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Editorial on the Research Topic

Reconstructing paleodiets: challenges and advances
Reconstruction of past diets allows tracking numerous ecological and behavioral

aspects through time and across diverse geographic areas, such as the trophic position of

species, niche sharing and niche partitioning; it also provides information about the

structure of past vegetation and its change, migration patterns, ontogenetic and individual

food preferences, and adaptations to environmental changes (Clementz, 2012; Pineda-

Munoz et al., 2017). These insights are also key to reconstructing and understanding past

ecosystems’ structure, composition, and function, and extracting lessons learned of direct

relevance to modern conservation.

One of the most widely used techniques to reconstruct diets of fossil mammals is dental

microwear texture analysis (DMTA,Kaiser and Brinkmann, 2006) and in this Research Topic,

Sato et al. provide an interesting case study on the dietary habits of a 6,000 years ago population

of sika deer (Cervus nippon) from Torihama Shell Midden, Japan. Their results showed that

fossil sika deer had a mixed diet based on herbaceous vegetation, which may reflect its flexible

ecological adaptations. By elucidating the diet of this ancient herbivore population, their study

also informed on prehistoric human communities’ hunting practices and their dietary habits.

Miyamoto et al. equally applied DMT to the study of wild boars (Sus scrofa) from Toyama

Prefecture, Japan. Results indicated that tooth surfaces of boarlets were rougher than those of

juvenile or adult animals. A comparison of boars from different habitats showed thatmainland

boars inhabiting deciduous broad-leaved forests had flatter and less rough tooth surfaces than

those in the subtropical evergreen broad-leaved forest. This study gives important information

about microwear texture data of an underrepresented ungulate group such as suids.

Standardised in vitro experiments with controlled diets to associate specific

microtexture patterns with the ingestion of specific food types or their mechanical

properties is another methodological aspect that has recently gained importance. Martin
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et al. analysed the effect of DMT on adding or not adding various

extrinsic abrasives to pelleted diets compared to natural diets in

guinea pigs (Cavia porcellus). Specimens fed a natural diet had a

lower range of DMT values. The normalised DMT data range of

guinea pigs and sheep (Ovis aries) fed identical diets were also

compared: while the DMT data range was higher in sheep, the

absolute Spearman’s correlation coefficient between the different

variables was lower in sheep than in pigs. This suggests that DMT is

species specific and its variation between species must be

interpreted with caution.

Winkler et al. conducted a pilot feeding experiment with five

juvenile Alligator mississippiensis. Each individual received a diet of

different hardness: crocodylian pellets (control), sardines, quails,

rats, or crawfish. DMT showed similar dental microwear texture

patterns before they were switched to their designated experimental

diet, but from the first feeding bout on, dental microwear textures

differed across the diets. The crawfish-feeder showed consistently

higher surface complexity, followed by the rat-feeder. Quail- and

fish-feeding resulted in similar wear signatures, with low

complexity. Such patterns can support the identification of hard-

object feeding in the Crocodylia fossil record.

Winkler et al. investigated which objects or food items can

produce high-complexity DMT patterns (in the absence of external

abrasives). A feeding trial on a sample of 36 laboratory rats

separated into six distinct groups, each receiving a different diet

indicated that seeds are the main cause of complex microwear

textures, but that hard insect parts may also be a major factor

causing high complexity in the enamel surface of small mammals.

The increase in the number of published microtexture studies is

associated with the use of different commercial resins by different

researchers. Sawaura et al. analysed the accuracy of using different

types of commercial silicone resins on dentalmicrotexture variables to

improve the reproducibility of studies andensurecomparabilityofdata

between different studies. Results showed that silicones with rapid

completion and showing steep viscoelastic curves and those that had a

delayed change in shrinkage show better reproducibility and accuracy

ofmicrowear featureswith less blurring and air bubble contamination.

Avià et al. explored the relationship between wear-related dental

functional morphology and dietary ecological constraints within

Papionini primates. Their results indicate that hard-object feeders

and grass eaters papionines exhibit a pattern of occlusal complexity,

surface curvature, relief, and morphological wear resistance that is

significantly different from the omnivores and folivore-frugivore

species despite the overall homogeneity of the bilophodont

dentition. In another multiproxy analysis of papionini, Ramıŕez-

Pedraza et al. inferred the feeding habits of Macaca cf. sylvanus

from the Plio-Pleistocene site Guefaït-4.2 (eastern Morocco). The

occlusal microwear results showed thatM. cf. sylvanus had a pattern

similar to the extant Cercocebus atys and Lophocebus albigena,

African forest-dwelling species characterized by a durophagous

diet. Buccal microtexture results also supported the consumption

of some grasses and the exploitation of more open habitats. At the

same time, stable isotopes of M. cf. sylvanus indicated a C3-based

diet without the presence of C4 plants.

Stable isotopes provide valuable information on animal

physiology and dietary adaptations (Ehleringer et al., 1986). By
Frontiers in Ecology and Evolution 026
collating data from over 24 studies with an additional sample of 80

teeth specimens, Wang and Badgley provided in this Research

Topic an extensive overview of carbon isotopic variation (d13C
diet) within living terrestrial artiodactyls. Because most species of

this clade are primary consumers, the interpretation of carbon data

is linked to their consumption of C3 or C4 plants. Variation in C3

within and between artiodactyl species exhibits similar shifts

following plant distribution across different continents.

DeSantis et al. equally offered an interesting application of

stable isotope to clarify diet of carnivorous mammals, by

analyzing bone collagen (carbon and nitrogen) and enamel

carbonate (carbon) of extinct and extant North American felids

and canids, supplementing it with data from African wild dog

(Lycaon pictus) and African lion (Panthera leo). Their results

revealed that Dca-co values are positively related to enamel

carbonate values in secondary consumers and are less predictive

of trophic level. Foraging habitat and diet of prey affect Dca-co in

carnivores, like in herbivore species. Average Dca-co values in

Pleistocene canids (8.7+/−1‰) and felids (7.0+/−0.7‰) overlap

with previously documented extant herbivore Dca-co values,

suggesting that trophic level estimates may be relative to

herbivore Dca-co values in each ecosystem and not directly

comparable between disparate ecosystems.

In another paper, Pardi and DeSantis presented an approach in

which species distribution modeling allows interpreting variation in

stable isotope and dental microwear texture data. They investigated

the resource use over space and time from the last glacial maximum

to the end of the Pleistocene in North American mastodon

(Mammut americanum) and mammoths of the genus

Mammuthus. Mammoth dietary behavior varied by context across

north american geographic range while dietary preferences of

mastodon are less resolved and isotopic data does not allow to

identify significant geographical changes in its diet.

Ecomorphological variation of terrestrial herbivores is further

explored in the work of Mihlbachler et al. that present an interesting

application of the geometric morphometric techniques (GMM,

Adams et al., 2013) to 2D images of the second upper molar from

91 ruminant species. Two landmarks and twenty semi-landmarks

that slide along the cusp curvy surface were used. A substantial

degree of covariation between cusp shape data generated with

GMM and more traditional mesowear scoring was validated by

Mihlbachler et al. and supported its further biological interpretation

for dietary reconstruction. Discriminant Function Analysis applied

to cusp shape data improved dietary classification from 56.1% of the

traditional mesowear method to 67.2%, showing the potential of

GMM to accomplish a more comprehensive understanding of

tooth-wearing biological processes.

Regarding studies involving hominins, Estalrrich and Krueger

analyzed prehistoric and historic children through DMTA of

deciduous anterior teeth. Their results showed that DMTA

successfully differentiated the samples by all texture variables

examined. The Neanderthal and Point Hope children had similar

mean values across all the texture variables, and both groups were

significantly different from the Amarna, Egyptian children. These

results suggest diversity in abrasive load exposure and participation

in non-dietary anterior tooth-use behaviors. They also showed that
frontiersin.org
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some prehistoric and historic children took part in similar

behaviors as their adult counterparts.

Rendú et al. reported new zooarchaeological data analyses on

the site of Chez-Pinaud, Jonzac (France). Previous recognition of

the Quina Mousterian techno-complex supported adaptations to

reindeer (Rangifer tarandus) hunting in Neanderthals from Jonzac.

However, Rendú et al. new data indicate that the contribution of the

horse and bison to Neanderthal economy was higher than expected

by previous interpretations and that the reindeer was overestimated

in the faunal spectrum. Horses and bovids were significant sources

of protein for the Quina Neanderthals population.

The studies presented in this Research Topic are either aimed at

improving our understanding of how dietary behavior is recorded

in extant taxa or clarifying how we can reconstruct dietary behavior

in ancient ecosystems. By applying different methodologies, this

topic demonstrates the myriad of ways in which we can improve

accuracy and precision in palaeodietary reconstruction, a discipline

that is progressing rapidly with novel technological applications.
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Dental microwear texture
analysis correlations in guinea
pigs (Cavia porcellus) and sheep
(Ovis aries) suggest that dental
microwear texture signal
consistency is species-specific
Louise Françoise Martin 1*, Daniela Eileen Winkler 2,3,4,
Nicole Lauren Ackermans 1,5, Jaqueline Müller1,
Thomas Tütken2, Thomas Kaiser 4, Daryl Codron 6,
Ellen Schulz-Kornas 4,7, Jean-Michel Hatt 1 and
Marcus Clauss 1

1Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich,
Switzerland, 2Applied and Analytical Paleontology, Institute of Geosciences, Johannes Gutenberg
University, Mainz, Germany, 3Department of Natural Environmental Studies, Graduate School
of Frontier Sciences, The University of Tokyo, Chiba, Japan, 4Center of Natural History, University
of Hamburg, Hamburg, Germany, 5Nash Family Department of Neuroscience, Friedman Brain
Institute, Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai,
New York, NY, United States, 6Department of Zoology and Entomology, University of the Free State,
Bloemfontein, South Africa, 7Department of Cariology, Endodontology and Periodontology,
University of Leipzig, Leipzig, Germany

Dental microwear texture (DMT) analysis is used to differentiate abrasive

dental wear patterns in many species fed different diets. Because DMT

parameters all describe the same surface, they are expected to correlate with

each other distinctively. Here, we explore the data range of, and correlations

between, DMT parameters to increase the understanding of how this group

of proxies records wear within and across species. The analysis was based

on subsets of previously published DMT analyses in guinea pigs, sheep,

and rabbits fed either a natural whole plant diet (lucerne, grass, bamboo)

or pelleted diets with or without added quartz abrasives (guinea pigs and

rabbits: up to 45 days, sheep: 17 months). The normalized DMT parameter

range (P4: 0.69 ± 0.25; M2: 0.83 ± 0.16) and correlation coefficients (P4:

0.50 ± 0.31; M2: 0.63 ± 0.31) increased along the tooth row in guinea pigs,

suggesting that strong correlations may be partially explained by data range.

A comparison between sheep and guinea pigs revealed a higher DMT data

range in sheep (0.93 ± 0.16; guinea pigs: 0.47 ± 0.29), but this did not

translate into more substantial correlation coefficients (sheep: 0.35 ± 0.28;

guinea pigs: 0.55 ± 0.32). Adding rabbits to an interspecies comparison of

low abrasive dental wear (pelleted lucerne diet), the softer enamel of the

hypselodont species showed a smaller data range for DMT parameters (guinea

pigs 0.49 ± 0.32, rabbit 0.19 ± 0.18, sheep 0.78 ± 0.22) but again slightly

higher correlations coefficients compared to the hypsodont teeth (guinea pigs
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0.55 ± 0.31, rabbits 0.56 ± 0.30, sheep 0.42 ± 0.27). The findings suggest

that the softer enamel of fast-replaced ever-growing hypselodont cheek teeth

shows a greater inherent wear trace consistency, whereas the harder enamel

of permanent and non-replaced enamel of hypsodont ruminant teeth records

less coherent wear patterns. Because consistent diets were used across taxa,

this effect cannot be ascribed to the random overwriting of individual wear

traces on the more durable hypsodont teeth. This matches literature reports

on reduced DMT pattern consistency on harder materials; possibly, individual

wear events become more random in nature on harder material. Given the

species-specific differences in enamel characteristics, the findings suggest a

certain species-specificity of DMT patterns.

KEYWORDS

dental microwear texture analysis, rodent, ruminant, phytolith, quartz abrasive,
feeding experiment

Introduction

Standardized experiments have recently been used to
explore the mechanics of abrasive dental wear and the various
proxies to record it (Schulz et al., 2013; Merceron et al.,
2016; Winkler et al., 2019; Ackermans et al., 2020; Louail
et al., 2021; Martin et al., 2022). The principal aim of those
studies is to supply information for the understanding of
evolutionary adaptations and to increase the precision of
paleodietary reconstructions. In vitro experiments on a single
tooth or enamel sample use a standardized approach to model
dental wear dependent on diet. Many diet samples can be
run in a short period, or one diet can be “chewed on” by
speeding up the chewing apparatus to simulate more extended
periods (Hua et al., 2015; Karme et al., 2016; Rodriguez-
Rojas et al., 2020; Fischer et al., 2022). This standardization,
however, oversimplifies a process that is dependent on the
physical properties of the dental tissues, tooth geometry [i.e.,
arrangement of enamel, dentine, and cementum (Winkler and
Kaiser, 2015)], tooth position along the tooth row and the
corresponding jaw (Taylor et al., 2016; Ramdarshan et al.,
2017), physical properties, and concentration of the abrasive
elements in the diet and biomechanical properties of the diet
matrix (Kaiser et al., 2016). Therefore, in vivo experiments better
represent the complex nature of abrasive tooth wear but are time
and labor intensive and must be ethically justified.

Whether the assay is in vitro or in vivo, the amount
of tissue lost to wear is inherently difficult to quantify. By
contrast, changes to the remaining tissue are comparatively
easier to record and are commonly assessed using macroscopic
or microscopic parameters serving as proxies for dental wear.
Dental microwear texture (DMT) analysis characterizes tooth
wear on a micrometer scale. It has been widely employed

in the study of dental wear in wild animals (Winkler et al.,
2016; Yamada et al., 2018; Schulz-Kornas et al., 2019; Robinet
et al., 2020) or fossil species (Donohue et al., 2013; Desantis,
2016) as well as in experimental settings (Schulz et al., 2013;
Merceron et al., 2016; Teaford et al., 2017; Winkler et al.,
2019, 2020a; Ackermans et al., 2020; Louail et al., 2021) and
has sometime shown a high intra- and interspecies variability
(Robinet et al., 2022). For DMT analysis (DMTA), a selected
enamel surface is scanned and described using up to 46 areal
surface texture parameters. Some of the parameters follow
international standards, e.g., the ISO 25178 and the ISO
12871. In contrast, other parameters home in on specific
geometric elements such as particular lines, points, or specific
scale-dependent features (such as motif, furrow, isotropy
parameters, and SSFA parameters). Following the ISO 25178
and MountainsMap R© Software reference guide, the areal surface
texture parameter can be grouped by their main characterizing
features (area, complexity, density, direction, height, peak
sharpness, plateau size, slope and volume; e.g., Winkler et al.
(2021) for further description) to ease the understanding
and facilitate the presentation of results. While all 46 DMT
parameters describe at least parts of the same surface and
should therefore correlate with each other (Ackermans et al.,
2021), the relationship between DMT parameters within and
between functional groups needs to be analyzed, to increase
the understanding how abrasive tooth wear is dependent on
species, tooth position, and abrasive elements, among many
other factors (Scott et al., 2006). Preliminary explorations of
the relationship between the DMT parameters in goats and
sheep (Schulz-Kornas et al., 2020; Ackermans et al., 2021) and
in rabbits (Martin et al., 2020) have led us to hypothesize
that the putatively softer enamel of hypselodont teeth—as
seen in Fischer et al. (2022) for rodent incisors and in
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Shakila et al. (2015) with a preliminary test in cheek teeth
in rabbits—should make the detection of interrelationships
between different wear proxies easier; a hypothesis also
supported by the observation that on soft material like cartilage,
more significant correlations between DMTA parameters were
evident (Tian et al., 2012; Wang et al., 2013) than on a hard
material like steel (Korzynski et al., 2018).

We used the skulls of three groups of guinea pigs (Cavia
porcellus) from feeding experiments focusing on the effect of
natural diets (lucerne, grass and bamboo) and different external
abrasives added to a pelleted diet on DMT analysis for this
study. The DMT data was reported previously (Winkler et al.,
2019, 2020b) for the effect of plant internal silica, the impact
of different shapes, sizes and quantities of external abrasives,
and a difference between tooth positions along the tooth row.
Because several identical pelleted diets had been used for a
feeding experiment in sheep (Ovis aries) (Ackermans et al.,
2021) and rabbits (Oryctolagus cuniculus) (Martin et al., 2020),
a direct comparison of the interrelationships among DMT
measures within each species was feasible. Using specific data
subsets, we hypothesize more DMT parameters correlations,
or, in other words, a more consistent tooth wear pattern, if
(a) the tooth position causes more intensive masticatory forces
and if (b) the substrate (enamel) is more malleable (“softer”)
(i.e., rodent vs. ruminant). Because one of the many reasons
for the emergence of correlations lies in the range of the data
submitted to correlation analysis, we do not only consider
correlation coefficients but also the (normalized) range of the
DMT measurements.

Materials and methods

The dental microwear texture (DMT) analysis datasets
were accumulated from feeding experiments approved by the
Cantonal Veterinary Office of Zurich (guinea pigs: license
no. ZH135/2016; sheep ZH10/2016; rabbits: ZH80/2012). The
guinea pigs were fed either a natural whole plant diet (lucerne,
grass or bamboo) or a pelleted formulation based on lucerne
meal with or without the addition of different external abrasive
agents (i.e., quartz in different amounts and grain sizes; see
Table 1 and Supplementary Table 1 for diet composition,
feeding time and body mass). In guinea pigs, each diet had
been fed for a period of three to 6 weeks, and for rabbits for
2 weeks; due to the fast turnover of the chewing surface of
these species’ hypselodont cheek teeth (Schulz et al., 2013), this
time is sufficient to ensure only traces of the respective diet are
recorded. The identical pelleted diets were used in sheep for
a feeding time of 17 months with the addition of lucerne hay
at a rate of 200 g as fed per animal and day. Additional data
were available from six rabbits that had also received a pelleted
lucerne diet for 2 weeks. Detailed experimental conditions,
including husbandry, feed management and descriptions, are
available in the corresponding original publications [guinea

pigs: Winkler et al. (2019), Winkler et al. (2020b); sheep:
Ackermans et al. (2020); rabbits: Müller et al. (2014)].

The above publications offer a detailed description of
the dental microwear texture analysis following the published
routine for DMT data in MountainsMap v.9.0.9878 (Schulz
et al., 2010, 2013) with adjustment for guinea pigs (Winkler et al.,
2019, 2020a, 2021). In short, the surface texture of a predefined
molar enamel area (guinea pigs 60 µm2, sheep 120 µm2, rabbits
40 µm2) is scanned using a high-resolution confocal disk-
scanning measurement system (µsurf custom, NanoFocus AG,
Oberhausen, Germany) at the LIB Hamburg (former Center of
Natural History (CeNak) of the University of Hamburg). From
the mean of 4 non-overlapping scans, forty-six surface texture
parameters (Supplementary Table 2) are quantified using the
ISO 25178 (roughness), motif, furrow, isotropy, ISO 12871
(flatness), and Scale- sensitive fractal analysis (SSFA). Only scans
from maxillary cheek teeth were included in the respective
datasets, and subsets are based on criteria for the respective
analysis.

Analysis

One reason for more significant non-parametric
correlations in a dataset might simply be a more extensive
range of parameter values. To account for this, we normalized
all DMT measurements in a dataset in which comparisons were
made (all guinea pig tooth positions within a diet category;
guinea pigs and sheep within the common diet category) to
a scale from 0–1 and expressed the range within each subset
(a tooth position; a species) as the difference between the
normalized maximum and minimum for each parameter.
Subsequently, each subset was characterized by the average
(± standard deviation SD) normalized range of all parameters.

Because many parameter measures were not normally
distributed, all correlations were assessed using non-parametric
correlation matrices (Supplementary Figure 1 for an example
plot); to further visualize these results, we show histograms
representing the distribution of the Spearman’s correlation
coefficients (from −1 to 1), and a boxplot of all absolute
Spearman’s correlation coefficients. Descriptive and test
statistics were conducted in R Studio (Version 1.3.1093) using
the packages tidyverse (Wickham et al., 2019), corrplot (Wei
and Simko, 2021) and ggplot (Wickham, 2016).

Datasets

The example plots that outline our approach were built
using all scans available for the guinea pigs (dataset A,
Table 1). To account for DMT differences between tooth
positions (Winkler et al., 2021), only guinea pigs for which
scans of each tooth position (P4 to M3) were available were
included in the actual analysis, and DMT parameter correlations
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TABLE 1 Overview of diet groups for which DMTA data was included
in the correlation analyses.

Species Diet Time on diet n Dataset

Guinea pigs No abrasives P 28–35 days 6 A B C D E

4% fine silt P 28–35 days 6 A B D

Kaolin P 28–35 days 6 A B

Loess P 28–35 days 6 A B

4% coarse silt P 28–35 days 6 A B D

4% fine sand P 28–35 days 6 A B D

8% fine silt P 45 days 6 A B D

Mixed abrasives P 45 days 6 A B

Fine sand P 45 days 6 A B

Volcanic ash small P 45 days 6 A B

Volcanic ash large P 45 days 6 A B

Fresh lucerne N 21 days 6 A B

Dry lucerne N 21 days 6 A B C

Fresh grass N 21 days 6 A B

Dry grass N 21 days 6 A B

Fresh bamboo N 21 days 6 A B

Dry baboo N 21 days 6 A B

Sheep* No abrasives P 17 months 7 D E

4% fine silt P 17 months 4 D

4% coarse silt P 17 months 5 D

4% fine sand P 17 months 7 D

8% fine sand P 17 months 5 D

Rabbits No abrasives P 14 days 3 E

P, pelleted lucerne based diet; N, natural whole leave diet.
*Additional 200 g of lucerne hay per animal per day. The different datasets were compiled
for all guinea pigs (A), guinea pigs for which all 4 tooth positions could be measured (B),
guinea pigs on natural or pelleted lucerne diet (C), sheep and guinea pigs on pelleted diets
with external abrasives (D) and sheep, guinea pigs and rabbits fed pelleted lucerne (E).

and ranges were compared between P4 and M2 (dataset B,
Table 1). Two groups of guinea pigs (6 animals per group)
had received low-abrasive lucerne diets but in a different
formulation (dried whole plant diet or dried and pelleted)
which allowed for a direct comparison of parameter ranges
and correlations (dataset C, Table 1). Some guinea pigs and
sheep received the same pelleted diet formulations with the
addition of external quartz abrasives [control (quartz free),
4% fine silt, 4% coarse silt, 4% fine sand, 8% fine silt],
facilitating an inter-species comparison (dataset D, Table 1).
Moreover, the rabbit DMT data was added from a pilot on DMT
correlations (Martin et al., 2020) to expand the interspecies
comparison of animals fed only a lucerne pellet diet (dataset E,
Table 1).

Results

In guinea pigs (dataset A), DMT parameters generally
correlated well with each other. For area, height, plateau
size, slope, peak sharpness, and volume, most parameters

correlated positively (or, in fewer cases, negatively) with each
other. The direction, density, and complexity parameters show
fewer significant correlations with other measures, evident in
the “lighter areas” of the triangular diagram (Supplementary
Figure 1 and Supplementary Table 3). The mean absolute
Spearman’s correlation coefficient was 0.53 ± 0.31.

Tooth positions (dataset B)

The normalized DMT data range based on all teeth was
lower for P4 (0.69 ± 0.25) than for M2 (0.83 ± 0.16; Figure 1A),
indicating more variance in DMT measures on the M2. For
all teeth, the mean absolute Spearman’s correlation coefficient
was 0.56 ± 0.31 (Figure 1B). Here again, the mean for P4
(0.50 ± 0.31) was lower than for the M2 (0.63 ± 0.31;
Figure 1B), which is also visible in the distribution of the
Spearman’s correlation coefficients (Figures 1D–F), indicating
more significant correlations in the tooth position with the
larger measurement range.

Diet consistency (dataset C)

Comparing two diet groups with six guinea pigs each, fed
either natural whole plant lucerne hay or pelleted lucerne,
the normalized DMT data range was smaller for the animals
receiving the natural diet (0.44 ± 0.32) than for those receiving
the pelleted diets (0.91 ± 0.13; Figure 2A). The mean absolute
Spearman’s correlation coefficient was 0.38 ± 0.27 for the
natural diets compared to 0.55 ± 0.31 for the pelleted diets
(Figure 2B), again indicating more significant correlations in
the diet consistency with the larger measurement range.

Species comparison of external
abrasive diets (dataset D)

When comparing two data subsets of animals fed identical
pelleted diets with added abrasives (i.e., quartz) across all tooth
positions, the measurement range for DMT in sheep was higher
(0.93 ± 0.16) than in guinea pigs (0.47 ± 0.29; Figure 3A). But
this did not translate into a more robust correlation pattern,
with a mean absolute Spearman’s correlation coefficient of
0.35 ± 0.28 for sheep compared to 0.55 ± 0.32 for the guinea
pigs (Figures 3B–F).

Species comparison lucerne diets
(dataset E)

The normalized data range for rabbits fed a lucerne based
pelleted diet was small compared to the guinea pigs and the
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FIGURE 1

Analysis of DMT parameters for guinea pigs fed different natural (lucerne, grass, bamboo) and pelleted diets with additional external abrasives
(dataset B). The data is presented as a summary for all teeth (P4-M3, 228 scans) and separately for P4 (57 scans) and M2 (57 scans). The
normalized data range and the Spearman’s correlations coefficients are given as boxplots (A,B). The Spearman’s correlation of the DMT
parameters is also shown as a correlation matrix (C–E) and a histogram (F–H).

sheep that had received the same diet (rabbit 0.19 ± 0.18, guinea
pigs 0.49 ± 0.32, sheep 0.78 ± 0.22, Figure 4A). However,
the correlation pattern was still more robust in the rabbits and
guinea pigs (rabbits 0.56 ± 0.30, guinea pigs 0.55 ± 0.31) than
in the sheep (sheep 0.42 ± 0.27, Figures 4B–H).

Discussion

The present study confirms the well-known fact that
DMT parameters correlate among each other (Martin et al.,
2020; Ackermans et al., 2021). Due to the nature of DMT

parameters, which are applied on the same surface and are
partially calculated from, or complementary to, each other, this
finding in itself is not surprising (International Organization For
Standardization, 2012). Therefore, correlations between DMT
parameters are rarely reported and re-examined. Due to these
interdependencies and the implied redundancy of information
when reporting all parameters, some studies only report “key”
parameters. These are selected based on various criteria, e.g.,
by robust but complex statistical approaches (Calandra et al.,
2012), often justified and defined as reporting the parameters
which have the most significant and stable relations to the
anticipated functionalities (Tian et al., 2012). Other studies
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FIGURE 2

Analysis of DMT parameters for guinea pigs fed a lucerne diet either as whole plant hay or as a pelleted diet for P4 to M3 (dataset C). The data is
presented as a summary for all teeth (24 scans for natural diet, 22 scans for pelleted diet. For two animals on the pelleted diet M3 could not be
measured). The normalized data range and the Spearman’s correlation coefficients are given as boxplots (A,B). The Spearman’s correlation of
the DMT parameters is also shown as a correlation matrix (C,D) and a histogram (E,F).
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FIGURE 3

Analysis of DMT parameters for guinea pigs (96 scans) and sheep (78 scans) fed a lucerne based pelleted diet with or without external quartz
abrasives (diet groups: control, 4% fine silt, 4% coarse silt, 4% fine sand, 8% fine silt; dataset D). The normalized data range and the Spearman’s
correlation coefficients are given as boxplots (A,B). The Spearman’s correlation of the DMT parameters is also shown as a correlation matrix
(C,D) and a histogram (E,F).
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FIGURE 4

Analysis of DMT parameters for guinea pigs (22 scans), sheep (19 scans) and rabbits (6 scans) fed a lucerne based pelleted diet (without any
abrasive added; dataset E). The normalized data range and the Spearman’s correlation coefficients are given as boxplots (A,B). The Spearman’s
correlation of the DMT parameters is also shown as a correlation matrix (C–E) and a histogram (F–H).

considered most representative and independent parameters
(Martisius et al., 2018), or applied factor analysis to reduce the
large number of parameters to put them in a common score
(Stuhlträger et al., 2019) or did a review on how commonly
they have previously been reported in the DMT literature
(Winkler et al., 2020b). Louail et al. (2021) combined 25
DMT parameters into a principal component as an approach
to summarize DMT for a comparison between two chewing
phase surfaces. Another way to summarize DMT results,
“key” parameters could be defined as those that render other
parameters superfluous due to consistent correlations—ideally,

regardless of tooth position, diet, or species. However, the
present study suggest that all these factors influence how
well DMT parameters correlate with each other, or, in other
words, how inherently consistent the DMT description of
a surface is.

Methodological constraints

Constraints of our study were mainly the size differences
between the DMT scan windows, and that the sheep received
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additional lucerne hay (200 g per animal per day) to fulfill
their physiological diet requirements which might have had a
polishing effect on otherwise more consistent DMT patterns
(Ackermans et al., 2020). At present, we cannot rule out that
the observed differences between the small mammals and the
sheep were due to the larger scan windows investigated in
the latter. If there was no random component that makes
DMT wear patterns inherently inconsistent, then the size of
the window should play no role. It should also play no role
if a random component made a scale-independent, constant
contribution to DMT patterns because a larger window would,
in that scenario, just mean a larger number of both inherently
consistent and inherently inconsistent wear elements. On the
contrary, if we assume that a larger scan window increases the
chance of detecting a more extensive range of DMT signals
(Ramdarshan et al., 2017), we might expect more significant
correlations among the DMT parameters due to these larger
scan windows, not less. Future studies in guinea pigs and rabbits
could further investigate the effect of different scan windows on
DMT patterns.

The assumption that larger measurement ranges are more
likely to yield significant parameter correlations seemed to
hold within the guinea pig results. In the tooth position
comparison (Figure 1) and the diet comparison (Figure 2),
the group with the larger mean measurement range also
had the higher mean correlation coefficient. This makes the
inter-specific comparisons even more remarkable, where the
species with the largest measurement range, the sheep, had
less significant correlations between parameters (Figure 3). By
carefully selecting teeth of animal groups that differed mainly in
only one specific factor, such as tooth position (in the same set
of animals), diet type across similar-sized groups of animals, or
species across individuals that received similar diets, our analysis
provides evidence that these factors do influence the inherent
consistency of the wear pattern.

Dental microwear texture data range
across the diet groups

Based on macroscopic measurements, it is well known
that tooth wear affects individual tooth positions differently
(Clauss et al., 2007; Laws, 2008; Müller et al., 2014, 2015; Martin
et al., 2020, 2022), either due to the way the abrasives elements
are distributed during chewing, the occlusal force along the
jaw, the morphology of the occlusal surface, or the ontogenetic
difference in the time the teeth are subjected to wear due
to their eruption sequence. The same has been explored for
microscopic wear along the tooth row: no gradient could be
shown in ruminating species such as sheep (Ramdarshan et al.,
2017; Ackermans et al., 2020) and blue wildebeest (Schulz
et al., 2010), most likely due to the bidirectional chewing
process while ruminating. By contrast, a microwear gradient

could be identified using DMTA in several crocodilians and
varanid species (Bestwick et al., 2021) as well as in Grevyi
zebras [Equus grevyi, (Schulz et al., 2010), rabbits (Martin
et al., 2020) and guinea pigs (Winkler et al., 2021)]. The
biomechanical properties of all the diets used in Winkler et al.
(2021) and this study were undoubtedly very different: some
animals received natural whole plant diets containing different
amounts of phytoliths (up to 3.25% of acid detergent insoluble
ash, a proxy for silica, in dry matter of bamboo); other lucerne
based pellets with different size quartz abrasives (up to 8%
fine silt for 8sS). After feeding on a pelleted diet, several DMT
parameters in guinea pigs showed an increasing abrasive signal
along the maxillary tooth row. Here, we show that the DMT
data range across the diet groups is also higher on M2 compared
to P4 and the concomitant correlation pattern is more robust
with a higher mean correlation. The abrasive gradient seems
to be represented not only in a few selected parameters and
visual overview as seen in Winkler et al. (2021) but also in
the overall DMT signal summarized as a mean correlation
coefficient. Correlation patterns could be more efficient to
recognize tooth wear gradients and mechanical changes in
the chewing process than looking at each DMT parameter
individually. The explanation for the more pronounced patterns
in M2 compared to P4 may lie in the higher chewing forces
that apply closer to the mandibular joint (Watson et al., 2014;
Taylor et al., 2016). The M2 has a broader measurement range
(Figure 1), implying that the higher chewing forces do not only
lead to more distinct wear features but also a higher number of
very mild wear traces, possibly caused by diet components that
would not leave any trace at lower chewing forces.

We did not have enough data points to compare the gradient
of the correlation pattern for individual diet groups. Still, we
found a marked difference in correlation patterns between
the natural and the pelleted diets when comparing the DMT
across all teeth. Although consisting of the same material
(dried lucerne), the pelleted diets most likely have a harder
consistency than the whole dried plants. Additionally, whole
plant processing most likely depends more on gnawing particle
size reduction by the incisors prior to grinding by the cheek
teeth, giving the material that reaches the cheek teeth a certain
homogeneity that likely does not lead to particularly distinct
wear traces. By contrast, pellets are crushed on the cheek teeth
(Weijs and Dantuma, 1981), resulting in a large variety of wear
traces, with larger DMT measurement ranges and more DMT
correlations.

Dental microwear texture parameter
correlations between and within
different species

Comparing the correlation of DMT measured in sheep
after a 17-month feeding experiment with the results in guinea
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pigs fed the identical pelleted diets for 28–45 days, we show
a clear difference between these species. DMT data in sheep
was distributed over a more extensive data range, but DMT
parameters correlate stronger and more consistently in the
guinea pigs. The original sheep study reported solid correlations
within the functional groups for height and volume parameters
(Ackermans et al., 2021). Yet these correlations seem small
compared to the intra- and intergroup correlations seen in
guinea pigs (see Supplementary Tables 3, 4). This difference
cannot be attributed to the feeding time difference, as microwear
is thought to be an effect of a few tooth diet interactions (Teaford
and Oyen, 1989) with a turnover rate of around 2 weeks in
rats (Rattus norvegicus), for example (Winkler et al., 2020a).
To further elucidate interspecies differences and avoid bias
by looking only at highly abrasive diets, we compared sheep,
guinea pigs, and rabbits fed a low-abrasive diet consisting of
pelleted lucerne only. The normalized data range was again
greater in sheep than in guinea pigs, while the small sample
size can explain the narrow range in rabbits. Nevertheless, the
correlations were again better in the hypselodont species.

In ruminant teeth, the chewing surface is not replaced
anywhere near as expeditiously as in animals with hypselodont
cheek teeth. Under natural feeding conditions in free-ranging
animals, we expect the ruminant chewing surface to still display
wear traces of diet items ingested a long time ago (Solounias
et al., 1994; Damuth and Janis, 2014), which have not been
overwritten entirely yet. However, in the present study, this
effect was excluded due to the prolonged time the sheep
received a consistent diet. Hence, another factor than the slow
replacement of the chewing surface must be evoked to explain
our findings. We hypothesize that the main driver for the
more stable DMT correlations in guinea pigs is the supposedly
softer enamel of species with hypselodont dentition (Shakila
et al., 2015; Fischer et al., 2022). For the harder ruminant
enamel, we hypothesize that wear trace formation is subject to
a greater degree of randomness at the microscopic level due
to the many factors involved in forming DMT wear traces.
These factors include the volume of diet material between the
teeth during a chewing stroke, the exact position of the abrasive
components in the diet matrix, or the forces during a particular
chewing stroke (Kaiser et al., 2016). The less malleable the trace-
bearing surface, the more inconsistency in the recorded wear
patterns of a specific diet is the apparent consequence. Again,
this finding warns against considering tooth wear a taxon-free
signal (Fischer et al., 2022), and suggests that understanding
the formation of a single wear trace will remain a particular
challenge (Van Casteren et al., 2020).

Conclusion

In guinea pigs, we demonstrate a stable correlation pattern
of DMT parameters dependent on biomechanical properties

of the diet and tooth position. Interspecies comparisons show
that regardless of abrasive source, DMT in hypselodont species
shows a narrower data range and more robust correlation
patterns. We propose that the correlation pattern is stronger
when the abrasive wear increases on a particular tooth
position or because of a higher abrasive diet, and when
the tooth wear is measured in softer enamel. Based on the
correlations pattern shown here, key DMT parameters can
be identified in DMT datasets but require at least a diet
consistency and diet abrasiveness, and a species or taxon-
specific approach taking into consideration different chewing
mechanisms and dental anatomy.
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Microwear textures associated
with experimental near-natural
diets suggest that seeds and
hard insect body parts cause
high enamel surface complexity
in small mammals
Daniela E. Winkler 1,2,3, Marcus Clauss 4,
Mugino O. Kubo 2, Ellen Schulz-Kornas 3,5,
Thomas M. Kaiser 3, Anja Tschudin 6,
Annelies De Cuyper 7, Tai Kubo 2,8 and
Thomas Tütken 1*
1Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University,
Mainz, Germany, 2Department of Natural Environmental Studies, Graduate School of Frontier
Sciences, The University of Tokyo, Kashiwa, Chiba, Japan, 3Leibniz Institute for the Analysis
of Biodiversity Change, Zoological Museum, Hamburg, Germany, 4Clinic for Zoo Animals, Exotic
Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland, 5Department
of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany,
6Granovit Zoofeed, Granovit AG, Kaiseraugst, Switzerland, 7Department of Veterinary
and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium, 8The
University Museum, The University of Tokyo, Tokyo, Japan

In mammals, complex dental microwear textures (DMT) representing

differently sized and shaped enamel lesions overlaying each other have

traditionally been associated with the seeds and kernels in frugivorous diets,

as well as with sclerotized insect cuticles. Recently, this notion has been

challenged by field observations as well as in vitro experimental data. It

remains unclear to what extent each food item contributes to the complexity

level and is reflected by the surface texture of the respective tooth position

along the molar tooth row. To clarify the potential of seeds and other

abrasive dietary items to cause complex microwear textures, we conducted

a controlled feeding experiment with rats. Six individual rats each received

either a vegetable mix, a fruit mix, a seed mix, whole crickets, whole black

soldier fly larvae, or whole day-old-chicks. These diets were subjected to

material testing to obtain mechanical properties, such as Young’s modulus,

yield strength, and food hardness (as indicated by texture profile analysis [TPA]

tests). Seeds and crickets caused the highest surface complexity. The fruit mix,

seed mix, and crickets caused the deepest wear features. Moreover, several

diets resulted in an increasing wear gradient from the first to the second molar,

suggesting that increasing bite force along the tooth row affects dental wear

in rats on these diets. Mechanical properties of the diets showed different
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correlations with DMT obtained for the first and second molars. The first molar

wear was mostly correlated with maximum TPA hardness, while the second

molar wear was strongly correlated with maximum yield stress, mean TPA

hardness, and maximum TPA hardness. This indicates a complex relationship

between chewing mechanics, food mechanical properties, and observed

DMT. Our results show that, in rats, seeds are the main cause of complex

microwear textures but that hard insect body parts can also cause high

complexity. However, the similarity in parameter values of surface textures

resulting from seed and cricket consumption did not allow differentiation

between these two diets in our experimental approach.

KEYWORDS

hard-object feeding, mechanical properties, dental wear, material properties,
microwear

Introduction

The reconstruction of paleodiets is a central aspect of
paleoecology. Diet provides insights not only to an animal’s
ecology but also, indirectly, to aspects of its habitat and
predominant climatic conditions (e.g., closed vs. open, arid
vs. humid) (e.g., Merceron et al., 2007a,b; Rivals et al., 2008)
and on how these are linked to the evolution of different
taxa (e.g., Teaford and Ungar, 2000). Thus, methods for
paleodietary inference have always been of interest to the
scientific community, but even more so when they allowed
inferences about our ancestors and human evolution (e.g.,
Walker, 1981). However, when hominids are involved, not
only is the interest but also the potential for debate high,
as new results may challenge long-standing paradigms (Lee-
Thorp, 2011). One important question is whether seeds played
a prominent role as a key dietary component responsible for
distinct morphological adaptations like thick enamel, enlarged,
bunodont teeth, and complex microwear patterns. It applies to
primates in general and hominids in particular.

Extant primates (Kay, 1981; Dumont, 1995; Shellis et al.,
1998; Martin et al., 2003) and bats (Dumont, 1995) that
incorporate a large proportion of so-called hard objects into
their diet possess thick enamel. Hence, the presence of thick
enamel has also been interpreted as an adaptation toward
hard-object feeding in fossil species (e.g., Alba et al., 2010),
including hominids (e.g., Martin et al., 2003). The relationship
is, however, not straightforward, as thinner enamel may also
be suitable for processing hard objects, as seen, for instance, in
sea otters (Constantino et al., 2011). It seems that tooth crown
morphology, enamel distribution, and enamel microstructure
also need to be considered to predict the resistance of teeth
during hard-object feeding (Constantino et al., 2011; Ungar,
2011; Schwartz et al., 2020).

Microwear and dental microwear texture (DMT) are often-
applied “proxies” that are analyzed to infer the mechanical
properties of the foods consumed (Calandra and Merceron,
2016). By directly observing the two-dimensional (pits and
scratches) (Rivals et al., 2007; Semprebon and Rivals, 2007) or
three-dimensional (roughness, complexity, anisotropy) patterns
on enamel wear facets in extant species, inferences can be drawn
about the dietary habits of extinct species (e.g., Scott et al.,
2005; Ungar et al., 2008, 2010; DeSantis et al., 2012). One long-
standing paradigm regarding specifically primate and hominid
diets has been that hard object feeding (i.e., seeds and nuts)
results in pitted enamel surfaces (Grine and Kay, 1988) with high
complexity (Scott et al., 2005, 2012; Daegling et al., 2011).

However, there are cases when dental morphology and
observed microwear features seem to be incongruent. The
genus Paranthropus is an excellent example of how similar
morphologies may have been used in different dietary
specializations (Ungar et al., 2008; Sponheimer et al., 2022).
There is an ongoing debate whether their enlarged molars
with thick enamel caps were an adaptation for processing
bulk low-quality forage (e.g., grasses). The similarity of the
enlarged molars to extant hard object-feeders (e.g., otters,
peccary) suggests that fracture resistance while processing nuts
and seeds was the driving force behind the evolution of this
particular tooth morphology [see Sponheimer et al. (2022) for
a comprehensive review].

Both eastern (Paranthropus boisei) and southern
(Paranthropus robustus) members of the genus Paranthropus
possessed enlarged, bunodont molars with thick enamel caps,
yet their reconstructed diet differs drastically. Dental micrwoear
texture analysis (DMTA) (Ungar et al., 2008; Ungar, 2012)
and isotope evidence (van der Merwe et al., 2008) suggest that
P. boisei was primarily feeding on C4/CAM plants (and/or
meat of animals that consumed C4 grasses), which is considered
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tough but not hard food—an interpretation not easily reconciled
with their thick enamel cusps (Sponheimer et al., 2022). By
contrast, P. robustus is reconstructed as a hard-object feeder
(Constantino et al., 2018), based on microwear and DMTA
that reveal high complexity but low anisotropy values, both
typically associated with hard-object feeding (Scott et al., 2005;
Ungar et al., 2008; Ungar and Berger, 2018). Until recently, the
diet of P. robustus was less subject to debate, as most studies
(microwear, DMTA, tooth macrowear) suggested hard objects
as an important dietary component. When talking about hard
objects in an herbivorous diet, we usually imply seeds and nuts
(Daegling et al., 2011; Ungar and Sponheimer, 2011).

Recently, this notion has been challenged by an
experimental in vitro study by van Casteren et al. (2020).
In vitro, they brought endocarps into contact with isolated
human teeth and found that the endocarp per se was not able
to cause deep lesions but only rubbing (plastic deformation)
of the enamel. Thus, they concluded that seeds could not be
the source of the high complexity in surface textures that were
conventionally associated with hard-object feeding. Moreover,
they suggested that this would bring seeds back on the table as
a possible diet for Paranthropus boisei, as the lack of complexity
in microwear textures would no longer be indicative of an
absence of seeds in the diet. This is not the first debate that has
arisen in the dental wear community. Similarly, the discussion
of whether phytoliths (amorphous silica bodies inside the plant
tissue) or external grit and mineral dust are more responsible
for abrasive wear has been a long one as controlled feeding
experiments provided abundant evidence for the importance
of both as dietary abrasives (Merceron et al., 2016; Winkler
et al., 2019a, 2020a; Schulz-Kornas et al., 2020a). Similarly,
controlled feeding experiments demonstrated that hard-object
(nut) feeding results in new dental microwear features after
only one feeding bout in capuchin monkeys (Teaford et al.,
2020), and the inclusion of seeds or nuts into otherwise identical
diets results in distinct DMT in pigs (Louail et al., 2021), but
without resolving whether high complexity is linked to seed
consumption.

In the present study, we conducted a feeding experiment
with rats to better determine which naturally ingested animal
and plant diets can produce high complexity (in absence of
external abrasives). We chose rats because they are omnivorous
and can deal with various diets. Rat molar teeth have
served as models for human molars in numerous studies,
although evident differences in masticatory behavior and dental
morphology are acknowledged (Ohba, 1974; Nishijima et al.,
2007, 2009; Dammaschke, 2010). Rats cannot serve as a
model organism for replication of the Paranthropus masticatory
behavior. What rats can do, however, is to show what kind of
diets do result in more complex microwear textures that are
traditionally associated with herbivorous hard-object feeding.

Diets of omnivores are naturally diverse and complex
in composition and are thus likely diverse in mechanical

properties, and we did not aim at mimicking the natural diet of
either rats or primates. Rather, we aimed to design experimental
diets that resemble a specialized feeding type. Thus, we used
several herbivore and faunivore diets with different components
that remain constant over the duration of the experiment: a
vegetable mix, a fruit mix (whole fruits with seeds), a seed
mix (legume, C3 and C4 grass, and sunflower seeds), whole
house crickets (hereafter: crickets), whole black soldier fly
larvae (hereafter: BSFL) and whole day-old chicks (hereafter:
daychicks). We subjected these diets to tests of mechanical
properties that can be obtained through compression tests to
relate them to the observed DMT. The mechanical properties
we focused on were as follows: Young’s modulus (E), yield
stress, and texture profile analysis (TPA) hardness, because
they are well-represented in biomechanical anthropological
studies (Young’s modulus, yield stress) (e.g., Lucas et al., 2009;
Thompson et al., 2014; Berthaume, 2016) or food texture
studies (TPA hardness) (e.g., Nishinari et al., 2019). In addition,
they can be obtained with a relatively simple analytical setup.
We note that this approach is simplified and does not cover
other commonly used measures of mechanical properties (e.g.,
obtained through wedge or scissor tests) or potential cuticle
hardness in insects (Evans and Sanson, 2005) and have discussed
the benefits and limitations.

In a previous study on guinea pigs, we found that, for
hard and brittle, pelleted diets, a DMTA gradient indicating
increasing wear from front to rear along the molar tooth row
could be observed (Winkler et al., 2021), while natural plant
diets displayed no such gradient or even showed an opposite
trend of decreasing wear from the fourth premolar toward the
third molar. As the rats in the present study were subjected to
diets of very different mechanical properties, we were interested
to see if they would also show tooth position-specific differences
that reflected specific mastication behavior on different diets.
We thus compared DMTA not only between diet groups but
also between the first and second upper molars within each diet
group.

Materials and methods

The feeding experiment was approved by the Swiss
Cantonal Animal Care and Use Committee Zurich (animal
experiment license No. ZH135/16) and was conducted during
February/March 2018 at the Vetsuisse Faculty, University of
Zurich. All animals in this experiment were female adult
WISTAR (RjHan:WI) rats (Rattus norvegicus forma domestica;
n = 36; initial body mass = 216.5 ± 16.5 g; initial age 12–
14 weeks). Rats were kept in groups of 3 in indoor stables
(0.58 m2 each), each equipped with one or two large food
dishes containing their assigned experimental diet and two
nipple drinkers of tap water. Stables were enriched with dust-
free softwood granulate, a shelter, a climbing frame, two tubes,
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and a running plate (Frei et al., 2021). Two groups (i.e., 6 animals
in total) received the same diet for 37 consecutive days. Initially,
the breeder diet was provided in addition to the experimental
diet and phased out until the 5th day of the experiment.
Following the conclusion of the experiment, animals were
euthanized with carbon dioxide and enzymatic maceration of
the skulls was conducted at LIB Hamburg [former Center of
Natural History (CeNak) of the University of Hamburg]. For
the vegetable and fruit groups, one specimen each lost its
label during maceration and could not be assigned without
uncertainty to the correct diet group. Thus, the groups of
vegetable and fruit eaters are only comprised of five individuals
each.

Experimental diets

The six experimental diets consisted of a vegetable mix, a
fruit mix, a seed mix, crickets, black soldier fly larvae, and day-
old chicks. Weight percentages of each main dietary component
are given in Table 1. Diets were designed to be isocaloric and
to contain all nutrients to sustain healthy growth in a 250 g
rat. Rats received their designated diets one time per day in the
morning. Each diet was supplemented by a specifically balanced
supplement powder that was admixed to a quark (a type of dairy
product, also known as curd or curd cheese) or a quark and
sunflower oil base (Table 1), which were chosen as additional
protein and fat supply that could not be chewed but had to be
lapped up by the animals. The composition of each supplement
powder is given in the Supplementary Table 1.

Mechanical properties testing and
limitations

Several diets included a mixture of food items, with likely
different mechanical properties. Thus, rats could theoretically
choose foods that they preferred over foods they disliked.
Such behavior was observed in the group receiving a vegetable
mix, where several rats would avoid eating root celery (pers.
observation DEW). The groups receiving crickets and black
soldier fly larvae had no such choice, except for avoiding eating
body parts of the crickets (e.g., legs). Similarly, the daychick
group could selectively feed on certain parts of the whole
daychicks, but only left the beak and parts of the integument
with feathers (pers. observation DEW). In the groups receiving
fruit mixture and seed mixture, no preferences were observed,
as food was consumed completely. However, we cannot rule out
that individual rats had specific preferences and avoided specific
items, while other rats consumed them. Therefore, we expect
more variability of DMT parameters in groups that received a
mixture of food items (vegetables, fruits, and seeds) as compared
to more homogenous diets (crickets, BSFL, and daychicks).

Although the behavior and individual preferences of the
rats could likely affect the items they consumed (and thus
the tooth wear they developed), we conducted compression
tests to derive quantitative mechanical properties of the items.
Through the compression tests, we obtained stress-strain curves
from which representative mechanical properties, i.e., Young’s
modulus, yield stress, and TPA hardness, were calculated. Due
to limitations in the preparation of analyzed samples, these three
mechanical properties could not be obtained simultaneously for
all items but had to be derived from linear regressions with other
highly correlated mechanical properties (see Statistics section).

For obtaining Young’s modulus and yield stress, samples of
fruit and vegetables were cut into rectangular, circular, or cubic
pieces; seeds were tested as whole grains and insects as whole
specimens. In crickets, we additionally tested the head capsule
and the gizzard separately. For both, an approximately circular
shape was assumed. The surface area of whole insects and grains
was approximated from a rectangular shape. For daychicks, it
was not possible to obtain circular or rectangular pieces, thus
we only subjected them to TPA hardness tests (see below). The
vegetable diet included two leafy greens (parsley, spinach) which
are not suitable for compression tests. We did not assess the
mechanical properties of these two items. Similarly, for the fruit
mix, we restricted testing of figs to the isolated fig seeds, as the
available figs were too soft to be cut into circular or rectangular
pieces. Fig seeds are expected to be the hardest component of
the fruit mix diet and, consequently, to contribute more to the
observed wear differences than the soft parts of the figs.

Testing was conducted over several days of one week, in the
same laboratory environment, to reduce variations in humidity
and temperature. Each sample was placed on a circular platform
of 60 mm diameter under a force gauge and compressed in a
cutoff setup until breaking or until the force gauge registered an
overload (due to contact with the platform). We used circular
solid testers of different diameters (60 mm, 15 mm, 3 mm) but
ensured that the tester was larger than the sample for obtaining
Young’s modulus and yield stress so that compression would be
evenly exerted over the complete surface area of the sample.
The movement speed of the circular solid tester was set to
600 mm/min and the test speed (from contact point on) to
120 mm/min. We used two different force gauges, HF-100 and
HF-10 (JISC, Japan Instrumental Systems Inc., Nara, Japan),
attached to an automated servo stand (JSV-H1000, JISC, Japan
Instrumental Systems Inc., Nara, Japan). The HF-100 has a
maximum load capacity of 1000 N and a resolution of 0.1 N,
while the HF-10 has a maximum load capacity of 100 N and a
resolution of 0.01 N. Thus, for soft, easily deformable samples,
the force gauge HF-10 with a higher precision was employed.
For fruit and vegetables that were fed including the skin, we
conducted multiple compression tests both from the skin side
or from the side without skin. A representative stress-strain
diagram and the results of mechanical properties testing are
shown in Figure 1. Detailed results of mechanical properties
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(Young’s modulus, yield stress, false yield stress, TPA hardness)
are illustrated in Supplementary Tables 2–4. We note that
values obtained for Young’s modulus are negative, because we
used a compression setup. However, the sign is usually omitted
in the literature, thus when we are referring to larger Young’s
modulus, we would refer to a more negative value. To avoid
confusion, we presented all values as positive numbers.

Additionally, the food texture tester TEX-100 (JISC, Japan
Instrumental Systems Inc., Nara, Japan) was used to obtain
the standardized parameter TPA hardness. In food science,
TPA hardness is measured by compressing a sample two times
for the same compression depth or ratio, with the peak force
occurring during the first compression divided by the tester
area being the hardness (Bourne, 2002; Nishinari et al., 2019).
An example curve is represented in Supplementary Figure 1.
All raw measurement results are given in Supplementary
Table 4. We used a 3-mm circular solid tester (area = 7.069
mm2), at a test movement speed of 120 mm/min, and an
indentation depth of 2 mm. We chose this small 3-mm tester
following the advice from Nishinari et al. (2019) that the tester
should be less than one-third of the diameter of the sample.
The hold time between the first and second indentations was
set to 3 s. This hardness measure is different from (micro)
indentation hardness measures such as Vickers or Knoop
hardness. As TPA hardness should only be measured on food
items with a certain elasticity so that repeated compression
would be possible, we did not test individual items from
the seed mix, the cricket head capsules, and the cricket
gizzards using this procedure, as they fractured during the first
indentation.

Dental microwear texture
measurements

Measurements were conducted at the LIB Hamburg [former
Center of Natural History (CeNak) of the University of
Hamburg], Germany, on a µsurf Custom (NanoFocus AG,
Oberhausen, Germany) confocal disc-scanning microscope,
equipped with a blue LED (470 nm) and high-speed progressive-
scan digital camera (984 × 984 pixel), a 100x long working-
distance objective (resolution in x, y = 0.16 µm, step size in
z = 0.06 µm), following the published routine for DMT data
(Schulz et al., 2010, 2013) with adjustment for rats (Winkler
et al., 2016) and guinea pigs (Winkler et al., 2019a, 2020a,
2021). Measurements were performed on original tooth surfaces
of the first and second upper molars on central anterior
enamel bands. Depending on wear stage and preservation, up
to four (minimum 2) non-overlapping scans were taken from
each specimen. Forty-four DMT parameters were calculated
after filtering surfaces [leveling, spatial filtering (denoising
median 5 × 5 filter size and Gaussian 3 × 3 filter size

with default cut-offs), filling of non-measured points, noise-
reduction by thresholding (upper and lower 0.5%), removal of
outliers (maximum slope of 85%), 2nd order form removal] and
cropping them to 60 × 60 µm in MountainsMap v.9.0.9878.
From the two to four scans per specimen, median values
were calculated for each parameter to adequately represent
the surface texture of the enamel and avoid bias by picking
particularly worn or unworn locations. Parameter results for
each specimen are given in Supplementary Table 5.

Statistics

Descriptive and test statistics were computed in JMP Pro
v. 16.0. A non-parametric, heteroscedastic pairwise comparison
test (Wilcoxon test) was performed for DMTA of all dietary
pairs. The application of multiple comparison tests increases the
probability of Type I error; however, conservative corrections
for multiple testing would inflate the probability of Type II error
in small samples such as ours. We hence applied the Benjamini–
Hochberg procedure with an accepted false discovery rate
(FDR) of 0.25. We therefore note that the results of diet
group comparisons presented here were prone to include false
positives but accepted this on the basis of it being an exploratory
study and including both raw p-values and critical p-values
using an FDR of 0.25 into the supplements (Supplementary
Table 10).

Mechanical properties parameters (Young’s modulus, yield
stress, TPA hardness) were repeatedly measured for multiple
individual samples (4–20 repetitions) and then averaged
for each dietary item. Individual measurements are given
in Supplementary Tables 2–4. Some diets were composed
of several different items (vegetable mix, fruit mix, seed
mix), while others were composed of one item only (BSFL,
crickets, and daychicks). To generate representative mechanical
properties from each diet, we calculated two values for each
mechanical properties parameter: a weighted mean using
relative proportions of diet items and a maximum using the
largest value obtained for an individual diet component. For
crickets, we tested whole specimens, head capsules, and gizzards
and calculated a weighted mean based on weight percentages
(Supplementary Tables 6, 7). For the diets BSFL and daychicks,
the weighted mean and maximum value were identical.

As we could not obtain either Young’s modulus and yield
stress for daychicks or TPA hardness for the seed mix, cricket
heads, and cricket gizzards, we used linear regressions to
establish the nature of the relationships between measurable
mechanical properties and used these regressions to infer the
parameter values that we were unable to measure.

A fourth parameter, false yield strength, was employed to
estimate yield stress for daychicks. We calculated false yield
strength during compression of irregularly shaped objects as
maximum force recorded divided by the area of the circular
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TABLE 1 Composition of experimental diets (weight %) and supplementation in % fresh weight.

Diet name Composition Supplementation

Vegetable mix Celery root
(32.2%)

Carrot
(27.1%)

Stalk celery
(10.9%)

Kohlrabi
(10.7%)

Parsley
(10.1%)

Spinach
(9.00%)

Quark
(7.3%)

Sunflower
oil (1.2%)

Suppl.
powder
(0.8%)

Fruit mix Figs
(37.20%)

Banana
(22.0%)

Papaya
(17.0%)

Apple
(12.7%)

Mango
(11.2%)

Quark
(20.1%)

Sunflower
oil (1.1%)

Suppl.
powder
(1.1%)

Seed mix Wheat
(25%)

Barley
(20%)

Dried peas
(20%)

Oats (15%) Corn (10%) Sunflower
kernels
(10%)

Quark
(22.2%)

Suppl. powder (7.7%)

Crickets Whole frozen crickets Quark
(9.8%)

Suppl. powder (3.4%)

Black soldier fly larva Whole frozen black soldier fly larvae Quark
(12.1%)

Suppl. powder (4.3%)

Daychicks Whole frozen day-old chicks Quark
(8.3%)

Suppl. powder (3.0%)

FIGURE 1

Mechanical properties of components of near natural diets. (A) Exemplary stress-strain curve obtained for a carrot cube. (B) Young’s modulus,
(C) TPA hardness, and (D) Yield stress obtained for the different diet components. TPA hardness is commonly reported unitless but would have
the unit N/mm2. Colors highlight the different experimental diets to which the individual items belong to. Green = vegetable mix, purple = fruit
mix, yellow = seed mix, brown = crickets (including whole crickets, isolated head capsules, and gizzards), orange = black soldier fly larvae
(BSFL), red = daychicks.
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solid tester (maxF/testerArea). The false yield was found to be
significantly correlated with yield stress (R2 = 0.986, p < 0.0001)
for the dietary items in which we could obtain both. Yield stress
for daychicks was inferred from the regression equation:

Yield = 0.000314 + 5.26× falseYield (n = 18, r2
= 0.683)

Young’s modulus was also found to be significantly
correlated with yield stress (R2 = 0.967, p < 0.0001). Young’s
modulus for daychicks was obtained from the regression
equation:

Young’s modulus = 0.004499− 10.22× Yield (n = 18, r2
= 0.774)

TPA hardness was significantly correlated with yield stress
(R2 = 0.966, p < 0.0001), and TPA hardness values for seeds,
cricket heads, and cricket gizzards were obtained from the
equation:

TPA hardness = 0.1966 + 1565.00× Yield (n = 11, r2
= 0.729)

It is important to note that, in the case of seeds and
cricket gizzards, the extrapolated values were mostly outside
of the range of the other measurements used to generate the
regression equation and hence were particularly susceptible to
error. Therefore, the following evaluation of these data was done
using non-parametric tests only.

As mechanical properties parameters could not be
normalized by common transformations, and DMTA
parameters are also not normally distributed, we subsequently
conducted Spearman correlations between all DMTA and
mechanical properties parameters (Supplementary Tables 8, 9).

Results

Dietary differences

The vegetable mix, BSFL, and daychick diets caused visibly
lower surface roughness and smaller wear features on the M1
(Figure 2). The groups receiving daychicks and BSFL were
best distinguished from the other diet groups when the M1 is
considered (Table 2 and Figure 3; Supplementary Figure 2).
For the M2, the daychick diet was less distinct from the other
diet groups. Seeds and crickets were not significantly different
from each other for any parameter on both M1 and M2. Seeds
and crickets showed the highest complexity values, but these
were not significantly larger compared to the other diet groups
due to the large variance observed. A detailed description of

DMTA parameter results for each diet group is given in the
supplementary text in the Supplementary material. There was
no trend of an increased variability in DMTA parameters for the
more heterogenous diets.

Tooth position-specific differences

For all diet groups, except fruit and BSFL, more than one
DMTA parameter was significantly different between M1 and
M2 within the same diet (Table 2). The differences were mostly
due to height and volume parameters, with parameter values
consistently increasing from M1 to M2.

Diet mechanical properties

Young’s modulus was largest for dried peas and fig seeds
(Figure 1B). Overall, the items from the seed mix had larger
Young’s modulus than other diets, resulting in the largest mean
per diet. Insects (crickets and BSFL) and fruit mix showed
the lowest mean Young’s modulus, followed by vegetables and
daychicks.

Using regression equations, it was inferred that TPA
hardness was largest in all items from the seed mix
except sunflower seeds and cricket gizzards (Figure 1C;
Supplementary Table 4). The largest measured TPA hardness
values were found for several vegetables (root celery, carrot,
kohlrabi), followed by stalk celery and apple. Some individual
samples of daychick body parts had higher values that were
obtained from whole specimens, while on average, fruits, insects,
and daychicks showed the lowest TPA hardness values.

The highest yield stress was found for items of the seed
mix, with dried peas exceeding all other seeds, and cricket
gizzards (Figure 1D; Supplementary Table 3). Sunflower seeds
had much lower yield stress values, comparable to vegetables
and daychicks. Fruit and whole insects (crickets and BSFL) had
the lowest yield stress, while intermediate values were inferred
for daychicks.

Correlations of mechanical properties
and dental microwear textures analysis

For the M1, no significant correlation was found between
any DMTA and mean mechanical properties parameter
(Supplementary Table 8). When considering maximum
values for each mechanical property, several significant
correlations were found with DMTA parameters. Maximum
Young’s modulus was significantly correlated with the volume
parameters Vv (void volume) and Vvc (void volume of the
core) (Figure 4; Supplementary Table 8). Maximum TPA
hardness was significantly correlated with 16 DMTA parameters
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FIGURE 2

Exemplary 3D photosimulations of representative enamel surface scans for each diet group (from left to right: vegetable mix, fruit mix, seed mix,
crickets, BSFL, black soldier fly larvae, and daychicks). Scans of the first (M1) and second upper molars (M2) belong to the same individual and
are displayed on the same scale. Each surface scan is 60 × 60 µm.

TABLE 2 DMTA parameters displaying significant differences after the application of the Benjamini–Hochberg procedure between diet groups for
the same tooth position (white cells) and between tooth positions within the same diet group (gray shaded cells).

M2

Vegetable
mix

Fruit mix Seed mix Crickets BSFL Daychicks

M1 Vegetable mix matf, metf, S5p,
S5v, S10z, Sa,
Sdq, Sdr, Sk,

Smc, Sp, Spc, Sq,
Sz, Vmc, Vvc

metf, Sa, Vmc matf, Sku, Ssk matf, metf, S5v,
Sku, Smc

metf, S5p, S5v,
S10z, Sa, Sdq,

Sdr, Sk, Sku, Sp,
Sq, Spc, Ssk,

Vmc, Vvc

Sk, Sku, Smc,
Vmc, Vvc

Fruit mix matf, metf, Sa,
Sdq, Sdr

matf, metf, S5v,
Sdq

IsT, matf,
new_epLsar,
Sdq, Sdr, Spc

IsT, S5v, Spc

Seed mix matf, S5v, Sdq,
Sdr, Ssk

Ssk matf, S5v, Sa, Sk,
Smc, Spc, Sq,

Vmc, Vvc

matf, metf, S5v,
S10z,Sa, Sdq,

Sdr, Sp, Spc,Sq,
Vmc

matf, Sku

Crickets matf matf, metf,
new_epLsar,

S5p, S5v, S10z,
Sa, Sdc, Sdq, Sdr,
Sk, Smc, Sp, Spc,

Sq, Vmc, Vvc

metf, S5p, S5v,
S10z, Sa, Sdc,

Sdq, Sdr, Sp, Spc

matf

BSFL Sku, Ssk matf, S5p, S5v,
S10z, Sa, Sk,

Smc, Sp, Sq, Ssk,
Vmc, Vvc

matf, S5v, S10z,
Sa, Sdc, Smc, Sq,

Vmc

Vmc matf, Spc

Daychicks Sku, Smc, Ssk,
Vmc, Vvc

matf, metf, S5p,
S10z, Sa, Sdc,

Sdq, Sdr, Sk, Sku,
Smc, Sq, Ssk,
Vmc, Vvc

matf, metf, S5v,
S10z, Sa, Sdc, Sk,

Smc, Sq, Vmc,
Vvc

matf, Sa, Sdc,
Sdq, Sk, Sq,
Vmc, Vvc

matf, metf, S5p,
S5v, S10z, Sa,

Sdc, Sdq, Sdr,Sk,
Smc, Sp, Spc, Sq,

Vmc. Vvc

Due to using an FDR of 0.25, several p-values > 0.05 were judged significant. Significance levels of raw p-values were as follows: >0.05 = gray, 0.05 = regular, 0.01 = italics, 0.001 = bold.
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FIGURE 3

Boxplots depicting representative (A) complexity (Asfc), (B) density (medf), (C) and height (metf), (D) (Sa) parameters for the first (M1) and second
upper molars (M2) of all dietary groups. Significant differences between tooth positions within one dietary group are displayed above, while
differences between dietary groups for the same tooth position are displayed below the boxplots. Significance levels: ∗0.05, ∗∗0.01, from the
Wilcoxon test for multiple comparisons without correction. BSFL, black soldier fly larvae.

representing height, complexity, volume, and area parameters
(Figure 4; Supplementary Table 8). There were no significant
correlations between any DMTA parameter for M1 and yield
stress.

For the M2, mean TPA hardness and maximum TPA
hardness showed multiple significant correlations (17 and
20, respectively) with several height, volume, slope, and
complexity parameters (Figure 5; Supplementary Table 9).
Mean yield stress showed no significant correlations, while for
maximum yield stress, 21 DMTA parameters showed significant
correlations (Figure 5; Supplementary Table 9). There were no
significant correlations of DMTA parameters with mean Young’s
modulus, and only one parameter (IsT − texture isotropy)
was significantly correlated with maximum Young’s modulus
(Supplementary Table 8).

Discussion

Limitations of the experimental setup

We have to note that several circumstances of the
experimental setup likely introduced a source of variability
and uncertainty. Therefore, all results obtained have to be
interpreted with caution.

Firstly, rats received diets while housed in groups of 3 in
bulk one time per day. Hence, for the mixed diets (vegetable
mix, fruit mix, seed mix), individual rats were free to choose
among the diet items offered. We could not control if each
individual consumed equal amounts of each dietary component,
as either dietary preferences or dominance of other individuals
may have affected food choice. This is likely a source of the
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FIGURE 4

Correlations of selected DMTA parameters were obtained from the first upper molar (M1) of all rat diet groups with Young’s modulus and TPA
hardness. The upper row shows a correlation with the maximum Young’s modulus and maximum TPA hardness per diet, and the lower row
shows a correlation with the mean Young’s modulus and the mean TPA Hardness per diet. Note that correlations are stronger and significant for
maximum mechanical properties (upper row) only. Young’s modulus is shown log-transformed for better visualization. BSFL, black soldier fly
larvae.

FIGURE 5

Correlations of selected DMTA parameters were obtained from the second upper molar (M2) of all rat diet groups for maximum yield stress and
maximum TPA hardness. The upper row shows a correlation with maximum yield stress per diet, and the lower row shows a correlation with
maximum TPA hardness per diet. BSFL, black soldier fly larvae.
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observed variability in the DMTA data and may have influenced
clearer separation between diet groups. We thus suggest that
future feeding experiments should focus on one food item, or
more homogenous food mixes, instead of trying to create a more
natural diet mix.

Second, the components of the vegetable and fruit mix were
purchased on a day-to-day basis, over the course of 37 days,
to provide fresh food every day. The source of vegetables and
fruits may have differed, as well as their degree of ripeness,
water content, or other parameters, which might have added
variability to the mechanical properties of these diets and could
have influenced dental wear. The measurement of mechanical
properties took place after the feeding experiment, hence—
except for the seed mix—not on the same batches of food
that the rats received. The seed mix was stored in a cool, dry
place after the experiment and used for mechanical properties
testing. Still, the storage time could potentially have altered the
water content of the kernels to some degree (even though it
was initially low). We purchased the same dietary items the
rats received and treated them the same way (buying frozen
crickets, black soldier fly larvae, and daychicks and defrosting
them before testing). Still, the mechanical properties obtained
may slightly differ from the mechanical properties of the original
experimental diets but should nevertheless provide a good
approximation of these food items.

Third, we excluded parsley and spinach from the mechanical
properties testing, because their geometric shape does not allow
for compression tests. Additionally, for daychicks and the seed
mix, not all mechanical property parameters could be obtained
but had to be inferred from linear regression equations.

Finally, choosing parameters for mechanical properties
testing is similar to opening Pandora’s box, as numerous
methods for items with different structural properties
(homogenous vs. inhomogeneous, brittle, tough, elastic,
etc.) and an equally large number of opinions on which are
the best practices exist [see Berthaume (2016) for a review].
The selection of testing methods and parameters presented in
our study followed two principles: simplicity and feasibility. By
only conducting compression tests, we limited our obtained
parameters to Young’s modulus and yield stress, hereby
omitting other often measured parameters like energy release
rate or toughness (e.g., Strait and Vincent, 1998). Our setup
required only a force gauge, stiff testers, and measurement of
the sample area and can hence be easily repeated. Regarding
hardness testing, several methods are available but require
sophisticated equipment such as diamond indenters and thin
sections of the material (Vickers and Knoop hardness). Still,
it has been questioned whether the observed hardness is an
intrinsic mechanical property of the material or a product of
the local testing environment, as argued by Berthaume (2016).
We did not wish to engage in this discussion but did hope
to simply find a hardness measure that was obtainable with
our setup. Therefore, we chose TPA hardness. Parameters

from food texture studies (TPA) have been subjected to
criticism because calculations of these parameters are often
not consistently applied by researchers or details of the testing
setup are insufficiently reported (e.g., size of the tester, test
speed). However, TPA hardness has been evaluated as “probably
the most reliable TPA parameter” by Nishinari et al. (2019).
The general pitfall is that TPA intends to mimic human
masticatory behavior using an instrument and compress
(indenting) a food sample two times and that this measure
only works for elastic foods. For hard and brittle items, such
as the seeds in our experiment, TPA hardness thus had to be
inferred, which introduced further uncertainty. This setup is an
oversimplification of the actual masticatory process. In the case
of our study, we did not intend to mimic masticatory behavior
of the rats but to gain quantitative results related to the diet’s
intrinsic physical properties. The interaction between tooth
morphology, bite force, mastication behavior (movement),
lubrication of the food through saliva, and many more aspects
cannot be accounted for in our approach but will all affect
the observed tooth (micro)wear (Schulz-Kornas et al., 2020b).
Therefore, our characterization of diet mechanical properties is
not extensive but can still highlight several correlations between
observed DMTs and diet mechanical properties.

Tooth position-specific dental
microwear texture

The controlled rat feeding experiment of various near-
natural diets revealed several systematic dental wear patterns.
Comparable to guinea pigs feeding on pelleted diets (Winkler
et al., 2021), overall surface roughness, including depth of
wear features, increased from M1 to M2 in rats (Figure 3;
Supplementary Figure 2). The only exception is the fruit
diet, which showed similar roughness values on M1 and M2.
The most pronounced increase was seen for vegetables, seeds,
crickets, and daychicks. Due to the variable magnitude of
increase in surface roughness from M1 to M2, differences
observed between the diet groups were more pronounced
when only considering the M1 and weaker when considering
only the M2. Overall, the number of significantly different
DMTA parameters between tooth positions on the same
diet is even larger than between diet groups for the same
tooth position (Table 2). This finding highlights that DMTA
is likely tooth-position-specific—an observation made before
for ungulates (Schulz et al., 2010) and macropods (Arman
et al., 2019)—and cautions against lumping tooth positions
together to increase sample sizes (for example in fossil samples).
It might be that, in small mammals, DMTA conducted
on anterior cheek tooth positions better reflects dietary
differences than when using posterior teeth. This observation
is in agreement with Winkler et al. (2021), who found that
the fourth premolar showed the best dietary discrimination
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in guinea pigs receiving natural plant diets of different
abrasiveness.

When focusing on the M1, the six experimental diets can
be roughly separated into three groups according to their
resulting DMT patterns. However, differentiation between diets
within these groups is difficult. Group one includes fruit mix,
seed mix, and crickets, which are showing the highest surface
complexity (Sdr, Asfc) and largest height differences (e.g., depth
of furrows, peak height, mean surface roughness). These are the
groups containing diet components that are often considered
hard objects. Group two is composed of BSFL and daychicks,
which had the lowest complexity, height, and volume parameter
values. Black soldier fly larvae can be considered, in contrast
to crickets, as soft-bodied insects, as they are not covered by a
hard, sclerotized cuticle (Chapman, 2013a). Strait and Vincent
(1998) tested the toughness of insects through scissor tests. They
found beetles to be tough and brittle, while caterpillars were soft
and compliant. We would suggest that crickets might be more
comparable to beetles, while BSFL bear more resemblance to
caterpillars (Evans and Sanson, 2005).

Finally, the vegetable mix diet would fall into group
three, which is characterized by intermediate height and
volume parameter values, but has distinctly higher anisotropy
(new epLsar, Sfrax epLsar) and mean density of furrows. In
herbivorous ungulates, high anisotropy values are characteristic
of grazing species (Ungar et al., 2007), while in guinea pigs,
the differences between browse and grass diets were less
pronounced (Winkler et al., 2021). For rats, it seems that
mastication of the vegetables required a different mastication
mode as compared to the other diets. We believe that the more
fibrous vegetables may require more frequent shearing motions,
while diets such as fruit, seeds, and insects may require crushing
movements. The stronger alignment (anisotropy) and higher
density of wear features would hence result from such a repeated
shearing motion.

What causes high complexity?

Patterns of complex surfaces have been associated with
hard-object feeding not only in primates (Scott et al., 2005,
2012; Ungar et al., 2008, 2010; Ungar and Berger, 2018)
and carnivorous mammals (DeSantis et al., 2012), but also
in lepidosaurs (Winkler et al., 2019b), archosaurs (Bestwick
et al., 2019), and fish (Purnell and Darras, 2015). Rats are no
exception, as they also display the highest surface complexity
(both by Asfc and Sdr) on the hardest diet (seeds) after feeding
on their designated diet for 37 consecutive days. Yet, how
complexity develops over longer feeding periods cannot be
predicted. van Casteren et al. (2020) argued that “occasional
contacts between seeds and irregular spicules of enamel could
result in the latter being fractured, but over time this process
should result in a decrease, rather than increase, in texture

complexity.” We cannot rule out that our experimental animals
would have displayed a change in complexity values over time.
However, from the current viewpoint of DMTA, it is likely
that texture turnover in (small) mammals is fast (Winkler
et al., 2020b) and continuously feeding on the same diet will
produce similar DMTA over and over again, thus resulting in
a short-term dietary proxy that reflects the last few weeks of
an individual’s diet. We therefore conclude that the connection
between high surface complexity and hard-object feeding is
independent of body size, chewing mode, and taxonomic affinity
[a similar conclusion was reached by Purnell and Darras (2015)
for fishes], and thus a universal wear pattern following the oral
processing of stress-limited foodstuffs.

However, we note that our hardness measure yielded low
values for crickets, which resulted in the second highest surface
complexity observed in this experiment. Overall, the mechanical
properties of the two insect diets (crickets, BSFL) were found
to be similar when testing whole insects, while the DMT
pattern diverged completely. Cricket feeding resulted in high
complexity, surface roughness, and deep and voluminous wear
features, while BSFL feeding resulted in the lowest complexity,
surface roughness, and lowest depth of wear features observed
among all diet groups. For insectivorous bats, Purnell et al.
(2013) found that species consuming “harder” prey (e.g.,
coleoptera) showed larger volume parameter values than species
consuming “softer” prey, which is consistent with the disparity
in our results observed between supposedly harder crickets
and softer BSFL. It is therefore evident that our approach
toward measuring mechanical properties of foodstuffs is not
sufficient to describe the essential differences between these
two insect diets. When testing individual cricket body parts,
the head capsule displayed much higher TPA hardness than
the abdomen, and a part of the digestive system (the gizzard)
showed mechanical properties comparable to seeds (see raw
data, Supplementary Tables 2–4). The gizzard is lined with
strong cuticular plates or “teeth” in house crickets and other
Orthoptera (Kirby et al., 1982 and references within, Elzinga,
1996; Chapman, 2013b). When considering maximum yield
stress and maximum TPA hardness values for crickets (that
were derived from regression equations for the gizzards), we
found strong correlations with a variety of DMTA parameters.
Although the hardness data were inferred from the regression
equation, and the extrapolated values were mostly outside of
the range of the other measurements (see Statistics section),
these results suggest that crickets are much more heterogenous
as compared to BSFL, and likely, their sclerotized body parts
greatly exceed less sclerotized body parts (like the abdomen)
in hardness. Also, Young’s modulus of individual body parts
has been found to differ greatly in locusts (over seven orders
of magnitude, Li et al., 2020). Such subtle differences were
not well-captured by our experimental approach but are likely
responsible for the pronounced differences in DMT observed
between crickets and BSFL.
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Dental microwear texture and
mechanical properties

Maximum values of mechanical properties have a stronger
impact on the DMTA of M1. We found maximum Young’s
modulus to be significantly correlated with 2 DMTA parameters,
while mean Young’s modulus was not significantly correlated
with any DMTA parameter (Supplementary Table 8).
For maximum TPA hardness, M1 showed 16 significant
correlations, while mean TPA hardness was not significantly
correlated with DMTA parameters at all (Supplementary
Table 8). M2 showed more significant correlations between
material properties parameters and DMTA than M1. Here,
maximum yield stress and maximum TPA hardness showed
abundant strong correlations with DMTA parameters, and
mean TPA hardness was significantly correlated with 17
DMTA parameters (Supplementary Table 9). In conclusion,
differences in (maximum and mean) Young’s modulus
between diet items did not explain differences observed
in DMTA, while maximum TPA hardness was strongly
correlated with DMTA on both M1 and M2. For the M2,
also maximum yield stress and mean TPA hardness were
equally well-correlated with DMTA parameters, which may
result from different chewing behavior when processing
harder items. If harder items would be primarily processed
using the M2, the observed wear might be more correlated
with yield stress, which determines the fracture point of the
diet item and overall hardness. Although our methodology
has several limitations, this general trend highlights that
mechanical properties and tooth position-specific wear
are interrelated.

Parameters associated with increased abrasion such as
height, volume, and complexity parameters increased from M1
to M2 on most diets. The stronger correlation of maximum
mechanical properties indicates that M1 dental microwear may
be more sensitive toward detecting inhomogeneous diets, more
singular feeding events, and thus potentially fallback feeding
events (Lambert et al., 2004). The M2, on the other hand, is
strongly affected by overall TPA hardness and maximum TPA
hardness of the diet. This may indicate that stiff, resistant food
items (commonly termed hard objects) are more frequently and
thoroughly processed using the M2 (and hence in the rear of
the dentition). This is in accordance with observations from
guinea pigs (Winkler et al., 2021), for which it was suggested
that increased bite force toward the rear of the dentition
results in increased abrasive wear when feeding on hard pellets.
Under the previously discussed limitations, our results here
need to be treated with caution, but in the context of the
increased wear on posterior teeth in guinea pigs, it is plausible
that rats also exert stronger bite forces toward the rear of
the dentition and utilize the posterior teeth to break harder
foodstuff.

Outlook and conclusion

Different foodstuffs can likely cause high complexity of
DMT; however, in our controlled feeding experiment seeds,
fruit (with seeds) and harder insect body parts resulted in
the highest recorded complexity. The findings of this study
emphasize that DMT formation in small mammals (i.e., rodents)
seems to be strongly connected to mastication behavior and
mechanics (likely bite force) and is hence significantly different
for different tooth positions. These results call for a more
thorough investigation of DMT gradients along the tooth row
in other taxa, including large mammals.

We attempted to associate quantitative food mechanical
properties with quantitative DMT. We considered this approach
relevant to better understand the interrelation between ingesta
and observed dental (micro)wear, beyond the detection of
differences between diet categories. As noted, the masticatory
system is highly complex, and accounting for all possible factors
that affect DMT formation is impossible in an experimental
setup. However, we can approach this complex system by
controlling isolated factors and quantifying them. Future
research may further elucidate how food mechanical properties
affect dental (micro)wear, but also manage to take into account
different occlusal morphologies and chewing mechanics,
including movement, speed, bite force, fluid dynamics on the
occlusal surface, and many more. At the moment, we are still
only scratching the surface of understanding dental wear.
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Sika deer (Cervus nippon) is the most abundant ruminant in the Japanese

archipelago and has been the primary hunting target, including during the

prehistoric ages. Abundant skeletal remains of sika deer have been excavated

from archeological sites of the Jomon periods (ca. 15,000–2,400 BP). We

reconstructed the feeding habits of sika deer from the Torihama Shell Midden

site in Fukui Prefecture, western Japan. The Torihama site is one of the most

well-preserved archeological sites of the Jomon period, and we investigated

materials from the layers of the Early Jomon period (ca. 6,000 BP). In

this study, we obtained three-dimensional tooth surface texture from the

lower molars of excavated deer and measured microwear texture using

international surface roughness parameters (ISO 25178-2) to infer their habitat

use. Next, we estimated the percentage of grasses in the diet by using the

reference dataset for extant sika deer with known diets. The results show

that the Torihama deer overlapped with mixed feeding and grazing sika deer

populations. Moreover, the proportion of grasses in the diet was estimated to

be 50.7% on average but showed a wide range among the Torihama deer.

This result implied that Torihama deer were mixed feeders of dicot leaves

and grasses and had a flexible diet adapted to the vegetation of its habitat.

Our results support the paleoenvironmental estimation that the Torihama

Shell Midden site contained mixed vegetation of evergreen, deciduous, and

coniferous trees around the Mikata Five Lakes in the Early Jomon period.

These findings provide insights into the highly plastic diets of the extant sika

deer in the Japanese archipelago.

KEYWORDS

Archaeology, Jomon period, Torihama Shell Midden site, Sika deer, Microwear, ISO
25178
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Introduction

Sika deer (Cervus nippon), a medium-sized species of deer
that inhabit a wide area of East Asia, from Amurland in the
north to Vietnam in the south, are distributed in the Japanese
archipelago from Hokkaido to the Kerama Islands, where there
are five subspecies (Ohtaishi, 1986; Miura, 2008). Sika deer
are thought to have migrated from the Asian continent to
the Japanese archipelago during MIS12 (approximately 430,000
years ago) (Kawamura, 2009). Although the acidic soil in
Japan is not conducive to the preservation organic remains,
animal skeletal remains have been found, along with artifacts in
prehistoric shell middens, caves, and low wetland sites. Skeletal
remains of sika deer and wild boar (Sus scrofa) have often been
excavated from those archeological sites, and these animals are
thought to be among the major animals hunted during the
Jomon period (ca. 15,000–2,400 BP) (Nishimoto, 1991).

From Torihama shell midden, abundant skeletal remains of
sika deer have been excavated (Figure 1). This site was occupied
by Paleolithic people from the Incipient to Early Jomon
period. Because of the environmental condition of wetlands,
this site has yielded various artifacts, for example, Jomon
pottery and stone and bone tools; botanical artifacts, namely,
fibers and wooden tools, represented by a well-preserved

comb coated with red lacquer (Torihama Shell Midden
Study Group, 1987); and many plant and animal remains.
Therefore, Torihama Shell Midden has been one of the most
intensively studied archeological sites in Japan. This research
has been conducted by an interdisciplinary research team of
archeologists and natural science researchers motivated by this
slogan, “the reconstruction of the Jomon lifestyle focusing
on their subsistence” (Kojima, 2015). Analyses of abundant
sika deer and wild boar remains have been conducted based
on various objectives and methodologies, for example, species
identification and the quantitative analysis of each skeletal
element (Morikawa, 1963; Nishida, 1979; Inami, 1983; Shigehara
et al., 1991; Uchiyama, 2000; Anezaki et al., 2005; Sato, 2021a),
the estimation of hunting seasons (Nishida, 1980; Ohtaishi,
1980; Uchiyama, 2005; Sato, 2021b), the examination of cut
marks (Hongo, 1991), and the manufacturing of bone tools
(Yamakawa, 1992a,b).

Studies have also been conducted to reconstruct the
paleoenvironment and the use of plant resources by analyzing
pollen (Yasuda, 1979), seed (Kasahara, 1983, 1984), phytolith
(Sasaki, 1983), natural wood (Noshiro and Suzuki, 1990), and
wood tools (Noshiro et al., 1996; Kudo et al., 2016a) in the
sediments of the site. In addition, pollen analysis of lakes and
lowland sediments has provided insights into long-term climatic

FIGURE 1

Location of Torihama Shell Midden ( ); location of comparative specimen collection ( ). We based the estimated shoreline of the Jomon period
and the location of former Lake Torihama on Morikawa (2002) and the present vegetation classification on Yoshioka (1973).
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changes around the site (Yasuda, 1982; Takahara and Takeoka,
1992; Nakagawa et al., 2002, 2005; Kitagawa et al., 2018).

The vegetation around the site in the Early Jomon period
was estimated to be evergreen broadleaved forests, consisting
of evergreen oak (Quercus subgen Cyclobalanopsis), chinquapin
(Catanopisis sieboldii), and camellia (Camellia japonica Linn.)
on the top of the hill; Japanese cedar (Cryptomeria japonica)
on the hillsides; and deciduous broadleaved forests consisting
of willow (Salix) and alder (Alnus sect. Gymnothyrsus) and
Japanese ash (Fraxinus) in the waterside low areas (Noshiro and
Suzuki, 1990). Subsequently, Yoshikawa et al. (2016) analyzed
excavated pollen and seeds; their results suggest that the
flora around the site was mixed vegetation: evergreen trees,
broadleaved trees, and coniferous trees.

Therefore, clarifying the diets of sika deer in such a
vegetation environment would help uncover the habitat use
of the deer in the ecosystem and humans’ hunting activities.
To estimate the diets of the excavated deer, we applied dental
microwear texture analysis (DMTA) for the first time in the
Jomon archeological sites. The DMTA measured the surface
roughness of microscopic tooth enamel surfaces in three
dimensions, obtained by optical profilometers such as confocal
microscopes. The application of DMTA has been expanded to
various types of vertebrates for dietary estimation (DeSantis,
2016) and has been most intensively applied to herbivores (e.g.,
Merceron et al., 2010; Berlioz et al., 2017), including extant,
extinct, and excavated animals (Kubo and Fujita, 2021).

Because tooth surfaces retain dietary signals for a shorter
period (days to weeks) than stable carbon and nitrogen isotopes
of soft tissues and bones (Matsubayashi and Tayasu, 2019;
Winkler et al., 2020), seasonal differences in a population can
be detected, providing insights into hunting seasons and sites
occupied by humans (Rivals et al., 2009, 2015). These results
reveal human activity but are based on observations at low
magnification; thus, they are not applicable to the method used
in this study to quantitatively observe the three-dimensional
(3D) shape of microwear. Kubo et al. (2017) and Kubo and Fujita
(2021) have provided the reference dataset of extant sika deer
sampled from various environments with quantitative dietary
information; thus, the dental microwear texture (DMT) of the
excavated deer can be compared with theirs.

In this study, we estimate the foraging behavior of the
hunted sika deer from the Torihama Shell Midden site (hereafter
“Torihama deer”) by using DMTA to infer the habitat use of the
deer that lived during the Early Jomon period (ca. 6,000 BP).

Materials and methods

Materials

We used mandibles of the Torihama deer (n = 56) housed
in the Wakasa History Museum and analyzed lower second

molars (M2), which were not separated from the mandibles
(Figure 2 and Supplementary Data 1). According to the
correspondence between age in months and eruption of the
molars (Niimi, 1997), the mandibles were 29 months old or
older. Therefore, we observed the second molars, which had
begun to wear down and had relatively few defects. They might
have been derived from the same individual because the hemi-
mandibles had been excavated in isolated conditions from the
archeological site. However, in order to obtain the maximum
number of samples, we included the left and right sides in
the analysis. They were excavated during the ninth survey in
1984 (Torihama Shell Midden Study Group, 1985) and obtained
from sediment layers yielding potteries of the Early Jomon
period (Kitashirakawa Kaso II types). The layers, organic soils or
shell deposits consisting primarily of freshwater mollusks, were
dated to ca. 5,900–5,655 cal BP by radiocarbon dating (Kudo
et al., 2016b). The deer remains showed evidence of human
use, namely, scars from removal and dismantling and traces of
extracting bone marrow and brain (Inami, 1983; Hongo, 1991;
Yamakawa, 1992a; Uchiyama, 2000; Sato, 2021a). Additionally,
many stone arrowheads, thought to have been used for hunting,
were excavated (Torihama Shell Midden Study Group, 1987).
These suggested that the bones probably originated from hunted
individuals and were disposed of in the lowlands after being used
as resources for food and tools. We expected those materials to
include dead individuals from all seasons. The Torihama Shell
Midden site yielded the evidence of hunting activity throughout
the year, though it seemed to be intensively used from fall to
winter based on the death-season of sika deer remains which
were estimated from observations of antlers, the cementum
layer, and mandibular tooth eruption (Nishida, 1980; Ohtaishi,
1980; Sato, 2021b).

We compared the data from the archeological remains with
the published DMT data of extant sika deer. Among the 15 sika
deer populations in Japan that Kubo and Fujita (2021) analyzed,
we selected three populations (Figure 1 and Table 1): typical

FIGURE 2

Example of analyzed materials and position of scanned enamel
facets. We investigated the occlusal surface of lower second
molars enclosed in yellow (i.e., facet No. 2, 4, 6, 8, 10, 12, 14,
and 16).
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TABLE 1 Habitat environment and food habits related to the materials in this study.

Region of the
materials

Specimen no. Scan no. Annual mean
temperature (◦C)

Annual
precipitation (mm)

Major vegetation % Grass
in diet*1

Kinkazan Island 32 123 11.9 1,150 Deciduous broad-leaves
forest with some open
grasslands

65.8

Shimane 27 100 14.6 1,685 Evergreen broad-leaves forest 38.1

Tsushima Island 28 129 15.8 2,235 Evergreen broad-leaves forest 3.4

Torihama shell midden M2:56 (L:31, R:25) 205 15*2 2,000*2 Evergreen broad-leaves forest
with Japanease cedar and
Deciduous broad-leaves

*1We referenced Kubo and Yamada (2014) and Kubo and Fujita (2021) which contained the quantitative dietary data showing the consumption rate of graminoids obtained from stomach
content analysis and fecal analysis. *2Temperature and precipitation around the site are estimated from 5,900 to 5,600 cal.bp based on the results of Kitagawa et al. (2018).

grazing (Kinkazan Island), browsing (Tsushima Island), and
mixed-feeding (Shimane) populations. The Shimane population
was selected because of its habitat’s geological proximity
and environmental similarity to the Torihama Shell Midden
location. We selected the Kinkazan and Tsushima populations
because of their contrasting north–south diets in the Japanese
archipelago, and many samples have been analyzed. Sika deer
on Kinkazan Island inhabit a small island near the Oshika
Peninsula in Miyagi Prefecture, facing the Pacific Ocean. The
main vegetation is deciduous broadleaved forest with some
open grasslands. Kinkazan deer feed mainly on grasses such
as silver grass (Miscanthus sinensis) and lawn grass (Zoysia
japonica) (Takatsuki, 1980). The Tsushima deer inhabited an
evergreen broadleaved forest. Stomach content analysis revealed
that they fed mainly on woody plants, followed by herbaceous
plants, seeds, and fruits; graminoids were a minor component
of their diet (Suda, 1997). Deer from the Shimane population
inhabited the Misen Mountains of Shimane Prefecture, in
the San-in region, at the same latitude as the Torihama site.
Evergreen broadleaved forests are the primary vegetation in
the area. Stomach content analysis of Shimane deer showed
that they consumed both graminoids and leaves of broadleaved
trees and forbs year-round, although there was seasonal
variation (Shimane Prefectural Government, 2002). The dietary
differences among the three populations were represented in the
percentage of grasses in the diets: 65.8% in Kinkazan (grazers),
38.1% in Shimane (mixed feeders), and 3.4% in Tsushima
(browsers) (Kubo and Yamada, 2014; Kubo and Fujita, 2021).

Methods: Dental microwear
texture analysis

Molding of tooth enamel surfaces of
Torihama deer

We used the methodology of Kubo et al. (2017) and
made molds of the M2. To remove dirt adhered during the
sedimentation, we cleaned the molar occlusal surfaces with

cotton swabs soaked with acetone. Next, the surface was molded
using high-resolution A-silicone dental impression material
(Dr. Silicon regular type, BSA Sakurai, Japan). We selected the
occlusal enamel band as our target for scanning (Figure 2)
because we expected it to be less affected than other parts by
factors other than diet (Schulz et al., 2010).

Obtaining dental microwear texture
(DMT) data and calculating DMT
parameters

We scanned the dental impressions by using a confocal laser
microscope (VK-9700, Keyence, Osaka, Japan) equipped with
a 100× long-distance lens (N.A. = 0.95). Three-dimensional
data was obtained with a lateral (x, y) sampling interval of
0.138 µm and a vertical resolution (z) of 0.001 µm. Occlusal
enamel facets were scanned on areas of 140 × 105 µm,
and grayscale images of the tooth surfaces were acquired for
graphical comparison. The 3D surface data were processed
by applying the methods in Yamada et al. (2018), Aiba et al.
(2019), and Kubo and Fujita (2021), using MountainsMap
Imaging Topography (7.4.8872, Digital Surf, Besançon, France).
The methods provide an objective evaluation of quantitative
data and scratch depth by measuring microwear three-
dimensionally. First, we scanned and trimmed the 135 × 100
µm area of the microwear impressions, avoiding dust and
large scratches. Because the scanned images were mirror
images of real tooth surfaces, the coordinates were mirrored
in the x- and z-axes. Second, through the least square plane
by subtraction, the surfaces were leveled to remove the
inclination of the molds. Next, we applied a robust Gaussian
filter with a cutoff value of 0.8 µm to remove measurement
noise (S-filter as defined in ISO25178) and the form removal
function (polynomial of increasing power = 2) to remove
the large-scale curvature of the enamel bands (F-operation in
ISO25178). We used the automated outlier removal function
of MountainsMap, which removes features with a slope > 80◦,
and a threshold to remove the upper and lower 0.1% of
the data. Scans with a non-measured point above 0.5% of
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total data points were discarded from the following analyses.
The non-measured points were filled by using the smoothing
function of MountainsMap. Finally, the values of 31 parameters
of ISO 25178-2 were calculated, of which the names and
definitions are shown in Table 2. These 31 ISO parameters
were used in Kubo and Fujita (2021) to investigate the
relationship between DMTA parameters and the extant sika
deer diet. Because we used the same analytical template of the
same software (MountainsMap) that Kubo and Fujita (2021)
used, their published parameters are directly comparable to
ours.

Statistical analyses

To clarify the feeding habits of the Torihama deer, we
compared their DMT parameters with those of the three
populations of sika deer (Kinkazan Island, Shimane, and
Tsushima Island). We conducted principal component analysis
(PCA) followed by a varimax rotation to interpret the
31 parameters and summarize them into a few principal
components (PCs). We also conducted the Mann–Whitney
U-test to determine differences in the parameters and the
PC scores between Torihama and the three populations. The

TABLE 2 Names and definitions of 31 DMT parameters.

Category Parameter Description Unit

Height parameters Sq Standard deviation of the height distribution µm

Ssk Skewness of the height distribution no unit

Sku Kurtosis of the height distribution no unit

Sp Maximum peak height, height between the highest peak and the mean plane µm

Sv Maximum pit height, depth between the mean plane and the deepest pit µm

Sz Maximum height, sum of the maximum peak height and the maximum pit
height (Sp + Sv)

µm

Sa Arithmetic mean height µm

Spatial parameters Sal Autocorrelation length (s = 0.2) µm

Str Texture aspect ratio (s = 0.2) no unit

Hybrid parameters Sdq Root mean square gradient no unit

Sdr Developed interfacial area ratio %

Functional parameters Smr Areal material ratio, ratio of the area of the material at a specified height c
(c = 1 µm under the highest peak)

%

Smc Inverse areal material ratio, height at which a given areal material ratio
(p = 10%)

µm

Sxp Peak extreme height, difference in height between the p and q material ratio
(p = 50%, q = 97.5%)

µm

Sk Distance between the highest and lowest level of the core surface µm

Spk Average height of the protruding peaks above the core surface µm

Svk Average height of the protruding dales below the core surface µm

Functional volume parameters Vm Material volume at a given material ratio (p = 10%) µm3/µm2

Vv Void volume at a given material ratio (p = 10%) µm3/µm2

Vmc Material volume of the core at a given material ratio (p = 10%, q = 80%) µm3/µm2

Vvc Void volume of the core (p = 10%, q = 80%) µm3/µm2

Vvv Void volume of the dale at a given material ratio (q = 80%) µm3/µm2

Feature parameters Spd Density of peaks 1 /µm2

Spc Arithmetic mean peak curvature 1 /µm

S10z Ten-point height µm

S5p Five-point peak height µm

S5v Five-point pit height µm

Sda Closed dale area µm2

Sha Closed hill area µm2

Sdv Closed dale volume µm3

Shv Closed hill volume µm3
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statistical analyses were conducted using SPSS statistics ver.28
(IBM, Chicago, USA).

Estimation of the percentage of
grasses (% grass) in the Torihama deer
diet

Kubo and Fujita (2021) presented an equation, as follows, to
estimate the % grass in diets from an ISO 25178-2 parameter,
Sk, which showed the highest correlation with the % grass in the
diet in their analysis:

Logit
(
% grass

)
=

(Sk− 0.341)

0.0299
(1)

where logit (% grass) is transformed into the % grass by the
equation

% grass =
elogit (%grass)

1+ elogit (% grass) (2)

We used those two equations to estimate the % grass in the
diet of 56 Torihama deer.

Results

Assessment of tooth microwear of
Torihama deer by two-dimensional
images

Representative microwear images and 3D models of the
tooth surfaces are shown in Figure 3. Of the two-dimensional

(2D) images, we excluded those in which the tooth surface was
clearly damaged or the non-measured point was above 0.5% of
the total data points. As a result, of the 224 scans (N = 224),
we used data from 205 scans (Supplementary Data 1). Although
some materials showed heavily worn surfaces, microwear
features were well-preserved in the Torihama deer specimens,
and the diagenetic alteration was considered negligible. Small
pits were commonly observed among the Torihama deer
samples. Some samples had flat surfaces with a visible enamel
prism structure (Figure 3A: FTS84-086), and others showed
abundant scratches (Figure 3B: FTS084-096 and Figure 3C:
FTS84-054). Coarse scratches were observed on the surface of
some individuals (Figure 3C).

Comparison between Torihama deer
and extant deer from representative
populations

The PCA of the 31 DMT parameters showed that the
first, second, and third components explained approximately
52.6, 15.9, and 12.8% of the total variance, respectively.
Table 3 indicates the factor loadings of the 31 parameters. The
first component (PC1) can be interpreted as overall surface
roughness because 22 of the 31 parameters had factor loadings
higher than the critical threshold value of 0.4, and 20 parameters
were larger than 0.8. The height (e.g., Sq, Sz, Sa) and volume
(e.g., Vm, Vv, Vmc, Vvc, Vvv) parameters had positive loads;
thus, the larger the PC1 value, the larger the surface relief. On
the other hand, parameters related to surface segmentation (Sda,
Sha, Sdv, Shv, and Spd) contributed significantly to PC2. The

FIGURE 3

Representative microwear 2D images and 3D models of tooth surfaces of Torihama deer [specimen number (A) FTS084-086, (B) FTS084-096,
(C) FTS084-054]. Enamel prism structures can be observed in (A). (B,C) Show show scratches. We also plotted the principal component scores
of these specimens in Figure 4. White bars in the 2D micrographs are 10 µm.
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TABLE 3 Factor loadings obtained from PCA conducted using
31DMT parameters.

PC1 PC2 PC3

Variance explained (%) 52.659 15.933 12.832

Sq 0.903 0.230 0.329

Ssk 0.080 0.056 0.940

Sku –0.037 –0.081 –0.894

Sp 0.887 0.109 0.348

Sv 0.910 0.204 –0.191

Sz 0.960 0.170 0.068

Sa 0.875 0.228 0.392

Smr –0.822 –0.107 –0.321

Smc 0.856 0.213 0.439

Sxp 0.919 0.245 0.131

Sal 0.224 0.289 0.593

Str –0.006 –0.053 –0.184

Sdq 0.895 –0.393 –0.101

Sdr 0.866 –0.405 –0.076

Vm 0.817 0.179 0.384

Vv 0.858 0.213 0.439

Vmc 0.841 0.226 0.443

Vvc 0.837 0.207 0.476

Vvv 0.912 –0.231 –0.012

Spd 0.026 –0.752 –0.302

Spc 0.506 0.095 –0.007

S10z 0.881 0.081 –0.087

S5p 0.756 –0.109 0.068

S5v 0.824 0.231 –0.206

Sda 0.087 0.931 0.123

Sha –0.079 0.946 0.030

Sdv 0.338 0.833 0.021

Shv 0.184 0.878 –0.028

Sk 0.892 –0.149 0.224

Spk 0.898 –0.303 –0.092

Svk 0.812 –0.093 –0.413

Parameters with factor loadings higher than the critical threshold of 0.4
are shown in bold.

factor loadings of Sda, Sha, Sdv, and Shv, which indicate the
areas and volumes of segmented hills and dales on the surface,
were positive values, and that of Spd, which indicates the density
of the peaks, was negative. Therefore, PC2 can be interpreted as
the fineness of the microwear features, with the smaller values
indicating a surface characterized by abundant fine features.

We found significant differences between the Torihama
deer and the three populations of extant deer (P < 0.05;
Table 4). The comparison with the Kinkazan deer showed
statistically significant differences in 23 parameters, except for
some hybrid, functional, and feature parameters. Statistically
significant differences between the Torihama deer and the
Shimane deer were found in 21 parameters, excluding the
spatial, functional volume, and feature parameters. The largest

number of statistical differences (28 parameters) was found in
the comparison between the Torihama deer and the Tsushima
deer, indicating that the difference between the Torihama deer
and the Tsushima deer is larger than that between the deer in
Kinkazan and Shimane.

The results of the statistical comparison of the PC scores
between the Torihama and extant deer populations are also
shown in Table 4. A scatter plot of PC1 and PC2 scores are
shown in Figure 4 for the populations of Torihama, Shimane,
Kinkazan, and Tsushima. Deer on Kinkazan Island, typical
grazers, were characterized by higher PC1 scores (i.e., large
surface roughness), whereas those deer on Tsushima Island,
typical browsers, were located at the lower bottom. The Shimane
population, mixed feeders, was located between them. Thus,
we found a separation between the grazing, mixed feeding,
and browsing populations of the extant deer, although the
Shimane and Tsushima populations overlapped. The Torihama
deer overlapped with the distribution of the grazing and mixed-
feeding sika deer but not with the browsing population.

Estimation of % grass in the diet of
Torihama deer and its variation within
the assemblage

We applied the estimation equation of Kubo and Fujita
(2021) to estimate the % grass in the diet of 56 Torihama
deer (Figure 5). The Torihama deer were estimated to have
consumed a diet of, on average, 50.7% grass, which supported
a general mixed-feeding habit of the Torihama deer. Browsing
and grazing individuals occurred with a similar frequency, and
there was a wide range in % grass within the Torihama deer
population.

Discussion

In this study, we used DMTA to estimate the diets
of Torihama deer inhabited approximately 6,000 years ago.
Deer mandibles excavated from the site were in satisfactory
preservation conditions; thus, observing the antemortem
microwear was possible. The results of the comparison with the
extant sika deer showed that the Torihama deer overlapped with
the populations that had mixed-feeding and grazing-feeding
habits and showed a wide range in % grass in the diet.

Reconstruction of the diet of the
Torihama deer based on extant sika
deer references

The results of PCA on 31 parameters of surface roughness
showed that the Torihama deer overlapped with the grazing
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TABLE 4 Comparison of DMT parameters and principal component scores between Torihama deer and extant deer.

Torihama vs. Kinkazan Torihama vs. Shimane Torihama vs. Tsushima

Parameter z P z P z P

Sq –4.910 <0.001 2.100 0.036 2.647 0.008

Ssk –4.944 <0.001 –3.723 <0.001 –2.960 0.003

Sku 5.465 <0.001 3.703 <0.001 3.112 0.002

Sp –3.817 <0.001 2.751 0.006 3.596 <0.001

Sv –0.998 0.319 4.782 <0.001 4.735 <0.001

Sz –2.559 0.011 4.219 <0.001 4.678 <0.001

Sa –5.152 <0.001 1.594 0.111 2.211 0.027

Smr 3.131 0.002 –2.663 0.008 –3.359 <0.001

Smc –5.152 <0.001 1.303 0.193 1.993 0.046

Sxp –3.869 <0.001 2.809 0.005 3.255 0.001

Sal 0.295 0.768 –0.778 0.437 0.247 0.805

Str 4.779 <0.001 1.526 0.127 2.752 0.006

Sdq –2.377 0.017 6.250 <0.001 6.841 <0.001

Sdr –1.631 0.103 6.610 <0.001 7.003 <0.001

Vm –4.294 <0.001 1.380 0.168 2.059 0.039

Vv –5.126 <0.001 1.361 0.174 2.021 0.043

Vmc –5.447 <0.001 1.098 0.272 1.841 0.066

Vvc –5.248 <0.001 0.953 0.341 1.784 0.074

Vvv –3.340 <0.001 3.042 0.002 3.615 <0.001

Spd 3.088 0.002 3.791 <0.001 5.845 <0.001

Spc –2.897 0.004 2.926 0.003 2.752 0.006

S10z –0.252 0.801 4.481 <0.001 4.583 <0.001

S5p 0.789 0.430 3.528 <0.001 4.346 <0.001

S5v –1.102 0.271 4.219 <0.001 3.568 <0.001

Sda –3.652 <0.001 –3.392 <0.001 –5.238 <0.001

Sha –2.915 0.004 –3.626 <0.001 –5.987 <0.001

Sdv –2.628 0.009 0.233 0.816 –2.685 0.007

Shv –3.478 <0.001 –0.301 0.763 –3.909 <0.001

Sk –5.456 <0.001 4.335 <0.001 4.479 <0.001

Spk –1.934 0.053 5.434 <0.001 6.433 <0.001

Svk –1.015 0.310 5.550 <0.001 4.706 <0.001

PC1 –3.218 0.001 4.831 <0.001 –5.371 <0.001

PC2 –1.717 0.086 –2.654 0.008 5.105 <0.001

PC3 –4.589 <0.001 –4.121 <0.001 2.334 0.020

P-values of Mann–Whitney U-tests are shown. Significant (P < 0.05) differences are shown in bold.

and mixed-feeding deer. However, they did not overlap with
the browsing Tsushima deer. The Tsushima deer did not have
well-developed microwear. A reason for this observation is
that their diets were less abrasive than those of the Torihama
deer. For example, the former ate dicot leaves, which polished
tooth surfaces rather than abrading them. The absence of
overlap between the Tsushima and the Torihama deer indicates
that the diet of the Torihama deer was not primarily dicots.
The Torihama deer overlapped with the Kinkazan deer, a
typical grazer type that developed microwear by feeding on
grass, and with the Shimane deer, a mixed feeder type, which
demonstrates the possibility that the Torihama deer were

feeding on both grass plants and the leaves and fruits of
dicotyledonous plants.

Furthermore, some Torihama deer developed abundant
scratches on their tooth surfaces, which were finer than those of
grazing deer on Kinkazan Island (Figure 3B). These individuals
did not overlap with the Kinkazan deer in the scatter plot
of PC1 and PC2 (Figure 4). These results may indicate that
some Torihama deer foraged on grass species, which differ from
those foraged by the Kinkazan deer. The Kinkazan deer feed
primarily on short-statured lawn grass (Z. japonica) (Takatsuki,
1980), which may force them to ingest the soil secondarily when
feeding on lawn grass at the ground level (Rivals et al., 2014;
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FIGURE 4

Scatter plot of the first (PC1) and second (PC2) principal
component scores calculated by PC analysis using 31
parameters of ISO 25178-2. PC1 is interpreted as overall surface
roughness because the height and volume parameters had
positive loads. PC2 presents the fineness of the microwear
features because the parameters related to surface
segmentation had positive loads: larger PC2 values indicate that
surfaces are segmented into larger hills and dales. The 95%
confidence range of Torihama deer is indicated by the bold line.
Kinkazan, Shimane, and Tsushima deer are typical grazers, mixed
feeders, and browsers, respectively.

FIGURE 5

Histogram of estimated % grass in the diet of the Torihama deer,
using the estimation equation of Kubo and Fujita (2021).

Rivals and Takatsuki, 2015). Microwear can also be affected
by sand and dust attached to foods (Maas, 1994; Gügel et al.,
2001; Lucas et al., 2013). However, experimental feeding has
clarified that the effects of external abrasives are mediated by

the rumination process to some extent (Ackermans et al., 2020;
Schulz et al., 2020). The comparison of 15 populations of sika
deer demonstrated that the Kinkazan deer had rougher surfaces
than other grazing deer (Kubo and Fujita, 2021). Therefore,
the Torihama deer might not have fed on short grasses
contaminated by soil. Around the Torihama Shell Midden site
grew graminoid (Poaceae and Cyperaceae) plants, indicated by
the analyses of pollen and macrobotanical remains (Kasahara,
1983, 1984; Kitagawa et al., 2018). The analysis of phytoliths
has also identified grasses such as the reed Phragmites and
Bambusoideae species (Sasaki, 1983). Therefore, the Torihama
deer could also have fed on these grasses when they were
available.

The flexible diet of Torihama deer

The proportion of grass in the diets of the Torihama deer
was estimated to be 50.7% on average, with a wide range of
0 to 100% among these individuals (Figure 5). This estimate
indicates that Torihama deer are mixed feeders and may reflect
the dietary flexibility of sika deer during the Jomon period. It
is also assumed that the Torihama deer would change diets
according to seasonal availability. The Torihama deer in this
study were over 2 years old, representing the diets of weaned
individuals. Furthermore, the average age in the Torihama
population was estimated to be 6.96 years (Koike and Ohtaishi,
1985); thus, the tendencies of sexually mature individuals can be
observed. We could not estimate the mortality seasons for each
material used in this study. However, the literature has suggested
that the people who lived at the Torihama Shell Midden site may
have hunted sika deer year-round, mainly during fall and winter
(Nishida, 1980; Ohtaishi, 1980; Sato, 2021b).

The result of stomach content analysis of the Shimane
populations, which we used as the reference in this study,
showed a seasonal change in diets of deer with a high
consumption rate of grasses in summer, seeds and nuts in fall,
and tree leaves in winter (Shimane Prefectural Government,
2002). Such seasonal change in diets was also identified for sika
deer populations in Hyogo, the closest area to the archeological
site; the consumption of seeds and nuts was high in fall;
and that of evergreen leaves was high in winter (Yokoyama,
2009). Therefore, although we did not estimate the mortality
seasons, the individuals that died in each season were analyzed
by the DMTA. Based on the seasonal changes in the diets
of the extant sika deer with geographical proximity and the
background information that the Torihama deer may have
been hunted year-round, the DMT of the Torihama deer may
reflect their seasonal dietary changes. As mentioned in the
introduction, the flora around the site was mixed vegetation
of evergreen trees, broadleaved trees, and coniferous trees,
which allowed the Torihama deer to change their forage plants
seasonally.
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Additionally, the extant sika deer have dietary flexibility
and can inhabit a wide range of habitat environments in Japan
(Takatsuki, 2009). Takatsuki (2006) suggested that the ecological
plasticity of the sika deer is associated with the extinction of large
herbivores in the Japanese archipelago around the Pleistocene–
Holocene boundary, through the process that vacant ecological
niches after those extinctions were occupied by a survived
species, sika deer. The argument of Takatsuki (2006) is vague
regarding the cause–effect relationship, namely, “sika deer
could survive the extinction because they had the ability to
adapt to changing environments” or “since there were vacant
ecological niches after the extinction, the sika deer became
ecologically diverse according to the respective habitats.” To
clarify this issue, information on the ecological variability of
Pleistocene and Holocene sika deer, as well as other extinct
ruminants, is necessary. This study is the first step toward
this clarification. Our study indicates that sika deer in the
Early Jomon period (approximately 6,000 years ago) had a
flexible feeding habit of adapting to the vegetation of their
habitats. Further investigation of excavated sika deer from older
archeological sites than the site we examined would provide
insights into when and how they attained high ecological
plasticity.

Conclusion

We investigated the feeding habits of the sika deer in the
Early Jomon period by analyzing the DMT of abundant skeletal
remains excavated from an archeological site. The Torihama
deer were mixed feeders, with a wide range in the estimated
percentage of foraged grasses. These results are consistent
with the estimate of paleo-vegetation around the Torihama
Shell Midden site. Similar to the extant deer populations
inhabiting the evergreen broadleaved forest in Honshu, the
Torihama deer might have changed their foraging plants
seasonally, depending on the growth of plants around their
habitat. Their flexible diets are important for understanding
how they survived the extinction of large mammals at the
end of the Pleistocene and are widely present around the
Japanese archipelago today. Most of the Japanese extant samples
were collected during the opening of hunting seasons, and
in the unhunted population of Kinkazan deer, they were
individuals that died of natural causes. Therefore, because
the comparative data are mainly from autumn to early
spring, further research on seasonal variation in microwear
should be conducted by obtaining samples that can be
compared among seasons.

For further research, DMTA results will be able to
further elucidate the paleoecology of deer by including
studies of the mortality season and range of behavior
in individuals.
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The stable carbon-isotope composition of mammalian tooth enamel is

a powerful tool for reconstructing paleodiet and paleoenvironment. Its

application in the fossil record relies on a thorough understanding of

the isotopic composition of mammalian diets in modern ecosystems. We

compiled and evaluated a global dataset of the carbon-isotope values of

artiodactyl tooth enamel, supplemented by new samples, for 79 extant

species. After correcting for differences in atmospheric carbon-isotope

composition, body mass, and digestive physiology, we compared the inferred

carbon-isotope values of ingested forage (δ13Cdiet) among seven feeding

categories. The artiodactyl herbivore dietary spectrum is expressed through a

wide range of δ13Cdiet values, with the most depleted mean value in frugivores

and the most enriched in obligate grazers. In general, grazing species have

a broader range of isotope values than browsing species, suggesting a wider

dietary niche breadth. Notably, variable grazers exhibit a bimodal distribution

of δ13Cdiet values, with North American and Asian taxa consuming C3 diets

and African taxa consuming C4 diets, reflecting the amount of C4 vegetation

in the environment. Variation in δ13Cdiet values also occurs among terrestrial

ecoregions and artiodactyl clades. Grassland ecoregions differ significantly

from forest ecoregions. We detected a low but significant phylogenetic

signal in the mean δ13Cdiet values of extant species, with some of the oldest

ruminant lineages having maintained C3 feeding and pure C4 diets being

restricted to two bovid clades. Determining variation in δ13Cdiet values in

different feeding categories and lineages will help refine paleoecological and

paleoenvironmental reconstructions from the rich fossil record of artiodactyls.
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Introduction

Stable isotopes are one of nature’s great ecological recorders
and have been widely used to study organisms and ecosystems
across time and space (West et al., 2006; Clementz, 2012).
Among the animal tissues that are commonly sampled for
stable isotope analyses of mammals (tooth enamel, dentin, bone
collagen, hair, blood), only tooth enamel is resistant to long-
term fossilization processes and diagenesis (Wang and Cerling,
1994; Koch et al., 1997; Lee-Thorp, 2002). Therefore, data
generated from modern mammal teeth can be readily applied
to the interpretation of deep-time records. Isotope data from
extant ungulates have contributed substantial insights into our
understanding of herbivore dietary ecology and have laid the
foundations for a large body of literature inferring paleodiet
and paleoenvironment from fossil herbivore teeth (e.g., Koch
et al., 1991; Bocherens et al., 1996; Cerling and Harris, 1999;
Passey and Cerling, 2002; Cerling et al., 2003, 2010; Sponheimer
et al., 2003; Sponheimer and Cerling, 2014). Extant terrestrial
ungulates are represented by over 250 species of artiodactyls and
18 species of perissodactyls (Burgin et al., 2018). Artiodactyls are
naturally widespread in the ecosystems of Africa, Eurasia, North
America, and South America. The taxonomic and ecological
diversity of this family renders them good modern analogs for
many extinct ungulates.

Carbon isotopes in tooth enamel

The stable isotope composition of carbon (δ13C) in the
enamel of mammalian herbivores provides information about
the animals’ feeding ecology and vegetation present in the
habitat. Plants that use different photosynthetic pathways
differ in their fractionation of atmospheric CO2 during
photosynthesis. The resulting δ13C values in plant tissues
are lowest in plants using the C3 pathway, intermediate in
plants using the crassulacean acid metabolism (CAM) pathway,
and highest in plants using the C4 pathway (O’Leary, 1988;
Cerling et al., 1997). When plants are consumed by mammalian
herbivores and incorporated into their body tissues, tooth
enamel bioapatites are systematically enriched in δ13C relative
to bulk plant diet with measurable enrichment factors (Lee-
Thorp and van der Merwe, 1987; Cerling and Harris, 1999;
Passey et al., 2005). Thus, the carbon isotope composition of
enamel reliably reflects the values in the ingested plants. Pure
C3 and C4 consumers have non-overlapping δ13C values, while
mammals with mixed C3-C4 diets have intermediate δ13C values
(Cerling et al., 1997, 2015; Koch, 1998). CAM plants commonly
grow in xeric habitats (Ehleringer et al., 1991) and are not
typically consumed by ungulates. Therefore, they are not usually
considered when interpreting the carbon isotopic values of
modern or fossil ungulates.

Isotopic variability among C3 plants is generally greater than
that in C4 plants (e.g., Cerling et al., 1997). In general, higher
(more enriched) values of the carbon isotope composition of
tooth enamel of herbivorous mammals are representative of
open-canopy, drier habitats (such as shrubland and grassland),
while low values represent closed-canopy habitats (such as
woodlands and forests) (O’Leary et al., 1992; Koch, 1998; Cerling
and Harris, 1999; Feranec and MacFadden, 2006; Feranec,
2007; Secord et al., 2008). Resource partitioning in diet and
habitat use may be revealed through stable isotope analysis
(Feranec and MacFadden, 2006) and has been documented for
medium-to large-bodied herbivores in both modern and ancient
environments in which a mixture of C3 and C4 plants is present
(e.g., Wang et al., 1994; MacFadden and Cerling, 1996; Koch,
1998; Feranec and MacFadden, 2006; Kita et al., 2014; Wang and
Secord, 2020).

The browser–grazer spectrum

Most artiodactyls are herbivorous, and they are typically
classified as browsers, grazers, or mixed feeders. Browsers
primarily feed on dicotyledonous material, such as leaves,
fruits, and twigs; grazers primarily feed on monocotyledonous
material, such as grasses or sedges, which are generally more
abrasive than dicotyledonous material; and mixed feeders
consume a mixture of dicotyledonous and monocotyledonous
materials across space and seasons (Hofmann and Stewart,
1972). Much of the existing literature classifies living and fossil
herbivores using these categories. Finer dietary classifications
have been used in some studies to capture more details
in the foraging behavior of various artiodactyls (e.g., Janis
and Ehrhardt, 1988; Spencer, 1995; Sponheimer et al., 1999;
Mendoza et al., 2002). These studies show promise for
differentiating artiodactyl feeding categories beyond three
broad categories, giving consideration to the specialization
or generality of species’ diets, the canopy-cover of feeding
environment, and sometimes the level (height from the
ground) that species feed at. Other studies in recent years
have used the percentage of grass in species’ diets to place
species quantitatively along a dietary continuum. This approach
overcomes the potential weaknesses of categorical trait data
and conceptualizes diet as a spectrum with two end members:
browsers and grazers (e.g., Clauss et al., 2003).

Research questions

Recent research has identified gaps in our knowledge of
the stable isotope ecology of large mammals and its application
in the fossil record, such as what factors influence enrichment
processes and how much variability in resource partitioning
exists among different faunas (Tejada-Lara et al., 2018;
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DeSantis et al., 2020; Tejada et al., 2020). These findings
highlight the need for more data from a range of modern
ecosystems for better understanding of processes and factors
that affect the isotopic signatures in mammal tissues. In
addition, stable-isotope ratios of ungulate tooth enamel can be
compared to the dental hypsodonty index, dental mesowear
(sharpness of tooth cusps), dental microwear (microscopic
abrasion patterns on the occlusal surface), ecomorphological
analysis of craniomandibular features, as well as stomach-
and fecal contents and other types of data that are used to
document ungulate dietary ecology. It has been shown that
combining results from multiple methods improves accuracy of
paleoecological reconstructions (e.g., Rivals and Ziegler, 2018;
Sewell et al., 2019). Such cross-method comparisons capture
dietary behaviors and adaptations recorded through different
processes and over different time scales, thus providing more
reliable and detailed dietary information for extant and fossil
species (e.g., Sponheimer et al., 2003; Boisserie et al., 2005;
Merceron et al., 2006; Louys et al., 2012; Bradham et al., 2018;
Uno et al., 2018; Gong et al., 2020).

In this study, we compile and compare the carbon-isotope
data published to date from the tooth enamel of extant
artiodactyls. To build on existing data and increase the range
and distribution of isotopic values across taxa and regions, we
additionally sampled and analyzed 80 tooth specimens from 23
species of artiodactyls. Each species was chosen either because it
had not been previously analyzed for stable isotopes of enamel

or because existing isotope data for the species included small
sample sizes from restricted locations. The resulting dataset
includes published and new isotope data for 79 artiodactyl
species, covering a range of habitats and dietary ecology. We
adopt a more detailed classification scheme of herbivore diets
than what is commonly used in the literature. This classification
scheme includes seven feeding categories and provides more
information about dietary habits than the three broad categories
of browsing, grazing, and mixed feeding. Combining the isotope
data from artiodactyl enamel, dietary data derived from other
studies, and the environmental setting of localities, we address
the following research questions: (1) How do species with
different dietary habits compare in the mean and range of δ13C
values of their diet? (2) How do artiodactyl diets in different
ecoregions of the world compare in the mean and range of δ13C
values? (3) How do phylogenetic groups of artiodactyls compare
in the mean and range of δ13C values?

Materials and methods

We compiled a global dataset of the carbon-isotope
values of artiodactyl tooth enamel (δ13CE) from the literature,
supplemented by 80 newly analyzed samples to expand the
taxonomic and geographic coverage of our data (Figure 1
and Table 1). After correcting for differences in atmospheric
carbon-isotope composition (δ13Catm), body mass, and digestive

FIGURE 1

Collecting locations of tooth enamel samples used in this study. Ecoregions of the world follow Olson et al. (2001). See Table 1 for sources of
published samples. Note that sampling effort is highly uneven among geographic regions and ecoregions of the world.
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TABLE 1 Eighty new samples of artiodactyl tooth enamel collected from specimens housed in the University of Michigan Museum of Zoology
(UMMZ) and analyzed for carbon-isotope composition (δ13CE).

Species Collection No. Tooth Region Country Latitude Longitude δ13CE

Alces americanus UMMZ 60536 Lp4 Michigan United States 48.10 –88.70 –14.4

Alces americanus UMMZ 61782 Rm3 Michigan United States 47.37 –88.11 –14.9

Alces americanus UMMZ 64975 Lm3 Michigan United States 48.03 –88.77 –14.3

Antilocapra americana oregona UMMZ 44370 Lm3 Montana United States 45.78 –108.50 –10.1

Antilocapra americana oregona UMMZ 44372 Lm3 Montana United States 45.78 –108.50 –9.2

Antilocapra americana oregona UMMZ 65026 Rm3 Michigan United States 42.46 –84.01 v13.9

Antilocapra americana oregona UMMZ 65502 Rm3 Michigan United States 42.46 –84.01 –12.2

Antilocapra americana oregona UMMZ 67482 Lm3 Michigan United States 42.46 –84.01 –11.2

Capra nubiana UMMZ 163513 Lm3 Red Sea Egypt 26.57 32.20 –6.2

Capra nubiana UMMZ 164923 Lp4 Red Sea Egypt 28.70 32.37 –7.9

Cv-apra nubiana UMMZ 164942 Lm3 Red Sea Egypt 27.15 32.53 –8.1

Capreolus capreolus UMMZ 125684 Lm3 England United Kingdom 52.40 0.70 –11.1

Cephalophus sp. UMMZ 38376 Lm3 Kribi Cameroon 2.95 9.92 –12.1

Cervus elaphus canadensis UMMZ 57713 Lm3 Michigan United States 42.81 –83.78 –11.8

Cervus elaphus canadensis UMMZ 57755 Lm3 Michigan United States 44.85 –83.96 –12.0

Cervus elaphus canadensis UMMZ 59189 Lm3 Utah United States 40.85 –109.89 –11.0

Cervus elaphus canadensis UMMZ 59798 Rm3 Wyoming United States –11.2

Cervus elaphus canadensis UMMZ 59799 Rm3 Wyoming United States –10.8

Cervus elaphus canadensis UMMZ 62121 Lm3 Wyoming United States 44.00 –110.41 –11.3

Cervus elaphus canadensis UMMZ 62122 RM3 Wyoming United States 43.48 –110.76 –10.6

Gazella dorcas UMMZ 158959 Lm3 Wadi Egypt –12.1

Gvazella dorcas UMMZ 158960 Lm3 Wadi Egypt –10.1

Gazella dorcas UMMZ 158962 Rm3 Wadi Egypt –11.0

Gazella dorcas UMMZ 158966 Lm3 Wadi Egypt –8.7

Gazella dorcas UMMZ 158967 Lm3 Wadi Egypt –10.6

Gazella dorcas UMMZ 158969 Rm3 Wadi Egypt –10.1

Gazella dorcas UMMZ 158970 Lm3 Wadi Egypt –10.1

Gazella dorcas UMMZ 158972 Lp4 Wadi Egypt –12.3

Hydropotes inermis inermis UMMZ 56527 Rm3 Kiang-su China 32.07 118.78 –14.2

Mazama americana UMMZ 126128 Rm3 Canindeyu Paraguay –24.45 –55.65 –14.8

Mazama americana UMMZ 126854 Lm3 La Paz Bolivia –15.52 –67.82 –14.0

Mazama americana UMMZ 146493 Rm3 Canindeyu Paraguay –24.45 –55.65 –14.5

Mazama americana UMMZ 146494 RM3 Canindeyu Paraguay –24.45 –55.65 –15.0

Mazama americana gualea UMMZ 77816 RM3 Imbabura Ecuador 0.35 –78.53 –14.2

Mazama americana zamora UMMZ 82862 Rm3 Napo Ecuador –0.98 –77.82 –14.1

Mazama gouazoubira UMMZ 124699 Lm3 Nueva asuncion Paraguay –22.10 –59.90 –6.6

Mazama gouazoubira UMMZ 124700 Lm3 Chaco Paraguay –20.63 –60.32 –10.7

Mazama gouazoubira UMMZ 124701 Lm3 Nueva asuncion Paraguay –20.70 –60.00 –9.0

Mazama gouazoubira UMMZ 125569 Lm3 Chaco Paraguay –20.63 –60.32 –10.0

Mazama gouazoubira UMMZ 125572 Lm3 Chaco Paraguay –20.13 –60.15 –9.6

Mazama gouazoubira UMMZ 125573 Lm3 Chaco Paraguay –20.40 –60.10 –11.9

Mazama rufina UMMZ 126126 Lm3 Itapua Paraguay –27.33 –56.42 –15.8

Mazama temama cerasina UMMZ 63500 Lm3 Peten Guatemala 17.39 –89.63 –13.6

Mazama temama cerasina UMMZ 63502 Lm2 Peten Guatemala 17.39 –89.63 –13.2

Mazama temama cerasina UMMZ 76637 Rm2 Peten? Guatemala –14.4

Muntiacus reevesi roberti UMMZ 97617 Lm3 Taiwan China 25.02 121.45 –11.2

Neotragus batesi UMMZ 39516 Rm3 Kribi Cameroon 2.78 10.53 –24.6

Neotragus batesi UMMZ 39517 Rm3 Kribi Cameroon 2.78 10.53 –19.4

Odocoileus hemionus crooki UMMZ 46190 Rm3 Texas United States 30.60 –103.88 –7.5

(Continued)
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TABLE 1 (Continued)

Species Collection No. Tooth Region Country Latitude Longitude δ13CE

Odocoileus hemionus crooki UMMZ 79419 Lm3 Texas United States 30.60 –103.89 –10.1

Odocoileus hemionus hemionus UMMZ 59187 Rm3 Utah United States 40.64 –109.72 –12.3

Odocoileus hemionus hemionus UMMZ 59638 Lm3 Arizona United States 35.92 –112.05 –11.5

Odocoileus hemionus sitkensis UMMZ 103357 Lm3 Alaska United States 57.86 –152.41 –14.4

Odocoileus virginianus borealis UMMZ 5240 Rm3 Michigan United States –12.5

Odocoileus virginianus borealis UMMZ 59029 Rm3 Michigan United States 44.66 –84.71 –13.4

Odocoileus virginianus borealis UMMZ 60964 Lm3 Michigan United States 46.24 –84.18 –13.7

Odocoileus virginianus borealis UMMZ 61004 Lm3 Michigan United States 46.09 –88.64 –12.2

Odocoileus virginianus borealis UMMZ 61038 Lm3 Michigan United States 45.27 –84.58 –13.8

Odocoileus virginianus borealis UMMZ 61048 Lm3 Michigan United States 46.00 –83.85 –14.5

Odocoileus virginianus borealis UMMZ 61147 Lm3 Michigan United States 46.46 –90.17 –13.7

Odocoileus virginianus borealis UMMZ 80213 Lm3 Michigan United States 42.46 –84.01 –14.1

Odocoileus virginianus thomasi UMMZ 76630 Rm3 Peten? Guatemala –13.2

Odocoileus virginianus thomasi UMMZ 76631 Rm3 Peten? Guatemala –11.9

Odocoileus virginianus thomasi UMMZ 76632 Rm3 Peten? Guatemala –12.4

Odocoileus virginianus thomasi UMMZ 76634 Rm3 Peten? Guatemala –12.7

Odocoileus virginianus thomasi UMMZ 76638 Rm3 Peten? Guatemala -14.1

Odocoileus virginianus thomasi UMMZ 76641 Rm3 Peten? Guatemala –12.5

Odocoileus virginianus thomasi UMMZ 76648 Rm3 Peten? Guatemala –14.1

Odocoileus virginianus thomasi UMMZ 76654 Rm3 Peten? Guatemala –13.2

Oreamnos americanus missoulae UMMZ 60546 Rm3 Alberta Canada 53.50 –102.90 –9.8

Oreamnos americanus missoulae UMMZ 87772 Rm3 Montana United States 47.77 –112.70 –10.5

Oryx beisa UMMZ 124068 Rm3 3.2

Ovibos moschatus UMMZ 112377 Lm3 Greenland Denmark 72.18 –23.75 –10.1

Ovibos moschatus UMMZ 116376 Lm3 Northwest Territories Canada 75.70 –84.40 –2.3

Ovis canadensis canadensis UMMZ 167428 RM3 Colorado United States 40.38 –105.52 –2.9

Ovis canadensis canadensis UMMZ 42316 RM3 Idaho United States 43.61 –116.20 –10.8

Ovis dalli stonei UMMZ 53659 Lm3 British Columbia Canada 59.00 –129.00 –10.2

Philantomba monticola monticola UMMZ 39515 Lm3 Kribi Cameroon 2.78 10.53 –14.8

Rangifer tarandus groenlandicus UMMZ 97462 Rm3 Northwest Territories Canada 62.71 –109.20 –8.6

Rangifer tarandus osborni UMMZ 53658 Lm3 British Columbia Canada 59.00 –129.00 –8.8

L, left; R, right; M, upper molar; m, lower molar; p, lower premolar.

physiology, the inferred carbon-isotope values of the vegetation
that artiodactyls fed on (δ13Cdiet) were compared among seven
feeding categories, 11 terrestrial ecoregions, and phylogenetic
groups.

Published δ13CE data

We assembled published δ13CE values of extant artiodactyls
from 24 primary sources (Table 2). Data from paleontological
or archeological sites or from other body tissues were not
included. In most instances, we considered only samples
from wild animals. Two exceptions are studies of free-range
livestock (Wang et al., 2008; Lazzerini et al., 2021), included
to increase the sample size from Asia. Along with published
δ13CE data, we collected the following information from

the literature whenever available: taxonomic identification,
sample identification number (field number or museum catalog
number), provenance (locality name, geographic coordinates,
elevation), year of collection from the field, sampled element
(tooth position), method of sampling (serial or bulk), and
whether or not samples were pretreated before analysis. If
multiple samples were taken from the same tooth or duplicates
were run for the same bulk sample, then average values for
the tooth were used. If multiple teeth were sampled from
an individual animal, then samples taken from teeth that
erupted late in the sequence (more posteriorly positioned in the
premolar or molar row) were used, as these teeth are among the
last ones to develop (Hillson, 2005), thereby avoiding a weaning
signal. Some data have appeared in multiple studies or review
papers since they were first published, in which case we traced
them back to the original publication. Only studies that reported
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TABLE 2 Summary statistics for calculated δ13Cdiet values of 79 species of artiodactyls documented in this study.

Family Species Count Min. Max. Mean Median S.D.

Antilocapridae Antilocapra americana 36 –25.6 –21.1 –23.1 –23.2 0.82

Bovidae Aepyceros melampus 63 –23.5 –8.9 –15.8 –16.3 2.95

Bovidae Alcelaphus buselaphus 49 –14.0 –8.2 –9.8 –9.5 1.28

Bovidae Antidorcas marsupialis 7 –22.9 –20.7 –21.6 –21.5 0.80

Bovidae Beatragus hunteri 2 –11.2 –10.6 –10.9 –10.9 0.38

Bovidae Bison bison 88 –25.6 –13.4 –20.9 –22.3 3.44

Bovidae Bos grunniens 7 –24.3 –21.3 –22.9 –22.8 1.29

Bovidae Capra hircus 17 –23.1 –19.8 –21.4 –21.4 0.74

Bovidae Capra nubiana 3 –19.3 –17.5 –18.6 –19.1 1.00

Bovidae Capra walie 1 –23.9 –23.9 –23.9 –23.9

Bovidae Cephalophus sp. 9 –27.2 –22.2 –25.5 –26.1 1.68

Bovidae Cephalophus callipygus 4 –26.5 –17.7 –23.4 –24.6 3.90

Bovidae Cephalophus dorsalis 4 –26.1 -24.9 –25.5 –25.5 0.71

Bovidae Cephalophus leucogaster 4 –25.5 –24.1 –24.9 –25.1 0.65

Bovidae Cephalophus nigrifrons 10 –28.1 –24.6 –26.3 –25.8 1.26

Bovidae Cephalophus silvicultor 2 –26.9 –24.9 –25.9 –25.9 1.42

Bovidae Cephalophus weynsi 1 –25.9 –25.9 –25.9 –25.9

Bovidae Connochaetes gnou 10 –10.9 –8.9 –9.8 –10.0 0.69

Bovidae Connochaetes taurinus 40 –12.9 –8.3 –10.2 –9.9 1.24

Bovidae Damaliscus lunatus 15 –13.4 –8.3 –10.2 –9.8 1.34

Bovidae Eudorcas thomsonii 16 –18.7 –10.9 –13.7 –13.0 2.49

Bovidae Gazella dorcas 8 –22.6 –19.1 –21.0 –20.7 1.16

Bovidae Hippotragus equinus 5 –15.1 –8.3 –11.1 –10.1 2.65

Bovidae Hippotragus niger 3 –11.4 –9.5 –10.3 –9.9 1.02

Bovidae Kobus ellipsiprymnus 75 –14.2 –8.8 –11.3 –11.0 1.24

Bovidae Kobus kob 11 –12.5 –8.8 –10.7 –10.4 1.11

Bovidae Litocranius walleri 8 –24.2 –21.1 –23.2 –23.4 1.00

Bovidae Madoqua guentheri 2 –18.8 –18.3 –18.6 –18.6 0.35

Bovidae Madoqua kirkii 25 –24.3 –17.6 –21.8 –21.9 1.61

Bovidae Madoqua saltiana 5 –24.2 –19.7 –21.7 –21.7 1.78

Bovidae Nanger granti 57 –27.9 –13.5 –21.3 –22.1 3.02

Bovidae Nanger soemmerringii 1 –22.6 –22.6 –22.6 –22.6

Bovidae Neotragus batesi 4 –35.0 –29.5 –33.3 –34.4 2.56

Bovidae Oreamnos americanus 2 –22.5 –21.9 –22.2 –22.2 0.45

Bovidae Oreotragus oreotragus 3 –24.6 –19.9 –22.5 –23.1 2.37

Bovidae Oryx beisa 27 –17.0 –9.4 –12.0 –11.9 1.71

Bovidae Ourebia ourebi 1 –16.3 –16.3 –16.3 –16.3

Bovidae Ovibos moschatus 2 –22.8 –15.1 –19.0 –19.0 5.47

Bovidae Ovis sp. 3 –22.6 –20.7 –21.5 –21.3 0.94

Bovidae Ovis canadensis 2 –23.1 –15.2 –19.1 –19.1 5.62

Bovidae Ovis dalli 1 –22.1 –22.1 –22.1 –22.1

Bovidae Philantomba monticola 7 –25.4 –21.3 –23.4 –23.3 1.60

Bovidae Raphicerus campestris 8 –25.0 –18.4 –22.2 –23.2 2.33

Bovidae Redunca fulvorufula 2 –11.0 –10.3 –10.7 –10.7 0.47

Bovidae Redunca redunca 13 –17.9 –7.7 –10.5 –9.3 2.76

Bovidae Sylvicapra grimmia 5 –25.9 –21.4 –23.5 –23.1 1.84

Bovidae Syncerus caffer 116 –28.5 –9.6 –13.2 –12.1 3.52

Bovidae Taurotragus oryx 29 –25.2 –18.0 –22.1 –22.4 1.81

Bovidae Tragelaphus buxtoni 5 –25.7 –23.5 –24.6 –24.3 1.00

(Continued)
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TABLE 2 (Continued)

Family Species Count Min. Max. Mean Median S.D.

Bovidae Tragelaphus euryceros 2 –27.3 –26.7 –27.0 –27.0 0.40

Bovidae Tragelaphus imberbis 6 –24.5 –19.5 –22.9 –23.3 1.72

Bovidae Tragelaphus scriptus 16 –28.1 –21.7 –24.8 –25.2 1.59

Bovidae Tragelaphus spekii 4 –29.3 –26.5 –27.9 –27.9 1.21

Bovidae Tragelaphus strepsicerus 13 –27.9 –20.6 –23.6 –23.2 1.94

Camelidae Llama guanaco 4 –26.7 –25.9 –26.4 –26.5 0.37

Cervidae Alces americanus 3 –28.0 –27.4 –27.7 –27.6 0.31

Cervidae Capreolus capreolus 1 –22.2 –22.2 –22.2 –22.2

Cervidae Cervus elaphus 32 –28.3 –23.2 –24.6 –24.6 0.96

Cervidae Hydropotes inermis 1 –25.1 –25.1 –25.1 –25.1

Cervidae Mazama americana 10 –26.9 –24.5 –25.4 –25.4 0.66

Cervidae Mazama gouazoubira 9 –24.5 –17.2 –21.6 –21.3 2.43

Cervidae Mazama rufina 1 –25.9 –25.9 –25.9 –25.9

Cervidae Mazama temama 3 –25.6 –24.4 –24.9 –24.7 0.64

Cervidae Muntiacus reevesi 1 –21.8 –21.8 –21.8 –21.8

Cervidae Odocoileus hemionus 29 –26.4 –19.5 –24.2 –24.4 1.44

Cervidae Odocoileus virginianus 23 –28.2 –17.0 –25.4 –25.8 2.15

Cervidae Rangifer tarandus 2 –21.0 –20.7 –20.9 –20.9 0.22

Giraffidae Giraffa camelopardalis 51 –28.6 –20.6 –25.0 –25.2 1.59

Giraffidae Okapia johnstoni 2 –32.4 –31.7 –32.0 –32.0 0.54

Hippopotamidae Choeropsis liberiensis 1 –28.3 –28.3 –28.3 –28.3

Hippopotamidae Hippopotamus amphibius 182 –25.5 –10.7 –16.8 –16.2 2.36

Suidae Hylochoerus meinertzhageni 13 –34.2 –24.6 –28.6 –27.8 2.82

Suidae Phacochoerus aethiopicus 58 –24.3 –8.9 –12.9 –12.0 2.89

Suidae Phacochoerus africanus 33 –14.9 –9.8 –12.6 –12.1 1.21

Suidae Potamochoerus larvatus 14 –26.0 –13.2 –20.7 –20.9 4.62

Suidae Potamochoerus porcus 23 –28.2 –19.6 –25.6 –26.1 1.96

Tayassuidae Pecari tajacu 4 –24.8 –23.9 –24.4 –24.4 0.42

Tayassuidae Tayassu pecari 4 –26.1 –24.6 –25.4 –25.5 0.60

Tragulidae Hyemoschus aquaticus 3 –25.6 –24.7 –25.2 –25.2 0.45

Data sources: Bocherens et al. (1996), Cerling and Harris (1999), Cerling et al. (1999), Harris and Cerling (2002), Cerling et al. (2003), Cerling et al. (2004), Boisserie et al. (2005), Hoppe
et al. (2006), Feranec (2007), Cerling et al. (2008), Fenner (2008), Copeland et al. (2008), Levin et al. (2008), Wang et al. (2008), Copeland et al. (2009), Cerling et al. (2011), Kingston
(2011), Nelson (2013), van der Merwe (2013), Cerling et al. (2015), Martin et al. (2015), Luyt and Sealy (2018), Rivera-Araya and Birch (2018), Lazzerini et al. (2021), and this study.

original δ13CE data of extant artiodactyls were cited as primary
sources.

New δ13CE data

Eighty enamel samples from 23 species of extant artiodactyls
were gathered from specimens housed in the University of
Michigan Museum of Zoology (UMMZ). We chose samples
with consideration for their prior taxonomic representation and
geographic coverage in the literature, as well as the availability
and abundance of specimens in the UMMZ collection.

The general method for sampling and pretreating tooth
enamel followed Koch et al. (1997). Bulk samples were gathered
by drilling approximately 5 mg of pristine enamel powder on
the lateral surface of the tooth parallel to the growth axis.

Sampling was done using a portable dental drill with a 1-
mm diamond burr. All samples were taken from third molars
or fourth premolars. Samples were treated with 3% reagent
grade NaOCl for 24 h to remove organic matter and with
1M buffered acetic acid for 24 h to remove non-structural
carbonate. Each treatment was followed by centrifuging and
rinsing five times with deionized water. Samples were dried
by lyophilization. At the University of Michigan Stable Isotope
Laboratory, samples were reacted at 77◦

± 1◦C with anhydrous
phosphoric acid for 8 min in a Thermo Scientific Kiel IV
preparation device coupled directly to the inlet of a Thermo
Delta V triple collector isotope ratio mass spectrometer, which
measured the resultant CO2. Analytical precision was better
than ± 0.1h (1 S.D.), based on international standards for
carbonate (NBS-18, NBS-19). Isotope values are expressed in
standard δ-notation: δ13CE = [(Rsample/Rstandard) - 1] × 1000,
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where R = 13C/12C. The δ13CE values are reported relative to
the Vienna PeeDee Belemnite (VPDB) standard.

Correcting for the Suess effect and
calculating δ13C of dietary sources

Sampled tooth specimens in our data compilation were
collected from the field as long ago as 1891 to as recently as 2017
(Supplementary Table 1). During this time interval, δ13Catm

has decreased by ∼1.8h due to anthropogenic activities (Suess
effect). To account for this effect, all δ13CE data were corrected
to the preindustrial δ13Catm level of the year 1750 (δ13C1750,
taken to be –6.3h). Correction values were based on δ13C data
from Antarctic ice cores, fern samples, and direct measurements
of air (Rubino et al., 2013; Keeling et al., 2017). These records
show that change in δ13Catm since 1750 occurred in three stages
(Supplementary Table 2). The first 130 years witnessed a slow
decrease, bringing δ13Catm from –6.3 to –6.7h by 1880. Another
0.4h-decrease took only over 80 years, with a rate of ∼0.005h
per year during this interval. From the early 1960s to the
early 2010s, δ13Catm dropped by 1.3h, meaning an accelerated
annual decrease of 0.025h. Based on these observed trends,
we corrected the δ13CE value of each sample with the offset in
δ13Catm between its collection year and 1750. For some samples,
the exact year of collection was not reported, so the correction
value could not be accurately determined. In these cases, we
estimated the correction value based on year of publication or
other information provided in the primary study. These samples
constitute a small proportion (2.5%) of the dataset and should
not affect the overall analytical results.

The δ13C values of the ingested vegetation (δ13Cdiet) were
calculated from δ13C1750 to facilitate cross-species comparison
of forage selection. Conventionally, an average enrichment
factor between diet and enamel (ε∗diet-bioapatite) of 14.1 ± 0.5h,
derived by Cerling and Harris (1999), have been used
in paleodietary reconstructions of large ungulate mammals.
Recently, Tejada-Lara et al. (2018) found that fractionation
between diet and enamel increases with species’ body mass
and is also affected by digestive physiology (foregut vs. hindgut
fermentation). Because our dataset covers artiodactyls with a
range of body sizes, we use equations derived by Tejada-Lara
et al. (2018) to determine the ε∗diet-bioapatite for each species
based on its average body mass and digestive physiology.
For foregut fermenters, ε∗diet-bioapatite = 2.34 + 0.05(BM),
where (BM) is the natural log of body mass in kg.
For hindgut fermenters, ε∗diet-bioapatite = 2.42 + 0.032(BM).
Resulting ε∗diet-bioapatite values range from 11.0 (Neotragus
batesi, 3 kg) to 15.0h (Hippopotamus amphibius, 1500 kg).
When comparing the calculated δ13Cdiet values, we use −17h
to separate C3 and C4 vegetation, based on plant data collected
since the late 20th century (Cerling and Ehleringer, 2000;

Sponheimer and Cerling, 2014). Mixed C3-C4 feeders would
have δ13Cdiet close to this value.

Comparing δ13Cdiet values among
feeding categories and ecoregions

We assigned species to one of seven feeding categories based
on published dietary information (Supplementary Table 3). The
feeding categories include one omnivorous category (omnivore)
and six herbivorous categories (frugivore, browser, browser–
grazer intermediate, variable grazer, and obligate grazer).
Assignment of species into herbivorous categories is based on
the relative abundance of fruit, dicots, and monocots in the
species’ average diet, following criteria from Gagnon and Chew
(2000) and Wang et al. (2022). The diets of frugivores and
browsers consist of >70% fruit and >70% dicots, respectively.
Variable grazers and obligate grazers have diets that include
60–90% and >90% monocots, respectively. Browser–grazer
intermediates consume <70% dicots, < 60% monocots, and
< 20% fruit, while generalists consumed >20% of all three food
types. This six-category classification scheme captures more
information about the dietary preference and dietary selectivity
of herbivores than the traditional three-category classification of
browsers, mixed feeders, and grazers.

Each sampled locality was assigned to one of the Global
200 terrestrial ecoregions, which were established on the bases
of biodiversity dynamics and environmental conditions (Olson
et al., 2001). Different ecoregions provide different habitats and
different plants for artiodactyls to feed on. Therefore, δ13Cdiet
values are expected to vary among ecoregions.

Box and whisker plots were used to illustrate the summary
statistics for feeding categories (Figure 2) and for ecoregions
(Figure 3). Histograms of δ13Cdiet values illustrate the total
dataset for each feeding category and for each ecoregion with
sufficiently large sample size (> 100 samples, Figures 2–
5). These diagrams allow for comparison of the differences
and similarities in the range and frequency of δ13Cdiet values
that each feeding category or ecoregion represents. Parametric
(ANOVA) and non-parametric statistical tests (Kruskal–Wallis)
were used to compare the difference between group-means,
using PAST v4.03 (Hammer et al., 2001). Because some feeding
categories and ecoregions are more geographically widespread
than others, we also evaluate the composition of continental
origin of the samples.

Since sampling is highly uneven among geographic regions
(Figure 1) and among taxa (Table 2), the δ13Cdiet values
of well-sampled species from certain locations could have
an oversize impact on the overall distribution of δ13Cdiet
values. Therefore, we repeated the comparison among feeding
categories using mean δ13Cdiet values of species, both with and
without controlling for phylogeny. Non-phylogenetic analyses
are the same as detailed above. A phylogenetic ANOVA was
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FIGURE 2

Comparison of δ13Cdiet values among seven artiodactyl feeding categories. (A) Boxplots showing the (non-outlier) range (whiskers), first and
third quartiles (box), median (vertical line), and outliers (circles) of δ13Cdiet values in each ecoregion. (B) Histogram of δ13Cdiet values of the
feeding categories. Dashed line is the C3-C4 boundary.

conducted using the “phylANOVA” function from the R package
“phytools” (Revell, 2012).

Phylogenetic signal of δ13Cdiet values

To examine the δ13Cdiet variation among phylogenetic
groups, we obtained a sample of 1000 node-dated consensus
trees of artiodactyls from Upham et al. (2019) and generated
a maximum clade credibility tree using TreeAnnotator
(Drummond et al., 2012). The phylogeny and the isotope
dataset share 76 species. We then estimated the phylogenetic
signal in species’ mean δ13Cdiet values with Blomberg’s K (1000
permutations) using the function “phylosig” from “phytools”.
The K value can be either less than 1, equal to 1, or greater than
1. A K < 1 suggests that δ13Cdiet values are less similar in closely
related species than expected under neutral Brownian model,
while K > 1 suggests that δ13Cdiet values are more similar in
phylogenetically closely related species than expected under
a Brownian motion (Blomberg et al., 2003). We also mapped

the mean δ13Cdiet values of species onto the pruned artiodactyl
phylogeny, using the function “contMap” from “phytools”.
Because species with similar mean δ13Cdiet values could have
different range and variance of δ13Cdiet values that reflect
difference in dietary niche breadths, we additionally aligned box
and whisker plots of species with the phenogram (Figure 6).

Results

Including the new samples from this study (Table 1), the
δ13Cdiet compilation results in a dataset of 1366 carbon-isotope
values from 25 primary sources (Table 2). The tooth-enamel
samples come from 79 species of artiodactyls sampled from
Africa, Eurasia, North America, and South America, with the
highest number of samples from Africa (Figure 1). Thirteen
of the 23 species sampled from UMMZ (Table 1) have not
been previously analyzed for δ13CE values. Other specimens
were chosen to expand the geographic range of sampled species.
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FIGURE 3

Histograms of δ13Cdiet values in seven artiodactyl feeding categories in relation to (A–G) taxonomic group and (H) continent. Dashed line is the
C3-C4 boundary.

The total dataset includes representatives from nine out of ten
families of terrestrial artiodactyls, missing only the Moschidae
(Table 2).

Variation in δ13Cdiet among feeding
categories

As expected, the seven artiodactyl feeding categories exhibit
different ranges, means, and medians of δ13Cdiet values.

Group means differ significantly from each other, using both
parametric and non-parametric tests (p < 0.001). Post hoc tests
show that group means differ significantly for most pairwise
comparisons (p < 0.05), except for that between frugivores
and browsers and a few comparisons that involve omnivores
or generalists (Table 3B). When using mean δ13Cdiet values of
species to reduce the bias introduced by sampling, we found
that pairwise comparisons between obligate grazers and other
feeding categories remain significantly different both with and
without controlling for phylogeny (Tables 3C,D). Mean δ13Cdiet
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FIGURE 4

Comparison ofδ13Cdiet values among 11 terrestrial ecoregions. (A) Boxplots showing the (non-outlier) range (whiskers), first and third quartiles
(box), median (vertical line), and outliers (circles) of δ13Cdiet values in each ecoregion. (B) Histogram of δ13Cdiet values of the ecoregions.
Numbers in legend correspond to ecoregions in (A), and the color scheme corresponds to that of Figure 1. Dashed vertical line is the C3-C4

boundary.

values of variable grazer species also differ from those of
most other groups, although the differences are not significant
when controlling for phylogeny. Among the six herbivorous
feeding categories, mean δ13Cdiet values increase along the
dietary continuum from frugivores, through browsers, the
mixed feeders (generalists and browser–grazer intermediates),
variable grazers, to obligate grazers (Figure 2A and Table 3A).
Generalists and omnivores have smaller sample sizes than other
feeding categories, but omnivores still exhibit a wide range
of δ13Cdiet values, reflecting their wide dietary niche breadth
(Table 3A).

The entire dataset exhibits a generally bimodal distribution
in δ13Cdiet values, with a saddle around –19h (Figure 2B).
Grazers dominate the C4 (enriched) mode of the distribution
but extend considerably into the C3 realm. Mixed feeders occupy
the intermediate range of values. Frugivores, browsers, and
omnivores are prevalent in the C3 range. The most depleted
and most enriched δ13Cdiet values are found in a browser

(Neotragus batesi, the dwarf antelope) and an obligate grazer
(Redunca redunca, the bohor reedbuck), respectively (Figure 2
and Table 2).

The bimodal distribution of δ13Cdiet values in the total
dataset is comprised of several different patterns among
artiodactyl feeding groups (Figure 3). Taxonomic composition
also differs among feeding categories. Most feeding categories
exhibit a unimodal distribution but vary in mean, median,
mode, and peak frequency (Figure 3 and Table 3A). Obligate
grazers and variable grazers exhibit patterns that differ from
those of the other feeding categories. Obligate grazers, which
all occur in Africa, exhibit a left-skewed bimodal distribution,
with the higher peak driven primarily by the high frequency
of enriched δ13Cdiet values in bovids (Figure 3F). All but one
sample of Hippopotamidae are from Hippopotamus amphibius;
this species makes up roughly an eighth of the total sample
size (Table 2), and their δ13Cdiet values contribute to a
second, lower mode in the obligate-grazer data. Variable grazers
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FIGURE 5

Histograms of δ13Cdiet values in the four best-sampled ecoregions in relation to feeding categories (A,B) (main panels) and continent (C,D) (inset
panels). Dashed line is the C3-C4 boundary.

exhibit a bimodal distribution of δ13Cdiet values (Figure 3E).
Within this group, bovids are the most numerous (as is
the case for all herbivorous feeding categories) and are the
main contributor to the bimodal pattern. Other families in
this feeding category are well separated between C3-feeding
camelids (llamas) and primarily C4-feeding suids (warthogs).
Associated with taxonomic differentiation, the C3-C4 separation
in variable grazers is strongly influenced by geography, with
samples from North America being mostly in the C3 range while

samples from Africa are mostly in the C4 range (Figure 3H).
Variable grazers in Asia and South America are also C3-
feeders.

Variation in δ13Cdiet among ecoregions

Sample localities in the dataset are distributed among
11 terrestrial ecoregions of the world (Figure 4 and
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FIGURE 6

Mean δ13Cdiet values of 76 species mapped onto the artiodactyl phylogeny and boxplots showing the distribution of individual δ13Cdiet values in
each species. A low phylogenetic signal is detected in mean δ13Cdiet values (K = 0.38, p = 0.001). Labeled nodes mark clades that are mentioned
in the text. Green nodes = C3 feeders. Yellow nodes = C4 feeders. Dashed vertical line is the C3-C4 boundary.

Table 4). The δ13Cdiet values of species in different
ecoregions differ significantly from each other, using both
parametric and non-parametric tests (p < 0.001). Pairwise

comparisons yielded significant differences (p < 0.05)
among forest ecoregions, between grassland ecoregions
and forest ecoregions, as well as between desert and xeric
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shrublands and most other ecoregions (Table 4B). Mesic
environments (forests and woodlands from a range of
temperature conditions) are more prevalent in the lower
values of the δ13Cdiet spectrum while intermediate to semiarid
environments (grasslands) occupy the middle and higher values
(Figure 4B).

Because sample size is highly variable among ecoregions
(Table 3A), histograms were only generated for the four
ecoregions with the largest sample sizes. Tropical and

subtropical moist broadleaf forests, mostly occurring in
Africa, exhibit a generally bimodal distribution of δ13Cdiet
values (Figure 5A). The peak in the C3 range is well-
established and consists mostly of frugivores and omnivores,
although other feeding categories are also present. The
broad low peak in the C4 range is primarily from obligate
grazers, specifically those from East Africa (Supplementary
Table 1). Samples from the tropical and subtropical moist
broadleaf forests of South America, North America, and

TABLE 3 Comparison of δ13Cdiet values among seven feeding categories of artiodactyls.

(A) Summary statistics of all δ13Cdiet values.

Feeding category N Min. Max. Mean Median S.D.

1) Frugivore 66 –28.1 –17.2 –24.7 –25.3 2.17

2) Browser 262 –35.0 –17.0 –23.9 –23.9 2.57

3) Generalist 26 –28.3 –19.1 –22.9 –22.6 2.36

4) Browser–grazer intermediate 168 –28.3 –8.9 –19.9 –20.9 4.28

5) Variable grazer 273 –29.3 –8.8 –16.7 –14.9 5.31

6) Obligate grazer 513 –28.5 –7.7 –13.4 –12.3 3.62

7) Omnivore 58 –34.2 –13.2 –25.0 –25.7 3.96

(B) P-values from post hoc pairwise tests of all δ13Cdiet values.

1 2 3 4 5 6 7

1) 0.756 0.458 0.000 0.000 0.000 0.999

2) 0.000 0.900 0.000 0.000 0.000 0.414

3) 0.000 0.032 0.005 0.000 0.000 0.263

4) 0.000 0.000 0.002 0.000 0.000 0.000

5) 0.000 0.000 0.000 0.000 0.000 0.000

6) 0.000 0.000 0.000 0.000 0.000 0.000

7) 0.107 0.000 0.001 0.000 0.000 0.000

(C) P-values from post hoc pairwise tests of species’ mean δ13Cdiet values.

1 2 3 4 5 6 7

1) 0.995 0.999 0.292 0.001 0.000 1.000

2) 0.079 1.000 0.465 0.000 0.000 0.998

3) 0.712 0.719 0.721 0.050 0.000 0.999

4) 0.003 0.056 0.194 0.772 0.000 0.504

5) 0.002 0.000 0.045 0.360 0.000 0.018

6) 0.000 0.000 0.002 0.001 0.001 0.000

7) 0.958 0.308 0.835 0.074 0.045 0.002

(D) Results from phylogenetic ANOVA of species’ mean δ13Cdiet values.

1 2 3 4 5 6 7

1) –0.569 –0.272 –2.197 –4.705 –9.360 0.161

2) 1.000 0.126 –1.977 –4.976 –10.386 0.559

3) 1.000 1.000 –1.564 –3.357 –7.065 0.359

4) 1.000 0.060 1.000 –1.800 –5.982 1.845

5) 0.090 0.021 0.090 1.000 –5.113 3.509

6) 0.021 0.021 0.021 0.021 0.021 6.930

7) 1.000 1.000 1.000 1.000 1.000 0.429

Above diagonal line: Tukey’s HSD post hoc test. Below diagonal line: Mann–Whitney U test. Both ANOVA and Kruskal–Wallis tests yielded p < 0.001 of significant differences among
feeding categories.
The test yielded p = 0.001. Above diagonal line: pairwise t-values. Below diagonal line: adjusted P-values.
P-values < 0.05 are in bold.
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Asia fall in the mid-range of the C3 realm (Figure 5A).
Samples from temperate coniferous forests are all from North
America (Figure 5B). There, variable grazers, browser–grazer
intermediates, and browsers form a unimodal distribution
of δ13Cdiet values, primarily in the C3 range. Tropical
and subtropical grasslands, savannas, and shrublands are
represented almost exclusively by samples from Africa
(Figure 5C), showing a grazer-dominated (especially obligate
grazer) distribution of δ13Cdiet values in the C4 range.
Some browsers and mixed feeders are also present, forming
a small mode of δ13Cdiet values in the C3 range. Desert
and xeric shrublands also have a bimodal distribution of
δ13Cdiet values (Figure 5D). There is a clear division between
non-grazers (browsers and browser–grazer intermediates),
which comprise δ13Cdiet values in the C3 range, and the
grazers, which contribute to δ13Cdiet values in the C4 range.
Within this ecoregion, samples from Africa include both
C3- and C4-feeders, while those from North America are all
C3-feeders.

Variation in δ13Cdiet among
phylogenetic groups

The mean and range of δ13Cdiet values are more
constrained in some artiodactyl clades than in others.
Within the suborder Ruminantia, lineages with the oldest
node ages (Tragulidae, Antilocapridae, Giraffidae, Cervidae)
are exclusively C3 feeders, while C4 feeders appear in relatively
young lineages (<13 million years old; Figure 6). Species
with a pure C4 diet, corresponding to their assignment in
the obligate grazer category, belong in two bovid tribes,
the Reduncini and the Hippotragini. Some groups within
Bovidae maintained C3 feeding, such as the Cephalophini,
the Neotragini, and subgroups of the Antilopini. Other
clades have a mixture of C3 feeders, C4 feeders, and mixed
C3-C4 feeders. There is low phylogenetic signal in the
δ13Cdiet values of artiodactyls (K = 0.38, p = 0.001). Similar
δ13Cdiet values occur in multiple artiodactyl clades and

TABLE 4 Comparison of δ13Cdiet values of artiodactyls among 11 ecoregions, each found on multiple continents.

(A) Summary statistics.

Ecoregion N Min. Max. Mean Median S.D.

1) Tropical and subtropical moist broadleaf forests 278 –35.0 –7.7 –19.6 –19.4 6.67

2) Temperate broadleaf and mixed forests 25 –28.2 –17.0 –25.4 –25.7 2.35

3) Temperate coniferous forests 101 –28.3 –15.2 –23.7 –24.0 1.66

4) Boreal forests/taiga 5 –26.4 –20.7 –22.4 –21.9 2.30

5) Tropical and subtropical grasslands, savannas, and shrublands 709 –30.7 –8.2 –15.6 –14.3 5.29

6) Temperate grasslands, savannas, and shrublands 58 –26.7 –13.4 –20.1 –21.3 3.94

7) Flooded grasslands and shrublands 9 –21.1 –9.8 –15.9 –15.2 3.36

8) Montane grasslands and shrublands 51 –29.0 –12.0 –22.1 –21.9 2.77

9) Tundra 2 –22.8 –15.1 –19.0 –19.0 5.47

10) Mediterranean forests, woodlands, and scrub 15 –25.9 –18.1 –22.5 –22.9 2.16

11) Deserts and xeric shrublands 103 –25.4 –8.3 –19.0 –21.0 4.83

(B) P-values from post hoc pairwise tests.

1 2 3 4 5 6 7 8 9 10 11

1) 0.000 0.000 0.983 0.000 1.000 0.577 0.067 1.000 0.585 0.994

2) 0.000 0.934 0.985 0.000 0.001 0.000 0.237 0.839 0.824 0.000

3) 0.001 0.000 1.000 0.000 0.001 0.001 0.757 0.971 0.999 0.000

4) 0.458 0.019 0.095 0.124 0.997 0.476 1.000 0.999 1.000 0.938

5) 0.000 0.000 0.000 0.010 0.000 1.000 0.000 0.998 0.000 0.000

6) 0.980 0.000 0.000 0.430 0.000 0.484 0.632 1.000 0.877 0.974

7) 0.138 0.000 0.000 0.008 0.579 0.011 0.042 1.000 0.095 0.837

8) 0.130 0.000 0.000 0.852 0.000 0.023 0.000 0.999 1.000 0.022

9) 0.820 0.037 0.037 0.847 0.332 0.918 0.554 0.469 0.998 1.000

10) 0.304 0.000 0.012 0.631 0.000 0.030 0.000 0.506 0.264 0.340

11) 0.054 0.000 0.000 0.342 0.000 0.267 0.048 0.001 0.963 0.008

Above diagonal line: Tukey’s HSD post hoc test. Below diagonal line: Mann–Whitney U test. Both ANOVA and Kruskal–Wallis tests yielded p < 0.001 of significant differences
among ecoregions.
P-values < 0.05 are in bold.
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individual clades show broad to narrow variation in δ13Cdiet
values.

Discussion

We compiled and evaluated a global dataset of δ13Cdiet
(isotope values of ingested forage) of extant artiodactyls, which
documents variation among feeding categories, ecoregions, and
clades. Our data compilation shows that research on artiodactyl
δ13CE has covered just over 30% of species richness of extant
artiodactyls. In addition, sampling is highly uneven both
phylogenetically and geographically (Figure 1 and Table 2).
Only one species of tragulid has been sampled, and no
data are available for moschids. Although both species of
extant hippopotamid have been sampled, the hippopotamus
(Hippopotamus amphibious) is represented by 182 samples,
making up 13% of the total number of samples, while the pygmy
hippopotamus (Choeropsis liberiensis) is only represented
by one sample. Sampling is dense in sub-Saharan African
ecosystems (Figures 1, 5), where C4 grasslands and closed-
canopy C3 environments are both extensive and artiodactyl
species-richness is high. In contrast, sampling is sparse across
the Eurasian continent. In East Africa, where sampling is the
densest, savanna ecosystems lie adjacent to expansive tropical
rainforest. Riverine and montane forest habitats and xeric
shrublands also occur in patchy areas surrounded by tropical
and subtropical grasslands there. Samples from this region
largely contribute to the bimodal distributions in Figure 5,
indicating consumption of both C3 and C4 plants by resident
artiodactyls.

The herbivore dietary spectrum is expressed through a
wide range of δ13Cdiet values, with the most depleted mean
and median values in frugivores and the most enriched in
obligate grazers. In general, grazing taxa have a broader
range of dietary isotope values than browsing taxa. Notably,
variable grazers exhibit a bimodal distribution of δ13Cdiet
values, with North American taxa consuming C3 vegetation
and African taxa consuming C4 vegetation, reflecting the
different amounts of C4 biomass available in temperate
versus tropical environments. Variation in δ13Cdiet values also
occurs among ecoregions, taxonomic groups, and geographic
regions. Grassland ecoregions differ significantly from forest
ecoregions in δ13Cdiet values. Some of the oldest ruminant
lineages have maintained C3 feeding, and pure C4 dietary
signals are restricted to two bovid clades. The δ13Cdiet
values of species and faunas also vary across geographic
regions and may be related to amount of C4 vegetation in
the environment. Most of the observed patterns correspond
broadly with existing knowledge about stable isotope ecology,
but deviations from the general trend can be identified in
well-sampled taxa and regions. Additionally, we detected
low phylogenetic signal (K = 0.38, p = 0.001) in the
mean δ13Cdiet values of artiodactyl species. It is important

to note, however, that ecology, phylogeny, biogeography,
and environmental settings are often correlated, and the
combination of available vegetation, ecological interactions,
and physiological processes affects the δ13C values recorded in
artiodactyl tooth enamel.

The herbivore dietary spectrum

The frugivore–browser–grazer dietary spectrum
corresponds to an increase in group-mean δ13Cdiet values
over a range of 10h from frugivores (–24.7h) to obligate
grazers (–13.4h) (Figure 2 and Table 3). Feeding groups have
different dietary preferences as well as niche breadths. The two
herbivore dietary extremes (frugivores and obligate grazers)
have the narrowest range of species-mean δ13Cdiet values,
and obligate grazers can be most readily distinguished from
other feeding categories (Table 3). The intermediate feeding
categories (i.e., generalist and browser–grazer intermediate), by
their defining criteria, have inherently wider dietary variation
than the dietary extremes. Considerable variation also exists in
browsers and variable grazers. The lowest δ13Cdiet values occur
in two subcanopy browsers, the dwarf antelope (Neotragus
batesi) and the okapi (Okapia johnstoni) (Figure 6 and Table 2).
Both species inhabit closed-canopy forests in equatorial Africa.
Okapis are endemic to the forests in northeastern Congo Basin.
The dwarf antelope has a discontinuous range in central and
western equatorial Africa. The two specimens of N. batesi from
Cameroon have more variable δ13Cdiet values (–29.5h and
–34.7h) than do the two specimens from the Ituri Forest (–
34.2h and –35.0h), and more variation may be present in this
group across its geographic range than previously recognized.
Variable grazers exhibit a bimodal distribution of δ13Cdiet
values that is distinct from the other feeding categories, and the
pattern can be best explained by a distinction between the North
American species feeding primarily on C3 vegetation and the
African species feeding primarily on C4 vegetation (Figure 3H).
In North America, variable grazers include the bison (Bison
bison), muskox (Oreamnos americanus), bighorn sheep (Ovis
canadensis), and the Dall sheep (Ovis dalli). Bison are sampled
from a range of latitudes in the western United States; their
δ13CE values vary considerably and are correlated with mean
annual temperature (Hoppe et al., 2006). In Africa, warthog
(Phacochoerus africanus) makes up most of the variable-grazer
sample; the rest are from oryx (Oryx beisa), oribi (Ourebia
ourebia), and the marshbuck (Tragelaphus spekii). Species
in both continental faunas consume over 60% monocots in
their average diets. Their contrasting δ13Cdiet signatures likely
reflect variation in the amount of C4 biomass in the vegetation
(Still et al., 2003), which is affected by both temperature and
seasonality of precipitation (Boutton et al., 1980; Winslow et al.,
2003; Kohn, 2010). Differentiating C3 graze from C3 browse in
the fossil record would require incorporation of other kinds of
data, such as morphological and use-wear traits.
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Dietary breadth and flexibility

While sampled individuals may be categorized as a browser,
a mixed feeder, or a grazer solely by their δ13Cdiet values (e.g.,
Cerling et al., 2015), it is evident from Figure 2B that there are
no clear-cut boundaries among the three broad feeding types.
Individuals belonging to the same phylogenetic group or feeding
category can have a range of δ13Cdiet values. Consequently, the
C3-C4 cutoff is frequently crossed by clades and feeding groups
(Figures 2, 6). Artiodactyls have been documented to shift
their diets due to geographic variation in vegetation structure,
seasonal climatic and environmental changes, and ecological
interactions with sympatric species (Sponheimer et al., 2003;
Djagoun et al., 2013; Radloff et al., 2013; Miranda et al.,
2014). Such dietary changes increase the abundance of savanna
herbivore species (Staver and Hempson, 2020).

Grazing species have wider dietary niche breadths than
browsing species do, as represented by their δ13Cdiet values
(Figure 2 and Table 3). The difference between maximum
and minimum δ13Cdiet values in browsing species (including
frugivores and browsers) is ∼18h (∼12h if excluding the
outliers from understory browsers), and no sample from
browsing species plots in the C4 range. Grazing species
(including variable grazers and obligate grazers) have a total
range of over 22h, with many samples extending well into the
C3 range. Variable grazers have the widest range of mean δ13Cdiet
values, ranging from –27.9h (Tragelaphus spekii) to –9.8h
(Connochaetes gnou). Corresponding to this difference in extant
artiodactyls, findings in the North American fossil record show
that species with grazing-adapted morphology have broader
diets than browsing-adapted ones and consume more browse
than previously anticipated, thus morphological specialization
may result in ecological generalization (Feranec, 2003; Pardi and
DeSantis, 2021). Herbivores with grazing adaptations, such as
hypsodont teeth, are able to consume grass but can also eat other
foods when they are available. This dietary flexibility would
have implications for species duration over evolutionary time
scales, especially during times of climate change. For example,
in the Miocene Siwalik record of Pakistan, ungulate species that
were able to alter their diet (from browsing to mixed feeding or
grazing) in response to vegetation change persisted substantially
longer than those that were not (Badgley et al., 2008).

Future research

More isotopic data are needed for currently understudied
regions and taxa to further explore the research questions
posed in this study. In the current data compilation, tragulids
are represented by only one species and moschids are absent.
Both families are important forest dwellers in Asia and have
substantial fossil records, and their δ13Cdiet values can help
us investigate the resource use and partitioning in artiodactyl

faunas in tropical, subtropical, and temperate forests, which
may be important analogs for some paleo-ecosystems. Better
sampling records from Eurasia in general are also needed.
Although some isotope data from other body tissues (e.g., hair)
have been reported, tooth enamel data are lacking for many
regions of the continent. Due to variability in the carbon-
isotope spacing between different body tissues, converting hair
or bone collagen data to enamel equivalent values can confound
paleodietary reconstructions (Codron et al., 2011, 2012, 2018;
Bocherens et al., 2014). Therefore, δ13CE data are ideal for
making direct comparisons between ungulate diets in modern
and paleo ecosystems.

Incorporating different data types has proven valuable to
studying paleoecology, and when reconstructing the diet of
fossil species, more proxies are better than one. In addition
to mandibular morphology and tooth-enamel isotopes, tooth-
wear proxies should be incorporated (e.g., Codron et al., 2008;
Luyt and Faith, 2014; Fillion et al., 2022). The microscopic
wear patterns on the occlusal surface of teeth (microwear),
for example, record feeding habits with the finest temporal
resolution (daily or weekly) and can be used to detect subtle
variations in broadly similar diets (e.g., Louail et al., 2021)
as well as ecological responses to short-term environmental
changes that would not be reflected in tooth-wear measurements
(such as mesowear) or dental morphology (such as hypsodonty)
(Mihlbachler et al., 2018). While carbon isotope analysis is
limited in its ability to distinguish dicot fruits from leaves in
a species’diet, microwear and mesowear analyses as well as
mandibular morphology have proven useful for differentiating
frugivores from browsers (e.g., Scott, 2012; Kaiser et al., 2013;
Wang et al., 2022).

Our dataset is potentially useful for addressing many
questions beyond this study. For example, how are the mean
and range of δ13Cdiet values related to vegetation heterogeneity,
topographic complexity, and climatic conditions? Do some
species track the variation in environmental δ13C values better
than other species with similar geographic ranges? If so,
what aspects of their ecology can explain the difference?
How do species’ δ13Cdiet values contract or expand from
ecological interactions, such as co-occurrence with competitors
for forage? What combination of isotopic signature and
osteological characters can be used to improve paleoecological
reconstructions? Some of these questions will need better
sampling of targeted taxa, regions, or environmental settings,
others will require more comparative data from plants.
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Dental microwear analysis is an oft-used paleodietary estimation method, and

the impression molds or resin casts are often analyzed rather than the original

tooth surfaces. A choice of silicone products for dental impressions is crucial

because the quality of microwear data is affected by the impression accuracy

of the molds. For this reason, microwear researchers have heavily depended

on a few commercial products such as “President” (Coltène/Whaledent AG,

Switzerland) to avoid analytical errors caused using different silicone materials.

Considering that the production business might be terminated, however,

heavy reliance on specific products could be a potential weakness in the

field. In this study, we aimed at identifying specific indexes of physical

properties of silicone materials with satisfactory accuracy. For this purpose,

we measured dynamic viscoelasticity and shrinkage rates of various silicone

compounds, including the standard impression material President and other

eight affordable dental silicones. We scanned both original tooth surface and

dental impression molds with a confocal laser microscope and conducted

dental microwear texture analysis (DMTA) to quantitatively compare the

scanned surfaces. The results showed relationships between the material

properties of silicones and impression accuracy, indicating that the materials

that cured slowly and began to shrink relatively early in the hardening process

were less accurate. Some of these dental impression molds showed blurred

surfaces, implying that molds were peeled off from the tooth surface at the

microscopic level, as the shrinkage speed might exceed the curing speed. The

following indices provided in the product information were found to be helpful

in the search for substitutes: (1) medium viscosity, (2) short curing time after

mixing (5–6 min), and (3) delayed change in shrinkage.

KEYWORDS

dental microwear texture (DMT), accuracy of silicone molds, material properties,
dynamic viscoelasticity, shrinkage rate
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Introduction

Microscopic use-wear marks on tooth surfaces (microwear)
are important as a morphological indicator for estimating
the diets of extinct and extant animals and have long been
investigated using scanning electron microscopes or light
microscopes (reviewed in Ungar, 2015). In the early stages of
dental microwear research, optical microscopy and SEM were
the main methods of observation. Even when the same area was
analyzed, the observation settings and inter- or intra-observer
errors were often problematic (Grine et al., 2002; Galbany
et al., 2005; Purnell et al., 2006). So, dental microwear was
difficult to evaluate quantitatively. However, the recent progress
in the evaluation of microwear by optical profilometers has
generated a new field of microwear research (Ungar et al., 2003;
Scott et al., 2005; Schulz et al., 2010). Currently, an increasing
number of studies reported characteristics of microscopic 3D
topography, that is dental microwear texture (DMT), of various
types of vertebrates (Krueger et al., 2008, 2017; Caporale and
Ungar, 2016; DeSantis and Patterson, 2017; Aiba et al., 2019;
Kubo and Fujita, 2021).

In the studies of 3D dental microwear texture analysis
(DMTA) on anthropological and paleontological materials,
impression molds and resin casts are analyzed rather than
the original tooth surfaces. Two major reasons are considered.
First, large specimens, such as teeth in the jawbone, cannot be
placed properly on a microscope stage. Second, cultural and
paleontological resources may be protected under laws and
regulations, and thus casts and molds are the best alternatives
for further analyses in laboratories. Therefore, the accuracy
of dental silicones is crucial in DMTA. In previous studies,
microwear researchers have utilized a few commercial products
of silicone compounds such as President (Coltène/Whaledent
AG, Switzerland) to avoid analytical errors caused by using
different materials. However, such an effort of analytical quality
control (i.e., relying on certain products) is a fundamental
weakness in the field, considering that the production business
might be terminated for miscellaneous reasons as in the
case of President.

A few studies have tested the President silicone in the
method of DMTA. Goodall et al. (2015) tested some substitutes
for President and reported that silicone compounds with
medium viscosity were more accurate than low viscosity
(Speedex, MM913, and Accutrans) and high viscosity (Microset
101 RF and MM240TV). They detected a few differences
of statistical significance between the original specimen and
casts made with President. On the other hand, Mihlbachler
et al. (2019) used President to examine differences between
the original specimen and casts in higher magnification
scans (150×) and reported many significant differences. Their
contradictory conclusions indicate that different choices of
molding and casting materials, the surface textures analyzed,
and scanning magnifications may have affected the results.

In this study, we aim at identifying the physical properties
of silicones to find appropriate silicones, which mold the
tooth surface with satisfactory accuracy, by examining the
reproducibility of DMT among various silicone compounds,
including President and other affordable dental silicones.
In addition to comparing the general properties of the
tested silicones provided by product companies, we
measured changes in viscosity and shrinkage over time,
which are important properties in the process of making
impression molds.

Materials

Tooth specimen

We used an isolated right mandibular second molar of a
Pleistocene Japanese macaque (Macaca fuscata) (lower right
of Figure 1). The analyzed specimen (NMNS PV 6166-7)
was originally reported by Hasegawa et al. (1968) and is now
stored in the Department of Geology and Paleontology at the
National Museum of Nature and Science, Japan. Following
the standard of primate dental microwear studies (Kay and
Hiiemae, 1974), facet 9 of Phase II was observed for the analysis.
Three arbitrary sites on facet 9 (f9-1, f9-2, and f9-3) were
selected based on the accessibility to the focal points, which
had characteristic landmarks (e.g., pits, scratches, and cracks)
(Figure 1).

Silicone impression materials

We used the following nine dental silicone compounds
including the standard silicone impression material (President
Regular Body) in microwear research (Table 1): President
Regular Body, Affinis regular body, Affinis light body
(Coltène/Whaledent AG, Switzerland), Dr. Silicon regular
(BSA Sakurai, Japan), Fusion II wash, EXAHIFLEX regular
(GC, Japan), JM Silicone (Nissin Dental Products INC., Japan),
IMPRINSIS regular (Tokuyama Dental Corporation, Japan),
and SILDE FIT regular (Shofu INC., Japan). Dr. Silicon is a local
product mainly in East Asia, whereas others are commercially
available worldwide. However, President Regular Body was no
longer available in Japan and was replaced by the subsequent
product line called Affinis. Therefore, we imported it from the
United Kingdom in 2017. Around that time, the “President”
series became a new product line, “PRESIDENT The Original.”
Since this material was not available (and still is not in Japan) at
the time we initiated this study, we did not include it but used
the older “President.”

All products are cartridge-type in dentistry quality, and
their material properties such as shrinkage rate and cure
time are provided by the companies. High-viscosity materials
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FIGURE 1

Comparison of dental impressions among nine impression materials. 2D images were obtained by a confocal laser microscope equipped with a
20× objective lens. The size of each image is 540 µm × 725 µm. An occlusal view of the right lower second molar of the Japanese macaque
used in this study is shown in the right lower photo and schema. The black rectangle on the tooth photo indicates the area where we obtained
silicone impression molds. The white rectangles in the 20× tooth surface image obtained from the original tooth indicate the locations (f9-1, 2,
and 3) where higher magnification images and 3D texture data were acquired. Wear state and location of facet 9 are shown in the schema.

were excluded in this study because Goodall et al. (2015)
reported poor accuracy with high-viscosity materials. For
mixing, we used a cartridge dispenser and mixing tips. We

made sure to apply the silicones well before their expiration
date to avoid the impact of quality deterioration on the
results.
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. Methods

Measurement of physical properties of
silicones

To monitor the time-dependent elastic behaviors of the
silicone materials after mixing, we measured the dynamic
viscoelasticity and shrinkage rate of the silicone materials.
Dynamic viscoelasticity was measured by a rheometer
(HAAKE Mars III, Thermofisher Scientific) at the Tokyo
Metropolitan Industrial Technology Research Institute. For
every measurement, about 3 ml of silicone material was tested
and monitored for 10 min. Nagrath et al. (2014) reported that
humidity at curing affects impression accuracy. In this study,
dynamic viscoelasticity measurements were performed under
average room temperature and humidity conditions.

Time-sequential change of shrinkage was monitored under
a room temperature of 25◦C and ambient humidity by a Custron
device (AcroEdge, Tokyo, Japan) for 10 min, starting 90 s after
silicone materials were drawn on a discal pit (diameter= 10 mm
and depth= 1 mm) in a glass plate.

Evaluation of impression accuracy

Preparation for microscope scanning
Each silicone was applied to the targeted area of the tooth

surface and then pressed against its surface with a small ball
of silicone putty (EXAFINE PUTTY TYPE, GC) to assure that
details are imprinted on the silicone mold. This procedure
was done as an imitation of the common one when taking
dental impressions in clinical situations: (1) a dentist applies
an impression material using a cartridge dispenser on the
teeth of a patient, and (2) the patient bites a clinic tray
filled with putty-type silicon. The mold was taken off from
the specimen in 5–6.5 min. Before applying the next silicone
material, we cleaned the specimen surface with 2% NaOCl-
soaked cotton sheets followed by rubbing with acetone-soaked
industrial cotton swabs. After taking off from the specimen,
we trimmed the silicon mold to an appropriate size using a
knife and attached it to a sliding glass using superglue for laser
microscope observation.

Confocal laser microscope scanning
The original specimen and silicone molds were scanned

with a confocal laser microscope (VK-9700, Keyence, Osaka,
Japan) housed in the Department of Natural Environmental
Studies, Graduate School of Frontier Sciences, the University
of Tokyo. We used lower magnification lenses (20× and 50×)
to identify the scan locations (i.e., f9-1, f9-2, and f9-3). Then
we used a 100× long-distance lens (N.A. = 0.95) to scan the
focal sites and generated 3D surface texture data by lateral
(x, y) sampling with an interval of 0.138 µm and a vertical
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resolution (z) of 0.001 µm. For each scan, 3D surface data of
an area of 140 µm× 105 µm was obtained. Moreover, grayscale
photographs of the tooth surfaces were procured for graphical
comparison. We scanned both the original tooth surface and
the silicone molds with dental impressions by the following
procedures. We first placed the original specimen on the stage
of the laser microscope and scanned the focal sites. To replicate
the process, we took the specimen out of the stage and then
replaced it on the stage to scan the same targeted area again.
The relocation was done manually by finding common features
(see Supplementary Figures 1–3), so this may have influenced
the results to some extent. The scanning was repeated at least
three times for each site. We scanned the silicone molds in the
same way, but for every scanning, we made new impression
molds to take the intrasample errors of impression molds
into account. The original tooth was scanned repeatedly on
different days to check intrapersonal variation in the choice
of the targeted area. The accessibility to the focal scan points
varied among the samples because it was difficult to find the
same scan points in the molding samples with less precise
surface replication. Therefore, the number of repeated scans
differed among the molding materials (Table 2). Note that the
scanning of molds was done within 1–2 weeks after molding,
so there is little need to consider the effects of dimensional
changes as reported in Rodriguez and Bartlett (2011) on the
acquired data.

Qualitative evaluation of 2D image
For a simple evaluation of the accuracy and precision of

the silicone impression molds, we first checked air bubble
contamination and surface smoothing on 2D images obtained
by the 100× lens.

Quantitative evaluation of 3D surface
microtopography

We analyzed the 3D data obtained by the confocal
laser microscope using Mountains Map Imaging Topography
(version 9.0.9653, Digital Surf, Besançon, France). The 3D data
were preprocessed to remove measurement noises and outliers
by the following procedure described in Aiba et al. (2019),
which included (1) mirroring (only for molds), (2) leveling
(least square plane by subtraction), (3) application of S-filter
(a robust Gaussian filter with a cutoff value of 0.8 µm, as
defined in ISO 25178), (4) form removal function (polynomial
of increasing power = 2) to remove large-scale curvature of
enamel bands (F-operation in ISO 25178), (5) outlier removal
with a slope >80◦, (6) application of a threshold removing
the upper and lower 0.1% of the data, and (7) filling of the
non-measured points. After data cleaning, 30 parameters of
ISO 25178-2 and two (fractal complexity Asfc and length-scale
anisotropy epLsar) from scale-sensitive fractal analysis (SSFA)
were calculated (Table 3).

For non-parametric pair-wise tests between the parameter
values from the original tooth surface and those from the

TABLE 2 The number of repeated scans for each sample
and scan location.

Sample Facet
9-1

Facet
9-2

Facet
9-3

Total

Original tooth 29 27 27 83

1. Affinis light body 12 12 12 36

2. Affinis regular body 3 3 3 9

3. Dr. Silicon regular type 4 4 4 12

4. Fusion II wash type 7 7 7 21

5. EXAHIFLEX regular type 3 3 3 9

6. JM Silicone regular type 3 3 3 9

7. President jet regular body 4 4 4 12

8. IMPRINSIS regular type 3 3 3 9

9. SILDE FIT regular &
denture type

7 7 7 21

Total 75 73 73 221

silicone molds, Steel’s multiple-comparison test was performed
with the original surface scan as a control treatment. The
number of significant differences was counted for each of the
nine impression materials at each scan location (f9-1, f9-2, and
f9-3). To visualize the variation of surface roughness among
original tooth surfaces and the molds, we conducted principal
component analysis (PCA) with Varimax rotation for the 32
DMT parameters (30 ISO and 2 SSFA parameters), which are
presented as scatter plots along the principal component (PC)
axes. All statistical analyses were conducted using JMP Pro
16.0.0 (SAS Institute Inc.).

Results

Dynamic viscoelasticity

Figure 2A shows the dynamic viscoelasticity (log kPa/s)
of silicone materials measured by a rheometer. The analyzed
silicone materials are categorized into two types based on
viscoelastic behaviors during hardening.

Rapid completion type (i.e., steep changes in
viscoelasticity)

Four products of silicone compounds are included, which
are President, Affinis (regular), Dr. Silicon, and Affinis (light)
in this order. Of these, Dr. Silicon, Affinis (regular), and
Affinis (light) have low initial viscoelasticity. The hardening
of President was completed 6 min after mixing of main
and cure agents. The final viscosity of President is the
highest of all. The hardening of Affinis (regular), Dr.
Silicon, and Affinis (light) has completed about 7 min
after mixing. Noticeably, these four products with rapid
completion of hardening have high impression accuracy by
qualitative evaluation of two-dimensional microscopic images
(Supplementary Figures 1–3).
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TABLE 3 Names and descriptions of dental microwear texture parameters used in this study.

Parameter Description Unit Standard

Sq Standard deviation of the height distribution µm ISO 25178-2

Ssk Skewness of the height distribution No unit ISO 25178-2

Sku Kurtosis of the height distribution No unit ISO 25178-2

Sp Maximum peak height, height between the highest peak and the mean plane µm ISO 25178-2

Sv Maximum pit height, depth between the mean plane and the deepest pit µm ISO 25178-2

Sz Maximum height, sum of the maximum peak height and the maximum pit
height (Sp + Sv)

µm ISO 25178-2

Sa Arithmetic mean height µm ISO 25178-2

Smr Areal material ratio, ratio of the area of the material at a specified height c
(c= 1µm under the highest peak)

% ISO 25178-2

Smc Inverse areal material ratio, height at which a given areal material ratio (p= 10%) µm ISO 25178-2

Sdc(Previously Sxp) Peak extreme height, difference in height between the p and q material ratio
(p= 50%, q= 97.5%)

µm ISO 25178-2

Sal Autocorrelation length (s= 0.2) µm ISO 25178-2

Sdq Root mean square gradient No unit ISO 25178-2

Sdr Developed interfacial area ratio % ISO 25178-2

Vm Material volume at a given material ratio (p= 10%) µm3/µm2 ISO 25178-2

Vv Void volume at a given material ratio (p= 10%) µm3/µm2 ISO 25178-2

Vmc Material volume of the core at a given material ratio (p= 10%, q= 80%) µm3/µm2 ISO 25178-2

Vvc Void volume of the core (p= 10%, q= 80%) µm3/µm2 ISO 25178-2

Vvv Void volume of the dale at a given material ratio (q= 80%) µm3/µm2 ISO 25178-2

Spd Density of peaks 1/µm2 ISO 25178-2

Spc Arithmetic mean peak curvature 1/µm ISO 25178-2

S10z Ten-point height µm ISO 25178-2

S5p Five-point peak height µm ISO 25178-2

S5v Five-point pit height µm ISO 25178-2

Sda Closed dale area µm2 ISO 25178-2

Sha Closed hill area µm2 ISO 25178-2

Sdv Closed dale volume µm3 ISO 25178-2

Shv Closed hill volume µm3 ISO 25178-2

Sk Distance between the highest and lowest level of the core surface µm ISO 25178-2

Spk Average height of the protruding peaks above the core surface µm ISO 25178-2

Svk Average height of the protruding dales below the core surface µm ISO 25178-2

epLsar Exact proportion of length scale anisotropy of relief No unit Scale sensitive fractal
analysis (Ungar et al., 2003)

Asfc Area-scale fractal complexity No unit Scale sensitive fractal
analysis (Ungar et al., 2003)

Slow completion type (i.e., gradual changes in
viscoelasticity)

The remaining five products are categorized in this type:
SILDE FIT, JM Silicone, IMPRINSIS, EXAHIFLEX, and Fusion
II had higher viscosity in this order. The hardening of these
products did not complete perfectly even 10 min after mixing.

Shrinkage rate

Figure 2B shows the shrinkage rate changes of silicone
materials during cure time. More complicated patterns are
observed for shrinkage than for dynamic viscosity. However,

they are largely categorized into two types with a threshold of
0.2% in 200 seconds (s) as follows.

Delayed change in shrinkage
The shrinkage rates exceed 0.2% after 200 s, showing more

gradual curves of shrinkage compared to the fast shrinkage type.
This includes President (two-step slope with an initial shrinkage
starting in 180 s after mixing and reaching 0.74% in 480 s),
Affinis regular (one-step slope with an initial shrinkage starting
in 200 s after mixing and reaching 0.35% in 330 s), and Dr.
Silicon (one-step gradual slope, with an initial shrinkage starting
in 280 s and reaching at 0.58% after 650 s). Final shrinkage
rates fall between 0.35 and 0.65%. Irregularly, no shrinkage was
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FIGURE 2

Dynamic viscoelastic properties and shrinkage rates of silicone materials. (A) Chronological change of viscoelasticity after mixing.
(B) Chronological change of shrinkage rates after mixing. The dashed and gray areas in the figure show the timing of silicon application,
pressing, and removal.

observed for Affinis light, which could be an unknown analytical
error since its final shrinkage rate provided by the company was
comparable to that of Affinis regular (Table 1). Alternatively,
this result on Affinis light could be batch-dependent, but due
to the budget and time available for this study, we were not able
to repeat the measurements.

Fast change in shrinkage
The shrinkage rates exceed 0.2% within 200 s, showing

increased shrinkage rates immediately after mixing. This group
includes JM Silicone (1st slope, reaching a shrinkage rate of
0.5% in 200 s, followed by the 2nd gradual slope), SILDE
FIT (1st slope, reaching 0.6% in 200 s, followed by the 2nd
gradual slope), Fusion II (one-step steep slope, reaching 0.55%
in 250 s), IMPRINSIS (one-step steep slope, reaching 0.74%
in 280 s), and EXAHIFLEX (1st slope, staying at 0.2% until
∼240 s and reaching at 0.38% after 420 s, followed by the 2nd
gradual slope between 300 and 400 s). Final shrinkage rates
range from 0.38 to 0.82%.

Impression accuracy judged by 2D
images

Though it was confirmed that there were differences
in impression accuracy of silicone materials even in the

lower magnification images (Figure 1), it was obvious in
the higher magnification images that several impression
molds (EXAHIFLEX, JM Silicone, and IMPRINSIS) had poor
reproducibility of original DMT, that is, their microscopic
images showed blurred surfaces and contamination of bubbles
(Supplementary Figures 1–3). In all fields of f9-1, f9-2, and
f9-3, blurring was observed in EXAHIFLEX, JM Silicone, and
IMPRINSIS. Molds made by SILDEFIT roughly reproduced
overall microwear features but had many traces of small bubbles
contamination on the surfaces in all target views. Among other
impression materials with relatively good accuracy, President
and Dr. Silicon had the best accuracy with fine microwear
features (e.g., very fine scratches).

Impression accuracy evaluated by
dental microwear texture parameters

The difference between the original surface and molds
was further evaluated by statistical comparisons of 32 DMT
parameters. The raw values of the DMT parameters of
all scans (N = 221) used in this study are listed in
Supplementary Table 1. Summary statistics (sample size, mean,
and S.D.) of the DMT parameters for scan targets (i.e., the
original tooth and nine impression materials) are provided in
Supplementary Table 2. Results of Steel’s non-parametric test
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comparing the original tooth surface and dental molds are
presented in Supplementary Table 3.

Figure 3 shows the number of significant differences in
Steel’s non-parametric test presented for each silicone material
and scan location. Thus, lower values on the vertical axis are
better, capturing morphological details of the original surface.
President Jet Regular body and Dr. Silicon regular type are
better (= the smallest number of significant differences) than
other products. The accuracy of Affinis light and SILDE FIT
follows President and Dr. Silicon, and the difference is small.
To present the precision of dental molds, the deviation of the
parameter value of the mold from the average parameter value
of the original tooth surface was obtained for each parameter
(Supplementary Figure 4). In Supplementary Figure 4, the
ranges of deviations (mold—original tooth surface) are wider
for some impression materials (IMPRINSIS and JM Silicone),
whereas others show equivalent ranges. Affinis light shows
narrower ranges since it has a larger number of molding and
scanning. In most cases, the ranges include zero, suggesting
that there was no outstanding impression material and that
all show decent levels of precision. However, as seen in the
100 × 2D images of Supplementary Figures 1–3, SILDE FIT
molds contain many bubbles. And the Affinis light molds are
slightly blurred. Therefore, we evaluated them not as accurate as
President and Dr. Silicon. IMPRINSIS regular type is the worst
among all (Figure 3), which corresponds to visual observations
of 2D images (Supplementary Figures 1–3).

PCA of the 32 DMT parameters clarified that the first and
the second principal components explained 52.6 and 19.1% of
the observed variation. The factor loadings of PC1 (Table 4)
showed larger positive values of height and volume parameters

of ISO 25178-2, indicating that PC1 could be interpreted as
overall surface roughness, in other words, the size of microwear
features. On the other hand, PC2 had larger positive values for
Sdq, Sdr, Asfc, and Spd, which were all related to the fineness
of the surface. In addition, the parameters related to surface
segmentation (Sda, Sha, Svd, and Shv) showed large negative
values. Therefore, the larger PC2 values indicated that the
surface was characterized by finer features and segmented into
smaller hills and dales. The scatter plots of PCs are shown
in Figure 4. We found a non-negligible variation in repeated
scans of the original tooth surface, which indicated uncontrolled
errors associated with placing the tooth on the microscope stage,
tilting the tooth, and searching and scanning the focal sites: all
of them cannot be perfectly repeated and therefore this leads to
data variation. Most of the scan data from the dental molds lay
within the 90% confidence ellipses of the original tooth scans,
though some departed even from the ellipses. Notably, the data
of molds made by IMPRINSIS regular type, the material with
the least replicability (Supplementary Figures 1–3), are placed
beyond the ellipses for all three scan locations.

Discussion

Dynamic viscoelasticity as a good
indicator to find suitable silicones for
dental microwear texture analysis

Based on 2D observations and statistical results of the
DMT parameters, we clearly showed dynamic viscoelasticity

FIGURE 3

The number of significant differences in 32 DMT parameters between the original tooth surface and silicone molds. Pair-wise tests were
conducted for each scan location on facet 9 (f9-1, f9-2, and f9-3).
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TABLE 4 The factor loadings obtained from a PCA using
32 DMT parameters.

PC1 PC2

Variance explained (%) 52.6 19.1

Sq 0.9860 −0.0872

Ssk −0.3811 0.4047

Sku 0.1615 −0.2427

Sp 0.8890 0.1019

Sv 0.9415 −0.1742

Sz 0.9840 −0.0776

Sa 0.9813 −0.0780

Smr −0.6484 −0.1563

Smc 0.9729 −0.0390

Sdc 0.9684 −0.1372

Sal 0.5220 −0.3105

Sdq 0.5495 0.7938

Sdr 0.4881 0.7770

Vm 0.8096 0.0160

Vv 0.9764 −0.0371

Vmc 0.9735 −0.0938

Vvc 0.9713 −0.0203

Vvv 0.9336 −0.1865

Spd 0.0902 0.8415

Spc 0.5694 0.5266

S10z 0.9674 0.1615

S5p 0.8451 0.3353

S5v 0.9435 0.0370

Sda 0.1007 −0.7624

Sha 0.1177 −0.7742

Sdv 0.0167 −0.5166

Shv 0.1496 −0.6440

Sk 0.7664 0.4959

Spk 0.5859 0.4824

Svk 0.6901 0.4659

epLsar −0.2506 0.3188

Asfc 0.4542 0.7987

is the best indicator to find appropriate dental impression
materials, which can mold accurately the tooth surface as
President. In our study, dynamic viscoelasticity categorized the
analyzed silicones into two types based on the hardening speed.
Despite a wide range of initial values, the rapid completion type
commonly shows steep viscoelastic curves. The silicones of this
type include President, Affinis regular, Affinis light, and Dr.
Silicone. They show better reproducibility of microwear features
with less blurring and less air bubble contamination than the
slow completion type (Figures 1, 3, 4). Especially, Dr. Silicone
presents better reproducibility of fine microwear features than
others. In contrast, the slow completion type, showing gradual
viscoelastic curves, did not complete hardening in 600 s from
the start. Nevertheless, according to the physical properties of

the silicones provided by the product companies (Table 1), the
range of cure time of the slow completion type does not differ
from that of the rapid completion type. This finding indicates
that the most conclusive and quantitative way to find suitable
silicones for DMTA is to measure dynamic viscoelasticity by a
rheometer and identify the product with similar curves to those
of the rapid completion type.

Criteria for silicones with the high
impression accuracy

Although dynamic viscoelasticity is the best indicator,
we suggest the following criteria for silicones as reliable
as President.

Rapid completion of curing in 5–6 min after
mixing

The silicones with rapid completion showed better
impression accuracy. It may be related to the timing of
removal of the impression molds from the specimen,
which was set as 5–6.5 min after mixing. If the pressure
with putty-type silicone had been continued until the
completion of hardening, the slow completion type may
have presented a better impression than the resultant
impression of this study. Nevertheless, we suggest that the
5–6 min completion of curing is a reasonable time for
DMTA research, considering the procedures for making
many impression molds of tooth specimens in a limited
working time (e.g., visiting museums). It must be noted
that the data of cure time provided by companies were not
concordant with dynamic viscoelasticity measured in this
study; the provided cure time data of the slow completion
type do not differ from those of the rapid completion
type (Table 1). This is partly because the cure time in
product material safety data sheet (MSDS) is idealized
for the application of in vivo human dentition in the oral
cavity, whose temperature is much higher than the ambient
temperature condition of 25◦C for measuring the dynamic
viscoelasticity in this study. Also, there should be variability
due to production batches. The divergence of acquired
viscoelasticity and shrinkage data in the present study from
product MSDS should be further investigated in future
collaboration with professionals of dental materials and product
manufacturers.

Delayed change in shrinkage, not exceeding
0.2% in 200 s after mixing

The analyzed silicones show more complicated patterns
for the time-sequential shrinkage rate than for dynamic
viscoelasticity. In our study, the silicones that do not exceed the
0.2% shrinkage in 200 s after mixing showed better impression
accuracy. These products were also categorized as the rapid
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FIGURE 4

Scatter plots of the PC scores obtained from 32 DMT parameters, presented respectively for each scan location on facet 9 (f9-1, f9-2, and f9-3).
Variation of repeated scanning of the original tooth surface was presented by the ellipses, within which 90% of the data lie. Symbols for the
dental impression materials are shown in right lower corner.

completion type, which is also associated with better impression
accuracy. In contrast, poor impression accuracy was observed
for the products that began shrinking immediately after mixing.

Delayed change in shrinkage with better impression
accuracy is related to the timing of applying the silicone to the
specimen (approximately 70 s after mixing) and pressing it to
the specimen with another putty-type silicone (approximately
180–200 s after mixing) (Figure 2B). The delayed start
of shrinkage seemed to provide enough time for silicone
compounds to extend over the microscopic details. On the
other hand, the materials that cured slowly and began to shrink
relatively early in the hardening process were less accurate
and their molds showed blurred surfaces (JM Silicone and
IMPRINSIS). This implies that the molds were peeled off from
the tooth surface at the microscopic level before capturing
details due to the shrinkage, as the shrinkage speed might exceed
the curing speed.

Medium viscosity
Among the four products categorized as the type with

rapid completion of curing through the measurements
of dynamic viscoelasticity, President and Affinis (regular)
are medium viscosity, whereas Affinis (light) is low
viscosity in the ISO 4823 classification. Although the
viscosity classification is unknown for Dr. Silicone,
based on handling these materials, the product is
assumed to be medium viscosity. These medium viscosity
products show more accurate impressions of microwear
features, which is concordant with the previous finding
(Goodall et al., 2015). Affinis light body was overall
good in parameter values, but from our experience,
this material should contain a larger amount of oil
than medium viscosity materials and the oil seems to
be associated with the slightly blurred surfaces of the
molds.
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Air bubble contaminations

Adhesion of air bubbles was remarkable in the materials
not only with relatively high viscosity immediately after the
mixing but also with slow completion of curing (EXAHIFLEX,
JM Silicone, IMPRINSIS, and SILDE FIT). Exceptionally, very
few bubbles were observed in President molds despite the high
initial viscosity. There may be some material characteristics
or components that make it difficult for bubbles to be mixed.
Anyway, the factors that contribute to bubble contamination
and deaeration would need to be considered with other physical
properties of materials and molding procedures.

As pointed above, the materials in combination of the
rapid completion type and delayed change in shrinkage result
in higher impression accuracy than other materials. This
was supported not only by qualitative evaluation based on
comparisons of 2D images but also by quantitative evaluation
based on statistical analysis using 32 DMT parameters.

Conclusion

For seeking dental impression materials suitable for
DMTA research, this study quantitatively evaluates the
physical properties of silicone impression materials (changes
of viscoelasticity and shrinkage over time) and the accuracy
of dental impression molds by DMTA. Our results, show that
dynamic viscoelasticity is strongly related to the accuracy of
silicone impression materials. On the timing of the impression
molding procedure, it is important for the impression accuracy
that the curing of silicone occurs immediately after mixing
and completes by the time the mold is removed from the
specimen, while the shrinkage starts after application to the
specimen. In addition, it is suggested that the physical property
information supplied by the product companies is not practical
in searching for impression materials suitable for DMTA, even
if it is measured according to ISO standards. Further collecting
and examining the data on physical properties of other dental
impression materials, which are globally or locally purchasable,
is to be of use for standardizing the methodology of DMTA.
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Biomedical Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom,
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Dental wear analyses are classically applied to mammals because they have

evolved heterodont dentitions for sophisticated mastication. Recently, several

studies have shown a correlation between pre-assigned and analytically

inferred diet preferences in extant reptiles through dental microwear texture

analysis (DMTA), a method using quantitative assessment of microscopic

wear marks to reconstruct the diet material properties. The first tentative

applications of DMTA to extinct reptiles have followed. However, for large and

small mammals, microwear analyses have undergone a long time of ground-

truthing through direct feeding observations, stomach content analyses, and

feeding experiments. Such data are currently lacking for reptiles, but are

necessary to further extend DMTA, especially to Archosauria, as the application

to dinosaurs could be of great interest to the scientific community. We herein

present data from a pilot feeding experiment with five juvenile American

alligators (Alligator mississippiensis). Each individual received a diet of assumed

di�erent hardness for ∼4 months: crocodylian pellets (control), sardines,

quails, rats, or crawfish. All individuals initially received the same pellet diet,

and we found them to show similar dental microwear texture patterns before

theywere switched to their designated experimental diet. From the first feeding

bout on, dental microwear textures di�ered across the diets. The crawfish-

feeder showed consistently higher surface complexity, followed by the rat-

feeder. Quail- and fish-feeding resulted in similar wear signatures, with low

complexity. Fast tooth replacement and selective tooth use likely a�ected

microwear formation, but we were able to detect a general hard (crawfish and

rat) versus soft (quail and fish) DMTA signature. Such patterns can support the

identification of hard-object feeding in the fossil record.
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microwear, DMTA, diet reconstruction, crocodylia, dental wear, hard-object feeding
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Introduction

The study of dental microwear texture (DMT) using

standardized textural parameters for quantification of diet-

related wear patterns has gained considerable interest in the

last decade, particularly for application to non-mammalian

species. With pioneering studies on fish (Purnell et al.,

2012; Purnell and Darras, 2015), lepidosaurs and archosaurs

(Bestwick et al., 2019; Winkler et al., 2019a), pterosaurs

(Bestwick et al., 2020), phytosaurs (Bestwick et al., 2021a), and

sauropods (Sakaki et al., 2022), it has been shown that diet-

related DMT features are formed (and preserved) in species

without heterodont, occluding teeth, and without sophisticated

mastication. Many of these non-mammalian species exhibit

frequent tooth replacement, but tooth-to-food contact still

seems to be sufficient to result in significant DMT differences

between diet preference groups, information that can be used

for dietary discrimination in extant and extinct taxa. However,

reptiles were also found to display non-diet-induced DMT

patterns that may be related to tooth position, bite force, and

behavioral differences in tooth use (Bestwick et al., 2021b), thus

complicating the assessment of diet-related DMTs.

Because diet proxies based on tooth-wear patterns can

enable inferences of niche partitioning among sympatric species

(Fiorillo, 1998; Mallon and Anderson, 2014), they can enhance

reconstructions of paleoecosystems. Several studies have linked

microscopic (2D microwear) and macroscopic tooth wear to

paleodiet in extinct archosauriforms (Schubert and Ungar, 2005;

Williams et al., 2009; Varriale, 2016; Virag and Osi, 2017) and

squamates (Holwerda et al., 2013; Gere et al., 2021). Therefore,

comparisons of DMT observed in extant reptiles could also be

helpful for the reconstruction of the paleoecology of taxa such as

dinosaurs, with extant toothed archosaurs (crocodylians) likely

being the best candidates to study as a model for theropod

dental wear. Dental microwear texture analysis (DMTA) has

undergone a long time of ground-truthing for large (Merceron

et al., 2016; Ackermans et al., 2020; Schulz-Kornas et al., 2020)

and small mammals (Schulz et al., 2013; Winkler et al., 2019b,

2020a,b, 2021) through feeding experiments. However, so far, no

direct observations regarding diet and tooth wear exist for extant

archosaurs that could validate our interpretation of diet-related

wear marks. Instead, DMTA for reptiles still relies on dietary

preference data compiled from the literature (from observations

and stomach content analysis).

To observe a direct effect of ingested diet on dental

microwear texture, we performed controlled feeding

experiments with five juvenile American alligators (Alligator

mississippiensis). Extant crocodylians are opportunistic

carnivores, with most species having a generalistic diet of

animal prey (Pooley, 1989). Still, dietary differences exist

across crocodylian taxa. For example, the Indian gharial, the

most slender-snouted of extant crocodylians, is primarily

piscivorous (Thorbjarnarson, 1990; Stevenson and Whitaker,

2010; Grigg and Kirshner, 2015), whereas broader snouted

crocodylians include harder prey in their diet, such as

crustaceans (Taylor, 1979; Platt et al., 2006, 2013) and turtles

(Taylor, 1986; Barr, 1997).Moreover, most crocodylians undergo

distinct ontogenetic dietary changes. Juveniles often feed on

invertebrates and small vertebrates (fish and amphibians), but

switch to larger vertebrates (mammals and fish) as adults (Cott,

1961; Taylor, 1979; Delany and Abercrombie, 1986; Hutton,

1987; Wolfe et al., 1987; Webb and Manolis, 1989; Platt et al.,

2006, 2013; Wallace and Leslie, 2008). If a specialized diet would

result in distinct DMTA signatures, transitions in diet and the

main components of diet might be detectable in crocodylians,

such that microwear data could help to resolve ontogenetic

dietary changes in fossil archosaurs.

For our comparisons, we selected four diet items assumed to

be of different hardness, representing hypothetical, specialized

feeding types, and compared DMTA patterns from shed teeth of

alligators on each of these diets to those from a control alligator

kept on the same pelleted diet received before our experiment.

Pellets were provided as a control food item because we expected

that their consumption would not leave distinct dental wear,

as they are not seized or processed with the teeth, but instead

only swallowed. Our four experimental foods included sardines

(representing a piscivorous diet), quails (representing a “soft”

vertebrate diet), rats (representing a “hard” vertebrate diet), and

crawfish (representing a “hard” invertebrate diet). Consistent

comparative data of mechanical and material properties of our

selected diet items are difficult to compile, but several studies

support our intuitive assessment of these diets being different

in their “hardness” or differently mechanically challenging to

process: Young’s modulus and bending strength of bones have

been found to be lower in teleost fish when compared to rats

and other mammals (Erickson and Catanese, 2002; Horton

and Summers, 2009). Birds have overall thinner, pneumatized

bones (Swartz et al., 1992; Cubo and Casinos, 2000) than

mammals, while crawfish, as crustaceans, possess a resistant

exoskeleton (Raabe et al., 2005) that needs to be fractured during

prey processing.

While the exact interrelations between mechanical

properties and DMT are unclear (Winkler et al., 2022),

previous studies have shown that extant archosaurs with a

presumed piscivorous diet had the lowest enamel surface

roughness (Bestwick et al., 2019), whereas extant archosaurs and

lepidosaurs assumed to feed on “hard” invertebrates (mollusks

and crustaceans) exhibited higher surface roughness and

surface complexity (Bestwick et al., 2019; Winkler et al., 2019a).

Therefore, sardines and crawfish represent the two extreme

endpoints of our experimental diet spectrum, with sardine-

feeding expected to result in overall lower wear (low roughness

and complexity), and crawfish expected to have the strongest

effect on dental enamel wear (large roughness and complexity).

Quails and rats were chosen as intermediate hardness samples

in our dietary continuum because bird skeletons are generally
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lightweight and delicate, in contrast to the skeletons of terrestrial

mammals; therefore, it could be assumed that quails represent

an overall softer diet than rats. There is some uncertainty in

these assessments. For example, in birds and mammals of

similar body mass, the skeleton contributes equally to total

body mass (Prange et al., 1979); however, long bones of birds

are often pneumatized, with significantly thinner walls than

marrow-filled bones found in mammals (Cubo and Casinos,

2000). The surprisingly large skeletal mass of birds results from

higher bone density compared to terrestrial rodents (Dumont,

2010), which gives bird skeletons a higher strength-to-weight

and stiffness-to-weight ratio. Thus, our use of both quails and

rats as samples should help to determine whether these prey

items actually pose different mechanical challenges to alligators,

or if these two tetrapod vertebrate diets might result in similar

DMT patterns.

Materials and methods

Five juvenile American alligators (Alligator mississippiensis)

were housed individually at Clemson University, South Carolina

(USA), where they are part of a larger number of alligators

kept for locomotion studies. Alligator husbandry and further

experimental procedures were approved by the Clemson

University IACUC (protocol 2019-037). The sex of the animals

was unknown. In July 2020, the average initial body mass of the

animals was 5,076.46 g (SD ± 1,368.98 g), while the average

snout-vent length was 612.00 mm (SD ± 53.40 mm) (Table 1).

For two individuals, weight and length were determined again in

December 2021, resulting in an average weight of 6,484.30 g (SD

± 1,252.00 g) and snout-vent length of 632.00 mm (SD ± 56.57

mm). Further details about the individuals and their husbandry

can be found in a study by (Iijima et al., 2021).

Before the start of the feeding experiments, all alligators

were fed a diet of commercial pellets for crocodylians (Mazuri

crocodylian diet, small) two times a week. The feeding

experiment took place in two phases, from February/March

until May/June 2021 (∼4 months per diet) and from September

to November/December 2021 (∼2 months per diet). At the

beginning of the feeding experiment, four out of five juvenile

alligators were switched to their designated experimental diet,

either receiving whole sardines (wild-caught, frozen sardines

fromPortugal, ordered throughwholey.com; alligator individual

identifier #2), whole quails (frozen extra-large Coturnix,

ordered through rodentpro.com; #4), whole crawfish (live

red swamp crawfish Procambarus clarkia, ordered through

lacrawfish.com, and frozen red swamp crawfish ordered through

acadiacrawfish.com; #3), or whole rats (frozen medium feeder

rats, ordered through rodentpro.com; #1). One individual was

kept on the pelleted diet as a control during phase 1 (#6). The

experimental feeds were first thawed, and then presented as

whole items two times a week. During phase 1, quails and rats

were similar in body weight and size, while sardines were longer

and more lightweight (Supplementary Table S1). Crawfish were

much smaller than the vertebrate diets, and hence ∼7 crawfish

were given for each feeding bout (Supplementary Table S1).

Phase 2 was a repetition of sardine- and crawfish-feeding,

with alligators that had received different foodstuffs during the

first period and were switched back to pellets from June to

late September 2021. The individual receiving quails during

phase 1 (#4) received crawfish and the one kept on the

pellets (#6) received sardines. During phase 2, sardines were

smaller and more lightweight than during phase 1, thus ∼1.8

sardines were fed for each feeding bout. Details of the feeding

schedule and observations of feeding behavior are given in

Supplementary Table S1. After each feeding bout, shed teeth

were collected from each individual tank and the source

individual and date of the collection were recorded. Feeding

events were captured on video, from which the number of bites

and behavioral notes were derived.

Dental microwear texture sampling
strategy

Collected teeth were shipped to the University of Tokyo

with export permission from the United States Fish andWildlife

Service (CITES permit # 21US05232E/9). The original enamel

surfaces of the shed alligator teeth were scanned using a confocal

laser microscope (VK-9700, Keyence, Osaka, Japan) with a violet

laser (408 nm), equipped with a long working distance 100x

lens (N.A. = 0.95) (resolution in x, y = 0.138µm, step size in

z= 0.001µm). Scans were obtained from the buccal side (which

was identified through the curvature of the tooth) as close to

the apex as possible, but always within the third of the tooth

crown closest to the apex for several reasons. The enamel is

thickest at the tooth tip (Kvam, 1959) and gets thinner along

the tooth crown toward the root. Therefore, the apex is likely to

preserve the enamel wear without exposing the dentine quickly.

Additionally, the apex is most likely to get in contact with food

items, either for seizing and holding them, or for processing the

prey. The apex is therefore the focus area of a conical tooth

(without a developed occlusal surface or visible wear facets) to

show diet-related wear.

Teeth were cleaned with acetone-soaked cotton swaps. If

teeth still showed attached dirt particles afterward, they were

additionally subjected to cleaning in an ultrasound bath. First,

teeth were individually placed in a 2% NaClO solution for 3min,

and then transferred to a milli-Q water bath for 3 min.

Up to four scans (141× 106µm) were taken for each tooth,

and if several teeth were retrieved after the same feeding bout,

these were treated as belonging to the same date. All scans were

trimmed in MountainsMap v. 9.0.9878 to 100 × 100µm to

exclude peripheral damage. For each tooth, median parameter
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TABLE 1 Overview of experimental animals, experimental period, and diets.

Experimental period Individual # Diet Snout-vent length (mm) Weight (g)

1 29. Jan.−31. May 2021 1 Rat 678 6,877

1 29. Jan.−31. May 2021 2 Sardine 570 4,335

1 10. Feb.−31. May 2021 3 Crawfish 590 4,265

1 04. Mar.−10. Jun. 2021 4 Quail 660 6,164

1 28. Jan.−08. Jun. 2021 6 Pellet (control) 562 3,711

2 27. Sep.−06. Dec. 2021 4 Crawfish 672 7,370

2 27. Sep.−25. Nov. 2021 6 Sardine 592 5,599

values were calculated from the obtained scans. Then, for each

collection date, mean parameter values were calculated from all

obtained teeth recovered on that date.

Teeth could not be assigned to a specific tooth position or

jaw. However, because posterior teeth are broader and shorter,

with blunter tips compared to anterior teeth, overall tooth

shape could be used to designate teeth as having come from

either posterior (molariform) or central/anterior (caniniform)

positions (Berkovitz and Shellis, 2017). Similar to Bestwick et al.

(2019), we avoided including molariform teeth, as they are used

for crushing and might be used differently on food items of

different hardness, and because they were more scarce among

the collected teeth. Instead, we concentrated on sharp, conical

teeth in our sample.

The teeth of alligators often show pronounced enamel

wrinkles (Sander, 1999). Through dental wear, the wrinkles

are worn away and enamel surfaces appear smoother (pers.

observation, Supplementary Figures S1, S2). We found that the

pellet-feeding individual as well as sardine- and quail-feeding

individuals showed the most pronounced enamel wrinkles.

These are problematic for assessing diet-related DMTs, as the

commonly applied surface roughness parameters from ISO

25871 would record higher surface roughness from the natural

enamel topography of relatively unworn teeth. In DMTA,

filtering protocols are usually applied to account for the gross

shape and waviness of the enamel surface. The commonly

applied filtering procedure in MountainsMap v. 9.0.9878 for

the employed microscope (compare Kubo and Fujita, 2021;

Winkler and Kubo, 2022) did not result in the satisfactory

removal of the enamel wrinkles (Supplementary Figures S1, S2).

Thus, we tested stronger filtering algorithms until satisfied

with the result (Supplementary Figures S1, S2), and settled on

a robust Gaussian filter (with a cut-off value of 0.8µm, using

the resulting S-F surface) followed by a Gaussian filter (with a

cut-off-value of 20µm, using the resulting S-L surface). As this

strong filtering procedure not only removed enamel wrinkles,

but also reduced the height and depth of diet-induced wear

features, we found that most of the commonly applied DMTA

parameters from ISO 25178, motif, and furrow analysis did not

detect differences between diet treatments. However, parameters

reflecting the complexity of the surface such as the scale-

sensitive fractal analysis (SSFA) parameter area-scale fractal

complexity (Asfc) and ISO 25178 developed interfacial area

ratio (Sdr) were less influenced by the strong filter routine, and

still showed significant differences between diets. Complexity

is known to indicate hard-object feeding in primates (Scott

et al., 2005, 2012; Ungar et al., 2008), carnivores (DeSantis

et al., 2012), and reptiles (Winkler et al., 2019a), and hence we

only concentrate on complexity parameters in this study. We

note that Asfc is calculated over the whole scale of a surface

(Scott et al., 2006). Our approach uses filtered, scale-limited

surfaces, because using the whole scale of the surface would

result in misinterpretation of enamel wrinkles as wear-induced

topography (hills and valleys). Thus, we are diverging from

the common practice of SSFA-based DMTA, which makes our

results less comparable to other studies. The range of Asfc, and

the absolute values obtained, will be smaller in the current

study as compared to previous studies. Still, we consider this

approach justified due to the nature of the studied surfaces,

i.e., the natural (unworn) enamel topography, and because the

observed differences in Asfc were also confirmed by the ISO

25178 parameter Sdr, which is applicable to describe surface

geometry of the scale-limited surface.

Statistics

All statistical analyses were conducted in JMP v.16.0. We

pooled data for each experimental diet starting with teeth

collected after the first feeding bout. Thereby, teeth experiencing

only one feeding event on an experimental diet and teeth

experiencing several feeding events were grouped. A Shapiro–

Wilk test indicated that mean food item weight (p = 0.217),

mean bite count (p = 0.652), mean Asfc (p = 0.950), and mean

Sdr (p = 0.931) per diet were normally distributed, hence we

analyzed their relationship using linear correlations (Pearson

coefficient). We used a heteroscedastic pairwise comparison

test (Wilcoxon test) to compare complexity patterns between

all dietary pairs. Data were also visualized per tooth on the

collection day over the course of the feeding experiment.
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However, because on several days only one tooth was recovered,

we did not statistically compare differences between individual

dates within or between diets.

Results

Feeding observations

The pelleted diet was consumed slower and more reluctantly

by individual #6. The four individuals on experimental diets

displayed high levels of anticipation prior to and during feeding

time, standing on their hindlegs, jumping, and frantically

searching for the prey item once it was dropped into the water

(see Supplementary Videos). They often missed the prey during

the first seconds due to this turmoil and had to be pointed

toward the food with a long stick.

During the first experimental phase, the mean bite count

on the four experimental feeds was lowest on the rat diet,

followed by quails, and highest on crawfish and sardines

(Figure 1, Supplementary Figure S3, Supplementary Table S1).

During the second phase, the bite count on crawfish was

even higher than during the first phase, while the bite count

on sardines was lower, even though most of the time two

instead of one sardine were fed (Supplementary Figure S3,

Supplementary Table S1). Individual #4 received different diets

during each experimental phase and displayed different mean

bite counts, with many fewer bites on quails (23.96) than

on crawfish (42.71) (Supplementary Figure S3). There was no

significant correlation between the weight of the diet items and

bite count (p = 0.691, Figure 1). Bite count was not recorded

for the pellet-feeding individual, as the feeding motion did not

include visible biting or processing of pellets.

Dental microwear texture analysis

Feeding on the pelleted diet resulted in overall smoother

dental enamel surface textures (Figure 2). Visually, surfaces of

teeth from pellet-feeders seem to show no or little wear marks.

Sardine-feeding and quail-feeding resulted in similar surface

wear as pellet-feeding, with only small visible wear marks. Rat-

and crawfish-feeding, on the contrary, resulted in visible, deep

wear marks (scratches).

The pelleted diet resulted in similar complexity (Asfc and

Sdr) for all individuals (Figure 3, Supplementary Table S2).

Before being placed on their designated experimental diet, at

least one shed tooth was collected from each individual. The

DMT of these falls within the range of Asfc and Sdr values

observed over the duration of the first experimental phase for

the control individual which remained on the pelleted diet

(Figure 3). Only one tooth collected for individual #6, before

being switched to sardine-feeding, shows significantly lower

Asfc and Sdr values than teeth from the same individual when

compared to the pooled data for itself over the course of phase 1,

and individuals #2 (dedicated sardine-feeder) and #3 (dedicated

crawfish-feeder).

Pooling of all data over the course of the experiment

highlights that already after the first feeding bout, several

experimental diets resulted in a change of DMT. Each

experimental diet except for quails displays significantly

higher Asfc and Sdr values than the control individual

(Figure 4). Within experimental diets, complexity increases

in the following order: quail ≤ sardine < rat ≤ crawfish

(Supplementary Table S2). The crawfish feeder showed

significantly larger Asfc and Sdr values than the sardine

and quail feeders, and non-significantly larger Asfc and Sdr

values than the rat feeder. Between sardine and quail, or rat

and crawfish, no significant differences in Asfc and/or Sdr

values were found. It is evident that Asfc and Sdr reflect the

same qualities of the surface. Hence, over the course of the

experiment, we only displayed a change in Asfc (Figure 5). Mean

complexity values were not significantly correlated to mean

bite counts in any of the diets (Asfc: p = 0.425, Sdr: p = 0.353,

Supplementary Figure S3).

All diets resulted in large variability in surface complexity

over the first experimental phase (Figure 5). There was no

distinct trend for increase or decrease of complexity values, but

an undulating pattern was observed. During the second phase,

variability seems to be lower for both the sardine- and crawfish-

feeding individuals. Already for the first recovered teeth at the

beginning of the feeding experiment, complexity increased on

all diets, except for the crawfish-feeding individual during the

second phase. For several dates during the feeding experiment,

single teeth showed complexity values as low as before (when

still feeding on a pelleted diet). Overall, rat- and crawfish-feeding

resulted in complexity values that were two times as high as

recorded for sardine- or quail-feeding.

Discussion

Though they do not truly chew, oral processing in young

alligators includes rapid orthal biting movements of the lower

jaw (Busbey, 1989). During initial prey acquisition, positioning,

and these crushing bites, we observed that teeth contacted

several times with the prey (Supplementary Videos). However,

these contacts are of varying frequency and intensity, depending

on the tooth position. We found that on diets of similar size

and weight (quails and rats), on average 16–24 bites were

used before the prey was swallowed (Supplementary Figure S1,

Supplementary Table S1). From seizing to swallowing, alligators

used a highly variable number of bites for sardines. Alligators

used more bites when being presented with one large

sardine than when being presented with two smaller sardines.

The total number of bites, however, does not seem to
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FIGURE 1

Bite count vs. food item weight (g), and per diet. No relationship between diet type and bite count, or food item weight and bite count was found.

Overall, the alligator feeding on rats displayed the least bites per feeding bout, while the crawfish feeder showed the most bites. The pelleted

diet is not displayed, as the alligator did not exhibit “chewing” behavior on pellets. Sardine = blue, quail = yellow, rat = red, crawfish = orange.

FIGURE 2

Scale-limited, filtered, 3D photosimulations of enamel surface textures for each diet. All surfaces are to the same scale. Scan size: 100 × 100µm.

The upper row shows a diet-related surface from late April/mid-May (∼3 months into the first phase of the feeding experiment). The lower row

shows a surface from a tooth of the same individual as in the corresponding upper row but collected immediately before the start of the feeding

experiment (while still feeding on pellets).

affect the observed complexity of dental microwear textures

(Supplementary Figure S3). Complexity values were higher for

the individuals feeding on rats than for the individuals feeding

on quails (Figure 4), but quails were on average consumed with

more bites, and overall lower complexity values were observed

when only one large sardine was consumed with more bites

than two small sardines (Supplementary Table S2). Crawfish-

feeding resulted in the largest complexity values observed, and

alligators also took the largest number of bites to process

crawfish. However, for each feeding bout, ∼7 crawfish were fed

on average. Therefore, the large number of bites here is the total

number of bites used to consume all crawfish.
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FIGURE 3

Asfc and Sdr recorded in di�erent individuals while feeding on the pelleted diet. The control animal (#6) received the pelleted diet over the

course of the feeding experiment. For the other individuals, 1–2 teeth were collected immediately before starting the feeding experiment. Each

scan is treated as an individual datapoint in this plot. Significance level: * = 0.05. Colored points indicate the diet which was assigned to each

individual during the feeding experiment: sardine = blue, quail = yellow, rat = red, crawfish = orange.

FIGURE 4

Pooled Asfc and Sdr observed for all diets over the whole experimental duration. Significance level: * = 0.05, ** = 0.01, *** = 0.001. Sardine =

blue, quail = yellow, rat = red, crawfish = orange. Gray boxplots with colored points indicate that teeth were collected before the start of the

feeding experiments, while the alligator was still feeding on pellets. Pooled data were created by using the median from all scans per tooth, and

then calculating a mean per collection date. Each collection date represents one point.
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FIGURE 5

Asfc over the duration of the first and (for sardine and crawfish) second phase of the feeding experiment. Phases 1 and 2 are separated by a

dashed line. Each datapoint represents one scan and can be derived from several teeth collected on the same date. (A) Sardine-feeder (alligators

#2 and #6), (B) quail feeder (alligator #4), (C) rat-feeder (alligator #1), (D) crawfish-feeder (alligators #3 and #4). Gray boxplots mark teeth

collected before switching to the experimental diet, when the alligator has only consumed pellets for at least 3 months. Note that di�erent

scales are used for pairs of sardine-/quail- and rat-/crawfish-feeding.

Dietary di�erences in dental microwear
texture analysis

The pelleted control diet resulted in variable, but overall

lowest complexity values and differed significantly from all

experimental vertebrate and invertebrate diets except for quails

(Figure 4). This is in accordance with our expectations, as the

pelleted diet was not seized or processed with the teeth, but

instead swallowed whole. The low complexity observed for

sardine-feeders and the high complexity observed for crawfish-

feeders were also in accordance with our expectations that they

would be on opposite ends of the DMT spectrum observed.

Crawfish can be considered a “hard” invertebrate diet, because of

their highly mineralized exoskeleton (Aiken and Waddy, 1992;

Raabe et al., 2005). In mammals (including hominins, modern

humans, and Neanderthals) and reptiles, high complexity has
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been consistently associated with hard-object feeding, whether

bones, nuts, seeds, or mollusks (Scott et al., 2005, 2012; Ungar

et al., 2008; DeSantis et al., 2012; Schmidt et al., 2016, 2019;

Williams et al., 2019, 2021; Winkler et al., 2019a, 2022).

Alligators feeding on crustaceans fit within this pattern and

emphasize the universal interrelation between complex DMT

and hard objects in the diet.

The difference between surface complexity observed for

teeth used on rat and quail prey is striking, with quail-

feeding resulting in similar complexity values as sardine-

feeding, whereas rat-feeding resulted in similarly high values

as crawfish-feeding (though crawfish-feeding resulted in the

highest complexity values observed). We can only speculate on

the source of these differences, and of course with a sample size

of one animal per diet, individual variability might also play a

role in our observed patterns. However, as hypothesized, bird

skeletons may exhibit different levels of resistance to breaking

by alligator teeth than rat skeletons. The overall thinner but

denser bird bone is optimized to withstand torsional stresses

during flight (Swartz et al., 1992), while making the skeletal

construction lightweight (Dumont, 2010). Bird bones, especially

the skull and humeri, are pneumatized (Cubo and Casinos,

2000). Rat bones, however, have thicker walls and are marrow-

filled, which makes them more resistant to bending under

the localized impact (Currey and Alexander, 1985). Moreover,

the skull is much heavier in relation to the rest of the body

than in birds, and also bears teeth (Dumont, 2010). Teeth are

composed of the hardest biological material, and it is plausible

that during feeding, the alligator’s teeth contact not only with

the rat postcranial skeleton, but also with the skull several

times. The observed distinct wear marks (Figure 2) and high

surface complexity (Figure 4) might result from these contacts

with the rat skull, their teeth, and the overall more bending-

resistant bones.

Individual variability and limitations of the
study

During capture, crocodylians use only the teeth of one side

of their jaws (Cleuren and DeVree, 2000; Erickson et al., 2012),

before repositioning the prey with inertial bites (Cleuren and

DeVree, 2000). Bestwick et al. (2021b) found that the middle–

distal and distal teeth of Alligator mississippiensis and Caiman

crocodilus, for example, exhibit the roughest microwear textures

(indicating higher abrasion due tomore tooth-to-food contacts).

This may stem from alligators using preferred teeth when

acquiring, manipulating, and crushing prey (Busbey, 1989). As

our experimental design did not allow to control for tooth

position, some teeth may show less use due to such differences.

Moreover, we do not know if the shed teeth were in use for

the same duration, or if some individual tooth positions were

exchanged more frequently than others. Therefore, it is not

surprising that our data show high intra-individual variability

over the course of the experiment.

The surface structure of enamel in alligators, with distinct

wrinkles that form small ridges, posed a challenge for evaluating

DMTA as compared to other species with smooth enamel

(Supplementary Figures S1, S2). This problem can likely occur

in other crocodylian taxa, theropods, or possibly in other

archosaurs with wrinkled or fluted enamel. Particularly, if teeth

have newly erupted, or the diet is soft and less abrasive, the

wrinkles do not wear down and present a topography that will

result in high surface roughness, height, and volume. However,

these large roughness, height, and volume values are not related

to diet-induced wear marks, and therefore not comparable to

the wear observed in mammals or non-mammalian species with

smooth enamel. This problem can be overcome by choosing

parameters that are less affected by the wrinkled enamel surface,

and by using a strong filtering routine that eliminates the

original enamel surface topography. However, such strong filters

will also reduce or erase diet-induced wear features. Therefore,

it is difficult to compare low abrasive diets to highly abrasive

diets in very young individuals with frequent tooth replacement.

In older specimens, when tooth replacement is slower, and

thus teeth experience wear over a longer period, this problem

seems not to occur. Bestwick et al. (2019) did not report such

problems when analyzing DMTA in extant crocodylians. Due to

this limitation, we can only report on two complexity parameters

that seem to effectively reflect diet hardness in young alligators,

as well as older individuals.

Our results confirm the expectations and encourage the

idea that hard-object feeding can be detected in archosaurs,

even in juveniles with frequent tooth replacement. It must

be noted, however, that our sample size of one (two for

crawfish and sardine) is too low to draw definitive conclusions.

Individual variability and behavioral differences might influence

feeding behavior, and thus dental wear. Still, the repetition

of feeding two out of four experimental diets supports that

the observed patterns are stable and repeatable, and in the

pooled sample, we were able to analyze 8–20 teeth per

diet. If these teeth would stem from different individuals,

it would be an acceptable sample size. Hence, we may

at least consider the DMT signature is representative, for

each individual.

Captive alligator diets and behavior

We observed that alligators feeding on the four experimental

diets displayed a great level of “excitement” during feeding

time. They were actively searching for their food, standing

on their hind legs, and jumping toward the food. Hence,

including dietary items similar to their natural diets

(small vertebrates and crustaceans) may be used as an

Frontiers in Ecology andEvolution 09 frontiersin.org

88

https://doi.org/10.3389/fevo.2022.957725
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Winkler et al. 10.3389/fevo.2022.957725

enrichment for captive crocodylians and promote their natural

feeding behavior.

Outlook and conclusions

This experiment highlighted both challenges and

opportunities when analyzing archosaur DMT. Unworn dental

enamel surfaces are wrinkled, which biases the assessment

of topography and requires strong surface filtering. Tooth

position-specific usage of teeth during prey processing, for

example posterior teeth being utilized for crushing, is known

in alligators and might result in tooth position-specific wear

patterns. Isolated teeth are difficult to assign to a certain

tooth position (unless they are blunt, button-like posterior

teeth). It would therefore be of great interest to explore

tooth position-specific DMT in greater detail in archosaurs,

along the jaw, and especially comparing caniniform and

molariform teeth. Obviously, a continuation of similar

feeding experiments with a larger number of individuals

would be desirable, but may be impractical. Therefore,

even though these results need to be treated with great

caution, our feeding experiments provide unique data on

how different food types affect DMT in alligators and support

the universal interrelation of hard-object feeding and high

surface complexity. Such patterns may also support the

identification of hard-object feeding in the fossil record, and

thus shed light on the paleodiet of extinct faunivorous taxa,

including dinosaurs.
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The dental microwear texture of
wild boars from Japan reflects
inter- and intra-populational
feeding preferences
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1Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The

University of Tokyo, Kashiwa, Japan, 2Faculty of Science, Academic Assembly, University of Toyama,

Toyama, Japan

Dental microwear texture analysis (DMTA) is rapidly expanding for the dietary

estimation of extinct animals. There has been an extensive accumulation of

microwear texture data from herbivorous mammals, especially for ruminant

artiodactyls, but suids are still underrepresented. Microwear varies depending

on the diet, and suids are naturally more flexible than other artiodactyls. Thus,

their microwear is prone to greater variability. In this study, we examine the

tooth microwear texture of wild boars from Toyama Prefecture, Japan, for

which detailed ecological and dietary information by stomach content analysis

is available.We first investigated 205 individuals of wild-shot Toyama boarswith

known sex, age class, localities (the eastern high latitude region vs. the western

low latitude region), and season of collection. The tooth surfaces of boarlets

were rougher than those of juvenile and adult animals. The decrease in surface

roughness with age implied that the frequency of tooth-tooth contact, which

seemed to result in cracking of enamels and thus rough surfaces, decreased

after the boars started feeding on solid foods (food-tooth contact), with

progressive involvement of rooting behavior inmature adults. We further found

that surface roughness showed significant di�erences between localities, with

the western Toyama boars having flatter surfaces, possibly because they were

involved in more rooting and feeding on soil-contaminated rhizomes than

the eastern ones, as implied by the available stomach content data. The

frequency of rooting was also evident in the broader comparison among

Japanese boar populations with di�erent habitat environments. The mainland

boars inhabiting deciduous broad-leaved forests had a flatter and less rough

tooth surfaces than those in the subtropical evergreen broad-leaved forests of

the southern islands. This corresponds to the fact that above-ground dietary

resources were more abundant in the habitat of the southern island boars,

where crops like succulent vegetables and fruits, as well as naturally fallen

acorns, were abundant, whereas underground plant parts were the dominant

diet component for the mainland boars. This study proved that DMTA can

identify the di�erence in foraging modes in suids and make it possible to

estimate the frequency of rooting, which is informative for inferring breeding

methods of boars/pigs from archaeological sites.
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Introduction

The wild boar (Sus scrofa) is the most widely distributed

terrestrial wild mammal globally and is currently distributed

throughout Eurasia and northern Africa. It has been introduced

to the North and South Americas and the Oceanian islands. The

wild boar is highly adaptable to local environments and shows

plasticity in feeding habits. Wild boars have been a important

human food resource for a long time, possibly more than several

hundred thousand years (Stiner et al., 2009), and boars excavated

from archaeological sites have been a particular focus of

zooarchaeological research to verify the process of domestication

by humans (Larson et al., 2007, 2010). In recent years, in

addition to the conventional comparative anatomy of bones

and teeth [e.g., Evin et al., 2013 and the references therein],

attempts have been made to investigate the domestication and

husbandry practices of wild boars by clarifying the feeding

habits of boars excavated from archaeological sites (Minagawa

et al., 2005; Vanpoucke et al., 2013; Halley and Rosvold, 2014;

Yamada et al., 2021). Isotopic analyses were conducted to reveal

dietary differences among wild and reared boars/pigs from

excavated historical sites and clarified in part that some pigs

from historical sites were raised on human refuse and not on

a diet predominated by terrestrial plants, which was indicative

of outspan foraging (Minagawa et al., 2005; Halley and Rosvold,

2014). On the other hand, studies on dental use-wear analysis,

which analyzes the microscopic wear (microwear) formed on

tooth enamel surfaces, focused not only on a diet but also

on the frequency of rooting behavior (Vanpoucke et al., 2013;

Yamada et al., 2021). Because rooting and foraging on grit-

contaminated foods could produce characteristic dental wear

(Ward and Mainland, 1999; Souron et al., 2015; Yamada et al.,

2018; Lazagabaster, 2019) (see below), husbandry practices,

which keep boars/pigs within stalls and restrict rooting behavior,

could be inferred from dental microwear. Therefore, analysis

of microwear is anticipated to reveal the transition from free-

ranging to rearing within stalls, which should have occurred in

the domestication process.

Dental microwear texture analysis (DMTA) is one of the

dietary estimation methods and has been developed since the

2000s (Scott et al., 2005, 2006; Schulz et al., 2010). DMTA

has been applied to diverse vertebrates, including mammals,

reptiles, and fish (Purnell et al., 2012, 2013; DeSantis et al.,

2013; Desantis and Haupt, 2014; Gill et al., 2014; Calandra

and Merceron, 2016; Bestwick et al., 2019; Winkler et al.,

2019). The relationship between DMT and diet derived from

extant species has been used to estimate the diet of fossil

species. Among them, extensive DMTdata of extant herbivorous

mammals have been generated and accumulated, both for

wild individuals (Merceron et al., 2010, 2014; Scott, 2012;

Kubo et al., 2017; Aiba et al., 2019; Arman et al., 2019;

Kubo and Fujita, 2021) and laboratory-reared, diet-controlled

ones (Merceron et al., 2017; Winkler et al., 2019, 2020;

Ackermans et al., 2020, 2021). DMT data of the omnivorous

species, however, have not been investigated rigorously, possibly

because their flexible dietary preferences make the comparisons

difficult and less interpretable. Yet, a few DMT studies of

boars have been conducted, comparing DMT among multiple

species with different foraging ecologies (Souron et al., 2015;

Lazagabaster, 2019) and among populations of the same species

in different habitats (Yamada et al., 2018). In the former studies,

distinct differences in DMT were found between species that

frequently forage on grasses and their roots and those that

are more omnivorous and feed on rhizomes, nuts, leaves,

grasses, and animal matter (Souron et al., 2015; Lazagabaster,

2019). The herbivorous species had tooth surfaces with more

aligned scratches and, therefore, were less complex and more

homogeneous than the omnivorous species. In the latter study,

three populations of the same species (Sus scrofa) in Japan were

compared: mainland boars, which were involved in frequent

rooting behavior; boars from the southern island (Iriomote

Island), which are thought to have a higher consumption rate

of fruits, nuts, and cultivated plants in their diets; and boars

that were raised in a concrete-floored stall and fed corn hay

(Yamada et al., 2018). Significant differences in DMTwere found

between the mainland boars and the reared boars, and the island

boars were placed between them. Ward and Mainland (1999)

also found the same dental microwear differences, though not

by the three-dimensional DMT but by a conventional method

of counting microwear features from 2D images obtained

by SEM, between free-ranging and stall-fed pigs. Yamada

et al. (2021) further investigated the DMT of boars/pigs from

archaeological sites in the southern islands (Ryukyu Islands)

of Japan. They found chronological and/or locality differences

in DMT among studied populations. The differences were

interpreted by possible feeding on human leftovers and rearing

in floored stalls: boars/pigs having lower surface roughness

might be allowed to range freely around human settlements

and thus forage on underground plant resources, whereas those

having higher surface roughness were expected to be kept in

floored stalls and fed on softer diets, possibly provided by

humans. The above DMTA studies on extant suids (Ward

and Mainland, 1999; Souron et al., 2015; Yamada et al., 2018;

Lazagabaster, 2019) were based on information about “known”

diets of populations, though quantitative data on their diets were

not provided. To supplement these studies, a study examining

the relationship between DMT and diet was conducted by

running feeding experiments on pigs; the pigs were fed different

seed-mixed diets among the groups (Louail et al., 2021). While

seed foraging was shown to be associated with DMT, the control

group feeding only on soy flour, the food item which was

included in the diets of other seed feeding groups, showed a

large variation of DMT parameters and overlapped with other

seed-feeding groups, making dietary inference from DMT more

complicated. Since wild boars feed on various items at varying

proportions according to seasons, it is necessary to conduct
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analyses of wild populations whose diet is more clearly defined

by quantitative dietary analysis. It will be a crucial step toward a

more quantitative estimation of suid diets by DMTA.

In this study, we aim to solve the above problem and clarify

how locality, season, and age at the culling are related to DMT

for wild boars hunted in Toyama Prefecture, Japan. Stomach

content analysis has already been conducted for some of the

boars analyzed in this study (Yasuda and Yokohata, 2015), and

the quantitative dietary data can be used to correlate with DMT.

The habitat environments were different between the eastern

and western regions of Toyama Prefecture (see Materials and

methods Section), which caused a difference in the food habits

of wild boars between the localities. We also used the DMT

data of Japanese wild boars obtained by Yamada et al. (2018,

2021), aiming to conduct a broader comparison and examine the

relationship between the foraging ecology and the DMT of wild

boars in Japan. From the preceding DMTA and conventional

microwear studies, we specifically expect that both diets and

frequency of rooting are associated with DMT even at finer

scales among Japanese wild boars, aiming at providing a more

solid background when discussing boar husbandry practice in

the zooarchaeological context.

Materials and methods

Sus scrofa population from Toyama
Prefecture

We used 205 individuals of wild boars collected by nuisance

culls in Toyama Prefecture, central western Japan (Figure 1).

The nuisance cull was done year-round, and sex, date of

collection, and localities were recorded. In the present study,

the boars were divided into two localities, i.e., the eastern

and western Toyama, which were separated by the Jinzu River

running across Toyama Prefecture in the north-south direction

(Figure 1). The geological and environmental settings of the two

localities were contrasting. The eastern region was characterized

by high elevation areas (altitude of ca. 100–2,000m) with

natural vegetation of cool-temperate deciduous broad-leaved

forest and secondary forest. On the other hand, the western

region was in lower elevation areas (altitude of ca. 100–500m),

and both secondary and planted coniferous forests showed a

mosaic distribution. Agricultural fields (rice and other crops)

were more widely distributed in the western region. Mean

annual temperature and annual precipitation were 11.8◦C and

3020.7mm for the eastern Toyama (Kamiichi-machi, 36◦40′20′′

N, 137◦25′40′′E) and 13.4◦C and 2597.3mm for the western

Toyama (Nanto-shi, 36◦32′70′′ N, 136◦52′30′′E). The number

of specimens used in the present study is given in Table 1.

The boars’ age at death (in months) was assessed by

tooth eruption and wear status according to the method of

Kodera et al. (2012). Subsequently, we classified them into

three age classes: adults (older than 20 months), juveniles

(12–20 months), and boarlets (younger than 12 months). The

season of death was classified into spring (March, April, and

May), summer (June, July, and August), autumn (September,

October, and November), and winter (December, January, and

February). Among the 205 individuals, the stomach contents of

36 wild boars were investigated (Yasuda and Yokohata, 2015).

The dried weight of stomach contents was weighed for four

dietary categories: above-ground plant parts (leaves and stems),

underground plant parts (rhizomes, tubers, and roots), nuts, and

rice. In the current samples, animal matters (vertebrates and

invertebrates) were minor components; therefore, the boars in

Toyama Prefecture had herbivorous feeding habits in general,

similar to other Japanese mainland populations (Asahi, 1975;

Kodera et al., 2013). The proportion of each category (weight

of the dietary item/total weight of analyzed stomach content)

was calculated, and the category that accounted for the largest

part of stomach content was identified for each boar. Table 1

includes the number of samples of stomach content analysis, and

the proportion of each dietary item in percent (%) is provided

in Supplementary Table S1. Figure 1 includes bar charts showing

the difference in stomach content between the eastern and

western regions. All the skull specimens are stored in the Faculty

of Science, University of Toyama.

Molding and obtaining microwear texture
data

Dental impressions were obtained from the occlusal enamel

surfaces of the lower 4th deciduous premolar (dp4) and the

lower 1st, 2nd, or 3rd permanent molars. Following Souron

et al. (2015) and Yamada et al. (2018, 2021), we investigated

the lingual enamel bands (facets 1, 3, 5, and 7 in Figure 2),

which act as Phase I shearing facets during mastication. When

the lingual enamel band was broken (N = 42), we used the

buccal enamel bands (facets 2, 4, 6, 8, and 10 in Figure 2). In the

present dataset, we did not observe any significant differences

in DMT parameters between the lingual and buccal enamel

bands (see Supplementary Figure S1), therefore we combined

the data from different enamel bands. Molding was conducted

following the methodology of Kubo et al. (2017), in which the

tooth occlusal surfaces were cleaned with cotton swabs soaked

with acetone, and molds were taken using high-resolution A-

silicone dental impression material (Dr. Silicon regular type,

BSA Sakurai, Japan). We used a confocal laser microscope (VK-

9700, Keyence, Japan) equipped with a 100× long-distance lens

(N.A. = 0.95) to scan the occlusal impressions. It uses a violet

laser, and its wavelength is 408 nm. Generated 3D microwear

texture data had point clouds with lateral (x, y) sampling with

an interval of 0.137µm and a vertical resolution (z) of 0.001µm

(the nominal value from the brochure). The field of view was 140
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FIGURE 1

Localities of Sus scrofa populations used in the present study. Results of the stomach content analysis of Toyama boars are presented,

respectively, for eastern and western regions, with the bars representing average proportions of four food categories and standard errors.

TABLE 1 The number of Sus scrofa specimens used in the present study.

Number of specimens used for DMTA Source of

DMT data
Boarlet Juvenile Adult Unknown

age

Locality Sp Su A W Total Sp Su A W Total Sp Su A W Total Total

Eastern

Toyama

8

(0)

9

(0)

30

(7)

24

(1)

71

(8)

1

(0)

11

(0)

7

(4)

6

(2)

25

(6)

4

(0)

5

(0)

5

(3)

18

(4)

32

(7)

This study

Western

Toyama

14

(1)

15

(0)

10

(0)

10

(5)

49

(6)

0 6

(1)

1

(0)

5

(1)

12

(2)

5

(2)

3

(0)

1

(1)

7

(4)

16

(7)

This study

Tanba 4 9 Yamada et al.,

2018

Iriomote

Island

5 4 Yamada et al.,

2018

Ishigaki Island 23* Yamada et al.,

2021

Stall-fed 11 Yamada et al.,

2018

For the Tanba, Ishigaki, Iriomote, and stall-fed populations, we used the original surface scan data from Yamada et al. (2018, 2021). Abbreviations for seasons are Sp, spring; Su, summer;

A, autumn; W, winter. The numbers in parentheses for Toyama boars are the sample size of the stomach content analyses.

*The age class of Ishigaki boar was not shown in Yamada et al. (2021), but the tooth surface data were obtained from either lower 1st or 2nd molars. Therefore, they were obtained from

either juveniles or adults.

The numbers in parentheses for Toyama boars are the sample size of the stomach content analyses.
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FIGURE 2

The occlusal surface of the left lower second molar and nomenclature of enamel bands. This study scanned the lingual enamel bands (facets 1,

3, 5, and 7). In case the lingual enamel bands were broken, we used the buccal enamel bands (facets 2, 4, 6, and 8). The scale bar is 10mm.

Abbreviations for orientation are Buc, buccal; Dis, distal.

× 105µm.We scanned four adjacent fields and combined them

into one large field by using VK Assembler software (Keyence,

Japan). The total acquired area was smaller than 280 × 210µm

due to overlaps between adjacent fields and thus variable among

the specimens. After trimmed into 208 × 144µm in size (see

“Processing 3D surfaces and calculation of DMT parameters”

below), DMT parameters were calculated from these combined

fields by using surface roughness software (Mountains Map,

Imaging Topography, ver. 9. 0. 9733, Digital Surf, France).

Comparative DMT data of extant Sus
scrofa populations from Japan

Yamada et al. (2018, 2021) compared DMT data of

extant and archaeological S. scrofa populations from Japan.

We utilized the scan data of the four extant populations:

a wild mainland population from the Tanba region, Hyogo

Prefecture, central Japan (hereafter referred to as Tanba), reared

individuals in a concrete-floored stall (stall-fed), and two wild

populations from the Ryukyu Islands (Iriomote Island and

Ishigaki Island). Detailed information on these populations is

given in Yamada et al. (2018, 2021), and dietary characteristics

are summarized below. The boars from the Tanba population

inhabited deciduous broad-leaved forests and fed mainly on

roots, barks, and rhizomes during the winter season (Asahi,

1975). The boars from Iriomote Island lived in subtropical

evergreen broad-leaved forests and consumed roots, rhizomes,

fruits, and nuts throughout the year (Ishigaki et al., 2007).

The boars from Ishigaki Island were not investigated in their

feeding habits, but they also lived in subtropical evergreen

broad-leaved forests and fed on crops (Ishigaki City, 2021). Both

Iriomote and Ishigaki Island boars were known to feed on crops

such as pineapples, bananas, mandarin oranges, sugar canes,
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TABLE 2 Names and definitions of 30 parameters of ISO 25178-2.

Parameter Description Unit

Sq The standard deviation of the height distribution µm

Ssk The skewness of the height distribution no unit

Sku Kurtosis of the height distribution no unit

Sp Maximum peak height, height between the highest peak and the mean plane µm

Sv Maximum pit height, depth between the mean plane and the deepest pit µm

Sz Maximum height is the sum of the maximum peak height and the maximum pit height (Sp + Sv) µm

Sa Arithmetic mean height µm

Smr Areal material ratio, the ratio of the area of the material at a specified height c (c= 1µm under the highest peak) %

Smc Inverse areal material ratio, height at which a given areal material ratio (p= 10%) µm

Sxp Peak extreme height, difference in height between the p and qmaterial ratio (p= 50%, q= 97.5%) µm

Sal Autocorrelation length (s= 0.2) µm

Sdq Root mean square gradient no unit

Sdr The developed interfacial area ratio %

Vm Material volume at a given material ratio (p= 10%) µm3/µm²

Vv Void volume at a given material ratio (p= 10%) µm3/µm²

Vmc Material volume of the core at a given material ratio (p= 10%, q= 80%) µm3/µm²

Vvc Void volume of the core (p= 10%, q= 80%) µm3/µm²

Vvv The void volume of the dale at a given material ratio (q= 80%) µm3/µm²

Spd Density of peaks 1/µm²

Spc Arithmetic mean peak curvature 1/µm

S10z Ten-point height µm

S5p Five-point peak height µm

S5v Five-point pit height µm

Sda Closed dale area µm²

Sha Closed hill area µm²

Sdv Closed dale volume µm3

Shv Closed hill volume µm3

Sk distance between the highest and lowest level of the core surface µm

Spk the average height of the protruding peaks above the core surface µm

Svk The average height of the protruding dales below the core surface µm

and sweet potatoes (Ishigaki et al., 2007; Ishigaki City, 2021).

The stall-fed boars were fed mainly on corn. Except for the

Ishigaki population, the age at death in months was estimated

by Yamada et al. (2018) following the method of Hayashi

et al. (1977). There was a good correspondence between the

methodologies of Hayashi et al. (1977) and Kodera et al. (2012).

Therefore, the estimated ages were comparable to the Toyama

populations. The number of specimens used for comparative

analysis is shown in Table 1. Using amodified analytical template

of the newer version of the software (Mountains Map) after

the publications of Yamada et al. (2018, 2021), we reanalyzed

the original scan data obtained by Yamada et al. (2018, 2021)

rather than compared it to the published DMT parameter values.

The method for obtaining 3D surfaces by Yamada et al. (2018,

2021) was identical to that was applied for the Toyama boars:

i.e., the same tooth types and facets were scanned by the same

laser microscope with the same settings; therefore, the DMTA

data are directly comparable after the application of the newer

analytical template.

Processing 3D surfaces and calculation of
DMT parameters

All the 3D surface data were processed following the

procedures of Yamada et al. (2018) and Aiba et al. (2019) by

MountainsMap Imaging Topography. The scanned impressions

were mirror images of the actual tooth surfaces. Therefore, the

coordinates were mirrored in the x- and z-axes. The surfaces

were then leveled via the least-square plane by subtraction to

remove the inclination of the molds, and a robust Gaussian

filter was applied with a cutoff value of 0.8µm to remove

measurement noise (S-filter as defined in ISO 25178-2). The

form removal function (polynomial of increasing power = 2)
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was utilized to remove the large-scale curvature of the enamel

bands (F-operation in ISO 25178-2). Because measurement

noise appeared as spikes on the surface, we applied the

automated outlier removal function, which removes any features

with a slope of > 80◦ and a threshold that removes the

upper and lower 0.1% of the data. These non-measured points

were subsequently filled using the smoothing function of the

Mountains Map. This workflow was similar to that of the

preceding DMTA research (Arman et al., 2016; Kubo et al.,

2017), but the difference was in filtering: i.e., a robust Gaussian

with a 0.8µm threshold was used in the present study, whereas

single, double, and triple usage of spline, Gaussian, and robust

Gaussian filters with different threshold values were used in

previous studies (Arman et al., 2016; Kubo et al., 2017). Finally,

the scanned areas were trimmed to 208× 144µm to standardize

the area size. After the above procedures, 30 parameters of

ISO 25178-2 were calculated. The names and definitions of the

parameters are shown in Table 2.

Statistical analyses

We conducted a principal component analysis (PCA)

to summarize the 30 parameters into a few interpretable

components. The PCA was applied to the whole dataset (N

= 261). In the following statistical analyses, we focused on

the principal components. Since the normal distribution of the

principal components was rejected by the Shapiro–Wilk test

(P < 0.05, see Supplementary materials), we transformed them

using Johnson’s Su distribution to fulfill the normality. Hereafter,

the transformed principal components are referred to as PCs

for simplicity.

First, we compared PC1, PC2, and PC3 among Toyama

boars to test the relationships between dietary and ecological

characteristics and DMT. The following hypotheses were tested:

(1) there are significant differences among the dietary groups

based on the stomach contents, (2) there is an ontogenetic

change in DMT from boarlets to adults, and (3) there are

significant differences between localities (eastern Toyama vs.

western Toyama) and among seasons of collection in DMT. In

the first analysis, we conducted an ANOVA comparing the four

dietary categories using 36 individuals with data on stomach

contents: above-ground plant parts, N = 7; underground plant

parts, N = 21; nuts, N = 3; and rice, N = 5. Due to the

scarcity of samples, we grouped both localities, seasons, and age

classes. In the second and third analyses, we used the whole

Toyama dataset (N = 205) and conducted a stepwise model

selection with the PCs being the response variables and age class,

locality, season, and their interaction terms (age class∗locality,

age class∗season, locality∗season, and age class∗locality∗season)

being the explanatory variables. Since we did not find a

consistent difference between adults and juveniles in PCs (the

Tukey–Kramer test, P > 0.05), we used a dichotomous age

TABLE 3 The factor loadings from the PCA of 30 ISO 25178-2

parameters.

Parameter PC1 PC2 PC3

Sq 0.94491 0.23792 −0.08922

Ssk −0.04061 0.30561 −0.83249

Sku −0.07864 −0.36458 0.71585

Sp 0.90227 0.04394 −0.18948

Sv 0.89798 −0.07368 0.29806

Sz 0.96874 −0.02356 0.08975

Sa 0.92533 0.26467 −0.15181

Smr −0.52860 −0.06517 0.00448

Smc 0.90078 0.30132 −0.22015

Sxp 0.91367 0.09729 0.17192

Sal 0.16170 0.48160 −0.24314

Sdq 0.84296 −0.49282 −0.08509

Sdr 0.83481 −0.48088 −0.11054

Vm 0.71334 0.20988 −0.27369

Vv 0.90253 0.30107 −0.22343

Vmc 0.89635 0.28138 −0.19591

Vvc 0.87386 0.32185 −0.28150

Vvv 0.85723 0.04733 0.30025

Spd −0.39962 −0.63749 −0.28188

Spc 0.83996 −0.22180 −0.06605

S10z 0.85811 −0.33164 0.09577

S5p 0.78107 −0.30319 0.00562

S5v 0.83011 −0.31971 0.16049

Sda 0.40833 0.53991 0.40586

Sha 0.13575 0.72509 0.39891

Sdv 0.39155 0.28338 0.39700

Shv 0.29101 0.45430 0.53937

Sk 0.83817 −0.24701 −0.02094

Spk 0.83146 −0.45346 −0.00272

Svk 0.80094 −0.43389 0.10264

The absolute values larger than the threshold value (0.4) were shown in bold.

class (adult/juvenile vs. boarlet). We used Akaike’s information

criterion for a small sample size (AICc) for model selection. The

model was significantly different when the 1AICc was >2. The

model with the lowest AICc value and all included explanatory

variables being statistically significant was selected as the best

model (Burnham and Anderson, 1998).

Second, we compared the PCs of Toyama populations with

other wild boar populations and the stall-fed ones. For this

comparison, we only used juvenile and adult individuals of

Toyama boars with combined collection seasons. We conducted

a one-way ANOVA followed by pairwise comparisons with the

Tukey-Kramer tests. All the statistical analyses were conducted

with the statistical software JMP (ver 16.2, SAS Institute

Inc., USA).
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TABLE 4 Descriptive statistics of PCs of investigated boar populations.

PC1 PC2 PC3

Locality Age class Number of

specimens

Mean S.D. Mean S.D. Mean S.D.

Eastern Toyama Adult/Juvenile 57 −0.307 0.793 0.137 1.036 0.127 0.941

Boarlet 71 0.324 0.722 0.449 0.924 −0.229 1.122

Western Toyama Adult/Juvenile 28 −0.903 0.719 −0.142 0.804 0.014 1.013

Boarlet 49 −0.180 0.936 0.114 0.869 −0.362 0.889

Tanba Adult/Juvenile 13 −0.570 0.928 −0.026 0.769 0.244 1.161

Iriomote Island Adult/Juvenile 9 0.581 1.077 −0.813 1.317 0.401 0.853

Ishigaki Island N.A.* 23 0.664 0.634 −0.863 0.944 0.537 1.034

Stall-fed Juvenile 11 1.797 1.086 −1.223 1.073 0.026 0.869

*The age class of Ishigaki boar was not shown in Yamada et al. (2021), but the tooth surface data were obtained from either lower 1st or 2nd molars. Therefore, they were obtained from

either juveniles or adults.

Results

Principal component analysis of DMT
parameters

According to PCA of 30 ISO 25178-2 parameters, the first,

second, and third PCs explained about 55.5, 12.7, and 9.2% of the

total variance, respectively. Table 3 presents the factor loadings

of the parameters. The first component (PC1) can be interpreted

as the overall surface roughness or size of microwear features,

as most of the height (e.g., Sq: standard deviation of the height

distribution, Sp: maximum peak height, and Sa: arithmetic mean

height) and volume parameters (e.g., Vv: void volume at a given

material ratio, Vmc: material volume of the core at a given

material ratio, and Vvc: void volume of the core) showed large

values of the loadings. These were positively loaded; therefore,

larger PC1 values indicated greater surface relief. The parameters

which exerted a strong influence on the second component

(PC2) are those which are related to surface segmentation. Sda

(closed dale area) and Sha (closed hill area) have large positive

loadings, whereas Spd (density of peaks) has a negative loading

value. This indicates that larger values of PC2 represent tooth

surfaces segmented into larger hills and dales, resulting in a

lower number of segments (i.e., low density of peaks). The

negative factor loadings of Sdr (developed interfacial area ratio)

and Sdq (rootmean square gradient) are related to the fineness of

surface features, with the larger values indicating the dominance

of finer features, are concordant to this interpretation. The

third component (PC3) is related to height distribution. Ssk

(skewness of the height distribution) and Sku (kurtosis of the

height distribution) show large factor loadings. Therefore, the

larger value of PC3 indicates the height distribution of the

surface is skewed to a high elevation with the pointed peaks

and valleys.

All the raw parameter values and PC scores are included

in Supplementary Table S1. The descriptive statistics of PCs are

presented in Table 4.

Correlation between stomach contents
and DMT in Toyama boars

There are no significant differences in any of the PCs

among the four dietary groups defined by stomach content

analysis [one-way ANOVA; PC1: F3, 32 = 0.26, P = 0.85;

PC2: F3, 32 = 0.10, P = 0.96; PC3: F3, 32 = 1.51, P = 0.23;

Supplementary Figure S2], refuting the correlation between the

stomach content and DMT parameters in Toyama boars at the

individual level.

Factors responsible for the variation of
PCs in Toyama boars

We selected the best models explaining the variation

of PC1–3 by stepwise model selection using AICc

(Supplementary Table S2). The best model for PC1 includes

four explanatory variables: age class, locality (east or west),

season, and interaction of locality∗season, whereas that for

PC2 shares the same variables but lacks the interaction term

(locality∗season). On the other hand, only age class and season

are included in the best model for PC3. The parameter estimates

of the best models for PC1, PC2, and PC3 are presented in

Table 5. These results indicate habitat-related differences in

DMT are reflected in PC1 and PC2 but not in PC3. Considering

the fact that PC3 contributed a smaller amount of total

variation (9.2%) than PC1 and PC2, in the following analyses,
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TABLE 5 Parameter estimates of the best models for PC1, PC2, and PC3.

Parameter Estimate S.E. t-value P-value

PC1 Intercept −0.23 0.06 −3.77 <0.001

Locality [East] 0.21 0.06 3.48 <0.001

Age class [Adult/Juvenile] −0.32 0.06 −5.53 <0.0001

Season [Spring] −0.16 0.12 −1.42 0.16

Season [Summer] −0.15 0.10 −1.52 0.13

Season [Autumn] 0.33 0.11 3.04 <0.01

Locality [East]*Season [Spring] 0.04 0.12 0.39 0.70

Locality [East]*Season [Summer] 0.17 0.10 1.72 0.09

Locality [East]*Season [Autumn] −0.33 0.11 −3.01 <0.01

PC2 Intercept 0.12 0.07 1.78 0.08

Age class [Adult/Juvenile] −0.16 0.07 −2.37 0.02

Season [Spring] 0.12 0.13 0.89 0.37

Season [Summer] −0.28 0.11 −2.46 0.01

Season [Autumn] −0.12 0.11 −1.01 0.31

Locality [West] −0.15 0.07 −2.16 0.03

PC3 Intercept −0.09 0.07 −1.26 0.21

Age class [Adult/Juvenile] 0.21 0.07 2.85 <0.01

Season [Spring] 0.19 0.14 1.35 0.18

Season [Summer] −0.37 0.12 −3.02 <0.01

Season [Autumn] 0.05 0.12 0.39 0.70
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FIGURE 3

Comparisons of principal components (PC1 and PC2) between localities, age classes, and seasons of collection of Toyama boars. The box

encloses the 25th and 75th percentiles, with the horizontal line representing the median. Whiskers (perpendicular lines stretching from the

upper and lower edges of the box) show the range of observed values that fall within 1.5 times the interquartile range (the length of the box)

from the upper and lower edges of the box. (A) PC1, (B) PC2. *P < 0.05, **P < 0.01. Abbreviations for seasons are Sp, spring; Su, summer; A,

autumn; W, winter.

we only focused on PC1 and PC2. PC1, the proxy of overall

surface roughness or size and depth of microwear features, is

significantly larger in boarlets than adults/juveniles and larger in

eastern Toyama than in western Toyama. Seasonal differences

were detected only in western Toyama. In both age classes, the

individuals collected in autumn showed significantly higher PC1

scores than in other seasons (Figure 3A). PC2 is the proxy of

surface fineness, with larger values indicating that the surfaces
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Figure 3. The groups with di�erent alphabets indicate significant di�erences (Tukey–Kramer tests, P < 0.05).

were segmented into larger hills and dales. The parameter

estimate of age class “adult/juvenile” has a negative value on

PC2 (Table 5), which means the tooth surfaces of adult/juvenile

are characterized by fine features. The differences between

localities are also statistically significant, with the boars in the

western region having lower PC2 scores (i.e., finer microwear

features) than those in the eastern region. There is a significant

seasonal difference only between summer and winter, i.e., the

tooth surfaces of individuals collected in summer have finer

features (Figure 3B).

Comparisons of Toyama boars with other
wild and stall-fed boar populations

After we combined all seasons for the east and west

Toyama populations, a one-way ANOVA was conducted to

test for differences among the six boar populations. Both PC1

and PC2 are significantly different among the populations

[PC1: F(5, 135) = 24.26, P < 0.0001; PC2: F(5, 135) = 6.53,

P < 0.0001; PC3: F(5, 135) = 0.95, P = 0.44]. Subsequent

pairwise comparisons by the Tukey-Kramer method reveal both

disparities and similarities among the populations (Figure 4).

There is an explicit difference in PC1: the stall-fed boars

display the highest PC1 scores, followed by two southern

island populations (Iriomote and Ishigaki populations) and

three mainland populations (eastern and western Toyama and

Tanba). On the other hand, PC2 scores of groups overlap each

other except for the stall-fed and eastern Toyama populations

(Figure 4). A scatter plot of PC1 and PC2 illustrates the

similarity between populations (Figure 5). The three mainland

populations (eastern and western Toyama and Tanba) overlap

each other, whereas the two island populations and the stall-fed

show considerable overlap. The overlap between the mainland
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populations and the island ones is relatively small. This is

exemplified by the representative 3D surface models (Figure 5).

The boars from the mainland populations have overall flat and

homogeneous surfaces with abundant scratches (Figures 5A–C),

and the island populations have more heterogeneous surfaces

with high relief (Figures 5D,E). The stall-fed individuals show

high relief with heterogeneity (Figure 5F).

Discussion

Through the intensive sampling of wild-shot boars in

Toyama Prefecture and comparison to other wild and

stall-fed populations, this study clarified the difference in DMT

of S. scrofa, both at the finer and broader geographical scales.

In the following discussion, we start with the comparison

between geographically and ecologically different populations,

then continue to the discussion on DMT differences observed

within Toyama boars.

Variation among the wild boar
populations in di�erent habitat
environments

As shown in Figures 4, 5, the DMT of six populations

showed differentiation among the ecologically different groups,
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i.e., those in temperate deciduous broad-leaved forests (eastern

and western Toyama and Tanba), those in subtropical evergreen

broad-leaved forests (Ishigaki and Iriomote Islands), and stall-

fed, and similarity within each group. The stall-fed boars have

the largest PC1 scores, shown on their tooth surfaces with

large and deep depressions (Figure 5F). As discussed in Yamada

et al. (2018), the characteristic tooth surfaces of the stall-fed

boars resulted from their feeding on corn hay in the concrete-

floored stall. Crushing of hard seeds without contamination of

soils is responsible for their extremely rough tooth surfaces.

On the other hand, the boars from deciduous broad-leaved

forests had flatter tooth surfaces with abundant scratches

(Figures 5A–C). As discussed in previous studies (Ward and

Mainland, 1999; Souron et al., 2015; Yamada et al., 2018), this

reflects the frequent rooting of these populations. In addition

to feeding on rhizomes and roots, above-ground plant parts,

like bamboo shoots in spring and leaves and stems of dicots

and monocots from spring to summer, were important food

items for mainland boars in deciduous forests (Kodera et al.,

2013; Yasuda and Yokohata, 2015). The shearing of tough

and fibrous plant tissues causes dental wear with numerous

scratches and more homogeneous tooth surfaces in primates

(Grine and Kay, 1988; Scott et al., 2005). Therefore, it is

expected that both feedings on soil-contaminated underground

storage organs and fibrous above-ground plant tissues caused

relatively flat and homogeneous tooth surfaces of the mainland

boar populations.

Contrary to the results of Yamada et al. (2018), in which

they did not find statistically significant differences between

the island boars in subtropical evergreen broad-leaved forests

and the stall-fed ones, we found significant differences between

the two groups (Figure 4). This is probably due to our

current statistical procedure, transforming PC scores to achieve

normality and using parametric tests, which are more sensitive

to detecting the differences than the non-parametric tests

(Wilcoxon rank-sum tests) applied by Yamada et al. (2018)

for most of the ISO parameter comparisons. Both island

populations were not significantly different in PC scores, and

their PC1 values were located between the stall-fed and the

mainland populations. Based on the limited information on

the feeding habits of the island boars, they feed on fruits,

seeds, nuts, and crops throughout the year (Ishigaki et al.,

2007; Ishigaki City, 2021). Therefore, it is expected that their

mode of mastication was more inclined to crushing hard

objects and pulping the succulent vegetable tissues, both of

which would cause more pitted tooth surfaces. The boars

from the southern islands might also be involved in rooting

and feeding on leaves and stems, but the high availability of

nutritionally preferred foods (fruits, seeds, and crops) in their

habitats might offer them more opportunities for feeding on

these items.

Variation in DMT in Toyama boars and its
interpretation

In the current samples of Toyama boars, for which stomach

contents were analyzed (N = 36), we did not find a clear

relationship between DMT and the dietary groups defined

by the major items in the stomach contents. This is not

surprising because of the opportunistic feeding of the boars

and the different timescales at which the two dietary signals

are recorded (Davis and Pineda Munoz, 2016). Through

experimental feeding trials, Winkler et al. (2020) estimated

how long the turnover of DMT takes place in laboratory-

reared rats. It was shown to be ∼16–24 days, after which the

later diets overwrote dietary signals. Therefore, the association

between the stomach contents (the “last supper”) and DMT

should not be apparent unless the animals had continuously

been fed on the same diet for a while. In addition, the sample

size of stomach content analysis might not be large enough to

average and represent the dietary groups, failing to detect the

group differences.

The differences between the two localities (eastern vs.

western Toyama) are notable. The boars in the west of the

Toyama region showed lower PC1 values than those from

the eastern region (Figure 3A, Table 5), even in the broader

comparison with other populations (Figure 4). This indicates

that the boars in the eastern region have overall rougher

tooth surfaces than the western boars. Though we did not

find a direct association between the stomach content and

DMT at the individual scale, this regional difference can be

interpretable from the viewpoint of the habitat environment and

feeding habits. Nakajima and Kobayashi (2014) investigated the

distribution of forest types in Toyama Prefecture and reported

that in the eastern region, natural forests, secondary forests, and

planted forests tend to be distributed sequentially in this order

from the mountainous areas to the low elevation areas, whereas

in the western region, these different forests show a mosaic

distribution. The Toyama boars preferably consumed rhizomes

of Japanese yam (Dioscorea japonica) and kudzu (Pueraria

lobata) (Yasuda and Yokohata, 2015), which are more abundant

in the secondary forests. Due to the mosaic distribution of

the secondary forest in the western region, the boars could

use the secondary forests frequently. Together with the current

data of stomach content analysis (Figure 1), it suggests that the

boars in the western region were involved in more frequent

rooting during foraging, possibly in the secondary forests, which

resulted in a flatter and more homogeneous tooth surfaces,

presumably by the abrading effect of grit as suggested by Souron

et al. (2015). On the other hand, the boars in the eastern region

foraged on the four dietary categories in approximately equal

amounts (Figure 1). A higher rate of nut consumption compared

to the western boars is notable, and this corresponds to the
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distribution of acorn-bearing trees (Fagus crenata, Quercus

crispula, and Quercus serrata) in the eastern region (Nakajima

and Kobayashi, 2014). Feeding on acorns requires a high bite

force for crushing kernels, which may induce the generation

of large pits (Scott et al., 2005; Ungar et al., 2008; Daegling

et al., 2011). In addition, rice husks were abundantly detected

in the stomachs of some eastern Toyama boars (Yasuda and

Yokohata, 2015). Ramdarshan et al. (2016) pointed out by

their experimental feeding that the highest surface complexity

was observed in a group of ewes fed with clover and barley.

Therefore, it is possible that ingestion of rice husks may cause

strong abrasive wear. These food items might be potential causes

of the higher surface roughness in the eastern boars during the

seasons when they were available (summer and autumn for rice

and autumn and winter for acorns). Acorns were utilized by

boars until mid-winter (December) but might disappear in late

winter (Yasuda and Yokohata, 2015).

The seasonal difference in PC1 was detected only in the

western region (Figure 3A, Table 5). The western boars culled in

autumn showed significantly rougher tooth surfaces than those

culled in other seasons. The PC1 scores of the autumn-culled

individuals from the western region are comparable to those

of the eastern boars: both western boarlets and juveniles/adults

culled in autumn show higher PC1 scores than western boars

in other seasons, but their values are similar to those of the

eastern boars (Figure 3A). That means the western boars show

overall less rough surfaces than the eastern boars, but the surface

roughness increases to the level of the eastern boars in autumn.

Therefore, it is possible that in the autumn season, the boars in

the western region are involved in less rooting than in other

seasons and might more frequently feed on acorns and rice,

which are mostly available in autumn. Intensive rooting and

feeding on underground plant parts in winter might quickly

reduce the roughness of the surface in western boars.

We found significant differences between the age classes

(adult/juvenile vs. boarlet). The tooth surfaces of boarlets

are characterized by larger and deeper microwear features

and are segmented into larger hills and dales (i.e., coarser

surface texture) than adults and juveniles. This may reflect a

higher frequency of tooth-tooth (= attrition) contact, which

seemed to result in cracking of enamels and thus rough

surfaces in sucklings and weanlings. After the boars start

feeding on solid foods, food-tooth (= abrasion) contact

becomes predominant and decreases overall surface roughness

(i.e., flatter tooth surfaces). It is possible that progressive

involvement of rooting behavior in adults also reduces surface

roughness due to a polishing effect of contaminated soils.

This perspective, i.e., rough and non-homogeneous tooth

surfaces by frequent tooth-tooth contacts, would explain why

the stall-fed boars (Yamada et al., 2018 and data shown in

Figure 4) and the pigs experimentally fed on flour as the

control feeding group (Louail et al., 2021) have similarly rough

tooth surfaces.

We provided the first evidence of significant differences

in DMT reflecting the frequency of rooting and foraging

on underground plant parts at scales finer than interspecific

comparisons, i.e., among populations in ecologically diverse

habitats in Japan and even between geographically close

but slightly different habitats. Therefore, the current data

can be a reference for the foraging ecology of excavated

boars/pigs from archaeological sites. As boar skeletal remains

are abundantly yielded from Holocene archaeological sites

in Japan (Nishimoto, 1994), investigation of DMT of these

dental boar remains will shed light on their palaeoecology

and human–animal relationships that have changed trough

over time.

Further technical considerations of DMTA

We used 30 ISO 25178-2 parameters and resultant PCs in

this study to detect DMT differences among boar populations.

Though PCA successfully extracted the trends in DMT, further

application of scale-sensitive fractal analysis (SSFA) would be

beneficial for evaluating the more heterogeneous tooth surfaces

of suids (Souron et al., 2015; Lazagabaster, 2019; Louail et al.,

2021). This is reserved in the present study because of our

past experiences based on ruminant DMTA, in which we

found SSFA was less powerful in detecting dietary differences

(Kubo et al., 2017; Kubo and Fujita, 2021), and the fact that

analytical software formerly used in SSFA (Toothfrax or Sfrax)

and the SSFA module now integrated into MountainsMap

produce significantly different values (Calandra et al., 2021).

Reanalysis of published DMT of suids analyzed by older

SSFA software is mandatory when integrative comparisons

are made.

Another technical issue is the replication of surface scans

from the same tooth facet. In the present study, we used four

single scans of 140 × 100µm and combined them into a larger

area of 208 × 144µm. It is equivalent to the commonly used

total scan size (e.g., Scott et al., 2012: single scan size of 102 ×

138µm and combined four into 204 × 276µm; Louail et al.,

2021: single scan of 200 × 200µm per a facet; Ramdarshan

et al., 2016: single scan of 333 × 251µm was segmented into

four 140 × 100µm areas). Therefore, we consider that total

areas of 208 × 144µm can fulfill the requirements of the

DMTA standard. Nevertheless, intra-facet variability in DMT

exists in various mammals (e.g., Bas et al., 2020 in humans;

Sawaura et al., 2022 in macaques; Ramdarshan et al., 2017

in sheep); therefore, it may also have strong effects on tooth

facets of omnivorous suids. Additional scans from different

spots in the same facet can increase the sample size, control

the intra-facet variability, and then make the statistical tests

more sensitive, especially when we apply statistical tests with

nested structures.
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Conclusion

In this study, we compared the tooth microwear texture of

wild boars from six populations in Japan. Detailed ecological

and dietary information from stomach content analysis was

available for Toyama populations, allowing us to test the effects

of ecological variables on DMT. As expected, we did not find a

correlation between stomach content and DMT at the individual

level, but the dietary difference between localities was detected,

even between locations with geographical proximity. The tooth

surfaces of boarlets are rougher than those of juvenile and adult

animals, which cautions against the mixed usage of deciduous

and permanent molars of fossil or archaeological specimens in

dental microwear studies. The decrease in surface roughness

with age implies that the frequency of tooth-tooth contact, which

seems to result in cracking of enamels and thus rough surfaces,

decreases after the boars start feeding on solid foods (food-

tooth contact), with progressive involvement of rooting behavior

in mature adults. We further found that surface roughness

showed significant differences among localities, with the western

boars having flatter surfaces, possibly due to their more intense

involvement in rooting and feeding on soil-contaminated

rhizomes than the eastern ones, as evidenced by the available

stomach content data. The difference in rooting frequency is

also evident in the broader comparison among populations with

different habitat environments. The mainland boars inhabiting

deciduous broad-leaved forests have flatter tooth surfaces than

those in the subtropical evergreen broad-leaved forests of the

southern islands. This corresponds to the fact that above-ground

dietary resources are more abundant in the habitat of the

southern island boars, where crops like succulent vegetables and

fruits, as well as naturally fallen acorns, are abundant, whereas

underground plant parts are the dominant diet component

for the mainland boars. Together with the data of the boars

reared under dietary control, this study suggests that DMTA

can identify the difference in foraging modes in suids with great

dietary variability and paves the way to estimate the frequency

of rooting in semi-domesticated and free-ranging boars from

archaeological sites.
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Our understanding of primate adaptive evolution depends on appreciating

the way in which dental functional morphology affects food processing.

The Papionini tribe of Cercopithecoidea primates shows great dietary

versatility and ecological adaptations to resource seasonality across the

African and Asian ecosystems, however, there are few studies focusing on

the occlusal topography of the bilophodont teeth and the effect of tooth

wear in the crown shape. Here, we explore the relationship between wear-

related dental functional morphology and dietary ecological constraints

within the Papionini. Three-dimensional (3D) polygonal meshes of the

upper permanent molar row (M1-3) were obtained in a large papionine

sample (838 specimens) of known dietary preferences including species

from six genera (Cercocebus, Lophocebus, Macaca, Mandrillus, Papio, and

Theropithecus). All the sample was classified in four diet categories and

four topographic metrics (orientation patch count rotated, OPCR; Dirichlet

normal energy, DNE; occlusal relief, OR; and ambient occlusion, portion

de ciel visible, PCV) were measured for each tooth-type according to wear

stage (lightly and moderately worn) to determine diet-related interspecific

morphological changes with long-term functionality. The results indicate

that hard-object feeders (Cercocebus and Lophocebus) and grass eaters

(Theropithecus gelada) exhibit a pattern of occlusal complexity (OPCR),

surface curvature (DNE), relief (OR), and morphological wear resistance (PCV)

that is significantly different from the omnivores and folivore-frugivore species

(Mandrillus and Macaca) despite the overall homogeneity of the bilophodont

dentition. A multifactorial ANOVA showed that the topographic metrics were

sensitive to tooth wear as expected. The results also indicate that the

interspecific variability of dental topography of the upper molars reflects

dietary specializations rather than phylogenetic proximity. These findings
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support the hypothesis that evolutionary convergence processes could have

affected the Papionini, clustering the hard-object feeders (Lophocebus and

Cercocebus) together in the morphospace, and clearly discriminating this

group from the graminivorous and frugivores-folivores.

KEYWORDS

dental topography, diet, wear, Cercopithecoidea, Papionini

Introduction

The Papionini tribe (Family Cercopithecidae; Subfamily
Cercopithecinae) has the greatest geographical range of extant
non-human primates across Africa and Asia, demonstrating
broad adaptability and evolutionary success (Perelman et al.,
2011; Monson and Hlusko, 2014). Extant Papionini primates
include the mangabeys (genera Lophocebus and Cercocebus),
which occupy regions of eastern and central Africa (Daegling
and McGraw, 2007), the macaques (Macaca), which inhabit
Asia and some regions in North Africa (Ménard et al.,
2014), the mandrills and drills (Mandrillus) from West
Africa (Tutin et al., 1997), the baboons (Papio), distributed
throughout the sub-Saharan savannahs (Kamilar, 2006), and
the geladas (Theropithecus), from the highlands of Ethiopia
(Jablonski, 1993). This wide ecological distribution reflects a
great dietary diversity and different behavioral responses to
resource seasonality, including the intake of foods with different
mechanical and physical properties that vary according to
microhabitats (Brugiere et al., 2002; Swindler, 2002).

The species of the Papionini tribe show great morphological
diversity according to its wide range of ecological exploitation.
Notable morphological similarities previously lead researchers
to conclude that the small-bodied mangabeys (Cercocebus
and Lophocebus) and the large-bodied taxa such as Papio,
Theropithecus and Mandrillus formed potential subclades in
the Papionini (Jolly, 1972; Szalay and Delson, 1979; Strasser
and Delson, 1987). This morphological phenetic classification
prevailed until molecular studies showed that the mangabeys
might not constitute a monophyletic group (Disotell et al., 1992;
Disotell, 1994, 2000; Harris and Disotell, 1998; Harris, 2000).
Within the mangabeys, Lophocebus may be more closely related
to the savannah (Papio) and the gelada (Theropithecus) baboons,
whereas Cercocebus was more closely related to the mandrills
(Figure 1). Dental and postcranial similarities between the
Cercocebus/Mandrillus and Lophocebus/Papio groups were
shown to support the hypothesis of paraphyly for this clade
(Fleagle and McGraw, 1999, 2002; McGraw and Fleagle, 2006;
Gilbert, 2007). Reappraisals of allometry-corrected cranial
anatomy suggest that the craniodental anatomy is a valuable
source of phylogenetic information (Gilbert, 2013). There is
not yet a consensus, however, about the relationships among
Theropithecus, Papio and Lophocebus (Perelman et al., 2011;

Gilbert, 2013; Zinner et al., 2013; Pugh and Gilbert, 2018), since
high levels of craniomorphic homoplasy are present (Fleagle
and McGraw, 1999; Lockwood and Fleagle, 1999; Collard and
O’Higgins, 2002; Gilbert and Rossie, 2007; Gilbert et al., 2009).
Convergence and divergence in morphological traits are likely
to have hindered determination of the actual phylogenetic
proximity within the Papionini, resulting in the ambiguous
evolutionary scenario of morphological and genetic signatures
(Strasser and Delson, 1987; Harris and Disotell, 1998; Harris,
2000; Gilbert, 2007).

The Cercopithecidae share an ancestral bilophodont molar
occlusal cusp pattern (Swindler, 1976; Lucas, 2004) consisting
of four marginal cusps connected by two transverse lophs or
ridges that define three foveas with a reduced lingual cingulum
(Delson, 1975). The occlusal bite contact between the maxillary
and mandibular bilophodont molars allows both shearing
and tooth-to-tooth grinding contacts, which may represent
an adaptation to increased seed consumption and folivory
(Delson, 1975; Ungar, 2010). The Papionini primates show a
common, although greatly variable, morphology of molar teeth
(Figure 1) reflecting species-specific evolutionary adaptations
to food processing (Swindler, 2002). They widen outwards,
laterally from the cusp apexes to the cervix, especially on the
buccal face of the lower and on the lingual face of the upper
molars (Delson, 1975). This morphology results in differences
between the cervical and apical width dimensions, and varies
among the Papionini. It is least pronounced in Cercocebus and
Papio and least in Theropithecus (Swindler, 2002). Theropithecus
differs among the Papionini, with a higher molar crown relief,
longer mediodistal distance, and a wider central basin, which is
deeper than the other two somewhat elongated basins (Delson,
1975).

This morphological dental variability may reflect specific
dietary adaptations within the different taxa of the Papionini
group. Although Cercopithecoidea primates are mostly fruit
eaters that inhabit seasonal ecosystems, their dietary spectra
vary from leaves, bark, grass, nuts and flowers to mammals
and lizards (Swindler, 2002). For instance, Theropithecus gelada
from the Ethiopian Highlands is specialized in the exploitation
of a graminivorous niche (Dunbar and Bose, 1991), with slight
variation in diet composition between dry and wet seasons
(Mau et al., 2009; Moges and Balakrishnan, 2014). A multi-year
study at Guassa Plateau –an intact, tall-grass ecosystem in the
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FIGURE 1

(A) Polar tree showing the Bayesian inference of phylogenetic relationships for the papionins analyzed (10kTrees; https://10ktrees.nunn-lab
.org/). Species were grouped by dietary ecology. The comparative upper second molar (M2) morphology between species is shown.
(B) Occlusal-lingual view of M2 triangulated meshes for species Theropithecus gelada (above) and Cercocebus atys displaying morphometric
maps at different stages of dental wear (Wear I and II) for topographic metrics including: Orientation patch count rotated (OPCR), the
complexity maps indicate surface orientation patches (see color wheel); Dirichlet Normal Energy (DNE) for the variability in surface curvature;
occlusal relief (OR) for the measurement of relative crown height and, portion de ciel visible (PCV) to quantify morphological wear resistance.
Warmer and cooler colors on DNE and elevation (OR) maps indicate higher and lower curvature and crown height, respectively; brighter areas
indicate higher PCV values. Teeth are not to scale. Lingual: right; distal: left.

TABLE 1 Papionini dental sample studied.

Dietary categorya Species M1 M2 M3 n(M/F) Museumb

Hard-object feeder Cercocebus atys 44 44 17 105 (49/56) IMAZ

Cercocebus torquatus 11 11 5 27 (14/13) IRScNB, IMAZ

Cercocebus agilis 16 16 5 37 (25/12) RMCA

Lophocebus albigena 53 53 19 125 (58/67) IMAZ, RMCA, IRScNB

Lophocebus aterrimus 34 37 15 86 (56/30) RMCA

Total 158 161 61 380 (202/178)

Folivore and frugivore Mandrillus sphinx 26 28 4 58 (43/15) NMK, IMAZ

Macaca sylvanus 9 8 5 22 (10/12) NMK, IRScNB, IMAZ

Macaca nemestrina 2 2 (1/1) IRScNB

Macaca mulatta 1 1 (1/0) IRScNB

Total 38 36 9 83 (55/28)

Omnivore Papio hamadryas 25 24 12 61 (52/9) RMCA, IMAZ, IRScNB

Papio anubis 39 38 13 90 (48/42) RMCA, IMAZ

Papio ursinus 12 9 4 25 (16/9) RMCA

Papio cynocephalus 37 38 15 90 (66/24) NMK, IRScNB, RMCA, IMAZ

Total 113 109 44 266 (182/84)

Grass eater Theropithecus gelada 39 40 30 109 (40/69) MNHN, IMAZ

n number of total teeth studied including M1, M2, and M3; M number of males and F number of females. aDietary categorization based on feeding preferences (see “Materials and
Methods” section). bMuseum abbreviation correspond to University of Zurich (IMAZ), Zurich; National Museum of Kenya (NMK), Nairobi; Royal Museum for Central Africa (RMCA),
Tervuren; Institut Royal des Sciences Naturelles de Belgique (IRScNB) Brussels; Muséum National d’Histoire Naturelle (MNHN), Paris.

Ethiopian Central highlands– has shown that specimens from
Guassa rely heavily on forbs and invertebrates, however, and less
on graminoids, expanding the documented diversity of gelada
diets (Fashing et al., 2014). Occlusal microwear texture analyses
have also shown a wide range of ecological adaptations to

diet and feeding in Theropithecus, reflecting population-specific
dietary variability (Fashing et al., 2014; Shapiro et al., 2016).

The highly variable, species- and season-specific dietary
regimes observed in the Papionini require primary diets,
consisting of the preferred and most abundant foods consumed
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year-round, to be differentiated from secondary diets (i.e.,
fallback foods). Derived dental morphology specializations, such
as thick enamel and well-developed marginal crests, are likely to
suggest the consumption of mechanically demanding fallback
foods, at least for a short period when the preferred, year-
round, less demanding foods are scarce. For instance, the
two species of mangabeys, the terrestrial Cercocebus and the
arboreal Lophocebus, adapted to feed on hard objects, both
showing very thick-enameled molar teeth (Kay, 1981), large
incisors (Hylander, 1975), powerful jaws (Hylander, 1979), and
a facial configuration that provides a mechanical advantage
for producing large occlusal bite forces (Singleton, 2005).
Although various species of both genera can be described as seed
eaters and frugivores with a strong dependence on hard foods,
numerous studies have shown significant differences in food
preference (Lambert et al., 2004; McGraw et al., 2014; Ungar
et al., 2018).Cercocebus atys depends strongly on fruits and seeds
with very hard covers, such as the nut of Sacoglotis gabonensis,
which they consume all-year round in different proportions
(Daegling et al., 2011). Both the primary and secondary diets of
Cercocebus atys are based on this type of fruit as a key resource.
The Lophocebus species are all highly frugivorous, however,
mainly consuming fleshy fruits, while hard fallback foods, such
as seeds and bark, are consumed when there are shortages of
preferred foods (Lambert et al., 2004). Although the enamel of
both genera of mangabeys is some of the hardest enamel within
the order of primates (McGraw et al., 2012), Lophocebus relies
only on dry hard seeds and barks during the dry season or
extreme El Niño events (Lambert et al., 2004; Daegling et al.,
2011). Some authors argue that preferred foods have the greatest
selective effect and are responsible for these morphological
differences (Kay, 1975), however, it has also been suggested
that the dependence on fallback foods during times of shortage
can place much stronger selective pressure on dental anatomy
(Fleagle and McGraw, 2002; Ungar et al., 2018). Other authors
have suggested that preferred foods may be associated with
adaptations for food procurement (efficient locomotion and
food detection), while fallback foods, which are more abundant
during dry seasons, involve challenging mechanical properties
(hardness of food items) that require prolonged processing in
the mouth, which promotes the development of food processing
capacities that facilitate the efficient chewing and digestion of
these foods (Marshall and Wrangham, 2007).

Analyses of dental topography and the shape of surface
features in primates have explored the dynamic relationship
between occlusal morphology, diet, and dental occlusal wear
(M’Kirera and Ungar, 2003; Ungar and M’Kirera, 2003; Dennis
et al., 2004; Ungar et al., 2018; Berthaume et al., 2020), including
some Cercopithecoidea primates (Bunn and Ungar, 2009; Thiery
et al., 2017a). During mastication the biomechanical action
of teeth is based on the relationship between the mechanical
properties of the foods and the dental action, defined as how
teeth are used to access or fragment food (Kay, 1981; Lucas,

2004; Daegling et al., 2011; McGraw et al., 2014; Berthaume,
2016). In primates, these mechanical properties include
toughness (resistance to crack propagation) and hardness (local
resistance to elastic deformation) (Berthaume, 2016). Dental
actions may vary among species, despite eating similar foods,
due to the use of different motions or loads. Topographic
variables thus quantify different aspects of tooth shape in
relation to diet. For instance, frugivores with low-cusped crowns
have a lower relief index, computed as the ratio between the 3D
tooth surface area and its 2D projection area on the occlusal
plane, than folivores, which have high cusped molars (Teaford
and Ungar, 2000; Allen et al., 2015; Pampush et al., 2018). The
curvature of the crown, however, calculated as Dirichlet normal
energy (DNE; Bunn et al., 2011), is expected to be higher in
folivores. DNE measures surface variability, meaning teeth with
curvy surfaces, such as taller cusps, are generally sharper and
have a higher DNE. Therefore, we may expect that frugivores
and hard fruit eaters show a lower curvature and relief index
than folivores or omnivores. Tooth occlusal complexity, which
corresponds to the average number of dental elements, has been
correlated with the significance of herbivory (Evans et al., 2007).
These dental elements or triangles can be computed as the sum
of the changes in triangle patch directions (OPCR; orientation
patch count). Occlusal surfaces with greater patch counts have
been connected to the enamel edges involved in shearing fibrous
food (Pineda-Muñoz et al., 2017), however, large overlapping
levels of OPCR values have been documented in primate species
with distinct diets (Berthaume et al., 2020). Ambient occlusion
(PCV; portion de ciel visible), has recently been introduced as a
dental topographic metric (Berthaume et al., 2019a, 2020), that
measures the exposure of a surface to ambient lighting when
it come from the occlusal direction. Cusp tips, crest and blade
edges tend to be more exposed to light and have higher PCV
values, while the foveae, or sides of enamel caps, tend to be less
exposed and have lower PCV values. PCV has been correlated
with the efficiency of hard object feeding; primates with more
fibrous diets (i.e., folivores) will have lower PCV values than
frugivores or hard-object feeders that have low cusps highly
exposed to light (Berthaume, 2016, Berthaume et al., 2020).

Although worn teeth are underrepresented in functional
analysis, selective pressures are active throughout the entire
functional life of teeth, modifying the morphology of the
crowns. Some authors have suggested that wear, and the
subsequent dentine exposure, may contribute to maintaining
the functional efficiency of dental mastication (M’Kirera and
Ungar, 2003; Ulhaas et al., 2004; King et al., 2005; Ungar,
2015; Glowacka et al., 2016), and, worn teeth could therefore
be used to discriminate dietary specializations. Topographic
variables change throughout wear stages. For instance, occlusal
surface curvature (DNE) shows greater values in unworn molars
with sharp cusps than in molar caps showing worn cusps
and flatter occlusal surfaces (Bunn et al., 2011). Primates have
flat dental crowns (non-hypsodont) compared to some other
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mammals, and dental wear significantly changes tooth shape,
from the initial appearance of wear facets to a complete dentine
exposure in occlusal surfaces, which may affect food chewing,
and compromise structural integrity. The relationship between
enamel and the underlying dentine also plays a role in the tooth’s
functional efficiency that it is retained as tooth wears (Ungar,
2015). Natural selection shapes animal teeth to cope with wear
and to retain dental functionality to fracture foods throughout
a lifetime. In this context, some studies have found that wear
patterns within primate taxa tend to maintain relatively high
values of relief on occlusal surfaces, for example in folivorous
compared to frugivorous species (M’Kirera and Ungar, 2003;
Ungar, 2004; Bunn and Ungar, 2009; Ungar et al., 2018). This
implies that teeth continue to maintain differences in occlusal
morphologies with wear, or change their shapes in different
ways as they wear (Ungar and M’Kirera, 2003). Diverse aspects
of tooth shape can change throughout the wear process, such
as cusp relief and slope, both of which can be measured by
using topographic metrics. Examining topographic parameters
is therefore a good approach to studying gross occlusal form, as
teeth wear distinctively among primates in different species in
relation to diet (Ungar, 2015). Several authors agree, however,
that additional studies are needed to explore the dietary
implications of dental sculpting in primates, and especially in
the bilophodont teeth of the Papionini, which exploited a wide
range of resources (Ulhaas et al., 2004; Bunn and Ungar, 2009;
Pampush et al., 2018).

The present study focuses on the association between
molar crown topography of the three upper molars (M1,
M2, and M3) and the known dietary specializations of the
Papionini specimens, which are analyzed to test the relationship
between crown shape with different stage of wear and diet.
If natural selection shapes primate teeth and retains their
functionality as tooth wears, then the occlusal morphology of
worn teeth will maintain these differences in order to also retain
chewing efficiency throughout lifetime. Dental studies have
shown significant levels of homoplasy in dental morphology
in mammal lineages (Evans et al., 2007), as well as within the
Papionini (Lockwood and Fleagle, 1999), and, so as a proxy
of molar functional morphology, molar topography would be
expected to reflect feeding strategies regarding the mechanical
properties of food, rather than the phylogenetic proximity
derived from molecular data alone. If confirmed, this could offer
an important insight into the potential use of molar topography
when studying the evolution of primate teeth.

Materials and methods

Studied samples

A total of 838 well-preserved, in situ (only molars that were
placed in the maxillary row) first (M1; n = 345), second (M2;

n = 347), and third (M3; n = 146) permanent upper molars
were selected from maxillary tooth rows from the dry skulls
of adult (third molar erupted and in full occlusion) specimens
belonging to the Papionini tribe (Table 1), including six genera
and fourteen species: Cercocebus (C. agilis, C. atys, C. torquatus),
Lophocebus (L. albigena, L.aterrimus), Macaca (M. sylvanus,
M.mulatta and M. nemestrina), Mandrillus (Ma. sphinx), Papio
(P. anubis, P. cynocephalus, P. hamadryas, P. ursinus), and
Theropithecus (T. gelada). The specimens were sexed according
to available museum records. Maxillary molars were selected for
analyses because they exhibit a stable bilophodont cusp pattern
of four main cusps, with minor size differences compared to
mandibular molars, and also lack the distinct morphology of the
extended talonid of the lower third molars (Delson, 1975).

The species considered were grouped into four primary diet
categories (hard-object feeders, folivore-frugivores, omnivores,
and grass-eaters) on the basis of the percentage of fruits
and seeds vs. leaves and underground storage organs (USOs)
consumed (Quris, 1975; Hoshino, 1985; Lahm, 1986; Mitani,
1989; Maisels et al., 1994; Tutin et al., 1997; Hill and Dunbar,
2002; Shah, 2003; Thierry, 2007; McGraw et al., 2011; Fashing
et al., 2014; Jarvey et al., 2018). The Lophocebus (L. albigena,
L. aterrimus) and Cercocebus mangabeys (C. agilis, C. t.
torquatus, C. torquatus atys) species are hard-object feeders,
mainly consuming hard fruits and seeds, and sharing habitats
and dietary preferences (Quris, 1975; Waser, 1975; Mitani,
1989; Olupot et al., 1997; Shah, 2003; McGraw et al., 2011;
DeCasien et al., 2017). Mandrillus sphinx and Macaca sp. are
folivore-frugivore taxa, mainly consuming leaves, and fruits, but
also seeds and herbs during the fruit-scarce season (Hoshino,
1985; Ménard and Vallet, 1986; Lucas and Corlett, 1991; Tutin
et al., 1997: DeCasien et al., 2017; Powell et al., 2017). Papio
species (P. anubis, P. cynocephalus, P. hamadryas, P. ursinus)
are generalized omnivores with greatly variable diets dominated
by fruits, leaves, and underground items (Hill and Dunbar,
2002), and they also consume invertebrates and small mammals.
Finally, Theropithecus gelada has been traditionally described as
a graminivorous specialist (Dunbar and Bose, 1991), although
their diet might be significantly broader (Fashing et al., 2014;
Shapiro et al., 2016; Souron, 2018).

Dental wear scoring

Both unworn and lightly worn-out teeth were studied to test
for the effect of occlusal wear on dental topography (Berthaume
et al., 2018; Pampush et al., 2018). All the teeth were scored
and classified using a five-stages dental wear template for
cercopithecid species (Meikle, 1977) as follow: unworn (Grade
1), in erupted, though not yet full occlusion, molars; lightly worn
(Grade 2), showing wear facets at or toward the top of the cusps
but no part of the crown worn enough to expose the underlying
dentine; moderate wear (Grade 3), circles of dentine exposure at
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the cusp apices, the protocone cusp and the lingual cusps being
affected before other cusps, lacking connections between them;
medium wear (Grade 4), buccal and lingual areas of dentine
start to merge along the lophs, although dentine exposure is
still greater on the lingual half of the lophs, and dentine contact
between the mesial and distal areas is still lacking; marked wear
(Grade 5), with larger and similar dentine exposure areas on
the buccal and lingual halves, with an incipient mesio-distal
dentine contact affecting the talon. These occlusal wear scores
were then grouped into two gross-wear categories following
previous procedures (Berthaume et al., 2018): Wear I (Meikle’s
Grades 1 and 2), unworn or lightly worn molars without visible
dentine exposure in the lingual cusps; Wear II (Meikle’s Grade
3, 4), molars with moderate cusp removal with exposed dentine
and a coalescence of dentine areas (Supplementary Figure 1).
Molars in the advanced wear stage (Grade 5) were excluded of
the sample in this study.

Sample processing

Maxillary in situ tooth rows of original specimens were
cleaned with cotton swabs moistened with pure ethanol prior
to molding. Silicone-base molds were made using Affinis R©

Regular body (Coltène-WhaledentTM) polyvinylsiloxane, and
high-resolution casts were produced from the molds using the
two-base component polyurethane Feropur PR-55 (Feroca R©

Composites, Spain) following standardized procedures
(Galbany et al., 2006). Three-dimensional (3D) polygonal
meshes of the dental casts were generated, using a structured
light scanner (DAVIDTM SLS-2) at a resolution of 0.05 mm, and
were exported to polygon file format files (PLY). Meshes were
post-processed using GeomagicTM Studio 2014 (3D Systems,
Morrisville, USA) to isolate molar crowns by cropping the
dental crown along the cervical and the interproximal rims. The
meshes were slightly smoothed to reduce noise and cropped
to the lowest point on the occlusal basin (BCO method; see
Berthaume et al., 2019b), and finally simplified down to 10,000
polygons (Winchester, 2016). The processed polygonal models
were imported into Meshlab (ISTI—CNR Research Centre,
University of Pisa) and oriented to maximize the crown-base
projection by placing the occlusal surfaces perpendicular to the
Z-axis (Pampush et al., 2016).

Acquisition of three-dimensional
dental topography

Dental topographic metrics were recorded from 3D
polygonal meshes (Berthaume et al., 2018; Pampush et al., 2018)
including the complexity (OPCR; Orientation Patch Count
Rotated), the curvature (DNE; Dirichlet Normal Energy), and
the occlusal relief (OR), using the MorphoTester software

(Winchester, 2016), as well as the ambient occlusion (PCV;
Percentage du Ciel Visible) using the CloudCompare 3D
software following the outlined procedures (Berthaume et al.,
2019a). Briefly, occlusal complexity (OPCR) quantifies the
number of enamel patches with distinct surface orientation
(Evans et al., 2007). It was calculated using a minimum patch
size of five polygons and averaging the oriented patch values
of eight rotations around the Z-axis, with a 45◦ mesh rotation
of each iteration (Winchester, 2016). DNE was calculated as
the sum of energy values across a polygonal mesh surface,
and the algorithm was invariant to mesh size and orientation
(Bunn et al., 2011; Winchester, 2016). Surface bending was
proportional to the number of mesh polygons, however,
thus requiring the 10,000-polygon standardization (Winchester,
2016; Berthaume et al., 2018); a 0.1% (99.9th percentile)
energy × area outlier removal was used to prevent changes
in energy output due to polygon vertices (Winchester, 2016).
The occlusal relief (OR) was estimated as the ratio of the 3D
surface area of the cropped mesh to the projected 2D planimetric
surface area (Berthaume et al., 2019b). Finally, the average PCV
was calculated for each tooth using the PCV command in the
Portion of Visible Sky plugin following Berthaume et al. (2019a,
2020) procedure.

Statistical analyses

Dental topographic variables were non-normally distributed
by species (Shapiro–Wilk test; p < 0.01). Rank-transformed
data was, thus, used for all the statistical analyses. A factorial
ANOVA was run to test for the interaction effects of tooth-
type (M1, M2, M3), sex (female, male), wear stages (I, II), and
diet (hard-object feeders, folivore-frugivores, omnivores, grass-
eaters) on crown shape descriptors (OPCR, DNE, OR and PCV).
One-way ANOVAs on each variable by tooth-type and dietary
groups were used to determine sources of significant variation
by wear stages using Tukey’s honestly significance test (HSD) for
the paired comparisons. Finally, a principal component analysis
(PCA) was performed on the correlation matrix to determine
patterns of topographic variation that accounted for variation
in dietary groups. Descriptive and statistical procedures were
performed in SPSSTM Statistics 22.0 (IBM, Armonk, NY, USA)
and PAST 4.02. The significance level was set at α = 0.05.

Results

The multifactorial ANOVA showed that the effects of tooth-
type, occlusal wear stage, and diet were highly significant
(p < 0.001) for all the topographic metrics (Table 2), while the
sex factor only showed a significant effect for OR (p = 0.018).
Accordingly, sex was not considered for subsequent analyses.
Significant interactions between factors (tooth, wear and diet)
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were observed only when the diet factor was included, which
suggest that differences between dietary categories remained
when tooth and wear are considered. The interactions of the
model showed that there were significant differences for all the
topographic variables for each tooth and dietary category tested
and there were significant differences for complexity (p< 0.001)
and OR (p = 0.021) when both wear stages and dietary categories
were considered.

Effect of wear on dental shape

Overall, occlusal wear was shown to be a highly significant
factor affecting dietary-specific dental shape descriptors
(Tables 3–6). One-way ANOVA comparisons of OPCR by
tooth-type and dietary groups showed that complexity increased
with wear stages (I to II) except for the higher-crowned grass
eater T. gelada. There were significant differences in complexity
values between wear stages in all dietary groups for the first
molar (M1), and for hard-object feeders and folivore-frugivores
for the second (M2) and third (M3) molars (Table 3). DNE
significantly decreased with wear for M1(r = –0.343; p < 0.01)
and M2 (r = –0.408; p < 0.01) in hard-object feeders, and for
M2 (r = –0.219; p = 0.021) and M3 (r = –0.475; p < 0.01) in
omnivorous primates (Table 4). Relative cusp height loss (OR)
was associated with tooth wear resistance (PCV) as a general
trend. OR significantly decreased with wear for all the teeth in
all the four dietary groups (Table 5), while PCV significantly
increased with wear in all the dietary groups except for T. gelada
for M1, and folivore-frugivore for M3, despite the fact that
some sample sizes were small (Table 6). Overall, wear caused
an increase in crown complexity (OPCR), not related to dentin
exposure and probably due to the formation of wear facets, a
reduction in crown curvature (DNE), due to increased flatness
of occlusal enamel surfaces, a reduction of crown relief (OR)
due to the loss of cusp heights, and an increase in ambient
occlusion (PCV) as horizontal surfaces increase with wear.

Dental shape patterns by dietary
groups

The dental shape metrics showed significant differences
among the four dietary groups. More differences in tooth shape
existed between hard-object feeders and other dietary groups
than between other dietary groups for both unworn and worn
teeth (Tukey’s HSD; p < 0.05; Tables 6, 7). The topographic
variables that most differed in hard-object feeders were PCV, OR
and DNE, and their crowns showed the lowest curvature and OR
values, and the highest PCV, characteristic of low rounded cusps.
OPCR was also significant lower in this group (p < 0.01).

Graminivorous T. gelada showed the highest DNE and OR
values and the lowest PCV values for all three teeth (Tables 3–
6), a trend demonstrated by the paired, post hoc comparisons

(Table 7). The post hoc pairwise differences (Tukey’s HSD;
p < 0.05; Table 7) for the wear score I, showed that T. gelada
differed significantly from all other diet groups in exhibiting
higher OPCR and DNE values for M1, and differed significantly
for OR and PCV from the hard-object feeders. The DNE
and OPCR of the second lower molars of the graminivorous
group also differed significantly from the frugivore/folivores,
the former having a higher curvature and complexity, when the
tooth crown was unworn or slightly worn. Greater OR values
from graminivorous species denoted high-crowned molars and
an expected inverse trend for PCV which differed significantly
from the other dietary groups (Table 7).

The omnivores showed significantly higher complexities
in all tooth crowns, but especially so in the second upper
molar, which differed from the hard-object feeders and the
folivore/frugivores groups (p < 0.01; Table 7). The DNE
of the omnivores was significantly lower than that of the
folivore/frugivore and hard-object feeders’ groups for the
unworn M2.

Lastly, the folivore/frugivore group showed few significant
differences from the rest of the groups. The topographic
parameters that differed significantly in this group compared to
the hard-object feeders for the M1, M2 and M3, were OR and
PCV, a trend similar to that observed between the omnivores
and graminivorous groups.

In general, the between-diet comparisons of the worn teeth
(wear score II) showed less inter-group differences, although
they were similar in the M1 (Table 8). Dental complexity
decreased as wear increased and, non-significant differences
between diet groups were therefore observed for OPCR for the
three teeth. DNE, OR and PCV showed similar trends to those
seen in the unworn (wear score I) teeth, however T. gelada
preserved the highest DNE and OR values, albeit smaller than
those of the unworn teeth (Tables 3–6). Hard-object feeders
showed the lowest values of DNE and OR compared to the
rest of the groups while the PCV maintained the highest value
despite the wear. These differences in M2 were significant for
the hard-object eater group compared to the rest of the groups
considered (except for the PCV comparison between folivore-
frugivores, which was not significantly different).

The PCA summarized the trends in the topographic metrics
of the dietary defined groups (Table 9 and Figure 2). The
first two principal components (PC1-2) derived for each tooth
(M1, M2, and M3) explained > 85% of the total variance in
molar topography of the Papionini for the dietary preferences
factor (Table 9). DNE and OR loaded positively (r > 0.6;
p < 0.01) onto the PC1 (> 45% of total variance), while
PCV showed strong negative loading (r < −0.88; p < 0.01)
with PC1. This component clearly separated the hard-object
feeders (negative PC1 values) from the omnivores and T. gelada
(positive PC1 values) for all three molars, and a greater extent
in the wear score I group compared to the II group (Figure 2).
PC2 explained < 45% of total variance and was strongly and
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TABLE 2 Factorial ANOVA model for the effects of tooth-type, wear stage, sex, and diet on topographic metrics.

Effects OPCR DNE OR PCV

F p F p F p F p

Model 12.147 0.000** 23.715 0.000** 21.832 0.000** 30.246 0.000**

Tooth 13.850 0.000** 31.745 0.000** 14.081 0.000** 66.823 0.000**

Wear 29.459 0.000* 16.273 0.000** 112.391 0.000** 67.056 0.000**

Sex 2.651 0.104 0.707 0.401 5.578 0.018* 2.931 0.087

Diet 18.719 0.000** 86.406 0.000** 43.879 0.000** 70.492 0.000**

Tooth × wear 1.538 0.215 1.346 0.261 0.773 0.462 0.990 0.372

Tooth × sex 0.367 0.693 0.591 0.554 1.962 0.141 1.614 0.200

Wear × sex 0.254 0.615 0.480 0.489 0.983 0.322 2.061 0.152

Tooth × wear × sex 0.394 0.674 0.259 0.772 1.825 0.162 1.295 0.275

Tooth × diet 4.857 0.000** 4.849 0.000** 5.295 0.000** 4.737 0.000**

Wear × diet 7.624 0.000** 1.398 0.242 3.255 0.021* 1.691 0.167

Tooth × wear × diet 2.232 0.038* 0.622 0.713 0.525 0.790 1.953 0.070

Sex × diet 2.445 0.063 2.044 0.106 0.702 0.551 2.708 0.054

Tooth × sex × diet 0.611 0.722 1.690 0.121 0.606 0.726 1.505 0.174

Wear × sex × diet 2.383 0.068 1.740 0.157 0.571 0.634 0.013 0.998

Tooth × wear × sex × diet 0.762 0.550 0.355 0.840 0.538 0.708 0.596 0.666

Significant differences at p < 0.05 (*) and p < 0.01 (**).

TABLE 3 Descriptive statistics and differences (one-factor ANOVA) for orientation patch count rotated (OPCR) among dietary grouping species by
tooth-type and wear stage.

Tooth Dietary group n Wear Mean SD F p

M1 Hard-object feeder 93 I 89.23 19.62 25.732 0.000**

65 II 104.66 21.49

Folivore-frugivore 14 I 83.34 20.76 5.312 0.027*

24 II 98.71 24.37

Omnivore 47 I 93.43 19.28 18.307 0.000**

63 II 110.53 22.04

Grass-eater 8 I 115.34 20.45 5.981 0.019*

31 II 99.43 13.20

M2 Hard-object feeder 97 I 86.10 13.84 148.671 0.000**

64 II 114.10 19.70

Folivore-frugivore 19 I 100.55 19.18 12.423 0.000**

17 II 121.91 15.78

Omnivore 88 I 112.15 17.54 1.157 0.284

22 II 118.78 22.68

Grass-eater 27 I 112.13 15.64 3.339 0.076

13 II 102.91 15.02

M3 Hard-object feeder 59 I 77.48 14.12 10.019 0.002**

2 II 103.88 6.72

Folivore-frugivore 5 I 95.18 17.59 3.654 0.098

4 II 120.85 25.97

Omnivore 40 I 118.82 18.07 0.860 0.359

6 II 122.34 7.36

Grass-eater 25 I 111.58 18.88 0.056 0.815

5 II 112.73 19.56

Significant differences at p < 0.05 (*) and p < 0.01 (**).
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TABLE 4 Descriptive statistics and differences (one-factor ANOVA) for Dirichlet normal energy (DNE) among dietary grouping species by
tooth-type and wear stage.

Tooth Dietary group n Wear Mean SD F p

M1 Hard-object feeder 93 I 170.71 34.42 19.845 0.000**

65 II 144.26 37.61

Folivore-frugivore 14 I 194.03 46.68 0.000 0.999

24 II 192.41 66.66

Omnivore 47 I 205.52 35.41 0.295 0.588

63 II 218.55 62.64

Grass-eater 8 I 265.05 60.44 3.573 0.067

31 II 224.08 61.51

M2 Hard-object feeder 97 I 180.79 33.91 34.462 0.000**

64 II 150.13 33.53

Folivore-frugivore 19 I 241.20 64.93 0.001 0.980

17 II 231.93 46.00

Omnivore 88 I 274.26 57.80 9.598 0.002**

22 II 240.36 71.60

Grass-eater 27 I 306.04 60.61 0.913 0.345

13 II 288.74 63.02

M3 Hard-object feeder 59 I 180.88 38.23 2.981 0.090

2 II 139.22 7.07

Folivore-frugivore 5 I 298.50 69.24 4.221 0.079

4 II 214.30 48.96

Omnivore 40 I 342.96 52.66 28.554 0.000**

6 II 256.03 73.48

Grass-eater 25 I 340.49 73.38 3.690 0.065

5 II 247.05 36.38

Significant differences at **p < 0.01.

positively correlated with OPCR and (r = 0.971; p < 0.01) and
DNE (r = 0.735; p < 0.01) for M1 (Table 9). As expected, the
PCV for PC2 showed positive loadings with PC2 while OR
showed negative loadings for all three teeth and the two wear
groups (I and II) smaller OR values result in larger PCV values as
the tooth wears down. Similar loadings were obtained between
the topographic metrics and the PCs for all the teeth considered,
and for both wear categories (Figure 2), which is consistent with
the hypothesis that wear tends to decrease crown shape among
dietary groups.

Discussion

The 3D crown topography of the upper molars (M1-
3) of the studied Papionini shows a clear diet-related
signal despite the overall homogeneity of the bilophodont
dentition. The observed, dietary related among groups
differences in crown topography reflect distinct adaptations
to resource exploitation. The unworn dental crowns show a
stronger dietary signal than the worn teeth, but the analyzed
worn teeth still retained an overall dietary signal, which

may allow to gather larger samples than if only unworn
teeth are considered.

Tooth shape and diet

The dental crowns of hard-object feeders tend to have
lower and less complex cusps with more horizontally oriented
enamel surfaces (Berthaume et al., 2019a) as an adaptation for
breaking and grinding hard and brittle foods, such as seeds
and nuts (Lucas, 2004; Ungar, 2004). Within the Papionini, the
bilophodont morphology varies from hard object consumers
to grass-eaters in relation to the amount of hard, brittle
food particles chewed. Although OPCR has been applied to
both extant and fossil taxa, Pineda-Muñoz et al. (2017) have
suggested that it may have a reliable discriminating power
only when applied to disparate tooth morphologies. We found,
however, significant differences for the first molar (M1) between
the high-crowned teeth of grass eaters and the rest of dietary
groups. Moreover, most of the dietary groups showed significant
differences in complexity for the second (M2) and third (M3)
upper molar, suggesting that complexity varied between tooth
type and the diet considered.
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TABLE 5 Descriptive statistics and differences (one-factor ANOVA) for occlusal relief (OR) among dietary grouping species by tooth-type and
wear stage.

Tooth Dietary group n Wear Mean SD F p

M1 Hard-object feeder 93 I 1.44 0.09 94.889 0.000**

65 II 1.28 0.13

Folivore-frugivore 14 I 1.57 0.13 24.343 0.000**

24 II 1.39 0.09

Omnivore 47 I 1.50 0.10 11.895 0.001**

63 II 1.43 0.16

Grass-eater 8 I 1.59 0.18 6.423 0.016*

31 II 1.45 0.09

M2 Hard-object feeder 97 I 1.46 0.10 145.001 0.000**

64 II 1.27 0.10

Folivore-frugivore 19 I 1.54 0.17 25.902 0.000**

17 II 1.35 0.07

Omnivore 88 I 1.55 0.12 36.920 0.000**

22 II 1.40 0.12

Grass-eater 27 I 1.74 0.16 6.785 0.013*

13 II 1.59 0.13

M3 Hard-object feeder 59 I 1.50 0.09 11.238 0.001**

2 II 1.28 0.10

Folivore-frugivore 5 I 1.77 0.14 6.981 0.033*

4 II 1.44 0.22

Omnivore 40 I 1.67 0.10 35.267 0.000**

6 II 1.49 0.16

Grass-eater 25 I 1.83 0.20 14.071 0.001**

5 II 1.56 0.12

Significant differences at p < 0.05 (*) and p < 0.01 (**).

Among sympatric African apes, the DNE of the second
lower molar failed to differentiate folivores from frugivores
except when dietary competition (between large bodied
primates) was considered due to character displacement
(Berthaume and Schroer, 2017). We showed that the curvature,
complexity and morphological wear resistance of the upper
molars (M1-3) of hard-object feeders differs among the
Papionini from the other dietary groups considered. The
multivariate analyses shown clearly differentiates the hard-
object feeders Papionini from the omnivores and grass
eaters, represented here by Papio and T. gelada, respectively.
Theropithecus have dental crowns with high cusps and deep
valleys, as shown by their high crown curvatures and reliefs
which reflects an adaptation for increased chewing surface
areas to facilitate the food processing activity of digestive
enzymes (Szalay and Delson, 1979; Dunbar and Bose, 1991).
Among Papio species, the dietary habits of P. ursinus, who
inhabit heterogeneous ecosystems in Southern Africa, include
the consumption of up to 30–50% of grasses in their diet,
which is a higher value than that reported for baboons from
African savanna environments (Codron et al., 2005). A 56%
intake of graminoid grasses has been reported for T. gelada
from Guassa (Fashing et al., 2014). These similarities in DNE

values between omnivores and grass-eaters could be related to
similar dietary preferences, although Papio diet is more diverse
than Theropithecus diet (Hill and Dunbar, 2002; Souron, 2018).
Moreover, high crown cap curvatures have also been related to
the consumption of fibers, leaves and foods of low digestibility,
as well as insects, both in platyrrhine and in Hominoidea
primates (Bunn et al., 2011; Winchester et al., 2014; Berthaume
and Schroer, 2017).

Shape and wear in relation to diet

All the topographic metrics studied showed significant
differences in relation to both wear and diet factors, suggesting
that dental crown shape differences remain between dietary
types despite an increased loss of dental crown through wear,
at least in the upper bilophodont teeth analyzed. The OPCR,
PCV and OR were the topographic metrics most sensitive to
wear in all dietary groups considered. Overall, dental crown
shape varies as cusps begin to decrease in height. Dentine
is exposed in bilophodont teeth from the cusp tip, gradually
developing an enamel ridge around the dentine pool. Unworn
or slightly worn teeth show lower morphological wear resistance
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TABLE 6 Descriptive statistics and differences (one-factor ANOVA) for portion de ciel visible (PCV) among dietary grouping species by
tooth-type and wear stage.

Tooth Dietary group n Wear Mean SD F p

M1 Hard-object feeder 93 I 0.70 0.03 31.411 0.000**

65 II 0.75 0.05

Folivore-frugivore 14 I 0.68 0.03 30.572 0.000**

24 II 0.73 0.03

Omnivore 47 I 0.67 0.03 14.208 0.000**

63 II 0.70 0.04

Grass-eater 8 I 0.67 0.04 0.190 0.665

31 II 0.66 0.03

M2 Hard-object feeder 97 I 0.68 0.03 100.741 0.000**

64 II 0.73 0.03

Folivore-frugivore 19 I 0.64 0.03 6.999 0.012*

17 II 0.67 0.03

Omnivore 88 I 0.63 0.03 21.029 0.000**

22 II 0.67 0.03

Grass-eater 27 I 0.60 0.03 6.499 0.015*

13 II 0.62 0.03

M3 Hard-object feeder 59 I 0.67 0.03 7.141 0.010*

2 II 0.72 0.03

Folivore-frugivore 5 I 0.62 0.03 3.536 0.102

4 II 0.68 0.06

Omnivore 40 I 0.61 0.02 25.986 0.000**

6 II 0.64 0.04

Grass-eater 25 I 0.58 0.04 10.530 0.003**

5 II 0.65 0.06

Significant differences at p < 0.05 (*) and p < 0.01 (**).

TABLE 7 Tukey matrices of pairwise mean differences between dietary groups for topographic metrics by tooth-type (wear I).

M1 M2 M3

OPCR HO FF OM HO FF OM HO FF OM

Hard-object feeder HO

Folivore-frugivore FF 42.54 −177.45** −204.03*

Omnivore OM −59.32 −101.86 −309.38** 177.45** −471.30** −267.26**

Grass-eater GE −307.72** −350.26** −248.40* −309.03** −131.93* 0.35 −389.81** −185.78 81.48

DNE HO FF OM HO FF OM HO FF OM

Folivore-frugivore FF −107.79 −201.72** −356.13**

Omnivore OM −162.63** −54.84 −308.55** −106.83* −435.65** −79.51

Grass-eater GE −343.27** −235.48** −180.63* −374.67** −172.95** −66.12 −406.49** −50.36 29.15

OR HO FF OM HO FF OM HO FF OM

Folivore-frugivore FF −200.66** −92.22 −279.63**

Omnivore OM −111.80** 88.86 −138.25** −46.03 −221.48** 58.15

Grass-eater GE −196.81** 3.85 −85.01 −318.62** −226.40** −180.37** −272.03** 7.60 −50.55

PCV HO FF OM HO FF OM HO FF OM

Folivore-frugivore FF 141.73* 174.13** 232.59**

Omnivore OM 182.01** 40.28 224.24** 50.10 285.41** 52.82

Grass-eater GE 176.88* 35.15 −5.131 356.65** 182.52** 132.41** 314.90** 82.32 29.49

Significant differences at p < 0.05 (*) and p < 0.01 (**).
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TABLE 8 Tukey matrices of pairwise mean differences between dietary groups for topographic metrics by tooth-type (wear II).

M1 M2 M3

OPCR HO FF OM HO FF OM HO FF OM

Hard-object feeder HO
Folivore-frugivore FF 27.67 −87.20 −140.12
Omnivore OM −63.75 −91.43 −37.99 49.21 −220.58 −80.45
Grass-eater GE 46.23 18.55 109.98 120.87 208.08* 158.86 −92.35 47.77 128.23

DNE HO FF OM HO FF OM HO FF OM

Folivore-frugivore FF −217.08** −346.85** −350.12
Omnivore OM −292.08** −75.00 −333.70** 13.14 −468.00** −117.87
Grass-eater GE 315.56** −98.51 −23.51 −477.23** −130.38 −143.52 −479.80** −129.67 −11.80

OR HO FF OM HO FF OM HO FF OM

Folivore-frugivore FF −145.25* −103.51 −275.25
Omnivore OM 215.77** −70.52 −189.83** −86.31 −305.16 −29.91
Grass-eater GE −267.37** −122.11 −51.59 −499.55** −396.03** −309.72** −452.95 −177.70 −147.78

PCV HO FF OM HO FF OM HO FF OM

Folivore-frugivore FF 14.30 263.83** 212.62
Omnivore OM 189.23** 174.93** 280.15** 16.32 397.58 184.95
Grass-eater GE 346.92** 332.63** 157.69** 496.15** 232.32** 216.00** 351.80 139.17 −45.78

Significant differences at p < 0.05 (*) and p < 0.01 (**).

TABLE 9 Factor loadings of the first two principal components (PC1-2) on dental topographic metrics for the teeth analyzed by wear stage.

Wear I M1 M2 M3

PC PC1 PC2 PC1 PC2 PC1 PC2

Eigenvalue 1.946 1.614 2.779 1.034 3.283 0.589
% Variance 48.656 40.361 69.488 25.848 82.09 14.728

Metric r r r r r r

OPCR −0.017 0.971** 0.582** 0.800** 0.806** 0.579**
DNE 0.620** 0.735** 0.954** 0.199** 0.974** 0.123
OR 0.885** −0.312** 0.807** −0.550** 0.877** −0.443**
PCV −0.882** 0.186* −0.938** 0.227** −0.957** 0.207*

Wear II M1 M2 M3

PC PC1 PC2 PC1 PC2 PC1 PC2

Eigenvalue 2.226 1.228 2.683 1.119 2.685 1.046
% Variance 55.652 30.703 67.075 27.98 67.146 26.151

Metric r r r r r r

OPCR −0.031 0.969** −0.147 0.981** −0.169 0.982**
DNE 0.828** 0.451** 0.901** 0.360** 0.920** 0.275
OR 0.922** −0.140 0.947** −0.160 0.969** −0.078
PCV −0.830** 0.258** −0.976** 0.029 −0.934** 0.012

Correlation (Pearson’s r) PCs and metrics at p < 0.05 (*) and p < 0.01 (**).

(PCV), as has already been suggested for bunodont teeth
(Berthaume et al., 2018), while DNE and OPCR tend to show
lower values in worn teeth. It has been suggested that DNE
increases with macrowear (Pampush et al., 2016), especially in

folivorous primates (Pampush et al., 2018), which is consistent
with the dental sculpting hypothesis, suggesting that DNE could
be used to study wear-related variably in different primate
groups, including cercopithecoids. Overall, our results show that
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FIGURE 2

Scatter plot of the first two principal components (PC1-2) for first (A), second (B) and third (C) permanent maxillary molars by wear stage (Wear I
and II) accounting for > 85% of the shape descriptor metrics variance between dietary groups. The labeled rays show the loadings of the
topographic metrics onto PCs. Note the differences in molar topographic patterns despite wear clearly reflecting the adaptive variation of
feeding habits.

DNE decreases with wear, but significant differences were only
observed in the hard-object feeders and the omnivores, which
suggests that the dental sculpting hypothesis is not evident in
these dietary groups for the first stages of wear, in line with the
hypothesis proposed by Bunn et al. (2011) and Winchester et al.
(2014).

On the other hand, OPCR and OR showed a significant
interaction with wear. OR demonstrated significant interaction
for M1 and M2 in all dietary groups, and for M2. These

results suggest that there were differences in complexity along
wear stages specifically for the M1 of all dietary groups, and
for the M2 in hard-object feeders and folivore-frugivore. The
occlusal relief decreased significantly with wear, which was an
expected association since tooth height decreases as enamel and
dentine tissue is lost (M’Kirera and Ungar, 2003; Ungar, 2015;
Ungar et al., 2018; Romero et al., 2022). High OPCR values,
indicative of a complex surface topography, may be indicative
of a great ability to shear fibrous foods (Evans et al., 2007;
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Evans and Janis, 2014). OPCR showed increased values along
wear stages in the upper bilophodont molars in all the dietary
groups except in the grass-eater Theropithecus. This suggests
that T. gelada maintains the functional complexity of occlusal
morphology with wear. Although a dental sculpting hypothesis
was initially described for hypsodont taxa (Fortelius, 1985;
Jablonski, 1994) proposed a similar ungulate-like secondary
morphology for Theropithecus, which has high-crowned molars
with deep and widely separated basins showing long shearing
blades apparently adapted to a predominantly grass-eating diet
(Jolly, 1970; Teaford, 1993). Our results, however, denote that
the crown cap of Theropithecus did not show significantly
increased OPCR values in worn out teeth consistent with the
dental sculpting hypothesis. On the contrary, the complexity
tended to decrease between wear stages in the upper first and
second molars. Occlusal relief (OR) tends to be maintained
regardless of wear patterns in both folivore and hard-object
feeder primates, the folivores showing a higher relief, sharp
edges and sloping surfaces at a given stage of wear (M’Kirera
and Ungar, 2003; Ungar and M’Kirera, 2003; Bunn and Ungar,
2009), while omnivores and hard object eaters show lower
shearing crests, similar to frugivores (Winchester et al., 2014;
Allen et al., 2015). The distribution of both the unworn and
worn tooth crowns caps in the morphospace was practically the
same in the present study, and hard-object and grass feeders
were clearly distinct from the other dietary groups. Although
topographic metrics might differ between wear stages, the
differences in cap topography among dietary groups remained
for DNE, PCV and OR, suggesting that dental shape changes
due to wear did not obscure the distinct dietary-related
topographies, at least for the lightly worn teeth considered in
this study.

Tooth shape and phylogeny

The dental topography of the upper molars (M1-
3) seems to better reflect dietary specializations than
phylogenetic proximity. Lophocebus and Cercocebus,
which both have a hard-object dietary regime, cluster
together in our topographic morphospace, and genetic
evidence shows that Lophocebus is more closely related to
baboons (Disotell et al., 1992; Disotell, 1994, 2000; Harris
and Disotell, 1998; Harris, 2000). As some authors have
suggested, this is consistent with processes of evolutionary
convergence affecting the Papionini (Lockwood and
Fleagle, 1999; Lycett and Collard, 2005; Collard and
Wood, 2007), as also shown by inconsistencies between
molecular and morphological inferences (Guevara and
Steiper, 2014; Liedigk et al., 2014; Pugh et al., 2018).
Skeletal structures that are subject to great biomechanical
stress are prone to homoplasies compared to regions with
reduced stress (Lycett and Collard, 2005; Collard and

Wood, 2007). The masticatory apparatus in the skull has
great biomechanical constraints related to craniofacial bone
tensions during the chewing cycle (Wall, 1999; Vinyard
et al., 2003), resulting in a greater phenotypic plasticity
that means the associated structures are less reliable
indicators of phylogeny (Lieberman, 1995) compared to a
dietary-related proxy.

The dietary classifications used in the present study
represent year-round resource exploitation groups, however,
seasonal fallback foods may play a more important role in
shaping tooth morphology when favored items are inaccessible
for primate species (Thiery et al., 2017b; Ungar et al.,
2018). In order to use dental topography as a proxy for
functional morphology to infer dietary strategies, it is important
to understand such ecological and dietary determinants
in the Papionini clade. Our findings may contribute to
understanding the evolution of dental crown morphology in
relation with environmental changes and dietary resources
in the Papionini lineage along the Plio-Pleistocene, and
thus to the study of the isolated teeth, both unworn and
worn, that are abundant in the fossil record. The Papionini
model may be an analogous model with which to interpret
the evolutionary trend of the Hominini lineage, as both
the Papionini and Homini lineages emerged during the
Pliocene in African sites, and, therefore, confronted the same
ecological constraints and seasonal shifts in resource acquisition.
Understanding functional adaptations to different ecological
strategies may be a clue to allowing us to infer diet in
fossil taxa.
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Introduction: The end Pleistocene was a time of considerable ecological

upheaval. Recent work has explored the megafauna extinction’s role

in altering ecosystem processes. Analyses of functional traits withing

communities reveal hidden consequences of the megafauna extinction

beyond declines in taxonomic diversity. Functional diversity analyses offer new

insight into our understanding of past ecosystems and may even inform future

rewilding efforts. However, the utility of functional diversity may be hampered

by the use of discrete, taxon-level functional traits, such as dietary categories,

that mask variation in functional diversity over space and time.

Methods: We present an approach in which species distribution modeling, in

Maxent, provides context for interpreting variation in two widely used proxies

for diet among fossil taxa: stable isotope analysis and dental microwear

texture analysis. We apply this approach to two ecologically distinct taxa, the

American mastodon (Mammut americanum) and mammoths (Mammuthus)

and investigate their resource use over space and time from the last glacial

maximum to the end Pleistocene (25–11.7 thousand years before present).

Results: Mammoth dietary behavior varies by context across their geographic

distribution, despite possessing evolutionary adaptations that facilitate

grazing. Mammoths exhibit a preference for grazing where species

distribution modeling predicts the highest likelihood of occurrence but

engage in more mixed-feeding outside of core likelihood areas. In contrast,

dietary preferences for mastodon are less resolved and our analyses were

unable to identify significant differences in diet across their distribution.
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Discussion: The ecological roles of some species are context specific

and need to be critically evaluated when planning for management of

reintroductions or introducing novel species to restore lost ecological

function.

KEYWORDS

carbon, Maxent, Mammuthus, Mammut, stable isotope analysis (SIA), dental
microwear texture analysis (DMTA)

Introduction

The end Pleistocene was a time of considerable
environmental upheaval (Rule et al., 2012; Malhi et al.,
2016), with the extinction of most megafauna (species
weighing > 45 kg) (Lyons et al., 2004) occurring on the
backdrop of a rapidly changing climate (Severinghaus et al.,
1998; Alley, 2003). While the loss of megafauna reduced
taxonomic richness more broadly, recent work has explored
the megafauna extinction’s role in altering ecosystem processes
through the analysis of functional traits withing communities.
These studies have found that not only does functional diversity
decline (Davis, 2017), but resilience declines with the loss of
megafauna that filled unique ecological roles (Hedberg et al.,
2022), highlighting the hidden consequences of species diversity
loss. This work is timely, as the idea to rewild landscapes
with so-called modern “functional equivalents” of Pleistocene
megafauna is increasingly presented as a viable solution for
restoring degraded ecosystems (Donlan et al., 2006; Svenning
et al., 2016).

The search for modern functional equivalents relies on
having a clear understanding of the biological roles of
extinct species, and therein lies the rub. Much of our
understanding of the ecological function of extinct animals has
been inferred through comparisons with living analogs (Janis
and Ehrhardt, 1988; Janis, 1995; Mendoza et al., 2002) and
community-level paleoecological analyses are often conducted
using discrete taxon-level traits and characteristics (Gladstone-
Gallagher et al., 2019; Hedberg et al., 2022). Trait resolution
can affect interpretation of functional structure (Kohli and
Jarzyna, 2021) and the use of coarse categorizations, such
as dietary group assignments (e.g., “grazer,” “mixed-feeder,”
“browser,” “omnivore,” and “carnivore”) also does not account
for variation in behavior within communities or across a taxon’s
geographic distribution. By ignoring variation, we risk limiting
our understanding of the ecology of extinct species and masking
community-level differences in functional diversity (Violle et al.,
2012), which poses a hindrance to the possibility of rewilding.

Here, we ask how dietary function varies over the
distributions of two iconic ice age taxa: mammoth
(Mammuthus) and American mastodon (Mammut

americanum). There are many reasons that we expect
landscape-scale patterns in intraspecific variation in diet.
Within the niche of a species, and reflected by its geographic
range, there are conditions that are most optimal for persistence
and less optimal conditions near boundaries (Hutchinson,
1957). Variation in niche fitness is reflected in patterns of
population densities across geographic ranges, which exhibit
a pattern of central tendency across many organisms (Brown,
1984). Additionally, there is an interrelatedness between the
niche, environmental conditions, and patterns of biological
responses such as predation and competition (Macarthur
and Levins, 1967; Maguire, 1973). Because the types and
abundance of plants are constrained along gradients of
temperature and precipitation (Whittaker, 1967) we predict
that variation in the dietary behavior of mammoth and
mastodon follow climate, and that diets consumed in the
most environmentally suitable parts of the distribution, or
“core areas,” differ from diets consumed closer to geographic
boundaries, or “edges” (Hutchinson, 1957; Maguire, 1973;
Brown, 1984).

Individual-level trait data can provide useful information
regarding variation in ecological function between individuals,
across populations, and across landscapes. Stable isotope
analysis (SIA) of δ13C from enamel (δ13Cenamel) is an individual-
level proxy for the relative consumption of C3- and C4-based
resources (e.g., Cerling et al., 1997; MacFadden et al., 1999;
Secord et al., 2012; DeSantis et al., 2019). In environments where
C4 grasses are favored, δ13Cenamel can differentiate between the
consumption of C4 grass and C3 browse to quantify degrees of
browsing, mixed-feeding, and grazing behavior in herbivores
(Teeri and Stowe, 1976; Cerling et al., 1998) and quantify
variation across these feeding strategies within a taxon (Pardi
and DeSantis, 2021; DeSantis et al., 2022).

Often as a complement to SIA, dental microwear texture
analysis (DMTA) is another tool that can provide information
on the diets of individual animals (DeSantis, 2016). DMTA
using scale-sensitive fractal analysis measures the following
attributes: anisotropy (epLsar), complexity (Asfc), textural fill
volume (Tfv), and heterogeneity of complexity compared
among surfaces in a 3 × 3 grid (HAsfc3) and in a 9 × 9
grid (HAsfc9) (Ungar et al., 2003; Scott et al., 2005, 2006;

Frontiers in Ecology and Evolution 02 frontiersin.org

126

https://doi.org/10.3389/fevo.2022.1064299
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1064299 November 21, 2022 Time: 18:12 # 3

Pardi and DeSantis 10.3389/fevo.2022.1064299

Scott, 2012; DeSantis, 2016). Through DMTA, microscopic
tooth wear is used to characterize diets of differing hardness and
toughness (Scott et al., 2006). High anisotropy is characteristic
of individuals consuming tough food item such as flesh, in the
case of carnivores, or grass, in the case of herbivores. High
complexity distinguishes individuals consuming hard and brittle
food items, while low complexity is characteristic of consuming
soft items. In herbivores, DMTA has been successfully used
to differentiate between diets ranging from obligate grazers
to browsers to frugivores (Scott, 2012), including diets that
are isotopically similar (DeSantis, 2016; DeSantis et al.,
2017).

Our aim is to place intraspecific variation from SIA
and DMTA into a geographic context to identify landscape-
scale patterns in diet of mammoths and mastodons. Species
distribution modeling (SDM) has been increasingly used to
study the distribution of species over space and time, especially
in response to climate change, including among fossil taxa
(Martínez-Meyer et al., 2004; Elith and Leathwick, 2009;
Maguire and Stigall, 2009; Wang et al., 2021). Such analyses
leverage the availability of detailed paleoclimate reconstructions
(e.g., Collins et al., 2006; Brown et al., 2018) as well as
fossil occurrence data that are now widely accessible through
databases (e.g., Williams et al., 2018). Presence-only methods,
such as Maxent, are especially useful for analyzing the likely
distributions of extinct species for which occurrences can be
verified, but absences are uncertain or unknown (Phillips and
Dudík, 2008; Elith et al., 2011). By modeling the distribution of
species, relationships between climatic variables and likelihood
of occurrence can be established, and geographic regions can be
assessed as being more or less, suitable to a taxon.

Species distribution modeling and individual-level dietary
proxies are useful tools for understanding the ecology of species.
Here, we combine these approaches to explore how multiple
aspects of the niche contribute to dietary variation. Mammoth
and mastodon were selected for this study because they are
broadly distributed, are well represented in the late Quaternary
fossil record, and have diets that have been well described.
Mammoth have morphological adaptations (Maglio, 1972) that
permit a broad diet ranging from mixed-feeding to grazing
(Smith and DeSantis, 2018, 2020; Pardi and DeSantis, 2021;
DeSantis et al., 2022). In contrast, mastodon are browsers with
a more narrow breadth in δ13C (Green et al., 2017; Smith and
DeSantis, 2018, 2020; Pardi and DeSantis, 2021; DeSantis et al.,
2022), but the type of browse that is consumed can come from a
variety of sources (Lepper et al., 1991; Newsom and Mihlbachler,
2006) and can vary over time and space (Green et al., 2017). Our
approach is to model their distributions using Maxent, and then
compare variation in dietary proxies (via SIA or DMTA) over
space. We ask if the diets of mammoth and mastodon living
in the core areas of their distributions (and niches) differ from
those living closer to the edges.

Materials and methods

Training and tuning of species
distribution models

Our study treats mammoth (Mammuthus) at the genus
level and mastodon (Mammut americanum) at the species
level. This choice was deliberate as a means to be congruent
with (1) the treatment of dietary proxy data in the literature
and (2) what genetic studies indicate is reasonable treatment
of these taxa. Much of the dietary proxy data available are
presented at the genus level. This is true not just for mammoth
and mastodon, but across herbivores more broadly (see Pardi
and DeSantis, 2021). Multiple species are currently recognized
within Mammuthus, but study of their genetics casts doubt
on current species designations; while there is phylogeographic
structure in mammoth matrilines, there is also introgression,
potentially extensive, between nominal mammoth species
and there are non-linear associations between genetics and
morphological attributes that have been used to distinguish
mammoth taxa (Enk et al., 2016). Mastodon taxonomy suffers
in a different manner. While all of the mastodon records in our
study are M. americanum and exclude M. pacificus (Dooley et al.,
2019), recent genetic analyses of M. americanum identifies six
distinct clades across the North American continent (Karpinski
et al., 2020). Thus, taxonomic revisions to split Mammut may be
in order and the taxonomic resolution of our analyses between
mammoth and mastodon are comparable.

Records identified as Mammuthus and Mammut
americanum were downloaded from the Neotoma Database1

(Williams et al., 2018) and supplemented with a literature
search (Supplementary Table 1). A record was included as
an occurrence in the Maxent model if its location could be
estimated with at least 20 km precision and if a high-quality
date was made directly on the taxon of interest (Barnosky and
Lindsey, 2010), or if there was reasonable stratigraphic evidence
to accept an associated age. Radiocarbon dates were calibrated
using the Intcal20 calibration curve (Reimer et al., 2020) using
the “calibrate” function in the rcarbon package (version 1.4.3) in
R (version 4.2.0) (Crema and Bevan, 2021; R Core Team, 2022).
Median ages were used to place occurrences into one of the
following time bins: the Last Glacial Maximum (LGM; 25,000–
18,000 yr B.P.), Heinrich Stadial 1 (HS1; 17,000–14,700 yr B.P.),
Bølling-Allerød (BA; 14,700–12,900 yr B.P.), and the Younger
Dryas Stadial (YD; 12,900–11,700 yr B.P.).

A species distribution model was trained in Maxent2,
version 3.4.4 (Phillips et al., 2020) for each taxon using collective
occurrences spanning the time periods of our study. Each
occurrence was spatially associated with raster coverages of 19

1 http://neotomadb.org

2 http://biodiversityinformatics.amnh.org/open_source/maxent/
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bioclimatic variables modeled for the YD, BA, and HS1 from
Paleoclim (Brown et al., 2018), and the LGM (ca. 21,000 yr
B.P) from the CHELSA algorithm (Karger et al., 2017). Climate
rasters had a resolution of 20 km, and occurrences were spatially
thinned such that no grid cell was shared by two or more
occurrences within the same time bin to reduce potential issues
of autocorrelation (Legendre, 1993).

Background points in the Maxent model represent the
areas accessible to a species and the climatic conditions that
are present at those locations. The experimentally determined
minimum number of background points required to represent
the available environment is 10,000 (Phillips and Dudík,
2008). Temporally balanced background points were randomly
sampled by location and time period from within a seven-
degree buffer surrounding each thinned occurrence, with
the proportion of background points selected to match the
proportion of occurrences in each time bin (Pendleton et al.,
2012; Pardi and Smith, 2016). Background points were not
sampled from regions covered by glaciers or large lakes (Dyke
et al., 2003).

Model tuning was conducted using the function
“ENMevaluate” in the R package ENMeval (version 2.0.3)
(Kass et al., 2021) and followed a “n−1” or “leave one out”
jackknife procedure (Shcheglovitova and Anderson, 2013)
varying two Maxent settings that regulate model complexity:
feature class and regularization multiplier. Each omitted
occurrence was used as a test case for each model trained
with n−1 occurrences. Models were run with combinations of
linear, hinge, linear with quadratic, and linear with hinge and
quadratic features, and regularization multipliers ranging from
0.5 to 5.0, at 0.25 intervals. We compared a total of 76 model
combinations across n iterations, each, for mammoths and
mastodon. The average test omission [using the tenth percentile
training presence threshold (TPT)] and average area under the
receiver operating characteristic curve (AUC) across model runs
was calculated for each combination. AUC is the probability
that a random training occurrence will be ranked higher than
a random background point (Phillips and Dudík, 2008; Elith
et al., 2011). The combination that (1) minimized average
omission rates and then (2) maximized average AUC values was
selected for each taxon to minimize overfitting (Shcheglovitova
and Anderson, 2013) while maximize predictability.

To model likely distributions for each time bin and identify
geographic areas of differing likelihood of occurrence, the
tuned models were projected onto gridded climate variables
for each time period (Dyke et al., 2003; Karger et al., 2017;
Brown et al., 2018) and categorized at different likelihood
thresholds. Grid cells with modeled likelihood values above the
TPT were categorized as “Core” areas. Cells below the TPT
were categorized as “Edge” areas. For purposes of discussion,
we further subdivided Edge areas as “intermediate” and of
“lowest/least” likelihood of occurrence using the minimum
training threshold (MTT). The aim of this classification was
to identify geographic locations of differing likelihoods of

occurrence for each time period. Multivariate environmental
similarity surfaces (MESS) were used to omit predicted areas
from further analyses that fell outside of the range of climate
variables used to train the models (Elith et al., 2010).

Spatial analyses of dietary proxies
across regions of differing suitability

To assess how mammoth and mastodon diets varied
across their niches and distributions, published dietary proxies
were collected from the literature, and were then spatially
and temporally compared across Core areas and Edge areas
as defined by the Maxent models. Our expectation is that
mammoth and mastodon vary their diets according to the
suitability of the environment, as regions of the highest
suitability may have greater availability of preferred resources.

Prior analyses of δ13Cenamel have identified high variation
within mammoth and characterized them as grazers that
can mixed-feed; in contrast, there is low variation in
δ13Cenamel within mastodon, which are browsers (Figure 1).
SIA is, therefore, unlikely to capture significant landscape-
scale differences in dietary behavior within mastodon. However,
DMTA has identified significant differences in the consumption
of distinct browse resources by mastodons across sites of
differing vegetation types (Green et al., 2017; Smith and
DeSantis, 2018). We, therefore, focus our analyses of spatial
variation in diets using SIA of mammoth and DMTA of
mastodon. Mammoth SIA and mastodon DMTA samples
were from published georeferenced specimens that had ages
confirming they were from the latest Pleistocene, after the LGM
(Supplementary Tables 2, 3).

We compared δ13Cenamel values sampled from mammoth
between Core and Edge areas. Analyses were geographically
restricted to samples collected from occurrences from below
37◦ latitude (MacFadden and Cerling, 1996; Connin et al., 1998;
Koch et al., 1998, 2004; Hoppe, 2004; Hoppe and Koch, 2006;
Vetter, 2007; Metcalfe et al., 2011; Lundelius et al., 2019), where
δ13Cenamel values more directly reflect the relative consumption
of C3 browse and C4 grass resources. Specifically, C3 vegetation
is likely trees, forbs, and shrubs (δ13Cenamel values < −9h)
and C4 resources are likely grasses (δ13Cenamel values > −2h)
below 37◦ latitude (Teeri and Stowe, 1976; Cerling et al., 1997;
Kohn, 2010). The temporal resolution of some SIA samples
was coarser than our niche models, with the age estimates of
some localities spanning time bins. We retained less temporally
refined samples where the age estimate spanned time bins if they
had the same suitability classification (Core vs. Edge). However,
if a site spanned time bins where modeled suitabilities were
different, the sample was removed from our analyses. The null
hypothesis is that isotopic samples from Core areas and Edge
areas are from the same distribution and indistinguishable.

Similarly, we compared DMTA values from mastodon
across suitability regions. We did not employ any geographic
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FIGURE 1

Isotopic breadth of mammoth (Mammuthus) and mastodon (Mammut americanum) during the Late Pleistocene (25–11.7 ka). Data are from
latitudes below 37◦ North (MacFadden and Cerling, 1996; Connin et al., 1998; Koch et al., 1998, 2004; Hoppe, 2004; Hoppe and Koch, 2006;
Vetter, 2007; Metcalfe et al., 2011; Lundelius et al., 2019; Pardi and DeSantis, 2021; DeSantis et al., 2022). Values are calibrated to the Vee Pee
Dee Belemnite (V-PDB) standard.

constraints in these analyses; however, temporal constraints
were treated the same as in mammoths. Higher complexity
(Asfc) would be indicative of consuming harder foods, high
anisotropy (epLsar) indicates softer and tougher foods, and
low heterogeneity (HAsfc3, HAsfc9) may indicate specialized
browsing (Scott et al., 2005; Scott, 2012). The null hypothesis
is that DMTA parameters measured from Core area samples
and Edge samples are from the same distribution and
indistinguishable.

Results

Occurrences and model tuning

A literature search of occurrences with dates resulted in
n = 70 occurrences of Mammuthus (n = 16, 10, 28, and 16 for the
LGM, HS1, BA, and YD, respectively) and n = 37 occurrences
of Mammut americanum (n = 4, 2, 26, and 5, respectively)
(Supplementary Table 1). The model that minimized average
omission rates and maximized average validation AUC values
for each taxon was selected: for mammoth, linear features
with a regularization multiplier of 4.5 resulted in an average
omission rate of 0.1142 and average validation AUC of 0.6661;
for mastodon, hinge features and a regularization multiplier of
2.75 resulted in an average omission rate of 0.1111 and average
validation AUC of 0.7948. Given these parameter settings,
the final model training AUCs were 0.6842 for mammoths
and 0.8436 for mastodon. An AUC of 0.7 or higher is
generally considered good, however, a lower AUC may be
reflective of greater difficulty in distinguishing suitable and
unsuitable habitat for widespread and more generalist species
(Dobrowski et al., 2011). The environmental variable with
the greatest percent contribution to the mammoth model was

mean temperature of the driest quarter (85.5% contribution;
Supplementary Table 4). The environmental variables with
the greatest percent contribution to the mastodon model were
mean temperature of the driest quarter (46.3%), maximum
temperature of the warmest month (15.4%), precipitation of the
coldest quarter (14.6%), and precipitation of the driest month
(12.1%; Supplementary Table 5).

Modeled suitability of mammoths and
interpretation of the dietary niche
using stable isotope analysis

Models were projected onto climate raster layers to estimate
where suitable regions for mammoth existed for each time bin
in our study and classified into Core and Edge areas (Figure 2).
Edge areas were further subdivided into areas that were of
intermediate and lowest likelihood of occurrence. The tenth
percentile training threshold was 0.3424 and the MTT was
0.2218. Projections onto the five time periods of the study
indicate changes in the distribution of areas of relative likelihood
(Figure 2). With the retreat of glaciers, the leading edge of
Core areas for mammoth expand north but the trailing edge is
displaced by Intermediate and Least Likely areas in the south,
southwest, and along the west coast.

To test whether mammoth diets varied predictably with
likelihood of occurrence, δ13Cenamel values were categorized
as being either from Core areas or Edge areas by age and
location (Figures 2, 3). The Maxent model correctly predicted
SIA sample locations as places of occurrence for mammoth:
none of the SIA samples were found to be from areas modeled
to be least likely, or below the MTT of the model. Within Core
areas δ13Cenamel values ranged from −8.7 to 0.5h with a median
value of −1.5h (n = 32, nsites = 10; Table 1). Samples from
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FIGURE 2

Modeled distributions for mammoth (Mammuthus) during the Last Glacial Maximum (A), Heinrich Stadial 1 (B), Bølling-Allerød (C), and Younger
Dryas (D). Core areas are indicated in black, Edge areas are subdivided into Intermediate (medium gray) and Least Likely (light gray) categories.
Occurrences used in training the Maxent models are indicated by crosses. Stable isotope analysis (SIA) sample locations are indicated as circles.
Note that when a location for dietary proxy samples has age estimates spanning time bins it has been mapped across those bins for visualization
purposes. Pollen records referenced in the text (stars) are labeled with their Neotoma site ID.: Lake Tulane (2570), Camel Lake (324), Montezuma
Well (1710), and Bear Lake (10000). The extent of North American ice sheets are shown for 18,000, 14,500, 13,000, and 11,500 radiocarbon years
B.P. following Dyke et al. (2003).

Edge areas ranged from −9.0 to −0.9h with a median value
of −2.8h (n = 17, nsites = 11; Table 1). δ13Cenamel sampled from
Core areas were significantly less negative and reflective of the
consumption of proportionally more C4 resources (Wilcoxon
rank sum and signed rank test; W = 149, p = 0.01004; Figure 3).
To explore the possible effects of a larger sample size from
Core areas, we applied a bootstrap analysis and plotted the
distribution of resulting p-values from the Wilcoxon rank sum
and signed rank test (Supplementary Figure 1). This analysis
produced a median p-value of 0.03 and an interquartile range
from 0.01 to 0.05, and we reject the null hypothesis on this basis.

Modeled suitability of mastodon and
interpretation of the dietary niche
using dental microwear texture
analysis

Models were projected to estimate where regions for
mastodon existed for each time bin in our study and classified
into Core and Edge areas (Figure 4) using the tenth percentile

training threshold (0.4162). Edge areas were further subdivided
into areas that were of Intermediate and Lowest Likelihood of
occurrence using the MTT (0.1457). Projections onto the five
time periods of the study indicate changes in the distribution
of areas of relative likelihood (Figure 4). With the retreat of
glaciers, the leading edge of Core areas for mastodon move
northwards, while the trailing edge is displaced by Intermediate
and Least Likely areas across the south and west.

To test whether diets of mastodon varied predictably with
likelihood of occurrence, DMTA samples were categorized as
being either from Core areas or from Edge areas based on
their age and where they were sampled from Figures 4, 5 and
compared. The Maxent model correctly predicted most of the
DMTA sample locations as places of occurrence for mastodon:
only one out of the 14 DMTA sample localities (Friesenhahn
Cave) was from an area modeled to be least likely, meaning
most were found to be at least within the MTT of the model.
No significant differences were found in complexity (Asfc),
anisotropy (epLsar), textural fill volume (Tfv), or heterogeneity
(Hasfc3 and Hasfc9) between samples taken from Core areas
(n = 32, nsites = 12; Table 2) and Edge areas (n = 10, nsites = 2;
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FIGURE 3

Boxplots of δ13Cenamel from mammoth (Mammuthus) collected below 37◦ latitude. Samples from Core areas of the distribution (highest
likelihood of occurrence) are compared to those in Edge areas (intermediate and lowest likelihood of occurrence). Raw values are plotted in
addition to the distributions given by the boxplots. The dashed green line indicates a δ13Cenamel value of –2.0h which is the threshold between
a mixed-feeding versus grazing diet. Samples from Core areas are significantly less negative (Wilcoxon rank sum and signed rank test; W = 149,
p = 0.01004).

Table 2). While a Wilcoxon rank sum and signed rank test
of Asfc failed to reject the null hypothesis when evaluated at
α = 0.05 (W = 100, p = 0.0788), samples from Core areas had Asfc
values that ranged from 0.537 to 5.926 and had a median value
that was higher (1.904) than samples from Edge areas ranging
0.429 to 2.759 (median = 1.055; Figure 5). A comparison of
the summary statistics across DMTA textures suggests that
individuals are most differentiated by complexity (Asfc) over
space when compared to any other texture variable (Table 2).

Discussion

Rather than attempt to strictly define geographic ranges
of mammoth (Mammuthus) and mastodon (Mammut
americanum), which SDMs often over- or under-predict
(Mellert et al., 2011; Marcer et al., 2013; Lee-Yaw et al., 2022),
our aim was to compare dietary function within Core areas of
greatest likelihood to dietary function in Edge areas of lower
likelihood (Peterson et al., 2018; Figures 2, 4). We established
correlative relationships between climatic variables and
likelihood of occurrence to test the hypothesis that mammoth
and mastodon consume variable diets at the landscape scale
according to relative suitability of the environment using
the maximum-entropy approach of species distribution
modeling. We found evidence for significant dietary preferences
of mammoth (Figure 3 and Table 1), while preference in
mastodon was less resolved (Figure 5 and Table 2).

Despite the cosmopolitan distribution of mammoth and
their apparent high variation of dietary breadth (Smith and
DeSantis, 2018), greater consumption of grass in Core areas
across their modeled distribution suggests a preference for grass

(Figure 3) as would be expected from both their morphology
(Maglio, 1972) and as a requirement for adequate rates of tooth
wear (Fagan et al., 1999). These preferences resemble those of
Elephas maximus (Asian elephants) which are variable mixed-
feeders with a preference for grazing (Sukumar et al., 1987;
Baskaran et al., 2010; Koirala et al., 2016).

As a dietary proxy, δ13Cenamel can discriminate between
browse and graze consumption at low latitudes (below 37◦)
because most low-latitude grasses use the C4 photosynthetic
pathway and have tissues that are isotopically distinct from those
of C3 trees, forbs, and shrubs (Teeri and Stowe, 1976; Paruelo
and Lauenroth, 1996; Cerling et al., 1997, 1998; Macfadden et al.,
1999). High δ13Cenamel values from individuals sampled at low
latitudes in our study indicate greater consumption of C4 grass
by mammoths where they are most likely to occur. Preference
is exhibited when a resource is utilized at a higher frequency
than it occurs, and these individuals are from landscapes of
mixed, but C3-browse dominant, resources. Local pollen records
from Camel Lake (Watts et al., 1992; Wang et al., 2019) and
Lake Tulane (Grimm et al., 1993; Wang et al., 2019; Figure 2)
confirm the presence of mixed-parkland and deciduous forest
environments coincident with SIA samples during Heinrich
Stadial 1 through the Younger Dryas (Supplementary Table 6).
Where, then, are these mammoth grazing?

Elephants typically maintain small home ranges (<250 km)
(Bonhof and Pryor, 2022) but exhibit variable nomadic behavior
that is influenced by seasonal change of habitat, the availability
of food and water, as well as sex (Sukumar et al., 1987; Baskaran
et al., 2010; Koirala et al., 2016). Similar movement patterns in
mammoths have been inferred from 87Sr/86Sr analyses, although
longer treks to other geographic areas are feasible (Bonhof
and Pryor, 2022). If grasses are distributed heterogeneously in
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TABLE 1 Summary statistics of δ13Cenamel for mammoth (Mammuthus) in this study.

δ 13Cenamel V-PDB (h)

Modeled area n n-sites Mean Median SD Min Max Range

Core area 32 10 −2.2 −1.5 2.6 −8.7 0.5 9.2

Edge area 17 11 −4.3 −2.8 3.1 −9 −0.9 9.9

FIGURE 4

Modeled distributions for mastodon (Mammut americanum) during the Last Glacial Maximum (A), Heinrich Stadial 1 (B), Bølling-Allerød (C), and
Younger Dryas (D). Core areas are indicated in black, Edge areas are subdivided into Intermediate (medium gray) and Least Likely (light gray)
categories. Occurrences used in training the Maxent models are indicated by crosses. Dental microwear texture analysis (DMTA) sample
locations are indicated as circles. Note that when a location for dietary proxy samples has age estimates spanning time bins it has been mapped
across those bins for visualization purposes. Pollen records referenced in the text (stars) are labeled with their Neotoma site ID.: Brewster Creek
(9588), Appleman Lake (10003), Stotzel-Leis Site (2520), Cater Site (337), Camel Lake (324), and Lake Tulane (2570). The extent of North
American ice sheets are shown for 18,000, 14,500, 13,000, and 11,500 radiocarbon years B.P. following Dyke et al. (2003). Panel (C) inset shows
Northern mid-continent data in more detail for the Bølling-Allerød.

patches within a browse-dominated environment, mammoth
could have selectively made use of these resources by traveling
between patches. However, enriched δ13Cenamel values signaling
the use of C4 resources indicate that grazing was primarily at
lower latitudes, as the relative abundance of C3 to C4 grasses
increases with latitude (Teeri and Stowe, 1976; Paruelo and
Lauenroth, 1996; Cerling et al., 1997, 1998; Macfadden et al.,
1999).

Mammoth sampled from Edge areas of lower likelihood
made greater use of mixed C3 and C4 resources (Figure 3).
These individuals may be consuming the local vegetation. Pollen
from Montezuma Well (Davis and Shafer, 1992) documents

predominantly desert vegetation which includes on average
∼5% diversity from grasses during Heinrich Stadial 1 through
the Younger Dryas, near SIA samples in the Southwest (Figure 2
and Supplementary Table 6). Another nearby pollen site
is Bear Lake (Weng and Jackson, 1999), which documents
predominantly spruce parkland with on average <1% grasses
and sedges during the Bølling-Allerød and the Younger Dryas.
Alternatively, these individuals could be acquiring a mixed
signal by consuming C3 grasses from higher latitudes: future
studies of individual movement can help clarify where these
animals are foraging.
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FIGURE 5

Boxplots of epLsar (A), Asfc (B), Tfv (C), Hasfc3 (D), and Hasfc9 (E) for mastodon (Mammut americanum). Individuals sampled from Core areas of
the distribution (highest likelihood of occurrence) are compared to those in Edge areas (intermediate and lowest likelihood of occurrence). Raw
values are plotted in addition to the distributions given by the boxplots. A Wilcoxon rank sum and signed rank test found no significant
differences between groups for any dental microwear texture analysis (DMTA) texture parameter.

Dietary preferences are less clearly defined for mastodon.
Their isotopic breadth is, overall, relatively low and indicates
restricted use of C3 resources (Figure 1; Pardi and DeSantis,
2021). However, analyses a coprolites demonstrate that they
consumed a broad variety of C3 plants (Lepper et al., 1991;
Newsom and Mihlbachler, 2006). We therefore analyzed
published DMTA values to explore variance in food texture
across their modeled distribution. Mastodon from Core areas
of highest likelihood of occurrence have somewhat higher
complexity (Asfc) values (median = 1.904, Figure 5 and Table 2)
than Edge areas (median = 1.055) which hints at greater
consumption of brittle or hard food items (bark, nuts, and
seeds) in Core areas, although this difference is non-significant
(p = 0.0788). The bulk of what is known about mastodon

diets inferred through DMTA comes from a handful of studies
comparing regional and temporal variation across sites of
differing habitats (Green et al., 2017; Smith and DeSantis,
2018, 2020) and age demographics (Smith and DeSantis, 2018).
Sampling for mastodon DMTA does not have nearly the breadth
of geographic coverage as SIA for mammoth (Figures 2, 3).
Future analyses of DMTA from samples collected outside of
the Core areas of highest likelihood will help to clarify dietary
preferences.

Although we were unable to identify significant differences
in mastodon diets according to their likelihood of occurrence
using DMTA, contemporaneous pollen records point to habitat
types that may have been more suitable. Core areas of high
likelihood of occurrence are consistently present for mastodon
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TABLE 2 Summary statistics of dental microwear texture analysis (DMTA) texture attributes for mastodon (Mammut americanum) in this study.

Modeled area Statistic n n-sites Asfc epLsar Tfv HAsfs 3 × 3 HAsfc 9 × 9

Core area Mean 32 12 1.977 0.0034 10891.8 0.337 0.586

Median 1.904 0.0036 11221.0 0.327 0.573

SD 1.200 0.0015 2682.3 0.122 0.173

Min 0.537 0.0005 4016.0 0.143 0.277

Max 5.926 0.0065 15271.0 0.659 0.916

Range 5.389 0.0060 11255.0 0.516 0.639

Edge area Mean 10 2 1.246 0.0035 10916.6 0.332 0.764

Median 1.055 0.0039 12197.1 0.300 0.615

SD 0.723 0.0015 3135.1 0.185 0.444

Min 0.429 0.0011 4846.8 0.180 0.340

Max 2.759 0.0050 13724.6 0.810 1.660

Range 2.330 0.0039 8877.8 0.630 1.320

in the northern midcontinent during the late Pleistocene
(Figure 4). Numerous pollen records from this region (Brewster
Lake, Appleman Lake, Stotzel-Leis Site, and Carter Site) indicate
the presence of mixed-parkland and prairie throughout the this
time (Shane, 1987; Curry et al., 2007; Gill et al., 2009; Figure 4;
Supplementary Table 6). This contrasts with pollen records
near mastodon in Edge areas in the southeast, such as Camel
Lake (Watts et al., 1992; Wang et al., 2019) and Lake Tulane
(Grimm et al., 1993; Wang et al., 2019; Figure 4) which confirm
the presence of mixed-parkland and deciduous forest.

When considering the scale and temporal grain of different
dietary proxies, δ13Cenamel and microwear can reasonably be
applied to questions of habitat tracking and behavioral plasticity
(Davis and Pineda-Munoz, 2016). δ13Cenamel integrates the
isotopic signal of the resources being used over the weeks to
months of life during which the enamel mineralizes, which
could also mean an integration of resources used across a
geographic area for a highly mobile animal. For this reason,
SIA is a reasonable proxy for what an animal is eating at the
scale of a landscape (Davis and Pineda-Munoz, 2016) as we
have applied it here. In contrast, microwear records properties
of the food consumed during the days to weeks leading up
to death (Grine, 1986). It therefore has high fidelity to the
specific location where an individual is found as a fossil. DMTA
has been applied to characterize interspecific dietary variation
(Scott, 2012; DeSantis, 2016) as well as intraspecific variation
over time and space (Rivals et al., 2007).

The mastodons sampled for DMTA from Friesenhahn
Cave warrant further comment. These individuals are juveniles
and have low complexity values (Supplementary Table 3).
It is unclear if these low values represent ontogenetic niche
partitioning or dietary differences that are reflective of the
environment, and the question of whether there are ontogenetic
shifts in mastodon diet, more generally, is still open (Smith
and DeSantis, 2018). The megafaunal remains at Friesenhahn
Cave span a dynamic time (15–20 ka) (Graham et al., 2013)

where the region experienced a shift from high likelihood
of mastodon occurrence to low likelihood (Figure 4). The
local vegetation around Friesenhahn Cave is described in other
studies as C4 open grassland with some riparian forests (Hoppe,
2004; Koch et al., 2004; Graham et al., 2013), consistent with
our classification of this locality as outside the Core niche of
mastodon.

There are refinements that could be made to our models that
should be considered before any application beyond the scope
of our study. High likelihood of occurrence is not equivalent to
presence (Elith and Leathwick, 2009), and we do not account
for physical barriers to dispersal. Doing so, however, would
not qualitatively affect our results, as we are only concerned
with drawing interpretations from dietary proxies from known
occurrences. Our models are explicitly limited to relating
climate variables with occurrence, which assumes climate is
adequately correlated with resources that are required by
Proboscideans (e.g., water and vegetation) (Sukumar et al., 1987;
Baskaran et al., 2010; Koirala et al., 2016; Bonhof and Pryor,
2022). Realized niches are impacted by variables beyond climate,
including biotic interactions (Hutchinson, 1957; Leibold, 1995;
Chase and Leibold, 2009), which our models do not account for.

A potentially strong biotic interaction that warrants
future investigation is competition. As some of the very
largest animals on the landscape, Proboscideans function as
ecosystem engineers (Owen-Smith, 1992). Today, African
elephants (Loxodonta africana) compete with mesobrowsers
and mesomixed feeders, but facilitate mesograzers (Fritz
et al., 2002). The presence of megaherbivores, such as
modern elephants, impacts the feeding of smaller sympatric
herbivores; however, Pleistocene environments supported
a much more diverse megaherbivore community. Were
sympatric megaherbivores competing with each other, or
partitioning resources? DMTA analyses of three middle/late
Miocene Proboscideans (Gomphotherium subtapiroideum,
Gomphotherium steinheimense, and Deinotherium giganteum)

Frontiers in Ecology and Evolution 10 frontiersin.org

134

https://doi.org/10.3389/fevo.2022.1064299
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1064299 November 21, 2022 Time: 18:12 # 11

Pardi and DeSantis 10.3389/fevo.2022.1064299

from the Molasse Basin in Southern Germany supports niche
partitioning rather than competition for resources (Calandra
et al., 2008). In contrast, competitive exclusion imposed by
Mammut and Mammuthus is a plausible cause for the eventual
extinction of gomphotheres (Cuvieronius) in North America
(Smith and DeSantis, 2020).

Mammoth and mastodon sometimes do co-occur, at least
regionally. In the Northern, North American mid-continent,
they exhibit partial isotopic niche overlap in their use of C3

resources (Widga et al., 2021), although whether this represents
consumption of C3 browse or graze within these mammoth
is not resolved. The influence these taxa have on each other
more generally when they share a landscape remains to be
clarified. Do they partition resources, and if so, how is this
impacted by geographic variation in environmental suitability
as we have identified in the present study? Our models identify
geographic locations where there is overlap of Core niche areas
for mammoth and mastodon, as well as areas where one is more
likely to occur over the other. For example, the Core area of
mammoth overlaps with the Edge areas for mastodon in Florida.
In contrast, there appear to be few regions where the Core area
of mastodon overlaps where mammoth are at the edge of their
niche. Our current dataset is not extensive enough to directly
compare diets within and outside of areas of sympatry, but our
models could provide context for future comparisons.

Our study is unique in that it aims to explore dietary
preference and spatially explicit variation within the context
of the ecological niches of extinct taxa. Dietary proxy data
alone can be incredibly useful for quantifying how resources are
being use by individuals and populations over time and space
(MacFadden and Cerling, 1996; Scott et al., 2005, 2006; DeSantis,
2016). Our approach provides a means for contextualizing proxy
data by the suitability of the environment across the geographic
distribution of a taxon. This context matters because ecological
interactions and factors influencing populations at geographic
range margins are not the same as in the center of the range–
boundaries exist because of limiting conditions preventing
persistence that are not so limiting elsewhere (Hutchinson, 1957;
Brown, 1984).

The approach presented here provides a means for applying
distributional context to interpretation of paleoecological data,
where occurrences are known but boundaries of geographic
ranges are poorly defined. This may be particularly useful
when considering the potential causes and consequences
of extinctions across landscapes. For example, one could
reasonably point to climate and environmental change as a
possible cause for late Pleistocene declines and extirpation of
mastodon and mammoth in the Central and Southern Great
Plains, as likelihood of occurrence decreases with climate change
over time (Figures 2, 4). However, losses in the Core area of
their distributions may have other causes, such as hunting and
landscape changes caused by humans, which is supported by
synchronous patterns of extinction and the timing and trajectory

of human dispersal (Surovell et al., 2005, 2016; Hamilton and
Buchanan, 2007).

Analyses of functional diversity can reveal hidden
consequences of taxonomic diversity loss. However, applying
taxon-level traits in functional diversity analyses may mask
variation that arises from plastic behavior. Specifically, dietary
behavior can vary due to the non-uniform distribution of
resources and biotic interactions over space. Here, we illustrate
this point by exploring how diet, measured through proxies,
varies over the modeled distributions of mammoths and
mastodon. Mammoth dietary behavior varies by context across
their geographic distribution, despite having evolutionary
adaptations for grazing and exhibiting a preference for grass
overall as a taxon. In contrast, specific dietary preferences
for mastodon are less resolved and our analyses were unable
to identify significant differences in the selection of browse
across their distribution as it relates to likelihood of occurrence.
The ecological roles of some species may be context specific
and need to be critically evaluated when planning for the
management of reintroductions or introducing novel species to
restore lost ecological function.
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Studies of Rancho La Brea predators have yielded disparate dietary 

interpretations when analyzing bone collagen vs. enamel carbonate—

requiring a better understanding of the relationship between stable carbon 

isotopes in these tissues. Stable carbon isotope spacing between collagen 

and carbonate (Δca-co) has also been used as a proxy for inferring the trophic 

level of mammals, with higher Δca-co values indicative of high carbohydrate 

consumption. To clarify the stable isotope ecology of carnivorans, past 

and present, we  analyzed bone collagen (carbon and nitrogen) and 

enamel carbonate (carbon) of extinct and extant North American felids 

and canids, including dire wolves, sabertooth cats, coyotes, and pumas, 

supplementing these with data from African wild dogs and African lions. Our 

results reveal that Δca-co values are positively related to enamel carbonate 

values in secondary consumers and are less predictive of trophic level. 

Results indicate that the foraging habitat and diet of prey affects Δca-co 

in carnivores, like herbivores. Average Δca-co values in Pleistocene canids 

(8.7+/−1‰) and felids (7.0+/−0.7‰) overlap with previously documented 

extant herbivore Δca-co values suggesting that trophic level estimates may 

be  relative to herbivore Δca-co values in each ecosystem and not directly 

comparable between disparate ecosystems. Physiological differences 

between felids and canids, ontogenetic dietary differences, and diagenesis 

at Rancho La Brea do not appear to be  primary drivers of Δca-co offsets. 

Environmental influences affecting protein and fat consumption in prey 
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and subsequently by predators, and nutrient routing to tissues may instead 

be driving Δca-co offsets in extant and extinct mammals.

KEYWORDS

bone, carbon isotopes, carnivora, carnivores, enamel, nitrogen isotopes, 
Rancho La Brea

Introduction

Rancho La Brea (RLB) is one of the best preserved and studied 
fossil localities in the world, providing insight into the ecology of 
ancient mammals over the past ~50,000 years in southern 
California (e.g., Merriam and Stock, 1932; Stock and Harris, 1992; 
Van Valkenburgh and Hertel, 1993; DeSantis et al., 2012, 2019; 
Meachen and Samuels, 2012). Herbivorous mammals trapped in 
asphalt seeps (“pits”) attracted carnivores that also became 
trapped, resulting in one of the world’s best localities for studying 
ancient predators and their prey (Stock and Harris, 1992). As 
predators normally occur in lower numbers than their prey in 
modern ecosystems, they are also typically rare in fossil 
accumulations. However, because of their abundance in these 
deposits, Rancho La Brea provides unique insight into predator 
and prey dynamics in the Late Pleistocene—a time characterized 
by dramatic climatic change and the arrival of humans in North 
America (Stock and Harris, 1992; Barnosky et al., 2004). One 
productive avenue of research has been the inference of diet based 
on stable isotopes, allowing deep insight into the ecosystem 
dynamics of Late Pleistocene Rancho La Brea (e.g., Coltrain et al., 
2004). However, recent work on isotopic values from RLB 
carnivores has revealed a clear discrepancy between values derived 
from collagen vs. enamel carbonate (DeSantis et al., 2019, 2020), 
complicating dietary inferences from either tissue. The goals of 
this study are to quantify and test potential drivers responsible for 
collagen/carbonate offsets generally, and to use these 
understandings to clarify dietary inference at RLB.

Stable isotopes and dietary inference

Stable isotope analyses of bone and/or tooth enamel have 
clarified the dietary ecology of numerous animals across the globe, 
past and present (e.g., Cerling et al., 1997; DeSantis et al., 2009; 
Secord et al., 2012). While studies of extant animals benefit from 
the ability to sample different tissues (including hair, feathers, 
scales, blood, etc.), archeological and paleontological studies of 
ancient life are limited to the analysis of tissues that preserve 
original biogenic stable isotope signatures in the fossil record (e.g., 
bones and teeth). Enamel is primarily inorganic (Teruel et al., 
2015; Kendall et  al., 2018) and stable isotopes of carbon and 
oxygen have been used to infer diet and climate, respectively, 
through time (e.g., DeNiro and Epstein, 1978; Cerling et al., 1997; 

Levin et al., 2006; DeSantis et al., 2009; Secord et al., 2012). Bone 
and dentin collagen, which are organic, also provide insights into 
the diets of ancient animals (e.g., Schoeninger et  al., 1983; 
Bocherens et al., 1994; Finucane et al., 2006; Fuller et al., 2006; 
Kellner and Schoeninger, 2007; Lee-Thorp, 2008; Tung et  al., 
2016). Specifically, carbon isotope values measured in collagen 
(bone or dentin) provide information about the protein 
component of an animal’s diet (Ambrose and Norr, 1993) and 
nitrogen isotope values clarify trophic level with higher values 
indicative of feeding at higher trophic levels and/or more meat or 
fish consumption (Schoeninger et  al., 1983). In archeological 
studies, both tooth enamel (or bone apatite) and bone collagen are 
analyzed to infer differences between whole diet (e.g., 
carbohydrates, fat, and protein) and protein components of diet, 
respectively (e.g., Ambrose and Norr, 1993). However, 
paleontological studies often employ only one tool, due to a lack 
of preserved collagen, interest in only isotopes associated with a 
particular tissue (e.g., δ18O in carbonate, δ15N in collagen; 
Bocherens et al., 1994; DeSantis et al., 2009), and/or the need to 
minimize destructive sampling. Therefore, direct comparisons 
between data types from the same specimens are rare.

Those studies that have examined both tooth enamel and bone 
collagen stable isotopes from the same individual specimens (e.g., 
Krueger and Sullivan, 1984; Lee-Thorp et al., 1989; Ambrose and 
Norr, 1993; Clementz et  al., 2007, 2009; Murphy et  al., 2007; 
Bocherens et al., 2017; Codron et al., 2018) indicate that isotope 
values from the different tissues record different aspects of their 
diet. There is broad consensus that δ13Ccollagen reflects the protein 
component of diet, while δ13Ccarbonate reflects whole diet (e.g., 
protein, carbohydrates, and fats; Ambrose and Norr, 1993) and 
that the isotopic spacing between carbonate and collagen (Δca-co, 
δ13Ccarbonate  - δ13Ccollagen) varies depending on trophic category 
(Krueger and Sullivan, 1984; Lee-Thorp et al., 1989; Clementz 
et al., 2009). Specifically, the lowest Δca-co values occur in carnivores 
(averaging 4.3+/−1.0‰ to 4.8+/−0.4‰; Lee-Thorp et al., 1989; 
Clementz et al., 2009) while herbivores have higher Δca-covalues 
(6.8+/−1.4‰ to 7.6+/−0.5‰; Lee-Thorp et al., 1989; Clementz 
et al., 2009). Animals with lower Δca-co values are often attributed 
as having more meat and/or fat in their diet than animals with 
higher Δca-co values—Δca-co values are therefore used to infer degree 
of meat and/or fat consumption in ancient mammals (Lee-Thorp 
et al., 1989; Clementz et al., 2009). In Canis lupus, Δca-co increases 
with increased δ13Ccarbonate values (p  = 0.016, R = 0.51; per our 
analysis of the supplemental data in Clementz et  al., 2009); 
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however, there is no predictable relationship between Δca-co in 
bone apatite or bone collagen δ13C values in African carnivores 
(Codron et al., 2018). Further, the significant positive-relationship 
between Δca-co values and δ13Ccarbonate values in a sample of dire 
wolves (Aenocyon dirus, previously known as Canis dirus) at 
Rancho La Brea is similar to the relationship between Δca-co and 
δ13Ccollagen values in the African mammals included in Codron 
et al. (2018; DeSantis et al., 2020, see Figure 1B).

Offset values between carbonate and collagen can be highly 
variable among herbivores, specifically African mammals 
(primarily ungulates, especially bovids) and Australian kangaroos 
(Murphy et al., 2007; Codron et al., 2018). Murphy et al. (2007) 
demonstrated a significant negative relationship between Δca-co in 
herbivorous kangaroos and aridity (i.e., water availability index; 
higher Δca-co values when less water is available). Codron et al. 
(2018) instead documented higher Δca-co values with increased 
δ13Ccollagen values in African mammals, which they attribute to both 
physiological differences between ruminants and non-ruminants 
and dietary differences between grass and browse (e.g., effects of 
higher amounts of protein in 13C deplete browse and higher 
amounts of CH4 produced when consuming grass). In closely 
related ruminant taxa (i.e., members of the family Bovidae), Δca-co 
values calculated from teeth (enamel carbonate and dentin 
collagen) span the full range of values from 3.6 to 14.8‰; the 
second lowest offset value (4.3‰) and highest offset value 
(14.8‰) also occur with the same species—springbok (Antidorcas 
marsupialis). Further, when re-analyzing and comparing just 
tooth data (enamel carbonate and dentin collagen) from Codron 
et al. (2018) from ruminants in the family Bovidae and hindgut 
fermenters (in the families Equidae and Rhinocerotidae), the 
slopes and R2 values are indistinguishable (slopes are 0.21 and 
0.20, R2 values are 0.41 and 0.43, respectively). Thus, it is unlikely 
that ruminant or non-ruminant physiology is the primary driver 
of Δca-co values; instead, the proportion of grass and browse may 
be a larger driver of herbivore Δca-co values. Specifically, higher 
amounts of protein enriched browse with 13C deplete values yield 
both lower δ13C carbonate values and smaller Δca-co values, while 

protein deplete C4 grasses also result in more methane production 
(that is isotopically depleted in 13C, leaving behind more 13C 
enriched carbon from which tissues are synthesized, in both 
ruminants and hind-gut fermenters) and are correlated with 
higher δ13C carbonate values and higher Δca-co values. 
Discrepancies between how herbivore and carnivore Δca-co values 
correlate with stable isotope values of collagen and enamel are 
apparent and more work on carbonate-collagen relationships is 
needed to elucidate potential drivers of Δca-co values and the 
efficacy of using Δca-co values to infer ecological information such 
as trophic level in extinct and extant mammals.

Stable isotopes and dietary inferences in 
RLB carnivores

Despite extensive study of Rancho La Brea carnivores, there 
are differences between the dietary interpretations of Late 
Pleistocene mammals at Rancho La Brea as inferred from bone 
collagen versus enamel carbonate stable isotope values (Coltrain 
et al., 2004; Feranec et al., 2009; Fuller et al., 2014, 2020; DeSantis 
et al., 2019, 2020; Van Valkenburgh et al., 2020). Seminal work 
analyzed the carbon and nitrogen isotope ratios of bone collagen 
from Rancho La Brea carnivores and concluded that sampled 
individuals of Smilodon fatalis (the sabertooth cat) and Aenocyon 
dirus (the dire wolf, previously known as Canis dirus) had 
indistinguishable carbon and nitrogen isotope values and were 
therefore competing for similar prey (Coltrain et al., 2004). This 
idea persisted until dietary interpretations based on tooth enamel 
carbonate indicated the consumption of different prey (DeSantis 
et al., 2019, 2020). Specifically, DeSantis et al. (2019, 2020) found 
that A. dirus yielded statistically greater δ13Ccarbonate values than 
S. fatalis—which was interpreted as S. fatalis primarily having 
consumed prey that occupied denser forests/shrubland 
ecosystems, while A. dirus consumed prey from more open 
grassland environments. The reasons for this discrepancy between 
the two tissues remain unclear (Fuller et al., 2014, 2020; DeSantis 

FIGURE 1

Stable carbon isotope data (collagen and carbonate) for all fossil specimens examined from Rancho La Brea (n = 71). Mean values are denoted in 
bold (bars indicate 1 standard deviation, n-1). All collagen data are from bone collagen and carbonate data are from tooth enamel (lower first 
molars), with the exception of A. dirus from Locality 3,874 which are from incisor dentin collagen and incisor enamel, respectively. The felid S. 
fatalis is noted in red, with all canids noted in blue; the same shade of light blue is used for canids from pits 61/67. The scales on the x-axis are of 
the same magnitude for the two tissues.
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et  al., 2019, 2020), and have led some to question the recent 
dietary interpretations of Rancho La Brea carnivorans (Van 
Valkenburgh et  al., 2020). While DeSantis et  al. (2019, 2020) 
speculate on some of these discrepancies, they concentrated on an 
enamel-based interpretation of diet.

To clarify the paleobiology of Rancho La Brea carnivores and 
resolve relationships between enamel carbonate and bone collagen 
in both extinct and extant mammals, tooth enamel and bone 
collagen were examined in extant canids and felids from C3 and 
C4 ecosystems in North America and Africa, in addition to 
Rancho La Brea carnivorans. Specifically, we  examined Late 
Pleistocene specimens from Rancho La Brea (A. dirus, C. latrans, 
S. fatalis), modern specimens from predominately C3 ecosystems 
in southern California (C. latrans and Puma concolor), and 
modern specimens from predominately C4 ecosystems throughout 
Africa (Lycaon pictus and Panthera leo). We test the hypotheses 
that Δca-co values in carnivorous mammals (1) are largely consistent 
and independent of either δ13Ccarbonate or δ13Ccollagen values 
(~4.3+/−1.0‰ to 4.8+/−0.4‰; Lee-Thorp et al., 1989; Clementz 
et al., 2009), and (2) are indicative of trophic level. We also further 
clarify relationships between carbonate (enamel, bone, and 
dentin) and collagen (bone and dentin) in extant African canids 
and felids.

Statistical considerations of isotopic data 
from different tissues

We recognize that the correlations between Δca-co values and 
δ13Ccarbonate or δ13Ccollagen, may, in part, be influenced by plotting 
these values against each other; but these plots and correlations 
permit comparison to other studies, and provide information 
regarding the source of these isotopic data. As Auerswald et al. 
(2010) demonstrated, if pairs of values are drawn randomly 
from populations of variables A and B of equal variance, the 
difference A-B will be biased to high values when A is high and 
to low values when A is low. Hence an A-B vs. A correlation 
with a slope of +1 is generated; conversely A-B vs. B will yield a 
slope of-1. In the unrealistic scenario that δ13C variations in the 
two tissues were completely independent (i.e., if their responses 
to environmental and physiological changes were totally 
uncoupled) the slopes of these relationships would approach +1 
and-1 respectively, whereas if the isotopic responses of the two 
tissues were identical the slopes would both be zero. Since Δca-co 
is defined as δ13Ccarbonate − δ13Ccollagen, all other things being equal 
one expects to see a positive correlation between Δca-co and 
δ13Ccarbonate and a negative correlation between Δca-co and 
δ13Ccollagen. Additionally, if these relationships were a product of 
random sampling, we would not expect δ13C values of different 
tissues to yield different relationships with Δca-co values. See 
Caut et al. (2010) for a detailed reply to Auerswald et al. (2010) 
and discussion regarding the rationale for these sorts of 
comparisons that are prevalent in paleobiology and archeology 
(e.g., Krueger and Sullivan, 1984; Lee-Thorp et  al., 1989; 

Ambrose and Norr, 1993; Murphy et al., 2007; Clementz et al., 
2009; Codron et al., 2018).

Differences in isotopic variance of tissue types are evident 
from our data set and the extensive data sets of Murphy et al. 
(2007) and Codron et al. (2018). However, this is not necessarily 
an intrinsic property of these tissues; studies have shown that 
δ13Ccollagen ranges are greater than those in δ13Ccarbonate in humans 
when their diets include protein sources with disparate δ13C values 
(e.g., marine protein enriched in 13C in addition to terrestrial C3 
resources that are 13C deplete; Tung et al., 2020).

Materials and methods

To decipher the conflicting data interpretations between the 
stable isotope values of bone collagen and tooth enamel carbonate 
in Rancho La Brea carnivores, jawbone specimens containing teeth 
(n = 71) were obtained for stable isotope analysis of both bone 
collagen and tooth enamel carbonate in the same specimen. Lower 
first molars were sampled in all taxa due to the larger size of these 
carnassial teeth and the need to minimize specimen destruction. 
In the case of Aenocyon dirus from the University of California 
Museum of Paleontology (UCMP) Locality 3,874, enamel was 
from incisors while collagen was from dentin (both near the 
enamel/dentin junction and down through the root, due to the 
need for appropriately large amounts of this tissue, as these teeth 
were isolated and lacked associated bone for bone collagen analysis; 
as noted in Supplementary Table S1, Supplemental Tables 1, 2). 
Rancho La Brea specimens comprised Aenocyon dirus (Pits 61/67, 
n = 21; Locality 3,874, n = 8), Canis latrans (Pits 61/67, n = 19; Pit 
10, n  = 12), and Smilodon fatalis (Pit 61/67, n = 11; 
Supplementary Table S1, Supplemental Table 1). Modern predators 
from southern California (n = 19; Canis latrans, Puma concolor) 
and from Africa (n = 18; Lycaon pictus, Panthera leo) were also 
analyzed for both bone collagen and tooth enamel 
(Supplementary Tables S1, S2, Supplemental Table 2). The African 
specimens were also analyzed for bone (carbonate) and dentin 
(carbonate and collagen), in addition to enamel (carbonate) and 
bone (collagen). When more than one analysis was run on the 
same tissue, the sample was first homogenized and then split up 
after drilling to reduce temporal variability that could otherwise 
occur if tissues were not homogenized after sampling. While 
we  would have liked to have sampled dentin carbonate and 
collagen from all Rancho La Brea specimens, this was not possible 
due to the scale and scope of this study and need to minimize 
specimen destruction on the fossil specimens (collagen analyses 
require significantly more sample as compared to carbonate). As 
tooth enamel carbonate and bone collagen are the most commonly 
analyzed tissues at Rancho La Brea and other Late Pleistocene fossil 
sites, we concentrated on these tissues for the bulk of our analyses. 
The addition of dentin carbonate and collagen and bone carbonate 
of modern African specimens can provide insights that can 
be followed up with future studies. Rancho La Brea specimens are 
housed at the University of California, Berkeley (UCMP Locality 
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3,874) and the La Brea Tar Pits and Museum (LACMHC). Modern 
specimens from southern California are from the Santa Barbara 
Museum of Natural History (SBMNH) and modern specimens 
from Africa are from the American Museum of Natural History 
(Mammalogy Collections; AMNH).

Carbonate samples from both teeth and bone were drilled 
with a low-speed dental-style drill and carbide dental burrs 
(<1 mm burr width). The resulting carbonate powder samples 
(enamel, dentin, bone) were pretreated with 30% hydrogen 
peroxide for 24 h, and 0.1 N acetic acid for 18 h, to remove 
organics and secondary carbonates, respectively (Koch et al., 
1997; DeSantis et  al., 2009). Sample preparation followed 
procedures outlined in DeSantis et al. (2019) and included the 
rinsing of samples with ultra-pure water and subsequently 
centrifuging them between all treatment steps. Approximately 
1 mg of each sample was then analyzed on a VG Prism stable 
isotope ratio mass spectrometer with an in-line ISOCARB 
automatic sampler in the Department of Geological Sciences 
at the University of Florida. All bone or dentin samples 
analyzed for collagen carbon or nitrogen isotope ratios were 
cut with a Dremel® UltraSaw ™ cutting wheel or a diamond 
coring drill (dentin samples also sampled for carbonate were 
subsequently drilled, i.e., a subset of the sample was removed 
for carbonate analysis).

Clean collagen was recovered from the asphalt-impregnated 
bones using a modified procedure based on the protocol 
developed by Fuller et al. (2014). Samples of crushed bone were 
sonicated in a solvent sequence of increasing polarity to remove 
bulk asphalt, demineralized overnight with HCl, rinsed with 
ultrapure water, and gelatinized overnight at pH 2, at an elevated 
temperature (75°C) sufficient to break up collagen molecules into 
fragments of a molecular weight on the order of 10’s of kDa, while 
leaving massive residual asphalt aggregates intact. The gelatin 
solution was then purified using two sequential ultrafiltrations to 
select an intermediate molecular weight fraction (5–100 kDa) 
which was frozen with liquid nitrogen and lyophilized overnight. 
Elemental analyses (‰C and ‰N) and stable isotope ratios were 
determined by flash combustion of ~0.7 mg samples of collagen in 
tin capsules, and analysis of the gas products using a Fisons 
NA1500NC elemental analyzer/Finnigan Delta Plus isotope ratio 
mass spectrometer combination at the Keck AMS laboratory at 
University of California Irvine. Stable isotope data are reported in 
conventional delta (δ) notation for carbon (δ13C), oxygen (δ18O), 
and nitrogen (δ15N), where δ13C (parts per thousand, 
‰) = [(Rsample/Rstandard)−1]*1,000, and R = 13C/12C; and, δ15N (parts 
per mil, ‰) = ((Rsample/Rstandard)-1)*1,000, and R =  18O/16O, 
R =  15N/14N on the VPDB (for carbon and oxygen; Pee Dee 
Belemnite, Vienna Convention; Coplen, 1994) and AIR (for 
nitrogen; Mariotti, 1983) scales. The analytical precision for 
carbonate δ13C and δ18O is ±0.1‰, based on replicate analyses of 
samples and standards (NBS-19). The analytical precisions for 
δ13C and δ15N from bone collagen are ±0.1‰, and ±0.2‰ 
respectively, based on replicate analyses of samples and standards.

Studies utilizing carbonate-collagen spacing use “capital delta 
notation” values, calculated as follows: Δca-co  = δ13Ccarbonate  −  
δ13Ccollagen (e.g., Krueger and Sullivan, 1984; Lee-Thorp et al., 1989; 
Ambrose and Norr, 1993; Clementz et al., 2007; Murphy et al., 
2007; Clementz et al., 2009; Bocherens et al., 2017; Codron et al., 
2018). While we use these calculations to be directly comparable 
with prior analyses, we also calculated the fractionation factor (α) 
and isotopic enrichment (ε; Supplemental Table  1) similar to 
Passey et  al. (2005), based on Friedman and O’Neil (1977). 
Specifically, αcarbonate-collagen = (1,000+ δcarbonate)/ (1,000+ δcollagen), and 
εcarbonate-collagen  = (αcarbonate-collagen – 1)1000 (Friedman and O’Neil, 
1977). Differences between Δca-co and εcarbonate-collagen are small within 
the ~10‰ range here noted (Cerling and Harris, 1999); of all 
specimens examined here, the average difference is 0.133‰ 
+/−0.0518 SD, n-1 (ranging from 0.029 to 0.207‰). These 
differences are minor (approximately the error of the mass 
spectrometers), do not significantly affect the patterns observed, 
and the use of Δca-co is important for consistency with published 
works (e.g., Krueger and Sullivan, 1984; Lee-Thorp et al., 1989; 
Ambrose and Norr, 1993; Murphy et al., 2007; Clementz et al., 
2009; Codron et  al., 2018); however, we  suggest that α and ε 
be reported and discussed moving forward, as noted by Passey 
et al. (2005; all values are reported in the Supplemental information).

Parametric statistical tests were employed to compare stable 
isotope values among taxa, between tissues, and assess 
relationships between isotopic values and Δca-co values (e.g., 
Student’s t-tests, including paired t-tests when comparing tissues 
in the same individuals, linear regressions). No corrections 
(including the Suess correction) were made to reported and 
analyzed data (Supplementary Tables S1, S2, Supplemental Tables 1, 
2). While we recognize that δ13C values today are approximately 
1.5‰ lower than during the Late Pleistocene (Cerling et al., 1997; 
Cerling and Harris, 1999; Passey et al., 2005), we are focused on 
assessing relationships between δ13C values from disparate tissues 
within individuals (e.g., relationships between δ13Ccarbonate and Δca-

co, as opposed to comparing diets of extant and extinct predators) 
and the majority of comparisons are done within modern or 
within Late Pleistocene samples. Further, it is possible that the 
δ13C values of the atmosphere (which are a function of CO2 levels; 
Keeling, 1979; Keeling et al. 1979) affect how δ13C values are 
incorporated into various tissues via plants and prey, as we suggest 
in the discussion. All things being equal, plants exposed to higher 
atmospheric CO2 levels have lower nutrients and lower nitrogen 
content/lower protein content but more carbon per unit biomass, 
and C4 grasses have lower nutritional quality (Conroy, 1992; 
Barbehenn et al., 2004). This can impact nutrient routing to tissues 
in consumers and have downstream impacts on carnivores. 
Further, all studies to date have examined relationships between 
δ13Ccarbonate and Δca-co in modern taxa with no Suess corrections 
applied (e.g., Lee-Thorp et al., 1989; Ambrose and Norr, 1993; 
Murphy et al., 2007; Clementz et al., 2009; Codron et al., 2018), 
and we  aimed to produce data directly comparable to those 
data sets.
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Results

Bone collagen and enamel carbonate 
δ13C values from Rancho La Brea

Stable carbon isotopes measured in bone collagen of S. fatalis 
(Pits 61/67) are indistinguishable from A. dirus (Pits 61/67; 
p = 0.141; Figure 1), consistent with prior work (Coltrain et al., 
2004; Fuller et al., 2014, 2020). In contrast, stable carbon isotopes 
measured in enamel carbonate of S. fatalis (Pits 61/67) are 
significantly lower than in A. dirus (Pits 61/67; p  < 0.0001; 
Figure 1), which is also consistent with prior analyses of enamel 
carbonate (DeSantis et al., 2019, 2020). When comparing the three 
most abundant carnivores at Rancho La Brea from the same 
deposit (A. dirus, C. latrans, and S. fatalis from Pits 61/67), bone 
collagen carbon isotope values are indistinguishable (p = 0.187), 
while enamel carbon isotope values of the canids A. dirus and 
C. latrans are significantly greater than S. fatalis (p  = 0.0002, 
p = 0.004, respectively). Further, stable nitrogen isotopes ratios 
measured in the morphologically inferred hypercarnivores 
A. dirus and S. fatalis are significantly greater than C. latrans 
(p  < 0.0001 for both), while A. dirus and S. fatalis are 
indistinguishable from one another (p = 0.332). Despite the fact 
that bone collagen and enamel carbonate integrate information 
about different portions of animal diets (protein component 
versus whole diet; Ambrose and Norr, 1993), there is a significant 
positive relationship between enamel δ13Ccarbonate and δ13Ccollagen 
from bone in both the fossil Rancho La Brea specimens 
(p < 0.0001, R2 = 0.25, R = 0.5 in Rancho La Brea taxa, Figure 2A) 
and modern southern California (p = 0.0002, R2 = 0.57, R = 0.75; 
Supplemental Table 1) specimens examined here.

Collagen-carbonate δ13C spacing in 
carnivorans from southern California

There is a strong and significant positive relationship between 
Δca-co and δ13Ccarbonate in enamel from both extant and extinct 
southern California canids and felids (R2  = 0.88, R = 0.94; 
p < 0.0001; Figure 2D; Supplementary Table S3). This relationship 
additionally holds true when modern and fossil specimens are 
evaluated separately (modern: R2 = 0.58, R = 0.76, p = 0.0002; fossil: 
R2 = 0.72, R = 0.85, p < 0.0001). Because modern specimens of the 
canid C. latrans and the felid P. concolor have lower δ13Ccarbonate 
values than the extinct felids and canids from Rancho La Brea, 
likely due to their consumption of prey from ecosystems with 
increased canopy cover or denser shrubs (Feranec and DeSantis, 
2014; DeSantis et al., 2019) and the Suess effect that accounts for 
~1.5‰ lower δ13Ccarbonate values (Cerling et al., 1997; Cerling and 
Harris, 1999; Passey et al., 2005); we graphically present the results 
of linear regressions for fossil and modern specimens separately 
(see Materials and Methods, Figure 2). However, all relationships 
between enamel δ13Ccarbonate and Δca-co were examined and reported 
(Supplementary Table S3). Δca-co values and δ13Ccollagen values 

exhibit no significant correlation when including either Rancho 
La Brea specimens (R = 0.03, p = 0.767) or modern specimens 
from southern California (R = 0.14, p = 0.531); however, there is a 
weak but significant positive relationship when both Rancho La 
Brea specimens and modern C3 specimens are included 
(Figure 2B; Supplementary Table S4). In contrast to δ13Ccollagen 
values, δ13Ccarbonate values can be used to predict Δca-co values; thus, 
δ13Ccollagen values can be estimated within 0.5‰.

Rancho La Brea specimens have average Δca-co values of 
8.5+/−1.2‰ (ranging from 6 to 11‰, n  = 71) and modern 
specimens from southern California have average Δca-co values of 
4.6+/−1‰ (ranging from 3.2 to 7‰, n = 19). Rancho La Brea 
canid and felid Δca-co values (8.7+/−1.0‰, 7.0+/−0.7‰, 
respectively) overlap with modern herbivore Δca-co values 
(Lee-Thorp et al., 1989; Murphy et al., 2007; Clementz et al., 2009; 
Codron et al., 2018) and are higher than modern carnivores based 
on the literature (averaging 4.3+/−1.0‰ to 4.8+/−0.4‰; 
Lee-Thorp et al., 1989; Clementz et al., 2009).

Most notably, Δca-co values of both Rancho La Brea carnivores 
and modern carnivores from southern California are not 
significantly (negatively) correlated with δ15Ncollagen values as was 
expected (Figure 3C; Supplementary Table S4), based on prior 
research that documents higher Δca-co values in more omnivorous 
or herbivorous taxa (e.g., Lee-Thorp et al., 1989; Clementz et al., 
2009). C. latrans from Pits 61/67 at Rancho La Brea exhibit 
significantly lower δ15Ncollagen values than both A. dirus (p < 0.0001) 
and S. fatalis (p < 0.0001) from the same location, suggesting that 
coyotes were more omnivorous than the larger, more abundant, 
and inferred hypercarnivores (A. dirus and S. fatalis; Merriam and 
Stock, 1932; Stock and Harris, 1992). Yet, the mean Δca-co value of 
C. latrans is indistinguishable from A. dirus (p = 0.411, Mann–
Whitney U).

Collagen-carbonate δ13C spacing and 
tissue specific enrichment in carnivorans 
from Africa

As in southern California, there is a strong (R2  = 0.65, 
R = 0.81) and significant positive relationship (p  = 0.0001; 
Supplementary Table S3) between δ13Ccarbonate in enamel and 
Δca-co in African canids and felids from predominantly C4 
ecosystems. One individual with a δ13Cenamel carbonate value of 
−12.3‰, interpreted as consuming significant C3 prey (and ~ 3 
standard deviations from the mean) fell on the regression line 
from southern California extant and extinct taxa (Figure 2A) 
and was not included in the analysis of exclusively African 
(C4) carnivores; however, it was included in the regression of 
C3 taxa in Figures  2B,D, and relevant regressions of all 
carnivores (or modern carnivores; per Materials and 
Methods). δ13Ccollagen and Δca-co values are not significantly 
correlated to one another in exclusively C4 carnivorans 
(R2  = 0.13, p  = 0.158; Figure  2B; Supplementary Table S4), 
while δ15Ncollagen and Δca-co values exhibit a significant positive 
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relationship (R2 = 0.31, p = 0.021; Supplementary Table S4, all 
data located in Supplemental Table 2).

There are differences among stable carbon isotope values 
measured in different tissues (Supplementary Table S5). Collagen 
consistently has lower δ13C values than carbonate samples by 
3.6–5.5‰, which is consistent with prior work (e.g., Lee-Thorp 
et al., 1989; Ambrose and Norr, 1993). Enamel δ13Ccarbonate values 
are significantly higher than both dentin δ13Ccarbonate values 
(p < 0.001) and bone δ13Ccarbonate values (p = 0.004), though mean 
differences are low (1.7 and 1.1‰, respectively; 
Supplementary Table S5). Further, dentin δ13Ccarbonate values are 
significantly lower than bone δ13Ccarbonate values (p  = 0.029; 
Supplementary Table S5). All carbon isotopes signatures from all 
tissues sampled (enamel, dentin, and bone) yield significantly 
different values from one another (all p-values≤0.001; 

Supplementary Table S5). Only dentin and bone δ13Ccollagen values 
yield mean values indistinguishable from one another (p = 0.504; 
Supplementary Table S5). Mean δ15Ncollagen values from dentin are 
significantly higher than bone collagen (p < 0.001; 
Supplementary Table S5); however, the mean difference is quite 
small (0.9 +/−0.7‰; Supplementary Table S5). Further, the tissues 
with the strongest correlations between δ13C values (dentin 
carbonate-dentin collagen, and bone carbonate-bone collagen) 
exhibit no significant relationships between apatite (dentin or 
bone) δ13Ccarbonate values and Δca-co in African carnivores 
(Supplementary Table S4). Enamel δ13Ccarbonate values are 
consistently positively correlated with Δca-co values (whether Δca-co 
is based on dentin or bone collagen; Supplementary Table S3). 
Dentin δ13Ccarbonate values are also significantly related to Δca-co 
values when bone collagen is used; however, neither bone nor 

A B

C D

FIGURE 2

Relationship between δ13Ccarbonate and δ13Ccollagen values (A), and Δca-co and δ13Ccollagen values (B), δ15Ncollagen values (C), and δ13Ccarbonate values (D; n = 108). 
The regression lines and R2 values correspond to text in the same color and are also noted in Supplementary Table S3. Note, the modern C3 
regression lines in (A) and (B) includes modern North American taxa and one African wild dog with a C3 value (Supplementary Tables S3, S4 only 
include geographically similar taxa). The legend in (B) applies to all (A–D). A light-gray dashed-line with a slope of 1 is present in the background of 
each panel for reference. *Denotes significant relationships (p < 0.05).
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dentin exhibit any significant relationships between carbonate 
δ13C values and Δca-co values when calculated from just bone or 
just dentin tissues (carbonate/collagen; Figure 3). Further, African 
carnivores from C4 ecosystems have average Δca-co values of 
5.5+/−1.2‰ when comparing enamel and bone, however Δca-co 
values are lower when bone carbonate and bone collagen are used 
(4.4+/−0.6‰ for C4 carnivores, 4.7+/−0.6‰ for Lycaon pictus, 
and 4.2+/−0.5‰ for Panthera leo) and closer to values reported 
in the literature (averaging 4.3+/−1.0‰ to 4.8+/−0.4‰; 
Lee-Thorp et al., 1989; Clementz et al., 2009).

Collagen-carbonate δ13C and δ18O 
variances in carnivorans

Carbonate and collagen tissues do vary to different extents, 
with δ13Ccarbonate values having greater variances than δ13Ccollagen 
values (p < 0.0001 for both Levene’s Median test and Bartlett’s test) 
and a standard deviation almost double that of collagen (1.3 vs. 

0.7‰) in Rancho La Brea samples. Modern specimens from C3 
and C4 ecosystems were equivocal (C3 specimens, p = 0.111 and 
p = 0.039 for Levene’s Median test and Bartlett’s test; C4 specimens, 
p = 0.025 and p = 0.081 for Levene’s Median test and Bartlett’s test, 
respectively), but sample sizes were significantly lower (n = 20, 
n = 17, respectively) than Rancho La Brea specimens (n = 71).

Stable oxygen isotope ratios were measured and compared 
among all carbonate samples from southern California to assess if 
Rancho La Brea fossils had anomalously low δ18O values, 
potentially due to diagenesis. Modern canid and felid (i.e., Canis 
latrans and Puma concolor, respectively) enamel δ18O values 
ranged from-5.0 to-0.6 (mean = −2.6+/−1.3‰, n = 19) and were 
indistinguishable in both mean value (p = 0.336) and variance 
(p  = 0.955) from δ18O values of fossil specimens that include 
C. latrans, A. dirus, and S. fatalis from Rancho La Brea (δ18O 
values ranged from-5.3 to 2.3; mean = −2.3+/−1.3‰, n = 71).

Discussion

Identifying the primary drivers of collagen-carbonate spacing 
in carnivores requires the testing of numerous hypotheses. Below 
we  evaluate hypotheses pertaining to ontogenetic dietary 
differences, diagenesis, and physiological differences between 
canids and felids, eliminating these as potential drivers with data 
provided from this paper and published studies. We are unable to 
eliminate hypotheses pertaining to tissue and environmental/
dietary differences, and their downstream impacts on Δca-co 
spacing. Further work is needed to clarify the exact mechanism(s) 
responsible for Δca-co spacing (including the role of trophic level in 
different ecosystems); regardless, this work helps to advance our 
understanding of a challenging problem and cautions the use of 
static offset values between collagen and carbonates in future work 
(as has become a more common practice; e.g., Clementz et al., 
2009; Smith et al., 2022).

The absence of significant ontogenetic 
dietary differences and diagenetic effects 
on collagen-carbonate δ13C spacing

Tissues such as bone collagen and enamel carbonate 
mineralize at different times and undergo significant to no 
remodeling, respectively. While it is possible that ontogenetic 
differences in diet are responsible for the isotopic differences 
between bone collagen (representing a later in life signal due to 
continuous remodeling) and enamel carbonate (occurring earlier 
in life when the teeth mineralized and representing a discrete 
interval of time) in the carnivores examined, this would require 
dramatic dietary changes over time that are possible but not 
probable. The canids studied would need to eat prey from more 
open grassland environments as young individuals and then shift 
to eating forest-dwelling prey as adults, in a manner that 
predictably correlates with δ13Ccarbonate values in all felids and 

A

B

FIGURE 3

Relationships between δ13Ccarbonate (bone, dentin, or enamel) and 
Δca-co (calculated from carbonate-collagen from different tissues) 
in African herbivores (A) and carnivores (A,B). Data from 
herbivores are from Codron et al. (2018), in addition to some of 
the carnivore bone samples noted in panel A. The regression 
lines and R2 values correspond to text in the same color and are 
also noted in Supplementary Table S3. The dashed red-line in 
(B) is for enamel carbonate-bone collagen (squares). *Denotes 
significant relationships (p < 0.05).
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canids studied. This depiction of canid and felid ecology also does 
not align with morphological interpretations of extinct taxa or our 
knowledge of extant felid and canid behavior in the wild (Elliot 
et al., 1977; Bekoff and Wells, 1982). Specifically, the morphology 
of S. fatalis and A. dirus suggests terrestrial and cursorial hunting 
in these taxa, respectively (Samuels et  al., 2013), while 
observational data suggests that extant felids typically use 
vegetation as cover to ambush prey while extant canids rarely 
utilize cover (Elliot et  al., 1977; Bekoff and Wells, 1982). 
Additionally, both A. dirus and S. fatalis are interpreted as social 
predators (Carbone et al., 2009; McHorse et al., 2012); in extant 
social carnivores, juveniles typically consume the same prey as 
adults (i.e., meat and/or carcasses are shared, as observed in 
African lions; Schaller, 1972). Published adult δ13Ccollagen values 
that span multiple pits (Fuller et al., 2014, 2020) prepared via 
ultrafiltration (as was done here), were indistinguishable from 
juvenile δ13Ccollagen values from Locality 3,874 (p = 0.378; means of 
−18.4 and −18.5‰ respectively), indicating that juvenile dire 
wolves are eating similar prey as adults. Juvenile δ13Ccollagen values 
are from tooth dentin in A. dirus (Supplemental Table 1) and bone 
collagen from one juvenile humerus (Fuller et al., 2020). While 
δ13Ccollagen values from tooth dentin (laid down during the animal’s 
youth) in A. dirus (Locality 3,874; no published radiocarbon dates, 
a general locality name for material collected by the University of 
California Museum of Paleontology; Feranec et  al., 2009) are 
significantly greater than δ13Ccollagen values from bone collagen 
from A. dirus deposited in Pits 61/67 (~11,581 +/−3,768 years 
before present, calibrated; O’Keefe et al., 2009), these differences 
may be a result of different ecologies during different sampling 
periods (i.e., Locality 3,874 may represent a much broader, 
narrower, or different span of time than Pits 61/67; Feranec et al., 
2009, O’Keefe et al., 2009). Further, extant African canids and 
felids reveal only minor differences in δ13Ccarbonate values between 
bone (a more recent diet) and both enamel (1.1‰) or dentin 
(0.7‰; both enamel and dentin are laid down earlier in life; also 
see Figure 6 from Bocherens, 2015), suggesting that ‘whole diet’ 
ontogenetic differences are minor through time, with such minor 
differences potentially due to weaning. It should also be noted that 
δ13Ccollagen are indistinguishable between dentin and bone collagen 
in extant African carnivores (Supplementary Table S5), indicative 
of similar dietary protein sources through ontogeny in African 
canids and felids.

A case could be made that the difference in variance at Rancho 
La Brea is due to bone turnover smoothing out differences that 
appear in δ13C values of the enamel, the latter of which is laid 
down over a relatively short period of the animal’s lifespan and is 
not subject to reworking (as is the case with bone; Hedges et al. 
2007). However, this cannot explain the dire wolf data from 
Locality 3,874, where enamel δ13C is compared with collagen from 
dentin (which like enamel, does not turn over; Helfman and Bada, 
1976) though it is of course possible that the sampling geometry 
of enamel and dentin represent slightly different times (separated 
by days to month, not years; Bocherens, 2015). Further, the tooth 
dentin analyzed from Locality 3,874 has significantly higher 

δ15Ncollagen values than A. dirus from Pit 61/67 where bone collagen 
(not dentin collagen) was analyzed; suggesting that the dentin 
analyzed was laid down early in the life of the animal when it was 
still consuming a significant portion of its mother’s milk (i.e., 
13.7+/−1.1‰ SD in dentin from Locality 3,874, 11.8 +/−0.5‰ in 
bone collagen from Pits 61/67; p  < 0.0001). At locality 3,874, 
δ13Ccarbonate values range from −12.6 to −7.0‰ while δ13Ccollagen 
values of the same individuals range from −18.8 to −18‰, in the 
same teeth. Therefore, differences in δ13C variability likely stems 
from difference in δ13C variability of protein and whole diet 
sources, and not the timing or turnover of tissues. As mentioned 
above, lipids can be extremely 13C depleted relative to protein 
(Ramsay and Hobson, 1991) and may contribute to larger 
δ13Ccarbonate ranges as compared to δ13Ccollagen ranges. Hence, 
understanding relationships between δ13C values from different 
tissues and Δca-co values derived from those tissues has unique 
challenges. This highlights the importance of experimental studies 
and the benefits of obtaining data from multiple tissue types 
(especially from fossils) when possible—both to best understand 
protein and whole diet sources while also providing further 
resolution to understanding relationships between δ13C and 
Δca-co values.

If a nursing/weaning signal was apparent, we would expect 
both enamel and dentin to have significantly lower δ13Ccarbonate 
values than bone δ13Ccarbonate values (due to the consumption of 
fattier milk with lower δ13C values while nursing and/or weaning 
earlier in life; e.g. Richards et al., 2002; Fuller et al., 2006; Tsutaya 
and Yoneda, 2015), and this is not the case. Contributions from 
weaning are also less likely due to early weaning of canids (by 
~5–8 weeks of age; Mech, 1974, Ewer, 1998, Nowak and Walker, 
1999) while weaning occurs later in large felids (e.g., African lions, 
weaning by ~8–9 months; Haas et al., 2005). Further, studies that 
examined the effect of weaning on δ13C values in tissues, including 
plasma, hair, and tooth enamel in humans and other mammals, 
showed its effect was minimal (<1‰; Tsutaya and Yoneda, 2015). 
Studies of non-primate taxa, including herbivores and carnivores, 
showed no evidence of 13C enrichment in the plasma of offspring 
(0.0+/−0.6‰; Jenkins et al., 2001), while 13C enrichment of ~1‰ 
was observed in the tissues (hair, fingernails, and/or ribs) of 
exclusively breastfed human infants (Richards et al., 2002; Fuller 
et al., 2006). Further, serial sampling of the enamel of two adult 
upper canines from S. fatalis from Rancho La Brea (which 
developed and mineralized from near birth up to 25 months of 
age) did not exhibit a weaning signal or any trend in δ13C values 
over time (Feranec, 2004; Wysocki et al., 2015).

Other possible reasons for the difference between collagen 
and carbonate δ13C values include differences in tissue formation 
and/or post-mortem differences in diagenesis between tissues. 
Bone collagen is organic, while enamel is primarily inorganic 
(only ~6–10‰ organic content; Teruel et al., 2015; Kendall et al., 
2018). It is possible that the bone collagen values were altered in 
some way that homogenized the isotopic values of the taxa 
examined, either in situ or during collection and cleaning (which 
included boiling in kerosene in the historical early twentieth 
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century collections); or conversely that the larger spread in the 
enamel δ13C values (Figure 1) is due to variable diagenesis or 
contamination that affected the carbonate. However, the fact that 
Δca-co values in modern taxa are predictable from δ13Ccarbonate 
values, like those from Rancho La Brea (Figure 2A), suggests that 
neither of these processes is likely and that the origin of the greater 
variability of δ13Ccarbonate values relative to δ13Ccollagen is biogenic. 
Furthermore, isotopic difference in δ13Ccollagen values is apparent 
between other taxa that co-occurred in Rancho La Brea (e.g., 
bison, horses, and camels as compared to A. dirus, C. latrans, and 
S. fatalis; Coltrain et al., 2004), again suggesting that bone collagen 
values were not homogenized due to taphonomic factors; and 
samples with C:N ratios of 3.1–3.4 (well within the range of 
2.9–3.6 indicative of biogenic values; Ambrose et al., 1997) were 
included in this study. Similarly, δ13Ccarbonate values of extinct taxa 
from Rancho La Brea are similar in both δ13Ccarbonate values and in 
variability as other Pleistocene sites in North America (e.g., 
DeSantis et al., 2009, 2019, 2020; Feranec et al., 2009; Feranec and 
DeSantis, 2014; Jones and DeSantis, 2017). If the δ13Ccarbonate values 
were diagenetically altered, we might expect anomalously low 
oxygen isotope values as oxygen isotopes are more susceptible to 
post-mortem alteration than δ13C values from structural 
carbonates from bioapatite (Wang and Cerling, 1994). However, 
oxygen isotopes values measured in enamel carbonate from fossil 
material are neither more variable nor anomalously lower than 
δ18O values from extant C. latrans and P. concolor from southern 
California (collected during the 20th and 21st centuries). Finally, a 
large set of published literature demonstrates that tooth enamel is 
inherently less prone to diagenetic alternation than other tissues 
like bone apatite, bone collagen, dentin apatite, and dentin 
collagen (e.g., Wang and Cerling, 1994; Collins et al., 2002; Koch, 
2007; Lee-Thorp, 2008; MacFadden et  al., 2010). Hence while 
diagenesis is possible at any fossil locality, several lines of evidence 
suggest that both types of tissues sampled in this study (i.e., 
enamel and bone) record biogenic isotope signals and that 
diagenesis is not a likely driver of the carbonate-collagen 
discrepancies we observe here.

Physiological similarities in 
collagen-carbonate δ13C spacing 
between canids and felids and the need 
for caution in making trophic level 
assessments

Δca-co spacing has been previously used to identify differential 
dietary sources as well as trophic level, however data from this study 
suggest that such determinations should be made with caution. For 
example, larger values indicate when protein and carbohydrates come 
from different sources while smaller values indicate that both protein 
and carbohydrates are from similar sources. The work of Ambrose 
et al. (1997) documents that when ancient humans have Δca-co spacing 
>4.4‰ they consumed C4 carbohydrates and C3 protein, while values 
under this threshold suggest that both carbohydrates and proteins 

originate from similar sources (e.g., marine protein). In herbivores, it 
is thought that consumption of C4 vegetation and rumination 
contribute to higher Δca-co values; 13C deplete methane produced via 
fermentation results in 13C enriched CO2, which is subsequently 
incorporated into the body via blood bicarbonate (Hedges, 2003; 
Clementz et  al., 2009; Codron et  al., 2018). Thus, herbivorous 
mammals exhibit variability in Δca-co values, even when consuming 
only primary productivity—with values ranging from 3.6 to 14.8‰ 
in African bovids, likely due to differences in the amounts of 13C 
depleted methane produced via digestion and subsequently removed 
from the remaining nutrient pool via expulsion of methane gas by the 
animal (Codron et al., 2018). Further, it should be noted that all 
bovids are ruminants, so differences in Δca-co values likely have more 
to do with disparate diets than differences in digestive physiology—
especially when one species (Antidorcas marsupialis) has Δca-co values 
that range more than 10‰ (from 4.3 to 14.8‰; these wide ranging 
values may be related to stark differences in protein content in C3 and 
C4 plants consumed as discussed later). In hypercarnivorous 
mammals, fats, proteins, and carbohydrates (minimal to no 
consumption) should largely come from the same source, so that 
larger Δca-co spacing would suggest individuals with more plant 
biomass in their diets (Clementz et al., 2009; Bocherens et al., 2017). 
It was presumed that higher lipid consumption by carnivores 
(especially hypercarnivores) was responsible for lower Δca-co values 
(Krueger and Sullivan, 1984; Lee-Thorp et al., 1989; O’Connell and 
Hedges, 2017) and thus Δca-co values would be predictive of trophic 
level (Clementz et al., 2009; Bocherens et al., 2017). However, the 
hypercarnivores examined here—including P. concolor, S. fatalis and 
A. dirus—have average offset values that range from 4.4+/−0.6 in 
P. concolor to 8.8+/−1.1 in A. dirus (when calculated from enamel 
carbonate and bone collagen) and are thus unrelated to trophic level 
(as inferred from δ15Ncollagen values) in Rancho La Brea carnivores and 
extant carnivores from C3 ecosystems (Supplementary Table S4). 
Contrary to expectations, extant hypercarnivores from C4 ecosystems 
exhibit higher (not lower) Δca-co values with higher δ15Ncollagen values 
(Supplementary Table S4). Data from extant and extinct carnivores 
here suggest that the C3 or C4 environment the prey are foraging in 
has an impact on not only the δ13Ccarbonate values, but also the offset 
between collagen and carbonate when Δca-co is calculated from enamel 
carbonate and bone collagen (Figure 2)—though this may be related 
to fat consumption and/or digestive physiology via effects of 
vegetation on fat accumulation in prey or digestion of those prey in 
carnivores. Thus, trophic level estimations may be more nuanced and 
not directly comparable between disparate ecosystems.

Codron et  al. (2018) documented a positive relationship 
between δ13Ccarbonate and Δca-co values in herbivores, combining 
teeth and bones into one data set and focusing on the relationship 
between δ13Ccollagen and Δca-co values (R2 = 0.09, p < 0.0001). Our 
recalculation of their published data also yields significant (and 
stronger) relationships between δ13Ccarbonate and Δca-co values 
(R2  = 0.34, R = 0.58, p  < 0.0001 when calculated via enamel 
carbonate and dentin collagen in teeth; R2  = 0.29, R = 0.54, 
p < 0.0001 when calculated via bone carbonate and bone collagen; 
and R2 = 0.35, R = 0.59, p < 0.0001 when combined), though these 
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results are weaker than those observed in carnivores 
(Supplementary Table S3). Within trophic-level difference in 
herbivores were attributed to physiology or environmental factors, 
to differences in methane production that result from grass vs. 
browse consumption, and to differences between ruminants and 
hindgut fermenters (Cerling and Harris, 1999; Clauss et al., 2020). 
However, as we noted with the springbok example generated from 
data by Codron et  al. (2018)—its ‘environment’ (i.e., the 
composition of its diet, as browse or grass) is likely the driving 
factor of Δca-co values in this bovid as all members of the species 
(Antidorcas marsupialis) share the same physiology.

Differences in canid and felid physiology are not likely the 
primary cause of Δca-co variability. Canid and felid Δca-co values are 
indistinguishable when feeding in similar environments (e.g., 
individuals of both P. concolor and C. latrans with similar 
δ13Ccarbonate values have similar Δca-co values in C3 ecosystems, and 
the same is true for P. leo and L. pictus in C4 ecosystems) but do 
vary with δ13Ccarbonate values and both within and between C3 or C4 
dominated environments. The fact that S. fatalis Δca-co values are 
significantly lower than both canids at Rancho La Brea may stem 
from consuming prey that foraged in disparate environments 
(based on δ13Ccarbonate values). In contrast, the Δca-co values of the 
modern felid P. concolor and canid C. latrans that consume prey 
that forage in similar environments (as inferred from 
indistinguishable δ13Ccarbonate values, p = 0.964) are indistinguishable 
from each other (p = 0.762). Thus, it does not appear that 
differences in canid and felid physiology are the primary cause of 
Δca-co variability (see Figure 2). If physiological differences between 
canids and felids were a primary driver of Δca-co variability, 
we would expect similar δ13Ccarbonate values to yield disparate Δca-co 
values in canids and felids, especially when feeding on similar 
prey. Accordingly, these data (Figures 2, 4) can help us rule out 
physiological differences between canids and felids as the primary 
driver. It therefore appears that the foraging habitats of prey have 
a substantial influence on Δca-co values in carnivores, as 
documented here, and in herbivores as documented by Murphy 
et al. (2007) and Codron et al. (2018).

Tissue and environmental/dietary drivers 
of collagen-carbonate δ13C spacing

Tissue specific differences, including processes governing how 
macronutrients such as amino acids and fats (including types and 
lengths of fatty acids) are incorporated into tooth enamel and 
bone collagen, may contribute to differences between δ13Ccarbonate 
and δ13Ccollagen and Δca-co values. Earlier work by Ambrose and Norr 
(1993) established that δ13Ccarbonate values reflect whole diet 
(carbohydrates, proteins, and fats), while δ13Ccollagen reflects protein 
consumption. In carnivores, especially hypercarnivores, it is 
expected that carbohydrates would be a minor component of their 
diet and that the ‘whole diet’ most likely reflects proteins and fats, 
in contrast to primarily protein being routed into bone collagen 
(Ambrose and Norr, 1993). Further, as fat is depleted in 13C 

compared to either protein or carbohydrates (Ramsay and 
Hobson, 1991), one would expect δ13Ccarbonate values to be more 13C 
depleted when consuming prey with a higher fat content (all else 
being equal; though research in this area is needed). Fats are 13C 
depleted compared to muscle to an astonishing degree, differing 
by as much as 7–8‰ in polar bears and ringed seals, with muscle 
and fat being even more 13C depleted than bone collagen (Tieszen 
et al., 1983; Ramsay and Hobson, 1991). The 13C depleted nature 
of fat is the primary reason why carnivores were thought to have 
lower Δca-co values (due to the consumption of 13C depleted fat 
relative to other sources (Lee-Thorp et al., 1989; Clementz et al., 
2009). However, an observation of Ambrose and Norr (1993) is 
often overlooked; when δ13C values of protein are higher than δ13C 
values of whole diet (regardless of the amount of protein in the 
diet; i.e., whether the diet consists of 6% protein or 77% protein) 
then Δca-co values are low, when δ13C values of protein are lower 
than δ13C values of whole diet then Δca-co values are high (again, 
regardless of the amount of protein in the diet, i.e., whether the 
diet consists of 6, 25, or 76% protein). Monoisotopic diets (where 
protein and whole diet are similar) yield intermediate Δca-co values 
(i.e., 5.7+/−0.4‰, as compared to a range of 1.2 to 11.3‰; 
Ambrose and Norr, 1993). Thus, the isotopic composition of 
carbohydrates and fat relative to protein can influence Δca-co 
values, and Δca-co values are far from predictable based on trophic 
level or the amount of protein in one’s diet, alone.

Observed larger offsets in Δca-co values in carnivores could 
stem from either increased consumption of more 13C enriched 
carbohydrates, the consumption of leaner prey, and/or different 
amounts of methane production. One possibility is that the canids 
consume more terrestrial resources that are not meat, and the 
higher Δca-co values are a result of more non-meat sources. 
Alternatively, even limited non-protein sources with higher Δca-co 
values (including fat) could result in higher Δca-co values. Ambrose 
and Norr (1993) demonstrated that large Δca-co values occur (i.e., 
Δca-co values of 10.8+/−0.38, 10.8+/−0.36, and 11.3+/−0.40) when 
rats were fed protein that was significantly isotopically lighter than 
whole diet values (by ~10‰); in contrast, much smaller Δca-co 
values occur (i.e., Δca-co values of 1.2+/−0.10, 2.1+/ 0.24) when rats 
were fed protein that was isotopically heavier than whole diet 
values. As the canids have the highest Δca-co values, as compared 
to the felids (from North America), increased C4 whole diet values 
(which can include protein, carbohydrates, and fats) in canids 
could also cause this pattern. Aenocyon dirus has been interpreted 
as a hypercarnivore (Van Valkenburgh, 1991), making the source 
of the non-protein components less likely to be terrestrial plants 
and nuts, though even a small amount of supplemental foods that 
are isotopically heavier could drive this pattern (based on data 
from Ambrose and Norr, 1993) in addition to δ15Ncollagen values 
providing only a ‘minimum estimate’ of trophic level (per 
Bocherens, 2015). Alternatively, the consumption of fat in prey 
from more open grassland ecosystems could also result in larger 
Δca-co values that correlate with δ13Ccarbonate values (per the 
discussion of Ambrose and Norr, 1993, above). Literature from the 
livestock industry demonstrates that free-ranging elk and bison 
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can yield disparate fat and fatty acid compositions (Rule et al., 
2002; e.g., elk have higher n-6 fatty acids than bison or beef cattle), 
which can have downstream impacts on the isotopic values 
observed in predators. Further, carnivores are known to increase 
fat oxidation when consuming a high-fat diet (Lester et al., 1999), 
which may also influence resulting Δca-co values, though this has 
not yet been documented. While methane production is more 
pronounced in herbivores than carnivores (and most pronounced 
in grass-rich diets; Cerling and Harris, 1999), methane production 
could also play a role in carnivores if greater methane production 
occurs when digesting leaner prey (this could also yield higher 
Δca-co values in carnivores that correlate with the foraging habitat 
of prey); however, this is not well understood.

Environmental differences, including water deficits may also 
contribute to isotopic offsets, as suggested by Murphy et al. (2007). 
Water deficits are positively correlated with Δca-co values in 
kangaroos (Murphy et al., 2007); thus, as it gets wetter Δca-co values 
decrease. While plants need adequate water to grow (zero rainfall 
results in no growth), excess rainfall beyond a certain threshold 
can reduce the nutritional quality of foliage (increased rainfall 
results in increased growth, and subsequently lower nitrogen per 
unit biomass, which is less nutritious; Austin and Vitousek, 1998). 
Similar effects are observed when growing plants under higher 
atmospheric CO2 conditions. Plants grown under higher 
atmospheric CO2 levels (which also have lower δ13C values when 
grown in growth chambers) also yield more growth (structural 
carbon, and often associated tissues like lignin and cellulose) while 
per unit biomass is subsequently less nutritious (nitrogen content 
is lower; Conroy, 1992, Barbehenn et al., 2004). All things being 
equal, herbivores that consume plants with relatively lower 
nitrogen/protein content may utilize protein differently and have 
different amounts of fat stores that are subsequently transferred to 
predators. More work is needed to clarify if and how 

environmental factors (e.g., precipitation, atmospheric CO2) play 
a role in affecting herbivore and carnivore Δca-co values.

Future research directions

It is not yet clear why Δca-co and δ13Ccarbonate from bone apatite 
are unrelated in African carnivores collectively (when combining 
canids and felids), both here and in Codron et  al. (2018), in 
contrast to enamel apatite. However, there is clear evidence that 
bone apatite and enamel apatite tissues are not equal and vary 
quite dramatically in their mineralogy and crystal size (Wopenka 
and Pasteris, 2005). Bone apatite crystals typically lack the 
hydroxyl ion (OH−) and are about 10 to 100 times smaller than in 
enamel, both of which can affect carbonate concentration (with 
bone apatite having higher carbonate concentration and thus also 
greater solubility; Wopenka and Pasteris, 2005). Therefore, bone 
is well suited for being resorbed/re-precipitated and interacting 
with organic material, while enamel is well suited to resisting 
dissolution (Wopenka and Pasteris, 2005). While herbivores do 
exhibit positive relationships between δ13Ccarbonate and Δca-co in both 
bone apatite and enamel apatite, bone apatite has significantly 
lower Δca-co values and δ13Ccarbonate values than enamel (p < 0.0001, 
based on the analysis of data from Codron et al., 2018; mean Δca-co 
in bone and enamel is 6.7+/-1.4‰ and 9.3+/-2.1‰, respectively; 
mean δ13Ccarbonate values of-8.5+/-6.5‰, and-5.1+/-6.2‰, 
respectively). Further, our analysis of African carnivores also 
demonstrates no relationship between δ13Ccarbonate in bone and 
Δca-co and no relationship between δ13Ccarbonate in dentin and Δca-co 
when calculated from dentin carbonate and dentin collagen 
(Supplementary Table S3). The lack of a relationship between 
dentin δ13Ccarbonate and dentin δ13Ccollagen, similar to bone yet 
different from enamel, indicates that while differences in tissue 
routing may be at play, they likely do not stem from differences in 

A B C

FIGURE 4

Relationships between δ13Ccarbonate values and Δca-co values for North American canid and felid specimens examined. Relationships between 
δ13Ccarbonate values and Δca-co values and in Canis latrans (A), Aenocyon dirus (B), and the felids (C; both Puma concolor and Smildon fatalis). Black 
lines and subsequent regression equations and R2 values reflect the inclusion of all data per taxon. The dark-gray dashed line in panel B denotes 
the regression line and equations specific to A. dirus based on δ13Ccollagen from bone collagen, while the solid black line includes δ13Ccollagen data from 
tooth dentin from A. dirus from Locality 3,874. A light-gray dashed-line with a slope of 1 is present in the background of each panel for reference. 
*denotes significant relationships (p < 0.05).
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routing due to ontogeny (e.g., using more amino acids for bone 
growth while young but not while older). Instead, these differences 
may have more to do with differences in the inorganic content of 
enamel versus both dentin and bone (and dentin vs. bone) and/or 
the mineralogy of these tissues (Wang and Cerling, 1994; 
Wopenka and Pasteris, 2005). Further, wolves (Canis lupus) 
document a significant positive relationship between δ13Ccarbonate in 
bone and Δca-co (based on data from Clementz et al., 2009), as do 
African wild dogs noted here, but in contrast to African lions 
(Supplementary Table S3). Thus, future work is needed to examine 
mechanisms behind these tissue specific discrepancies in Δca-co 
values in carnivores, including differences between specific taxa.

More work is also needed to determine the precise 
mechanism responsible for the correlation between increased 
Δca-co values and higher δ13Ccarbonate values, and why this pattern 
is not apparent in bone apatite and dentin apatite of African 
carnivores (Codron et  al., 2018, and noted here). Further, a 
re-evaluation of the potential drivers of relationships between 
herbivore Δca-co and δ13Ccarbonate values may be necessary. Codron 
et  al. (2018) outlined two potential drivers of the positive 
relationship between Δca-co values and δ13Ccarbonate values in 
herbivores: environmental differences in food sources; and 
physiological differences between hindgut fermenters and 
ruminants. As carnivores did not exhibit the above relationship 
in their data set (which was primarily composed of bone and 
not teeth), it was assumed that environmental factors were not 
at play, as it was expected that environmental influences would 
similarly affect relationships between both herbivore and 
carnivore Δca-co values and δ13Ccarbonate values. Considering data 
presented here, carnivores clearly demonstrate a significant 
positive relationship between Δca-co values and δ13Ccarbonate values 
in tooth enamel, but not bone apatite (weakly in some; see 
Clementz et al., 2009). Thus, macronutrient routing in these 
disparate tissues (biochemically and structurally) may also play 
a role. These drivers are not mutually exclusive and may both 
contribute to the isotopic disparities outlined here. Further, 
we  clearly document that carnivores in both C3 and C4 
ecosystems demonstrate positive relationships between Δca-co 
and δ13Ccarbonate values (Figure 2), yet the reasons for ecosystem-
associated differences between these lines and their intercepts 
is unclear—though may stem from differences in rainfall and/
or CO2 over time (and effects on protein and fat content in 
plants and prey). Thus, until the precise mechanisms driving the 
highly predictable Δca-co values are identified, the examination 
of multiple tissues and isotopes may reveal a more complete 
understanding of the dietary ecology of both extinct and 
extant mammals.

Advances and challenges of relevance to 
paleobiology and archeology

The Δca-co spacing in extinct and extant carnivores is 
predictable based on δ13Ccarbonate values—indicating that the 

foraging behavior of prey consumed by predators is the best 
predictor of Δca-co spacing. This positive relationship negates the 
idea that within trophic-level Δca-co spacing is constant in 
carnivores and calls into question our ability to interpret degrees 
of carnivory, omnivory, or herbivory from Δca-co values, alone. In 
the case of carnivores, felids and canids have similar Δca-co values 
when consuming similar prey today (in both C3 and C4 
environments), while felids and canids only differ in the past when 
consuming prey that foraged in different habitats. Thus, 
physiological differences between canids and felids do not appear 
to be drivers of Δca-co spacing. While either ontogenetic differences 
in diet or diagenesis have been invoked as potential reasons for 
differences in δ13Ccarbonate and δ13Ccollagen values, neither of these 
hypotheses have much support. These data allow us to rule out 
many hypotheses and indicates that Δca-co spacing is likely driven 
by the foraging habitat of prey, environmental influences, and/or 
tissue specific differences that affect how macronutrients are 
allocated and incorporated into mineralized tissues.

More work is needed to better understand the drivers of 
increased Δca-co spacing in individuals with higher δ13Ccarbonate 
values and why these relationships are weaker or absent when 
comparing certain tissues. Further, not all tissues can be treated 
similarly. For example, bone apatite and enamel apatite were 
combined in Codron et al. (2018) as δ13C values were similar; 
however, the resulting Δca-co values are significantly higher when 
enamel carbonate and bone collagen were used to calculate Δca-co 
(p  < 0.0001, y-intercepts/mean differences of 2.6‰; Figure  3). 
While sampling from multiple tissues from the same specimens 
can be costly and potentially more destructive, more work that 
examines these relationships in different ecosystems and through 
time is necessary to better understand if and how a taxon’s habitat 
contributes to nutrient routing to different tissues.

Our understanding of Rancho La Brea carnivores has 
benefited from sampling both enamel and bone collagen. Isotopes 
from different tissues are not “right” or “wrong” but rather provide 
different insights into the dietary ecology of carnivores. Nitrogen 
isotope ratios demonstrate that C. latrans likely consumed less 
meat than either A. dirus or S. fatalis. Stable carbon isotope values 
measured in bone collagen from Coltrain et al. (2004), Fuller et al. 
(2020), and here indicate that the protein component of Rancho 
La Brea carnivore diets are similar, while carbon isotopes ratios 
from carbonate enamel indicate stark differences in the whole diet 
of S. fatalis as compared to A. dirus (DeSantis et al., 2019, 2020, 
and here) and C. latrans (at Pits 61/67). Differences in the stable 
carbon isotope signatures from whole diet indicate that A. dirus 
and S. fatalis are not consuming similar proportions of the same 
prey species and are instead consuming prey with disparate 
isotopic signatures—suggesting that these prey may forage in 
more open grasslands and more wooded areas, respectively; and/
or may exhibit differences in fat content which can influence 
whole diet. As C3 grasses have higher amounts of protein than C4 
grasses (Barbehenn et  al., 2004); protein in prey-species may 
be biased toward C3 protein sources, which may be responsible for 
similar carbon isotope values of bone collagen in herbivores and 
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carnivores. The dominance of protein from C3 plants can 
be further amplified in drier ecosystems, where C3 plants can have 
even more protein per unit biomass than in higher rainfall regions 
(Austin and Vitousek, 1998). Fat is an important component of 
hypercarnivore diets (e.g., polar bears; Ramsay and Hobson, 
1991), and many hypercarnivores preferentially consume fat 
(Nowak and Walker, 1999). However, the isotopic source of fat is 
primarily reflected in the carbonate portion of tooth enamel, 
dentin, or bone, but not in collagen (Ambrose and Norr, 1993). 
Thus, whole diet differences are apparent between S. fatalis and 
A. dirus (DeSantis et al., 2019, 2020, and here), and C. latrans from 
Pits 61/67. Protein component of one’s diet does not necessarily 
equal prey source, and we argue here that whole diet indicators 
(e.g., carbonate) are necessary to elucidating diets of extinct and 
extant carnivores. Our work here suggests potential drivers of the 
differences between stable carbon isotopes in enamel and collagen 
in Rancho La Brea taxa that include tissue and/or environmental 
differences (while challenging others including trophic level, 
ontogenetic dietary differences, physiological differences between 
canids and felids, and diagenesis), and outlines areas of future 
research that can bring further clarity to our understanding of the 
dietary ecology of predators and prey, today and in the past.
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Introduction: Reconstructing the dietary and behavioral strategies of our 

hominin ancestors is crucial to understanding their evolution, adaptation, and 

overall way of life. Teeth in general, and dental microwear specifically, provide 

a means to examine these strategies, with posterior teeth well positioned to 

tell us about diet, and anterior teeth helping us examine non-dietary tooth-

use behaviors. Past research predominantly focused on strategies of adult 

individuals, leaving us to wonder the role children may have played in the 

community at large. Here we begin to address this by analyzing prehistoric 

and historic children through dental microwear texture analysis of deciduous 

anterior teeth.

Materials and Methods: Four sample groups were used: Neandertals (N = 8), 

early modern humans (N = 14), historic Egyptians from Amarna (N = 19) and 

historic high-Arctic Inuit from Point Hope, Alaska (N = 6). Anterior deciduous 

teeth were carefully cleaned, molded, and cast with high-resolution materials. 

Labial surfaces were scanned for dental microwear textures using two white-

light confocal microscopes at the University of Arkansas, and a soft filter 

applied to facilitate data comparisons.

Results and Discussion: Results show that dental microwear texture analysis 

successfully differentiated the samples by all texture variables examined 

(anisotropy, complexity, scale of maximum complexity, and two variants of 

heterogeneity). Interestingly, the Neandertal and Point Hope children had 

similar mean values across all the texture variables, and both groups were 

significantly different from the Amarna, Egyptian children. These differences 

suggest diversity in abrasive load exposure and participation in non-dietary 

anterior tooth-use behaviors. Further analyses and an expanded sample size 

will help to strengthen the data presented here, but our results show that 

some prehistoric and historic children took part in similar behaviors as their 

adult counterparts.

KEYWORDS

labial surface, deciduous enamel, dietary reconstruction, prehistoric children, 
historic populations, Neandertal
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1. Introduction

Dental microwear texture analysis (DMTA) is widely 
recognized as a useful method to highlight differences in both 
dietary and behavioral strategies of fossil and modern hominins 
(Scott et  al., 2005, 2006; Ungar et  al., 2008, 2010, 2012; El 
Zaatari, 2010; Krueger and Ungar, 2010, 2012; El Zaatari et al., 
2011; Estalrrich et  al., 2017). While molar microwear have 
demonstrated to be especially valuable as a dietary proxy (e.g., 
Scott et al., 2005; El Zaatari, 2007; Ungar et al., 2008, 2010), 
incisor microwear texture analyses are useful in understanding 
behavioral and dietary strategies, as well as abrasive load 
exposure (Krueger, 2006; Krueger and Ungar, 2010, 2012).

The majority of dental microwear research has focused on 
adult individuals using permanent enamel. Only a few examples 
have examined children and their deciduous dentition (Bullington, 
1991; Toussaint et al., 2010; Hlusko et al., 2013; El Zaatari et al., 
2014; Mahoney et al., 2016; Bas et al., 2020; Kelly et al., 2020). 
Examinations of children’s diet and behavior are usually limited to 
weaning and other types of dietary stress, as shown by skeletal 
indicators of malnutrition, dental enamel defects, and other 
feeding-practice studies (Skinner, 1997; Lewis, 2007; Prowse et al., 
2008; Clement and Freyne, 2012). Even basic dental macrowear 
analyses in children are limited and are then only used for age 
estimation or social status purposes (Lewis, 2007; Dawson and 
Brown, 2013). Why is this the case?

The first difference is the number of teeth, with fewer 
deciduous than permanent teeth. This is important when 
considering available sample sizes between child and adult 
remains. Another distinction is the composition of deciduous and 
permanent enamel. Deciduous enamel is not only less mineralized 
than permanent enamel (92% vs. 96%), but also has a higher water 
content (De Menezes Oliveira et al., 2010). These composition 
variations make deciduous enamel softer. Moreover, the mean 
thickness of deciduous enamel is less than half that of its 
permanent counterpart (1.14 mm vs. 2.58 mm, De Menezes 
Oliveira et al., 2010). Collectively, these differences cause greater 
susceptibility to fracture, chipping, and wear in deciduous teeth. 
Add the limited sample size to these other differences, and it is 
unsurprising that research has focused on the dietary and behavior 
reconstruction of adult individuals.

However, there is another important reason dietary and 
behavioral reconstructions have favored adults and their 
permanent teeth: the under-representation of children in the 
archaeological and paleoanthropological record. This is due not 
only to the lower mortality rates in children, but also to taphonomic 
processes, which affect the preservation of fragile sub-adult bones 
and teeth (Lewis, 2007; McFadden et al., 2021). For example, a 
child’s body skeletonizes faster, becomes readily disarticulated, and 
the smaller size makes them more attractive to scavengers, allowing 
for dispersal of body parts (Lewis, 2007). Due to these phenomena, 
analyses of sub-adult bones and teeth are not as common as in 
adult individuals, and are limited to those specific, unique sites 
where children are present, and preservation is exceptional.

Challenges in studying deciduous teeth (and children in 
general) exist; however, there is evidence that significant 
information can be  gleaned from what is preserved in the 
archaeological and fossil record. For example, a recent study on the 
anterior tooth-use behavior of Paleolithic children (Estalrrich and 
Marín-Arroyo, 2021) revealed comparable behavioral patterns as 
their adult counterparts, despite these known differences between 
the deciduous and permanent enamel. These data, along with 
those demonstrating the efficacy of microwear textures in 
differentiating hominin anterior tooth-use behaviors in different 
ecological zones (Krueger et al., 2017, 2019), show we need to push 
the boundaries of what we know – or thought we could know – 
about children in the past. The goal of this paper is to present and 
analyze the largest microwear texture dataset of deciduous anterior 
teeth of both fossil (Neandertals and early modern humans) and 
recent individuals (Amarna Egyptians and Point Hope Inuit), and, 
ultimately, to better recognize the role these children played in 
daily life.

2. Materials and methods

2.1. Materials

Statistical analyses have previously indicated that microwear 
textures do not differ significantly across anterior permanent 
dentition (Krueger et al., 2017). Thus, we included all anterior 
tooth types to maximize the sample. We analyzed a sample of 47 
deciduous incisor and canine teeth, including, based on their 
cultural context, Neandertal (N  = 8); early modern humans 
(N = 14), and recent modern humans from the historic Egyptians 
from Amarna (N = 19), and historic high-Arctic Inuit from Point 
Hope, Alaska (N = 6). Supplementary Table S1 provides details of 
the studied samples. All the samples studied here are samples 
curated at different museums, and each museum complies with 
the ethical issues addressed by each country. By us accessing those 
samples in order to make the molds and the study, we signed and 
agreed to follow the required ethical issues.

2.2. Dental microwear texture analysis

The high-resolution replicas were used for analysis of both the 
fossil and recent human comparative samples. All molds and casts 
were prepared following standard microwear analysis protocols 
(Bromage, 1987; Teaford and Oyen, 1989). The labial surface of 
each specimen was gently cleaned with acetone using cotton swabs. 
President Jet regular body polysiloxane (Coltene-Whaledent) and 
Epotek 301 epoxy base and hardener (Epoxy Technologies) were 
used as the mediums for mold and cast production, respectively. 
Each tooth was examined for antemortem microwear on the labial 
surface, next to the incisal edge, using a Sensofar Plμ white-light 
confocal profiler, Connie (Solarius Development Inc., Sunnyvale, 
California) and Sensofar Plμ Neox confocal profiler, Wall-e, 
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(Sensofar, Barcelona, Spain) both found at the Department of 
Anthropology of the University of Arkansas in Fayetteville.

With the Sensofar Plμ white-light confocal profiler four adjacent 
scans of the enamel surface were taken using a 100x objective lens, 
yielding a lateral point spacing of 0.18 mm and individual fields of 
view of 138 × 102 μm, following Scott et al. (2006). We also used 
Sensofar Plμ Neox confocal profiler in white-light mode with a 100x 
objective to analyze some specimens. A stitched point cloud of 
242 × 181 μm with a lateral spacing of 0.17 μm and a published 
vertical resolution <1 nm was obtained for each surface.

Data from each specimen were then imported to MountainsMap 
software version 8 (DigitalSurf, Besançon, France), where the scans 
were processed and calibrated applying the soft filter (Arman et al., 
2016) to ensure a standard data collection across different profilers. 
After this, the scale-sensitive fractal variables were calculated with 
the same software. Briefly, the variables considered are complexity, 
scale of maximum complexity, anisotropy, and two variants of 
heterogeneity (Scott et al., 2006). Complexity or area-scale fractal 
complexity (Asfc) measures the change in surface roughness at 
different scales. Scale of maximum complexity (Smc) measures the 
fine scale limit of the steepest part of the curve described for the 
Asfc measure. Surfaces dominated by large features on a microscopic 
scale would have a high Smc. Anisotropy (epLsar) measures the 
degree of directionality in surface roughness at a fine scale. 
Heterogeneity of area-scale fractal complexity (HAsfc) reflects 
variability of complexity across the surface. More heterogeneous 
surfaces will have higher values. Two forms of this variable are used 
here: HAsfc 3 × 3 (HAsfc9) and HAsfc 9 × 9 (HAsfc81).

2.3. Statistical analyses

Independent-Samples Kruskal-Wallis tests were completed 
with the four groups (Neandertal, early modern humans, and 
recent modern humans from Amarna Egyptians, and Point Hope 
Inuit) as independent variables and microwear texture variables 
(epLsar, Asfc, Smc, HAsfc9 and HAsfc81) as dependent. 
Non-parametric pairwise comparisons to find sources of 
significant differences in the Kruskal-Wallis tests were then 
completed. Significance values have been adjusted by the 
Bonferroni correction for multiple comparisons tests in 
Supplementary Tables S5a–e. These non-parametric tests were 
selected as they do not assume normality, are less sensitive to 
outliers, and appropriate given our limited sample sizes 
(G. Matthews, pers. comm.). It is important to note we found the 
same results with both parametric and non-parametric tests.

3. Results

Photosimulations of the occlusal surfaces of selected teeth are 
shown in Figure 1. Kruskal-Wallis and pairwise comparisons are 
represented visually in Figure 2. Descriptive statistics for each 
group are provided in Table 1. Individual microwear texture values 
are provided in Supplementary Table S2, as well as the test for 

normality of the microwear data (Supplementary Table S3), 
Kruskal–Wallis results (Supplementary Table S4), and pairwise 
comparisons (Supplementary Tables S5a–e).

Tests for normality were completed, and except for anisotropy, 
the microwear texture data were not normally distributed 
(Supplementary Table S3). As a result, nonparametric tests were used. 
The Independent-Samples Kruskal–Wallis tests found statistically 
significant differences at the 0.05 level among the groups in all five 
microwear texture variables (Figure 2; Supplementary Table S4).

In every microwear texture variable analyzed here, the Neandertal 
and Point Hope children were significantly different from their 
Amarna counterparts (Figure 2; Supplementary Tables S5a–S5e).

4. Discussion and conclusions

This study examined a large sample of prehistoric and historic 
deciduous teeth to better understand the role children played 
within society. Were children behaving like their adult 
counterparts? If so, can we  glean what those teeth-as-tools 
behaviors could have been? If not, at what age were they expected 
to contribute to the community at large? While this study has 
answered some of these questions, we  also need to continue 
searching for more evidence.

A

B

C

D

FIGURE 1

Photosimulation (left) and 3D view (right) of (A) Neandertal 
Krapina 13, a deciduous left lower lateral incisor; (B) Early modern 
human from Saint Germain 1970-7-4, a deciduous incisor; 
(C) Recent modern human from Amarna Egyptian SK304, a left 
deciduous central incisor; (D) Recent modern human from Point 
Hope 108, an upper left deciduous central incisor.
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The samples studied here include Neandertal and early 
modern human children from various sites and a wider time 
range, whereas the historic Point Hope and Amarna samples 
are from the same site and time (see Supplementary Table S1). 
We would expect more variability within the fossil microwear 

values, as they are geographically and temporally distinct. 
Interestingly, our data show that when analyzing these groups, 
every dental microwear texture variable used here distinguish 
the Neandertal and Point Hope children from those of the 
Amarna Egyptians.

FIGURE 2

Violin plots with pairwise comparisons of ranked microwear data by variable. Two dotted lines and one single dashed line within each violin plot 
represent quartiles and median, respectively. * = significant difference and ns = no significant difference between the two groups.
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This certainly is not the first time that Neandertal and high-
Arctic aboriginal samples have been El Zaatari et al., 2011. Indeed, 
decades of research, especially regarding anterior tooth-use 
behaviors, heavily associated Neandertals and their unique anterior 
tooth wear patterns with Arctic groups who used their anterior teeth 
as a clamp or third hand during animal hide processing (Brace, 1967, 
1975, 1979; Brace and Molnar, 1967; Ryan, 1980; Brace et al., 1981). 
However, all these analyses focus on adult individuals. This is the first 
that links similar microwear textures between Neandertal and high-
Arctic children. This suggests that the Neandertal and Point Hope 
Inuit children, at least those sampled here, were completing similar 
anterior tooth-use behaviors. Whether that means they were eating 
similar dietary items, had similar abrasive loads, and/or were 
completing tooth-use behaviors requires a deeper look at the values.

The microwear texture values presented here were collected 
using two different white-light confocal profilers, and a filter was 
applied to make these data comparable (Arman et  al., 2016); 
however, we  have not applied that filter to other published 
microwear texture datasets. Even if we  did, there are limited 
available datasets of deciduous teeth from which to make 
comparisons. A confounding issue is understanding if microwear 
forms similarly or differently between permanent and deciduous 
enamel, as studies have found conflicting results (Krueger, 2016; 
Mahoney et  al., 2016; Kelly et  al., 2020). Therefore, our 
interpretations should be  viewed with caution, and seen as 
preliminary until these issues are resolved.

Largely viewed within the realm of “hunter-gatherers,” 
Neandertals relied on a mixed diet and were highly dependent on 
the ecogeographic setting in which they lived (El Zaatari et al., 
2011; Fiorenza et al., 2011). It is parsimonious to assume that their 
children relied on a similar diet and were also constrained by their 
environment. Indeed, stable isotope research of prehistoric 
juveniles in California suggests some were foraging independently, 
in addition to parent-provided resources, especially during high-
stress times associated with social or climate change (Greenwald 
et al., 2016; Fournier et al., 2022). It is not unreasonable to assume 
that Neandertal children were subsisting on similar diets as their 
adult counterparts, and perhaps were even able to forage 
independently when the need arose.

Neandertal adults were found to perform different non-dietary 
anterior tooth-use behaviors based on their habitat (Krueger et al., 
2017). Using a comparative approach, it was found that Neandertals 

in cold, open environments had similar microwear textures to high-
Arctic Alaskan aboriginal groups who used their anterior teeth in 
clamping and grasping behaviors related to animal hide preparation 
for clothing production. Other Neandertals in more mixed 
environments were using their anterior teeth for other behaviors, 
such as wood softening or cordage production (Krueger et al., 2017). 
Interestingly, a preliminary study of Pleistocene deciduous teeth 
from northern Spain indicated they too showed the characteristic 
dental wear features associated to para-masticatory or cultural-
related dental wear, including toothpick use (Estalrrich and Marín-
Arroyo, 2021). When previous analyses on diet and tooth-use 
behaviors are considered, they suggest that Neandertal adults and 
children were subsisting on similar dietary and behavioral strategies 
that are heavily influenced by their eco-geographic setting.

The Point Hope Inuit were also considered “hunter-gatherers,” 
and their diet largely consisted of land and sea mammals (especially 
caribou, whale, walrus, and seal), fish, and edible plants (Larsen 
and Rainey, 1948; Lester and Shapiro, 1968; Dabbs, 2009; Brubaker 
et  al., 2010; El Zaatari, 2014). They took part in non-dietary 
anterior tooth-use behaviors in the form of wood softening, 
clamping and grasping tasks related to hide preparation, and sinew 
cord production, and were, at times, subjected to high abrasive 
loads (Burch, 1981; Foote, 1992). Some of these individuals lived 
seasonally at Point Hope, while others lived there year-round, 
which is located 125 miles north of the Arctic Circle (Larsen and 
Rainey, 1948; Dabbs, 2009).

On the other hand, the Amarna Egyptians were not “hunter-
gatherers,” but were excavated from the non-elite South Tombs 
Cemetery and date from 3,300 to 3,280 BP (Rose, 2006). This 
cemetery is composed of an estimated 5,000 individuals from 
different occupations and/or socio-economic positions but did not 
hold elite or royal status (Dabbs et  al., 2015). The excavated 
individuals showed high rates of subadult death, workload stress, 
trauma, and nutritional deficiencies (Rose and Zabecki, 2009; 
Dabbs et al., 2015). Adult microwear analysis suggests this sample 
was reliant on tough food, most likely bread, and the desert 
environment at Amarna would make sand a likely adherent 
abrasive (Krueger and Scott, in press).

The Neandertal and Point Hope children, both from “hunter-
gatherer” groups, had significantly lower complexity (Asfc), scale of 
maximum complexity (Smc) and heterogeneity (HAsfc9 and HAsfc81) 
than their Amarna counterparts (Table 1, Supplementary Table S2, 

TABLE 1 Summary descriptive statistics for the groups studied.

Group epLsar Asfc Median Smc HAsfc9 HAsfc81

NEAN MEAN 0.017775 2.1725 124.5487 0.4588 0.8988

NEAN SD 0.0010634 1.63835 198.82129 0.30334 0.42273

EMH MEAN 0.017186 1.4479 11.5193 0.4029 0.8164

EMH SD 0.0004944 0.86935 19.44259 0.20838 0.8091

AMARNA MEAN 0.016952 3.2281 8.2043 0.4686 0.8819

AMARNA SD 0.0010755 3.61266 4.10336 0.23627 0.33603

POINT HOPE MEAN 0.016967 1.5833 6.5483 0.3967 0.7417

PONT HOPE SD 0.0019086 0.73666 3.35328 0.16.269 0.23819
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Figure  2). While these variables are not often used in texture 
analyses of anterior teeth, they are useful for molar analyses, 
especially regarding the fracture properties of foods and abrasive 
loads. Here, we propose that the significantly lower values of these 
three variables for the Neandertal and Point Hope Inuit children 
show differences in abrasive loads from the Amarna children. While 
the Amarna children were subjected to a desert environment with 
little-to-no tree cover, their higher values may indicate their 
increased exposure to diverse types of abrasives that were adherent 
to their food. On the other hand, the lower values of the Neandertal 
and Point Hope Inuit children suggest more limited exposure to 
abrasives, which could be due to their reliance on a mixed diet.

The Neandertal and Point Hope children had significantly 
lower anisotropy (epLsar) than their Amarna counterparts. This 
variable is more heavily used in anterior tooth texture analyses and 
indicates the use of these teeth in non-dietary behaviors (e.g., 
clamping, grasping, tool retouching, etc.; Krueger and Ungar, 2012; 
Krueger et al., 2017, 2019). These results suggest both Neandertal 
and Point Hope children were taking part in non-dietary anterior 
tooth-use behaviors, while the Amarna children were not. While 
we are hesitant to suggest what specific types of behaviors in which 
these children may have been engaging, perhaps it was related to 
clamping and grasping behaviors like those found in their adult 
counterparts; however, an expanded sample size and comparative 
datasets are necessary to strengthen this idea.

It is worth noting that no statistically significant differences 
were found between the early modern human children and neither 
the Neandertal nor historic modern human counterparts (see 
Supplementary Tables S5a–S5e). Perhaps this is simply a reflection 
of our limited sample size, and building this dataset is necessary 
to recognize potential differences. Or, perhaps this reflects a more 
diverse diet, abrasive load exposure, or landscape in which these 
children lived. However, these data provide the largest dataset 
from which to work in the future, and we  look forward to 
continued analyses to reinforce or refute the ideas posited here.

In conclusion, these datasets provide a crucial pathway to 
understanding the role children played in the Paleolithic and 
beyond. Perhaps this is a starting point to investigating complex 
issues like independent foraging in Paleolithic children, especially 
considering the stress that climate change may have had on their 
dietary and behavioral strategies. It also helps us understand how 
teaching and learning may have transpired between adults and 
children, especially if the latter are performing non-dietary 
anterior tooth-use behaviors similar to their adult counterpart. 
We hope this creates a larger platform for additional analyses 
surrounding Paleolithic children, so that we may better recognize 
an entire community’s contribution to survival.
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Neanderthal subsistence at
Chez-Pinaud Jonzac
(Charente-Maritime, France): A
kill site dominated by reindeer
remains, but with a horse-laden
diet?

William Rendu1,2*, Sylvain Renou3, Anastasiia Koliasnikova1,

Malvina Baumann4,5, Hugues Plisson5, Emmanuel Discamps6,

Marie-Cécile Soulier6, Arthur Gicqueau1,6, Mathilde Augoyard5,

Manon Bocquel5, Guillaume Guerin7, Svetlana Shnaider1* and

Kseniya Kolobova8
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During the MIS 4 in Southwestern France, Quina Neanderthal from the north

of the Aquitaine was characterized by a hunting specialization on the reindeer

and the lack of diversity in their diet. They developed task-specific locations

dedicated to the capture, the butchery, and the consumption of reindeer,

and the whole society seems, in this region, to be dependent on this food

resource. In this context, the site of Chez-Pinaud at Jonzac (France) occupies

a specific place. First, interpreted as a reindeer kill and butchery site, the

recent recovery of the site underlines the importance of the large ungulate

(horse and bison) to the faunal spectrum (30% of the NISP). Considering the

quantity of meat and grease that these species can provide to hunters, the new

zooarchaeological analyses suggest that at least the horse may have played

a major role in the diet of the Neanderthal population. Since Jonzac is one

of the largest sites for this period, these results relativize the importance of

reindeer specialization of the Quina population and the lack of diversityl in

their diet.
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Introduction

In the last decades, considerable input on Neanderthal

subsistence has been acquired on a particular period of the

Middle Paleolithic record, the QuinaMousterian (Discamps and

Royer, Costamagno et al., 2006). In southwestern France, the

Quina Mousterian techno-complex, dated from the MIS 4 or

early MIS 3 (Figure 1), is notably characterized by its recurrent

association with reindeer hunting (Discamps and Royer, 2017;

FIGURE 1

(A, B) Distribution of the main Quina sites yielding faunal assemblages in Southwestern France, and contribution of the main prey to the faunal

spectra (in %NR; Blue, reindeer; green, red deer; Red, Bison; Yellow, Horse; Gray, other). (A) CG, Combe Grenal (Laquay, 1981; Guadelli, 1987;

Vau, Vau�rey (Delpech, 1996); PechIV, Pech de l’Azé IV (Niven, 2013); RdM, Roc de Marsal (Castel et al., 2017); LP, Les Pradelles (Costamagno

et al., 2006); CPN, Chez-Pinaud-Jonzac (Airvaux, 2004; Jaubert et al., 2008b; Niven, 2013); LCAS, La Chapelle-aux-Saints (Rendu et al., 2014);

Haut, Hauteroche (Paletta, 2005); LR, La Rouquette (Rendu et al., 2011); SLV, Sous les Vignes (Turq et al., 1999); ESP, Espagnac (Jaubert, 2001).

Numbers correspond to the di�erent stratigraphic units. For Combe Grenal Reindeer was under-evaluated in the previous excavation due to

selective sampling. Derived from Discamps and Royer, 2017. Map from Geoatlas. (C) Orthophotography of the site, extracted from the 3D

model. In yellow, the 2019–2021 excavation area.

Rendu et al., 2022). In fact, out of the 32 Quina stratigraphic

units that yielded sufficiently large faunal assemblages (i.e., with

a total NISP of ungulates >100), 28 are dominated by the arctic

deer’s remains.

The probable abundance of reindeer in the environment

during the Quina has been purportedly correlated to the major

climatic pejoration of the Heinrich Stadial 6 (Discamps et al.,

2011; Discamps and Royer, 2017). During this period, several

indicators also point to a major drop in the ungulate biomass
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available for large game hunters (Discamps, 2014). In addition,

sedentary prey that was present just before this event was

replaced by reindeer, identified as a migratory species at that

time (Britton et al., 2011).

This over-representation of reindeer in faunal spectra and

the development of different task-specific locations (Binford,

1980) dedicated to subsistence activities [kill and first butchery

sites (Niven et al., 2012) and secondary butchery sites

(Costamagno et al., 2006)] conducted scholars to propose the

strong dependence of Quina groups on reindeer, which would

have occupied a central place in the Neanderthal diet at the time

(Delagnes and Rendu, 2011; Rendu et al., 2022).

In this model, the Chez-Pinaud site at Jonzac plays a major

role along with Les Pradelles (Costamagno et al., 2006), one of

the best examples of these task-specific locations dedicated to

the exploitation of reindeer herds (Niven et al., 2012; Rendu

et al., 2022). We here report on new zooarchaeological data

acquired on this key site, concerning notably the importance

of reindeer and other prey in Neanderthal diets throughout the

Quina period.

Material: The Chez-Pinaud Jonzac
site

Excavated between 1999 and 2002 by a team led by Airvaux

(Airvaux, 2004), and between 2004 and 2007 by Jaubert, Hublin,

et al. (Jaubert et al., 2008a), Chez-Pinaud is situated at the

bottom of a 10-m cliff. More than 24 stratigraphic units were

identified, eight of them yielding artifacts attributed to the Quina

Mousterian (Airvaux, 2004; Jaubert et al., 2008a; Niven et al.,

2012).

Among them, Stratigraphic Unit (SU) 22 is a 1-m thick

bone bed with excellent preservation of the bones and

their spatial distribution (Jaubert et al., 2008a; Niven et al.,

2012). During the Jaubert-Hublin excavations (2004–2007), a

significant number of anatomical articulations were uncovered

identifying “snapshots” on-site, allowing for discussing the

carcass processing and the organization of activities within a

specialized site dedicated to predation with high resolution

(Rendu et al., 2022). Since 2019, the site is under a new

excavation program focusing on the US22 bone bed directed

by the CNRS, the IAET SB RAS, and Bordeaux University

(dir. W. Rendu, K. Kolobova, and S. Shnaider). The excavation

area covers a surface of ∼8 m2. We applied the common

“decapage” method consisting of removing the sediment over

the complete excavated area without moving the artifacts to

have a better view of their relative organization. Each decapage

is followed by a photogrammetric model of the whole surface

using a Canon EOS 600 D. Raw pictures were processed

through Agisoft Metashape software to obtain a 3D model of

the excavated area. Artifacts (lithics bigger than 1 cm and all the

identifiable faunal remains or remains larger than 2 cm) were

then piece-plotted using a NikonNivo total station. The different

analytical databases were linked to the 3D model using ArcGIS

for studying spatial distribution. In total, nine decapages (C1–

C9) were realized between 2019 and 2021 by conducting the

collection of almost 5,000 faunal remains (including 4% of teeth

remains) and 2,000 lithics.

All the faunal remains were identified on the site

(with the help of the portable comparative collection), and

potential anatomical articulations were looked for by two

zooarchaeologists (WR, SR) during the excavation and before

any collecting session. Numerous anatomical articulations were

identified during the excavations (NR= 46), some of them imply

several bones such as a complete reindeer carp in articulation

with its radio-ulna and metacarpal (Figure 2).

Zooarchaeological data

Previous zooarchaeological analyses demonstrate that

reindeer, which dominate largely the assemblage (>80% of total

NISP, Supplementary Table 1), were killed in the direct vicinity

of the site and partially processed there before exportation

toward a secondary consumption camp (Beauval, 2004; Niven

et al., 2012). The 18 individuals, including males, females,

and juveniles (based on a dental MNI), present a catastrophic

mortality profile. Based on cementum increment analyses, tooth

eruption sequences, and fetal bone abundances, the exploitation

of the site in winter has been proposed (Niven et al., 2012;

Rendu et al., 2022).

However, while the zooarchaeological analyses of the Jaubert

and Hublin collection brought significant information about

reindeer exploitation, largely used to discuss the Quina diet

(Discamps and Royer, 2017; Faivre et al., 2017; Rendu et al.,

2022), the exploitation of large ungulates was not described in

detail. Throughout, C. Beauval (Beauval, 2004) demonstrated

on the large collection of Airvaux excavation (Airvaux, 2004)

the fluctuation of the relative contribution of horse and bison

through the thickness of US 22.

The exact place of large ungulates in the subsistence of Quina

Neanderthals has been left mostly undiscussed. The importance

of large ungulates might have been underestimated in previous

studies, notably if one considers that their carcasses provide

between 3 and 5 times more food than a reindeer carcass. At a

regional scale, if we consider that Chez-Pinaud has been a central

piece in our perception of the Quina diet, new results could lead

us to ponder or even change our perception of the Neanderthal

diet and subsistence at the time. Based on the material from the

new excavation and our high-resolution control on the field, we

propose to evaluate how a better inclusion of large ungulates

in zooarchaeological interpretation and horse, in particular, can

modify our perception of the use of the Chez-Pinaud site and the

diet of the Quina population.
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FIGURE 2

Remains 6,218–6,225 in anatomical articulation found during decapage 8.

Methods

All the faunal remains were observed. For taxonomic

and anatomical identifications, we used the reference skeletal

collections from the IRL 2013 ZoSCAn (CNRS—IAET SB

RAS) and the one from PACEA Laboratory (CNRS—Bordeaux

University—MCC), sometimes complemented by the Virtual

Faunal Comparative Collection from the Max Planck Institute

(Niven et al., 2009). Pieces were identified at the most

precise level and, when it was not possible to propose a

specific attribution, ungulate size classes were used (adapted

from Brain, 1981). With regard to the skeletal part profiles,

all identifiable specimens (including shaft fragments) were

taken into account and recorded following the “element,

portion, segment” method (Gifford and Crader, 1977). Shaft

fragmentation was evaluated using the shaft length and shaft

circumference indexes (Villa and Mahieu, 1991). Analyses of the

bone surfaces were conducted on all the identified remains and

part of the non-identified ones. The bone surfaces were observed

under a low-angled light systematically using a hand lens

(enlargement: 20x) for the taphonomic and zooarchaeological

observations. Weathering, root etching, and anthropogenic

and carnivore modifications were systematically looked for

(Behrensmeyer, 1978; Olsen and Shipman, 1988; Blumenschine

et al., 1996; D’Errico and Villa, 1997; Pickering and Egeland,

2006). Oxide colorations of the bone cortical surfaces were

also recorded. The proportion of preserved cortical surface

was estimated per quartile (Rendu, 2010). When unclear

modifications were detected, specimens were subjected to

a more thorough evaluation with a 20–80x microscope.

Percentage values were calculated based on the number of

analyzed remains (NRa). Bones with unobservable surfaces

were excluded from the calculation of the percentages of

modified bones, thus NRa can change depending on the

analysis type. Skeletal part representations were established

for the reindeer and the horse using both %NNISP (Grayson

and Frey, 2004) and %MAU index (Binford, 1978, 1981).

Differential preservation has been tested for the reindeer and

the horse by confronting frequencies of skeletal elements (in

%NNISP) and their respective densities (Lyman, 1994; Lam

et al., 1999). The possibility of a selective transport based

on the nutritive value of the elements was tested using

the SFUI (Metcalfe and Jones, 1988; Outram and Rowley-

Conwy, 1998). Statistical tests of correlation (Spearman’s

rank rs) and Fisher exact tests were performed using

the R stats package, and 95% confidence intervals for
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TABLE 1 Fauna spectrum per decapage (C1 to C9) expressed in number of remains (NR). MNIc was calculated on the combination of bone and teeth.

C1 C2 C3 C4 C5 C6 C7 C8 C9 TotalNISP NMI

Leporid 3 3 1

Fox 1 1 2 1

Wolf 1 1 1

Carnivore NID 2 2

Horse 39 45 27 28 60 67 83 75 88 512

Bovine 13 20 13 10 42 28 23 40 55 244

Reindeer 202 159 151 149 247 239 399 403 483 2,432

Red Deer 1 2 3 1

Total NISP 255 224 191 188 349 334 507 522 629 3,199

2 9 1 1 3 16

Small size ungulate 90 51 47 49 104 32 60 74 65 572

Medium size

ungulate

377

Large size ungulate 72 47 40 46 85 87 92 120 116 328

NID 97 31 42 34 47 44 40 55 49 439

Total NR 514 353 320 319 594 497 700 772 862 4,931

percentages were calculated using the BinomCI function

of the R DescTools package using the Wilson method.

Plots were carried out in QGIS (QGIS Development Team,

2022).

Results

Faunal spectrum

Due to good bone preservation (see infra) and a limited

number of taxa identified in the faunal spectrum (7 species),

65% of the remains were taxonomically identified (Table 1). As

expected, reindeer dominates largely the assemblages (76%),

followed by horses (16%) and large bovids (8%). Red deer,

leporids, foxes, and wolves complete the faunal spectrum.

An evolution through the deposit can be observed with,

in particular, the fluctuation of the Bovinae contribution as

identified by C. Beauval on the Airvaux collections (Beauval,

2004). Fisher exact tests identify differences between the C4 and

C5 decapages, and between the C6 and C7 decapages (Figure 3).

The visualization of these fluctuations with confidence intervals

(Figure 3), however, ponders these rather small differences

between the decapages.

The contribution of the horse is however significantly higher

in our assemblage than what Niven et al. (Niven et al., 2012)

identified (16% of the NISP vs. 9%; Fisher exact test: p < 0,001),

but closer to Beauval results (11.67%NISP; Beauval, 2004). If the

MNI is taken into account, this trend is slightly less pronounced

with reindeer (MNI = 28) dominating the assemblage followed

by horse (MNI= 8) and bovinae (MNI= 4).

A detailed spatial analysis of the Chez-Pinaud dataset will be

carried out in the future, but Figure 4 proposes a first general

overview of the distribution and density of the three main

taxa identified: no specific clustering by species is apparent.

Remains do not tend to be clustered by species but, rather, mixed

all together.

The comparison of ungulate size classes allows to overcome

the greater difficulty of horse and bison identification. Indeed,

the reindeer is almost the only member of the medium size

ungulate category creating a bias in its advantage and leading to

an overestimation of its remains and a tendency to attribute the

anatomically identified remains of this category to this taxon.

Table 2 clearly underlines that reindeer is overestimated in the

faunal spectrum and that the large ungulates contribute to about

one-third of the assemblage. This point is crucial: it tempers the

presentation generally made of the deposit as being specialized

[sensu (Mellars, 2004)] on reindeer exploitation (Jaubert et al.,

2008a; Delagnes and Rendu, 2011; Niven et al., 2012; Rendu

et al., 2022).

Taphonomy

The faunal stock is globally well preserved. The impact

of weathering is particularly limited in intensity but not in

frequency (Table 3). Nearly half of the material was affected

by these changes. On the other hand, the advanced stages
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FIGURE 3

(A) Variations in Reindeer (blue), Bovine (red), and Horse (yellow) %NISP per decapage, with 95% confidence intervals; (B) Paired Fisher exact

tests by decapage, performed on NISP of reindeer, large bovids, and horses. Statistically significant di�erences in values are highlighted in bold.

(stage 3 and stage 4) are visible on <8% of the total

number of bones. This supports the idea of rapid burial of

the remains.

While there is no significant variation between bison and

horse remains, the reindeer appears to be less affected by

the weathering.
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FIGURE 4

Spatial distribution of the three main taxa on sagittal (YZ) and frontal (XZ) projections (dots: identified remains, color background: density).

In detail (Supplementary Table 2), it is mainly the

longitudinal cracking of the bones or cracks that are visible

on the material with the exfoliations that correspond to the

detachment of the outermost cortical layers. They are generally
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TABLE 2 Relative contribution of the di�erent ungulate size classes to the Fauna spectrum per decapage (C1 to C9).

Taxa C1 (%) C2 (%) C3 (%) C4 (%) C5 (%) C6 (%) C7 (%) C8 (%) C9 (%) Total (%)

70 65 71 70 66 60 70 67 68 67

30 35 29 30 34 40 30 33 32 33

found on the same remains. The cracks within the thickness

of the bones are rare. Since this taphonomic attack is generally

associated with freeze alternations (Guadelli and Ozouf, 1994),

and considering that the deposition took place in a peri-

arctic climate (Jaubert et al., 2008b), it is possible that its low

representation of frost modifications attests that the bone bed

remained frozen most of the time (or at least did not undergo

much freeze/thaw alternations) before its complete embedding.

Once again, it is possible to see a difference between the

reindeer and the two large ungulates (Supplementary Table 3).

These different modifications had a limited impact on the

preservation of the cortical surface of the bone. Indeed, more

than 80% of the remains show preservation of at least 50% of

their cortical surfaces (Figure 5), but reindeer remains appear to

have been more altered.

The carnivore damages are almost absent from the

assemblage and affect only 1.2% of the remains. This

low carnivore impact is coherent with what was observed

previously in the Airvaux and Jaubert and Hublin collections

(Beauval, 2004; Niven et al., 2012). Associated with their very

limited presence in the faunal spectrum, their low impact

strongly suggests that they had no major influence on bone

accumulations. In addition, cut marks on the remains of

the three carnivore taxa identified in the different collections

evidence their exploitation by Neanderthals [a fox tibia (Niven

et al., 2012); metacarpals of cave lion (Beauval, 2004); and a wolf

tibia (this study)].

On the contrary, the human impact on the collection is

particularly pronounced (Table 4), affecting 29% of the analyzed

remains (Table 4).

The anthropogenic modifications affect all the taxa with

the exception of the leporid (Table 5). If we did not identify

any modification on the fox remains, Niven and collaborators

identified cut marks on a distal extremity of a tibia (Niven et al.,

2012). In addition, a longitudinal cut mark on a shaft fragment

of a wolf tibia attests to defleshing activities on carnivores.

The very low quantity of burnt bones was already

highlighted in the previous analysis (Niven et al., 2012) and is

something very common in most Quina contexts, such as Les

Pradelles or Roc de Marsal, for instance, where their frequency

is largely below 1% (Costamagno et al., 2006; Castel et al., 2017).

The skeletal profiles

The post-depositional fragmentation of the assemblage

is limited and 91% of identified breaks were realized on

green bone. In addition, more than 5% of the remains

(teeth excluded) are found complete, including some of the

ribs. This limited fragmentation is also highlighted by the

relatively high frequency of long bones extremities: they

represent more than 13% (217/1709) of the long bones NISP,

though they are known to be usually under-represented on

archaeological sites due to preservation issues or specific human

or carnivore exploitation (Lyman, 1994; Marean and Assefa,

1999). For instance, at the contemporaneous Les Pradelles

Quina site, their proportion is under 1% and it is interpreted

as resulting from the destruction of these extremities by

humans for recovering the grease within (Costamagno et al.,

2006).

Skeletal profiles have been established for the reindeer and

horse (Figure 6), and they show two different patterns: while all

the reindeer skeletal parts are found at the site, the horse skeletal

profile shows a greater discrepancy between meaty long bones

and head than axial skeleton and griddles. Also, on the horse, it

is worth noting the quasi-absence of the lower-leg elements.

As highlighted previously by Niven et al. (2012), there is a

weak but significant correlation (rs = 0.4343, p < 0.001; ddl

= 46, Figure 7) between the frequency of the reindeer skeletal

elements and their relative density (Lyman, 1994; Lam et al.,

1999) while none exists for the horse elements (rs = 0.0181; ddl

= 46, Figure 7). This taxonomic difference in the preservation

of the bone finds an interesting echo with the difference in the

preservation of the cortical surfaces (cf. supra). It suggests that

the existence of density-mediated destruction has influenced the

skeletal part profile of the reindeer (such as proposed by Niven

et al., 2012) but cannot explain the variations observed on the

horse skeletal profile.

Simultaneously, there is no correlation (rs = 0.093)

between the frequency of the reindeer skeletal elements

(Supplementary Table 4) and their nutritive values expressed in

SFUI (Metcalfe and Jones, 1988), as illustrated by Figure 7. This

attests to the absence of evidence of selective transport by the

human population for the cervid and confirms the results of
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Niven and collaborators, who concluded that the whole carcasses

were brought to the site (Niven et al., 2012).

The comparison of the horse skeletal part representation

(Supplementary Table 5) with the Standardized Food Utility

Index [SFUI; Figure 7, (Outram and Rowley-Conwy, 1998)]

underlines a statistically significant negative correlation (rs =

−0.54033; DDL = 14; p < 0.05). In other words, the poorest an

element is, the more common it is in the assemblage. It would

attest to the selective exportation of the richest skeletal parts of

the horse carcasses to a consumption site and the discarding at

Chez-Pinaud of the less interesting parts. Figure 7 underlines

the existence of a gourmet strategy (Binford, 1981), which could

explain the relatively weak correlation.

The site would have been used as an acquisition site for horse

raw material, confirming a task-specific location dedicated to

hunting activities (Jaubert et al., 2008a; Delagnes and Rendu,

2011; Niven et al., 2012).

Exploitation of the horse

Horse carcasses were intensively exploited during the Quina

occupation. Indeed, 44% of the remains exhibit evidence of

anthropogenic modifications, mostly cut marks (39% of the total

remains, 43% of the remain with good preservation, and <50%

of the cortical surfaces destroyed) being largely more frequent

than the exploitation marks observable on the reindeer remains.

This difference is statistically highly significant (Khi2 = 10.262,

ddl= 1; p < 0.01).

The distribution of the cut marks on the horse skeleton

attests to skinning, dismembering, and defleshing activities

(Soulier and Costamagno, 2017; Soulier et al., 2022).

Skinning activities are identified for now by only circular

marks at the base of two metatarsals, while this activity was

documented on the reindeer elements (Beauval, 2004; Jaubert

et al., 2008a; Claud et al., 2012; Niven et al., 2012).

The rib dismembering shows an interesting pattern: 9 out

of the 17 articular heads exhibit the same transversal repetitive

short disarticulations marks. The fact that these rib heads may

come from the same individual and bear traces of the same

gesture cannot be excluded. The two observable atlases attest to

their separation from the cranium.

The defleshing activities are well identified on the collection,

with at least 39 occurrences out of the 383 remains (teeth

excluded; out of 247 remains if only the remains with very good

preservation are considered [<25% of the cortical surface is

altered)]. These occurrences are preferentially found on the axial

skeleton (15 ribs and 7 vertebrae) compared to the long bone

remains (NISP = 12), while these elements are more frequent.

Associated with the exportation of the elements rich in meat, it

shows the strong interest of the Quina Neanderthal from Chez-

Pinaud for horsemeat. Two occurrences of tongue extraction

have also been identified by cut marks on the inner part of
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FIGURE 5

(A) Preservation of the cortical surfaces (per quartile) following (Rendu, 2010; Rendu et al., 2019): Stage 0: no destruction; Stage1: <25%

destroyed; stage2: <50%; stage 3: <75%; Stage 4: >75% destroyed. (B) Preservation of the cortical surfaces for the three main taxa, (per quartile)

following (Rendu, 2010; Rendu et al., 2019) (Stage 0: no destruction; Stage1: <25% destroyed; stage2: <50%; stage 3: <75%; Stage 4: >75%

destroyed.
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TABLE 4 Anthropogenic modifications. NRA: Number of analyzed remains.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Total

NR A 207 207 193 183 394 343 661 751 829 3,768

NR with

anthropogenic

modifications

NR 63 66 72 79 153 173 263 279 270 1,418

%Nra 30% 32% 37% 43% 39% 50% 40% 37% 33% 38%

Cut marks NR 50 57 59 62 134 151 194 187 217 1,111

%Nra 24% 28% 31% 34% 34% 44% 29% 25% 26% 29%

Scrapping NR 8 9 9 3 4 2 9 4 48

%Nra 4% 4% 5% 2% 1% 0% 0% 1% 0% 1%

Notches NR 11 16 20 17 32 33 57 42 50 278

%Nra 5% 8% 10% 9% 8% 10% 9% 6% 6% 7%

Cortical notches NR 1 1 3 6 7 2 12 29 17

%Nra 0% 0% 2% 3% 2% 1% 2% 4% 2% 0%

Burnt bones NR 4 2 2 2 1 3 3 2 19

%Nra 2% 1% 1% 1% 0% 0% 0% 0% 0% 1%

TABLE 5 Anthropogenic modifications par taxa and their details.

NRA Anthropogenic Cut Marks Scrapping Notches Retouchers Total

NR %NR NR %NR NR %NR NR %NR NR %NR NR

Wolf 1 1 100 1 100 0 0 0 1

Horse 383 167 44 139 36 5 1 25 7 35 9 383

Bovine 194 79 41 67 35 3 2 8 4 20 10 194

Reindeer 2,120 743 35 621 29 31 1 182 9 52 2 2,120

Red deer 3 2 67 1 33 0 1 33 1 33 3

NRA, number of analyzed remains.

mandibles. In addition, the gutting is attested by several cut

marks in the inner part of the six ribs.

Notches have been recorded on 29% (22/74 NISP) of the

long-bone shaft fragments, evidencing the intense long-bone

breakage to recover the grease and marrow and probably also

to extract blank for the bone tool industry (see below). It is

noteworthy that horse bones are more difficult to break than

reindeer bones and they contain proportionally less marrow

because of the large amount of spongy tissue, characteristic of

equids (Outram and Rowley-Conwy, 1998). On the other hand,

horse marrow is richer in linoleic acid (Levine 1998), a substance

of great interest to human groups living in cold environments.

The exploitation of the carcasses was not limited to the

soft tissues, but the bone themselves were used as blanks for

the production of bone tools. A large number of retouchers

is produced on horse remains (NR = 35) and more generally

on large ungulate remains (NR = 72), representing 8% of the

number of remains of these taxa. This proportion is significantly

higher than the frequency of retouchers (2.5%) made from

medium-size ungulate blanks (Khi2 = 38.177, ddl = 1; p <

0.0001), confirming a strong selection on the nature of the

support. This interest in large ungulates, in general, and horses,

in particular, is clearly identified by the use of an upper horse

incisor as a retoucher (Figure 8).

Discussion

A zooarchaeological analysis of material from new

excavations at Chez-Pinaud brings new insights into the

subsistence activities and the diet of the Quina Mousterian that

exploited the site around 60,000 years ago.

First and foremost, the importance of large ungulates,

and especially horses, seems higher than previously thought.

When remains identified by ungulate size classes are taken

into account, a large contribution of horse and bison can be

highlighted (33% of the NISP). However, the dominance of

the reindeer in the faunal spectrum does not necessarily imply
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FIGURE 6

(A) Reindeer skeletal part representation of Chez-Pinaud horse remains expressed in %MAU, image modified from © 2003 ArcheoZoo.org /

Cédric Beauval, Michel Coutureau (Inrap) D’après : Fontana (Laure). — Mobilité et subsistance au Magdalénien dans le Bassin de l’Aude. Bulletin

de la Société préhistorique française, tome 96, n◦2, 1999, fig. 9, p. 182. (B) Horse skeletal part representation of Chez-Pinaud horse remains

expressed in %MAU, Modified from © 1996 ArcheoZoo.org / Michel Coutureau (Inrap), en collaboration avec Vianney Forest D’après : Barone

(Robert). — Anatomie comparée des mammifères domestiques, Tome I : Ostéologie - atlas. Paris: Vigot, 1976, pl. 6 (p. 21).
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FIGURE 7

(A) Di�erential preservation test: for Reindeer (left) and horse (Right) relative skeletal representation (%NNISP) compared to the bone density

(Lam et al., 1999). (B) reindeer (left) and horse (Right) skeletal part representation (y) [in %MAU see Binford (1978, 1981)] compared to their

nutritive value (x) expressed in SFUI (Outram and Rowley-Conwy, 1998).

its dominance in the Neanderthal diet. Indeed, medium and

large size ungulates do not provide the same quantity of animal

raw material to the hunters, and if we consider the quantity of

meat available on reindeer [35–40 kg (Klokov, 2000)] and horse

[150kg (Outram and Rowley-Conwy, 1998)], the ratio (around

4) is more or less equivalent to the reindeer/horse MNI ratio

(28/8 = 3.5). Thus, considering that the site is in the direct

vicinity of the kill site and consequently the whole carcasses were

available, the Quina Neanderthal of Chez-Pinaud would have

had access to the same quantity of reindeer and horse meat.

For now, while there are multiple pieces of evidence of

seasonal winter hunting of the reindeer (Beauval, 2004; Niven

et al., 2012; Rendu et al., 2022), no seasonal information are

available for the horse, and we can only mention the absence of

fetal remains. Thus, it is not possible to establish if the two taxa

were hunted in the same season or not. The ongoing seasonal

analyses should be able to solve this issue. Simultaneously, the

limited number of individuals does not allow us to discuss deeply

the hunted populations, but the presence of juvenile horses

attests that matriarchal groups were exploited.

Part of the horse carcasses seems to have been intensively

butchered, as was evidenced for the reindeer by Niven and

colleagues. There is in addition a statistically significant

difference in the frequency of cut marks between horse and

reindeer remains (Khi2 = 3.873, ddl = 1; p < 0.05), an

interesting pattern, even if such a distinction could be due to

differences in handling larger carcasses during the butchering

process (Soulier et al., 2022). Differences can also be seen in

the anatomical articulations found during excavations: on the

44 bones found in articulated groups during the 2019–2021

excavation, 40 belong to reindeer, two to bison, and two to horse,

the difference being statistically significant (Khi2 = 5.01, ddl =

3; p < 0.02). During the Jaubert and Hublin excavations, only

reindeer connections were attested. This difference implies that

the reindeer carcasses were dismembered more expediently, in

larger parts, while the large ungulates would have been more
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FIGURE 8

Piece #4061, decapage 6. Upper horse incisor used as retoucher. Photo and DAO: Malvina Baumann.

systematically processed. This found an interesting echo in the

fact that horse carcasses were more selectively transported than

the reindeer ones, maybe due to the difference in weight between

the two animals. Seasonal data on large ungulates will also

provide discussion on this point, allowing access to the health

status of prey, potentially different between reindeer and large

ungulates (generating a more or less intense search for marrow

for example).

The zooarchaeological analysis underlines a specific interest

in the meat on the horse carcasses, whatever we consider the

skeletal profiles or the human impact on the bones, confirming

the specific place of this taxon in the Neanderthal diet. At the

same time, the preferential use of horse bone remains a blank

for the bone tool industry, suggesting that horses occupied a

specific place in the whole Quina economy (Costamagno et al.,

2018). At Les Pradelles, it has been suggested that the preference

for large ungulate diaphysis as blanks for retouchers may

result from the density constraints necessary to manufacture

Quina scrapers (Costamagno et al., 2018); this selection toward

large ungulates has also been noticed for several other Quina

assemblages (e.g., Soulier, 2007; Daujeard et al., 2014; Jéquier

et al., 2018). This particular place is notably underlined by the

use of a horse incisor as a retoucher, a unique case in the Middle

Paleolithic record.

Thus, the interpretation of the site as a site devoted to the

capture and process of reindeer has to be reconsidered or, at

least, pondered. The Neanderthals did not come specifically to

hunt reindeer herds but rather to hunt reindeer and horses,

at least (the place of bison remains to be explored in more

detail). This has an important resonance in the discussion of

the specialization of the Quina economy on the reindeer since

US22 is the most important of the Quina unit from Chez-

Pinaud, and Chez-Pinaud itself represents almost one-third of

the units used in the different models to discuss the Quina

population diet.

While the reindeer is the most common taxa in the Quina

faunal spectra of Southwestern France, the horse is the second

most common one, sometimes even dominating the spectra

such as at La Rouquette L3 (Griggo in Rendu et al. (2011)]

and Espagnac Level 2, 3, and 4a (Jaubert, 2001). Its frequency

is also notable at Hauteroche (Paletta, 2005), Roc de Marsal

Level 4 (Castel et al., 2017), and Combe Grenal Level 21

and 22 (Laquay, 1981; Guadelli, 1987). However, precautions

have to be taken when dealing with old collections from

Combe Grenal, as some selective sampling occurred during

the 50–60s excavations creating a bias in favor of the large

ungulates (Discamps and Faivre, 2017). Thus, if we reconsider

the whole Quina spectrum through the lens of our current
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FIGURE 9

Spectra (A) in %NISP, (B) in kg of meat; Blue, reindeer; green, red deer; Red, bison; Yellow, horse; Gray, other). References used for data CG,

Combe Grenal (Laquay, 1981; Guadelli, 1987); Vau, Vau�rey (Delpech, 1996); PechIV, Pech de l’Azé IV (Laquay, 1981; Niven, 2013); RdM, Roc de

Marsal (Castel et al., 2017); LP, Les Pradelles (Costamagno et al., 2006); CPN, Chez-Pinaud-Jonzac (Airvaux, 2004; Jaubert et al., 2008b; Niven,

2013); LCAS, La Chapelle-aux-Saints (Rendu et al., 2014); Haut, Hauteroche (Paletta, 2005); LR, La Rouquette (Rendu et al., 2011); SLV, Sous les

Vignes (Turq et al., 1999); ESP, Espagnac (Jaubert, 2001). Numbers correspond to the di�erent stratigraphic units. *For Combe Grenal Reindeer

was under-evaluated in the previous excavation due to selective sampling.

results, we can assume that the role of large ungulates in

the Quina diet might have been under-evaluated. Figure 9

proposes the rebalancing of the faunal spectra from Figure 1

using the meat weight of the different taxa [for reindeer:

40 kg, after (Klokov, 2000); red deer: 55 kg, after (Varin, 1980);

bison: 250 kg, after (Wheat, 1967; Berger and Cunningham,

1991); horse: 150 kg, (Outram and Rowley-Conwy, 1998)]. It

underlines that while reindeer remains the dominant faunal

spectrum in 28 out of 32 cases, it constituted the main

resource of ungulate meat acquired by the Quina Mousterian

Frontiers in Ecology andEvolution 15 frontiersin.org

177

https://doi.org/10.3389/fevo.2022.1085699
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Rendu et al. 10.3389/fevo.2022.1085699

in only 22 cases out of 32 and more than 50% in only

11 cases.

Naturally, numerous biases here are directly affecting

these comparisons (the weight reference selected, the variation

between males and females, the use of NISP and not MNI,

the problem of transport strategies, the preservation, etc . . . ).

Keeping these different limitations in mind, it appears that

although the reindeer might have dominated the number of

animals killed by Quina Neanderthals (Discamps and Royer,

2017), other taxa might have significantly contributed to

their diet.

Thus, the Quina subsistence pattern might have been more

complex than previously described, and if Chez-Pinaud at

Jonzac was also recurrently used as a horse kill and butchery

site, it would suggest that the large ungulate predation, andmore

specifically the horse, played a role in the annual organization of

the activities within the territory.

Conclusion

This article completes the data we have about the subsistence

strategies developed at Chez-Pinaud during the late MIS4. The

horse remains attest to the intense exploitation of the carcasses

for the meat and the blank of the bone industry and confirms

the use of the site as a kill site/primarily butchery site. Without

changing the interpretation of the site function and its specific

place in the Quina territory, it proposes a more accurate vision

of the role of the Horse for the Neanderthals from Chez-Pinaud.

In a broader view, by extrapolating our interpretations to the

rest of the Quina records, we assume here that large ungulates

(horses and bovines) were an important part of the protein

resources for the Quina population, which has been presented

as specialized by the reindeer. However, due to the lack of

seasonal data for the horse, it is not possible for now to discuss

a potential seasonal complementarity in the hunting between

the horse and the reindeer. The ongoing project should soon

clarify this issue and new data will be needed for the rest of the

Quina record.
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The genus Macaca belongs to Cercopithecidae (Old World monkeys), 
Cercopithecinae, Papionini. The presence of Macaca in North Africa is well known 
from the Late Miocene to the Late Pleistocene. However, the diet of fossil Macaca 
has been poorly described in the literature. In this study, we investigated the feeding 
habits of Macaca cf. sylvanus (n = 4) from the Plio-Pleistocene site Guefaït-4.2  in 
eastern Morocco through multiproxy analysis combining analyses of stable carbon 
and oxygen isotopes from tooth enamel, buccal microtexture, and low-magnification 
occlusal dental microwear. For both microwear analyses, we  compared the 
macaques with a new reference collection of extant members of Cercopithecoidea. 
Our occlusal microwear results show for the fossil macaque a pattern similar to the 
extant Cercocebus atys and Lophocebus albigena, African forest-dwelling species 
that are characterized by a durophagous diet based mainly on hard fruit and seed 
intake. Buccal microtexture results also suggest the consumption of some grasses 
and the exploitation of more open habitats, similar to that observed in Theropithecus 
gelada. The δ13C of M. cf. sylvanus indicates a C3 based-diet without the presence 
of C4 plants typical of the savanna grassland in eastern Africa during this period. 
The high δ18O values of M. cf. sylvanus, compared with the contemporary ungulates 
recovered from Guefaït-4.2, could be associated with the consumption of a different 
resource by the primate such as leaves or fresh fruits from the upper part of trees. 
The complementarity of these methods allows for a dietary reconstruction covering 
a large part of the individual’s life.
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Introduction

Modern Cercopithecoidea primates inhabit a wide range of 
habitats, including tropical forests, high-altitude woodlands, and 
savanna grasslands (Jablonski et al., 2000). This adaptability across a 
range of environments began with a radiation within and beyond 
Africa, probably due to the increasingly open and fragmented 
environments of the Late Miocene and the Plio-Pleistocene (Elton, 
2007; Hughes et al., 2008; Roos et al., 2019). For example, the closing 
of the Tethys Ocean and subsequent aridification of northern Africa 
(Zhang et  al., 2014), and fluctuations in Milankovitch cycles 
(DeMenocal, 1995), formed intermittent biogeographical barriers. It 
is hypothesized that these ecological barriers diversified 
Cercopithecoidea, specifically the Papionini tribe, into different 
genera. Theropithecus adapted to wet lowlands, Papio, Cercocebus, 
Lophocebus, and Mandrillus filled niches within more forested 
environments, while Macaca became more-generalized and settled a 
wide variety of habitats within higher latitudes (Delson, 1980). 
Paleontological and molecular evidence indicates that the macaque 
lineage originated during the Miocene in Africa and diverged from 
other African Papionini around 7–5.5 Ma (Delson, 1980; Tosi et al., 
2005; Roos et al., 2019). According to the fossil record, macaques 
dispersed throughout Eurasia during the Late Miocene, inhabiting 
primarily the Mediterranean region 6–5 Ma (Alba et al., 2014; Piñero 
et al., 2017) and then in the Late Pliocene, eastern Asia (~4 Ma; Szalay 
and Delson, 1979; Elton, 2007; Meloro and Elton, 2012). In this 
radiation, macaques experienced a rapid diversification into several 
species (Elton and O’Regan, 2014; Roos et  al., 2019). The genus 
Macaca consists of approximately 23 extant species and occupies 
more diverse ecological environments and geographical ranges (from 
10° south to over 40° north latitude) than any other genus of 
nonhuman primates. In fact, the expansion of this genus in Africa and 
Eurasia is one of the most successful among primates (Jablonski, 
2002; Jablonski and Frost, 2010; Fleagle, 2013; Roos et al., 2019), and 
its ecological distribution and adaptative capacity reflect great dietary 
diversity and interspecific behavioral responses to seasonality (Kato 
et al., 2014).

The oldest macaque fossils in Africa have been found in the Miocene 
paleontological sites of Menacer (Algeria, Macaca sp.; Arambourg, 
1959) and Wadi Natrum (Egypt, Macaca lybica; Stromer, 1913, 1920). 
Other Macaca fossil remains have been recorded in the Pliocene 
Tunisian sites of Garaet Ichkeul (Szalay and Delson, 1979; Delson, 1993; 
Alemseged and Geraads, 1998) and Aïn Brimba (Arambourg and 
Coque, 1959; Arambourg, 1979; Szalay and Delson, 1979). 
Contemporaneous to the remains of Macaca cf. sylvanus from the 
Guefaït-4.2 (GFT-4.2) site in eastern Morocco analyzed in this work, 
fossil remains of Macaca sp. have been found in the Plio-Pleistocene site 
of Ahl al Oughlam in western Morocco (Geraads, 2006). Macaca 
sylvanus has also been described from the Late Pleistocene sites of 
Chrafate and Ez Zarka in Morocco (Ouahbi et al., 2001; Fooden, 2007), 
and in the Middle and Late Pleistocene sites of Traras, Monts des 
Nedroma, Afalou bou Rhummel, and Tamar Hat in Algeria (Pomel, 
1892; Joleaud, 1926; Delson, 1974; Szalay and Delson, 1979; Geraads, 
1987; Fooden, 2007).

At present, there is only one species of the genus Macaca in Africa, 
M. sylvanus (Barbary macaques) from Algeria (Chiffa, Tigounatine, 
Icetcifère, Akfadou, and Kherrata) and Morocco (High Atlas, Middle 
Atlas, and Rif; Fooden, 2007). Field observations have defined feeding 

habits as varied and to include an important seasonal component, with 
diet consisting of more than 100 species of plants, fungi, lichens, 
mosses, and animal prey (Deag, 1983; Ménard, 1985; Ménard and 
Vallet, 1986). Studies that have taken into account the annual 
composition of the diet indicate that seeds, leaves, and herbs are the 
main foods of Barbary macaques in Akfadou and Tigounatine (Algeria; 
Ménard, 1985; Ménard and Vallet, 1986, 1996). However, in the Rif 
mountains of northern Morocco, more than 50% of their diet is based 
on seeds (Mehlman, 1988), and some studies of the populations that 
inhabit the Middle Atlas suggest that fruits could constitute a significant 
part of their diet (Deag, 1983; Drucker, 1984; Ménard and Mohamed, 
1999), demonstrating high intra-species local variation at the 
population level. Nevertheless, the diet of fossil M. cf. sylvanus is 
virtually unknown, with the exception of a study on dental microwear 
of Macaca sp. from the Pliocene of northwestern China, which suggests 
a hard-object feeder or extractive forager, without grass consumption 
(Williams and Holmes, 2011).

Previous work on the feeding habits of African Plio-Pleistocene 
Cercopithecidae, through analysis of stable isotopes and dental 
microwear, have mainly focused on Eastern Africa (Teaford, 1993; 
Ungar and Teaford, 1996; Cerling et al., 2011, 2013a,b; Sponheimer 
et al., 2013; Levin et al., 2015; Shapiro et al., 2016; Robinson et al., 
2017; Ungar et al., 2017; Martin et al., 2018; Souron, 2018; Manthi 
et al., 2020; Merceron et al., 2021) and Southern Africa (Lee-Thorp 
et al., 1989, 2010; Daegling and Grine, 1999; Codron et al., 2005; 
El-Zaatari et al., 2005; Scott et al., 2005; Fourie et al., 2008; Williams 
and Patterson, 2010; Williams and Holmes, 2011; Sponheimer et al., 
2013; Grine et  al., 2020). In these studies, the most represented 
genera are Theropithecus, Parapapio, and Papio, among which there 
is a consensus on the predominance of a graminivore diet with a high 
component of C4-based resources for Theropithecus (Lee-Thorp et al., 
1989; Cerling et al., 2013a; Levin et al., 2015; Souron, 2018) and more 
diverse food intake with a proportion of C3 plants in the diet of 
Parapapio and Papio (Lee-Thorp et al., 1989; Codron et al., 2005; 
Fourie et al., 2008; Williams and Patterson, 2010; Levin et al., 2015). 
In Northern Africa, analysis of the feeding behavior of Theropithecus 
oswaldi leakeyi (Jolly, 1972; Delson, 1993) from Tighennif (ca. 1 Ma) 
and Theropithecus atlanticus (Alemseged and Geraads, 1998) from 
Ahl al Oughlam (ca. 2.5 Ma) suggest a different pattern in carbon 
values, with a clear domination of C3 plants, although other authors 
suggest bulk-feeding graminivory (Fannin et al., 2021).

Many cercopithecoid fossils have been recovered from the same 
sites where Hominin fossils have been found (Delson, 1980). The 
genus Homo experienced a similar out-of-Africa dispersion during 
the Pleistocene and inhabited the same ecosystems as members of 
Papionini. Therefore, both lineages had to confront the same climatic 
constrictions and habitat partitioning. Understanding the ecology of 
the fossil Cercopithecoidea primates is of interest for interpreting the 
paleoecology and niche partitioning of both groups. Consequently, 
we aimed to analyze the feeding strategies of M. cf. sylvanus from 
GFT-4.2 on different timescales using, for the first time, a multi-proxy 
approach. On the one hand, the isotopic signal (δ18O and δ13C) of 
tooth enamel bioapatite provides dietary information during the first 
years of the animal’s life following the tooth mineralization times 
proposed by Sirianni and Swindler (1985) for the extant Macaca 
nemestrina. On the other hand, dental microwear analysis, combining 
buccal (microtexture analysis) and occlusal (low magnification) 
surfaces, provides dietary information over the long term (weeks to 
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months; Romero et al., 2012; Hernando et al., 2021) and short term 
(last days; Semprebon et al., 2004), respectively, but always toward the 
end of the animal’s life. Occlusal microwear studies in primates have 
suggested that mechanical properties of food items are the primary 
cause of different microwear pattern among primates. For instance, 
primates that incorporate hard objects, such as seeds and nuts, have 
more pitted surfaces than folivores primates that exhibit heavily 
scratched areas (Ungar, 1996; Scott et al., 2006). Occlusal microwear 
has a short-term turnover therefore, occlusal microwear patterns 
provide information on the nature of food intake during the last days 
prior to death (Teaford and Oyen, 1989). On the other hand, buccal 
surfaces should only interact with the food items consumed while 
they are being processed in the oral cavity (Ungar and Teaford, 1996; 
Romero et al., 2012), and experimental studies have shown that the 
buccal pattern is more stable through time, at least in the absence of 
significant dietary shift (Romero et al., 2012).

We hypothesize that combining occlusal and buccal microwear 
analyses will strengthen the dietary discrimination among these species. 
Based on the dietary information of extant M. sylvanus from Morocco 
and Algeria, we expect, for the GFT-4.2 specimens, a buccal and occlusal 
pattern similar to folivore-frugivore primates with the incorporation of 
seeds during the dry season. In the case of stable carbon and oxygen 
isotopes, we expect values similar to those of the Theropithecus from Ahl 
al Oughlam (Morocco). That is, a predominance of C3 plants in the diet 
and high oxygen values in relation to ungulates. To compare the dental 
microwear of M. cf. sylvanus from GFT-4.2, we present a new reference 
collection of wild modern cercopithecines including the same 
individuals for both microwear methods. The integration of the data 
obtained from these three high-resolution techniques has allowed us to 
obtain a more precise and robust picture of the feeding habits of M. cf. 
sylvanus from GFT-4.2.

Site: GUEFAÏT-4.2

An interdisciplinary Spanish–Moroccan project started in 2006 as 
an international cooperation between the Université Mohamed 
Premier Oujda (UMP, Eastern Morocco) and the Catalan Institute for 
Human Palaeoecology and Social Evolution from Tarragona (IPHES-
CERCA, Catalonia, Spain). The aim of this cooperation is to establish 
the geochronological and archeo-paleontological context of the Aïn 
Beni Mathar/Guefaït fluvio-lacustrine basin, in the northern part of 
the High Plateaus (Jerada Province, Eastern Morocco; Aouraghe et al., 
2016; Chacón et  al., 2016; Sala-Ramos et  al., 2022). One of the 
systematic surveys in the region revealed the fossiliferous level of 
Guefaït-4. This horizon yielded a rich and diverse faunal assemblage 
of vertebrates, which was systematically excavated at the GFT-4.2 site 
(reptiles, amphibians, and both small and large mammals), including 
the macaque fossil remains analyzed in this work (Alba et al., 2021). 
The fossil remains were concentrated in a palustrine level constituted 
of clay and marls, at the base of Unit 2, within the Dhar Iroumyane 
stratigraphic section (Aouraghe et al., 2019b). The fieldwork carried 
out between 2017 and 2019 recovered more than 3,000 fossil remains 
in an excavated area of 28 m2. Biostratigraphic correlations with other 
sites in Northern Africa, such as the lower levels of the Ain Boucherit 
site in Algeria (Sahnouni et al., 2018) and Ahl al Oughlam in Morocco 
(Geraads, 2006), suggest an age close to the Plio-Pleistocene boundary 
(2.58 Ma). The absence of the genus Equus (despite the abundance of 

Hipparion equid remains; Aouraghe et al., 2019a,b) indicates an age 
older than ~2.4 Ma (Sahnouni et al., 2018). This chronological limit is 
supported by the study of the murid assemblage (Agustí et al., 2017; 
Piñero et al., 2019), the carnivore assemblage (Madurell-Malapeira 
et  al., 2021), and preliminary paleomagnetism studies (Parés 
et al., 2020).

Materials

A total of six teeth of M. cf. sylvanus were recovered from GFT-4.2 
during the fieldwork in 2018 and 2019 (Alba et al., 2021). The materials 
are housed in the Faculty of Science, Mohammed I University in Oujda, 
Morocco. We discarded two of them for the final analysis because they 
correspond to dental germ fragments (GFT4.2018-1-P13-191, right M2 
or M3, and GFT4.2019-1-R15-45, right M2).

The studied teeth (n = 4) correspond to a left upper central incisor 
(I1, GFT4.2018-1-Q14-70), a right lower first molar (M1, the lingual 
crown fragment of GFT4.2018-1-Q14-13), a right second lower molar 
(M2, GFT4.2019-1-S15-65), and a left lower third molar (M3, 
GFT4.2019-1-R13-63). All four available fossil teeth (M1, M2, M3, and 
I1) were sampled for stable isotope analysis, three (M1—GFT140, M2—
GFT138, and M3—GFT137) were sampled for buccal dental 
microtexture analysis, and two (M1—GFT140 and M2—GFT138) were 
samples for occlusal dental microwear analysis. M3 was discarded for the 
occlusal dental microwear analysis due to the absence of wear facets on 
this surface. Metrical comparisons suggests that the incisor would 
belong to a different individual than the lower molars. However, it 
cannot be ruled out that the lower molars were from the same individual 
(Alba et al., 2021).

The extant Cercopithecoidea comparative sample for the buccal 
microtexture and occlusal microwear analyses correspond to a total of 
41 well-preserved left second lower molars (M2; Supplementary Table 1). 
We  excluded 10 samples from occlusal microwear analysis and 12 
samples from buccal microtexture due to bad preservation or other 
taphonomic defects on the analyzed surface. The selected species have 
well-defined habitat and dietary preferences and include five extant 
species (Theropithecus gelada, Mandrillus sphinx, Lophocebus albigena, 
Cercocebus atys, and Macaca mulatta). Whenever possible, we chose 
specimens of the same taxa from close localities to minimize the 
variability of their dietary regime. We selected the extant species based 
on the criteria of phylogenetic affinity (Perelman et al., 2011) and the 
dental morphology that characterizes all cercopithecines, namely 
bilophodont molars (Kay and Hylander, 1978; Monson and Hlusko, 
2014). This comparative sample served to establish a broad spectrum of 
ecological and dietary diversity.

 1. Theropithecus gelada specimens from Ethiopia have a plant-
based dietary regime (Dunbar and Bose, 1991), with more than 
80% consisting of blades (Mau et  al., 2009). However, those 
T. gelada living on the Guassa Plateau also incorporate large 
quantities of forbs into their diet (Fashing et al., 2014), and are 
often selective of tender forbs that are rare on the plateau 
(Souron, 2018).

 2. Mandrillus sphinx is a frugivore primate that usually lives in 
gallery forest. Fruits, supplemented with various plant parts like 
leaves and flowers, constitute the Mandrillus diet. However, when 
fruit is scarce due to seasonality, M. sphinx fallback on 
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mechanically challenging items like seeds and hard-shell fruits 
from the forest floor (Hoshino, 1985; Lahm, 1986; Tutin et al., 
1997; Powell et al., 2017).

 3. Cercocebus atys forages on the forest’s floor and shrub layers, 
relying on hard-shelled nuts like Sacoglottis gabonensis year-
round. Yet, due to seasonal fluctuations, the total contribution of 
S. gabonensis can range anywhere from 19% to 80% of the 
monthly diet (Daegling et al., 2011; McGraw et al., 2014).

 4. Lophocebus albigena is classified as a hard object feeder (Lambert 
et al., 2004; McGraw et al., 2011) that consumes a significant 
portion of hard seeds and nuts (Lambert et al., 2004). In actuality, 
due to seasonal fluctuations, L. albigena is a generalist that 
consumes a high (40%) percentage of soft ripe fruit (Lambert 
et  al., 2004) in addition to seeds, flowers and young leaves 
(Poulsen et al., 2001). During seasons with low fruit availability, 
L. albigena will eat bark that, although hard, is rich in protein and 
soluble sugars (Rogers et al., 1994; Olupot, 1998). This fall-back 
feeding strategy has also been described for Barbary macaques 
(Macaca sylvanus; Ménard and Mohamed, 1999).

 5. Macaca mulatta has the largest geographical distribution with its 
ranges spanning from Afghanistan to India, Pakistan, China, 
Thailand and Vietnam, among others (Sengupta et al., 2014). Its 
wide distribution reflects highly opportunistic feeding strategy, 
even though fruits may constitute as much as 70% of their diet in 
some regions (Fooden, 2007), yet less than 9% in other 
ecosystems, such as Pakistan (Goldstein and Richard, 1989). They 
are semi-terrestrial primates that can also feed up with species 
that are in different strata of the forest (Albert et al., 2013).

We have not included extant M. sylvanus specimens because they 
have a narrow distribution, and some populations are fed by humans 
like those of Gibraltar (Spain). Therefore, the baseline samples included 
in the present study consist of wild specimens with well-defined diet and 
habitat. To contextualize the oxygen and carbon values of M. cf. 
sylvanus, we have also included contemporaneous herbivore samples 
from GFT-4.2 corresponding to the same paleontological level 1. These 
samples include the remains of Tragelaphini (n = 4), Gazella sp. (n = 4), 
and Hipparion sp. (n = 4). The list of specimens sampled and analyzed 
and the raw data for stable isotope analysis are provided in 
Supplementary Table 2.

Methods

Stable isotope analysis

Tooth surfaces were cleaned with a tungsten abrasive drill bit to 
remove any adhering external material. Enamel powder for bulk isotope 
analysis was then obtained using a diamond-tipped drill, passed along 
the full length of the buccal surface to ensure a representative 
measurement for the entire period of enamel formation.

Powdered enamel samples (2–6 mg) were chemically treated at the 
Biomolecular Laboratory of IPHES. Chemical treatment of samples was 
based on protocols originally proposed by Koch et al. (1997) and later 
modified by Tornero et al. (2013). The samples were treated for 4 h in 
0.1 M acetic acid [CH3COOH] (0.1 mL solution/0.1 mg of sample), 
neutralized with distilled water, and freeze-dried.

The δ18O and δ13C values of tooth enamel bioapatite were measured 
using an automated carbonate preparation device (KIEL-III) coupled to a 

gas-ratio mass spectrometer (Finnigan MAT 252) at the Environmental 
Isotope Laboratory, University of Arizona, United States. Samples were 
reacted with dehydrated phosphoric acid under a vacuum at 70°C. The 
accuracy and precision of the measurements were checked and calibrated 
using the calcium carbonate international standards (NBS-19 and 
NBS-18). Replicate measurements of the standards during analysis had 
errors of ±0.1‰ for δ18O and ±0.08‰ for δ13C (1 sigma). Carbon isotope 
composition is reported in δ notation, where δ13C = [(Rsample/Rstandard) 
– 1], R = 13C/12C, and δ is expressed as per mil notation (‰). Carbon and 
oxygen values are reported relative to PDB (Vienna Pee Dee Belemnite).

In terrestrial ecosystems there is a marked isotopic distinction 
between the two photosynthetic pathways in plants, C3 (Calvin cycle) 
and C4 (Hatch-Slack cycle), which differ mainly in their discrimination 
against 13C during the fixation of CO2 (Farquhar et al., 1989). Modern 
plants that use the C3 photosynthetic pathway (including most trees, 
woody shrubs, bushes, herbs and temperate grasses) have an average 
isotopic composition of −28.5‰ (global range −20 to −37‰), with 
−23‰ as the maximum value recommended for typical C3 plants and 
a cutoff of −31.5‰ for closed-canopy forests (Kohn, 2010). Due to 
the fact that we  discarded the presence of that environment in 
GFT-4.2. For this study, we use the average δ13C value of −27‰ for 
modern C3 plants, excluding analyses from the understory of closed-
canopy forests below −31.5‰ (Kohn, 2010). Modern plants that use 
the C4 photosynthetic pathway (primarily tropical grasses and sedges) 
have an average isotopic composition of −12‰ (global range −10 to 
−14‰; Cerling and Harris, 1999; Kohn and Cerling, 2002). 
Crassulacean Acid Metabolism (CAM) plants can have δ13C values 
corresponding to both C3 and C4 plants. However, such plants do not 
seem to be consumed by primates (Cerling et al., 2013a). The δ13C 
values of atmospheric CO2 have fluctuated over time and this impacts 
δ13C values in plants (Fiedli et al., 1986; Keeling et al., 2017). We have 
corrected by ~ +1.5 the δ13C values of modern plants, due to the 
difference between the pre-Industrial δ13CCO2 value of ~ −6.5‰ 
established for the Plio-Pleistocene (Tipple et  al., 2010) and the 
δ13CCO2 value of ~ −8‰ corresponding to the time at which the plants 
were collected (Kohn, 2010). In this paper, we have used the enamel-
diet enrichment factor of +11.8 ± 0.3‰ calculated for chimpanzees 
(Pan troglodytes) at Ngogo in Kibale National Park in Uganda for 
macaques (Malone et  al., 2021) and the enamel-diet enrichment 
factor of +14.1 ± 0.5‰ for ungulates (Cerling and Harris, 1999; Passey 
et al., 2005) to interpret tooth enamel δ13C values and estimate 
potential consumption of C3- or C4-plant. These isotopic enrichment 
factor values for C3 and C4 plants are assumed to provide tooth 
enamel values of < −18.2‰ for closed canopy diets, < −13.7‰ for 
pure C3 diets, < −9.7‰ for C3-dominated diets, from −9.7 to −0.7‰ 
for C3–C4 mixed feeders, >−0.7‰ for C4-dominated diets and > 
+1.3‰ for pure C4 diets in primates and tooth enamel values of < 
−15.9‰ for closed canopy diets, < −11.4‰ for pure C3 diets, < 
−7.4‰ for C3-dominated diets, from −7.4 to +1.6‰ for C3–C4 mixed 
feeders, > +1.6‰ for C4-dominated diets and > +3.6‰ for pure C4 
diets in ungulates.

The δ18O values in enamel bioapatite is directly related to the 
drinking water (i.e., springs, rivers, lakes, water holes), plant/food water 
(i.e., leaves, grass, fruit) and metabolic water by reaction with 
carbohydrates. Consequently, the precipitation, altitude, humidity/
aridity and local temperatures will have an effect on the δ18O of locally 
available water and food (Longinelli, 1984; Luz and Kolodny, 1985; 
Bryant and Froelich, 1995; Pederzani and Britton, 2019). Oxygen values 
can also vary within the same habitat, especially in tropical forest 
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environments, depending on where the species forages. Species feeding 
in the upper part of the canopy tend to have higher δ18O values as 
opposed to species feeding in the understory which tend to have lower 
δ18O values (Krigbaum et  al., 2013; Crowley, 2014; Fannin and 
McGraw, 2020).

The approximate initial and final mineralization estimated for the 
extant Macaca nemestrina (Sirianni and Swindler, 1985), in relation to 
the teeth analyzed in fossil M. cf. sylvanus, is ca. birth to 1 year for M1, I1 
ca. 1 to 2 years for I1, ca. 1 to 2.5 years for M2 and ca. 3 to 4 years for M3. 
Related to dental development, the only permanent tooth to begin 
development prenatally in the non-human primates is the first molar, 
which may have one to three cusps mineralized at birth and a complete 
development of the crown for about 1 year (Sirianni and Swindler, 1985). 
Relatively recent studies in Macaca mulatta suggest that the longest 
weaning periods are ca. 10 months and the shortest weaning period, 
between 2 and 5 months (Reitsema et al., 2015). Considering the data on 
nursing and mineralization timing in extant Macaca, we assume that the 
I1, M2 and M3 enamel apatite should reflect a post-weaning signal and 
the M1 enamel apatite could therefore reflect a pre-weaning signal for 
the M. cf. sylvanus from GFT-4.2. This allows us to reconstruct the diet 
from birth to approximately 4 years of age.

The bivariate graphs were made with the Past 4.02 software 
(Hammer et al., 2001).

Occlusal microwear analysis (low 
magnification)

Enamel microwear features were observed via standard light 
microscopy using a Zeiss Stemi 2000C stereomicroscope at 35× 
magnification on high-resolution epoxy casts of teeth, following the 
cleaning, molding, casting, and examination protocol developed by 
Solounias and Semprebon (2002) and Semprebon et al. (2004). We used 
the wear facets of the mesiobuccal cusp of M2 (normally the paracone 
of M2). Before molding, the occlusal surface of each specimen was 
cleaned using acetone and then 96% ethanol. The surface was molded 
using high-resolution silicone (Heraeus Kulzer, PROVIL novo 
Vinylpolysiloxane, Light C.D. 2 regular set), and transparent casts were 
created using clear epoxy resin (C.T.S. Spain, EPO 150 + K151). A 
standard 0.16 mm2 ocular reticle was employed to quantify the number 
of small pits (round scars—relatively shallow, refract light easily and 
consequently appear bright and shiny) and large pits (round scars—
deeper, wider, and consequently less refractive), coarse scratches 
(elongated scars with parallel sides—narrow, and barely etched into the 
enamel surfaces) and fine scratches (elongated scars with parallel 
sides—wider and more obviously etched into the enamel surface), 
gouges (features with irregular edges and much larger and deeper than 
large pits), puncture pits (craterlike features with regular margins), and 
cross scratches (oriented perpendicularly to the majority of scratches; 
Supplementary Figure 1). The scratch width score (SWS) was obtained 
by giving a score of “0” to teeth with predominantly fine scratches per 
tooth surface, “1” to those with a mixture of fine and coarse types of 
textures, and “2” to those with predominantly coarse scratches. We took 
microphotographs using a Blackfly S digital camera and the Kivy Mic 
Capture Z software. We used the Helicon Focus 7 software to merge 
images from various focal planes and to produce a single image with a 
greater depth of field. We added scale bars using ImageJ. We compared 
the quantitative results with the reference dataset of the extant 

Cercopithecidae species. A single observer (IRP) analyzed all specimens 
to avoid inter-observer errors. We used the Addinsoft™ XLSTAT-3.02 
statistical packages to generate the linear discriminant analysis (LDA) 
and the correspondence analysis (CA).

Buccal microtexture analysis

The original specimens (Supplementary Table 1) were cleaned 
with acetone and alcohol-soaked cotton swabs, and vinyl impressions 
were made using President’s Jet Regular Body (Coltène-Whaledent). 
Positive casts were made with Ferropur (Feroca®) polyurethane 
(Martínez et al., 2022). Buccal areas were obtained using a Sensofar 
Plu Neox laser scanning confocal microscope, with a 20× (0.45NA) 
objective, a spatial sampling of 0.83 μm, an optical resolution of 
0.31 μm, a vertical resolution of 20 nm, and a z-step interval of 1 μm 
(Ibáñez et al., 2020; Martínez et al., 2022). Buccal surfaces were placed 
perpendicular to the objective in a horizontal position and an image 
of the field of view of the microscope (600 μm × 500 μm) was obtained 
(see 3D photosimulations in Supplementary Figure  3). From this 
image, four subsamples of 138  μm × 102 μm (a standard area in 
DMTA studies) were cropped using the Mountain 7® software from 
Digital Surf.1 We have tested the S-filter prior to the obtention of the 
38 parameters, following (Winkler et  al., 2022). The workflow 
included leveling the surface to remove plane inclination, eliminating 
the curvature applying a 2nd degree polynomial, removing the 
anomalous points by applying upper and lower 0.5% (a total of 1% of 
threshold values), following the threshold operator included in the 
same software and applying a Spatial filter (Gaussian 3 × 3). The 
Gaussian filter was applied because is widely used for technical 
surfaces and was applied after the trimming because it is sensitive to 
outliers (Schulz et al., 2013). Surface roughness was later quantified 
according to 38 ISO 25178/ISO 12781 parameters (Martínez et al., 
2022; Supplementary Table 5).

To standardize the measured area on the buccal surface, 
we calculated the median of the parameters derived from the several 
(one to four) measurements of a single buccal surface (Scott et al., 2006; 
Calandra et al., 2012; Martínez et al., 2022), and used the median per 
specimen for analysis. We used log-transformed texture data for analyses 
because some texture parameters have non-normal distributions 
(Shapiro–Wilk, p < 0.05). To ensure we did not exclude any parameter 
(e.g., Ssk has negative values), we  log transformed the data as log 
[1 + parameter] (Supplementary Table 6). We identified the outliers for 
both original and log-transformed variables according to their 
Studentized residual values (absolute value > 3) and removed them from 
the final data set (Schulz et al., 2013; Martínez et al., 2022). To test the 
null hypothesis that microwear textures do not differ between teeth from 
different species, we applied analysis of variance (ANOVA) with pair-
wise testing (Tukey’s honest significant difference [HSD]) to each texture 
parameter for each species. Where homogeneity of variance test 
(Levene’s test) revealed evidence of unequal variances, we used Welch’s 
ANOVA. We selected the parameters that showed significant differences 
between species and applied a linear discriminant analysis (LDA). 
Descriptive statistics, tests and graphs were performed using 
Addinsoft™ XLSTAT-3.02 statistical packages.

1 www.digitalsurf.com
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TABLE 1 Summary of tooth microwear data of the extant and fossil Cercopithecidae analyzed.

Species Occlusal microwear analysis (low magnifications)

N NS NP SWS PP HC G XS

Extant—Theropithecus gelada M 7 25.9 10.1 1.6 0 0.4 0 0

SD 0.8 3.3 0 0

Extant—Lophocebus albigena M 5 11.6 40.6 2 5.4 0 4.3 0

SD 1.5 4.4 1.8 2.2

Extant—Cercocebus atys M 7 10.8 31.9 2 3.7 0 3 0

SD 2.2 2.7 1.3 0.6

Extant—Macaca mulatta M 5 11.7 38.5 2 4.3 0 1.9 0

SD 1 2.6 0.8 1.1

Extant—Mandrillus sphinx M 5 15.4 20 2 0 0 3.8 0

SD 0.7 1.3 0 0.9

Fossil Macaca cf. sylvanus M 2 16 28.5 1.5 4.5 0 4 0

SD 4.2 3.5 0 0

N, number of specimens; SD, standard deviation; M, mean; NS, average number of scratches; NP, average number of pits; SWS, scratch width score; PP, average number of puncture pits; HC, 
average number of hypercoarse scratches; G, average number of gouges; XS, average number of cross scratches; (Raw microwear data in Supplementary Table 3).

Results

Stable isotope analysis

The δ13C values of all samples measured in GFT-4.2 range from 
−12.5 to −8.1‰ (n = 16; Supplementary Table 2). Macaca cf. sylvanus 
carbon values range from −12.5 to −11.8‰ (n = 4), with a mean of 
−12.3 ± 0.3‰. The values for the herbivore samples from GFT-4.2 are: 
Hipparion sp. (n =  4; range = −10.4 to −9.2‰; mean = −9.5 ± 1‰), 
Tragelaphini (n = 4; range = −11.3 to −8.1‰; mean = −10 ± 1.5‰), and 
Gazella sp. (n = 4; range = −12.2 to −9.4‰; mean = −10.9 ± 1.1‰). The 
δ13C values of the M. cf. sylvanus and ungulates from GFT-4.2 range 
from −12.5 to −8.1‰, these values correspond to a C3-dominated diets 
for macaques and ungulates.

The δ18O values range from −3.5 to 1.8‰ (n =  16; 
Supplementary Table 2). Macaca cf. sylvanus oxygen values range from 
0.6 to 1.8‰, with a mean of 1 ± 0.5‰. The values for the herbivore 
samples from GFT-4.2 are: Hipparion sp. (n = 4; range = −3.6 to −0.3‰; 
mean = −1.8 ± 0.7‰), Tragelaphini (n =  4; range = −1.4 to 0.3‰; 
mean = −0.5 ± 0.4‰), and Gazella sp. (n =  4; range = −1.7 to 1.8‰; 
mean = −0.4 ± 0.8‰).

The mineralization of M1 in non-human primates starting from 
birth of the individual may reflect the nursing signal and thus 
affecting carbon and oxygen isotope values. However, our results do 
not indicate a 13C depletion or 18O enrichment in relation to the other 
M. cf. sylvanus teeth analyzed with a post-weaning isotopic signal 
(Supplementary Table 2).

Occlusal microwear analysis (low 
magnification)

The M. cf. sylvanus dental microwear pattern is characterized by 
a high number of pits (NP = 28.5) and a medium number of scratches 
(NS = 16). The extant cercopithecids show a similar pattern, namely 
a higher number of pits than scratches (Table 1). Lophocebus albigena 

has the highest number of pits (NP  =  40.6; raw data in 
Supplementary Table 3). The exception is T. gelada with a microwear 
pattern dominated by scratches. Considering the SWS, all species 
show a high proportion of coarse scratches, and gouges are present in 
all species except T. gelada. L. albigena (G = 4.3), M. sphinx (G = 3.8), 
and the fossil macaque (G = 4) have a high abundance of gouges. 
L. albigena (PP = 5.4), M. mulatta (PP = 4.3), and the fossil macaque 
(PP  =  4.5) have the highest number of puncture pits; this trait is 
absent in T. gelada and M. sphinx. All extant and fossil primates 
analyzed have a few hyper-coarse scratches and lack cross scratches 
(Table 1).

We performed correspondence analysis to compare four microwear 
variables (pits, scratches, puncture pits, and gouges) of the extant species and 
macaque from GFT-4.2 (Figure 1). We plot the results for discriminant 
functions 1 and 2 (DF1 and DF2, respectively) because they explain a higher 
percentage of the variance than the other axes (Supplementary Table 4). 
Three groups are well defined in the graph. The first group is located on the 
left and comprises T. gelada. The second group, located in the middle, 
includes M. sphinx. The third group, on the right, includes L. albigena, 
C. atys, and M. mulatta. T. gelada falls far from the other species because it 
has the highest number of scratches (NS = 25.9), the smallest number of pits 
(NP = 10.1), and the absence of puncture pits and gouges. M. sphinx has 
intermediate microwear values relative to the other two groups. This species 
has more pits than T. gelada, but also more scratches than the components 
of the third group. M. sphinx does not have puncture pits. The last group 
(L. albigena, C. atys, and M. mulatta) is characterized by a high number of 
pits (NP > 30) and a small number of scratches (NS < 12). The two specimens 
of the fossil macaque are located near the third group.

We performed LDA including the four microwear variables (pits, 
scratches, puncture pits, and gouges) to predict group membership of 
the fossil M. cf. sylvanus specimens from GFT-4.2. The LDA showed 
significant between-species differences (Wilks’ λ = 0.05; F = 20.826; 
p < 0.0001) and correctly classified 90.48% of the species. The two first 
discriminant functions explained 96.68% of the total variance. DF1 
(85.88%) was positively correlated with scratches and negatively 
correlated with the presence of puncture pits and pits. DF2 (10.80%) was 
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FIGURE 1

Correspondence analysis based on four occlusal microwear variables (number of puncture pits, number of gouges, number of scratches, and number of 
pits). Ellipses show 68% confidence limits for means (one standard deviation). Eigenvalues, percentages of variance and cumulative percentages of each 
axis in Supplementary Table 4 (illustrations by Diego Rodríguez-Robredo).

negatively correlated with the presence of gouges. GFT140 was classified 
as C. atys (99% of predicted classification probability) and GFT138 was 
classified as L. albigena (83% of predicted probability).

Buccal microtexture analysis

A total of 15 buccal enamel microtexture parameters out of the 38 
(39.47%) showed significant differences (ANOVA and Tukey’s HSD post 
hoc procedure p < 0.05 and Welch correction, see Supplementary Table 7) 
among the Cercopithecoidea species. The main significant differences 
are between the folivore-frugivore M. mulatta and the graminivorous 
T. gelada and the hard fruit eater C. atys and the folivore-frugivore 
M. sphinx. T. gelada mainly differentiate from M. mulatta in volume 
parameters, functional and flatness (Vv, Vmc, Vvc, Sxp, Smc, FLTp, FLTv, 
and FLTq p < 0.05) while the hard fruit eater differentiates from M. sphinx 
in spatial, feature and flatness parameters (Sal, Shv, FLTp, FLTt, FLTv, 
and FLTq; Supplementary Figure 4). No significant differences are found 
between hard fruit eaters taxa, the arboreal L. albigena and terrestrial 
C. atys and, only one difference was found between the hard fruit eaters 
and the graminivorous T. gelada (the feature parameter Spc between 
L. albigena and T. gelada p < 0.05).

The LDA includes the 15 parameters to classify the extinct 
GFT-4.2 samples. DF1 and DF2 account for the 82.51% of the total 
original variance (Wilks’ λ = 0.014; F = 1.371; p-value = 0.143). DF1 
(57.15%) is positively correlated with flatness and volume 
parameters and negatively with Shv (mean hill volume) DF2 
(25.36%) was positively correlated with all the parameters except for 
Spc (Figure  2; see Supplementary Table  8 for the r values and 
significance). Overall, 86.21% of the teeth were correctly classified 
in their taxonomic category. Mixed feeders that incorporate more 
seeds and leaves compared to the other of species, such as M. sphinx 
and M. mulatta, have the highest loadings for DF2. Their buccal 
surfaces show the greatest texture relief, with sharp features and 
different slopes and heights compared to hard fruit eaters and 
T. gelada. M. sphinx and M. mulatta incorporate more seeds and 
leaves in their diets compared to the rest of species and their buccal 
surfaces show coarse features (high Sal) that is significantly flatter 
that T. gelada and C. atys. Moreover, T. gelada has the lowest loading 
for DF1, differing from L. albigena, because these features are 
rounded (lower Spc).

The extant LDA model have been used to predict group 
membership of the fossil specimens from GFT-4.2. GFT-137 is 
classified as T. gelada (74.9% of probability as T. gelada and 25.1% as 
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M. sphinx), GFT-138 (Figure 3) as M. mulatta (97.5% of probability) 
and GFT140 as M. sphinx (69.8% of probability as M. sphinx and 26.7% 
as L. albigena). The mean heigh, volume and flatness parameters of the 
three specimens from GFT-4.2 differ significantly (p < 0.05) from both 
C. atys and T. gelada, and were similar to folivores and seed eaters. Two 
GFT-4.2 specimens, therefore, resemble to primates that exploit 
seasonally leaves, fruits and seeds in major proportion, on the ground 
of mixed forest. GFT137, however, is classified as T. gelada a 
graminivorous primate that exploit also forbs in open ecosystems, due 
to similarities on buccal microtexture feature parameters.

Discussion

Our multiproxy analysis suggests a different short-term (occlusal) 
and long-term (buccal) feeding habits of M. cf. sylvanus from GFT-4.2, 
but with an overall dominance of abrasive, tough and brittle food items 
in an environment dominated by C3 plants. The most commonly 
consumed foods would be fruit, seeds and leaves but also some grasses 
(Table 2). This dietary variety reflects the ability and flexibility of fossil 
macaques to consume different foods. As well as the richness of 

resources, and probably microhabitats, present in the GFT-4.2 area 
during the Plio-Pleistocene.

Based on short-term resolution, the occlusal microwear analysis 
classifies the M. cf. sylvanus specimens (GFT138 and GFT140) as 
L. albigena and C. atys, which have a diet rich in hard fruit and seeds 
(Poulsen et al., 2001; Shah, 2003; Lambert et al., 2004; Daegling et al., 
2011; McGraw et  al., 2011, 2012, 2014). The extant L. albigena and 
C. atys species and the fossil M. cf. sylvanus have puncture pits and 
gouges, which is a distinctive microwear feature of hard-object feeders 
(Godfrey et al., 2004; Semprebon et al., 2004; Williams and Geissler, 
2014). Both Cercocebus and Lophocebus have thicker enamel compared 
to other primate groups, which allows both genera to rely on hard foods 
throughout the year (McGraw et al., 2012). Macaca cf. sylvanus occlusal 
surfaces differs significantly from the extant T. gelada, which is 
characterized by an almost exclusively graminivorous diet with seasonal 
incorporation of forbs (Fashing et al., 2014; Jarvey et al., 2018). The 
occlusal microwear pattern of T. gelada is dominated by a high number 
of scratches and the absence of puncture pits and gouges. This surface is 
characteristic of animals with grass-dominated feeding habits (Godfrey 
et al., 2004; Semprebon et al., 2004). Even if it was not the dominant 
food item in their diet, we cannot exclude that M. cf. sylvanus consumed 

FIGURE 2

Plot of the two first discriminant functions (DF1-2) of buccal-dental microtextural parameters. Ellipses show 68% confidence limits for means (one standard 
deviation). On the top left are the loadings of the ISO texture parameters onto DFs. Raw data in Supplementary Table 8 (illustrations by Diego Rodríguez-
Robredo).
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some grasses due to the large number of scratches found in 
specimen GFT138.

Occlusal microwear and buccal microtexture analysis group fossil 
M. cf. sylvanus with different extant species, an outcome that is explained 
by differences in the temporal resolution and turnover of the analyzed 
tooth surfaces. Buccal microtexture analysis provides medium long-
term, compared to occlusal microwear, from weeks to months (Romero 
et  al., 2012) temporal resolution classifying two of the three M. cf. 
sylvanus specimens (GFT 138, and GFT 140) from GFT-4.2 as M. sphinx 
and M. mulatta. These species primarily consume fruits, leaves, and 
seeds in closed and riparian forests during the wet season, and seeds 
foraged from the ground year-round. The sample included in the present 
analysis comes from the population that inhabit Pakistan where 
M. mulatta rely primarily on leaves and fruits depending on their 
availability (Goldstein and Richard, 1989; Sengupta and Radhakrishna, 

2016). Both taxa, therefore, consume abrasive items from the ground in 
mixed forest. Mandrillus sphinx and M. mulatta diet also includes herbs 
such as piths and blades and occasionally woody tissue during seasons 
of heightened fruit scarcity (Sengupta and Radhakrishna, 2016; Hongo 
et al., 2017). Based on observations of M. sphinx from Gabon, more 
seeds are consumed during the dry season than in the peak fruit season. 
Moreover, finely crushed seeds in fecal samples indicate that M. sphinx 
uses the occlusal surface to fracture seeds (Hongo et al., 2017), and this 
mechanical action correlates with gouges on these surfaces (Figure 3; 
Supplementary Figure  2). M. sphinx consumes large nuts, like 
S. gabonensis, during seasons of heightened fruit scarcity (Hongo et al., 
2017). Hard items are consumed habitually by L. albigena and C. atys 
year-round (McGraw et al., 2012). The microtexture buccal pattern of 
M. sphinx, characterized by higher relief, with peaks and dales and 
coarse features compared with the rest of analyzed species, may correlate 
with the presence of more abrasive fractured seeds or phytoliths from 
the leaves that are processed in the oral cavity while being fractured 
along occlusal surfaces. The similarity in the microtexture pattern of the 
two GFT-4.2 specimens with M. sphinx and M. mulatta suggests that M.  
cf. sylvanus regularly consumed abrasives food items. The LDA of the 
buccal microtexture plot two specimens (GFT138 and GFT140) close to 
each other and to the hard fruit eaters (Figures 1,2). All these species rely 
on hard-shelled fruits and seeds with seasonal fluctuations. Specially, 
M. mulatta diet resembles M. sphinx (Sengupta and Radhakrishna, 
2016) with more soft fruit ingestion in the former. Both M. mulatta and 
M. sphinx incorporate hard and brittle dietary resources but, this is 
dependent on fruit availability during the year (Sengupta and 
Radhakrishna, 2016). When fruit is scarce, M. mulatta relies heavily on 
seeds. However, the buccal microtexture pattern of the GFT137 is also 
similar to T. gelada (Figure 2). Theropithecus gelada is a graminivorous 
primate that inhabit the open highlands of Ethiopia and consume 
grasses and forbs (Jarvey et al., 2018; Souron, 2018).

Three out of four extant species in which the microwear classifies 
the macaque of GFT-4.2 are species whose diet is related to the presence 
of trees. In this sense, oxygen values could also reinforce this link. The 
four M. cf. sylvanus specimens (GFT137, GFT138, GFT139, and 
GFT140) from GFT-4.2 show high δ18O values compared with the 
contemporary ungulates recovered from the same site. The same pattern 
occurs with other fossil cercopithecines (T. atlanticus and T. oswaldi) 
from North Africa (Figure 4). Extant M. sylvanus are highly adaptable 
and have an eclectic diet which adds to the variables that can affect their 
oxygen isotope values. A significant amount of their water ingestion 
comes from leaf, fruit and vegetable consumption, especially during the 
rainy season. Meanwhile, during the dry season, they drink more water 
from open water sources (Fooden, 2007). In the case of M. cf. sylvanus 

TABLE 2 Summary of the results provided by the three methods used to reconstruct the diet and habitat of Macaca cf. sylvanus from GFT-4.2.

Methods Diet and habitat reconstruction Timescales

δ13C values C3 resource-based diet. Woodland ecosystem. The first ∼4 years of life. Possible nursing signal: M1 Post-weaning: I1, M2, M3

δ18O values Folivore-frugivore foraging in the canopy (Woodland). The first ∼4 years of life. Possible nursing signal: M1 Post-weaning: I1, M2, M3

Buccal microtexture Folivore-frugivore with hard item consumption and some grass 

intake (Similar to extant Mandrillus sphinx, Macaca mulatta, and 

Theropithecus gelada).

Toward the end of the animal’s life (Long-term/weeks to months)

Occlusal microwear Hard-fruit eater with leaf and seed intake (Similar to extant 

Lophocebus albigena and Cercocebus atys).

Toward the end of the animal’s life (short-term/last days)

The timescale represented by the enamel isotopic signature has been defined following the work of dental development in the species Macaca nemestina (Sirianni and Swindler, 1985) and the 
weaning period defined for M. mulatta (Reitsema et al., 2015).

A

B

FIGURE 3

Image showing the two surfaces analyzed from the same tooth (M2, 
GFT4.2019-1-S15-65) of Macaca cf. sylvanus specimen from GFT-4.2 
site. (A) Microphotographs at 35X magnifications of wear facet in the 
mesiobuccal cusp; (B) 3D views and photosimulations from buccal 
microtexture.
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from GFT-4.2, the differences in oxygen values in relation to 
contemporary ungulates could be associated with differential access to 
and consumption of certain food resources by the primates, such as 
fresh fruits and leaves from trees. Sun-exposed leaves, especially in arid 
conditions, are particularly sensitive to evaporative fractionation that 
could lead to 18O enrichment (Gonfiantini et al., 1965; Barbour, 2007; 
Crowley et al., 2015; Carter and Bradbury, 2016; Fannin and McGraw, 
2020). Other authors argue that this enrichment by evapotranspiration 
also occurs in other parts of the plant like fruits (Yakir, 1997; McCarroll 
and Loader, 2004). Paleoenvironmental data of GFT-4.2 based on the 
study of paleoherpetological and small mammal records, suggest dry 
conditions in an open woodland habitat with a permanent water body 
nearby (Agustí et al., 2017; Piñero et al., 2019; Alba et al., 2021).

Considering that aridity affects all GFT-4.2 taxa, we suggest that the 
oxygen enrichment of M. cf. sylvanus may be due to the ingestion of 
some different foods. An example in extant primates is the one exposed 
by Moritz et al. (2012) that measured the δ18Ohair from two baboon 
species (Papio anubis and Papio hamadryas) which inhabit the arid 
hybrid zone of Awash National Park (Ethiopia). The diets of the two 
species in this area are similar and both obtain their meteoric water 
from the same source (Awash River). However, the oxygen values of 
P. hamadryas are relatively enriched due to the ingestion of a greater 
proportion of 18O-enriched leaf water in the arid thornbush. Krigbaum 
et al. (2013) show how δ18Oap values of different cercopithecids covary 
depending on foraging position in the closed tropical canopy forest (Taï 
forest, Côte d’Ivoire). Higher humidity on the forest floor is associated 
with low δ18Oap values, with enrichment of 18O observed along a vertical 
gradient. The C. atys exhibits low δ18Oap values relative to guenons and 
colobines, which reflects the C. atys terrestrial foraging habits. Although 
we do not have a tropical canopy forest in GFT-4.2, these differences in 
δ18O values between feeding on the ground and in the upper parts of 
the tree could explain the 18O enrichment of macaques compared 
to ungulates.

The 18O enrichment points to a diet based on tree foraging in a forest 
ecosystem. These findings are consistent with the microtexture and low 
magnification signals and support the carbon isotope results of M. cf. 
sylvanus from GFT-4.2. The δ13C values indicate consumption of C3 plants 
(i.e., trees, shrubs, fruit/seeds, and C3-grass adapted to a mild growth 
season). M. cf. sylvanus, Hipparion sp., Gazella sp. and Tragelaphini from 
GFT-4.2 have been compared with the fossil T. atlanticus from Ahl al 
Oughlam, Morocco (ca. 2.5 Ma) and T. oswaldi from Tighenif, Algeria (ca. 
1 Ma) and other ungulates from the same sites (Fannin et al., 2021; Figure 5; 
Supplementary Table 2). The M. cf. sylvanus (n = 4) mean is −12.3 ± 0.3‰, 
the T. atlanticus (n = 10) mean is −12.4 ± 0.8‰, and the T. oswaldi (n = 11) 
mean is −11.3 ± 1.9‰ (Figure 5). These three fossil species show similar 
median carbon values and no consumption of C4 plants. Except for one 
individual of T. oswaldi from Tighenif with a δ13C value of −5.9‰ that 
includes some C4 plant consumption.

Our data differ from the mean δ13C values of 1.9 ± 1.8‰ (n = 49) 
from Plio-Pleistocene fossils of Theropithecus from Eastern Africa, 3.5 
to 1.5 Ma. In Southern Africa, Theropithecus living 2.8 and 1.6 Ma have 
mean value of −2.4 ± 1.4‰ (n =  13). In both areas, these species 
indicate a strongly C4-based diet composed mostly of grasses (Cerling 
et al., 2011; Souron, 2018), especially after the 2 Ma (Figure 6). The 
carbon values of M. cf. sylvanus from GFT-4.2 are similar to the δ13C 
values of C3 consumers Papio (2.1 to 1.6 Ma; −9.8 ± 2.3‰; n =  26), 
Parapapio (2.8 to 1.7 Ma; −8.4 ± 2‰; n = 38), and Cercopithecoides (2.8 
to 1.7 Ma; −9.8 ± 3.6‰; n = 12) from the Plio-Pleistocene of Southern 
Africa (Figure  6; Lee-Thorp et  al., 1989; Codron et  al., 2005). The 
largest proportion of Southern African cercopithecids fall into the C3–
C4 mixed feeders’ area, suggesting a consumption of some C4 plants 
(Figure  6). Cercopithecids with carbon values resembling those of 
GFT-4.2 macaques are the Cercopithecoides haasgati (2.1 Ma; 
−12.3 ± 1.4‰; n = 2) from Haasgat HGD, Papio robinsoni (1.85 Ma; 
−11.2 ± 0.9‰; n =  5) and Parapapio jonesi (1.85 Ma; −11.2 ± 2.3‰; 
n = 2) from Swartkrans (Figure 6). The δ13C values of C. haasgati could 

FIGURE 4

Box plots for δ18O values of Macaca cf. sylvanus, Hipparion sp., Gazella sp. and Tragelaphini from GFT-4.2 in comparison with extinct Theropithecus and 
ungulates from the Plio-Pleistocene sites of Ahl al Oughlam and Tighennif in North Africa published in Fannin et al. (2021). The boxes show the median and 
the lower (25%) and upper (75%) quartiles.
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FIGURE 5

Box plots for δ13C values of Macaca cf. sylvanus, Hipparion sp., Gazella sp. and Tragelaphini from GFT-4.2 in comparison with extinct Theropithecus and 
ungulates from the Plio-Pleistocene sites of Ahl al Oughlam and Tighennif in North Africa published in Fannin et al. (2021). The boxes show the median and 
the lower (25%) and upper (75%) quartiles.

FIGURE 6

Box plots comparing the δ13C values of Plio-Pleistocene fossil cercopithecids (3.5 to 1 Ma) from North Africa (data from this study and Fannin et al., 2021). 
Sites: 1 = Guefaït 4.2; 2 = Ahl al Oughlam; 3 = Tighennif, East Africa [data from Levin et al. (2015), Robinson et al. (2017), and Uno et al. (2018)]. Sites: 4 = Koobi 
Fora, East Turkana; 5 = Nachuki, West Turkana; 6 = Ledi-Geraru, Gurumaha; 7 = Bed II, Olduvai and Southern Africa [data from Levin et al. (2015)]. Sites: 
8 = Makapansgat, 3 and 4; 9 = Sterkfontein; 10 = Haasgat HGD; 11 = Swartkrans. The boxes show the median and the lower (25%) and upper (75%) quartiles. 
The colors of the box plots represent the different genus (beige for Macaca, blue for Theropithecus, red for Cercopithecoides, purple for Parapapio, and 
gray for Papio).
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indicate a preference toward food sources associated with closed 
woodland environments (Adams et al., 2013). This interpretation is 
consistent with the carbon values of all of them, including the fossil 
macaque. Feeding habits of P. robinsoni and P. jonesi from Swartkrans 
have been reconstructed as a frugivore-folivore on the basis of cusp 
form (Benefit, 2000). We also propose this using the occlusal and buccal 
microwear for M. cf. sylvanus from GFT-4.2, although the exploitation 
of grasses and forbs in a more open habitats cannot rule out due to the 
buccal microtexture pattern of GFT137 and the high number of 
scratches on the occlusal surface of GFT138. Carbon isotopic signal of 
the Macaca from GFT-4.2 would indicate that these consumed grasses 
would be C3. Consumption of C3 grasses has also been identified in the 
diet of T. oswaldi from the Plio-Pleistocene site of Ahl al Oughlam 
(Morocco), as well as in extant T. gelada at Guassa Plateau (Ethiopia; 
Fannin et al., 2021).

The microwear analysis shows that the diet of the fossil macaque is 
close, among others, to that of extant M. sphinx, L. albigena, and C. atys, 
species that live in dense tropical forests. Isotopic studies on extant 
M. sphinx and C. atys have shown carbon values strongly affected by 
canopy effect. According to Oelze et  al. (2020), the δ13C values of 
M. sphinx hair sections from Gabon are within the range 
(−25.1‰ ± 0.3‰) of those obtained from the hair of chimpanzees and 
gorillas in Loango National Park. Like these species, mandrills live in 
dense forest habitats. Another study by Krigbaum et al. (2013) on bone 
apatite from seven sympatric cercopithecine species, including C. atys, 
in the Taï forest (Côte d’Ivoire) obtained carbon values range between 
−19.9‰ and −17.9‰ for all species. In contrast, the carbon values of 
M. cf. sylvanus from GFT-4.2 (−12.3 ± 0.3‰) do not correspond to 
those of a species foraging in a closed canopy forest. Considering the 
enamel-diet enrichment factor for primates (+11.8 ± 0.3‰; Malone 
et al., 2021) and the cutoff of −30‰ (δ13CCO2 corrected by ~ +1.5) for 
closed-canopy forests (Kohn, 2010), the δ13C values of tooth enamel for 
a diet in a closed-canopy forest should be lower than ~ −18‰ for fossil 
Macaca. The carbon values of the taxa analyzed are compatible with an 
open woodland. This is in line with the paleoherpetological and small 
mammal work in which taxa characteristic of open woodland have 
been defined (Agustí et al., 2017; Piñero et al., 2019).

The use of these three methods has allowed us to produce a 
paleodietary reconstruction at different times in the life of the 
individuals, although we  cannot discard that the analyzed molars 
belong to the same specimen. The isotopic signal, corresponding to 
approximately the first 4 years of life, is in agreement with the data of 
the two dental microwear proxies in the diet-tree relationship for M. cf. 
sylvanus, and the absence of C4 typical of open grassland. Buccal and 
occlusal microwear turnover is a dynamic process; however, the buccal 
signal is more stable in the long term and may indicate the diet 
consumed year-round (Romero et  al., 2012). Whereas the low 
magnification occlusal microwear results may indicate the consumption 
of hard fruit and seeds similar to mangabeys the last days or weeks 
prior to death (Semprebon et al., 2004), perhaps representing the diet 
of a single season. The buccal microtexture analysis suggest that the 
abrasiveness of their diet was similar to primates (M. sphinx and 
M. mulatta) that consumes hard, tough, and brittle food items year 
round with the incorporation of leaves, and the consumption of grasses 
as T. gelada does. The complementarity of these proxies helps to 
differentiate between seasonal, short-term durophagous species from 
those that exploit tough and brittle items actively in a long term, 
broadening the dietary range of consumed resources throughout 
the year.

Conclusion

Our research represents the first report related to the feeding ecology 
of fossil Macaca during the Plio-Pleistocene in Africa. Our results highlight 
a tight correlation between the fossil M. cf. sylvanus specimens from 
GFT-4.2 and extant primates with a predominant abrasive, tough and 
brittle food items. Evidence from the multiproxy analysis suggests that the 
macaques foraged for food in a wooded habitat, but also foraging in more 
open environments. The versatility of macaques to occupy wide habitat 
ranges makes them a useful candidate for analogies with hominins and for 
understanding how they adapted to different environments. Evidence of 
early hominins in North Africa is dated close to the Plio-Pleistocene 
boundary (ca. 2.4 Ma) at the Ain Boucherit site in Algeria. The ecological 
context of this first human population is a key question to understand the 
dispersions of humans and other mammals in these territories. Considering 
the proximity of GFT to Ain Boucherit, understanding the feeding ecology 
of M. cf. sylvanus from GFT may provide clues about some of the ecological 
resources that these early humans may have had. This initial investigation 
is only one step toward understanding the feeding habits of M. cf. sylvanus. 
More data are needed from additional individuals to be able to confidently 
interpret foraging ecology of this species.
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Mesowear is a dietary proxy that relates attritive wear and abrasive wear to the shape 
of worn tooth cusps of ungulates. Traditional mesowear methods categorize cusps 
according to relief and sharpness. A geometric morphometric approach has the 
potential to measure shape with higher precision and to discover unrecognized 
aspects of cusp shape, possibly improving the efficacy of mesowear. We quantified 
mesowear in extant Ruminantia, using a 2-D semilandmark outline technique 
on upper second molar metacones generated from photographs. Among the 
91 species sampled, 65 were preassigned to dietary categories, browser, grazer, 
mixed feeder, and frugivore based on substantiated documentation of diet in the 
wildlife literature. Metacone cusp shape and metacone mesowear score were 
found to be independent of size. Principal component and discriminant function 
analyses of Procrustes transformed semilandmark coordinates revealed two diet-
related components of cusp shape. The primary component is related to the 
traditional mesowear variables of cusp height and side steepness. The secondary 
shape component reveals variation in the mesiodistal symmetry of the metacone 
and may relate to a proal vector during the power stroke phase or the relative 
orientation of the cusps with respect to the chewing stroke vector. Discriminant 
function analysis of semilandmark data accurately classified the diets of species 
more frequently (67.2%) than the traditional mesowear method (56.1%). The 
semilandmark data successfully recognized the diets of grazing and browsing 
species with correct classification rates ranging from 69% to 95%. The diets of 
frugivorous and mixed feeding species were less frequently correctly recognized 
(33%–53%). Mixed feeding diets may be more difficult to recognize due to more 
heterogeneous diets when compared to browsers and grazers. Frugivores are 
more difficult to recognize because their rounded cusp apices resemble those 
of mixed feeders and grazers. We  conclude that quantitative shape analysis 
improves the potential of mesowear. When used as a dietary proxy, we anticipate 
that mesowear analysis will correctly categorize the diets of most species. 
When misclassifications are made, they may most often be misclassifications of 
generalist mixed feeders and frugivores as either browsers or grazers.
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Introduction

Mesowear analysis is a widely employed technique for testing 
hypotheses about the diets, feeding ecologies, and paleoenvironments 
of ungulates (Croft and Weinstein, 2008; Mihlbachler et al., 2011, 
2017; Danowitz et al., 2016; Green and Croft, 2018; Jiménez-Hidalgo 
et al., 2019; Ackermans, 2020). Mesowear refers to the macroscopic 
morphologies of worn buccal cusp apices of the molar teeth of 
ungulates, which vary in ways that are correlated to the observed 
diets of extant species (e.g., Fortelius and Solounias, 2000; Franz-
Odendaal and Kaiser, 2003; Fraser and Theodor, 2011; Louys et al., 
2011, 2012; Fraser et al., 2014; Ackermans et al., 2020). Browsing 
species presumably have minimally abrasive diets and therefore 
experience predominantly attrition-dominated wear and maintain 
sharpened molar cusp apices with high amounts of occlusal relief as 
a consequence of their ability to maintain precise dental occlusion. 
Grazers, on the other hand, consume a greater abundance of highly-
abrasive particles including opaline silicates, which are more 
abundant in grasses, and also higher amounts of geological particles 
(dust, silt, sand) as a consequence of feeding closer to the soil 
substrate (Sanson, 2006; Janis, 2008; Semprebon et al., 2019). The 
tendency for grazers to develop and maintain blunter and lower relief 
molar cusp apices has been explained as a result of more abrasion-
dominated wear. Recent work has abundantly demonstrated tooth 
wear and occlusion to be  a complex phenomenon whose causal 
factors are not easily unraveled (Sanson et al., 2018; Ackermans et al., 
2020; Schulz-Kornas et  al., 2020; Martin et  al., 2021). While the 
general explanation of mesowear as a reflection of an attrition-
abrasion gradient (Fortelius and Solounias, 2000) is, no doubt, an 
oversimplification (e.g., Erickson et al., 2016), there is, nonetheless, 
an abundantly demonstrated correlation between diet and apical cusp 
morphology among extant ungulates.

Fortelius and Solounias (2000) first evaluated molar cusp apical 
morphologies among ungulates and their relationship to diet using 
extant species. They found a strong association between diet 
(browsing, grazing, and mixed feeding) and the apical cusp 
morphology of worn buccal cusps of upper molars. They examined 
the buccal cusps of the second upper molars and categorized them 
based on relief and sharpness (Figure 1). Many mesowear studies have 
employed the original scoring technique or they have devised related 
scoring techniques that categorize cusps by some combination of relief 
and sharpness (Blondel et  al., 2010; Semprebon and Rivals, 2010; 
Taylor et  al., 2013; Ulbricht et  al., 2015; Mihlbachler et  al., 2017; 
Cohen et al., 2021). In its simplest representation (e.g., Mihlbachler 
et al., 2011), cusps are scored according to arbitrary stages along a 
shape continuum ranging from tall and sharp with steeply sloped 
sides, to low and dull with shallow sloping sides. Browsers and grazers 
occupy the extreme ends of this continuum and mixed feeders occupy 
the intermediate range. This conveniently tidy mesowear continuum 
is disrupted by frugivores which develop rounded cusp apices, 
presumably due to tip-crushing wear associated with mastication of 
hard objects (Janis, 1990; Fortelius and Solounias, 2000). The 
phenomenon of frugivore tooth wear has not been thoroughly studied 
in ruminants, nonetheless, small frugivorous ruminants maintain 
rounded cusp morphologies that resemble mixed feeders and grazers, 
thus rendering it difficult to differentiate the mesowear signatures of 
frugivorous diets from other diets in the fossil record (Mihlbachler 
and Solounias, 2006; Mihlbachler et al., 2011).

Prior attempts to develop quantitative measures of mesowear 
involve measures of cusp heights and angles (Widga, 2006; Valli and 
Palombo, 2008; Fraser and Theodor, 2010; Loffredo and DeSantis, 
2014; Saarinen et al., 2014; Jiménez-Manchón et al., 2021). However, 
as we  reveal below, cusp shape varies in other ways. Geometric 
morphometric methods have the potential to shed light on more 
nuanced aspects of tooth mesowear and its relation to diet. To our 
knowledge, geometric morphometric methods have not been widely 
applied to mesowear (see Rødven et al., 2006 for an example). One 
concern is expediency. Unlike more laborious and costly methods, 
such as stable isotope analysis and dental microwear texture analysis, 
mesowear is a simple technique that facilitates the expedient 
compilation of large datasets (Mihlbachler et al., 2011; Semprebon 
et al., 2019). More laborious approaches of mesowear quantification, 
such as 3-D quantification (Hernesniemi et al., 2011) may offer finer-
grained insights into the shapes of the occlusal facets of teeth, but such 
approaches also limit the potential for building large data sets thus 
removing one of the primary advantages of the technique.

In this paper, we  describe an expedient 2-D geometric 
morphometric mesowear analysis using photographs in lateral view 
of upper molars and apply it to 91 species of extant ruminants. 
We hypothesize that quantitative measurement of cusp shape will 
provide additional insights into how cusp shape varies with diet. 
Secondly, we hypothesize that a more nuanced view of mesowear 
provided by morphometrics will sharpen the mesowear tool for 
predicting the diets of extinct species and other ancient populations.

Materials and methods

This study consists of 834 skulls representing 91 extant species of 
Ruminantia, following the taxonomy of Groves and Grubb (2011), 
housed at the mammalogy collections of the American Museum of 
Natural History (New York, USA), the Royal Alberta Museum 
(Edmonton, Canada), and the National Museum of Natural History, 
Smithsonian Institution (Washington D.C., USA). We  prioritized 
maximization of taxonomic and ecological diversity; therefore, 
we  sampled specimens without regard for locality, as long as the 
specimen was collected from a non-feral wild population. Additional 
insights may be achieved from more focused population-level studies, 
but this approach also has limitations due to the finite coverage of 
natural history collections. The species are divided into two tables 
(Tables 1, 2) for reasons explained below. We attempted to sample a 
minimum number of 10 specimens when possible but the number of 
available specimens for many species was fewer than 10. Our sample 
size for each species ultimately ranged from 1 to 20 (Tables 1, 2).

This study focuses on the metacone of the upper second molar 
(M2). The cusps of the different tooth positions frequently have 
non-identical apical morphologies and there is most often a wear 
gradient among the molars. The M1 tends to be the most worn, while 
the M3 tends to be the least worn. M2 most often tends to be in an 
intermediate state of wear. This wear gradient is related to the different 
eruption times (Ungar, 2010) and possibly also to the variable spatial 
relationships that teeth have with the temporomandibular joint and 
muscles of mastication which may differentially influence occlusal 
dynamics at different positions along the tooth row. While it is likely 
that the general conclusions of this study about the relationship of 
tooth wear and diet can be generalized to other cusps along the molar 
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row, we caution that any subsequent direct comparisons to our data 
would be most meaningful if based on the same M2 metacone.

The amount of tooth wear that an animal has accumulated during 
its lifetime is a consideration when selecting specimens for mesowear 
analysis. Experimental evidence suggests that mesowear is more of a 
general signal than a seasonal one (Ackermans et al., 2020). All but the 
most brachydont ruminants tend to maintain their cusp morphologies 
in a state of relative stasis as the teeth wear, beginning with the initial 
development of wear facets and ending with the mechanical 
senescence of the tooth (Rivals et  al., 2007). Bearing these basic 
findings in mind, we followed typical inclusion criteria for mesowear 
studies where young and old individuals were excluded. Inclusion 
criteria included a fully erupted adult dentition with visible wear on 
the third molar. Dentally senescent individuals, defined as having 
nearly all of the first molar crown worn away, were excluded.

Each species was assigned to one of four dietary categories based 
on the percentage of dicotyledons, monocotyledons, and fruits in their 
diet as follows: browsers (>70% leafy, woody components of 
dicotyledons), frugivores (>70% fruits), grazers (>70% 
monocotyledons), and mixed feeders (species external to the 
parameters of other categories). Evidence for diet in the literature for 
65 out of the 91 species (Table 1), was considered by us to be sufficient 
and these were used extensively in the analyses described below. The 
remaining 26 species (Table 2) were used more sparingly as we were 
less confident about their dietary assignments. In these instances, the 
literature-based evidence for the diet was scant or of low quality, due 
to incomplete information or discrepancies in the percentages of food 
types reported between different studies. Other species relegated to 
Table 2, (e.g., Rangifer tarandus) have abundantly documented wild 
diets, but consume foods, such as moss and lichens, that fall outside 
of the scope of the four dietary categories. The species of Table 2 were 
used to gain a heuristic understanding of how insufficient evidence of 

diet and peculiar diets not fitting typical criteria may complicate the 
use of mesowear as a dietary proxy.

Image acquisition

We photographed the upper left cheek tooth row with focus on 
the second molar (M2) using a Canon EOS5D or Nikon D200 digital 
camera. In instances when the left M2 was damaged or pathological, 
we photographed the right tooth row and horizontally inverted the 
image. The specimens were oriented so that the buccal wall of the M2 
was perpendicular to the camera. If lingual parts of the molars were 
visible through the camera (Figure 2A), the specimen was rotated 
slightly so that these parts of the tooth were obscured (Figure 2B). The 
specimens were handheld by the photographer and aligned this way 
by eye. With this approach, we attempted to sufficiently standardize 
the orientation of the specimen without greatly compromising 
expediency. While more precise orientation of specimens would have 
been possible with anchoring devices, this would have further limited 
the potential to sample large numbers of specimens and would have 
constrained the sizes and shapes of skulls that could be photographed.

Landmark digitization and superimposition

Every image was renamed with a four-digit identifier generated at 
random, with the objective of mixing the sample of images and 
removing the identity of each image to minimize systematic biases 
during landmark digitization. We used tpsDig 2.32 (Rohlf, 2015) to 
digitize the outline of the occlusal edge of the metacone cusp, starting 
on the distal end of the metacone and finishing at the high point of the 
arch between the paracone and metacone. The resulting cusp outline 

FIGURE 1

Traditional mesowear analysis uses a categorical approach to scoring cusp relief (high or low) and apical shape (sharp, round, or blunt). Browsing 
ungulates tend to have high and sharp cusp morphologies, whereas grazing ungulates tend to show low and blunt or rounded cusps, with mixed 
feeders showing intermediate morphologies.
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TABLE 1 Species with high-quality a priori dietary assignments derived from the literature.

Species Abbr Family N a priori diet References

Antilocapra americana ANT Antilocapridae 11 B 5; 25

Addax nasomaculatus an Bovidae 1 G 12; 21; 28; 34

Aepyceros melampus Am Bovidae 12 M 12

Alcelaphus buselaphus ab Bovidae 11 G 12; 21

Ammelaphus imberbis Ai Bovidae 9 M 12

Antidorcas marsupialis Ama Bovidae 10 M 12

Bos bison bb Bovidae 18 G 25; 34

Boselaphus tragocamelus Bt Bovidae 2 M 19

Bubalus depressicornis Bde Bovidae 8 M 11; 34

Cephalophus callipygus cC Bovidae 9 F 12

Cephalophus dorsalis cD Bovidae 10 F 12

Cephalophus leucogaster cL Bovidae 16 F 12

Cephalophus niger cNI Bovidae 9 F 12; 16

Cephalophus nigrifrons cNG Bovidae 10 F 12

Cephalophus rufilatus cR Bovidae 11 F 12; 16

Cephalophus silvicultor cS Bovidae 12 F 12

Connochaetes gnou cg Bovidae 6 G 12; 21

Connochaetes taurinus ct Bovidae 10 G 12; 21

Damaliscus lunatus dl Bovidae 12 G 12

Damaliscus pygargus dp Bovidae 10 G 12; 21

Eudorcas thomsonii et Bovidae 11 G 12

Hippotragus equinus he Bovidae 10 G 12; 21

Hippotragus niger hn Bovidae 10 G 12; 21

Kobus ellipsiprymnus ke Bovidae 11 G 12; 21

Kobus kob kk Bovidae 10 G 10; 12; 21

Kobus leche kl Bovidae 7 G 12; 21; 22

Litocranius walleri LW Bovidae 20 B 12

Madoqua kirkii MK Bovidae 12 B 12

Nanger granti Ng Bovidae 16 M 12

Neotragus moschatus NM Bovidae 7 B 12

Nyala angasii Na Bovidae 4 M 12

Oreotragus oreotragus Or Bovidae 16 M 12

Oryx gazella og Bovidae 10 G 12

Ourebia ourebi oo Bovidae 10 G 12

Pelea capreolus PC Bovidae 2 B 12

Philantomba maxwellii pM Bovidae 10 F 12; 16

Philantomba monticola pMO Bovidae 19 F 12

Procapra gutturosa Pg Bovidae 13 M 4; 17

Raphicerus campestris Rc Bovidae 12 M 12

Redunca arundinum ra Bovidae 14 G 12

Redunca fulvorufula rf Bovidae 10 G 12; 21

Redunca redunca rr Bovidae 12 G 12

Saiga tatarica St Bovidae 2 M 1; 3; 29; 34

Strepsiceros strepsiceros Ss Bovidae 11 M 12

(Continued)
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was then resampled to obtain 24 evenly spaced points that were 
judged to adequately capture the metacone outline 
(Supplementary Table S1). Points 1 and 24 are regarded as landmarks 
and points 2–23 represent semilandmarks (Figure  2C). All of the 
specimens were digitized by the same researcher (CIB-O). Levels of 
photographing and digitization error were low (2.1%), as evidenced 
by Procrustes ANOVA performed on a subset of an earlier version of 
our dataset in which specimens were photographed and digitized 
twice (Barrón-Ortiz et al., 2013).

We superimposed the 834 landmark configurations in tpsRelw 
1.75 (Rohlf, 2015) using a generalized least squares (GLS) Procrustes 
superimposition method in which semilandmarks were allowed to 
slide to minimize thin-plate spline bending energy. To accomplish 
this, we created a “sliders file” in tpsUtil 1.82 (Rohlf, 2015) to indicate 
that semilandmarks 2–23 were allowed to slide during GLS Procrustes 
superimposition. In standard GLS Procrustes superimposition, the 
configurations of landmarks are translated to the origin, scaled to unit 
centroid size (centroid size is the square root of the sum of squared 
distances of all the landmarks from their centroid), and rotated to 
minimize the summed square distances between homologous 
landmarks (Zelditch et al., 2004). A consensus (average) configuration 
is obtained and the deviation of each configuration of landmarks from 
the consensus yields the Procrustes residuals (Procrustes transformed 
coordinates). The standard GLS Procrustes superimposition is 

extended in the sliding semilandmarks method. In addition to 
translating, scaling, and rotating the configurations of landmarks, the 
sliding semilandmarks method allows semilandmarks to slide along 
lines tangent to the outline curve to optimize their position with 
respect to the average shape of the entire sample (Zelditch et al., 2004; 
Perez et al., 2006; Gunz and Mitteroecker, 2013). Semilandmarks are 
allowed to slide to either minimize thin-plate spline bending energy 
or to minimize Procrustes distance (Perez et  al., 2006; Gunz and 
Mitteroecker, 2013). The sliding semilandmarks method attempts to 
reduce the amount of shape variation that results solely from the 
arbitrary spacing of semilandmarks; thus, improving the geometric or 
biological correspondence of the semilandmarks across specimens 
(Zelditch et al., 2004; Perez et al., 2006; Gunz and Mitteroecker, 2013).

Scoring of traditional mesowear variables

In order to compare traditional mesowear analysis and 2-D 
geometric morphometric mesowear analysis, we  also scored the 
metacones from the photographs for every specimen in our dataset 
(Supplementary Table S1) using the categorical methodology 
introduced by Fortelius and Solounias (2000). This methodology uses 
two categories: (1) cusp height (high or low) and (2) cusp shape 
(sharp, rounded, or blunt) (Fortelius and Solounias, 2000). Cusps 

TABLE 1 (Continued)

Species Abbr Family N a priori diet References

Sylvicapra grimmia SG Bovidae 11 B 6; 12

Syncerus caffer sc Bovidae 17 G 12; 21

Taurotragus derbianus TD Bovidae 6 B 12; 15

Tragelaphus eurycerus TE Bovidae 5 B 12

Tragelaphus scriptus TSC Bovidae 9 B 12

Tragelaphus spekii Tsp Bovidae 10 M 12

Alces alces AA Cervidae 15 B 3; 25

Axis axis Ax Cervidae 3 M 18; 26; 34; 35

Axis porcinus Ap Cervidae 4 M 9; 33; 34

Blastocerus dichotomus BD Cervidae 5 B 19; 23; 29

Capreolus capreolus CA Cervidae 9 B 3; 27; 34

Cervus canadensis Cca Cervidae 8 M 3; 7; 25

Cervus elaphus Ce Cervidae 5 M 3; 7; 25

Hippocamelus antisensis Han Cervidae 3 M 2; 34

Odocoileus hemionus OH Cervidae 20 B 14; 25; 34

Odocoileus virginianus OV Cervidae 16 B 25; 34

Panolia eldii pe Cervidae 5 G 31; 32

Pudu mephistophiles PME Cervidae 5 B 34

Giraffa camelopardalis GC Giraffidae 11 B 8; 23

Okapia johnstoni OJ Giraffidae 17 B 13; 34

Hyemoschus aquaticus hA Tragulidae 9 F 34

B = browser, G = grazer; M = mixed feeder; F = frugivore. References for a priori diet classifications: (1) Bannikov, 1976; (2) Barrio, 2013; (3) Baskin and Danell, 2003; (4) Campos-Arceiz et al., 
2004; (5) Clemente et al., 2009; (6) Codron et al., 2007; (7) Cook, 2002; (8) Dagg, 2014; (9) Davis et al., 2008; (10) Djagoun et al., 2013; (11) Flores-Miyamoto et al., 2005; (12) Gagnon and 
Chew, 2000; (13) Hart and Hart, 1989); (14) Heffelfinger, 2018; (15) Hejcmanová et al., 2010; (16) Hofmann and Roth, 2003; (17) Jiang et al., 2002; (18) Johnsingh and Sankar, 1991; (19) Leslie, 
2008; (20) Marin et al., 2020; (21) Müller et al., 2011; (22) O’shaughnessy et al., 2014; (23) Owen-Smith, 1997; (24) Pinder and Grosse, 1991; (25) Renecker and Schwartz, 1997; (26) Schaller, 
1967; (27) Sempéré et al., 1996; (28) Seri et al., 2018; (29) Sokolov, 1974; (30) Tomas and Salis, 2000; (31) Tripathi et al., 2019; (32) Tuboi and Hussain, 2016; (33) Wegge et al., 2006; (34) 
Wilson and Mittermeier, 2011; (35) Watter et al., 2020.
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judged to be at the border between high and low were measured using 
ImageJ 1.53 s (Rasband et al., 2022) to assign them to one of these two 
categories. Categorization of these borderline specimens was 
accomplished by measuring the maximum depth of the valley formed 
between the paracone and metacone (by measuring the vertical 
distance from a line connecting the paracone and metacone cusps) 
and dividing this value by the length of the molar, as indicated by 
Fortelius and Solounias (2000). Ratios ≥0.15 were assigned as high, 
conversely ratios <0.15 were assigned to the low category. The same 
observer (CIB-O) evaluated all specimens in our dataset for traditional 
mesowear variables.

Following Fortelius and Solounias (2000), we calculated the 
percentage of individuals with high, low, sharp, rounded, and blunt 
cusps for every species. We  confined analysis of traditional 
mesowear data to species with sample sizes of 5 or more individuals 
(Supplementary Table S2). We also calculated mesowear scores for 
individual specimens (Supplementary Table S1) by assigning a 
score of 0 to specimens with high and sharp cusps, a score of 1 to 
specimens with high and rounded cusps, a score of 2 to specimens 

with low and rounded cusps, and a score of 3 to specimens with 
low and blunt cusps (Rivals and Semprebon, 2006; Rivals et al., 
2007). Out of 834 specimens, 19 could not be scored because the 
paracone cusp was damaged preventing us from determining cusp 
height, and 26 specimens had peculiar metacone shapes that were 
difficult to score and were ignored; thus, we  only report and 
analyze the mesowear score for the remaining 789 specimens 
(Supplementary Table S1).

Covariation between size and cusp shape/
mesowear score

To test for allometry (covariation between size and shape), 
we  performed multivariate regressions in MorphoJ 1.05f 
(Klingenberg, 2011), where size is the independent variable and 
the Procrustes transformed coordinates (Supplementary Table S1) 
are the dependent variables. Size was measured as either M2 
ectoloph length (measured with a digital caliper accurate to 0.01), 

TABLE 2 Species with questionable a priori dietary assignments derived from the literature.

Species Abbr Family N a priori diet References

Ammodorcas clarkei AC* Bovidae 1 B 5

Bubalus mindorensis Bm* Bovidae 4 M 4; 18

Cephalophus natalensis cN* Bovidae 5 F 5; 18

Cephalophus weynsi cW* Bovidae 9 F 5; 18

Gazella dorcas GD* Bovidae 8 B 2; 5

Gazella subgutturosa GU* Bovidae 10 B 3; 10; 19

Madoqua guentheri MG* Bovidae 11 B 5; 18

Madoqua saltiana MS* Bovidae 9 B 5; 18

Nanger soemmerringii Ns* Bovidae 12 M 2; 5

Neotragus batesi NB* Bovidae 10 B 5

Taurotragus oryx TO* Bovidae 2 B 5; 8

Tetracerus quadricornis TQ* Bovidae 3 B 13; 14; 18

Tragelaphus buxtoni TB* Bovidae 6 B 5

Elaphodus cephalophus Ec* Cervidae 6 M 13

Mazama americana mA* Cervidae 8 F 6; 15

Mazama gouazoubira mGO* Cervidae 8 F 6; 15

Muntiacus muntjak mU* Cervidae 7 F 9; 18

Muntiacus putaoensis mP* Cervidae 4 F 18

Muntiacus reevesi mR* Cervidae 8 F 18

Rangifer tarandus Rt* Cervidae 10 M 3; 16

Rusa marianna Rm* Cervidae 5 M 1; 17

Rusa unicolor Ru* Cervidae 7 M 13; 18; 20

Moschus moschiferus Mm* Moschidae 10 M 3; 7

Moschiola meminna mME* Tragulidae 5 F 18

Tragulus javanicus tJ* Tragulidae 9 F 14; 18

Tragulus napu tN* Tragulidae 8 F 18

B = browser, G = grazer; M = mixed feeder; F = frugivore. References for dietary assignments: (1) Ali et al., 2021; (2) Baamrane et al., 2012; (3) Baskin and Danell, 2003; (4) Custodio et al., 1996; 
(5) Gagnon and Chew, 2000; (6) Gayot et al., 2004; (7) Green, 1987; (8) Hejcmanová et al., 2020; (9) Ilyas and Khan, 2003; (10) Kingswood and Blank, 1996; (11) Leslie, 2011; (12) Leslie and 
Sharma, 2009; (13) Leslie et al., 2013; (14) Müller et al., 2011; (15) Prado, 2013; (16) Renecker and Schwartz, 1997; (17) Wiles et al., 1999; (18) Wilson and Mittermeier, 2011; (19) Xu et al., 
2012; (20) Zhang et al., 2020.
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metacone cusp length (obtained by calculating the Euclidean 
distance between the extreme points of the cusp), or metacone ln 
centroid size (Supplementary Table S1). We  also evaluated 
covariation between size and metacone mesowear score by 
performing linear regressions in PAST 4.12b (Hammer et  al., 
2001), where size (as quantified above) is the independent variable 
and mesowear score (Supplementary Table S1) is the dependent 
variable. For each analysis, we report the amount of cusp shape 
variation predicted by size and p-values of permutation tests 
(10,000 replicates) used to evaluate the null hypothesis 
of independence.

In order to evaluate covariation between metacone mesowear 
score and metacone cusp shape, we  performed a multivariate 
regression in MorphoJ 1.05f (Klingenberg, 2011). In this analysis, 
mesowear score (Supplementary Table S1) is treated as the 
independent variable and Procrustes transformed coordinates 
(Supplementary Table S1) are the dependent variables.

Principal component analysis

To identify directions of maximal shape variation in our dataset, 
we performed a principal component analysis (PCA) on the variance–
covariance matrix of the Procrustes transformed coordinates 

(Supplementary Table S1) using species in Tables 1, 2. PCA was 
performed in MorphoJ 1.05f (Klingenberg, 2011).

Discriminant function analysis

To test the efficacy of 2D cusp shape as a means of accurately 
classifying diets, stepwise discriminant function analyses (DFA) were 
run using SPSS v. 27 on the Procrustes transformed coordinates 
(Supplementary Table S1) using diet (browser, grazer, mixed feeder, 
frugivore) as the group variable (Table 1). In stepwise DFA, single 
variables are added to the discriminant model to optimize 
discrimination among groups according to predetermined inclusion 
criteria. We followed Meloro (2011) in using p ≤ 0.05 and p ≥ 0.1 for 
the probability of F for the entry and removal of variables, respectively 
(Supplementary Table S5). Attempts were made to match the dietary 
classifications of species made from the literature to dietary 
classifications generated from the DFAs. We  refer to dietary 
classifications based on the literature as a priori and dietary 
classifications resulting from DFA of mesowear data as a posteriori.

DFAs were run including the individual specimens as 
observations. The analyses were done assuming equal prior 
classification probabilities for all dietary groups and using a 
within-groups covariance matrix. The modal (most common) a 
posteriori individual classification within each species was used to 
assign that species to an a posteriori dietary category. Modal 
classifications were not generated for species represented by fewer 
than three specimens.

The common method of DFA classification is resubstitution, 
where the DFA classifies the same specimens used to generate the 
discriminant model. A degree of circularity is inherent in this 
method because the resulting classifications are not independent of 
the observations (Lance et al., 2000) and the resulting apparent error 
rate of classification tends to be  underestimated. To avoid this 
problem, we employed a leave-one-out jackknifing technique that 
maintains independence between the observations used to generate 
the discriminant function and the classifications (Lance et al., 2000; 
Louys et al., 2011). The leave-one-out method works by removing 
one observation from the data and then it classifies that observation 
based on the DFA of the remaining data. That observation is 
subsequently returned to the data set and the procedure is repeated 
for each observation. Because each classification is based on a model 
that excluded the observation, the resulting actual error rate is 
expected to be less biased than the apparent error rate generated 
from the resubstitution method. Species in Table 1 were used to 
generate the discriminant models. Species in Table 2 were entered 
into the analysis without a priori classifications and jackknifing was 
therefore not used for a posteriori classifications of these 
species’ diets.

To visualize cusp shape features that covary with discriminant 
functions that maximize the separation between dietary groups, 
we performed multivariate regressions in MorphoJ 1.05f (Klingenberg, 
2011). In these analyses, discriminant function scores were the 
independent variables and the Procrustes transformed coordinates 
(Supplementary Table S1) of species in Table  1 were the 
dependent variables.

Two additional series of DFAs were run using only the species in 
Table 1 to account for potential complications of our dataset:

A

B

C

FIGURE 2

Left upper cheek tooth row of Cervus canadensis showing 
photographic angle. Specimens were oriented so the buccal wall of 
M2 was perpendicular to the camera lens. (A) When lingual sides of 
the cheek teeth were visible, (B) the specimen was rotated slightly 
until the lingual sides were obscured from view, and the photograph 
was taken. (C) Buccal view of the second upper molar (M2) of a 
specimen of Syncerus caffer (AMNH 53582) showing the landmarks 
(yellow) and semilandmarks (red) that were digitized on the occlusal 
outline of the metacone cusp. Digitization of the occlusal outline 
starts at the posterior end of the metacone (right side of the image) 
and ends at the metacone-paracone valley.
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(1) Frugivores were excluded to examine the possibility that they 
interfere with discrimination of browsers, grazers, and mixed feeders, 
due to their potentially overlapping low-relief and rounded 
cusp morphologies.

(2) To compare the performance of 2D semilandmarks and the 
original categorical techniques, we  ran standard DFAs (i.e., not 
stepwise DFAs) on the arcsine transformed traditional mesowear data 
we  calculated (% high, % sharp, % round, and % blunt) 
(Supplementary Table S2).

Results

Covariation between size and cusp shape/
mesowear score

Table 3 summarizes the results of the regression analyses. The 
amount of cusp shape variation predicted by size is minimal (values 
ranging from 0.13% to 0.34%) and none of the analyses produced a 
statistically significant result. Cusp shape does not appear to covary 
with either tooth size or cusp size. Similarly, the amount of mesowear 
score variation predicted by size is minimal (values ranging from 
0.01% to 0.24%) and none of the analyses produced a statistically 
significant result.

Cusp shape significantly covaries with mesowear score. The 
amount of cusp shape variation predicted by mesowear score is 24.4%. 
Features of cusp shape that covary with mesowear score are primarily 
related to the traditional mesowear variables of cusp height and side 
steepness. Low mesowear scores are associated with high cusps and 
steep sides, whereas high mesowear scores are associated with low 
cusps and shallow sides (Figure 3).

Principal component analysis

The first two principal components (PCs) account for over 90% of 
the variation (Supplementary Table S3). The resulting PC1 is related 
to variation in the height of the cusp and steepness of the sides, with 
positive scores corresponding to low relief and shallower sides, and 
negative scores corresponding to high relief and steeper sides 
(Figure 4). Dietary groups are distributed on PC1 as we might predict, 
with browsers tending to be positioned at one end of the axis (tall and 
steep) and grazers and frugivores tending to be positioned at the other 
(low and shallow), with mixed feeders tending to occupy the 
intermediate range. PC2 reveals a component of variation in the 
degree of mesiodistal cusp asymmetry (Figure 4). Browsers are more 
frequently distributed at one end of the component where the cusp 
apex is more mesially positioned with a longer and shallower distal 
slope. At the other extreme, grazers and frugivores tend to have a more 
distally positioned cusp apex with a longer and shallower mesial slope. 
There is considerable overlap between the dietary groups in the PCA 
results, however, the group centroids of browsers, mixed feeders and 
grazers form a trend that is negatively associated with both PC1 and 
PC2. The frugivore group centroid departs slightly from this overall 
trend, as they tend to possess lower cusp relief than expected with 
respect to cusp symmetry.

Discriminant function analysis

The DFAs produced significant results (p < 0.001 in all cases). The 
first two discriminant functions (DFs) account for 95% of the variation 
among groups (Supplementary Table S4). DF1 tends to separate 
browsers from grazers, with mixed feeders and frugivores occupying 
intermediate positions (Figure 5). DF1 is related to cusp height, side 
steepness, and mesiodistal asymmetry. The metacones of browsers 
tend to be  taller, steeper, and with an apex that is more mesially 
positioned with a longer and shallower distal slope. The cusps of 
grazers are lower, shallower, and with a more distally positioned apex 
with a longer and shallower mesial slope. Along DF2, frugivores 

FIGURE 3

Metacone cusp shape deformations obtained from multivariate regression analysis of metacone mesowear score and Procrustes transformed 
coordinates (Supplementary Table S1; n = 789). Cusp shape deformations at a mesowear score (MS) of 0, 1, 2, and 3.

TABLE 3 Results of regression analyses.

Independent / dependent 
variables

% 
predicted

p-value

Ln centroid size / metacone shape (91 species, 

n = 834) 0.13 0.33

Metacone length / metacone shape (91 species, 

n = 834) 0.34 0.06

M2 ectoloph length / metacone shape (91 

species, n = 834) 0.28 0.09

Ln centroid size / mesowear score (90 species, 

n = 789) 0.01 0.83

Metacone length / mesowear score (90 species, 

n = 789) 0.24 0.17

M2 ectoloph length / mesowear score (90 

species, n = 789) 0.23 0.18

Mesowear score / metacone shape (90 species, 

n = 789) 24.44 <0.0001

The table shows the amount of variation predicted by size or mesowear score and p-values of 
permutation tests (10,000 replicates) used to evaluate the null hypothesis of independence.
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FIGURE 4

Scatter plot of the first two principal component scores derived from PCA of Procrustes transformed coordinates shown in Supplementary Table S1. 
Indicated in the plot are the centroids for each dietary group with corresponding 95% confidence intervals. The shape models located along the 
margins of the plot demonstrate the change in cusp shape along each axis. Abbreviations are as follows: b = browser, f = frugivore, g = grazer, and 
m = mixed feeder. Procrustes transformed coordinates for all 834 specimens were used in this analysis, but only specimens of species with high-quality 
dietary information (Table 1) are shown in the plot.

FIGURE 5

Scatter plot of the first two discriminant function scores derived from DFA of Procrustes transformed coordinates shown in Supplementary Table S1. 
Indicated in the plot are the centroids for each dietary group with corresponding 95% confidence intervals. The shape models located along the margins 
of the plot demonstrate the change in cusp shape along each axis. Abbreviations are as follows: b = browser, f = frugivore, g = grazer, and m = mixed feeder. 
Only Procrustes transformed coordinates for specimens of species with high-quality dietary information (Table 1) were used in this analysis (n = 649).
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separate most strongly from the other dietary groups (Figure 5). The 
shape transformation in DF2 is strongly related to cusp height with 
aforementioned cusp asymmetry only transforming very subtly.

Supplementary Table S6 compares the a priori (literature) and a 
posteriori (DFA) dietary classifications of the species of Table  1, 
resulting in a match rate of 53% for individual cases (Table 4; Figure 6). 
The a posteriori classification of species correctly matched the mode 
based a priori classifications 67.2% of the time, and this rate is an 
improvement of 11 percentage points over match rates of species diets 
using traditional mesowear data (56.1%). Grazing diets were most 
frequently matched (73.7%) using the mode-based classifications, 
followed by browsers (68.8%), frugivores (50%) and mixed feeders 
(43.8%). Although the traditional data yielded lower frequency of 
correct match rates, the successful match rate for grazers was identical 
to that of the morphometric data (73.7%), but the traditional data 
yielded lower match rates for other diets in the same diminishing 
order: browsers (56.3%), frugivores (50%) and mixed feeders (33.3%). 
The order of the diminishing trend, common to both methods, seems 
to highlight a general problem with mesowear, and not a weakness of 
any particular method.

The exclusion of frugivores from the analysis had the tendency of 
improving correct match rates of individual specimens (65.5%) and 
species (based on modes: 76.5%) for the remaining dietary groups 

(Table 4; Figure 6). The strongest improvement was among grazers 
(94.7%), with a diminishing magnitude of improvement in match rate 
among browsers (75%) and mixed feeders (56.3%). Exclusion of 
frugivores in the traditional mesowear data gave more mixed results 
with match rate improvements for grazers (89.5%) and mixed feeders 
(41.7%), but diminished match rates for browsers (50%). Mesowear 
most successfully identifies grazers and, to a lesser extent, browsers, but 
mesowear has more difficulty identifying mixed feeders and frugivores.

Small sample sizes were a concern for some species, however, the 
exclusion of the 17 species with fewer than 8 observations in Table 1 
suggests that improved sampling may not substantially improve the 
apparent efficacy of mesowear analysis. Modal match rates of species 
from Table 1 with greater than 8 observations were 69.6%, only a 2.4 
percentage-point increase over the modal match rate found in the 
entire sample in Table 1. Within the set of results from the traditional 
mesowear data, discarding species with fewer than 8 observations 
actually diminished the rate of correct classification by about 2 
percentage points. Elimination of the most poorly sampled species did 
not have notable effects on the match rate, suggesting that improved 
sampling may not greatly improve the results.

Species in Table  2 are those species whose a priori dietary 
classifications were more uncertain or problematic. The individual 
classifications correctly matched 33.5% of the time and modal 
classifications correctly matched 37.5% of the time 
(Supplementary Table S7). Traditional mesowear data correctly 
matched only 14.3% (Supplementary Table S7). These match rates are 
considerably lower than species in Table 1 that were deemed to have 
more substantiated literature-based diets. These lower match rates are 
most easily explained by the more questionable a priori categorizations 
of the diets of these species.

Discussion

Cusp shape variation and distribution of 
dietary groups in morphospace

Neither tooth size nor cusp size was found to significantly 
influence metacone cusp shape or metacone mesowear score (Table 3). 
Previously, body mass and mesowear score were not found to 
be  correlated in extant ungulates (Kaiser et  al., 2013). The 
semilandmark data was found to significantly covary with mesowear 
score. However, the amount of cusp shape variation predicted by 

TABLE 4 Jackknifed percentages of correct a priori and a posteriori matches based on DFAs with high-quality data.

Individual 
specimens

All diets Browsers Grazers Mixed feeders Frugivores

All Diets 53 59.7 62.4 37.8 45.2

Frugivores excluded 65.5 66.9 81 42.6 NA

Modal classifications

All diets 67.2 68.8 73.7 43.8 50

Frugivores excluded 76.5 75 94.7 56.3 NA

Traditional mesowear

All diets 56.1 56.3 73.7 33.3 50

Frugivores excluded 63.7 50 89.5 41.7 NA

FIGURE 6

Percent of species whose a priori and a posteriori dietary 
assignments were correctly matched using the jackknifed DFA 
results. Asterisks (*) are the percent of correct matches in the 
analyses excluding frugivores.
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mesowear score was less than 25% (Table 3), suggesting that there are 
aspects of cusp shape variation, discussed below that are not reflected 
by mesowear score.

The main shape transformations captured by the semilandmark 
data are related to the height of the cusp and steepness of the sides and 
the traditional mesowear variables cusp height and sharpness. These 
shape variables have been abundantly associated with relative amounts 
of abrasion and attrition and, thus far, this relationship has continued 
to serve as the theoretical basis for mesowear (Ackermans, 2020). A 
secondary shape component that has not yet been accounted for in 
mesowear analysis involves the relative position of the cusp apex along 
a mesiodistal axis and the differential slopes, lengths, and shapes of 
the mesial and distal sides of the cusp.

On average, the cusps of browsing species are taller, with steeper 
sides, and with cusp apices that are positioned more mesially. The 
distal slope of the cusp is longer than the mesial slope, has a shallower 
angle, and is more concave. Among grazers, the cusps are shorter, with 
shallower sides, with apices that are positioned slightly distally with 
the mesial slope of the cusp having a greater length, shallower slope, 
and more concave surface than the distal slope. Mixed feeders occupy 
an intermediate position and overlap all other dietary categories. 
Frugivores tend to resemble mixed feeders and grazers more 
frequently than browsers, but frugivores may have some subtle shape 
distinctions as suggested by DF2 (Figure 5).

In ungulates, the height of cusps and the complexity of the 
occlusal relief of the antagonistic dentition play an important role in 
guiding the movement of the jaw during food comminution (Fortelius, 
1985; von Koenigswald et al., 2013). Attritional wear promotes precise 
occlusion and maintains the guiding effect of the cheek teeth during 
comminution thereby generating strongly defined attritional facets 
with high cusp relief and sharpened tips. Abrasion causes decreased 
tooth relief, thereby diminishing the guiding effect of the teeth, 
resulting in less precise chewing movements and less precise occlusion 
with rounded cusp apices. In browsers, attritional wear is the 
predominant mode of wear, while grazers experience high rates of 
abrasive wear.

Principal components are, by their very nature, uncorrelated. 
Because cusp relief is strongly reflected in PC1 (Figure 4) and has 
previously been associated with relative amounts of attrition and 
abrasion, it is difficult to explain the uncorrelated shape factor revealed 
by PC2, relating to cusp asymmetry, as also being a consequence of 
attrition and abrasion.

Cusp asymmetry may relate to differences in how ruminants chew 
or how their cusps are oriented with respect to the chewing direction 
that may have some correlation with diet. The power stroke of the 
ruminant chewing cycle occurs primarily in a transverse direction 
with a minor proal (from posterior to anterior) contribution (von 
Koenigswald et al., 2013). A proal vector during the power stroke may 
exert greater compressive loads and, consequently, more wear on the 
distal slopes of the upper cusps by the occluding lower teeth. This 
proal vector may play a role in creating asymmetrical cusp wear and 
could explain the condition observed more frequently among 
browsers (top of the PC2 axis in Figure 4; left of the DF1 axis in 
Figure 5) where the posterior slope of the metacone is more worn 
resulting in a mesial-ward shift in the position of the cusp apex.

Grazers tend to have more distally shifted cusp apices (bottom 
of the PC2 axis in Figure  4; right of the DF1 axis in Figure  5), 
suggesting the mesial and distal slopes of the cusp are subjected to 

slightly more wear on the anterior cusp slope causing the cusp apex 
to shift slightly distally. For frugivores, a greater vertical inclination 
during phase I of the power stroke and a “tip crushing” type of wear 
associated with mastication of hard objects may explain the shape of 
frugivore cusps, but in this case, the similarity of frugivore cusp 
morphology with those of mixed feeders and grazers would be due 
to a different type of wear process compared to other dietary 
categories where the power stroke is mostly transverse and optimized 
for shearing.

On the efficacy of mesowear as a dietary 
proxy

Studies that attempt to match mesowear patterns with literature-
based dietary classifications of extant species agree that while 
mesowear is strongly related to diet, it also yields some frequency of 
erroneous dietary classifications (Fortelius and Solounias, 2000; Fraser 
and Theodor, 2011; Louys et al., 2011; this study). Nonetheless, despite 
its shortcomings, mesowear seems to generate higher rates of correct 
diet classification than dental microwear and craniodental 
measurements (Fraser and Theodor, 2011), therefore it remains a 
promising means for predicting diet.

Fortelius and Solounias (2000) and Louys et al. (2011) reported 
accurate diet classification rates ranging from 49% to 58% using 
similar statistical methods (DFA jackknifing) to analyze traditional 
categorical mesowear data. Geometric morphometric data presented 
here produced higher correct classification rates ranging from 67.2–
76.5%, depending on whether or not frugivores were considered. The 
semilandmark data improved the correct classification rates of species’ 
diets by 12–13 percentage points in comparison to our results from 
traditional mesowear data. Geometric morphometric techniques seem 
capable of outperforming categorical techniques, but realistically, it 
seems that mesowear will inevitably lead to some proportion of 
erroneous dietary classifications.

The most widely recognized confounding variable when relating 
mesowear to diet is the relative impact of extrinsic geological 
material (e.g., dust, silt, sand) that is ingested along with food 
(Schulz et al., 2013; Wronski and Schulz-Kornas, 2015) and this 
additional source of abrasion may be responsible for some degree of 
dietary misclassification.

Intrinsic differences in the properties of the animals themselves 
may also obfuscate a simple relationship between mesowear and diet. 
Heritable (phylogenetic) differences in the dynamic aspects of 
mastication (bite force, occlusal vectors), functional morphology of 
the masticatory apparatus, and dental material properties cause teeth 
to wear differently regardless of diet. Phylogenetic methods are 
occasionally applied to mesowear analyses (Mihlbachler and 
Solounias, 2006; Mihlbachler et al., 2011; Kaiser et al., 2013; Fraser 
et al., 2014), although mesowear is most often assumed to be a taxon-
free method (Fraser and Theodor, 2011; Ackermans, 2020). 
Nonetheless, phylogenetic influences on dental wear are demonstrable 
(Fraser et  al., 2018). For example, dental microwear of ruminant 
artiodactyls differs from those of perissodactyls (Mihlbachler et al., 
2016). Ruminants have highly specialized digestive adaptations 
allowing them to ingest, wash, and regurgitate their food before orally 
processing (ruminating) their food (Hatt et al., 2019, 2020, 2021). 
Ruminants adopt different chewing strategies than perissodactyls 
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(Zhou et al., 2019) who must process their food fully during initial 
ingestion, and this may contribute to differential tooth wear.

Despite the great diversity of Ruminantia, phylogenetic influence 
may not strongly obfuscate dietary classifications generated from 
mesowear within this group. Captive ruminants consistently show 
different mesowear patterns from their wild conspecifics due to 
artificial zoo diets (Clauss et  al., 2007; Kaiser et  al., 2009), and 
experimental approaches to mesowear in goats show that mesowear 
responds to feeding treatments with different abrasive properties 
(Ackermans et  al., 2018). Such studies demonstrate that among 
ruminants mesowear is highly sensitive to proximate ecological 
variables and these, rather than phylogenetic influence, may be the 
primary drivers of the morphology of worn cusps. Although there are 
presently no clear signs that phylogeny complicates use of mesowear 
data within Ruminantia, phylogenetic methods are needed to 
ascertain the contribution of phylogenetic influence to mesowear 
(Barr and Scott, 2014). Ruminants are the dominant clade of 
herbivorous ungulates today, and all datasets of extant ungulate 
mesowear are overwhelmingly comprised of ruminants. Phylogeny 
may exert a stronger influence on more disparate assemblages of 
species that may include non-ruminant artiodactyls, perissodactyls, 
marsupials, and other extinct clades, such as South American 
notoungulates (Croft and Weinstein, 2008).

The heterogeneous quantity and quality of evidence for extant 
species’ diets in the literature (Gagnon and Chew, 2000) is a third 
complication that may undermine the apparent efficacy of mesowear 
analysis. Incomplete, erroneous, or biased observations in the wildlife 
literature concerning species diets almost certainly explain, to some 
degree, the mismatches found in our DFAs and other similar analyses 
(e.g., Fortelius and Solounias, 2000; Fraser and Theodor, 2011; Louys 
et  al., 2011). Likewise, highly specialized diets that are not easily 
pigeonholed into basic dietary categories may have similar effects. 
Consequently, the match rates for species with uncertain dietary 
classifications (in Table 2) was far lower than species with more certain 
a priori dietary classifications (in Table 1).

Opportunities to examine independent evidence of diet (such 
as stable isotopes) and mesowear, where both proxies are measured 
in the same specimens, are rare (Louys et  al., 2012). Within a 
species, diet may vary between populations and between 
individuals, and possibly within individuals’ lifetimes. The 
literature and mesowear data may yield unmatched dietary 
classifications due to such ecological diversity. Mixed feeders are 
expected to have lower match rates than browsers and grazers as 
their diets are expected to be  more heterogeneous in nature, 
possibly shifting seasonally or between populations in comparison 
to more specialized browsers and grazers. The mesowear data seem 
to reflect this expectation, as mixed feeders have lower match rates 
than browser and grazers.

We were able to correctly match literature-based and mesowear-
based dietary classifications for species 67.2%–76.5% of the time, 
depending upon whether frugivores were excluded. However, these 
results underestimate, to some degree, the magnitude of error in 
species-level mesowear-based dietary classifications. Browsing, mixed 
feeding, and grazing are segments with arbitrary boundaries along a 
continuum of diets relating to the proportions of monocots and dicots 
consumed. It would be less erroneous to misclassify a browser as a 
mixed feeder than to misclassify a browser as a grazer. The former 
error still correctly acknowledges that the animal participates, to some 

degree, in one aspect of its diet. Many of the mismatches in our results 
are of the lesser kind. Eleven of twenty mismatches of species in 
Table 1 are assignments to an adjacent category in the continuum. 
Four other misclassifications are more egregious errors involving 
failure to differentiate grazers and mixed feeders from frugivores and 
vice versa.

Removing frugivorous species from consideration is a reasonable 
strategy for improving dietary classification in some instances. 
Frugivorous diets only occur among small-bodied ruminants (<30 kg) 
from tropical and subtropical rainforests (Pineda-Munoz et al., 2016). 
Medium and large species and species from other environments that 
do not facilitate frugivory are unlikely to be specialized frugivores and, 
in these instances, frugivores can be removed from consideration. 
When frugivores are excluded, all 12 misclassifications in the species 
of Table 1 are classifications to the adjacent category in the browser-
grazer continuum. In no instances were species at the opposite ends 
of the dietary continuum (browsers and grazers) confused with 
one another.

Conclusion

Laterally oriented photographs of upper molar cusps capture 
aspects of 2D cusp shape variation that, in ruminants, are 
correlated with diet and not with size. Geometric morphometric 
analysis of cusp shape can be used, with some expected degree of 
error, to classify species according to their type of diet (browser, 
grazer, mixed feeder, frugivore) that may improve upon traditional 
categorical approaches to mesowear analysis. Aspects of shape 
variation related to cusp relief and sharpness, the fundamental 
traditional mesowear variables, were found to be  the primary 
elements of shape variation in the semilandmark data. The 
semilandmark data revealed a secondary shape aspect related to 
mesiodistal cusp asymmetry. Browsers more frequently have 
mesially positioned cusp apices with longer, shallower distal cusp 
slopes. Grazers more frequently have cusp apices that are slightly 
shifted distally. Mixed feeders and frugivores tend to have 
intermediate cusp morphologies. Mesiodistal cusp asymmetry in 
all but frugivores may be  both influenced by the attritive and 
abrasive wear process and intrinsic differences in the relative 
strength of vertical and proal vectors in the power stroke phase of 
the chewing cycle, or the orientation of cusps with respect to that 
cycle. The cusp morphology of frugivores may relate to a greater 
vertical inclination during phase I of the power stroke and a “tip 
crushing” type of wear.

While geometric morphometric techniques show potential for 
providing a higher rate of correct dietary classification compared to 
categorical methods, researchers can expect a certain 
misclassification rate with either approach. The semilandmark data 
correctly classified diet ~67% of the time but when small frugivorous 
species are not considered mesowear was able to correctly classify 
browsers, grazers, and mixed feeders more than 75% of the time. 
With frugivores eliminated, mesowear correctly identifies browsing 
and grazing diets more frequently than it correctly identifies mixed 
feeding diets. Therefore, while mesowear remains a promising 
dietary proxy, we  caution that its primary weakness may be  its 
tendency to underestimate the proportion of generalized 
mixed feeders.
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