cardiomegaly class.

Similarly, the remaining six rows in Figure 9 show the detection

results for Effusion, Infiltration, Mass, Nodule, Pneumonia,

and Pneumothorax, respectively. From localization results, we

analyze that this dataset has both smaller and larger disease

regions such as Effusion and Nodule diseases have smaller

affected areas, while others have larger affected regions. So,

our model can detect both the smaller and larger regions

precisely with better results. The samples shown in Figure 9

having different intensity variations are depicting that our

model can accurately identify the diseased portion and can

differentiate several chest diseases efficiently. Moreover, the

model is capable of reliably locating the diseased portion for

the distorted samples, which are depicting the robustness of

our method. For example, in Figure 9, the second case of

the last row has a smaller region and is also similar to the

background area, but our method detected it accurately. To

numerically discuss the localization ability of the DenseNet41-

based CenterNet approach, we have computed the mAP score

which is the standard evaluation metric and we have acquired

the mAP score of 0.91. From both the visual and quantitative

results analysis, we can say that the proposed custom CenterNet
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FIGURE 4

A pictorial view of sample information from the NIH Chest X-ray dataset (47).

model can be reliably applied for the CXR disease identification

and classification.

Class-wise results

Here, we have elaborated the class-wise results of our

approach to elaborate the recognition power of our approach in

categorizing eight types of chest diseases from the X-ray image

modality. For this reason, we employed the DenseNet41-based

CenterNet framework on all the suspected samples from the

NIH CXR database and computed the performance in the forms

of precision, recall, accuracy, and F1 measure.

Firstly, we have reported the category-wise obtained

precision values for our approach as this metric permits us

to check how much a model is competent in discriminating

the diseased images from the normal samples. The acquired

results are shown in Figure 10 from where it is quite visible that

our approach has correctly detected the affected samples. More

clearly, we have obtained the average precision value of 89%,

which is showing the efficacy of the presented technique.

Moreover, we have computed the recall evaluation metric

as it allows us to analyze how much a framework is capable

of differentiating the different diseases from each other. The

obtained AP and recall values are shown in Figure 11, which

is clearly showing that our proposed model is empowered to
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FIGURE 5

Samples images of NIH CXR dataset.

FIGURE 6

Visual depiction of IOU metric.

correctly recognize all eight types of CXR abnormalities and

shows an average recall value of 91%.

Furthermore, we have computed the F1-Score as the more

the value of the F1-Score the better the model performance.

The calculated F1-Score along with the error rate for all

eight classes of CXR abnormalities are shown in Figure 12.

The custom CenterNet approach shows the maximum F1

score of 94.30% along with the minimum error rate of

5.70% for the Pneumothorax class while reporting the lowest

F1-Score of 87.88% along with a maximum error rate of

12.12% for the Nodule abnormality. More clearly, we have

attained the average F1-Score and error rate of 89.99 and

10.01%, respectively.

Furthermore, we have reported the confusion matrix to

further demonstrate the CXR abnormality categorization power

of the proposed approach as the confusion matrix is capable of

showing the classification performance of a model in a viable

manner by showing the actual and predicted values. More
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FIGURE 7

Visual demonstration of Precision metric.

FIGURE 8

Pictorial representation of Recall measure.

descriptively, we have acquired the True Positive Rate (TPR)

of 89.55, 87.65, 87.69, 93.33, 90.87, 89.98, 93.78, and 94.82%. It

is quite evident from Figure 13 that the presented method can

efficiently discriminate the affected regions of several classes of

CXR diseases.

Finally, we have calculated the accuracy values for all

eight classes of the CXR diseases, and values are shown in

Figure 14 from where it is quite evident that the proposed

approach shows robust classification results for all classes.

More clearly, we have acquired an average accuracy value

of 92.21%. Based on the conducted analysis, we can say

that our approach shows better classification performance in

terms of all performance measures due to its efficient feature

computation power.

Evaluation of proposed model

In this section, we have provided a comparison of the

classification results of our approach against other DL-based

methods. For this reason, we have selected the AlexNet (48),

GoogleNet (49), VGG16 (50), and ResNet50 (51) models by

considering their results for the CXR disease classification as

mentioned in (52).

Initially, we performed the class-wise performance analysis

of our approach with the nominated DL approaches, and the

results are elaborated in Table 3. It can be seen from the table

that the DenseNet41-based CenterNet model has outperformed

the other approaches for all categories of diseases. More clearly,

for the AT and CD diseases, the selected DL methods show
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FIGURE 9

Localization results of the proposed method.

the average values of 0.65 and 0.73 which are 0.88 and 0.95 for

our case. So, for the AT and CD diseases classification, we have

shown performance gains of 22.75 and 22.25%, respectively.

While for the EF, IF, and M chest diseases, we have given the

average values of 0.78, 0.91, and 0.85, while the comparative

methods show the average values of 0.68, 0.60, and 0.54,

respectively, so we have shown the performance gains of 24.5,

17.75, and 36.75% for the mentioned diseases, respectively.

Similarly, for the ND, PN, and PX chest diseases, the peer

approaches report the average values of 0.645, 0.57, and 0.735,
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FIGURE 10

Class-wise precision values for the custom CenterNet model.

which are 0.85, 0.84, and 0.96 for the proposed approach. Hence,

we have presented the 20.5, 27, and 22.5% of performance gains

for the ND, PN, and PX chest disease classification, respectively.

Entirely, for all diseases, the competent methods attain the

average AUC value of 0.645, while our work acquires 0.887,

hence we have provided an overall performance gain of 24.20%.

In the second phase, we assessed the custom CenterNet

approach with the nominated DL approaches by comparing

the results on the entire dataset using several standard

metrics, namely, precision, recall, accuracy, and F1-measure.

The comparative analysis is shown in Table 4 from where it

is quite clear that the proposed framework is more efficient

for CXR abnormality categorization. We have obtained the

highest performance values for all the evaluation measures

with the values of 89, 91, 92.21, and 89.99% for the precision,

recall, accuracy, and F1-Score, respectively. The second largest

results are shown by the EfficientNet with the values 87.74,

88.95, 88.01, and 87.61% for the precision, recall, accuracy,

and F1-Score respectively. DenseNet-121 attained better results,

however, this model is computationally complex as compared to

our proposed DenseNet-41. Furthermore, the ResNet50 model

the values of 77, 75, 77.63, and 75.99% for the precision, recall,

accuracy, and F1-Score, respectively. Moreover, the AlexNet

model shows the lowest classification results with values of 65,

66.14, 67.45, and 65.57% for the precision, recall, accuracy, and

F1-Score, respectively. From the conducted analysis, we can say

that the proposed DenseNet41-based CenterNet model is quite

efficient to recognize each category of chest diseases and show

robust performance on the entire dataset as compared to the

other DL-based approaches. The main cause for the enhanced

classification results of our model is because of the usage of

the DenseNet41 as its base network, as this model employs

the shallow network architecture which permits it to select a

more reliable set of images key points. While comparatively, the

selected DL-based approaches are quite complex in structure

and unable to perform well for the samples with intense light,

and color variations causes decrease in their performance for the

CXR abnormalities recognition. So, we can say that our model
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FIGURE 11

Class-wise AP and recall values for the proposed Custom CenterNet approach.

presents an efficient and effective solution for classifying chest

disease from the X-ray image modality.

Comparison with other object detection
models

Here, we experimented to analyze the results of our

approach by comparing it against several other DL-based object

recognition approaches for the CXR abnormality categorization.

For this reason, we have taken both the one and two-stage

techniques. The major distinction between the one and two-

stage object detection models is that in the case of two-stage

approaches, initially numerous region proposals are created

to identify the location of the diseased portion, and then the

associated class is determined. While for the one-stage object

detection methods, the position and class of RoI are determined

in a single step. In the case of two-stage approaches, we have

chosen the Fast-RCNN (53), Faster-RCNN (4, 54), and Mask-

RCNN (55) models, while for the other, we have taken the

RetinaNet (56) and conventional CenterNet (21) models.

For performance comparison, we have used the mAP

performance measure as it is the highly designated metric

used in the area of object recognition. Additionally, the test

time of all competitor methods is also considered to discuss

the computational efficiency as well. The obtained comparison

is shown in Table 5 from which it is quite evident that our

approach is proficient for CXR disease classification both in

terms of performance results and test time with the values of

0.91 and 0.21 s, respectively. The Fast-RCNNmodel employs the

hardcoded-based approaches for its key points computation that

are unable to tackle the image distortions reliably. The Faster-

RCNN and Mask-RCNN approaches have tackled the issues

of the Fast-RCNN model; however, these are computationally

inefficient due to their two-stage networks. Whereas, the

RetinaNet approach is unable to learn the discriminative

anchors for the acentric key points of suspected samples.We also

compared our model with the YOLO object detector, it achieved

a 0.76 mAP value and the test time is 0.22 s. This model is faster,

however, attained a low localization rate because it strives to

detect small regions of disease from the images.

The conventional CenterNet model shows better

performance; however, still unable to generalize to real-

world scenarios due to its high computational cost. The

proposed approach that is the DenseNet41-based model has

better addressed the limitations of existing approaches by

identifying the diseased portion in a more viable manner. The

major cause for the better performance of our model is due to

the employment of the DenseNet41 model as a feature extractor,

which empowers it to better designate the image features which

in turn enhances its recognition power and reduces its time

complexity as well.
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FIGURE 12

Class-wise F1-Score along with the error rate for CXR diseases classification using custom CenterNet model.

FIGURE 13

Confusion matrix obtained for CXR disease classification with the custom CenterNet.
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FIGURE 14

Class-wise accuracy values.

TABLE 3 Comparison with base models in terms of the AUC metric.

Model Atelectasis Cardiomegaly Effusion Infiltrate Mass Nodule Pneumonia Pneumothorax

AlexNet 0.64 0.69 0.66 0.60 0.56 0.65 0.55 0.74

GoogLeNet 0.630 0.70 0.69 0.61 0.54 0.56 0.59 0.78

VGG16 0.63 0.71 0.65 0.59 0.51 0.65 0.51 0.63

ResNet50 0.71 0.81 0.74 0.61 0.56 0.72 0.63 0.79

Proposed 0.88 0.95 0.93 0.78 0.91 0.85 0.84 0.96

The bold means highest AUC metric.

TABLE 4 Comparative comparison with base models.

Model Precision Recall Accuracy F1-Score

AlexNet 65.00% 66.14% 67.45% 65.57%

GoogLeNet 69.53% 71.88% 70.35% 70.69%

VGG16 72.00% 74.32% 75.41% 73.14%

ResNet-50 77.00% 75.00% 77.63% 75.99%

Inception V4 79.32% 75.65% 79.32% 79.22%

DenseNet-121 83.01% 81.84% 83.21% 82.87%

EfficientNet 87.74% 88.95% 88.01% 87.61%

Proposed 89.00% 91.00% 92.21% 89.99%

Comparative analysis against ML
classifiers

We have further explained the robustness of our approach

for the CXR disease recognition by evaluating its results

against the Conventional ML-based classifiers. For this reason,

we have nominated two renowned ML classifiers named the

SVM and KNN, and obtained values are shown in Table 6.

The values in Table are clearly showing that the presented

approach obtains the highest AUC with the value of 0.887. The

second highest result is attained by the SVM classifier with

the value of 0.745, while the KNN classifier shows the lowest
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TABLE 5 Comparison with object detection models.

Model Base mAP Test time

(sec/img)

Fast-RCNN VGG-16 0.65 0.28

Faster-RCNN VGG-16 0.77 0.25

Mask-RCNN ResNet-101 0.79 0.23

RetinaNet ResNet-101 0.63 0.27

YOLO ResNet-50 0.76 0.22

CenterNet ResNet-101 0.82 0.25

Proposed CenterNet DenseNet-41 0.91 0.21

TABLE 6 Comparison with ML-based classifiers.

Classifier AUC

SVM (57) 0.745

KNN (57) 0.721

Proposed 0.887

The bold means highest AUC metric.

value of 0.721, respectively. More descriptively, the comparative

classifiers show the average value of 0.733, which is 0.887 for

the proposed work. So, we have given a performance of 15.40%.

The comparative analysis is clearly depicting that the presented

custom CenterNet is more proficient in classifying the several

diseases of the chest from the X-ray image modality because of

its high recognition ability.

Comparative analysis with
state-of-the-art methods

In this part, a comparative analysis is executed in

comparison to several latest approaches introduced for the CXR

disease classification employing the same dataset. For a fair

comparison, the highest average results reported in (52, 58–62)

are taken and evaluated against our obtained average results.

Initially, we have compared the proposed approach in terms

of the AUC metric and the obtained comparison is reported in

Table 7. Wang et al. (58) proposed a DL-based approach for the

CXR disease classification, where the CNN-RNN framework was

introduced to compute the deep features from the input samples

and perform the classification task. The work (58) acquired an

average AUC value of 0.753. Another DL-based approach was

presented in (59) employing the concept of boosted cascaded

convents and attained the average AUC value of 0.778. Liu

et al. (60) introduced an approach namely the Contrast-

Induced Attention Network (CIA-Net) that used the concept

of constructive learning to perform the CXR abnormalities

recognition and show the average AUC value of 0.801. Seyyed-

Kalantari et al. (61) presented a CNN-based approach to

categorize several diseases of the chest via employing the X-ray

modality and obtained the average AUC value of 0.821. Han et al.

(62) presented a residual-based approach for recognizing several

CXR diseases and acquired an average AUC value of 0.838.

While in comparison, the presented approach acquired the

highest value of the AUC measure with the value of 0.837. More

descriptively, for the AT disease, the competent approaches

show an average value of 0.786 and 0.880 in our work; hence,

we presented a performance gain of 9.40%. For the CD, EF,

and IN classes, the competitor methods show the average values

of 0.894, 0.856, and 0.698, respectively, which are 0.99, 0.93,

and 0.95 for our technique. Therefore, for the CD, EF, and

IN classes, the custom CenterNet approach shows the average

performance gains of 9.6, 7.4, and 15.2%, respectively. Similarly,

for the M, ND, PN, and PX classes, the presented framework

provides the average performance gains of 10.2, 10.8, 9.6, and

0.4%, respectively. While collectively, the approaches in (58–62)

show the average AUC value of 0.789, while our method shows

the average AUC value of 0.888 and presented the performance

gain of 8.98%, which is showing the robustness of our approach

for the CXR abnormalities classification.

Secondly, the performance comparison of our work in terms

of IOU is discussed against the latest methods reported in

(52), and obtained comparison is presented in Table 8. Wang

et al. (52) introduced a deep CNN model for identifying and

classifying the CXR diseases and attained the average IOU value

of 0.569. Similarly, a CNN-based approach was introduced in

(62) and acquired an average IOU value of 0.746. Li et al. (63)

proposed a Residual-based approach for classifying the CXR

abnormalities and attained an average IOU value of 0.728. In

comparison, our proposed customCenterNet model exhibits the

average IOU value of 0.801 which is the greatest among all peer

methods. More clearly, the peer techniques show the average

IOU value of 0.681 which is 0.801 for the proposed solution.

Hence, for the IOUmeasure, the custom CenterNet model gives

the average performance gain of 12%.

From the conducted analysis, it is quite clear that the

proposed approach for the CXR disease classification is more

competent in terms of both IOU and AUC evaluation measures

as compared to the latest approaches. The major reason for

the robust recognition power of the proposed solution is due

to the more discriminative feature computation ability of our

model, which assists it to recognize all categories of disease

in an efficient manner. While in comparison, the approaches

in (52, 58–62) are quite complex in structure which results

in the model over-fitting issue. Moreover, the approaches are

unable to deal with several distortions of suspected samples such

as color and light variations which make them inefficient to

capture the image information accurately. While in comparison,

our technique is more effective to tackle the transformation

changes in the suspected samples. Hence, we can say that the

presented customCenterNet is more competent for CXR disease

recognition and categorization.
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TABLE 7 Comparison of latest approaches in terms of the AUC metric.

Approach Atelectasis Cardiomegaly Effusion Infiltrate Mass Nodule Pneumonia Pneumothorax

Wang et al. (58) 0.73 0.84 0.79 0.67 0.73 0.69 0.72 0.85

Kumar et al. (59) 0.76 0.91 0.86 0.69 0.75 0.67 0.72 0.86

Liu et al. (60) 0.79 0.87 0.88 0.69 0.81 0.73 0.75 0.89

Seyyed-Kalantari et al. (61) 0.81 0.92 0.87 0.72 0.83 0.78 0.76 0.88

Han et al. (62) 0.84 0.93 0.88 0.72 0.87 0.79 0.77 0.90

Proposed 0.88 0.99 0.93 0.95 0.90 0.84 0.84 0.88

The bold means highest AUC metric.

TABLE 8 Comparison of latest techniques in terms of the IOU metric.

Approach Atelectasis Cardiomegaly Effusion Infiltrate Mass Nodule Pneumonia Pneumothorax

Wang et al. (52) 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38

Han et al. (62) 0.72 0.96 0.88 0.93 0.74 0.45 0.65 0.64

Li et al. (63) 0.71 0.98 0.87 0.92 0.71 0.40 0.60 0.63

Proposed 0.76 0.99 0.93 0.95 0.74 0.56 0.74 0.74

The bold means highest IOU metric.

Conclusion

In our work, we presented AI-CenterNet CXR, an end-

to-end DL-based framework for the automated recognition

and categorization of thoracic illness from chest radiographs.

Our method is based on a CenterNet model that uses the

DenseNet network for the computation of effective image

attributes. More specifically, we integrated the DenseNet-41

network to extract a discriminative set of key points from the

chest x-rays for the accurate identification of abnormalities.

Moreover, due to the one-stage object detector framework

CenterNet model, the suggested architecture is computationally

robust to classify several CXR abnormalities. We conducted

extensive experiments using the NIH CXR dataset to show the

effectiveness of the proposed approach. Our technique attained

an overall AUC of 0.888, an average precision value of 89%,

a recall value of 91%, and an IOU of 0.801 to identify and

classify eight categories of chest illness. According to the results,

the proposed technique outperforms existing approaches in

terms of both time and computational complexity. Moreover,

the approach can correctly identify the aberrant regions and

categorize the various types of chest illness in the presence

of distortions, significant inter-class similarities, and intra-class

variances. In the future, we will incorporate fourteen classes and

perform experiments on other latest DL-based models.
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Evaluating the risk of
hypertension in residents in
primary care in Shanghai, China
with machine learning
algorithms

Ning Chen1†, Feng Fan2†, Jinsong Geng3, Yan Yang4, Ya Gao1,

Hua Jin5,6,7,8, Qiao Chu1, Dehua Yu5,6,7,8*, Zhaoxin Wang9,10,11*

and Jianwei Shi5,6,10*

1School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
2School of Medicine, Tongji University, Shanghai, China, 3School of Medicine, Nantong University,

Nantong, China, 4School of Economics and Management, Tongji University, Shanghai, China,
5Department of General Practice, Yangpu Hospital, Tongji University School of Medicine, Shanghai,

China, 6Shanghai General Practice and Community Health Development Research Center,

Shanghai, China, 7Academic Department of General Practice, Tongji University School of Medicine,

Shanghai, China, 8Clinical Research Center for General Practice, Tongji University, Shanghai, China,
9The First A�liated Hospital of Hainan Medical University, Haikou, China, 10Department of Social

Medicine and Health Management, School of Public Health, Shanghai Jiao Tong University School

of Medicine, Shanghai, China, 11School of Management, Hainan Medical University, Haikou, China

Objective: The prevention of hypertension in primary care requires an e�ective

and suitable hypertension risk assessment model. The aim of this study

was to develop and compare the performances of three machine learning

algorithms in predicting the risk of hypertension for residents in primary care

in Shanghai, China.

Methods: A dataset of 40,261 subjects over the age of 35 years was extracted

from Electronic Healthcare Records of 47 community health centers from

2017 to 2019 in the Pudong district of Shanghai. Embedded methods were

applied for feature selection. Machine learning algorithms, XGBoost, random

forest, and logistic regression analyses were adopted in the process of model

construction. The performance of models was evaluated by calculating the

area under the receiver operating characteristic curve, sensitivity, specificity,

positive predictive value, negative predictive value, accuracy and F1-score.

Results: The XGBoost model outperformed the other two models and

achieved an AUC of 0.765 in the testing set. Twenty features were selected

to construct the model, including age, diabetes status, urinary protein level,

BMI, elderly health self-assessment, creatinine level, systolic blood pressure

measured on the upper right arm, waist circumference, smoking status, low-

density lipoprotein cholesterol level, high-density lipoprotein cholesterol level,

frequency of drinking, glucose level, urea nitrogen level, total cholesterol level,

diastolic blood pressure measured on the upper right arm, exercise frequency,

time spent engaged in exercise, high salt consumption, and triglyceride level.
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Conclusions: XGBoost outperformed random forest and logistic regression in

predicting the risk of hypertension in primary care. The integration of this risk

assessment model into primary care facilities may improve the prevention and

management of hypertension in residents.

KEYWORDS

hypertension, risk assessment model, risk of hypertension, machine learning

algorithms, primary care

Introduction

Hypertension is becoming increasingly common in primary

care. It is accompanied by the occurrence and development of

a series of cardiovascular events, disability and even premature

death if not detected early and managed well (1). An estimated

245 million adults are diagnosed with hypertension in China

(2). An early warning after accurately evaluating the risk of

hypertension in primary care patients can alert individuals in

the healthy population or subhealthy population with unhealthy

lifestyles to take measures to slow or stop the progression

of hypertension. Similar practices have been implemented in

foreign countries. For instance, management of risk factors for

various chronic diseases has been implemented in primary care

in Australia (3). Risk assessment models are a cost-effective

measure for identifying high-risk individuals with chronic

diseases (4, 5). Nevertheless, few existing models can be applied

to the health management services provided in primary care.

The most intractable problem is that most of these models are

targeted at patients in a hospital setting (6); thus, the data input

into the models are all extracted from the EHRs of hospitals,

which may not be readily available in primary care settings and

suitable for general practitioners to implement.

Machine learning (ML) is a nuclear branch of artificial

intelligence that has been employed everywhere knowingly or

unknowingly, not only in industry and the military but also

in medicine and healthcare (7). As a modern data mining,

extraction, and analysis technology, ML has the extraordinary

ability to automatically train itself and improve its performance

without human instruction or elaborate programming (8, 9).

With the ability to identify a pattern or make a decision based

on the knowledge input, ML algorithms have demonstrated

their excellent performance in the area of risk evaluation

of diseases. Higher accuracy separates ML algorithms from

various other statistical methods. Highly precise risk prediction

models for future hypertension were constructed using artificial

intelligence techniques in Japan (10). Health check-up data

from 18,258 Japanese individuals were utilized to develop a

risk prediction model for new-onset hypertension by machine

learning techniques. The XGBoost and ensemble models

outperformed the logistic regression models [area under the

receiver operating characteristic curve (AUC) = 0.859], with

AUCs of 0.877 and 0.881, respectively. A study based on several

easy-to-collect risk factors to predict the risk of hypertension

also revealed that the random forest (AUC = 0.92), CatBoost

(AUC = 0.87), and MLP neural network (AUC = 0.78) models

performed better than the logistic regression analysis (AUC =

0.77) (11). Although ML is applicable in an extensive range of

contexts, the ML algorithm technique alone is insufficient to

solve real-world problems (12). Thus, health and medical data

in a primary care setting were utilized to facilitate the practical

implementation of the risk assessment model for residents in

primary care.

The objective of this study is to develop and compare the

performances of three ML algorithms on predicting the risk of

hypertension for residents over the age of 35 years in primary

care in Shanghai, China.

Materials and methods

Data source

The dataset was extracted from the electronic healthcare

records of 47 community health centers in the Pudong district

of Shanghai. Health records, health examinations and other

health-related data of community residents over 35 years old

from 2017 to 2019 were collected as the original set of data.

A total of 40,261 subjects were enrolled in the study. The

dataset included 20 variables containing information regarding

demographic characteristics, diagnosis, biochemical indicators

and lifestyles. The characteristics of the participants in primary

care are shown in Table 1.

Definition of hypertension

Hypertension was defined as (1) systolic blood pressure

(SBP) ≥140 mmHg and/or diastolic blood pressure (DBP)

≥ 90 mmHg, which was measured three times on different

days in the clinic without the use of antihypertensive drugs,

according to Chinese guidelines for the prevention and

treatment of hypertension (2018 revised edition) (13) and/or

(2) a diagnosis of hypertension by a physician and/or (3)

antihypertension treatment.
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TABLE 1 Characteristics of the participants in primary care settings.

Feature Hypertension (n = 25,038) Normal (n = 15,223) χ
2 P

Age* 72.00 (68.00–78.00) 70.00 (66.00–75.00) 683.51a <0.01

Diabetes status 2077.18b <0.01

No 16,512 (65.95) 13,177 (86.56)

Yes 8,526 (34.05) 2,046 (13.44)

Urinary protein level 32.33b <0.01

Negative 8,261 (32.99) 8,392 (55.13)

Positive 581 (2.32) 405 (2.66)

BMI* 24.98 (23.01–27.30) 24.16 (22.10–26.30) 458.44a <0.01

EHSA 563.15b <0.01

1 6,973 (27.85) 5,973 (39.24)

2 12,604 (50.34) 6,387 (41.96)

3 358 (1.43) 219 (1.44)

4 277 (1.11) 149 (0.98)

5 163 (0.65) 46 (0.30)

Cr level* 69.00 (58.00–84.00) 66.00 (56.00–77.70) 229.09a <0.01

SBP* 140.00 (130.00–153.00) 139.00 (126.00–148.00) 326.93a <0.01

WC* 87.00 (81.00–93.00) 85.00 (79.00–91.00) 157.52a <0.01

Smoking status 200.85b <0.01

1 19,171 (76.57) 10,238 (67.25)

2 1,159 (4.63) 857 (5.63)

3 2,028 (8.10) 1,700 (11.17)

LDL-C level* 2.89 (2.20–3.41) 2.99 (2.46–3.63) 402.35a <0.01

HDL-C level* 1.35 (1.11–1.54) 1.40 (1.20–1.66) 586.65a <0.01

Frequency of drinking 97.64b <0.01

1 18,096 (72.27) 9,837 (64.62)

2 2,753 (11.00) 1,771 (11.63)

3 199 (0.79) 151 (0.99)

4 918 (3.67) 764 (5.02)

Glucose level* 5.60 (5.13–6.90) 5.50 (5.00–6.33) 247.31a <0.01

Urea nitrogen level* 5.63 (4.80–6.83) 5.63 (4.80–6.37) 306.45a <0.01

TC level* 4.82 (4.01–5.52) 4.99 (4.35–5.72) 267.34a <0.01

DPB* 78.00 (72.00–84.00) 78.00 (70.00–82.00) 235.77a <0.01

Exercise frequency 17.48b <0.01

1 14,751 (58.91) 8,460 (55.57)

2 815 (3.26) 391 (2.57)

3 1,495 (5.97) 926 (6.08)

4 5,471 (21.85) 3,331 (21.88)

High salt consumption 17.24b <0.01

No 24,938 (99.60) 15,199 (99.80)

Yes 100 (0.40) 24 (0.20)

TG level* 1.39 (1.12–1.84) 1.39 (1.00–1.80) 13.22a <0.01

Time spent engaged in exercise* 30.00 (30.00–30.00) 30.00 (30.00–30.00) 0.41a 0.52

*Refers to nonnormally distributed measurement data, reported as the median (25th percentile, 75th percentile). arefers to results of the rank sum test. brefers to the results of the

chi-square test.

Inclusion and exclusion criteria

The sample data that fulfilled the following inclusion criteria

were obtained for further analysis in this study: community

residents over 35 years of age. The chapter “Health Management

Service Specifications for Hypertension Patients” in “National

Basic Public Health Service Specifications (the Third Edition)”

specified that one of the services is to “Provide free blood
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pressure measurement once a year for permanent residents aged

35 years old and over in area of responsibility” (14). Therefore,

we chose community residents aged 35 years and older as

our subjects. The exclusion criteria were: (1) individuals who

were unable to provide informed consent, (2) those have any

diagnosis of secondary or gestational hypertension, and (3) those

who could not cooperate with the investigation because of a

long-term outing or a lack of electronic healthcare records.

Data processing

Outliers were handled by interquartile range (IQR). The IQR

is evaluated as IQR = Q3–Q1. Q3 is the upper quartile, and Q1

is the lower quartile. Outliers were defined as records that fell

below Q1–(1.5∗IQR) or above Q3+ (1.5∗IQR).

Missing values, such as data with null rows and columns,

which did not have a single value or number available, were

deleted. Different methods, such as the mean values, median

values, mode values, feature combinations and null values, were

adopted for dealing with the individual missing values according

to the characteristics of different variables. In total, 5.62% of

missing values were found in the whole dataset.

Discretization was performed by splitting the range of the

continuous variables into intervals to save time needed to

build the risk assessment model and improve the assessment

results (15).

Feature selection

Feature selection, which is one of the essential parts of

building a good prediction model, was employed in this study

to improve the prediction accuracy by choosing the most

important variables. Moreover, it facilitates a reduction in the

resources (time and space) needed to construct the model

(16). The embedded method was applied in this study for

feature selection. It integrates the feature selection process with

the model training process. This method considers variable

interactions and is less computationally demanding than the

wrapper method (17).

Twenty features were selected to construct the model, from

the 127 variables (see the Supplementary Files): age, diabetes

status, urinary protein level, BMI, elderly health self-assessment

(EHSA), creatinine (Cr) level, systolic blood pressure measured

on the upper right arm (SBP), waist circumference (WC),

smoking status, low-density lipoprotein cholesterol (LDL-

C) level, high-density lipoprotein cholesterol (HDL-C) level,

frequency of drinking, glucose level, urea nitrogen level, total

cholesterol (TC) level, diastolic blood pressure of the upper right

arm (DBP), exercise frequency, time spent engaged in exercise,

high salt consumption, and triglyceride (TG) level.

Machine learning algorithms

Extreme Gradient Boosting (XGBoost) is a supervised ML

algorithm (18). It is a scalable end-to-end tree boosting system

(19). XGBoost can automatically perform parallel computations

and is generally more than 10 times faster than GBM (20). Its

input types include dense matrix, sparse matrix, data file and

xgb.dmatrix. XGBoost accepts sparse input for both tree and

linear booster and is optimized for sparse input. It supports

customized objective and evaluation functions, and performs

better on several different datasets.

Random forest is a supervised classification algorithm (21).

It works by learning simple decision rules extracted from the

data features and overcomes the limitation of overfitting of the

decision trees (22).

Logistic regression is an algorithm that classifies values

through the application of a logistic function to coefficients

calculated using a linear regression equation (23). It requires

that the dependent variable be a second-level score or a second-

level evaluation.

Model evaluation and validation

A confusion matrix was employed to evaluate the

performance of the models based on ML algorithms for

the assessment of hypertension risk. The distinguishing abilities

of the risk assessment model were evaluated with the receiver

operator characteristic (ROC) curve and the AUC (24). The

performance of the models was evaluated by calculating the

sensitivity (true positive rate, TPR), specificity (true negative

rate, TNR), positive predictive value (PPV), negative predictive

value (NPV), accuracy (ACC), and F1-score (25, 26).

Determination of the cut-o� point

The evaluations were kinds of probabilities; thus, a cut-off

point was needed to classify the prediction probabilities. The

probability of having hypertension was represented by “P” in the

model. The cut-off point was utilized to classify the evaluated

probabilities belonging to the positive results or negative results.

We adopted a cut-off point of 0.5 in this study, which meant that

participants were evaluated to be at high risk of hypertension

when P ≥ 0.5; otherwise, they were not.

Statistical analysis

Basic descriptive statistics were used to depict the

characteristics of the subjects, including demographic

characteristics and health-related factors. All normally

distributed measurement data are depicted as the mean
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± standard deviation (X ± SD), nonnormally distributed

measurement data are reported as the median (25th percentile,

75th percentile), and the counting data are expressed as

the frequency and proportion. Between groups, normally

distributed measurement data were compared by T-test,

nonnormally distributed measurement data were compared

by rank sum test, and the counting data were analyzed by chi-

square test. P < 0.05 were considered statistically significant. All

statistical analyses were performed using IBM SPSS Statistics

version 22.0 (IBM Corp., Armonk, NY, USA).

For the assessment models, ML algorithms, XGBoost,

random forest and logistic regression were utilized for the

evaluation of the risk of hypertension and the effects of the risk

factors. Python 3.7.3 was used for the construction of the risk

assessment models of hypertension.

Reporting guidelines

Results are presented in accordance with the Transparent

reporting of a multivariable prediction model for individual

prognosis or diagnosis (TRIPOD) guidelines. STROBE and

RECORD guidelines for observational studies and studies

using routinely collected health data were also considered.

The study was conducted in accordance with relevant

institutional guidelines.

Results

Characteristics of the study population

A total of 40,261 subjects were included, with a mean

age of 72.429 ± 7.643 years, and the mean age of patients

with hypertension was 73.216 ± 7.696 years. The sample

prevalence of hypertension was almost 62.19%. The differences

in age, diabetes status, urinary protein level, BMI, EHSA, Cr

level, SBP, WC, smoking status, LDL-C level, HDL-C level,

frequency of drinking, glucose level, urea nitrogen level, TC

level, DBP, exercise frequency, high salt consumption, and TG

level between participants with hypertension and normotensive

participants were statistically significant (P < 0.01). There were

no statistically significant differences (P > 0.05) in terms of

time spent engaged in exercise. The characteristics of the study

participants are summarized in Table 1.

Construction of the risk assessment
models

The training set and validation set were utilized to determine

the optimal parameters for XGBoost, random forest and logistic

regression. The parameters of each model under optimal

TABLE 2 Configuration of parameters in each ML algorithm.

ML algorithm Parameter Value range Optimal

value

XGBoost learning_rate [0, 0.3] 0.05

n_estimators [100, 500] 200

gamma [0, 20] 5

subsample [0, 0.9] 0.4

colsample_bytree [0.5, 0.9] 0.9

min_child_weight (1, 6) 5

max_depth (2, 8) 6

objective - binary:logistic

Random forest n _estimators [1, 50] 40

criterion gini gini

max_depth none none

min_samples_split [5, 200] 200

min_samples_leaf [1, 50] 1

max_features auto auto

Logistic regression C [0, 200] 100

class_weight none none

max_iter [10, 100] 10

solver - liblinear

performance are exhibited in Table 2. For other unlisted

parameters in the three ML algorithms, default values were set.

Feature importance

The significant features of the XGBoost model, random

forest model and logistic regression model are listed in

Figures 1–3, respectively. The urea nitrogen level was the highest

ranked feature for predicting hypertension in both the XGBoost

model and the random forest model. BMI, SBP, TG level, Cr

level, LDL-C level, and glucose level were ranked in the top 10

in all three models.

Model performance

Weutilized variousmethods and evaluationmetrics to assess

the performances of the XGBoost, random forest, and logistic

regression models in the training, validation, and testing sets.

Overall, the XGBoost model outperformed the other twomodels

in TPR (0.864), TNR (0.488), PPV (0.735), NPV (0.686), ACC

(0.722), F1-score (0.795), and AUC (0.765) in the testing set

(Table 3).

Figure 4 summarizes the ROC curve areas obtained from the

XGBoost model, random forest model and logistic regression

model in the testing set. The areas under the ROC curves were

different among the three models. The AUCs for the test set
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FIGURE 1

Feature importance in the XGBoost model.

FIGURE 2

Feature importance in the random forest model.
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FIGURE 3

Feature importance in the logistic regression model.

TABLE 3 The fitting results for the XGBoost, random forest, and logistic regression models for the training, validation, and testing sets.

ML algorithm Dataset TPR TNR PPV NPV ACC F1-Score AUC

XGBoost Training 0.886 0.530 0.756 0.739 0.752 0.816 0.818

Validation 0.862 0.480 0.732 0.678 0.717 0.791 0.753

Testing 0.864 0.488 0.735 0.686 0.722 0.795 0.765

Random forest Training 0.896 0.434 0.723 0.718 0.722 0.800 0.782

Validation 0.871 0.446 0.721 0.678 0.711 0.789 0.745

Testing 0.816 0.548 0.748 0.644 0.714 0.780 0.756

Logistic regression Training 0.827 0.411 0.698 0.591 0.670 0.757 0.705

Validation 0.822 0.418 0.699 0.588 0.669 0.756 0.692

Testing 0.829 0.430 0.705 0.604 0.678 0.762 0.707

were 0.765 for XGBoost, 0.756 for random forest, and 0.707 for

logistic regression (Table 4). The AUC of the XGBoost model

was higher than that of the random forest and logistic regression

models. Our results demonstrated that the XGBoost model

had better predictive performance than the random forest and

logistic regression models.

Discussion

Among the 20 selected features in this study, BMI, SBP,

TG level, Cr level, LDL-C level, and glucose level had a strong

effect on hypertension prediction and were included among the

top 10 in the ranking of the feature importance for all three

models. Similar to the results of previous studies, features such

as age (27–29), BMI (28, 30), diabetes status (28), Cr level (26),

blood pressure (29), WC (31), smoking status (28), LDL-C level

(26, 28), HDL-C level (26), drinking (28), glucose level (32),

TC level (26, 27), exercise (33), salt intake (34), and TG level

(27) were identified as predictors of hypertension in the risk

assessment model of hypertension.

However, to the best of our knowledge, urinary protein

level, urea nitrogen level, and EHSA entered the models as

new components that have not been included in risk evaluation

models of hypertension in previous studies.

A study collected data from three exams in the Strong

Heart Study, explored the risk factors for hypertension

by means of generalized linear models and demonstrated
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FIGURE 4

The ROC curves obtained from the XGBoost model, random

forest model and logistic regression model. X axis: 1-specificity,

Y axis: sensitivity. The reference line is shown as a dashed line

(the black line).

TABLE 4 AUCs for the XGBoost, random forest, and logistic regression

models for the training, validation, and testing sets.

ML algorithm Dataset AUC

XGBoost Training 0.818

Validation 0.753

Testing 0.765

Random forest Training 0.782

Validation 0.745

Testing 0.756

Logistic regression Training 0.705

Validation 0.692

Testing 0.707

that systolic blood pressure was significantly and positively

associated with albuminuria, age, and obesity and negatively

associated with smoking. Moreover, participants with more

severe albuminuria status or older age developed higher SBP,

while DBP was not significantly affected by the albuminuria

status (35). This study in American Indians revealed that

having macro/microalbuminuria is a significant risk factor

for hypertension, which can explain why urinary protein

level was selected as one of the features in our model

to some extent. Urinary protein level may also affect the

development of hypertension in Chinese individuals or facilitate

the risk assessment of hypertension in Chinese individuals.

Furthermore, Kim et al. reported that subjects with high

normal BP had an independently significant association with

microalbuminuria by performing a multiple logistic regression

analysis, with an odds ratio of 1.692 and a 95% confidence

interval of 1.097 to 2.611 (36). These results from a Korean

population indicated that compared to individuals with normal

BP, those with high normal BP have more risk factors

for hypertension and cardiovascular diseases, for instance,

albuminuria. Since the incidence of urinary protein was

significantly higher in the prehypertensive population than in

the normal population, urinary protein level should receive

attention in future predictive studies and intervention measures.

Although we rarely found urea nitrogen level to be included

as a predictive factor in the risk prediction models, it was found

to be a significant risk factors for hypertension. A case-control

study conducted among university staff found that staff with

high serum urea levels had a higher risk of hypertension than

those with normal urea levels (OR = 1.452), which implies that

the level of urea is also very important as one of the risk factors

for hypertension (37). Not coincidentally, this phenomenon has

been found among middle-aged and elderly people. SBP was

positively correlated with the blood urea nitrogen concentration

(r = 0.16424, P = 0.0105) and the blood uric acid concentration

(r = 0.16023, P = 0.0126) among middle-aged and older-aged

populations in Guangzhou, China, as well as DBP (blood urea

nitrogen concentration: r = 0.13506, P = 0.0358; blood uric

acid concentration: r = 0.16562, P = 0.0099) (38). The results

of stepwise regression analysis also indicated that there was

still a significant positive correlation between SBP, DBP and

concentrations of blood urea nitrogen and blood uric acid. The

role of urea nitrogen level, one of the features entered into our

risk assessment model, in the occurrence and development of

hypertension still needs to be further investigated.

EHSA was also one of the predictors entered into our model.

Kaplan and Camacho have already reported that the association

between level of perceived health and mortality persisted in

multiple logistic analyses controlling for age, sex, physical

health status, health practices, social network participation,

income, education, health relative to peers of the same age,

anomy, morale, depression, and happiness (39). The results

reminded us that self-assessment of health might serve as a

comprehensive reflection of unmeasurable factors and as an

indication of some underlying diseases or an early stage of

the diseases. Evidence has shown that psychosocial factors

exert strong effects on health status measures (40). Zhang

et al. revealed that the proportion of elderly individuals with

poor or normal health self-assessments who were suffering

from common chronic diseases was significantly increased (41).

The health self-assessment epitomizes the health concept and

self-perception of health status of elderly individuals to some

extent, which might have an underlying predictive value on the

prediction of the risk of hypertension and should thus be given

more attention in future research, as well as the practice in

primary care.

Unlike traditional risk assessment methods, our study

employed ML algorithms for model construction. XGBoost

exhibited the best performance compared to random forest

and logistic regression. Logistic regression assumes that every

variable should be independent, and the model possesses only

a linear partition surface. However, the associations between
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exposure factors and diseases are often affected by various

confounding factors, which leads to the large deviation and

low accuracy when fitting the model through logistic inference.

In contrast, XGBoost and random forest are nonparametric

algorithms (42) that do not assume that a functional relationship

between the features and outcomes exists, as required by logistic

regression models. A greedy algorithm is executed to determine

the optimal splits in the data that reduce the entropy of the

outcome to the utmost extent during every split. As a result, once

a feature is selected, the significance of any highly related feature

will decrease greatly due to the completion of the effective

split done by the original feature previously. Consequently, the

entropy of the outcome will no longer be reduced effectively

by related features. Therefore, XGBoost and random forest are

robust to related features. The reason why XGBoost outperforms

the other methods may be that it introduces the regularized

loss function (43) and combines gradient lifting algorithms and

decision trees, which preserves the correlation between features

during the modeling process (44).

In terms of performance, the XGBoost-based hypertension

prediction model proposed by the Japanese group showed an

AUC of 0.877 (10), while the hypertension risk assessment

model proposed in this study exhibited an AUC of 0.765. The

explanation for this discrepancy may be the difference in ethnic

populations. According to previous studies, different ethnic

populations have different characteristics of hypertension, which

may affect the discrepancies in the AUCs for different models

(45, 46). Meanwhile, the difference between age range of the

subjects may also contribute to the discrepancy in the model

performance. For instance, in a study regarding assessing the

relationship between nerves and cancer using machine learning

methods, the authors found that the performance of the model

trained on the young dataset was much better than that trained

on the elderly dataset and the whole age dataset, and the

performance of the model trained on the whole age dataset was

slightly better or similar to that trained on the elderly dataset

(47). The findings from these studies suggested that we should

further investigate the effect of the difference in subjects’ age

range on the performance of hypertension models in the future.

Compared with other models used to predict hypertension (11),

the results from the proposed XGBoost prediction model in the

present study did not show a higher AUC. The variable selection

may partially explain the discrepancy.

After the risk assessment of hypertension, subsequent

interventions and management to prevent or postpone the

occurrence and development of hypertension are crucially

important in high-risk populations. Continuous monitoring

and management are imperative for high-risk patients. On the

one hand, realtimeness and continuity monitoring can detect

any problem without delay. On the other hand, early signs of

detected symptoms can alert both general practitioners (GPs)

and individuals in a timely manner. For high-risk populations,

corresponding individual intervention strategies targeting the

main risk factors should be prescribed by GPs in primary care.

For instance, lifestyle factors such as exercise, eating habits, and

drinking habits can be improved under the guidance of GPs after

risk assessment. Evidence has revealed that a high concentration

of parks or playgrounds in residential areas may reduce the risk

of hypertension, which is mainly attributable to the cultivation

and formation of exercise habits and implies the importance of

interventions in communities (48).

However, there were several limitations in our study. One

of the limitations of the study was that it had a cross-

sectional design, and the results could not indicate causality

in this situation. A prospective cohort study is needed to

further identify the cause-and-effect relationships. Second, the

risk assessment model was designed considering only variables

available in the setting of primary care, and variables regarding

mental health and hereditary factors were not included. Third,

we measured several variables, such as age, urinary protein level,

BMI, and Cr level, on only a single occasion and did not take

changes in these variables into consideration.

In conclusion, XGBoost outperformed random forest

and logistic regression models in predicting the risk of

hypertension in primary care settings. Early identification and

the corresponding preventive strategies in primary care remain

insufficient in China. Integration of such a risk assessment

model into primary care may help general practitioners

target populations at high-risk for hypertension, tailor the

corresponding preventive measures and treatment strategies to

those at high risk, improve the awareness of residents regarding

health risks and their adherence toward targeted intervention,

and eventually facilitate individuals’ health and quality of life

while decreasing healthcare costs.
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Objectives: Ulcerative colitis (UC) is an autoimmune disease of the colon. The

aim of this study was to explore the characteristics of immune infiltrates in UC

patients and identify immune-related diagnostic biomarkers for UC.

Methods: Three gene expression profiles were acquired from the GEO

database, followed by identification of di�erentially expressed genes (DEGs)

by Linear Modeling of Microarray Data. Enrichment analysis of Gene Ontology

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Disease

Ontology (DO) were performed to analyze the biological functions of DEGs.

Subsequently, the single sample gene set enrichment analysis (ssGSEA) was

performed to identify immune infiltration characteristics of UC. Correlations

between diagnostic genes and immune infiltration were explored to identify

markers with the greatest diagnostic potential, and a UC diagnostic model was

subsequently constructed. Finally, the prediction performance of the model

was quantified by nomogram, non-correlated nomogram, and ROC curve.

Results: A total of 3111 DEGs (1,608 up-regulated and 1,503 down-regulated

genes) were identified. DEGs were significantly involved in the immune system

and UC-related pathways. Immune infiltration profiles of colonic tissue were

significantly di�erent between healthy individuals and UC patients. High

proportions of resting of aDCs, B cells, CD8+ T cells, DCs, iDCs, Macrophages,

Neutrophils, pDCs, T helper cells, Tfh, Th1 cells, Th2 cells, TIL and Treg

were found in UC samples. A 5-gene based diagnostic prediction model was

constructed and the results of nomogram, non-correlated nomogram and

ROC curve suggested the powerful diagnostic value of the model.

Conclusions: This study identified the immune infiltrate characteristics and 5

immune-related genes for UC. Themodel based on the immune-related genes

facilitates the early diagnosis of UC and provides a basis for the evaluation of

the prognosis of UC.

KEYWORDS

ulcerative colitis, immune infiltration, genes, diagnostic value, genomic analysis
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Introduction

Ulcerative colitis (UC) is a complex disease characterized

by chronic inflammation of the colon (1). Worldwide, UC is

estimated to affect 9–100,000 people annually, and the incidence

is increasing year by year (2). The growing number of UC

patients places a heavy economic burden on society, with direct

and indirect costs ranging from $8.1–14.9 billion per year

in the United States and Ă12.5–29.1 billion in Europe (3).

The treatment goal in UC is the induction and maintenance

of remission. Although the therapeutic armamentarium is

expanding, the treatment of UC is highly challenging because of

its incompletely understood pathogenesis (4). Therefore, an in-

depth understanding of disease pathogenesis and identification

of biomarkers of disease progression at the molecular level may

provide new ideas for the early diagnosis of UC.

The etiology and pathogenesis of UC are not fully

understood, and it is mainly thought to be caused by an

enhanced immune response to the gut microbiota in genetically

susceptible individuals (5). Many studies have investigated the

function of various immune cells, but it has been challenging

to predict the role of all immune subsets in UC in an

integrated manner. Initial activation of innate immunity causes

FIGURE 1

Flowchart of the present research.

a non-specific response, and then, sustained stimulation of

inflammation will activate adaptive immunity, which may lead

to persistent chronic inflammation (6). Accumulating evidence

suggests that both innate and adaptive immune abnormalities

are responsible for the abnormal inflammatory response in

the gut (7). Inflammation associated with inflammatory bowel

disease (IBD) has been reported to be closely associated with

aberrant immune response elicited by CD4T cells and dendritic

cells (8–10). IRF5 contributes to the regulation of T cell signaling

and modulates cytokine secretion to promote inflammation in

UC (11). Neutrophil HGF-MET signaling can also contribute to

the progression of UC (12). Furthermore, infiltrating immune

cells are present in the intestinal mucosa of individuals with UC

(13), and increased immune cell infiltration may correlate with

the severity and recurrence of UC (14, 15). All these findings

suggest a key role of immune cells in the pathogenesis of UC,

and molecules associated with these cells may serve as new

biomarkers for UC.

Gene chip is a genetic detection technology that can

detect all expression information of all genes from a sample

and reveal numerous genes activated in different tissues and

their physiological and pathological states (16, 17). Currently,

microarray technology integrated with bioinformatics analysis
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TABLE 1 Details of gene expression profiles.

Dataset Platform Tissue Normal UC Reference (PMID) Hyperlinks

GSE87473 GPL13158 Colon 106 21 29401083 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87473

GSE75214 GPL6244 Colon 97 11 28885228 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75214

GSE92415 GPL13158 Colon 87 21 23735746 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92415

TABLE 2 R packages for bioinformatics analysis.

R package Version Description

Limma 3.50.3 Probe reannotation and data

normalization, identification of DEGs

Pheatmap 1.0.12 Plotting heat map

Ggplot2 3.3.6 Plotting volcano plot, visualization of

enrichment analysis results

Clusterprofiler 4.2.2 GO and KEGG enrichment analyses

DOSE 3.20.1 Disease ontology enrichment analysis

Corrplot 0.92 Correlation matrix visualization

Ggpubr 0.4.0 Plotting boxplot

Psych 2.2.5 Correlation analysis of DEGs and

immune infiltration

RMS 6.3-0 Construction of diagnostic model

ROCR 1.0-11 ROC analysis

has been widely used to explore pathological features and

identify potential novel biomarkers for various diseases (18,

19). Based on large-scale microarray gene expression data,

this study applied integrated bioinformatics analysis to explore

the molecular mechanisms of UC. Moreover, we focused on

identifying core genes associated with immune infiltrating cells

and used these core biomarkers to construct a risk prediction

model for UC with the aim of providing new ideas for early

diagnosis of UC. The flow chart of the present research is shown

in Figure 1.

Materials and methods

Microarray data acquisition

Gene expression profiles were acquired from GEO database

(www.ncbi.nlm.nih.gov/geo/) (20) with the following criteria:

(a) patients were diagnosed as UC; (b) data on colonic tissue

from healthy controls and UC patients from the same GEO

platform; (c) datasets inclusion with at least 10 UC and healthy

tissue samples; (d) GEO platforms containing >5,000 genes.

Finally, three gene expression profiles (GSE87473, GSE92415,

and GSE 75214) were included. Table 1 shows the details of the

gene expression profiles.

Identification of di�erentially expressed
genes

After downloading the microarray expression matrices,

probe names were converted to gene symbols using R software

(version 4.1.2). DEGs between UC colon tissue and healthy

colon tissue were screened by the “limma” package in R software,

and the threshold for DEG was set to |log2 Fold change (FC)| >

0.5 and p-value < 0.05.

Functional analysis of DEGs

Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG), and Disease Ontology (DO) enrichment

analyses were performed on the screened DEGs from GSE87473

by the “clusterProfiler,” and “DOSE” packages in R software.

The threshold for enrichment analysis was set to p-value

< 0.05. The “ggplot2” package was applied to visualize the

enrichment results.

Immune infiltration analysis

Single sample gene set enrichment analysis (ssGSEA)

method was applied to quantify the enrichment scores of

immune cells (activated DCs (aDCs), B cells, CD8+ T

cells, DCs, interdigitating DCs (iDCs), macrophages, mast

cells, neutrophils, natural killer (NK) cells, plasmacytoid DCs

(pDCs), T helper cells, T follicular helper (Tfh) cells, T

helper1 (Th1) cells, T helper 2 (Th2) cells, tumor infiltrating

lymphocytes (TIL), regulatory T (Treg) cells), and immune

functions (antigen presenting cell (APC) co-inhibition, APC co-

stimulation, chemokine receptors (CCR), check-point, cytolytic

activity, human leukocyte antigen (HLA), inflammation-

promoting, major histocompatibility complex (MHC) class I,

Parainflammation, T cell co-inhibition, T cell co-stimulation,

type-I interferon (IFN) response, type II IFN response) between

control and UC group. A p-value < 0.05 was used to

filter the samples. Heat map of the 29 types of immune

cells and immune function in samples was produced by the

“pheatmap” package. Levels of immune cells and immune

function between UC and control samples were visualized by the

“ggpubr” package. Correlative heat map was performed using
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FIGURE 2

Heatmap and volcano plot for the DEGs identified from GSE87473. (A) Heat map for DEGs. Each row of the heat map represents one DEG, and

each column represents one sample, either healthy or UC; the red and blue colors represent upregulated and downregulated DEGs,

respectively. (B) Volcano plot for DEGs. Red plot points represent upregulated DEGs, and blue plot points show downregulated DEGs.

the “corrplot” package to reveal the correlation of immune cells

and immune function.

The construction of diagnostic model

The top genes with the most significant differences in

expression between healthy and UC samples were considered as

diagnostic genes for UC, and they were evaluated by the “psych”

package for their relevance to immune cell and immune function

subtypes. After the feature selection, the diagnostic genes most

strongly associated with immune infiltration were used to

construct diagnostic models with “rms” package. The prediction

performance of the model was quantified by nomogram, non-

correlated nomogram, and receiver operating characteristic

(ROC) curve which was performed with “ROCR” package.

Model performance and validation

The expression data of GSE75214 and GSE92415 were used

to verify the robustness of diagnostic model. The area under

the curve (AUC) from a ROC curve analysis was calculated

to test the diagnostic performance of the model: ROC-AUC

≥ 0.9 indicates outstanding discrimination; 0.8 ≤ ROC-AUC

< 0.9 indicates excellent discrimination; 0.7≤ ROC-AUC < 0.8

indicates acceptable discrimination; and ROC= 0.5 indicates no

discrimination (21).

Statistical analysis

Categorical variables were presented as percentages, while

continuous variables were presented as the mean ± standard

deviation. All data analyses in this study were performed using

R software (version 4.1.2), and the main packages that were

used for t bioinformatics analysis are provided in Table 2.

A p-value < 0.05 was considered significant for screening

DEGs, enrichment analysis, correlation analysis, and immune

infiltration analysis.

Results

Di�erential gene screening

3111 DEGs (1,608 up-regulated and 1,503 down-regulated

genes) were identified from GSE87473. The top 10 up-regulated

DEGs involved were: DUOX2, MMP3, SLC6A14, DEFB4A,

TNIP3, S100A8, CXCL1, DUOXA2, REG1A, and MMP10,

CALU while the top 10 down-regulated DEGs were: AQP8,

SLC51A, CLDN8, HMGCS2, DPP10-AS1, PCK1, ABCG2,

SLC26A2, GBA3, and MEP1B. Figure 2 presents the details of

the heatmap and volcano plot of DEGs.
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FIGURE 3

GO and KEGG enrichment analysis of DEGs. Dot graph of GO and KEGG enrichment analysis, the size of the dot represents the number of

enriched genes. The figure shows the terms with p < 0.05.

Functional enrichment analysis

For GO analysis, DEGs were significantly enriched in

the following process: leukocyte migration, leukocyte cell-

cell adhesion, T cell activation, cytokine-mediated signaling

pathway, leukocyte chemotaxis, cell chemotaxis, granulocyte

migration, regulation of T cell activation, lymphocyte

differentiation, mononuclear cell differentiation, immune

receptor activity, chemokine activity, chemokine receptor

binding, CXCR chemokine receptor binding, collagen binding,

cytokine activity, cytokine binding, extracellular matrix

structural constituent, and G protein–coupled receptor binding

(Figure 3). For KEGG analysis, genes were significantly enriched

in immune-related pathways such as TNF signaling pathway,

Osteoclast differentiation, IL-17 signaling pathway, Th17 cell

differentiation, and NF-kappa B signaling pathway (Figure 3).

For DO analysis, DEGs were significantly enriched in infectious

diseases, inflammatory diseases, and cancer (Figure 4).

Immune infiltration analysis

The normalized enrichment score of immune infiltrates is

presented in the heat map (Figure 5). The results of differential

analysis of immune cell revealed that UC patients had a higher

level of aDCs, B cells, CD8+ T cells, DCs, iDCs, Macrophages,

Neutrophils, pDCs, T helper cells, Tfh, Th1 cells, Th2 cells,

TIL and Treg than healthy subjects (Table 3; Figure 6A).

Frontiers in PublicHealth frontiersin.org

161

https://doi.org/10.3389/fpubh.2022.1003002
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Huang et al. 10.3389/fpubh.2022.1003002

FIGURE 4

DO enrichment analysis of DEGs. Bar graph of DO enrichment analyses, the lengths of the bars represent the number of enriched genes, color

represents the significance, increasing gradually from blue to red. The figure shows the terms with p < 0.05.

The results of differential immune function analysis revealed

that significant APC co-inhibition, APC co-stimulation, CCR,

Check-point, HLA, Inflammation-promoting, MHC class I,

Parainflammation, T cell co-inhibition, T cell co-stimulation,

Type I IFN Reponse, and Type II IFN Reponse were observed

in UC patients (Table 3; Figure 6B). Details of these biomarkers

in patients with UC are presented in Table 3.

The correlation analysis revealed that activated B cells were

not related to Mast cells; CD8+ T cells were not related to

iDCs; iDCs were not related to NK cells; Macrophages were not

related to Mast cells or NK cells; Mast cells were not related

to Neutrophils, pDCs, Th2 cells or Treg; and NK cells were

not related to Treg (Figure 7A). However, strong correlations

were observed for all other types of immune cells and immune

function (Figure 7).

The construction of diagnostic model

Results of Pearson correlation analysis revealed that all

upregulated diagnostic genes were significantly positively

correlated with almost all immune cell subtypes and immune

function subtypes (except CD8+ T cells and NK cells). Similarly,

almost all down-regulated diagnostic genes were negatively

correlated with almost all immune cell subtypes and immune

function subtypes (except CD8+ T cells andNK cells) (Figure 8).
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FIGURE 5

The overall landscape of immune infiltration in UC. Each row represents one sample, either healthy or UC, each column represents a type of

immune cell or immune function. IMC, immune cell; IMF, immune function.

Inspired by the above results, five diagnostic genes most

associated with immune infiltration (HMGCS2, CLDN8, AQP8,

DEFB4A, MMP3) were used to construct a diagnostic model

for UC. Details of these biomarkers in patients with UC are

presented in Table 4.

The nomogram showed the diagnostic efficacy of the model

constructed with these predicted diagnostic genes for UC

(Figure 9A). Based on the calibration curve predicted by the

uncorrelated nomogram, the performance of the column line

plot was close to the ideal model, suggesting that the predictive

value of the model is credible (Figure 9B). Similarly, ROC-

AUC of the risk score was 0.897, which indicates excellent

discrimination of the model (Figure 9C).

Model performance and validation

To go step further validation, ROC curves were applied to

assesses the prediction accuracy of the model. The ROC-AUC of

the risk score was 0.871 in GSE75214 and 0.908 in GSE92415,

respectively, indicating excellent discrimination of the model

(Figure 10).

Discussion

The development of UC involves genetic susceptibility,

environmental factors and disturbances in the gut microbiota
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TABLE 3 Results of immune infiltration analysis.

Immune infiltrates Control UC P-value

Median, interquartile Mean ± standard Median, interquartile Mean ± standard

range deviation range deviation

aDCs 0.501 [0.468, 0.570] 0.495± 0.103 0.683 [0.584, 0.731] 0.641± 0.120 <0.05

B cells 0.46 [0.410, 0489] 0.459± 0.058 0.582 [0.508, 0.662] 0.584± 0.097 <0.05

CD8+ T cells 0.723 [0.613, 0.822] 0.716± 0.136 0.825 [0.723, 0.873] 0.775± 0.147 <0.05

DCs 0.603 [0.578, 0.628] 0.608± 0.053 0.649 [0.607, 0.677] 0.636± 0.063 <0.05

iDCs 0.072 [0.052, 0.104] 0.085± 0.050 0.157 [0.109, 0.240] 0.180± 0.091 <0.05

Macrophages 0.566 [0.549, 0.592] 0.571± 0.034 0.644 [0.622, 0.664] 0.643± 0.037 <0.05

Mast cells 0.556 [0.527, 0.583] 0.558± 0.049 0.567 [0.527, 0.609] 0.562± 0.067 >0.05

Neutrophils 0.543 [0.514, 0.589] 0.553± 0.043 0.655 [0.613, 0.678] 0.646± 0.050 <0.05

NK cells 0.17 [0.138, 0.270] 0.206± 0.103 0.182 [0.114, 0.241] 0.185± 0.101 >0.05

pDCs 0.534 [0.507, 0.546] 0.531± 0.027 0.580 [0.557, 0.597] 0.575± 0.039 <0.05

T helper cells 0.431 [0.387, 0.462] 0.424± 0.048 0.471 [0.440, 0.499] 0.467± 0.058 <0.05

Tfh 0.526 [0.447, 0.606] 0.523± 0.104 0.661 [0.590, 0.698] 0.641± 0.084 <0.05

Th1 cells 0.378 [0.361, 0.390] 0.381± 0.036 0.482 [0.436, 0.536] 0.479± 0.083 <0.05

Th2 cells 0.429 [0.376, 0.460] 0.426± 0.057 0.535 [0.503, 0.564] 0.528± 0.053 <0.05

TIL 0.601 [0.562, 0.620] 0.600± 0.045 0.707 [0.658, 0.756] 0.701± 0.068 <0.05

Treg 0.600 [0.589, 0.611] 0.600± 0.015 0.642 [0.628, 0.652] 0.641± 0.021 <0.05

APC co-inhibition 0.606 [0.586, 0.617] 0.601± 0.023 0.667 [0.637, 0.701] 0.671± 0.051 <0.05

APC co-stimulation 0.396 [0.381, 0.416] 0.396± 0.021 0.472 [0.435, 0.503] 0.470± 0.045 <0.05

CCR 0.490[0.482, 0.504] 0.492± 0.014 0.553 [0.539, 0.576] 0.554± 0.029 <0.05

Check-point 0.437 [0.430, 0.452] 0.444± 0.022 0.509 [0.485, 0.538] 0.509± 0.038 <0.05

Cytolytic activity 0.768 [0.706, 0.814] 0.755± 0.076 0.797 [0.746, 0.837] 0.787± 0.069 >0.05

HLA 0.840 [0.827, 0.854] 0.839± 0.020 0.864 [0.854, 0.874] 0.863± 0.020 <0.05

Inflammation-promoting 0.546 [0.507, 0.594] 0.552± 0.062 0.703 [0.659, 0.733] 0.687± 0.075 <0.05

MHC class I 0.982 [0.977, 0.986] 0.981± 0.006 0.993 [0.991, 0.995] 0.992± 0.006 <0.05

Parainflammation 0.645 [0.635, 0.666] 0.651± 0.022 0.753 [0.724, 0.777] 0.748± 0.041 <0.05

T cell co-inhibition 0.423 [0.416, 0.446] 0.434± 0.039 0.524 [0.477, 0.563] 0.518± 0.066 <0.05

T cell co-stimulation 0.441 [0.423,0.468] 0.445± 0.031 0.532 [0.489, 0.560] 0.526± 0.052 <0.05

Type I IFN response 0.689 [0.671, 0.707] 0.682± 0.038 0.730 [0.703, 0.766] 0.729± 0.064 <0.05

Type II IFN response 0.606 [0.561, 0.644] 0.608± 0.063 0.740 [0.686, 0.792] 0.734± 0.080 <0.05

and is characterized by an abnormal mucosal immune

response and a persistent inflammatory infiltrate. Pathological

mechanisms that have not been fully elucidated have limited

the development of early diagnosis and treatment of UC.

Currently, integrated microarray-based bioinformatics analysis

has been widely used to identify potential novel biomarkers for

various diseases, which is important for specifying molecular

markers and diagnosing UC early in the disease process.

In this study, DEGs were identified to be mainly enriched

in immune response-related pathways. Immune infiltration

analysis suggested significant differences in immune cell and

immune function types between UC patients and controls.

Correlation analysis of DEGs and immune microenvironment

was performed, and five immune-related genes (HMGCS2,

CLDN8, AQP8, DEFB4A, MMP3) were identified and were

subsequently used to construct a diagnostic model of UC.

Encouragingly, this model showed good diagnostic performance

for UC, and data from the other two datasets further validated

the accuracy of this model for UC diagnosis.

With data from GEO, 3111 DEGs (1,608 up-regulated

genes and 1,503 down-regulated genes) were obtained in

UC by comprehensive analysis of the microarray dataset

(GSE87473). Further GO analysis indicated that these DEGs

were significantly enriched in the leukocyte migration, leukocyte

cell-cell adhesion, T cell activation, cytokine-mediated signaling

pathway, leukocyte chemotaxis, cell chemotaxis, granulocyte

migration, regulation of T cell activation, lymphocyte

differentiation, mononuclear cell differentiation, immune

receptor activity, chemokine activity, chemokine receptor

binding, CXCR chemokine receptor binding, collagen binding,
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FIGURE 6

Comparison of immune cell subtypes (A) and immune function

subtypes (B) between UC patients and controls. Red and blue

colors represent healthy and UC samples, respectively.

Di�erences between groups are indicated by “*”. *p < 0.05; **p

< 0.01; ***p < 0.001.

cytokine activity, cytokine binding, extracellular matrix

structural constituent, and G protein–coupled receptor binding.

For KEGG analysis, genes were significantly enriched in

immune-related pathways such as TNF signaling pathway,

Osteoclast differentiation, IL-17 signaling pathway, Th17 cell

differentiation, and NF-kappa B signaling pathway. For DO

analysis, DEGs were significantly enriched in lung disease,

intestinal disease, mouth disease, primary bacterial infectious

disease, arteriosclerosis, IBD, arteriosclerotic cardiovascular

disease, female reproductive organ cancer, and tooth disease.

In summary, results of the bioinformatics analyses suggested

that these DEGs were closely related to immune cell infiltration

in UC. These findings further validate the key role of immune

abnormalities in the pathological progression of UC (22).

FIGURE 7

Correlation matrix of immune cell subtypes (A) and immune

function subtypes (B). Both horizontal and vertical axes

demonstrate immune cell subtypes and immune function

subtypes (blue for negative correlation, white for weak or no

correlation), red for positive correlation). Color represents the

significance, increasing gradually from white to indigo.

Inspired by the results of functional analysis of DEGs,

immune infiltration analysis was further performed. The results

revealed that there were significant differences in aDCs, B cells,

CD8+ Tcells, DCs, iDCs, Macrophages, Neutrophils, pDCs, T

helper cells, Tfh, Th1 cells, Th2 cells, TIL and Treg between

colon tissue in UC patients and the healthy group. In fact,

most of the above immune cells have been reported to be

in an abnormal state in UC by previous studies (23, 24).

Therefore, these identified immune cells may be involved in

the development and progression of UC. Top genes with the

most significant expression differences between healthy and UC

samples were considered as potential diagnostic genes for UC.

After feature selection, HMGCS2, CLDN8, AQP8, DEFB4A,

and MMP3 were identified as having strong association with

immune infiltration, and thus they may be key genes that
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FIGURE 8

Heatmap showing the relationship between candidate genes and immune infiltrate. Red is positive correlation and blue is negative correlation.

TABLE 4 Details of genes in diagnostic model.

Genes Sig Log2FC Average expression

AQP8 Down −4.626352947 8.071990976

CLDN8 Down −3.601376685 6.380647165

HMGCS2 Down −3.559635503 7.584732929

DEFB4A Up 4.418274083 8.68987552

MMP3 Up 4.763273249 9.167130008

identify the immune features of UC and are involved in UC

immune regulation.

Inspired by the results of functional analysis of DEGs

and immune infiltration analysis, HMGCS2, CLDN8, AQP8,

DEFB4A, and MMP3 were applied to construct a diagnostic

model for UC. The nomogram showed the well diagnostic

efficacy of the model constructed with these predicted diagnostic

genes for UC. The calibration curve for the uncorrelated

nomogram prediction showed that the performance of the

column line plot was close to the ideal model, suggesting that

the predictive value of the model is credible. Similarly, ROC-

AUC of the risk score was 0.897, suggesting a high diagnostic

efficiency of the diagnostic marker gene model. To go step

further validation, data from GSE75214 and GSE92415 were

applied to assesses the prediction accuracy of the model. The

results revealed that ROC-AUC of the risk score were 0.871

in GSE75214 and 0.908 in GSE92415, respectively, indicating

excellent discrimination of the diagnostic model.

A total of five immune-related genes were included in the

diagnostic model. The protein encoded by HMGCS2 belongs

to the HMG-CoA synthase family of mitochondrial enzymes

that catalyze the first reaction of ketogenesis, which is a crucial

alternative metabolic pathway and is involved in the regulation

of the body’s immune function (25). Restoration of ketogenesis

enhances immune cell effects (26) and attenuates the activation

of pro-inflammatory macrophages (27). The protein levels of

HMGCS2 in the intestinal epithelium of UC patients were

reported to be sharply decreased compared to healthy samples

(28). Increased ketogenesis may help to counteract intestinal

inflammation, and conversely, its suppression may exacerbate

intestinal pathology (28). The CLDN8 gene encodes a member

protein of the claudin family. Claudins are integral membrane

proteins and components of tight junction chains that play a

key role in maintaining the integrity of the intestinal mucosal

barrier. CLDN8 was reported to be significantly downregulated

in the biological colon of IBD patients, and similar results were

observed in colitis mice (29). AQP8 encodes an epithelial water

transport protein specifically expressed in colonic absorptive

cells, and it was found to be significantly downregulated

in UC patients compared to healthy controls (30, 31). In

addition, AQP8 was observed to promote H2O2 diffusion

in experimental mouse models, which suggested its balance

and regulatory effects on antioxidant pathways (32). DEFB4A

encodes defensin, beta 4, an antibiotic peptide locally regulated

by inflammation, which has been shown to be involved in

the pathological process of IBD. Results of high-throughput

sequencing suggested that the composition of the microbiota

differs significantly between UC and non-IBD. Alterations in the

microbiota can affect antimicrobial peptide expression, which

in turn is involved in the progression of IBD (33). Various

studies have highlighted the involvement of specific matrix

metalloprotease in IBD: MMP3 transcript or protein levels are

upregulated in the mucosa of inflammatory IBD or in the
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FIGURE 9

(A) Nomogram of diagnostic marker genes; (B) calibration curve of non-correlation nomogram prediction in the cohort; (C) ROC curve for the

diagnostic e�cacy of diagnostic model.

serum of IBD patients, and MMP protein hydrolytic activity

is increased in epithelial-derived cells of inflammatory IBD

(34–36). It was found that MMP3 expression was significantly

upregulated in inflammatory colonic segments of IBD patients

compared to non-inflammatory regions (37). In addition,

MMP3 serum assay possesses a suggestive role for early response

to infliximab treatment of UC (38). In summary, these key genes

are all involved in the development of UC, and their inclusion in

our diagnostic model of UC is reasonable.

Although this study applied a relatively large sample

size to characterize the immune microenvironment and

construct a diagnostic model for UC by integrating the

GEO dataset, limitations should be acknowledged. First,

this study explored the infiltration of immune cells by

ssGSEA and found that immune cells play an important

role in the pathological progression of UC. Therefore,

it is crucial to validate our findings by flow cytometry.

Second, although the present model may serve as a valid

predictive tool for UC diagnosis, the true predictive

value of the model should be prospectively validated in

future independent and multicentered-studies with larger

sample sizes.
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FIGURE 10

ROC curves for the model in the validation dataset of GSE75214 (A) and GSE92415 (B).

Conclusion

In conclusion, this study identified the immune infiltrate

characteristics and five immune-related genes for UC. The

model based on the immune -related genes facilitates the early

diagnosis of UC and provides a basis for the evaluation of the

prognosis of UC.
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